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Abstract— Collision-free walking in cluttered environments
is still an open issue for humanoids. Most current approaches
use heuristics with large safety margins to plan the robot’s
motion. That way, the chance of collisions can be greatly
reduced but the robot movements are limited artificially. In
this context, we extend our framework for motion generation
and whole-body collision-avoidance by an online predictive
kinematic parameter evaluation and optimization: We propose
to evaluate the initial parameter set describing the walking
pattern by integrating the full kinematic model of the robot.
In the model our local optimization technique for collision
avoidance is taken into account. Initial parameter sets, which
are kinematically infeasible due to kinematic limits or collisions
can be identified and adapted before the motion is executed.
Additionally, the parameter set is optimized according to a
chosen cost function using a gradient method and the step
time is adapted according to a desired mean velocity. The
optimization method is applicable to different representations
of the walking pattern. The method is presented with simulation
results obtained with our multi-body simulation. The method
is suitable for real-time control, since the optimization can be
stopped if it exceeds a predetermined time budget. In that case,
an executable but suboptimal result is used. The proposed
procedure is executed before each step which makes it very
reactive to changes in the environment or in the user input. We
have also validated the real-time performance in experiments
with our humanoid Lola.

I. INTRODUCTION

Legged robots are able to prove their strength over
wheeled robots when discrete footholds are necessary to
navigate in complex environments. The robots’ large number
of degrees of freedom (DoF) enable them to reach the
consecutive footholds using sophisticated motions. Robotic
research has come a long way in motion generation in
complex environments. However, the exploitation of the full
robot’s kinematic potential over a long planning horizon
is still an open issue. With today’s processing power, the
arising dimensionality problem is difficult to solve in real-
time. Recent advances on real-time navigation in cluttered
environments reduce the computational cost by solving the
motion planning problem in a hierarchical way. [1], [2], [3],
[4], among others, propose calculating an optimal footstep
plan. Based on the footstep plan the robot’s trajectories are
calculated. Most of those approaches either do not exploit the
ability of humanoids to step over or onto obstacles or use
heuristic approaches to avoid collisions. [2], [4] propose to
design collision-free task space trajectories based on a 2.5D
map. Although the presented results are very impressive, the
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Fig. 1. Photo and kinematic structure of the humanoid robot Lola. Joint
distribution and used world coordinate system are shown on the right side.

robot’s kinematics are not taken into account. This limits the
exploitation of the robot’s potential. [5] extends a footstep
planner by dividing the stepping motion into half steps. At
first the motion is checked regarding collisions at predefined
body configurations. Then, the half steps are smoothed to
approach dynamic movements. Although an RRT method
is used to handle the high dimensional search space, the
footstep planner cycle takes 2.5 s, making it difficult for a
fast moving robot to react to changes in user input or in
the given environment. Another body of literature focuses
directly on the stepping motion [6], [7], [8], [9], [10]. The
presented methods show remarkable results for the stepping-
over-motion when it comes to managing one obstacle at a
time. They are however not integrated in a framework involv-
ing perception and navigation. Consequently, the methods’
viability has to be proven in more general environments.
Regarding our purposes, the published methods mentioned
above display several disadvantages: the complex 3D ge-
ometries of the robot’s parts and the environment are ap-
proximated by line segments or simple boxes. Additionally,
potential self-collisions are not taken into account. Hence, the
methods only allow movements on a plane. For navigating
in an environment with more than one obstacle we expect
the need of motions which exploit all of the robot’s DoFs.
To solve such issues [11] generates the stepping-over-motion
from a whole-body-motion-optimization. However, this is an
offline method and not applicable to real-time applications.



Still, treating the stepping motion as a whole-body-motion-
optimization problem allows for a more complete exploita-
tion of the robot’s capabilities. In this context, many opti-
mization frameworks for motion planning of different kinds
of robotic systems were developed in recent years. [12], [13],
among others, present powerful gradient based frameworks,
which were also successfully applied on legged robots: [12]
shows results of LittleDog walking over uneven terrain and
[13] applies the presented algorithm on the humanoid ATLAS
walking statically stable in simulation. However, it is not
clear how compatible such frameworks are with our current
control architecture. Also, they might not be able to meet
our calculation time restrictions and achieving the hard con-
straints of locomotion of biped robots. Optimization methods
similar to our work were reported in [14], [15], [16]. The
authors represent trajectories using linear attractor dynamics
with a small number of control points to be optimized. This
greatly reduces search space and computation time. By opti-
mizing only the control points the search space can be greatly
reduced. That way the trajectory optimization is less time-
consuming. Since the methods were developed for grasping
motions they do not respect the hard timing constraints of
humanoids’ locomotion, e.g. foot-ground contact, which are
critical in order to maintain balance. In this context, our
objective is to further extend our framework for whole-body
collision avoidance presented in [17], [18], [19], [20]. In
2014 [18] we proposed a local online optimization technique
exploiting all the robot’s swing-foot DoFs for stepping over
arbitrarily shaped obstacles while avoiding collisions with
the environment and self-collisions. The local optimization
technique is combined with an A*-based footstep planner
and an on-board vision system in order to close the gap be-
tween obstacle recognition, collision-free walking in 2D and
whole-body 3D collision avoidance [19], [20]. To improve
both robustness and performance of the robot’s movements
we propose to replace the previous heuristic approach by
evaluating and optimizing the kinematics of the stepping
movements. The paper is organized as follows: In Sec. II
we give a system overview of the experimental platform
used in this work — the robot Lola — and a review of
our framework for collision avoidance [17], [18], [19], [20].
We then present an online kinematic optimization method
for robot movements in cluttered environments in Sec. III.
Further, the method is analyzed in simulation and validated
in successfully conducted experiments. These results are pre-
sented in Sec. IV. Finally, Sec. V is devoted to a conclusion
and comments on future work.

II. SYSTEM OVERVIEW

A. Hardware Overview

Our humanoid robot Lola weights approximately 60 kg
and is 180 cm tall. It has 24 position-controlled joints, which
are electrically actuated. A detailed view of the kinematic
configuration shows the right hand side of Fig. 1. Note
the redundant kinematic structure of the legs with 7 DoF
and the pelvis with 2 DoF. For more detailed information
see [21], [22]. For environment recognition we set up an
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Fig. 2. Lola’s real-time walking control system.

Asus Xtion PRO LIVE RGB-D camera1. It is mounted on a
pan/tilt unit on the head of the robot. The vision processing
software runs on an on-board computer with an Intel Core
i7-4770S @ 3.1 GHz (4x) processor and 8GB RAM on a
Linux OS. The control software runs on a computer with
the same specification, but on a QNX-RTOS. Both computer
comunicate via Ethernet using UDP.

B. Control Overview

Our control system follows a hierarchical approach (see
Fig. 2). Before each step a planning unit is called. An A*-
based step-planner calculates a sequence of footsteps based
on high-level user input [19]. The footstep positions are
used in the walking pattern generation to determine ideal
task-space reference trajectories wd ∈ Rm for the next
nsteps steps. These trajectories include the CoM position,
the torso rotations and the feet’s position and orientation.
First, the planning unit determines the CoM height and the
feet’s position and orientation trajectories based on a spline
representation. Then, it calculates the horizontal CoM and
the corresponding reference CoP trajectories using a three
mass model. The robot’s walking pattern is determined by
a parameter set pwp. It can be divided in a subset pfh
describing the footholds of the robot, the step time TStep and
the remaining subset pmv describing the robot’s movements
(e.g. height of center of mass (CoM)). Hence,

wd = wd(t) = traj(wd,cur, pwp) (1)

with wd,cur as the start value given by the previous step. wd

are used as set points for feedback control, which is marked
as Stabilization Unit in Fig. 2. The feedback control runs

1ASUS Xtion PRO LIVE, see http://www.asus.com/
Multimedia/Xtion_PRO_LIVE/
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in a cycle time ∆t = 1.5 ms. For the most part, a hybrid
position/force control [22] modifies wd = wd(tk) and ẇd =
ẇd(tk) at t = tk to stabilize the robot according to sensor
data. The methods proposed in [23], [24] are used to solve the
inverse kinematics (IK) for the joint space velocities q̇ ∈ Rn

from the modified task-space velocities ẇ. In order to exploit
the nullspace for Lola, an optimization criterion Hy ded-
icated to self-collision-avoidance, joint-limit-avoidance and
angular-momentum-minimization is minimized [17], [25].

C. Collision Avoidance

Our general framework for collision avoidance is based on
the representation of the robot’s geometry and environment
via swept-sphere-volumes (SSV). This representation allows
for efficient and accurate geometry-approximations and fast
distance calculations. The key point of our approach is the
combination of three contributions: (a) The environment is
approximated by a Vision System which uses only an on-
board RGB-D sensor. It works with a cycle time of 30 ms.
For this reason changes of the perceived environment, e.g.
moving obstacles, can be taken into account while the robot
is walking [20]. (b) With each step an A*-search based
Step Planner calculates a sequence of footholds. This allows
the robot to react in real-time to high-level user input or
changes in the perceived environment. The footstep planner
uses a dynamic approximation of the feet and the lower
legs to take into account the robot’s kinematics for collision
checking. Thus, high safety margins for footholds can be
avoided. Additionally, the step planner determines initial
swing-foot trajectories for stepping over or swinging by the
obstacle by changing the corresponding parameter in pmv

[19]. (c) An integration of the Trajectory Optimization in
the feedback control allows for collision free movements.
It optimizes online the 6D trajectories of the swing foot in
workspace taking into account self collisions and collisions
with the environment [18]. The combination of the three
contributions enables the biped robot to navigate among
obstacles taking into account self-collisions and collisions
with the environment of the entire robot.

III. KINEMATIC EVALUATION AND PARAMETER
OPTIMIZATION

A drawback of this approach is, that the full kinematic
movement of the robot is not considered before execution of
each step. In the current approach the parameter set pwp,
which determines the planned trajectories, is set heuristi-
cally - the parameters are set without predictive feedback
about the kinematic movement. Since our method is a local
method, collision avoidance in 6D could result in complex
environments to kinematically non-feasible movements. For
this reason, we propose to evaluate and optimize pwp by
integrating the kinematic model (cf. Fig 1) over one step
taking into account the methods for collision avoidance and
nullspace optimization [17], [18]. Fig 2 shows the integration
of the method in the overall control architecture, as part of
the Parameter Optimization step. Fig. 3 shows the workflow
of the method.
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Fig. 3. Predictive Kinematic Evaluation and Optimization.

A. Kinematic Evaluation

Parameter sets which lead to kinematically non-feasible
movements can be identified by integrating and analyzing
the kinematic movement before the step is executed. Hence,
the movement can be replanned using another set of initial
parameters including different footholds. We get

pwp,k+1 = re-init(pwp) (2)

with the re-initialisation of pwp. In this context the challenge
is to establish an interaction of the planning modules, step
planning and trajectory planing which works reliably and fast
enough to meet the real-time requirements.2

B. Parameter Optimization

Additionally to the evaluation of pwp, we propose to
optimize pmv along one step. This parameter optimization
can be used on-line to improve the walking pattern. The
robot’s movements are optimized with respect to the follow-
ing objective function

Hopt(pmv) =cq

∫ Tstep

0

(q̇T q̇ + cjlHjl + ccollHcoll)dt. (3)

Hjl denotes costs produced by joint limit avoidance, Hcoll

denotes costs produced by collision avoidance and ci denotes
weighting factors. The value of Hopt = Hopt(pmv) is
evaluated by numerically integrating the robot kinematics (cf.
eq. (13)) over one walking step and summing up the values
for each integration time-step. In this work the forward Euler
integration scheme is used. The updating rule

pmv,k+1 = pmv,k − hopt∇pmvHopt (4)

with the updating step-size hopt is used to optimize pmv

with respect to Hopt after each evaluation k. In this context

2The whole planning process has to be done in less than TStep.



∇x(·) is the n×m Jacobian of (·) with respect to a variable
x. A back-tracking algorithm determines hopt to improve
the performance of the optimization process. As long as the
Armijo condition

Hopt,k+1 ≤ Hopt,k − c ‖∇pmv
Hopt‖2 hopt (5)

is violated, the updating step-size is decreased by

hopt ← ρ hopt (6)

and pmv,k+1 is recalculated using eq. (4). The parameters c
and ρ ∈ (0, 1) are freely chosen.

C. Parameter Set

Since the evaluation of Hopt for each pmv,k in general and
the distance calculation for collision avoidance in particular
are time consuming, we focus on a subset popt of pmv with
the following parameters for online application:
• pCoM is referred to as the height of the CoM at the end

of each step. The starting and the finishing point are
connected via piecewise 5th order polynomials in order
to ensure continuity of the CoM movement.

• pSF is a set of control points sk, k = 0, ..., N describing
the trajectories of the sagital and horizontal movement
of the swing foot.

Foot Trajectory Representation: To include pSF in the
parameter optimization, we depend on a trajectory represen-
tation which meets the requirements of humanoid walking
and which can be described by a variable number of control
points. Since collision avoidance depends on the robot’s
configuration in task-space it seems to be reasonable to set
the control points in task-space coordinates on position level.
We decided to use a trajectory representation x(t) based on
cubic splines ck, k = 1, ..., N :

x(t) =


c1(t) : t0 < t < t1

c2(t) : t1 < t < t2
...

cN (t) : tN−1 < t < tN

(7)

with

ck(t) = akt
3 + bkt

2 + ckt+ dk. (8)

ak, bk, ck and dk are the spline parameters. Cubic splines
have the advantage of reducing oscilations, which are more
likely with higher dimensional polynomials. For stable hu-
manoid walking the boundary conditions

x(t0) = s0 x(t) = sN

ẋ(t0) = 0 ẋ(tN ) = 0

ẍ(t0) = 0 ẍ(tN ) = 0

and the continuity on acceleration level of the trajectories
are critical. To sum up, these requirements result in 3 × N
constraints and x(t) is described by (N − 1) × 4 free
parameters. Consequently, we are able to impose for N −
4 control points nF,opt additional position constrains and
design them according to the desired walking pattern. In
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Fig. 4. Vertical foot trajectory of step 8 for Lola stepping over an obstacle
before and after optimization.

the current implementation the timing of the control points
is fixed. It is choosen heuristicly based on simulations and
experiments. Fig. 4 shows a trajectory of the vertical foot
displacement with nF,opt = 3 (N = 7) before and after
an optimization. In a nutshell, we choose popt to consist
of nF,opt parameters for the vertical and the horizontal
swing-foot displacement and the height of the CoM pCoM .
Consequently, the optimization space is described by nopt =
2nF,opt + 1 optimization parameters in total. This choice of
the optimization parameters has proven to be detailed enough
to improve the performance of the robot in our experiments.
However, the method is open to choose additional parameters
or different trajectory representations.

D. Step-Time Adaption

The high level input of our control system may be a
desired path, a joystick command or a desired step-parameter
set, which can all be presented by a desired velocity vdes
for each step. The desired walking command is modified by
the A*-search to make navigation in cluttered environments
possible. In order to guide the robot as close as possible
to the desired velocity vdes, we adapt Tstep according to the
output of the A*-search, the relative displacement of the next
foothold ∆l, and vdes as follows:

TStep =


TStep,min : TStep,min >

∆l
|vdes|

∆l
|vdes| : TStep,min <

∆l
|vdes| < TStep,max

TStep,max : TStep,max <
∆l
|vdes|

(9)

TStep,min, TStep,max are manually set according to the dy-
namics of the robot.

E. Model

Our method uses the kinematic model of the robot. Sec.
II-B summarizes the kinematic structure of our robot and our
control framework. The kinematic movements are described
by

q̇ = J#
w ẇ − (I − J#

w Jw)∇Hy (10)



Sẇ = Sẇd − ẋcoll (11)

with the modification term for collision avoidance

ẋcoll = [(S∗Jw)#]T∇HRCA. (12)

∇HRCA is a collision gradient. S, S∗ are selection matrices
for the relative and absolute swing foot coordinates resp.
the remaining ones in the task-space [18]. Jw, J#

w are the
jacobian and its pseudoinverse, and ∇Hy is the gradient to
Hy (cf. sec. II-B). Eq. (10)-(12) is summarized as a first
order differential equation of the form(

q̇
ẇ

)
= f(q, w,wd, ẇd). (13)

The initial conditions are determined by the robot’s state at
the end of the previous step.

F. Gradient

In the context of real-time application the calculation of
the gradient ∇pwpHopt is challenging: for a small search
space of popt it may be advantageous to determine∇pwp

Hopt

numerically. The analytical derivation may take more com-
putational time than the additional integrations for the nu-
merical derivation with finite differences. With growing
search space the use of an analytical gradient becomes more
significant.

Analytical Gradient: The goal function (3) consists of a
sum of functions which depend on w and q. Therefore, we
have to differentiate w and q w.r.t. popt at each time-step of
the numerical integration. Similar to [14], differentiation of
the discrete form of eq. (13)3(

q
w

)
i+1

=(
q
w

)
i

+ ∆tif(qi, wi, wdi
(popt), ẇdi

(popt)),(
q
w

)
0

=

(
q0

w0

)
.

(14)

delivers the recursive formula for the gradients(
∇popt

q
∇popt

w

)
i+1

=

(
∇popt

q
∇popt

w

)
i

+ ∆ti∇qfi∇popt
qi

+ ∆ti∇wfi∇popt
wi

+ ∆ti∇w0fi∇poptw0i

+ ∆ti∇ẇ0fi∇poptẇ0i ,(
∇popt

q
∇popt

w

)
0

=

(
0
0

)
.

(15)

The partial derivatives of f can be calculated analytically.
They include derivatives of Jw, J#

w and ∇HRCA. The
foot trajectories and the CoM trajectories are the popt-
dependent components of wd. The boundary problem of the
CoM movement is solved applying the collocation method
as described in [26]. This generates the CoM horizontal

3For the sake of simplicity, we replace v(ti) = vi.

Fig. 5. Left picture: simulation setup, right picture: Lola’s Collision model
in blue and approximation of obstacle in orange
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Fig. 6. Step-sequence in simulation testcase. Obstacle in orange, left foot
in blue and right foot in green.

reference trajectories. Since an analytical differentiation is
computationally expensive and the calculation time of the
horizontal CoM reference trajectories is negligible compared
to the integration of the robot’s state we decided to use
numerical gradients for the corresponding derivatives. The
derivation of the foot trajectories, as the splines are linearly
dependend of popt, is straight forward.

IV. RESULTS

Simulation

The proposed method was tested in our multibody simu-
lation environment. It takes into account compliant contacts,
motor dynamics and the joint control loop. For details see
[27]. Due to limitation of space, we present the results of
our method in one exemplary environment. Fig. 5 shows the
environment of the testcase approximated by our collision-
world representation. We chose a testcase which enforced
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a complicated stepping-over-motion4 The executed step-
sequence, the result of the step-planner, is shown in Fig. 6.
The heuristically chosen initial parameter set would lead to a
collision between foot and obstacle in step 8. Applying eq. 2
increases the parameter describing the sagital movement of
the swing-foot, and thereby the safety distance between foot
and obstacle. This leads to an executable stepping motion.
Based on the results of different analyzed stepping-motions
we chose a parametrization of the foot trajectories with
nF,opt = 3. This results in nopt = 7 including the CoM
height. Fig. 7 shows the calculated costs over iterations. A
common result for all steps is the strong cost reduction in
the first iterations.

Real-Time Requirements

Our aim is to analyze and optimize each stepping motion
before it is executed. Consequently, the planning time for
the whole planning process, including the calculation of the
footholds and the planning of the desired walking pattern,
is limited to TStep = 0.7...1.2s. Therefore, we have to
introduce a time limit of the optimization which leads to a
maximal number of iterations imax for the real-time applica-

4The interested reader may compare the testcase with our experiments
presented on our YouTube - Channel http://www.youtube.com/
appliedmechanicstum.

Fig. 8. Left picture: experimental setup, right picture: Lola’s Collision
model in blue, the approximation of obstacles in field of view in orange
and the currently calculated step-sequence (left foot in blue, right foot in
green)

tion. In the worst case, the optimization process is not able to
converge to a parameter set superior to the initial one. In this
case only the kinematic feasibility is checked. Additionnally,
we analyzed the optimization process to improve the results:
(a) We reduced the number of optimization parameters by
keeping NF,opt = 3, but optimizing only one parameter and
shifting the other points of the foot trajectories according
to a fixed factor. Consequently, we get nopt = 3. Fig. 7
shows that the results for the first iterations are similar to the
results with nopt = 7. (b) We analyzed different integration
step-lengths. The analysis showed that an integration step
length which is six times higher than the control cycle time
still seems to be an adequate trade-off between accuracy
of the kinematic movement of the robot and speed of
the integration. Adaptable step lengths depending on the
collision gradients showed bad results, which correspond to
[28]. The integration of the kinematic model takes on the
real-time computer max. Tint = 50ms without the gradients,
with the gradients Tint,grad = 5Tint.

Experiments

We validated the real-time character of our method in
successfully conducted experiments. In the attached video
the simulation testcase is shown as well as one example
experiment. Fig. 8 shows a snapshot of the experiment and
Fig. 11 shows an image sequence from the experiment. The
high-level input was TStep = 0.8s and a varying step-length
(lStep = 0...0.3m). Fig. 9 shows the resulting step-sequence
to avoid obstacles. In the attached video of the experiment
the step-time adaptations are visible. As described in sec.
IV, the used parameter set has a dimension of nopt = 3. It
consists of dz and dy, describing the vertical resp. sagital
movement of the swing-foot, and H , describing the height
of the CoM. Table 10 presents the optimization results based
on the initial parameter set which is set by the step-planner.
The influence of dy is negligable in our experimental
setup, although we assume dy to be important for more
complex movements in more complex environments. Since,
the robot moves only on flat ground in the experiment, H
is optimized to correspond to its maximal limit to reduce
the joint velocities in the legs. We suppose the optimal H

http://www.youtube.com/appliedmechanicstum
http://www.youtube.com/appliedmechanicstum


Fig. 11. Walking experiment. Lola stepping over obstacles using the presented method in real-time. Image sequence ordered from left to right.
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Fig. 9. Step-sequence in experiment. Obstacle in orange, left foot in blue
and right foot in green.

Ref. [m] Opt. [m] Costs
Step dz H dz H Vref Vopt
11 0.03 0.88 0.03 0.885 2.2 1.6
12 0.03 0.88 0.03 0.88 0.22 0.22
13 0.03 0.88 0.03 0.882 0.16 0.14
14 0.03 0.88 0.029 0.885 4.3 3.9
15 0.15 0.88 0.14 0.885 4.1 3.8
16 0.03 0.88 0.03 0.885 0.92 0.64
17 0.03 0.88 0.03 0.885 0.99 0.7
18 0.03 0.88 0.03 0.885 1.1 0.78
19 0.03 0.88 0.03 0.885 1.5 1.2

Fig. 10. Comparison of the parameters set by the step-planner and the
optimized parameter; the parameter which describes the saggital swing-foot
movement is ommitted.

changes when the robot steps on stairs or platforms.

V. SUMMARY

We presented an extension of our framework for motion
generation and whole-body-collision avoidance by an online
kinematic parameter optimization. Before each step is ex-
ecuted the kinematic movement is analyzed by integrating
the robot’s full kinematic model. We take into account
our methods for collision avoidance. (a) Thus, walking
pattern which lead to kinematically infeasible movements
or collisions can be identified and avoided. This makes the
robot’s movements more robust. (b) To further improve the
exploitation of the robot’s potential we propose reducing
the walking pattern representation to a small parameter
set. This set of parameters is optimized according to a
choosen criteria using a gradient method. Introducing a new
parametrization of the foot trajectories, the parameter set
can be extended. The optimization is especially beneficial
for movements in complicated scenarios. (c) The key of
the article is the integration in the real-time application:
the whole planning process, including footstep planning and
parameter optimization, is done in less than a step duration.
The parameter optimization can be aborted at any given
time. Thus, the robot is still able to react to changing user
input or dynamically changing environments. In future we
intend to analyze the effect of more sophisticated CoM
trajectories. Furthermore, the method has to be tested in more
complicated environments including plattforms and stairs to
improve the interaction between planning and vision system.
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