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Abstract

We provide an inequality for absolute row and column sums of the powers of a complex
matrix. This inequality generalizes several other inequalities. As a result, it provides an
inequality that compares the absolute entry sum of the matrix powers to the sum of
the powers of the absolute row/column sums. This provides a proof for a conjecture of
London, which states that for all complex matrices A such that |A| is symmetric, we have
sum (|Ap|) ≤

∑n
i=1 ri(|A|)p.

1 Introduction

We consider n × n matrices, denoted by A, with complex entries aij . In particular, we look
at the row and column sums of A, which are denoted by ri(A) and cj(A), respectively. If A
is clear from the context, we abbreviate this by ri and cj . We use |c| for the absolute value
(modulus) of c ∈ C and |A| for the matrix where every single entry aij of A is replaced by
its modulus |aij |. For the matrix power Ap, p ∈ N, we define the following abbreviations:
a
[p]
ij := (Ap)ij , r

[p]
i := ri(A

p), and c
[p]
j := cj(A

p). We assume that A0 = I is the identity
matrix.

As a special case, we consider directed and undirected (multi-)graphs G = (V,E) with
n := |V | vertices and m := |E| edges (and their adjacency matrices). The in-degree and the
out-degree of a vertex v ∈ V are denoted by din(v) and dout(v), respectively. In undirected
graphs, the degree of a vertex v ∈ V is denoted by d(v). A walk in a multigraph G = (V,E) is
an alternating sequence (v0, e1, v1, . . . , vk−1, ek, vk) of vertices vi ∈ V and edges ei ∈ E where
each edge ei of the walk must connect vertex vi−1 to vertex vi in G, that is, ei = (vi−1, vi)
for all i ∈ {1, . . . , k}. Vertices and edges can be used repeatedly in the same walk. If the
multigraph has no parallel edges, then the walks could also be specified by the sequence of
vertices (v0, v1, . . . , vk−1, vk) without the edges. The length of a walk is the number of edge
traversals. That means, the walk (v0, . . . , vk) consisting of k+1 vertices and k edges is a walk
of length k. We call it a k-step walk. Let sk(v) denote the number of k-step walks starting at
vertex v ∈ V and let ek(v) denote the number of k-step walks ending at v. If G is undirected,
then we have wk(v) := sk(v) = ek(v). The total number of k-step walks is denoted by wk.
For walks of length 0, we have s0(v) = e0(v) = 1 for each vertex v and w0 = n. For walks of
length 1, we have s1(v) = dout(v) and e1(v) = din(v), i.e., w1(v) = d(v) for undirected graphs.
This implies w1 =

∑
v∈V dout(v) =

∑
v∈V din(v) = m for directed graphs. For undirected

graphs, we have w1 =
∑

v∈V d(v) = 2m by the handshake lemma.
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2 Related Work

2.1 Undirected Graphs and Symmetric Nonnegative Matrices

The k-th moment of the degree sequence has been discussed in the papers by Füredi and
Kündgen [FK06] and Cioabă [Cio06]. Cioabă [Cio06] used the equality∑

v∈V
d(v)k+1 =

∑
v∈V

d(v) ·mk(v)

(where mk(v) =
∑
{v,w}∈E d(w)k/d(v) is the average of the k-th powers of the degrees of the

neighbors of v) to deduce the following inequality using Chebyshev’s inequality:∑
v∈V

d(v)k+1 ≥ 2m

n

∑
v∈V

d(v)k .

Note that this corresponds to the inequality

w0

∑
v∈V

d(v)k+1 ≥ w1

∑
v∈V

d(v)k .

Let us remark here that it is easy to obtain the following inequality using the same argument:

1

n

∑
v∈V

d(v)2 · d(v)k ≥ 1

n

∑
v∈V

d(v)2 · 1
n

∑
v∈V

d(v)k

∑
v∈V

d(v)k+2 ≥ w2

n
·
∑
v∈V

d(v)k .

This corresponds to the inequality

w0

∑
v∈V

d(v)k+2 ≥ w2

∑
v∈V

d(v)k .

Both results can be generalized using the following theorem (and also to row sums of symmetric
matrices). This inequality for undirected graphs was conjectured by Noy and proven by Fiol
and Garriga [FG09].

Theorem 1 (Fiol and Garriga). For every undirected graph, the number wk of walks of length k
does not exceed the sum of the k-th powers of the vertex degrees, i.e.,

wk ≤
∑
v∈V

d(v)k .

Let us emphasize that there are close connections to the graph homomorphism numbers
for paths and stars: Suppose that H is an undirected graph with mH edges. A graph homo-
morphism from a graph H to a graph G is a mapping f : V (H) 7→ V (G) such that, for each
edge {u, v} of H, {f(u), f(v)} is an edge of G. Suppose that hH(G) denotes the number of
homomorphisms from H to G. If H is a path consisting of k edges, then hH(G) is the number
of k-step walks in G, i.e., hH(G) = wk(G). If H is a star consisting of k edges, then hH(G)
denotes the sum of the k-th vertex degree powers of G, i.e., hH(G) =

∑
v∈V (G) d(v)

k.
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Several applications for the sum of vertex degree powers are discussed in the article of
Cao, Dehmer, and Shi [CDS14]. In particular, a corresponding graph entropy measure was
considered.

Theorem 1 is a special case of an older theorem (for powers of nonnegative symmetric
matrices and their row or column sums) which was conjectured by London [Lon66] and proven
by Hoffman [Hof67].

Theorem 2 (London; Hoffman). For every symmetric nonnegative matrix and p ∈ N, we
have

sum (Ap) ≤
n∑

i=1

rpi

Another proof of this theorem has been published by Sidorenko [Sid85b; Sid85a]. He also
showed that for k > 1 equality is achieved if and only if A is decomposable into a direct sum
of matrices which are proportional to doubly stochastic matrices.

The inequality of Fiol and Garriga has been refined by Täubig [Täu12; Täu15] in the
following way.

Theorem 3. For all undirected graphs and p, q ∈ N with p ≥ 1, we have∑
v∈V

d(v)qwp(v) ≤
∑
v∈V

d(v)q+1wp−1(v) .

In particular, this implies the following.

Corollary 4. For all undirected graphs and p, q ∈ N, we have

wp+q ≤
∑
v∈V

d(v)qwp(v) ≤
∑
v∈V

d(v)p+q .

More generally, the inequality of London and Hoffman has been refined as follows (see
Täubig [Täu12; Täu15]).

Theorem 5. For every nonnegative symmetric matrix A and p, q ∈ N with p ≥ 1, we have

n∑
i=1

ri(A)q · ri (Ap) ≤
n∑

i=1

ri(A)
q+1 · ri

(
Ap−1) .

This corresponds to the short form
∑n

i=1 r
q
i r

[p]
i ≤

∑n
i=1 r

q+1
i r

[p−1]
i .

Corollary 6. For every nonnegative symmetric matrix A and p, q ∈ N, we have

sum
(
Ap+q

)
≤

n∑
i=1

ri(A)q · ri (Ap) ≤
n∑

i=1

ri(A)p+q .

This corresponds to the short form sum (Ap+q) ≤
∑n

i=1 r
q
i r

[p]
i ≤

∑n
i=1 r

p+q
i . These in-

equalities were generalized to directed graphs and nonsymmetric matrices, see Theorems 7
and 10.
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2.2 Directed Graphs and Arbitrary Nonnegative Matrices

2.2.1 Directed Graphs

Now we briefly discuss generalizations of Theorem 1 to directed graphs and corresponding
generalizations of Theorem 2 to nonsymmetric nonnegative matrices.

We have wk �
∑

x∈V din(x)
k and wk �

∑
x∈V dout(x)

k (see Täubig [Täu12; Täu15]).
Also, trying to generalize the inequality by using direct products of din(x) and dout(x) is not
successful, e.g., wk �

∑
x∈V

√
din(x) · dout(x)

k
.

While the power sum for din(x) or dout(x) alone is not suitable for bounding wk, it was
shown that a combination (namely, the geometric mean) of both sums is sufficient. To this
end, it was shown before that for the consideration of power sums with exponent q over the
set of walks of length p, the total cannot decrease if we shorten the walk length while at the
same time the exponent is increased by the same amount.

Theorem 7. For all directed graphs G = (V,E) and for all p, q ∈ N, p ≥ 1, the following
inequality holds∑

x∈V
din(x)

qsp(x)
∑
y∈V

dout(y)
qep(y) ≤

∑
x∈V

din(x)
q+1sp−1(x)

∑
y∈V

dout(y)
q+1ep−1(y) .

This was shown in a more general form for nonnegative matrices (see Theorem 10).
Theorem 7 implies a chain of inequalities where the smallest and the largest elements are∑

x∈V
sp+q(x)

∑
y∈V

ep+q(y) = w2
p+q and

∑
x∈V

din(x)
p+q

∑
y∈V

dout(y)
p+q .

Hence it directly implies the following corollary (see also the more general form in Corol-
lary 11).

Corollary 8. For every directed graph G = (V,E) and for all k ∈ N, we have

wk ≤

√√√√(∑
v∈V

din(v)k

)(∑
v∈V

dout(v)k

)
.

That means, although wk �
∑

x∈V din(x)
k and wk �

∑
x∈V dout(x)

k, we know for the
geometric mean of the two power sums that

wk ≤ G

(∑
v∈V

din(v)
k,
∑
v∈V

dout(v)
k

)
=

√√√√(∑
x∈V

din(x)k

)(∑
x∈V

dout(x)k

)
.

Corollary 8 implies the following statement by applying the inequality of arithmetic and
geometric means.

Corollary 9. For every directed graph G = (V,E) and for all k ∈ N, we have

wk ≤
1

2

(∑
v∈V

din(v)
k + dout(v)

k

)
.
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Therefore, at least one of the two power sums must be greater than or equal to wk:

wk ≤ max

{∑
x∈V

din(x)
k,
∑
x∈V

dout(x)
k

}

Note that Corollaries 8 and 9 contain Theorem 1 by Fiol and Garriga as a special case (since
din(x) = dout(x) holds for all x). Both corollaries could also be derived from corresponding
inequalities for nonnegative matrices that were shown by Merikoski and Virtanen [MV95] and
Virtanen [Vir90] (see Corollaries 11 and 12).

2.2.2 Row and Column Sums in Nonnegative Matrices

Theorems 2 and 7 have been generalized to the case of arbitrary nonnegative matrices (see
Täubig [Täu12; Täu15]).

Theorem 10. For every nonnegative n× n-matrix A with row sums ri and column sums ci,
i ∈ [n], and for all p, q ∈ N, p ≥ 1, the following inequality holds:∑

i∈[n]

cqi r
[p]
i

∑
j∈[n]

rqj c
[p]
j ≤

∑
i∈[n]

cq+1
i r

[p−1]
i

∑
j∈[n]

rq+1
j c

[p−1]
j .

This theorem is a refinement of the following corollary which was already shown by
Merikoski and Virtanen [MV95].

Corollary 11 (Merikoski and Virtanen). For every nonnegative n × n-matrix A with row
sums ri and column sums ci, i ∈ [n], and all p ∈ N, we have

sum(Ap) ≤

√√√√( n∑
i=1

cpi

)(
n∑

i=1

rpi

)
.

Corollary 11 generalizes Theorem 2 since ri equals ci for symmetric matrices. It also
generalizes Corollary 8.

Since the right hand side of Corollary 11 can be interpreted as a geometric mean, the
inequality of arithmetic and geometric means directly implies the following corollary, which
was already proven by Virtanen [Vir90] using majorization. An alternative proof for the same
result has been published by Merikoski and Virtanen [MV91].

Corollary 12 (Virtanen). For every nonnegative n×n-matrix A with row sums ri and column
sums ci, i ∈ [n], and all p ∈ N, we have

sum(Ap) ≤ 1

2

(
n∑

i=1

cpi + rpi

)
.

This is a more general form of Theorems 2 and 9.
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3 Main Results

3.1 Absolute Values and Complex Matrices

Now, we will generalize Theorem 10 and Corollary 11 to the case of arbitrary complex matrices.
This provides a generalization of the following conjecture of London [Lon66].

Conjecture 13. For every complex n×n-matrix such that |A| is symmetric and for all p ∈ N,
we have

sum (|Ap|) ≤
n∑

i=1

ri(|A|)p .

Theorem 14. For every complex n × n-matrix A with row sums ri and column sums ci,
i ∈ [n], and for all p, q ∈ N, p ≥ 1, the following inequality holds:∑
i∈[n]

ci(|A|)qri(|Ap|)
∑
j∈[n]

rj(|A|)qcj(|Ap|) ≤
∑
i∈[n]

ci(|A|)q+1ri(|Ap−1|)
∑
j∈[n]

rj(|A|)q+1cj(|Ap−1|) .

Proof. ∑
i∈[n]

ci(|A|)qri(|Ap|)
∑
j∈[n]

rj(|A|)qcj(|Ap|)

=

 n∑
i=1

ci(|A|)q
n∑

j=1

|a[p]ij |

 n∑
j=1

rj(|A|)q
n∑

i=1

|a[p]ij |


=

 n∑
i=1

ci(|A|)q
n∑

j=1

∣∣∣∣∣
n∑

k=1

a
[p−1]
ik akj

∣∣∣∣∣
 n∑

j=1

rj(|A|)q
n∑

i=1

∣∣∣∣∣
n∑

`=1

ai`a
[p−1]
`j

∣∣∣∣∣


≤

 n∑
i=1

ci(|A|)q
n∑

j=1

n∑
k=1

|a[p−1]ik akj |

 n∑
j=1

rj(|A|)q
n∑

i=1

n∑
`=1

|ai`a
[p−1]
`j |


=

 n∑
i=1

ci(|A|)q
n∑

j=1

n∑
k=1

|a[p−1]ik ||akj |

 n∑
j=1

rj(|A|)q
n∑

i=1

n∑
`=1

|ai`||a
[p−1]
`j |


=

n∑
i=1

ci(|A|)q
n∑

k=1

|a[p−1]ik |rk(|A|)
n∑

j=1

rj(|A|)q
n∑

`=1

|a[p−1]`j |c`(|A|)

=

n∑
i=1

n∑
k=1

n∑
j=1

n∑
`=1

|a[p−1]ik | ci(|A|)q rk(|A|) |a
[p−1]
`j | rj(|A|)q c`(|A|)

=
∑

(i,k)∈[n]2

( ∑
(`,j)∈[n]2
(`,j)=(i,k)

|a[p−1]ik | |a[p−1]`j | ci(|A|)q rj(|A|)q rk(|A|) c`(|A|)

+
∑

(`,j)∈[n]2
(`,j)6=(i,k)

|a[p−1]ik | |a[p−1]`j | ci(|A|)q rj(|A|)q rk(|A|) c`(|A|)

)
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=

( ∑
(i,k)∈[n]2

|a[p−1]ik |2 ci(|A|)q+1 rk(|A|)q+1

)

+
∑

(i,k)∈[n]2

∑
(`,j)∈[n]2
(`,j)6=(i,k)

|a[p−1]ik | |a[p−1]`j | ci(|A|)q rj(|A|)q rk(|A|) c`(|A|)

=

( ∑
(i,k)∈[n]2

|a[p−1]ik |2 ci(|A|)q+1 rk(|A|)q+1

)

+
∑

(i,k)<(`,j)∈[n]4
|a[p−1]ik | |a[p−1]`j |

[
ci(|A|)qrj(|A|)qrk(|A|)c`(|A|) + c`(|A|)qrk(|A|)qrj(|A|)ci(|A|)

]
≤

( ∑
(i,k)∈[n]2

|a[p−1]ik |2 ci(|A|)q+1 rk(|A|)q+1

)

+
∑

(i,k)<(`,j)∈[n]4
|a[p−1]ik | |a[p−1]`j |

[
ci(|A|)q+1 rj(|A|)q+1 + c`(|A|)q+1 rk(|A|)q+1

]
=

n∑
i=1

n∑
k=1

n∑
`=1

n∑
j=1

|a[p−1]ik | |a[p−1]`j | ci(|A|)q+1 rj(|A|)q+1

=
n∑

i=1

ci(|A|)q+1
n∑

k=1

|a[p−1]ik |
n∑

j=1

rj(|A|)q+1
n∑

`=1

|a[p−1]`j |

=

n∑
i=1

ci(|A|)q+1 ri(|Ap−1|)
n∑

j=1

rj(|A|)q+1 cj(|Ap−1|)

This theorem implies the following corollary.

Corollary 15. For every complex n× n-matrix A and all p ∈ N, we have

sum(|Ap|) ≤

√√√√( n∑
i=1

ci(|A|)p
)(

n∑
i=1

ri(|A|)p
)

.

Proof. We show the squared form of the inequality. First, we notice that∑
i∈[n]

ci(|A|)0ri(|Ap|)
∑
j∈[n]

rj(|A|)0cj(|Ap|) =
∑
i∈[n]

ri(|Ap|)
∑
j∈[n]

cj(|Ap|) = (sum(|Ap|))2 .

Hence, we start with the term on the left hand side and we apply Theorem 14 repeatedly until
we end up with∑

i∈[n]

ci(|A|)0ri(|Ap|)
∑
j∈[n]

rj(|A|)0cj(|Ap|) ≤ . . .

≤
∑
i∈[n]

ci(|A|)pri(|A0|)
∑
j∈[n]

rj(|A|)pcj(|A0|)

=
∑
i∈[n]

ci(|A|)p
∑
j∈[n]

rj(|A|)p
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For the last equality, it can be assumed that A0 is the identity matrix.

Obviously, Corollary 15 generalizes Corollary 11.
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