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Abstract— Allowing robots to recognize activities through
different sensors and re-using its previous experiences is a
prominent way to program robots. For this, a recognition
method needs to be proposed such that is transferable toward
different domains independently of the used input sources.
One key component for such generalization is the definition of
common representations. In this paper, we present a flexible
system to extract symbolic representations of the perceived
scenario which adapts to different sensors, such as cameras,
multi-modal skin, and robot joint data. These symbolic rep-
resentations are used to generate a semantic reasoning engine
to transfer the obtained models among different domains. To
validate our system, first, our robot learns basic activities from
observing a video for the task cutfing bread. The extracted
symbolic representations are later used as previous experiences
to the robot, to allow on-line segmentation and recognition
of the Kinesthetically demonstrated activities for the new
packing oranges scenario with an average accuracy of 83%,
thus demonstrating the generalization of our method.

I. INTRODUCTION

Autonomous robots are expected to recognize previously
learned activities while interacting in new environments as
efficient and reliable as possible. One of the major challenges
is the different type of sensors that robots have. For example,
some robots have access to videos of persons demonstrating
everyday activities [1], [2], while other robots use infor-
mation from virtual environments to learn and interpret
the shown activities [3]. In some other cases, we would
like to physically interact with the robot to Kinesthetically
demonstrate the intended activities [4], [5]. Thus, making
evident the need of a learning method to recognize activities
independently of available sources of information. A promi-
nent way to tackle this problem is using abstract or symbolic
representations to obtain models that are transferable among
different robots in different scenarios [6].

The recognition of activities and its transferability among
different input sources or domains convey several challenges.
For example, Fig. 1 shows at least four different sources
of information and scenarios, e.g. single videos, multiple
videos, virtual environments and robotic sensors, where
different activities are demonstrated. Then, a general system
should extract common representations allowing the system
to transfer and adapt the learned models among different
input data. For instance, if the robot learns to identify the
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Fig. 1.
strated activities using different input data, e.g. videos, robotic sensors, etc.

Overview of our approach to segment and recognize the demon-

activity reaching from videos, then the robot should also
recognize this activity via Kinesthetic demonstrations even
when a different scenario is perceived and without a training
phase, i.e. the obtained models should be transferable when
the semantic representations are learned for activities.

We propose a hierarchical approach to extract the mean-
ing of demonstrations by means of symbolic and semantic
representations. The lowest level of our hierarchical method
finds the relevant information from the demonstrations from
multiple sensors. This obtained information represents the
input to the highest level, which infers the demonstrated
activities using the automatically extracted semantic repre-
sentations. The focus of this paper is mainly to demonstrate
the flexibility of our system through the obtained general rep-
resentations to handle multiple types of sensors, e.g. videos
or/and robotic sensors (robot skin, robot joints, cameras).
Hence, our robot TOMM can recognize the demonstrated
activities from external videos or through its own sensors via
Kinesthetic demonstrations. This implies that the acquired
semantic-based models are robust to different variations on
the demonstrations, which is typically the case when two
different scenarios are considered, i.e. sandwich making and
packing oranges, even on different robots (e.g. iCub, REEM-
C and TOMM, see Fig. 1). This represents another advantage
of our system, the generality of the obtained models that can
be reused in different scenarios and multiple robots.

This paper presents in Sec. II the related work. Sec. III
describes the extensions of our semantic-base system. Sec.
IV presents the obtained semantic rules and their transference
to Kinesthetic demonstrations followed by the conclusions.



II. RELATED WORK

Learning and understanding different activities in different
scenarios can greatly improve the transference and gen-
eralization of acquired knowledge among different robotic
platforms. One learning method to teach robots new activities
is via demonstrations [4]. These techniques are mainly used
to allow robots to imitate the motions from the demonstrator
via low-level copying of human trajectories to map the
observed task movements to robots [7], however in order
to get the models typically, a manual labeling of the demon-
strated activities needs to be performed in advance. Thus,
the need for the automatic segmentation and recognition of
the demonstrated activities is desired [8], especially if the
same activity is demonstrated by different persons leading
to small or large variations depending on the expertise of
the demonstrator who is manipulating the robot.

In order to obtain general models for the recognition of ac-
tivities, different levels of abstraction need to be determined
to extract meaningful information from the produced task to
obtain what and why a certain task was recognized [9], [10].
This is done using hierarchical approaches, which recognize
high-level activities with complex temporal structures [6].
Such approaches are suitable for a semantic-level analysis
between humans and/or objects which can be modeled using
object Affordances to anticipate/predict future activities [11],
or using Decision Trees to capture relationships between mo-
tions and object properties [10], or using Graphical Models
to learn functional object-categories [12].

For example, [13] suggests to use a library of OACs
(Object-Action Complexes) to segment and recognize an ac-
tion using preconditions and effects of each sub-action which
enables a robot to reproduce the demonstrated activities.
However, this system requires a robust perception system
to correctly identify object attributes which are obtained
off-line. Yang et. al. [14] introduced a system that can
understand actions based on their consequences, e.g. split
or merge. Nevertheless, this technique needs a robust active
tracking and segmentation method to detect changes in the
manipulated object, i.e. the consequences of the action.
Aksoy et. al. [2] presented the called Semantic Event Chain
(SEC) to determine interactions between hand and objects,
expressed in a rule-character form and it is extended to
incrementally learn semantics of manipulated actions [15].

The need for a flexible and general learning component is
evident especially when a physical interaction with a robot
is expected. An ideal solution would be a scenario where
the movements of the robot are segmented and recognized
while Kinesthetically demonstrating a new process. This is
a challenging topic of research of recent years; in addition,
from an industrial point of view, these methods are still not
robust enough [16]. Therefore, in this paper, we offer our
first attempt to solve these problems.

III. SEMANTIC-BASED HIERARCHICAL METHOD

We present the extension of our system which adapts
to new robot data, allowing the automatic segmentation,
recognition, and labeling while demonstrating activities.

A. System description

This system has been firstly introduced in [10], where our
iCub humanoid robot extracts the meaning of human activ-
ities from videos using our proposed hierarchical approach.
Later, we extended our system by including the activity
recognition of both hands at the same time as presented in
[17]. After that, we further extended our system to add ro-
bustness to different demonstration styles during the cutting
the bread task especially for co-manipulated activities [18].
From our previous work, we obtained semantic-based models
from observing human demonstrations using videos as input
sources for cooking scenarios, as depicted in Fig. 2. The main
goal and contribution of this paper are to demonstrate the
generalization and transferability of the obtained semantic-
based models when having different input data, e.g. robotic
information. Hence, the learned semantic models remain the
same since we aim to validate their robustness during online
demonstrations when the system has no knowledge about the
activities different persons will Kinesthetically demonstrate
in a new scenario, i.e. no data from this scenario or robot
sensors has been used to build the semantic-based model.

A key component of our system is the definition of
common representations to adapt to different incoming data
either videos or robotic information, thus permitting the
re-usability of previously learned semantic-based models.
With this new information, the system is able to segment
and recognize Kinesthetically demonstrated behaviors on the
robot by reusing its past experiences. Then, the obtained
activities are used to create tasks, which can later be used to
execute the learned activities by the robot.
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Fig. 2. Overview of our proposed system to handle robot and human
information in a common framework.

Fig. 2 shows four modules of our system, atomic property
detector module, semantic module, inference module, and
task generator module. Since we are proposing a hierarchical
approach, then we need to define two levels of abstraction.
o The first one, low-level, converts the perceived continu-
ous data into symbolic representations, i,e. atomic hand
motions (m) such as: move, not move and tool use, as
well as basic object properties, e.g. ObjectActedOn (a,)
and ObjectinHand (oy). This information is obtained in
the atomic property detector module, and it is consid-
ered as the state of the system (s).

« Whereas, the second, high-level, handles the difficult
problem of interpreting the perceived data into mean-
ingful classes, e.g. reach, take, or cut, by extracting



semantic rules (semantic module) which are used in our
reasoning engine (inference module).

Then, the sequence of recognized activities are consec-
utively stored to define tasks and this is done in the fask
generator module. We consider the following vocabulary in
the rest of the paper. Mot i ons represent atomic movements
of end-effectors. Activities are semantic descriptions
of motions and object properties, e.g. reach, take, cut, etc.
Tasks are ordered combinations of activities, for example,
the task “place orange in box” is composed of the sequence
of activities, {take, putSomethingSomewhere and release}.

B. Atomic Property Detector Module

In our previous work [1] we used videos as input in-
formation, which means that the atomic property detector
module received as input the object ID and the 2D positions
of the tracked objects including the analyzed hand of the
human (see Fig. 2). In this work since we are considering
different sources of information, such as multi-modal skin,
robot joints, and visual information, we needed to enhance
the atomic property detector module to handle this new and
different data in order to extract low-level features.

We adapt this module to consider human or robot motions
end-effector (EF) to segment the continuous motions [10]:

e Move: the EF is moving, i.e. X > €.
e Not move: the EF stops its motion, i.e. x — 0,

where x is the EF velocity. Furthermore, we also need to
detect the following properties of objects with the help of a
simple vision system [19]:

o ObjectActedOn (o4): the EF is moving towards an
object, i.e. getting closer to the object, d(x.f,Xo;) =
VI (xef — x0,)7 — 0.

o ObjectinHand (0y,): the object is in the EF location, i.e.
oy, is currently manipulated, i.e. d(xer,x,,) ~ 0.

where d(-,-) is the distance between the EF position (x.s)
and the position of the detected object (x,;) from a common
coordinate frame. Note, that the robot cameras have an
egocentric view of the scene. Therefore, it is possible to
have occlusions, for example when the robot hand is grasping
an object which is not longer visible in the camera due to
occlusions with the hand and the arm of the robot (see Fig.
4). In such cases, the above properties can not be obtained
leading to failures in the recognition similar to [2], [13],
[14]. To deal with this problem, we use the information of
the proximity and force sensors of the artificial skin attached
to the robot [19]. Then, an object that was previously seen,
which is not visible anymore, has the ObjectinHand property
if the average value of the proximity and force sensors
attached to the robot’s palm is above a certain threshold,
this means that the object has been grasped and this can
be detected even when the arm moves to another location.
Hence, we exploit all available sensors of our robot TOMM.

Since we expect some noise on the signals of the robot and
visual features from the cameras, we implement the Butter-
worth filter to smooth the obtained velocities and distances.
The output of this module determines the current state of

the system (s), which is defined as the triplet s = {m, 04,05}
Then, we used the perceived state of the system (s) to obtain
the semantic rules from the semantic and knowledge module.

C. Semantic and Knowledge Module

In this work, the semantics of human activities refers to
find meaningful relationships between hand motions and ob-
ject properties to infer activities performed by demonstrators.
In order to infer the demonstrated activities, we present a
two-step semantic-based approach. First, we extract the low-
level features from the perceived environment (e.g. signals
from the sensors handled by the atomic property detector
module), and as a second phase we automatically generate
compact semantic rules to deterministically infer the robot
activities from the demonstrations (semantic and knowledge
module). The obtained semantic representations are enhanced
with the help of a knowledge-based ontology, which allows
a better generalization toward different scenarios.

To obtain the semantic rules, we use the C4.5 algorithm
[20] to compute a decision tree (7). This algorithm learns
the target function ¢ by selecting the most useful attribute (A)
to classify as many training samples (S) as possible. These
training samples are composed of the state of the system (s),
which consists of hand or EF motion segmentation () and
the object properties (o, or op) obtained from the atomic
property detector module. The selection of the most useful
attribute (A) is done using the information gain measure:

Sy
Gain(S,A) = Entropy(S) — Z uEntmpy(S\,) (1)

veValues(A) S
where Values(A) is the set of all possible values of the
attribute A, and S, =s € S|A(s) = v as a collection of samples
for S. Similar to our previous approach [17], we use the target
concept ¢ to recognize basic robot activities:

Class c: ActivityRecognition : S — {Reach, Take, Release,
Put _Something_Somewhere, Idle, GranularAct} 2)

where GranularActivity represents the set of activities that
depend on the context. Therefore, to identify such kind of
activities a second step is needed as explained in [17].

From the learned decision tree (7)) we will obtain if-then
rules, which are human readable. These rules are enhanced
by including them in our knowledge and reasoning engine.
In this work, the knowledge-based is defined by an ontology
representation expressed in the Web Ontology Language
(OWL), and the reasoning is based on Description Logics
(DL) such as Prolog queries. We use KnowRob [21] as our
baseline ontology and we mainly extended two branches of
the KnowRob ontology: TemporalThings and SpatialThings,
where the first one contains the important subclasses of Ac-
tions and the second describes abstract spatial concepts such
as places and object classes. An example of the produced
Prolog query is given in eq. (5).

D. Task generator module

To learn new tasks we require the input from the user
via GUI. With this GUI, we can indicate the robot when a



certain task will start and finish. First, we define the name
of the task that is going to be Kinesthetically demonstrated.
After that, we specify that this task has finished. Then, all
the inferred activities will be retrieved by the system and
stored as part of the learned task', e.g:

T = {A1,A2,A3}
T ={A2} 3)

At this point, the user can delete any activities, if any,
that were incorrectly detected by the semantic and knowledge
module and save the new sequence of activities. This module
is also connected to the knowledge-based to store the learned
sequence of tasks. The task generation is important since,
after the Kinesthetic teaching, the system can later retrieve
the learned tasks and execute them in a loop.

IV. RESULTS

We aim to demonstrate the generalization of our obtained
semantic models, therefore we present our results in three
parts. The first part explains the automatic extraction of
semantic models from human demonstrations by observing
videos of making sandwiches. The second part shows the re-
usability of the obtained models even when different input
information is used from Kinesthetic demonstrations, for a
new scenario of packing oranges. Finally, we present the
execution of our robot for the demonstrated tasks.

A. Results of extracting semantic rules

In order to extract semantic rules, we randomly select
one participant that demonstrates a sandwich making from a
kitchen data set?. Then, we obtained a decision tree using the
information of the ground-truth? data of the analyzed subject.
As an intermediate step, we adjust the ground-truth and
use a higher object class information using our previously
described ontology. For example, from a sandwich scenario,
it is very likely to have objects such as bread and knife. Then,
in order to obtain a general tree we use as training input the
highest class of objects from our ontology, i.e. Something.
For example, (bread & knife) € Something. Then, the new
training samples (S) are:

{Move, Something, None} @

We split the training and testing data as follows: the first
60% of the trails are used for training and the rest 40% for
testing, similar to [10]. Then, we obtained the tree Tyuuqyich
shown in the top part of Fig. 3 (magenta box) to infer basic
human activities defined in eq. (2) using general classes of
the objects, i.e. Something.

Next, we tested the accuracy of the obtained tree Tyunqpich
using the remaining 40% of the data set to validate the

IThe generation of new tasks is further explained in the video accompa-
nying this paper.

2The used data set is publicly available at the following link
http://www.ics.ei.tum.de/ics-data-sets/cooking-data-set/

3The ground-truth was manually labeled by a person considered as an
expert since this person received a training session.
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robustness of the obtained rules. The obtained results show
that ¢(Rsanawichrest () Was correctly classified for 92.57% of
the instances using as input information manually labeled
data, i.e., during the off-line recognition.

We enhanced our obtained decision tree by including the
obtained if-then rules in our Prolog reasoning system, e.g.
for the activity of put something somewhere:

inferAct(+Motion,+0bj AO,+Obj_IH,Activity) : — 5)
== (Motion, fiadOntology : Move),

rdf_has(ObjIH, fiadOntology : ob jectInHand,Ob jC_IH),

rd fs_subclass_of(ObjC_IH, fiadOntology : 'Something’), !, (6)

Activity = ’PutSomethingSomewhere’.

where + indicates the input to the system, ? represents the
infered activity and ObjC_IH is the class of the object with
the property of ObjectinHand.

The next important step is to extend our system from off-
line to on-line recognition using a Color-Based technique as
presented in [17]. Therefore, we use as input the data ob-
tained from the atomic property detector module (see Fig. 2)
using a different participant than the one used for training. In
this case, we perceive the object detected (e.g. bread), which
leads to the state of the system: {Move, Bread, None}*. This,
however, does not affect the performance of our system, since
from eq. (6) we ask if this new object with the property of
ObjectinHand belongs to the class Something. Then, leading
to the generalization of our system to untrained objects.
Therefore, the result of recognizing activities from both
hands at the same time is around 90.64% by re-using the
obtained semantic rules Ty uqvich-

B. Robot Kinesthetic teaching results

The next challenge is to test our obtained semantic rules
in a completely new environment for a new task of packing
oranges. To further test the robustness of Ty,qyich, We design
the following experiment. Since we enhance the atomic
property detector module to discretize the continuous infor-
mation from robotic sensors, we assume that the inference
rules obtained in Ty,ugyicn Will also work when a person is
Kinesthetically showing a robot similar activities in a new en-
vironment. Therefore, for this experiment there is no training
phase, thus allowing the robot to re-use the inferences that
it learn from previous experiences as shown in Fig. 4. Then
we expect that the inference module automatically segments

4Note that the perceived state of the system can be different than the one
used during training, e.g. eq. (4)
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Fig. 4. Kinesthetic demonstrations with our robot TOM. The demonstrated
activities are segmented and recognized during the demonstration of the
activities for the task of packing oranges.

and infers the demonstrated activities on-the-fly by re-using
the learned semantic models.

Our proposed demonstration has been successfully imple-
mented in our robotic platform Tactile Omni-directional Mo-
bile Manipulator (TOMM), see Fig. 4. TOMM is composed
of two industrial robot arms (UR-5) covered with artificial
skin, two Allegro hands from SimLab also covered with our
artificial skin and 2 cameras on its fixed head used to obtain
the 3D position of target objects [19].

In this experiment, additionally to the robot sensor infor-
mation, we require the visual detection of oranges. For this
visual detection, we implement a stereo vision method using
two of the robot head cameras. For each camera, we apply
the color blob detection technique to recognize oranges.
Obtaining a list of detected oranges and their global positions
with respect to the robot torso frame. The 3D position of
detected oranges has an average error of 0.02m, however as
shown in Fig. 4 the recognition of oranges may fail which is
compensated by using the information of the proximity and
force sensors of the robot’s palm which can sense the object.

To quantitatively validate the robustness and generalization
of our system, we tested our semantic models Tyuuqyicn With
different variations on the Kinesthetic demonstrations for the
packing oranges scenario performed by two different partic-
ipants>. A total of four demonstrations® are considered and
our system is able to infer Kinesthetically demonstrated ac-
tivities on-the-fly. For these four demonstrations, the position
of the oranges in all the experiments is randomly selected.
Fig. 5 depicts the obtained trajectories after the Kinesthetic
demonstrations where these trajectories are automatically
segmented into meaningful activities (see Fig. 4).

By analyzing the obtained trajectories of the robot it is
possible to notice some disturbances and variations on these

5One participant was a robotic expert and the other non-expert. We are
planning to extend this study to a larger group of participants.

SNote that the data from the robot Kinesthetic demonstrations was not
used to improve in any way the semantic models Ty, qich-
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Fig. 5. a) Obtained trajectories from the Kinesthetic demonstrations on the
robot. b) Executed trajectories by the robot of the learned activities. When
demonstrating motions on the robot, we expect to see similar trajectories as
b) and not as noise as the one obtained from the actual demonstrations a).

trajectories. For example, from Fig. 5 we can observe that the
trajectories obtained from the second demonstration (purple
line) and the fourth demonstration (green line) present more
variations than the other trajectories. This exemplifies the
need for robust algorithms to correctly recognize the demon-
strated activities. The overall results’ of the segmentation and
recognition of the demonstrated activities is shown in Table
I, where the average of recognition is 83.15%. The follow-
ing link presents a video with an example of the on-line
segmentation and recognition: https://youtu.be/oOwfEgzuOmA

TABLE I
RECOGNITION FROM KINESTHETIC DEMONSTRATIONS

Packing oranges Accuracy of recognition (%)
Kinesthetic experiment #1 85.63
Kinesthetic experiment #2 70.02
Kinesthetic experiment #3 84.88
Kinesthetic experiment #4 92.06

C. Robot execution of the learned tasks

Before the Kinesthetic demonstration starts, the user needs
to tell the system that a new task is demonstrated. Then,
the user proceeds with the guided demonstration. Once,
the demonstration of the new task is finished, the user
needs to indicate via GUI the ending of the task. Then,
the task generated by the user is automatically stored in
the knowledge-based, to allow its later retrieval. In our
experiment one user choose the following tasks:

Ty{Pick_Fruit} = [Reach(something)] (7N
Tr{Place_Fruit_inBox} = [Take(something), ®)

Put (something,somewhere), Release(something)]

where something = Orange and somewhere = Box are going
to be instantiated during execution using visual information.
Then, if a user wants the robot to perform the learned tasks,
he/she just needs to ask the system for the available tasks,
which in this case are two, see eq. (7-8). Since our system
also saves the order of the learned tasks, the user just needs

"The ground-truth is obtained from visual information of the robot
cameras, used by each participant to segment and label the taught activities.


https://www.youtube.com/watch?v=o0wfEgzu0mA&feature=youtu.be

to send the execution command to the robot to perform
the learned sequence of tasks and activities. For the robot
execution, we use a simple state-machine to command robot
primitives. In this case, an operational position control was
implemented on the robot where the desired position of the
hand is defined by the position of the orange. The orientation
of the robot hand is constant and it is defined by the initial
hand configuration [19], [22]. The trajectories obtained from
our robot after executing the learned tasks and activities for
packing oranges is shown in Fig. 5b), where the orange
locations are randomly assigned.

Most of the recognition systems are designed to fit per-
fectly the studied task, however, most of these systems can
not easily allow different input sources [6], [13]. Then, the
main advantage of our system is its levels of abstraction
which allows developing a general method to transfer the
learned models from different domains independently of the
used sensors. For instance, our perception module permits the
use of different input sources, such as: single videos [10],
multiple videos [23], virtual environments [3], and robotic
sensors which bootstrap the learning process.

The key components and contributions of our system are:
a) The robust adaptation of our symbolic representations to
discretize the continuous data from different types of sensors.
b) A system that can automatically segment and recognize
activities from Kinesthetic demonstrations by reusing the
previous experiences applied in a new domain. c) We propose
a teaching by demonstration system® that can handle different
variations on the demonstrations.

V. CONCLUSIONS

Finding general recognition models capable of integrat-
ing multiple sensors for different domains is a challenging
problem. To address this, we proposed a method that uses
symbolic and semantic representations, enhanced with a
knowledge-based, to automatically segment and recognize
the demonstrated activities. In this paper, we demonstrate
the robustness and generalization of our obtained semantic
models for the recognition of activities using either videos
or Kinesthetic demonstrations in different scenarios such
as making sandwiches or packing oranges. Our presented
framework has an accuracy of recognition of around 83%
when the human is Kinesthetically showing the desired
activities to a robot. It is important to highlight that the
recognition model was obtained for the sandwich making
scenario, thus no training phase was performed for the new
scenario. Our presented system is adaptable to different
input sensors and variations on the demonstrated activities
allowing the robot to re-use its previous experiences.
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