
Technische Universität München

Fakultät für Mathematik

Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik

On the Minimum Bisection Problem
in Tree-Like and Planar Graphs

– Structural and Algorithmic Results

Tina Janne Schmidt

Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende:

Prüfer der Dissertation:

Prof. Dr. Caroline Lasser

1. Prof. Dr. Peter Gritzmann

2. Prof. Dr. Anusch Taraz

3. Prof. Cristina G. Fernandes, Ph.D.
(nur schriftliche Beurteilung)

Die Dissertation wurde am 27.12.2016 bei der Technischen Universität München eingereicht und
durch die Fakultät für Mathematik am 02.05.2017 angenommen.

Summary

This thesis studies the Minimum Bisection Problem in tree-like and planar graphs. The problem asks
to partition the vertex set of a given graph into two classes of equal size while minimizing the width
of the bisection, i. e., the number of edges between the classes. This optimization problem has many
applications including in parallel computing and VLSI design. The problem is known to be NP-hard
but, for graphs with bounded tree-width and grid graphs without holes as well as certain other graph
classes, polynomial-time algorithms for computing a minimum bisection are known. Currently, the best
approximation algorithm for the Minimum Bisection Problem achieves a ratio of O(logn), where n
denotes the number of vertices of the input graph. In the literature, no better approximation algorithm is
known for planar graphs, and the question whether the Minimum Bisection Problem remains NP-hard
when restricted to planar graphs is open.

It is known that bounded-degree trees and bounded-degree planar graphs on n vertices admit bisections
of width O(logn) and O(

√
n), respectively. One of the aims of this thesis is to investigate graphs for

which these bounds are tight up to a constant factor. It is shown that such trees have diameter O
(

n
logn

)

and that such planar graphs have tree-width Ω(
√
n) and, thus, contain a k×k grid with k = Ω(

√
n) as a

minor. Both results are proved by constructively establishing an upper bound for the width of a minimum
bisection that depends on the diameter and the tree-width, respectively.
Another aim is to employ these constructive methods for the development of algorithms. In the

case of trees, a bisection whose width is bounded in terms of the diameter and the maximum degree
can be computed in linear time. This algorithm is generalized to tree-like graphs such that, if a tree
decomposition (T,X) of a graph G is given as input, a bisection in G, whose width is bounded in terms of
the maximum degree of G, the relative weight of a heaviest path in (T,X), and the width of (T,X), is
computed in time proportional to the encoding length of (T,X).
For planar graphs, an algorithm constructing a bisection by using separators is proposed. A planar

graph G on n vertices has large minimum bisection width if every bisection in G has width Ω (
√
n). As

mentioned above, every bounded-degree planar graph on n vertices with a large minimum bisection width
contains a k×k grid with k = Ω(

√
n) as a minor. It is easy to see that the reverse implication does not

hold. It is shown here that, if a graph G contains a large grid as a minor, which is spread homogeneously
through the graph G, then G must have large minimum bisection width.
Finally, the more general problem Minimum k-Section is studied. This problem asks to partition

the vertex set of a given graph into k classes of equal size while minimizing the width of the k-section.
If k is part of the input and c < 1 is an arbitrary constant, then, in the case of trees on n vertices, it
is NP-hard to approximate an optimal solution for the Minimum k-Section Problem within a ratio
of nc. Here, for bounded-degree trees with linear diameter, a polynomial-time algorithm approximating an
optimal solution for the Minimum k-Section Problem within a constant ratio is presented. Afterwards,
this algorithm is generalized to tree-like graphs such that, when given a tree decomposition (T,X) of a
graph G as input, a k-section in G, whose width is bounded in terms of k, the maximum degree of G, the
relative weight of a heaviest path in (T,X), and the width of (T,X), is computed in polynomial time.

iii

Acknowledgments

First and foremost, I would like to thank Prof. Anusch Taraz for his support and encouragement during my
entire studies. I greatly appreciate that he always tried to make time for discussing problems and helped
to match my personal plans with my work. Second, I would like to thank Prof. Cristina G. Fernandes for
her constant interest in my work and welcoming me warmly as a visitor for so many times, not only at
the university but also during her free time so that São Paulo almost feels like a second home by now.
The discussions with both of them have shaped this thesis, my work, and my life in many aspects. Thank
you for sharing your extensive knowledge with me, all the inspiration, your patience, and the nice times
together!

The TopMath program of TUM Graduate School and the ENB provided me with the fruitful opportunity
to start working on research questions under the supervision of Prof. Anusch Taraz at the end of my
Bachelor’s studies and also financially supported several trips to conferences. Concerning financial support,
I gratefully acknowledge a scholarship of the Evangelische Studienwerk Villigst, which provided a great
amount of independence and made it possible to solely focus on research for three years without worrying
about any teaching duties. Most of the work presented in this thesis has been done during this time.
In particular, I am thankful for supporting a long term visit in São Paulo to work with Prof. Cristina
G. Fernandes. Moreover, I appreciate the opportunities for further visits in São Paulo realized by a
PROBRAL CAPES/DAAD Project.

Furthermore, my sincere thanks go to the research groups at Technische Universität München, Technische
Universität Hamburg, and Universidade de São Paulo, who always provided a great working environment,
room for stimulating discussions, as well as enjoyable lunch and coffee breaks. In particular, I want to
thank Dennis Clemens, Alexander Haupt, Carl Georg Heise, Andrea Jiménez, Guilherme Mota, Damian
Reding, and Katharina Zahnweh for reading parts of this thesis and for many helpful comments. Staying
in São Paulo was much easier and definitely a lot more fun with the help of Hiê.p Hàn, Andrea Jiménez,
Giulia Maesaka, Guilherme Mota, Mariana L. Simões, and Chandu Thatte.
Last but not least, I wholeheartedly appreciate Oliver Meister’s endeavor during the past years for

traveling with me before or after conferences, for visiting me in São Paulo and bringing all kind of
ingredients to bake German Christmas cookies, as well as for reminding me to take breaks from thinking
about math and filling these breaks with lots of fun.

v

Table of Contents

Summary iii

Acknowledgments v

Contents vii

1 Introduction 1
1.1 Minimum Bisection and Related Problems . 1

1.1.1 Minimum Bisection . 1
1.1.2 Minimum k-Section . 4
1.1.3 Related Problems and Applications . 5

1.2 Overview of Results . 7
1.2.1 Structural Results for Tree-Like Graphs with Large Minimum Bisection Width . . 7
1.2.2 Structural Results for Planar Graphs with Large Minimum Bisection Width 9
1.2.3 Algorithmic Results for Bisections . 11
1.2.4 Approximate Cuts in Tree-Like Graphs . 13
1.2.5 Minimum k-Section in Tree-Like Graphs . 14
1.2.6 Further Remarks . 15

1.3 Organization of the Thesis . 15

2 Preliminaries and Notation 17
2.1 Basic Definitions . 17
2.2 Some Facts Concerning Graphs . 20
2.3 Tree Decompositions . 24
2.4 Algorithms . 27

2.4.1 Graphs . 27
2.4.2 Tree Decompositions . 32

3 Planar Graphs 39
3.1 Using Separators to Construct Exact Cuts . 39

3.1.1 Constructing an Exact Cut by Successively Removing Separators 40
3.1.2 Using the Planar Separator Theorem . 44
3.1.3 Using Tree Decompositions . 45
3.1.4 Using Planar Separators and Tree Decompositions 52

3.2 Planar Graphs with Large Minimum Bisection Width . 54
3.2.1 Minimum Bisection Width, Tree-Width, and Grid Minors in Planar Graphs 55
3.2.2 Grid-Homogeneous Graphs . 58

vii

3.2.3 Proof of the Lower Bound for Grid-Homogeneous Graphs 65
3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs 73

3.3.1 The HEG Problem and the HGM Problem . 73
3.3.2 The SAT Problem and Selected Variants . 79
3.3.3 Proof of Hardness Results for the HEG Problem 84
3.3.4 Proof of a Hardness Result for the HGM Problem 97
3.3.5 Proof of Approximability Results for the HEG Problem 120

4 Approximate Cuts in Tree-Like Graphs 129
4.1 Approximate Cuts in Trees and Forests . 130
4.2 Approximate Cuts in Tree-Like Graphs . 137
4.3 Constructing Exact Cuts Through Approximate Cuts . 144

5 Exact Cuts in Trees and Tree-Like Graphs 149
5.1 Getting to Know the Techniques . 149
5.2 Results for Trees . 155

5.2.1 Upper Bound for the Width of Exact Cuts in Trees 155
5.2.2 Proof of the Doubling Lemma for Trees . 157
5.2.3 Improving the Bound on the Width of the Cut . 164
5.2.4 Linear-Time Algorithm for Trees . 167

5.3 Extension to Tree-Like Graphs . 173
5.3.1 Upper Bound for the Width of Exact Cuts in Tree-Like Graphs 174
5.3.2 Proof of the Doubling Lemma for Tree-Like Graphs 179
5.3.3 Computing a Heaviest Path and the Set of P -parameters 190
5.3.4 Algorithm for Tree-Like Graphs . 195
5.3.5 Improving the Running Time . 201

6 Minimum k-Section 209
6.1 Recursive Bisections and Cuts . 210
6.2 Minimum k-Section in Trees . 214
6.3 Extension to General Graphs . 222

7 Open Problems 235

A Generalizing the Concept of Path-Prosperous Graphs 237

B Embeddings of the Grid and Minimal Graphs Containing a Grid as a Minor 243

Bibliography 247

Chapter 1

Introduction

Fair sharing is hard. This applies not only to everyday situations, but also when splitting the vertex set
of a given graph into two classes of equal size while minimizing the number of edges between the classes.
Solving this problem, which is called the Minimum Bisection Problem, is NP-hard while the Minimum
Cut Problem, that does not require the classes to have equal size, can be solved in polynomial time.
First, the Minimum Bisection Problem and the Minimum k-Section Problem are introduced

in Section 1.1.1 and Section 1.1.2, where also a selection of previous known results for both problems
is presented. Related problems and applications are quickly summarized in Section 1.1.3. Afterwards,
Section 1.2 gives an overview on the results presented in this thesis. Furthermore, Section 1.3 discusses
connections between the results and explains where, in the following chapters, their proofs can be found.

1.1 Minimum Bisection and Related Problems

1.1.1 Minimum Bisection

A bisection (B,W) in a graph G = (V,E) is a partition of its vertex set into two sets B and W , called the
black and the white set, of sizes differing by at most one. An edge {x, y} of G is cut by the bisection (B,W)
if x ∈ B and y ∈W or vice versa. The number of edges cut by the bisection (B,W) is called the width of
the bisection and is denoted by eG(B,W). A minimum bisection in the graph G is a bisection (B∗,W ∗)
with

eG(B∗,W ∗) = min{eG(B,W) : (B,W) is a bisection in G} =: MinBis(G),

see Figure 1.1 for an example. Determining a bisection of minimum width is a famous optimization
problem that is known to be NP-hard since 1976, see Theorem 1.3 in [GJS76]. In the following, we denote
this problem by Minimum Bisection.

One way to deal with the hardness of a problem is to restrict the class of considered graphs. For example,
when restricting the Minimum Bisection Problem to trees, it becomes solvable in polynomial time.
Indeed, there is an algorithm that computes in O(n3) time a minimum bisection in a tree on n vertices,
see Theorem 4.3 in [Jan+05]. This algorithm by Jansen et al. relies on dynamic programming and can
also be applied to tree-like graphs, i. e., graphs of constant tree-width. Roughly speaking, the tree-width of
a graph G measures how tree-like G is. For example, trees have tree-width 1, cycles and cacti, i. e., graphs

1

Chapter 1 Introduction

a) A bisection (B,W) in G with eG(B,W) = 5. b) A minimum bisection in G.

Figure 1.1: A graph G and two bisections (B,W). In both parts, the vertices in B are colored black and the
vertices in W are colored white. Each edge of G that is cut by (B,W) is colored red.

where each edge is contained in at most one cycle, have tree-width 2, and a complete graph on n vertices has
tree-width n− 1. Returning to the algorithm in [Jan+05], when a tree decomposition of width t of a graph
on n vertices is provided as input, then the algorithm computes a minimum bisection in O(2tn3) time.
Using the algorithm in [Bod96] to compute a tree decomposition, the Minimum Bisection Problem
becomes polynomially tractable for graphs of constant tree-width. As there are planar graphs on n vertices
that do not allow a tree decomposition of width less than

√
n, the algorithm presented in [Jan+05] to

compute a minimum bisection does not run in polynomial time for all planar graphs. In fact, it is open
whether the Minimum Bisection Problem remains NP-hard when restricted to planar graphs. Díaz
and Mertzios [DM14] believe that this is the case, since planar graphs and unit disk graphs often behave
similarly with respect to computational complexity of optimization problems and they showed that the
Minimum Bisection Problem restricted to unit disk graphs is NP-hard. A graph is a unit disk graph if
its vertices can be mapped to points in the plane such that two vertices are adjacent if and only if the
corresponding points have distance at most one. Also, Papadimitriou and Sideri [PS96] conjecture that
the Minimum Bisection Problem remains NP-hard when restricted to planar graphs. They study grid
graphs, which are finite induced subgraphs of the infinite grid. Consider the canonical embedding of a grid
graph G. A hole of G is a face other than the infinite face whose boundary is not a cycle of length four.
Papadimitriou and Sideri show that a minimum bisection in a grid graph on n vertices without holes can
be computed in O(n5) time and this approach can be generalized to run in O(n5+2h) time when applied to
a grid graph on n vertices with h holes. Furthermore, they show that the Minimum Bisection Problem
in planar graphs can be reduced to the Minimum Bisection Problem in grid graphs with an arbitrary
number of holes. The algorithm for grid graphs on n vertices without holes has been improved to run
in O(n4) time by Feldmann and Widmayer [FW15]. Moreover, Bui et al. [Bui+87] showed that, for any
fixed integer d ≥ 3, the Minimum Bisection Problem remains NP-hard when restricted to d-regular
graphs, i. e., for graphs G = (V,E) where each vertex v ∈ V satisfies deg(v) = d. This immediately implies
that the Minimum Bisection Problem restricted to graphs with maximum degree 3 is NP-hard.

Another way to deal with the hardness of a problem is to study approximations. Roughly speaking, the
idea is to compute a bisection that cuts few edges but might not be a minimum bisection. An algorithm is
an α-approximation for the Minimum Bisection Problem if it computes a bisection (B,W) in the input
graph G with eG(B,W) ≤ αMinBis(G) in polynomial time. Currently, the best known approximation
algorithm for the Minimum Bisection Problem is the O(logn)-approximation for arbitrary graphs
on n vertices due to Räcke [Räc08]. Nothing better has been established for planar graphs, but an
O(logn)-approximation for planar graphs on n vertices had been known before the result of Räcke,
see [FK02]. When the minimum degree of the considered graph is linear, a polynomial-time approximation
scheme for the Minimum Bisection Problem is known [AKK99], that is, for any fixed ε > 0, there is a
polynomial-time (1 + ε)-approximation for graphs G = (V,E) on n vertices, that satisfy deg(v) = Ω(n)
for all v ∈ V .

2

1.1 Minimum Bisection and Related Problems

Consider a graph G that allows a bisection of constant width. Then, one can compute a minimum
bisection in G in polynomial time by brute-force or, more precisely, by trying all possibilities to remove a
constant number of edges from G and form a set of half of its vertices from the resulting components.
The decision version of the Minimum Bisection Problem is to decide for an input graph G and input
parameter e whether the graph G allows a bisection of width at most e. Cygan et al. [Cyg+14] describe an
algorithm that solves this question in O

(
2O(e3)n3 log3 n

)
time when given a graph G on n vertices and an

integer e, which shows that the decision version of the Minimum Bisection Problem is fixed parameter
tractable. Being fixed parameter tractable means that there is an arbitrary function f such that there is an
algorithm for the decision version of the Minimum Bisection Problem that runs in time O(f(e)nO(1)),
i. e., polynomial in n but with arbitrary dependence on the parameter e, when given a graph G on n vertices
and an integer e. Hence, when a graph G on n vertices with MinBis(G) = O(3

√
log(n)) is considered,

then MinBis(G) can be determined in polynomial time. Note that the brute-force approach results in an
algorithm running in Ω

((|E|
e

))
time for a graph G = (V,E) and an integer e, and does not suffice to show

that the decision version of the Minimum Bisection Problem is fixed-parameter tractable.
What upper bounds on the width of a minimum bisection for certain graph classes are known? Any

graph G = (V,E) with n := |V | even satisfies MinBis(G) ≤ 1
2 |E|

n
n−1 . Indeed, when a set B ⊆ V of

size 1
2n is chosen at random, then each edge in E is cut with probability 2 ·

n
2
n ·

n
2

n−1 = 1
2 ·

n
n−1 , so the

expected width of the bisection (B,W) with W := V \B is 1
2 |E|

n
n−1 and, hence, there is a bisection of

width at most 1
2 |E|

n
n−1 in G. The complete graph Kn with n even shows that this bound is tight, as

every bisection (B,W) in Kn cuts 1
4n

2 edges and 1
2 |E(Kn)| nn−1 = 1

4 · n(n− 1) · n
n−1 = 1

4n
2. Since every

tree T = (V,E) satisfies |E| = |V | − 1, this implies that MinBis(T) ≤ 1
2n for every tree T on n vertices

with n even. The star K1,n−1 on n vertices shows that this bound is tight.
Furthermore, consider a tree T on n vertices with maximum degree ∆0. One can show that owing to the

existence of a separating vertex, i. e., a vertex whose removal leaves no component of size greater than 1
2n, a

bisection of width at most ∆0 log2(n) in T can be constructed and, hence, MinBis(T) ≤ ∆0 ·log2(n), see e. g.
Corollary 4.9 in Chapter 4 where a slightly different method is used to derive the same bound. It is easy to
see that a bisection satisfying this bound can be computed in O(n) time. Furthermore, the bound is tight
up to a constant factor, because a perfect ternary tree Th of height h satisfies MinBis(Th) ≥ h− log3(h),
see Theorem 4.11 in [Sch13]. The method can be generalized to planar graphs by using planar separators
as in [LT79] to obtain MinBis(G) = O(∆0

√
n) for planar graphs G on n vertices with maximum degree ∆0,

see also Theorem 6.2 in [Jan+05]. Moreover, the bound for trees can be generalized to tree-like graphs by
using tree decompositions to obtain MinBis(G) ≤ ∆0(tw(G) + 1) log2(n) for every graph G on n vertices,
where tw(G) denotes the tree-width of G. This method will also be used in Section 3.1 to construct
bisections, where a proof for the bound for planar graphs and tree-like graphs is presented.
Lower bounds are more difficult to derive than upper bounds and only few are known. One example

is the spectral bound MinBis(G) ≥ 1
4λ2n for graphs G on n vertices with n even, see Proposition 2.1

in [Moh92], where λ2 denotes the second smallest eigenvalue of the Laplacian of G. The Laplacian of a
graph G with V (G) = [n] for some integer n is the matrix obtained from a diagonal matrix, whose ith entry
on the diagonal is degG(i), by subtracting the adjacency matrix of G. Chapter 1.9.1 in [Lei92] introduces
another way to obtain a lower bound on the minimum bisection width in connected graphs. The idea is
the following. Consider a connected graph G on n vertices and a bijection of the vertex set of Kn to the
vertices of G as well as a function that maps each edge of Kn to a path joining the corresponding vertices
of G. The congestion of an edge e is defined as the number of such paths that use e and the congestion C
of the embedding of Kn into G is defined to be the maximum congestion among all edges of G. Then,
MinBis(G) ≥ 1

4Cn
2 if n is even, and MinBis(G) ≥ 1

4C (n2 − 1) if n is odd.

3

Chapter 1 Introduction

a) A minimum bisection (B,W), which has width 4.
The vertices in B are colored black and the vertices
in W are colored white.

b) A minimum 3-section (B1, B2, B3), which has
width 2. The vertices are colored black, white, and
gray to indicate the set B` to which they belong.

Figure 1.2: Different k-sections of a perfect ternary tree. A perfect ternary tree is an example of a tree for
which MinSeck(T) does not increase monotonically as k increases.

1.1.2 Minimum k-Section

The concept of a minimum bisection can be generalized to splitting the vertex set of a graph into an arbitrary
number of sets. For an integer k ≥ 2, a k-section in a graph G = (V,E) is a partition (B1, B2, . . . , Bk)
of V into k sets such that

⌊
n
k

⌋
≤ |B`| ≤

⌈
n
k

⌉
for all ` ∈ [k], where n denotes the number of vertices

of G. The width of a k-section (B1, . . . , Bk) in a graph G = (V,E) is the number of edges {x, y} ∈ E
such that x and y belong to different sets B` and B`′ and is denoted by eG(B1, . . . , Bk). A k-section of
minimum width in a graph G is called a minimum k-section and its width is denoted by MinSeck(G). So,
MinBis(G) = MinSec2(G) for all graphs G. A path P on n vertices satisfies MinSeck(P) = k − 1 for all
integers 2 ≤ k ≤ n and it is easy to verify that MinSeck(Kn) increases as k increases. Intuitively, one
would expect that, when considering one fixed graph G, then MinSeck(G) increases as k increases, as it
seems necessary to cut more edges when partitioning the vertex set into more classes. This is wrong,
even when G is a perfect binary tree, as an example by Feldmann and Foschini [FF15] shows. Figure 1.2
presents a similar example: Let T be a perfect ternary tree of height h. If k is an even constant, then any
k-section in T cuts at least MinBis(T) edges, i. e., at least h− log3(h) edges as mentioned above. If k is a
constant that is a power of 3, then T allows a k-section that cuts only edges in the upper log3(k) levels
of T , i. e., that cuts only a constant number of edges.

Minimum k-Section denotes the problem to determine MinSeck(G) when given the graph G and an
integer k ≥ 2 as input. As mentioned above, the Minimum Bisection Problem is NP-hard and, hence,
the Minimum k-Section Problem is NP-hard as well. The following simple reduction shows that, for
arbitrary, fixed k ≥ 3, the Minimum k-Section Problem is NP-hard as well. Let G be a graph on n
vertices and assume that n is even. Let G′ be the graph obtained from G by adding two copies of Kn2

and k − 2 copies of Kn2+ 1
2n

. Then, a k-section in G′ can be constructed from a bisection (B,W) in G by
adding the copies of Kn2 to the sets B and W , respectively, and putting each copy of Kn2+ 1

2n
into a set by

itself. Thus, MinSeck(G′) ≤ MinBis(G). Furthermore, any cut (B̂, Ŵ) with B̂ 6= ∅ and Ŵ 6= ∅ in a clique
on at least n2 vertices cuts at least n2 − 1 edges. As the subgraph G ⊆ G′ has at most

(
n
2
)

= 1
2n(n− 1)

edges, every minimum k-section (B1, . . . , Bk) in G′ cuts only edges in G and induces a bisection in G.
Consequently, MinSeck(G′) = MinBis(G) and solving the Minimum k-Section Problem for a fixed k ≥ 3
is as hard as solving the Minimum Bisection Problem.

Returning to the case when k is part of the input, Andreev and Räcke [AR06] showed that, for general
graphs, it is NP-hard to approximate the width of a minimum k-section within a finite factor. For trees,
the dynamic programming algorithm in Theorem 4.3 in [Jan+05] to compute a minimum bisection can
be adapted to compute a minimum k-section in a tree T such that the running time is polynomial in n

4

1.1 Minimum Bisection and Related Problems

but not in k, where n denotes the number of vertices of T . Feldmann and Foschini [FF15] showed
that the Minimum k-Section Problem remains APX-hard when restricted to trees with bounded
degree. Additionally, they showed that it is NP-hard to approximate MinSeck(T) within a factor of nc

for any c < 1 for trees T on n vertices with constant diameter. Note that, for a tree T on n ≥ 2
vertices, an approximation of MinSeck(T) within a factor of n is trivial as any k-section (B1, . . . , Bk) in T
satisfies 1 ≤ eT (B1, . . . , Bk) ≤ n− 1.

The spectral lower bound for the minimum bisection width can be generalized for the minimum k-section
width in the following way. Let G be an arbitrary graph on n vertices and denote by λ1, . . . , λk the k
smallest eigenvalues of the Laplacian of G. Then, MinSeck(G) ≥ n

2k
∑k
i=1 λi(G), see [ELM03] where this

bound is also improved to obtain a tight bound for certain graph classes.

1.1.3 Related Problems and Applications

One problem closely related to the Minimum Bisection Problem is the Maximum Bisection Problem,
whose goal is to find a bisection (B,W) in a given graph G such that eG(B,W) is maximized. This
problem is also NP-hard, as one can consider the complement of the graph to obtain an instance of
the Maximum Bisection Problem from an instance of the Minimum Bisection Problem and vice
versa. Nevertheless, in terms of approximation, the Minimum Bisection Problem and the Maximum
Bisection Problem seem to behave very differently, as there is a 0.699-approximation for the Maximum
Bisection Problem [Ye01], whereas no constant-factor approximation is known for the Minimum
Bisection Problem. To understand this different behavior better, recall the approach of randomly
choosing the set B for a bisection (B,W) in a given graph G = (V,E) with n := |V | even, which
produces a bisection of expected width 1

2 |E|
n
n−1 ≈

1
2 |E|. This approach neither aims to minimize nor to

maximize the number of edges between the sets B and W . On the one hand, a bisection (B,W) in G
with eG(B,W) = 1

2 |E| can cut arbitrarily more edges than a minimum bisection in G or, more formally,
there is no α ∈ R with eG(B,W) ≤ αMinBis(G) for all such graphs G and all such bisections (B,W),
as MinBis(G) = 0 is possible. On the other hand, a bisection (B,W) in G with eG(B,W) = 1

2 |E| cuts at
least half of the number of edges cut by a maximum bisection in G since the width of any bisection in G is
obviously bounded above by |E|. So, an algorithm computing a bisection (B,W) in a given graph G such
that (B,W) satisfies eG(B,W) ≥ 1

2 |E| is a
1
2 -approximation for the Maximum Bisection Problem.

Another closely related problem is the Minimum Cut Problem, which is, roughly speaking, obtained
from the Minimum Bisection Problem by dropping the requirement that the sets B and W of a
bisection (B,W) need to have the same size. More formally, the aim of the Minimum Cut Problem is
to partition the vertex set of a given graph G into two non-empty sets B and W such that eG(B,W) is
minimized. Surprisingly, there are efficient algorithms known for this problem [HO92] but the Maximum
Cut Problem, that is similarly obtained from the Maximum Bisection Problem by removing the
size constraint, is NP-hard, see Problem ND16 in [GJ79].
Feldmann and Foschini [FF15] study a version of the Minimum k-Section Problem, that asks to

partition the vertex set of a given graph G on n vertices into k sets B1, . . . , Bk such that |B`| ≤ (1+ε)
⌈
n
k

⌉

for all ` ∈ [k], where k and ε > 0 are part of the input. They show that, for fixed ε > 0 and general graphs G
on n vertices, a solution cutting at most O(logn) times as many edges as a minimum k-section in G can be
computed in polynomial time. For the case ε = 1, Krauthgamer et al. [KNS09] present a polynomial-time
algorithm that, for graphs G on n vertices, computes a solution cutting at most O(

√
logn log k) times as

many edges as a minimum k-section in G.
The Minimum Bisection Problem and the Minimum k-Section Problem have many applications,

some of which are demonstrated by the following examples. In the area of parallel computing, a fixed

5

Chapter 1 Introduction

number of processors is available and one aims to distribute the computational tasks evenly to the
processors while minimizing the communication cost between the processors. Such scenarios are typical for
finite element simulations and can be modeled in the following way. Let G be a graph, where each vertex
represents one computational task and where two vertices are adjacent if and only if the corresponding
tasks depend on each other, i. e., one task can only be executed once the other task is finished. Then, the
aim is to find a k-section in G of minimum width, where k is the number of processors. See also [Fel13]
and the reference therein for a concrete example.
Divide-and-conquer approaches are a basic technique for developing algorithms. The main idea is

to split the problem into two subproblems of roughly half the size of the original problem that are as
independent as possible. Then, the subproblems are solved recursively, and finally the solutions for both
subproblems are combined to one solution for the original problem. As a toy example, consider a graph G
in which we want to count the triangles. Using a bisection (B,W) in G, one can split the problem into
the two subproblems G[B] and G[W], and solve these recursively. To compute the number of triangles
in G, one adds up the number of triangles in G[B] and G[W], and counts the triangles in G with vertices
in both B and W . Now, the smaller the number of edges between B and W in G, the less work has
to be done to count the triangles with vertices in B and W . Hence, it is desirable to use a minimum
bisection to split G. Since the number of triangles in a graph can be computed in polynomial time, it
does not make sense to solve this problem with a divide-and-conquer approach, which relies on computing
a bisection of small width in each step. In Chapter 5.1 in [Shm97], a divide-and-conquer approach for the
NP-hard problem to compute a minimum cut linear arrangement is presented and the dependence of the
approximation ratio of the corresponding algorithm on the approximation ratio of the algorithm used for
bisecting the graph is determined.

In VLSI Design, thousands of transistors are combined into a single chip in order to create an integrated
circuit. To find a layout of the chip, usually, the area of the chip is divided into smaller parts and the
circuit is divided accordingly while the interaction between the parts of the circuit needs to be minimized.
This is important for the reliability of the chip and also to minimize the propagation delay. Partitioning
the circuit can be modeled as follows. For each component of the circuit, there is a vertex and two vertices
are adjacent whenever the circuit contains a connection between the corresponding components. Then,
minimizing the interactions between the parts of the circuit means to find a k-section in the corresponding
graph. See [BL84] and [PS96] for more information.

While the above examples can be modeled with unweighted graphs, there are many real world applications
that require vertex weights or edge weights or even both. One such example is the consolidation of
farmland as studied in [BBG11]. In typical farming areas, farmers cultivate a large number of small-sized
lots, which are scattered over an extended area. This is disadvantageous as large machinery cannot be
utilized and much time is needed for going back and forth between the lots. Consider a graph that has a
vertex for each lot and two vertices are adjacent if the corresponding lots have a common border. In order
to redistribute the lots between farmers, it obviously makes sense to use vertex weights for modeling the
sizes or values of the lots. Furthermore, edge weights can be used to model the length of a common border
of the corresponding lots, disregarding parts of the border that are natural as streets or rivers. Let k
be the number of farmers. Then, assuming that every farmer owns the same total amount of farmland,
the goal is to compute a k-section of small width. Observe that the edge weights used in [BBG11] are
different as a clustering approach is used.

Last but not least, observe that, in the presented applications, the size constraints can be relaxed by con-
sidering the problem of partitioning the vertex set of a given graph on n vertices into k sets B1, B2, . . . , Bk

with |B`| ≤ (1 + ε)
⌈
n
k

⌉
for all ` ∈ [k]. The benefit of this relaxation is that there are polynomial-time

6

1.2 Overview of Results

algorithms that compute solutions whose width is not too far from a minimum k-section as discussed
above.

1.2 Overview of Results
This thesis focuses on bounded-degree graphs, but usually the dependence on the maximum degree is
stated explicitly by using ∆(G) to denote the maximum degree of a graph G. Hence, the results hold for
arbitrary graphs, but most results are only interesting when the maximum degree is low. The Minimum
Bisection Problem is still interesting when only bounded-degree graphs are considered, since it remains
NP-hard when restricted to graphs with maximum degree 3 as mentioned in Section 1.1.1. Furthermore,
Berman and Karpinski [BK02] showed that the Minimum Bisection Problem restricted to 3-regular
graphs is as hard to approximate as its general version.

1.2.1 Structural Results for Trees and Tree-Like Graphs with Large Minimum
Bisection Width

One aim of this thesis is to investigate the structure of graphs with large minimum bisection width. Here,
bounded-degree trees and bounded-degree tree-like graphs are studied, whereas Section 1.2.2 focuses
on planar graphs. Let T be a tree on n vertices. As mentioned in Section 1.1.1, T allows a bisection
of width at most ∆(T) log2(n). A family T of trees T is called a family of bounded-degree trees with
large minimum bisection width if there are two constants ∆0 ∈ N and c > 0 such that ∆(T) ≤ ∆0

and MinBis(T) ≥ c log2(|V (T)|) for every T ∈ T . For better readability, we abuse notation in the
following and use the term “large minimum bisection width” also for single trees. The following inequality
is established in order to analyze the structure of bounded-degree trees with large minimum bisection
width. There, diam(T) denotes the diameter of T , which is defined as the number of edges in a longest
path in the tree T .

Theorem 1.1.
Every tree T on n vertices satisfies

MinBis(T) ≤ 8n∆(T)
diam(T) .

At first sight, this theorem might not look interesting compared to the bound MinBis(T) ≤ ∆(T) log2(n)
as the bound in Theorem 1.1 contains a factor n. However, if T is a bounded-degree tree with linear diameter,
the bound in Theorem 1.1 implies that T allows a bisection of constant width. So, a bounded-degree tree
with large minimum bisection width cannot have linear diameter. More precisely, fix ∆0 ∈ N and c > 0, and
consider an arbitrary tree T on n vertices with maximum degree at most ∆0 and MinBis(T) ≥ c log2(n).
Then, Theorem 1.1 implies that c log2(n) ≤ 8n∆0

diam(T) or, equivalently, diam(T) ≤ 8n∆0
c log2(n) and the next

corollary follows.

Corollary 1.2.
For every ∆0 ∈ N and every c > 0, there is an α > 0 such that the following holds:
If T is a tree on n vertices with maximum degree at most ∆0 and MinBis(T) ≥ c log2(n), then T does not
contain a path of length αn

log2(n) or greater.

The bound in Theorem 1.1 can be generalized to arbitrary graphs with a given tree decomposition (T,X).
Instead of considering a longest path in the underlying graph G, a parameter r(T,X), that roughly measures

7

Chapter 1 Introduction

how close the tree decomposition (T,X) is to a path decomposition, is defined. For example, every path P
on n vertices satisfies 1

n diam(P) = n−1
n ≈ 1 and allows a bisection of width 1. When the diameter

of a tree decreases, it looks less like a path. Similarly, consider a graph G on n vertices and a path
decomposition (P,X) of G of width t− 1. One can show that G allows a bisection of width at most t∆(G)
by walking along the path P until we have seen

⌊ 1
2n
⌋
vertices of G in the clusters and then bisecting G

there, see also Theorem 7.11 in [Sch13]. Therefore, we will define r(T,X) such that r(T,X) = 1 for path
decompositions (T,X) and such that r(T,X) decreases when (T,X) looks less like a path decomposition.
Let G = (V,E) be a graph on n vertices and consider a tree decomposition (T,X) of G with X = (Xi)i∈V (T).
The relative weight of a path P ⊆ T and the relative weight of a heaviest path in (T,X) are defined as

w∗X (P) := 1
n

∣∣∣∣∣∣
⋃

i∈V (P)

Xi

∣∣∣∣∣∣
and r(T,X) := max

P path in T
w∗X (P),

respectively. Observe that every tree decomposition (T,X) satisfies 1
n ≤ r(T,X) ≤ 1, where n deno-

tes the number of vertices of the underlying graph. One can show that every tree T ′ allows a tree
decomposition (T,X) with r(T,X) ≥ diam(T ′)

n′ , where n′ denotes the number of vertices of T ′. So, the
parameter r(T,X) for a tree decomposition (T,X) corresponds to the fraction diam(T ′)

|V (T ′)| for trees T ′.

Theorem 1.3.
Every graph G that allows a tree decomposition (T,X) of width t− 1 satisfies

MinBis(G) ≤ 8t∆(G)
r(T,X) .

Fix ∆0 ∈ N and consider a graph G on n vertices with maximum degree at most ∆0 and tw(G) ≥ 1.
The bound from Section 1.1.1 implies that MinBis(G) = O(tw(G) · logn) and we say that G has large
minimum bisection width if MinBis(G) = Ω(tw(G) · logn). Assume that G has large minimum bisection
width, i. e., there is a constant c > 0 such that MinBis(G) ≥ c tw(G) · log2(n). Then, Theorem 1.3 implies
that, for every tree decomposition (T,X) of G of width t− 1,

c · tw(G) · log2(n) ≤ 8t∆0
r(T,X) ,

which is equivalent to

r(T,X) ≤ 8t∆0
c · tw(G) · log2(n) .

Hence, every tree decomposition (T,X) of G of width O(tw(G)) must satisfy r(T,X) = O
(

1
logn

)
. In par-

ticular, this implies that every tree decomposition (T,X) ofG of minimum width satisfies r(T,X) = O
(

1
logn

)

and is far from being a path decomposition of G.
Before continuing with planar graphs, observe that the bounded maximum degree is necessary due to

the following example. Let T be the tree obtained from a star on 3
4n+ 1 vertices by attaching a path

on 1
4n− 1 vertices to its center vertex. Then MinBis(T) ≥ 1

4n as each set of the bisection must contain at
least 1

4n leaves of the star but its center vertex is only in one of the sets of the bisection. So T is a tree
with large minimum bisection width, except for having bounded degree, but T contains a path of linear
length.

8

1.2 Overview of Results

1.2.2 Structural Results for Planar Graphs with Large Minimum Bisection Width

Turning our attention to planar graphs, observe first that Theorem 1.1 does not hold for planar graphs.
Indeed, consider the planar graph G obtained from a square grid on 3

4n vertices and a path on 1
4n vertices

attached to one of the corner vertices of the grid. Then diam(G) ≥ 1
4n and ∆(G) = 4. So, if Theorem 1.1

was true for planar graphs, then there would be a bisection of constant width in G. However, for every
bisection (B,W) in G, the sets B and W each contain between 1

4n and 1
2n vertices of the grid and

Theorem 6 in [LT79] implies that Ω(
√
n) edges of the grid are cut by the bisection (B,W). So, how large

can the minimum bisection width of a bounded-degree planar graph be? Every planar graph G on n
vertices satisfies MinBis(G) ≤ 16 ·∆(G) ·

√
n as mentioned in Section 1.1.1, and the previous example

shows that this bound is tight up to a constant factor. We say that a family G of planar graphs has
large minimum bisection width if there are two constants ∆0 ∈ N and c > 0 such that ∆(G) ≤ ∆0(G)
and MinBis(G) ≥ c

√
|V (G)| for every graph G ∈ G. Similarly to trees with large minimum bisection width,

this term is also used for single graphs for better readability. The following theorem for bounded-degree
planar graphs with large minimum bisection width is derived here.

Theorem 1.4.
For every ∆0 ∈ N and every c > 0, there is a γ > 0 such that the following holds:
If G is a planar graph on n vertices with maximum degree at most ∆0 and MinBis(G) ≥ c

√
n, then the

tree-width of G is at least γ
√
n− 1.

So, roughly speaking, every bounded-degree planar graph that has large minimum bisection width is far
from being tree-like. The fact that every planar graph G contains a k×k grid with k =

⌊ 1
6 (tw(G) + 4)

⌋
as

a minor, which can be found in the famous work by Robertson, Seymour, and Thomas on graph minors in
Theorem 6.2 in [RST94], implies the following corollary.

Corollary 1.5.
For every ∆0 ∈ N and every c > 0, there is a γ′ > 0 such that the following holds:
If G is a planar graph on n vertices with maximum degree at most ∆0 and MinBis(G) ≥ c

√
n, then G

contains a k×k grid with k = bγ′
√
nc as a minor.

As in Section 1.2.1, the star on n vertices shows that the bounded maximum degree is necessary in
Theorem 1.4 and Corollary 1.5. Every planar graph on n vertices has tree-widthO(

√
n), see Proposition 2.13

in the next chapter, and the largest integer k for which a planar graph on n vertices can contain a k×k grid
as a minor satisfies k = O(

√
n). So, we say that a planar graph on n vertices has large tree-width if it

has tree-width Ω(
√
n), and we say that a planar graph on n vertices contains a large grid as minor if it

contains a k×k grid with k = Ω(
√
n) as a minor. Again, both terms should only be used for families of

graphs, but are used for single graphs for better readability. To summarize Theorem 1.4 and Corollary 1.5,
for bounded-degree planar graphs, having large minimum bisection width implies having large tree-width,
and, for planar graphs, the latter is equivalent to containing a large grid as a minor.

One of the remaining questions is whether, for bounded-degree planar graphs, having large tree-width
or, equivalently, containing a large grid as a minor implies having large minimum bisection width. This
implication is not true as the graph consisting of two disjoint k×k grids has minimum bisection width
zero and contains a large grid as a minor. The following question emerges: What additional properties
force bounded-degree planar graphs that contain a large grid as a minor to have large minimum bisection
width? To answer this question, which does not seem to have a simple, straightforward answer, the
concept of grid-homogeneous graphs is introduced. The idea behind it is that a grid-homogeneous graph

9

Chapter 1 Introduction

small face with
11 vertices

small face with
20 vertices

the large face

vertices not in G′

Figure 1.3: Example of a grid-homogeneous graph G. Subgraphs H and G′ with the properties required by
Definition 1.6 are highlighted. The subgraph H is colored blue, vertices and edges in the subgraph G′ that do
not belong to H are colored black. Vertices and edges that are in G but not in G′ are colored gray. Even though
Definition 1.6 and Theorem 1.7 require k ≥ 5, we chose k = 4 to keep the example small.

should contain a connected subgraph on almost all its vertices and a large grid minor that is spread
homogeneously through the subgraph. Thus, every bisection in a grid-homogeneous graph needs to cut off
many vertices from a graph that behaves similarly to a grid.

Definition 1.6 ((γ, k, `)-grid-homogeneous).
Let k, ` ∈ N with k ≥ 5 and 0 ≤ γ < 1. A graphG = (V,E) is called (γ, k, `)-grid-homogeneous if it contains
a connected planar graph G′ = (V ′, E′) ⊆ G with |V ′| ≥ (1− γ)|V | and a graph H = (VH , EH) ⊆ G′ as
subgraphs such that G′ has an embedding in the plane with the following properties:
• The graph H is a minimal graph containing a k×k grid as a minor.
• For every small face f of the induced embedding of H, at most ` vertices from V ′ are embedded in

the face f including the vertices on its boundary.
• No vertex from V ′ \ VH is embedded in the large face f of the induced embedding of H.

Figure 1.3 shows an example of a grid-homogeneous graph and gives an intuition for the terms small
and large face, which are defined formally in Section 3.2.2. There, we will also argue that every property
required for the graph G′ in Definition 1.6 is necessary in order to prove a lower bound for the minimum
bisection width in grid-homogeneous graphs as in the next theorem.

Theorem 1.7.
For every k, ` ∈ N with k ≥ 5 and every 0 ≤ γ < 1

2 , every (γ, k, `)-grid-homogeneous graph G = (V,E)
with |V | even satisfies

MinBis(G) ≥
(1

2 − γ
) 1

4`k.

Fix an arbitrary γ with 0 ≤ γ < 1
2 , an integer ` ∈ N, an integer ∆0 ∈ N, and a c > 0. Consider a family G

of planar graphs such that each graph G ∈ G on n vertices is (γ, k, `)-grid-homogeneous with k ≥ c
√
n

10

1.2 Overview of Results

and satisfies ∆(G) ≤ ∆0. Then, Theorem 1.7 implies that there is a constant c1 > 0 such that every
graph G ∈ G on n vertices satisfies MinBis(G) ≥ c1

√
n, i. e., the family G has large minimum bisection

width. On the other hand, Theorem 1.10, which is presented further ahead, says that there is a constant c2
such that every graph G ∈ G on n vertices satisfies MinBis(G) ≤ c2

√
n and that a bisection of width

within this bound can be computed in linear time. Therefore, the algorithm contained in Theorem 1.10 is
a constant-factor approximation for the Minimum Bisection Problem when restricted to the class G.
However, the algorithmic use of Theorem 1.7 is limited as some questions related to asking whether a

graph G is (γ, k, `)-grid-homogeneous for certain parameters γ, k, and ` are NP-complete. In particular,
it is shown in Section 3.3 that, for every ` ≥ 6, it is NP-complete to decide, when given a planar graph G′

and a plane subgraph H that is a minimal graph containing a k×k grid as a minor, whether G′ allows an
embedding in the plane that is an extension of the embedding of H, such that no vertex from V (G′)\V (H)
is embedded in the large face of H and, for each small face f of H, there are at most ` vertices from V (G′)
embedded in f including the vertices on the boundary of f . Furthermore, in Section 3.3, it is shown that
finding the smallest integer ` such that G′ allows such an embedding is NP-hard to approximate within
any constant < 3

2 . When requiring additionally that the considered graph G′ does not contain more edges
than necessary to be a connected graph containing H as a subgraph, an algorithm approximating the
smallest such integer ` within a factor of 2 can be obtained by restating the problem as a scheduling
problem for unrelated parallel machines. Moreover, it is shown in Section 3.3 that it is NP-complete to
decide, when given a planar graph G′ that is uniquely embeddable and two integers ` and k, whether G′

contains a subgraph H that is a minimal graph containing a k×k grid as a minor such that no vertex
from V (G′) \ V (H) is embedded in the large face of H and, for every small face f of H, at most ` vertices
from V (G′) are embedded in f including the vertices on the boundary of f .

1.2.3 Algorithmic Results for Bisections

The proofs of Theorem 1.1 and Theorem 1.3 are mostly constructive. So it is natural to ask whether there
are polynomial-time algorithms for computing bisections of width within the bounds mentioned there.
Moreover, we would like to see whether the bounds on the width of the bisections can be improved. Both
questions are answered positively by the next theorems.

Theorem 1.8 (improved and algorithmic version of Theorem 1.1).
For every tree T on n vertices, a bisection (B,W) in T satisfying

eT (B,W) ≤ ∆(T)
2

((
log2

(
n

diam(T)

))2
+ 7 log2

(
n

diam(T)

)
+ 6
)

can be computed in O(n) time.

Recall that when generalizing Theorem 1.1 to tree-like graphs, a tree decomposition was used. Since it is
NP-hard to determine the tree-width of a graph [ACP87], the algorithm in the following theorem receives
a tree decomposition as input. For a tree decomposition (T,X) with X = (Xi)i∈V (T), the size of (T,X)
is defined as ‖(T,X)‖ := |V (T)|+

∑
i∈V (T) |Xi|, which is proportional to the encoding length of (T,X).

Hence, a linear-time algorithm that receives a tree decomposition (T,X) as input runs in O(‖(T,X)‖)
time.

11

Chapter 1 Introduction

Theorem 1.9 (improved and algorithmic version of Theorem 1.3).
For every graph G and for every tree decomposition (T,X) of G of width at most t− 1, a bisection (B,W)
in G with

eG(B,W) ≤ t∆(G)
2

((
log2

(
1

r(T,X)

))2
+ 9 log2

(
1

r(T,X)

)
+ 8
)

can be computed in O(‖(T,X)‖) time when the tree decomposition (T,X) is provided as input.

Observe that neither the algorithm contained in Theorem 1.8 nor the algorithm contained in Theorem 1.9
computes a minimum bisection, but a bisection of small width is computed for certain trees and tree-like
graphs, respectively. Theorem 1.8 says that bounded-degree trees with linear diameter allow a bisection
of constant width and Theorem 1.9 implies that every bounded-degree graph G that allows a tree
decomposition (T,X) of constant width and with r(T,X) = Ω(1) satisfies MinBis(G) = O(1). Moreover,
both algorithms run in linear time and the algorithm contained in Theorem 4.3 in [Jan+05] takes O(2tn3)
time to compute a minimum bisection in a graph on n vertices when given a tree decomposition of width t.
The proof of Theorem 1.4 also has a constructive part. More precisely, Section 3.1.4 derives an upper

bound for the width of a minimum bisection in bounded-degree planar graphs that depends on the
tree-width of the graph. The main idea is a general method for constructing a bisection via separators.
In a graph G = (V,E) on n vertices, a set S ⊆ V is a separator if every component of G − S contains
at most 1

2n vertices. To construct a bisection in a graph, the graph can be split into smaller parts by
removing a separator and then putting components greedily into an initially empty black set, until one
component G′ is reached such that the black set and G′ together contain more than half of the vertices
of the initial graph. All remaining components, except G′, fit into the white set. Then, G′ is split into
smaller parts by removing a separator and again components are greedily put into the black set and so on.
As the size of the considered graph shrinks in each round, at one point, each vertex of the initial graph
is either in the black set, the white set, or has been removed. Additionally, the black and the white set
each contain at most half of the vertices of the initial graph. Then, it is possible to distribute all removed
vertices to the black and the white set such that a bisection in the initial graph is obtained. One can
show that its width is at most the number of removed vertices times the maximum degree. Applying this
approach with planar separators, see [LT79], and separators constructed from tree decompositions yields
the following theorems, where a tree decomposition (T,X) with X = (Xi)i∈V (T) is called nonredundant
if Xi 6⊆ Xj and Xj 6⊆ Xi for every edge {i, j} ∈ E(T). Furthermore, define ‖G‖ := |V (G)|+ |E(G)|.

Theorem 1.10.
There is a constant cσ such that, for every planar graph G on n vertices, a bisection (B,W) in G satisfying

eG(B,W) ≤ cσ∆(G) ·
√
n

can be computed in O(n) time.

Theorem 1.11.
For every graph G on n vertices, and every tree decomposition (T,X) of G of width t−1, a bisection (B,W)
in G satisfying

eG(B,W) ≤ t∆(G) · log2(n)

can be computed in O ((‖G‖+ ‖(T,X)‖) log2(n)) time if the tree decomposition (T,X) is provided as input.
If the provided tree decomposition is nonredundant, the running time is O(nt).

12

1.2 Overview of Results

Theorem 6.2 in [Jan+05] states a similar bound for the width of a minimum bisection in a planar
graph as Theorem 1.10, but the running time in [Jan+05] is O(n logn) for a graph on n vertices. Hence,
Theorem 1.10 is an algorithmic improvement. Combining the separators used in the proofs of Theorem 1.10
and Theorem 1.11 gives a technical upper bound for the minimum bisection width in planar graphs G
that depends on the tree-width of G and is the key idea to prove Theorem 1.4.

1.2.4 Approximate Cuts in Tree-Like Graphs

When proving Theorem 1.1 and Theorem 1.3, the following lemmas that relax the size constraints of
a bisection are useful. First of all, not only bisections but m-cuts, which are partitions (B,W) of the
vertex set of the considered graph with |B| = m, are studied. To relax the size constraint, consider a
constant 0 < c < 1, let G be a graph on n vertices, and fix an integer m ∈ [n]. A partition (B,W) of the
vertex set of G is a c-approximate m-cut in G if cm ≤ |B| ≤ m. The following lemmas state that trees
and tree-like graphs allow approximate cuts of small width and that they can be computed in linear time.
In both lemmas, the hidden constant in the running time does not depend on c.

Lemma 1.12 (Approximate Cut in Trees).
For every 0 < c < 1, for every tree T on n vertices, and for every m ∈ [n], a c-approximate m-cut (B,W)
in T with

eT (B,W) ≤ ∆(T)
⌈

log2

(
1

1− c

)⌉

can be computed in O(n) time.

Lemma 1.13 (Approximate Cut in Tree-Like Graphs).
For every 0 < c < 1, for every graph G on n vertices, and for every m ∈ [n], the following holds: For
every tree decomposition (T,X) of G of width at most t− 1, a c-approximate m-cut (B,W) in G with

eG(B,W) ≤ t∆(G)
⌈

log2

(
1

1− c

)⌉

can be computed in O (‖(T,X)‖) time, when (T,X) is provided as input.

Fix a constant 0 < c < 1 and consider a bounded-degree tree T on n vertices. Then, Lemma 1.12
implies that, for every m ∈ [n], the tree T allows a c-approximate m-cut of constant width. Observe that
for Theorem 1.8 to imply that T allows a bisection of constant width, it is necessary to require that T has
linear diameter. This applies similarly to Theorem 1.9 and Lemma 1.13 when studying bounded-degree
tree-like graphs.
Consider a c-approximate m-cut (B,W) in a graph G. The closer c is to 1, the closer the size of B is

to m, but also the bounds on the width of c-approximate cuts in Lemma 1.12 and Lemma 1.13 increase
as c approaches 1. When choosing c sufficiently close to 1, a c-approximate m-cut with m =

⌊ 1
2 |V (G)|

⌋
is

a bisection in G. This yields the next corollary, which is similar to Theorem 1.11. In particular the bound
on the width of the bisection is the same, but the running time in the following corollary is asymptotically
faster.

Corollary 1.14 (improved version of Theorem 1.11).
For every graph G on n vertices and for every tree decomposition (T,X) of G of width at most t− 1, a
bisection (B,W) in G with

eG(B,W) ≤ t∆(G) · log2(n)

can be computed in O(‖(T,X)‖) time, when (T,X) is provided as input.

13

Chapter 1 Introduction

Note that the algorithm in the previous corollary runs in linear time but none of the running times of
the algorithm in Theorem 1.11 is linear in the input size for arbitrary values of t. For example, consider a
tree decomposition (T,X) of width t− 1; if t is not constant and (T,X) has only few clusters of size θ(t),
then nt is asymptotically larger than ‖(T,X)‖.

1.2.5 Minimum k-Section in Tree-Like Graphs

The algorithmic results for bisections presented in Section 1.2.3 can be generalized for computing k-sections.
Generalizing Theorem 1.10 and Theorem 1.11 is straightforward by using the method described in [ST97].
The following theorem is a generalization of Theorem 1.1 for bisections in trees.

Theorem 1.15.
For every integer k ≥ 2, for every tree T on n vertices, a k-section (B1, B2, . . . , Bk) in T with

eT (B1, B2, . . . , Bk) ≤ (k − 1)∆(T) ·
(

2 + 16n
diam(T)

)

can be computed in O(kn) time.

Consider a graph G on n vertices and note that, if k ≥ n, then every k-section in G cuts all edges of G
and thus is a minimum k-section in G. Therefore, we can assume without loss of generality that the
algorithm in the previous theorem is only applied for computing a k-section in a tree T with more than k
vertices. In this case, the running time is O(n2), which is polynomial in the size of the input.

Fix a constant c > 0 and an integer ∆0 ≥ 2. Let α := ∆0
(
2 + 16

c

)
. Then, Theorem 1.15 implies that, for

every k ≥ 2, every tree T on n vertices with ∆(T) ≤ ∆0 and diam(T) ≥ cn satisfies MinSeck(T) ≤ α(k−1)
and that a k-section of width within this bound can be computed in polynomial time. As every k-section
in T cuts at least k− 1 edges, the algorithm contained in Theorem 1.15 computes a k-section (B1, . . . , Bk)
in T that satisfies eT (B1, . . . , Bk) ≤ αMinSeck(T) and is a constant-factor approximation for the Minimum
k-Section Problem when restricted to trees with bounded degree and linear diameter. Recall that the
Minimum k-Section Problem remains APX-hard when restricted to trees with bounded degree [FF15].
Although Theorem 1.1 and Theorem 1.15 look quite similar, it does not seem possible to directly

apply Theorem 1.1 to yield a recursive construction of a k-section that satisfies the bound presented in
Theorem 1.15. Indeed, it is known that, even when k is a power of 2, the natural approach to construct
a k-section of a graph by recursively constructing bisections can yield a k-section far from a minimum
k-section, even if a minimum bisection is used in each step [ST97]. Furthermore, in the setting that is
considered here, i. e., bounded-degree trees with linear diameter, nothing is known about the diameter in
the two subgraphs that are produced by an algorithm following the construction behind Theorem 1.1. So,
after the first iteration, the diameter of one part of the bisection could be as low as O(logn), and indeed
such parts can be produced by such an algorithm as discussed in Section 6.1. This would then give a
bound of Ω

(
n

logn

)
for the bisection computed in the next round and also for the recursively computed

4-section, whereas Theorem 1.15 guarantees a 4-section of constant width for bounded-degree trees with
linear diameter.
As Theorem 1.1 can be strengthened to Theorem 1.8, the bound on the width of the k-section in

Theorem 1.15 can also be improved to

eT (B1, B2, . . . , Bk) ≤ 1
2 (k − 1) ∆(T)

((
log2

(
n

diam(T)

))2
+ 9 log2

(
n

diam(T)

)
+ 18

)
.

Moreover, Theorem 1.8 can be generalized to arbitrary graphs by considering tree decompositions as done
in Theorem 1.9, which can be used to prove the following theorem about k-sections in tree-like graphs.

14

1.3 Organization of the Thesis

Theorem 1.16.
For every integer k ≥ 2, for every graph G and every tree decomposition (T,X) of G of width at most t− 1,
a k-section (B1, B2, . . . , Bk) in G with

eG(B1, B2, . . . , Bk) ≤ 1
2 (k − 1)t∆(G)

((
log2

(
1

r(T,X)

))2
+ 11 log2

(
1

r(T,X)

)
+ 24

)

can be computed in O(k‖(T,X)‖) time, when the tree decomposition (T,X) is provided as input.

1.2.6 Further Remarks

Most results from Sections 1.2.1-1.2.5 do not only hold for bisections but also for cuts (B,W) where the
size of the set B is specified as input. When presenting the proof of such a result, it is stated in its general
form.
Here, only bisections and k-sections in unweighted graphs are considered. In many applications, the

vertices and the edges of the considered graph have weights. Any upper bound for the width of a minimum
bisection in a graph without edge weights can be adjusted for graphs with edge weights by multiplying it
with the maximum edge weight. For vertex-weights, the situation is more difficult. In a graph G = (V,E)
with vertex weights, deciding whether V allows a partition (B,W) such that the sum of the weights in B
equals the sum of the weights in W is equivalent to solving the NP-complete Subset Sum Problem,
see Problem MP9 in [GJ79]. In [Ham16], a bisection in a graph G with vertex weights is defined as a
partition (B,W) of V (G) such that |g(B) − g(W)| ≤ gmax, where g(B) and g(W) denote the sum of
the weights in B and W , respectively, and gmax is the maximum vertex weight in G. Then, a version
of Theorem 1.1 for trees with vertex weights and a corresponding algorithm is derived. Furthermore,
in [Ham16], also Lemma 1.12 and Theorem 1.15 are generalized for trees with vertex weights.

1.3 Organization of the Thesis

After presenting some preliminaries in the next chapter, the proofs of the results summarized in Section 1.2
are presented in the following order.

Chapter 3 focuses on planar graphs. First, the method for constructing bisections in graphs via
separators that was sketched in Section 1.2.3 is made precise and then used to derive Theorem 1.10 and
Theorem 1.11. Furthermore, Theorem 1.4 is proved. Afterwards, Chapter 3 investigates bounded-degree
planar graphs with large minimum bisection width. Grid-homogeneous graphs are introduced in detail
and Theorem 1.7 is proved. Moreover, algorithmic aspects related to grid-homogeneous graphs as
mentioned in Section 1.2.2 are discussed.

Chapter 4 studies approximate cuts in trees and tree-like graphs. In particular, Lemma 1.12 and
Lemma 1.13 are proved here. Furthermore, Corollary 1.14 is derived in Chapter 4.

Chapter 5 concentrates on bisections in trees and tree-like graphs. First, the methods used throughout
the chapter are introduced slowly by studying trees T on n vertices with diam(T) ≥ 1

4n. Second,
Theorem 1.1 is proved and an algorithm computing a bisection whose width is at most as large as the
bound in Theorem 1.1 is described. Afterward, the analysis is tightened to yield Theorem 1.8. Third,
the methods are generalized to tree-like graphs and Theorem 1.9 is proved. Observe that Theorem 1.3
does not need to be proved separately as Theorem 1.9 is stronger.

15

Chapter 1 Introduction

Chapter 6 focuses on k-sections. To begin with, it is shown that simple, recursive approaches using
Theorem 1.1 to construct a k-section in a tree can yield a k-section of width much larger than promised
by Theorem 1.15. Then, the proof of Theorem 1.15 is presented and the analysis is tightened as described
in Section 1.2.5. Furthermore, the methods are generalized to tree-like graphs and Theorem 1.16 is
derived.

Figure 1.4 visualizes connections between the results proved in this thesis. All results are joint work
with Cristina G. Fernandes and Anusch Taraz. Parts of the results in Chapter 3 and parts of the results
for trees in Chapter 5 have been published in the proceedings of EuroComb 2013 [FST13]. Some results
on the Minimum k-Section Problem in trees from Chapter 6 have appeared in the proceedings of
LAGOS 2015 [FST15b]. The extensions to tree-like graphs in Chapter 5 and Chapter 6 have been published
in the proceedings of EuroComb 2015 [FST15a]. The journal version of the results from Chapter 4 and
Chapter 5 has been submitted [FSTa]. Journal versions concerning the results of Chapter 3 and Chapter 6
are in preparation [FSTb; FSTc].

Lemma 1.12

Theorem 1.1

Corollary 1.2

Theorem 1.8

Theorem 1.15

Lemma 1.13

Theorem 1.3 Corollary 1.14

Theorem 1.9

Theorem 1.11

Theorem 1.16

Theorem 1.10

Theorem 1.4

Corollary 1.5

Theorem 1.7

Figure 1.4: Visualization of the connections between the results proved in this thesis. Green color indicates that
the result is for trees, blue for tree-like graphs, and red for planar graphs. A continuous arrow from A to B means
that A is used as a tool in the proof of B. A dotted arrow from A to B means that B generalizes the statement
of A to tree-like graphs.

16

Chapter 2

Preliminaries and Notation

This chapter introduces the basic notation used throughout the thesis and states some general knowledge
about graphs and algorithms. First, Section 2.1 introduces the basic notation concerning graphs and
cuts. In particular, the notation for bisections and k-sections is introduced in Section 2.1. Afterward,
Section 2.2 states some facts about graphs. Some basic facts stated there will be used in the following
chapters without further mentioning them and others are stated to be able to refer to them later. Tree
decompositions are introduced in Section 2.3, where also the properties (T1), (T2), (T3), and (T3’)
are stated, which are referred to by these names throughout the entire thesis. Preliminaries concerning
algorithms are introduced in Section 2.4, which first discusses algorithms for graphs and then algorithms
receiving a tree decomposition as input.

2.1 Basic Definitions
Before starting with the notation involving graphs, a few basic definitions are presented for the sake of
completeness. Let N = {1, 2, 3, . . .} be the set of natural numbers and define N0 = N ∪ {0}. For n ∈ N,
let [n] = {1, 2, . . . , n}. Sometimes, it will be useful to write [0], which is defined as the empty set. As
usual, for a real x, the largest integer i with i ≤ x is denoted by bxc, and the smallest integer i with i ≥ x
is denoted by dxe.

Graphs

In this thesis, all graphs are finite, undirected, and do neither have vertex nor edge weights. So a
graph G = (V,E) consists of a finite vertex set and an edge set E ⊆

(
V
2
)

:= {{v, w} : v ∈ V, w ∈ V, v 6= w}.
Except for a few occurrences in iterative procedures, the vertex set of a graph is always assumed to be
non-empty. For a graph G, denote by V (G) its vertex set and by E(G) its edge set.
Consider a graph G = (V,E). An edge e ∈ E and a vertex v ∈ V are called incident if v ∈ e. For two

vertices v, w ∈ V , the vertex w is a neighbor of v if {v, w} ∈ E. If v is a neighbor of w, we also say that v
and w are adjacent. The set of neighbors of v is called the neighborhood of v and is denoted by NG(v).
For a vertex v ∈ V , let degG(v) denote its degree, which is defined as the number of edges in E that are
incident to v or, equivalently, the number of neighbors of v. Sometimes, when it is clear from the context
to which graph the degree refers, then deg(v) is used instead of degG(v). A vertex v ∈ V with degG(v) = 0

17

Chapter 2 Preliminaries and Notation

is called an isolated vertex and a vertex v ∈ V with degG(v) = 1 is called a leaf of G. The maximum and
minimum degree of G are defined as ∆(G) := max{degG(v) : v ∈ V } and δ(G) := min{degG(v) : v ∈ V },
respectively. If there is a d ∈ N such that the graph G satisfies degG(v) = d for all v ∈ V , then G is called
d-regular.
Often, subgraphs, that are formed by removing vertices or edges from another graph, will be studied.

Consider again a graph G = (V,E). A graph H is a subgraph of G if H satisfies V (H) ⊆ V and E(H) ⊆ E
and H itself is a graph. If H is a subgraph of G, then we write H ⊆ G. Induced subgraphs are subgraphs
that, for a certain vertex set, contain all possible edges. More precisely, for a set ∅ 6= W ⊆ V , let G[W]
be the graph with the vertex set W and the edge set E ∩ {{v, w} : v, w ∈W, v 6= w}. Then, G[W] is a
subgraph of G and is called the subgraph of G induced by W . Furthermore, for a set W ⊆ V with W 6= V ,
the graph obtained from G by removing all vertices inW as well as their incident edges is denoted by G−W .
Observe that G−W is an induced subgraph of G, namely G−W = G[V \W]. For sets W = {v}, we
also write G − v instead of G − {v}. Similarly, for removing edges, consider a set F ⊆ E and denote
by G− F the graph obtained from G by removing each edge in F and, if F = {e}, then G− e is used to
abbreviate G− {e}. Note that, for an edge e = {v, w}, the notation G− e can be interpreted in two ways.
On the one hand, it can refer to removing the edge e and, on the other hand, it can refer to removing the
vertices v and w. Throughout the thesis, the correct interpretation will be stated explicitly or will be
clear from the context.

Cuts, Bisections, and k-Sections

Let G = (V,E) be a graph and let n := |V |. A cut in G is a partition of V into several sets B1, . . . , Bk

with k ≥ 2 and is denoted by (B1, B2, . . . , Bk). Here, the sets B` of a cut (B1, . . . , Bk) are allowed to
be empty. For example, (V, ∅) is a cut in G. Fix an integer k ≥ 2 and a cut (B1, . . . , Bk) in G. An
edge {v, w} ∈ E is cut by (B1, . . . , Bk) if there are two distinct indices `, `′ ∈ [k] with v ∈ B` and w ∈ B`′ .
The set of edges in E that are cut by (B1, . . . , Bk) is denoted by EG(B1, . . . , Bk). Moreover, the width
of (B1, . . . , Bk) is defined as the number of edges cut by (B1, . . . , Bk) and is denoted by eG(B1, . . . , Bk).
So, eG(B1, . . . , Bk) := |EG(B1, . . . , Bk)|. If the graph G is clear from the context, then EG(B1, . . . , Bk)
and eG(B1, . . . , Bk) are also abbreviated to E(B1, . . . , Bk) and e(B1, . . . , Bk), respectively. If k = 2, then
usually (B,W) is used instead of (B1, B2) to denote a cut into two pieces and the sets B and W are
referred to as the black set and the white set, respectively. In the following, unless indicated otherwise,
when a figure displays some cut (B′,W ′) in a graph G′, then the vertices in B′ are colored black, the
vertices in W ′ are colored white, and each edge of G′ that is cut by (B′,W ′) is colored red.

Let k ≥ 2 be an integer and let G = (V,E) be a graph. A k-section in G is a cut (B1, . . . , Bk) in G
with ||B`|−|B`′ || ≤ 1 for all `, `′ ∈ [k], i. e., if n denotes the number of vertices of G, then

⌊
n
k

⌋
≤ |B`| ≤

⌈
n
k

⌉

for all ` ∈ [k]. The minimum k-section width of G is defined as

MinSeck(G) := min {eG(B1, . . . , Bk) : (B1, . . . , Bk) is a k-section in G} .

A k-section (B1, . . . , Bk) in G with eG(B1, . . . , Bk) = MinSeck(G) is called a minimum k-section in G. A
bisection in G is a 2-section in G, i. e., a cut (B,W) in G that satisfies |B| = |W | if the number of vertices
of G is even, and ||B| − |W || = 1 if the number of vertices of G is odd. Similarly, the minimum bisection
width of G is defined as MinBis(G) := MinSec2(G) and a minimum 2-section in G is called a minimum
bisection in G.

Consider a graph G = (V,E) and let n := |V |. For m ∈ [n], an m-cut in G is a cut (B,W) with |B| = m.
So, an

⌊
n
2
⌋
-cut in G is a bisection in G. Approximate cuts relax this size constraint in the following way.

For m ∈ [n], the cut (B,W) is called a simple approximate m-cut in G if 1
2m < |B| ≤ m. Furthermore,

for 0 ≤ c < 1 and m ∈ [n], a cut (B,W) in G is a c-approximate m-cut in G if cm ≤ |B| ≤ m and (B,W)

18

2.1 Basic Definitions

is a strict c-approximate m-cut in G if cm < |B| ≤ m. Whenever the precise values of c and m do not
matter, we omit them and use the term approximate cut. Sometimes, the term exact m-cut is used to
refer to an m-cut in order to distinguish it from an approximate m-cut. The term exact cut is used to
refer to an exact m-cut, when no specific value for m is given, but the size of the black set is specified by
an input parameter.

Special Graphs and Paths

For an integer n ≥ 2, the complete graph on n vertices is denoted by Kn and defined as the graph with
vertex set [n] and edge set

([n]
2
)
. For two integers n ≥ 1 and m ≥ 1, the complete bipartite graph with

partition classes of size n and m is denoted by Kn,m and is defined as the graph with vertex set [n+m] and
edge set {{v, w} : v ∈ [n], w ∈ [n+m] \ [n]}. For an integer n ≥ 2, the star on n vertices is defined as the
complete bipartite graph K1,n−1. If n ≥ 3, then the unique vertex v of the star K1,n−1 with deg(v) ≥ 2 is
called the center vertex of the star. Let P0 := ({0}, ∅) and, for n ∈ N, let Pn be the graph with vertex
set [n] ∪ {0} where two distinct vertices v and w are adjacent if and only if |v − w| ≤ 1. For n ∈ N0,
the graph Pn is called the path of length n. Observe that Pn contains n + 1 vertices and n edges. For
an integer n ≥ 3, the cycle of length n is denoted by Cn and defined as the graph obtained from Pn by
removing the vertex 0 and adding the edge {1, n}.
Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if there is a bijection f : V → V ′ such

that {v, w} ∈ E if and only if {f(v), f(w)} ∈ E′. Fix a graph G = (V,E) and let v, w ∈ V . Then, G
contains a v,w-path if there is a sequence (u0, u1, . . . , u`) with u0 = v, u` = w, uh ∈ V for all h ∈ [`]∪ {0}
and {uh−1, uh} ∈ E for all h ∈ [`] such that uh 6= uh′ for all distinct h, h′ ∈ [`]∪{0}. Let VP := {u0, . . . , u`}
and EP := {{uh−1, uh} : h ∈ [`]}. Then, the subgraph P = (VP , EP) of G is called a path of length ` in G
and is denoted by (u0, u1, . . . , u`). The vertices u0 = v and u` = w are called the ends of P . Observe
that P is isomorphic to P` and that v and w are only leaves of P if ` ≥ 1. If P is a v,w-path in G, then we
say that P joins v to w. For h, h′ ∈ [`]∪ {0} with h ≤ h′, the path (uh, . . . , uh′) is called the subpath of P
that joins uh to uh′ . Similarly, for ` ≥ 3, (u1, . . . , u`) is a cycle of length ` in G when uh ∈ V for all h ∈ [`],
{uh, uh+1} ∈ E for all h ∈ [` − 1], and {u`, u1} ∈ E as well as that uh 6= uh′ for all distinct h, h′ ∈ [`].
Observe that, in this case, G contains a subgraph with vertex set {u1, . . . , u`} that is isomorphic to the
cycle C`. A vertex v ∈ V is on the path P = (u0, . . . , u`) if there is an h ∈ [`]∪{0} with v = uh. Similarly,
an edge e ∈ E is on the path P = (u0, . . . , u`) if there is an h ∈ [`] with {uh−1, uh} = e. Two paths P
and P ′ in G with V (P) ∩ V (P ′) = ∅ are called vertex-disjoint and, if E(P) ∩ E(P ′) = ∅, then P and P ′

are called edge-disjoint. Moreover, two paths P = (u0, u1, . . . , u`) and P ′ = (u′0, u′1 . . . , u′`′) are internally
disjoint if uh 6∈ V (P ′) for all h ∈ [`− 1] and uh′ 6∈ V (P) for all h′ ∈ [`′ − 1]. Observe that two internally
disjoint paths may have one or two common ends. A walk is a concept that is less strict than a path. A
sequence (u0, u1, . . . , u`) of vertices is called a walk in G, if uh ∈ V for all h ∈ [`]∪{0} and {uh−1, uh} ∈ E
for all h ∈ [`]. Observe that every path is a walk but not vice versa as a walk may reuse a vertex.
Similarly as for paths, u,v-walks, vertex-disjoint walks, edge-disjoint walks, and internally disjoint walks
are defined. Moreover, if G contains a u,v-walk, then G also contains a u,v-path, as each walk that is
not a path can be shortened to become a path. For two paths P = (u0, . . . , u`) and P ′ = (u′0, . . . , u′`′)
with u` = u′0, the walk obtained by glueing P and P ′ together is the sequence (u0, . . . , u`, u

′
1, . . . , u

′
`′).

Observe that (u0, . . . , u`, u
′
1, . . . , u

′
`′) is not necessarily a path and, hence, the concept of walks is useful.

Miscellaneous

Let G = (V,E) be a graph. Then, G = (V,E) is connected if for all v, w ∈ V there is a v,w-path
in G. A maximal connected subgraph of G, i. e., a subgraph H ⊆ G such that there is no connected

19

Chapter 2 Preliminaries and Notation

subgraph H ′ ⊆ G with H ⊆ H ′ and H 6= H ′, is called a component of G. Moreover, G is called acyclic
if G does not contain a subgraph that is isomorphic to C` for all integers ` ≥ 3. A forest is defined as an
acyclic graph and a tree is a connected and acyclic graph. Here, the symbol T is usually used to denote a
graph that is a tree.

Roughly speaking, to subdivide an edge e means to insert a new vertex on e, and to contract an edge e
means to merge its vertices together. More precisely, consider a graph G = (V,E) and let e = {u, v}
be an edge of G. Subdividing e means to remove e from G, to insert a new vertex w, and to insert the
edges {u,w} and {v, w}. If G′ is a graph that is obtained from G by successively subdividing edges,
then G′ is called a subdivision of G. To contract e means to remove u and v from G and to insert a new
vertex w that is adjacent to each vertex in NG(u)∪NG(v). If G′ is isomorphic to a graph that is obtained
from a subgraph of G by successively contracting edges, then G contains G′ as a minor. Let G′ = (V ′, E′)
be a graph that is obtained from G by successively contracting edges. Then one can partition V into
sets Mx with x ∈ V ′ such that the following properties are satisfied:
• For every x ∈ V ′, the set Mx is non-empty.
• For every x ∈ V ′, the graph G[Mx] is connected.
• For every x, x′ ∈ V , the graph G′ contains the edge {x, x′} if and only if G contains an edge {v, v′}
with v ∈Mx and v′ ∈Mx′ .

So, when contracting all edges in G[Mx] for each x ∈ V ′ and calling the resulting vertex x, the graph G′

is obtained, see also Chapter 1.7 in [Die12].
Consider a graph G = (V,E). A path P ⊆ G is called a longest path in G if G contains no path P ′

with |E(P ′)| > |E(P)|. For two vertices v, w ∈ V , a path P ⊆ G is called a shortest v,w-path in G if G
contains no v,w-path P ′ with |E(P ′)| < |E(P)|. The distance of two vertices v and w in a graph G is the
length of a shortest v,w-path in G and is denoted by distG(x, y). For a connected graph, the diameter is
defined as

diam(G) = max {dist(x, y) : x, y ∈ V (G)} .

Observe that the diameter of a tree T is the length of a longest path in the tree as, for v, w ∈ V (T), every
v,w-path in T is a shortest v,w-path.

The symbol R denotes the set of real numbers and R>0 denotes the set of positive, real numbers. The
following asymptotic notation is used. Let f, g : R>0 → R>0 be two functions. We write f(x) = O(g(x))
if there are two constants c ∈ R>0 and x0 ∈ R>0 such that f(x) ≤ cg(x) for all x ≥ x0. Moreover,
we write f(x) = Ω(g(x)) if there are two constants c ∈ R>0 and x0 ∈ R>0 such that f(x) ≥ cg(x) for
all x ≥ x0, i. e., f(x) = Ω(g(x)) is equivalent to g(x) = O(f(x)). Finally, we write f(x) = Θ(g(x))
if f(x) = O(g(x)) and f(x) = Ω(g(x)).

2.2 Some Facts Concerning Graphs

Here, some basic knowledge about graphs is presented. In the following, most of these facts are used
without further mentioning.

Proposition 2.1 (see Theorem 1.5.1 and Corollary 1.5.3 in [Die12]).
For every graph T = (V,E) the following statements are equivalent:
(i) T is a tree.
(ii) T is connected and |E| = |V | − 1.
(iii) For every v, w ∈ V , there is exactly one v,w-path in T .

20

2.2 Some Facts Concerning Graphs

In particular, it follows that every tree T = (V,E) satisfies |E| = O(|V |), which will be used often in
the following. Consider a graph G = (V,E). As every edge in E contributes 1 to the degree of exactly
two vertices,

∑
v∈V degG(v) = 2|E|. For trees and forests, the following corollary is obtained.

Corollary 2.2.
a) For every tree T = (V,E), the following holds:

∑
v∈V degT (v) = 2|V | − 2.

b) For every forest G = (V,E), the following holds:
∑
v∈V degG(v) ≤ 2|V | − 2.

Two Graphs and their Minimum Bisection Width

Here, two graphs are introduced, namely perfect ternary trees and grids. Moreover, bounds on their
minimum bisection width are stated. To define the former one, the standard terminology for rooted
trees is used, which is as follows. A rooted tree is a tree, where one vertex has been designated the root.
Consider a tree T with root r and let x and y be two vertices in T . Then, y is called a descendant of x
if x is on the unique r,y-path in T . Note that x is a descendant of itself. The parent of a vertex x 6= r,
denoted by p(x), is the neighbor of x that is on the x,r-path. If y is the parent of x, then x is a child of y.
In a rooted tree, a leaf is a vertex with no child. Observe that this differs slightly from the definition of a
leaf in a graph as v is a leaf in the rooted tree ({v}, ∅) but not in the graph ({v}, ∅). The subtree rooted
in x is the subgraph of T that is induced by all descendants of x. Let h, k be two integers with k ≥ 2
and h ≥ 0. A k-ary tree is a rooted tree T = (V,E) with the property that every vertex v ∈ V has at
most k children. A 2-ary tree is also called a binary tree and a 3-ary tree is also called a ternary tree. A
k-ary tree T = (V,E) is called full if every vertex v ∈ V has exactly k children or is a leaf of T . A full,
k-ary tree T , where each leaf of T has distance h to the root, is called a perfect k-ary tree of height h.
Clearly, a perfect k-ary tree of height 0 has 1 vertex, and a perfect k-ary tree of height 1 has k+ 1 vertices.
Using that a perfect k-ary tree of height h is obtained by taking k vertex disjoint perfect k-ary trees of
height h − 1, adding a new vertex r that is the root, and joining r to each root of the k perfect k-ary
trees of height h− 1, the next proposition follows by induction.

Proposition 2.3.
For every h ∈ N0 and every integer k ≥ 2, a perfect k-ary tree of height h has 1

k−1
(
kh+1 − 1

)
vertices.

In [Sch13], the following bounds on the minimum bisection width in perfect ternary trees are derived.

Theorem 2.4 (see Corollary 4.12 in [Sch13]).
For every h ∈ N, every perfect ternary tree Th of height h satisfies

h− log3(h) ≤ MinBis(Th) ≤ h− log3(h) + 3.

The second graph introduced in this paragraph is the grid. For each k ∈ N, the graph Gk = (Vk, Ek)
defined by

Vk := {(i, j) : i ∈ [k], j ∈ [k]} and

Ek :=
{
{(i, j), (i′, j′)} ∈

(
Vk
2

)
: |i− i′|+ |j − j′| = 1

}

is called the k×k grid. In drawings of Gk, unless stated otherwise, for all i, j ∈ [k], the vertex (i, j) is
drawn at the point (i, j) of a coordinate system, see Figure 2.1. In Gk, the vertex set Ci = {(i, j) : j ∈ [k]}
is called the ith column for i ∈ [k] and the vertex set Rj = {(i, j) : i ∈ [k]} is called the jth row. An

21

Chapter 2 Preliminaries and Notation

(1, 1) (5, 1)

(1, 5) (5, 5)

horizontal
edge in row R2vertical edge

in column C2

R1

C3

j

i

Figure 2.1: A 5×5 grid and its usual embedding.

edge {x, y} ∈ Ek is called a vertical edge in column Ci if x ∈ Ci and y ∈ Ci. An edge {x, y} ∈ Ek is called
a horizontal edge in row Rj if x ∈ Rj and y ∈ Rj . Observe that each edge in Ek is either horizontal or
vertical.

When the names of the vertices in Gk are not relevant, we often use the expression “a k×k grid” in order
to refer to a graph isomorphic to the k×k grid Gk as defined above. We use the expression “k×k grid”
to refer to the graph with the vertices and edges as defined above. A graph G isomorphic to the k×k grid
for some k ∈ N is also called a square grid. Sometimes, non-square grids are used. More precisely, for two
integers k, k′ ∈ N the k×k′ grid is defined to be the graph Gk,k′ = (Vk,k′ , Ek,k′) with

Vk,k′ := {(i, j) : i ∈ [k], j ∈ [k′]} and

Ek,k′ :=
{
{(i, j), (i′, j′)} ∈

(
Vk,k′

2

)
: |i− i′|+ |j − j′| = 1

}
.

Roughly speaking, square grids are well-connected, meaning that many edges need to be removed in
order to cut off a linear fraction of the vertices. This is made precise by the following results.

Lemma 2.5 (Theorem 6 in [LT79]).
For every k ∈ N and every 0 < β < 1

2 , the following holds. Denote by Gk = (Vk, Ek) the k×k grid and
define n := |Vk| = k2. If (B,W) is a cut in Gk with βn ≤ |B| ≤ 1

2n, then eGk(B,W) ≥ k ·min
{ 1

2 ,
√
β
}
.

Whereas the proof of the previous lemma is short and by a simple combinatorial argument, the following,
stronger result has a long and involved proof.

Lemma 2.6 (edge isoperimetric inequalities, see [BL91]).
For every k ∈ N the following holds. If (B,W) is a cut in the k×k grid Gk with 1

4k
2 ≤ |B| ≤ 3

4k
2,

then eGk(B,W) ≥ k.

Fix an integer k ≥ 2. With β = 1
4 Lemma 2.5 implies that every bisection (B,W) in the k×k grid cuts

at least 1
2k edges. Lemma 2.6 is stronger and implies that every bisection (B,W) in the k×k grid cuts at

least k edges. Another simple proof for a lower bound on the minimum bisection width of the square grid
is also found in Chapter 1.9.1 in [Lei92].

Corollary 2.7.
For every integer k ≥ 2 the k×k grid Gk satisfies MinBis(Gk) ≥ k.

22

2.2 Some Facts Concerning Graphs

f1

f2

f3

f4

a) Example of the faces of a plane graph.

f1

f2

f3

f4

b) The vertices and edges on the boundary of the
face f3 are colored blue.

Figure 2.2: A plane graph and its faces.

Planar Graphs

Roughly speaking, a drawing of a graph G is called planar if no two edges of G cross and if two edges
touch, then they touch in a common vertex. A graph G is called planar if G admits a planar drawing.
For a more formal definition of a planar graph as well as the following definitions, the reader is referred to
Chapter 4 in [Die12]. A drawing of a graph is also called an embedding in the plane, or short an embedding
as here no other surfaces are considered. Whenever an embedding or a drawing of a graph is considered
here, we assume that it is planar. A plane graph is a graph G together with a drawing of G. Consider a
plane graph G. Then, the drawing of G divides the plane into several regions, which are called faces of G,
see Figure 2.2a). The following results for planar graphs are well-known.

Theorem 2.8 (Euler’s Formula, see Theorem 4.2.9 in [Die12]).
Every connected plane graph with n vertices, m edges, and f faces satisfies n−m+ f = 2.

Corollary 2.9 (Corollary 4.2.10 in [Die12]).
Every planar graph G = (V,E) with |V | ≥ 3 satisfies |E| ≤ 3|V | − 6.

Theorem 2.10 (Kuratowski’s Theorem, see Theorem 4.4.6 in [Die12]).
A graph G is planar if and only if G does not contain a subgraph that is isomorphic to a subdivision of K5

or a subdivision of K3,3.

Consider a plane graph G = (V,E), i. e., some embedding of G is given. The boundary of a face f of G
is the set of points p in the drawing of G such that every open ball around p contains a point in f and a
point 6= x that is not in f . Here, points that represent a vertex of G or belong to a polygon representing
an edge of G do not belong to any face of G. For a vertex v ∈ V that is embedded in the boundary of a
face f , we say that v is on the boundary of f and for an edge e ∈ E that is embedded in the boundary of
a face f , we say that e is on the boundary of f . Figure 2.2b) gives an example for the boundary of a face.

23

Chapter 2 Preliminaries and Notation

2.3 Tree Decompositions
In this section, some preliminaries concerning tree decompositions are presented.

Definition 2.11.
Let G = (V,E) be a graph. A pair (T,X) with X = (Xi)i∈V (T) is a tree decomposition of G if T is a tree,
Xi ⊆ V for every i ∈ V (T), and the following three properties are satisfied.

(T1) For every v ∈ V , there is some i ∈ V (T) with v ∈ Xi.
(T2) For every e ∈ E, there is some i ∈ V (T) with e ⊆ Xi.
(T3) For all i, j, h ∈ V (T), if h is on the (unique) i,j-path in T , then Xi ∩Xj ⊆ Xh.

The width of a tree decomposition (T,X) is max
{
|Xi| − 1: i ∈ V (T)

}
. The tree-width tw(G) of a graph G

is the smallest integer t such that G allows a tree decomposition of width t.

Consider a tree decomposition (T,X) with X = (Xi)i∈V (T) of a graph G. To easily distinguish the
vertices of G from the vertices of T , the vertices in V (T) are called nodes in the following. Furthermore,
for i ∈ V (T), the set Xi is referred to as the cluster of i in (T,X). It is easy to show that (T3) is equivalent
to the following condition, see also Section 2 in [Bod98]:

(T3’) For every v ∈ V , the graph T [Iv] with Iv = {i ∈ V (T) : v ∈ Xi} is connected.

In the following, (T1), (T2), (T3), and (T3’) always refer to the properties defined here.
Every graph G = (V,E) has a tree decomposition. For example, let T = ({i}, ∅) and Xi = V , then (T,X)

where X consists only of Xi is a tree decomposition of G. It follows that tw(G) ≤ n− 1 for every graph G
on n vertices. If a graph G allows a tree decomposition of width 0, then E(G) = ∅. Next, it is shown
that every tree T̃ with at least two vertices has tree-width 1. Let T̃ = (Ṽ , Ẽ) be a tree with |Ṽ | ≥ 2. To
construct a tree decomposition of T̃ , let T be the tree obtained from T̃ by subdividing each edge of T̃
once. For each e ∈ Ẽ, denote by ie the vertex used to subdivide e. For each v ∈ Ṽ , define Xv = {v}
and, for each e = {v, w} ∈ Ẽ, define Xie = {v, w}. Let X = (Xi)i∈V (T). Clearly, (T,X) satisfies (T1)
and (T2). To see that (T3’) is satisfied, let v ∈ Ṽ , then v ∈ Xi if and only if i = v or i = ie for an edge e
that is incident to v in T̃ . Hence, for each v ∈ Ṽ , the set {j ∈ V (T) : v ∈ Xj} = {v} ∪ {ie : e ∈ Ẽ, v ∈ e}
induces a connected subgraph of T , namely a star or an isolated vertex. Consequently, (T,X) is a tree
decomposition of T̃ and tw(T̃) ≤ 1. As T̃ contains at least one edge, tw(T̃) must be at least 1 due to (T2).

Next, a tree decomposition of the square grid is presented. Fix an integer k ≥ 2 and let G̃ = (Ṽ , Ẽ) be
the k×k grid. Recall that Ṽ =

{
(̃i, j̃) : ĩ ∈ [k], j̃ ∈ [k]

}
. For each i ∈ [k − 1] and each j ∈ [k] define

X(i−1)k+j :=
{

(i, j̃) ∈ Ṽ : j̃ ≥ j
}
∪
{

(i+ 1, j̃) ∈ Ṽ : j̃ ≤ j
}
,

see Figure 2.3 for a visualization. Let T be the path obtained from Pk(k−1) by removing the node 0 and
let X = (Xh)h∈[k(k−1)]. For all ĩ, j̃ ∈ [k],

(̃i, j̃) ∈ Xh ⇔ h ∈
{

(̃i− 2)k + j̃, . . . , (̃i− 1)k + j̃
}
∩ [k(k − 1)].

It follows that (T1) and (T3’) are satisfied. To see that (T2) is satisfied, let e ∈ Ẽ. If e = {(̃i, j̃), (̃i+ 1, j̃)}
for some ĩ ∈ [k − 1] and j̃ ∈ [k], then e ⊆ Xh for h = (̃i − 1)k + j̃. Otherwise, e = {(̃i, j̃), (̃i, j̃ + 1)}
for some ĩ ∈ [k] and j̃ ∈ [k − 1] and e ⊆ Xh for h = (̃i − 1)k + j̃. Consequently, (T,X) satisfies (T2)
and (T,X) is a tree decomposition of G̃ of width k. Hence, tw(G̃) ≤ k. A matching lower bound is stated
in Lemma 88 in [Bod98] or Exercise 21 in Chapter 12 of [Die12]. This yields the next proposition.

Proposition 2.12.
a) Each tree T on at least 2 vertices satisfies tw(T) = 1.
b) For each integer k ≥ 2, the k×k grid Gk satisfies tw(Gk) = k.

24

2.3 Tree Decompositions

(1, 1)

(5, 1)

(1, 5)
(5, 5)

X1

1 = (1 − 1)5 + 1

X2

2 = (1 − 1)5 + 2

X8
8 = (2 − 1)5 + 3

X16

16 = (4 − 1)5 + 1

X20

20 = (4 − 1)5 + 5

j

i

Figure 2.3: A few clusters of a tree decomposition of the 5×5 grid of width 5.

A tree decomposition (T,X) of a graph G is a path decomposition of G if T is a path. The tree
decomposition of the square grid that was presented above is a path decomposition. The width of a
path decomposition is defined as the width of a tree decomposition. The path-width of a graph G is the
smallest integer t such that G allows a path decomposition of width t and is denoted by pw(G). Clearly,
all graphs G satisfy pw(G) ≥ tw(G).

For planar graphs, the following bound on the tree-width is known. Its proof can be found in [Bod98].
There, Corollary 23 states that the path-width of a planar graph on n vertices is at most O(

√
n). Using

that tw(G) ≤ pw(G) for all graphs G implies the next proposition.

Proposition 2.13.
Every planar graph G on n vertices satisfies tw(G) = O(

√
n).

Consider a graph G = (V,E), a tree decomposition (T,X) with X = (Xi)i∈V (T), and a graph H ⊆ G. A
tree decomposition for H can be easily obtained from (T,X) by deleting all vertices that are not in H. More
precisely, for i ∈ V (T), let X̃i = Xi ∩ V (H). Then, it is easy to check that (T, X̃) with X̃ = (X̃i)i∈V (T)

is a tree decomposition of H. The tree decomposition (T, X̃) is called the induced tree decomposition of H
with respect to (T,X). Observing that the width of (T, X̃) is at most the width of (T,X) yields the next
proposition.

Proposition 2.14.
Let G be a graph and let (T,X) be a tree decomposition of G of width t−1. For every subgraph H ⊆ G, the
induced tree decomposition of H with respect to (T,X) is a tree decomposition of H of width at most t− 1.
Furthermore, tw(H) ≤ tw(G).

Similarly to the construction for subgraphs, a tree decomposition of a minor can be constructed, see
also Lemma 12.3.3 and Proposition 12.3.6 in [Die12]. The following proposition is obtained.

Proposition 2.15.
For all graphs H and G such that G contains H as a minor, tw(H) ≤ tw(G).

25

Chapter 2 Preliminaries and Notation

Often, when constructing a cut in a tree T̃ , the vertex set of T̃ is partitioned by removing all edges
incident to a vertex v ∈ V (T̃) and considering the vertex sets of the resulting components. Then, a cut
in T̃ of width at most ∆(T̃) is obtained when combining these vertex sets in an arbitrary way. This idea
can be generalized by considering clusters of a tree decomposition, as done in the next lemma. It uses the
following notation: Consider a graph G = (V,E) and a tree decomposition (T,X) of G. For each node i
in T define

EG(i) =
{
e ∈ E : e ∩Xi 6= ∅

}
and eG(i) = |EG(i)|,

where Xi denotes the cluster of i in (T,X). Observe that, when t − 1 denotes the width of (T,X),
then eG(i) ≤ |Xi|∆(G) ≤ t∆(G) for every i ∈ V (T). We say that two subgraphs H1 ⊆ G and H2 ⊆ G

are disjoint parts of G if V (H1) ∩ V (H2) = ∅ and there is no edge e = {v, w} in G with v ∈ V (H1)
and w ∈ V (H2). Note that, if G is not connected, then two distinct components of G are disjoint parts
of G, but the subgraph Hi for i ∈ {1, 2} in the definition of disjoint parts does not have to be connected.
The next lemma says that, if the vertices in Xi or the edges in EG(i) are removed for some i ∈ V (T), then
the graph G splits into several disjoint parts. So, these disjoint parts can be combined in an arbitrary
way to obtain a cut in G of width at most eG(i) ≤ t∆(G). The lemma is a widely known fact about tree
decompositions, similar statements are Fact 10.13 and Fact 10.14 in [KT06] or Corollary 1.8 in [Ree97].

Lemma 2.16.
Let G = (V,E) be an arbitrary graph and let (T,X) be a tree decomposition of G with X = (Xj)j∈V (T). Fix
an arbitrary node i ∈ V (T), let k := degT (i), and denote by i1, i2, . . . , ik the neighbors of i in T . For ` ∈ [k],
let V T` be the node set of the component of T − i that contains i` and define V` :=

⋃
j∈V T

`
Xj \Xi.

a) Removing the vertices in Xi from G decomposes G into k disjoint parts, which are G[V1], . . . , G[Vk].
b) Removing the edges in EG(i) from G decomposes G into k + |Xi| disjoint parts, which are ({v}, ∅)

for every v ∈ Xi and G[V`] for every ` ∈ [k].

Proof. Let G = (V,E), (T,X) with X = (Xj)j∈V (T), i, k, i1, . . . , ik, as well as V T` and V` for each ` ∈ [k]
be as in the statement.

a) For each v ∈ V let Iv := {j ∈ V (T) : v ∈ Xj}, which is the same as in (T3’). Due to (T1), it follows
that

⋃

`∈[k]

V` =


 ⋃

j∈V (T)\{i}
Xj


 \Xi = V \Xi.

Consider a vertex v ∈ V . If v ∈ Xi, then v /∈ V` for every ` ∈ [k]. Otherwise, v /∈ Xi and Iv ⊆ V T`
for a unique ` ∈ [k] as T [Iv] is connected by (T3’), nonempty by (T1), and does not contain the
node i. So v ∈ V` implies v /∈ V`′ for all `′ 6= ` and therefore the sets V1, . . . , Vk are a partition
of V \Xi.

It remains to show that, for all distinct `1, `2 ∈ [k], there is no edge {v1, v2} ∈ E with v1 ∈ V`1

and v2 ∈ V`2 . Assume, for a contradiction, that there is such an edge in E. Property (T2) says that
there is a node j∗ with v1 ∈ Xj∗ and v2 ∈ Xj∗ . So, j∗ ∈ Iv1 ∩ Iv2 . Also j∗ 6= i because v1 /∈ Xi. As
argued before, Iv1 ⊆ V T`1

and Iv2 ⊆ V T`2
, because v1 /∈ Xi and v2 /∈ Xi. As `1 6= `2, the trees T [V T`1

]
and T [V T`2

] are different components of T − i. Hence, V T`1
∩ V T`2

= ∅ and therefore Iv1 ∩ Iv2 = ∅, but
this contradicts that j∗ ∈ Iv1 ∩ Iv2 .

b) Clearly, every vertex v ∈ Xi is an isolated vertex in G− EG(i). So, it suffices to show that G−Xi

decomposes into the k disjoint parts G[V1], G[V2], . . . , G[Vk], which is equivalent to Part a). 2

26

2.4 Algorithms

The next proposition says that low tree-width implies that a graph does not have many edges.

Proposition 2.17 (Fact 1.10 in [Ree97]).
Every graph G on n vertices satisfies |E(G)| ≤ n tw(G).

For a proof see Fact 1.10 in [Ree97].

2.4 Algorithms

2.4.1 Graphs

Let G = (V,E) be a graph on n vertices. For algorithms receiving G as input, it is always assumed
that V (G) = [n] and that G is given by its adjacency lists. Note that then the number of vertices in G is
also known. Consider an algorithm that receives G and possibly some integers as input, for example an
algorithm that computes an m-cut in G. The algorithm runs in linear time if its running time is bounded
by a function that is linear in the input size, which is Θ(|V (G)|+ |E(G)|) as each edge corresponds to
exactly two entries in the adjacency lists. Therefore, the following definition is used.

Definition 2.18.
The size of a graph G = (V,E) is defined as ‖G‖ := |V |+ |E|.

Most of the algorithms presented here will compute a cut (B,W) in the input graph G. Usually, the
cut (B,W) will be returned as a list of the vertices in the set B, which is not sorted and does not contain
any repetitions. It is easy to order the vertices in the set B in O(n) time with the counting sort algorithm,
which is presented in the next lemma.

Lemma 2.19 ([Cor+09]).
A list of m items in [n] can be sorted in O(n+m) time with the counting sort algorithm.

Basically, the idea is to put each item with value i in the ith place of an array of length n. Then, the
ordered list of all m items can be obtained by traversing the array once. For details, see Chapter 8.2
in [Cor+09]. So, when an algorithm uses the counting sort algorithm to sort the vertices in the black set
of a cut, then a list of the vertices in the white set can be read off the array as well, because a vertex lies
in the white set if and only if its entry in the array is undefined.

Proposition 2.20.
Consider a graph G = (V,E) on n vertices with V = [n] and a cut (B,W) in G. When given an unordered
list of the vertices in B, a list of the vertices in W can be determined in O(n) time.

Let G be a graph on n vertices with V = [n]. The advantage of storing sets as unordered lists without
repetitions is that computing the union of disjoint sets can be performed in O(1) time by concatenating
the lists. Note that, when subsets of the vertices of a graph on n vertices are stored in binary arrays
of length n, then it is necessary to traverse at least one of the arrays to compute the union of two sets.
However, this approach also works when the subsets are not disjoint. Here, we will mostly work with
disjoint subsets and therefore sets are stored as unordered lists unless indicated otherwise.
Consider a graph G = (V,E) on n vertices. The assumption V = [n] is natural for input graphs, see,

for example, Chapter 4.1 in [SW11]. However, when considering an iterative procedure, where some
algorithm is applied to the graph G and shall later be applied to a subgraph G′ ⊆ G on n′ vertices,

27

Chapter 2 Preliminaries and Notation

then V ′ := V (G′) = [n′] is usually not satisfied. Still, the assumption V = [n] cannot simply be ignored,
as we will see in Section 2.4.2, where some procedures that rely on arrays, which are indexed with the
vertices of G, are introduced. Weakening the assumption to V ′ ⊆ [n] might not be enough, as initializing
an array of length n might take too long when n′ is much smaller than n. Therefore, whenever an
algorithm is applied to a subgraph G′ and it relies on the assumption that V ′ = [n′], we will set up a
bijection f between V ′ and [n′]. The bijection f is stored in two arrays F and F ′ of length n and n′,
respectively. For each vertex v ∈ V ′, the entry F [v] contains f(v) and, for each vertex v ∈ V \ V ′, the
entry F [v] may contain an arbitrary value. For each integer s ∈ [n′], the entry F ′[s] contains f−1(s), i. e.,
the vertex v ∈ V ′ which is mapped to s by f . When advancing from G′ to a second subgraph G′′ ⊆ G′,
the bijection f is modified to be a bijection between V (G′′) and [n′′], where n′′ denotes the number of
vertices of G′′. This is necessary, because applying too many bijections increases the running time of
converting back the vertex names in the current subgraph to vertex names in the original graph. In
particular, one has to be careful when the number of iterations is not bounded by a constant. The next
lemma formalizes these ideas and also presents a method to check whether a vertex v ∈ V belongs to V ′

in constant time. Note that F ′ contains a list of the vertices in V ′ but, for a single vertex v ∈ V , it would
take Ω(n′) time to check whether v ∈ V ′ by traversing F ′.

Lemma 2.21.
Consider a graph G = (V,E) on n vertices with V = [n], a subgraph G′ = (V ′, E′) ⊆ G on n′ vertices,
and another subgraph G′′ = (V ′′, E′′) ⊆ G′ on n′′ vertices.

a) Given a list of the vertices in G′, a bijection between the vertex set of G′ and the set [n′], which is
stored in two arrays of length n and n′, can be set up in O(n) time.

b) A bijection between the vertex subset V ′ and [n′] as in a) allows to convert each vertex name in V ′

to the corresponding integer in [n′] in constant time and vice versa.
c) Given a bijection as in a), it is possible to check whether v ∈ V (G) belongs to the subgraph G′ in

constant time.
d) Given a bijection between the vertices in G′ and the set [n′] as well as a list of the vertices in G′′,

the bijection can be updated to a bijection between the vertices in G′′ and the set [n′′] in O(n′′) time.

Proof. Let G = (V,E), G′ = (V ′, E′), and G′′ = (V ′′, E′′) be as in the statement and denote by n, n′,
and n′′ their number of vertices, respectively.

a) First, the algorithm initializes two arrays F and F ′ of length n and n′, respectively, with zeros.
Then it traverses the list L′ of vertices in V ′. For the sth entry v in L′, the algorithm sets F [v] = s

and F ′[s] = v, which means that the bijection maps v ∈ V ′ to s ∈ [n′]. All in all, this procedure
takes O(n+ n′) = O(n) time.

b) All necessary information is stored in the arrays of the bijection and accessing an entry of an array
takes constant time.

c) Assume a bijection as in a) is stored in two arrays F and F ′. Consider an arbitrary vertex v ∈ V . A
vertex v ∈ V is in V ′ if and only if there is an entry in F ′ that contains v. Furthermore, for each
vertex v ∈ V ′, the entry F [v] is set to the index s with F ′[s] = v. So, for an arbitrary v ∈ V , the
algorithm does the following. First, it checks whether F [v] is an integer in [n′]. If not, then v 6∈ V ′.
If F [v] = s ∈ [n′], it checks whether F ′[s] = v. If so, then v ∈ V ′ and otherwise v 6∈ V ′. Clearly, this
procedure takes constant time.

28

2.4 Algorithms

d) Assume a bijection between V ′ and [n′] is stored in two arrays F and F ′ as in a), and a list L′′

of the vertices in G′′ ⊆ G′ is given. First, the algorithm initializes a new array F ′′ of length n′′

with zeros. Then it traverses the list L′′ and does the same as the algorithm in a) to obtain a
bijection between V ′′ and [n′′] stored in the arrays F and F ′′. Note that this procedure works, as
the algorithm does not read any information from the array F . Furthermore, the array F does not
need to be initialized and, hence, the running time reduces to O(n′′), compared to O(n+ n′′) time
for the procedure described in a). 2

In Part d), the array F ′ is not overwritten for the following reason. When working with the subgraph G′,
the assumption V (G′) = [n′] will be used, which is feasible when a bijection as in Part a) has been set up.
However, then the subgraph G′′ ⊆ G′ will not be described with vertex names referring to the original
vertex names in G, but with vertex names referring to the vertex set of G′ after renaming the vertices
of G′ according to the bijection. Hence, it is natural to have a list of the vertices in G′′, where each vertex
is renamed according to the bijection between V (G′) and [n′]. Then, Part b) allows the algorithm to
convert back to the corresponding vertex names of the original graph G by using the array F ′.

Here, the assumption V (G) = [n] is often needed when working with a tree decomposition as usually it
is necessary to compute the union or the intersection of clusters. Therefore, whenever a tree decomposition
is involved, we are careful and explicitly discuss how to rename the vertices such that V (G) = [n] is
satisfied whenever a subroutine is called that receives a graph G, or maybe only a tree decomposition
of G, as input. When working with a tree or a forest, we are less careful, as the next lemma says that
renaming the vertices is quick.

Lemma 2.22.
Let n0, n ∈ N be two integers with n ≤ n0 and let G = (V,E) be a forest on n vertices with V ⊆ [n0].
In O(n) time, the vertices of G can be renamed such that V (G) = [n] and an array F ′ of length n can be
set up such that, for s ∈ [n] the entry of F ′[s] contains the vertex of G that was renamed to s.

Proof. Fix n0, n ∈ N with n ≤ n0 and consider a forest G = (V,E) on n vertices with V ⊆ [n0] that is
represented by its adjacency lists. For the following running time estimation, it is assumed that reserving
and freeing any amount of space in memory takes constant time. First, the algorithm determines the
number of vertices of G, i. e., the number of adjacency lists, and the largest number n′0 ∈ [n0] with n′0 ∈ V ,
which takes O(n) time by traversing the adjacency lists of G. Then, the algorithm creates an integer
array F ′ of length n and initializes it with zeros, which takes O(n) time. Moreover, it reserves space
for an integer array F of length n′0 but does not initialize the array F . So, setting up F takes constant
time. The algorithm traverses the set V and, for the sth vertex v ∈ V , it sets F [v] = s and F ′[s] = v,
which takes O(n) time. Observe that now, if v ∈ [n′0] is a vertex of G, then F [v] contains a number s
such that F ′[s] = v and, if v ∈ [n0] is not a vertex of G, then either F [v] does not contain an index
in [n] or F ′[F [v]] is not v. To rename the vertices, the algorithm traverses the adjacency lists of G and
exchanges each entry v with F [v]. Finally the algorithm frees the space reserved for the array F . The
array F ′ contains all information needed to convert back the names of the vertices in the graph G. 2

Consider a tree T0 on n0 vertices and an algorithm that applies some procedure, which returns a vertex
set and a subgraph T to which the same procedure is applied again and so on. As long as the procedure
takes O(n) time for a tree T on n vertices, renaming the vertices of the current tree with Lemma 2.22
does not increase the asymptotic running time. Indeed, setting up the bijection takes O(n) time and
converting the vertex names of the computed set back to the original names takes constant time per vertex

29

Chapter 2 Preliminaries and Notation

and, hence, at most O(n) time in total. Thus, to estimate the asymptotic running time of the algorithm,
the time needed for renaming the vertices can be neglected.
Other than setting up and modifying a bijection in each iteration, one can also reuse the arrays of

the first iteration: Then, after each iteration all arrays need to be cleaned up. For example, if an array
of length n initialized with zeros is needed, then each entry needs to be set back to zero after the first
iteration. This does not require to traverse the entire array when the algorithm keeps track of the modified
entries and sets them back to zero, or as usually only entries referring to vertices of the current subgraph
are modified, the algorithm can traverse all corresponding entries. This additional step of cleaning up
arrays requires at most as much time as the iteration itself. Then, the next procedure does not need to
initialize the arrays and the weakened assumption V (G′) ⊆ [n] suffices.

Lemma 2.21 is also useful for computing induced subgraphs and subgraphs created by removing some
set of vertices, as the following corollaries show.

Corollary 2.23.
Consider a graph G = (V,E) on n vertices with V = [n] and a vertex set V ′ ⊆ V . Let n′ := |V ′|. There is
an algorithm that computes the adjacency lists of G′ := G[V ′] in O(‖G‖) time, when given the adjacency
lists of G and a list of the vertices in V ′. While doing so, it can set up a bijection or update an existing
bijection between V (G′) and [n′] as in Lemma 2.21a).

Proof. Let G = (V,E), n, V ′, and G′ be as in the statement. Using the list of vertices of G′, the
algorithm sets up a bijection between V (G′) and [n′], which takes O(n) time by Lemma 2.21a). This also
provides a method to check whether a vertex v ∈ V is in V ′ in constant time by Lemma 2.21c). Then, the
algorithm traverses the adjacency lists of G and creates a copy that contains only the entries that are
relevant for the subgraph G′. More precisely, when an adjacency list of a vertex v ∈ V is processed, then
it is skipped if v 6∈ V ′. Otherwise, v ∈ V ′ and the algorithm traverses all entries w of the adjacency list
of v and keeps the ones with w ∈ V ′. This procedure takes O(n+ ‖G‖) = O(‖G‖) time. 2

Corollary 2.24.
Consider a graph G = (V,E) on n vertices with V = [n] and a vertex set S ⊆ V . Let n′ := n − |S|.
There is an algorithm that computes the adjacency lists of G′ := G− S in O(‖G‖) time, when given the
adjacency lists of G and a list of the vertices in S. While doing so, it can set up a bijection or update an
existing bijection between V (G′) and [n′] as in Lemma 2.21a).

Proof. Let G = (V,E), n, S, and G′ be as in the statement. A list of the vertices in G′ can be obtained
in O(n) time by applying the same procedure as in Proposition 2.20. Then, the result follows from
Corollary 2.23, as G′ := G− S = G[V \ S]. 2

The following lemma about computing the components of a graph is a basic fact, see Chapter 4.1
in [SW11].

Lemma 2.25.
Let G = (V,E) be a graph. When traversing G with a depth-first search, one can compute
• the number of components of G,
• for each component G̃ of G the number of vertices in G̃, and
• for each component G̃ of G a list of the vertices in G̃

in O(‖G‖) time.

30

2.4 Algorithms

1

2 3

4 5

6

7
8

f1

f2

f3

f4

rotation systems

1 3, 2
2 1, 3, 4
3 5, 2, 1
4 2, 7, 5
5 4, 3
6 8, 7
7 6, 8, 4
8 7, 6

List of vertices in the boundaries

f1 1, 3, 5, 4, 2
f2 1, 2, 3
f3 2, 4, 7, 6, 8, 7, 4, 5, 3
f4 6, 7, 8

Figure 2.4: A plane graph G, its rotation systems, and the list of vertices on the boundary of each face, that is
obtained when walking along the boundary. The red arrows indicate the circular ordering at each vertex.

Consider a graph G = (V,E) that is represented by its adjacency lists. Recall that each edge {v, w} ∈ E
corresponds to two entries in the adjacency lists of G, namely the entry w in the adjacency list of v and
the entry v in the adjacency list of w. For example, to delete the edge {v, w} quickly, it is useful to have
some connection between these two entries in the adjacency list of G. So, once one of the entries is found,
the other one can be determined in constant time. This is achieved by adding pointers between the two
entries representing one edge. More precisely, for the edge {v, w}, the entry w in the adjacency list of v
contains additionally a pointer to the entry v in the adjacency list of w and vice versa. If this is the case
for every entry in the adjacency lists of G, we say that the adjacency lists are linked. Linked adjacency
lists can be set up in linear time, by first creating a list of the edges, which can be read off the adjacency
lists, deleting all entries in the adjacency lists, and inserting each edge in its linked way.
When working with a planar graph, it is sometimes necessary to store an embedding of the graph in

the plane. Consider an embedding of a planar graph G in the plane. All information that is necessary to
reconstruct the combinatorial structure of the embedding of G, i. e., to retrieve the information which
edges and vertices are on the boundary of which face, is the order in which the edges incident to each
vertex need to be drawn. One simple way to store this information is to order the adjacency list of each
vertex x ∈ V (G) accordingly. The circular ordering of a vertex x ∈ V (G) is the clockwise order of the
edges incident to x in the considered embedding of G. When the adjacency list of x is ordered according
to the circular ordering around x, it is called the rotation system of x, see Chapter 3.2 in [MT01] for
details and Figure 2.4 for an example. Furthermore, when an algorithm receives a plane graph as input,
it is assumed that it is represented by its rotation systems. Note that the embedding is not necessarily
completely determined by the rotation systems for graphs that are not connected. For example, consider
the graph consisting of a 3×3 grid and an isolated vertex x, then the rotation systems do not determine
the face of the 3×3 grid in which the vertex x is embedded. When given a connected plane graph G, i. e.,
each adjacency list of G is a rotation system, then the combinatorial structure of the faces is uniquely
determined and it can be obtained by walking along the boundary of each face. To do so, choose an
arbitrary vertex v1 and an arbitrary edge that joins v1 to one of its neighbors, say v2. The next vertex in
the walk is the entry v3 that follows v1 in the rotation system of v2 as the edge {v2, v3} is embedded after
the edge {v2, v1} in the circular ordering of v2. The vertices v4, v5, and so on are determined analogously.
The procedure stops when the edge {v1, v2} is traversed again in the same direction as in the beginning. To

31

Chapter 2 Preliminaries and Notation

find all faces systematically, the algorithm marks the entries in the rotation systems that have been used
already. More precisely, it marks the entry vi+1 in the adjacency list of vi when using the edge {vi, vi+1}.
Once all entries are marked, all faces are discovered. When the rotation systems are linked, where linked
has the same meaning as for adjacency lists, this procedure takes O(‖G‖) time as each edge is traversed
twice and it is not necessary to search for the entry vi+1 in the rotation system of vi. If the rotation
systems are not linked, but G is a bounded-degree graph, then the time to search for the entry vi+1 in the
rotation system of vi is constant and, hence, the running time is also O(‖G‖). Due to Corollary 2.9, the
running time O(‖G‖) simplifies to O(n), where n denotes the number of vertices of G.

Lemma 2.26.
Given a connected plane graph G on n vertices with bounded degree as input, one can determine a list of
the faces of G as well as, for each face f of G, a list of the vertices on the boundary of f in O(n) time.

Consider a connected plane graph G and fix a vertex v ∈ V (G). If, for each face f of G, a list of the
vertices on the boundary of f is known, then the algorithm can traverse all these lists to create a list of
the faces of G that contain x in their boundary. Since the lists containing the vertices on the boundary of
each face can be computed in O(‖G‖) time, traversing them requires O(‖G‖) time. As this procedure can
be applied simultaneously for all vertices of G, the following lemma is obtained.

Lemma 2.27.
Given a connected plane graph G = (V,E) on n vertices with bounded degree as input, one can compute,
for each vertex v ∈ V , a list of the faces of G that contain v in their boundary in O(n) time.

There are algorithms that, when given an arbitrary planar graph G, compute a plane embedding
of G. The fastest such algorithms run in linear time. The first such algorithm is due to Hopcroft and
Tarjan [HT74]. A different method is described by Lempel, Even, and Cederbaum [LEC67]. Both methods
heavily depend on the underlying data structure to store the part of the graph that is already examined,
see also [CW90] for a comparison.

Theorem 2.28.
There is an algorithm that, when given a graph G on n vertices, computes a plane embedding of G or
returns that G is not planar in O(n) time.

2.4.2 Tree Decompositions

In addition to algorithms working with graphs, also algorithms working with tree decompositions are
presented here. In general, determining the tree-width of a graph is NP-hard, see Theorem 1 in [Bod98]
and [ACP87]. For fixed t ∈ N, there is an algorithm that, when given a graph G with tw(G) ≤ t as
input, computes a tree decomposition of G of width at most t in linear time [Bod96]. However, the
running time is already too long for practical purposes even if t is very small. Moreover, there is an
algorithm that, when given a graph G on n vertices as input, computes a tree decomposition of G of
width O

(
tw(G)

√
log(tw(G))

)
in time polynomial in n and tw(G), see Theorem 6.4 in [FHL08]. For

planar graphs G on n vertices, there is an algorithm that approximates the tree-width of G within a factor
of 1.5 in O(n3) time [GT08], and relies on the relationship between branch-width and tree-width. It is
open, whether computing a tree decomposition of minimum width of a planar graph is NP-hard.

Therefore, the algorithms presented here, that work with tree-like graphs, receive a tree decomposition of
small width as input. The format is as follows. Consider a tree decomposition (T,X) with X = (Xi)i∈V (T)

and denote by nT the number of nodes of T . Similar to graphs, it is assumed that T is given by its

32

2.4 Algorithms

adjacency lists and that the node set of T is [nT]. Furthermore, it is assumed that each cluster in X is
given as an unordered list of (distinct) vertices and each node i ∈ V (T) has a pointer pointing to Xi. So, to
store the tree decomposition (T,X), first, the tree T itself needs to be stored, which takes ‖T‖ = O(|V (T)|)
space and, second, each non-empty cluster needs to be stored, which takes

∑
i∈V (T) |Xi| space. Taking

into account that many clusters in X could be empty, it becomes clear that in the following definition
both terms are needed.

Definition 2.29.
The size of a tree decomposition (T,X) with X = (Xi)i∈V (T) is defined as

‖(T,X)‖ := |V (T)|+
∑

i∈V (T)

∣∣Xi
∣∣ .

Note that, for every graph G on n vertices, every tree decomposition (T,X) of G satisfies n = O(‖(T,X)‖)
as every vertex of G needs to be in at least one of the clusters in X by (T1). This fact will be used in the
following without explaining it further.
Most of the algorithms described here that use a tree decomposition are based on a depth-first search

in the decomposition tree. Consider a tree decomposition (T,X) where V (T) = [nT] for some integer nT .
While traversing T with a depth-first search, two arrays D and π, that are each of length nT and store
the following additional information, can be created. The array D is used to store the discovery time
of each node and the array π is used to store the predecessor of each node. That is, if T was rooted in
the node r where the depth-first search was started, then after completing the depth-first search, for
each i ∈ [nT] \ {r}, the entry π[i] is the parent of i and π[r] is undefined. Furthermore, we adopt the
traditional notation used, for instance by Cormen et al. [Cor+09], of coloring the nodes of the tree white,
gray, and black. A node i is colored white, when it was not yet discovered by the depth-first search. As
soon as it is discovered, the node i becomes gray. Once it is finished, i. e., once all its neighbors except π[i]
are black, the node i becomes black. Often, it will also be useful to fill in another array DG, whose entries
correspond to the vertices of the underlying graph. Assume that (T,X) is a tree decomposition of a
graph G on n vertices with V (G) = [n]. The array DG is used to store the discovery time of the vertices
in G when performing a depth-first search on T and traversing the corresponding clusters simultaneously.
More precisely, assume that all vertices of G are white in the beginning and that, when a node i of T
turns gray, also every white vertex in its cluster turns gray. Then, DG[v] is the time when the vertex v
of the graph G turns gray. Furthermore, let N and N ′ be integer arrays of length nT each, where N [i]
is the size of the set Xi for all i ∈ VT and N ′[i] = |Xi ∩Xπ[i]| for all i ∈ VT \ {r}, i. e., the number of
vertices that the clusters associated with the nodes i and its parent π(i) have in common, and N ′[r] = 0.
The next lemma says that all these arrays can be computed during one depth-first traversal of the tree T
in O(‖(T,X)‖) time.

Lemma 2.30.
For every tree decomposition (T,X) of some graph G with V (T) = [nT] for some integer nT and V (G) = [n]
for some integer n, the arrays D, π, DG, N , and N ′ can be computed with one depth-first traversal of T
in time O(‖(T,X)‖). When a node i becomes gray, the entries D[i], π[i], N [i], and N ′[i] are set correctly.
Furthermore, for all i ∈ V (T) and all v ∈ Xi, when i becomes gray, DG[v] is set or has been set previously
and satisfies DG[v] ≤ D[i].

Proof. Let (T,X), G, nT , and n be as in the statement, and let T = (VT , ET) as well X = (Xi)i∈VT .
Moreover, fix a node r ∈ VT and assume that the considered depth-first traversal of T starts at r. Clearly,

33

Chapter 2 Preliminaries and Notation

the arrays D and π will be set correctly. Additionally to steps of the depth-first search, every time a
node i ∈ VT turns gray, the algorithm traverses the cluster Xi to compute the value N [i] and to determine
the number `i of vertices, which have their value in DG already defined. Furthermore, when i ∈ VT
turns gray, for all vertices v ∈ Xi with DG[v] undefined, the algorithm sets the entry of DG[v] to D[i].
Afterwards, DG[v] ≤ D[i] holds for all v ∈ Xi. When r turns gray, none of the entries in DG has been
defined before and the algorithm sets N ′[r] = 0. At any time, the subgraph of T that is induced by
the gray nodes is connected and, when i turns gray, then π[i] is the only neighbor of i in this subgraph.
Thus, (T3’) implies that, for every i ∈ V (T) \ {r}, every vertex v ∈ Xi with DG[v] < D[i] is also in the
cluster Xπ[i]. Therefore, `i = |Xi ∩Xπ[i]| and the algorithm sets N ′[i] = `i.
Let us now analyze the running time of this procedure. The depth-first traversal itself requires O(nT)

time and, for all i ∈ VT , it takes O(|Xi| + 1) additional time when the node i turns gray. Hence, the
entire procedure takes O(‖(T,X)‖) time. 2

In an iterative procedure, the algorithm only receives a tree decomposition for the input graph. So
when a subroutine is applied to a subgraph of the input graph, the algorithm needs to compute a
tree decomposition of the subgraph. As mentioned above, computing a tree decomposition of smallest
possible width from scratch for a general graph is NP-hard. However, with the tree decomposition of
the input graph at hand, it is easy to find a tree decomposition of a subgraph, namely the induced
tree decomposition, see also Proposition 2.14. Consider a graph G on n vertices with V (G) = [n] and
a tree decomposition (T,X) of G, where X = (Xi)i∈V (T). Fix an arbitrary subgraph G̃ of G. Recall
that (T̃ , X̃) with T̃ = T and X̃ = (X̃i)i∈V (T̃) is the induced tree decomposition of G̃ if X̃i = Xi ∩ V (G̃)
for all i ∈ V (T). To compute the induced tree decomposition of G̃, one basically has to traverse each
cluster of the tree decomposition (T,X) and delete each vertex that does not belong to G̃. In some cases,
using the induced tree decomposition may cause many empty clusters. Whenever it is possible to predict
which clusters will be empty, the following, more general concept is useful. The tree decomposition (T̃ , X̃)
with X̃ = (X̃i)i∈V (T̃) is called the restriction of (T,X) to T̃ and G̃ if V (T̃) ⊆ V (T) and X̃i = Xi ∩ V (G̃)
for all i ∈ V (T̃). So, compared to the induced tree decomposition, the tree T̃ can be chosen arbitrarily,
but a restriction will only be a tree decomposition if T̃ is chosen well. For example every vertex of G̃
needs to be in a cluster of a node in V (T̃) in the original tree decomposition in order to satisfy (T1) and T̃
cannot have many edges in different places than T as otherwise (T3) is not satisfied for (T̃ , X̃). Note that
an induced tree decomposition is a special case of a restriction of a tree decomposition. Therefore, the
next proposition about the computation of a restriction of a tree decomposition also applies to induced
tree decompositions.

Proposition 2.31.
Let G be an arbitrary graph and let (T,X) be an arbitrary tree decomposition of G. For every graph G̃ ⊆ G
and for every tree T̃ with V (T̃) ⊆ V (T), the following holds for the restriction (T̃ , X̃) of (T,X) to T̃
and G̃:

a) The width and the size of (T̃ , X̃) are at most the width and the size of (T,X), respectively.
b) If, for every vertex v ∈ V (G), one can check whether v is in V (G̃) in constant time, then one can

compute (T̃ , X̃) in O
(
|V (T̃)|+

∑
i∈V (T̃) |Xi

0|
)
time, when given (T,X) and T̃ as input.

Proof. Let G, (T,X), G̃ and T̃ be as stated in the proposition and denote by (T̃ , X̃) with X̃ = (X̃i)i∈V (T̃)
the restriction of (T,X) to T̃ and G̃.

a) Neither the number of nodes of T̃ exceeds the number of nodes of T nor the number of vertices
in the cluster X̃i exceeds the number of vertices in the cluster Xi for every i ∈ V (T̃). Thus, the
statement follows.

34

2.4 Algorithms

b) Assume that there is a function that, for a vertex v ∈ V (G), determines whether v ∈ V (G̃) in
constant time. The algorithm traverses T̃ , for example with a depth-first search, and while doing so,
for each node i in T̃ , it does the following. The algorithm accesses the corresponding node of T ,
which has a pointer to the cluster Xi, and then it computes X̃i by going through Xi and keeping
only the vertices in G̃. Finally, it sets the pointer of i in T̃ to point to the new cluster X̃i. So,
processing a node i ∈ V (T̃) takes time proportional to |Xi|+ 1. Therefore, the entire procedure
takes O

(
|V (T̃)|+

∑
i∈V (T̃) |Xi|

)
= O(‖(T,X)‖) time. 2

Note that in Part b) the procedure to check whether a vertex v ∈ V (G) is in V (G̃) is essential, as it might
take too long to traverse the graph G̃ with a depth-first search or something similar in order to obtain a
list of the vertices in V (G̃). For example, assume that G is composed of a path on 1

2n+ 1 vertices and a
clique on 1

2n vertices, which have exactly one vertex in common. Let G̃ be the clique. Then, traversing G̃
takes Ω(n2) time due to the large amount of edges. However, G admits a tree decomposition (T,X) of
width 1

2n with two clusters: One cluster, say X1, corresponds to the clique and the other one, say X2

corresponds to the path. Let T̃ be the tree on one node, which is the node whose cluster is X1. Clearly,
the restriction of (T,X) to T̃ and G̃ is a tree decomposition of G̃. Proposition 2.31b) guarantees that if,
for every v ∈ V (G), one can check whether v ∈ V (G̃) in constant time, then the restriction of (T,X) to T̃
and G̃ can be computed in O(n) time.

Consider a tree decomposition (T,X) of some graph G and fix a subgraph G̃. Usually, the induced tree
decomposition of G̃ has many empty clusters when G̃ is much smaller than G and the width of (T,X)
is constant. Such empty clusters can slow down some of the algorithms described ahead. Furthermore,
repeated clusters can slow down the algorithm. For example, let i be a node of T , then attaching several
copies of i to i itself with the same cluster as the cluster of the original node i gives an unnecessarily blown
up tree decomposition of G. Therefore, the notion of a nonredundant tree decomposition is introduced,
see also [KT06]. A tree decomposition (T,X) of a graph G with X = (Xi)i∈V (T) is called nonredundant if
Xi 6⊆ Xj and Xj 6⊆ Xi for every edge {i, j} ∈ E(T). This prevents the tree decomposition from being
unnecessarily large to some extend, as a nonredundant tree decomposition can neither contain empty
clusters nor two identical clusters whose nodes are adjacent. Furthermore, for any two clusters Xi and Xj

corresponding to two distinct nodes i and j of a nonredundant tree decomposition (T,X), it follows
that Xi 6⊆ Xj and Xj 6⊆ Xi. Indeed, assume that i 6= j and Xi ⊆ Xj . Then, (T3) implies that Xi ⊆ Xh

for every h on the unique i,j-path in T . So let i′ be the node after i on the i,j-path in T . Then, the
edge {i, i′} shows that (T,X) is not nonredundant. Requiring a tree decomposition to be nonredundant
does not force it to have the least possible amount of nodes among all tree decompositions with a certain
width of the same underlying graph. Nevertheless, for the algorithms presented here, it suffices to have an
upper bound on the number of nodes in the decomposition tree, as presented in the next lemma. The
lemma also states that a tree decomposition can be made nonredundant in linear time without increasing
its width. A proof for Part a) of the following proposition can also be found in the literature, see Fact 10.16
in [KT06] or Fact 1.9 in [Ree97].

Proposition 2.32.
For every graph G and every tree decomposition (T,X) of G of width t− 1, the following holds.

a) If (T,X) is nonredundant, then |V (T)| ≤ |V (G)| and ‖(T,X)‖ = O(|V (G)|t).
b) By contracting some of the edges of T one can transform (T,X) into a nonredundant tree decompo-

sition (T ′,X ′) such that ‖(T ′,X ′)‖ ≤ ‖(T,X)‖ and the width of (T ′,X ′) is t− 1. If the underlying
graph G satisfies V (G) = [n], then such a tree decomposition (T ′,X ′) can be computed in O (‖(T,X)‖)
time.

35

Chapter 2 Preliminaries and Notation

Before presenting the proof of the previous proposition, arborescences are introduced, which are useful
for the algorithm contained in Part b). An arborescence is a rooted tree T , where each node i ∈ V (T) has
a list of its children and knows its parent. The next lemma says that it takes linear time to convert a tree
given by its adjacency lists into an arborescence and vice versa.

Lemma 2.33.
For every tree T on nT vertices, it takes O(nT) time to convert T into an arborescence when T is given
by its adjacency lists and vice versa. Furthermore, when given an arborescence with root r, it takes O(nT)
time to compute an arborescence of the same underlying tree with a different root.

Let us quickly explain the procedure contained in Lemma 2.33. Consider a tree T with V (T) = [nT]
and fix a node r that is to be used as the root of T . First, the algorithm marks r to be the root by setting
p(r) = r and then, it traverses the tree T with a depth-first search starting at r. When a node i ∈ V (T)
turns gray, the algorithm traverses the adjacency list of i and, for each node j there, it sets p(j) = i,
except in the case j = p(i), when it deletes j from the adjacency list of i. Note that p(i) has been
determined correctly when i turns gray, and after completing the depth-first traversal the adjacency list
of each node i contains exactly the children of i. Processing one node i ∈ V (T) takes time proportional to
degT (i) and, hence, the entire procedure to turn T into an arborescence takes O(|V (T)|) time. To convert
an arborescence T with root r to a tree stored by its adjacency lists note that, for each node i 6= r, the
algorithm simply needs to add p(i) to the list of children of i to obtain the adjacency list of i and the
adjacency list of r is simply the list of children of r. Clearly, this takes O(nT) time.

Proof of Proposition 2.32. Let G = (V,E) be an arbitrary graph on n vertices and let (T,X) be a
tree decomposition of G of width t− 1, with T = (VT , ET) and X = (Xi)i∈VT . Root T at an arbitrary
node r and define nT := |VT |.

a) Suppose (T,X) is nonredundant. To prove that |VT | ≤ n, label each node of T with a vertex of G
in the following way. First, as (T,X) is nonredundant, the cluster Xr is nonempty and Xi 6⊆ Xp(i)

for every i 6= r. So, label the node r with an arbitrary vertex in Xr, and label each node i 6= r

with an arbitrary vertex in Xi \ Xp(i). For a contradiction, suppose that two distinct nodes i
and i′ receive the same label v ∈ V . If necessary, exchange i and i′ such that p(i) is on the unique
path between i and i′. Since v ∈ Xi ∩ Xi′ , (T3) implies that v ∈ Xp(i), which contradicts the
choice of v as label for i. As there are only n distinct labels, the tree T has at most n nodes.
Moreover, ‖(T,X)‖ = |VT |+

∑
i∈VT |X

i| ≤ nT + tnT ≤ (t+ 1)n.

b) If T has only one node, then (T,X) is already nonredundant. So, assume that |VT | ≥ 2. It is easy to
see that (T,X) can be modified to be nonredundant while still satisfying (T1)-(T3) by successively
contracting each edge {i, j} of T with Xi ⊆ Xj to one node with cluster Xj . Let (T ′,X ′) be the
resulting tree decomposition. As T ′ contains at most nT nodes and X ′ is obtained from X by
deleting clusters, the width and the size of (T ′,X ′) are at most the width and the size of (T,X),
respectively.

Next, it is explained how to implement this procedure to run in the desired time under the assumption
that V (G) = [n] and VT = [nT]. First of all, the algorithm turns T into an arborescence with
root r, which requires O(nT) time by Lemma 2.33. While doing so, for each node i ∈ VT \ {r}, the
algorithm also stores a pointer to the entry i in the list of children of p(i). This does not increase the
asymptotic running time of turning T into an arborescence as the additional pointer of i can be set
when p(i) is set and, hence, the algorithm does not need to search the adjacency list of i. This will

36

2.4 Algorithms

be convenient for contracting edges. For an edge {i, j} ∈ ET , we say that {i, j} is contracted into j,
if the node resulting from the contraction is called j again and its cluster is Xj . The algorithm
searches for the edges that need to be contracted and contracts them during the search. To do so, it
traverses T with a depth-first search starting at r and computes the arrays D, DG, N , and N ′ as in
Lemma 2.30. Recall that the arrays D and DG store the discovery times of the nodes of T and the
vertices of G, respectively, and, for every i ∈ VT , the values N [i] = |Xi| and N ′[i] = |Xi ∩Xp(i)| are
set correctly when i turns gray. Furthermore, when a node i 6= r turns gray, the algorithm checks
whether one of the following cases applies.

Case 1: N [i] = N ′[i]. That means that |Xi| = |Xi ∩Xp(i)| and, hence, Xi ⊆ Xp(i). In this case,
the algorithm contracts i into p(i). To do so, the algorithm removes i from the list of children
of p(i). Furthermore, the algorithm appends the list of children of i to the list of children of p(i)
and for each node j in the list of children of i, it sets p(j) to p(i) and updates the additional
pointer of j.

Case 2: N [i] 6= N ′[i] and N ′[i] = N [p(i)]. That means that |Xi| 6= |Xi ∩Xp(i)| = |Xp(i)|, which
implies Xp(i) ⊆ Xi and Xp(i) 6= Xi. In this case, the algorithm contracts p(i) into i. To do so,
it contracts i into p(i) and updates the pointer of p(i) to its cluster such that it points to Xi.
Moreover, it sets N [p(i)] = N [i] and DG[v] = D[p(i)] for every v ∈ Xi with undefined DG[v].

If one of the above cases applies and also when none of them applies, the algorithm continues the
depth-first search on the possibly modified tree including the computation of the arrays.

Observe that neither the pair (T,X) nor one of the arrays D, DG, N , and N ′ is modified when a
gray node turns black. The following invariants hold every time after a node i turned gray and the
tree was modified according to Case 1 or Case 2, if applicable. Denote by (Tc,Xc) the state of the
pair (T,X) after these modifications.

(i) For each node j in Tc, the parent of j in Tc is stored in p(j) and the additional pointer of j in
the arborescence is set correctly.

(ii) For each node j in Tc that is gray, the entries N [j] and D[j] are set correctly with respect to a
depth-first search in Tc.

(iii) For each vertex v in G, the following holds. If there is a gray or a black node j in Tc such that v
is in the cluster of j in the tree decomposition (Tc,Xc), then DG[v] ≤ D[j]. Otherwise DG[v] is
undefined.

(iv) The value N ′[i] is computed correctly with respect to (Tc,Xc).
(v) The pair (Tc,Xc) is a tree decomposition of G.
(vi) Each edge {j, j′} in Tc where j is gray or black and j′ is gray or black satisfies Xj

c 6⊆ Xj′
c

and Xj′
c 6⊆ Xj

c where Xj
c and Xj′

c denote the clusters of j and j′ in the tree decomposi-
tion (Tc,Xc).

Clearly, (i)-(vi) are satisfied before r turns gray, which is the first node of the input tree that turns
gray. Consider one step of the depth-first search when a node i turns gray and assume that (i)-(vi)
are satisfied before i turns gray. It is easy to check that the parents and the additional pointers of
the arborescence are modified correctly when the tree is modified. Additionally, observe that the
arrays N , D, and DG are updated correctly. Hence, (i)-(iii) are satisfied after i turned gray. As the
computation of N ′[i] relies only on the array DG, (iv) is satisfied as well when i turns gray. Observe
that, if the tree decomposition is modified when i turns gray, then Xi ⊆ Xp(i) or Xp(i) ⊆ Xi, and it
is easy to check that (v) is satisfied.

37

Chapter 2 Preliminaries and Notation

To see that (vi) is satisfied after i turned gray, consider first an edge {j, j′} in Tc that does not
contain i or p(i). Then, neither j nor j′ changes its color or its cluster when i turns gray. Thus,
it suffices to consider the edges of Tc that contain i or p(i). As each child j of i is white when i
turns gray, there is nothing to show for these edges {j, i}. Next, consider the edge {i, p(i)} and
denote by Xi and Xp(i) the clusters of i and p(i), respectively, before applying the modifications
done when i turns gray. If Xi = Xp(i) or Xi ⊆ Xp(i), then N [i] = N ′[i] and the edge {i, p(i)} is
contracted according to Case 1. If Xi 6⊆ Xp(i) and Xp(i) ⊆ Xi, then N [i] 6= N ′[i] and N ′[i] = N [p(i)],
which means that the edge {i, p(i)} is contracted due to Case 2. Otherwise, neither Xi ⊆ Xp(i)

nor Xp(i) ⊆ Xi and neither Case 1 nor Case 2 applies, which means that {i, p(i)} is not contracted.
If p(i) is the root, there is nothing more to show for (vi). Otherwise, let j be the parent of p(i).
Observe that j and p(i) are both gray when i turns gray. If the cluster of p(i) is not exchanged
when i turns gray, there is nothing to show. So assume that the cluster of p(i) is exchanged when i
turns gray, i. e., Case 2 applies, Xp(i) is updated to Xi and Xp(i) ⊆ Xi. As (vi) was satisfied before i
turned gray, it follows that Xp(i) 6⊆ Xj and Xj 6⊆ Xp(i). Therefore, Xi 6⊆ Xj and Xj 6⊆ Xi. Indeed,
if the former was not satisfied, then (T3) implies Xi ⊆ Xp(i), which contradicts the assumption of
Case 2. If the latter was not satisfied, then Xj ⊆ Xp(i) due to (T3), which is a contradiction as well.
This completes the proof of the invariants.

Now, (v) and (vi) imply that the described procedure indeed returns a nonredundant tree decompo-
sition of G. So it only remains to discuss the running time. Consider an arbitrary node i ∈ VT . If
applicable, the contraction of the edge {i, p(i)} takes time proportional to degT (i), as the additional
pointer of i that was computed when turning T into an arborescence can be used to find the entry i
in the list of children of p(i) in constant time. Since the edge {i, p(i)} is contracted when i turns
gray, each original list of children is traversed at most once and each modified list of children
is never traversed for a contraction. Thus, in total, all contractions take O(nT) time together.
Next, consider the traversals of the clusters in X . Other than the traversals done by the algorithm
contained in Lemma 2.30, each cluster is traversed at most once when its node turns gray and Case 2
applies. So, the time needed for these additional traversals of clusters is at most O(‖(T,X)‖). The
depth-first search itself is a search of the final decomposition tree, plus constant time per removed
node. Consequently, the overall running time is O(nT + ‖(T,X)‖) = O(‖(T,X)‖). 2

38

Chapter 3

Planar Graphs

This chapter focuses on bisections in planar graphs. First, in Section 3.1, a general approach to construct
a bisection by using separators is introduced. This approach will yield the bounds on the minimum
bisection width from Theorem 1.10 and Theorem 1.11, which were stated in Section 1.2.3 and are proved
here, as well as a technical looking inequality that relates the minimum bisection width of a planar graph
and its tree-width. The latter is then used in Section 3.2 to prove Theorem 1.4 and Corollary 1.5, which
were stated in Section 1.2.2 and study the structure of bounded-degree planar graphs with large minimum
bisection width. Besides, Section 3.2 introduces grid-homogeneous graphs and derives a lower bound
for the minimum bisection width in grid-homogeneous graphs. Finally, in Section 3.3, which studies the
algorithmic use of the concept of grid-homogeneous graphs, it is shown that some questions related to
asking whether a graph is grid-homogeneous are NP-hard, as well as that some parameters, that are
related to measuring how grid-homogeneous a graph is, can be approximated within a constant factor in
polynomial time.

3.1 Using Separators to Construct Exact Cuts
The aim of this section is to present a general approach for constructing a bisection and then to derive a
technical bound that relates the tree-width and the minimum bisection width of a planar graph. The
approach for constructing a bisection is introduced in Section 3.1.1 and uses separators to decompose
the considered graph into smaller pieces. In Section 3.1.2, separators promised by the Planar Separator
Theorem are used to derive the bound in Theorem 1.10 as well as a linear-time algorithm computing
a bisection within this bound. In Section 3.1.3, it is shown that, when given a tree decomposition of
width t− 1, then a separator in the underlying graph of size at most t can be computed in linear time.
Using these separators, the bound in Theorem 1.11 is proved and a corresponding polynomial-time
algorithm is derived. Afterward, both types of separators are combined in Section 3.1.4, which yields a
technical bound for the minimum bisection width in planar graphs and is the key for proving Theorem 1.4
and Corollary 1.5 in the next section. A similar, though different looking, approach for constructing
bisections is used in Chapter 7 of [Sch13], where the bounds presented in Theorem 1.10 and Theorem 1.11
are derived as well. This section extends the results obtained in Chapter 7 in [Sch13], as the algorithms
presented here are new and the bound derived in Section 3.1.4 is also new. Furthermore, all results
presented in this section do not only hold for bisections but any exact cut.

39

Chapter 3 Planar Graphs

3.1.1 Constructing an Exact Cut by Successively Removing Separators

The first aim of this section is to present an algorithm that computes an m-cut in a graph G under the
assumption that there is some method to compute separators in the graph G and all its subgraphs, that
is, a method to find a small subset of the vertices whose removal decomposes the graph into several not so
big components. More precisely, consider a graph G = (V,E) on n vertices and fix a constant 0 < c < 1.
Then, a subset S (V is called a c-separator in G if every component of G − S contains at most cn
vertices. For technical reasons, the set S = V is also considered to be a c-separator in G. Sometimes,
when the specific value of c is not relevant, we refer to such a set simply as a separator. For example, the
Planar Separator Theorem says that every planar graph on n vertices has a 2

3 -separator S with |S| ≤
√

8n,
see Theorem 3.4 or [LT79]. The idea to construct an m-cut (B,W) in a graph G is the following. The
algorithm starts with two empty sets B and W , and decomposes G into smaller parts by removing a
separator. Then, it greedily puts as many parts as possible into the set B such that |B| ≤ m is still
satisfied. All remaining parts, except the first one, that did not fit into B, are put in the set W . Then, the
algorithm goes on recursively in the part that was neither put in the set B nor the set W . This is repeated
until the remaining graph contains at most one vertex. Then, all vertices not yet assigned to the set B
or W , which are the vertices in the remaining graph and all vertices that belong to some separator that
was removed, are distributed to the sets B and W . This procedure is stated formally in Algorithm 3.1,
where the set W is kept implicit. The next lemma presents some invariants of Algorithm 3.1, before the
width of the cut produced by Algorithm 3.1 and its running time are analyzed.

Lemma 3.1.
Consider an application of Algorithm 3.1 to a graph G0 = (V0, E0) on n0 vertices with size-parame-
ter m ∈ [n0]. The following invariants hold after each execution of the while loop, where V = V (G), B,
and S are the sets used in Algorithm 3.1:
(i) the sets V , B, and S are pairwise disjoint,
(ii) eG0−S(B,W, V) = 0 for W = V0 \ (B ∪ V ∪ S), or equivalently, G0 − S decomposes into the disjoint

parts G[B], G[W], and G[V], as well as
(iii) |B| ≤ m ≤ |B|+ |S|+ |V |.

Proof. As in the statement, let G0 = (V0, E0) be a graph to which Algorithm 3.1 is applied and denote
by m the size-parameter used in that application. Clearly, (i), (ii), and (iii) hold before the first execution
of the while loop. Now, suppose that (i)-(iii) hold at the beginning of the sth execution of the while loop
for some s ∈ N, i. e., they hold after the (s− 1)st execution of the while loop if s ≥ 2 or before the first
execution if s = 1. We will prove that (i)-(iii) hold at the end of the sth execution of the while loop. To
do so, fix S, B, and G to the state of the corresponding variable before the sth execution of the while
loop and denote by S′, B′, and G′ the state of the same variable after the sth execution of the while loop,
respectively. Let S̃ be the separator chosen in Line 3 and let k, U1, . . . , Uk, and ` be as determined in
Lines 4-5 during the sth execution of the while loop. Furthermore, define V := V (G) and V ′ := V (G′),
W := V0 \ (B ∪ S ∪ V) and W ′ := V0 \ (B′ ∪ S′ ∪ V ′), as well as B̃ = B′ \B and W̃ = W ′ \W . Lines 3-4
imply that {S̃, U1, . . . , Uk} is a partition of V . Then, Lines 5-6 distribute some of these sets to B and S,
and Line 7 sets G′ to be either one of the components in the partition {S̃, U1, . . . , Uk} or the empty set.
All remaining components form the set W̃ by construction, see Figure 3.1. Therefore, (S̃, B̃, V ′, W̃) is a
cut in G and, by construction, cuts only edges incident to S̃, or equivalently

eG−S̃(B̃, W̃ , V ′) = 0. (3.1)

40

3.1 Using Separators to Construct Exact Cuts

Algorithm 3.1: Computes an m-cut based on a method to find a separator in the input graph and
its subgraphs.
Input: a graph G on n vertices and an integer m ∈ [n].
Output: an m-cut (B,W) in G.

1 G0 ← G, B ← ∅, S ← ∅, n← |V (G)|;
2 While n > 1 do
3 Find a separator S̃ in G;
4 Let k be the number of components of G− S̃ and if k ≥ 1, let (U1, E1), . . . , (Uk, Ek) be the

components of G− S̃;
5 If k = 0 then `← 0 else Let ` ∈ [k] be the largest integer with |B|+

∑`
h=1 |Uh| ≤ m;

6 B ← B ∪
(⋃

h∈[`] Uh

)
, S ← S ∪ S̃;

7 If `+ 1 ≤ k then G← (U`+1, E`+1), n← |U`+1| else G← (∅, ∅), n← 0;
8 Endw
9 S ← S ∪ V (G), G← (∅, ∅);

10 Let SB ⊆ S be an arbitrary subset with |SB | = m− |B|;
11 B ← B ∪ SB ;
12 Return (B, V (G0) \B);

This also implies that S̃, B̃, and V ′ are pairwise disjoint subsets of V . Using that B′ = B ∪ B̃, S′ = S ∪ S̃,
and that (i) was satisfied before the sth execution of the while loop, it follows that (i) is satisfied after
the sth execution. Furthermore, instead of removing all vertices in S′ at once, removing the vertices in S
from G0 first and then the vertices in S̃ from G gives

eG0−S′(B′,W ′, V ′) ≤ eG0−S′(B, B̃,W, W̃ , V ′) ≤ eG0−S(B,W, V) + eG−S̃(B̃, W̃ , V ′).

As (ii) is satisfied before the sth execution of the while loop, (3.1) implies that eG0−S′(B′,W ′, V ′) = 0,

B S W

V

U1 . . . U`

S̃

U`+1

= V ′

U`+2 . . . Uk

B′ W ′S′

B̃ W̃

Figure 3.1: Notation used in the proof of Lemma 3.1.

41

Chapter 3 Planar Graphs

i. e., (ii) is satisfied after the sth execution of the while loop. To show that (iii) is satisfied, consider the
following cases.

Case 1: k = 0. Then, S̃ = V , B′ = B, S′ = S ∪ V , and V ′ = ∅. Using that (iii) is satisfied before the
sth execution of the while loop, it follows that

|B′| = |B| ≤ m ≤ |B|+ |S|+ |V | = |B′|+ |S′|+ |V ′|,

as V and S are disjoint by (i).

Case 2: k ≥ 1. Then, the choice of ` in Line 5 implies that |B′| ≤ m.

Case 2a: ` = k. Then, B′ = B ∪ (V \ S̃), S′ = S ∪ S̃, and V ′ = ∅. Using that (iii) is satisfied before the
sth execution of the while loop, it follows that m ≤ |B|+ |S|+ |V | = |B′|+ |S′|+ |V ′|.

Case 2b: ` < k. Then, V ′ = U`+1. Furthermore, B ∩ Uh ⊆ B ∩ V = ∅ for all h ∈ [k] as (i) is satisfied
before the sth execution of the while loop. Now, due to the choice of ` in Line 5, it follows that

|B′|+ |S′|+ |V ′| ≥ |B′|+ |U`+1| > m.

All in all, (iii) is satisfied after the sth execution of the while loop. 2

Lemma 3.2.
Consider an application of Algorithm 3.1 to a graph G0 = (V0, E0) on n0 vertices with size-parame-
ter m ∈ [n0]. Algorithm 3.1 terminates and returns an m-cut (B,W) in G0, that satisfies

eG0(B,W) ≤ ∆(G0) · |S|,

where S denotes the set of all removed vertices. More precisely, S =
⋃s∗
s=1 Ss, where Ss denotes the

separator S̃ used in the sth execution of the while loop and s∗ denotes the number of executions of the
while loop.

Proof. Denote by G0 = (V0, E0) an arbitrary graph on n0 vertices, fix an integer m ∈ [n0], and apply
Algorithm 3.1. The number of vertices of the graph G in the algorithm, which is tracked by n, decreases
by at least one in each execution of the while loop. Indeed, consider the separator S̃ used in Line 3. Then,
each component of G− S̃ must have strictly less vertices than G, even if S̃ is empty, which might only
happen in the first iteration if the input graph is not connected. Hence, there are at most n0 executions
of the while loop. Denote by s∗ the number of executions of the while loop and, for s ∈ [s∗], denote by Ss
the separator S̃ used in Line 3 of the sth execution of the while loop. As in the statement of the lemma,
let S =

⋃s∗
s=1 Ss. Invariants (i) and (iii) in Lemma 3.1 imply that |B| ≤ m ≤ |B ∪̇S| after Line 9 has been

executed. Therefore, Line 10 is feasible and Algorithm 3.1 always returns an m-cut in the input graph.
Furthermore, invariant (ii) in Lemma 3.1 implies that eG0−S(B,W, V) = 0 holds for W = V0 \ (B ∪ V ∪S)
after the last execution of the while loop. If V is not empty at this point, then V contains only one
vertex v and eG0−S(B ∪ {v},W) = 0 as well as eG0−S(B,W ∪ {v}) = 0. Consequently, all cut edges of
the returned m-cut must be incident to a vertex in S, which gives the desired bound on the width of the
computed m-cut. 2

42

3.1 Using Separators to Construct Exact Cuts

Lemma 3.3.
Consider an application of Algorithm 3.1 to a graph G0 = (V0, E0) with V0 = [n0] for some integer n0

and with size-parameter m ∈ [n0]. Furthermore, denote by fsep(G) the time needed to find a separator in
the graph G in Line 3. Algorithm 3.1 computes an m-cut in G0 in time proportional to

s∗∑

s=1
(fsep(Gs−1) + ‖Gs−1‖) ,

where Gs denotes the graph G in Algorithm 3.1 after the sth execution of the while loop. In the implemen-
tation, bijections are set up, such that for the function fsep(G) one may assume that V (G) = [n] for some
integer n.

Proof. Consider a graph G0 = (V0, E0) with V0 = [n0] for some integer n0 and fix an arbitrary
integer m ∈ [n0]. Lemma 3.2 states that Algorithm 3.1 computes an m-cut in G0 when applied to G0 with
size-parameter m. To implement Algorithm 3.1, all sets are stored as unordered lists and all graphs are
stored by their adjacency lists. Furthermore, the algorithm keeps track of the size of each set and the size
of the vertex set of each graph. Before executing Line 1 the algorithm sets up a bijection between V (G0)
and [n0], for example the identity, and stores it in two arrays as in Lemma 2.21a), which takes O(n0)
time. Then, Line 1 takes O(‖G0‖) time. Furthermore, Line 9 takes time proportional to |V |, as each
vertex name needs to be converted back to its original name in G0, which takes constant time for one
vertex by Lemma 2.21b). As the set SB can be constructed greedily, Lines 10-11 take O(m) = O(n0) time.
So, except for the time consumed by the executions of the while loop, O(‖G0‖+ n0) = O(‖G0‖) time is
needed.

Now, consider one execution of the while loop and fix G = (V,E) to be the state of the corresponding
variable before this execution of the while loop. Assume that V = [n] for n := |V | and that there is a
bijection that converts the integers in [n] back to the original vertex names of the graph G0. We need to
argue that the considered execution of the while loop takes O(fsep(G) + ‖G‖) time including the time
needed to adjust the bijection when the graph G is reset. Line 3 takes time proportional to fsep(G) and
Line 4 takes O(n+ |E|) by Corollary 2.24 and Lemma 2.25, including to determine lists of the vertices for
each component (Ui, Ei) of G − S̃. Then, Line 5 takes time proportional to max{k, 1} ≤ n. In Line 6,
the vertex names need to be converted back to the vertex names of the graph G0, which takes constant
time for each vertex by Lemma 2.21b). As in total at most n vertices are added to the set B and S

together, Line 6 takes at most O(n) time. If ` + 1 > k, then Line 7 takes constant time. Otherwise,
let n′ := |U`+1|, which satisfies n′ < n. Then, Line 7 takes O(n′) time including the modification of the
bijection by Corollary 2.23 and Lemma 2.21d), as (U`+1, E`+1) = G[U`+1] and a list of the vertices in U`+1

has already been computed. All in all, the considered execution of the while loop takes O(fsep(G) + ‖G‖)
time. Summing up gives the desired bound on the total running time. 2

Before applying Algorithm 3.1 in Section 3.1.2-3.1.4, we briefly present a very easy application, which is
discussed in detail in Chapter 7.2 in [Sch13], where also an example of an application of Algorithm 3.1
can be found. It is widely known and also not hard to show, that every tree T on n vertices contains
a separating vertex, i. e., a vertex v such that each component of T − v contains at most 1

2n vertices.
Therefore, every tree T has a 1

2 -separator S with |S| = 1. When applying Algorithm 3.1 with these
separators to a tree T0 on n0 vertices, then in each round of the while loop, the considered graph is a tree
and its number of vertices decreases by at least a factor of 1

2 in each round. So after s executions of the
while loop, the considered tree has at most 1

2sn0 vertices. Consequently, the while loop is executed at
most log2(n0) times and the computed cut has width at most ∆(T0) log2(n0) by Lemma 3.2.

43

Chapter 3 Planar Graphs

3.1.2 Using the Planar Separator Theorem

The aim of this section is to construct exact cuts in planar graphs by using Algorithm 3.1 with the
separators promised by the Planar Separator Theorem of Lipton and Tarjan [LT79].

Theorem 3.4 (Planar Separator Theorem [LT79]).
Let σ =

√
8. Every planar graph G on n vertices has a 2

3 -separator S satisfying |S| ≤ σ
√
n. A separator S

with these properties can be computed in O(n) time.

Note that, in [DV97], Djidjev and Venkatesan improved the size of a 2
3 -separator in a planar graph

on n vertices to (√
4
3 +

√
2
3

)√
n+O(1) ≈ 1.97

√
n+O(1),

compared to
√

8n ≈ 2.83
√
n. Furthermore, Djidjev [Dji82] showed that the smallest value for such a

constant σ in the previous theorem must be at least 1
3

√
4π
√

3 ≈ 1.56. In the following, we will use the
separator theorem of Lipton and Tarjan, as the derived bounds on the cut width are only tight up to a
constant factor, even when improved versions of the Planar Separator Theorem are used. As long as the
separator can be computed in linear time, the bound on the running time remains valid as well.

Theorem 3.5 (Generalized version of Theorem 1.10).
Let σ =

√
8 and fix two arbitrary integers m and n with 1 ≤ m ≤ n. Every planar graph G on n vertices

has an m-cut (B,W) satisfying
eG(B,W) ≤ cσ ·∆(G) ·

√
n,

where cσ = σ
(
3 +
√

6
)
. If V (G) = [n], an m-cut satisfying this bound can be computed in O(n) time.

Proof. Fix σ =
√

8 and two integers m0 and n0 with 1 ≤ m0 ≤ n0. Furthermore, let G0 be an arbitrary
planar graph on n0 vertices. To derive the desired result, Algorithm 3.1 is applied to G0 with size-pa-
rameter m0 and using the 2

3 -separators promised by Theorem 3.4 in Line 3. This is feasible, because
every graph G considered in Line 3 is a subgraph of the original graph and therefore planar. Let s∗

be the total number of executions of the while loop, which is finite, as Algorithm 3.1 terminates by
Lemma 3.2. For s ∈ [s∗], denote by Gs and ns the graph G and its number of vertices, respectively,
after the sth execution of the while loop. Furthermore, for s ∈ [s∗], let Ss be the separator in Gs−1, that
is computed in Line 3 during the sth execution of the while loop. Then, Ss is a 2

3 -separator in Gs−1

and ns ≤ 2
3ns−1 for every s ∈ [s∗], as the graph Gs is one of the components of Gs−1 − Ss or empty due

to Line 7. Consequently,

ns ≤
(2

3
)s
n0 for every s ∈ [s∗] ∪ {0} (3.2)

and

|Ss| ≤ σ
√
ns−1 for every s ∈ [s∗]

by Theorem 3.4. Defining S :=
⋃s∗
s=1 Ss as in Lemma 3.2, the previous two equations imply that

|S| ≤
s∗∑

s=1
|Ss| ≤ σ

s∗∑

s=1

√
ns−1 ≤ σ

√
n0

s∗∑

s=1

√(2
3
)s−1

≤ σ
√
n0

∞∑

s=0

(√
2
3

)s
= σ · 1

1−
√

2
3

√
n0 = σ

(
3 +
√

6
)√

n0.

44

3.1 Using Separators to Construct Exact Cuts

Consequently, the computed m0-cut (B,W) in G0 satisfies

eG0(B,W) ≤ σ
(

3 +
√

6
)

∆(G0)√n0

by Lemma 3.2.
To analyze the running time, observe that every planar graph G = (V,E) satisfies |E| ≤ 3|V | due to

Corollary 2.9. Hence, ‖Gs‖ ≤ 4ns for all s ∈ [s∗] ∪ {0}. Lemma 3.3 and the algorithm contained in
Theorem 3.4 to compute the separators imply that the running time is

O

(
s∗∑

s=1
(fsep(Gs−1) + ‖Gs−1‖)

)
≤ O

(
s∗∑

s=1
ns−1

)
≤ O

(
s∗−1∑

s=0

(2
3
)s
n0

)
≤ O(n0),

where (3.2) was used to estimate ns. 2

Next, it is quickly argued that the bound on the cut width in Theorem 3.5 is tight up to a constant
factor for m-cuts in graphs on n vertices with m = Θ(n). Fix a constant 0 < β < 1

2 . Let G be the
k×k grid, define n := k2, and fix an integer m with βn ≤ m ≤ (1 − β)n. The aim is to derive a lower
bound on the width of an m-cut in G. Without loss of generality, one may assume that m ≤ 1

2n as
otherwise m′ := n−m can be considered and the black and white sets can be switched. Let (B,W) be an
arbitrary m-cut in G, then Lemma 2.5 says that eG(B,W) ≥ k ·min

{ 1
2 ,
√
β
}
. Furthermore, as ∆(G) = 4,

Theorem 3.5 says that G allows an m-cut of width at most (24
√

2 + 16
√

3)k.
A nice property of the planar separators used in the proof of the previous theorem is that the bound

on their size shrinks with the size of the considered subgraph. On the other hand, the size of the first
separator might be quite large, even if the graph allows a bisection of not so large width. See [Sch13] for
an example of a bounded-degree planar graph on n vertices that allows a bisection of constant width but
the algorithm in Theorem 3.5 can produce a bisection of much larger width, in fact of width Ω(

√
n). It is

easy to modify this example for m-cuts in planar graphs on n vertices with m = Θ(n).
There are also separator theorems for planar graphs concerning edge-separators. For example in [Dik+93]

it is shown that every planar graph G = (V,E) on n vertices has a 2
3 -edge-separator of size

√
8∆(G)n,

that is a set F ⊆ E with the property that each component of G−F contains at most 2
3n vertices. There,

it is also shown that every planar graph on n vertices admits a bisection of width O(
√

∆(G)n). Note
that the dependence on the maximum degree of the graph in the bound on the minimum bisection width
in [Dik+93] is asymptotically better than in Theorem 3.5.

3.1.3 Using Tree Decompositions

The aim of this section is to apply Algorithm 3.1 to an arbitrary graph with a given tree decomposition.
To do so, a method to compute separators in the graph and all its subgraphs is required. These separators
will be constructed from the given tree decomposition as every tree decomposition contains a cluster
that is a separator in the underlying graph. More precisely, consider a graph G = (V,E) on n vertices
and a tree decomposition (T,X) with X = (Xi)i∈V (T) of G. A cluster Xi with i ∈ V (T) is called a
separating cluster if Xi is a 1

2 -separator in G, i. e., each component of G−Xi contains at most 1
2n vertices

or Xi = V (G). The following lemma says that a separating cluster can be computed in time linear in the
size of the provided tree decomposition. It is a generalization of the widely known fact that every tree T ′

contains a separating vertex.

45

Chapter 3 Planar Graphs

Lemma 3.6.
For every graph G = (V,E) and every tree decomposition (T,X) of G, there exists a separating cluster
in X . If V (G) = [n] for some integer n, then a separating cluster can be computed in O(‖(T,X)‖) time
and requires only the tree decomposition (T,X) and the number n as input, but not the underlying graph G.

Before proceeding with the proof of this lemma, a technical definition and a proposition are presented.
These are separated from the proof of the lemma, as they will be used again in Chapter 4. Consider a
graph G = (V,E) and a tree decomposition (T,X) of G with T = (VT , ET) and X = (Xi)i∈VT . Assume
that T is rooted at an arbitrary node r and recall that, for every node i ∈ VT \ {r}, the parent of i in T is
denoted by p(i), as well as that each node i in T is considered to be a descendant of itself. Define

Y i =
⋃

j descendant of i
Xj for every i ∈ VT ,

Ỹ i = Y i \Xp(i) for every i ∈ VT \ {r},
Ỹ r = Y r,

as well as yi = |Y i| and ỹi = |Ỹ i| for every i ∈ VT .

Proposition 3.7.
For every graph G and every tree decomposition (T,X) of G, where T = (VT , ET) is a rooted tree
and X = (Xi)i∈VT , the following holds for the sets Y i and Ỹ i as defined above.

a) For every node i ∈ VT ,

Y i = Xi ∪̇


 ⋃̇

j child of i
Ỹ j


 .

b) For every node i ∈ VT with children j1, j2, . . . , jk and every partition Xi = Z1 ∪̇ Z2,

EG(Z1, Z2, Ỹ
j1 , Ỹ j2 , . . . , Ỹ jk , V (G) \ Y i) ⊆ EG(i).

c) If V (G) = [n], then one can compute yi and ỹi for every i ∈ VT , all together in O(‖(T,X)‖) time.

Proof. Let G = (V,E) be an arbitrary graph and let (T,X) be an arbitrary tree decomposition of G
with T = (VT , ET) and X = (Xi)i∈VT . Assume that T is a rooted tree and denote by r its root.

a) Fix an arbitrary node i ∈ VT . By definition,

Y i = Xi ∪


 ⋃

j child of i
Y j


 = Xi ∪


 ⋃

j child of i
Ỹ j


 .

Clearly, Xi and Ỹ j are disjoint for every child j of i. So it remains to show that the sets Ỹ j are
pairwise disjoint for all children j of i. Let k be the number of children of i and assume that k ≥ 2
as otherwise there is nothing left to prove. Denote by j1, j2, . . . , jk the children of i in T . For
every ` ∈ [k], let V T` be the node set of the component of T − i that contains j`. Lemma 2.16a)
implies that removing the vertices in Xi decomposes G into pairwise disjoint parts, among which
the disjoint parts G[V1], G[V2], . . . , G[Vk], where

V` =
⋃

h∈V T
`

(
Xh \Xi

)
= Ỹ j` for each ` ∈ [k].

The last equality holds because V T` is the node set of the subtree of T which is rooted in j`. Therefore,
the sets Ỹ j1 , Ỹ j2 , . . . , Ỹ jk are pairwise disjoint by Lemma 2.16a).

46

3.1 Using Separators to Construct Exact Cuts

b) Fix some i ∈ VT . If i is a leaf in T , then the statement is clear, so assume that i has at least one child.
Denote by j1, . . . , jk the children of i and consider an arbitrary partition Z1 ∪̇Z2 of Xi. In the proof
of Part a) it was shown that G−Xi decomposes into disjoint parts among which Ỹ j1 , Ỹ j2 , . . . , Ỹ jk .
All other vertices of G − Xi are in V \ Y i as Xi ∪

⋃k
`=1 Ỹ

j` = Y i due to Part a). So, G − Xi

decomposes into the disjoint parts Ỹ j1 , Ỹ j2 , . . . , Ỹ jk and V \ Y i. As all vertices in Xi are isolated
in G− EG(i),

EG−EG(i)(Z1, Z2, Ỹ
j1 , Ỹ j2 , . . . , Ỹ jk , V \ Y i) = ∅,

which is equivalent to the statement.

c) Assume that V (G) = [n]. To compute the yi’s and ỹi’s, observe that

yi =
∑

j child of i
ỹj + |Xi| for every i ∈ VT

by Part a), and ỹi = yi − |Xi ∩Xp(i)| for every i ∈ VT \ {r}, since every vertex in Xp(i) ∩ Y i must
be in Xi due to property (T3’) of tree decompositions. The algorithm traverses the tree T and
the clusters in X with a depth-first search as in Lemma 2.30, where among others, two arrays N
and N ′ of length nT := |VT | are filled in. For each i ∈ VT , the entry N [i] contains |Xi| and the
entry N ′[i] is set to |Xi ∩Xp(i)| when the node i turns gray. The values yi and ỹi can be stored in
two additional arrays of length nT . Whenever a node i ∈ VT turns black, the algorithm computes yi
and ỹi with the above formulas. This is feasible as all children of i are black when i turns black and
the values |Xi| and |Xi ∩Xp(i)| were already computed when i turned gray.

The traversal as in Lemma 2.30 takes O(‖(T,X)‖) time. Initializing the additional arrays takes O(nT)
time and at each node i ∈ VT the algorithm spends O(degT (i)) additional time to compute yi and ỹi.
Hence, the additional time sums up to

O(nT) +
∑

i∈VT
O(degT (i)) = O(nT + |ET |) = O(nT) = O(‖(T,X)‖).

2

Proof of Lemma 3.6. Let G = (V,E) be an arbitrary graph on n vertices and let (T,X) be a tree
decomposition of G with T = (VT , ET) and X = (Xj)j∈VT . If T contains only one node or n = 1, then
there is a cluster Xi in X that contains all vertices of G and, hence, Xi is a separating cluster. So, in
what follows, assume that T has at least two nodes and n > 1. Moreover, assume that T is rooted in
some node r and define Y i, Ỹ i, yi, and ỹi for every i ∈ VT as done before Proposition 3.7. Let i∗ be a
node in T with

yi∗ >
1
2n and yj ≤ 1

2n for all children j of i∗. (3.3)

We claim that such a node i∗ always exists and that Xi∗ is a separating cluster. The algorithm
contained in Lemma 3.6 then follows immediately from Proposition 3.7c). Observe that the algorithm in
Proposition 3.7c) relies on a depth-first-search and computes the value yi when the node i turns black.
So the algorithm can stop as soon as it has found the first node i with yi > 1

2n. As the children of i are
already black when i turns black and the algorithm did not stop before i, each child j of i satisfies yj ≤ 1

2n.
Note that yr = n as Y r = V , and yp(i) ≥ yi for all i ∈ VT \ {r} as Y i ⊆ Y p(i). So if r does not

satisfy (3.3), then r has a child r′ with yr′ > 1
2n. Again, if r′ does not satisfy (3.3), then r′ has a child r′′

with yr′′ > 1
2n. This produces a finite sequence of nodes that either ends with a node satisfying (3.3) or

47

Chapter 3 Planar Graphs

with a leaf i of T with yi > 1
2n, which also satisfies (3.3). Hence, there is always a node i∗ ∈ VT with the

property in (3.3).
Consider a node i∗ with the property in (3.3). If i∗ has no children, then |Xi∗ | = |Y i∗ | > 1

2n and Xi∗

is clearly a separating cluster. So assume that i∗ has at least one child and let j1, j2, . . . , jk be the
children of i∗. Proposition 3.7b) implies that G− EG(i∗) decomposes into disjoint parts with the vertex
sets Xi∗ , Ỹ j1 , Ỹ j2 , . . . , Ỹ jk , V \ Y i∗ . Therefore, G − Xi∗ decomposes into disjoint parts with vertex
sets Ỹ j1 , Ỹ j2 , . . . , Ỹ jk , V \ Y i∗ , whose sizes are ỹj1 , ỹj2 , . . . , ỹjk , n− ỹi∗ , respectively. As i∗ satisfies (3.3),
each of these parts has size at most 1

2n. Consequently, each component of G−Xi∗ contains at most 1
2n

vertices and Xi∗ is a separating cluster. 2

Proposition 2.32a) implies that if the tree decomposition given to the algorithm contained in Lemma 3.6
is nonredundant and has width t− 1, then the algorithm takes O(nt) time. In particular, if the graph is
planar and a tree decomposition of minimum width is given, the running time is O(n 3

2) by Proposition 2.13.
The next theorem relies on Algorithm 3.1 applied with the separators from Lemma 3.6.

Theorem 3.8 (generalized version of Theorem 1.11).
For every graph G on n vertices, every integer m ∈ [n], and every tree decomposition (T,X) of G of
width t− 1, there exists an m-cut (B,W) in G with

eG(B,W) ≤ t log2(n) ·∆(G).

If V (G) = [n], an m-cut with these properties can be computed in O ((‖G‖+ ‖(T,X)‖) log2(n)) time. If
the provided tree decomposition is nonredundant, such an m-cut can be computed in O(nt) time.

Proof. Consider an arbitrary graph G0 = (V0, E0) on n0 vertices and a tree decomposition (T0,X0)
of G0 of width t − 1. Fix an integer m ∈ [n0]. Algorithm 3.1 is applied to construct an m-cut in G0,
which requires a method to find separators in G0 and every subgraph G ⊆ G0. To apply Lemma 3.6
to a subgraph G ⊆ G0, a tree decomposition (T,X) of G is needed. Indeed, the tree decomposition
induced by G in (T0,X0) is a tree decomposition of width at most t− 1, see Proposition 2.14. Therefore,
Lemma 3.6 together with Proposition 2.14 provides a method to find 1

2 -separators of size at most t in G0

and every subgraph of G0. Next, the width of the m-cut in G0 computed by Algorithm 3.1 with these
separators is analyzed. Denote by s∗ the total number of executions of the while loop, which is finite, as
Algorithm 3.1 terminates by Lemma 3.2. For s ∈ [s∗], let Gs and ns be the graph G and its number of
vertices, respectively, after the sth execution of the while loop. Moreover, for s ∈ [s∗], denote by Ss the
separator in Gs−1, that is determined in Line 3 in Algorithm 3.1 during the sth execution of the while
loop. Then, Ss is a 1

2 -separator in Gs−1 and ns ≤ 1
2ns−1 for every s ∈ [s∗], as the graph Gs is one of the

components of Gs−1 − Ss or empty due to Line 7. Consequently,

ns ≤
(1

2
)s
n0 for every s ∈ [s∗] ∪ {0}, (3.4)

which implies that s∗ ≤ log2(n0). Furthermore, |Ss| ≤ t for every s ∈ [s∗] by Lemma 3.6 and Proposi-
tion 2.14. So, defining S :=

⋃s∗
s=1 Ss as in Lemma 3.2 yields |S| ≤ t log2(n0). Consequently, the computed

m-cut (B,W) in G0 satisfies eG0(B,W) ≤ t∆(G) log2(n0) by Lemma 3.2.
To analyze the running time of Algorithm 3.1 with separating clusters, consider first the time needed to

compute one separator in a subgraph G of G0 in Line 3 with Lemma 3.6 and Proposition 2.14. A list of the
vertices in G can be read off the bijection that maps the vertex set of G to [n] and is available according
to Lemma 3.3. Then, a tree decomposition (T,X) of G with the properties in Proposition 2.14 can be
computed in time proportional to ‖(T0,X0)‖ by Proposition 2.31b). Note that ‖(T,X)‖ ≤ ‖(T0,X0)‖,

48

3.1 Using Separators to Construct Exact Cuts

so the 1
2 -separator in G can be found in O(‖(T0,X0)‖) time by applying the algorithm in Lemma 3.6.

Then, fsep(Gs−1) = O(‖(T0,X0)‖) for all s ∈ [s∗], where fsep is defined as in Lemma 3.3. Moreover,
‖Gs−1‖ ≤ ‖G0‖ for all s ∈ [s∗] as Gs is a subgraph of G. Using the bound on s∗ from above, Lemma 3.3
implies that the m-cut in G0 can be computed in

O (s∗(‖G0‖+ ‖(T0,X0)‖)) = O ((‖G0‖+ ‖(T0,X0)‖) log2(n0))

time, which gives the first bound on the running time.
To derive the second bound on the running time, assume that the tree decomposition (T0,X0) is

nonredundant. The procedure from above is modified to ensure that all used tree decompositions are
nonredundant. Fix an s̃ ∈ [s∗ − 1] and assume the tree decomposition (Ts̃−1,Xs̃−1) of Gs̃−1 has already
been constructed. Instead of using (T0,X0) to construct a tree decomposition (Ts̃,Xs̃) of Gs̃, we now
use (Ts̃−1,Xs̃−1) and apply the algorithm in Proposition 2.32b) to ensure that (Ts̃,Xs̃) is nonredundant.
Then, computing (Ts̃,Xs̃) takes O(‖(Ts̃−1,Xs̃−1)‖) time and computing a separating cluster for Gs̃
takes O(‖(Ts̃,Xs̃)‖) = O(‖(Ts̃−1,Xs̃−1)‖) time. Proposition 2.32a) implies that ‖(Ts,Xs)‖ = O(tns) for
all s ∈ [s∗ − 1] ∪ {0} as the width of (Ts,Xs) is at most t. Defining fsep as in Lemma 3.3, one obtains

fsep(Gs) = O(‖(Ts−1,Xs−1)‖) = O(tns−1)

for all s ∈ [s∗ − 1] and fsep(G0) = O(‖(T0,X0)‖) = O(tn0). Furthermore, Proposition 2.17 shows that
‖Gs‖ = ns+ |E(Gs)| ≤ tns ≤ tns−1 for all s ∈ [s∗−1] and ‖G0‖ ≤ tn0. So, Lemma 3.3 together with (3.4)
implies that the total running time is

O

(
s∗∑

s=1
(fsep(Gs−1) + ‖Gs−1‖)

)
= O

(
tn0 +

s∗−1∑

s=1
(fsep(Gs) + ‖Gs‖)

)

= O
(
tn0 +

s∗−1∑

s=1
tns−1

)
= O

(
tn0 + t

s∗−1∑

s=1

(1
2
)s−1

n0

)
= O(tn0). 2

Observe that there are values of m for which the bound on the width of an m-cut in Theorem 3.8
is tight up to a constant factor. Indeed, consider a perfect ternary tree G on n vertices and any tree
decomposition (T,X) of G of width 1. Then, any m-cut in G with m =

⌊ 1
2n
⌋
cuts Ω(log3(n)) = Ω(log2(n))

edges by Theorem 2.4 and Theorem 3.8 promises that there is an m-cut in G of width 4 log2(n).
Furthermore, Theorem 3.8 contains two algorithms that compute an m-cut in a graph G with a given

tree decomposition (T,X). Let n be the number of vertices of G and let t − 1 be the width of (T,X).
Denote by A1 the algorithm running in B1 = O ((‖G‖+ ‖(T,X)‖) log2(n)) time and denote by A2 the
algorithm running in B2 = O(nt) time. When not changing the implementations, both bounds B1 and B2

are asymptotically tight, and none of them dominates the other as n tends to infinity. Indeed, in the
following, we present an example where B1 is tight and B2 is not, as well as another example where it is
the other way around.
The idea to show that B1 can be asymptotically tight is to construct a tree decomposition that is

composed of two tree decompositions, where one of them represents only a small part of the graph but
has roughly half the size of the entire tree decomposition. This is possible for square grids. Consider a
k×k grid G′. Then, G′ allows a nonredundant tree decomposition of width k with a decomposition tree
on Θ(k2) nodes with Θ(k2) clusters of size k. Hence, its size is Θ(k3), while the underlying graph has
only k2 vertices. See Section 2.3 for an example of a tree decomposition of a grid with these properties.
The remaining part of the tree decomposition will be chosen in a way such that the grid is not split into
pieces during the first executions of the while loop. Hence, the running time arises from often traversing

49

Chapter 3 Planar Graphs

...

r

r′

y

x

n
2
3 vertices

tree decomposition of size Θ(n)

n
−

n
2 3

ve
rt

ic
es

tr
ee

de
co

m
po

si
tio

n
of

si
ze

Θ
(n

)1st separator

2nd separator

in B after
1st round

in B after
2nd round

in W after
1st round

in W after
2nd round

Figure 3.2: Example that shows that the bound O ((‖G‖+ ‖(T,X)‖) log2(n)) on the running time in Theorem 3.8
is tight.

the part of the tree decomposition that represents the grid. Let us now present the details of showing
that B1 can be asymptotically tight while B2 is loose. Consider the following graph G on n vertices.
Let G̃1 be a perfect ternary tree on n−n 2

3 vertices with root r and let G̃2 be a square grid on n 2
3 vertices.1

Define G to be the graph obtained by inserting an edge between a leaf x of G̃1 and an arbitrary vertex y
of G̃2, see Figure 3.2. Let (T̃1, X̃1) be a tree decomposition of G̃1 of width 1, that is obtained from the
usual tree decomposition of a tree by adding a cluster Xir = {r} if it does not yet contain such a cluster,
see Section 2.3 for an example of a tree decomposition of a tree with these properties. Note that (T̃1, X̃1)
has size Θ(n). Moreover, let (T̃2, X̃2) be a tree decomposition of G̃2 as the one described above, i. e.,
the width of (T̃2, X̃2) is Θ

(√
n

2
3

)
= Θ

(
n

1
3

)
and the size of (T̃2, X̃2) is Θ(n). Assume the vertex sets

of G̃1 and G̃2 are disjoint as well as that the node sets of T̃1 and T̃2 are disjoint. Join a node of T̃1,
whose cluster contains x, and a node of T̃2, whose cluster contains y, by a path of length two to obtain
a tree T . For the unique node i in T that is neither in T̃1 nor in T̃2 define Xi = {x, y}. Let X be the
union of X̃1 and X̃2 plus the new cluster Xi. It is easy to see that (T,X) is a tree decomposition of G of
size Θ(n) and width Θ

(
n

1
3

)
. When Algorithm A1 is applied to G with size-parameter m =

⌊ 1
2n
⌋
, the

first separating cluster can be Xir . Then, it is possible that the algorithm continues recursively in the
component G′ of G−Xir that is composed of a perfect ternary tree of height one less than G̃1 and the
grid G̃2. Denote by r′ the neighbor of r that is on the unique r,x-path in G̃2, let ir′ be the node in T̃1

with the cluster Xir′ = {r, r′} and let (T ′,X ′) be the tree decomposition induced by G′ in (T,X). Then,
the cluster in X ′ that corresponds to ir′ contains only the vertex r′ and the same can happen as in the
first round of the while loop of Algorithm 3.1. We refer to the phase of Algorithm A1 when this keeps
repeating as the first phase and assume that the first phase lasts as long as possible. The first phase lasts
at least as long as the remaining part of G̃1 is at least three times as large as G̃2, i. e., the remaining part

1Clearly, n
2
3 is not always a square number. If not, define k :=

⌊
n

1
3

⌋
and let G̃2 be a k×k grid with a path of

length n
2
3 − k2 attached to it. The remaining argument is easy to adjust.

50

3.1 Using Separators to Construct Exact Cuts

of G̃1 contains at least 3n 2
3 vertices, as then the current root of the remaining part of G̃1 is a 1

2 -separator
in the remaining graph. Since the size of the remaining part of G̃1 decreases roughly by a factor of 1

3 in
each round, the first phase lasts for Ω(logn) rounds. In each round, a separating cluster in the remaining
graph is computed and it can happen that, when doing so, the entire tree decomposition (T̃2, X̃2) is
traversed, which takes Θ(n) time. This results in a total running time of Ω(n logn), which matches the
bound B1, that evaluates to O(n logn) using that the graph G contains O(n) edges by Corollary 2.9.
Observe that when Proposition 2.32b) is applied in each round to make the tree decomposition of the
current graph nonredundant and the next tree decomposition is computed from the one of the previous
graph, then the running time does not decrease asymptotically. Indeed, then each separating cluster used
in the first phase will contain two vertices, but it can happen that these two vertices are one vertex on the
r,x-path in G̃1 and one of its neighbors not on the r,x-path. In this example, the bound B2 evaluates
only to O

(
n · n 1

3

)
, which is asymptotically larger.

To see that B2 can be asymptotically tight, while B1 is loose, let G be a tree on n vertices and let (T,X)
be a tree decomposition of G of width one. Clearly, applying algorithm A2 to G takes Ω(n) time as a
linear part of the tree decomposition needs to be searched in order to find the first separating cluster. This
matches the bound B2, which evaluates to O(n) in this case. The bound B1 evaluates only to O(n logn)
in this case.

Observe that neither bound B1 nor bound B2 is linear in the size of the input; see also the discussion
after Corollary 1.14 in Chapter 1. So one can ask whether it is possible to speed up one of the corresponding
algorithms. As algorithm A2 traverses the entire tree decomposition to make it nonredundant in each
execution of the while loop, this does not seem to be the case for A2. Concerning A1, the situation is
better. Indeed, fix an input graph G0 on n0 vertices, let m ∈ [n0] be an arbitrary integer, and consider
one execution of the while loop, where the graph G is broken into parts by removing a separating cluster
arising from some tree decomposition (T,X) of G. Recall the procedure of computing a separating cluster
in (T,X). To do so, the tree T was rooted in an arbitrary node r and some values yi and ỹi were computed
for all i ∈ V (T), which is the major part of the running time of the algorithm, that computes a separating
cluster. Assume that the cluster of some node i was chosen as separator and let j be a child of i. If Ỹ j

as defined before Proposition 3.7 induces the component of G−Xi to which the graph G is reset, then
computing the next separating cluster can be simplified. Indeed, the values ỹh for all nodes h in the
subtree rooted in j are already computed and do not change, because Proposition 3.7a) implies that Ỹ j

and Ỹ j′ are disjoint for every child j′ 6= j of i. So it is at hand to work with the disjoint parts of G−Xi

defined in Lemma 2.16a) instead of the components of G−Xi. In fact, the proof of Lemma 3.6 shows that
every tree decomposition has a node i′ such that each disjoint part according to Lemma 2.16a) contains
at most 1

2n
′ vertices, where n′ denotes the number of vertices of the underlying graph. So from now on,

assume that A1 works with the disjoint parts as in Lemma 2.16a) instead of components in Line 4 in
Algorithm 3.1. Furthermore, we would like to ensure that the graph G is not reset to the part G[V \ Y i]
after the separator S̃ = Xi was removed. Let B be the set of vertices assigned to the black set so far and
let W be the white set, which is kept implicit, i. e., W is the set of all vertices that are neither in B, nor
in one of the separators used so far, nor in the current graph G. Let n be the number of vertices of G.
As B, W , and V (G) are mutually disjoint, 1

2n vertices must fit into the set B or W without exceeding its
size, i. e., |B|+ 1

2n ≤ m or |W |+ 1
2n ≤ n0 −m. Hence, the algorithm can first assign the part G[V \ Y i]

to one of the sets and then distribute the remaining parts, such that it ensures that the graph G is reset
to a part G[Ỹ j] for a child j of i. However, in the next round, when the cluster of a node i′ is chosen
as separator, the size of the set V ′ \ Y i′ cannot be estimated, where V ′ is the vertex set of the next
graph G, as the values yh might have changed and cannot be adjusted without traversing the clusters.

51

Chapter 3 Planar Graphs

This difficulty can be solved by constructing the set B only from sets Ỹ h for certain nodes h ∈ V (T0),
except for the last step, where vertices from a set Xp(h) might be used. This results in the strategy used
in Chapter 4, where approximate cuts are constructed. There, the clusters that are implicitly removed to
break the underlying graph into pieces are not necessarily separating clusters anymore, as the algorithm
searches for nodes i such that the set Y i contains enough vertices to fill up the current set B and for
each child j of i the set Ỹ j fits into the set B without exceeding m. In Chapter 4, Corollary 4.10 for
exact m-cuts is derived, which contains an algorithm that computes a cut, whose width satisfies the same
bound as the cut in Theorem 3.8, in linear time when given a tree decomposition as input.

To get back to Algorithm 3.1, let us quickly summarize what happens when it is used with separating
clusters of a given tree decomposition. A nice property of the separating clusters is that the size of the
separators is related to the tree-width of the considered graph, so the first separator is not so large if
the tree-width of the graph is not so large. On the other hand, however, the size of the separator does
not necessarily shrink during the application of Algorithm 3.1 when a subgraph of the previous graph is
considered.

3.1.4 Using Planar Separators and Tree Decompositions

Consider a planar G on n vertices and a tree decomposition (T,X) of G. Fix an integer m ∈ [n] and
denote by t − 1 the width of (T,X). When using Algorithm 3.1 to construct an m-cut (B,W) in G,
the bound on the width of (B,W) is directly related to the size of the separators that were removed
to break G and its considered subgraphs into smaller pieces, see Lemma 3.2. On the one hand, it is
possible to use planar separators, i. e., separators promised by Theorem 3.4, as in Section 3.1.2. There, it
was mentioned that the size of planar separators decreases as the size of the considered graph decreases,
assuming that each separator is roughly as large as the bound provided by Theorem 3.4. However, in the
first execution of the while loop of Algorithm 3.1, when a separator S in G has to be found, the size of S
can be as large as Θ(

√
n). Or in short, planar separators can be bad in the beginning but will be good

later. On the other hand, as we assume to have a tree decomposition of G, it is possible to use separating
clusters arising from (T,X) as in Section 3.1.3. There, we saw that the size of a separating cluster does
not necessarily decrease when the size of the considered graph decreases, since the width of the induced
tree decomposition does not necessarily decrease as the underlying graph decreases. However, if t is not
too large, the graph G allows a small separator S, which is good for the first execution of the while loop in
Algorithm 3.1. Or in short, separating clusters are good in the beginning, but can be bad later. So, both
types of separators have their advantages and disadvantages. Therefore, a natural idea is to consider both
and use the smaller one. Analyzing the width of the corresponding m-cut results in the next theorem.
It applies Algorithm 3.1 to G and the tree decomposition (T,X), first with separating clusters arising
from (T,X) and later with planar separators. Its bound on the width of the constructed m-cut relates the
results of Theorem 3.5 and Theorem 3.8. The bound on the width of the computed m-cut in G depends
on t and a factor that is logarithmic in n, which will vanish for certain planar graphs.

Theorem 3.9.
Let σ =

√
8. For every planar graph G on n vertices, every integer m ∈ [n], and every tree decomposi-

tion (T,X) of G of width at most t− 1 with t ≤ σ
√
n, there is an m-cut (B,W) in G that satisfies

eG(B,W) ≤ t

(⌈
log2

(
σ2n

t2

)⌉
+ 3 +

√
6
)

∆(G).

If V (G) = [n], an m-cut with these properties can be computed in O
(
‖(T,X)‖ · log

(
2σ2n
t2

))
time. If the

52

3.1 Using Separators to Construct Exact Cuts

tree decomposition (T,X) is nonredundant, then an m-cut with these properties can be computed in O(nt)
time.

Proof. Fix σ =
√

8. Let G0 = (V0, E0) be an arbitrary planar graph on n0 vertices and fix an
integer m ∈ [n0]. Furthermore, let (T0,X0) be a tree decomposition of G0 of width at most t − 1
with t ≤ σ√n0. Algorithm 3.1 is applied to G0 with size-parameter m to construct an m-cut in G0. All
line numbers in the remaining proof refer to Algorithm 3.1. To apply Algorithm 3.1, a method to find
separators in G0 and all of its subgraphs is required for Line 3. Before specifying the separators, define
the following two phases of the algorithm. Let

s′1 :=
⌈

log2

(
σ2n0
t2

)⌉
, (3.5)

which is non-negative due to the restriction t ≤ σ√n0. If there are more than s′1 executions of the while
loop in Algorithm 3.1, then the first s′1 executions of the while loop are the first phase and the remaining
ones are the second phase. If there are s′1 or less executions of the while loop, then the algorithm does
not enter the second phase and the first phase refers to all executions of the while loop. During the first
phase, separating clusters from the tree decomposition (T0,X0) and the tree decompositions induced by
the current subgraphs of G in (T0,X0) are used in Line 3. Lemma 3.6 shows that this is feasible. In the
second phase, planar separators, i. e., separators guaranteed by Theorem 3.4, are used in Line 3, which is
feasible as all graphs G encountered during the second phase are subgraphs of the input graph G0 and
therefore planar.
Let s∗2 be the total number of executions of the while loop when Algorithm 3.1 is applied to G0 in

this way. Note that s∗2 is finite, as Algorithm 3.1 terminates by Lemma 3.2. Denote by s∗1 the end of
the first phase, i. e., s∗1 := min{s′1, s∗2}. For s ∈ [s∗2], denote by Gs and ns the graph G and its number of
vertices, respectively, after the sth execution of the while loop. For s ∈ [s∗1 − 1], let (Ts,Xs) be the tree
decomposition induced by Gs in (T,X). Furthermore, for s ∈ [s∗2], let Ss be the separator in Gs−1, that is
computed in Line 3 during the sth execution of the while loop.
During the first phase, i. e., for s ∈ [s∗1], the separator Ss is a separating cluster in (Ts−1,Xs−1) and

therefore

|Ss| ≤ t for every s ∈ [s∗1], (3.6)

as the width of (Ts−1,Xs−1) is at most the width of (T0,X0). Moreover, Ss is a 1
2 -separator in Gs−1

and ns ≤ 1
2ns−1 for every s ∈ [s∗1], as the graph Gs is one of the components of Gs−1 − Ss or empty due

to Line 7. Consequently,

ns ≤
(1

2
)s
n0 for every s ∈ [s∗1] ∪ {0}

and in particular

ns∗1 ≤
(1

2
)s∗1 n0 ≤

(1
2
)s′1 n0

(3.5)
≤

(1
2
)log2

(
σ2n0
t2

)
n0 = t2

σ2 . (3.7)

During the second phase, i. e., for s ∈ [s∗2] \ [s∗1], the separator Ss is a 2
3 -separator in Gs−1, as it is

chosen according to Theorem 3.4. Since Gs is one of the components of Gs−1−Ss or empty due to Line 7,
it follows that ns ≤ 2

3ns−1 and also

ns ≤
(2

3
)s−s∗1 ns∗1 for every s ∈ [s∗2] \ [s∗1 − 1]. (3.8)

53

Chapter 3 Planar Graphs

Furthermore, Theorem 3.4 implies that

|Ss| ≤ σ
√
ns−1 ≤ σ

(√
2
3

)s−s∗1−1√
ns∗1 ≤ t

(√
2
3

)s−s∗1−1
for every s ∈ [s∗2] \ [s∗1], (3.9)

where (3.8) and (3.7) were used to estimate ns−1 and ns∗1 , respectively.
Defining S :=

⋃s∗2
s=1 Ss as in Lemma 3.2, equations (3.6) and (3.9) imply that

|S| ≤
s∗2∑

s=1
|Ss| ≤

s∗1∑

s=1
t+

s∗2∑

s=s∗1+1
t

(√
2
3

)s−s∗1−1
≤ ts∗1 + t

∞∑

s=0

(√
2
3

)s

≤ ts′1 + t
1

1−
√

2
3

= t

(⌈
log2

(
σ2n0
t2

)⌉
+ 3 +

√
6
)
,

where (3.5) was used to replace s′1. Consequently, the constructed m-cut (B,W) in G0 satisfies the desired
bound on the width by Lemma 3.2.

To analyze the running time of the algorithm following the above construction, note that the first phase
and the second phase can be implemented as the algorithms contained in Theorem 3.8 and in Theorem 3.5,
respectively. There is only one implementation of the algorithm in Theorem 3.5, which takes O(n′) time
when given a planar graph on n′ vertices as input. Here, if the second phase is entered, the algorithm
receives the graph Gs∗1 as input. Using that Gs∗1 is a subgraph of G0, it follows that the second phase
takes O(n0) time.
For the first phase, consider first the implementation of the algorithm contained in Theorem 3.8 that

takes O ((‖G′‖+ ‖(T ′,X ′)‖) log2(n′)) time when given a graph G′ on n′ vertices and a tree decomposi-
tion (T ′,X ′) of G′ as input. In the proof of Theorem 3.8, it was argued that one execution of the while
loop takes O (‖G′‖+ ‖(T ′,X ′)‖) time. Here, the input graph G0 is planar and therefore |E(G0)| ≤ 3n0

by Corollary 2.9, which implies that ‖G0‖ ≤ 4n0 ≤ O(‖(T0,X0)‖). Furthermore, the first phase consists of
at most s′1 executions of the while loop. So the first phase takes O(s′1 · ‖(T0,X0)‖) time and therefore the
entire running time is O(s′1 · ‖(T0,X0)‖). Together with (3.5) the first bound on the running time follows.
Observe that, as s′1 = 0 when t = σ

√
n0, the running time uses the factor log

(
2σ2n0
t2

)
≥ s′1, which is

always positive.
Now, consider the second implementation of the algorithm in Theorem 3.8, which takes O(n′t′) time

when given a nonredundant tree decomposition of a graph on n′ vertices of width t′ as input. So if (T0,X0)
is nonredundant, at most O(n0t) time is needed for the first phase. Using that the second phase needs at
most O(n0) time yields the second bound on the running time. 2

Observe that for t > σ
√
n the strategy used in the proof of Theorem 3.9 results in Theorem 3.5 as s′1 ≤ 0

and the first phase is not entered.
At the end of Section 3.1.3 it was mentioned that there is an algorithm similar to the one contained

in Theorem 3.8 that runs in linear time. This algorithm can replace the first phase of the algorithm
contained in the proof of Theorem 3.9 such that a cut with the properties in Theorem 3.9 can also be
computed in linear time, see Corollary 4.11 in Chapter 4.

3.2 Planar Graphs with Large Minimum Bisection Width
This section focuses on bounded-degree planar graphs and discusses the relations of the following three
properties: having large minimum bisection width, having large tree-width, and containing a large grid as a

54

3.2 Planar Graphs with Large Minimum Bisection Width

minor. Section 3.2.1 clarifies what is meant by each of these properties, and points out some relationships.
For bounded-degree planar graphs, the only property that is not implied by one of the other two is large
minimum bisection width. In Section 3.2.2, different ideas on how a bounded-degree planar graph, that
contains a large grid as a minor, can be forced to have large minimum bisection width are discussed
and the concept of grid-homogeneous graphs is introduced. Section 3.2.3 shows that, roughly speaking,
grid-homogeneous graphs have large minimum bisection width.

3.2.1 Minimum Bisection Width, Tree-Width, and Grid Minors in Planar Graphs

Before discussing the relationship of these parameters, let us specify what large minimum bisection width,
large tree-width, and containing a large grid as a minor refer to. To do so, the next proposition states
upper bounds for these parameters and the proposition after shows that each of them is tight up to a
constant factor. To quickly repeat some notation, consider a graph G = (V,E). Recall that MinBis(G)
denotes the width of a minimum bisection in G, i. e.,

MinBis(G) := min {eG(B,W) : (B,W) is a bisection in G} .

Furthermore, tw(G) denotes the tree-width of G, which is the smallest integer t ∈ N0 such that G allows
a tree decomposition of width t. Recall the definition of a k×k grid in Section 2.2, i. e., for k ∈ N the
k×k grid is the graph Gk = (Vk, Ek) with

Vk = {v = (i, j) : i ∈ [k], j ∈ [k]} and

Ek =
{
{v, v′} ∈

(
Vk
2

)
: v = (i, j) , v′ = (i′, j′) , and |i− i′|+ |j − j′| = 1

}
.

For grid minors, define

grid(G) := max {k ∈ N : G contains a k×k grid as a minor} .

Proposition 3.10.
Fix an arbitrary ∆0 ∈ N. Every planar graph G on n vertices with ∆(G) ≤ ∆0 satisfies

a) MinBis(G) = O(
√
n),

b) tw(G) = O(
√
n), and

c) grid(G) = O(
√
n).

Proof. As in the statement, fix an arbitrary ∆0 ∈ N. Consider an arbitrary planar graph G on n vertices
with ∆(G) ≤ ∆0.

a) This part follows directly from Theorem 1.10.
b) This is the same as Proposition 2.13, which is stated in [Bod98].
c) As a k×k grid contains k2 vertices, also every graph that contains a k×k grid as a minor needs to

contain at least k2 vertices. Hence, grid(G) ≤
√
n. 2

Observe that in the previous proposition the assumption that the degree of the considered graph is
bounded is only necessary for Part a). Indeed, the star K1,n−1 on n vertices satisfies ∆(K1,n−1) = n− 1,
is planar, and does not allow a bisection of width less than 1

2 (n− 1). Furthermore, when the graph G is
not required to be planar anymore, then the bounds in Part a) and Part b) do not hold, as for example
the complete graph Kn on n vertices satisfies tw(Kn) = n− 1 and MinBis(Kn) = 1

4n
2 when n is even.

55

Chapter 3 Planar Graphs

Proposition 3.11.
Let G be a k×k grid with k ≥ 2. Then

a) MinBis(G) ≥ k, MinBis(G) = k if k is even,
b) tw(G) = k, and
c) grid(G) = k.

Proof. Fix an integer k ≥ 2 and let G = (V,E) be the k×k grid.
a) The lower bound MinBis(G) ≥ k was stated in Corollary 2.7. If k is even, equality holds since the

bisection (B,W) with B :=
{

(i, j) : i ∈
[1

2k
]
, j ∈ [k]

}
and W = V \B has width k.

b) See Proposition 2.12b).
c) Obvious. 2

Consider a family G of bounded-degree planar graphs. We say that G is a family of bounded-degree
planar graphs with large minimum bisection width if there is a constant c > 0 such that every graph G ∈ G
satisfies MinBis(G) ≥ c

√
|V (G)|, i. e., the minimum bisection width is as large as possible up to a constant

factor. Similarly, if there is a constant c′ > 0 such that tw(G) ≥ c′
√
|V (G)| for all G ∈ G, we say G

is a family of bounded-degree planar graphs with large tree-width and, if there is a constant c′′ > 0
such that grid(G) ≥ c′′

√
|V (G)| for all G ∈ G, we say that G is a family of bounded-degree planar

graphs containing a large grid as a minor. For better readability, we abuse notation when introducing
ideas and use the terms “large minimum bisection width”, “large tree-width”, and “large grid minor”
for single graphs. Consider a planar bounded-degree graph G. Proposition 3.10 roughly says that the
upper bounds on the minimum bisection width, the tree-width, and the largest grid minor in G are the
same. So it is natural to ask whether one of these parameters being large already implies that another
one is large. The easiest direction is from containing a large grid as a minor to having large tree-width.
Assume that G contains a k×k grid H as a minor. Then, Proposition 2.15 and Proposition 3.11b)
imply tw(G) ≥ tw(H) ≥ k. The reverse direction is also true. Indeed, Robertson, Seymour, and
Thomas [RST94] showed that grid(G) ≥ 1

6 (tw(G) + 4) for every planar graph G, which has been improved
to grid(G) ≥ 1

5 (tw(G) + 5) for every planar graph G by Grigoriev [Gri11]. The next lemma summarizes
this.

Lemma 3.12.
For every c > 0, there is a γ′′ = γ′′(c) > 0 such that the following is true for every planar graph G on n
vertices.

a) If grid(G) ≥ c
√
n, then tw(G) ≥ c

√
n.

b) If tw(G) ≥ c
√
n, then grid(G) ≥ γ′′

√
n.

So having large tree-width and containing a large grid as a minor is equivalent for planar graphs. To
answer the question on how large minimum bisection width in bounded-degree planar graphs relates to
these, Theorem 3.9 from the previous section is used to derive the following theorem, which was introduced
in Section 1.2.

Theorem 3.13 (Theorem 1.4 restated).
For every ∆0 ∈ N and every c > 0, there is a γ = γ(c,∆0) > 0 such that, for every planar graph G on n
vertices with maximum degree at most ∆0, the following holds

MinBis(G) ≥ c
√
n ⇒ tw(G) ≥ γ

√
n− 1.

56

3.2 Planar Graphs with Large Minimum Bisection Width

tw(G) = Ω(
√

n)
for all G ∈ G

grid(G) = Ω(
√

n)
for all G ∈ G

MinBis(G) = Ω(
√

n)
for all G ∈ G

G family of

bounded-degree planar

graphs, n := |V (G)|

Lemma 3.12a)

Lemma 3.12b)
Th
eo
rem

3.1
3

?

Corollary
3.14

?

Figure 3.3: The relationship of large minimum bisection width, large tree-width, and containing a large grid as a
minor in bounded-degree planar graphs.

Proof. Fix ∆0 ∈ N, c > 0, and σ :=
√

8. As log2(x) ≤
√
x for all x > 0, we have

γ

(⌈
2 log2

(
σ

γ

)⌉)
≤ γ

(
2
√
σ
√
γ

+ 1
)

γ→0−−−−→ 0.

Therefore, it is possible to choose a γ > 0 with

γ

(⌈
2 log2

(
σ

γ

)⌉
+ 3 +

√
6
)

∆0 < c.

To show the contraposition of the claim, let G be an arbitrary planar graph on n vertices with maximum
degree at most ∆0 and tw(G) < γ

√
n − 1. Consider a tree decomposition (T,X) of G of width at

most t− 1 = γ
√
n− 1. Theorem 3.9 applied to G and (T,X) with size-parameter m :=

⌊ 1
2n
⌋
implies that

MinBis(G) ≤ γ
√
n

(⌈
log2

(
σ2

γ2

)⌉
+ 3 +

√
6
)

∆0 < c
√
n.

2

The previous theorem and Lemma 3.12b) immediately imply the following corollary.

Corollary 3.14 (Corollary 1.5 restated).
For every ∆0 ∈ N and every c > 0, there is a γ′ = γ′(c,∆0) > 0 such that, for every planar graph G on n
vertices with maximum degree at most ∆0, the following holds

MinBis(G) ≥ c
√
n ⇒ grid(G) ≥ γ′

√
n.

Figure 3.3 summarizes the results on large minimum bisection width, large tree-width, and containing
a large grid as a minor in bounded-degree planar graphs. So the question whether large tree-width
implies large minimum bisection width, or equivalently, whether containing a large grid as a minor
implies large minimum bisection width, is not covered by the discussion so far. The answer to this is
no, as Figure 3.4 shows two examples of bounded-degree planar graphs with large tree-width, but not
large minimum bisection width, which can be easily extended to an infinitely large family. Figure 3.4a)
shows a planar graph G1 that consists of two copies of a k1×k1 grid. The number of vertices of G1

is n1 = 2k2
1 and, hence, G1 contains a large grid as a minor. Lemma 3.12a) implies that G1 also has

large tree-width. However, MinBis(G1) = 0 and G1 does not have large minimum bisection width.

57

Chapter 3 Planar Graphs

a) Graph G1 for k1 = 5 with MinBis(G1) = 0. b) Graph G2 for k2 = 5 with MinBis(G2) = 2.

Figure 3.4: Two bounded-degree planar graphs with large tree-width, that each allow a bisection of constant
width. The vertices are colored black and white to show that each graph allows a bisection of small width. Edges
cut by this bisection are colored red.

Figure 3.4b) shows a graph G2, that is obtained from a k2×k2 grid by subdividing one edge k2
2 times.

Thus, G2 has n2 = 2k2
2 vertices. Similar to G1, the graph G2 contains a large grid as a minor and has

large tree-width, but MinBis(G2) ≤ 2. The aim of Section 3.2.2 is to introduce a property such that all
bounded-degree planar graphs that satisfy this property and contain a large grid as a minor also have
large minimum bisection width.

3.2.2 Grid-Homogeneous Graphs

Consider a bounded-degree planar graph G that contains a large grid as a minor, or equivalently, that
has large tree-width. The examples in Figure 3.4 show that G does not necessarily have large minimum
bisection width. So what extra properties can we require to ensure that G must have large minimum
bisection width? Here, two such properties are introduced. One of them is based on a large grid minor
in G and the other one is based on many paths in G and can be generalized to go along with a tree
decomposition of G of large width. Both properties are technical and long. So before stating them, some
easier ideas are presented and it is discussed why they do not work. It is desirable that the k×k grid
satisfies the property that together with containing a large grid as a minor implies large minimum bisection
width.

Connectivity. One problem of the examples in Figure 3.4 seems to be the connectivity. For s ∈ N, a
graph G is s-connected if G contains at least s vertices and G− S is connected for every set S ⊆ V (G)
with |S| < s. However, requiring the graph to be s-connected for some integer s ∈ N does not work
here. First, any planar graph G contains a vertex v with degG(v) ≤ 5, as otherwise Corollary 2.9 was
violated. Assuming that G contains at least 7 vertices, it follows that G − S for S = NG(v) is not
connected and G is not s-connected for every s ≥ 6. As planar graphs are considered here, s ≥ 6 does
not make sense. Furthermore, the k×k grid Gk with k ≥ 2 is not s-connected for every s ≥ 3, because
its corner vertex v = (1, 1) has only two neighbors.

Many Paths. One of the properties of the k×k grid, that the graphs in Figure 3.4 do not have, is that
there are many paths between medium sized vertex sets. More precisely the following is an idea for
the property. Consider a bounded-degree planar graph G = (V,E) on n vertices, and assume that
there are two positive constants c and c′ such that for all subsets Z1, Z2 ⊆ V with |Z1| = |Z2| = dc

√
ne

and Z1 ∩Z2 = ∅ there are c′
√
n edge-disjoint paths from Z1 to Z2. Let (B,W) be an arbitrary bisection

in G and choose Z1 ⊆ B and Z2 ⊆ W with |Z1| = |Z2| = dc
√
ne. The property then implies that

there are c′
√
n edge-disjoint paths from Z1 to Z2. As each of these paths starts in B and ends in W ,

each path contains at least one edge that is cut by the bisection (B,W). Hence, eG(B,W) ≥ c′
√
n

58

3.2 Planar Graphs with Large Minimum Bisection Width

a) Graph G1 with k1 = 4 and `′1 = 2. b) Graph G2 with k2 = 12 and k′2 = 5.

Figure 3.5: Bounded-degree planar graphs with large minimum bisection width. A subgraph, which can be
contracted to a square grid and which is spread homogeneously through the graph, is obtained by deleting the
blue edges. A minimum bisection (B,W) is indicated by the black and white vertices, edges cut by (B,W) are
colored red.

and also MinBis(G) ≥ c′
√
n. So G has large minimum bisection width. While this property implies

the desired lower bound on the minimum bisection width, it is too strong as no assumption on the
tree-width or a large grid minor is needed. Furthermore, when looking closely, the k×k grid does not
satisfy this property. Indeed, let Gk be the k×k grid and nk := k2. Assume that c 1

2n
1
4
k is an integer

and consider the set
Z1 :=

{
(i, j) : i ∈

[
c

1
2n

1
4
k

]
, j ∈

[
c

1
2n

1
4
k

]}
,

which contains c√nk vertices. There are only 2c 1
2n

1
4
k edges in Gk that join a vertex in Z1 to a vertex

that is not in Z1. Hence, at most 2c 1
2n

1
4
k edge-disjoint paths can start in Z1 and Gk does not satisfy

the property when k is large.

Large Grid as Subgraph. With Lemma 2.5 in mind, another idea for the property is to require that
the graph contains a subgraph on more than half its vertices, which is a square grid. More precisely,
fix 0 < ε ≤ 1

2 and consider a graph G on n vertices that contains a subgraph H, which is isomorphic to
the k×k grid for some k ≥

√(1
2 + ε

)
n. Fix a minimum bisection (B,W) in G, let V ′ := V (H), and

define B′ = B ∩ V ′ as well as W ′ = W ∩ V ′. Without loss of generality assume that |B′| ≤ |W ′| and for
simplicity assume that n is even. As |B| = |W | = 1

2n and n′ := |V ′| ≥
(1

2 + ε
)
n, at least εn vertices

of V ′ are in B, so εn′ ≤ εn ≤ |B′| ≤ 1
2n
′. Then, Lemma 2.5 applied to the grid H implies that

MinBis(G) ≥ eH(B′,W ′) ≥ min
{√

ε, 1
2
}
·
√(1

2 + ε
)
n = Ω(

√
n)

and, hence, G has large minimum bisection width. However, requiring a large square grid as a subgraph
is a rather strong condition and it is not possible to loosen it by requiring a large subdivision of a square
grid, as the example in Figure 3.4b) shows. Furthermore, Figure 3.5 displays two examples of bounded-
degree planar graphs with large minimum bisection width that both do not contain a grid on more
than half their vertices as subgraph. The graph G1 in Figure 3.5a) is obtained from the k1×k1 grid by
subdividing each edge `′1 ∈ N times, where `′1 is a constant. Observe that G1 does not contain a k×k grid
as a subgraph for any k ≥ 2. The graph G2 in Figure 3.5b) shows a non-square grid, more precisely the
k2×k′2 grid where k2 ≥ 2k′2 and k′2 = Θ(k2). It is easy to see that the tree-width of G2 is k′2 by extending

59

Chapter 3 Planar Graphs

a tree decomposition of a k′2×k′2 grid of width k′2, as the one in Section 2.3, to a tree decomposition
of G2. Let H be a kH×kH grid that is contained in G2 as a subgraph, where kH is arbitrary. Then,
Proposition 3.11b) and Proposition 2.14 imply that kH ≤ tw(H) ≤ tw(G2) ≤ k′2. Observe that G2

has k2 ·k′2 vertices and H has at most (k′2)2 ≤ 1
2k2 ·k′2 vertices. So neither G1 nor G2 has a square grid on

more than half its vertices as a subgraph. It is easy to see that MinBis(G1) ≤ k1 and MinBis(G2) ≤ k′2
when k1 and k2 are even. Showing that MinBis(G1) = k1 and MinBis(G2) = k′2 when k1 and k2 are
even is harder and here, we will only show that MinBis(G1) = Ω(k1) and MinBis(G2) = Ω(k′2) later.
So, G1 and G2 have large minimum bisection width and, as each of them has a lot of structure, it is
desirable that they satisfy the property that we want to find.

Consider the graphs in Figure 3.4 and Figure 3.5 once more. All graphs have a large grid as a minor
and, hence, also have large tree-width. The ones in Figure 3.5, which have large minimum bisection width,
have a large grid as a minor, which is, roughly speaking, spread homogeneously through the graph. This
is not the case for the graphs in Figure 3.4, which do not have large minimum bisection width. In order to
make this more precise, a few more definitions concerning planar graphs and grids are introduced. Recall
the definition of the k×k grid from Section 2.2. The vertex set of the k×k grid is {(i, j) : i ∈ [k], j ∈ [k]}
and usually the vertex (i, j) is drawn at the point (i, j) of a coordinate system.

Recall that a graph is planar if it admits a drawing in the plane without crossing edges. A drawing with
these properties is also called an embedding in the plane and a graph with a given embedding is called a
plane graph. A planar graph G is uniquely embeddable if there is a topological isomorphism between any
two embeddings of G in the plane, see Chapter 4.3 in [Die12] for further details. Roughly speaking, this
means that the combinatorial structures of any two embeddings of G in the plane are the same, which can
be made more precise with the cyclical orderings as follows. For any two embeddings G1 and G2 of G in
the plane, either, for each vertex x of G, the cyclical ordering of x in G1 is identical to the cyclical ordering
of x in G2, or, for each vertex x of G, the cyclical ordering of x in G2 is obtained by reversing the cyclical
ordering of x in G1. The latter one corresponds to reflecting the embedding. For k ≥ 2 it is not hard to
see that the k×k grid is uniquely embeddable. This is proved formally by using Whitney’s Theorem and
Tutte’s Wheel Theorem in Appendix B. Let k ≥ 3 and consider an embedding of the k×k grid Gk in the
plane. All faces of Gk are bounded by cycles of length four, except for one face, which is bounded by a
cycle of length 4(k − 1) ≥ 4 · 2 = 8. Let f be a face of Gk. If f is bounded by a cycle of length 4, then f
is called a small face of Gk and otherwise f is called the large face. Next, this definition is extended
to certain graphs containing a grid as a minor. A graph H = (VH , EH) is a minimal graph containing
a k×k grid as a minor if H contains Gk as a minor, grid(H − v) < k for all v ∈ VH , and grid(H − e) < k

for all e ∈ EH . In other words, H is a minimal graph containing a k×k grid as a minor if deleting any
vertex or any edge from H destroys the property of containing a k×k grid as a minor. The next remark
extends the observation that a k×k grid with k ≥ 3 is uniquely embeddable; a formal proof can be found
in Appendix B.

Remark 3.15.
For every integer k ≥ 3, every minimal graph containing a k×k grid as a minor is uniquely embeddable.

Consider a plane graph H which is a minimal graph containing a k×k grid as a minor for k ≥ 3.
Even though the embedding of H in the plane is essentially unique and there is a natural one-to-one
correspondence between the faces of H and the faces of Gk when contracting H to obtain Gk and modifying
the drawing accordingly, the definition of small and large faces cannot be extended directly to minimal
graphs containing a k×k grid as a minor. For example, Figure 3.6 shows a graph H1 that is a minimal
graph containing a 4×4 grid as a minor and that can be contracted to the 4×4 grid G4 in two ways, such

60

3.2 Planar Graphs with Large Minimum Bisection Width

f
contract light

blue edges
f

a) The face bounded by the dark blue cycle is the large face.

f
contract dark

blue edges
f

modify

drawing

f

b) The face bounded by the light blue cycle is the large face.

Figure 3.6: A graph H that is a minimal graph containing a 4×4 grid as a minor and two ways to contract H to
a 4×4 grid that result in different large faces of the 4×4 grid.

that the face f of H1 can correspond to a small face of G4 or to the large face of G4. Let H be a minimal
graph containing a k×k grid as a minor with k ≥ 5. To uniquely define a large face, consider an embedding
of H, fix one way to contract H to a grid Gk and consider the natural one-to-one correspondence between
the faces of H and the faces of Gk. Each face f of H that corresponds to a small face of Gk can have
at most eight vertices of degree 3 or greater on its boundary. Indeed, if there are two vertices u and v
that are contracted to a vertex w with deg(w) < deg(u) + deg(v) − 2, then there is an edge e that is
incident to u and can be removed from H, such that H − e contains a k×k grid as a minor, which is a
contradiction. So each vertex of Gk with degree 4 results from contracting a tree T ⊆ H into one vertex
such that there are exactly four edges in H that join a vertex in T to a vertex not in T . Hence, T either
contains two vertices u, v with degH(u) = degH(v) = 3 or one vertex v with degH(v) = 4, and in both
cases no other vertices of degree 3 or greater, i. e., T contains at most two vertices v with degH(v) ≥ 3.
Similarly, each vertex of Gk with degree 3 results from contracting a tree T ⊆ H into one vertex such
that T contains exactly one vertex v with degH(v) ≥ 3 and each vertex of Gk with degree 2 results from
contracting a tree T ⊆ H into one vertex such that T contains no vertex v with degH(v) ≥ 3. Therefore,
each face f of H that corresponds to a small face of Gk can have at most eight vertices of degree 3 or
more on its boundary. It follows similarly that the face that corresponds to the large face of Gk must
have exactly 4(k − 2) ≥ 12 vertices of degree 3 on its boundary. Therefore, there is only one choice for
the face of H that corresponds to the large face of Gk and the definitions of large and small faces can be
extended to minimal graphs containing a large enough grid as a minor as follows. Let H be a plane graph
that is a minimal graph containing a k×k grid as a minor with k ≥ 5. The unique face of H with 4(k− 2)
vertices of degree 3 on its boundary is called the large face of H and each of the other faces of H is called
a small face of H. The next propositions summarize the properties of small and large faces.

Proposition 3.16.
Let k ≥ 3 and let H = (VH , EH) be a minimal graph containing a k×k grid as a minor. Then VH admits
a partition into non-empty sets Mi,j with i, j ∈ [k] such that contracting Mi,j to one vertex (i, j) results
in the k×k grid Gk. Moreover, each such partition of VH has the following properties.

61

Chapter 3 Planar Graphs

• For each vertex (i, j) of Gk with degGk((i, j)) = 4, either there are two vertices v1, v2 ∈ Mi,j

with degH(v1) = degH(v2) = 3 and all other vertices w ∈ Mi,j satisfy degH(w) = 2, or there is a
vertex v ∈Mi,j with degH(v) = 4 and all other vertices w ∈Mi,j satisfy degH(w) = 2.
• For each vertex (i, j) of Gk with degGk((i, j)) = 3, there is a vertex v ∈Mi,j with degH(v) = 3 and
all other vertices w ∈Mi,j satisfy degH(w) = 2.
• For each vertex (i, j) of Gk with degGk((i, j)) = 2, all vertices w ∈Mi,j satisfy degH(w) = 2.

In particular, each vertex v of H satisfies 2 ≤ degH(v) ≤ 4.

Proposition 3.17.
Let k ≥ 5 and let H be a plane graph that is a minimal graph containing a k×k grid as a minor. Then,
the following holds.

a) For every small face f of H, there are at most 8 vertices v in H that are on the boundary of f and
satisfy degH(v) ≥ 3.

b) Each vertex v on the boundary of the large face of H satisfies degH(v) ∈ {2, 3}. Furthermore, there
are exactly 4(k − 2) vertices v with degH(v) = 3 on the boundary of the large face of H.

Let k ≥ 5 and let H be a minimal graph that contains a k×k grid as a minor. Furthermore, consider a
planar graph G′ that contains H as a subgraph. The induced embedding of H with respect to an embedding
of G′ is the embedding of H obtained from the embedding of G′ by deleting all edges in E(G′) \ E(H)
and all vertices in V (G′) \ V (H). In the following, we always assume that G′ is embedded in such a
way that, in the induced embedding of H, the large face of H is the unique infinite face of H. Let C
be a cycle in G′. In the embedding of G′, the cycle C divides the plane into two regions. The region
containing the infinite face of G′ is called the outside of C and the other region is called the inside of C.
Now, we are ready to present the definition of grid-homogeneous graphs. The idea is to call a graph G
grid-homogeneous if it contains subgraphs G′ and H as the ones above, where G′ is obtained from G by
deleting few vertices and H is spread homogeneously through G′.

Definition 3.18 ((γ, k, `)-grid-homogeneous, Definition 1.6 repeated).
Let k, ` ∈ N with k ≥ 5 and 0 ≤ γ < 1. A graphG = (V,E) is called (γ, k, `)-grid-homogeneous if it contains
a connected planar graph G′ = (V ′, E′) ⊆ G with |V ′| ≥ (1− γ)|V | and a graph H = (VH , EH) ⊆ G′ as
subgraph such that G′ has an embedding in the plane with the following properties:

(H1) The graph H is a minimal graph containing a k×k grid as a minor.
(H2) For every small face f of the induced embedding of H, at most ` vertices from V ′ are embedded

in the face f including the vertices on its boundary.
(H3) No vertex of V ′ \ VH is embedded in the large face f of the induced embedding of H.

To give some examples of grid-homogeneous graphs, consider the k×k grid G. To satisfy the definition,
one can choose G′ = H = G and it follows that the k×k grid is (0, k, 4)-grid-homogeneous. Moreover,
the graphs in Figure 3.5 are grid-homogeneous for certain parameters γ, k, and `. Indeed, recall the
graph G1 in Figure 3.5a), which is obtained from a k1×k1 grid by subdividing each edge `′1 times. The
graph G1 is connected and planar, and it is a minimal graph containing a k1×k1 grid as a minor. So
choose G′1 = H ′1 = G1. Then (H1) and (H3) are satisfied. For (H2) consider a small face f of the
induced embedding of H. The face f is bounded by a cycle containing 4 + 4`′1 vertices and, hence, (H2)
is satisfied for ` = 4 + 4`′1. So G1 is (0, k1, 4 + 4`′1)-grid-homogeneous. The graph G2 in Figure 3.5b)
is a k2×k′2 grid, where k2 ≥ 2k′2. Choose G′ = G and define `′2 =

⌈
k2−k′2
k′2−1

⌉
. It is easy to see that G′

contains a subdivision H of a k′2×k′2 grid with V (H) = V (G′) and where each horizontal edge of H

62

3.2 Planar Graphs with Large Minimum Bisection Width

is subdivided at most `′2 times and vertical edges of H are not subdivided. An example for such a
subgraph H is obtained by deleting the blue edges in Figure 3.5b). Observe that H is a minimal graph
containing a k′2×k′2 grid as a minor and (H3) is satisfied. Consider a small face f of H. Then, there are
at most 4 + 2`′2 vertices of G′ embedded in f including the vertices on the boundary of f . Therefore, G2

is (0, k′2, 4 + 2`′2)-grid-homogeneous.
All three examples of grid-homogeneous graphs are (γ, k, `)-grid-homogeneous with γ = 0. So, why is

the parameter γ included? Consider a (γ, k, `)-grid-homogeneous graph G and let G′ and H be subgraphs
as in Definition 3.18. The parameter γ denotes the fraction of vertices that are not important for satisfying
the properties (H1)-(H3), which only refer to G′ and H. This is useful for the following reason. If G1

is a bounded-degree planar graph with large minimum bisection width, then the graph G2 obtained
from G1 by adding a constant number of isolated vertices will also have large minimum bisection width
but cannot satisfy the definition with γ = 0 as this would require G2 to be connected. Consider again the
(γ, k, `)-grid-homogeneous graph G and its subgraphs G′ = (V ′, E′) and H. There is nothing known about
the vertices in V \ V ′. So in order to deduce some lower bound on the width of a minimum bisection
in G, it is necessary to require that γ < 1

2 . Indeed, otherwise half of the vertices of the graph G might be
isolated and not included in G′, which then allows a bisection of width zero in G.
The aim of this section is to show the following lower bound on the minimum bisection width in

grid-homogeneous planar graphs.

Theorem 3.19 (Theorem 1.7 repeated).
For every k, ` ∈ N with k ≥ 5 and every 0 ≤ γ < 1

2 , every graph G = (V,E) with |V | even that is
(γ, k, `)-grid-homogeneous satisfies

MinBis(G) ≥
(1

2 − γ
) 1

4`k.

Consider the three examples of grid-homogeneous graphs once more. Theorem 3.19 implies that
the k×k grid G satisfies MinBis(G) ≥ 1

2 ·
1
16k = 1

32k as it is (0, k, 4)-grid-homogeneous. Further-
more, it was argued that the graphs G1 and G2 in Figure 3.5 are (0, k1, 4 + 4`′1)-grid-homogeneous
and (0, k′2, 4 + 2`′2)-grid-homogeneous, respectively. Therefore,

MinBis(G1) ≥ 1
32(`′1 + 1)k1 and MinBis(G) ≥ 1

16(`′2 + 2)k
′
2,

which shows that the graphs G1 and G2 have large minimum bisection width as claimed above.
Before presenting the strategy to prove the theorem, let us have a closer look at the definition of

grid-homogeneous graphs and see why none of the properties required there can be dropped in order to
prove a lower bound on the minimum bisection width as in the previous theorem.

Connectivity of G′. Let k ≥ 5, let H be the k×k grid, and let G be the graph obtained by adding k2

isolated vertices to H. Finally, let G′ = G. Consider an embedding of H in the plane. As H has (k−1)2

small faces and G′ contains k2 < 2(k− 1)2 isolated vertices, the embedding of H can be extended to an
embedding of G′ by drawing up to two isolated vertices in each small face of H, see Figure 3.7a). Then,
Definition 3.18 is satisfied for γ = 0 and ` = 6, except for the connectivity of G′. Choosing B = V (H)
and W = V (G) \B defines a bisection (B,W) in G and shows that MinBis(G) = 0.

Property (H2). Fix k ≥ 5 and let G be the graph obtained from a k×k grid by subdividing one of
its edges k2 times, see Figure 3.4b). Then, G is a minimal graph containing a k×k grid as a minor.
If (H2) is neglected, then Definition 3.18 is satisfied with γ = 0 and G′ = H = G. As argued in the end
of Section 3.2.1, G allows a bisection of width 2. Furthermore, this example shows that the vertices on
the boundary of each small face are important for (H2).

63

Chapter 3 Planar Graphs

a) Connectivity of G′ is violated. b) Property (H3) is neglected.

Figure 3.7: Bounded-degree planar graphs that almost satisfy Definition 3.18. In both cases, G = G′ and the
subgraph H is colored blue. The graphs admit bisections of width zero and one, respectively. A corresponding
bisection is indicated by the solid and non-solid vertices, the cut edge in Part b) is colored red.

Property (H3). Fix k ≥ 3 and consider a k×k grid H that is embedded in the plane. Let G = G′

be the graph obtained by joining a path P on k2 vertices to one of the vertices on the boundary
of the large face of H. Consider the embedding of G′ = G where P is embedded in the large face
of H, see Figure 3.7b). Then, Definition 3.18 is satisfied with γ = 0 and ` = 4 except for (H3).
Choosing B = V (H) and W = V (G)\B defines a bisection (B,W) in G and shows that MinBis(G) = 1.

Observe that not every bounded-degree planar graph G with large minimum bisection width satisfies
Definition 3.18 for some γ > 1

2 . For example, consider the planar graph G that is composed of three copies
of the k×k grid for some even integer k ∈ N and contains n = 3k2 vertices. Let (B,W) be a minimum
bisection in G and let bi for i ∈ [3] be the number of vertices of B that are in each component of G. Without
loss of generality assume that b1 ≤ b2 ≤ b3. Clearly, b1 + b2 + b3 = 3

2k
2. Furthermore, b3 ≤ k2 implies that

b1 + b2 ≥ 1
2k

2 and hence b2 ≥ 1
4k

2. Also, b2 + b3 ≤ 3
2k

2 and hence b2 ≤ 3
4k

2. All in all, 1
4k

2 ≤ b2 ≤ 3
4k

2.
Let (B2,W2) be the cut in the second component of G that the bisection (B,W) defines. To estimate
the edges cut by (B2,W2), one can assume without loss of generality that |B2| ≤ |W2| as otherwise the
sets B2 and W2 can be switched in the following argument. So, 1

4k
2 ≤ |B2| ≤ 1

2k
2 and Lemma 2.5 implies

that at least 1
2k edges are cut in the second component. Therefore, eG(B,W) ≥ 1

2k = 1
2
√

3
√
n and G has

large minimum bisection width. However, as G does not have a connected subgraph on more than half its
vertices, it cannot satisfy Definition 3.18 for any γ > 1

2 .
The proof of Theorem 3.19 is done in two steps. First, a large subgraph of the grid-homogeneous graph

is partitioned, such that there are many paths between two sets of the partition. This is made more
precise by the concept of path-prosperous graphs, which is introduced next. The second step of proving
Theorem 3.19 is then to show a lower bound on the width of a minimum bisection in path-prosperous
graphs. To define path-prosperous graphs, the following notation is used. For a graph G = (V,E) and two
(not necessarily disjoint) sets A,B ⊆ V , a path P = (v0, v1, . . . , v`) in G is an A,B-path, if v0 ∈ A, v` ∈ B,
and, if ` ≥ 2, then vh /∈ A ∪B for all h ∈ [`− 1]. Note that every vertex in A ∩B is an A,B-path in G.

Definition 3.20 ((γ, k, c)-path-prosperous).
Let 0 ≤ γ < 1, k ∈ N, and 0 < c ≤ 1. A graph G = (V,E) is called (γ, k, c)-path-prosperous if it contains
a subgraph G′ = (V ′, E′) with |V ′| ≥ (1−γ)|V | and such that there is a collection of clusters X = (Xi)i∈I
with Xi ⊆ V ′ for each i ∈ I satisfying the following properties

(P1) every vertex in V ′ is in precisely one set Xi with i ∈ I,
(P2) for all i ∈ I the set Xi satisfies |Xi| ≥ k,

64

3.2 Planar Graphs with Large Minimum Bisection Width

(P3) for all d ∈ [k], for all i1, i2 ∈ I, and for all Z1 ⊆ Xi1 , Z2 ⊆ Xi2 with |Z1| = |Z2| = d, there exist
at least cd edge-disjoint Z1,Z2-paths in G′.

Consider a (γ, k, c)-path-prosperous graph G = (V,E) with small γ. As before, the parameter γ
denotes the fraction of vertices of G that are not important for satisfying (P1)-(P3). The graph G′ in
Definition 3.20 needs to be connected to satisfy (P3). Furthermore, when ignoring (P3), it is easy to
simultaneously satisfy (P1) and (P2), e.g. by using one cluster that contains all vertices in V ′. However, a
large bounded-degree planar graph G′ will not satisfy (P3) when k = n′ = |V (G′)| and when choosing X
to consist of only the cluster V ′ := V (G′). Indeed, according to Theorem 1.10 the graph G′ allows a
bisection (B′,W ′) of width O(

√
n′), so there are only O(

√
n′) paths between the sets B′ and W ′, which

have size Θ(n′). Roughly speaking, the larger the size of the clusters due to (P2), the harder it becomes
to satisfy (P3).
Next, two lemmas are presented, which together immediately imply Theorem 3.19.

Lemma 3.21.
For every k, ` ∈ N with k ≥ 5 and every 0 ≤ γ < 1, the following holds. If G is a (γ, k, `)-grid-homogeneous
graph, then G is (γ, k, 1

4`)-path-prosperous.

Lemma 3.22.
For every 0 ≤ γ < 1

2 , for every k ∈ N, and for every 0 < c ≤ 1, every (γ, k, c)-path-prosperous
graph G = (V,E) with |V | even satisfies

MinBis(G) ≥
(1

2 − γ
)
· ck.

The concept of path-prosperous graphs presented here is rather restricted. Especially when thinking
about the collection of clusters of a tree decomposition (T,X) with X = (Xi)i∈V (T), then (P1) seems too
restrictive. Indeed, assume that X satisfies (P1). Then, due to Property (T2) of tree decompositions, the
underlying graph G′ decomposes into the disjoint parts G′[Xi] for i ∈ V (T), which means that G′ and X
cannot satisfy (P3). In Appendix A, a generalization of Definition 3.20 that relaxes the condition in (P1)
is presented and a lower bound for the minimum bisection width of such graphs is derived.

3.2.3 Proof of the Lower Bound for Grid-Homogeneous Graphs

One technical detail in the proof of Lemma 3.21 is to find many disjoint paths between two columns of a
grid. To do so, the following lemma is used. Note that there are many results on disjoint paths in grids,
regarding vertex-disjoint paths as well as edge-disjoint paths. However, for the proof of Lemma 3.21 some
special additional properties are needed.

Lemma 3.23.
Consider the k×k grid Gk for an arbitrary k ∈ N with k ≥ 8. For i ∈ [k], denote by Ci the ith column of Gk
and, for j ∈ [k], denote by Rj the jth row of Gk. For every i1, i2, d ∈ [k] with i1 ≤ i2, for every Z1 ⊆ Ci1 ,
and for every Z2 ⊆ Ci2 with |Z1| ≥ d and |Z2| ≥ d, there are

⌈
d
2
⌉
vertex-disjoint Z1,Z2-paths in Gk

• that do not use any vertical edges in Ci for all i ∈ {i1, i1 + 1, i2, i2 + 1} ∩ [k] and
• that do not use any horizontal edges in Rj for all j ∈ [k] with Rj ∩ (Z1 ∪ Z2) = ∅.

Proof. Fix k ∈ N with k ≥ 8 and i1, i2, d ∈ [k] with i1 ≤ i2. Let G = (V,E) be the k×k grid and choose
two arbitrary sets Z1 ⊆ Ci1 and Z2 ⊆ Ci2 satisfying |Z1| ≥ d and |Z2| ≥ d. Let d′ =

⌈
d
2
⌉
, which is the

number of Z1,Z2-paths that we want to find. Set

If = {i1, i1 + 1, i2, i2 + 1} ∩ [k] and Jf = {j ∈ [k] : Rj ∩ (Z1 ∪ Z2) = ∅},

65

Chapter 3 Planar Graphs

which are the indices of the columns and rows in which we need to avoid the vertical and horizontal edges,
respectively, when constructing the paths. Define

d1 :=





0 if i1 ≤ 1
min{i1 − 1, d′} otherwise,

d2 :=





0 if i2 + 1 ≥ k
min{k − (i2 + 1), d′ − d1} otherwise,

d3 :=





0 if i2 ≤ i1 + 2
min{(i2 − 1)− (i1 + 1), d′ − (d1 + d2)} otherwise.

The strategy of the proof is to construct
• d1 paths that use only vertical edges in columns Ci with i ∈ [i1 − 1],
• d2 paths that use only vertical edges in columns Ci with i ∈ [k] \ [i2 + 1], and
• d3 paths that use only vertical edges in columns Ci with i ∈ [i2 − 1] \ [i1 + 1],

such that all paths are Z1,Z2-paths and they are pairwise vertex-disjoint. Furthermore, each path that
joins a vertex v ∈ Z1 to a vertex w ∈ Z2 will only use horizontal edges in the row that contains v and the
row that contains w. As

(i1 − 1) + (k − (i2 + 1)) + ((i2 − 1)− (i1 + 1)) = k − 4 ≥
⌈
k
2
⌉
≥ d′,

the construction yields exactly d′ = d1 + d2 + d3 vertex-disjoint Z1,Z2-paths in the end.
Choose j∗ ∈ [k] such that |Ztop

1 | ≥ d′ as well as |Zbottom
1 | ≥ d′ holds, where

Ztop
1 := {v = (i1, j) ∈ Z1 : j ≥ j∗} and Zbottom

1 := {v = (i1, j) ∈ Z1 : j ≤ j∗} .

Such a j∗ must exist as Ztop
1 ∪ Zbottom

1 = Z1 and Ztop
1 ∩ Zbottom

1 ⊆ {(i1, j∗)} is nonempty for certain
values of j∗. Furthermore, define

Ztop
2 := {w = (i2, j) ∈ Z2 : j ≥ j∗} and Zbottom

2 := {w = (i2, j) ∈ Z2 : j ≤ j∗} .

As Ztop
2 ∪ Zbottom

2 = Z2, we have |Ztop
2 | ≥ d′ or |Zbottom

2 | ≥ d′. Without loss of generality, assume
that |Ztop

2 | ≥ d′, because otherwise the grid can be flipped along a horizontal axis and the vertices can
be relabeled accordingly. Choose Z ′1 ⊆ Zbottom

1 with |Z ′1| = d′ and Z ′2 ⊆ Z
top
2 with |Z ′2| = d′. Label the

vertices in Z ′1 with v1 = (i1, jv1), v2 = (i1, jv2), . . . , vd′ = (i1, jvd′) such that jv1 < jv2 < . . . < jvd′ and label
the vertices in Z ′2 with w1 = (i2, jw1), w2 = (i2, jw2), . . . , wd′ = (i2, jwd′) such that jw1 > jw2 > . . . > jwd′ .

Recall that [0] = ∅. For every h ∈ [d1], connect vh and wh with a path Ph that uses only edges in Rjv
h
,

Ch, and Rjw
h
. It is easy to see that Ph and Pĥ do not intersect for distinct h, ĥ ∈ [d1], see the example in

Figure 3.8. As d1 = 0 or d1 ≤ i1 − 1, no edges in Ci are used for all i ∈ If . Every path Ph with h ∈ [d1]
uses exactly one vertex in Z2, but it can happen that there is an h ∈ [d1] such that the path Ph uses two
vertices from Z1. In this case, the path Ph is shortened such that it uses exactly one vertex from Z1, an
example for this is path P1 in Figure 3.8.

For every h ∈ [d2 +d1]\ [d1], set h′ = h−d1, and connect vh and wh with a path Ph that uses only edges
in Rjv

h
, Ck−(h′−1), and Rjwh . It is easy to see that Ph and Pĥ do not intersect for distinct h, ĥ ∈ [d1 + d2].

As k − (d2 − 1) ≥ i2 + 2 or d2 = 0, no vertical edges in Ci are used for all i ∈ If . Every path Ph

with h ∈ [d1 +d2] \ [d1] uses exactly one vertex in Z1, but it can happen that there is an h ∈ [d2 +d1] \ [d1]
such that the path Ph uses two vertices from Z2. In this case, the path Ph is shortened such that it uses
exactly one vertex from Z2, an example for this is the path P4 in Figure 3.8.

66

3.2 Planar Graphs with Large Minimum Bisection Width

i1 i2

Zbottom
1 = Z ′

1

v1

v2

v3

v4

v5

v6

v7

v8

Ztop
2

Z ′
2

w1

w2

w3

w4

w5

w6

w7

w8

P1

P2

P3

P4

P5

P6

P7

P8

Figure 3.8: Paths used in the proof of Lemma 3.23. Example with k = 21, d = 15, d′ = 8 and j∗ = 11. Here,
d1 = 2, d2 = 3, and d3 = 3. Only the vertices in the sets Z1 and Z2 are drawn explicitly. Note that the paths P1

and P4 had to be shortened as they used two vertices in Z1 and two vertices in Z2, respectively.

For every h ∈ [d′] \ [d1 + d2] set h′ = d′ − (h− d1 − d2) + 1. Connect vh and wh′ with a path Ph that
uses only edges in Rjv

h
, Ci2−(h−d1−d2), and Rjw

h′
. It is easy to see that Ph and Pĥ do not intersect for

distinct h, ĥ ∈ [d′]. As for every h ∈ [d′] \ [d1 + d2] we have i2 − (h− d1 − d2) ≥ i2 − d3 ≥ i1 + 2 or d3 = 0,
no vertical edges in Ci are used for all i ∈ If . Every path Ph with h ∈ [d′] \ [d1 + d2] uses exactly one
vertex in Z1 and exactly one vertex in Z2. 2

Observe that the proof of Lemma 3.21 requires to show that, roughly speaking, there are many edge-
disjoint paths in a graph G′ that contains the k×k grid as a minor. Lemma 3.23 can be applied to find
vertex-disjoint paths in the k×k grid and a version with edge-disjoint paths in the k×k grid would not
suffice as the example in Figure 3.9 shows.

67

Chapter 3 Planar Graphs

b1

b2

w1

w2

b1

b2

w1

w2

z1

z2

Figure 3.9: An example showing that a version of Lemma 3.23 with edge-disjoint paths does not suffice for the
proof of Lemma 3.21. When contracting the edge {z1, z2} in the right graph, the graph on the left is obtained.
The graph on the left contains a b1,w1-path and a b2,w2-path that are edge-disjoint, but the graph on the right
does not.

Proof of Lemma 3.21. Fix 0 ≤ γ < 1 and k, ` ∈ N with k ≥ 5. Let G = (V,E) be an arbitrary
(γ, k, `)-grid-homogeneous graph. Then, there are two subgraphs G′ ⊆ G and H ⊆ G′, as well as a plane
embedding of G′ with the properties required by Definition 3.18. Let G′ = (V ′, E′) and H = (VH , EH).
Then |V ′| ≥ (1− γ)|V | and (H1)-(H3) are satisfied. The aim is to show that G is (γ̂, k̂, ĉ)-path-prosperous
with γ̂ = γ, k̂ = k, and ĉ = 1

4` . To do so, a partition of V ′ is constructed that satisfies the properties
required by Definition 3.20. Roughly speaking, the partition is obtained by slicing the graph G into k
pieces along the columns of H.
From now on, whenever an embedding of H or a face of the graph H is considered, we refer to the

induced embedding of H with respect to the embedding of G′ that satisfies the properties required by
Definition 3.18. Without loss of generality, assume that G′ satisfies the following property.

(H4) The graph G′ − e is disconnected for every e ∈ E′ \ EH . In particular, no edge in E′ \ EH joins
two vertices in VH .

Indeed, if G′ does not satisfy (H4), then one can successively delete such edges from G′ without violating
(H1)-(H3) or the connectivity of G′.

Let H̃ = (ṼH , ẼH) be the k×k grid as defined in Section 2.2. Denote by C̃i its ith column for
every i ∈ [k] and by R̃j its jth row for every j ∈ [k]. During this proof, variables with tilde are used to
denote subgraphs and similar structures of the k×k grid H̃. Since H contains a k×k grid as a minor,
there is a function M : ṼH → {X : X ⊆ VH , X 6= ∅} such that M(i, j)∩M(i′, j′) = ∅ for all i, j, i′, j′ ∈ [k]
with (i, j) 6= (i′, j′), the graph H[M(i, j)] is connected for all i, j ∈ [k], and contracting each set M(i, j)
to one vertex (i, j) results in H̃, see Figure 3.10. Furthermore, define M(Z̃) =

⋃
(i,j)∈Z̃M(i, j) for

sets Z̃ ⊆ ṼH . Property (H1) implies that M(ṼH) = VH and the following two properties.
(H5) The graph H[M(i, j)] is a tree for all i, j ∈ [k].
(H6) For all i, j, i′, j′ ∈ [k] that satisfy |i− i′|+ |j − j′| = 1, there is exactly one edge in H that joins

a vertex in M(i, j) to a vertex in M(i′, j′).
For all i, j, i′, j′ ∈ [k] with (i, j) 6= (i′, j′) and |i− i′|+ |j − j′| 6= 1, there is no edge in H that
joins a vertex in M(i, j) to a vertex in M(i′, j′).

For i, j ∈ [k− 1], let Ãi,j be the 4-cycle ((i, j), (i+ 1, j), (i+ 1, j+ 1), (i, j+ 1)) in the grid H̃. The small
faces of H̃ in an arbitrary embedding of H̃ are exactly the faces bounded by the cycles Ãi,j with i, j ∈ [k−1],
see Figure 3.10. Properties (H5) and (H6) imply that for all i, j ∈ [k−1] the subgraph of H induced by the
vertices inM(V (Ãi,j)) contains a unique cycle Ai,j and this cycle bounds a small face ofH. For i, j ∈ [k−1],
let Fi,j be the set of vertices in V ′ that are on the cycle Ai,j or embedded inside the cycle Ai,j in the
given embedding of G′. Furthermore, let Alarge be the cycle in H that bounds the large face of H and
define Ck = M(C̃k)∩V (Alarge) as well as Rk = M(R̃k)∩V (Alarge). For all j ∈ [k−1], let Fk,j = Fk−1,j∩Ck,
for all i ∈ [k − 1], let Fi,k = Fi,k−1 ∩ Rk, and Fk,k = Fk−1,k−1 ∩ Ck ∩ Rk = Fk−1,k−1 ∩M(k, k). For all

68

3.2 Planar Graphs with Large Minimum Bisection Width

M

F1,3

F2,1

F4,2

= F4,4

(1, 1) (2, 1) (4, 1)

(4, 4)(1, 4)

Ã1,3

Ã2,1

M(1, 1) M(2, 1) M(3, 1)

M(4, 1)

M(1, 2)

M(2, 2)
M(3, 2)

M(4, 2)

M(1, 3)

M(2, 3)

M(3, 3)
M(4, 3)

M(1, 4) M(2, 4) M(4, 4)M(3, 4)

Figure 3.10: Notation used in the proof of Lemma 3.21. The k×k grid H̃ is drawn on the left and the graph G′

is drawn on the right. The subgraph H is colored black. The vertices and edges, that are in G′ but not in H, are
colored gray. The cycles Ã1,3 and Ã2,1 in H̃ are colored purple. Their corresponding cycles A1,3 and A2,1 in H
define the sets F1,3 and F2,1 in G′, which are highlighted in purple. Even though Definition 3.18 and Lemma 3.21
require k ≥ 5, we chose k = 4 to keep the example small.

remaining integers i, j, i. e., all pairs (i, j) with i /∈ [k] or j /∈ [k], define Fi,j = ∅. Then (H2) implies

|Fi,j | ≤ ` for all i, j ∈ N0. (3.10)

It is easy to see that, for all i, j, i′, j′ ∈ N0 with |i− i′| ≥ 2,

Fi,j ∩ Fi′,j′ = ∅ (3.11)

and that, for all i, j, j′ ∈ [k],

M(i, j) ⊆ Fi−1,j−1 ∪ Fi,j−1 ∪ Fi,j ∪ Fi−1,j ,

M(i, j) ∩ Fi,j 6= ∅,

M(i, j) ∩ Fi+1,j′ = ∅. (3.12)

Now, the collection of clusters X = (Xi)i∈[k] is defined by

Xi =
⋃

j∈[k]

(Fi,j \ Fi+1,j)

for all i ∈ [k], see Figure 3.11.
The aim is to show that G is (γ̂, k̂, ĉ)-path-prosperous by showing that G′ and X satisfy the pro-

perties in Definition 3.20. Clearly, |V ′| ≥ (1 − γ̂)|V | holds for γ̂ = γ. Furthermore, (H1) and (H3)
imply

⋃
i∈[k]

⋃
j∈[k] Fi,j = V ′, which together with (3.11) shows that

V ′ =
⋃̇

i∈[k]

Xi. (3.13)

69

Chapter 3 Planar Graphs

X1 X2 X3 X4

Figure 3.11: Definition of the sets X = (Xi)i∈[k] used in the proof of Lemma 3.21. The set X4 depends on some
of the sets M(i, j), which are indicated in blue. As in Figure 3.10, we chose k = 4 to keep the example small.

Therefore, (P1) is satisfied. Furthermore, (3.12) implies that, for every i ∈ [k], the set Xi contains at least
one vertex from M(i, j) for every j ∈ [k]. As the sets M(i, j) are pairwise disjoint for all i, j ∈ [k], the
set Xi contains at least k vertices for every i ∈ [k]. Hence, (P2) is satisfied with k̂ = k.

To show that (P3) is satisfied with ĉ = 1
4` , choose i1, i2 ∈ [k̂] with i1 ≤ i2 arbitrarily, as well as Z1 ⊆ Xi1

and Z2 ⊆ Xi2 with |Z1| = |Z2| = d for some d ∈ [k̂]. We will show that there are at least
⌈ 1

2d
′⌉

edge-disjoint Z1,Z2-paths in G′, where d′ :=
⌈
d
2`
⌉
.

Case 1: k̂ = k < 8. Note that in this case, the aim is to find one edge-disjoint Z1,Z2-path in G′,
because d ≤ k̂ is required by (P3) and ` ≥ 4 as each face of H is bounded by a cycle of length at least 4.
As G′ is connected, there must be a path P in G′ joining a vertex in Z1 to a vertex in Z2. If necessary, P
can be shortened to contain exactly one vertex in Z1 and exactly one vertex in Z2 to obtain the desired
Z1,Z2-path.
Case 2: k ≥ 8. The idea of this case is to use Lemma 3.23, which ensures the existence of many

vertex-disjoint paths in square grids. These paths can be mapped to paths joining two glueing vertices u1

and u2 in the subgraph H. To extend these paths such that each of them connects a vertex from Z1 with
a vertex from Z2, paths from vertices in Z1 and Z2 to the glueing vertices u1 and u2, respectively, are
considered and these paths only use vertices that are close to the glueing vertices. This will ensure that
the Z1,Z2-paths are edge-disjoint in the end.

Recall that i1 ∈ [k̂] with Z ⊆ Xi1 . For every j ∈ [k], define M(k + 1, j) = ∅ and

N1
j = M(i1, j) ∪M(i1 + 1, j).

Clearly, N1
j and N1

j′ are disjoint for distinct j, j′ ∈ [k]. For every j ∈ [k], choose an arbitrary u1
j ∈M(i1, j).

For every j ∈ [k], and for every v ∈ N1
j , the vertex u1

j is called the glueing vertex of v. Property (H4)

70

3.2 Planar Graphs with Large Minimum Bisection Width

U1
1

U1
2

U1
3

U1
4

Xi1u1
1

u1
2

u1
3

u1
4

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 3.12: Definition of the sets U1
j for j ∈ [k] in the proof of Lemma 3.21.

implies that for every x ∈ V ′ \ VH there is a unique vertex v ∈ VH that is closest to x in G′. For each
vertex x ∈ Xi1 \ VH , let v be this unique vertex in VH that is closest to x in G′ and note that there
is some j ∈ [k] such that v ∈ N1

j . Now, let the glueing vertex of x be the glueing vertex of v. Then,
every x ∈ Xi1 has a unique glueing vertex u and G′ contains an x,u-path that uses only vertices whose
glueing vertex is u, and this x,u-path is unique due to (H4)-(H6). For every j ∈ [k], denote by U1

j the
set of vertices in V ′, whose glueing vertex is u1

j , see Figure 3.12. Note that U1
j and U1

j′ are disjoint for
distinct j, j′ ∈ [k]. By construction,

U1
j ⊆ Fi1,j−1 ∪ Fi1,j ∪M(i1, j) ∪M(i1 + 1, j)

for every j ∈ [k] and U1
j ∩ Xi1 ⊆ Fi1,j−1 ∪ Fi1,j for every j ∈ [k] by the definition of Xi1 . So, (3.10)

implies that |U1
j ∩ Z1| ≤ 2` for every j ∈ [k].

Let J1 = {j ∈ [k] : U1
j ∩ Z1 6= ∅} and note that |J1| ≥

⌈
|Z1|
2`

⌉
= d′. For every j ∈ J1, let x1

j be an
arbitrary vertex in U1

j ∩ Z1 and denote by P 1
j the unique x1

j ,u1
j -path in G′ that uses only vertices in U1

j .
Note that V (P 1

j) ∩ VH ⊆ N1
j for all j ∈ J1. Define analogously N2

j , u2
j , and U2

j for all j ∈ [k], J2, as
well as x2

j and P 2
j for all j ∈ J2 using the set Z2 ⊆ Xi2 instead of Z1 ⊆ Xi1 . The aim is to find

⌈ 1
2d
′⌉

edge-disjoint paths from
{
x1
j : j ∈ J1

}
to
{
x2
j : j ∈ J2

}
.

By construction, the set U1
j1

intersects the set U2
j2

if and only if j1 = j2 and i2 ∈ {i1, i1 + 1}. To make
these sets disjoint in the case that i2 = i1 or i2 = i1 + 1, do the following for every j ∈ J1 ∩ J2. Join the
vertices x1

j and x2
j by a path that uses only vertices in U1

j ∪ U2
j , delete j from J1 and J2, and decrease d′

by one. Hence, in the following, we may assume that U1
j1

does not intersect U2
j2

for every j1 ∈ J1 and
every j2 ∈ J2.
Let Z̃1 = {(i1, j) : j ∈ J1} and Z̃2 = {(i2, j) : j ∈ J2}. As k ≥ 8, |Z̃1| ≥ d′, and |Z̃2| ≥ d′,

Lemma 3.23 implies that there are
⌈ 1

2d
′⌉ vertex-disjoint Z̃1,Z̃2-paths in the grid H̃, such that none of

71

Chapter 3 Planar Graphs

the paths uses a vertical edge in a column C̃i with i ∈ If or a horizontal edge in a row R̃j with j ∈ Jf ,
where If = {i1, i1 + 1, i2, i2 + 1} ∩ [k] and Jf = {j ∈ [k] : R̃j ∩ (Z̃1 ∪ Z̃2) = ∅}. Let P̃ be the set of these
Z̃1,Z̃2-paths in H̃. For every path P̃ ∈ P̃ , with ends (i1, j1) and (i2, j2), let P be the u1

j1
,u2
j2
-path in H that

uses only vertices inM(V (P̃)). Such a path always exists and is unique as u1
j1
∈M(i1, j1), u2

j2
∈M(i2, j2),

and the subgraph of H induced by M(V (P̃)) is a tree due to (H5) and (H6). Let P be the set containing
the path P for every path P̃ ∈ P̃. Due to the constraints on the paths in Lemma 3.23, it follows that,
for every j ∈ J1 and every i ∈ If , the vertex (i, j) can only be used in a path P̃ ∈ P̃ if (i, j) or (i− 1, j)
is an end of P̃ and similarly for every j ∈ J2. By the construction of P and because U1

j1
∩ U2

j2
= ∅ for

every j1 ∈ J1 and every j2 ∈ J2 due to the previous assumption, every u1
j1
,u2
j2
-path in P uses neither a

vertex in U1
j for any j ∈ J1 \ {j1} nor a vertex in U2

j for any j ∈ J2 \ {j2}. Furthermore, note that none
of the paths in P intersects with a previously constructed path in the case i2 = i1 or i2 = i1 + 1. Every
u1
j1
,u2
j2
-path P in P can be extended to an x1

j1
,x2
j2
-walk by glueing P together with the path P 1

j1
in u1

j1

and the path P 2
j2

in u2
j2
. Let Q be the set of these walks in G′ and note that each such walk starts in Z1

and ends in Z2. Using that V (P 1
j) ⊆ U1

j for all j ∈ J1 and that V (P 2
j) ⊆ U2

j for all j ∈ J2, one can see
that the walks in Q are pairwise vertex-disjoint. Shortening the walks to paths and further shortening
paths that use several vertices in Z1 or Z2, if necessary, gives the desired

⌈ 1
2d
′⌉ edge-disjoint Z1,Z2-paths

and shows that (P3) is satisfied. 2

Observe that for deriving the properties (H5) and (H6) in the previous proof, it was only used that H is
a minimal graph that contains a k×k grid as a minor. As these properties will be used again in Section 3.3,
they are stated once more in the next proposition.

Proposition 3.24.
Let k ≥ 3 and let H = (VH , EH) be a minimal graph containing a k×k grid as a minor. Then, VH can be
partitioned into non-empty sets Mi,j with i, j ∈ [k] such that contracting Mi,j to one vertex (i, j) results
in the k×k grid. Every such partition of VH satisfies the following.

a) For all i, j ∈ [k], the graph H[Mi,j] is a tree.
b) For all i, j, i′, j′ ∈ [k] that satisfy |i − i′| + |j − j′| = 1, there is exactly one edge in H joining a

vertex in Mi,j to a vertex in Mi′,j′ .
For all i, j, i′, j′ ∈ [k] with (i, j) 6= (i′, j′) and |i− i′|+ |j − j′| 6= 1, there is no edge in H joining a
vertex in Mi,j to a vertex in Mi′,j′ .

Consider a bisection (B,W) in a (γ, k, c)-path-prosperous graph G and let G′ and X be as in Defini-
tion 3.20. Intuitively, there must be a cluster in X with many vertices in B as well as a cluster with many
vertices in W , where many vertices refers to a linear fraction of the vertices in the cluster. Then, (P3)
guarantees many edge-disjoint paths that start in B and end in W , which will now be used to derive the
lower bound on the width of a minimum bisection in path-prosperous graphs from Lemma 3.22.

Proof of Lemma 3.22. Fix some 0 ≤ γ < 1
2 and let G = (V,E) be an arbitrary (γ, k, c)-path-prosperous

graph with |V | even. Then, there is a subgraph G′ = (V ′, E′) ⊆ G and a collection of clusters X = (Xi)i∈I
such that the properties (P1)-(P3) in Definition 3.20 are satisfied and |V ′| ≥ (1− γ) |V |, which is equivalent
to

|V \ V ′| ≤ γ |V | . (3.14)

Let (B,W) be an arbitrary bisection in G. The aim is to show that eG(B,W) ≥
(1

2 − γ
)
ck, which then

completes the proof of the lemma. Using |B| = 1
2 |V |, it follows that

|B ∩ V ′| ≥ |B| − |V \ V ′|
(3.14)
≥

(1
2 − γ

)
|V | ≥

(1
2 − γ

)
|V ′| . (3.15)

72

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

The fact that (Xi)i∈I is a partition of V ′ due to (P1) yields
∑

i∈I

∣∣Xi∩B
∣∣ = |B ∩ V ′|

(3.15)
≥

(1
2 − γ

)
|V ′| =

(1
2 − γ

)∑

i∈I

∣∣Xi
∣∣ ,

which implies that there exists an iB ∈ I with |XiB∩B| ≥
(1

2 − γ
)
|XiB |. Analogously, one can argue that

there exists an iW ∈ I with |XiW∩W | ≥
(1

2 − γ
)
|XiW |. Using (P2), it follows that |XiB∩B| ≥

(1
2 − γ

)
k

and |XiW ∩W | ≥
(1

2 − γ
)
k. Let d := min{|XiB ∩ B|, |XiW ∩W |, k}, which satisfies

(1
2 − γ

)
k ≤ d ≤ k.

Now, choose ZB ⊆ XiB∩B and ZW ⊆ XiW∩W with |ZB | = |ZW | = d. There are at least cd edge-disjoint
ZB ,ZW -paths in G′ by (P3) and, hence, also in G. Each of these paths has length at least one, i. e., it
contains at least one edge, since ZB ∩ ZW ⊆ B ∩W = ∅. Consequently, each path contains at least one
cut edge, which is cut by (B,W), and eG(B,W) ≥ cd ≥

(1
2 − γ

)
ck, as we wanted to show. 2

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs
Fix an arbitrary 0 ≤ γ < 1

2 , an integer ` ∈ N, an integer ∆0 ∈ N, and a c > 0. Consider a family G of
planar graphs where each graph G ∈ G on n vertices is (γ, k, `)-grid-homogeneous with k ≥ c

√
n and

satisfies ∆(G) ≤ ∆0, for example the graphs in Figure 3.5 on Page 59. As mentioned in Section 1.2.2,
there is a constant c′ such that the algorithm contained in Theorem 1.10 is a c′-approximation for
the Minimum Bisection Problem restricted to the class G. So the following questions are at hand:
Given a bounded-degree planar graph, is there a polynomial-time algorithm that checks whether G is
(γ, k, `)-grid-homogeneous for certain values of γ, k, and `? Given a bounded-degree planar graph, is there
a polynomial-time algorithm that computes γ, k, and ` such that G is (γ, k, `)-grid-homogeneous and the
lower bound in Theorem 1.7 is maximized? This section studies such questions related to asking whether
a graph is grid-homogeneous.

Section 3.3.1 gives an overview of the considered problems and states the hardness and approximability
results derived here. The first problem, called the Homogeneous Embedding into a Square Grid
Problem, or short the HEG Problem, focuses on the parameter ` of (γ, k, `)-grid-homogeneous graphs.
The second problem, called the Homogeneous Grid Minor Problem, or short the HGM Problem,
focuses on choosing the subgraph H as in the definition of a (γ, k, `)-grid-homogeneous graph G, i. e.,
a minimal graph containing a k×k grid as a minor that is, roughly speaking, spread homogeneously
through G. All hardness results presented in Section 3.3.1 follow from reductions from a special version of
3-SAT, which is introduced in Section 3.3.2. Sections 3.3.3-3.3.5 present the proofs for the results stated
in Section 3.3.1.

3.3.1 The HEG Problem and the HGM Problem

Consider a connected planar graph G = (V,E) on n vertices that contains a k×k grid as a minor
with k ≥ 5. Let H ⊆ G be a minimal graph that contains a k×k grid as a minor. Furthermore, consider
an embedding of H in the plane, which can be extended to an embedding of G such that all properties
in Definition 3.18 are satisfied for G′ = G, except possibly condition (H2), which says that, for some
fixed ` ∈ N, each face of the induced embedding of H contains at most ` vertices including the vertices
on the boundary of the face. First, the problem of deciding whether (H2) can be satisfied is discussed
under the assumption that G = G′ and H are given as input. This is made precise by stating the HEG
Problem and its optimization version, the Min HEG Problem. There and in the remaining chapter,
the following convention is used. When counting the vertices that are embedded in a face f of a plane
graph, then the vertices on the boundary of f are counted as well.

73

Chapter 3 Planar Graphs

f1

f2v

w

...
...

...

...
...

...

. . .

. . .

. . .

. . .

a) The components ({v}, ∅) and ({w}, ∅) of G− V (H)
each can be embedded in the faces f1 and f2 of H but
not both at the same time.

f1

f2

v
w

...
...

...

...
...

...

. . .

. . .

. . .

. . .

b) If the component ({v}, ∅) is embedded in the face f2

of H, then the embedding cannot be extended to an
embedding of G without crossing edges.

Figure 3.13: Choosing where to embed the components of G − V (H). The graph H is colored blue and not
shown completely. The labels f1 and f2 refer to faces of the induced embedding of H.

Homogeneous Embedding Into a Square Grid (=HEG):
Input: k ∈ N with k ≥ 5, ` ∈ N, a connected planar graph G, a plane subgraph H ⊆ G such that H is a
minimal graph containing the k×k grid as a minor.
Question: Can the embedding of H be extended to an embedding of G such that each small face of H
contains at most ` vertices of G and no vertex of V (G) \ V (H) is embedded in the large face of H?

Minimum Homogeneous Embedding Into a Square Grid (=Min HEG):
Input: k ∈ N with k ≥ 5, a connected planar graph G, a plane subgraph H ⊆ G such that H is a minimal
graph containing the k×k grid as a minor.
Question: What is the smallest ` ∈ N such that the embedding of H can be extended to an embedding of G
where each small face of H contains at most ` vertices of G and no vertex of V (G) \ V (H) is embedded in
the large face of H? If there is no such ` ∈ N, return ` =∞.

Consider an instance (k, `,G,H) of the HEG Problem. Roughly speaking, one needs to decide whether
the vertices in V (G) \ V (H) can be distributed homogeneously over the small faces of the plane graph H,
where homogeneous is captured by the parameter `. Similarly, for an instance (k,G,H) of the Min HEG
Problem, one needs to determine the smallest integer ` such that the vertices in V (G) \ V (H) can be
spread homogeneously over the small faces of the plane graph H. Note that the input to both problems
contains an embedding of the graph H and this is not a restriction due to Remark 3.15. Sometimes not
only the optimal value of ` for the instance (k,G,H) of the Min HEG Problem is of interest, but also an
embedding of the graph G with the properties required by the Min HEG Problem. The corresponding
embedding of G for the instance (k,G,H) of the Min HEG Problem is an embedding of G, that is an
extension of the embedding of H, such that no vertex in V (G) \ V (H) is embedded in the large face of H
and, for each small face f of H, there are at most ` vertices of G embedded in the face f , where ` denotes
the optimal solution of the instance (k,G,H) of the Min HEG Problem.
Let (k,G,H) be an instance of the Min HEG Problem and consider a component G̃ of G− V (H).

Then, in every corresponding embedding of G, there is one face of H, where all vertices of G̃ are embedded.
So, to find a solution for the instance (k,G,H) one needs to distribute the components of G− V (H) to
the faces of H. Choosing to embed one component G̃ in a face f of H can influence the possibilities

74

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

to embed other components of G− V (H). Figure 3.13a) shows an example where two components G̃1

and G̃2 of G− V (H) can each be embedded in the faces f1 and f2 of H but not both at the same time.
Figure 3.13b) shows that choosing to embed one component G̃ of G− V (H) in a certain face of H might
yield a plane embedding of G[V (H) ∪ V (G̃)] that cannot be extended to a plane embedding of G.

Recall Definition 3.18, which defined a (γ, k, `)-grid-homogeneous graph G, and denote by G′ and H
the subgraphs therein. If there is an edge e ∈ E(G′) \ E(H) such that G′′ = G′ − e is connected, then
the properties required in Definition 3.18 are also satisfied when using G′′ instead of G′. If G′ − e is not
connected for every e ∈ E(G′) \ V (H), then the problems displayed in Figure 3.13 cannot occur. More
precisely, when constructing an embedding of G, then choosing to embed one component of G′ − V (H) in
a face f of H does not affect the choices for embedding other components of G′ − V (H). Therefore, the
following version of the HEG Problem is defined. Let Simplified Homogeneous Embedding Into a
Square Grid, or short Simplified HEG, denote the restricted version of the HEG Problem, where
the graph G has the additional property that G− e is not connected for every e ∈ E(G) \ E(H). Define
analogously a restricted version of the Min HEG Problem, which is denoted by Simplified Minimum
Homogeneous Embedding Into a Square Grid, or short Simplified Min HEG. Observe that the
property that G− e is not connected for every e ∈ E(G) \E(H) immediately implies that G is planar and
that G has an embedding in the plane that is an extension of the embedding of the plane graph H, where
no vertex in V (G) \ V (H) is embedded in the large face of H.

The Simplified Min HEG Problem is similar to the following scheduling problem, which is examined
by Lenstra, Shmoys, and Tardos in [LST90]. There, jobs need to be distributed to unrelated machines,
which means that the processing time of a job depends on the machine to which it is assigned.

Scheduling on Unrelated Parallel Machines (=UPM Scheduling):
Input: number of jobs n′ ∈ N, number of machines m′ ∈ N, makespan `′ ∈ N, processing time p′i,j ∈ N of
job i on machine j for each i ∈ [n′] and j ∈ [m′].
Question: Is there a schedule such that all jobs are processed within `′ time units?

Min Scheduling on Unrelated Parallel Machines (=Min UPM Scheduling):
Input: number of jobs n′ ∈ N, number of machines m′ ∈ N, processing time p′i,j ∈ N of job i on machine j
for each i ∈ [n′] and j ∈ [m′].
Question: What is the smallest number `′ ∈ N such that all jobs can be processed within `′ time units?

The UPM Scheduling Problem is NP-complete in the strong sense, since the more restricted
version, where pi,j = pi,j′ for all i ∈ [n′] and all j, j′ ∈ [m′] is required, is NP-complete in the strong
sense, see Problem SS8 in [GJ79]. Next, it is argued that each instance of the Simplified HEG
Problem can be converted into an equivalent instance of the UPM Scheduling Problem. Consider
an instance I = (k, `,G,H) of the Simplified HEG Problem. Let there be a machine for each small
face of H, i. e., m′ = (k − 1)2. Moreover, let there be a job for each component G̃ of G− V (H) and for
each face of H, i. e., n′ is the number of components of G− V (H) plus (k − 1)2. Define `′ = `. Whenever
a component G̃ of G− V (H) can be embedded in the small face f of H let the processing time of the job
corresponding to G̃ on the machine corresponding to f be the number of vertices of G̃ and otherwise define
this processing time to be `+ 1. To take care of the vertices on the boundary of each small face f of H,
define the processing time of the job corresponding to f as the number of vertices on the boundary of f
when scheduled on the machine corresponding to f and `+ 1 when scheduled on any other machine. This
defines an instance I ′ = (n′,m′, `′, (p′i,j)) of the UPM Scheduling Problem. Clearly, any embedding
of G that shows that I is a yes-instance of the Simplified HEG Problem corresponds to a schedule of

75

Chapter 3 Planar Graphs

length at most `′ for the instance I ′ of the UPM Scheduling Problem. Observe that, in any feasible
schedule of length at most `′ for the instance I ′, each job corresponding to a face f is assigned to the
machine corresponding to f . Moreover, each job corresponding to a component G̃ of G−V (H) is assigned
to a machine that corresponds to a small face f of H such that G̃ can be embedded in f . Hence, the
Simplified HEG Problem is a special version of the UPM Scheduling Problem.

On the positive side, it is known that there is a polynomial-time algorithm that finds a schedule whose
length is at most twice the optimal length for each instance of the Min UPM Scheduling Problem,
i. e., there is a 2-approximation for the Min UPM Scheduling Problem, see Theorem 2 in [LST90].
Recall that an algorithm is called an α-approximation for a minimization problem if it runs in polynomial
time and it returns a solution that has cost at most α times the cost of an optimal solution. This implies
the following corollary.

Corollary 3.25.
There is a 2-approximation for the Simplified Min HEG Problem.

On the negative side, it is NP-hard to approximate an optimal solution of the Min UPM Scheduling
Problem within a factor less than 3

2 , meaning that, unless P = NP, there is no algorithm computing
a schedule of length strictly less than 3

2 the optimum length in polynomial time, see Theorem 5 and
Corollary 2 in [LST90]. This does not yet imply that it is NP-hard to approximate an optimal solution
of the Simplified Min HEG Problem within a factor smaller than 3

2 and, indeed, it seems that the
reduction used in [LST90] cannot be modified to a reduction for the HEG Problem. The reduction in
the proof of Theorem 5 in [LST90] is from a problem called 3-Dimensional Matching, which considers
a hypergraph on a vertex set A ∪ B ∪ C, where |A| = |B| = |C| = n′′ and whose edge-set is a subset
of A× B × C. The question is whether there are n′′ edges whose union is A ∪B ∪ C, i. e., each vertex
in A∪B∪C is in exactly one of the edges. From an instance of the 3-Dimensional Matching Problem,
they create an instance of the UPM Scheduling Problem with processing times in {1, 2, 3} and one
asks whether there is a schedule of length 2. Hence, one can conclude that the UPM Scheduling
Problem is NP-complete, even when all processing times are in {1, 2, 3} and it is asked for a schedule of
length 2. So the following result for the HEG Problem is not surprising.

Theorem 3.26.
The HEG Problem is NP-hard, even for ` = 6.

The proof for the previous theorem is presented in Section 3.3.3. There, the Planar Monotone
3-SAT Problem is reduced to the HEG Problem, where all components of G− V (H) have size one or
two. It will follow that, even for ` = 6, the HEG Problem is NP-hard. Here, the approach of a reduction
from the 3-Dimensional Matching Problem is not considered, as it seems hard to deal with the
geometric restrictions imposed by the grid in the HEG Problem compared to the UPM Scheduling
Problem.
Observe also that, for ` = 5, the Simplified HEG Problem can be solved in polynomial time in

the following way. Let (k, `,G,H) be an instance of the Simplified HEG Problem with ` = 5. First,
the algorithm checks whether each small face of the plane graph H contains at most five vertices on
its boundary, which takes O(‖H‖) time by Lemma 2.26 as ∆(H) ≤ 4 by Proposition 3.16. If not, it
returns no. So, from now on, assume that every small face of H has at most five vertices on its boundary.
Note that each small face of H has at least four vertices on its boundary and that the small faces of H
with four vertices on their boundary are the only faces of H in which vertices from V (G) \ V (H) can
be embedded, when trying to construct an embedding that shows that (k, 5, G,H) is a yes-instance of

76

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

the Simplified HEG Problem. Next, the algorithm computes a list Lface of all small faces of H that
contain exactly four vertices on their boundary. Note that every edge in G[V (H)] is also an edge of H
and, hence, is already embedded. Deciding whether (k, 5, G,H) is a yes-instance of the Simplified HEG
Problem means to decide whether the vertices in V (G) \ V (H) can be distributed to the faces in Lface

such that each face f in Lface receives at most one of these vertices and, if a face f receives a vertex v,
then v can be embedded in f . Next, the algorithm computes a list Lcomp of all components of G− V (H),
which takes O(‖G‖) time by Lemma 2.25. If there is a component that contains two or more vertices, the
algorithm returns no. So assume that every component of G− V (H) contains exactly one vertex. Then,
the algorithm checks which component in Lcomp can be embedded in which face in Lface. Consider a
component G̃ in Lcomp, which is an isolated vertex v in G− V (H) that has precisely one neighbor w in G
as (k, 5, G,H) is an instance of the Simplified HEG Problem. Hence, G̃ can be embedded in every
face f that contains w on its boundary. Lemma 2.27 states that, for all vertices w ∈ V (H), lists Lw with
the faces that contain w on their boundary can be computed all together in O(‖H‖) time. The information,
which component can be embedded in which face, is stored in a bipartite graph Gemb, whose vertices
are the entries of Lface and Lcomp. The graph Gemb contains an edge between a component G̃ in Lcomp

and a face f in Lface if and only if the component G̃ can be embedded in the face f . So, (k, 5, G,H) is
a yes-instance of the Simplified HEG Problem if and only if Gemb contains a matching that covers
all vertices representing entries in Lcomp or, equivalently, if a maximum matching in Gemb contains as
many edges as entries of Lcomp. The graph Gemb can be computed in O(‖G‖) time and the algorithm of
Hopcroft and Karp [HK73] can be used to determine the cardinality of a maximum matching in Gemb

in O(‖Gemb‖
√
|V (Gemb)|) time, which is polynomial in ‖G‖.

Next, the minimization version of the HEG Problem, the Min HEG Problem is considered further.
Clearly, the Min HEG Problem is NP-hard. As it is an optimization problem, it is natural to ask
for approximations, i. e., is there an α > 1 such that there is an α-approximation for the Min HEG
Problem. When discussing the relation to the UPM Scheduling Problem, it was mentioned that the
hardness results for the UPM Scheduling Problem do not immediately imply similar hardness results
for the Min HEG Problem, but the following corollary can be derived directly from Theorem 3.26.

Corollary 3.27.
It is NP-hard to approximate the Min HEG Problem within α for every α < 7

6 .

Proof. Fix an arbitrary α < 7
6 . The idea is to show that approximating the Min HEG Problem within α

is at least as hard as solving the HEG Problem for ` = 6, which is NP-complete due to Theorem 3.26.
Assume there is an α-approximation for the Min HEG Problem and let (k, `,G,H) be an arbitrary
instance of the HEG Problem with ` = 6. Then (k,G,H) is an instance of the Min HEG Problem
and applying the α-approximation returns a number `app. If `app ≥ 7, then the optimal value `opt of
the instance (k,G,H) of the Min HEG Problem satisfies `opt ≥ 1

α`app > 6. Therefore, (k, `,G,H)
is a no-instance of the HEG Problem. Otherwise, i. e., if `app < 7, then `opt ≤ `app and `opt ≤ 6
as `opt is an integer. Therefore, (k, `,G,H) is a yes-instance of the HEG Problem. Consequently, an
α-approximation for the Min HEG Problem can be used to solve the HEG Problem. 2

The previous corollary can be improved from 7
6 ≈ 1.166 to 1.5 as stated by the next theorem. Its proof

also relies on Theorem 3.26 but requires to look at the details of the proof of Theorem 3.26 and, hence, is
presented later in Section 3.3.3.

Theorem 3.28.
It is NP-hard to approximate the Min HEG Problem within α for every α < 3

2 .

77

Chapter 3 Planar Graphs

Recall that, as discussed earlier, the UPM Scheduling Problem is NP-hard to approximate within α
for every α < 3

2 as well, but this does not imply that the Min HEG Problem is NP-hard to approximate
within α for every α < 3

2 .
Next, some positive results on the approximability of the Min HEG Problem are presented. Recall

that, as stated in Corollary 3.25, the algorithm by Lenstra et al. in [LST90] yields a 2-approximation for
the Simplified Min HEG Problem. However, this algorithm relies on integer programming, relaxing the
integrality constraints, and rounding techniques. Hence, it is complex to implement and it does not run in
linear time. There are algorithms that compute an embedding of a planar graph in linear time, i. e., O(n)
time for a graph G on n vertices, see Theorem 2.28. Consider an instance (k,G,H) of the Min HEG
Problem. Since H is uniquely embeddable due to Remark 3.15, any embedding of G is an extension of the
given embedding of the plane graph H. This is used to derive a linear-time 9-approximation as presented
in the next lemma. An embedding of G corresponds to an α-approximation for the instance (k,G,H) of
the Min HEG Problem if the embedding of G is an extension of the embedding of the plane graph H,
where no vertex from V (G) \ V (H) is embedded in the large face of H and each small face of H contains
at most α`opt vertices of G, where `opt denotes the optimal solution for the instance (k,G,H).

Lemma 3.29.
Let (k,G,H) be an instance of the Min HEG Problem and denote by n the number of vertices of G.
Any polynomial-time algorithm that computes an embedding of G, which is an extension of the embedding
of the plane graph H such that no vertex of V (G) \ V (H) is embedded in the large face of H, computes
an embedding of G that corresponds to a 9-approximation for the Min HEG Problem. If no edge
in E(G) \ E(H) joins two vertices in H, then such an embedding of G can be computed in O(n) time.

The proof of Lemma 3.29 is presented in Section 3.3.5, where it is also shown that the approximation
ratio is tight. As argued earlier, when introducing the Simplified MIN HEG Problem, the restriction
that G does not contain certain edges, which do not belong to H and can be removed without destroying
the connectivity of G, is little. Observe that the restriction in the last lemma is weaker than requiring
that (k,G,H) is an instance of the Simplified Min HEG Problem. Given an arbitrary instance (k,G,H)
of the Min HEG Problem, it is easy to remove all edges in E(G) \ E(H) that join two vertices in H
in O(n) time, where n denotes the number of vertices of G. Indeed, recall that V (G) = [n] and consider
the following algorithm. First, the algorithm initializes a binary array AH of length n with zeros, which
takes O(n) time. Then, it set to one all entries of AH that correspond to vertices in H by traversing H
with a depth-first search to obtain a list of the vertices in H, which takes time proportional to ‖H‖ ≤ ‖G‖
by Lemma 2.25. Afterwards, for each vertex v ∈ V (H), the algorithm traverses the adjacency list of v
in G. Whenever an entry u ∈ V (H) is discovered, the algorithm deletes u from the adjacency list of v
in G if and only if u is not a neighbor of v in H, i. e., if and only if {u, v} is not an edge of H. Observe
that the array AH can be used to check in constant time whether u ∈ V (H) and, if so, it takes constant
time to check whether u is a neighbor of v in H as ∆(H) ≤ 4 implies that the adjacency list of u in H
can be traversed in constant time. Therefore, the traversals of the adjacency lists of G take O(‖G‖) time
together. Consequently, the entire procedure takes O(n+ ‖G‖) = O(n) time by Corollary 2.9.

When considering the simplified version of the Min HEG Problem and choosing the embedding of G
in Lemma 3.29 a bit more carefully, then the following result is obtained.

Theorem 3.30.
There is a 5-approximation for the Simplified Min HEG Problem that runs in O(n

√
n) time when given

an instance (k,G,H) where G is a graph on n vertices. Furthermore, without increasing the asymptotic
running time, the algorithm can return a corresponding embedding of G.

78

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

As Lemma 3.29, Theorem 3.30 is also proved in Section 3.3.5. There, it is also shown that the
approximation ratio is tight with respect to the used construction. The reason for considering only
instances (k,G,H) of the simplified version of the Min HEG Problem in Theorem 3.30, is that when
extending the embedding of H to an embedding of G and choosing to embed one component of G− V (H)
in a small face of H, then this does not affect the possibilities where the other components of G− V (H)
can be embedded.
Recall Definition 3.18, which defines (γ, k, `)-grid-homogeneous graphs, and consider a (γ, k, `)-grid-

homogeneous graph G with subgraphs G′ and H as in Definition 3.18. The HEG Problem focuses on
the parameter ` or, more precisely, when G, G′, and H are given to find a minimum ` and a corresponding
embedding of G′ such that the properties of Definition 3.18 are satisfied. Now, the problem of choosing
the subgraph H is considered, i. e., finding an embedding of G′ and a subgraph H ⊆ G′ that is a minimal
graph containing a k×k grid as a minor and that is spread homogeneously through the graph G′, which
is now defined in detail.

Homogeneous Grid Minor (=HGM):
Input: k ∈ N with k ≥ 5, ` ∈ N, a connected planar graph G.
Question: Is there a subgraph H ⊆ G such that H is a minimal graph containing a k×k grid as a minor
and an embedding of G in the plane such that each small face of the induced embedding of H contains at
most ` vertices of G and no vertex from V (G) \ V (H) is embedded in the large face of H?

Consider an instance (k, `,G) of the HGM Problem. One part of the HGM Problem is to decide
whether the graph G contains a k×k grid as a minor. In general, it is NP-complete to decide whether an
arbitrary graph contains a k×k grid as a minor for an arbitrary integer k that is part of the input [DB13]
and it is open whether the problem remains NP-complete when restricted to planar graphs. For every
constant ε > 0, there is an algorithm that, when given a planar graph G on n vertices, computes an
integer k with k ≥ 1

3+ε grid(G) such that G contains a k×k grid as a minor in O(n2 logn) time [GT11].
As the HGM Problem contains the HEG Problem as a subproblem and the reduction used to

prove Theorem 3.26 in Section 3.3.3 constructs a graph G that contains exactly one subgraph H that is a
minimal graph containing a k×k grid as a minor, it follows that the HGM Problem is NP-complete,
even when only instances (k, `,G) with ` = 6 are considered. Therefore, we focus on instances (k, `,G) of
the HEG Problem where G is uniquely embeddable. Recall that an embedding of G can be computed
in O(n) time by Theorem 2.28. So, it is not needed to choose an embedding of G and once the subgraph H
is chosen, there is nothing more to do as, for every vertex v ∈ V (G) \ V (H), it is already determined in
which face of H the vertex v is embedded. Thus, the reduction for showing that the HEG Problem is
NP-complete does not imply that this restricted version of the HGM Problem is NP-complete.

Theorem 3.31.
The HGM Problem is NP-complete even when restricted to instances (k, `,G) where G is uniquely
embeddable.

The proof of this theorem uses similar ideas as the proof of Theorem 3.26 and is presented in Section 3.3.4.

3.3.2 The SAT Problem and Selected Variants

Consider a set U = {x1, x2, . . . , xn} of n Boolean variables, i. e., xi ∈ {False,True} for all i ∈ [n]. A
Boolean formula over U is built from the variables in U , parenthesis, and the following operators, where x
and y denote Boolean variables:

79

Chapter 3 Planar Graphs

• conjunction ∧, that is, x ∧ y is true if x and y are both true,
• disjunction ∨, that is, x ∨ y is true if at least one of x and y is true, and
• negation x̄, that is, x̄ is true if x is false and vice versa.

A Boolean formula φ over U is said to be satisfiable if there is an assignment of True and False to the
variables in U such that φ evaluates to True. For example,

φ1 := (x1 ∨ x̄1 ∨ x2 ∨ x̄2) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄3)

is a Boolean formula over the set {x1, x2, x3}. When setting x1 = True, x2 = False, and x3 = False,
then

φ1 = (True ∨ False ∨ False ∨True) ∧ (False ∨ False ∨ False) ∧ (True)
= True ∧ False ∧True = False.

Setting x1 = True, x2 = True, and x3 = False gives

φ1 = (True ∨ False ∨True ∨ False) ∧ (False ∨True ∨ False) ∧ (True)
= True ∧True ∧True = True,

which shows that φ1 is satisfiable. The famous NP-complete SAT Problem is the following.

SAT Problem:
Input: a Boolean formula φ.
Question: Is φ satisfiable?

Theorem 3.32 (Cook 1971, see Problem LO1 in [GJ79]).
The SAT Problem is NP-complete.

A literal is a variable or the negation of a variable. A clause is a disjunction of literals or a single literal.
A Boolean formula is said to be in conjunctive normal form if it is a conjunction of clauses. For example,
the Boolean formula φ1 is in conjunctive normal form. It has three clauses, namely x1 ∨ x̄1 ∨ x2 ∨ x̄2,
x̄1 ∨ x2 ∨ x3, and x̄3. Here, only Boolean formulas in conjunctive normal form are considered. Note that a
Boolean formula φ in conjunctive normal form is completely described by its set of variables U and its
set of clauses C. Therefore, we slightly abuse notation and write φ = (U , C) in the following. A Boolean
formula φ = (U , C) in conjunctive normal form is a 3-SAT-formula if each clause in C uses at most three
literals. The Boolean formula φ1 is not a 3-SAT formula as the first clause uses four literals. The Boolean
formula

φ2 := (x̄1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄3 ∨ x4) ∧ (x1 ∨ x2) ∧ (x2 ∨ x̄3 ∨ x̄4)

is a 3-SAT-formula. The SAT Problem remains NP-complete when restricted to 3-SAT-formulas.

3-SAT Problem:
Input: a 3-SAT-formula φ = (U , C).
Question: Is φ satisfiable?

Theorem 3.33 (Karp 1972, see Problem L02 in [GJ79]).
The 3-SAT Problem is NP-complete.

80

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

x1 x2 x3 x4

C1

C2

C3
C4

a) Graph Gφ2 .

C2

C4

x1 x2 x3

C1 C2 C3

b) Graph Gφ4 .

Figure 3.14: Examples of planar and non-planar 3-SAT formulas. Vertices representing variables are colored
light blue, vertices representing clauses are colored dark blue.

Variables and negations of variables are called positive literals and negative literals, respectively. Similarly,
a clause is positive if it only contains positive literals and it is negative if it only contains negative literals.
A clause that is either positive or negative is called monotone and a Boolean formula in conjunctive
normal form is called monotone if each of its clauses is monotone. Neither φ1 nor φ2 is monotone, because
they both contain the clause x̄1 ∨ x2 ∨ x3, which is not monotone. The formula

φ3 = (x1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3 ∨ x̄4) ∧ (x3 ∨ x4 ∨ x5).

is an example of a monotone formula with two positive clauses and one negative clause. The SAT
Problem and the 3-SAT Problem both remain NP-complete when restricted to monotone formulas.

Monotone SAT Problem:
Input: a SAT-formula φ in conjunctive normal form such that φ is monotone.
Question: Is φ satisfiable?

Monotone 3-SAT Problem:
Input: a monotone 3-SAT-formula φ = (U , C).
Question: Is φ satisfiable?

Theorem 3.34 (Gold 1978 [Gol78], see Problem LO2 in [GJ79]).
The Monotone SAT Problem and the Monotone 3-SAT Problem are NP-complete.

Next, the concept of planarity is introduced. Let φ = (U , C) be a Boolean formula in conjunctive normal
form. Consider the bipartite graph Gφ on the color classes U and C, where two vertices x ∈ U and C ∈ C
are adjacent if and only if the clause C uses x or its negation x̄. If Gφ is a planar graph, then φ is called
planar. Figure 3.14a) shows that φ2 is planar. Not every 3-SAT formula is planar, as for example the
associated graph of

φ4 = (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄3)

is isomorphic to the complete bipartite graph K3,3, see Figure 3.14b), and K3,3 is known to be non-planar,
see Corollary 4.2.11 in [Die12]. When the 3-SAT Problem is restricted to planar formulas, it remains
NP-complete.

81

Chapter 3 Planar Graphs

x1 x2 x3 x4

C1 = (x̄1 ∨ x2 ∨ x3)

C2 = (x̄1 ∨ x̄3 ∨ x4)

C3 = (x1 ∨ x2) C4 = (x2 ∨ x̄3 ∨ x̄4)

Figure 3.15: A rectilinear representation of φ2. Similarly to Figure 3.14, rectangles representing variables are
colored light blue and rectangles representing clauses are colored dark blue.

Planar 3-SAT Problem:
Input: a planar 3-SAT formula φ = (U , C).
Question: Is φ satisfiable?

Theorem 3.35 (Lichtenstein 1982 [Lic82], or see Problem LO1 in [GJ79]).
The Planar 3-SAT Problem is NP-complete.

Consider a Boolean formula φ = (U , C) in conjunctive normal form and a drawing, that represents φ,
with the following properties: Each clause in C and each variable in U are represented by a rectangle,
whose sides are horizontal and vertical lines. All rectangles corresponding to variables in U are drawn on a
horizontal line. A rectangle corresponding to a variable x ∈ U is joined to a rectangle corresponding to a
clause C ∈ C with a vertical line segment if and only if C uses the literal x or x̄. None of these vertical line
segments intersects a rectangle and only the rectangles corresponding to C and x are touched. A drawing
with these properties is called a rectilinear representation of φ. See also the example in Figure 3.15.

In [KR92], Knuth and Raghunathan argue that it follows from the reduction in [Lic82] that every
planar 3-SAT formula has a rectilinear representation, where planar is defined as in [Lic82]. Consider a
Boolean formula φ = (U , C) with U = {x1, x2, . . . , xn} and the graph Gφ as defined above. In [Lic82], the
graph G′φ that is obtained from Gφ by adding the edges {xi, xi+1} for all i ∈ [n− 1] and the edge {xn, x1}
is considered, and the Boolean formula φ is called planar if and only if G′φ is planar. Note that this
definition is more restrictive than the one above. It is not hard to see that when the graph G′φ is planar,
then there is a rectilinear representation of φ.
Next, the properties of rectilinear representations and monotone formulas are combined. Consider a

planar 3-SAT-formula φ that is monotone. A monotone rectilinear representation of φ is a rectilinear

x1 x2 x3 x4 x5

C1 = (x1 ∨ x2 ∨ x3)

C2 = (x̄2 ∨ x̄3 ∨ x̄4)

C3 = (x3 ∨ x4 ∨ x5)

Figure 3.16: A monotone rectilinear representation of φ3.

82

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

representation of φ such that all positive clauses are drawn above the variables and all negative clauses
are drawn below the variables, where each variable and each clause were identified with the rectangle
representing it. Figure 3.16 shows a monotone rectilinear representation of φ3. Observe that not every
planar and monotone Boolean formula automatically allows a monotone rectilinear representation, even if
the more restricted version of planarity as in [Lic82] is required. For example,

φ5 = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x3 ∨ x4 ∨ x5)

is monotone and planar, even when the edges {xi, xi+1} for i ∈ [4] and {x5, x1} are added. Note that Gφ3

and Gφ5 are identical, but the requirements for a monotone rectilinear representation are different as the
second clause of φ3 is negative and the second clause of φ5 is positive. So the second clause of φ3 and φ5

need to be drawn below and above the variables, respectively. It is not hard to see that φ5 does not allow
a monotone rectilinear representation. The 3-SAT Problem remains NP-complete when restricted to
instances allowing a monotone rectilinear representation.

Planar Monotone 3-SAT Problem:
Input: a monotone rectilinear representation of a 3-SAT formula φ = (U , C).
Question: Is φ satisfiable?

Theorem 3.36 (de Berg and Khosravi 2010 [BK10]).
The Planar Monotone 3-SAT Problem is NP-complete.

In the remaining section, when a monotone rectilinear representation of a 3-SAT formula is considered,
clauses and variables are identified with the rectangles representing them in the considered monotone
rectilinear representation. The reductions in Section 3.3.3 and Section 3.3.4 are from the Planar
Monotone 3-SAT Problem and use the following notation. Consider an instance of the Planar
Monotone 3-SAT Problem, i. e., a monotone rectilinear representationR of a 3-SAT formula φ = (U , C).
For x ∈ U , denote by L+(x) and L−(x) the set of vertical lines in R that join x to a positive clause in C
and a negative clause in C, respectively. Moreover, for each x ∈ U , define deg+(x) := |L+(x)| as well
as deg−(x) := |L−(x)|, i. e., the number of times that x appears as a positive and as a negative literal
in φ, respectively. If there are two lines joining a variable x to a clause C, i. e., the clause C contains the
variable x twice, then C contributes 2 to deg+(x) or deg−(x) depending on whether C is a positive or a
negative clause. Due to technical reasons, some further assumptions on φ and R are needed and discussed
now. First, one may assume that, for each x ∈ U , there is a clause in which x appears as a positive literal
and there is a clause in which x appears as a negative literal, without loss of generality. Indeed, assume
that there is a variable x ∈ U such that x appears only as a positive literal in φ. The case when x appears
only as a negative literal in φ is analogous. Let φ′ be the formula obtained from φ by removing all clauses
that contain x. It is easy to see that φ′ is satisfiable if and only if φ is satisfiable as every satisfying
assignment of φ′ can be extended to a satisfying assignment of φ by setting x to True. Furthermore, φ′

is monotone and planar, and a monotone rectilinear representation of φ′ can be easily obtained from R.
Second, one may assume that every clause in C contains exactly three literals, as otherwise literals can
be repeated. For example if there is a clause C = (x̄) in C, it can be replaced by C ′ = (x̄ ∨ x̄ ∨ x̄) and
two extra vertical lines joining x and C are added in R. So, one may also assume that, in R, each clause
touches exactly three vertical lines that join the clause to variables. Third, one may assume that, in R,
each variable x ∈ U is split into a positive and a negative half, where the positive half is drawn on the left
and the negative half is drawn on the right, such that all vertical lines in L+(x) touch x at the positive

83

Chapter 3 Planar Graphs

C2 = (x4 ∨ x5 ∨ x5)

C4 = (x̄5 ∨ x̄5 ∨ x̄5)

x1 x2 x3 x4 x5

C1 = (x1 ∨ x2 ∨ x5)

C2 = (x4 ∨ x5)

C3

C3 = (x̄3 ∨ x̄4)C4 = (x̄2 ∨ x̄3 ∨ x̄4)

C5 = (x̄1 ∨ x̄2 ∨ x̄4)

C6 = (x̄5)

a) Drawing of φ6.

x1 x̄1 x2 x̄2 x4 x̄4 x5 x̄5

C1 = (x1 ∨ x2 ∨ x5)

C2 C2 = (x4 ∨ x5 ∨ x5)

C3 = (x̄1 ∨ x̄2 ∨ x̄4) C4 C4 = (x̄5 ∨ x̄5 ∨ x̄5)

b) Drawing of φ′′6 .

Figure 3.17: Modifications on the monotone rectilinear representation to satisfy the extra assumptions.

half and all vertical lines in L−(x) touch x at the negative half. For an example, consider

φ6 := (x1 ∨ x2 ∨ x5) ∧ (x4 ∨ x5) ∧ (x̄3 ∨ x̄4) ∧ (x̄2 ∨ x̄3 ∨ x̄4) ∧ (x̄1 ∨ x̄2 ∨ x̄4) ∧ (x̄5).

The Boolean formula φ6 contains the variable x3 only as a negative literal, so the problem of deciding
whether φ6 is satisfiable can be simplified to deciding whether

φ′6 := (x1 ∨ x2 ∨ x5) ∧ (x4 ∨ x5) ∧ (x̄1 ∨ x̄2 ∨ x̄4) ∧ (x̄5)

is satisfiable. To meet the requirement that each clause contains exactly three literals, let

φ′′6 := (x1 ∨ x2 ∨ x5) ∧ (x4 ∨ x5 ∨ x5) ∧ (x̄1 ∨ x̄2 ∨ x̄4) ∧ (x̄5 ∨ x̄5 ∨ x̄5),

which is satisfiable if and only if φ′6 is satisfiable. Figure 3.17 shows a monotone rectilinear representation
of φ6 as well as a monotone rectilinear representation of φ′′6 that meets the extra requirement on dividing
each variable into a positive and a negative half.

3.3.3 Proof of Hardness Results for the HEG Problem

Here, Theorem 3.26 is derived. First, the following weaker version is proved and then it is discussed how
to modify the reduction to obtain Theorem 3.26.

84

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

Theorem 3.37.
The HEG Problem for ` ≥ 10 is NP-complete.

Idea for the Reduction

The proof of Theorem 3.37 relies on a reduction from the Planar Monotone 3-SAT Problem.
This means that, for any instance I ′ = (φ = (U , C)) of the Planar Monotone 3-SAT Problem, an
instance I = (k, `,G,H) of the HEG Problem is constructed, such that I ′ is a yes-instance of the Planar
Monotone 3-SAT Problem if and only if I is a yes-instance of the HEG Problem. Furthermore,
the instance I needs to be computable from I ′ in time polynomial in the size of I ′. The reduction shows
that the HEG Problem is at least as hard as the Planar Monotone 3-SAT Problem, as the former
one can be used to solve the latter one. In particular, if there was a polynomial-time algorithm solving
the HEG Problem, the reduction shows that there would also be a polynomial-time algorithm for the
Planar Monotone 3-SAT Problem.
The main idea of the reduction is that, if a 3-SAT formula φ is satisfied, then each of its clauses

contains at least one literal that is True, or, equivalently, each clause contains at most two literals that
are False, as each clause contains exactly three literals by assumption. In the following proof, a graph Gφ
is constructed from a subdivision of a square grid Hφ. For each clause C of φ, a face fC of Hφ will
be specified and three little graphs, that are related to the literals used in C, will be attached to its
boundary. The parameter ` and the subgraphs will be chosen such that at most two of the subgraphs can
be embedded inside fC if the embedding of Gφ has the properties required by the HEG Problem. This
corresponds to the idea that the clause C contains at most two literals that are False, when a satisfying
assignment of φ is considered. So, in the following proof, the little graphs added to Hφ can be interpreted
as the False of a truth-assignment. Furthermore, for each variable x, a little graph G̃ is added to Hφ and
two faces f+

x and f−x of Hφ, called the positive and the negative face of x, are specified, such that G̃ can
only be embedded in f+

x or f−x . The rectilinear representation of φ is used to join the faces f−x and f+
x of

each variable x to the corresponding faces that represent a clause that contains x. Figure 3.18 gives an
idea for this using the example

φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄2 ∨ x̄2) ∧ (x̄1 ∨ x̄2 ∨ x̄3).

Figure 3.18a) displays a monotone rectilinear representation of φ and Figure 3.18b) shows the graph Hφ

with some faces colored according to the monotone rectilinear representation in Figure 3.18a). To obtain Gφ
from Hφ, some little graphs are attached to the boundaries of these colored faces, such that each of
these little graphs can only be embedded in a colored face when extending the embedding of Hφ to an
embedding of Gφ. Therefore, the embedding of all other faces of Gφ is completely determined by the
embedding of Hφ.
Consider a variable x and let G̃ be the subgraph added to Hφ due to x. When G̃ is embedded in the

positive face f+
x we think of x sending the value False to all positive clauses that contain x. Similarly,

when G̃ is embedded in the negative face f−x we think of x sending the value False to all negative
clauses that contain x̄. More precisely, consider an embedding of Gφ with the properties required by
the HEG Problem. If G̃ is embedded in f+

x and C is a positive clause containing x, meaning that the
assignment x = False is considered, which does not help to satisfy the clause C, then there is a subgraph
attached to the boundary of fC that needs to be embedded in fC . Furthermore, if G̃ is embedded in f−x
and C is a negative clause containing x̄, meaning that the assignment x = True is considered, which
does not help to satisfy the clause C, then there is a subgraph attached to the boundary of fC that needs
to be embedded in fC .

85

Chapter 3 Planar Graphs

x1 x̄1 x2 x̄2 x3 x̄3

C1 = (x1 ∨ x2 ∨ x3)

C2

C2 = (x2 ∨ x2 ∨ x3)

C3

C3 = (x̄2 ∨ x̄2 ∨ x̄2)

C4 = (x̄1 ∨ x̄2 ∨ x̄3)

a) Monotone rectilinear representation of φ.

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

fC1

fC2

fC3

fC4

f+
x1 f−

x1 f+
x2 f−

x2 f+
x3 f−

x3

b) The graph Hφ. To obtain the graph Gφ from Hφ, some little graphs are added to the boundaries of the colored
faces.

Figure 3.18: Idea for the reduction to prove Theorem 3.37.

86

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

Notation

Consider an instance of the Planar Monotone 3-SAT Problem, i. e., a monotone rectilinear represen-
tation R of a 3-SAT formula φ = (U , C). Define n := |U| and m := |C|. Recall that the rectangles in R are
identified with the corresponding variables and clauses in C ∪ U . As discussed in the end of Section 3.3.2,
we may assume without loss of generality that each variable in U is used at least once as a positive literal
and at least once as a negative literal, and that each clause in C is a disjunction of three not necessarily
distinct literals. Furthermore, in R, each variable x can be split into a positive and a negative half, where
the positive half is drawn on the left and the negative half is drawn on the right, such that all vertical
lines in L+(x) touch x at the positive half and all vertical lines in L−(x) touch x at the negative half.
Set k := 6m + n and let Hφ be the graph obtained from the k×k grid G̃k by subdividing each edge

once. Recall that the vertex set of G̃k is {(i, j) : i ∈ [k], j ∈ [k]}. A vertex v in Hφ that subdivides
an edge e of G̃k is called a subdivision vertex and is denoted by ve. Clearly, Hφ is a minimal graph
containing a k×k grid as a minor. Fix an embedding of Hφ in the plane and recall that Hφ is uniquely
embeddable due to Remark 3.15. For the figures throughout the proof, the embedding of G̃k with the
following properties is considered. For i, j ∈ [k], the vertex (i, j) is embedded at the point (i, j) in a
coordinate system whose horizontal axis refers to the first coordinate and whose vertical axis refers to the
second coordinate. So, (1, 1) is drawn in the bottom left corner and (k, k) is drawn in the top right corner.
For each small face f of Hφ, there are integers i, j ∈ [k − 1] such that f is bounded by a cycle on the
vertices (i, j), (i+ 1, j), (i+ 1, j + 1), (i, j + 1) and the four subdivision vertices between them. Then,
• v{(i,j),(i+1,j)} is called the bottom subdivision vertex of f ,
• v{(i+1,j),(i+1,j+1)} is called the right subdivision vertex of f ,
• v{(i+1,j+1),(i,j+1)} is called the top subdivision vertex of f , and
• v{(i,j+1),(i,j)} is called the left subdivision vertex of f .

For d ∈ N, an f0,fd-face-sequence in Hφ is an alternating sequence of distinct faces and subdivision
vertices (f0, ve1 , f1, ve2 , . . . , ved−1 , fd−1, ved , fd) of Hφ such that the two edges adjacent to veh are on the
boundaries of fh−1 and fh for all h ∈ [d], or equivalently, in G̃k, the edge eh bounds the two faces
corresponding to fh−1 and fh for all h ∈ [d]. The faces fh with h ∈ [d− 1] are called the internal faces
of (f0, ve1 , f1, . . . , ved , fd).

Attachments, Pushing, and Pulling

To construct the graph G, two types of graphs called attachments will be added to certain subdivision
vertices of Hφ. Let ve be a subdivision vertex of Hφ. A light attachment on ve is one new vertex w that
is joined to ve by an edge. A heavy attachment on ve consists of two new, adjacent vertices w1 and w2,
where w1 is joined to ve by an edge. Consider an arbitrary graph Ĝ that is obtained from Hφ by adding
heavy and light attachments to subdivision vertices. Note that, as k ≥ 3 and each cycle in Ĝ is a cycle
in Hφ, in any embedding of Ĝ, each face f̂ corresponds to exactly one face f of the embedding of Hφ

such that each vertex on the boundary of f is also on the boundary of f̂ . Hence, it is not necessary
to distinguish between faces of Ĝ and Hφ. In the following, unless specified differently, the term face
always refers to a small face of Hφ or some graph Ĝ that is obtained from Hφ by adding light and heavy
attachments. Define ` := 10. An embedding of a graph Ĝ with Hφ ⊆ Ĝ is said to be feasible if each small
face of Ĝ contains at most ` vertices of Ĝ, and no vertex in V (Ĝ) \ V (Hφ) is embedded in the large face
of Hφ. The aim of the proof is to construct a graph Gφ that has a feasible embedding if and only if φ is
satisfiable. Observing that the boundary of each small face of Hφ contains 8 vertices immediately implies
the following claim.

87

Chapter 3 Planar Graphs

Claim 3.38.
Let Ĝ be an arbitrary graph obtained by adding light and heavy attachments to Hφ and consider a feasible
embedding of Ĝ. Then, in each small face,
• there are at most two light attachments and no heavy attachments embedded, or
• there are no light attachments and at most one heavy attachment embedded.

In particular, no small face has a heavy and a light attachment embedded in it.

Consider a graph Ĝ obtained from Hφ by adding heavy and light attachments to subdivision vertices and
let F := (f0, ve1 , f1, . . . , ved , fd) be a face-sequence for some integer d ≥ 1 such that, in Ĝ, there is exactly
one attachment on each subdivision vertex veh for all h ∈ [d]. An embedding of Ĝ is said to push along F
if the attachment on veh is embedded in fh for all h ∈ [d], and it is said to pull along F if the attachment
on veh is embedded in fh−1 for all h ∈ [d]. Denote by Ĝ0 the graph obtained from Ĝ by removing all
attachments, except the ones on the subdivision vertices veh for all h ∈ [d]. The face-sequence F is said to
be forced to push if every feasible embedding of Ĝ0, where the attachment on ve1 is embedded in f1, is
pushing along F . The next claim follows immediately from Claim 3.38.

Claim 3.39.
For d ≥ 1, consider a face-sequence F = (f0, ve1 , f1, . . . , ved , fd) in Hφ. Let Ĝ be an arbitrary graph
obtained by adding one attachment to each subdivision vertex vh with h ∈ [d]. Assume that if, for h ∈ [d−1],
there is a light attachment added to vh, then there is a heavy attachment added to vh+1. Then, F is forced
to push.

Next, some gadgets are defined, which will then be added to Hφ in order to obtain the graph Gφ. Each
gadget will require a certain number of faces in whose boundary some attachments are added. When the
boundary of a face has been modified according to a gadget Y, the face is called a Y face. In the following
figures, light attachments are colored violet and heavy attachments are colored red. Edges and vertices
that do not belong to the displayed gadget are colored gray.

Variable Gadgets

A variable gadget for a Boolean variable x consists of a decision gadget and several bifurcation gadgets,
which are described now. The decision gadget consists of two small faces that are next to each other with
a light attachment added to the subdivision vertex that they have in common, see Figure 3.19a). More
precisely, let ve be a subdivision vertex such that e is a vertical edge of G̃k that is not on the boundary of
the large face of G̃k. Let f+ be the face whose right subdivision vertex is ve and let f− be the face whose
left subdivision vertex is ve. The faces f+ and f− are called the positive face and the negative face of the
variable x, respectively. The decision gadget is to add a light attachment to ve. This light attachment
that is added to ve is called the decision attachment of x. A positive bifurcation gadget consists of two
faces with one heavy and two light attachments, see Figure 3.19b). More precisely, consider a subdivision
vertex ve1 of an edge e1 such that e1 is a vertical edge of G̃k that is not on the boundary of the large
face of G̃k. The positive bifurcation gadget consists of the faces f and f ′ whose right subdivision vertex
is ve1 and whose left subdivision vertex is ve1 , respectively. A heavy attachment is added to ve1 , one light
attachment is added to the top subdivision vertex ve2 of f , and another light attachment is added to the
left subdivision vertex ve3 of f . The positive bifurcation gadget will be used in a way that there is a
light attachment added to the right subdivision vertex of f ′ and this light attachment belongs to another
gadget, which can be either another positive bifurcation gadget or a decision gadget. The face whose
bottom subdivision vertex is ve2 is called the positive connection face of the positive bifurcation gadget.

88

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

f+ f−
ve

a) A decision gadget.

f f ′

ve1

ve2
ve3

positive
connection

face

b) A positive bifurcation gadget.

f ′ f

ve1

ve2

ve3

negative
connection

face

c) A negative bifurcation gadget.

f+ f−

positive
connection

face

positive
connection

face

negative
connection

face

negative
connection

face

decision
faces

positive bifurcation faces

negative bifurcation faces

d) Complete variable gadget, negative embedding.

Figure 3.19: The variable gadget.

Similarly, there is a negative bifurcation gadget, which is obtained by rotating the positive bifurcation
gadget around 180 degrees, see Figure 3.19c). Also, the negative bifurcation gadget defines a negative
connection face. A face that is either a positive or a negative connection face is called a connection face.

Consider a variable x ∈ U . The variable gadget for x consists of 2 deg+(x) positive bifurcation faces
and 2 deg−(x) negative bifurcation faces, where one positive and one negative bifurcation face are also
decision faces, arranged as in Figure 3.19d). More precisely, let (f1, ve2 , f2, ve3 , . . . , ved , fd) be a face-
sequence with d := 2 deg+(x) + 2 deg−(x) such that veh is the right subdivision vertex of fh−1 and the left
subdivision vertex of fh for all h ∈ [d] \ {1}. For each h ∈ [deg+(x)], the faces f2h−1 and f2h are modified
according to the positive bifurcation gadget. For each integer h with deg+(x)+1 ≤ h ≤ deg+(x)+deg−(x),
the faces f2h−1 and f2h are modified according to the negative bifurcation gadget, and the faces f2 deg+(x)
and f2 deg+(x)+1 are additionally modified according to the decision gadget. Furthermore, the light
attachment on the left subdivision vertex of f1 as well as the light attachment on the right subdivision
vertex of fd are removed.

Before describing two further gadgets, some properties of the variable gadget are stated in the next
claim. The claim uses the following definitions. Consider the graph Ĝ obtained from Hφ by adding one
variable gadget corresponding to a Boolean variable x, and denote by f+ and f− the positive and the

89

Chapter 3 Planar Graphs

negative face of its decision gadget. An embedding of Ĝ is negative at the variable gadget corresponding
to x if it has the following properties:
• the decision attachment of x is embedded in f+,
• for each positive connection face f , the embedding is pushing along the f+,f -face-sequence, whose
internal faces all are positive bifurcation faces, and

• for each negative connection face f , the embedding is pulling along the f−,f -face-sequence, whose
internal faces all are negative bifurcation faces,

see Figure 3.19d) for an example. Similarly, an embedding of Ĝ is positive at the variable gadget
corresponding to x if it has the following properties:
• the decision attachment of x is embedded in f−,
• for each positive connection face f , the embedding is pulling along the f+,f -face-sequence, whose
internal faces all are positive bifurcation faces, and

• for each negative connection face f , the embedding is pushing along the f−,f -face-sequence, whose
internal faces all are negative bifurcation faces.

It is easy to check that Ĝ allows an embedding that is negative at the variable gadget corresponding to x
as well as an embedding that is positive at the variable gadget corresponding to x. Now, Claim 3.38 and
Claim 3.39 imply the following.

Claim 3.40.
Let Ĝ be the graph obtained from Hφ by adding one variable gadget corresponding to a Boolean variable x,
and denote by f+ and f− the positive and the negative face of its decision gadget.

a) For each positive connection face f of the considered variable gadget, the f−,f -face-sequence, whose
internal faces all belong to the variable gadget, is forced to push.

b) For each negative connection face f of the considered variable gadget, the f+,f -face-sequence, whose
internal faces all belong to the variable gadget, is forced to push.

c) The embedding of Ĝ that is negative at the variable gadget corresponding to x is feasible and, in this
embedding, none of the attachments of the variable gadget is embedded in a negative connection face.

d) The embedding of Ĝ that is positive at the variable gadget corresponding to x is feasible and, in this
embedding, none of the attachments of the variable gadget is embedded in a positive connection face.

Clause and Wire Gadgets

A positive clause gadget consists of one small face f to whose boundary three light attachments are added,
as shown in Figure 3.20a). More precisely, a light attachment is added to the following vertices: the
left subdivision vertex of f , the bottom subdivision vertex of f , and the right subdivision vertex of f .
Similarly, a negative clause gadget consists of a small face f to whose boundary three light attachments
are added, but instead of using the bottom subdivision vertex of f , the top subdivision vertex of f is used.
See also Figure 3.20b).
A wire gadget along a face-sequence F consists of at least three faces such that the last face of F is a

clause face and heavy attachments are added along F , see Figure 3.20c). More precisely, let d ≥ 2 and
consider a face-sequence F = (f0, ve1 , f1, . . . , ved , fd), where fd is a clause face and such that there is a
light attachment on ved due to the clause gadget. Then, the wire gadget is to add a heavy attachment
to veh for all h ∈ [d− 1]. When a wire gadget along an f ,f ′-face-sequence is used, then the face f ′ has
to be a clause face and the face f will be chosen as a connection face, such that the wire gadget joins a
variable gadget to a clause gadget. The following claim is a direct consequence of Claim 3.39.

90

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

a) A positive clause gadget.

b) A negative clause gadget.

a

f0

f1

f2 f3 f4

clause face

ve1

ve2

ve3 ve4

positive
connection

face

c) A wire gadget joining a positive connection face to a positive
clause face.

Figure 3.20: The clause and the wire gadget.

Claim 3.41.
Let Ĝ be the graph obtained from Hφ by adding one clause gadget to a face fd and one wire gadget along
some face-sequence F = (f0, ve1 , f1, . . . , ved , fd) with d ≥ 2.

a) The face-sequence F is forced to push.
b) The embedding that is pulling along F is feasible.

Assembling the Graph Gφ

Next, some gadgets will be added to Hφ in order to obtain the desired graph Gφ. Recall that k := 6m+ n

and that Hφ is a subdivision of a k×k grid. The variable gadgets will be added one after another to
the middle row of Hφ. More precisely, let jv =

⌊ 1
2k
⌋
. For each variable x ∈ U , a variable gadget will

be added to small faces whose boundaries have two vertices in Rjv := {(i, jv) : i ∈ [k]} and two vertices
in Rjv+1 := {(i, jv + 1): i ∈ [k]}. Let f1 be the small face whose boundary contains the vertices (1, jv)
and (1, jv + 1) and let fk−1 be the small face whose boundary contains the vertices (k, jv) and (k, jv + 1).
To place the variable gadgets, the k − 1 small faces are considered from left to right, i. e., f1 is considered
first and fk−1 is considered last. Let U = {x1, . . . , xn} and assume that x1, . . . , xn is the order in which
the variables appear in R. Starting from f1, a variable gadget for x1 is added to Hφ, then there is
one face that does not belong to a gadget, and then a variable gadget for x2 is added and so on. In
total 2

∑
x∈U

(
deg+(x) + deg−(x)

)
faces are needed for all variable gadgets together and (n− 1) faces are

needed in between them. As
∑
x∈U

(
deg+(x) + deg−(x)

)
counts each vertical line of R once and each

clause in R touches exactly three vertical lines, the following holds

2
∑

x∈U

(
deg+(x) + deg−(x)

)
+ (n− 1) = 6|C|+ n− 1 = 6m+ n− 1 = k − 1.

Hence, there are enough faces to place all variable gadgets next to each other. Let G1 be the graph
obtained from Hφ by adding the variable gadgets in this way.

For d, d′ ≥ 2, two face-sequences (f0, ve1 , f1, . . . , ved , fd) and (f ′0, ve′1 , f
′
1, . . . , ve′

d′
, f ′d′) are called disjoint

if fh 6= f ′h′ for all h ∈ [d]∪{0} and all h′ ∈ [d′]∪{0} and (f0, ve1 , f1, . . . , ved , fd) and (f ′0, ve′1 , f
′
1, . . . , ve′

d′
, f ′d′)

are called disjoint except for the last face if the only violation to being disjoint is that fd = f ′d′ . In the

91

Chapter 3 Planar Graphs

x
1

x̄
1

x
2

x̄
2

x
3

x̄
3

C
1

=
(x

1
∨

x
2

∨
x

3) C
2

C
2

=
(x

2
∨

x
2

∨
x

3)

C
3

C
3

=
(x̄

2
∨

x̄
2

∨
x̄

2)

C
4

=
(x̄

1
∨

x̄
2

∨
x̄

3)

a)
M
on

ot
on

e
re
ct
ili
ne

ar
re
pr
es
en
ta
tio

n
of
φ
.

cl
au

se
fa

ce
de

ci
si

on
fa

ce
bi

fu
rc

at
io

n
fa

ce
w

ir
e

fa
ce

co
nn

ec
tio

n
fa

ce

b)
C
ol
or
s
us
ed

in
Pa

rt
c)
.
O
bs
er
ve

th
at

ev
er
y
de

ci
sio

n
fa
ce

is
al
so

a
bi
fu
rc
at
io
n
fa
ce

an
d
th
at

ev
er
y
co
nn

ec
tio

n
fa
ce

is
al
so

a
w
ire

fa
ce
.

92

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

j

i

R
j v

R
j v

+
1

c)
T
he

gr
ap

h
G
φ
.
R
ec
al
lt
ha

t
th
e
ve
rt
ex

(i
,j

)
fo
r
i,
j
∈

[k
]i
s
em

be
dd

ed
at

th
e
co
or
di
na

te
s

(i
,j

),
w
he

re
th
e
ho

riz
on

ta
la

xi
s
re
fe
rs

to
th
e
fir
st

co
or
di
na

te
an

d
th
e

ve
rt
ic
al

ax
is

re
fe
rs

to
th
e
se
co
nd

co
or
di
na

te
.
T
he

em
be

dd
in
g
co
rr
es
po

nd
s
to

th
e
sa
tis

fy
in
g
as
sig

nm
en
t
x

1
=

T
ru

e,
x

2
=

Fa
ls

e,
an

d
x

3
=

T
ru

e.

F
ig

ur
e

3.
21

:
Ex

am
pl
e
of

th
e
gr
ap

h
G
φ
fo
r
φ

=
(x

1
∨
x

2
∨
x

3)
∧

(x
2
∨
x

2
∨
x

3)
∧

(x̄
2
∨
x̄

2
∨
x̄

2)
∧

(x̄
1
∨
x̄

2
∨
x̄

3)
.

93

Chapter 3 Planar Graphs

following, fC is used to denote the face where the clause gadget corresponding to the clause C ∈ C is
added and for a vertical line L in R that joins a variable x ∈ U to a clause C ∈ C, we use F̂L to denote a
face-sequence starting in a connection face of the variable gadget corresponding to x and ending in fC .
Using R, one can choose faces fC in G1 for all C ∈ C and face-sequences F̂L in G1 for all vertical lines L
in R such that
• for all distinct C,C ′ ∈ C, the faces fC and fC′ are distinct,
• for all distinct lines L,L′ in R, the face-sequences F̂L and F̂L′ are disjoint, except when L and L′

touch the same clause in R, in which case F̂L and F̂L′ are disjoint except for the last face,
• for each line L in R, the face-sequence F̂L consists of at least three faces and none of the faces in F̂L
is a variable face,

• for each line L in R that joins a variable x ∈ U to a positive clause C ∈ C, the face-sequence F̂L =
(f0, ve1 , f1, . . . , ved , fd) starts in a face f0 that is a positive connection face of the variable gadget
corresponding to x, ends in the clause face fC , i. e., fd = fC , and ved is not the top subdivision
vertex of fd,
• for each line L in R that joins a variable x ∈ U to a negative clause C ∈ C, the face-sequence F̂L =

(f0, ve1 , f1, . . . , ved , fd) starts in a face f0 that is a negative connection face of the variable gadget
corresponding to x, ends in the clause face fC , i. e., fd = fC , and ved is not the bottom subdivision
vertex of fd, as well as
• for all x ∈ U , for each connection face f of the variable gadget corresponding to x, there is a unique
line L in R such that the face sequence F̂L = (f0, ve1 , . . . , fd) starts in f , i. e., f0 = f .

Indeed, jv =
⌊ 1

2k
⌋
≥ 3m and hence, there is enough space for each clause C ∈ C. Moreover, the total

number of connection faces equals the number of vertical lines in R and, hence, all required properties can
be satisfied. Let G2 be the graph obtained from G1 by placing a positive clause gadget in the face fC for
each positive clause C ∈ C as well as a negative clause gadget in the face fC for each negative clause C ∈ C.
Furthermore, let Gφ be the graph obtained from G2 by adding a wire gadget along the face-sequence F̂L
for each vertical line L in R, see Figure 3.21 for an example. Observe that, for each subdivision vertex ve
of Hφ, at most one attachment is added to ve. Hence, Gφ has size polynomial in k = 6m+ n and also
polynomial in n+m, which is a lower bound on the size of φ.
For each vertical line L in R that joins a variable x ∈ U to a positive clause C ∈ C, let FL be the

face-sequence (f0, ve1 , f1, . . . , ved , fd) where fd = fC and f0 is the negative face of the decision gadget
corresponding to x, which is obtained from F̂L by adding f0 and positive bifurcation faces of the variable
gadget corresponding to x. Similarly, for each vertical line L in R that joins a variable x ∈ U to a
negative clause C ∈ C, let FL = (f0, ve1 , f1, . . . , ved , fd) be the face-sequence where fd = fC and f0 is
the positive face of the decision gadget corresponding to x, which is obtained from F̂L by adding f0 and
negative bifurcation faces of the variable gadget corresponding to x. It is easy to verify that, for each
attachment in Gφ, there is a line L in R such that the attachment is added to a subdivision vertex in the
face-sequence FL. The following claim follows from Claim 3.40a), Claim 3.40b), and Claim 3.41a).

Claim 3.42.
For each vertical line L in R, the face-sequence FL in Gφ is forced to push.

The “if and only if” statement

To finish the proof, it remains to show that φ is satisfiable if and only if there is a feasible embedding of Gφ.
Assume that φ is satisfiable and denote by T : U → {False,True} a satisfying assignment of φ. Consider
an embedding of Gφ that is obtained from the fixed embedding of Hφ by embedding the attachments
according to the following rules:

94

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

(i) For each variable x ∈ U with T (x) = True, the attachments of the variable gadget corresponding
to x are embedded as in the positive embedding of the variable gadget corresponding to x.

(ii) For each variable x ∈ U with T (x) = False, the attachments of the variable gadget corresponding
to x are embedded as in the negative embedding of the variable gadget corresponding to x.

(iii) For each line L in R, that joins a variable x ∈ U to some clause in C, the embedding is pulling
along F̂L = (f0, ve1 , f1, . . . , ved , fd) if none of the attachments of the variable gadget corresponding
to x is embedded in the connection face f0 due to (i) or (ii) and otherwise the embedding is pushing
along F̂L.

Clearly, given a satisfying assignment such an embedding always exists. For an example, see Figure 3.21c).
Next, it is argued that every embedding of Gφ that satisfies (i)-(iii) is feasible. To do so, fix such an
embedding of Gφ and call a face f of Gφ feasible if it contains at most ` = 10 vertices. Due to Claim 3.40c)
and Claim 3.40d), all variable faces are feasible. Furthermore, (iii) ensures that all connection faces
are feasible and due to Claim 3.41 all wire faces that are neither connection faces nor clause faces are
feasible. Consider a positive clause C ∈ C. As the assignment T is a satisfying assignment for φ, there is a
variable x ∈ U with T (x) = True that is used in C. So there is a vertical line L that joins x to C in R.
Let F̂L = (f0, ve1 , f1, . . . , ved , fd) and note that f0 is a positive connection face of the variable gadget
corresponding to x. Then, as the variable gadget corresponding to x is embedded according to (i), there
is no attachment of the variable gadget corresponding to x embedded in f0 by Claim 3.40d) and the
embedding of Gφ is pulling along F̂L according to (iii). Therefore, the attachment on ved is embedded
in fd−1 and the clause face fC = fd is feasible. Similarly, one can show that each face fC corresponding
to a negative clause C ∈ C is feasible. Consequently, the embedding of Gφ is feasible.

Now, consider a feasible embedding of Gφ that is an extension of the fixed embedding of Hφ. To define
a truth assignment T : U → {False,True} set T (x) = True if and only if the decision attachment
corresponding to x is embedded in the negative face of the decision gadget corresponding to x. For a
contradiction, assume that there is a clause C ∈ C that is not satisfied by the assignment T , i. e., C
evaluates to False when plugging in the values for the variables according to T . Assume that C is a
positive clause. The following is easy to adjust for a negative clause. Let x be an arbitrary variable
used in C and denote by Lx a line in R that joins x to C. Then T (x) = False and, hence, the decision
attachment corresponding to x is embedded in the positive face of the decision gadget corresponding
to x. Let FLx = (f0, ve1 , f1, . . . , ved , fd). Thus, fd = fC and f0 and f1 are the negative and the positive
face of the decision gadget corresponding to x, respectively. Furthermore, the decision attachment of x
has been added to ve1 and is embedded in f1. By Claim 3.42, the attachment of ved must be embedded
in fd = fC . As x was an arbitrary variable used in C and C contains exactly three literals by assumption,
three attachments are embedded in fC . Then fC is not feasible, which contradicts that the embedding
of Gφ is feasible. Consequently, C must be satisfied and T is a satisfying assignment for φ.

Strengthening the Proof and a Remark on UPM Scheduling

After completing the proof of Theorem 3.37, it is discussed here, how to strengthen the proof to obtain
Theorem 3.26, i. e., it is shown that the HEG Problem is hard for ` = 6. The graph Hφ, the parameter `,
and the attachments can be defined differently as long as they still satisfy the properties in Claim 3.38 and
Claim 3.39. It is easy to check that the attachments defined in Figure 3.22, ` = 6, and the graph Hφ that
is a k×k grid where k is defined as above in the proof of Theorem 3.37, have these properties. Therefore,
the HEG Problem is NP-hard for ` = 6 and Theorem 3.26 follows.
Observe that the proof of Theorem 3.37 also shows that the following restricted version of the UPM

Scheduling Problem is NP-hard. Consider m′ machines and n′ jobs of length 1 and 2, where each

95

Chapter 3 Planar Graphs

...
...

...
...

. . .

. . .

. . .

. . .

a) A light attachment.

...
...

...
...

. . .

. . .

. . .

. . .

b) A heavy attachment.

Figure 3.22: Modifying the attachments in the proof of Theorem 3.37. Each figure shows one small face of Hφ.
The subgraph Hφ is colored black, the vertices and edges of the light and heavy attachments are colored purple
and red, respectively.

job can be processed by at most two of the machines. The Restricted Scheduling Problem asks
whether there is a schedule of makespan `′, where `′ ∈ N is part of the input.

Modifying the Proof to Show Theorem 3.28

The proof of Theorem 3.37 can be modified to show that it is NP-hard to approximate the Min HEG
Problem within α for every α < 3

2 . Recall that, in Section 3.3.1, we argued that it is NP-hard to
approximate the Min HEG Problem within α for every α < 7

6 . This fraction results from the answers `
for the Min HEG Problem corresponding to no- and yes-instances, which are at least 7 and at most 6,
respectively. Here, the ratio of these numbers is increased by modifying the reduction used to prove
Theorem 3.37. Consider an instance of the Planar Monotone 3-SAT Problem and denote by φ
the underlying 3-SAT formula. Let k be the integer and let Gφ and Hφ be the graphs as defined above
in the proof of Theorem 3.37 but with the following modified attachments. Fix an integer s ≥ 2. The
light attachment is now defined to be a path on s vertices, one of whose leaves is joined to a subdivision
vertex of Hφ and the heavy attachment is now defined to be a path on 2s vertices, one of whose leaves is
joined to a subdivision vertex of Hφ, see Figure 3.23. It is easy to see that, if φ is satisfiable, then Gφ
allows an embedding where each small face of Hφ contains at most 2s + 8 vertices. So when applying
an α-approximation to the instance (k,Gφ, Hφ), a number `app ≤ α · (2s+ 8) is computed. Furthermore,
when φ is not satisfiable, then any embedding of Gφ contains a small face f
• that contains at least three light attachments,
• that contains at least one heavy and one light attachment, or
• that contains at least two heavy attachments.

So this face f contains at least 3s+ 8 vertices of G and, when given the instance (k,Gφ, Hφ) as input,
an α-approximation would yield a number `app ≥ 3s+ 8. Hence, an α-approximation for the Min HEG
Problem can be used to solve the Planar Monotone 3-SAT Problem when α · (2s+ 8) < 3s+ 8, or
equivalently when

α <
3s+ 8
2s+ 8

s→∞−−−−→ 3
2 .

Recalling that the Planar Monotone 3-SAT Problem is NP-complete as stated in Theorem 3.36 now
implies the desired result, i. e., Theorem 3.28.

96

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

. . .

s vertices

...
...

...
...

. . .

. . .

. . .

. . .

a) A light attachment.

. . .

2s vertices

...
...

...
...

. . .

. . .

. . .

. . .

b) A heavy attachment.

Figure 3.23: Modifying the attachments in the proof of Theorem 3.37. Each figure shows one small face of Hφ.
The subgraph Hφ is colored black, the vertices and edges of the light and heavy attachments are colored purple
and red, respectively.

3.3.4 Proof of a Hardness Result for the HGM Problem

Here, the proof of Theorem 3.31, which states that the HGM Problem is NP-complete even when
restricted to instances (k, `,G) where G is uniquely embeddable, is presented. As in Section 3.3.3, the
reduction is from Planar Monotone 3-SAT. For a planar, monotone 3-SAT formula φ, a graph Gφ
and two integers k, ` will be defined. It will be clear that Gφ contains a k×k grid as a minor, but it
will depend on the satisfiability of φ whether the additional properties required, such that (k, `,Gφ) is
a yes-instance of the HGM Problem, can be met. The idea is to start with a k×k grid and, for each
variable, to chose a column and delete an edge joining two vertices in that column. Some new edges and
new vertices are added, such that each column of the initial grid, from which an edge was deleted, has two
choices for making a detour, which will correspond to the variable being True and False. Such a detour
will then force other columns and rows to make detours in order to satisfy that each small face contains at
most ` vertices. Each detour pulls on the boundary of a face, which makes the face larger and forces it to
contain more vertices. So, in the following reduction, pulling can be interpreted as the False-information
being spread through the graph. Note that this is the opposite of the proof of Theorem 3.37, where
pushing can be interpreted as the False-information being spread through the given grid. Again, there
will only be modifications in certain parts of the grid and, if the resulting graph contains a graph H that
is a minimal graph containing a k×k grid as a minor, then H must look almost as the grid with which
the construction started.
The following lemma will be used. Consider a graph G = (V,E) and let Z1, Z2 ⊆ V . A set S ⊆ V

separates Z1 from Z2 in G if G− S contains no Z1,Z2-path. The smallest integer h such that there is a
set S ⊆ V of size h that separates Z1 from Z2 in G is called the minimum number of vertices separating Z1

from Z2 in G.

Lemma 3.43 (Menger’s Theorem, see Theorem 3.3.1 in [Die12]).
Let G = (V,E) be a graph. For every Z1, Z2 ⊆ V , the minimum number of vertices separating Z1 from Z2

in G is equal to the maximum number of disjoint Z1,Z2-paths in G.

97

Chapter 3 Planar Graphs

The remainder of the section will be concerned with the proof of Theorem 3.31. First, some notation
is defined, then gadgets are introduced and some properties of the gadgets are proved, and finally the
if-and-only-if-statement of the reduction is shown.

Notation

Consider an instance of the Planar Monotone 3-SAT Problem, i. e., a monotone rectilinear represen-
tation R of a 3-SAT formula φ = (U , C). Define n := |U| and m := |C|. Recall that the rectangles in R
are identified with the corresponding variables and clauses in C ∪ U . As in the proof of Theorem 3.37, the
assumptions discussed in the end of Section 3.3.2 are used, i. e., each variable in U is used at least once as
a positive literal and at least once as a negative literal in φ, each clause in C is a disjunction of three not
necessarily distinct literals, and, in R, each variable x is split into a positive and a negative half.
Set k := 6m + 2n + 3 and ` := 8. Denote by G̃k the k×k grid and recall that the vertex set of G̃k

is {(i, j) : i ∈ [k], j ∈ [k]}. For i ∈ [k], let C̃i := {(i, j) : j ∈ [k]} be the ith column of G̃k, and, for j ∈ [k],
let R̃j := {(i, j) : i ∈ [k]} be the jth row of G̃k. Furthermore, let G0 be the graph obtained from the
k×k grid G̃k by subdividing each edge once, except for the edges on the boundary of the large face of G̃k.
Clearly, G0 is a minimal graph containing a k×k grid as a minor and, hence, G0 is uniquely embeddable
due to Remark 3.15. In the following, the embedding of G0, where the vertex (i, j) for i ∈ [k] and j ∈ [k]
is embedded at the point (i, j) in a coordinate system whose horizontal axis refers to the first coordinate
and whose vertical axis refers to the second coordinate is considered and from now on G0 refers to the
plane graph with this embedding. Similarly to Section 3.3.3, a vertex of G0 that subdivides an edge e
of G̃k is called a subdivision vertex and is denoted by ve. All other vertices of G0 are called grid vertices
as they are also in V (G̃k). Furthermore, the terms bottom, right, top, and left subdivision vertex of a
small face of G0 are used as in Section 3.3.3. Again, face-sequences of the graph G0 are used, which are
alternating sequences of small faces of G0 and subdivision vertices of G0 such that each subdivision vertex
is on the boundary of the face preceding it and the face succeeding it. When modifying the graph G0 and
its embedding, some faces will be split into several faces, but, if a face-sequence is considered in this proof,
it refers to the faces of G0. Denote by Blarge the cycle in G0 that bounds the large face of G0, i. e.,

Blarge = ((1, 1), (2, 1), . . . , (k, 1), (k, 2), . . . , (k, k), (k − 1, k), . . . , (1, k), (1, k − 1), . . . , (1, 2)).

The boundary distance of a small face f of G0 is the length of a shortest u,w-path such that u is on the
boundary of f and w belongs to Blarge. For example, the small face of G0 whose boundary contains the
vertices (2, 2) and (3, 3) has boundary distance 2 and the small face of G0 whose boundary contains the
vertices (k − 1, k − 1) and (k, k) has boundary distance 0.

Consider a graph H that is a minimal graph containing a k×k grid as a minor. Next, columns and rows
of H are defined. To do so, consider a partition of V (H) into setsMi,j with i, j ∈ [k] as in Proposition 3.24.
For each vertex (i, j) of G̃k with degG̃k((i, j)) = 3, there is a unique vertex vi,j in Mi,j with degH(vi,j) = 3
due to Proposition 3.16. Let v1,1, v1,k, vk,1, and vk,k be arbitrary vertices in M1,1, M1,k, Mk,1, and Mk,k,
respectively. For i ∈ [k], let the ith column CHi of H be the vertex set of the unique vi,1,vi,k-path in H
that uses only vertices in Mi,j with j ∈ [k]. For j ∈ [k], let the jth row RHj of H be the vertex set of the
unique v1,j ,vk,j-path in H that uses only vertices in Mi,j with i ∈ [k]. Such paths exist and are unique
due to Proposition 3.24. Furthermore, by construction, the sets CH1 , . . . , CHk are pairwise disjoint and so
are the sets RH1 , . . . , RHk . Each column and each row induces a path in H. Such paths are called grid-paths
in H.

Consider a plane graph Ĝ with G0 ⊆ Ĝ and a subgraph H ⊆ Ĝ. If H is a minimal graph containing a
k×k grid as a minor, then a small face f of H is called feasible with respect to Ĝ if, in the drawing of

98

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

the plane graph Ĝ, at most ` vertices of V (Ĝ) are embedded in f . Recall that each vertex that is on the
boundary of f contributes to the number of vertices embedded in f . The graph H is called a feasible
subgraph of Ĝ if H is a minimal graph containing a k×k grid as a minor, every small face of H is feasible
with respect to Ĝ, and no vertex from V (Ĝ) \ V (H) is embedded in the large face of H. The subgraph H
is called normal if
• H is a minimal graph containing a k×k grid as a minor,
• there is a partition as in Proposition 3.24 such that the resulting columns CH1 , . . . , CHk of H
satisfy C̃i ⊆ CHi for all i ∈ [k] and such that the resulting rows RH1 , . . . , RHk of H satisfy R̃j ⊆ RHj
for all j ∈ [k], as well as

• the boundary of the large face of H is the cycle Blarge.
When considering a normal graph H, then we use CH1 , . . . , CHk and RH1 , . . . , RHk to denote a choice of
columns and rows that satisfy these properties. Assume that H is normal. Using the columns and the
rows of H, a bijection between the small faces of G0 and the small faces of H is defined now. Let f
be a small face of G0. Then, there are unique integers i, j ∈ [k − 1] such that the grid vertices (i, j)
and (i+ 1, j + 1) are on the boundary of f . Let f ′ be the unique small face of H with the property that
each vertex on the boundary of f ′ is in CHi ∪ CHi+1 ∪RHj ∪RHj+1. Then, f ′ is referred to as the face of H
that corresponds to f .

Basic Modifications, Pulling, and Relaxing

Next, some operations that modify the graph G0 are described. For a small face f of G0 with boundary
distance at least two, splitting f vertically means to insert a new edge in G0 that is embedded in f

and that joins the top subdivision vertex of f to the bottom subdivision vertex of f . Similarly, for a
small face f of G0 with boundary distance at least two, splitting f horizontally means to insert a new
edge in G0 that is embedded in f and that joins the left subdivision vertex of f to the right subdivision
vertex of f . For a subdivision vertex ve of G0, replacing ve by its original edge roughly means to reverse
the subdivision that created ve. More precisely, let e ∈ E(G̃k) be an edge that was subdivided when
constructing G0, then, in the graph G0, replacing ve by its original edge means to remove ve as well as its
incident edges e′ and e′′ from G0, to add the edge e to the edge set of G0, and, in the embedding of G0, to
draw e where e′ and e′′ used to be drawn. Let f be a face of G0 and let Ĝ be the graph obtained from G0

by replacing some subdivision vertices of G0 by their original edges. Then, Ĝ contains a unique face f̂
such that each grid vertex on the boundary of f is also on the boundary of f̂ . In the following, the face f
and the face f̂ are considered to be the same face or, more precisely, we say that f is a face of Ĝ and that
the face f has been modified when constructing Ĝ.

Consider a graph Ĝ obtained from G0 by these modifications. Let ve be a subdivision vertex of G0 and
denote by u and w the neighbors of ve in G0. Let H ⊆ Ĝ be a normal graph and let P be the grid-path
of H that contains u and w. Observe that P exists as u and w are adjacent in G̃k. We say that P uses
either e or ve if either ve is a vertex of Ĝ and P uses ve and both its incident edges to join u to w or
if ve has been replaced by its original edge, which is e, when constructing Ĝ and P uses e to join u to w.
Roughly speaking, the next claim says that, in a normal and feasible subgraph of Ĝ, a grid-path P can
only make a detour compared to the corresponding grid-path P0 in G0 if all faces of G0 containing an
edge from E(P0) \ E(P) on their boundary have been modified.

Claim 3.44.
Consider a subdivision vertex ve of G0, let f1 and f2 be the two small faces of G0 whose boundaries
contain ve, and denote by u and w the neighbors of ve in G0. Let Ĝ be a plane graph obtained from G0 by
replacing some subdivision vertices of G0 by their original edges and by embedding new vertices and edges

99

Chapter 3 Planar Graphs

u

w

u1

w1

u2

w2

f1 f2
veve1 ve2

PP1 P2

Figure 3.24: Proof of Claim 3.44.

in some small faces of G0 such that each new edge is incident with at most one grid vertex. Consider a
normal subgraph H ⊆ Ĝ and let P be the grid-path of H that contains u and w.

a) If f1 and f2 are also faces of Ĝ then P uses either ve or e.
b) If H is a feasible subgraph of Ĝ and there is an h ∈ [2] such that fh has boundary distance at least 2

and fh has not been modified when constructing Ĝ, then P uses ve.
c) If one of the following holds

• P is induced by a column of H and, for all h ∈ [2], when constructing Ĝ from G0, the face fh
has not been modified other than splitting fh horizontally and replacing some subdivision vertices
that are on the boundary of fh by their original edges,
• P is induced by a row of H and, for all h ∈ [2], when constructing Ĝ from G0, the face fh has
not been modified other than splitting fh vertically and replacing some subdivision vertices that
are on the boundary of fh by their original edges,

then P uses the subdivision vertex ve.

Proof. Let ve, f1, f2, u, w, Ĝ, H, and P be as in the statement. As u and w are grid vertices that are
adjacent in G̃k, there is indeed a grid-path P that contains u and w. For h ∈ [2], denote by uh and wh the
two grid vertices on the boundary of fh that are not contained in P and assume without loss of generality
that u and uh are adjacent in G̃k as well as that w and wh are adjacent in G̃k, see Figure 3.24. Moreover,
for h ∈ [2], let Ph be the grid-path of H that contains uh and wh, and let eh be the edge that joins uh
to wh in G̃k.

a) As H is planar and the grid-paths P1, P , and P2 are vertex-disjoint, P1, P , and P2 cannot cross. If,
for all h ∈ [2], the grid-path Ph uses either veh or eh, then P uses either ve or e. Otherwise, there is
an h ∈ [2] such that Ph uses neither veh nor eh to join uh to wh. Let P ′h be the subpath of Ph that
joins uh to wh. Then, P ′h and either the edge eh or the edges incident to veh form a cycle in Ĝ. Now,
all vertices of P are on the same side of this cycle, as P could only cross the cycle in the vertex veh
but, as none of the neighbors of veh can be in P , there is no edge incident to veh that is embedded
in fh and can be used by P . Consequently, P uses either ve or e.

b) Assume there is an h ∈ [2] such that fh has boundary distance at least 2 and fh has not been
modified when constructing Ĝ. Then, there is a face f ′h of H such that each vertex on the boundary

100

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

of fh is embedded in f ′h. Since no new edge was embedded in fh and each new edge is incident to
at most one grid vertex, there is no edge in Ĝ that is not in G0 and that joins two vertices on the
boundary of fh. As, in Ĝ, there are 8 vertices on the boundary of fh and f ′h is a feasible face of H
with respect to Ĝ, the boundary of f ′h must be the same as the boundary of fh. Hence, P uses ve.

c) The proof is similar to Part a) and follows by observing that, for h ∈ [2], the path P might now be
able to cross the cycle, that consists of P ′h and the subdivision vertex veh and its incident edges,
once in veh . However, P would need to cross this cycle twice as u and w are on the same side of the
cycle. 2

Consider a plane graph Ĝ with G0 ⊆ Ĝ and a normal graph H ⊆ Ĝ. For an arbitrary integer d ≥ 1,
let F := (f0, ve1 , f1, . . . , ved , fd) be a face-sequence in G0. For h ∈ [d] ∪ {0}, denote by uh and wh the
two neighbors of veh in G0. If d ≥ 2 and fh is a small face of H for all h ∈ [d− 1], then we say that H
relaxes along F . In the case when d = 1, we say that H relaxes along F if the grid-path of H that uses u1

and w1 uses either ve1 or e1. Note that, if H relaxes along F , then the grid-path of H that contains uh
and wh uses either veh or eh for each h ∈ [d]. Moreover, we say that H pulls along F if, for all h ∈ [d],
the grid-path P of H that contains uh and wh neither contains veh nor eh and, between uh and wh, the
grid-path P uses only vertices embedded in fh−1. Observe that, as H is normal, there is indeed a column
or a row of H that contains both uh and wh for every h ∈ [d], since uh and wh are grid vertices that are
adjacent in G̃k. Next, the expression “forces to pull” is defined. Roughly speaking, this means that, if
a normal graph H pulls along (f0, ve1 , f1), then it has to pull along the entire face-sequence F in order
to be feasible except for the face fd. More precisely, denote by R(G0) the set of faces of G0. Let Ĝ0 be
the plane graph obtained from Ĝ by removing each vertex from V (Ĝ) \ V (G0) that is embedded in a
face f of G0 with f ∈ R(G0) \ {f0, f1, . . . , fd} and modifying the embedding of Ĝ accordingly to obtain
an embedding of Ĝ0. Consider the set H of normal graphs H ′ ⊆ Ĝ0, with the following properties:
• The grid-path of H ′, that contains u1 and w1, contains neither ve1 nor e1 and uses between u1

and w1 only vertices embedded in f0.
• Every small face of H ′, except possibly the face of H that corresponds to fd, is feasible with respect
to Ĝ.

If H 6= ∅ and every graph in H pulls along F , then we say that Ĝ forces to pull along F . The notion of
pulling along a face-sequence will now be extended to a family of face-sequences that all begin with the
same face and subdivision vertex. Let d ≥ 2, consider a small face f∗ of G0 and a subdivision vertex ve∗
that is on the boundary of f∗. Denote by u∗ and w∗ the two neighbors of ve∗ in G0. For every h ∈ [d],
let dh ≥ 1 be an integer and let Fh = (fh0 , veh1 , . . . , vehdh , f

h
dh

) be a face-sequence in G0 with fh0 = f∗

and veh1 = ve∗ . Let Ĝ0 be the graph obtained from Ĝ by removing each vertex in V (Ĝ) \ V (G0) that
is embedded in a face f of G0 with f ∈ R(G0) \ {fh0 , . . . , fhdh : h ∈ [d]}. Consider the set H of normal
graphs H ′ ⊆ Ĝ0, for which the grid-path P , that contains u∗ and w∗, contains neither ve∗ nor e∗ and uses
between u∗ and w∗ only vertices embedded in f∗, and for which every small face, except possibly the
faces fhdh with h ∈ [d], are feasible. If H 6= ∅ and every graph in H pulls along Fh for each h ∈ [d], then
we say that Ĝ forces to pull along (F1, F2, . . . , Fd).

Next, some gadgets are defined, which will then be added to G0 in order to obtain a graph Gφ such
that (k, `,Gφ) is an instance of the HGM Problem. Each gadget will require a certain number of faces,
which will be modified and each modified face will be chosen such that it has boundary distance at least
two. When a face f of G0 has been chosen to be modified according to a gadget Y , then f is called a Y
face. If Ĝ is a graph obtained from G0 by adding a gadget Y , then the subgraph of Ĝ that is induced by
all vertices embedded in Y faces is called the Y subgraph. The following figures always display a graph Ĝ

101

Chapter 3 Planar Graphs

ve

f+ f+ f− f−positive
edge of x

negative
edge of x

positive
face of x

negative
face of x

Figure 3.25: A decision gadget. The subdivision vertex ve is deleted including its adjacent edges. A possible
choice for a grid-path that is induced by the decision column of x is marked in yellow.

obtained from G0 by adding a gadget. Subdivision vertices that have been replaced by their original edges
are colored gray. New edges and vertices, i. e., edges and vertices that were inserted when constructing Ĝ,
are colored red, except for the edges that are inserted when replacing a subdivision vertex by its original
edge. Vertices and edges that do not belong to the gadget itself are colored gray and orange depending on
whether they are new. The modifications applied to G0 often split a face of G0 into several faces. In that
case, each face of Ĝ that arises from a face f of G0 is labeled with f .

Decision and Bifurcation Gadgets

First, the variable gadget is presented, which consists of a decision gadget and several bifurcation gadgets.
The decision gadget consists of two small faces of G0 that are horizontally next to each other, such that
the subdivision vertex in between them is deleted and both are split vertically, see Figure 3.25. More
precisely, consider a variable x ∈ U and let ve be a subdivision vertex of G0 such that e is a vertical
edge of G̃k, i. e., e ⊆ C̃i for some i ∈ [k − 1] \ {1}. Observe that ve cannot be on the boundary of the
large face of G0. Let f+ be the small face of G0 whose right subdivision vertex is ve and let f− be the
small face of G0 whose left subdivision vertex is ve. The faces f+ and f− are called the positive face
and the negative face of the variable x, respectively. The decision gadget is to delete ve including both
edges incident to ve and to split f+ and f− vertically. The edge inserted to split f+ is referred to as the
positive edge of x and the edge inserted to split f− is referred to as the negative edge of x. Let Ĝ be the
graph obtained from G0 by adding a decision gadget in this way and consider a normal graph H ⊆ Ĝ.
The column of H that contains the two neighbors of ve is called the decision column of x.

Claim 3.45.
Let Ĝ be a graph obtained from G0 by adding a decision gadget corresponding to a variable x ∈ U . Consider
a normal subgraph H ⊆ Ĝ, and let P be the grid-path induced by the decision column of x in H. Then P
uses either the positive edge of x or the negative edge of x.

Proof. Let x, Ĝ, H, and P be as in the statement. Denote by ve the subdivision vertex of G0 that
was removed when constructing Ĝ and let i, j ∈ [k] be integers such that e = {(i, j), (i, j + 1)}. Observe
that P cannot use a vertex in Vforb = (R̃j ∪ R̃j+1) \ {(i, j), (i, j + 1)} as these vertices are used by the
other columns of H since H is normal. In Ĝ− Vforb every path joining (i, j) to (i, j + 1) uses either the
positive edge of x or the negative edge of x. Hence, P uses one of these edges. 2

A positive bifurcation gadget consists of two faces of G0, that are horizontally next to each other. In
the left face, the left and the top subdivision vertex are replaced by their original edges and the right
face is split vertically. Furthermore, two new vertices and four new edges are embedded in the left face

102

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

ve1

ve3

ve2

u

v

w
f0 f0

f1

f1 f1

f2 f2

f3

f3

main face right con-
nection face

left con-
nection face

top con-
nection face

top connec-
tion vertex

left connec-
tion vertex

a) A positive bifurcation gadget. The non-solid subdi-
vision vertices ve2 and ve3 are replaced by their original
edges.

ve2

ve3

ve1

u

v

w

f0 f0

f1

f1

f1

f2 f2

f3

f3

main faceleft con-
nection face

right con-
nection face

right con-
nection vertex

bottom con-
nection face
bottom con-

nection vertex

b) A negative bifurcation gadget. The non-solid subdi-
vision vertices ve2 and ve3 are replaced by their original
edges.

H[RH
j+2]

H[RH
j+1]

H[RH
j]

H[CH
i−1] H[CH

i] H[CH
i+1]

ve1e2

e3

e′3

e′2
ve4

ve5

u = (i, j + 1) r = (i + 1, j + 1)

t = (i, j) s = (i + 1, j)

v

w
f0 f0

f1

f1 f1

f2 f2

f3

f3

f4

f5

c) Proof of Claim 3.46a)

Figure 3.26: Bifurcation gadgets.

103

Chapter 3 Planar Graphs

such that it is divided into three smaller faces, see Figure 3.26a). More precisely, let f1 be a small face
of G0 with boundary distance at least 4. Let ve2 and ve3 be the left and the top subdivision vertex of f1,
respectively. For h ∈ {2, 3}, replace veh by its original edge. Denote by u the vertex that the edges e2

and e3 have in common. Embed two new, adjacent vertices, called v and w, in the face f1, add an edge
joining v to u, an edge joining w to the bottom subdivision vertex of f1, as well as an edge joining w to
the right subdivision vertex of f1. Furthermore, the face f0 of G0 whose left subdivision vertex is the right
subdivision vertex of f1 is split vertically. The face f1 is called the main face of the positive bifurcation
gadget and the face f0 is called the right connection face of the positive bifurcation gadget. This finishes
the description of the positive bifurcation gadget. It will be used in a way such that the face f2 of G0

whose right subdivision vertex is ve2 is split vertically and the face f3 of G0 whose bottom subdivision
vertex is ve3 is split horizontally. The faces f2 and f3 are called the left connection face and the top
connection face of the positive bifurcation gadget, but they do not belong to the positive bifurcation
gadget. The left subdivision vertex of f2 and the top subdivision vertex of f3 are called the left and the
top connection vertex of the positive bifurcation gadget, respectively. Note that both these vertices exist
as otherwise f2 or f3 would have boundary distance 0, which contradicts that f1 has boundary distance
at least 4.

Claim 3.46.
Let Ĝ be the graph obtained from G0 by adding one positive bifurcation gadget, splitting the left connection
face of the positive bifurcation gadget vertically, and splitting the top connection face of the positive
bifurcation gadget horizontally. Let F1 be the face-sequence of G0 that contains the right connection
face, the main face, the left connection face, as well as the face whose right subdivision vertex is the left
connection vertex in this order and no other faces of G0. Moreover, let F2 be the face-sequence of G0 that
contains the right connection face, the main face, the top connection face, as well as the face whose bottom
subdivision vertex is the top connection vertex in this order and no other faces of G0. Then, the following
holds.

a) The graph Ĝ forces to pull along (F1, F2).
b) For every normal graph H ⊆ Ĝ that relaxes along the face-sequences F1 and F2, each face of H that

corresponds to a face contained in F1 or F2 is feasible with respect to Ĝ.

Proof.

a) Let Ĝ, F1, and F2 be as in the statement, and let u, v, w, f0, . . . , f3, ve2 , and ve3 be defined in the
same way as when introducing the positive bifurcation gadget, see Figure 3.26c). Let i, j ∈ [k] be
two integers such that u = (i, j+ 1). Moreover, define r := (i+ 1, j+ 1), s := (i+ 1, j), and t := (i, j).
Let ve1 be the right subdivision vertex of f1, let ve4 and ve5 be the left and the top connection
vertex of the positive bifurcation gadget, respectively. Denote by f4 the face of G0 whose right
subdivision vertex is ve4 and denote by f5 the face of G0 whose bottom subdivision vertex is ve5 .
So F1 = (f0, ve1 , f1, ve2 , f2, ve4 , f4) and F2 = (f0, ve1 , f1, ve3 , f3, ve5 , f5). Let H ⊆ Ĝ be a normal
graph such that each small face of H is feasible with respect to Ĝ, except possibly the faces of H
that correspond to f4 and f5, and such that the column CHi+1 of H, i. e., the column containing r
and s, does not contain ve1 and such that, between r and s, the grid-path H[CHi+1] uses only vertices
embedded in f0. In the following, the embedding of H that is induced by the embedding of the plane
graph Ĝ is considered. This is not a restriction as H is a minimal graph containing a k×k grid as a
minor and, hence, H is uniquely embeddable due to Remark 3.15.

First, observe that, for each h ∈ {0, 1, 2}, Claim 3.44b) implies that the grid-path H[RHj] uses the
bottom subdivision vertex ve′ of fh as the face whose top subdivision vertex is ve′ has boundary

104

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

distance at least 2 and has not been modified when constructing Ĝ. As f4 and the face whose
top subdivision vertex is the bottom subdivision vertex of f4 both have not been modified when
constructing Ĝ, Claim 3.44a) implies that the grid-path H[RHj] uses the bottom subdivision vertex
of f4. So, roughly speaking, H[RHj] does not make a detour between (i−2, j) and (i+2, j). Similarly,
it follows that the grid-path H[RHj+1] uses the top subdivision vertex of fh for all h ∈ {0, 2, 4}, the
grid-path H[CHi] uses the left subdivision vertex of fh for all h ∈ {3, 5}, and the grid-path H[CHi+1]
uses the right subdivision vertex of fh for all h ∈ {3, 5}.

As CHi+1 cannot contain any grid vertices that are on the boundary of f0 except r and s, the
grid-path H[CHi+1] uses the top and bottom subdivision vertex of f0 as well as the edge joining
them. So, the vertices r and s, as well as the top and the bottom subdivision vertex of f0 are on the
boundary of the face f ′1 of H that corresponds to the face f1. As argued before, the grid-path H[RHj]
uses only the bottom subdivision vertex of f1 between t and s. For a contradiction assume that the
grid-path H[RHj+1] uses e3. Then the face f ′1 of H would contain the vertices u, v, w, and ve1 as
well as the bottom subdivision vertex of f1, as CHi contains neither r nor s. This implies that f ′1
would contain at least 9 vertices of Ĝ and, hence, f ′1 would not be feasible with respect to Ĝ. So,
the grid-path H[RHj+1] uses (u, v, w, ve1 , r) as a subpath to join u to r. Similarly, it follows that the
grid-path H[CHi] does not use e2 and contains v, w, and the bottom subdivision vertex of f1.

The face f ′2 of H that corresponds to f2 contains u, v, w, t, and the bottom subdivision vertex of f1

in its boundary. So, in order for f ′2 to be feasible with respect to Ĝ, the graph H contains the edge e′2
that was inserted to split f2 vertically. As H is a minimal graph containing a k×k grid as a minor,
the edge e′2 is used by the grid-path H[CHi−1]. Consequently, H pulls along the face-sequence F1.
Similarly, one can argue that H[RHj+2] does not use ve5 and contains the edge e′3 that was inserted
to split f3 horizontally. Hence, H pulls along F2. Recall that the faces of H that correspond to f4

and f5 do not need to be feasible with respect to Ĝ. Now, it is easy to see that such a graph H
indeed exists and therefore Ĝ forces to pull along (F1, F2).

b) Using the same notation as in the proof of Part a), it is easy to verify that the faces fh with h ∈ {1, 2, 3}
are feasible with respect to Ĝ. Claim 3.44c) implies that the top and bottom subdivision vertex
of f0 are used by the grid-paths H[RHj+1] and H[RHj], respectively and, hence, the face of H that
corresponds to f0 is feasible with respect to Ĝ. Similarly, one argues that the faces f4 and f5 are
feasible with respect to Ĝ. 2

There is also a negative bifurcation gadget, which is obtained by turning the positive bifurcation gadget
around 180 degrees, see Figure 3.26b). It consists of the main face and the left connection face and defines
also a right and a bottom connection face, that do not belong to the negative bifurcation gadget. The
negative bifurcation gadget will be used in a way such that the right connection face is split vertically and
the bottom connection face is split horizontally. Furthermore, it defines a right and a bottom connection
vertex. Analog to Claim 3.46 the following is derived.

Claim 3.47.
Let Ĝ be the graph obtained from G0 by adding one negative bifurcation gadget, splitting the right connection
face of the negative bifurcation gadget vertically, and splitting the bottom connection face of the negative
bifurcation gadget horizontally. Let F1 be the face-sequence of G0 that contains the left connection face,
the main face, the right connection face, as well as the face whose left subdivision vertex is the right
connection vertex in this order and no other faces of G0. Moreover, let F2 be the face-sequence of G0 that
contains the left connection face, the main face, the bottom connection face, as well as the face whose

105

Chapter 3 Planar Graphs

e+ e−

unused
connection

face

positive
connection

face

positive
connection

face

unused
connection

face

negative
connection

face

negative
connec-
tion face

decision
faces

positive bifurcation faces

negative bifurcation faces

Figure 3.27: The extended variable gadget. The negative subgraph is highlighted. The labeled faces all refer to
faces of G0, the positive edge is labeled e+ and the negative edge is labeled e−.

top subdivision vertex is the bottom connection vertex in this order and no other faces of G0. Then, the
following holds.

a) The graph Ĝ forces to pull along (F1, F2).
b) For every normal graph H ⊆ Ĝ that relaxes along the face-sequences F1 and F2, each face of H that

corresponds to a face contained in F1 or F2 is feasible with respect to Ĝ.

Assembling the Variable Gadget

Consider a variable x ∈ U . The variable gadget for x consists of 2 deg+(x) positive bifurcation faces
and 2 deg−(x) negative bifurcation faces, such that one positive and one negative bifurcation face are also
decision faces and the faces are arranged horizontally next to each other, as in Figure 3.27. More precisely,
let (f1, ve2 , . . . , ved , fd) be a face-sequence with d := 2(deg+(x) + deg−(x)) such that veh is the right
subdivision vertex of fh−1 and the left subdivision vertex of fh for all h ∈ [d]\{1}. Define hx := 2 deg+(x).
For each h ∈ [deg+(x)], the faces f2h−1 and f2h are modified according to the positive bifurcation gadget.
For each integer h with deg+(x) + 1 ≤ h ≤ deg+(x) + deg−(x), the faces f2h−1 and f2h are modified
according to the negative bifurcation gadget, and the subdivision vertex vehx+1 and its incident edges are
removed. Then the faces fhx and fhx+1 are automatically modified according to the decision gadget and
are considered to be decision faces as well as bifurcation faces. Recall that the decision gadget defines a
decision column for the variable x as well as a positive and a negative edge of x. Each top connection face
of a positive bifurcation gadget is called a positive connection face of the variable gadget and each bottom
connection face of a negative bifurcation gadget is called a negative connection face of the variable gadget.
Furthermore, each top connection vertex of a positive bifurcation face is called a positive connection
vertex of the extended variable gadget and each bottom connection vertex of a negative bifurcation face
is called a negative connection vertex of the extended variable gadget. Moreover, the left connection
face of the positive bifurcation gadget placed in the faces f1 and f2 is called the unused left connection
face and the right connection face of the bifurcation gadget placed in the faces fd−1 and fd is called the
unused right connection face of the variable gadget. So, the variable gadget for x defines deg+(x) positive
connection faces, deg−(x) negative connection faces, and two unused connection faces, such that none
of these connection faces belongs to the variable gadget. The extended variable gadget consists of the
variable gadget and all its connection faces, with the following modifications. Each top connection face is

106

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

split horizontally, each bottom connection face is split horizontally, and in each unused connection face,
the bottom and the top subdivision vertices are replaced by their original edges.
Some properties of the extended variable gadget are stated in the next claim. It uses the following

definitions. Consider a graph Ĝ obtained from G0 by adding one extended variable gadget corresponding
to a Boolean variable x ∈ U such that each extended variable face has boundary distance at least 2.
Denote by f+ and f− the positive and the negative face of the decision gadget that is part of the variable
gadget corresponding to x. A normal graph H ⊆ Ĝ is negative at the variable gadget corresponding to x
if it has the following properties
• the decision column of x uses the negative edge of x,
• for each positive connection face f as well as the unused left connection face f , the subgraph H is
pulling along the f+,f -face-sequence, whose internal faces all are positive bifurcation faces, and

• for each negative connection face f as well as the unused right connection face f , the subgraph H
relaxes along the f−,f -face-sequence, whose internal faces all are negative bifurcation faces,

see Figure 3.27. It is easy to check that such a subgraph H exists. Consider a normal subgraph H ⊆ Ĝ
that is negative at the variable gadget corresponding to x. Observe that, for each positive connection
vertex ve, one of the faces of H, that corresponds to the face of G0 whose bottom or top subdivision
vertex is ve, is not feasible with respect to Ĝ. Nevertheless, the face of H that corresponds to the unused
left connection face is feasible with respect to Ĝ due to the modifications applied to it. Similarly, a normal
graph H ⊆ Ĝ is positive at the variable gadget corresponding to x if it has the following properties
• the decision column of x uses the positive edge of x,
• for each positive connection face f and the unused left connection face f , the subgraph H relaxes
along the f+,f -face-sequence, whose internal faces all are positive bifurcation faces, and

• for each negative connection face f and the unused right connection face f , the subgraph H is
pulling along the f−,f -face-sequence, whose internal faces all are negative bifurcation faces.

Claim 3.48.
Let Ĝ be a graph obtained from G0 by adding one extended variable gadget corresponding to a Boolean
variable x such that each extended variable face has boundary distance at least 2. Denote by f+ and f−

the positive and the negative face of the decision gadget. Let F+ be the family of face-sequences that,
for each positive connection face f of the considered variable gadget, contains the f−,f -face-sequence,
whose internal faces all belong to the variable gadget, and let F− be the family of face-sequences that, for
each negative connection face f of the considered variable gadget, contains the f+,f -face-sequence, whose
internal faces all belong to the variable gadget.

a) The graph Ĝ forces to pull along F+.
b) The graph Ĝ forces to pull along F−.
c) For every normal graph H ⊆ Ĝ, that is negative at the variable gadget, each face of H corresponding

to a variable face, a negative connection face, or an unused connection face of the extended variable
gadget is feasible with respect to Ĝ.

d) For every normal graph H ⊆ Ĝ, that is positive at the variable gadget, each face of H corresponding
to a variable face, a positive connection face, or an unused connection face of the extended variable
gadget is feasible with respect to Ĝ.

e) For every normal graph H ⊆ Ĝ, the grid-path of H induced by the decision column of x uses either
the positive edge of x or the negative edge of x.

107

Chapter 3 Planar Graphs

ve1

ve2

ve3

ve4

f1 f1

f

f2

f2

f3 f3

a) An extended positive clause gadget.

ve1

ve2

ve3

ve4

f1 f1

f

f4

f4

f3 f3

b) An extended negative clause gadget.

Figure 3.28: The clause gadget. The gray subdivision vertices ve1 , . . . , ve4 are replaced by their original edges.

Proof.
a) Follows from Claim 3.46a).
b) Follows from Claim 3.47a).
c) Easy to check.
d) Easy to check.
e) Analogously to the proof of Claim 3.45. 2

Clause Gadgets

A clause gadget consists of one small face f of G0 with boundary distance at least 4 such that each
subdivision vertex on the boundary of f is replaced by its original edge. The clause gadget will be used in
the following way. Let f be a face of G0 with boundary distance at least 2 and denote by ve1 , ve2 , ve3 ,
and ve4 its left, bottom, right, and top subdivision vertex, respectively. For h ∈ [4], let fh be the face
of G0 such that veh is on the boundary of fh and fh 6= f . Place a clause gadget in f , i. e., replace veh by
its original edge eh for all h ∈ [4]. To obtain the extended positive clause gadget, which consists of f , f1,
f2, and f3, split f1 vertically, split f2 horizontally, and split f3 vertically, see Figure 3.28a). To obtain the
extended negative clause gadget, which consists of f , f1, f3, and f4, split f1 vertically, split f3 vertically,
and split f4 horizontally, see Figure 3.28b). Observe that the extended negative clause gadget is also
obtained by rotating the extended positive clause gadget by 180 degrees. The following claim states some
properties of the extended clause gadget, which is either a positive extended clause gadget or a negative
extended clause gadget.

Claim 3.49.
Let Ĝ be a graph obtained by adding an extended clause gadget such that the clause face has boundary
distance at least 4. Denote by f the clause face and denote by f1, f2, and f3 the other extended clause
faces. For h ∈ [3], let veh be the unique subdivision vertex of G0 that is on the boundary of f and on the
boundary of fh.

a) In every normal graph H ⊆ Ĝ, that pulls along (fh, veh , f) for all h ∈ [3], the face of H that
corresponds to f is not feasible with respect to Ĝ.

b) In every normal graph H ⊆ Ĝ, for which there is an h ∈ [3] such that H relaxes along (fh, veh , f),
the face of H that corresponds to f is feasible with respect to Ĝ.

108

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

Proof.
a) Easy to check.
b) Let Ĝ, as well as fh and veh for h ∈ [3] be as in the statement. Let ve4 be the fourth subdivision

vertex on the boundary of f and denote by f4 the face of G0 that contains ve4 on its boundary
and is not f . Consider a normal subgraph H ⊆ Ĝ that relaxes along (f1, ve1 , f), the other two
cases are analogous. For h ∈ [4], let uh and wh be the neighbors of veh in G0. The grid-path of H
that joins u1 to w1 uses the edge e1 as H relaxes along (f1, ve1 , f) and, as f4 and f are faces of Ĝ,
Claim 3.44a) implies that the grid-path of H that contains u4 and w4 uses e4. For h ∈ {2, 3}, to
join uh to wh the grid-path of H that contains uh and wh can either use the edge eh or the two
subdivision vertices on the boundary of fh that were joined with a new edge when splitting fh.
Hence, the face f ′ of H that corresponds to f contains at most four grid vertices plus at most 4
subdivision vertices from the boundaries of f2 and f3. Therefore, f ′ is feasible with respect to Ĝ. 2

Wire Gadgets

Before presenting the last gadget, some further notation is introduced. Let f be a face of G0 with boundary
distance at least 2. For two distinct subdivision vertices ve and ve′ on the boundary of f , we say that ve
and ve′ are on opposite sides of f if e ∩ e′ = ∅, i. e., ve and ve′ are the bottom and the top subdivision
vertex of f or ve and ve′ are the left and the right subdivision vertex of f . Let F = (f0, ve1 , f1, . . . , ved , fd)
be a face-sequence for some integer d. Then, F is called straight if d ≤ 1 or, for all h ∈ [d − 1], the
subdivision vertices ved and ved+1 are on opposite sides of fd. Moreover, for an integer h ∈ [d − 1],
the face-sequence F is straight except for a turn in fh if F is not straight but F ′ := (f0, ve1 , . . . , fh)
and F ′′ := (fh, veh+1 , . . . , fd) are straight.
A straight wire gadget consists of a straight face-sequence F such that each face in F , except the

last face of F , is split orthogonal to the direction of F , see Figure 3.29a). More precisely, consider a
straight face-sequence F = (f0, ve1 , f1, . . . , fd) with d ≥ 1 along which we want to insert a straight wire
gadget. If eh is a vertical edge of G̃k for all h ∈ [d], then, for every h ∈ [d] the face fh−1 is split vertically.
Otherwise, eh is a horizontal edge of G̃k for all h ∈ [d] and, for all h ∈ [d], the face fh−1 is split horizontally.
Furthermore, a corner wire gadget consists of a face-sequence F that is straight except for one turn at
a face f and where the two straight parts of F are modified according to the straight wire gadget, see
Figure 3.29c). More precisely, consider a face-sequence F = (f0, ve1 , . . . , fd) with d ≥ 2 that is straight
except for a turn in fh for some h ∈ [d− 1]. Then, inserting a corner wire gadget along F means to modify
the face-sequences (f0, ve1 , . . . , fh) and (fh, veh+1 , . . . , fd) according to the straight wire gadget.

Claim 3.50.
Let F be a face-sequence in G0 that is either straight or straight except for a turn and such that each face
of f has boundary distance at least 4. Consider the graph Ĝ that is obtained from G0 by adding a wire
gadget along F .

a) The graph Ĝ forces to pull along F .
b) For every normal graph H that relaxes along F , each face of H that corresponds to a face in F is

feasible with respect to Ĝ.

Proof.

a) Let F = (f0, ve1 , f1, . . . , fd) and let Ĝ be as in the statement. First, assume that F is a straight
face-sequence. If d = 1, there is nothing to show and as the following argument can be extended

109

Chapter 3 Planar Graphs

ve1 ve2 ve3

f0 f0 f1 f1 f2 f2
f3

a) A straight wire gadget.

ve1 ve2

f0 f0 f1 f1
f2

u1

w1

ve′

ve′′

u2

w2

b) Proof of Claim 3.50a).

ve1

ve2 ve3

f0

f0

f1 f1 f2 f2
f3

c) A corner wire gadget.

H[RH
j+1]

H[RH
j]

H[CH
i−1] H[CH

i]

ve1

ve2

f0

f0

f1 f1
f2

u = (i, j)

d) Proof of Claim 3.50a).

Figure 3.29: Wire Gadgets.

inductively it suffices to consider the case when d = 2. For h ∈ [2], let uh and wh be the neighbors
of veh in G0, such that u1 and u2 are adjacent in G̃k and w1 and w2 are adjacent in G̃k, see
Figure 3.29b). Consider a normal graph H ⊆ Ĝ such that the grid-path of H that contains u1

and w1 does not use ve1 and uses between u1 and w1 only vertices embedded in f0. Assume that
every small face of H, except possibly the face of H that corresponds to f2 is feasible with respect
to Ĝ. The grid-path of H that contains u1 and w1 uses the new edge that was inserted to split f0

when constructing Ĝ from G0 as it cannot use any grid vertices that are on the boundary of f0 other
than u1 and w1. Denote by ve′ and ve′′ the two subdivision vertices of G0 whose neighborhood
is {u1, u2} and {w1, w2}, respectively. Claim 3.44c) implies that the grid-path of H that contains u1

and u2 uses ve′ as well as that the grid-path of H that contains w1 and w2 uses ve′′ . So, the face of H
that corresponds to f1 can only be feasible with respect to Ĝ if the grid-path of H that contains u2

and w2 uses ve′ and ve′′ as well as the edge {ve′ , ve′′}. Consequently, Ĝ forces to pull along F .

110

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

Assume now that F is straight except for one turn in fh with h ∈ [d− 1]. As the argument above
implies that Ĝ forces to pull along (f0, ve1 , . . . , fh) and (fh, veh+1 , . . . , fd), it suffices to consider the
case when d = 2 and F makes a turn in f1. Assume that ve1 is the bottom subdivision vertex of f1

and that ve2 is the right subdivision vertex of f1, see Figure 3.29d), all other cases are analogous.
Denote by u = (i, j) the common neighbor of ve1 and ve2 . Consider a normal graph H ⊆ Ĝ such that
every face of H is feasible with respect to Ĝ, except possibly the face of H that corresponds to f2,
and assume that the grid-path H[RHj] does not use ve1 and uses between (i−1, j) and u only vertices
embedded in f0. Then, the grid-path H[RHj] uses the edge inserted to subdivide f0 horizontally.
Furthermore, Claim 3.44b) implies that the grid-path H[CHi−1] uses the left subdivision vertices of f0

and f1 as well as that the grid-path H[RHj+1] uses the top subdivision vertex of f1. So, in order for
the face of H that corresponds to f1 to be feasible with respect to Ĝ, the grid-path H[CHi] must
use the edge inserted to split f1 vertically. Consequently, Ĝ forces to pull along F .

b) Let F = (f0, ve1 , f1, . . . , fd), Ĝ and H be as in the statement. Clearly, the faces of H that correspond
to a face fh with h ∈ [d− 1] are feasible with respect to Ĝ. Using Claim 3.44c) it follows that f0

and fd are feasible with respect to Ĝ. 2

Assembling the Graph Gφ

Next, some gadgets will be added to G0 in order to construct a graph Gφ such that (k, `,Gφ) is an
instance of the HGM Problem. The variable gadgets for the variables in U will be added one after
another to the middle row of G0, such that there are two faces between two consecutive variable gadgets
that will be modified according to the unused connection faces. More precisely, let jv =

⌊ 1
2k
⌋
and

let FU := (f1, ve2 , f2, . . . , fk−1) be the straight face-sequence, where f1 is the small face of G0 whose
boundary contains the grid vertices (1, jv) and (1, jv + 1) and fk−1 is the small face of G0 whose boundary
contains the grid vertices (k, jv) and (k, jv + 1). Let U = {x1, . . . , xn} and assume that x1, . . . , xn is the
order in which the variables appear in R. For h ∈ [n], define dh := 2(deg+(xh) + deg−(xh)). Furthermore,
define d̂1 := 2 and, for h ∈ [n]\{1}, define d̂h := d̂h−1 +dh−1 +2. Then, for each h ∈ [n] the variable gadget
for xh is placed in the faces fd̂h+1, . . . , fd̂h+dh and the faces fd̂h and fd̂h+dh+1 are modified according to
the unused left connection face and the unused right connection face of the extended variable gadget
for xh, respectively. For each integer h with 2 ≤ h ≤ d̂n + dn + 1, the face fh of FU belongs to exactly one
extended variable gadget. Furthermore,

d̂n + dn + 1 = d̂1 +
∑

h∈[n−1]

(dh + 2) + dn + 1 = 2 +
∑

h∈[n]

dh + 2(n− 1) + 1

=
∑

h∈[n]

2(deg+(xh) + deg−(xh)) + 2n+ 1 = 6m+ 2n+ 1,

as
∑
h∈[n]

(
deg+(xh) + deg−(xh)

)
counts each vertical line of R once and each clause in R touches exactly

three vertical lines. Recall that k := 6m + 2n + 3. So, FU contains enough faces to place all variable
gadgets next to each other with two unused connection faces in between consecutive variable gadgets and
the face fk−1 is not modified. Denote by G1 the graph obtained from G0 by adding the variable gadgets
and modifying their unused connection faces in the described way. Observe that each face in FU except the
two faces with boundary distance 0 are modified and each face that was modified when constructing G1

from G0 belongs to FU .
In the following, more faces of G0 are chosen for placing clause and wire gadgets. When doing so, the

faces refer to the graph G0 and we assume that some of the faces of G0 are already reserved but not

111

Chapter 3 Planar Graphs

modified according to the variable gadgets. Recall from Section 3.3.3 that two face-sequences F and F ′

are called disjoint if each face that is in F is not in F ′ and vice versa, as well as that two face-sequences F
and F ′ are called disjoint except for the last face if F and F ′ are disjoint or the only violation to being
disjoint is that the last face used in F is the last face used in F ′. Using R, one can choose a face fC
of G0 for each C ∈ C and a face-sequence F̂L in G0 for each vertical line L in R such that the following is
satisfied.
(i) For all C ∈ C the face fC has boundary distance at least 4 and there is no variable x ∈ U such

that fC belongs to the extended variable gadget corresponding to x.
(ii) For all distinct C,C ′ ∈ C the faces fC and fC′ are distinct.
(iii) For each vertical line L in R, the face-sequence F̂L is either straight or straight except for one turn.
(iv) For each vertical line L in R that joins a variable x ∈ U to a positive clause C ∈ C, the face-

sequence F̂L = (f0, ve1 , f1, . . . , fd) satisfies the following: the face f0 is a positive connection face of
the variable gadget corresponding to x, the subdivision vertex ve1 is the positive connection vertex
that is on the boundary of f0, and the face fd is the face fC .

(v) For each vertical line L in R that joins a variable x ∈ U to a negative clause C ∈ C, the face-
sequence F̂L = (f0, ve1 , f1, . . . , fd) satisfies the following: the face f0 is a negative connection face of
the variable gadget corresponding to x, the subdivision vertex ve1 is the negative connection vertex
that is on the boundary of f0, and the face fd is the face fC .

(vi) For every grid vertex v in G0, for which there are two distinct lines L and L′ in R such that v is on
the boundary of a face in F̂L and v is on the boundary of a face in F̂L′ , there is a clause C such
that v is on the boundary of fC and such that L and L′ both touch the clause C in R.

Indeed, jv =
⌊ 1

2k
⌋
≥ 3m+ n+ 1 and, hence, there is enough space for each clause C ∈ C. The next claim

states some additional properties of the face-sequences F̂L, where L is a vertical line in R.

Claim 3.51.
a) For each clause C ∈ C, there are exactly three face-sequences F̂L where L is a vertical line in R such

that the last face of F̂L is fC .
b) For all distinct vertical lines L,L′ in R, the face-sequences F̂L and F̂L′ are disjoint, except when L

and L′ touch the same clause in R, in which case F̂L and F̂L′ are disjoint except for the last face.
c) For each variable x ∈ U and for each connection face f of the extended variable gadget corresponding

to x that is not an unused connection face, there is a face-sequence F̂L with L in R such that f is
the first face of F̂L.

d) For each vertical line L in R, each face in F̂L = (f0, ve1 , f1, . . . , fd) has boundary distance at least 4
and, if F̂L is not a straight face-sequence, then F̂L makes a turn at fh with h ≤ d− 2.

e) For every grid vertex v, for which there is a variable x ∈ U and a line L in R such that v is on the
boundary of a face belonging to the variable gadget corresponding to x and v is on the boundary of
a face f in F̂L, the face f is the first face of F̂L and f is a connection face of the variable gadget
corresponding to x. In particular, for each line L in R, and for each face f in the face-sequence FU ,
the face-sequence F̂L does not use f .

Proof.
a) This follows from the assumption that each clause C ∈ C contains exactly three variables.
b) Follows from (vi).
c) Part b) implies that, for distinct vertical lines L and L′ of R, the face-sequences F̂L and F̂L′ start

in different faces. Then the statement follows as, for each variable x ∈ U , the variable gadget
corresponding to x defines deg+(x) positive connection faces and deg−(x) negative connection faces.

112

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

d) By construction, each connection face defined by a variable gadget corresponding to a variable in U
has boundary distance at least 4. Moreover, for each C ∈ C, the face fC has boundary distance at
least 4 due to (i). Now the first part of the statement follows from (iii). If the second part of the
statement was not true, then (vi) was violated.

e) For each vertical line L in R, the face-sequence F̂L = (f0, ve1 , f1, . . . , fd) satisfies that f0 is a
connection face of a variable gadget corresponding to a variable in U and ve1 is either a positive
or a negative connection vertex that is on the boundary of f0 due to (iv) and (v). By (iii), the
face f0 is the only face of F̂L that contains a vertex v such that v is on the boundary of a face in
the face-sequence FU . 2

For each face f of G0 for which there is a clause C such that f = fC or for which there is a vertical
line L in R such that F̂L uses f , the face f is also a face of G1 and f has not been modified when
constructing G1 from G0 due to Claim 3.51e), except when f is a positive connection face of a variable
gadget and its bottom subdivision vertex has been deleted and when f is a negative connection face of a
variable gadget and its top subdivision vertex has been deleted. So, the following construction is feasible.
For each vertical line L in R such that F̂L is straight, add a straight wire gadget along F̂L to G1 and, for
each vertical line L in R such that F̂L is straight except for one turn, add a corner wire gadget along F̂L
to G1. Let G2 be the graph obtained in this way. Claim 3.51b) implies that the graph G2 is planar as
each face is split at most one time when constructing G2 from G1. When constructing G2 from G1, for
each clause C ∈ C, the face fC is not modified. Let Gφ be the graph obtained from G2 by adding a
clause gadget in the face fC for all clauses C ∈ C, see Figure 3.30 for an example. Observe that, in each
face f of G0 at most a constant number of vertices and edges have been added to construct the graph Gφ.
Consequently, Gφ has size polynomial in k and also polynomial in n+m, which is a lower bound on the
size of φ.
For each vertical line L in R that joins a variable x ∈ U to a positive clause C ∈ C, let FL be the

face-sequence (f0, ve1 , f1, . . . , ved , fd) where fd = fC and f0 is the negative face of x, which is obtained
from F̂L by adding f0 and positive bifurcation faces corresponding to the variable gadget of x. For a
variable x ∈ U , denote by F+

x the set of face-sequences that contains FL for each vertical line L in R that
joins x to a positive clause in C. Similarly, for each vertical line L in R that joins a variable x ∈ U to a
negative clause C ∈ C, let FL = (f0, ve1 , f1, . . . , ved , fd) be the face-sequence where fd = fC and f0 is the
positive face of x, which is obtained from F̂L by adding f0 and negative bifurcation faces corresponding
to the variable gadget of x. For a variable x ∈ U denote by F−x the set of face-sequences that contains FL
for each vertical line L in R that joins x to a negative clause in C. The next claims state some properties
of Gφ.

Claim 3.52.
a) Each face of G0 that has been modified when constructing Gφ is either a variable face, an unused

connection face, a wire face, or a clause face.
b) Each face of G0 that has boundary distance zero has not been modified when constructing Gφ from G0

and each face of G0 that has boundary distance at most 2 has either not been modified or has been
modified according to an unused connection face of an extended variable gadget.

c) For each i ∈ [k], the set C̃i separates C̃1 from C̃k in Gφ and, for each j ∈ [k], the set R̃j separates R̃1

from R̃k in Gφ.
d) For each variable x ∈ U , the graph Gφ forces to pull along the face-sequence F+

x and the graph Gφ
forces to pull along the face-sequence F−x .

113

Chapter 3 Planar Graphs

x
1

x̄
1

x
2

x̄
2

x
3

x̄
3

C
1

=
(x

1
∨

x
2

∨
x

3) C
2

C
2

=
(x

2
∨

x
2

∨
x

3)

C
3

C
3

=
(x̄

2
∨

x̄
2

∨
x̄

2)

C
4

=
(x̄

1
∨

x̄
2

∨
x̄

3)

a)
M
on

ot
on

e
re
ct
ili
ne

ar
re
pr
es
en
ta
tio

n
of
φ
.

cl
au

se
fa

ce
de

ci
si

on
fa

ce
bi

fu
rc

at
io

n
fa

ce
w

ir
e

fa
ce

co
nn

ec
tio

n
fa

ce

b)
C
ol
or
s
us
ed

in
Pa

rt
c)
.
O
bs
er
ve

th
at

ev
er
y
de

ci
sio

n
fa
ce

is
al
so

a
bi
fu
rc
at
io
n
fa
ce

an
d
th
at

ev
er
y
co
nn

ec
tio

n
fa
ce

th
at

is
no

t
un

us
ed

is
al
so

a
w
ire

fa
ce
.
Ea

ch
po

sit
iv
e
an

d
ea
ch

ne
ga
tiv

e
co
nn

ec
tio

n
fa
ce

is
sp
lit

ho
riz

on
ta
lly

;u
nu

se
d
co
nn

ec
tio

n
fa
ce
s
ar
e
no

t
sp
lit
.

114

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

j

i

R
j v

R
j v

+
1

c)
T
he

gr
ap

h
G
φ
.
R
ec
al
lt
ha

t
th
e
ve
rt
ex

(i
,j

)
fo
r
i,
j
∈

[k
]i
s
em

be
dd

ed
at

th
e
co
or
di
na

te
s

(i
,j

),
w
he

re
th
e
ho

riz
on

ta
la

xi
s
re
fe
rs

to
th
e
fir
st

co
or
di
na

te
an

d
th
e

ve
rt
ic
al

ax
is

re
fe
rs

to
th
e
se
co
nd

co
or
di
na

te
.

F
ig

ur
e

3.
30

:
Ex

am
pl
e
of

th
e
gr
ap

h
G
φ
fo
r
φ

=
(x

1
∨
x

2
∨
x

3)
∧

(x
2
∨
x

2
∨
x

3)
∧

(x̄
2
∨
x̄

2
∨
x̄

2)
∧

(x̄
1
∨
x̄

2
∨
x̄

3)
.

115

Chapter 3 Planar Graphs

Proof.
a) Follows from Claim 3.51b) and e).
b) Follows from Claim 3.51d) and the construction of G1.
c) Fix an i ∈ [k − 1] \ {1}. Assume for a contradiction that C̃i does not separate C̃1 from C̃k in Gφ.

So there is a C̃1,C̃k-path P in Gφ − C̃i. Let Ĉi be the set of vertices that consists of C̃i and each
subdivision vertex ve of G0 such that e is a vertical edge in column C̃i in G̃k and ve is not replaced
by its original edge when constructing Gφ from G0. As Ĉi induces a path in Gφ that can be extended
to a cycle by adding one new edge such that the graph remains plane and the sets C̃1 and C̃k are on
different sides of the cycle, each C̃1,C̃k-path in Gφ uses at least one vertex from Ĉi. Therefore, P uses
a subdivision vertex ve such that e is a vertical edge in column C̃i in G̃k. Let e = {(i, j), (i, j + 1)}
and let f1 and f2 be the two faces of G0 such that ve is on the boundary of f1 and f2. Since P
can use neither (i, j) nor (i, j + 1), there are two new edges e1 and e2 that were added to G0 when
constructing Gφ and such that ei is embedded in fi for i ∈ [2]. It is easy to see that neither f1

nor f2 can be a variable face, an unused decision face, or a clause face. So f1 and f2 are both wire
faces. If f1 and f2 belong to the same face-sequence FL for some vertical line in R then e1 ∩ e2 = ∅.
However, the faces f1 and f2 cannot belong to different face-sequences as otherwise (vi) was violated
for v = (i, j) or v = (i, j + 1). Consequently, there is no such path P and C̃i separates C̃1 from C̃k.
Clearly the statement is true for i = 1 and i = k. For rows the argument is similarly, except that for
showing that neither f1 nor f2 is a variable face, Claim 3.51e) is needed.

d) Follows from Claim 3.48a) and b), and Claim 3.50a) 2

Claim 3.53.
The graph Gφ is uniquely embeddable.

Proof. Let G′′0 be the graph obtained from Gφ by deleting every vertex that is not in G0 and also every
edge that is neither in G0 nor in G̃k. So, roughly speaking, G′0 is a k×k grid where some edges are
missing and some edges are subdivided. Let G′0 be the graph obtained from G′′0 by inserting the positive
edge of x for each variable x ∈ U . Then, G′0 is a minimal graph containing a k×k grid as a minor and
Remark 3.15 implies that G′0 is uniquely embeddable. So, from now on, fix an embedding of G′0 and
consider G′0 as a plane graph. Let e = {ve1 , ve2} be an edge that was inserted to split a small face f of G0

when constructing Gφ. As f has boundary distance at least 2 by Claim 3.52b), f is the only face of G0

with ve1 and ve2 on its boundary and it is easy to see that also in G′0 there is only one face f ′ such that ve1

and ve2 are both on the boundary of f ′. Hence, there is only one way to add the edge e to the plane
graph G′0. As each face of G0 is split at most once when constructing Gφ, this argument still applies when
some of these edges have already been added to G′0. So the plane graph G′1 obtained from G′0 by adding
each edge, that when constructing Gφ was inserted into G0 to split a face of G0, is uniquely embeddable.
The graph G′1 almost looks like Gφ, except for some modifications in the main bifurcation faces. Let f
be a face of G0 that has been modified according to a main bifurcation face. Denote by v and w the
two new vertices that were added to f when modifying G0 to obtain Gφ. In the following, a pair of such
vertices (v, w) is called a pair of new bifurcation vertices. Denote by r, s, and t the three vertices on the
boundary of f that are adjacent to v or w in Gφ. The graph G0 only contains one face f0 such that r, s,
and t are on the boundary of f0, namely f0 = f , and similarly, also the graph G′1 contains only one face f1

such that r, s, and t are on the boundary of f1. Hence, there is only one way to add the vertices v and w
to G′1 including their incident edges as in Gφ. As each face of G0 that is modified according to a main

116

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

bifurcation face is not modified due to another gadget, it follows that inserting one pair of new bifurcation
vertices does not influence the possibilities of inserting another pair of new bifurcation vertices. Hence,
the graph G′2 obtained from G′1 by inserting all pairs of new bifurcation vertices is uniquely embeddable.
Observing that G′2 is identical to Gφ shows that Gφ is uniquely embeddable. 2

This completes the construction of Gφ and the statement of its properties. From now on, as Gφ is
uniquely embeddable, consider Gφ to be a plane graph with this unique embedding.

The “if and only if” statement

After completing the construction, we now show that φ is a yes-instance of the Planar Monotone
3-SAT Problem if and only if (k, `,Gφ) is a yes-instance of the HGM Problem, i. e., φ is satisfiable if
and only if there is a feasible subgraph H of Gφ.

Claim 3.54.
If φ is satisfiable, then there is a feasible subgraph H ⊆ Gφ.

Proof. Assume that φ is satisfiable. To prove the claim, a feasible, normal subgraph of Gφ is constructed.
Let T : U → {True,False} be a satisfying assignment of φ. The assignment of T for a variable x is called
good for a clause C ∈ C if C uses the variable x and either C is a positive clause and T (x) = True or C
is a negative clause and T (x) = False. Consider a plane graph H ⊆ Gφ with the following properties.
The graph H contains every grid vertex of G0 and the large face of H is bounded by Blarge which was
defined as the cycle that bounds the large face of G0. This is possible as no grid vertex of G0 was removed
when constructing Gφ. So it remains to specify how each pair of grid vertices that are adjacent in G̃k are
joined in H. Let u = (i, j) and u′ = (i′, j′) be two grid vertices of G0 that are adjacent in G̃k such that
not both of them are on the boundary of the large face of G0. Denote by ve the subdivision vertex of G0

whose neighbors are u and v. Let f and f ′ be the two small faces of G0 with ve on their boundary. If f
or f ′ does not belong to a gadget or an extended gadget that was placed in G0 when constructing Gφ,
then H contains either ve or e. So it remains to describe how two grid vertices u and u′ that are adjacent
in G̃k are joined when f and f ′ both belong to a gadget or an extended gadget. To do so, the following
rules are applied.
• For each variable x ∈ U with T (x) = True, the subgraph H is positive at the variable gadget
corresponding to x.

• For each variable x ∈ U with T (x) = False, the subgraph H is negative at the variable gadget
corresponding to x.

• For each line L in R, that joins a variable x ∈ U to some clause C ∈ C, the graph H relaxes along F̂L
if the assignment of T for x is good for C and otherwise H pulls along F̂L.

• For each subdivision vertex of Gφ that is on the boundary of a left unused connection face as well
as a right unused connection face, the graph H contains ve as well as the two edges incident to ve.

To see that H is a minimal graph containing a k×k grid as a minor, define columns and rows of H
as follows. For i ∈ [k − 1] \ {1}, let CHi ⊆ V (H) be the set of vertices that contains each vertex in C̃i
and the vertices added to H for joining two vertices in C̃i that are adjacent in G̃k. Define CH1 := C̃1 as
well as CHk := C̃k. Similarly, for j ∈ [k − 1] \ {1}, let RHj ⊆ V (H) be the set of vertices that contains
each vertex in R̃j and the vertices added to H for joining two vertices in R̃j that are adjacent in G̃k.
Define RH1 := R̃1 as well as RHk := R̃k. By construction, the sets CH1 , . . . , CHk are pairwise disjoint and
also the sets RH1 , . . . , RHk are pairwise disjoint. Furthermore, for each i ∈ [k], the set CHi induces a path
in H and, for each j ∈ [k], the set RHj induces a path in H. Hence, H contains a k×k grid as a minor.

117

Chapter 3 Planar Graphs

It is easy to verify that for all i, j ∈ [k] the set CHi ∩ RHj induces a tree in H. Therefore, the graph H
has exactly (k − 1)2 + 1 faces. Assume for a contradiction that H is not a minimal graph containing a
k×k grid as a minor. Then, there is a graph H ′ ⊆ H that contains a k×k grid as a minor and there is
a vertex v ∈ V (H) with H ′ ⊆ H − v or there is an edge e ∈ E(H) with H ′ ⊆ H − e. Since each vertex
of H and each edge of H is contained in a row or a column of H that induces a path in H, each vertex
of H is on the boundary of at least two faces of H and also each edge of H is on the boundary of at
least two faces of H. Hence, H ′ has at most (k − 1)2 faces. As the number of faces does not increase
when contracting H ′ to a k×k grid and modifying its embedding accordingly, the k×k grid would have
at most (k − 1)2 faces, which is a contradiction. Therefore, H is a minimal graph containing a k×k grid
as a minor.
By construction, H is a normal graph. So for each small face f of G0 there is a small face f ′ of H

that corresponds to f . Next, it is argued that H is a feasible subgraph of Gφ. First, consider a face f
of G0 that does not belong to a gadget or an extended gadget that is placed in G0 in order to obtain Gφ.
Then, for each subdivision vertex ve that, in G0, is on the boundary of f , the graph H either contains ve
or e. So, in H, there are at most 8 vertices embedded in the face f ′ corresponding to f and f ′ is feasible
with respect to Gφ. If f is a variable face of G0 or an unused connection face of G0, then the face f ′

corresponding to f is feasible with respect to Gφ due to Claim 3.48c) and d). Consider a variable x and
let f1 be a connection face of x that is not an unused connection face. Claim 3.51c) says that there is a
unique vertical line L in R such that F̂L uses f1. Let C ∈ C be the clause such that the last face of F̂L
is fC . Furthermore, let ve ∈ V (G0) be the subdivision vertex on the boundary of f1 that is also on the
boundary of a variable face f0 of G0. Note that f0 is a bifurcation face of G0 and, in the construction
of Gφ, the subdivision vertex ve has been replaced by its original edge e. If the assignment of T for x
is good for C, then H relaxes along F̂L and also along the face-sequence obtained from FL by deleting
the first face and the first subdivision vertex. Hence, the face of H corresponding to f1 is feasible with
respect to Gφ. Otherwise, i. e., if the assignment of T for x is not good for C, then the graph H does
not use e and the grid-path of H that contains both neighbors of e uses the two new vertices embedded
in the bifurcation face f0. Furthermore, the graph H pulls along F̂L and, hence, uses the edge inserted
to split f1 horizontally. Therefore the face of H that corresponds to f1 is feasible with respect to Gφ.
Moreover, for each face f of G0 that is a wire face and neither a clause nor a connection face of an
extended variable gadget, it is easy to see that the face of H that corresponds to f is feasible with respect
to Gφ. Finally, consider a clause face fC of G0. As the assignment of T is a satisfying assignment for φ,
there is a variable x ∈ U such that the assignment of T for x is good for C. Let L be the vertical line
in R that joins x to C. Then, H is relaxing along F̂L and the face of H that corresponds to fC is feasible
with respect to Gφ due to Claim 3.49b). 2

Claim 3.55.
If there is a feasible subgraph H ⊆ Gφ, then φ is satisfiable.

Proof. Let H be a feasible subgraph of Gφ and consider H as a plane graph with its induced embedding
with respect to the embedding of the plane graph Gφ. This is not a restriction as Gφ and H are both
uniquely embeddable due to Claim 3.53 and Remark 3.15, respectively. For each face f of Gφ, there
is a unique face f ′ of H such that, for each vertex v ∈ V (Gφ) that is embedded in f , the vertex v is
embedded in f ′. In the following, we say that f ′ is the face of H that contains f . By construction, the
graph Gφ contains a face flarge that is bounded by the cycle Blarge. As k ≥ 5, the cycle Blarge contains at
least 20 vertices and the face of H that contains flarge must be the large face f ′large of H. Since no vertex
from V (Gφ) \ V (H) is embedded in f ′large, every vertex in Blarge is on the boundary of f ′large.

118

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

u v

u′ v′
r

s

f2

f3

f1

f4

er

es

Figure 3.31: Notation in the proof of Claim 3.55. The boundary of the large face of G0 is drawn on the top.
For a contradiction, it is assumed that the boundary of H, which is highlighted, does not contain the edge {u, v}.
At most two of the gray subdivision vertices have been replaced by their original edges when constructing Gφ
from G0.

For a contradiction, assume that there is an edge e = {u, v} in Blarge that is not contained in H. Then, u
cannot be one of the vertices (1, 1), (1, k), (k, 1), and (k, k) as otherwise degH(u) = 1, but H does not
contain such a vertex by Proposition 3.16. Let f1 be the small face of G0 with u and v on its boundary,
and let u′ and v′ be the other two grid vertices on the boundary of f1 such that u and u′ are adjacent
in G̃k and v and v′ are adjacent in G̃k. See Figure 3.31 for the following definitions. Let f2 be the small
face of G0 with f2 6= f1 and u′ and u on its boundary. Denote by r the neighbor of u′ in G̃k that is on the
boundary of f2 but is not u. Let f3 be the small face of G0 with f3 6= f2 and u′ and r on its boundary.
Denote by s the neighbor of u′ in G̃k that is also on the boundary of f3 but is not r. Let f4 be the small
face of G0 with u′, v′, and s on its boundary. When constructing Gφ from G0, the faces f1 and f2 were
not modified, and at most one of the faces in {f3, f4} was modified to be an unused connection face due to
the placement of the variable gadgets and Claim 3.52b). Moreover, the cycle bounding the face f ′large of H
uses the grid vertex u, the subdivision vertex between u and u′, the grid vertex u′, the subdivision vertex
between u′ and v′, the grid vertex v′, the subdivision vertex between v′ and v, as well as the grid vertex v
as otherwise one of these subdivision vertices was embedded in the face f ′large of H. Then, u′ is on the
boundary of f ′large and Proposition 3.17b) implies that degH(u′) ∈ {2, 3}. Let er be the edge of Gφ that
connects u′ to the subdivision vertex between u′ and r and let es be the edge of Gφ that connects u′ to
the subdivision vertex between u′ and s or, if the subdivision vertex between u′ and s has been replaced
by its original edge, let es be the edge that connects u′ and s. So, H contains at most one of the edges er
or es.

Case 1: H does not contain er. Let f ′ be the face of H where, in the drawing of Gφ, the edge er is
embedded. Then, f ′ is a small face of H and f ′ contains f2 and f3. Therefore, each vertex that, in the
drawing of Gφ, is embedded in f2 or f3 is in f ′. In particular, these are 6 grid vertices and the three
subdivision vertices on the boundary of f2, as f2 has not been modified when constructing Gφ from G0

according to Claim 3.52b). Hence, there are at least 9 vertices in V (Gφ) that are embedded in f , which
contradicts that H is a feasible subgraph of Gφ.

Case 2: H does not contain es. Let f ′ be the face of H where, in the drawing of Gφ, the edge es is
embedded. Then, f ′ is a small face of H and contains f3 and f4. Therefore, each vertex that, in the
drawing of Gφ, is embedded in f3 or f4 is in f ′. In particular, these are 6 grid vertices and at least

119

Chapter 3 Planar Graphs

three subdivision vertices as at most one of the faces in {f3, f4} is an unused connection face. Hence,
there are at least 9 vertices in V (Gφ) that are embedded in f , which contradicts that H is a feasible
subgraph of Gφ.

Consequently, H contains the edge {u, v} and the face f ′large is bounded by Blarge.
There are exactly 4(k − 2) vertices v in Blarge with degH(v) = 3 and exactly 4 vertices v in Blarge

with degH(v) = 2. Hence, none of the edges in Blarge is contracted when contracting H to a k×k grid.
Consider a partition of V (H) into sets Mi,j with i, j ∈ [k] such that contracting the set Mi,j to one
vertex (i, j) results in the k×k grid. Due to Proposition 3.16, the vertex (1, 1) is in one of the following
sets: M1,1, M1,k, Mk,1, or Mk,k. Without loss of generality, we may assume that (1, 1) ∈M1,1 and also
that (i, j) ∈ Mi,j for each vertex (i, j) in Blarge. Let CH1 , . . . , CHk and RH1 , . . . , RHk be the columns and
rows of H that result from the choice of the sets Mi,j .
For a contradiction, assume that there is a grid vertex v = (i, j) ∈ V (Gφ) that is not in H. As each

vertex in Blarge is in H, it follows that i ∈ [k − 1] \ {1} and j ∈ [k − 1] \ {1}. On the one hand, there
are k vertex disjoint RH1 ,RHk -paths in H, since each column of H induces a RH1 ,RHk -path in H and these
paths are pairwise vertex-disjoint. On the other hand, the set R̃j separates RH1 from RHk in Gφ due
to Claim 3.52c) and, hence, the set R̃j \ {(i, j)} separates RH1 from RHk in H. So, there are k vertex
disjoint RH1 ,RHk -paths in H and there is a set of k − 1 vertices that separates RH1 from RHk in H, which
contradicts Lemma 3.43. Consequently, each grid vertex is in H. Furthermore, it follows that each grid
vertex v = (i, j) is in one column CHi′ for some i′ ∈ [k]. Since H is planar, the columns of H cannot cross
and therefore i = i′, i. e., the grid vertex (i, j) is in the column CHi . Analogously, it follows that, for
all i, j ∈ [k], the grid vertex (i, j) is in the row RHj . Therefore, H is a normal subgraph of Gφ.
To define a truth assignment U → {True,False}, consider a variable x ∈ U and let i ∈ [k] be the

index such that the ith column of G0 is the decision column defined by the variable gadget corresponding
to x. The grid-path H[CHi] is called the grid-path of the variable x. According to Claim 3.48e), the
grid-path of the variable x uses either the positive or the negative edge of x. Set T (x) = True if
and only if the grid-path of x uses the positive edge of x. For a contradiction, assume that there is a
clause C ∈ C that is not satisfied by the assignment T , i. e., C evaluates to False when plugging in
the values for the variables according to T . Assume that C is a positive clause, the following is easy
to adjust for a negative clause. Let x be an arbitrary variable used in C and denote by Lx a line in R
that joins x to C. Then T (x) = False and, hence, the grid-path of x uses the negative edge of x.
Let FLx = (f0, ve1 , f1, . . . , ved , fd). Then, fd = fC and f0 and f1 are the negative and the positive face of
the decision gadget corresponding to x, respectively. Furthermore, the subdivision vertex ve1 has been
deleted when constructing Gφ and, between the neighbors of ve1 , the grid-path of x uses only vertices
embedded in f0. By Claim 3.52d), the graph Gφ forces to pull along FLx and therefore H is pulling
along FLx . As x was an arbitrary variable used in C and C contains exactly three literals by assumption,
there are three distinct face-sequences F that each end in fC and such that H pulls along F . Moreover,
these three face-sequence are disjoint except for the last face due to Claim 3.51b). Then the face of H
corresponding to fC is not feasible with respect to Gφ by Claim 3.49a), which contradicts that H is a
feasible subgraph of Gφ. Consequently, C is satisfied and T is a satisfying assignment for φ. 2

This completes the proof of Theorem 3.31.

3.3.5 Proof of Approximability Results for the HEG Problem

Here, the positive results on the approximability of the Min HEG Problem are proved. First, Lemma 3.29
that claims that there is a 9-approximation for the Min HEG Problem is proved.

120

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

Algorithm 3.2: Computes an embedding that corresponds to a 9-approximation of the Min HEG
Problem.
Input: an instance (k,G,H) of the Min HEG Problem such that no edge in E(G) \ E(H) joins

two vertices in H.
Output: an embedding of G that is an extension of the embedding of H such that no vertex

of V (G) \ V (H) is embedded in the large face of H, or ` =∞ if G does not have an
embedding with the required properties.

1 Determine the large face flarge of H and compute a list of the vertices on the boundary of flarge;
2 Let Ĝ be the graph obtained from G by adding a new vertex v∗ that is adjacent to all vertices on the

boundary of flarge;
3 If Ĝ is not planar then Return ` =∞ ;
4 Compute an embedding Ĝ of Ĝ in the plane;
5 Modify Ĝ such that Ĝ remains planar and no vertex of V (G) \ V (H) is embedded in flarge;
6 Let G be the embedding of G that is obtained from Ĝ by removing v∗ and all edges incident to v∗;
7 Return the embedding G;

Proof of Lemma 3.29. Consider an instance (k,G,H) of the Min HEG Problem, denote by ` its
optimal value, and assume that ` < ∞. Fix an embedding Gopt of G that corresponds to an optimal
solution for the instance (k,G,H). Let G be an arbitrary embedding of G where no vertex of V (G) \V (H)
is embedded in the large face of the induced embedding of H. Note that G is an extension of H as required
by the Min HEG Problem, since H is uniquely embeddable due to Remark 3.15. The aim is to show
that, in G, each small face of the induced embedding of H contains at most 9` vertices of G. Consider a
small face f of H. Let U be the set of vertices of H that are on the boundary of f . Each component
of G− V (H) that, in G, is embedded in f contains at least one vertex that has a neighbor in U because G
is connected. There are at most 8 other small faces of H that contain a vertex in U on their boundary,
namely the small faces surrounding f . Let F be the set of these small faces of H. Consider a component G̃
of G− V (H) that, in G, is embedded in f . In Gopt, the component G̃ is embedded in f or in one of the
faces in F . As, in Gopt, there are at most 9` vertices of G that are embedded in f or in one of the faces
in F , it follows that, in G, there are at most 9` vertices of G embedded in f . Thus, G corresponds to a
9-approximation of the Min HEG Problem.

From now on, assume that there is no edge in E(G) \ E(H) that joins two vertices of H. In the
remainder of the proof, an embedding of G is called feasible if it is an extension of the embedding of the
plane graph H such that no vertex of V (G) \ V (H) is embedded in the large face of H. Algorithm 3.2
is applied to construct a feasible embedding of G. First, it is argued that the procedure described in
Algorithm 3.2 can always be executed. Denote by Ĝ the graph constructed in Line 2 and let v∗ be the
vertex added to G when constructing Ĝ. To see that the procedure is feasible, recall that the large face of
a minimal graph containing a k′×k′ grid with k′ ≥ 5 as a minor is unique. Thus, Line 1 is feasible. Other
than that, it only remains to argue that Line 5 is feasible, if reached. So assume that Ĝ is planar and let Ĝ
be an embedding of Ĝ in the plane. If, in Ĝ, no vertex in V (G) \ V (H) is embedded in the large face of H,
then there is nothing to do in Line 5. Otherwise, note that the large face of H can be partitioned into
several regions, such that each region is bounded by a cycle (v∗, x, y) in Ĝ, where x and y are adjacent
vertices on the boundary of the large face of H. Let Rlarge be the set of these regions. To argue that
Line 5 is feasible, it suffices to consider each region r ∈ Rlarge and move every vertex in V (G) \ V (H)
that is embedded in r to a small face of H. Let r ∈ Rlarge and denote by x and y the two vertices other

121

Chapter 3 Planar Graphs

...

...

. . .

. . .

v∗

x

y

Figure 3.32: Adjusting the embedding in Line 5 of Algorithm 3.2. Blue vertices and edges belong to the
subgraph H. The dotted line indicates a possibility to draw the light blue edge such that no vertex of G− V (H)
is embedded inside the cycle (v∗, y, x). The red arrows visualize the circular ordering of the vertices v∗, x, and y.

than v∗ on the boundary of r such that the edge {v∗, y} is the edge after {v∗, x} in the circular ordering
of v∗. In the embedding Ĝ, the edge {x, y} can also be drawn close to the edges {v∗, x} and {v∗, y} so
that all vertices of V (G) \ V (H) are embedded on the same side of the cycle (v∗, x, y) and the embedding
remains planar, see Figure 3.32. Applying the same procedure to every region in Rlarge shows that Line 5
is feasible. Furthermore, when an embedding G of G is returned, then it is feasible. Indeed, embeddings
are stored by the corresponding rotation systems, i. e., the algorithm only keeps track of the combinatorial
structure of the embedding. Hence, Remark 3.15 implies that G is an extension of the embedding of H
and due to Line 5, in G, no vertex of V (G) \ V (H) is embedded in the large face of H.
To show that Algorithm 3.2 is correct, i. e., that a feasible embedding of G is computed if and only

if G has a feasible embedding, define Ĝ and v∗ as above. Assume that G admits a feasible embedding G.
Then, in G, there is no vertex from V (G) \ V (H) embedded in the large face of H and there is no edge
of E(G) \ E(H) embedded in the large face of H, as no edge in E(G) \ E(H) joins two vertices in H.
Hence, the large face of H is also a face of G, the graph Ĝ is planar, and an embedding of G is computed.
As argued above, the computed embedding of G is feasible. Now, assume that the algorithm returns an
embedding G of G. Again, G is feasible and this implies that G admits a feasible embedding.
It remains to analyze the running time of Algorithm 3.2. Let n be the number of vertices of G and

assume that V (G) = [n] as always for implementations. Due to Lemma 2.26, which can be applied
as ∆(H) ≤ 4 by Proposition 3.16, a list of the faces of H and a list of the vertices on the boundary of each
face f of H can be computed together in O(‖H‖) time. Due to Proposition 3.17, the large face of H is the
unique face of H that contains 4(k − 2) ≥ 12 vertices v with degH(v) = 3. So, to find the large face of H,
the algorithm determines the degree of each vertex in H as well as, for each face f of H, the number of
vertices v with degH(v) = 3 on the boundary of f . This takes O(‖H‖) time as all lists of vertices on the
boundaries of the faces of H were computed in O(‖H‖) time and, hence, can also be traversed in O(‖H‖)
time. Denote by Llarge the list of vertices on the boundary of the large face of H. Then, the graph Ĝ in

122

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

s s

ss

s

ss

s

s

s = cycle on s vertices

a) An optimal solution for the Min HEG Problem,
i. e., each small face of H contains at most `opt vertices.

s
s

s

s s
s

s

s

s

s = cycle on s vertices

b) An embedding of G where one small face of H
contains roughly 9`opt vertices.

Figure 3.33: A graph G and different embeddings of G. The blue subgraph H is a minimal graph containing
a 5×5 grid as a minor. Denote by `opt the optimal value for the instance (k,G,H) with k = 5 of the Min HEG
Problem.

Line 2 can be computed from G by adding a new vertex v∗ = n+ 1 whose adjacency list is Llarge and
adding v∗ to the adjacency list of each vertex in the list Llarge, which takes time proportional to the
length of Llarge, which is O(|V (H)|) = O(‖H‖) time. Furthermore, ‖Ĝ‖ ≤ ‖G‖ + 1 + |V (H)| ≤ 3‖G‖.
Hence, it follows from Theorem 2.28 that Line 3 and Line 4 take O(‖G‖) time. To implement Line 5,
the algorithm does the following for each pair (x, y) with the property that, in Ĝ, the edge {v∗, y} is
the edge after {v∗, x} in the circular ordering of x in the embedding Ĝ. To adjust the rotation systems
representing Ĝ in a way that corresponds to moving the edge {x, y} in the embedding Ĝ as described
above, in the rotation system of x, the algorithm moves the entry y to be the entry before v∗ and, in the
rotation system of y, the algorithm moves the entry x to be the entry after v∗. Hence, the processing time
for one pair (x, y) is proportional to 2 + degG(x) + degG(y). As only adjacency lists of vertices in Llarge,
i. e., adjacency lists of vertices on the boundary of the large face of H, are rearranged, and for each such
vertex, the adjacency list is rearranged exactly two times, Line 5 takes time proportional to

∑

x in Llarge

(1 + degG(x)) ≤ |V (G)|+ 2|E(G)| ≤ 2‖G‖.

Consequently, the total running time is O(‖H‖+ ‖G‖) = O(‖G‖) = O(n) due to Corollary 2.9. 2

The approximation ratio of the algorithm in Lemma 3.29, i. e., the approximation ratio of Algorithm 3.2,
is tight as the following example shows. Let H be the 5×5 grid with an embedding in the plane and
fix an integer s ≥ 3. Let G be the graph obtained from H by attaching nine cycles, each on s vertices,
in the following way: four cycles at the vertex (2, 2), three cycles at the vertex (3, 3), one cycle at the
vertex (2, 3), and one cycle at the vertex (3, 2). Each of the nine cycles is attached by joining one of its
vertices to the corresponding vertex of the grid with a new edge. Clearly, G is planar and H is a minimal
graph containing a 5×5 grid as a minor. Denote by `opt the optimal solution for the instance (k,G,H)
with k = 5 of the Min HEG Problem. Figure 3.33a) shows that there is an embedding of G such that
each small face of H contains at most s + 4 vertices of G and no vertex in V (G) \ V (H) is embedded
in the large face of H, i. e., `opt ≤ s + 4. Moreover, there is an embedding of G, where all vertices
that are not in H are embedded in the same small face f of H, namely the face f that is bounded by

123

Chapter 3 Planar Graphs

the vertices (2, 2), (3, 2), (3, 3), and (2, 3), see Figure 3.33b). Then, there are ` = 9s + 4 vertices of G
embedded in f . Thus, any value α ∈ R for which Lemma 3.29 is true when replacing 9-approximation by
α-approximation must satisfy ` ≤ α · `opt. Hence,

α ≥ `

`opt
≥ 9s+ 4

s+ 4
s→∞−−−−→ 9,

and the approximation ratio in Lemma 3.29 is tight with respect to the construction used there.
Next, the proof for Theorem 3.30, which states that there is a 5-approximation for the Simplified Min

HEG Problem, is presented. The following lemma about computing disjoint paths in planar graphs will
be useful as it helps to analyze the structure of the minimal graph containing a k×k grid as a minor.

Lemma 3.56 (Ripphausen-Lipa, Wagner, Weihe [RLWW97]).
Let G = (V,E) be a planar graph on n vertices and fix two distinct vertices x, y ∈ V . There is an algorithm
that determines the maximum number of pairwise internally vertex-disjoint x,y-paths in G and returns
such a collection of x,y-paths in O(n) time.

In [RLWW97], it is also mentioned that the case that is interesting for the proof of Theorem 3.30 is
particularly easy. Consider a planar graph G = (V,E) on n vertices and fix two distinct vertices x, y ∈ V .
When Lemma 3.56 is applied here, there is an embedding of G that contains a face f such that the
vertices x and y are on the boundary of f . In [RLWW97], such a graph G is called (x, y)-planar. To find
a maximum collection of disjoint x,y-paths in G, one can construct x,y-paths one by one in the following
way until the remaining graph does not contain an x,y-path anymore. The algorithm starts in x and
traverses the boundary of the face f until y is reached, similarly as when determining the boundaries of
the faces of a graph in Lemma 2.26. Therefore, an x,y-walk is obtained and, if necessary, this x,y-walk
can be shortened to an x,y-path. Before constructing the next x,y-path, the algorithm removes all vertices
discovered in the x,y-walk, except for x and y. Since every edge of G and every vertex in V \ {x, y} is
used in at most one step of the construction, the algorithm runs in O(n) time by Corollary 2.9. Note
that an embedding of G can be computed in O(n) time by Theorem 2.28 and when temporarily adding
the edge {x, y} to G, if it is not yet in G, the resulting embedding of G will contain a face f such that x
and y are on the boundary of f .

Proof of Theorem 3.30. Let (k,G,H) be an instance of the Simplified Min HEG Problem. Denote
by `opt its optimal value, and let Gopt be a corresponding embedding of G. The idea to construct an
embedding G of G, that can be computed in polynomial time, is to start with the embedding of H and
add the components of G− V (H) one by one. When doing so, consider a force that pulls the components
of G−V (H) in the direction of the vertices corresponding to the vertex (1, 1) of the k×k grid to which H
can be contracted. More precisely, consider a partition of V (H) into non-empty sets Mi,j with i, j ∈ [k] as
in Proposition 3.24. For i, j ∈ [k − 1], the properties stated there imply that the subgraph of H induced
by Mi,j ∪Mi+1,j ∪Mi+1,j+1 ∪Mi,j+1 contains a unique cycle that bounds a small face of H, say fi,j .
Note that each small face of H is a face fi,j for some i, j ∈ [k]. Consider an arbitrary component G̃
of G − V (H). As G is connected, there is a vertex u in H that has a neighbor w in V (G̃). Observe
that u and w are both unique, as otherwise the edge {u,w} could be removed from G without destroying
the connectivity of G and (k,G,H) would not be an instance of the Simplified Min HEG Problem.
Furthermore, there are unique indices i, j ∈ [k] with u ∈Mi,j . As each vertex in Mi,j can only be on the
boundary of the faces fi−1,j−1, fi,j−1, fi,j , and fi−1,j , there are at most four possibilities to embed G̃
and the algorithm tries them in the following order

1. fi−1,j−1 2. fi,j−1 3. fi−1,j 4. fi,j . (3.16)

124

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

Algorithm 3.3: 5-approximation for the Simplified Min HEG Problem including a corresponding
embedding.
Input: an instance (k,G,H) of the Simplified Min HEG Problem.
Output: an integer ` with ` ≤ 5`opt, where `opt denotes the optimal solution for (k,G,H) and a

corresponding embedding of G.
1 Label the small faces of H with fi,j for i, j ∈ [k − 1] as done in the construction;
2 For all i, j ∈ [k − 1] let ni,j be the number of vertices on the boundary of fi,j ;
3 Let G be the embedding of the plane graph H;
4 ForEach component G̃ of G− V (H) do
5 Add G̃ to G according to (3.16) and update the corresponding value ni,j ;
6 EndFch
7 `← max{ni,j : i, j ∈ [k − 1]};
8 Return ` and the embedding G;

Observe that not all of these options must be feasible, as the vertex u is not necessarily on the boundary
of all these faces and not all of these faces exist for all values of i, j ∈ [k]. Nevertheless, as G is planar,
there is at least one small face f of H where G̃ can be embedded, i. e., the vertex u is on the boundary
of f , and this face f is one of the faces listed in (3.16). Furthermore, for each face f in the list in (3.16),
that exists and is such that u is on the boundary of f , the component G̃ can be embedded in f . This is
independent of previous choices to embed other components of G− V (H) as (k,G,H) is an instance of
the Simplified Min HEG Problem. Let G be the embedding of G that is obtained by applying these
rules to embed all components of G − V (H). Algorithm 3.3 summarizes this construction, where ni,j
for i, j ∈ [k − 1] denotes the number of vertices of V (G) that are embedded in the face fi,j .
Denote by ` the integer computed by Algorithm 3.3 when applied to (k,G,H). Next, it is argued

that ` ≤ 5`opt, which means that Algorithm 3.3 is a 5-approximation for the Simplified Min HEG
Problem. Consider a small face fi,j of H for arbitrary i, j ∈ [k − 2] \ {1}. The following argument is
easy to adjust for all other i, j ∈ [k − 1]. In the proof of Lemma 3.29, it was argued that, in an arbitrary
embedding of G that is an extension of the embedding of H, only components of G− V (H) that, in Gopt,
are embedded in the faces

fi−1,j−1, fi,j−1, fi+1,j−1, fi−1,j , fi,j , fi+1,j , fi−1,j+1, fi,j+1, and fi+1,j+1

of H can be embedded in fi,j . However, in the embedding G, vertices that can be embedded in fi−1,j−1,
fi,j−1, fi+1,j−1, or fi−1,j will not be embedded in fi,j . Hence, in G, at most all components of G− V (H)
that, in Gopt, are embedded in the faces fi,j , fi+1,j , fi−1,j+1, fi,j+1, or fi+1,j+1 of H are embedded in fi,j .
Consequently, in G, at most 5`opt vertices of G are embedded in the face fi,j of H and Algorithm 3.3 is a
5-approximation for the Simplified Min HEG Problem.

Next, it is argued that the procedure described in Algorithm 3.3 can be implemented to run in O(n
√
n)

time, where n denotes the number of vertices of G. Due to Lemma 2.26 and Lemma 2.27, which can
be applied because ∆(H) ≤ 4 by Proposition 3.16, for each face f of the plane graph H, a list Lf of
the vertices on the boundary of f , and, for each vertex u ∈ V (H), a list Lu of faces whose boundary
contains u can be computed in O(‖H‖) time. So, to implement Lines 1-3, it is only missing to label the
faces as in the above construction. To do so, first, columns and rows of H are defined. For all i, j ∈ [k]
such that (i, j) is a vertex of the k×k grid of degree 3, i. e., for all i, j ∈ [k] with either i ∈ {1, k}
or j ∈ {1, k}, let vi,j be a vertex in Mi,j with degH(vi,j) = 3. Such a vertex exists and is unique due
to Proposition 3.16. For (i, j) ∈ {(1, 1), (1, k), (k, 1), (k, k)}, let vi,j be an arbitrary vertex in Mi,j . In

125

Chapter 3 Planar Graphs

the following, the vertices vi,j that have been defined for certain values of i, j ∈ [k] are called the special
vertices of the large face of H as each of them lies on the boundary of the large face of H. For i ∈ [k],
let the ith column Ci be the vertex set of the unique vi,1,vi,k-path in H that uses only vertices in Mi,j

for j ∈ [k]. For j ∈ [k], let the jth row Rj be the vertex set of the unique v1,j ,vk,j-path in H that uses
only vertices in Mi,j for i ∈ [k]. Such paths exist and are unique due to Proposition 3.24. Furthermore,
by construction, the sets C1, . . . , Ck are pairwise disjoint and so are the sets R1, . . . , Rk. Note that these
definitions depend on the choice of the sets Mi,j . If H was a k×k grid, then the sets Mi,j can be chosen
in a way such that, for each i ∈ [k], the ith column of H as defined for grids is exactly the set Ci defined
here and similarly, for each j ∈ [k], the jth row of H as defined for grids is exactly the set Rj as defined
here.

Now, if the algorithm computed a feasible choice for the columns C1, . . . , Ck ofH and the rows R1, . . . , Rk

of H, then it can label the faces as desired by using the following. For i, j ∈ [k − 1], the face fi,j is the
unique face for which the set of vertices on its boundary intersects each of the sets Ci, Ci+1, Rj , and Rj+1

and no other columns or rows of H. Observe that the set of vertices on the boundary of the large face
of H intersects every column and every row of H. To label the faces, recall that V (G) = [n] as always
and V (H) ⊆ [n]. The algorithm initializes two integer arrays AC and AR of length n with zeros. Then,
for every i ∈ [k], it sets the entries of AC that correspond to the vertices in Ci to i and similarly, for
every j ∈ [k], it sets the entries of AR that correspond to the vertices in Rj to j, which takes O(n) time.
Then, for each face f of H, it traverses the list Lf to determine the indices of the columns and rows that
contain a vertex in Lf , i. e., that intersect the set of vertices on the boundary of f . If exactly two indices of
columns, say i1 and i2, and exactly two indices of rows, say j1 and j2, are determined, then f is the small
face fi,j of H with i = min{i1, i2} and j = min{j1, j2}. Otherwise, f is the large face of H. Hence, when
a face f is processed and a third index of a column or a third index of a row is encountered, the algorithm
stops processing f as f is the large face. Therefore, processing one face f takes time proportional to the
number of vertices on the boundary of f . As mentioned above, the lists Lf for all faces f of H can be
computed in O(‖H‖) time and, hence, they can also be traversed in O(‖H‖) time. So, if one feasible
choice for the columns and rows of H is known, the faces can be labeled in O(‖H‖) time.

Next, it is discussed how the algorithm computes a feasible choice of the columns and rows of H, as this
information cannot be read off the embedding of H directly. The algorithm tries all possibilities to choose
the special vertices of the large face of H. For each such choice, the algorithm checks if k vertex-disjoint
paths can be found, such that each path is a vi,1,vi,k-path for some i ∈ [k], i. e., whether there are
columns C1, . . . , Ck for the choice of special vertices of the large face of H. To do so, the algorithm adds
a new vertex x = n + 1 to H that is incident to vi,1 for all i ∈ [k] as well as a new vertex y = n + 2
that is incident to vi,k for all i ∈ [k]. Observe that H ′ is planar as x and y can both be embedded in
the large face of H. If, in H, there are k vertex-disjoint paths, such that each path is a vi,1,vi,k-path
for some i ∈ [k], then there are k internally vertex-disjoint x,y-paths in H ′. On the other hand, if there
are k internally vertex-disjoint x,y-paths in H ′, then each vertex vi,1 with i ∈ [k] is contained in one of
these paths and each vertex vi,k is contained in one of these paths as degH′(x) = degH′(y) = k. For
each i ∈ [k], one of these paths contains vi,1 and vi,k, as otherwise two paths would cross but this is
not possible as the paths are internally vertex-disjoint and H ′ is planar. Furthermore, V (H ′) ⊆ [n+ 2]
and, to satisfy V (H ′) = [n + 2], all vertices in V (G) \ V (H) can be added to H ′ as isolated vertices.
So to decide whether there are k vertex-disjoint paths in H, such that each path is a vi,1,vi,k-path for
some i ∈ [k] the algorithm can construct the graph H ′ and apply the algorithm contained in Lemma 3.56
to H ′ with vertices x and y, which takes O(n) time. Similarly, the algorithm checks if H contains k
vertex-disjoint paths, such that each path is a v1,j ,vk,j-path for some j ∈ [k], i. e., whether there are

126

3.3 Investigating the Algorithmic Use of Grid-Homogeneous Graphs

rows R1, . . . , Rk for the choice of special vertices of the large face of H. If the columns and the rows exist,
the corresponding partition of V (H) into the sets Mi,j for i, j ∈ [k] can be defined, such that each special
vertex vi,j of the large face of H is in Mi,j , and such that, for all i, j ∈ [k], the set Mi,j contains every
vertex in Ci ∩Rj . Thus, once the algorithm chose the special vertices of the large face of H, it takes O(n)
time to check whether this choice is feasible. So how many possibilities are there to choose the special
vertices of the large face of H? All special vertices of the large face of H have degree 3, except for v1,1,
v1,k, vk,1, and vk,k, and there are exactly 4(k − 2) vertices of degree 3 on the boundary of the large face
of H due to Proposition 3.17b). Hence, once the vertex v1,2 is chosen, there are only two ways to choose
the remaining special vertices that have degree 3 in H, due to their order on the boundary of the large
face, and it suffices to consider one of them due to symmetry. To choose v1,2, there are 4(k− 2) vertices of
degree 3 on the boundary of the large face of H and again due to symmetry it suffices to consider (k − 2)
consecutive ones, where consecutive refers only to the vertices of degree 3. Moreover, when walking along
the boundary of the large face of H from v1,2 to v2,1 such that v1,3 is not traversed, then each traversed
vertex has degree 2 and it does not matter which one is chosen as v1,1 and similarly for v1,k, vk,1, and vk,k.
As k2 ≤ |V (H)| ≤ n, there are at most

√
n choices for the special vertices of the large face of H that

need to be considered. So, all in all, a feasible choice for the columns and rows of H can be determined
in O(n

√
n) time.

To implement the loop in Lines 4-6, the algorithm first computes a list of the vertices in H and sets
up a binary array AH of length n, in which the entries corresponding to vertices of H are set to one,
which takes O(n+ ‖H‖) time when Lemma 2.25 is used to compute a list of the vertices in H. For each
vertex u ∈ V (H) the algorithm determines the small face f of H in which all components G̃ of G− V (H)
such that, in G, there is an edge joining u to a vertex in V (G̃), are embedded, i. e., it chooses one face fu
from the list Lu according to (3.16). As there are at most four faces in the list Lu, this takes constant
time for one node u and, hence, in total O(|V (H)|) time. Let G be the embedding of the plane graph H
as initialized in Line 3. For each small face f of H, the algorithm traverses the list Lf and, for each
vertex u in Lf with fu = f , it does the following. The algorithm cyclically shifts the rotation system
of u in the representation of G such that u′ is the last vertex in the rotation system of u, where u′ is
the vertex before u in Lf or, if u is the first vertex in Lf , then u′ is the last vertex of Lf . Consequently,
when embedding a new edge {u,w} in the face fu, the adjustment of the rotation system of u reduces to
appending w at the end of the rotation system of u. For each vertex u, the cyclical shift of its rotation
system takes time proportional to degH(u), which is at most 4 due to Proposition 3.16. Hence, all shifts
together can be done in time proportional to the sum of the lengths of the lists Lf , which is O(‖H‖)
time. Then, the algorithm computes the graph Ĝ := G− E(H) by going through the adjacency lists of G
and whenever an adjacency list of a vertex u ∈ V (H) is traversed all entries u′ ∈ V (H) in the adjacency
list of u are deleted, which takes O(‖G‖) time as the array AH can be used to determine in constant
time whether a vertex is in H. Observe that each component of Ĝ contains exactly one vertex of H as G
is connected and G − e is not connected for every e ∈ E(G) \ E(H). Moreover, V (Ĝ) = V (G) = [n]
and, hence, an embedding Ĝ of Ĝ can be computed in O(n) time according to Theorem 2.28. Next, the
embedding Ĝ is added to the embedding G to obtain an embedding of G, or more precisely, Ĝ contains a
drawing of each component of G− V (H) with its unique edge joining it to H and these drawings are now
embedded in the faces of the plane graph H. To do so, for each vertex u ∈ V (H), the algorithm appends
the rotation system of u, that refers to the embedding Ĝ, at the end of the rotation system of u, that
refers to the embedding G. For each vertex u ∈ V (G) \ V (H) the algorithm keeps the rotation system
of u that refers to the embedding of Ĝ. This finishes the implementation of the loop in Lines 4-6, which
takes O(‖H‖+ ‖G‖) time in total.

127

Chapter 3 Planar Graphs

s s

sss

v

w

s = path on s vertices

a) An optimal solution for the Simplified Min HEG
Problem, i. e., each small face of H contains at
most `opt vertices.

s

s

s

s
s

v

w

f1,1 f2,1 f3,1 f4,1

f1,2 f2,2 f3,2 f4,2

f1,3 f2,3 f3,3 f4,3

f1,4 f2,4 f3,4 f4,4

s = path on s vertices

b) An embedding of G that is obtained with Algo-
rithm 3.3.

Figure 3.34: A graph G and different embeddings of G. The blue subgraph H is a minimal graph containing
a 5×5 grid as a minor. Denote by `opt the optimal value of the instance (k,G,H) with k = 5 of the Simplified
Min HEG Problem.

To finish, Line 7 can be executed in time proportional to k2 ≤ n. So, the total running time of
Algorithm 3.3 is

O(‖H‖+ ‖G‖+ n
√
n) = O(‖G‖+ n

√
n) = O(n

√
n)

by Corollary 2.9. 2

The approximation ratio of the algorithm in Theorem 3.30, i. e., the approximation ratio of Algorithm 3.3,
is tight as the following example shows. Fix an integer s ≥ 3 and let H be the plane graph that is obtained
from an embedding of the 5×5 grid when splitting the vertex (2, 3) into two vertices v and w of degree 3
such that H has one face bounded by the cycle ((1, 2), (2, 2), v, (1, 3)), see Figure 3.34. Let G be the graph
obtained from H by attaching four paths, each on s vertices, to the vertex (3, 3) and one path on s vertices
to the vertex w, where each path is attached by joining one of its vertices to the corresponding vertex
of H. Clearly, H is a minimal graph containing a 5×5 grid as a minor and G is planar. So (k,G,H) is
an instance of the Simplified Min HEG Problem for k = 5 and we denote by `opt its optimal value.
The embedding of G in Figure 3.34a) shows that there is an embedding of G such that each small face
of H contains at most s+ 5 vertices of G and no vertex in V (G) \ V (H) is embedded in the large face
of H, i. e., `opt ≤ s + 5. Moreover, when applying Algorithm 3.3 to extend the embedding of H to an
embedding of G and labeling the faces as in Figure 3.34b), all vertices that are not in H are embedded in
the face f2,2. So, there are ` = 5s+ 5 vertices of G embedded in f2,2. Thus, the approximation ratio α of
Algorithm 3.3 must satisfy ` ≤ α · `opt and therefore,

α ≥ `

`opt
≥ 5s+ 5

s+ 5
s→∞−−−−→ 5.

128

Chapter 4

Approximate Cuts in Tree-Like
Graphs

This chapter studies approximate cuts, which relax the size constraints compared to exact cuts. More
precisely, consider a graph G on n vertices and an integer m ∈ [n]. We would like to find an m-cut (B,W)
in G that cuts few edges, preferably only constantly many. This is not always possible, for example,
consider a star on n vertices. Then every m-cut (B,W) cuts at least min{m,n−m} edges as one of the
sets of the cut always consists of leaves only. Also, for m =

⌊ 1
2n
⌋
, there is no m-cut of constant width

in a perfect ternary tree on n vertices due to Theorem 2.4. Therefore, we relax the size constraints on
the set B by requiring only 1

2m < |B| ≤ m instead of |B| = m. In the example of a perfect ternary tree
on n ≥ 13 vertices, i. e., of height at least two, the cut (B,W) of width one, where the set B consists
of the 1

3 (n − 1) vertices in the subtree rooted at a child of the root, is feasible now, see Figure 4.1a).
In the case of the star on n vertices, the relaxation on the size constraints does not help much as each
cut (B,W) with 1

2m < |B| ≤ m cuts at least min
{ 1

2m,n−m
}
edges. Therefore, this chapter focuses on

bounded-degree graphs and shows that bounded-degree trees and bounded-degree tree-like graphs allow
an approximate cut of constant width. The constant 1

2 in the above example is the easiest case. Recall
that, for n ∈ N and m ∈ [n], a cut (B,W) in a graph G on n vertices is called a simple approximate m-cut
if (B,W) satisfies 1

2m < |B| ≤ m and, for a constant c ∈ [0, 1), the cut (B,W) is called a c-approximate
m-cut if (B,W) satisfies cm ≤ |B| ≤ m. Moreover, in this chapter, for n ∈ N, m ∈ [n], and for a
constant c ∈ [0, 1), a strict c-approximate m-cut is a cut (B,W) in a graph G on n vertices with the
property that cm < |B| ≤ m. The concept of strict c-approximate m-cuts will only be used in this
chapter. Note that a simple approximate m-cut is the same as a strict 1

2 -approximate m-cut and every
c-approximate m-cut with c > 1

2 is a simple approximate m-cut but not vice versa. The aim of this
chapter is to show that bounded-degree trees and bounded-degree tree-like graphs allow c-approximate
m-cuts of small width for every feasible choice of the parameter m as well as that such a c-approximate
m-cut can be computed in linear time.
Despite approximate cuts being interesting by themselves, our motivation to devote this chapter to

approximate cuts is that they will be useful tools to construct exact cuts, in particular in Chapter 5.
There, they are used to split up big pieces of the considered graph such that each of the resulting pieces
will fit into one set of the final cut. For example, in Chapter 5, it is shown that every bounded-degree

129

Chapter 4 Approximate Cuts in Tree-Like Graphs

1
3 (n − 1) 1

3 (n − 1) 1
3 (n − 1)

B W

a) A simple approximate
⌊ 1

2n
⌋
-cut in a perfect

ternary tree on n vertices.

≈ 2
9 n ≈ 2

9 n ≈ 2
9 n

.

B′

B′′

T ′

P

b) A bisection in a tree T on n vertices with diam(T) ≈ 1
3n,

where T ′ is partitioned with a simple approximate cut.

Figure 4.1: Simple approximate cuts.

tree T on n vertices with diam(T) ≥ 1
4n allows a bisection of width at most 6∆(T), see also Theorem 1.1,

which is more general. To demonstrate the use of a simple approximate cut to construct a bisection with
these properties, fix an n ∈ N and consider the tree T that consists of a path P on

⌈ 1
3n
⌉
vertices and

a perfect ternary tree T ′ on
⌊ 2

3n
⌋
vertices whose root is adjacent to one of the vertices in the middle

of the path P , see Figure 4.1b). Then any bisection in T has to partition the vertex set of T ′ into two
non-empty sets, as V (T ′) is too large to fit completely into one set of the bisection. Theorem 2.4 says
that at least Ω(logn) edges are cut by every bisection in T ′. However, this is not required: The aim is to
find a bisection in T of width at most 6∆(T) and therefore a simple approximate m-cut with m :=

⌈ 1
2n
⌉

suffices to partition the vertex set of T ′ into two sets (B′,W ′) with 1
4n < |B

′| ≤
⌈ 1

2n
⌉
. Then, it is easy to

find a set B′′ ⊆ V \ V (T ′) such that the cut (B,W) with B := B′ ∪̇ B′′ and W := V \ B is a bisection
in T that cuts few edges.

This chapter is organized as follows: Section 4.1 focuses on trees and shows that every bounded-degree
tree T on n vertices allows a simple approximate m-cut of width at most ∆(T) for every m ∈ [n] as well
as that such a cut can be computed in linear time. The same section discusses also how to extend the
result to c-approximate m-cuts in trees. In Section 4.2, both results are generalized to tree-like graphs
with a given tree decomposition and Section 4.3 discusses how approximate cuts can be used to construct
exact cuts.

4.1 Approximate Cuts in Trees and Forests
To begin with, it is shown that every bounded-degree tree T allows a simple approximate cut of low width.

Lemma 4.1.
For every n ∈ N and every m ∈ [n] the following holds. Every forest G on n vertices allows a simple
approximate m-cut (B,W) with eG(B,W) ≤ ∆(G). A simple approximate m-cut in G whose width satisfies
this bound can be computed in O(n) time.

Proof. First, it is shown that a cut with the desired properties exists and then it is discussed how
to implement an algorithm computing such a cut. For the existence part, it is enough to prove the
lemma for trees. Indeed, let G be a forest on n vertices that is not connected and fix an m ∈ [n].

130

4.1 Approximate Cuts in Trees and Forests

If ∆(G) ≤ 1, then it is easy to see that there is an exact m-cut (B,W) in G with eG(B,W) ≤ ∆(G) and
this cut (B,W) satisfies all requirements. Otherwise, one can add edges to G to obtain a tree T with
the same vertex set and the same maximum degree. Then, every cut (B,W) in T is also a cut in G and
satisfies EG(B,W) ⊆ ET (B,W).

Now, let T = (V,E) be an arbitrary tree on n vertices and fix an integer m ∈ [n]. If m = n, set B := V

and W := ∅, which satisfy the requirements of the lemma. So, from now on, assume that m < n. Root T
at an arbitrary vertex r and observe that then there are at least m+ 1 vertices in the subtree rooted at r.
Let k be the number of children of r, denote by w1, w2, . . . , wk the k children of r, and, for each h ∈ [k],
let Vh be the vertex set of the subtree rooted at wh. If there is an ` ∈ [k] with |V`| ≥ m+ 1, consider only
the subtree T ′ rooted at w`, refer to w` as the root r from now, and adjust k, wh, and Vh for each h ∈ [k]
accordingly. Reapply this procedure until it is not possible anymore, i. e., until a subtree T ′ rooted at a
vertex r is found, such that T ′ contains at least m+ 1 vertices and |Vh| ≤ m for all h ∈ [k]. Note that r
must have at least one child, as there are at least m+ 1 vertices in the subtree rooted at r. Now, if there
is an ` ∈ [k] with |V`| > 1

2m, define B := V` and W := V \ B. Then, the cut (B,W) cuts one edge in
the original tree T . Otherwise, |Vh| ≤ 1

2m for all h ∈ [k] and
∑k
h=1 |Vh| ≥ m by the choice of r. Then,

let ` be the largest integer in [k] with
∑`
h=1 |Vh| ≤ m and set B :=

⋃`
h=1 Vh. As the sets V1, . . . , V` are

pairwise disjoint, the choice of B satisfies |B| ≤ m as well as

|B| > m− |V`+1| ≥ m− 1
2m = 1

2m if ` < k,

|B| ≥ |V (T ′)| − 1 ≥ m > 1
2m if ` = k.

DefiningW := V \B yields eT (B,W) ≤ ` ≤ deg(r) ≤ ∆(T), because exactly the edges {wh, r} with h ∈ [`]
are cut by (B,W).
Next, an implementation of an algorithm computing a simple approximate m-cut in a forest G with

the required properties is discussed. As usual, the set B will be returned as an unordered list of vertices.
If m = n, then it is trivial to compute the set B = V , i. e., the algorithm returns a list of all vertices in G.
So from now on assume that m < n and consider first the case when the input graph G is a tree T on n
vertices. Without loss of generality, assume that T is given as an arborescence with root r as otherwise
the algorithm contained in Lemma 2.33 can be applied. For each v ∈ V , let Tv be the subtree of T that is
rooted at v and denote by nv the number of vertices in the subtree rooted at v.

Claim 4.2.
There is an algorithm that computes the following in O(n) time:
(i) a vertex v∗ with nv∗ > m and nw ≤ m for all children w of v∗, as well as
(ii) nv for all descendants v of v∗.

Indeed, consider an algorithm that traverses T with a depth-first search starting at r and that
computes nv for each v ∈ V when v turns black. The algorithm stops the traversal as soon as the first
black vertex v∗ with nv∗ > m is reached. To do so, for each leaf v ∈ V , the algorithm sets nv = 1 and, for
each vertex v ∈ V that is not a leaf of T , it computes

nv = 1 +
∑

w child of v
nw.

This works, since a vertex only turns black once all its children are black. The traversal itself takes O(n)
time and the time to process one vertex v ∈ V is proportional to deg(v). So the algorithm takes at most

O(n) +O
(∑

v∈V
deg(v)

)
= O(n)

131

Chapter 4 Approximate Cuts in Tree-Like Graphs

time to determine v∗ and to compute nv for all descendants of v∗. This completes the proof of Claim 4.2.
Now, the tree Tv∗ has the same properties as the tree T ′ in the existence part of the proof and therefore,

the algorithm can use the construction from above to determine ` children w1, . . . , w` of v∗ in O(deg(v∗))
time such that the set B :=

⋃
h∈[`] V (Twh) has the desired properties. Then, the algorithm computes the

list of the vertices in the set B by traversing the subtrees Twh for all h ∈ [`] and inserting the discovered
vertices in the list for the set B. Computing the list of the vertices in the set B takes at most O(n) time
and, hence, the complete algorithm runs in O(n) time.

Next, the case when the input graph is not connected is discussed. The algorithm does not add edges as
done above in the proof of the existence part. Consider a forest G on n vertices and fix an m ∈ [n]. Denote
by T1, . . . , Tk the components of G. Let ` be the largest integer in [k] ∪ {0} with

∑`
h=1 |V (Th)| < m and

note that ` < k. If ` = 0, define B̃ := ∅ and m̃ := 0. Otherwise, define B̃ :=
⋃
h∈[`] V (Th) and m̃ := |B̃|.

Now, apply the construction for trees to the tree T`+1 with size-parameter m′ := m− m̃ to obtain a simple
approximate m′-cut (B′,W ′) in T`+1. Note that this is feasible as m′ ∈ [n′] for n′ := |V (T`+1)|. Define
B := B̃ ∪̇B′, which satisfies

1
2m = 1

2m̃+ 1
2m
′ ≤ m̃+ 1

2m
′ < |B| ≤ m̃+m′ = m.

To implement this idea, one can use a depth-first search to determine the sizes of the components of G as
well as a list of the vertices in Th for each h ∈ [`] in O(n) time according to Lemma 2.25 and then run the
algorithm for trees, which takes at most O(n) additional time. 2

Next, there is a quick, technical remark about the construction of the simple approximate cut, that will
be important in Chapter 6 when proving Lemma 6.2.

Remark 4.3.
Note that, if m < n and the algorithm contained in the previous proof is applied to a tree T with root r,
then the computed simple approximate cut (B,W) will satisfy r ∈W .

Our next aim is to strengthen the previous lemma to c-approximate m-cuts of small width. Considering
a perfect ternary tree on n vertices, m =

⌊ 1
2n
⌋
, and c tending to one, it is easy to see that the bound on

the cut width of a c-approximate m-cut will have to depend on c. In other words, the closer c is to one,
the more restrictive the bounds on the set B become but also the bound on the cut width will have to
increase.
Before stating the next lemma about c-approximate m-cuts, let us discuss one idea for generalizing

the previous lemma to c-approximate m-cuts. Consider a forest G on n vertices, fix an m ∈ [n] and
a c ∈ [0, 1). If c ≤ 1

2 , then the size constraints of a c-approximate m-cut are less restrictive than the
ones in the simple approximate m-cut and, hence, there is nothing to show. So assume that c > 1

2 ,
then one can iteratively find a set B with cm ≤ |B| ≤ m by applying the following procedure. Start
with B := ∅. As long as |B| < cm construct a simple approximate m′-cut (B′,W ′) in the forest G−B
with parameter m′ := m − |B| and then add the set B′ to the set B. Clearly, the size of B will never
exceed m and once the procedure stops, the cut (B,W) with W = V (G) \ B is a c-approximate m-cut
in G. Before each iteration m− |B| > (1− c)m is satisfied. Thus, more than 1−c

2 m vertices are added to
the set B in each iteration and the procedure stops after at most

⌈
cm

(1−c)
2 m

⌉
=
⌈

2c
1− c

⌉

iterations. Furthermore, in each iteration, at most ∆(G) edges are cut additionally to the edges cut by
the previous cut and, hence, a c-approximate m-cut of width at most

⌈
2c

1−c

⌉
∆(G) is obtained. Using the

132

4.1 Approximate Cuts in Trees and Forests

algorithm for the simple approximate m-cut, that is contained in Lemma 4.1, it is easy to implement this
procedure to run in O

(⌈
2c

1−c

⌉
n
)
time. The existence part is summarized in the following corollary.

Corollary 4.4.
For every c ∈ [0, 1), for every n ∈ N, and for every m ∈ [n], the following holds. Every forest G on n

vertices allows a c-approximate m-cut (B,W) with eG(B,W) ≤
⌈

2c
1−c

⌉
∆(G).

The next lemma uses the same idea to construct a c-approximate m-cut, but the number of vertices in
the set B is estimated more carefully to obtain a tighter bound on the number of cut edges. Furthermore,
the algorithm runs faster as it reuses parameters that are computed during a preprocessing and ensures
that after using a simple approximate cut in a vertex r the same vertex r will not be used for another
simple approximate cut, where the vertex r refers to the root of the tree T ′ from the construction in the
proof of Lemma 4.1.

Lemma 4.5 (extended version of Lemma 1.12).
For every c ∈ [0, 1), for every forest G on n vertices, and for every integer m ∈ [n] the following holds.

a) If c 6= 0, there is a strict c-approximate m-cut (B,W) in G with eG(B,W) ≤
⌈
log2

(
1

1−c

)⌉
∆(G).

b) There is a c-approximate m-cut (B,W) in G with eG(B,W) ≤
⌈
log2

(
1

1−c

)⌉
∆(G).

In both cases, there is an algorithm that computes a cut with these properties in O(n) time, where the
hidden constant in the running time depends neither on c nor on ∆(G).

The previous lemma states the bound on the cut width and the running time with their explicit
dependance on c, as later, in Section 4.3 and in Section 5.2, Lemma 4.5 is applied with a value of c that
depends on the number of vertices of the considered forest. Note that, as mentioned above, the closer c is
to one, the closer the size of B is to m, but the bound on the number of cut edges increases also. For
example, in Section 4.3 we study c-approximate m-cuts with c large enough to force |B| = m.

Proof of Lemma 4.5. Let G = (V,E) be an arbitrary forest on n vertices and fix an integer m ∈ [n].
Observe first that, if c = 0, then the cut (B,W) with B := ∅ and W := V has width zero and is a
c-approximate m-cut in G, which can be computed in O(n) time. Hence, it suffices to prove Part a) as,
for c 6= 0, Part b) follows directly from Part a).
So, let us now focus on Part a). Fix a c ∈ (0, 1). First, it is shown that a strict c-approximate m-cut

in G exists and then it is discussed how to implement an algorithm following the construction. As in the
proof of Lemma 4.1, for the existence part, it suffices to consider the case when G is a tree T as otherwise
it is either trivial to find a cut with the desired properties, or one can add edges to G until G is connected
without increasing its maximum degree. Also, if m = n, then the cut (B,W) with B := V and W := ∅
satisfies all requirements. So, from now on assume that m ∈ [n− 1]. In the following, it is argued that the
procedure described in Algorithm 4.1 computes a strict c-approximate m-cut in T . Algorithm 4.1 uses
the following notation. After rooting the tree T , for each v ∈ V (T), the subtree of T that is rooted at v
and where v is designated the root is denoted by Tv. As in Lemma 4.1, for v ∈ V (T), the number of
vertices in the tree Tv is denoted by nv.

In the following, the while loops in Lines 7-18 and Lines 13-16 are referred to as the outer and inner
while loop, respectively. Note that the preprocessing in Lines 1-6 is feasible. Indeed, Line 2 can always be
executed as m ≤ n− 1 and the root r chosen in Line 1 satisfies nr = n. If r does not satisfy the properties
required for the vertex v∗ in Line 2, then r has a child r′ with nr′ > m. Again, if r′ does not satisfy the
properties required for the vertex v∗ in Line 2, then r′ has a child r′′ with nr′′ > m. This sequence must

133

Chapter 4 Approximate Cuts in Tree-Like Graphs

Algorithm 4.1: Computes a strict c-approximate m-cut in a tree.
Input: tree T = (V,E) on n vertices, integer m ∈ [n− 1], a real number c ∈ (0, 1).
Output: a strict c-approximate m-cut (B,W) in T .

1 Choose an arbitrary vertex r ∈ V and turn T into an arborescence with root r;
2 Find a vertex v∗ ∈ V with nv∗ > m and nw ≤ m for all children w of v∗

and compute nw for all descendants w of v∗;
3 ForEach v in the subtree rooted at v∗ do
4 Sort the list of children (w1, w2, . . . , wk) of v such that nw1 ≥ nw2 ≥ · · · ≥ nwk ;
5 EndFch
6 B ← ∅, v ← v∗;
7 While |B| ≤ cm do
8 Let k be the number of children of v and let (w1, w2, . . . , wk) be the list of children of v;
9 Let ` be the largest integer in [k] with

∑`
h=1 nwh ≤ m− |B|;

10 B ← B ∪
(⋃`

h=1 V (Twh)
)
;

11 If ` < k then
12 w ← w`+1;
13 While w 6= null and nw > m− |B| do
14 v ← w;
15 If v has a child then let w be the first child of v else w ← null;
16 Endw
17 Endif
18 Endw
19 Return (B, V \B);

stop with a vertex r∗ with the properties required for the vertex v∗ in Line 2 as no vertex is repeated in
the sequence and the number of vertices in T is finite.

Next, some invariants of the outer while loop are stated. Before each execution of the outer while loop,
the following holds:
(i) v is a descendant of v∗,
(ii) B ∩ V (Tv) = ∅, as well as
(iii) nv ≥ (m+ 1)− |B| and nw ≤ m− |B| for every child w of v.
Furthermore, for s ∈ N, if the outer while loop is executed s or more times, then
(iv)

(
1− 1

2s
)
m < |B| ≤ m and

(v) eT (B, V \B) ≤ s∆(T)
hold after the sth execution of the outer while loop.
Due to Line 2 and Line 6, (i)-(iii) are satisfied before the first execution of the outer while loop. Now,

fix an integer s ≥ 1, such that the outer while loop is executed s or more times, and assume that (i)-(iii)
are satisfied before the sth execution of the outer while loop and that, if s ≥ 2, (iv) and (v) are satisfied
after the (s− 1)st execution of the outer while loop. We will show now that the sth execution of the outer
while loop can be carried out, that (iv) and (v) are satisfied after the sth execution of the outer while
loop, and that (i)-(iii) are satisfied before the (s + 1)st execution of the outer while loop if there is an
(s+ 1)st execution of the outer while loop. Denote by B and v the state of the variables B and v in the
algorithm before the sth execution of the outer while loop, respectively, and by B′ and v′ the states of the
variables B and v after the sth execution of the outer while loop. As, in the sth execution of the outer while

134

4.1 Approximate Cuts in Trees and Forests

loop in the algorithm, let k be the number of children of v, let (w1, . . . , wk) be the list of children of v,
that is ordered according to Line 4, and let ` be the largest integer in [k] with

∑`
h=1 nwh ≤ m− |B|. Such

an ` exists and is at least 1 for the following reason. On the one hand, k ≥ 1 since nv ≥ (m+ 1)− |B| ≥ 2
by (iii) and as |B| ≤ cm < m, which implies that v has at least one child. On the other hand, (iii) implies
that nwh ≤ m − |B| for all h ∈ [k] and therefore ` ≥ 1. By (ii), all unions in Line 10 are disjoint and
therefore |B′| = |B| +

∑`
h=1 nwh . Furthermore, the choice of ` in Line 9 ensures that |B′| ≤ m. Now,

if nw1 >
1
2 (m− |B|) then

|B′| > |B|+ 1
2 (m− |B|) = 1

2 (m+ |B|),

because ` ≥ 1 as argued before. Otherwise, nwh ≤ 1
2 (m− |B|) for all h ∈ [k] as the list of children of v

was ordered in Line 4 due to (i), and

|B′| > m− 1
2 (m− |B|) ≥ 1

2 (m+ |B|).

Consequently, |B′| > 1
2 (m+ |B|) holds in both cases. If s = 1, this suffices to show that (iv) is satisfied

after the sth execution of the outer while loop. If s > 1, then

|B′| > 1
2 (m+ |B|) >

1
2

(
m+

(
1− 1

2s−1

)
m

)
=
(

1− 1
2s

)
m,

as (iv) is satisfied after the (s− 1)st execution of the outer while loop. Furthermore, Line 10 implies that
B′ \B =

⋃
h∈[`] V (Twh) and therefore the cut (B′ \B, V (Tv) \B′) in the tree Tv cuts at most ` edges. So

with (ii) it follows that every edge that is cut by (B′, V \B′) and not cut by (B, V \B) is incident to v.
Consequently, (v) is satisfied after the sth execution of the outer while loop.
If ` = k, then B′ = B ∪̇ (V (Tv) \ {v}) and (iii) implies that |B′| ≥ |B|+ nv − 1 ≥ m > cm. Therefore,

if ` = k, the sth execution of the outer while loop is the last execution of the outer while loop and the
proof of the invariants is complete. So, from now on, assume that ` < k, i. e., Lines 11-17 are executed.
The choice of ` in Line 9 implies that nw`+1 > m − |B′| and, hence, the inner while loop is executed
at least once during the sth execution of the outer while loop. Therefore, (iii) is satisfied before the
(s+ 1)st execution of the outer while loop. Moreover, v′ is a descendant of w`+1, which shows that (i)
and (ii) are satisfied before the (s+ 1)st execution of the outer while loop. This completes the proof of
the invariants.

By (iv) and the condition on the outer while loop, the algorithm terminates with a strict c-approximate
m-cut. Denote by s∗ the number of executions of the outer while loop. By (iv), the final set B satisfies
|B| >

(
1− 1

2s∗
)
m. Furthermore,
(

1− 1
2log2(1

1−c)

)
m =

(
1− 1

1
1−c

)
m = (1− (1− c))m = cm

and, hence, s∗ ≤
⌈
log2

(
1

1−c

)⌉
. Now, (v) shows that the desired bound on the width of the returned cut

is satisfied.
Next, it is discussed how to implement Algorithm 4.1 to run in O(n) time, where the hidden constant

depends neither on c nor on ∆(T). The case when m = n is trivial and the case when the input graph is
not connected is discussed later. As usual, the algorithm stores the set B as an unordered list. Every
time the vertex set of a tree Tw is added to B in Line 10, the union is disjoint, as argued above. So, the
algorithm can traverse the tree Tw and add all its vertices to the list storing the set B, which takes time
proportional to nw as T is an arborescence. While doing so, the algorithm keeps track of the size of the
set B to check the condition in Line 7 in O(1) time and to compute numbers as m− |B| in Line 9 and
Line 13 in O(1) time. In total, at most O(n) time is needed for collecting the vertices that are put into

135

Chapter 4 Approximate Cuts in Tree-Like Graphs

the set B during the entire algorithm. Thus, in the following, the time needed for updating the set B is
neglected.
As shown above, the vertex v is reset to one of its descendants v′ 6= v in the inner while loop in each

execution of the outer while loop, except maybe for the last execution of the outer while loop. Therefore,
the algorithm spends at most O(n) time for executing the inner while loop during the entire execution.
Other than updating the set B in Line 10 and the time needed for the inner while loop, one execution of
the outer while loop takes O(deg(v)) time, as the values nwh needed for Line 9 are known because of (i)
and Line 2. Therefore, all executions of the outer while loop take at most O(

∑
v∈V deg(v)) = O(n) time.

So, including the time for updating the set B and the time spent in all executions of the inner while loop,
all executions of the outer while loop take at most O(n) time together.

Consider the preprocessing in Lines 1-6. Lemma 2.33 implies that Line 1 takes at most O(n) time and,
in the proof of Lemma 4.1, it was argued that the procedure in Line 2 takes O(n) time, see Claim 4.2.
So, to complete the proof of the running time, only Lines 3-5 need to be analyzed. If ∆(T) is constant,
then clearly the sorting of all lists of children in Lines 3-5 can be done in O(n) time. However, it was
claimed that the running time is independent of ∆(T). To achieve this, the algorithm uses the counting
sort algorithm to sort all relevant lists of children simultaneously. By Lemma 2.19 it takes O(n) time to
sort the

∑
v∈V (Tv∗)(deg(v)− 1) ≤ 2n values nw where w is a vertex whose parent is in Tv∗ , since nw ∈ [n]

for all considered values nw. Afterwards, the algorithm splits the big sorted list into separate sorted lists,
one for each vertex. This process requires each cell that contains a value nw to know to which list it
belongs, i. e., to know the parent of w. This way the algorithm uses only once the part of the counting
sort algorithm that takes Θ(n) time. As this is the first time that an algorithm uses the counting sort
algorithm to sort several lists simultaneously, we explain the details: The algorithm sets up an array A
of n lists, where each list is initialized as an empty list. Then, it traverses Tv∗ with a depth-first search
that starts at v∗ and when a vertex v turns black, it traverses the list of children (w1, w2, . . . , wk) of v,
inserts the child wh and a pointer to v at the end of the list A[nwh] for each h ∈ [k], and resets the list of
children of v to the empty list. After traversing Tv∗ , the algorithm goes through the lists in the array A
in the order given by A, starting with A[1]. When processing an entry consisting of a vertex w and a
pointer to a vertex v, the algorithm inserts w in the beginning of the list of children of v. Note that
this procedure sorts all lists of children of the vertices in Tv∗ simultaneously, as the list A[h] contains all
vertices w ∈ V (Tv∗) with nw = h and a pointer to the parent of w. Initializing the array A takes O(n)
time. As mentioned above, there are at most 2n values that need to be sorted, so filling them into the
array A takes at most O(n) time and the sum of the lengths of the lists in A is at most O(n) in the end.
Hence, to compute the sorted lists of children, the traversal of A takes at most O(n) time. Consequently,
the application of the counting sort algorithm to implement Line 3-5 takes at most O(n) time.

To finish the proof, it is only missing to discuss how to implement the algorithm when the input graph
is not connected. This can be done similarly as in the proof of Lemma 4.1: Fix c ∈ (0, 1). Consider a
forest G on n vertices and fix m ∈ [n]. Let T1, . . . , Tk be the components of G. Furthermore, let ` be the
largest integer in [k] ∪ {0} with m̃ :=

∑`
h=1 |V (Th)| < m and note that ` < k. If ` = 0, set B̃ := ∅, and

otherwise set B̃ :=
⋃`
h=1 V (Th). Then, the algorithm for trees can be applied to find a strict c-approximate

m′-cut (B′,W ′) in T`+1 for m′ := m− m̃. Set B := B̃ ∪̇B′. Then,

cm ≤ cm̃+ cm′ ≤ m̃+ cm′ < |B| ≤ m̃+m′ = m,

i. e., (B,W) is a strict c-approximate m-cut in G. The argument for the running time follows from
Lemma 2.25, analogously to discussing the case when the input graph is not connected in the proof of
Lemma 4.1. 2

136

4.2 Approximate Cuts in Tree-Like Graphs

Proof of Lemma 4.1 Proof of Lemma 4.6

tree T = (V,E), graph G = (V,E), tree decomposition (T,X) with
T = (VT , ET) and X = (Xi)i∈VT ,

T is rooted, T is rooted,
consider only the subtree
rooted at r,

consider only the vertices
in Y i∗ ,

consider only the subtree rooted
in i∗,

k = number of children of r, k = number of children of i∗,
children of r: w1, . . . , wk, children of i∗: j1, . . . , jk.

sets V1, . . . , Vk ⊆ V , sets Y1, . . . , Yk ⊆ V ,

V (Tr) = {r} ∪̇
⋃̇

h∈[k]

Vh. Y i
∗

= Xi∗ ∪̇
⋃̇

h∈[k]

Ỹ jh .

Table 4.1: Overview on the notation used in the proofs of Lemma 4.1 and Lemma 4.6.

4.2 Approximate Cuts in Tree-Like Graphs
This section generalizes the results discussed in the previous section to tree-like graphs with a given
tree decomposition. As in the previous section, simple approximate cuts in graphs with a given tree
decomposition are studied first and then the ideas are generalized to c-approximate cuts for any c ∈ (0, 1).
So the first aim of this section is to prove the following lemma about simple approximate cuts in tree-like
graphs.

Lemma 4.6.
Let G be an arbitrary graph on n vertices and let (T,X) be a tree decomposition of G of width at most t− 1.
For every integer m ∈ [n], there is a simple approximate m-cut (B,W) in G with eG(B,W) ≤ t∆(G).
Moreover, if V (G) = [n] and the tree decomposition (T,X) is provided as input, then such a cut can be
computed in O(‖(T,X)‖) time. The corresponding algorithm only requires the tree decomposition (T,X)
and the parameter m as input, but not the graph G.

Before proving this lemma, some ideas to generalize the results for trees to tree-like graphs with a given
tree decomposition are discussed. Instead of only dealing with the vertex set of the input graph, the
construction and the corresponding algorithm also have to deal with the node set of the tree decomposition,
as the decomposition tree is needed to generalize certain properties of trees. Table 4.1 gives an overview
on the notation and its corresponding version in the tree case, i. e., the proof of Lemma 4.1, and the
notation in the general case, i. e., the proof of Lemma 4.6. In the latter, one column contains the sets
and vertices from the input graph and the second one contains the notation and nodes that refer to the
decomposition tree.
To prove the previous lemma and also the following lemma about c-approximate cuts for arbitrary

values of c ∈ (0, 1), clusters from the tree decomposition are used to split up the input graph, instead
of single vertices, similarly to Lemma 2.16. The resulting disjoint parts are then combined to construct
the set B for the desired cut. Here, Proposition 3.7 from Section 3.1.3 will be useful for finding a node i
whose removal creates disjoint parts of suitable sizes. Recall the following notation from Section 3.1.3:
Consider a graph G = (V,E) and a tree decomposition (T,X) of G with T = (VT , ET) and X = (Xi)i∈VT .

137

Chapter 4 Approximate Cuts in Tree-Like Graphs

Assume that T is rooted at an arbitrary node r and recall that, for every node i ∈ VT \ {r}, the parent
of i in T is denoted by p(i). As in Section 3.1.3 let

Y i =
⋃

j descendant of i
Xj for every i ∈ VT ,

Ỹ i = Y i \Xp(i) for every i ∈ VT \ {r},
Ỹ r = Y r,

as well as yi = |Y i| and ỹi = |Ỹ i| for every i ∈ VT .

Proposition 4.7 (Proposition 3.7 repeated).
For every graph G and every tree decomposition (T,X) of G, where T = (VT , ET) is a rooted tree
and X = (Xi)i∈VT , the following holds for the sets Y i and Ỹ i as defined above.

a) For every node i ∈ VT ,

Y i = Xi ∪̇


 ⋃̇

j child of i
Ỹ j


 .

b) For every node i ∈ VT with children j1, j2, . . . , jk and every partition Xi = Z1 ∪̇ Z2,

EG(Z1, Z2, Ỹ
j1 , Ỹ j2 , . . . , Ỹ jk , V (G) \ Y i) ⊆ EG(i).

c) If V (G) = [n], then one can compute yi and ỹi for every i ∈ VT , all together in O(‖(T,X)‖) time.

In the proof of Lemma 4.1, it was sufficient to use the vertices in the subtrees rooted at the children
of some vertex r when constructing the black set and the vertex r itself was never used (except when
m = n, i. e., the black set is allowed to contain all vertices). This will not work anymore for tree-like
graphs: First, it can happen that the node i∗ of the decomposition tree, that is chosen in the proof of
Lemma 4.6 and corresponds to the vertex r in the tree case, does not have any children. Second, when
disregarding the vertices in Xi∗ it could be that the clusters associated with the nodes in the subtree
rooted at i∗ all together do not contain enough vertices for the set B, even when a node i∗ with yi∗ > m

is chosen. Therefore, in some cases, the vertices in Xi∗ are needed to construct the set B. Moreover, as
the decomposition tree is always connected, it is not needed to consider separately the case when the
input graph is not connected.

Proof of Lemma 4.6. Let G = (V,E) be an arbitrary graph on n vertices and let (T,X) be a tree
decomposition of G of width at most t − 1. Furthermore, let T = (VT , ET), let X = (Xi)i∈VT , and fix
some integer m ∈ [n]. Root T in an arbitrary node r and define Y i, Ỹ i, yi, and ỹi for every i ∈ VT as done
before Proposition 4.7. Note that yr = n ≥ m as (T1) implies Y r = V . If r has a child i with yi ≥ m,
then consider only the subtree of T that is rooted at i. Reapply this procedure until a node i∗ is found
with yi∗ ≥ m and yj < m for all children j of i∗. Next, the set B for the desired cut is constructed by
using only vertices in Y i∗ . To ensure that only few edges are cut, the partition

Y i
∗

= Xi∗ ∪̇


 ⋃̇

j child of i∗
Ỹ j




from Proposition 4.7a) and the property in Proposition 4.7b) are used. Let k be the number of children
of i∗ and, if k > 0, denote by {j1, . . . , jk} the set of children of i∗. In the following, a subset J of the
children of i∗ and a set Z ⊆ Xi∗ are defined. Furthermore, let B := Z ∪̇

(⋃̇
j∈J Ỹ

j
)
and W := V \ B.

138

4.2 Approximate Cuts in Tree-Like Graphs

Note that by Proposition 4.7a) the unions in the definition of the set B are indeed disjoint as well as that
Proposition 4.7b) implies that the cut (B,W) cuts only edges in EG(i∗). Hence, the width of (B,W) is at
most t∆(G), as desired. Next, the sets J and Z are defined and it is shown that the resulting cut (B,W)
is a simple approximate m-cut in G.

Case 1: k = 0, i. e., i∗ has no children. In this case, |Xi∗ | = |Y i∗ | ≥ m and therefore a set Z ⊆ Xi∗ of
size m exists. Furthermore, let J = ∅. Clearly, (B,W) is a simple approximate m-cut in G.

Case 2: k > 0. The choice of i∗ implies that ỹjh ≤ yjh < m for all h ∈ [k].

Case 2a: There is a child j` of i∗ with ỹj` > 1
2m. In this case, define J := {j`} and Z := ∅. Note that

the corresponding cut (B,W) is a simple approximate m-cut in G.

Case 2b: ỹjh ≤ 1
2m for all h ∈ [k]. Then, let ` be the largest integer in [k] with

∑
h∈[`] ỹjh ≤ m and

define J := {jh : h ∈ [`]}. If ` < k, let Z := ∅ and otherwise, i. e., if ` = k, choose a set Z ⊆ Xi∗

of size m −
∑
j∈J ỹj . In the latter case, such a set Z exists as m ≤ yi∗ = |Xi∗ | +

∑
j∈J ỹj by

Proposition 4.7a). If ` = k, then |B| = m. Otherwise, by the choice of `

|B| =
∑

h∈[`]

ỹjh > m− ỹj`+1 ≥ 1
2m.

Therefore, the cut (B,W) is a simple approximate m-cut in G.

This completes the existence part of the proof. Next, it is discussed how to compute a simple
approximate m-cut when given (T,X) as input and the assumption V (G) = [n] is satisfied. To store the
set B, the algorithm uses a binary array AB of length n, that is initialized with zeros. In the end of the
algorithm, an entry in AB is one if and only if the corresponding vertex of G is in the returned set B.

First, the algorithm creates the array AB and initializes it with zeros, which takes O(n) time. Then, it
roots T at an arbitrary node r and converts T into an arborescence with root r, which takes O(nT) time
due to Lemma 2.33. Then, it applies the algorithm contained in Proposition 4.7c) to find a node in T with
the properties of node i∗ from the construction above. As the procedure used to compute the values yi
and ỹi is a depth-first search that processes the nodes when they turn black, the algorithm can stop as
soon as it found the first node i with yi ≥ m. Then, this node i has the same properties as the node i∗

used in the construction above. Hence, computing the node i∗ takes O(‖(T,X)‖) time. Since the values yj
and ỹj are known for all descendants of i∗ as they turned black before i∗, it takes O(degT (i∗)) = O(nT)
time to determine the set J . Before computing the set Z the algorithm adds the vertices in Ỹ j to the
set B for each j ∈ J , i. e., it sets the corresponding indices of AB to one. To do so, for each j ∈ J , the
algorithm goes through the subtree of T rooted at j and sets the entries of all vertices in the clusters
of the nodes discovered there to one. Note that then, an entry of AB is set to one if and only if the
corresponding vertex is in a set Y j with j ∈ J . Next, the algorithm goes through the cluster Xi∗ and
sets all corresponding entries in AB to zero. Then, an entry in AB is one if and only if the corresponding
vertex is in a set Ỹ j with j ∈ J . If Z 6= ∅ in the above construction, the algorithm goes on and sets the
entries in AB that correspond to vertices in the set Z to one, where the set Z can be constructed greedily
by traversing the list of the cluster Xi∗ once more since

⋃̇
j∈J Ỹ

j and Xi∗ are disjoint by Proposition 4.7a).
All together, collecting the vertices in the set B takes at most O(‖(T,X)‖) time. Therefore, the running
time of the algorithm is O(n+ nT + ‖(T,X)‖) = O(‖(T,X)‖). 2

Next, the previous lemma is generalized to c-approximate m-cuts in tree-like graphs with a given tree
decomposition for any c ∈ [0, 1). The strategy is similar to the one used in the previous section for trees.

139

Chapter 4 Approximate Cuts in Tree-Like Graphs

There, it was also discussed that a repeated application of simple approximate cuts gives a c-approximate
cut in a tree, but the running time depends on c. This idea works in the same way for tree-like graphs
with a given tree decomposition, when computing the induced tree decomposition in order to apply a
simple approximate cut to a subgraph of the input graph, see also Proposition 2.31b). However, to achieve
a running time that is independent of c, as done in the next lemma, one needs to avoid to compute several
induced tree decompositions. Algorithm 4.2 in the proof of the next lemma is more involved than its
tree-version, Algorithm 4.1 in the proof of Lemma 4.5, as for example not in every iteration the considered
node i has children and sometimes it is necessary to use vertices in the set Xi when constructing the black
set for the cut.

Lemma 4.8 (extended version of Lemma 1.13).
For every c ∈ [0, 1), for every graph G on n vertices, for every tree decomposition (T,X) of G of width t−1,
and for every integer m ∈ [n], the following holds.

a) If c 6= 0, there is a strict c-approximate m-cut (B,W) in G with eG(B,W) ≤
⌈
log2

(
1

1−c

)⌉
t∆(G).

b) There is a c-approximate m-cut (B,W) in G with eG(B,W) ≤
⌈
log2

(
1

1−c

)⌉
t∆(G).

Moreover, if V (G) = [n], then, in both cases, such a cut can be computed in O (‖(T,X)‖) time, where
the hidden constant does not depend on c. The corresponding algorithm only requires the tree decomposi-
tion (T,X) and the parameters c and m as input, but not the graph G.

Proof. Let G = (V,E) be an arbitrary graph on n vertices and let (T,X) be a tree decomposition
of G with T = (VT , ET) and X = (Xi)i∈VT . Denote by t − 1 the width of (T,X) and let nT := |VT |.
As in the proof of Lemma 4.5, when c = 0, the cut (B,W) with B = ∅ and W = V has width zero
and is a c-approximate m-cut in G. If V (G) = [n], then the set B of the cut (B,W) can be computed
in O(‖(T,X)‖) time, even if G is not given as input. Hence, it suffices to prove Part a) as, for c 6= 0,
Part b) follows directly from Part a).
To prove Part a), fix an integer m ∈ [n] and some c ∈ (0, 1). To obtain the set B, the procedure

described in Algorithm 4.2 is applied. The idea behind it is to add vertices to the set B by applying
Lemma 4.6 to G[V \ B] repeatedly until the set B has the desired size. There is no need to compute
the induced tree decomposition for G[V \ B], as the order of the nodes i of T , that are used in the
implicit applications of Lemma 4.6, is chosen in a way such that the subtree rooted at each node i and
the corresponding clusters form a tree decomposition of a suitable subgraph of G, whose vertex set is
disjoint from the current set B.

First, observe that Line 2 is feasible since Y r = V due to (T1) and, hence, yr = n ≥ m. In the following,
the while loops in Lines 7-25 and Lines 20-23 are called the outer while loop and the inner while loop,
respectively. Next, some invariants of the outer while loop are stated and will be proved in what follows.
At the beginning of each execution of the outer while loop,
(i) B ∩ Y i = ∅ as well as
(ii) yi ≥ m− |B| and yj < m− |B| for each child j of i.

To state two more invariants, denote by Bs and is the set B and the node i after the sth execution
of the outer while loop, respectively. Furthermore, set B0 = ∅ and let i0 be the node i∗ computed in
Line 2, which are the states of B and i before the first execution of the outer while loop, respectively. For
every s ≥ 1 such that the outer while loop was executed at least s times, the following holds:
(iii)

(
1− 1

2s
)
m < |Bs| ≤ m,

(iv) eG(Bs, V \Bs) ≤ st∆(G), and
(v) if the sth execution of the outer while loop was not the last execution, then is is a descendant of is−1.

140

4.2 Approximate Cuts in Tree-Like Graphs

Algorithm 4.2: Computes a strict c-approximate m-cut in a tree-like graph.
Input: a tree decomposition (T,X) of a graph G on n vertices, an integer m ∈ [n], and a real

number c ∈ (0, 1).
Output: a strict c-approximate m-cut (B,W) in G.

1 Root T in an arbitrary node r and turn T into an arborescence;
2 Find a node i∗ ∈ V (T) with yi∗ ≥ m and yj < m for all children j of i∗

and compute yi and ỹi for all descendants i of i∗;
3 ForEach i in the subtree rooted at i∗ do
4 Sort the list of children (j1, j2, . . . , jk) of i such that ỹj1 ≥ ỹj2 ≥ · · · ≥ ỹjk ;
5 EndFch
6 B ← ∅, i← i∗;
7 While |B| ≤ cm do
8 Let k be the number of children of i and let (j1, j2, . . . , jk) be the list of children of i;
9 If k ≥ 1 then

10 Let ` be the largest integer in [k] with
∑`
h=1 ỹjh ≤ m− |B|;

11 Else
12 `← 0;
13 Endif
14 B ← B ∪

(⋃`
h=1 Ỹ

jh
)
;

15 If ` = k then
16 Let Z be a subset of Xi with |Z| = m− |B|;
17 B ← B ∪ Z;
18 Else
19 j ← j`+1;
20 While j 6= null and yj ≥ m− |B| do
21 i← j;
22 If i has a child then let j be the first child of i else j ← null;
23 Endw
24 Endif
25 Endw
26 Return (B, V \B);

Clearly (i) and (ii) hold before the first execution of the outer while loop. For an arbitrary integer s ≥ 1
such that the outer while loop is executed at least s times, assume that (i)-(ii) hold at the beginning
of the sth execution of the outer while loop and, if s ≥ 2, that (iii)-(v) are satisfied for s − 1. We will
show that the sth execution of the outer while loop can be carried out and that, if it is not the last
execution, (i)-(ii) hold after the sth execution, i. e., at the beginning of the (s+ 1)st execution of the outer
while loop. Moreover, we will show that (iii)-(v) are satisfied for s. As in the algorithm, let k be the
number of children of is−1, let j1, j2, . . . , jk be the children of is−1, and denote by ` the value determined
in Lines 9-13 during the sth execution of the outer while loop. If Lines 16-17 are executed during the
sth execution of the outer while loop, let Zs be the set Z computed in Line 16, and otherwise define

141

Chapter 4 Approximate Cuts in Tree-Like Graphs

Zs = ∅. The set B is only modified in Line 14 and Line 17, which gives

Bs =




Bs−1 ∪ Zs ∪

(⋃`
h=1 Ỹ

jh
)

if k ≥ 1,

Bs−1 ∪ Zs if k = 0.
(4.1)

The set Bs−1 is disjoint from the sets that are added to it in the previous equation, because (i) holds at
the beginning of the sth execution of the outer while loop and Zs ⊆ Xis−1 ⊆ Y is−1 as well as Ỹ jh ⊆ Y is−1

for every h ∈ [k]. Also, if k ≥ 1, Proposition 4.7a) implies that the sets Zs ⊆ Xis−1 and Ỹ jh for h ∈ [k]
are pairwise disjoint. Hence, all unions in (4.1) are disjoint unions and |Bs| = |Bs−1|+ |Zs|+

∑`
h=1 ỹjh .

Moreover, since (ii) is satisfied at the beginning of the sth execution of the outer while loop by assumption,
Proposition 4.7a) implies that m− |Bs−1| ≤ yis−1 = |Xis−1 |+

∑k
h=1 ỹjh . Therefore, if Line 16 is reached

in the sth execution of the outer while loop, it is feasible. The choice of ` and Zs together with (4.1) imply
that |Bs| ≤ m. Next, a few cases are examined to obtain a lower bound on the size of Bs.

Case 1: Lines 16-17 are executed in the sth execution of the outer while loop, i. e., k = 0 or k = ` > 1.
Then, |Bs| = m due to Line 17. Clearly, (iii) is then satisfied after the sth execution of the outer while
loop. Furthermore, the sth execution was the last execution of the outer while loop.

Case 2: Lines 16-17 are not executed in the sth execution of the outer while loop. Then, Zs = ∅, k ≥ 1,
and ` < k. Furthermore, ` must be at least 1 as (ii) is satisfied at the beginning of the sth execution of
the outer while loop.

Case 2a: ỹj1 >
1
2 (m− |Bs−1|). Then |Bs| > |Bs−1|+ 1

2 (m− |Bs−1|) ≥ 1
2 (m+ |Bs−1|) since ` ≥ 1.

Case 2b: ỹj1 ≤ 1
2 (m− |Bs−1|). Then, ỹjh ≤ 1

2 (m− |Bs−1|) for all h ∈ [k], because is−1 is a descendant
of i0 = i∗ by (v) and, hence, the list of children of is−1 has been sorted in Line 4. Since ` < k in Case 2,
it follows that |Bs| > m− ỹj`+1 ≥ m− 1

2 (m− |Bs−1|) ≥ 1
2 (m+ |Bs−1|).

Consequently, |Bs| > 1
2 (m+ |Bs−1|) holds in Case 2. If s = 1, this suffices to show that (iii) is satisfied

for s. If s > 1, then (iii) is satisfied for s− 1 and implies that

|Bs| > 1
2 (m+ |Bs−1|) >

1
2

(
m+

(
1− 1

2s−1

)
m

)
=
(

1− 1
2s

)
m,

i. e., (iii) is satisfied for s.

This completes the case analysis and shows that (iii) is satisfied for s. Moreover, (4.1), Zs ⊆ Xis−1 ,
and Proposition 4.7b) imply that

eG(Bs \Bs−1, V \ (Bs \Bs−1)) ≤ eG(is−1) ≤ t∆(G)

and, hence, invariant (iv) is satisfied for s, as it was satisfied for s− 1 by assumption if s ≥ 2.
Furthermore, in Case 1, as mentioned above, the sth execution of the outer while loop is the last

execution of the outer while loop and, hence, there is nothing to show for (i), (ii), and (v). So assume that
the sth execution is not the last execution of the outer while loop, i. e., Case 2 applies and k > ` ≥ 1. Then,
Lines 19-23 are executed and Line 19 is feasible. The choice of ` in Line 10 implies that yj ≥ ỹj > m− |B|
holds after Line 19 is executed. Therefore, the inner while loop is executed at least once during the
sth execution of the outer while loop and (ii) is satisfied after the sth execution of the outer while loop
since is−1 is a descendant of i0 = i∗ by (v) and, hence, for each descendant of is−1 the list of children
has been sorted in Line 4. Moreover, this implies that is is a descendant of j`+1 and (v) is satisfied
for s. Hence, Y is ⊆ Y j`+1 ⊆ Ỹ j`+1 ∪ Xis−1 and to show that (i) is satisfied after the sth execution of

142

4.2 Approximate Cuts in Tree-Like Graphs

the outer while loop, it suffices to show that (Ỹ j`+1 ∪ Xis−1) ∩ Bs = ∅. This is indeed satisfied since
Proposition 4.7a), (4.1), and Zs = ∅ due to Case 2 imply that

(Ỹ j`+1 ∪Xis−1) ∩Bs ⊆ (Ỹ j`+1 ∪Xis−1) ∩Bs−1 ⊆ Y is−1 ∩Bs−1 = ∅,

where the last equality holds because (i) is satisfied at the beginning of the sth execution of the outer
while loop by assumption. This completes the proof of the invariants and shows that every step can be
executed.
Note that, in the previous paragraph, it was also shown that, in the sth execution of the outer while

loop, the node is is chosen to be a descendant of a child j of is−1 such that Ỹ j was not added to the set B
in Line 14. This also implies that, for every child j of is−1 such that Ỹ j is added to the set B in Line 14
during the sth execution of the outer while loop, the node i will never be reset to a descendant of j in the
inner while loop.
By (iii) and the condition on the outer while loop, the algorithm terminates and returns a strict

c-approximate m-cut. Denote by s∗ the number of executions of the outer while loop. Then, (iii) implies
that the final set B satisfies |B| >

(
1− 1

2s∗
)
m. Furthermore,

(
1− 1

2log2(1
1−c)

)
m =

(
1− 1

1
1−c

)
m = (1− (1− c))m = cm

and hence s∗ ≤
⌈
log2

(
1

1−c

)⌉
, which together with (iv) shows that the desired constraint on the width of

the returned cut is satisfied.
Next, it is discussed how to implement Algorithm 4.2 to achieve the desired running time. So from

now on, assume that V = [n]. Similarly to the algorithm in the proof of Lemma 4.6, a binary array AB
of length n is used to store the set B. The array AB is initialized with zeros, which takes O(n) time.
An entry in AB is set to one if and only if the corresponding vertex of G is in the set B. Therefore, it
is important that the vertices of G are labeled with 1, 2, . . . , n. Using the notation from above, during
the sth execution of the outer while loop, in Line 14, the algorithm needs to add the set

⋃`
h=1 Ỹ

jh to B,
where jh is a child of the node is−1 for every h ∈ [`]. So consider one iteration where ` ≥ 1. To add the
vertices in

⋃`
h=1 Ỹ

jh to the set B, i. e., to set the corresponding entries in AB to one, for each h ∈ [`],
the algorithm goes through the subtree rooted at jh and sets the entries of all vertices in the clusters of
the nodes discovered there to one. So far, an entry of AB is set to one in the sth execution of the outer
while loop if and only if the corresponding vertex is in

⋃
h∈[`] Y

jh ⊆ Y is−1 . Next, the algorithm goes
through the list representing the cluster Xis−1 and sets all corresponding entries in AB to zero. While
doing so, no entry of AB was only set back to zero in the sth execution of the outer while loop, since (i)
ensures that none of the entries corresponding to a vertex in Xis−1 ⊆ Y is−1 was one in the beginning of
the sth execution of the outer while loop. Since is−1 is the parent of jh for every h ∈ [`], an entry of AB
was set to one during the sth execution of the outer while loop if and only if the corresponding vertex is in
the set

⋃
h∈[`] Ỹ

jh . With the observation above that, in Line 21, the node i is never reset to a descendant
of a node j for which the set Ỹ j was added to B in Line 14, it follows that each set Xi with i ∈ VT is
traversed at most once for the addition of its vertices to B in Line 14. Other than in Line 14, the set B
can be modified in Line 17. If executed, Lines 16-17 together take O(|Xis−1 |) time when constructing
the set Z greedily by going through the list of the cluster Xis−1 , which is disjoint from the current set B.
Hence, all modifications on the set B, or more precisely on the array AB, and finding a suitable set Z
in Line 16, if executed, together take at most O(n + ‖(T,X)‖) = O(‖(T,X)‖) time, during the entire
algorithm. In the following, we consider Line 16, in which the set Z is computed, to belong to the steps of

143

Chapter 4 Approximate Cuts in Tree-Like Graphs

updating the set B and we do not consider the time needed to update the set B when estimating the time
consumed by the other lines.
Each node of T is considered at most once during all executions of the inner while loop throughout

the entire algorithm, because of (v). So, at most O(nT) time is needed for the inner while loop during
the entire algorithm. Furthermore, as the time needed to execute Lines 8-13 for a node i is proportional
to O(degT (i) + 1), the time needed for Lines 8-13 during the entire algorithm is O(nT). Consequently,
the time needed for all iterations of the outer while loop, except for updating the set B, is O(nT).
Next, the time needed for the preprocessing in Lines 1-6 is analyzed. Line 1 takes O(nT) time due to

Lemma 2.33 and Line 2 can be implemented similarly to the algorithm in Lemma 4.6. Therefore, Lines 1-2
take O(‖(T,X)‖) time. Since ỹj ∈ [n] for every j ∈ VT , the counting sort algorithm from Lemma 2.19 can
be used to implement Lines 3-5. As there are at most

∑
i∈VT degT (i) ≤ 2nT values in all lists of children

together, this takes O(nT + n) = O(‖(T,X)‖) time to sort all considered lists of children simultaneously.
The details are analogous to the application of the counting sort algorithm in the proof of Lemma 4.5,
where it is explained with more details.

All in all, the preprocessing takes O(‖(T,X)‖) time, all modifications on the set B take O(‖(T,X)‖)
time, and all other steps take O(nT) time, which sums up to a running time of O(‖(T,X)‖). 2

In the proof of the previous lemma, the counting sort algorithm is really needed to sort all lists of
children simultaneously, even when the considered graph has bounded degree and the provided tree
decomposition is nonredundant. Indeed, consider a graph G on n vertices and a tree decomposition (T,X)
of G of width t − 1. Furthermore consider an integer m ∈ [n] and assume that m is almost n, such
that it can happen that almost all adjacency lists of T need to be sorted when applying Algorithm 4.2
to (T,X) with parameter m and some c ∈ (0, 1). Applying the counting sort algorithm to each node
separately, θ(n) time is needed for each node, which gives a total time of θ(n · |V (T)|) and this can be
asymptotically larger than ‖(T,X)‖. For example, if the width t−1 is constant and (T,X) is nonredundant,
then ‖(T,X)‖ ≤ |V (T)| · t ≤ nt by Proposition 2.32a), but |V (T)| can still be as large as Ω(n) and indeed
must be so large as n

t clusters are needed due to (T1). Moreover, we cannot assume that the tree T has
bounded degree, even if the graph G has bounded degree. If the tree T had bounded degree, then each
list of children could be sorted in constant time by applying a standard sorting technique that sorts n′

values in O(n′ logn′) time. To demonstrate that the tree T can have large maximum degree even when
the graph G has bounded degree, consider the following example: Let G be a bounded-degree forest on n
vertices that consists of Θ(

√
n) components. A nonredundant tree decomposition of G of minimum width

can be obtained from taking a nonredundant tree decomposition of minimum width of each component
and joining them in the following way. Choose one node i from a decomposition tree of an arbitrary
component and for all other components G′, join i to an arbitrary node of the decomposition tree of G′.
Then, the degree of i in the resulting tree decomposition of G is Θ(

√
n).

4.3 Constructing Exact Cuts Through Approximate Cuts

In the previous two sections, it was shown that bounded-degree trees and bounded-degree tree-like graphs
admit approximate cuts of small width. Consider a c-approximate m-cut (B,W) in a graph G. The
closer c is to one, the closer |B| is to m. In particular, when c tends to one, the set B is forced to have
size exactly m. Therefore, one can use approximate cuts with certain parameters to construct exact
cuts. Recall that a cut (B,W) is an (exact) m-cut if |B| = m. Consider a graph G on n vertices and fix
an m ∈ N with m ≤ 1

2n. Set c := 1 − 1
m and let (B,W) be a strict c-approximate m-cut in G. Then,

144

4.3 Constructing Exact Cuts Through Approximate Cuts

m − 1 = cm < |B| ≤ m implies that |B| = m and (B,W) is an exact m-cut. The restriction m ≤ 1
2n

can be circumvented because, if n > m > 1
2n, a strict (1− 1

n−m)-approximate (n−m)-cut (B,W) is an
exact (n−m)-cut and switching the sets B and W yields an exact m-cut. This construction together
with Lemma 4.5 and Lemma 4.8 and the computation

⌈
log2

(
1

1− c

)⌉
=
⌈

log2

(
1

1−
(
1− 1

m

)
)⌉

≤ log2(m) + 1 = log2(2m)

immediately gives the following corollaries. Note that here it is important that the running times in
Lemma 4.5 and Lemma 4.8 do not depend on c.

Corollary 4.9.
For every forest G on n vertices and every m ∈ [n], the following holds. There is an m-cut (B,W) in G
with

eG(B,W) ≤ min { log2(2m), log2(2(n−m))}∆(G) ≤ log2(n)∆(G).

A cut with these properties can be computed in O(n) time.

Corollary 4.10 (improved version of Theorem 1.11, Corollary 1.14 restated).
Let G be an arbitrary graph on n vertices, m ∈ [n], and let (T,X) be a tree decomposition of G of width
at most t− 1. Then G allows an m-cut (B,W) of width at most

eG(B,W) ≤ min { log2(2m), log2(2(n−m))} t∆(G) ≤ log2(n)t∆(G).

If V (G) = [n] and the tree decomposition (T,X) is provided as input, a cut with these properties can be
computed in O(‖(T,X)‖) time.

Observe that Corollary 4.10 for m =
⌊ 1

2n
⌋
and Theorem 1.11 are very similar. Both consider a graph G

on n vertices and a tree decomposition (T,X) of G, which is used to break the graph into smaller pieces
in order to construct an m-cut in G for an arbitrary m ∈ [n] or a bisection in G. The running time of the
algorithm in Corollary 4.10 is linear in the size of the input and asymptotically faster than the running
time of both algorithms contained in Theorem 1.11.

Furthermore, Theorem 1.11 or, more precisely, its generalized version Theorem 3.8 was used to derive
Theorem 3.9, which can now be improved as well. Indeed, consider a planar graph G = (V,E) on n

vertices, fix an integer m ∈ [n], and let (T,X) be a tree decomposition of G of width t− 1 with t ≤ σ
√
n,

where σ :=
√

8. The idea of Theorem 3.9 was to first use separating clusters from (T,X) to break G
into smaller pieces and then to use planar separators. The part of the construction using the separating
clusters is now replaced by an approximate cut. Assume that m ≤ 1

2n without loss of generality, as
otherwise the black set and the white set can be switched as in the proof of the above corollaries. First,
we will show that there is an exact m-cut (B,W) in G with

eG(B,W) ≤ t

(⌈
log2

(
σ2n

t2

)⌉
+ 4 +

√
6
)

∆(G)

and then improve the bound to

eG(B,W) ≤ t

(⌈
log2

(
σ2n

t2

)⌉
+ 3 +

√
6
)

∆(G), (4.2)

which is the same bound as in Theorem 3.9.
See Figure 4.2 for on overview of the following construction.

145

Chapter 4 Approximate Cuts in Tree-Like Graphs

B1 B3 W3 W2

W1

B2

Figure 4.2: Overview of the cuts used in the proof of Corollary 4.11.

Case A: t = σ
√
n. Then

√
n = t

σ and Theorem 3.5 implies that G admits an m-cut (B,W), which
satisfies eG(B,W) ≤ t(3 +

√
6)∆(G) as desired.

Case B: σ
√

2m < t < σ
√
n. Define B1 := ∅ andW1 := V . Then, eG(B1,W1) = 0 <

⌈
log2

(
σ2n
t2

)⌉
t∆(G)

and m3 := m− |B1| = m < t2

2σ2 .

Case C: t ≤ σ
√

2m. Define c := 1− t2

2σ2m , which satisfies c ∈ [0, 1), and let (B1,W1) be a c-approximate
m-cut in G as in Lemma 4.8b). Then

eG(B1,W1) ≤
⌈

log2

(
1

1− c

)⌉
t∆(G) =

⌈
log2

(
2σ2m

t2

)⌉
t∆(G) ≤

⌈
log2

(
σ2n

t2

)⌉
t∆(G)

and
m3 := m− |B1| ≤ m− cm = t2

2σ2 .

So in Case B and Case C

m3 ≤
t2

2σ2 and eG(B1,W1) ≤
⌈

log2

(
σ2n

t2

)⌉
t∆(G).

The aim is to cut off m3 vertices from W1, which can be done with Theorem 3.5. Before doing so, it is
ensured via a simple approximate cut that the graph to which Theorem 3.5 is applied does not have too
many vertices.

Case 1: |B1| = m. Defining B := B1 gives an m-cut in G of the desired width.

Case 2: |B1| < m. Let m2 := 2m3, which satisfies m2 ≥ 1. Furthermore, W1 contains enough vertices
to cut off m3 vertices from W1 as |W1| = n− |B1| ≥ m− |B1| = m3.

Case 2a: m2 > |W1|. Let B2 := W1 and W2 := ∅, which defines a cut in G[W1] that cuts no edges,
i. e., eG[W1](B2,W2) = 0. Moreover, m3 ≤ |B2| ≤ 2m3.

Case 2b: m2 ≤ |W1|. Let (B2,W2) be a simple approximate m2-cut in G[W1] as obtained by applying
Lemma 4.6 with the tree decomposition induced by G[W1] in (T,X). So eG[W1](B2,W2) ≤ t∆(G)
and m3 ≤ |B2| ≤ 2m3.

In both cases, Case 2a and Case 2b, eG[W1](B2,W2) ≤ t∆(G) and 0 < m3 ≤ |B2| ≤ 2m3. So G[B2] is a
planar graph on at most 2m3 ≤ t2

σ2 vertices from which we can cut off m3 vertices. Theorem 3.5 implies
that there is an exact m3-cut (B3,W3) in G[B2] with

eG[B2](B3,W3) ≤ σ(3 +
√

6)∆(G)
√

t2

σ2 = (3 +
√

6)∆(G)t.

146

4.3 Constructing Exact Cuts Through Approximate Cuts

Now, defining B := B1 ∪B3 and W := V \B gives an exact m-cut in G of width

eG(B,W) ≤ eG(B1,W1) + eG[W1](B2,W2) + eG[B2](B3,W3)

≤ t

(⌈
log2

(
σ2n

t2

)⌉
+ 1 + 3 +

√
6
)

∆(G). (4.3)

Next, the analysis is tightened to achieve the bound in (4.2), by analyzing the c-approximatem-cut (B1,W1)
in Case C, that was obtained with Algorithm 4.2, more closely. It suffices to look at Case C, as Case A
directly derives the tighter bound and the estimate on eG(B1,W1) in Case B is loose. So consider Case C.
Clearly, if Algorithm 4.2 executes the outer while loop at most

⌈
log2

(
1

1−c

)⌉
− 1 times, then the bound

in (4.3) improves in the desired way. It is now argued that, if the outer while loop in Algorithm 4.2 is
executed exactly

⌈
log2

(
1

1−c

)⌉
times, then the simple approximate cut (B2,W2) can be avoided, thus

improving the bound on eG(B,W) as desired. So assume that Algorithm 4.2 is applied as described above
in Case C and the outer while loop is executed exactly

⌈
log2

(
1

1−c

)⌉
times. Denote by B′ the state of the

set B in Algorithm 4.2 before entering the last execution of the outer while loop. Then, invariant (iii) in
the proof of Lemma 4.8 implies that

m− |B′| ≤ 1
2dlog2(1

1−c)e−1
m ≤ 2

2log2(1
1−c)

m = 2(1− c)m = t2

σ2 (4.4)

by the definition of c in Case C. As argued in the proof of Lemma 4.8, if Lines 16-17 are executed, then
the returned set B1 satisfies |B1| = m and no simple approximate cut as in Case 2b is needed. So assume
that Lines 16-17 are not executed and let i be the node of T that is considered in the last execution of the
outer while loop. Denote by j1, . . . , jk the children of i and note that k ≥ 2 as well as that 1 ≤ ` < k for
the value of ` determined in Lines 9-13. So i has a child j`+1 and |B1|+ |Ỹ j`+1 | > m due to Line 10, i. e.,
|Ỹ j`+1 | ≥ m3. Furthermore, invariant (ii) in the proof of Lemma 4.8 and (4.4) imply ỹj`+1 < m−|B′| ≤ t2

σ2 .
So instead of computing B2 with a simple approximate cut in G[W1], choose B2 := Ỹ j`+1 , which is disjoint
from B1 by invariant (i) in the proof of Lemma 4.8 and Proposition 4.7a), and define W2 := W1 \ B2.
Then all edges cut by (B2,W2) in G[W1] are edges in EG(i) and counted in the bound on eG(B1,W1).
So, G[B2] is planar and contains at most t2

σ2 vertices. Moreover, we have |B2| = |Ỹ j`+1 | ≥ m− |B1| = m3.
As in the end of Case 2, Theorem 3.5 implies that there is an exact m3-cut (B3,W3) in G[B2] of width at
most (3 +

√
6)∆(G)t.

Next, let us quickly consider the running time of the procedure presented above. Assume that V (G) = [n].
In Case A, the running time is O(n) by Theorem 3.5 and there is nothing to do in Case B. In Case C,
computing the c-approximate m-cut (B1,W1) in G takes time proportional to ‖(T,X)‖ by Lemma 4.8
and returns a list of the vertices in B1. It is easy to see that without asymptotically increasing the
running time, the algorithm can compute a list of the vertices in Ỹ j`+1 as well. If |Ỹ j`+1 | ≤ t2

σ2 , then the
algorithm sets B2 = Ỹ j`+1 . Otherwise, it follows the construction of the cut (B2,W2) described in the first
version. There is nothing to do in Case 1 and in Case 2a, so from now on assume that Case 2b applies.
Then, a list of the vertices in W1 can be obtained and a bijection between W1 and the set {1, . . . , |W1|}
can be set up in O(n) time each by Proposition 2.20 and Lemma 2.21a). A tree decomposition (T1,X1)
of G[W1] can be obtained in O(‖(T,X)‖) time according to Proposition 2.31b) by using Lemma 2.21c)
to check whether a vertex v is in W1. Then, the simple approximate cut (B2,W2) in G[W1] can be
computed in O(‖(T1,X1)‖) = O(‖(T,X)‖) time. The subgraph G[B2] can be computed in O(‖G‖) time
by Corollary 2.23, which simplifies to O(n) = O(‖(T,X)‖) by Corollary 2.9 as G is planar. Then, the
computation of the exact m3-cut in G[B2] with the algorithm contained in Theorem 3.5 takes O(n) time.
So all in all, a running time of O(‖(T,X)‖) is obtained and the proof of the next corollary is completed.

147

Chapter 4 Approximate Cuts in Tree-Like Graphs

Corollary 4.11 (improved version of Theorem 3.9).
Let σ =

√
8. For every planar graph G on n vertices, every integer m ∈ [n], and every tree decomposi-

tion (T,X) of G of width at most t− 1 with t ≤ σ
√
n, there is an m-cut (B,W) in G that satisfies

eG(B,W) ≤ t

(⌈
log2

(
σ2n

t2

)⌉
+ 3 +

√
6
)

∆(G).

If V (G) = [n], an m-cut with these properties can be computed in O (‖(T,X)‖) time.

148

Chapter 5

Trees with Long Paths and
Tree-Like Graphs Allowing a Tree
Decomposition with a Heavy Path

The aim of this chapter is to prove Theorem 1.1 and Theorem 1.3 as well as their algorithmic and improved
versions, Theorem 1.8 and Theorem 1.9, which were introduced in Section 1.2. Recall that Theorem 1.1
relates the minimum bisection width of a tree to its diameter. Consider a tree T on n ≥ 2 vertices. The
idea is to use a longest path in T to construct a bisection of small width in T . Clearly, if T is a path,
then a bisection in T that cuts at most one edge can be found easily. Also, we will show in Section 5.1
that, if T contains a path on more than 1

2n vertices, then a bisection of width at most two in T can be
constructed easily. Section 5.1 slowly introduces the methods used throughout the chapter by studying
the case when diam(T) > 1

4n. Afterwards, in Section 5.2, Theorem 1.1 is derived and then the bound on
the minimum bisection width is improved to obtain the bound in Theorem 1.8 by refining the proof of
Theorem 1.1. To complete the proof of Theorem 1.8, a linear-time algorithm that computes a bisection
within the improved bound is presented. Section 5.3 generalizes the results to tree-like graphs. Here,
only the stronger bound on the minimum bisection width from Theorem 1.9 is derived. Moreover, two
algorithms that, when given a tree decomposition, compute a bisection in the underlying graph of width
within this bound are discussed. The first one does not run in linear time for all tree decompositions, but
the second one, whose implementation is more involved, runs in linear time.

5.1 Getting to Know the Techniques

This section focuses on trees and the special case of finding a bisection of small width in a bounded-degree
tree on n vertices whose diameter is at least 1

4n. The proof of this result uses the same technique as the
remaining chapter, but in a simplified form. First, we introduce a new notation using the diameter. Here
and in Section 5.2, we will work with longest paths in trees, i. e., paths whose length is the diameter. In
order to compare the diameters of two graphs with possibly different numbers of vertices and also to
generalize to forests, the following concept is used. If G is a forest on n vertices and G1, . . . , G` are the

149

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

components of G, then define the relative diameter of G as

diam∗(G) := 1
n

∑̀

h=1
(diam(Gh) + 1) = 1

n

∑̀

h=1
|V (Ph)|,

where Ph is a longest path in Gh for every h ∈ [`]. Note that, for a tree T , the relative diameter of T
denotes the fraction of vertices on a longest path in T . Observe that diam∗(G) ≤ 1 for every forest G,
and diam∗(P) = 1 for every path P . Using this notation, the aim of this section is to prove the following
theorem, which can be seen as a forerunner of Theorem 1.1.

Theorem 5.1.
Every forest G with an even number of vertices and diam∗(G) > 1

4 allows a bisection (B,W) that
satisfies eG(B,W) ≤ 6∆(G).

Before starting to discuss the proof of Theorem 5.1, two lemmas are presented. The first one is a
short technical lemma, that will be useful to generalize many results from trees to forests throughout this
chapter.

Lemma 5.2.
a) For every forest G on n vertices with ∆(G) ≥ 3, there is a tree T on n vertices such that G ⊆ T ,

∆(T) = ∆(G), and diam∗(T) = diam∗(G). Then, every cut (B,W) in T is also a cut in G and
satisfies eG(B,W) ≤ eT (B,W).

b) Let m,n ∈ N with m ≤ n. Then, every forest G on n vertices with ∆(G) ≤ 2 satisfies diam∗(G) = 1
and allows an m-cut of width at most ∆(G).

Proof.

a) Let G be an arbitrary forest on n vertices with ∆(G) ≥ 3. If G is connected, choose T = G, which
satisfies all requirements. So assume that G is not connected. Denote by ` the number of components
of G and let G1, . . . , G` be the components of G. For every h ∈ [`], consider a longest path Ph

in Gh. Note that diam∗(G) = 1
n

∑`
h=1 |V (Ph)|. For h ∈ [`], if Ph consists of at least two vertices,

let xh and yh be the two leaves of Ph. Otherwise, Ph consists of only one vertex v and we set xh = v

and yh = v. Next, for every h ∈ [` − 1], insert the edge {yh, xh+1} into G and denote by T the
tree obtained in this way. The tree T contains a path that uses all the vertices in the path Ph for
every h ∈ [`]. Therefore, diam∗(T) ≥ diam∗(G). Furthermore, degG(xh) ≤ 1 and degG(yh) ≤ 1 for
every h ∈ [`], as otherwise the path Ph is not a longest path in the tree Gh. Hence, degT (xh) ≤ 2 and
degT (yh) ≤ 2 for all h ∈ [`], which implies that ∆(T) = ∆(G). To show that diam∗(G) ≥ diam∗(T),
consider a longest path P in T . Then, diam∗(T) = 1

n |V (P)|. Furthermore, by deleting the edges not
in G from P a collection of paths in G with at most one path in each component of G is obtained.
Therefore, diam∗(G) ≥ 1

n |V (P)| = diam∗(T) and consequently diam∗(T) = diam∗(G).

As the forest G and the tree T have the same vertex set, every cut in T is also a cut in G and
satisfies EG(B,W) ⊆ ET (B,W) due to E(G) ⊆ E(T).

b) Fix n ∈ N and m ∈ [n]. Let G = (V,E) be an arbitrary forest on n vertices with ∆(G) ≤ 2.
As every component of G is a path, it follows that diam∗(G) = 1. To construct the set B of an
m-cut in G, greedily collect m vertices by traversing the paths successively. Then, the cut (B,W)
with W := V \B is an m-cut of width at most ∆(G). 2

150

5.1 Getting to Know the Techniques

1 4 9 14 24 25 29 30
x0 y0

2 3
5

7 6 8 10

13
11 12

15

16

17 18

19

20
21

22

23
26 27 28

tree T9 tree T29

Figure 5.1: Example of a P -labeling in a tree T . The path P is colored blue and drawn on the top.

The second lemma will be a tool later on in the proof of Theorem 5.1 and gives a first impression on
how a long path in a tree can be used to find a bisection of small width.

Lemma 5.3.
Let m,n ∈ N with m ≤ n. Then, every forest G on n vertices that satisfies diam∗(G) > 1

2 , allows an
m-cut (B,W) with eG(B,W) ≤ 2.

Note that the bounds on the width of the cut in Theorem 1.1 and Theorem 5.1 both depend on
the maximum degree of the considered graph, but the bound on the width of the cut in the previous
lemma does not depend on the maximum degree. The proof of the previous lemma uses a labeling of
the vertices that roughly follows along a path in each component of the forest. More precisely, consider
a tree T = (V,E) on n vertices and a path P = (VP , EP) in T . Let x0 and y0 be the ends of P . For
every v ∈ VP , denote by Tv the component of T −EP that contains the vertex v. The vertices of some
subgraph H ⊆ T are said to have consecutive labels if there are two integers 0 ≤ ` < `′ such that every
vertex of H has a label in {`, `+ 1, . . . , `′} and vice versa. A labeling of the vertices of T with 1, 2, . . . , n
is called a P -labeling if
• for each v ∈ VP , the vertices of Tv have consecutive labels and v receives the largest label among
those, and

• for all v, v′ ∈ VP with v 6= v′, if x0 is closer to v than to v′, then the label of v is smaller than the
label of v′.

Figure 5.1 shows an example of a P -labeling. In this figure and the following figures that depict a situation
involving a P -labeling of a tree, the path P will be drawn on the top and the trees Tv for v ∈ V (P) will
be hanging down from this path. Sometimes, the trees Tv with v ∈ VP are not drawn explicitly and are
only indicated by triangles. Clearly, for every tree T and every path P ⊆ T , such a P -labeling exists.
Furthermore, when considering a P -labeling of a tree T , the path-vertex of a vertex x ∈ V (T) is defined
to be the unique vertex v ∈ V (P) with x ∈ V (Tv).

Proof of Lemma 5.3. Let G = (V,E) be an arbitrary forest that satisfies diam∗(G) > 1
2 and denote

by n the number of vertices of G. Fix an m ∈ [n]. First, note that due to Lemma 5.2 it suffices to consider
the case when G is a tree. Denote by d := diam∗(G) the relative diameter of G and let P = (VP , EP) be
a longest path in G. Let x0 and y0 be the ends of P , and note that |VP | = dn. Consider a P -labeling
of the vertices of T and identify each vertex with its label. From now on, a number that differs by
a multiple of n from a label is considered to be the same as this label. Define Nm(v) := v + m and
note that Nm : V → V is a bijection. Then, as |VP | = dn > 1

2n, there must be a vertex v ∈ VP

151

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

v Nm(v)
.

B

Figure 5.2: Proof of Lemma 5.3. Construction of the cut (B,W).

with Nm(v) ∈ VP . Define B := {v + 1, v + 2, . . . , v +m} and W := V \B. The cut (B,W) cuts at most
two edges in G. If m 6= n, these are the edge connecting v with its neighbor in B ∩ VP and the edge
connecting Nm(v) with its neighbor in W ∩ VP , see Figure 5.2. Note that one of these edges might not
exist, for example if Nm(v) = y0. 2

Proof of Theorem 5.1. Let G = (V,E) be a forest on n vertices with diam∗(G) > 1
4 . Assume that n is

even. Due to Lemma 5.2 it suffices to consider the case when G is a tree with ∆(G) ≥ 3. Let P = (VP , EP)
be a longest path in G and denote by x0 and y0 the ends of P . Furthermore, define d := diam∗(G) and
note that |VP | = dn. Moreover, for v ∈ VP , let Tv be the component of T −EP that contains the vertex v
and define T ′v := V (Tv) \ {v}. Consider a P -labeling of the vertices of G, where x0 received label 1, and
identify each vertex with its label. From now on, a number that differs by a multiple of n from a label is
considered to be the same as this label. Denote by A(v) := v + 1

2n the antipole of v for each vertex v ∈ V
and note that A : V → V is a bijection.
Case 1: There is a vertex v ∈ VP with A(v) ∈ VP . Then choosing B :=

{
v + 1, . . . , v + 1

2n
}

and W := V \ B gives a bisection of width at most 2, which is similar to the cut used in the proof of
Lemma 5.3.
Case 2: A(v) 6∈ VP for all v ∈ VP . In this case, finding the cut is more involved and requires some

new notation. For sets U ⊆ V let A(U) := {A(u) : u ∈ U}. As ∆(G) ≥ 3 it follows that x0 6= y0 and the
graph G does not contain the edge {x0, y0}. Denote by G+ the graph obtained from G by adding the
edge {x0, y0}. The following definitions are visualized in Figure 5.3. A vertex v ∈ VP is called special if
there is a vertex x ∈ T ′v with A(x) ∈ VP . For every special vertex v ∈ VP , define Pv := A(T ′v) ∩ VP . Note
that Pv induces a path or a cycle in G+, and that {Pv : v ∈ VP is special} is a partition of VP . Also, for
every special vertex v ∈ VP , let vP := A(y) for the smallest vertex y ∈ T ′v with A(y) ∈ VP . Then, for
every special v ∈ VP , we have vP ∈ Pv and vP is an end of the path induced by Pv in G+, if Pv does not
induce a cycle in G+. Moreover, for every special v ∈ VP , let Hv be the union of the sets T ′x for all x ∈ Pv
with x 6= vP .

After some accounting, we will pick a special vertex v ∈ VP and use its sets Pv and Hv to construct a
bisection in G. By construction, every special v ∈ VP satisfies

|T ′v| ≥ |Pv|+ |Hv|. (5.1)

Recall that |VP | = dn > 1
4n and that {Pv : v ∈ VP is special} is a partition of VP . Therefore,

1
4 n < |VP | =

∑

v∈VP :
v is special

|Pv| and (5.2)

3
4 n > |V \ VP | =

∑

v∈VP :
v is special

(|Hv|+ |T ′vP |) . (5.3)

152

5.1 Getting to Know the Techniques

ṽ v vP A(x)

x

A(ṽ) A(v)

Tv

Pv

Hv

.

Figure 5.3: Proof of Theorem 5.1, notation in Case 2. A tree Tv is colored red if it contains a vertex w

with A(w) ∈ VP , i. e., if the vertex v is special.

Claim 5.4.
For every special vertex v ∈ VP , the vertex w = vP is special.

Indeed, consider a special vertex v ∈ VP and denote by ṽ the unique vertex in VP \ {v} with ṽ + 1 ∈ T ′v,
i. e., ṽ is the vertex obtained from v by walking one step along the unique cycle of G+ against the
numeration. Due to the assumption of Case 2, the vertex A(ṽ) is not in VP and, hence, A(ṽ) must be
in T ′vP , see Figure 5.3. Now, A(A(ṽ)) =

(
ṽ + 1

2n
)

+ 1
2n = ṽ ∈ VP and, therefore, vP is special. This

completes the proof of Claim 5.4.

Claim 5.5.
A vertex w ∈ VP is special if and only if there is a special vertex v ∈ VP with vP = w.

Indeed, by Claim 5.4 it suffices to show that there are as many special vertices w ∈ VP as there are
vertices vP for a special vertex v ∈ VP . To do so, note that for two distinct special vertices v and w, the
vertices vP and wP are distinct. Hence,

∣∣{v ∈ VP : v is special
}∣∣ ≤

∣∣{vP : v ∈ VP is special
}∣∣ Claim 5.4

≤
∣∣{w ∈ VP : w is special

}∣∣ .

Observing that all these inequalities are equalities completes the proof of Claim 5.5.
Now, Claim 5.5 implies that

∑

w∈VP :
w is special

|T ′w| =
∑

v∈VP :
v is special

|T ′vP |.

The previous equation can be used to rewrite (5.3), which gives

3
4 n >

∑

v∈VP :
v is special

(|Hv|+ |T ′v|) .

With (5.2) it follows that

3
∑

v∈VP :
v is special

|Pv| >
3
4 n >

∑

v∈VP :
v is special

(|Hv|+ |T ′v|) .

153

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

ṽ v vP u

A(ṽ) A(v)

Tv

Pv

Hv

.

B1
B3

B2

Figure 5.4: Proof of Theorem 5.1. Construction of the bisection (B,W) with B = B1 ∪̇B2 ∪̇B3 in Case 2.

Consequently, there is a special vertex v ∈ VP with

|T ′v|+ |Hv| < 3 |Pv|. (5.4)

Replacing |T ′v| with (5.1) yields

|Pv|+ 2 |Hv| < 3 |Pv| ⇒ 2 |Pv|+ 2 |Hv| < 4 |Pv| ⇒ |Pv|+ |Hv| < 2 |Pv|.

Therefore, the set Z := Pv ∪̇Hv satisfies |Z| < 2|Pv|. Since v is special, the set Pv is nonempty and,
thus, Z 6= ∅. The vertices in Pv induce a path or a cycle in G+ and a collection of paths in G[Z] with at
most one path in each component of G[Z]. This implies that diam∗(G[Z]) ≥ |Pv||Z| >

1
2 .

Next, the vertex v and the set Z are used to construct the set B for the bisection from three disjoint
parts B1 ⊆ V \ (T ′v ∪ Z), B2 ⊆ T ′v, and B3 ⊆ Z. See also Figure 5.4 for a visualization of the following
definitions. If v = vP , let B1 := ∅ and otherwise let B1 := {v, v + 1, . . . , vP − 1}. Then, |B1| < 1

2n

as vP − 1
2n is in T ′v, i. e., the vertex that is mapped to vP by A is in T ′v. Therefore, m2 := 1

2n − |B1|
satisfies 1 ≤ m2 ≤ |T ′v|. We would like to cut off m2 vertices from G[Z] but Z might not contain enough
vertices to do so. Therefore, we first cut off some vertices from G[T ′v]. Let (B2,W2) be a 2

3 -approximate
m2-cut in G[T ′v] with eG[T ′v](B2,W2) ≤ 2∆(G), which exists according to Lemma 4.5b). Recall that this
implies that 2

3m2 ≤ |B2| ≤ m2. Let m3 := 1
2n− |B1| − |B2| and note that B1 and B2 are disjoint. Then,

0 ≤ m3 =
(1

2n− |B1|
)
− |B2| ≤ m2 − 2

3m2 ≤ 1
3 |T
′
v|

(5.4)
< |Pv| ≤ |Z|.

Therefore, the graph G[Z] contains at least m3 vertices. If m3 = 0, define B3 := ∅. Otherwise, Lemma 5.3
guarantees that there is anm3-cut (B3,W3) in G[Z] that satisfies eG[Z](B3,W3) ≤ 2 ≤ ∆(G). Now, (B,W)
with B := B1 ∪̇B2 ∪̇B3 and W := V \B is a bisection in G.

Next, the number of edges cut by (B,W) in G is estimated. Let Ṽ := V \ (T ′v ∪B1 ∪ Z) and denote
by u ∈ VP the vertex with A(v) ∈ T ′u. Then, the cut (T ′v, B1, Z, Ṽ) in G cuts only edges incident to v,
vP , and u, i. e., at most 3∆(G) edges. Together with the bounds on the number of cut edges of the
cut (B2,W2) in G[T ′v] and the cut (B3,W3) in G[Z], it follows that

eG(B,W) ≤ eG(T ′v, B1, Z, Ṽ) + eG[T ′v](B2,W2) + eG[Z](B3,W3)
≤ 3∆(G) + 2∆(G) + ∆(G)
≤ 6∆(G). 2

154

5.2 Results for Trees

Recall that, in Section 1.2.6, it was claimed that Theorem 1.1 can be generalized to m-cuts. So there
needs to be also a generalization of Theorem 5.1 to m-cuts. However, the above proof works only for
bisections and only if the number of vertices of the considered forest is even. The reason for this is
that we used A(A(v)) = v when proving Claim 5.4, which does not hold anymore when A(v) is replaced
by Nm(v) = v+m as used in the proof of Lemma 5.3 to find an m-cut. In order to deal with this, we will
consider a backward and a forward version of being special and also define a backward and a forward
version of the sets Pv and Hv. The details are omitted as the purpose of Theorem 5.1 was to get to know
special vertices and the sets Pv and Hv. In Section 5.2.2, these more general versions are used to prove a
lemma, which is the heart of the proof of Theorem 1.1.

To conclude this section, we discuss how the ideas presented in the previous theorem can be generalized
to prove the bound in Theorem 1.1. Although the minimum bisection problem asks for a partition of the
vertex set into two sets of (almost) the same size, we need to take a more general approach and consider
m-cuts in order to apply induction. The main idea of the induction is to double the relative diameter in
each round: If, for the desired value of m, an m-cut (B,W) in the forest G with eG(B,W) ≤ 2 cannot
be found easily, more precisely, if an analogon of Case 1 from the proof of Theorem 5.1 does not apply,
then we construct a subgraph G[Z] with diam∗(G[Z]) ≥ 2 diam∗(G). This idea appears also in the proof
of Theorem 5.1, where a subgraph G[Z] with diam∗(G[Z]) > 1

2 was constructed if Case 1 did not apply.
Then, Lemma 5.3 was used to find an m′-cut in G[Z]. Here, it is necessary that Lemma 5.3 is for m-cuts
and not only bisections. In general, Lemma 5.3 cannot be applied to G[Z], but the same method can be
applied iteratively to G[Z] until a graph with relative diameter greater than 1

2 is obtained. In Section 5.2.1,
Theorem 1.1 is proved by an induction that doubles the relative diameter of the considered forest in each
round.

5.2 Results for Trees
In this section, the proofs for Theorem 1.1 and Theorem 1.8 are presented. Both theorems state an upper
bound on the minimum bisection width in a tree in terms of its diameter. Theorem 1.8 additionally
claims that a bisection within this bound can be computed in linear time. Sections 5.2.1-5.2.3 focus on
constructing a bisection to prove these bounds. First, in Section 5.2.1, the bound in Theorem 1.1 is
derived from a doubling-lemma, which hides most of the technical details and whose proof is presented in
Section 5.2.2. In both subsections, everything is kept as simple as possible and, therefore, Section 5.2.3
discusses how to tighten the analysis in order to obtain the stronger bound presented in Theorem 1.8. All
algorithmic aspects are discussed in Section 5.2.4.

5.2.1 Upper Bound for the Width of Exact Cuts in Trees

The aim of this subsection is to prove the following theorem for exact cuts in forests. As the next theorem
is for forests, it uses the relative diameter instead of the diameter, which is used in Theorem 1.1. Observing
that every tree T on n vertices satisfies

1
diam∗(T) = n

diam(T) + 1 ≤
n

diam(T)

shows that the next theorem implies Theorem 1.1.

Theorem 5.6 (Theorem 1.1 restated and generalized).
For all n ∈ N and all m ∈ [n], every forest G allows an m-cut (B,W) with eG(B,W) ≤ 8∆(G)

diam∗(G) .

155

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

The heart of the proof of Theorem 1.1 is the following doubling lemma, that can be used for an induction.

Lemma 5.7.
For all forests G on n vertices and for all m ∈ [n], there is a cut (B,W,Z) in G such that one of the
following two options is satisfied:

1) Z = ∅, |B| = m, and eG(B,W,Z) ≤ 2, or

2) Z 6= ∅, |Z| ≤ 1
2n, |B| ≤ m ≤ |B|+ |Z|, eG(B,W,Z) ≤ 2∆(G)

diam∗(G) , and

diam∗(G[Z]) ≥ 2 diam∗(G).

Consider a forest G on n vertices and fix an m ∈ [n]. The previous lemma says that there is a cut (B,W)
where B has the desired size and few edges are cut, or there is a cut with an additional set Z such that
the set B is smaller and the set B ∪̇ Z is larger than the required size m. In the latter case, the set Z has
the additional feature that the relative diameter of G[Z] is at least twice as large as that of G. Applying
Lemma 5.7 iteratively to the graph G′ := G[Z] with size-parameter m′ := m−|B|, the relative diameter is
doubled in each round until Option 1) occurs and completes the proof or the relative diameter exceeds 1

2
and the proof can be completed with Lemma 5.3. Note that, as the relative diameter of G increases, the
bound on the number of edges cut in Option 2) decreases. Moreover, observe that Lemma 5.7 implies
Lemma 5.3 as Option 2) is infeasible when the considered forest G satisfies diam∗(G) > 1

2 as diam∗(H) ≤ 1
for every forest H.
Next, Lemma 5.7 is used to derive Theorem 5.6, before the proof of Lemma 5.7 is presented in

Section 5.2.2.

Proof of Theorem 5.6. The idea is to prove the following claim by induction.

Claim 5.8.
For every d ∈ N, for every forest G on n vertices with diam∗(G) > 1

2d , and for every m ∈ [n], there is an
m-cut (B,W) in G with eG(B,W) ≤ 4 · 2d∆(G).

To see that the claim implies Theorem 5.6, consider an arbitrary forest G on n vertices and fix
some m ∈ [n]. Choose d∗ ∈ N with 1

2d∗−1 ≥ diam∗(G) > 1
2d∗ . Then, Claim 5.8 implies that there is an

m-cut (B,W) in G with

eG(B,W) ≤ 4 · 2d
∗
∆(G) ≤ 8∆(G)

diam∗(G) ,

as desired.
Next, Claim 5.8 is proved by induction over d.

Base (d = 1): Let G be an arbitrary forest on n vertices with diam∗(G) > 1
2 and fix an arbitrary m ∈ [n].

If ∆(G) ≤ 2 then Lemma 5.2b) suffices. Otherwise ∆(G) ≥ 3 and Lemma 5.3 shows that the desired
m-cut exists.

Step: Fix a d ≥ 2 and consider an arbitrary forest G with diam∗(G) > 1
2d . Let n be the number of

vertices of G and fix some m ∈ [n]. Again, if ∆(G) ≤ 2, then Lemma 5.2b) suffices. So, from now on,
assume that ∆(G) ≥ 3. Apply Lemma 5.7 to G with size-parameter m to obtain a cut (B̃, W̃ , Z̃) in G.

Case 1: |B̃| = m.

Defining B := B̃ and W := V \B gives the desired cut since

eG(B,W) ≤ max
{

2, 2 · 2d∆(G)
}

= 2 · 2d∆(G).

156

5.2 Results for Trees

Case 2: |B̃| < m ≤ |B̃|+ |Z̃|.
In this case

eG(B̃, W̃ , Z̃) ≤ 2∆(G)
diam∗(G) < 2 · 2d∆(G)

and diam∗(G[Z̃]) ≥ 2 diam∗(G) > 1
2d−1 . Let G′ := G[Z̃] and n′ := |Z̃| be the number of vertices

of G′. Set m′ := m − |B̃|, which satisfies m′ ≤ |Z̃| = n′. Now, the induction hypothesis implies
that there is an m′-cut (B′,W ′) in G′ with eG′(B′,W ′) ≤ 4 · 2d−1∆(G). Defining B := B̃ ∪̇B′ and
W := V (G) \B produces an m-cut (B,W) in G with

eG(B,W) ≤ eG(B̃, W̃ , Z̃) + eG′(B′,W ′)
≤ 2 · 2d∆(G) + 4 · 2d−1∆(G) = 4 · 2d∆(G). 2

5.2.2 Proof of the Doubling Lemma for Trees

This subsection concerns the proof of Lemma 5.7. The proof uses the same ideas as the proof of Theorem 5.1
to find the cut (B,W) or the cut (B,W,Z) with the additional set Z. Again, a P -labeling of the vertices
for a longest path P will be used and some vertices in P will be called special. However, since the aim is
to find an m-cut and not a bisection, the bijection Nm(v) = v +m, which is defined as in the proof of
Lemma 5.3, is used instead of the bijection A(v) = v + 1

2n. As discussed after the proof of Theorem 5.1,
some ideas used in the proof of Theorem 5.1 do not work for the bijection Nm(v) for general m. To
generalize these ideas, a backward and a forward version of special vertices is defined, which also leads to
backward and forward versions of the sets Pv and Hv. Table 5.1 provides an overview on the notation
used in the proof of Theorem 5.1 and Lemma 5.7.

Let G = (V,E) be an arbitrary forest on n vertices and fix some m ∈ [n]. If ∆(G) ≤ 2, then Lemma 5.2b)
implies that a cut (B,W) satisfying Option 1) exists. So assume that ∆(G) ≥ 3. In this case, Lemma 5.2a)
implies that we may assume that G is a tree. Set d := diam∗(G) and let P = (VP , EP) be a longest
path in G. Note that |VP | = dn. As ∆(G) ≥ 3, the path P consists of at least three vertices and has
two distinct leaves, which are denoted by x0 and y0. Let G+ be the graph obtained from G by inserting
the edge {x0, y0} and note that the vertices in VP induce a cycle in G+. For technical reasons, we will
sometimes refer to the pair {x0, y0} as an edge of G, even though it is not. For each vertex v ∈ VP , let Tv
be the component of G− EP that contains v and define T ′v := V (Tv) \ {v}. Consider a P -labeling of the
vertices of G, where x0 receives label 1, and identify each vertex with its label. From now on, any number
that differs from a label in [n] by a multiple of n is considered to be the same as this label. For three
vertices a, b, c ∈ V with a 6= c, we say that b is between a and c if b = a, b = c, or if starting at a and going
along the numeration given by the labeling reaches b before c. If a = c, then we say that b is between a
and c if b = a = c. For example, when n = 10, then 5 is between 1 and 7, and 9 is between 8 and 3. For a
vertex v ∈ VP , the unique vertex w ∈ VP with the property that Tw contains the vertex v + 1 is called the
vertex after v on P . Furthermore, if w is the vertex after v on P , then the edge {v, w} is referred to as
the edge after v on P . Similarly, in this case, the edge {v, w} is called the edge before w on P and v is
called the vertex before w on P . For each vertex v ∈ V , the vertex Nm(v) := v +m is called the mth-next
vertex of v. Note that Nm : V → V is a bijection and, hence, its inverse function N−1

m is well-defined. For
a set U ⊆ V , define Nm(U) := {Nm(u) : u ∈ U} and N−1

m (U) :=
{
N−1
m (u) : u ∈ U

}
.

Case 1: There is a vertex v ∈ VP with Nm(v) ∈ VP .

Let v ∈ VP be a vertex with Nm(v) ∈ VP and let B be the set of vertices between v+ 1 and Nm(v), which
satisfies |B| = m. Moreover, let W := V \B and Z := ∅. The cut (B,W) cuts at most two edges. More

157

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

Common notation in the proof of Theorem 5.1 and the proof of Lemma 5.7

G = (V,E) forest on n vertices, may assume that G is a tree,
d := diam∗(G),
P = (VP , EP) longest path in G, ends x0 and y0 ⇒ |VP | = dn,
consider a P -labeling of the vertices, identify each vertex with its label,
Tv = components of G− EP , T ′v = V (Tv) \ {v}.

Proof of Theorem 5.1 Proof of Lemma 5.7

only for d > 1
4 and n even, no restrictions on d and n,

aim: bisection. aim: m-cut.

backward version: forward version:

A(v) := v + 1
2n, N−1

m (v) = v −m, Nm(v) = v +m,

v ∈ VP special if ∃ x ∈ T ′v
with A(x) ∈ VP ,

v ∈ VP b-special if ∃ x ∈ T ′v
with N−1

m (x) ∈ VP ,
v ∈ VP f-special if ∃ x ∈ T ′v
with Nm(x) ∈ VP ,

Pv = A(T ′v) ∩ VP , P bv = N−1
m (T ′v) ∩ VP , P fv = Nm(T ′v) ∩ VP ,{

Pv : v ∈ VP special
}
is a

partition of VP ,

{
P bv : v ∈ VP b-special

}
is a

partition of VP ,

{
P fv : v ∈ VP f-special

}
is a

partition of VP ,

vP = A(x) for the smallest
x ∈ T ′v with A(x) ∈ VP ,

vb = N−1
m (x) for the smallest

x ∈ T ′v with N−1
m (x) ∈ VP ,

vf = Nm(x) for the smallest
x ∈ T ′v with Nm(x) ∈ VP ,

Hv =
⋃
x∈Pv\{vP } T

′
x, Hb

v =
⋃
x∈P bv\{vb} T

′
x, Hf

v =
⋃
x∈P fv \{vf} T

′
x,

∃ special v ∈ VP with
|T ′v|+ |Hv| < 3|Pv|,

∃ b-special v ∈ VP with
|T ′v|+ |Hb

v| ≤
(1
d − 1

)
|P bv |,

or f-special v ∈ VP with
|T ′v|+ |Hf

v | ≤
(1
d − 1

)
|P fv |,

Z = Pv ∪̇Hv. Z = P bv ∪̇Hb
v. or Z = P fv ∪̇Hf

v .

Table 5.1: Overview of the notation used in the proofs of Theorem 5.1 and Lemma 5.7.

precisely, if they exist, the cut (B,W) cuts the edge after v on P and the edge after Nm(v) on P , except
when m = n and no edge is cut. See also Figure 5.2, which refers to Lemma 5.3 where the same situation
arose. Hence, the cut (B,W,Z) satisfies Option 1).

Case 2: There is no vertex v ∈ VP with Nm(v) ∈ VP .

In this case, Nm(v) 6∈ VP and N−1
m (v) 6∈ VP for all v ∈ VP . Then, |VP | = |Nm(VP)| ≤ |V \ VP |, which

implies that |VP | ≤ 1
2n and

d ≤ 1
2 . (5.5)

A vertex v ∈ VP is called b-special, if there is a vertex w ∈ T ′v with N−1
m (w) ∈ VP . We use b as in

backward, because there is some vertex w in Tv such that going m steps backward from w in the numeration
gives a vertex on P . A vertex v ∈ VP is called f-special if there is a vertex w ∈ T ′v with Nm(w) ∈ VP . We

158

5.2 Results for Trees

x

N−1
m (ṽ)

N−1
m (v)

ṽ vvb N−1
m (x)

Tv

P b
v

Hb
v

.

a) A b-special vertex v and the sets P bv and Hb
v.

x

Nm(ṽ) Nm(v)

ṽ v vf Nm(x)

Tv

P f
v

Hf
v

.

b) An f-special vertex v and the sets P fv and Hf
v .

Figure 5.5: Notation used in the proof of Lemma 5.7. A tree Tu with u ∈ VP is colored blue if the vertex u is
b-special. A tree Tu with u ∈ VP is colored red if the vertex u is f-special.

use f as in forward, because there is some vertex w in Tv such that going m steps forward from w in the
numeration gives a vertex on P .
For every vertex v ∈ VP , define

P bv := N−1
m (T ′v) ∩ VP and

P fv := Nm(T ′v) ∩ VP .

See Figure 5.5 for an example. Note that, for every v ∈ VP , when P bv 6= ∅, then the vertices in P bv appear
consecutively on the unique cycle in G+ and P bv induces a path or a cycle in G+. Moreover, P bv is not
empty if and only if v is b-special. Furthermore, P bv and P bw are disjoint for distinct vertices v, w ∈ VP
and every vertex in P is contained in a set P bv for some b-special v ∈ VP . The same holds analogously for
the sets P fv and the following proposition is obtained.

Proposition 5.9.
a)
{
P bv : v ∈ VP is b-special

}
is a partition of VP .

b)
{
P fv : v ∈ VP is f-special

}
is a partition of VP .

For each b-special v ∈ VP , define vb = N−1
m (x), where x is the smallest vertex in T ′v with N−1

m (x) ∈ VP .

159

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

Note that, for a b-special vertex v ∈ VP , if the set P bv does not consist of all vertices in VP , then vb is one
of the ends of the path that P bv induces in G+. Similarly, for each f-special v ∈ VP , define vf = Nm(x)
where x is the smallest vertex in T ′v with Nm(x) ∈ VP . Then, for each f-special v ∈ VP for which P fv
does not induce a cycle in G+, the vertex vf is one of the leaves of the path that P fv induces in G+.
Furthermore, let

Hb
v :=

⋃

x∈P bv\{vb}
T ′x for all b-special v ∈ VP ,

Hf
v :=

⋃

x∈P fv \{vf}

T ′x for all f-special v ∈ VP ,

and Hb
v = ∅ for every v ∈ VP that is not b-special as well as Hf

v = ∅ for every v ∈ VP that is not f-special.

Lemma 5.10.
a) For every b-special v ∈ VP , the vertex vb is f-special.
b) For every f-special v ∈ VP , the vertex vf is b-special.
c) A vertex w ∈ VP is b-special if and only if there exists an f-special vertex v ∈ VP such that w = vf.
d) A vertex w ∈ VP is f-special if and only if there exists a b-special vertex v ∈ VP such that w = vb.

Proof.

a) Consider a b-special vertex v ∈ VP and let ṽ ∈ VP be the vertex before v on the path P . As the
vertex N−1

m (ṽ) is not in VP by the assumption of Case 2, N−1
m (ṽ) must be in T ′vb , i. e., Tvb contains

the vertex x := N−1
m (ṽ), x 6= vb, and Nm(x) = ṽ ∈ VP . Hence, vb is f-special. See also Figure 5.5a).

b) Consider an f-special vertex v ∈ VP and let ṽ ∈ VP be the vertex before v on the path P . As the
vertex Nm(ṽ) is not in VP by the assumption of Case 2, Nm(ṽ) must be in T ′vf , i. e., Tvf contains
the vertex x = Nm(ṽ), x 6= vf , and N−1

m (x) = ṽ ∈ VP . Hence, vf is b-special. See also Figure 5.5b).

c) First, if there is an f-special vertex v ∈ VP such that w = vf , then Part b) shows that w is b-special.
Second, as two distinct b-special vertices v and w have distinct vertices vb and wb and similarly for
f-special vertices, it follows that

∣∣{w ∈ VP : w is b-special
}∣∣ ≤

∣∣{wb ∈ VP : w is b-special
}∣∣

Part a)
≤

∣∣{ v ∈ VP : v is f-special
}∣∣ ≤

∣∣{ vf ∈ VP : v is f-special
}∣∣

Part b)
≤

∣∣{w ∈ VP : w is b-special
}∣∣ .

Note that all inequalities in the above equation must be equalities, which shows that a vertex w ∈ VP
can only be b-special if there exists an f-special vertex v ∈ VP such that w = vf .

d) Analog to Part c). 2

Lemma 5.10c) immediately implies that
∑

v∈VP :
v is f-special

|T ′vf | =
∑

w∈VP :
w is b-special

|T ′w| (5.6)

and Lemma 5.10d) implies that
∑

v∈VP :
v is b-special

|T ′vb | =
∑

w∈VP :
w is f-special

|T ′w|. (5.7)

160

5.2 Results for Trees

For every b-special v ∈ VP and for every vertex u ∈ P bv ∪Hb
v, the vertex Nm(u) lies in T ′v. Thus,

|T ′v| ≥ |P bv |+ |Hb
v| for every b-special v ∈ VP . (5.8)

Similarly, for every f-special v ∈ VP and for every vertex u ∈ P fv ∪ Hf
v , the vertex N−1

m (u) lies in T ′v.
Therefore,

|T ′v| ≥ |P fv |+ |Hf
v | for every f-special v ∈ VP . (5.9)

Note that, for a b-special vertex v ∈ VP , the sets P bv , Hb
v, and T ′vb are pairwise disjoint. Furthermore,

Proposition 5.9a) implies that every vertex x ∈ V is in exactly one set P bv ∪̇Hb
v ∪̇ T ′vb for some b-special

vertex v ∈ VP . Consequently,

(1− d)n = |V \ VP | =
∑

v∈VP :
v is b-special

(
|T ′vb |+ |Hb

v|
)

and (5.10)

dn = |VP | =
∑

v∈VP :
v is b-special

|P bv |. (5.11)

Similarly, Proposition 5.9b) implies that every vertex x ∈ V is in exactly one set P fv ∪̇Hf
v ∪̇ T ′vf for some

f-special vertex v ∈ VP and therefore

(1− d)n = |V \ VP | =
∑

v∈VP :
v is f-special

(
|T ′vf |+ |Hf

v |
)

and (5.12)

dn = |VP | =
∑

v∈VP :
v is f-special

|P fv |. (5.13)

Now, (5.10)-(5.13) together imply
∑

v∈VP :
v is b-special

(
|T ′vb |+ |Hb

v|
)

+
∑

v∈VP :
v is f-special

(
|T ′vf |+ |Hf

v |
)

= 2 |V \ VP |

= 2 1− d
d
|VP | = 1− d

d




∑

v∈VP :
v is b-special

|P bv | +
∑

v∈VP :
v is f-special

|P fv |


 .

Now, (5.6) and (5.7) allow to rearrange the terms in the sums in the first expression, such that both sums
use |T ′v| instead of |T ′vb | and |T ′vf |, respectively. Thus,∑

v∈VP :
v is b-special

(
|T ′v|+ |Hb

v|
)

+
∑

v∈VP :
v is f-special

(
|T ′v|+ |Hf

v |
)

= 1− d
d




∑

v∈VP :
v is b-special

|P bv | +
∑

v∈VP :
v is f-special

|P fv |


 .

As there is at least one b-special vertex v ∈ VP and at least one f-special vertex v ∈ VP , the previous
equation implies the following proposition.

Proposition 5.11.
At least one of the following exists:

a) a b-special vertex v ∈ VP such that |T ′v|+ |Hb
v| ≤

(1
d − 1

)
|P bv |, or

b) an f-special vertex v ∈ VP such that |T ′v|+ |Hf
v | ≤

(1
d − 1

)
|P fv |.

161

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

N−1
m (ṽ)

N−1
m (v)

ṽ vvb vb
`

Tv

P b
v

Hb
v

.

Z

B1

B2

Figure 5.6: Proof of Lemma 5.7. Cut (B,W,Z) in Case 2a).

Case 2a) There is a b-special v ∈ VP with |T ′v|+ |Hb
v| ≤

(1
d − 1

)
|P bv |.

Replacing |T ′v| with (5.8) yields

|P bv |+ 2|Hb
v| ≤

(1
d − 1

)
|P bv | ⇒ 2|P bv |+ 2|Hb

v| ≤ 1
d |P

b
v |

⇒ |P bv |+ |Hb
v| ≤ 1

2d |P
b
v |. (5.14)

Next, a cut (B,W,Z) with the properties required for Option 2) in Lemma 5.7 is constructed. Define Z :=
Hb
v ∪̇P bv , which satisfies Z 6= ∅ since v is b-special and P bv hence contains at least one vertex. Furthermore, Z

and T ′v are disjoint. Indeed, assume that there was a vertex x in Z ∩ T ′v. As P bv ⊆ VP and T ′v does not
contain any vertex from VP , it follows that x ∈ Hb

v. By the definition of Hb
v, the vertex v must be in P bv

and v 6= vb. Now, v ∈ P bv = N−1
m (T ′v) ∩ VP implies that T ′v contains a vertex y such that N−1

m (y) = v.
Now, any vertex z ∈ T ′v that is smaller than y satisfies N−1

m (z) ∈ T ′v. Therefore, v must be vb, which
is a contradiction and implies that Z and T ′v are disjoint. Together with (5.8) it follows that |Z| ≤ 1

2n.
Furthermore, (5.14) implies that |Z| ≤ |Hb

v|+ |P bv | ≤ 1
2d |P

b
v |. As P bv induces a collection of paths in G[Z]

with at most one path in each component of G[Z], the relative diameter of G[Z] can be estimated by

diam∗(G[Z]) ≥ 1
|Z|
|P bv | ≥ 2d.

Define vb` = N−1
m (x), where x is the largest vertex among all vertices in T ′v with N−1

m (x) ∈ VP . Note
that, if P bv 6= {vb} and P bv 6= VP , then vb` is the leaf of the path induced by P bv in G+ that is not vb. Let ṽ
be the vertex before v on P . If vb` = ṽ, then define B1 := ∅. Otherwise, define

B1 :=
{
x ∈ V : x is between vb` + 1 and ṽ

}
,

see Figure 5.6. Moreover, define m̃ := m − |B1|. Since Nm(vb`) is in T ′v, it follows that 1 ≤ m̃ ≤ |T ′v|.
Define c := 2− 1

1−d = 1−2d
1−d and note that c ∈ [0, 1) by (5.5). Corollary 4.4 implies that the forest G[T ′v]

allows a c-approximate m̃-cut (B2,W2) of width1

eG[T ′v](B2,W2) ≤
⌈

2c
1− c

⌉
∆(G) =

⌈
2(1− 2d)

d

⌉
∆(G)

1Note that Lemma 4.5b) provides a better bound on the width of a c-approximate m̃-cut in G[T ′v]. For now, we will use
Corollary 4.4 as the computations are easier. The improvements will be discussed in Section 5.2.3.

162

5.2 Results for Trees

Nm(ṽ) Nm(v)

ṽ v vf vf
`

Tv

P f
v

Hf
v

B1

Z
B2

.

Figure 5.7: Proof of Lemma 5.7. Cut (B,W,Z) in Case 2b).

=
⌈

2
d
− 4
⌉

∆(G) ≤
(

2
d
− 3
)

∆(G). (5.15)

Note that B2 ∪̇W2 = T ′v and cm̃ ≤ |B2| ≤ m̃.
Define B := B1 ∪B2 and note that B1 and B2 are disjoint by construction. Moreover,

m− |B| = (m− |B1|)− |B2| ≤ m̃− cm̃ ≤ (1− c)|T ′v|

≤ d

1− d |T
′
v| ≤ |P bv | ≤ |Z|,

where the second to last inequality holds by the assumption |T ′v|+ |Hb
v| ≤

(1
d − 1

)
|P bv | of Case 2a). Hence,

|B| ≤ m ≤ |B|+ |Z|. Since B2 ⊆ T ′v and the sets T ′v and Z are disjoint as argued above, the sets B and Z
are disjoint.

Let W := V \ (Z ∪B). Next, the width of the cut (B,W,Z) is estimated. At most ∆(G) + 1 edges of G
are cut by (Z,B ∪W), i. e., at most all edges incident to vb and the edge after vb` on P . Moreover, at
most eG[T ′v](B2,W2) + ∆(G) edges are cut by (B,W) in G[B ∪W], which are the edges cut by (B2,W2)
within G[T ′v] and all edges incident to v (if v /∈ Z, i. e., if v 6= vb). With (5.15) it follows that

eG(B,W,Z) ≤ eG(Z,B ∪W) + eG[B∪W](B,W) ≤ ∆(G) + 1 + eG[T ′v](B2,W2) + ∆(G)

≤ 3∆(G) +
(

2
d
− 3
)

∆(G) ≤ 2
d

∆(G).

Case 2b) There is an f-special v ∈ VP with |T ′v|+ |Hf
v | ≤

(1
d − 1

)
|P fv |.

This case is similar to Case 2a) but not completely analogous as we cannot simply reverse the labeling
to obtain the situation of Case 2a), because this does not yield a P -labeling. Analogously to Case
2a), |P fv |+ |Hf

v | ≤ 1
2d |P

f
v | can be derived by replacing |T ′v| with (5.9). Furthermore, define Z := Hf

v ∪̇ P fv
and deduce analogously to Case 2a) that diam∗(G[Z]) ≥ 2d and 0 < |Z| ≤ 1

2n, as Z and T ′v are disjoint.
Note that v is between N−1

m (vf) and vf . Moreover, v = vf is possible and, in this case, v lies in Z, and
otherwise v does not lie in Z. Therefore, the set B1 is defined in a slightly different way than in Case 2a).
Let

B1 :=
{
x ∈ V : x is between v and vf , x 6= vf

}

163

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

0.2 0.4 0.6 0.8 1

10

20

30

40

50 8
d

(Theorem 5.6)

1
2

((
log2

(
1
d

))2 + 7 log2
(

1
d

)
+ 6
)

(Theorem 5.12)

relative
diameter d

pathsstars

Figure 5.8: Comparing the bounds provided by Theorem 5.6 and Theorem 5.12. The factor ∆(G), which is
present in both bounds, is ignored.

and m̃ := m−|B1|. See also Figure 5.7 for a visualization. Since N−1
m (vf) ∈ T ′v and v ∈ B1 or v = vf ∈ Z,

it follows that |T ′v| ≥ m̃. Let c := 2− 1
1−d as in Case 2a). Analogously to Case 2a), Corollary 4.4 implies

that the forest G[T ′v] admits a c-approximate m̃-cut (B2,W2) of width eG[T ′v](B2,W2) ≤
(2
d − 3

)
∆(G).

Defining B := B1 ∪̇ B2, one can argue that |B| ≤ m ≤ |B| + |Z| and that B is disjoint from Z. Let
W := V \ (B ∪ Z). Then, at most ∆(G) + 1 edges are cut by (Z,B ∪̇W), i. e., the edges incident to vf

and the edge after the other end vf` of P fv . At most eG[T ′v](B2,W2) + ∆(G) edges are cut by (B,W)
in G[B ∪ W], which are the edges cut by (B2,W2) within G[T ′v] and all edges incident to v. All
together, eG(B,W,Z) ≤ 2

d∆(G) is obtained.

5.2.3 Improving the Bound on the Width of the Cut

After presenting a proof of Theorem 5.6 in the previous two subsections, this subsection is devoted to
improving its bound on the width of the cut. The first improvement arises from using Lemma 4.5b)
instead of Corollary 4.4 in the proof of Lemma 5.7. This results in an improvement of the width of the
cut in Option 2) in Lemma 5.7. Furthermore, the induction from the proof of Theorem 5.6 is replaced by
an iterative procedure that relies on the improved version of Lemma 5.7. This will result in the following
version of Theorem 5.6.

Theorem 5.12 (improved version of Theorem 5.6).
For every forest G on n vertices and for every m ∈ [n], there is an m-cut (B,W) in G with

eG(B,W) ≤ 1
2 ∆(G)

((
log2

(
1

diam∗(G)

))2
+ 7 log2

(
1

diam∗(G)

)
+ 6
)
.

Figure 5.8 visualizes the bounds provided by Theorem 5.6 and Theorem 5.12. Observe also that
Theorem 5.1 provides a much smaller bound for forests with relative diameter greater than 1

4 .
Let us now discuss the details of the improvements. First, replace Corollary 4.4 by Lemma 4.5b).

Recall the proof of Lemma 5.7 and, in particular, the computation of the upper bound on eG(B,W,Z)
in Case 2a) on Page 162. There, we defined c := 1−2d

1−d and used Corollary 4.4 to find a c-approximate

164

5.2 Results for Trees

m̃-cut (B2,W2) in G[T ′v] of width at most

eG[T ′v](B2,W2) ≤
⌈

2c
1− c

⌉
∆(G) ≤

(
2
d
− 3
)

∆(G).

Lemma 4.5b) implies that there is a c-approximate m̃-cut (B2,W2) in G[T ′v] of width at most

eG[T ′v](B2,W2) ≤
⌈

log2

(
1

1− c

)⌉
∆(G) ≤

⌈
log2

(
1− d
d

)⌉
∆(G) ≤

(
log2

(
1
d

)
+ 1
)

∆(G).

Also, when estimating the width of the cut (Z,B ∪̇W), one can be a little more careful. If vb = vb` ,
then eG(Z,B ∪̇W) ≤ ∆(G) as only edges incident to vb are cut. Otherwise, note that vb is f-special by
Lemma 5.10a) and, thus, T ′vb 6= ∅. Recall that y0 is the leaf of the path P that received label n and that y0

is a leaf of G. Therefore, T ′y0 = ∅ and vb 6= y0, which implies that the edge after vb on P exists. Then,
the cut (Z,B ∪̇W) cuts at most ∆(G) edges, which are the edge after vb` on the path P and all edges
incident to vb except the edge after vb on the path P . Consequently, eG(Z,B ∪̇W) ≤ ∆(G). Recalling
that eG[B∪W](B,W) ≤ ∆(G) + eG[T ′v](B2,W2), the following improved bound is obtained

eG(B,W,Z) ≤ eG(Z,B ∪̇W) + eG[B∪W](B,W)
≤ 2∆(G) +

(
log2

(1
d

)
+ 1
)

∆(G) ≤ ∆(G) · log2
(8
d

)
.

Similarly, in Case 2b) in the proof of Lemma 5.7, using Lemma 4.5b) instead of Corollary 4.4 implies
that eG[T ′v](B2,W2) ≤

(
log2

(1
d

)
+ 1
)

∆(G). Furthermore, the width of the cut (Z,B ∪̇W) in G can be
estimated by eG(Z,B ∪̇W) ≤ ∆(G) as done above for Case 2a). Then, the improved bound

eG(B,W,Z) ≤ ∆(G) · log2
(8
d

)
(5.16)

for the cut (B,W,Z) in G is obtained. Consequently, the width of the cut in Option 2) in Lemma 5.7 can
be improved such that the following lemma is obtained.

Lemma 5.13 (improved version of Lemma 5.7).
For all forests G on n vertices and for all m ∈ [n], there is a cut (B,W,Z) in G such that one of the
following two options is satisfied:

1) Z = ∅, |B| = m, and eG(B,W,Z) ≤ 2, or
2) Z 6= ∅, |Z| ≤ 1

2n, |B| ≤ m ≤ |B|+ |Z|, eG(B,W,Z) ≤ log2

(
8

diam∗(G)

)
∆(G), and

diam∗(G[Z]) ≥ 2 diam∗(G).

This lemma is now used to prove Theorem 5.12. Instead of applying induction as in the proof of
Theorem 5.6, an iterative procedure, that follows the same idea, is used.

Proof of Theorem 5.12. Let G = (V,E) be an arbitrary forest on n vertices, fix an m ∈ [n], and
define d := diam∗(G). If ∆(G) ≤ 2, then Lemma 5.2b) guarantees that G allows an m-cut of width at
most ∆(G) and there is nothing else to show. So, from now on, assume that ∆(G) ≥ 3 and apply the
procedure described in Algorithm 5.1 to compute an m-cut in G.

The procedure described in Algorithm 5.1 always terminates because G is reset to G[Z̃] and, thus, the
number of vertices of G decreases in each execution of the while loop due to Lemma 5.13. Denote by s∗

the number of executions of the while loop. To state some invariants, denote by Gs and Bs the state of
the graph G and the set B after the sth execution of the while loop for every s ∈ [s∗] and let G0 be the
input graph and B0 := ∅, which are also the states of the variables B and G before the first execution of
the while loop. For every s ∈ [s∗]∪{0}, define ns := |V (Gs)|. Furthermore, denote by B̃s, W̃s, and Z̃s the
sets B̃, W̃ , and Z̃ used in the sth execution of the while loop, respectively. Then, for every s ∈ [s∗] ∪ {0}

165

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

Algorithm 5.1: Computes an m-cut in a forest G.
Input: forest G = (V,E) on n vertices, m ∈ [n].
Output: m-cut (B,W) in G.

1 B ← ∅, V0 ← V ;
2 While |B| < m do
3 Apply Lemma 5.13 to G with size-parameter m̃ = m− |B| to obtain a cut (B̃, W̃ , Z̃) in G;
4 B ← B ∪ B̃;
5 G← G[Z̃];
6 Endw
7 Return (B, V0 \B);

(i) if s 6= s∗, then 0 < m− |Bs| ≤ ns,
(ii) Bs ∩ V (Gs) = ∅ and, in particular for s 6= 0, Bs−1 ∩ B̃s = ∅,
(iii) if s 6= s∗, then diam∗(Gs) ≥ 2sd,
(iv) ns ≤ 1

2sn0, and

(v) if s 6= 0, then eGs−1(B̃s, W̃s, Z̃s) ≤ log2

(
8

diam∗(Gs−1)

)
∆(G).

All invariants can be shown inductively with Lemma 5.13. Note that the application of Lemma 5.13 in
Line 3 is feasible by (i) and that the union in Line 4 is a disjoint union by (ii). Recall that diam∗(H) ≤ 1
for all forests H. Therefore, when diam∗(Gs) > 1

2 , then Option 2) in Lemma 5.13 is infeasible and
Option 1) must occur, which means that the last execution of the while loop is reached. Consequently,

s∗ ≤ log2
(1
d

)
+ 1 (5.17)

because otherwise

diam∗(Gs∗−1)
(iii)
≥ 2s

∗−1 d > 2log2
1
d d = 1.

Furthermore, the returned set B satisfies B =
⋃s∗
s=1 B̃s and, therefore,

eG(B,W) ≤
s∗∑

s=1
eGs−1(B̃s, W̃s, Z̃s)

(v),(iii)
≤ ∆(G)

s∗∑

s=1
log2

(
8

2s−1d

)

≤ ∆(G)
s∗∑

s=1

(
log2

(8
d

)
− (s− 1)

)
≤ ∆(G)

(
s∗ log2

(8
d

)
−

s∗∑

s=1
(s− 1)

)

≤ ∆(G)
(
s∗ log2

(8
d

)
− 1

2s
∗(s∗ − 1)

)
≤ ∆(G)s∗

(
log2

(8
d

)
+ 1

2 −
1
2s
∗) .

The last term is a quadratic function in s∗, whose maximum value is achieved at s∗ = log2
(8
d

)
+ 1

2 , which
is larger than the upper bound on s∗ in (5.17). Consequently,

eG(B,W) ≤ ∆(G)
(
log2

(1
d

)
+ 1
) (

log2
(1
d

)
+ 7

2 −
1
2 log2

(1
d

)
− 1

2
)

≤ 1
2∆(G)

(
log2

(1
d

)
+ 1
) (

log2
(1
d

)
+ 6
)

≤ 1
2∆(G)

((
log2

(1
d

))2 + 7 log2
(1
d

)
+ 6
)
,

which completes the proof. 2

166

5.2 Results for Trees

T1 T2

Figure 5.9: Example showing that it is not possible to work with only one component when implementing the
algorithm contained in Theorem 5.14. In each component, a longest path is colored blue.

5.2.4 Linear-Time Algorithm for Trees

This section discusses the algorithm contained in Theorem 1.8, which is a linear-time algorithm that
computes an exact cut with the properties in Theorem 5.12 in a forest.

Theorem 5.14 (algorithmic version of Theorem 5.12, Theorem 1.8 restated).
For every forest G on n vertices, an m-cut (B,W) of width at most

eG(B,W) ≤ 1
2 ∆(G)

((
log2

(
1

diam∗(G)

))2
+ 7 log2

(
1

diam∗(G)

)
+ 6
)

can be computed in O(n) time.

Remark 5.15.
The previous theorem also implies that a cut with the properties in Theorem 5.6 can be computed in O(n)
time as the constructions of the cut in Theorem 5.6 and Theorem 5.12 are identical. Furthermore, it is
not hard to adapt the algorithm to compute a cut with the properties in Theorem 5.1 or Lemma 5.3.

Consider the algorithm contained in the previous theorem. When the input forest is not connected, it
is not sufficient to work with one component as we did in the proof of Lemma 4.1 for example. Indeed,
consider a forest G that is composed of ` ≥ 2 components T1, T2, . . . , T`. The construction from
Section 5.2.1-5.2.3 works with the relative diameter of G. Denote by n the number of vertices of G and
let nh be the number of vertices of Th for all h ∈ [`]. Note that

diam∗(G) = 1
n

∑

h∈[`]

nh diam∗(Th)

and, hence, there is an h ∈ [k] with diam∗(Th) ≥ diam∗(G). However, it might not be possible to
distribute the vertex sets of the other components to the sets B and W of an exact cut (B,W) in G such
that (B,W) cuts only edges within Th. For a concrete example, consider the forest G on 50 vertices that
is composed of a perfect ternary tree T1 on 40 vertices, i. e., a perfect ternary tree of height three, and a
path T2 on 10 vertices, see Figure 5.9. Then, diam∗(G) = 1

50 (7 + 10) = 0.34, diam∗(T1) = 7
40 = 0.175,

and diam∗(T2) = 10
10 = 1. However, there is no bisection in G, which cuts only edges within T2, as T1

contains more than half of the vertices of G.
When proving Theorem 5.14, we will follow the construction presented in Section 5.2.2 and Section 5.2.3,

where only trees were considered due to Lemma 5.2. The reason for doing so is that the notation simplifies
when the considered forest is connected. However, the method would also work for a disconnected forest
when considering a collection of paths that contains one longest path for each component of the forest
instead of one longest path in the given tree. In order to use the simpler notation and to closely follow
the construction, the following algorithmic version of Lemma 5.2 is derived.

167

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

Lemma 5.16 (algorithmic version of Lemma 5.2).
For every forest G on n vertices and for every m ∈ [n] the following can be computed in O(n) time

a) if ∆(G) ≥ 3, a tree T on n vertices with G ⊆ T , ∆(T) = ∆(G), and diam∗(T) = diam∗(G) or
b) if ∆(G) ≤ 2, an m-cut of width at most ∆(G) in G.

To prove Part a) of the previous lemma, one needs to compute a longest path in each component of the
considered forest. Dijkstra described the procedure presented in Algorithm 5.2 to compute a longest path
in a tree in linear time, see also [Bul+02]. There, for two vertices v, w of the input tree, dist(v, w) denotes
the length of the unique v,w-path in the input tree. A proof of correctness for Algorithm 5.2 is presented
in this section as this procedure is generalized later in Section 5.3.3 to compute a heaviest path in a tree
decomposition. Observe that the brute-force approach to compute the distance between every pair of
vertices takes quadratic time, even in the simple case of an unweighted tree.

Algorithm 5.2: Computes a longest path in a tree.
Input: tree T on n vertices.
Output: a longest path P ⊆ T as an ordered list.

1 If n = 1 then
2 Return P = T .
3 Endif
4 Root T at an arbitrary vertex r;
5 Find a leaf s of T with dist(r, s) ≥ dist(r, s′) for all leaves s′ of T ;
6 Root T at s;
7 Find a leaf t of T with dist(s, t) ≥ dist(s, t′) for all leaves t′ of T ;
8 Return the unique s,t-path in T .

Lemma 5.17.
Algorithm 5.2 computes a longest path in the input tree T in O(n) time, where n denotes the number of
vertices of T .

Proof. Let T = (V,E) be an arbitrary tree on n vertices. First, it is shown that, when applied to T ,
Algorithm 5.2 computes a longest path in T . If n = 1, then T itself is a path and clearly Algorithm 5.2
returns a longest path. So, from now on, assume that n ≥ 2. Let P be a longest path in T and denote
by x and y the two leaves of P . Note that x and y must be leaves of T as well, as otherwise the path P
could be extended. Let r, s, and t be the vertices used in Algorithm 5.2 when applied to the tree T and
let Q be the unique r,s-path in T . For any three vertices u, v, w ∈ V , if v is on the unique u,w-path in T ,
then dist(u,w) = dist(u, v) + dist(v, w), and otherwise dist(u,w) < dist(u, v) + dist(v, w).
For a contradiction, assume that P and Q have no common vertex. Let z be the unique vertex in P

with dist(r, z) ≤ dist(r, v) for all v ∈ V (P). Furthermore, let z′ be the first vertex on the path from z

to r that is on Q, and note that z′ /∈ V (P). See Figure 5.10a) for a visualization. The choice of s in
Line 5 implies that dist(r, s) ≥ dist(r, y). As z′ is on Q as well as on the unique r,y-path in T , it follows
that dist(z′, s) ≥ dist(z′, y). The unique path from x to s in T uses the vertex z′. Therefore,

dist(x, s) = dist(x, z′) + dist(z′, s) ≥ dist(x, z′) + dist(z′, y) > dist(x, y),

where the last inequality is strict because z′ is not on P . Hence, dist(x, s) > dist(x, y) and this contradicts
that P is a longest path. Consequently, P and Q have at least one common vertex.

168

5.2 Results for Trees

P

Q

r

z′

syx

z

a) Notation if P and Q do not have a common vertex.

P

Q

r

z

z′

x y s

b) Notation if P and Q have a common vertex.

Figure 5.10: Proof of Lemma 5.17.

Let z and z′ be the first and the last vertex in Q, respectively, that are in P when traversing Q from r

to s. Without loss of generality, we may assume that the path P when traversed from x to y uses first the
vertex z and then the vertex z′. Therefore, z′ is on the unique r,y-path in T . See also Figure 5.10b) for
a visualization. The choice of s in Line 5 implies that dist(r, s) ≥ dist(r, y). As z′ is on Q and on the
unique r,y-path in T , it follows that dist(z′, s) ≥ dist(z′, y). Now, z′ being on the unique x,s-path in T
implies that

dist(x, s) ≥ dist(x, z′) + dist(z′, s) ≥ dist(x, z′) + dist(z′, y) ≥ dist(x, y).

Consequently, the unique x,s-path in T is a longest path in T . So, there is a longest path in T that starts
in s and the choice of t in Line 7 implies that the unique s,t-path in T is a longest path in T .
To complete the proof, the running time of Algorithm 5.2 is estimated. By Lemma 2.33, Line 4 and

Line 6 each take O(n) time. To find a leaf that is furthest away from the root of a tree, the algorithm can
use the vertex discovered last with a breadth-first traversal that was started at the root. Therefore, Line 5
and Line 7 each take O(n) time. A list of the vertices on the unique s,t-path in T can be computed by
following the path from t up to the root r, which takes at most O(n) time. All in all, each step can be
executed in O(n) time and the desired running time is achieved. 2

Proof of Lemma 5.16. Recall the proof of Lemma 5.2. The algorithm presented here follows the same
construction. Let G be an arbitrary forest on n vertices and let ` be the number of components of G.
Denote by T1, . . . , T` the components of G. Furthermore, for every h ∈ [`], let nh be the number of
vertices of Th. First, the algorithm determines the maximum degree of G by traversing its adjacency lists,
which takes O(‖G‖) = O(n) time. Afterwards, it determines the number ` as well as the numbers nh for
every h ∈ [`], which takes O(‖G‖) = O(n) time according to Lemma 2.25.

a) Assume that ∆(G) ≥ 3. If ` = 1, the algorithm returns T = G. Otherwise, for every h ∈ [`],
the algorithm computes a longest path Ph ⊆ Th and its ends xh and yh. For each h ∈ [`], this
takes O(nh) time by Lemma 5.17 and, hence, this takes O(n) time for all components together.
Since, for every h ∈ [` − 1], the edge {yh, xh+1} can be added to G in constant time, the overall
running time is O(n).

b) Assume that ∆(G) ≤ 2 and recall that Th is a path for every h ∈ [`]. The set B will be returned as
an unordered list LB of vertices. Traversing the paths successively and adding the vertices to the
list LB until it contains exactly m vertices gives the desired cut in O(n) time. 2

169

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

Recall that the construction used to prove Lemma 5.7 in Section 5.2.2 uses a P -labeling, where P is a
longest path in the input tree. Using the general assumption that the input tree T satisfies V (T) = [n] for
some integer n, a P -labeling can be stored in two integer arrays AL and AV of length n. More precisely,
for v ∈ V (G), the entry AL[v] is the label of the vertex v and, for ` ∈ [n], the entry AV [`] is the vertex
of G that received label `. The next lemma says that such arrays can be computed in linear time.

Lemma 5.18.
For every tree T on n vertices and every path P ⊆ T , a P -labeling of the vertices of T and the path-vertex
for every vertex x ∈ V (T) can be computed in O(n) time.

Proof. Let T be an arbitrary tree on n vertices and let P be a path in T . Denote by x0 and y0 the ends
of P . If P is given as a graph and not as a list, the algorithm first determines a list (v0 = x0, v1, . . . , v` = y0)
of the vertices on P in the order in which they appear on P , which takes O(n) time. Then, for each h ∈ [`],
the algorithm traverses the adjacency list of vh and moves vh−1 to the beginning of the adjacency list
of vh, which takes at most O

(∑
h∈[`] deg(vh)

)
= O(n) time. Using these reordered adjacency lists, the

algorithm traverses T with a depth-first search starting at y0. Observe that the vertices in P turn gray
in the order v` = y0, v`−1, . . . , v0 = x0 and turn black in the order v0 = x0, v1, . . . , v` = y0. During the
depth-first traversal, the algorithm labels each vertex when it turns black. While doing so, the path
vertices are computed by keeping track of the vertex in P that is the last one that turned gray and is not
yet black. To keep track of such a vertex, the algorithm uses a stack, where it pushes each vertex of P
when it turns gray and pops the top vertex when it turns black. The extra time needed at each vertex is
constant and, therefore, the entire procedure takes O(n) time. 2

Lemma 5.19 (algorithmic version of Lemma 5.13).
For every forest G on n vertices and every m ∈ [n], a cut (B,W,Z) in G satisfying one of the following
options

1) Z = ∅, |B| = m, and eG(B,W,Z) ≤ 2, or
2) Z 6= ∅, |Z| ≤ 1

2n, |B| ≤ m ≤ |B|+ |Z|, eG(B,W,Z) ≤ log2

(
8

diam∗(G)

)
∆(G), and

diam∗(G[Z]) ≥ 2 diam∗(G)
can be computed in O(n) time. The sets B, W , and Z are output as unordered lists of vertices.

Proof. Let G be an arbitrary forest on n vertices and fix an m ∈ [n]. We follow the construction presented
in the proof of Lemma 5.7 and use the same notation. Recall that the improvement in the bound on the
width of the cut in Option 2) presented in Section 5.2.3 is due to a tighter analysis and did not require to
modify the construction. First, Lemma 5.16 implies that we may assume that G is a tree as otherwise
there is a cut satisfying Option 1) or there is a tree with the same vertex set, the same maximum degree,
and the same relative diameter as G, and both can be computed in O(n) time. The construction of the
cut (B,W,Z) with the desired properties is summarized in Algorithm 5.3. It uses the following additional
definitions

gb(v) := |T
′
v|+ |Hb

v|
|P bv |

for every b-special v ∈ VP and

gf (v) := |T
′
v|+ |Hf

v |
|P fv |

for every f-special v ∈ VP ,

as well as gb(v) := ∞ for all v ∈ VP that are not b-special and gf (v) := ∞ for all v ∈ VP that are not
f-special. Furthermore, in Line 10, a vertex v ∈ VP is called a doubling vertex if v satisfies one of the
following

a) v is b-special and gb(v) ≤ gb(w) as well as gb(v) ≤ gf (w) for all w ∈ VP , or

170

5.2 Results for Trees

Algorithm 5.3: Computes a cut (B,W,Z) with the properties in Lemma 5.19.
Input: tree G = (V,E) on n vertices, an integer m ∈ [n].
Output: cut (B,W,Z) with the properties stated in Lemma 5.19.

1 Compute a longest path P = (VP , EP) in G and let LP be a list of the vertices on P ;
2 d← diam∗(G);
3 Compute a P -labeling of the vertices in G and the path-vertex for every vertex of G.

Denote by L(v) the label of the vertex v ∈ V and by L−1(`) the vertex that received label ` ∈ [n];
4 If there is a v ∈ VP with v ∈ VP and L−1(L(v) +m) ∈ VP then
5 Let v be a vertex with v ∈ VP and L−1(L(v) +m) ∈ VP ;
6 B ← {w : L(w) is between L(v) + 1 and L(v) +m}, Z ← ∅;
7 Else
8 For all v ∈ VP , compute pb(v) := |P bv |, pf (v) := |P fv |, hb(v) := |Hb

v|, and hf (v) := |Hf
v |;

9 For all v ∈ VP , compute gb(v) and gf (v);
10 Determine a doubling vertex v ∈ VP ;
11 If gb(v) ≤ gf (v) then
12 Z ← Hb

v ∪ P bv ;
13 Determine the vertex vb` and let ṽ be the vertex before v on P ;
14 If vb` = ṽ then B1 ← ∅ else B1 ← {x ∈ V : L(x) is between L(vb`) + 1 and L(ṽ)};
15 Else
16 Z ← Hf

v ∪ P fv ;
17 Determine the vertex vf ;
18 B1 ← {x ∈ V : L(x) is between L(v) and L(vf), x 6= vf};
19 Endif
20 c← 2− 1

1−d , m̃← m− |B1|;
21 Let (B2,W2) be a c-approximate m̃-cut in G[T ′v] with eG[T ′v](B2,W2) ≤

(
log2

(1
d

)
+ 1
)

∆(G);
22 B ← B1 ∪B2;
23 Endif
24 W ← V \ (B ∪ Z);
25 Return (B,W,Z);

b) v is f-special and gf (v) ≤ gb(w) as well as gf (v) ≤ gf (w) for all w ∈ VP .
Proposition 5.11 implies that a b-special or an f-special vertex on P exists. Thus, if a doubling vertex v ∈ VP
is determined in Line 10, then v is b-special or f-special. Moreover, Proposition 5.11 implies that, if the
doubling vertex v determined in Line 10 satisfies gb(v) ≤ gf (v), then v is b-special and satisfies gb(v) ≤ 1

d−1,
which means that Case 2a) from the proof of Lemma 5.7 applies. Otherwise, the doubling vertex v

determined in Line 10 is f-special and satisfies gf (v) ≤ 1
d − 1, which means that Case 2b) from the proof

of Lemma 5.7 applies.
In the construction in the proof of Lemma 5.7, vertices were identified with their labels. In the

implementation, the vertices of G are not renamed. From now on, L(v) is used to refer to the label of a
vertex v ∈ V and L−1(`) is used to refer to the vertex which received label ` ∈ [n]. For example, for a
vertex v ∈ V , the vertex whose label comes m steps after the label of v in the numeration is L−1(L(v)+m).
The definition of Nm and N−1

m are adjusted to return vertices and to receive vertices and not labels, i. e.,
for each v ∈ V , let Nm(v) = L−1(L(v) +m) and N−1

m (v) = L−1(L(v)−m).
So, all that is left to do is an analysis of the running time of Algorithm 5.3. We will show that each line

171

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

can be implemented to run in O(n) time, which gives a total running time of O(n). As diam∗(G) = 1
n |VP |,

and by Lemma 5.17 and Lemma 5.18, Lines 1-3 take O(n) time. The algorithm stores the P -labeling in
two arrays as discussed before Lemma 5.18. Therefore, the algorithm can determine the label of a vertex v
in constant time and also, when given a label, it can determine the corresponding vertex in constant
time. To execute Line 4, i. e., to check whether Case 1 applies, the algorithm needs to check if there is a
vertex v ∈ VP with Nm(v) ∈ VP . As a vertex v ∈ V lies in VP if and only if its path-vertex is v itself, the
algorithm can check in constant time whether a vertex v ∈ V lies in VP . So, by traversing the list LP , the
algorithm can execute Line 4 in O(|VP |) = O(n) time. Moreover, if executed, this yields also the vertex v
that is chosen in Line 5. The sets in Line 6 can be read off the P -labeling in O(n) time.
From now on, assume that Case 1 does not apply, so Lines 8-22 are executed. To compute the

numbers in Line 8, note that a vertex x ∈ VP lies in P bv if and only if the path-vertex of Nm(x) is v.
Indeed, P bv = N−1

m (T ′v) ∩ VP = N−1
m (T ′v ∪ {v}) ∩ VP because Case 2 applies when Line 8 is executed.

First, the algorithm sets pb(v) = 0 for all v ∈ VP . Then, it traverses all vertices x in the list LP and
increases pb(v) by one for the path-vertex v of Nm(x). While doing so, for each v ∈ VP , the algorithm
keeps track of the smallest and the largest vertex v̂ ∈ T ′v such that there is an x ∈ VP with Nm(x) = v̂. For
each v ∈ VP , if such vertices, say v̂s and v̂` with L(v̂s) ≤ L(v̂`), exist, then N−1

m (v̂s) = vb and N−1
m (v̂`) = vb`

and hb(v) = v̂` − v̂s + 1− pb(v), since each vertex between vb and vb` lies in Hb
v ∪ P bv . For each v ∈ VP , if

such vertices do not exist, then v is not b-special and the algorithm sets hb(v) = 0. Using the same ideas,
the values pf (v) and hf (v) for every v ∈ VP can be computed. All in all, the computation of the values in
Line 8 takes O(|VP |) = O(n) time. Since v ∈ VP is b-special if and only if pb(v) 6= 0 and v ∈ VP is f-special
if and only if pf (v) 6= 0, the algorithm can now determine in constant time whether a vertex v ∈ VP is
b-special or f-special. Therefore, Line 9 and Line 10 together take O(|VP |) = O(n) time. From now on,
denote by v the vertex determined in Line 10.
Assume that Lines 12-14 are executed. Then, the vertex v is b-special as argued above. Using the

vertices v̂s and v̂`, that were computed when determining pb(v) and that must exist since v is b-special, the
algorithm can compute vb and vb` in constant time. Thus, the set Z in Line 12, which is the set of vertices
between vb and vb` , can be read off the P -labeling in O(n) time. The vertex ṽ in Line 13 can be obtained
from the list LP and, hence, Line 13 takes O(n) time. Line 14 can be executed in O(n) time by using the
P -labeling. Similarly to Lines 12-14, Lines 16-18 can be executed in O(n) time. Line 20 takes constant
time as the algorithm can keep track of the size of B1 while computing it. The subgraph G[T ′v] can be
computed in O(n) time by a depth-first traversal of G that is started at v, ignores the neighbors of v that
are in VP , and in the end deletes v. According to Lemma 4.5b), Line 21 then takes O(n+ |T ′v|) = O(n)
time. As B1 and B2 are stored as lists and are disjoint as argued in the construction, Line 22 takes O(1)
time. Finally, Line 24 takes O(n) time by Proposition 2.20. 2

This completes the description of the subroutines needed for the algorithm in Theorem 5.14.

Proof of Theorem 5.14. Let G be a forest on n vertices and fix an arbitrary m ∈ [n]. Recall that
Algorithm 5.1, which was presented in the proof of Theorem 5.12, can be applied to compute an m-cut
in G. So, it suffices to analyze the running time of Algorithm 5.1. As in the proof of Theorem 5.12, let s∗

be the number of executions of the while loop and, for s ∈ [s∗], denote by ns the number of vertices of
the graph G after the sth execution of the while loop. Define n0 = n. Fix an s ∈ [s∗], and consider the
sth execution of the while loop. Then, the application of Lemma 5.13 in Line 3 takes O(ns−1) time by
Lemma 5.19 and a list of the vertices in B̃ as well as a list of the vertices in Z̃ are computed. Furthermore,
the union in Line 4 is disjoint by (ii) from the proof of Theorem 5.12 and, hence, takes constant time when
the set B is stored as a list. With the list of the vertices in Z̃, the update of G in Line 5 takes O(ns−1)

172

5.3 Extension to Tree-Like Graphs

time by Corollary 2.23. Therefore, the sth execution of the while loop takes O(ns−1) time. Using (iv) from
the proof of Theorem 5.12, i. e., ns ≤ 1

2sn for every s ∈ [s∗] ∪ {0}, this results in a total running time of

O(n) +
s∗∑

s=1
O(ns−1) = O

(
n+

s∗∑

s=1

1
2s−1n

)
= O(n). 2

5.3 Extension to Tree-Like Graphs
In this section, the inequality relating the minimum bisection width and the diameter of a tree in
Theorem 5.6 and its improved version in Theorem 5.12 are extended to tree-like graphs. The aim is to
prove Theorem 1.9, which was introduced in Section 1.2.3. There, a graph G = (V,E) on n vertices and
a tree decomposition (T,X) with X = (Xi)i∈V (T) of G are considered. In the general case, we do not
work with the relative diameter of a graph but the parameter r(T,X). For a path P ⊆ T , the weight of P
with respect to X is defined as wX (P) :=

∣∣∣
⋃
i∈V (P)X

i
∣∣∣ and the relative weight of P with respect to X is

defined as
w∗X (P) := wX (P)∣∣∣

⋃
i∈V (T)X

i
∣∣∣

= 1
n
wX (P).

A path P ′ that satisfies wX (P ′) ≥ wX (P) for all paths P in T is called a heaviest path in T with respect
to X and r(T,X) := w∗X (P ′) is called the relative weight of a heaviest path in T with respect to X . Observe
that the relative weight of a path is at most one and r(T,X) ≤ 1 holds for every tree decomposition (T,X),
which is similar to diam∗(G̃) ≤ 1 for every forest G̃. Furthermore, if (T,X) is a path decomposition,
then r(T,X) = 1, which is similar to diam∗(G̃) = 1 if every component of G̃ is a path. The next lemma
points out further relations between the relative weight of a heaviest path in a tree decomposition and the
relative diameter of a forest.

Lemma 5.20.
Every forest G on n vertices allows a tree decomposition (T,X) of width at most 1 and size O(n) that
satisfies r(T,X) ≥ diam∗(G).

Proof. Let G be an arbitrary forest on n vertices. Denote by G1, . . . , G` the components of G. For
every h ∈ [`], let Ph = (Vh, Eh) be a longest path in Gh and denote by xh and yh the ends of Ph. Note
that diam∗(G) = 1

n

∑
h∈[`] |Vh|. Furthermore, for each h ∈ [`], let Th be the tree obtained from a copy

of Gh, where each vertex v ∈ V (Gh) has been renamed to iv and each edge {v, w} ∈ E(Gh) has been
subdivided by a new vertex called i{v,w}. Let T = (VT , ET) be the tree obtained from the trees T1, . . . , T`

by inserting the edges {iyh , ixh+1} for every h ∈ [` − 1]. Apply the same construction to the forest
consisting of the paths P1, . . . , P`, denote by P the graph obtained in this way, and note that P is a
path in T . To obtain a tree decomposition (T,X) of G with clusters X = (Xi)i∈VT , for every i ∈ VT
with i = iv for some v ∈ V (G), set Xi := {v} and, for every i ∈ VT with i = i{v,w} for some v, w ∈ V (G),
set Xi := {v, w}. Clearly, (T,X) satisfies (T1) and (T2). To check that (T3’) is satisfied, fix an arbitrary
vertex v ∈ V (G). Then,

Iv =
{
i ∈ VT : v ∈ Xi

}
= {iv} ∪

{
i{v,w} : w ∈ NG(v)

}

and, if |Iv| ≥ 2, then Iv induces a star in T . Hence, (T3’) is satisfied and (T,X) is a tree decomposition
of G of width at most 1. Furthermore,

‖(T,X)‖ = |VT |+
∑

i∈VT
|Xi| ≤ 3|VT | ≤ 3(|V (G)|+ |E(G)|) ≤ 6n

173

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

and

r(T,X) ≥ w∗X (P) = 1
n

∣∣∣∣∣∣
⋃

i∈V (P)

Xi

∣∣∣∣∣∣
≥ 1

n

∑

h∈[`]

|Vh| = diam∗(G). 2

5.3.1 Upper Bound for the Width of Exact Cuts in Tree-Like Graphs

Here, it is shown that a bisection with the properties in Theorem 1.9 exists. First, the existence part of
Theorem 1.9 is restated and generalized to m-cuts.

Theorem 5.21 (Theorem 1.9 restated and generalized).
For every graph G on n vertices, every m ∈ [n], and every tree decomposition (T,X) of G of width at
most t− 1, there is an m-cut (B,W) in G with

eG(B,W) ≤ t∆(G)
2

((
log2

(
1

r(T,X)

))2
+ 9 log2

(
1

r(T,X)

)
+ 8
)
.

As in the proof of Theorem 5.6, the heart of the proof for the previous theorem is a “doubling lemma”.
There, Lemma 5.7 and its improved version Lemma 5.13 state that either an exact cut of small width
exists or a subgraph with at least twice as large diameter as the original graph exists. Here, the relative
weight of a path in a tree decomposition is doubled. The next lemma uses the following notation: Consider
a tree decomposition (T,X) with X = (Xi)i∈V (T) and a path P ⊆ T with P = (i0, i1, . . . , i`). The end i0
is called a nonredundant end of P with respect to X if Xi0 6= ∅ and, if ` > 0, Xih 6⊆ Xih−1 for all h ∈ [`].
The path P is called nonredundant with respect to X if at least one of its ends i0 or i` is a nonredundant
end of P with respect to X . Note that, if (T,X) is a nonredundant tree decomposition, then every
path P ⊆ T is nonredundant with respect to X .

Lemma 5.22.
For every graph G on n vertices, for every tree decomposition (T,X) of G of width at most t − 1, for
every m ∈ [n], and for every path P ⊆ T that is nonredundant with respect to X , there is a cut (B,W,Z)
in G that satisfies one of the following options

1) |B| = m, Z = ∅, and eG(B,W) ≤ 2t∆(G), or
2) |B| ≤ m ≤ |B| + |Z| with 0 < |Z| ≤ 1

2n, eG(B,W,Z) ≤ t∆(G) log2

(
16

w∗X (P)

)
, and there is a tree

decomposition (T ′,X ′) of G[Z] of width at most t− 1 and a path P ′ ⊆ T ′ that is nonredundant with
respect to X ′ and satisfies w∗X ′(P ′) ≥ 2w∗X (P).

In Option 1) in Lemma 5.22, the bound is increased by a factor of t∆(G) compared to Lemma 5.13, as
Lemma 2.16b) is used now instead of cutting single edges. In Option 2) in Lemma 5.13, cuts resulting
from removing a vertex from the tree were applied, which is extended by using Lemma 2.16a). Therefore,
an extra factor of t in the bound on eG(B,W,Z) in Option 2) in Lemma 5.22 appears. Observe that,
in Lemma 5.22, when choosing P to be a heaviest path in the tree decomposition (T,X), then the
tree decomposition (T ′,X ′) in Option 2) satisfies r(T ′,X ′) ≥ r(T,X). As in the previous section, the
proof of Lemma 5.22 is long and technical. Therefore, it is postponed to Section 5.3.2 and the proof for
Theorem 5.21 is presented first. Before presenting the proof of Theorem 5.21, consider the next proposition
about the relative weight of a heaviest path when turning a tree decomposition into a nonredundant one.

Proposition 5.23.
For every tree decomposition (T,X) of a graph G, there is a nonredundant tree decomposition (T ′,X ′)
of G such that

174

5.3 Extension to Tree-Like Graphs

• the width of (T ′,X ′) is the width of (T,X) and
• r(T ′,X ′) ≥ r(T,X).

Proof. Let (T,X) with X = (Xi)i∈V (T) be an arbitrary tree decomposition of some graph G. Denote
by t−1 the width of (T,X) and let P ⊆ T be a heaviest path in T with respect to X , i. e., w∗X (P) = r(T,X).
Assume that (T,X) is not nonredundant. Then, there exists an edge {i, j} ∈ E(T) withXi ⊆ Xj . Let T ′ be
the tree obtained from T by contracting the edge {i, j} and calling the resulting node h. If {i, j}∩V (P) = ∅,
let P ′ = P . If {i, j} ∩ V (P) = {i, j}, let P ′ be the path obtained from P by contracting the edge {i, j}.
If {i, j} ∩ V (P) = {i} or {i, j} ∩ V (P) = {j}, then let P ′ be the path obtained from P by renaming i
or j, respectively, to h. Furthermore, let X ′ be the collection of clusters obtained from X by removing the
clusters Xi and Xj and inserting the new cluster Xh = Xj . Then, (T ′,X ′) is a tree decomposition of G
of width t − 1 and P ′ is a path in T ′ with wX ′(P ′) ≥ wX (P). Thus, r(T ′,X ′) ≥ r(T,X). If (T ′,X ′) is
not nonredundant, then the same argument can be repeated until a nonredundant tree decomposition
of G with the desired properties is obtained. 2

The next corollary can be seen as a forerunner of Theorem 5.21 and is a corollary to Lemma 5.22,
similarly as Lemma 5.3 follows from Lemma 5.7 as mentioned after Lemma 5.7. Note that Corollary 5.24
treats a special case of Theorem 5.21 for which it presents a bound on the cut width that is better by a
constant factor.

Corollary 5.24.
For every graph G on n vertices, every m ∈ [n], and every tree decomposition (T,X) of G with r(T,X) > 1

2 ,
there is an m-cut (B,W) in G with eG(B,W) ≤ 2t∆(G), where t− 1 denotes the width of (T,X).

Proof. Let G = (V,E) be an arbitrary graph and fix some integer m ∈ [n]. Moreover, let (T,X) be a tree
decomposition of G with r(T,X) > 1

2 and width t−1. Due to Proposition 5.23, we may assume that (T,X)
is nonredundant. Let P be a heaviest path in T with respect to X and note that P is nonredundant with
respect to X as (T,X) is nonredundant.

Recall that, for every tree decomposition (TH ,XH) of an arbitrary graph H and for every path P ⊆ TH ,
the relative weight of PH with respect to XH is at most 1. Now, since w∗X (P) = r(T,X) > 1

2 , there
cannot be a path P ′ with relative weight at least 2w∗X (P) with respect to X ′, where (T ′,X ′) is a tree
decomposition of a subgraph G[Z] of G with Z 6= ∅. Hence, when Lemma 5.22 is applied to G, (T,X),
and the path P with size-parameter m, Option 2) cannot occur. Therefore, Option 1) implies that a cut
with the desired properties exists. 2

Proof of Theorem 5.21. LetG = (V,E) be an arbitrary graph on n vertices and fix some integerm ∈ [n].
Let (T,X) be an arbitrary tree decomposition of G of width at most t−1. We will show that Algorithm 5.4
produces an m-cut in G with the desired properties.

First of all, the while loop in Lines 5-9 eventually terminates as the graph G shrinks in each round due
to |Z̃| < |V (G)|. The set B is initialized as the empty set in Line 4 and then only modified in Line 7. As
the set B̃ computed in Line 6 contains at most m− |B| vertices, the returned set B will have size m as
required. Before starting to analyze the width of the cut produced by Algorithm 5.4, some invariants are
stated and it is shown that Algorithm 5.4 can be carried out.
Let s∗ be the number of executions of the while loop. Define G0 = G, let (T0,X0) be the tree

decomposition (T,X) after Line 1 has been executed, let P0 be the path P computed in Line 3, and
set B0 = ∅. Observe that these are the states of the corresponding variables before executing the

175

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

Algorithm 5.4: Computes an m-cut.
Input: graph G = (V,E) on n vertices, integer m ∈ [n], and a tree decomposition (T,X) of G.
Output: an m-cut (B,W) in G.

1 Transform (T,X) into a nonredundant tree decomposition of G as in Proposition 5.23;
2 Let G0 be a copy of G;
3 Compute a heaviest path P in T with respect to X ;
4 B ← ∅;
5 While |B| < m do
6 Apply Lemma 5.22 to the graph G, the tree decomposition (T,X), and the path P , with

size-parameter m̃ = m− |B| to obtain a partition (B̃, W̃ , Z̃) of V (G) as described there;
7 B ← B ∪̇ B̃, G← G[Z̃];
8 If Option 2) occurred during the application of Lemma 5.22, update (T,X) to a tree

decomposition (T ′,X ′) of G without increasing its width and update P to a path P ′ ⊆ T ′ that is
nonredundant with respect to X ′ and satisfies w∗X ′(P ′) ≥ 2w∗X (P);

9 Endw
10 Return (B, V (G0) \B);

while loop for the first time. For each s ∈ [s∗], denote by Gs the graph G, by (Ts,Xs) the tree
decomposition (T,X), by Ps the path P , and by Bs the set B after the sth execution of the while
loop. Furthermore, for s ∈ [s∗] ∪ {0}, let ns be the number of vertices of Gs and define ws := w∗Xs(Ps).
For s ∈ [s∗], denote by (B̃s, W̃s, Z̃s) the partition of the vertex set of Gs−1 computed in Line 6 during
the sth execution of the while loop. At the beginning of each execution of the while loop, the following
invariants hold:
(i) 0 < m− |B| ≤ |V (G)|,
(ii) the set B and the vertex set of G are disjoint,
(iii) (T,X) is a tree decomposition of G of width at most t− 1, and
(iv) P ⊆ T is a nonredundant path with respect to X .
Furthermore, for every s ∈ [s∗], the following holds:
(v) ws ≥ 2ws−1 for s 6= s∗,
(vi) ns ≤ 1

2ns−1 for s 6= s∗, and
(vii) eGs−1(B̃s, W̃s, Z̃s) ≤ t∆(G) log2

(
16
ws−1

)
.

By Proposition 5.23, the width of (T,X) does not increase when Line 1 is executed. Furthermore, the
path P computed in Line 3 is nonredundant with respect to X as (T,X) is nonredundant when Line 3 is
executed. Thus, (i)-(iv) hold before the first execution of the while loop. Assume that (i)-(iv) hold before
the sth execution of the while loop for an arbitrary s ∈ [s∗]. It is now argued that the sth execution of
the while loop can be carried out, (i)-(iv) hold before the (s+ 1)st execution of the while loop if s 6= s∗,
and (v)-(vii) hold for s. By (i), (iii), and (iv), it follows that Lemma 5.22 can be applied with size-
parameter m̃ = m − |B|, i. e., Line 6 can be carried out. If Option 1) occurs in Line 6, then s = s∗

and (v)-(vii) are satisfied for s, as ws−1 ≤ 1 implies that 2 ≤ log2

(
16
ws−1

)
. If Option 2) in Lemma 5.22

occurs in Line 6, then (v)-(vii) are satisfied for s by Lemma 5.22. In Line 6, the vertex set of the graph G
is partitioned into the sets B̃s, W̃s, and Z̃s with |B̃s| ≤ m − |Bs−1|. By (ii), the union in Line 7 is a
disjoint union. Hence, if |B̃s| = m− |Bs−1|, then this is the last execution of the while loop and there is
nothing more to prove. So, from now on, assume that |B̃s| < m − |Bs−1|. Then, s < s∗, Option 2) of
Lemma 5.22 must have occurred, and Line 8 is carried out in the sth execution of the while loop. Hence,

176

5.3 Extension to Tree-Like Graphs

G is updated to G[Z̃] and B̃s is added to the set B in Line 7, i. e., Bs = Bs−1 ∪̇ B̃s. Moreover,

|V (Gs)| = |Z̃| ≥ m̃− |B̃s| = m− |Bs−1| − |B̃s| = m− |Bs|

and (B̃s, W̃s, Z̃s) is a partition of the vertex set of Gs−1. Therefore, (i) and (ii) hold after the sth execution
of the while loop. Furthermore, (iii) and (iv) are satisfied after the sth execution of the while loop due
to the requirements in Line 8. This completes the proof of the invariants (i)-(vii) and shows that the
algorithm can be carried out.
Next, the width of the m-cut computed by Algorithm 5.4 is analyzed. First, note that in Line 1 the

relative weight of a heaviest path in (T,X) does not decrease by Proposition 5.23 and, thus, w0 ≥ r(T,X).
With (v), it follows that

ws ≥ 2sr(T,X) for every s ∈ [s∗ − 1] ∪ {0}. (5.18)

Therefore,

s∗ ≤ log2

(
1

r(T,X)

)
+ 1, (5.19)

as otherwise

w∗Xs∗−1
(Ps∗−1) = ws∗−1

(5.18)
≥ 2s

∗−1 r(T,X) > 2log2

(
1

r(T,X)

)
r(T,X) = 1,

which is not possible as the relative weight of a path in a tree decomposition is at most 1. Note that, in
the previous equation, the path Ps∗−1 needs to be used as (v) does not apply for s = s∗. The number of
cut edges in the final cut (B,W) is at most the sum of the edges cut in each execution of the while loop,
when the vertex set of the current graph is partitioned in Line 6. By (vii), this implies that

eG(B,W) ≤
s∗∑

s=1
eGs−1(B̃s, W̃s, Z̃s) ≤ t∆(G)

s∗∑

s=1
log2

(
16
ws−1

)

(5.18)
≤ t∆(G)

s∗∑

s=1

(
log2

(
16

r(T,X)

)
− (s− 1)

)

≤ t∆(G)
(
s∗ log2

(
16

r(T,X)

)
− 1

2s
∗(s∗ − 1)

)

≤ t∆(G) s∗
(

log2

(
16

r(T,X)

)
− 1

2s
∗ + 1

2

)
.

The last term is a quadratic equation in s∗, whose maximum value is achieved at s∗ = log2

(
16

r(T,X)

)
+ 1

2 ,
which is larger than the upper bound given in (5.19). Therefore,

eG(B,W) ≤ t∆(G)
(

log2

(
1

r(T,X)

)
+ 1
)
·
(

log2

(
1

r(T,X)

)
+ 4− 1

2 log2

(
1

r(T,X)

))

≤ t∆(G)
2

((
log2

(
1

r(T,X)

))2
+ 9 log2

(
1

r(T,X)

)
+ 8
)
. 2

177

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

Pr
oo

fo
fL

em
m
a
5.
7

Pr
oo

fo
fL

em
m
a
5.
22

fo
re
st
G

=
(V
,E

)
on

n
ve
rt
ic
es
,a

ss
um

e
th
at
G

is
a
tr
ee
,

gr
ap

h
G

=
(V
,E

)
on

n
ve
rt
ic
es
,

tr
ee

de
co
m
po

sit
io
n

(T
,X

)o
fG

of
wi

dt
h
at

m
os
tt
−

1,
T

=
(V
T
,E

T
),
X

=
(X

i)
i∈
V
T
,

P
=

(V
P
,E

P
)
lo
ng

es
t
pa

th
in
G
,e

nd
s
x

0,
y 0
,

R
=
⋃
i∈
V
P
X
i ,

P
=

(V
P
,E

P
)n

on
re
du

nd
an

tp
at
h
in
T

wi
th

re
sp
ec
t

to
X
,e

nd
s
i 0
,j

0,
d

=
di

am
∗ (
G

),
|V
P
|=

d
n
,

|R
|=

rn
,

r
=
w
∗ X

(P
),

T
v

=
co
m
po

ne
nt
s
of
G
−
E
P
,

T
i

=
co
m
po

ne
nt
s
of
T
−
E
P
,

v
∈
V
P
,

R
i

=
{x
∈
X
i
:
i
is

th
e
pa

th
-n
od

e
of
x
},

i
∈
V
P
,

T
′ v

=
V

(T
v
)\
{v
},

S
i

=
⋃
j
∈V

(T
i
)
X
j
\
R
,

la
be

lt
he

ve
rt
ic
es

of
G
,

la
be

lt
he

ve
rt
ic
es

of
G
,

no
la
be

lin
g
of

th
e
no

de
s
of
T
,

N
m

(v
)=

v
+
m
,N
−

1
m

(v
)=

v
−
m
,

N
m

(v
)=

v
+
m
,N
−

1
m

(v
)=

v
−
m
,

v
∈
V
P

b-
sp
ec
ia
l(
f-s

pe
ci
al
)
if
∃
x
∈
T
′ v
w
ith

N
−

1
m

(x
)∈

V
P

(N
m

(x
)∈

V
P
),

i
∈
V
P

b-
sp
ec
ia
l(
f-s

pe
ci
al
)
if
∃
x
∈
S
i
w
ith

N
−

1
m

(x
)∈

R
(N

m
(x

)∈
R
),

P
b v

=
N
−

1
m

(T
′ v)
∩
V
P
,

U
b i

=
N
−

1
m

(S
i)
∩
R
,

P
b i

=
{ j
∈
V
P

:
R
j
⊆
U
b i

} ,
{ P

b v
:
v
∈
V
P

b-
sp
ec
ia
l}

is
a
pa

rt
iti
on

of
V
P
,

{ U
b i
:
i
∈
V
P

b-
sp
ec
ia
l}

is
a
pa

rt
iti
on

of
R
,

{ P
b i
:
i
∈
V
P

b-
sp
ec
ia
l}

is
a
pa

rt
iti
on

of
V
P
,

sim
ila

rly
fo
r
P
f v

=
N
m

(T
′ v)
∩
V
P
,

sim
ila

rly
fo
r
U
f i

=
N
m

(S
i)
∩
R
,

sim
ila

rly
fo
r
P
f i

=
{ j
∈
V
P

:
R
j
⊆
U
f i

} ,

v
b

=
N
−

1
m

(x
)
(v
f

=
N
m

(x
))

fo
r
th
e
sm

al
le
st

x
∈
T
′ v
w
ith

N
−

1
m

(x
)∈

V
P

(N
m

(x
)∈

V
P
),

ib
(i
f
)

=
pa

th
-n
od

e
of
N
−

1
m

(x
)
(N

m
(x

))
fo
r
th
e

sm
al
le
st
x
∈
S
i
w
ith

N
−

1
m

(x
)∈

R
(N

m
(x

)∈
R
),

H
b v

=
⋃
x
∈P

b v
\{
v
b
}
T
′ x,
H
f v

=
⋃
x
∈P

f v
\{
v
f
}
T
′ x,

H
b i

=
⋃
j
∈P

b i
\{
ib
}
S
j
,H

f i
=
⋃
j
∈P

f i
\{
if
}
S
j
,

∃
b-
sp
ec
ia
lv

w
ith
|T
′ v|

+
|H

b v
|≤

(1 d
−

1)
|P

b v
|

or
f-s

pe
ci
al
v
w
ith
|T
′ v|

+
|H

f v
|≤

(1 d
−

1)
|P

f v
|,

∃
b-
sp
ec
ia
li

w
ith
|S
i|

+
|H

b i
|≤

(1 r
−

1)
|U

b i
|

or
f-s

pe
ci
al
i
w
ith
|S
i|

+
|H

f i
|≤

(1 r
−

1)
|U

f i
|.

Z
=
H
b v
∪̇
P
b v
or
Z

=
H
f v
∪̇
P
f v
.

Z
=
H
b i
∪̇
U
b i
or
Z

=
H
f i
∪̇
U
f i
.

T
ab

le
5.

2:
O
ve
rv
ie
w

on
th
e
no

ta
tio

n
us
ed

in
th
e
pr
oo

fs
of

Le
m
m
a
5.
7
an

d
Le

m
m
a
5.
22

.
T
he

le
ft

co
lu
m
n
re
fe
rs

to
th
e
fo
rm

er
on

e;
th
e
m
id
dl
e
an

d
rig

ht
co
lu
m
n

bo
th

re
fe
r
to

th
e
la
tt
er

on
e.

178

5.3 Extension to Tree-Like Graphs

5.3.2 Proof of the Doubling Lemma for Tree-Like Graphs

The goal of this paragraph is to prove Lemma 5.22. The technique is similar to the one used in Section 5.2.2,
but more involved as we have to deal with the graph itself and the considered tree decomposition of the
graph. Table 5.2 gives an overview of the notation used in this paragraph and relates it to the notation
used in Section 5.2.2.

Throughout this paragraph, let G = (V,E) be an arbitrary graph on n vertices and let (T,X) be a tree
decomposition of G of width at most t−1 with T = (VT , ET) and X = (Xi)i∈VT . Denote by n the number
of vertices of G and fix an arbitrary integer m ∈ [n]. Furthermore, let P = (VP , EP) be a nonredundant
path in T with respect to X and denote by r := w∗X (P) the relative weight of P . Furthermore, let i0
and j0 be the ends of P such that i0 is a nonredundant end of P with respect to X .

Notation and Vertex Labeling

The first step of the proof is to define a labeling of the vertices of G, which depends on the path P and
is similar to the P̃ -labeling used in Section 5.2.2. We refer to both, the labeling from Section 5.2.2 and
the labeling defined next as a P̃ -labeling because we assume that it is clear from the context whether we
work with a forest or a tree decomposition such that P̃ is a subgraph of the decomposition tree. To define
a P̃ -labeling for an arbitrary graph G̃ with a given tree decomposition, the following notation is needed.

For each node i ∈ VP , let Ti be the component of T − EP that contains i and call i the root of Ti. As
the root of Ti is in VP for all i, the set R :=

⋃
i∈VP X

i is called the set of root vertices with respect to P .
For each vertex x ∈ R, define the path-node of x as the node i ∈ VP closest to i0 with x ∈ Xi. Note that,
as T is a tree, such a node i is unique. For every i ∈ VP , let

Ri :=
{
x ∈ Xi : i is the path-node of x

}
.

Note that the path-nodes and the sets Ri depend on the choice of i0. Furthermore, for each node i ∈ VP ,
let Si be the set of vertices v ∈ V \R such that v ∈ Xj for some j ∈ V (Ti), i. e.,

Si =
⋃

j∈V (Ti)

Xj \R.

For a node i ∈ VP and a vertex x ∈ V \ R, the node i is called the path-node of x if x ∈ Si. Part b)
of the next proposition shows that Si and Si′ are disjoint for distinct nodes i, i′ of P . Therefore, every
vertex x ∈ V has a unique path-node.

For technical reasons, we will refer to the pair {i0, j0} as an edge of T , even when it is not. For a
node i ∈ VP \ {j0}, we say that j is the node after i on P if j ∈ VP and j is the neighbor of i that comes
after i when traversing P from i0 to j0. Define i0 to be the node after j0 on P . If j is the node after i
on P , the edge {i, j} is called the edge after i on P . Moreover, if j is the node after i on P , then the
edge {i, j} is called the edge before j on P and i is the node before j on P .

Proposition 5.25.
a) For every i ∈ VP , the set Ri is nonempty.
b) {Ri : i ∈ VP } ∪ {Si : i ∈ VP } is a partition of V .

Proof.

a) First, note that Ri0 = Xi0 and Xi0 6= ∅ as i0 is a nonredundant end of P with respect to X . If P
consists of only one node, this node is i0 and there is nothing more to show. So assume that |VP | ≥ 2

179

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

and that there is an i ∈ VP with Ri = ∅. As Xi0 6= ∅, it follows that i 6= i0. Let j be the node
before i on P . Since Xi 6⊆ Xj as P is nonredundant with respect to X , there must be some
vertex x ∈ Xi \Xj . Property (T3’) implies that T [Ix] is connected, where Ix =

{
h ∈ VT : x ∈ Xh

}
.

Furthermore, Ix∩VP is nonempty as i ∈ Ix∩VP and, therefore, T [Ix∩VP] is not an empty graph and
is connected. Moreover, the node in Ix∩VP that is closest to i0 is the path-node of x. As i ∈ Ix∩VP
and j 6∈ Ix ∩ VP , the node i must be the path-node of x, which shows that x ∈ Ri, contradicting the
assumption that Ri = ∅.

b) Let x be an arbitrary vertex in V and define Ix =
{
i ∈ VT : x ∈ Xi

}
. The set Ix is nonempty

by (T1). If Ix ∩ VP 6= ∅, then x ∈ Rj for some j ∈ VP and x /∈ Rj′ for all j′ ∈ VP \ {j} as well
as x /∈

⋃
h∈VP Sh. Otherwise, (T3’) implies that Ix ⊆ V (Tj)\{j} for some j ∈ VP and Ix∩V (Tj′) = ∅

for all j′ ∈ VP \ {j}. Thus, x ∈ Sj and x 6∈ Sj′ for all j′ ∈ VP \ {j}. All in all, every vertex x ∈ V
lies in exactly one of the sets in {Ri : i ∈ VP } ∪ {Si : i ∈ VP }. 2

When labeling the vertices of G with {1, 2, . . . , n}, we say that the vertices in a set V ′ ⊆ V with V ′ 6= ∅
receive consecutive labels if there are `, `′ ∈ [n] with ` < `′ such that each vertex in V ′ receives a label
in {`, ` + 1, . . . , `′}, or in {1, . . . , `} ∪ {`′, . . . , n} and each vertex with a label in this set is in V ′. A
P -labeling of G with respect to (T,X) is a labeling of the vertices in V with {1, 2, . . . , n} such that the
following properties are satisfied:
• For each node i ∈ VP , the vertices in Ri ∪ Si receive consecutive labels and, for each x in Si and
each y ∈ Ri, the label of x is smaller than the label of y.

• For all nodes i, j ∈ VP with i 6= j, for all vertices x ∈ Ri ∪ Si and y ∈ Rj ∪ Sj , if i0 is closer to i
than j, then the label of x is smaller than the label of y.

Proposition 5.25b) implies that it is always possible to find a P -labeling of the vertices of G. Fix a
P -labeling of the vertices of G and identify each vertex with its label. Observe that 1 ∈ Ri0 ∪ Si0
and n ∈ Rj0 . From now on, any number that differs from a label in [n] by a multiple of n is considered to
be the same as this label. When referring to labels and vertices, in particular, when comparing them,
we always refer to integers in [n]. As in Section 5.2.2, for three vertices a, b, c ∈ V with a 6= c, we say
that b is between a and c if b = a, b = c, or if starting at a and going along the numeration given by
the labeling reaches b before c. If a = c, then b is between a and c if b = a. For each vertex x ∈ V , the
vertex Nm(x) = x+m is called the mth next vertex of x. Note that Nm : V → V is a bijection and, hence,
its inverse function N−1

m is well-defined. For a set Y ⊆ V , define Nm(Y) = {Nm(y) : y ∈ Y }.
The next two propositions show how the P -labeling is used to find certain cuts of small width in G.

Figure 5.11 visualizes the notation used in the next proposition. In this figure and in all following figures,
the path P is drawn on the top and its nodes are drawn explicitly. All nodes of T that do not lie in VP
are not drawn explicitly. For each i ∈ VP , the tree Ti is represented by the triangle attached to the node i
and the sets Ri and Si are represented by a circle and a trapezoid underneath the node i, respectively.

Proposition 5.26.
Let i be an arbitrary node in P , and denote by i− and i+ the nodes before and after i on P , respectively.
Let x− be the vertex with the largest label in Ri− and let x+ be the vertex with the smallest label in Si+∪Ri+ .
Moreover, if i = i0, let V +

P = VP \ {i0} and, if i = j0, let V −P = VP \ {j0}, and otherwise let V −P and V +
P

be the node sets of the components of P − i that contain i− and i+, respectively. Removing from G the
edges in EG(i) decomposes G into the following disjoint parts
• an isolated vertex for every v ∈ Ri,
• the part G[Si],

180

5.3 Extension to Tree-Like Graphs

.

.

.

i0 i− i i+ j0
P

⋃

j∈V −
P

(Rj ∪ Sj) = {1, . . . , x−}
⋃

j∈V +
P

(Rj ∪ Sj) = {x+, . . . , n}

Si

Ri

x− x+

V −P V +
P

Figure 5.11: Visualization of the notation used in Proposition 5.26.

• if i 6= i0, the subgraph of G induced by
⋃
j∈V −

P
(Rj ∪ Sj) = {1, . . . , x−}, and

• if i 6= j0, the subgraph of G induced by
⋃
j∈V +

P
(Rj ∪ Sj) = {x+, . . . , n}.

Observe that the nodes x− and x+ in the previous proposition exist as Ri− 6= ∅ and Ri+ 6= ∅ due to
Proposition 5.25a).

Proof of Proposition 5.26. Let i be an arbitrary node of P and define G̃ = G− EG(i). By the
definition of EG(i), all vertices in Xi are isolated in G̃. Thus, in G̃, each vertex in Ri is isolated. Assume
that i 6= i0 and i 6= j0. The following argument is easy to adjust to the case i = i0 and to the case i = j0.
Let k = degT (i) and denote by i1, . . . , ik the neighbors of i in T . Without loss of generality, assume
that i1 is the node before i on P and ik is the node after i on P . For ` ∈ [k], let V T` be the node set of
the component of T − i that contains i` and define

V` =
⋃

j∈V T
`

Xj \Xi

as in Lemma 2.16. Note that all vertices in V \Xi with a label less than or equal to x− are in the set V1,
all vertices in Si are in some set V` with ` ∈ [k − 1] \ {1}, and all vertices in V \Xi with a label greater
than or equal to x+ are in Vk. Therefore, Lemma 2.16b) implies that there are no edges in G̃ between a
vertex in Si and a vertex not in Si. Additionally, there is no edge in G̃ joining two vertices in V \Xi such
that one has a label less than or equal to x− and the other one has a label greater than or equal to x+.2

Proposition 5.27.
For every node i in the path P and every vertex x ∈ Ri, in the graph G− EG(i), there is no edge between
a vertex with a label less than or equal to x and a vertex with a label greater than or equal to x.

Proof. Let i be an arbitrary node in the path P , let x be a vertex in Ri, and define G̃ := G − EG(i).
Assume there was an edge {y−, y+} in G̃ with y− between 1 and x and y+ between x and n. Clearly,

181

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

.
i j

P

M

x x + 1 Nm(x)

Figure 5.12: The cut (B,W) in Case 1. A set of vertices is colored black or white if its vertices are in the set B
or W , respectively. Observe that the black set does not necessarily intersect the set Ri.

y− 6∈ Ri and y+ 6∈ Ri as all vertices in Ri ⊆ Xi are isolated in G̃. As in Proposition 5.26, denote by i+

the node after i on P and let x+ be the smallest vertex in Si+ ∪ Ri+ . Then y+ must be between x+

and n and y− is not between x+ and n. Hence, Proposition 5.26 shows that G̃ cannot contain the
edge {y−, y+}. 2

Case 1: There is some x ∈ R such that Nm(x) ∈ R.

Let B be the set of vertices between x + 1 and Nm(x), see Figure 5.12. Let W = V \ B and Z = ∅.
Clearly, |B| = m. Let i ∈ VP and j ∈ VP be the path-nodes of x and Nm(x), respectively. Consider the
graph G̃ = G− (EG(i) ∪ EG(j)). Then, eG̃(B,W) = 0. Indeed, assume for a contradiction that there is
an edge {z, z′} ∈ EG̃(B,W). Without loss of generality, assume that z < z′. Then, either z ≤ x < z′ or
z ≤ Nm(x) < z′. However, G− EG(i) does not contain the edge {z, z′} in the first case and G− EG(j)
does not contain the edge {z, z′} in the second case by Proposition 5.27. Thus, G̃ does not contain the
edge {z, z′}, which contradicts the assumption. Consequently, every edge that is cut by the cut (B,W)
in G is in EG(i) ∪ EG(j) and

eG(B,W) ≤ |EG(i) ∪ EG(j)| ≤ 2t∆(G),

as desired for Option 1).

Case 2: There is no x ∈ R with Nm(x) ∈ R.

Then, every x ∈ R satisfies Nm(x) /∈ R and N−1
m (x) /∈ R. Therefore, |R| = |Nm(R)| ≤ |V \ R|, which

implies that |R| ≤ 1
2n and, hence,

r = w∗X (P) ≤ |R|
|V |

≤ 1
2 . (5.20)

Further Notation and Properties for Case 2

If i0 6= j0, and i0 is not a neighbor of j0 in T , then denote by T+ the graph obtained from T by inserting
the edge {i0, j0}. Otherwise, let T+ = T . The next proposition presents two easy observations that hold

182

5.3 Extension to Tree-Like Graphs

in Case 2.

Proposition 5.28.
In Case 2, the following statements hold:

a) For each i ∈ VP , there is a node j ∈ VP such that N−1
m (Ri) ⊆ Sj and N−1

m (Ri) ∩ Sj′ = ∅ for
every j′ ∈ VP \ {j}.

b) For each i ∈ VP , there is a node j ∈ VP such that Nm(Ri) ⊆ Sj and Nm(Ri) ∩ Sj′ = ∅ for
every j′ ∈ VP \ {j}.

Proof.

a) Fix an arbitrary i ∈ VP . The assumption of Case 2 implies that N−1
m (Ri) ∩ R = ∅ and, there-

fore, N−1
m (Ri) ⊆

⋃
j∈VP Sj . Assume for a contradiction that N−1

m (Ri) intersects more than one
set Sj with j ∈ VP . Let x be the smallest vertex in Ri and let j be the path-node of N−1

m (x). Let x′

be a vertex in Ri such that the path-node of N−1
m (x′) is j′ and j′ 6= j. Since the vertices in N−1

m (Ri)
have consecutive labels, all vertices between N−1

m (x) and N−1
m (x′) are in N−1

m (Ri). Each vertex
in Rj is between N−1

m (x) and N−1
m (x′) as the vertices in Rj are labeled right after the vertices in Sj .

By Proposition 5.25a) Rj 6= ∅, which means that there is a vertex z ∈ Rj with z ∈ N−1
m (Ri). This

contradicts N−1
m (Ri) ∩R = ∅.

b) Analogous to a). 2

A node i ∈ VP is called b-special if the set Si contains a vertex x with N−1
m (x) ∈ R. A node i ∈ VP

is called f-special if Si contains a vertex x with Nm(x) ∈ R. Similarly to Section 5.2.2, we use b as in
backward because there is some vertex in Si such that going m steps backward from x in the numeration
gives a vertex in R, and we use f as in forward because there is some vertex in Si such that going m steps
forward in the numeration gives a vertex in R. For every i ∈ VP , define

U bi = N−1
m (Si) ∩R and Ufi = Nm(Si) ∩R

as well as

P bi =
{
j ∈ VP : Rj ⊆ U bi

}
and P fi =

{
j ∈ VP : Rj ⊆ Ufi

}
.

Note that a node i ∈ VP is b-special if and only if U bi 6= ∅, and i ∈ VP is f-special if and only if Ufi 6= ∅.
See Figure 5.13 for a visualization of this definition and the following ones. For each b-special i ∈ VP ,
let x be the smallest vertex in Si with N−1

m (x) ∈ R and let ib be the path-node of N−1
m (x). Also, for

each b-special i ∈ VP , let y be the largest vertex in Si with N−1
m (y) ∈ R and let ib` be the path-node

of N−1
m (y). We use ` as in large, as Rib

`
contains N−1

m (y) and y is the largest vertex in Si with N−1
m (y) ∈ R.

Similarly, for each f-special node i ∈ VP , let x be the smallest vertex in Si with Nm(x) ∈ R and let if

be the path-node of Nm(x). Also, let y be the largest vertex in Si with Nm(y) ∈ R and let if` be the
path-node of Nm(y). Furthermore, define

Hb
i =

⋃

j∈P b
i
\{ib}

Sj and Hf
i =

⋃

j∈P f
i
\{if}

Sj

for each b-special and f-special i ∈ VP , respectively, and Hb
i = ∅ for each i ∈ VP that is not b-special

as well as Hf
i = ∅ for each i ∈ VP that is not f-special. The next proposition and lemma state some

properties about these sets as well as b-special and f-special nodes.

183

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

.
i

P
ib ib

`

Ub
i

P b
i

Hb
i

N−1
m (x) N−1

m (y)
y x

Rj Ri

Si

N−1
m (Rj) N−1

m (Ri)

f-special f-special b-special

a) A b-special node i and the sets Ubi , P bi , and Hb
i . The sets Ri and Rj , as well as their images under N−1

m , are
colored red. The set Si and its image under N−1

m is colored orange, except for the sets Rh in the image that are
subsets of R, which are colored dark red.

.
i

P
if if

`

Uf
i

P f
i

Hf
i

Nm(x) Nm(y)
y x

RiRj

Si

Nm(Ri)Nm(Rj)

f-special b-special b-special

b) An f-special node i and the sets Ufi , P
f
i , and H

f
i . The sets Ri and Rj , as well as their images under Nm, are

colored dark blue. The set Si and its image under Nm is colored light blue, except for the sets Rh in the image
that are subsets of R, which are colored purple.

Figure 5.13: Notation used in the proof of Lemma 5.22.

184

5.3 Extension to Tree-Like Graphs

Proposition 5.29.
In Case 2, the following statements hold:

a) For each i ∈ VP , there is a j ∈ VP such that Ri ⊆ U bj and Ri ∩ U bj′ = ∅ for every j′ ∈ VP \ {j}. For
each i ∈ VP , there is a j ∈ VP such that Ri ⊆ Ufj and Ri ∩ Ufj′ = ∅ for every j′ ∈ VP \ {j}.

b) {U bi : i ∈ VP } is a partition of R and {Ufi : i ∈ VP } is a partition of R.
c) {P bi : i ∈ VP , i is b-special} is a partition of VP and
{P fi : i ∈ VP , i is f-special} is a partition of VP .

d) For all i ∈ VP , if i ∈ P bi then i = ib, and if i ∈ P fi then i = if .
e) Nm(U bi ∪Hb

i) ⊆ Si for every b-special i ∈ VP and
N−1
m (Ufi ∪H

f
i) ⊆ Si for every f-special i ∈ VP .

Proof.

a) Fix an arbitrary i ∈ VP . By Proposition 5.28b), there is a j ∈ VP such that Nm(Ri) ⊆ Sj and
Nm(Ri) ∩ Sj′ = ∅ for every j′ ∈ VP \ {j}. This implies that Ri ⊆ N−1

m (Sj) and Ri ∩N−1
m (Sj′) = ∅

for every j′ ∈ VP \ {j}. As Ri ⊆ R, the first statement follows. The second one follows similarly
from Proposition 5.28a).

b) By definition, U bi ⊆ R for every i ∈ VP . Now, Part a) implies that
⋃

i∈VP
U bi ⊆ R =

⋃

i∈VP
Ri ⊆

⋃

i∈VP
U bi ,

which shows that
⋃
i∈VP U

b
i = R. By Proposition 5.25b), the sets Si with i ∈ VP are pairwise

disjoint. As N−1
m is a bijection, the sets U bi with i ∈ VP are also pairwise disjoint. The statement

for Ufi follows similarly.

c) First, note that Part a) implies that P bi 6= ∅ if and only if i is b-special, as well as P fi 6= ∅ if and
only if i is f-special. Now, the statement follows immediately from Part a) and Part b) since Ri 6= ∅
for every i ∈ VP by Proposition 5.25a).

d) Let i be an arbitrary node in P and assume that i satisfies i ∈ P bi . Recall that Rj 6= ∅ for all j ∈ VP by
Proposition 5.25a). Now, i must be b-special, because otherwise U bi = ∅ and also P bi = ∅. Moreover,
the node i can only lie in P bi if Ri ⊆ U bi , i. e., Ri ⊆ N−1

m (Si). Since Ri 6= ∅ by Proposition 5.25a),
the set Si contains a vertex v such that N−1

m (v) ∈ Ri. Now, for every w ∈ Si that is smaller than v,
the vertex N−1

m (w) must be in Ri ∪ Si. Consequently, ib = i. The second part follows analogously.

e) Consider a b-special node i ∈ VP . Clearly, Nm(U bi) ⊆ Si by the definition of U bi . If Hb
i = ∅, this

is enough. Otherwise, all vertices in Hb
i are between the largest vertex x′ ∈ Rib and the smallest

vertex y′ ∈ Rib
`
. The definition of ib and ib` together with Proposition 5.28b) imply that Nm(Rib) ⊆ Si

and Nm(Rib
`
) ⊆ Si. Therefore Nm(x′) ∈ Si and Nm(y′) ∈ Si, implying that Nm(Hb

i) ⊆ Si. The
second part for f-special nodes can be shown analogously. 2

If P bi is not empty, then the nodes in P bi induce a path or a cycle in T+ and due to Proposition 5.29a)
the nodes ib and ib` each lie in P bi . So, if the nodes in P bi induce a path in T+, then the ends of this path
are ib and ib`. Similarly, if P fi 6= ∅, then the nodes in P fi induce a path or a cycle in T+ and, in the former
case, the ends of this path are if and if` .

Lemma 5.30.
In Case 2, the following statements hold:

185

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

a) For every b-special i ∈ VP , the node ib is f-special.
b) For every f-special i ∈ VP , the node if is b-special.
c) A node i ∈ VP is b-special if and only if there exists an f-special node j ∈ VP with i = jf .
d) A node i ∈ VP is f-special if and only if there exists a b-special node j ∈ VP with i = jb.

Proof.

a) Let i ∈ VP be an arbitrary b-special node and denote by j the node before i on P . Proposition 5.28a)
implies that there is a node h ∈ VP such that N−1

m (Rj) ⊆ Sh. The node h must be ib and,
therefore, N−1

m (Rj) ⊆ Sib . By Proposition 5.25a) Rj is nonempty and, thus, Sib contains a vertex x
with Nm(x) ∈ Rj . Consequently, ib is f-special.

b) Let i ∈ VP be an arbitrary f-special node and denote by j the node before i on P . By Proposi-
tion 5.28b), there is a node h ∈ VP with Nm(Rj) ⊆ Sh. The node h must be if and Nm(Rj) ⊆ Sif .
Due to Proposition 5.25a) the set Rj is nonempty and, hence, Sif contains a vertex x such that
N−1
m (x) ∈ Rj . Therefore, if is b-special.

c) First, if there is an f-special node j ∈ VP such that i = jf , then Part b) shows that i is b-special.
Furthermore,

∣∣{i ∈ VP : i is b-special
}∣∣ =

∣∣{ib : i ∈ VP , i is b-special
}∣∣

a)
≤
∣∣{j ∈ VP : j is f-special

}∣∣ =
∣∣{jf : j ∈ VP , j is f-special

}∣∣
b)
≤
∣∣{i ∈ VP : i is b-special

}∣∣ ,

where the first equality holds because Proposition 5.29c) implies that ib 6= jb for two distinct
b-special nodes i, j ∈ VP and the second equality holds analogously. As all inequalities must be
equalities, there are exactly as many b-special nodes i ∈ VP as there are f-special nodes i ∈ VP and,
for every b-special i ∈ VP , there is an f-special node j ∈ VP with i = jf .

d) Analog to Part c). 2

Accounting for Case 2

Lemma 5.30c) implies
∑

j∈VP :
j is f-special

∣∣Sjf
∣∣ =

∑

i∈VP :
i is b-special

|Si| (5.21)

and Lemma 5.30d) implies
∑

j∈VP :
j is b-special

∣∣Sjb
∣∣ =

∑

i∈VP :
i is f-special

|Si| . (5.22)

As U bi ⊆ R and Hb
i ⊆ V \R are disjoint, Proposition 5.29e) implies

∣∣U bi
∣∣+
∣∣Hb

i

∣∣ ≤
∣∣Si
∣∣ for every b-special i ∈ VP . (5.23)

Similarly, for Ufi and Hf
i , it follows that
∣∣∣Ufi

∣∣∣+
∣∣∣Hf

i

∣∣∣ ≤
∣∣∣Si
∣∣∣ for every f-special i ∈ VP . (5.24)

186

5.3 Extension to Tree-Like Graphs

Recall that 1
n |R| = w∗X (P) = r. Proposition 5.25b) guarantees that every v ∈ V \ R is in exactly one

set Sj with j ∈ VP and Proposition 5.29c) states that {P bi : i ∈ VP , i is b-special} is a partition of VP .
Consequently, every vertex v ∈ V \R is in exactly one set Hb

i ∪̇ Sib for some b-special i ∈ VP and

(1− r)n = |V \R| =
∑

i∈VP :
i is b-special

(∣∣Sib
∣∣+
∣∣Hb

i

∣∣) . (5.25)

Furthermore, Proposition 5.29b) yields

rn = |R| =
∑

i∈VP :
i is b-special

∣∣U bi
∣∣ . (5.26)

Moreover, Proposition 5.29c) states that {P fi : i ∈ VP , i is f-special} is a partition of VP . Hence, it follows
similarly that

(1− r)n = |V \R| =
∑

i∈VP :
i is f-special

(∣∣∣Sif
∣∣∣+
∣∣∣Hf

i

∣∣∣
)

and (5.27)

rn = |R| =
∑

i∈VP :
i is f-special

∣∣∣Ufi
∣∣∣ . (5.28)

Now, equations (5.25)-(5.28) imply
∑

i∈VP :
i is b-special

(∣∣Sib
∣∣+
∣∣Hb

i

∣∣) +
∑

i∈VP :
i is f-special

(∣∣∣Sif
∣∣∣+
∣∣∣Hf

i

∣∣∣
)

= 2 |V \R|

= 2 1− r
r
|R| = 1− r

r




∑

i∈VP :
i is b-special

∣∣∣U bi
∣∣∣ +

∑

i∈VP :
i is f-special

∣∣∣Ufi
∣∣∣


 .

Now, the terms in the sums in the first expression are rearranged with (5.21) and (5.22), such that both
sums use |Si| instead of |Sib | and |Sif |, respectively, which yields

∑

i∈VP :
i is b-special

(∣∣Si
∣∣+
∣∣Hb

i

∣∣) +
∑

i∈VP :
i is f-special

(∣∣∣Si
∣∣∣+
∣∣∣Hf

i

∣∣∣
)

= 1− r
r




∑

i∈VP :
i is b-special

∣∣∣U bi
∣∣∣ +

∑

i∈VP :
i is f-special

∣∣∣Ufi
∣∣∣


 .

To deduce the next proposition from the previous equation, note that each sum in the previous equation has
at least one summand as there is at least one b-special node i ∈ VP and at least one f-special node i ∈ VP .
Indeed, let x be an arbitrary vertex in R, then neither Nm(x) ∈ R nor N−1

m (x) ∈ R as otherwise Case 2
would not apply. Let i and j be the path-nodes of Nm(x) and N−1

m (x), respectively. Then i is b-special
and j is f-special.

Proposition 5.31.
In Case 2, one of the following must exist:

a) a b-special node i ∈ VP such that |Si|+ |Hb
i | ≤

(1
r − 1

)
|U bi |, or

b) an f-special node i ∈ VP such that |Si|+ |Hf
i | ≤

(1
r − 1

)
|Ufi |.

The b-special or f-special node guaranteed by the previous proposition will now be used to construct
the cut (B,W,Z) for Option 2).

187

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

.
ij

P
ib ib

`

Ub
i

P b
i

Hb
i

Z

B1 B2

zx y y + 1

Figure 5.14: Cut (B,W,Z) with B = B1 ∪B2 in Case 2a). A set Si is colored blue if the node i is b-special and
it is colored red if the node i is f-special. Note that none of the red and blue sets is empty.

The Cut in Case 2a)

Assume there is a b-special node i ∈ VP such that |Si|+ |Hb
i | ≤

(1
r − 1

)
|U bi |. Replacing |Si| with (5.23)

yields

∣∣U bi
∣∣+ 2

∣∣Hb
i

∣∣ ≤
(1
r − 1

) ∣∣U bi
∣∣ ⇒ 2

∣∣U bi
∣∣+ 2

∣∣Hb
i

∣∣ ≤ 1
r

∣∣U bi
∣∣

⇒
∣∣U bi
∣∣+
∣∣Hb

i

∣∣ ≤ 1
2r
∣∣U bi
∣∣ (5.29)

Let Z := U bi ∪̇ Hb
i , which satisfies Z 6= ∅ as i is b-special and, hence, U bi 6= ∅. Furthermore, the

sets Z and Si are disjoint. Indeed, assume there is a vertex x ∈ Si ∩ Z. As Si ⊆ V \ R and U bi ⊆ R,
it follows that x ∈ Si ∩ Hb

i . Since {Sh : h ∈ VP } is a partition of V \ R by Proposition 5.25b), the
node i must lie in P bi and i 6= ib, which contradicts Proposition 5.29d). Thus, the sets Si and Z

are disjoint and (5.23) implies that 2|Z| = 2|U bi | + 2|Hb
i | ≤ |U bi | + |Hb

i | + |Si| ≤ n as desired. For
the tree decomposition (T ′,X ′) of G[Z] required in Option 2) in Lemma 5.22, consider first the tree
decomposition (T ′′,X ′′) induced by G[Z] in (T,X), which is a tree decomposition of G[Z] of width at
most t−1 by Proposition 2.14. Furthermore, define P ′′ := P . Each vertex in U bi is in R∩Z and contributes
to the weight of P ′′ with respect to X ′′. Thus, w∗X ′′(P ′′) ≥ 1

|Z| |U
b
i | and the relative weight of P ′′ with

respect to X ′′ is at least 2r, since (5.29) implies |Z| ≤ 1
2r |U

b
i |. Now, let (T ′,X ′) be a nonredundant

tree decomposition of G[Z] as in Proposition 5.23, i. e., the width of (T ′,X ′) is the width of (T ′′,X ′′),
which is at most t − 1, and r(T ′,X ′) ≥ r(T ′′,X ′′). Let P ′ be a heaviest path in T ′ with respect to X ′.
Then, w∗X ′(P ′) = r(T ′,X ′) ≥ r(T ′′,X ′′) ≥ w∗X ′′(P ′′) ≥ 2r and P ′ is nonredundant with respect to X ′.
Therefore, the set Z and the tree decomposition (T ′,X ′) have the desired properties for Option 2).

Now, the set B for the cut (B,W,Z) in G is defined. See Figure 5.14 for a visualization of the next
definitions. Let j be the vertex before i on P . Let y be the largest vertex in Rib

`
and let z be the largest

188

5.3 Extension to Tree-Like Graphs

vertex in Rj . Both vertices exist as Rh 6= ∅ for all h ∈ VP by Proposition 5.25a). Define

B1 := {v ∈ V : v is between y and z, v 6= y}.

Let m̃ = m− |B1|. As Nm(y) lies in Si, it follows that |Si| ≥ m̃ ≥ 1. Let T̃ = Ti and denote by (T̃ , X̃)
the restriction of (T,X) to T̃ and G[Si]. It is easy to see that (T̃ , X̃) is a tree decomposition of G[Si], as
Iv = {h ∈ VT : v ∈ Xh} ⊆ V (T̃) \ {i} for every v ∈ Si. Let m̃ := m− |B1| and c := 2− 1

1−r = 1−2r
1−r and

note that c ∈ [0, 1) due to (5.20). Using the tree decomposition (T̃ , X̃), Lemma 4.8b) implies that there is
a c-approximate m̃-cut (B2,W2) in G[Si] with

eG[Si](B2,W2) ≤
⌈

log2

(
1

1− c

)⌉
t∆(G) =

⌈
log2

(
1− r
r

)⌉
t∆(G)

≤
(

log2

(
2(1− r)

r

))
t∆(G) ≤ log2

(
2
r

)
· t∆(G). (5.30)

Define B = B1 ∪B2. As B2 ⊆ Si, the set B2 contains no vertex from B1 and, thus,

m− |B| = (m− |B1|)− |B2| ≤ m̃− cm̃ ≤ (1− c)|Si|

≤ r

1− r |Si| ≤ |U
b
i | ≤ |Z|,

where the second to last inequality holds due to the assumption of Case 2a) that |Si|+ |Hb
i | ≤

(1
r − 1

)
|U bi |.

Thus, |B| ≤ m ≤ |B|+ |Z|. The sets B1 and Z are disjoint by construction. Since B2 ⊆ Si and Si ∩Z 6= ∅
as shown above, B2 and Z are disjoint. Consequently, the sets B and Z are disjoint. Let W := V \ (B ∪̇Z).
Next, the width of the cut (B,W,Z) in G is estimated. First, EG(Si, V \ Si) ⊆ EG(i) due to Proposi-

tion 5.26. Moreover, (Z, V \Z) cuts only edges in EG(ib)∪EG(ib`) due to Proposition 5.26 when considering
the nodes ib and ib`. Therefore, EG(Z, V \ Z) ⊆ EG(ib) ∪ EG(ib`). Similarly, the same proposition with
considering the nodes ib` and i yields EG(B1, V \ B1) ⊆ EG(ib`) ∪ EG(i). Defining W1 = W \W2 and
recalling that B2 ∪W2 = Si, it follows that

EG(B,W,Z) ⊆ EG(Z,B1, B2,W1,W2)
⊆ EG(Z,B1, Si,W1) ∪ EG[Si](B2,W2)
⊆ EG(Z, V \ Z) ∪ EG(B1, V \B1) ∪ EG(Si, V \ Si) ∪ EG[Si](B2,W2)
⊆ EG(ib) ∪ EG(ib`) ∪ EG(i) ∪ EG[Si](B2,W2).

Now, (5.30) implies that

eG(B,W,Z) ≤ 3t∆(G) + eG[Si](B2,W2) ≤ log2

(
16
r

)
t∆(G),

because |EG(h)| ≤ t∆(G) for every h ∈ VT .

The Cut in Case 2b)

Assume there is an f-special node i ∈ VP such that |Si| + |Hf
i | ≤

(1
r − 1

)
|Ufi |. Similarly to Case 2a),

using (5.24) yields ∣∣∣Ufi
∣∣∣+
∣∣∣Hf

i

∣∣∣ ≤ 1
2r

∣∣∣Ufi
∣∣∣ .

Now, define Z = Ufi ∪H
f
i and deduce analogously to Case 2a) that Z 6= ∅ and |Z| ≤ 1

2n as Si and Z are
disjoint. Analog to Case 2), a nonredundant tree decomposition (T ′,X ′) of G[Z] of width at most t−1 can

189

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

.
i

P
if if

`

Uf
i

P f
i

Hf
i

Z

B1B2

z xx − 1

Figure 5.15: Cut (B,W,Z) with B = B1 ∪B2 in Case 2b). A set Si is colored dark blue if the node i is b-special
and it is colored red if the node i is f-special. Note that none of the red and blue sets are empty.

be constructed from the tree decomposition induced by G[Z] in (T,X), such that a heaviest path P ′ ⊆ T ′

with respect to X ′ satisfies w∗X ′(P ′) ≥ 2w∗X (P) and is nonredundant with respect to X ′.
Let z be the smallest vertex in Ri and let x be the smallest vertex in Rif . Define

B1 = {v ∈ V : v is between z and x, v 6= x},

see Figure 5.15. Observe that B1 = ∅ if i = if or, equivalently, x = z. Let m̃ = m − |B1|. As N−1
m (x)

is in Si, it follows that |Si| ≥ m̃ ≥ 1. As in Case 2a), define c := 2 − 1
1−r . The restriction (T̃ , X̃)

of (T,X) to T̃ = Ti and G[Si] is a tree decomposition of G[Si]. Thus, Lemma 4.8b) ensures that there is
a c-approximate m̃-cut (B2,W2) in G[Si] with eG[Si](B2,W2) ≤ log2

(2
r

)
t∆(G). Defining B = B1 ∪ B2,

one can argue that |B| ≤ m ≤ |B|+ |Z| and that B is disjoint from Z. Similarly to Case 2a), it follows
with Proposition 5.26 that

EG(Z, V \ Z) ⊆ EG(if) ∪ EG(if`),
EG(B1, V \B1) ⊆ EG(i) ∪ EG(if),
EG(Si, V \ Si) ⊆ EG(i).

For W = V \ (B ∪ Z), it follows that eG(B,W,Z) ≤ log2
(16
r

)
t∆(G).

5.3.3 Computing a Heaviest Path and the Set of P -parameters

Before starting with the details of the main algorithm that computes an exact cut in a tree-like graph, this
paragraph focuses on computing a heaviest path, as the construction presented in Sections 5.3.1-5.3.2 relies
on a heaviest path in the given tree decomposition. Furthermore, the set of P -parameters is introduced,
which consists of several parameters that depend on the path P , for example a P -labeling. Moreover, it is
explained how to compute the set of P -parameters.

190

5.3 Extension to Tree-Like Graphs

Algorithm 5.5: Computes a heaviest path in a tree decomposition.
Input: integer n, tree decomposition (T,X) of a graph G with V (G) = [n].
Output: heaviest path P ⊆ T with respect to X as an ordered list and its relative weight r(T,X).

1 If |V (T)| ≤ 3 then
2 Return a list of the nodes in the path P = T and r(T,X) = 1.
3 Endif
4 Root T at an arbitrary node r;
5 Compute a leaf s of T with w(r, s) ≥ w(r, s′) for all leaves s′ in T ;
6 Root T at s;
7 Compute a leaf t of T with w(s, t) ≥ w(s, t′) for all leaves t′ in T ;
8 Return a list of the nodes in the unique s,t-path in T and 1

nw(s, t).

The main idea for computing a heaviest path in a tree decomposition is similar to the proof of
Lemma 5.17, where a longest path in a tree is computed. Instead of counting the vertices in the considered
path, the algorithm now computes the weight of a path in the decomposition tree.

Lemma 5.32.
For every tree decomposition (T,X) of some graph G with V (G) = [n], the relative weight of a heaviest
path in T with respect to X and a heaviest path in T with respect to X can be computed in O(‖(T,X)‖)
time.

Proof. Let G = (V,E) be a graph with V = [n] for some integer n and let (T,X) be a tree decomposition
of G with X = (Xi)i∈V (T). For two nodes a, b in T , define W (a, b) :=

⋃
i∈V (P)X

i, where P is the
unique a,b-path in T . Furthermore, define W̃ (a, b) = W (a, b) \ Xa as well as w(a, b) = |W (a, b)| and
w̃(a, b) = |W̃ (a, b)|. Note that, for all a, b, c ∈ V (T) such that the unique a,c-path in T uses b,

w(a, c) =
∣∣Xb

∣∣+ w̃(b, a) + w̃(b, c) = w(a, b) + w̃(b, c),

as W (b, a) ∩W (b, c) = Xb by (T3). Apply Algorithm 5.5 to the tree decomposition (T,X) and note
that the algorithm only requires (T,X) as input and does not need the underlying graph G. First, it is
argued that Algorithm 5.5 indeed computes a heaviest path in (T,X) and afterwards its running time is
estimated.

If T contains at most three nodes, then T itself is a path and Algorithm 5.5 is correct. So, from now on,
assume that T contains at least four nodes. Denote by r, s, and t the nodes chosen in Algorithm 5.5 when
applied to (T,X). Let i and j be two nodes in T such that the unique i,j-path P is a heaviest path in T
with respect to X . Without loss of generality, assume that i and j are leaves in T , because otherwise P
could be extended, which does not decrease its weight. Denote by h the unique node of P closest to the
first root r of T . Let Q be the r,s-path in T .
Case 1: P and Q have no common node.
Let h′ be the first node on the path from h to r that is in Q, see Figure 5.16a). A node h′ with this

property always exists as r is in Q. The choice of s implies that w(r, s) ≥ w(r, j). As Q and the r,j-path
both use the node h′, it follows that w(r, s) = w(r, h′) + w̃(h′, s) and w(r, j) = w(r, h′) + w̃(h′, j), which
yields w̃(h′, s) ≥ w̃(h′, j). Let TP be the subgraph of T induced by the nodes in the i,h′-path and the
nodes in the j,h′-path. Clearly, P ⊆ TP and using that the unique i,s-path in T uses h′ yields

w(i, s) = w(i, h′) + w̃(h′, s) ≥ w(i, h′) + w̃(h′, j)

≥

∣∣∣∣∣∣
⋃

a∈V (TP)

Xa

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
⋃

a∈V (P)

Xa

∣∣∣∣∣∣
= w(i, j).

191

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

P

Q

r

h′

sji

h

a) Case 1, where P and Q have no common
node.

P

Q

r

h

h′

i j s

b) Case 2, where P and Q have a common
node.

Figure 5.16: Proof of Lemma 5.32.

Therefore, the i,s-path is a heaviest path in T with respect to X .
Case 2: P and Q have a common node.
Denote by Pi and Pj the subpaths of P that connect i with h and j with h, respectively. Let h′ be

the first node on the path from s to r that is in P , see Figure 5.16b). Without loss of generality, assume
that h′ is in Pj . The choice of s implies that w(r, s) ≥ w(r, j), which yields w̃(h′, s) ≥ w̃(h′, j) as Q and
the r,j-path both use h′ and, hence, w(r, s) = w(r, h′) + w̃(h′, s) as well as w(r, j) = w(r, h′) + w̃(h′, j).
Now,

w(i, s) = w(i, h′) + w̃(h′, s) ≥ w(i, h′) + w̃(h′, j) = w(i, j),

as h′ is on P . Thus, the i,s-path is a heaviest path in T with respect to X .
Consequently, in both cases, T contains a heaviest path with respect to X that ends in s and, therefore,

the s,t-path is a heaviest path in T with respect to X .
Next, it is explained how to implement Algorithm 5.5. Denote by nT the number of nodes of T .

Converting T into an arborescence, re-rooting T , and computing a list of the nodes on the s,t-path once s
and t are known can be done in O(nT) time by Lemma 2.33. Thus, it suffices to show that the node s can
be computed in O(‖(T,X)‖) time when T is an arborescence with root r. For each leaf i of T , let s(i) = i.
For each node i of T that is not a leaf, let s(i) be a leaf in the subtree rooted at i such that the weight of
the i,s(i)-path is maximum among all paths that start in i and use only nodes in the subtree rooted at i.
Furthermore, for i in T , define W (i) := W (i, s(i)) and w(i) := |W (i)|. Then, s = s(r) is the desired node.
The algorithm traverses T with a depth-first search starting at r and it computes the arrays N and N ′ as
in Lemma 2.30. Recall that N [i] = |Xi| for all i ∈ V (T) and N ′[i] = |Xi ∩Xp(i)| for all i ∈ V (T) \ {r},
where p(i) denotes the parent of i, as well as that N [i] and N ′[i] are computed when i turns gray. In
addition to the steps of the depth-first traversal the algorithm does the following, when a node i turns
black: If i is a leaf, it sets w(i) = N [i] = |Xi| and s(i) = i. If i is not a leaf, then

w(i) = max
j is a child of i

{∣∣W (j) ∪Xi
∣∣} = max

j is a child of i

{
w(j) +

∣∣Xi
∣∣−
∣∣Xi ∩Xj

∣∣} ,

where the last equality holds because (T3) implies that W (j) ∩Xi ⊆ Xj . Let j∗ be a child for which
this maximum is achieved. The algorithm computes w(i) = w(j∗) +N [i]−N ′[j∗] and sets s(i) = s(j∗).
Therefore, the algorithm spends O(degT (i)+1) time at each node i ∈ VT in addition to the time needed for
the algorithm in Lemma 2.30. Consequently, all values w(i) and s(i) are computed correctly in O(‖(T,X)‖)
time. 2

192

5.3 Extension to Tree-Like Graphs

Besides computing a heaviest path, the main algorithm also needs a procedure to compute a P -labeling.
While doing so, this procedure also computes further parameters that depend on the path P . Before formally
defining this set of parameters, which is called the set of P -parameters, recall the following definitions
from Page 179. Some of them depend on the choice of the end i0 of P . Consider a graph G = (V,E) on n
vertices and a tree decomposition (T,X) with X = (Xi)i∈V (T) of G. Furthermore, let P = (VP , EP) ⊆ T
be an arbitrary path in T and denote by i0 and j0 the ends of P . The set of root vertices with respect
to P is R :=

⋃
i∈VP X

i. For each vertex v ∈ R, the path-node of v is the node i that is closest to i0 among
all nodes i ∈ VP with v ∈ Xi and, for every i ∈ VP , define Ri := {v ∈ Xi : i is the path-node of v}.
Furthermore, for every i ∈ VP , the tree Ti is the component of T − EP that contains the node i
and Si :=

⋃
j∈V (Ti)X

j \ R. For each vertex v ∈ V \ R, the unique i ∈ VP with v ∈ Si is called the
path-node of v. Moreover, recall that the sets Ri and Si with i ∈ VP form a partition of V , see also
Proposition 5.25b). Assume that V (G) ⊆ [n0], where n0 ≥ n is an arbitrary integer and not necessarily
equal to n. This more general definition allows us to work easily with subgraphs G′ ⊆ G on n′ vertices for
which the assumption V (G′) = [n′] might not hold.

Definition 5.33.
Let (T,X) be a tree decomposition of a graph G on n vertices with V (G) ⊆ [n0] for some integer n0 and
let P ⊆ T be a path with ends i0 and j0. The set of P -parameters for G with respect to (T,X) and the
end i0 consists of the following
• a P -labeling of the vertices of G, stored in two integer arrays AL and AV of length n0 and n,

respectively, such that, for v ∈ V (G) ⊆ [n0], the entry AL[v] is the label of vertex v and, for ` ∈ [n],
the entry AV [`] is the vertex that received label `,

• a binary array AR of length n0 such that, for each v ∈ V , the entry AR[v] is one if and only if v ∈ R,
• an integer array AP of length n0 such that, for each v ∈ V , the entry AP [v] is the path-node of v,
• the trees Ti for all i in P , each stored as an arborescence with root i and including, for each node j

in V (Ti), a pointer to the corresponding clusters in X , as well as,
• a list LP of the nodes on P in the order in which they occur when traversing P from i0 to j0

including, for each i ∈ V (P), a pointer to the root of Ti.

Note that the set of P -parameters depends on the choice of i0. In the remaining part of this chapter,
when considering the set of P -parameters of a nonredundant path, then it is assumed that the set of
P -parameters is with respect to an end of P that is nonredundant with respect to the clusters X of the
considered tree decomposition. Observe that the vth entry of the arrays AL, AR, and AP may contain an
arbitrary value if v ∈ [n0] is not a vertex of G. Later on, in Section 5.3.5, this will be useful, because
the algorithm does not need to delete these entries from the arrays AL, AR, and AP when adjusting the
set of P -parameters of G to obtain the set of P ′-parameters of some subgraph G′ ⊆ G for some suitably
chosen path P ′ with V (P ′) ⊆ V (P). The next proposition explains how to use the set of P -parameters to
check in constant time, whether v ∈ [n0] is a vertex of G and whether v ∈ Si for some i ∈ V (P).

Proposition 5.34.
If the set of P -parameters for G is provided, then

a) for every integer v ∈ [n0], one can determine in O(1) time whether v ∈ V (G), and
b) for every vertex v ∈ V and every node i ∈ V (P), one can decide in O(1) time whether v ∈ Si.

Furthermore, for every v ∈ V (G) \R, one can determine the unique node i ∈ V (P) with v ∈ Si in
constant time.

193

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

Proof.

a) Fix an integer v ∈ [n0]. Now, v is a vertex of G if and only if one of the n entries in AV contains v.
If AL[v] /∈ [n], then v is clearly not a vertex of G. So assume that AL[v] ∈ [n]. If v is a vertex of G,
then AV [AL[v]] = v. If v is not a vertex of G, then AV [AL[v]] 6= v because another vertex of G
received label AL[v]. These ideas lead to an algorithm that decides in O(1) time whether v ∈ V (G)
when given the set of P -parameters as input.

b) Fix some v ∈ V and some i ∈ VP . Note that the path-node of v is i if and only if v ∈ Ri∪Si. Hence, v
lies in Si if and only if i is the path-node of v and v is not in R, i. e., AR[v] = 0 and AP [v] = i. Clearly,
an algorithm can check this in O(1) time. For the second part, note that, for every u ∈ V (G) \R,
there is indeed a unique node i ∈ V (P) with u ∈ Si by Proposition 5.25b). To determine this node i
for a vertex v ∈ V (G) \R, the algorithm only needs to determine the path-node of v, which is stored
in AP [v]. 2

In Section 5.3.2, where it was shown that a cut with the properties in Lemma 5.22 exists, each vertex
was identified with its label. The remaining chapter focuses on computing such a cut efficiently. To do
so, it is necessary to distinguish between vertices and their labels, because relabeling all vertices and
in particular going through the tree decomposition to relabel the vertices might take too long. In the
implementation, unless stated explicitly, the algorithm always keeps the original name of each vertex and
the labels only appear in the arrays AL and AV in the set of P -parameters. In particular, the arrays AR
and AP of the set of P -parameters as well as the clusters of the tree decomposition refer to the original
vertex names and not their labels. Within the remaining section, when considering a labeling of the
vertices, L(v) denotes the label of vertex v and L−1(`) denotes the vertex, whose label is `. Furthermore,
the definition of Nm(v) is adjusted such that it refers to a vertex: For a vertex v, Nm(v) is the vertex w
whose label is obtained by adding m to the label of v, i. e., Nm(v) = L−1(L(v) + m). The definition
of N−1

m (v) is modified analogously.

Lemma 5.35.
For every tree decomposition (T,X) of a graph G on n vertices with V (G) = [n] and for every path P
in T with an end i0, the set of P -parameters for G with respect to (T,X) and the end i0 can be computed
in O(‖(T,X)‖) time. The graph G is not required as input.

Proof. Let G = (V,E) be an arbitrary graph on n vertices with V = [n] and (T,X) a tree decomposition
of G with X = (Xi)i∈V (T). Denote by nT the number of nodes of T . Let P be an arbitrary path in T
and denote by i0 and j0 the ends of P . Let R, Ri, Si, and Ti be as defined above with respect to the
path P and its end i0. Assume that P is given as a list LP of nodes, which is ordered according to the
order in which the nodes appear on P when traversing P from i0 to j0. If P is given as a graph, then the
algorithm computes such a list LP , which takes O(‖P‖) = O(nT) time. First, the algorithm turns T into
an arborescence rooted at the end i0 of P . At the same time, the algorithm also computes the copies of
the trees Ti. To do so, for each node i ∈ V (P), the algorithm sets p(i) = i to denote that i is the root of
the tree Ti, inserts a pointer to i in the list LP as required for the set of P -parameters, and, if i 6= j0, it
deletes the child that is the node after i on P from the list of children of i. Thus, computing LP and
the collection of trees Ti together takes O(nT) time. Next, the algorithm computes the array AR by
initializing it with zeros and then going through each cluster Xi with i in P and setting the entries of AR
that correspond to vertices in Xi to 1, which takes O(n+ ‖(T,X)‖) time.

194

5.3 Extension to Tree-Like Graphs

To compute the P -labeling, the algorithm creates two arrays AL and AV , that are both of length n and
both initialized with zeros, which takes O(n) time. Then, it traverses the nodes i in the list LP and, for each
of them, it traverses the tree Ti with a depth-first search starting at i. When a node j 6= i in Ti turns black,
the algorithm labels all unlabeled vertices in Xj \R. When the root i turns black, it labels all unlabeled
vertices in Xi. More precisely, labeling means to fill in the corresponding entries of the arrays AL and AV .
Note that checking whether a vertex is in R takes constant time due to the array AR. Furthermore, each
vertex v ∈ V is labeled while the algorithm is traversing a copy of the tree Ti, where i is the path-node
of v. Therefore, the labeling is indeed a P -labeling and the algorithm can compute the array AP while
computing the P -labeling. Thus, computing the labeling and the array AP together takes O(n+ ‖(T,X)‖)
time. Consequently, the entire algorithm runs in O(n+ nT + ‖(T,X)‖) = O(‖(T,X)‖) time. 2

5.3.4 Algorithm for Tree-Like Graphs

The goal of this subsection is to prove that a bisection with the properties in Theorem 5.21 can be computed
in O(nt) time when given a graph G on n vertices and a nonredundant tree decomposition (T,X) of G of
width t− 1. Here, it is assumed that the input tree decomposition is nonredundant, as Proposition 2.32a)
then implies that ‖(T,X)‖ = O(nt), which does not necessarily hold when (T,X) is not nonredundant.
Before starting with the algorithmic details, consider the following algorithmic version of Proposition 5.23,
which implies that an arbitrary tree decomposition can be turned into a nonredundant tree decomposition
without increasing the bound on the width of the cut in Theorem 5.21.

Proposition 5.36 (algorithmic version of Proposition 5.23).
There is an algorithm that receives an arbitrary tree decomposition (T,X) of some graph G on n vertices
with V (G) = [n] as input and computes a nonredundant tree decomposition (T ′,X ′) of G in O(‖(T,X)‖)
time, such that
• the width of (T ′,X ′) is the width of (T,X),
• ‖(T ′,X ′)‖ ≤ ‖(T,X)‖, and
• r(T ′,X ′) ≥ r(T,X).

Proof. Let (T,X) with X = (Xi)∈V (T) be an arbitrary tree decomposition of width t−1 of some graph G
with V (G) = [n]. Recall that, in the proof of Proposition 5.23, edges {i, j} ∈ E(T) with Xi ⊆ Xj

were successively contracted to obtain a tree decomposition (T ′,X ′) whose width is t − 1 and that
satisfies r(T ′,X ′) ≥ r(T,X). Observe that, when contracting an edge, one cluster is discarded and
the number of nodes of T shrinks. Thus, ‖(T ′,X ′)‖ ≤ ‖(T,X)‖. Recalling that the algorithm in
Proposition 2.32b) contracts precisely these edges to make the input tree decomposition nonredundant
yields the desired algorithm. 2

Next, the algorithmic version of Theorem 5.21 is presented.

Theorem 5.37 (algorithmic version of Theorem 5.21).
For every graph G on n vertices with V (G) = [n], every integer m ∈ [n], and every nonredundant tree
decomposition (T,X) of G of width at most t− 1, an m-cut (B,W) in G with

eG(B,W) ≤ t∆(G)
2

((
log2

(
1

r(T,X)

))2
+ 9 log2

(
1

r(T,X)

)
+ 8
)

can be computed in O(nt) time and requires only the tree decomposition (T,X) as input.

195

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

Note that the running time of this algorithm is not linear in the input size, i. e., not linear in ‖(T,X)‖.
For example, consider a tree decomposition (T,X) of width t, where t is not a constant and only few
clusters in X have size close to t. When a linear running time is desired, the implementation becomes more
involved, which is discussed later in Section 5.3.5. This subsection focuses on the easier implementation,
whose key idea is the following algorithmic version of Lemma 5.22.

Lemma 5.38 (algorithmic version of Lemma 5.22).
Let G be a graph on n vertices with V (G) = [n] and (T,X) a tree decomposition of G of width at
most t− 1. Furthermore, let P ⊆ T be a nonredundant path with respect to X . For every integer m ∈ [n],
a cut (B,W,Z) in G that satisfies one of the following options

1) |B| = m, Z = ∅, and eG(B,W) ≤ 2t∆(G), or
2) |B| ≤ m ≤ |B| + |Z| with 0 < |Z| ≤ 1

2n, eG(B,W,Z) ≤ t∆(G) log2

(
16

w∗X (P)

)
, and there is a tree

decomposition (T ′,X ′) of G[Z] of width at most t− 1 and a path P ′ ⊆ T ′ that is nonredundant with
respect to X ′ and satisfies w∗X ′(P ′) ≥ 2w∗X (P),

can be computed in O(‖(T,X)‖) time, when (T,X) and P are provided as input.

Proof. Let G = (V,E) be a graph on n vertices with V (G) = [n] and let (T,X) be a tree decomposition
of G of width at most t−1. Furthermore, let P = (VP , EP) be a nonredundant path in T with respect to X
and fix an integer m ∈ [n]. The existence part of Lemma 5.38 follows immediately from Lemma 5.22. Thus,
to prove Lemma 5.38, it suffices to describe a procedure that follows the construction from Lemma 5.22,
which is summarized in Algorithm 5.6, and analyze its running time. Note that the algorithm only
computes the cut (B,W,Z) and other structures such as (T ′,X ′) or P ′ in Option 2) do not need to
be computed. Here, the same notation as in the proof of Lemma 5.22 is used and AL, AV , AR, AP ,
and LP denote the arrays and the list of the set of P -parameters as defined in Definition 5.33. Recall
the definitions of the sets Ri, Si, U bi , U

f
i , Hb

i , and Hf
i , see also Page 183 and Table 5.2 on Page 178.

Furthermore, for each b-special i ∈ VP , denote by xb(i) and xb`(i) the vertex with the smallest label and
the vertex with the largest label among all vertices x ∈ Si with N−1

m (x) ∈ R, respectively. Note that the
path-node of N−1

m (xb(i)) is ib and the path-node of N−1
m (xb`(i)) is ib`. Similarly, for each f-special i ∈ VP ,

denote by xf (i) and xf` (i) the vertex with the smallest label and the vertex with the largest label among
all vertices x ∈ Si with Nm(x) ∈ R, respectively. Then, the path-nodes of Nm(xf (i)) and Nm(xf` (i))
are if and if` , respectively.
Similar to Algorithm 5.3, Algorithm 5.6 uses the following additional definitions

gb(i) := |Si|+ |H
b
i |

|U bi |
for every b-special i ∈ VP and

gf (i) := |Si|+ |H
f
i |

|Ufi |
for every f-special i ∈ VP

as well as gb(i) := ∞ for all i ∈ VP that are not b-special and gf (i) := ∞ for all i ∈ VP that are not
f-special. Furthermore, in Line 10, a node i ∈ VP is called a doubling node if i satisfies one of the following

a) i is b-special and gb(i) ≤ gb(j) as well as gb(i) ≤ gf (j) for all j ∈ VP , or
b) i is f-special and gf (i) ≤ gb(j) as well as gf (i) ≤ gf (j) for all j ∈ VP .

Note that, if Case 2) of the construction in the proof of Lemma 5.22 occurs, i. e., Lines 5-25 are executed,
then Proposition 5.31 implies that every doubling node is b-special or f-special. Furthermore, if a doubling
node i satisfies gb(i) ≤ gf (i), then i is b-special and Case 2a) from the proof of Lemma 5.22 applies, and
otherwise i is f-special and Case 2b) from the proof of Lemma 5.22 applies. Therefore, the algorithm
returns a cut with the desired properties.

196

5.3 Extension to Tree-Like Graphs

Algorithm 5.6: Computes a cut (B,W,Z) with the properties in Lemma 5.38.
Input: tree decomposition (T,X) of a graph G on n vertices with V (G) = [n], nonredundant

path P = (VP , EP) ⊆ T with respect to X , and an integer m ∈ [n].
Output: cut (B,W,Z) with the properties stated in Lemma 5.38.

1 Compute the set of P -parameters for G;
2 If there is a vertex v ∈ R with L−1(L(v) +m) ∈ R then
3 Let v be a vertex such that v ∈ R and L−1(L(v) +m) ∈ R;
4 B ← {w : L(w) is between L(v) + 1 and L(v) +m}, Z ← ∅;
5 Else
6 Compute the values s(i) := |Si| for all i ∈ VP ;
7 Compute the values ub(i) := |U bi | and hb(i) := |Hb

i | for all i ∈ VP , as well as the vertices xb(i)
and xb`(i) for all b-special i ∈ VP ;

8 Compute the values uf (i) := |Ufi | and hf (i) := |Hf
i | for all i ∈ VP , as well as the vertices xf (i)

and xf` (i) for all f-special i ∈ VP ;
9 Compute gb(i) and gf (i) for all i ∈ VP ;

10 Let i be a doubling node;
11 If gb(i) ≤ gf (i) then
12 Z ← U bi ∪Hb

i ;
13 Let y be the largest vertex in Rib

`
;

14 Let z be the largest vertex in Rj , where j denotes the node before i on P ;
15 B1 ← {v ∈ V : L(v) is between L(y) and L(z), v 6= y};
16 Else
17 Z ← Ufi ∪H

f
i ;

18 Let z be the smallest vertex in Ri;
19 Let y be the smallest vertex in Rif ;
20 B1 ← {v ∈ V : L(v) is between L(z) and L(y), v 6= y};
21 Endif
22 r ← w∗X (P), c← 2− 1

1−r , m̃← m− |B1|;
23 Let (B2,W2) be a c-approximate m̃-cut in G[Si] with eG[Si](B2,W2) ≤ log2

(2
r

)
t∆(G) where t− 1

is the width of (T,X);
24 B ← B1 ∪B2;
25 Endif
26 W ← V \ (B ∪ Z);
27 Return (B,W,Z);

As in Algorithm 5.3, in the implementation of Algorithm 5.6, the vertices of the input graph are not
identified with their labels. From now on, L(v) is used to refer to the label of a vertex v ∈ V and L−1(`) is
used to refer to the vertex which received label ` ∈ [n]. Again, the definition of Nm and N−1

m are adjusted
to return vertices and to receive vertices and not labels, i. e., for each v ∈ V , let Nm(v) = L−1(L(v) +m)
and N−1

m (v) = L−1(L(v)−m).
Next, the running time of Algorithm 5.6 is analyzed. For a list L the number of entries of L is denoted

by |L|. Furthermore, the algorithm stores all sets as unordered lists. By Lemma 5.35, Line 1 takes time
proportional to ‖(T,X)‖ and the arrays AL, AR, and AP computed there each have length n. Line 2
takes time proportional to n, by going through the array AR once and checking for every v with AR[v] = 1

197

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

whether AR[v′] = 1, where v′ = L−1(L(v) +m) can be determined easily with the arrays AL and AV . If
such a vertex exists, this procedure also gives the vertex v for Line 3. Furthermore, the set B in Line 4
can be read off the array AV in O(n) time.

To implement Lines 6-8, note that all values computed there can be stored in arrays, indexed with VT
as we may assume that VT = [nT] for some integer nT due to Lemma 2.22. First, the algorithm initializes
all these arrays with zeros, which takes O(nT) time. Then, to compute s(i) := |Si| for all i ∈ VT , note
that v ∈ Si if and only if the path-node of v is i and i 6∈ R, see also Proposition 5.34b). Thus, the
algorithm can go through all vertices v ∈ V = [n] and, for each v 6∈ R, it increases s(i) by one, where i
is the path-node of v. This takes O(n) time as the algorithm can use AR to check whether v ∈ R

and it can use AP to determine the path-node of v. Furthermore v ∈ U bi holds if and only if v ∈ R
and Nm(v) ∈ Si. The vertex Nm(v) can be determined with AL and AV and we already discussed how to
determine whether a vertex is in Si. Hence, the algorithm can go through the array AR and, for every
vertex v with AR[v] = 1, it increases the value of ub(i) by one, where i is the unique node with v ∈ U bi .
So, computing all values ub(i) for i ∈ VP together takes O(n) time. While doing so, for each i ∈ VP , the
algorithm computes the vertices xb(i) and xb`(i), if they exist. Note that, for i ∈ VP , the vertices xb(i)
and xb`(i) exist if and only if i is b-special, i. e., if and only if ub(i) > 0. Moreover, Hb

i is the set of
vertices with labels between the labels of N−1

m (xb(i)) and N−1
m (xb`(i)) that are not in U bi . Therefore,

hb(i) = L(xb`(i))−L(xb(i)) + 1−ub(i) and all values hb(i) can be computed in O(nT) time. Similar to the
computation of the values ub(i) and hb(i), the algorithm can compute the values uf (i) and hf (i) as well
as the vertices xf (i) and xf` (i), if they exist, for all i ∈ VP . In total, Lines 6-8 require O(nT + n) time.

Recall that a node i ∈ VP is b-special if and only if ub(i) > 0 and a node i ∈ VP is f-special if and only
if uf (i) > 0. Therefore, the algorithm can now determine in constant time whether a node i ∈ VP is
b-special and the same holds for being f-special. So, Lines 9-10 together take time proportional to |LP |.
To execute Line 12, note that the set Z = U bi ∪Hb

i is the set of vertices with labels between the labels
of N−1

m (xb(i)) and N−1
m (xb`(i)) and, therefore, it can be read off the array AV in O(n) time. Furthermore,

the vertex y in Line 13 is identical to N−1
m (xb`(i)) and, hence, Line 13 takes constant time. To determine

the vertex z with the largest label among all vertices in Rj , the algorithm first determines the node j
with the list LP in O(|LP |) time. Then, it checks for every vertex v ∈ [n], whether v ∈ R and whether
the path-node of v is j by using the arrays AR and AP . While doing so, it keeps track of the vertex with
the largest label. Hence, Line 14 takes O(|LP |+ n) time. Then, the set B1 in Line 15 can be read off the
array AV in O(n) time. Consequently, Lines 12-15 take O(|LP |+ n) time and similarly, Lines 17-20 can
be executed in O(|LP |+ n) time.

Line 22 can be executed in constant time if w∗X (P) is known and the algorithm keeps track of the
size of the set B1 while creating it. Otherwise, the equation w∗X (P) = 1

n |R| can be used to determine r
in O(n) time as |R| is the number of entries of AR that are set to one and n is the length of AR. To apply
the approximate cut in Line 23 a tree decomposition (T̃ , X̃) of G[Si] is needed. To compute this tree
decomposition, note that Proposition 5.34b) says that the algorithm can check whether v ∈ V lies in Si in
constant time. Hence, the tree decomposition (T̃ , X̃) that was used in the proof of Lemma 5.22, i.e., the
restriction of (T,X) to Ti and G[Si] can be computed in O(‖(T,X)‖) time by Proposition 2.31. While
doing so, the algorithm keeps track of the vertex vs ∈ Si with the smallest label among all vertices in Si.
The labels of the vertices in Si are precisely the labels between L(vs) and L(vs) + s(i)− 1. Therefore, it
is easy to set up a bijection between the vertices in Si and the set [s(i)] in order to rename the vertices in
the clusters of X̃ in O(‖(T̃ , X̃)‖) time, which is necessary to apply the algorithm contained in Lemma 4.8
to G[Si], as it requires that the vertex set of G[Si] is [s(i)]. Then, the application of the algorithm
contained in Lemma 4.8 to G[Si] with the tree decomposition (T̃ , X̃) takes O(‖(T̃ , X̃)‖) time. Observe

198

5.3 Extension to Tree-Like Graphs

that it is not necessary to compute the graph G[Si]. After the computation the names of the vertices in
the set B2 need to be converted back to their original names, which takes O(n) = O(‖(T,X)‖) additional
time. So, Line 23 takes time proportional to ‖(T,X)‖, as ‖(T̃ , X̃)‖ ≤ ‖(T,X)‖. Then, Line 24 takes
constant time as the sets B1 and B2 are disjoint and stored as unordered lists. Finally, Proposition 2.20
implies that Line 26 can be executed in O(n) time as V (G) = [n].

All in all, the running time is proportional to

‖(T,X)‖︸ ︷︷ ︸
Line 1

+ n︸︷︷︸
Lines 2-4

+ nT + n︸ ︷︷ ︸
Lines 6-8

+ |LP |︸︷︷︸
Lines 9-10

+ |LP | + n︸ ︷︷ ︸
Lines 11-21

+ n︸︷︷︸
Line 22

+ ‖(T,X)‖︸ ︷︷ ︸
Line 23

+ n︸︷︷︸
Lines 24-26

. (5.31)

As n ≤ ‖(T,X)‖ and |LP | ≤ |VT | ≤ ‖(T,X)‖, the running time of Algorithm 5.6 is O(‖(T,X)‖), as
desired. 2

Note that, in the previous proof, the tree decomposition (T,X) is only used in Line 1 and Line 23 of
Algorithm 5.6. All other computations only rely on the set of P -parameters. Furthermore, the assumption,
that the vertex set of the input graph G is [n], was only used for the computation of the set W in Line 26
and when traversing arrays of the set of P -parameters. This will become interesting in Section 5.3.5, when
the algorithm contained in Theorem 5.37 is improved to run in linear time. Before doing so, the discussion
of the easier implementation is completed by using Lemma 5.38 to derive Theorem 5.37. The construction
follows the proof of existence from Section 5.3.1, in particular Algorithm 5.4, which is repeated here.

Algorithm 5.4 (repeated): Computes an m-cut.
Input: graph G = (V,E) on n vertices, integer m ∈ [n], and a tree decomposition (T,X) of G.
Output: an m-cut (B,W) in G.

1 Transform (T,X) into a nonredundant tree decomposition of G as in Proposition 5.23;
2 Let G0 be a copy of G;
3 Compute a heaviest path P in T with respect to X ;
4 B ← ∅;
5 While |B| < m do
6 Apply Lemma 5.22 to the graph G, the tree decomposition (T,X), and the path P , with

size-parameter m̃ = m− |B| to obtain a partition (B̃, W̃ , Z̃) of V (G) as described there;
7 B ← B ∪̇ B̃, G← G[Z̃];
8 If Option 2) occurred during the application of Lemma 5.22, update (T,X) to a tree

decomposition (T ′,X ′) of G without increasing its width and update P to a path P ′ ⊆ T ′ that is
nonredundant with respect to X ′ and satisfies w∗X ′(P ′) ≥ 2w∗X (P);

9 Endw
10 Return (B, V (G0) \B);

Proof of Theorem 5.37. Let G0 = (V0, E0) be a graph with V0 = [n0] and (T0,X0) an arbitrary tree
decomposition of G0. Furthermore, fix an integer m0 = m ∈ [n0]. To compute an m-cut in G0 we follow
the ideas presented in the proof of Theorem 5.21, in particular Algorithm 5.4. Note that this implies that
the algorithm finishes and returns an m-cut with the desired properties. The implementation described
here will always work with the tree decomposition or the set of P -parameters. The graph G0 is not needed

199

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

as input and the graph G is only used to present the description in a nicer way, as it clarifies the graph
corresponding to the tree decomposition. However, the implementation requires that the vertex set of G0

is [n0].

In order to apply Lemma 5.22 in Line 6, or its algorithmic version, Lemma 5.38, the vertex set of the
considered graph G needs to be [n], where n denotes the number of vertices of G. To ensure this, the
algorithm renames the vertices of G whenever G is modified in Line 7. To do so, the algorithm sets up a
bijection from [n] to V (G) and updates it as in Lemma 2.21. Then, when updating the set B in Line 7,
the algorithm converts back the vertex names that refer to the current subgraph to their original vertex
names referring to the input graph.

Furthermore, to execute Line 8 the algorithm also needs to compute a path P ′ and a tree decomposi-
tion (T ′,X ′) with the properties in Option 2) in Lemma 5.22, when this option occurs. Note that this is not
done by the algorithm contained in Lemma 5.38. Consider an execution of the while loop of Algorithm 5.4,
where Option 2) of Lemma 5.22 occurs. In Line 6, the procedure contained in Lemma 5.38 is applied to
a tree decomposition (T,X) of a graph G on n vertices and a nonredundant path P ⊆ T with respect
to X . This yields lists of the vertices in each set of the cut (B̃, W̃ , Z̃) in G, which can be used to update
the bijection as in Lemma 2.21d). After doing so, the arrays storing the bijection of the vertex names
enable the algorithm to determine whether a vertex v ∈ V (G0) is in Z̃ in constant time by Lemma 2.21c).
Therefore, the algorithm can compute a tree decomposition (T ′,X ′) of G′ := G[Z̃] in O(‖(T,X)‖) time
by restricting (T,X) to T and G′. While doing so, it can also adjust the vertex names in the clusters
in X ′ such that they refer to the vertices in the current graph G. Next, the algorithm turns (T ′,X ′) into
a nonredundant tree decomposition as in Proposition 5.23 and computes a heaviest path P ′ in (T ′,X ′).
Observe that P ′ is nonredundant with respect to X ′ as well as that (T ′,X ′) and P ′ coincide with the tree
decomposition and the path used for Option 2) in the proof of Lemma 5.22. Furthermore, everything
is prepared for the next execution of the while-loop and in particular the application of Lemma 5.38,
the algorithmic version of Lemma 5.22, in Line 6, i. e., the vertex set of the current graph G is [n],
where n denotes the number of vertices of G, (T,X) is a nonredundant tree decomposition of G and P is
a nonredundant path in T with respect to X in the beginning of the next execution of the while loop.

To complete the proof, only the analysis of the running time of this implementation is missing. Denote
by t−1 the width of the input tree decomposition (T0,X0). Recall that, in Theorem 5.37, only nonredundant
input tree decompositions are considered and, hence, nothing has to be done in Line 1. The remaining
preprocessing in Lines 2-4 of Algorithm 5.4 takes time proportional to ‖(T0,X0)‖ by Lemma 5.32. Let s∗

be the number of executions of the while loop and recall that, in the proof of Theorem 5.21, it was argued
that s∗ is finite. For s ∈ [s∗−1], denote by (Ts,Xs) the tree decomposition (T,X) after the sth execution of
the while loop and, for s ∈ {0}∪ [s∗−1], denote by ns the number of vertices of the corresponding (implicit)
graph. Fix s ∈ [s∗] and consider the sth execution of the while loop. Line 6 takes time proportional
to ‖(Ts−1,Xs−1)‖ by Lemma 5.38. Updating the set B, including the conversion of the vertex names
as well as updating the bijection for the vertex names of the implicit graph G in Line 7 takes O(ns−1)
time by Lemma 2.21b) and d). If the algorithm has to do something in Line 8, then, as described above,
it first computes a restriction of the tree decomposition (Ts−1,Xs−1), then renames the vertices in the
clusters in X , and then modifies the resulting tree decomposition to be nonredundant, which together takes
time proportional to ‖(Ts−1,Xs−1)‖ by Proposition 2.31 and Proposition 5.36. Computing the path P ′

takes time proportional to ‖(Ts,Xs)‖ ≤ ‖(Ts−1,Xs−1)‖ by Lemma 5.32. The width of (Ts−1,Xs−1) is at
most t − 1 and, hence, Proposition 2.32a) implies that ‖(Ts−1,Xs−1)‖ ≤ O(ns−1t). Consequently, the
sth execution of the while loop takes O(ns−1t) time. To derive the running time of the entire procedure,
recall that invariant (vi) in the proof of Theorem 5.21 implies that ns ≤ 1

2sn0 for all s ∈ {0} ∪ [s∗ − 1].

200

5.3 Extension to Tree-Like Graphs

Thus, the total running time is

O


‖(T0,X0)‖ +

∑

s∈[s∗]

ns−1t


 = O


n0t+ 2n0t

∑

s∈[s∗]

1
2s


 = O(n0t),

where ‖(T0,X0)‖ ≤ O(n0t) due to Proposition 2.32a) was used. 2

5.3.5 Improving the Running Time

Consider a nonredundant tree decomposition (T,X) for which ‖(T,X)‖ is asymptotically smaller than nt,
where n denotes the number of vertices of the underlying graph and t− 1 denotes the width of (T,X).
Then, the algorithm in Theorem 5.37 does not run in linear time. So, first one can think about tightening
the analysis of this algorithm: The while loop in Algorithm 5.4 is executed at most log2

(
1

r(T,X)

)
+ 1

times due to (5.19) in the proof of Theorem 5.21. As the size of the current tree decomposition does
not increase, this yields a running time of O

(
‖(T,X)‖ · log2

(
1

r(T,X)

))
. Since we have no control over

the amount by which the size of the tree decomposition decreases in each round of the while loop, the
analysis cannot be improved further. In order to achieve a linear running time, one execution of the
while loop needs to be done in less than O(‖(T,X)‖) time. So the algorithm cannot traverse the entire
tree decomposition to compute a restriction and a new heaviest path in each execution of the while loop,
as these computations both need to traverse the entire tree decomposition. This section presents an
implementation of an algorithm computing an exact cut with the properties of Theorem 5.21 in linear
time.

Theorem 5.39 (improved algorithmic version of Theorem 5.21).
For every graph G on n vertices with V (G) = [n], every integer m ∈ [n], and every tree decomposition (T,X)
of G of width at most t− 1, an m-cut (B,W) in G with

eG(B,W) ≤ t∆(G)
2

((
log2

(
1

r(T,X)

))2
+ 9 log2

(
1

r(T,X)

)
+ 8
)

can be computed in O(‖(T,X)‖) time and requires only the tree decomposition (T,X) as input.

As explained above, the reason that the previous implementation does not run in linear time is that
the algorithm traverses the tree decomposition too often. So consider one execution of the while loop
in Algorithm 5.4. Let (T,X) be the current tree decomposition and denote by G the underlying graph.
Furthermore, let P ⊆ T be the path considered in the beginning of the while loop. Assume that Option 2)
in Lemma 5.38 occurs. Then, (T,X) is used in Line 6 and to compute a tree decomposition (T ′,X ′)
of G[Z] and a heaviest path in T ′ in Line 8. To execute Line 6, Algorithm 5.6 is applied and there,
the tree decomposition (T,X) is used for the computation of the set of P -parameters in Line 1 and the
approximate cut in Line 23. The next lemma is an advanced version of Lemma 5.38, that avoids to use the
tree decomposition as much as possible. The main idea is to not compute a heaviest path in (T ′,X ′), but
to use a piece of P . Then, the main algorithm can adjust the set of P -parameters of G to be the set of
P ′-parameters of G′ with respect to some suitable tree decomposition (T ′,X ′) of G′, which is kept implicit.
Therefore, the algorithm only needs a tree decomposition when applying Lemma 4.8 in Line 23. Recall
that there it does not need a tree decomposition of the graph G itself but only of a subgraph G[Si] for
some i ∈ V (P). The next lemma shows that a suitable tree decomposition of G[Si] can be computed from
the input tree decomposition (T0,X0), which is a tree decomposition of some supergraph of G. Therefore,
the new version of Lemma 5.22 uses three graphs: G and G′ = G[Z], which are known from the previous

201

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

version, and the graph G0, which does not appear in the previous version. The tree decompositions
of G and G′ are not computed explicitly. Whenever the lemma refers to a tree decomposition of G, as
for example the tree decomposition to which the set of P -parameters of G refers, then it refers to the
restriction of (T0,X0) to some suitable tree T and the graph G. All in all, we will show that Algorithm 5.4
can be implemented such that in each execution of the while loop, it only needs a small part of the implicit
tree decomposition (T,X), whose decomposition tree is disjoint from T ′, where (T ′,X ′) is the implicit
tree decomposition of G′. Hence, in all executions of the while loop, Algorithm 5.4 traverses the input
tree decomposition (T0,X0) only once.

Lemma 5.40 (improved algorithmic version of Lemma 5.22).
Consider an arbitrary graph G0 on n0 vertices with V (G0) = [n0] and a nonredundant tree decompo-
sition (T0,X0) of G0 of width at most t − 1 and with X0 = (Xi

0)i∈V (T0). Let G be a subgraph of G0

on n vertices, m ∈ [n] an arbitrary integer, T a tree with V (T) ⊆ V (T0) such that the restriction (T,X)
of (T0,X0) to T and G is a tree decomposition of G, and P ⊆ T a nonredundant path with respect to X .
Then, there is an algorithm that computes the lists of the vertices in the sets B and Z of a cut (B,W,Z)
in G that satisfies one of the following properties:

1) |B| = m, Z = ∅, eG(B,W) ≤ 2t∆(G), and the algorithm takes O(n) time, or
2) |B| ≤ m ≤ |B| + |Z| with 0 < |Z| ≤ 1

2n, eG(B,W,Z) ≤ t∆(G) log2

(
16

w∗X (P)

)
, and there is a

tree T ′ with V (T ′) ⊆ V (T) such that the restriction (T ′,X ′) of (T0,X0) to T ′ and G[Z] is a tree
decomposition of G[Z], and moreover, T ′ contains a nonredundant path P ′ with respect to X ′ that
satisfies w∗X ′(P ′) ≥ 2w∗X (P). In this case, the algorithm takes O

(
n+

∑
i∈V (T)\V (T ′) |Xi

0|
)
time and

also modifies the set of P -parameters to be the set of P ′-parameters for G[Z] with respect to (T ′,X ′).
The algorithm requires the tree decomposition (T0,X0), the size-parameter m, and the set of P -parameters
for the graph G with respect to (T,X) as input. In both cases, the tree decomposition (T0,X0) is not
modified during the computations.

Note that the algorithm in the previous lemma uses only the set of P -parameters for the graph G and
does not require the graph G itself as input. Therefore, it does not need to compute the graph G[Z] but
only the set of P ′-parameters for G[Z] in order to apply the lemma iteratively to G[Z] if Option 2) occurs,
as done ahead. In this case, the set of P ′-parameters contains all necessary information about G[Z] as the
array AV provides a list of the vertices in the set Z. Before going into the technical details of the proof of
Lemma 5.40, it is shown how to employ it in order to derive the linear-time algorithm in Theorem 5.39.

Proof of Theorem 5.39. Consider a graph G and a tree decomposition (T,X) of G. Denote by n

the number of vertices of G, assume that V (G) = [n], and fix an integer m ∈ [n]. We will apply
Algorithm 5.4 and use the algorithm contained in Lemma 5.40 in Line 6. First, this implementation of
Algorithm 5.4 returns an m-cut with the desired properties, as the cut (B,W,Z), the graph G[Z], the
tree decomposition (T ′,X ′), and the path P ′ in Lemma 5.40 have the same properties as in Lemma 5.22,
which was used when proving Theorem 5.21.

The implementation described here, only requires the tree decomposition (T,X) and the size-parameterm
as input, but not the graph G. Therefore, in the following, Line 2 is ignored and, in Line 7, the
update of the graph G is ignored. Moreover, the copy G0 of G was only used to state the returned
cut and is not needed in the implementation as only an unordered list of the vertices in the set B is
computed. In Line 3, the algorithm additionally computes the set of P -parameters of G with respect
to (T,X). Lines 1-4 take O(‖(T,X)‖) time by Proposition 5.36, Lemma 5.32, and Lemma 5.35. Denote
by (T0,X0) the tree decomposition (T,X) after Line 4 has been executed and let X0 = (Xi

0)i∈V (T0). Note

202

5.3 Extension to Tree-Like Graphs

that ‖(T0,X0)‖ ≤ ‖(T,X)‖ and r(T0,X0) ≥ r(T,X) by Proposition 5.36. Furthermore, let s∗ be the
number of executions of the while loop and, for s ∈ [s∗ − 1], denote by Gs the implicit graph G and
by (Ts,Xs) the implicit tree decomposition (T,X) of G after the sth execution of the while loop. Let ns
be the number of vertices of Gs for s ∈ [s∗ − 1] ∪ {0}, where G0 is the underlying graph of the input tree
decomposition (T,X). For technical reasons set V (Ts∗) = ∅. Lemma 5.40 implies that, for every s ∈ [s∗],
Lines 6-8 take O

(
ns−1 +

∑
i∈V (Ts−1)\V (Ts) |X

i
0|
)
time in the sth execution of the while loop. Indeed,

if s 6= s∗, the algorithm contained in Lemma 5.40 returns the set of P ′-parameters for the graph G′ = G[Z],
which are needed for the next execution of the while loop, and the algorithm does not modify the tree
decomposition (T0,X0) when Option 2) occurs. Furthermore, the algorithm keeps track of the size of
the set B such that the parameter m̃ in Line 6 can be computed in constant time. The union in Line 7
takes O(1) time because it is a disjoint union by invariant (ii) in the proof of Theorem 5.21 and the set B
is stored as an unordered list. Recall that (vi) from the proof of Theorem 5.21 implies that ns ≤ 1

2sn for
every s ∈ [s∗ − 1] ∪ {0}. It follows that

s∗∑

s=1

∑

i∈V (Ts−1)\V (Ts)

∣∣Xi
0
∣∣ ≤

∑

i∈V (T0)

∣∣Xi
0
∣∣ ,

as V (Ts) ⊆ V (Ts−1) for all s ∈ [s∗]. Therefore, the total running time is bounded by

O (‖(T,X)‖) +
s∗∑

s=1
O


ns−1 +

∑

i∈V (Ts−1)\V (Ts)

∣∣Xi
0
∣∣



= O


‖(T,X)‖+

(
s∗∑

s=1

n

2s−1

)
+


 ∑

i∈V (T0)

∣∣Xi
0
∣∣





= O
(
‖(T,X)‖+ n+ ‖(T0,X0)‖

)
= O(‖(T,X)‖). 2

It remains to prove Lemma 5.40.

Proof of Lemma 5.40. Fix an arbitrary graph G0 on n0 vertices with V (G0) = [n0] and a nonredundant
tree decomposition (T0,X0) of G0 of width at most t− 1 and with X0 = (Xi

0)i∈V (T0). Furthermore, fix an
arbitrary subgraph G ⊆ G0 on n vertices, an integer m ∈ [n], a tree T with V (T) ⊆ V (T0) such that the
restriction (T,X) of (T0,X0) to T and G is a tree decomposition of G, and an arbitrary nonredundant
path P ⊆ T with respect to X . Recall that the graphs G0 and G are implicit. The input of the algorithm
contained in Lemma 5.40 is the tree decomposition (T0,X0) of the implicit graph G0, the size-parameter m,
and the set of P -parameters for the graph G.
The aim is to argue that, among others, a partition (B,W,Z) of V (G) with the properties stated in

Lemma 5.40 can be computed in the time stated there. More precisely, when Option 2) occurs, then
a suitable path P ′ ⊆ T ′ and the set of P ′-parameters for the graph G[Z] are computed, with respect
to an implicit tree decomposition (T ′,X ′) of G[Z]. In the proof of Lemma 5.22, an earlier version of
Lemma 5.40 that does not contain an algorithm, the restriction of (T,X) to T itself and G[Z] was used to
obtain a suitable tree decomposition (T ′,X ′) of G[Z]. As argued above, when Case 2) from the proof
of Lemma 5.22 occurs, i. e., the algorithm constructs a partition with the properties in Option 2) of
Lemma 5.40, it cannot work with the restriction of (T,X) and a heaviest path in T ′ with respect to X ′

anymore when the algorithm is supposed to run in the time stated in Lemma 5.40. Therefore, we first
propose a new construction for a suitable tree T ′ and a suitable path P ′, and show that T ′ and P ′

satisfy the properties in Option 2) in Lemma 5.40. Other than that, the construction and notation

203

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

used in the proof of Lemma 5.22 is kept. See also Algorithm 5.6 in the proof of Lemma 5.38, the first
algorithmic version of Lemma 5.22. In particular, the partition (B,W,Z) is still defined in the same way.
Let P = (VP , EP) and T = (VT , ET). Moreover, let X = (Xi)i∈V (T) and note that Xi = Xi

0 ∩ V (G) for
all i ∈ V (T). Recall the definitions of the ends i0 and j0 of P , the graph T+ as well as, for each i ∈ VP ,
the tree Ti, the sets Ri, Si, U bi , Hb

i , P bi , U
f
i , H

f
i , P

f
i , and the nodes ib, ib`, if , i

f
` , see also Table 5.2 on

Page 178. Note that all definitions are with respect to the tree decomposition (T,X), which is implicit in
the implementation described here.
Fix a doubling node i ∈ VP and recall that, in the proof of Lemma 5.38, it was argued that i satisfies

one of the properties required for Case 2a) or Case 2b) in the proof of Lemma 5.22. Assume that i satisfies
the property for Case 2a). Note that P bi 6= ∅ by Proposition 5.29a) as i is b-special, and that P bi induces
a path with ends ib and ib`, or a cycle in T+. Next, a tree decomposition (T ′,X ′) of the graph G[Z]
with Z := U bi ∪Hb

i is constructed. Let HT be the subgraph of T that is induced by P bi and the nodes
of Th for all h ∈ P bi \ {ib}. If P bi induces a connected subgraph in T , then HT is connected and we
define T ′ = HT and i′0 := ib, see also Figure 5.17a). Otherwise, P bi induces two paths in T , one with
ends ib and j0 and the other with ends i0 and ib`. In this case, HT consists of two components and we
define T ′ to be the tree obtained from HT by adding the edge {ib`, ib} and we set i′0 := i0, see Figure 5.17b).
Furthermore, let P ′ be the path induced by P bi in T ′ and note that i′0 is an end of P ′.
If i does not satisfy the property required for Case 2a) in the proof of Lemma 5.22, then i must

satisfy the property required for Case 2b). So, assume that i is f-special. Then, P fi is not empty by
Proposition 5.29a) and P fi either induces a path or a cycle in T+. Let HT be the subgraph of T that is
induced by P fi and the nodes of Th with h ∈ P fi \ {if}. Analogously to the case when i is b-special, the
tree T ′ is defined in the following way: If P fi induces a connected subgraph in T , then HT is connected
and we define T ′ := HT and i′0 := if . Otherwise, P fi induces two paths in T , one with ends if and j0 and
one with ends i0 and if` . Then, T ′ is defined to be the tree obtained from HT by adding the edge {if` , if},
and i′0 := i0. Furthermore, let P ′ be the path induced by P fi in T ′ and note that i′0 is an end of P ′.

Let (T ′,X ′) be the restriction of (T,X) to T ′ and G[Z], i. e., the cluster associated with node j ∈ V (T ′)
isXj∩Z. Note that, since V (T ′) ⊆ V (T) ⊆ V (T0) and since (T,X) is the restriction of (T0,X0) to T and G,
the tuple (T ′,X ′) is also the restriction of (T0,X0) to T ′ and G[Z], as desired for Option 2). The next
claim shows that the tuple (T ′,X ′) is indeed a tree decomposition and that the tree decomposition (T ′,X ′)
and the path P ′ have the desired properties for Option 2).

Claim 5.41.
a) (T ′,X ′) is a tree decomposition of G[Z].
b) The end i′0 is a nonredundant end of P ′ with respect to X ′ and w∗X ′(P ′) ≥ 2w∗X (P).
c) T ′ contains no node in V (Ti) \ {i}.

Indeed, assume that the node i that was picked when defining T ′ is b-special. The case when i is
f-special is analogous. To show Part a), observe first that each cluster in X ′ is a subset of Z and it is
easy to see that T ′ is a tree. It is now argued that (T ′,X ′) satisfies the properties (T1), (T2), and (T3).
For (T1), recall that Proposition 5.29a) implies that U bi =

⋃
j∈P b

i
Rj . Therefore,

Z = U bi ∪Hb
i = Rib ∪


 ⋃

j∈P b
i
\{ib}

(Rj ∪ Sj)




⊆ Xib ∪


 ⋃

j∈P b
i
\{ib}

⋃

h∈V (Tj)

Xh


 =

⋃

j∈V (T ′)

Xj

204

5.3 Extension to Tree-Like Graphs

.P

ib = i′
0 ib

`i0 j0

P b
i

T ′

a) When HT is connected.

. . .P

ibib
`i0 = i′

0 j0

P b
i (part 1) P b

i (part 2)

T ′

b) When HT is disconnected.

Figure 5.17: Proof of Lemma 5.40. Construction of the tree T ′ for Option 2) when the doubling node i has the
property required for Case 2a) in the proof of Lemma 5.22.

and every vertex in Z is in some cluster in X ′. To show that (T ′,X ′) satisfies (T2), let {x, y} be an
arbitrary edge in G[Z].

Case i) {x, y} 6⊆ R. Without loss of generality assume that x /∈ R. Denote by hx the path-node of x
and note that hx 6= ib. Then,

Ix :=
{
h ∈ V (T) : x ∈ Xh

}
⊆ V (Thx) \ {hx} ⊆ V (T ′),

as (T,X) satisfies (T3’) and x /∈ Xhx . Since (T2) is satisfied for (T,X), each neighbor of x in G, and
in particular the vertex y, must be in some cluster Xh with h ∈ Ix ⊆ V (T ′) and therefore (T ′,X ′)
satisfies (T2) for the edge {x, y}.

Case ii) {x, y} ⊆ R. For two distinct nodes h ∈ VP and h′ ∈ VP we say that h appears before h′ on P ,
if i0 is closer to h than to h′. Denote the path-nodes of x and y by hx and hy, respectively. Note
that x ∈ Xhx and y ∈ Xhy as well as that hx ∈ P bi ⊆ V (T ′) and hy ∈ P bi ⊆ V (T ′) as x, y ∈ Z ∩R = U bi .
If hx = hy, then there is nothing more to prove, since {x, y} ⊆ Xhx ∩ Z. So assume that hx 6= hy and
without loss of generality assume that hx appears before hy on P . For every h ∈ V (P) \ {hy} that
appears before hy on P , the vertex y does not lie in Xh by the definition of the path-node of y and
additionally, for every h′ ∈ V (Th), the vertex y does not lie in Xh′ as (T,X) satisfies (T3’). Therefore,
x ∈ Xhy as (T,X) satisfies (T2) for the edge {x, y} and (T3’) for x. This implies that x ∈ Xhy ∩ Z
and y ∈ Xhy ∩ Z and, hence, (T ′,X ′) satisfies (T2) for the edge {x, y}.

Now, consider the property (T3). If every edge of T ′ is an edge of T , i. e., T ′ is a subgraph of T , then
every path in T ′ is also a path in T and (T ′,X ′) satisfies (T3) because (T,X) satisfies (T3). Otherwise, T ′

contains exactly one edge that is not in T , namely the edge e = {ib`, ib}. In that case, as the unique
ib`,ib-path in T uses no edge in T ′, for all i′, j′, h′ in T ′, the node h′ is on the unique i′,j′-path in T ′

205

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

only if h′ is on the unique i′,j′-path in T , see Figure 5.17b). Hence, (T ′,X ′) satisfies (T3), as (T,X)
satisfies (T3).

To show Part b) of Claim 5.41, consider first an arbitrary vertex x ∈ U bi ⊆ Z. Let h be the path-node
of x with respect to the path P , its nonredundant end i0, and the tree decomposition (T,X). Then, h lies
in P bi = V (P ′) due to Proposition 5.29a) and h is also the path-node of x when defining the path-node of x
with respect to the path P ′, its end i′0, and the tree decomposition (T ′,X ′). Hence, when defining sets R′j
for j ∈ V (P ′) analogous to the sets Rj for j ∈ VP but with respect to the tree decomposition (T ′,X ′),
the path P ′, and its end i′0, then R′j = Rj for all j ∈ V (P ′). Proposition 5.25a) implies that Ri′0 and,
thus, also the cluster corresponding to i′0 in X ′ is non-empty. If P ′ consists only of the node i′0, it already
follows that i′0 is a nonredundant end of P ′ with respect to X ′. Otherwise, let j 6= i′0 be a node in P ′ and
let j′ be the node before j on P ′. Denote by Y and Y ′ the clusters of j and j′ in X ′ respectively. The
definition of the path-node for each vertex x ∈ R′j implies that R′j ⊆ Y \Y ′ and, hence, Y \Y ′ is not empty
as R′j = Rj is not empty by Proposition 5.25a). Consequently, the end i′0 of P ′ and the path P ′ itself are
nonredundant with respect to X ′. As all sets Rj with j ∈ VP are pairwise disjoint by Proposition 5.25b)
and R′j = Rj is contained in the cluster of j in X ′ for all j ∈ V (P ′), the path P ′ satisfies wX ′(P ′) ≥ |U bi |.
Recalling that (5.29) in the proof of Lemma 5.22 implied |Z| = |U bi |+ |Hb

i | ≤ 1
2r |U

b
i |, where r := w∗X (P),

yields w∗X ′(P ′) ≥
|Ubi |
|Z| ≥ 2w∗X (P).

To show Part c) of Claim 5.41, for a contradiction, assume that there is a node j ∈ V (T ′)∩ (V (Ti)\{i}).
Recall that V (T ′) = {ib} ∪ {V (Th) : h ∈ P bi \ {ib}}. Then, i would lie in P bi and i 6= ib, which contradicts
Proposition 5.29d). This completes the proof of Claim 5.41.

After presenting the new construction for (T ′,X ′) and P ′, it is explained now how to implement the algo-
rithm contained in Lemma 5.40. Recall that the algorithm receives as input the tree decomposition (T0,X0)
of the graph G0, the size-parameter m, and the set of P -parameters for the implicit graph G, which is
with respect to the implicit tree decomposition (T,X). The arrays and the list of the set of P -parameters
of G are denoted by AL, AV , AR, AP , and LP , respectively. Recall that we assumed that V (G0) = [n0]
and, hence, AL, AR, and AP are each of length n0. Basically, the algorithm in Lemma 5.40 follows the
construction from the proof of Lemma 5.22, except for the tree decomposition (T ′,X ′) and the path P ′ if
Case 2) occurs. This construction was also described in Algorithm 5.6 in the proof of Lemma 5.38. In the
following, the line numbers refer to Algorithm 5.6. However, now the situation is slightly different: The
algorithm does not receive the tree decomposition (T,X) as input and the vertices of G are not renamed,
which means that V (G) = [n] cannot be assumed. The algorithm now receives the set of P -parameters
of G and, hence, it skips Line 1, where the set of P -parameters for the graph G is computed. Furthermore,
it does not return a list of the vertices in the set W and, therefore, also skips Line 26. Lines 2-25 rely only
on the set of P -parameters of G, except for the computation of a c-approximate cut in Line 23. Only a
few modifications are needed to achieve the desired running time for Lines 2-22 and Lines 24-25: First, the
algorithm cannot traverse the entire array AR, which used to be of length n in the first implementation and
now is of length n0. Thus, whenever the first implementation traversed the array AR, the new algorithm
traverses all vertices v stored in the array AV and only accesses the entries AR[v]. As AV is of length n
and every vertex of G appears somewhere in AV , this provides a method to traverse all vertices in R
in O(n) time. If Case 1) of the proof of Lemma 5.22 occurs, i. e., the algorithm constructs a cut (B,W,Z)
with the properties in Option 1) and Lines 3-4 are executed, then there is nothing else to do and the
running time is proportional to n, as desired.
From now on, assume that Case 2) of the proof of Lemma 5.22 occurs, i. e., the algorithm needs to

construct a cut with the properties in Option 2) and it executes Lines 6-25. In the first implementation,
the algorithm created a few arrays of length nT := V (T), for example to store the numbers ub(i), hb(i),

206

5.3 Extension to Tree-Like Graphs

and so on when executing Lines 6-8. This is not applicable here, as the algorithm does not have the
tree T , which is kept implicit, and also T might have more than n nodes as (T,X) is not necessarily
nonredundant. Recall that, in each of these arrays, only the entries corresponding to the nodes in P are
used and the algorithm can access the list LP from the set of P -parameters, which contains all nodes
in P in the order in which they occur when traversing P from i0 to j0. Therefore, all values computed
in Lines 6-9 can be stored in arrays of length |LP |, where the ith entry corresponds to the ith node in
LP . A disadvantage of the shorter arrays is that, for example when accessing the value ub(i) for some
specific node i ∈ VP , the algorithm first needs to find out the entry that corresponds to i. For executing
Lines 6-8, this is okay, as the values computed there are increased in exactly the order in which the nodes
appear on P . For example, when the algorithm computes all values s(i) in Line 6, it goes through all
vertices in V in order of increasing labels and therefore, the algorithm has to access the entries s(i) in
the order in which the nodes i appear in the list LP . This is similar when computing the values ub(i)
for all i ∈ VP , except that the algorithm might have to start traversing LP from the beginning for a
second time after reaching j0. Hence, O(|LP |) additional time is needed to execute Lines 6-9 and the
term O(nT) disappears, as the initialization of the arrays now takes O(|LP |) time. Hence, Lines 6-9 now
take time proportional to |LP |+ n. When executing Line 10, the algorithm also determines the position
of this node i in the list LP and, hence, no further time is lost due to the different storage. Recall (5.31)
and note that the computation of the lists of the vertices in the sets B and Z, except for Line 23, takes
time proportional to n+ |LP | ≤ 2n in the new implementation. Indeed, the sets Ri with i ∈ VP form a
partition of R where each set is nonempty due to Proposition 5.25. Therefore, |LP | ≤ |R| ≤ |V (G)|.
Next, the implementation of Line 23 is discussed. To apply the procedure contained in Lemma 4.8 to

the graph G[Si], the algorithm needs to provide the tree decomposition (T̃ , X̃) of G[Si], which was defined
as the restriction of (T,X) to T̃ = Ti and G[Si] in the proof of Lemma 5.22. Note that the algorithm does
not store the tree decomposition (T,X), but the algorithm can compute (T̃ , X̃) nevertheless as (T̃ , X̃) is
also the restriction of (T0,X0) to T̃ and G[Si] and (T0,X0) is stored. To compute (T̃ , X̃), recall that the
set of P -parameters contains the tree Ti. For the clusters, let X̃ = (X̃h)h∈V (T̃). As Si ∩Xi

0 = Si ∩Xi = ∅,
the cluster of node i in X̃ is empty. To compute the other clusters, the algorithm applies the procedure in
Proposition 2.31, because Proposition 5.34a) and b) together provide a method to determine in constant
time whether a vertex v ∈ [n0] is in Si. Computing the clusters in X̃ takes time proportional to

1 +
∣∣V (T̃) \ {i}

∣∣ +
∑

h∈V (T̃)\{i}

∣∣Xh
0
∣∣ ≤ 1 + 2

∑

h∈V (T̃)\{i}

∣∣Xh
0
∣∣ ,

because Xh
0 6= ∅ for all h ∈ V (T0) as (T0,X0) is nonredundant and because it suffices to search in the

tree T̃ , i. e., the tree T0 does not need to be traversed. Observe that the algorithm does not modify
the tree decomposition (T0,X0) during this process when storing (T̃ , X̃) in a new place instead of
overwriting (T0,X0). While computing the clusters in X̃ , the algorithm keeps track of the vertex vs ∈ Si
with the smallest label among all vertices in Si to set up a bijection between the vertices in Si and [s]
for s := |Si|, as in the first implementation. This is required when applying the procedure in Lemma 4.8,
which takes

O
(
‖(T̃ , X̃)‖

)
= O


∣∣V (T̃)

∣∣+
∑

h∈V (T̃)\{i}

∣∣X̃h
∣∣



time. The running time of the procedure in Lemma 4.8 simplifies to O
(∑

h∈V (T)\V (T ′)
∣∣Xh

0
∣∣
)
, be-

cause Xh
0 6= ∅ for all h ∈ V (T0) as mentioned above and because V (T̃) \ {i} = V (Ti) \ {i} and V (T ′) are

disjoint by Claim 5.41c).

207

Chapter 5 Exact Cuts in Trees and Tree-Like Graphs

This completes the description of computing the cut (B,W,Z) in the implicit graph G, or more precisely
the lists of the vertices in B and Z. Other than that, the algorithm also needs to adjust the set of
P -parameters of the graph G to be the set of P ′-parameters of G[Z]. As the set Z depends on whether
the doubling node i chosen in Line 10 is b-special or f-special, the adjustment of the set of P -parameters
depends on this as well. Assume for now that i is b-special and recall that in this case

Z = Hb
i ∪ U bi =

{
v ∈ V : L(v) is between L(x) and L(y)

}
,

where x denotes the vertex in Rib with the smallest label and y denotes the vertex in Rib
`
with the largest

label, as in the proof of Lemma 5.22. So, in order to adjust the arrays AL and AV for the P ′-labeling, the
algorithm only needs to shift the labels cyclically. To do so, it first computes the nodes ib and ib`, which
are the path-nodes of N−1

m (xb(i)) and N−1
m (xb`(i)), respectively, where xb(i) and xb`(i) are the vertices

computed in Line 7, and N−1
m (xb(i)) and N−1

m (xb`(i)) coincide with x and y. The algorithm goes through
the list LP and checks whether the node ib appears before the node ib` or ib = ib`. If one of these happens,
the edge {ib`, ib} was not added when constructing the tree T ′ and the algorithm deletes all entries in LP
that appear before ib and all entries that appear after ib` in LP , which yields the list LP ′ of all vertices on P ′

in the correct order. Simultaneously, the algorithm deletes the trees Tj for all nodes j that are removed
from LP . Furthermore, the algorithm shifts the labels of the vertices in Z such that x = N−1

m (xb(i))
obtains label 1. Otherwise, i. e., ib appears after ib` in LP , the edge {ib`, ib} was added when constructing T ′

(except for the case when ib is the node after ib` on P , where the tree T already contains the edge {ib`, ib}).
Note that, in this case, i0 ∈ P bi and j0 ∈ P bi and to obtain the list LP ′ , the algorithm deletes all nodes
between ib` and ib, except ib` and ib themselves. Again, the algorithm simultaneously deletes the tree Tj for
each node j that is deleted from the list LP . To adjust the P -labeling, note that the current labels of the
vertices in Z are the labels between x and y, which are the labels between x and n and the labels between 1
and y. Hence, to obtain a P ′-labeling of the vertices in Z, the algorithm shifts the labels of the vertices
with labels between x and n such that x receives label y + 1. Note that the trees Tj with j ∈ V (P ′) are
the same when defined with the tree T and the path P as when they are defined with the tree T ′ and the
path P ′, except for the tree Tib , which consists only of the node ib in the set of P ′-parameters and can be
adjusted in constant time. The described process of adjusting the collection of trees Tj , the list LP , and
the P -labeling can be done in time proportional to |LP |+ n, as the array AV provides a list of all vertices
in G ordered according to their labels. Recall that it was argued above in the proof of Claim 5.41b) that
the sets Ri for i ∈ V (P ′) are identical when defined with P ′, its end i′0, and the tree decomposition (T ′,X ′)
and when defined with P , its end i0, and the tree decomposition (T,X). This is similar for the sets Si
with i ∈ V (P ′), except for Sib , which is empty. Consequently, the arrays AR and AP do not need to be
adjusted, as the entries referring to vertices not in G′ = G[Z] may contain anything. If the doubling node i
determined in Line 10 is not b-special then i is f-special and the adjustments of the set of P -parameters
can be done analogously to the b-special case in O(|LP |+ n) time. All together, the adjustment of the
set of P -parameters takes O(|LP |+ n) = O(n) time, as it was argued above that |LP | ≤ n.
Summing up, the implementation of the adjusted version of Algorithm 5.6 takes O(n) time, except

the computation of the approximate cut in Line 23, which takes O
(∑

h∈V (T)\V (T ′)
∣∣Xh

0
∣∣
)
time. Additi-

onally, O(n) time is needed to adjust the set of P -parameters. Therefore, the desired running time for
Option 2) is achieved. 2

208

Chapter 6

Minimum k-Section in Trees and
Tree-Like Graphs

This chapter extends some results for bisections to k-sections. Instead of partitioning the vertex set into
two sets of equal size, we now aim to partition the vertex set into k sets of equal size, or more precisely, of
sizes differing by at most one whenever k does not divide the number of vertices of the graph. On the
one hand, we presented results for bisections constructed with separators in Section 3.1 and on the other
hand, we constructed bisections in trees with long paths in Chapter 5. For the separator approach, we
used separators arising from clusters of a given tree decomposition, and we also used separators from the
Planar Separator Theorem when working with planar graphs. Consider a graph G and a bisection (B,W)
constructed with separators. Then, the graphs G[B] and G[W] will each allow small bisections, as the same
class of separators can be used again. The reason behind this is that every subgraph of a planar graph is
planar and that when G allows a tree decomposition of width t− 1, then we can easily construct a tree
decomposition for any subgraph of G of width at most t− 1 due to Proposition 2.14 and Proposition 2.31.
Consequently, when k is a power of 2, it is straightforward to construct k-sections with separators by
recursively constructing bisections. For example, Simon and Teng show that every bounded-degree planar
graph on n vertices allows a k-section of width O(

√
kn), see Lemma 4.2 in [ST97]. Moreover, combining

their method, see Lemma 4.1 in [ST97], and Theorem 1.11 one can show that, for every k ≥ 2 that is a
power of 2, every graph G on n vertices allows a k-section of width at most

log2(k)−1∑

h=0
2h(tw(G) + 1)∆(G) log2

(
n
2h
)

= (tw(G) + 1)∆(G)
(
(k − 1) log2(n)− k log2(k) + 2k − 2

)

≤ (tw(G) + 1)∆(G)(k − 1) log2(n).

Therefore, this chapter first focuses on generalizing the methods used in Section 5.2, where bisections
in trees with long paths were constructed. Here, the situation is not as simple as with the separators.
Indeed, Section 6.1 discusses the approach of recursively constructing a k-section in a bounded-degree
tree and also in bounded-degree trees with linear diameter. It will become clear that Theorem 1.15 about
k-sections in trees with linear diameter cannot be obtained by simply reapplying Theorem 1.1 about
bisections in trees with linear diameter. Section 6.2 presents the proof for Theorem 1.15 and Section 6.3
generalizes this result to arbitrary graphs with a given tree decomposition.

209

Chapter 6 Minimum k-Section

6.1 Recursive Bisections and Cuts
In this section, the approach of constructing a k-section recursively is discussed. This means the following:
Assume that k ≥ 2 is a power of 2 and the aim is to construct a k-section in a graph G of small width,
if possible, minimum width. As a tool we want to use a method that computes a minimum bisection.
Then, one can first compute a bisection (B,W) in G. Next, one considers the graphs G[B] and G[W]
and computes a bisection in each of these graphs, which gives a 4-section (B1, B2, B3, B4) in G that cuts
exactly as many edges as the three bisections that were used. For k > 4, one then computes a bisection
in G[Bi] for i ∈ [4] resulting in an 8-section in G and so on, until the desired number of sets is reached.
As mentioned in the introduction, this recursive approach can produce a k-section, that cuts much more
edges than a minimum k-section, even when using a minimum bisection in each round. In [ST97], Simon
and Teng present two examples showing this behavior, one dense and one sparse example. They construct
a dense graph Gd and a sparse graph Gs, each on n vertices, that both allow a 4-section of width 12.
Both graphs Gd and Gs also allow a bisection of width four, which cannot be obtained by joining the two
sets of the unique 4-section of width twelve. In both graphs, the black and the white set of the bisection
of width four do not allow bisections of small width. Hence, the recursive approach produces 4-sections of
large width. More precisely, it produces a 4-section of width Ω(n2) in Gd and a 4-section of width Ω(n)
in Gs, i. e., a constant fraction of all edges of Gd and Gs are cut.
Next, we discuss an example that shows that the approach of constructing a 4-section recursively in

a bounded-degree tree can also give a 4-section that cuts asymptotically more edges than a minimum
4-section. Recall that any tree T on n vertices allows a bisection of width ∆(T) log2(n), see also Section 1.1.1
and note that this also follows from Corollary 4.9. So the worst that can happen for bounded-degree trees
is that the recursively found 4-section cuts Ω(log2 n) edges and the tree allows a 4-section of constant
width. Such an example is presented now. Let n ≥ 4 be an arbitrary integer such that there is a perfect
ternary tree T1 on n1 := 1

2n vertices and 1
2n is even. Note that this is possible as the number ñh of

vertices in a ternary tree of height h satisfies ñh+1 = 3ñh + 1 and therefore is alternatingly odd and even.
Let v1 be the root of T1 and denote by T1,1, T1,2, and T1,3 the isomorphic subtrees of T1 that are rooted in
the three children of the root of T1. For i ∈ [3] define n1,i := 1

3
(1

2n− 1
)

= 1
6n−

1
3 , which is the number of

vertices in T1,i. Let T2 be an arbitrary binary tree on n2 := 1
4n− 1 vertices with root v2 and note that 1

4n

is an integer. Furthermore, for i ∈ {3, 4, 5}, let Ti be a binary tree on ni := 1
4n−n1,i−2 = 1

12n+ 1
3 vertices

and denote by vi the root of Ti. Joining the roots vi and vi+1 with an edge for all i ∈ [4] gives a tree on
5∑

i=1
ni = 1

2n+ 1
4n− 1 + 3 ·

(
1
12n+ 1

3

)
= n

vertices, see Figure 6.1a). It is easy to see that the maximum degree of T is 4. Furthermore, as
n1,i + ni+2 = 1

4n for i ∈ [3], the cut (B1, B2, B3, B4) with Bi := V (T1,i) ∪ V (Ti+2) for i ∈ [3] and B4 :=
V (T2) ∪ {v1} is a 4-section in T of width 6, see Figure 6.1b). Consequently, MinSec4(T) ≤ 6. So let us
now recursively construct a 4-section in T . First, T allows exactly one minimum bisection, which is (B,W)
with B := V (T1) and W := V (T) \ B and satisfies eG(B,W) = 1, see Figure 6.1c). Now, in the next
round of the recursive approach a bisection in T [B] = T1 has to be found, which will cut at least Ω(log2 n)
edges by Theorem 2.4.

One of our aims in this chapter is to find a k-section of small width in a bounded-degree tree with linear
diameter. As the usual choice of the binary trees T2, . . . , T5 in the previous example yields a tree T with
diameter O(logn), one could hope that the situation improves when the diameter of the considered tree is
linear. However, one can also choose T2, . . . , T5 to be paths, which results in a tree T with diam(T) > 1

4n.
Since there were no further assumptions on the structure of T2, . . . , T5, the above analysis still applies.

210

6.1 Recursive Bisections and Cuts

T1,1
1
6 n − 1

3

T1,2
1
6 n − 1

3

T1,3
1
6 n − 1

3

T2

1
4 n − 1

T3
1

12 n + 1
3

T4
1

12 n + 1
3

T5
1

12 n + 1
3

v1 v2 v3 v4 v5

T1, 1
2 n vertices

a) Subtrees colored in blue are ternary trees, subtrees colored in purple are binary trees. The number in each
subtree indicates its number of vertices.

T1,1 T1,2 T1,3

T2

T3 T4 T5

v1 v2 v3 v4 v5

T1

b) Subtrees are colored in orange, blue, violet, and
green such that each color indicates one set of a
4-section of width 6. Edges colored in red are cut.

T1,1 T1,2 T1,3

T2

T3 T4 T5

v1 v2 v3 v4 v5

T1

c) The unique minimum bisection (B,W). The
vertices in B are colored blue, the vertices in W are
colored green. One edge is cut and colored red.

Figure 6.1: Example of a bounded-degree tree with a 4-section of width 6, where the recursive approach yields a
4-section of much larger width.

Next, we have a closer look why a k-section that is recursively constructed with Theorem 1.1 can cut much
more edges than a minimum k-section. Theorem 1.1 promises that every bounded-degree tree with linear
diameter allows a bisection (B,W) of constant width. However, nothing is known about the diameters
of the graphs induced by the sets B and W . This is illustrated by the next example, which is similar
to the example above, but easier for applying the algorithm in Theorem 5.14, the algorithmic version of
Theorem 1.1. As in the previous example, let n ≥ 4 be an arbitrary integer such that there is a perfect
ternary tree T1 on n1 := 1

2n vertices with root v and 1
2n is even. Again, denote by T1,1, T1,2, and T1,3 the

isomorphic subtrees of T1 that are rooted in the three children of v and define ni,1 := 1
3
(1

2n− 1
)

= 1
6n−

1
3 ,

which is the number of vertices in T1,i for i ∈ [3]. Furthermore, attach a path P on 1
2n new vertices

to v to obtain a tree T on n vertices. It is easy to see that T allows a 4-section of width 5, where the
trees T1,i for i ∈ [3] are in different sets of the 4-section, see Figure 6.2a). When the algorithm contained
in Theorem 5.14 is applied to T , it first searches for a longest path P̃ in T , which will obviously contain
every vertex from P . Then, it computes a P̃ -labeling of T , which can look like this: v receives some label i
and the vertices in P receive labels i + 1, . . . , i + 1

2n, see Figure 6.2b). Recall that numbers deviating
by a multiple of n from a label in [n] were considered to be the same as that label. Next, the algorithm
checks if there is a vertex x ∈ V (P̃) with N 1

2n
(x) ∈ V (P̃), where N 1

2n
(x) = x+ 1

2n, and indeed, v is such

211

Chapter 6 Minimum k-Section

T1,1
1
6 n − 1

3

T1,2
1
6 n − 1

3

T1,3
1
6 n − 1

3

.v

1
12 n + 1

3
1

12 n + 1
3

1
12 n + 1

3
1
4 n

a) Subtrees are colored in orange, blue, violet, and green such that each color indicates one set of a 4-section of
width 5. Edges colored in red are cut.

T1,1
1
6 n − 1

3

T1,2
1
6 n − 1

3

T1,3
1
6 n − 1

3

. . .v w

1 2
n

1 2
n

+
1

1 2
n

+
2

1 2
n

+
3

1 2
n

+
4

n
−

2

n
−

1

n

T1, 1
2 n vertices

B

b) The blue subtrees are perfect ternary trees. The orange numbers are an example for a P -labeling, where P is a
longest path in the tree.

Figure 6.2: Example of a bounded-degree tree with linear diameter that allows a 4-section of width 5 and where
recursive bisections with Theorem 1.1 produce a 4-section of much larger width.

a vertex, since v received label i and the leaf w of P , which is not adjacent to v in T , received label i+ 1
2n.

So, one possibility for the set B of the computed bisection is

B :=
{
v ∈ V (T) : the label of v is between i+ 1 and i+ 1

2n
}
,

which is exactly the set of vertices of P . Now, in the next round of recursively constructing a 4-section
in T , one has to find a bisection in T [B] = T1, which will cut at least Ω(log2 n) edges, due to Theorem 2.4
as T1 is a perfect ternary tree.
Furthermore, both examples can be extended to k-sections, where k is a power of 2. For 8-sections

two copies of the tree T in the example for 4-sections are joined by an edge to obtain a tree T ′, which
allows an 8-section of constant width but the recursive approach can find an 8-section which cuts Ω(logn)
edges. Two copies of T ′ can then be joined by an edge to obtain an example for a 16-section where the
recursive approach is bad and so on. Once k is not considered to be constant, these examples become less
interesting as the gap between the width of a minimum k-section and a recursively constructed k-section

212

6.1 Recursive Bisections and Cuts

decreases. This is not a flaw of the above examples, but a natural effect. As any k-section in a tree cuts
at least k − 1 edges, a minimum k-section with k = Ω(n) in a tree cuts a linear fraction of all edges.

The problem with the 4-section in the second example is, that nothing is known about the diameter in
the two subgraphs that are produced by the bisection applied to the input tree. More precisely, it shows
that the construction behind Theorem 1.1 can produce a bisection (B,W) in a bounded-degree tree T
with linear diameter, where T [B] does not have linear diameter. Indeed, T [B] has diameter O(logn)
here. Then, Theorem 1.1 does not promise a bisection of constant width in T [B] anymore. Consequently,
constructing a 4-section in a bounded-degree tree with linear diameter recursively with Theorem 1.1 results
in an upper bound of Ω

(
n

logn

)
for the width of the 4-section, but Theorem 1.15 promises a 4-section of

width O(1).
Recall the definition of the relative diameter, that was used in Section 5.1 and Section 5.2 to compare

the diameters of trees with different numbers of vertices and is also defined for forests. The relative
diameter of a forest G on n vertices is

diam∗(G) := 1
n

∑

i∈[`]

(diam(Gi) + 1),

where G1, G2, . . . , G` denote the components of G. Observe that 0 < diam∗(G) ≤ 1 for every forest G
and, if G is a tree, then diam∗(G) denotes the fraction of vertices of G on a longest path in G. To
avoid the difficulties mentioned in the previous paragraph, one could first pre-partition the input tree
into k − 1 pieces, which each receive the same amount of vertices of a fixed longest path. More precisely,
consider a tree T on n vertices and assume that n is divisible by 4. Let P be a longest path in T and
define d := diam∗(T). It is easy to partition V (T) into three pieces V1, V2, V3 ⊆ V (T) such that each piece
contains 1

3 of the vertices of P and with eT (V1, V2, V3) = 2 as long as one does not care about the sizes
of Vi for all i ∈ [3]. Then, each set Vi with i ∈ [3] contains a path of length at least 1

3 |V (P)| = 1
3dn and

one could search for a set Bi ⊆ Vi with |Bi| = 1
4n for each i ∈ [3]. The set B4 for the 4-section could then

be formed by the remaining vertices. The problem is that there could be a set Vi with |Vi| < 1
4n. However,

the pigeon-hole principle promises that there is at least one set Vi with |Vi| ≥ 1
3n ≥

1
4n. Without loss of

generality assume that |V1| ≥ |V2| ≥ |V3|. So one can first cut off a piece B1 ⊆ V1 with |B1| = 1
4n and

then take the remaining vertices V1 \B1 and the set V2, which together contain more than 1
4n vertices, and

cut off a set B2 of size 1
4n. Then, one can take all vertices that are neither in B1 nor in B2 and compute

a bisection (B3, B4), which results in a 4-section (B1, B2, B3, B4) in T . As each of these three cuts is in a
forest with a path of length at least 1

3dn and, hence, relative diameter at least 1
3d, Theorem 5.6 implies

eT (B1, B2, B3, B4) ≤ 3 + 3 · 8∆(T)
1
3d

= 3 + 72∆(T)
d

.

Consequently, this approach produces a 4-section of constant width in bounded-degree trees with linear
diameter. It can easily be generalized for larger values of k, including values of k that are not powers of 2.
However, this does not produce a k-section of the desired width for general k. Indeed, consider the tree T
in Figure 6.2 and denote by P̃ a longest path in T . When cutting T into k − 1 pieces such that each
piece V` contains 1

k−1 · |V (P̃)| vertices of the path P̃ , the largest piece contains the entire tree T1, i. e., at
least 1

2n vertices (assuming that 1
k−1 · |V (P̃)| is larger than the height of T1). For ` ∈ [k− 1], denote by Ṽ`

the vertex set, such that T [Ṽ`] is the subgraph to which Theorem 5.6 is applied for the `th time. Then,
for ` ≤ k

4 , we have |Ṽ`| ≥ n
4 as the remaining vertices of T1 are passed to the next set and each set B`

contains at most n
k vertices of T1. Thus, for ` ≤ k

4 , the best estimate on the relative diameter of T [Ṽ`] is
1

k−1 |V (P̃)|
|Ṽ`|

≤
1

k−1 · |V (P̃)|
1
4n

= 4
k − 1 diam∗(T).

213

Chapter 6 Minimum k-Section

Hence, the bound obtained for the k-section in T is at least

k

4 ·
8∆(T)

4
k−1diam∗(T)

≈ 1
2k

2 ∆(T)
diam∗(T) ,

which grows with k2. However, the aim for trees is to show a bound that only grows with k. The problem
of this method is, that the first pieces Ṽ` might be rather large. As this example shows, they can contain
almost all vertices but they contain only 1

k−1 of the vertices of the path, i. e., the relative diameter of T [V1]
could be around 1

k−1 diam∗(T). In the next section, we present a method that chooses the pieces Ṽ` more
carefully, such that diam∗(T [Ṽ`]) ≥ 1

2 diam∗(T), which then results in the desired bound for the width of
a minimum k-section in a bounded-degree tree with linear diameter.

6.2 Minimum k-Section in Trees
The aim of this section is to prove Theorem 1.15, which provides an upper bound for the width of a
minimum k-section in trees. In particular, Theorem 1.15 promises that every bounded-degree tree with
linear diameter admits a k-section of width O(k) for every k ≥ 2. First, Theorem 1.15 is restated and
generalized to cutting a forest into k pieces of specified sizes. Using that 1

diam∗(T) ≤
n

diam(T) holds for
every tree T on n vertices, Theorem 1.15 follows easily from the next theorem.

Theorem 6.1 (Theorem 1.15 restated and generalized).
For every k ≥ 2, for every forest G on n vertices, and for all m1,m2, . . . ,mk ∈ N0 with

∑k
`=1m` = n,

there is a cut (B1, B2, . . . , Bk) in G with |B`| = m` for all ` ∈ [k] and

eG(B1, B2, . . . , Bk) ≤ (k − 1) ·
(

2 + 16
diam∗(G)

)
∆(G).

A cut (B1, B2, . . . , Bk) with these properties can be computed in O(kn) time.

As mentioned in the previous section, constructing a k-section by bisecting the graph repeatedly can
give bad results and, hence, we follow a different approach: The main idea is to cut off one set for the
k-section at a time while ensuring that the relative diameter of the remaining forest does not decrease,
which is stated formally in Lemma 6.2 below. The lemma looks similar to Theorem 1.1 or its version for
m-cuts, which was stated in Theorem 5.6. The main difference is that it contains additional information
on the relative diameter of the subgraph induced by the white set of the cut. As this lemma does not
follow from a refined analysis of the construction used in the proof of Theorem 5.6, it becomes unavoidable
that the bound on the width of the cut increases.

Lemma 6.2.
For every forest G on n vertices and for every m ∈ [n − 1], there is an m-cut (B,W) in G that
satisfies diam∗(G[W]) ≥ diam∗(G) and

eG(B,W) ≤
(

2 + 16
diam∗(G)

)
∆(G).

A cut (B,W) with these properties can be computed in O(n) time.

Before proving Lemma 6.2 it is shown that Theorem 6.1 follows from Lemma 6.2 by applying Lemma 6.2
for k − 1 times to cut off m` vertices in the `th application.

214

6.2 Minimum k-Section in Trees

Proof of Theorem 6.1. Fix an integer k ≥ 2. Let G be a forest on n vertices and let m1, . . . ,mk be as
in the statement. For every ` ∈ [k] with m` = 0, define B` = ∅. Recall that [0] := ∅. For every ` ∈ [k − 1]
with m` ≥ 1, apply Lemma 6.2 to G` := G −

(⋃
h∈[`−1]Bh

)
with size-parameter m = m` to obtain a

set B` ⊆ V (G`) with |B`| = m`. Then, exactly mk vertices remain and defining Bk to be the set of
these remaining vertices gives a cut (B1, . . . , Bk), where each set has the desired size. Note that, for
every ` ∈ [k− 1], the relative diameter of the forest G` satisfies diam∗(G`) ≥ diam∗(G) and the maximum
degree of G` is at most ∆(G). Consequently, at most

(
2 + 16

diam∗(G)

)
∆(G) edges are cut in each of the

at most k − 1 applications of Lemma 6.2, which gives the desired bound. As for each ` ∈ [k − 1], the
computation of B` and G` takes O(n) time by Lemma 6.2 and Corollary 2.23, the cut can be computed
in O(kn) time. 2

Next, the proof of Lemma 6.2 is presented. As indicated by the example in Figure 6.2, a refined analysis
of Theorem 1.1 will not work. Still, Theorem 1.1 will be used as a tool in the proof of Lemma 6.2. To
avoid the problems described in Section 6.1, i. e., to ensure that the relative diameter of the graph induced
by the white set is at least as large as in the original forest, Theorem 1.1 will be applied to a carefully
chosen subgraph G̃ ⊆ G. On the one hand, G̃ needs to have large relative diameter such that the bound in
Theorem 1.1 is low when applied to G̃. On the other hand, the relative diameter of the graph induced by
the white set of the computed cut will roughly be the relative diameter of G− V (G̃), so G− V (G̃) needs
to have a large relative diameter. Note that these two conditions compete against each other, as to satisfy
them many vertices of a longest path in G need to go to G̃ or G − V (G̃), respectively. The main part
of the proof of Lemma 6.2 is to construct a subgraph G̃ with these properties. To do so, some notions
from the proof of Lemma 5.7, which was the main part of the proof of Theorem 5.6, will be used again
and are repeated now. For more details see Page 151. Consider a tree G = (V,E) on n vertices and a
path P = (VP , EP) ⊆ G with ends x0 and y0. When removing all edges in EP from G, then G decomposes
into trees, one tree Tv for every v ∈ VP . For each v ∈ VP , let T ′v := V (Tv) \ {v}. For x ∈ V (G), the unique
vertex v ∈ VP with x ∈ V (Tv) is called the path-vertex of x. A P -labeling of G is a labeling of the vertices
of G with 1, 2, . . . , n such that the following holds:
• For each v ∈ VP , the vertices of Tv have consecutive labels and v has the largest label among all
vertices in Tv.
• For all v, v′ ∈ VP with v 6= v′, if x0 is closer to v than to v′, then the label of v is smaller than the
label of v′.

Again, each vertex will be identified with its label and any number differing by a multiple of n from a label
in [n] is considered to be the same as this label. When talking about labels and vertices, in particular
when comparing them, we always refer to the integer in [n]. For three vertices a, b, c ∈ V with a 6= c, we
say that b is between a and c if b = a, b = c, or if starting at a and going along the numeration given by
the labeling reaches b before c. If a = c, then we say that b is between a and c if b = a = c. For technical
reasons, we will refer to the pair {y0, x0} as an edge of G, even if it is not. For a vertex v′ ∈ VP , the
vertex v ∈ VP is the vertex after v′ on P if the tree Tv contains the vertex v′ + 1. Then, {v′, v} is called
the edge after v′ on P . Similarly, in this case, {v′, v} is called the edge before v on P and v′ is called the
vertex before v on P . Last but not least, recall Lemma 5.2a), which says that, for every forest G with
relative diameter d and ∆(G) ≥ 3, there is a tree T with G ⊆ T and diam∗(T) = d, and which allows us
to work with trees instead of forests.

Proof of Lemma 6.2. Let G = (V,E) be a forest on n vertices and fix some m ∈ [n− 1]. If ∆(G) ≤ 2
then G is a collection of paths and so is every subgraph of G. Hence, G itself and every subgraph of G
has relative diameter 1 and the m-cut in Lemma 5.2b) satisfies all the requirements for Lemma 6.2.

215

Chapter 6 Minimum k-Section

So from now on, assume that ∆(G) ≥ 3. By Lemma 5.2a) we may assume without loss of generality
that G is connected. Let P = (VP , EP) be a longest path in G and denote by x0 and y0 the ends of P .
Set d := diam∗(G), and note that |VP | = dn. Fix a P -labeling of the vertices of G, where x0 receives
label 1 and y0 receives label n, and identify each vertex with its label.
For two vertices x, y ∈ V , the P -distance of x and y is defined as

dP (x, y) = |{v ∈ VP : v is between x and y, v 6= y}| .

It is easy to see that for every x, y ∈ V with x 6= y

dP (x, y)− dP (x+ 1, y) ∈ {0, 1}

and
dP (x+ 1, y)− dP (x+ 1, y + 1) ∈ {0,−1}.

Therefore
|dP (x, y)− dP (x+ 1, y + 1)| ≤ 1 for every x, y ∈ V . (6.1)

Note that, for every x ∈ V and all integers `, `′ ∈ [n− 1], we have dP (x, x) = 0 and

dP (x, x+ `) + dP (x+ `, (x+ `) + `′) =




dP (x, x+ `+ `′) if `+ `′ < n,

|VP |+ dP (x, x+ `+ `′) if `+ `′ ≥ n.

Recall that x0 was defined to be an end of P . Now, define x` = x0 + `m for all ` ∈ [n]. Then,
xn = x0 + nm = x0 and

n∑

`=1
dP (x`−1, x`) = m|VP | = mdn.

Therefore, there are two vertices x′, x′′ ∈ V with

dP (x′, x′ +m) ≤ md and dP (x′′, x′′ +m) ≥ md.

Using that dP (x, y) is an integer for all x, y ∈ V to strengthen the first inequality and loosening the
second one, it follows that

dP (x′, x′ +m) ≤ bmdc and dP (x′′, x′′ +m) ≥ bmdc .

Now, (6.1) implies that there is a vertex x∗ ∈ V with dP (x∗, x∗ +m) = bmdc. Let px∗ and px∗+m be the
path-vertices of x∗ and x∗+m, respectively. Define h := min{px∗−x∗, px∗+m− (x∗+m)}. Set v := x∗+h

and note that v ∈ VP or v +m ∈ VP . Furthermore, x∗ and v are in the same tree Tu with u ∈ VP and
also x∗ +m and v +m are in the same tree Tu′ with u′ ∈ VP . As v +m is not counted in dP (v, v +m), it
follows that dP (v, v +m) = dP (x∗, x∗ +m) = bmdc. Define

M := {u ∈ V : u is between v and v +m− 1}.

In the following figures, the path P will be drawn in the top and the trees Tu for u ∈ VP are drawn
underneath P . The vertices in P that are counted in dP (v, v +m) will be colored blue and edges that are
cut will be colored red, whenever they are drawn explicitly.
Case 1: v ∈ VP and v +m ∈ VP .

Define B := M and W := V \B. Then the cut (B,W) cuts only edges that are incident to v or v +m,
which implies eG(B,W) ≤ 2∆(G), see Figure 6.3a). Furthermore, |B| = m and

diam∗(G[W]) ≥ |VP ∩W |
|W |

= |VP | − dP (v, v +m)
|W |

≥ dn−md
n−m

= d.

216

6.2 Minimum k-Section in Trees

v v + m

.

B

a) Case 1, where v ∈ VP and v +m ∈ VP .

v v + m − 1 z

.

B

v + m

b) Case 2a, where v ∈ VP and v +m− 1 ∈ VP .

Figure 6.3: Proof of Lemma 6.2. Construction of the black set in Case 1 and Case 2a.

Case 2: v ∈ VP and v +m 6∈ VP .
Let z be the path-vertex of v + m. Observe that z 6∈ M as otherwise VP ⊆ M and bdmc = |VP | = dn,
which contradicts m ∈ [n− 1]. None of the edges in Tz is cut by (M,V \M) when v +m− 1 ∈ VP and
this case is treated separately for technical reasons.
Case 2a: v +m− 1 ∈ VP .

As in Case 1, the cut (B,W) with B := M and W := V \M satisfies all requirements, see Figure 6.3b).
Case 2b: v +m− 1 6∈ VP .

Observe that the cut (M,V \M) might cut too many edges in the tree Tz and the cut (M∪T ′z, V \(M∪T ′z))
does not cut many edges, but applying Theorem 5.6 to G[M ∪T ′z] might cut too many edges as its relative
diameter can be much less than d, for example when T ′z contains Ω(n) vertices but m is small. So, instead
of using M ∪ T ′z, we will now define a set Ṽ ⊆M ∪ T ′z such that (Ṽ , V \ Ṽ) cuts few edges, Ṽ contains all
vertices counted by dP (v, v +m), and |Ṽ | ≤ 2m, which will ensure that diam∗(G[Ṽ]) ≥ 1

2d.
Let m̃ = 2|T ′z ∩M |, which satisfies 2 ≤ m̃ ≤ 2m as v +m− 1 is in T ′z due to the assumption of Case 2b.

If m̃ ≥ |T ′z|, then define Bz = T ′z and Wz = {z}, which satisfies 1
2m̃ ≤ |Bz| ≤ m̃ and eTz (Bz,Wz) ≤ ∆(G).

Otherwise, i. e., m̃ < |T ′z| < |V (Tz)|, apply Lemma 4.1 to the tree Tz with parameter m̃ to obtain a
cut (Bz,Wz) with Bz ∪Wz = V (Tz), 1

2m̃ ≤ |Bz| ≤ m̃, and eTz(Bz,Wz) ≤ ∆(G). Note that Remark 4.3
implies that z ∈Wz. Define Ṽ = (M \ T ′z) ∪Bz and note that z 6∈ Ṽ as well as |Ṽ | = m− 1

2m̃+ |Bz| and
therefore m ≤ |Ṽ | ≤ 2m. The graph G̃ := G[Ṽ] consists of at least two components as there are no edges
from M \T ′z to Bz ⊆ T ′z, see Figure 6.4. As each vertex in VP ∩ Ṽ is in M \T ′z, the components G̃[M \T ′z]
contribute at least |VP ∩ Ṽ | = dP (v, v + m) to the numerator of diam∗(G̃). As |Bz| ≥ 1

2m̃ ≥ 1, the

v + m − 1
v + m

v z

.

Ṽ

Bz
Wz

Figure 6.4: Proof of Lemma 6.2. Construction of Ṽ in Case 2b, where v ∈ VP , v +m /∈ VP , and v +m− 1 6∈ VP .
Note that v +m− 1 and v +m can also lie in Bz.

217

Chapter 6 Minimum k-Section

components of G[Bz] contribute at least 1 to the numerator of diam∗(G̃). Therefore,

diam∗(G̃) ≥ dP (v, v +m) + 1
2m ≥ d

2 .

Now, Theorem 5.6 applied to G̃ with size-parameter m implies that there is an m-cut (B̃, W̃) in G̃

with eG̃(B̃, W̃) ≤ 16
d ∆(G). Define B = B̃ and W = V \ B. Every vertex from P that is not counted

by dP (v, v +m) is in W by construction and therefore

diam∗(G[W]) · |W | ≥ |W ∩ VP | ≥ |VP | − dP (v, v +m) ≥ dn− dm.

As |W | = n−m, it follows that diam∗(G[W]) ≥ d.
Next, the number of edges cut by (B,W) is estimated, which is at most the number of edges cut

by (Ṽ , V \ Ṽ) plus the number of edges cut by (B̃, W̃) in G̃. The cut (Ṽ , V \ Ṽ) cuts at most ∆(G) edges
within Tz as the cut (Bz,Wz) cuts at most ∆(G) edges in Tz. Recall that z ∈Wz ⊆W . Now, if v is the
vertex before z on P , then Ṽ = Bz ∪ {v} and other than the edges in Tz only edges incident to v are cut
by (Ṽ , V \ Ṽ), which results in eG(Ṽ , V \ Ṽ) ≤ 2∆(G). So assume that the vertex after v on P is not z.
Then, at most ∆(G)− 1 edges incident to v are cut as v is either an end of P and therefore a leaf in G
or the edge e after v on P exists and is not cut. Furthermore, from the edges incident to z that are cut
by (Ṽ , V \ Ṽ), only the edge before z on P is not yet counted. Hence, in total at most 2∆(G) edges are
cut by the cut (Ṽ , V \ Ṽ). Using that (B̃, W̃) cuts at most 16

d ∆(G) edges in G̃ = G[Ṽ] gives the desired
bound on the number of cut edges.
Case 3: v /∈ VP and v +m ∈ VP .

This case is similar to Case 2b, but some arguments need to be adjusted as the labeling cannot simply
be reversed to obtain a labeling with the same properties due to the requirement that each u ∈ VP

receives the largest label among all vertices in Tu. Denote by z the path-vertex of v. As in Case 2b,
let m̃ = 2|T ′z∩M | and note that m̃ ≥ 2 as v ∈ T ′z. If m̃ ≥ |T ′z|, let Bz = T ′z andWz = {z}. Otherwise apply
Lemma 4.1 to Tz with size-parameter m̃ to obtain a cut (Bz,Wz) in Tz. Note that in both cases z ∈Wz,
eTz(Bz,Wz) ≤ ∆(G), and 1

2m̃ ≤ |Bz| ≤ m̃. For technical reasons, the case when z = v + m is treated
separately.
Case 3a: z = v +m.

Then, dP (v, v + m) = 0 and md < 1. Furthermore, M ⊆ V (Tz) and m̃ = 2m. Define Ṽ := Bz

and G̃ := G[Ṽ], which satisfy m ≤ |Ṽ | ≤ 2m and diam∗(G̃) ≥ 1
2m ≥ md

2m ≥ 1
2d, see Figure 6.5a).

Similarly to Case 2b, Theorem 5.6 says that there is an m-cut (B̃, W̃) in G̃ with eG̃(B̃, W̃) ≤ 16
d ∆(G).

Define B = B̃ and W = V \ B. Now, all vertices of P are in W , so diam∗(G[W]) ≥ d. Moreover, at
most ∆(G) edges are cut by (Bz,Wz) in Tz and the cut (Ṽ , V \ Ṽ) cuts no other edges in G than the
ones cut by (Bz,Wz) in Tz, as z is always in Wz. Using that the cut (B̃, W̃) cuts at most 16

d ∆(G) edges
in G̃, the desired bound is obtained.
Case 3b: z 6= v +m.

Define
Ṽ := (M \ (T ′z ∪ {z})) ∪Bz ∪ {v +m},

see Figure 6.5b). This definition of Ṽ is slightly different than in Case 2b, as here z ∈M but v+m is in Ṽ
instead of z, which will decrease the bound on the cut edges later. Now, Ṽ contains exactly dP (v, v +m)
vertices of P , which are all vertices counted in dP (v, v +m) except z, which is replaced by v +m. Recall
that z 6= v +m by the assumption of Case 3b. As Bz 6= ∅ and there are no edges between Bz and Ṽ \Bz,
one can argue similarly to Case 2b that m ≤ |Ṽ | ≤ 2m as well as that G̃ := G[Ṽ] satisfies diam∗(G̃) ≥ 1

2d.
Then, Theorem 5.6 says that there is an m-cut (B̃, W̃) in G̃ with eG̃(B̃, W̃) ≤ 16

d ∆(G). Define B = B̃

218

6.2 Minimum k-Section in Trees

Ṽ

v

z = v + m

.

Bz = Ṽ

Wz

a) Case 3a, where z = v +m.

v

z v + m

.

Ṽ

Bz
Wz

b) Case 3b, where z 6= v +m.

Figure 6.5: Proof of Lemma 6.2, construction of Ṽ in Case 3, where v /∈ VP and v +m ∈ VP . Note that, in both
cases, v can also lie in Bz.

and W = V \ B. As mentioned before, dP (v, v + m) = bmdc vertices of P are in Ṽ . Therefore, at
most bmdc vertices of P are in B and as in Case 2b, it follows that diam∗(G[W]) ≥ d. The number of
cut edges can be estimated similarly to Case 2b: At most ∆(G) edges are cut by (Bz,Wz) in Tz and z
is always in V \ Ṽ . Other than these edges, the cut (Ṽ , V \ Ṽ) cuts only the edge after z on P and the
edge after v + m on P . Due to the assumption ∆(G) ≥ 3, the width of the cut (Ṽ , V \ Ṽ) in G is at
most 2∆(G). Using that the cut (B̃, W̃) cuts at most 16

d ∆(G) edges in G̃, the desired bound is obtained.
Next, it is discussed how to implement an algorithm that computes a cut (B,W) in a forestG on n vertices

with the desired properties. The construction presented above is summarized in Algorithm 6.1, which is only
for trees. This suffices for the following reasons. Consider a forest G′ that is not connected. If ∆(G′) ≤ 2,
then the cut in Lemma 5.2b) has the desired properties as argued above and can be computed in O(n) time
by Lemma 5.16b). Otherwise, ∆(G′) ≥ 3 and Lemma 5.16a) states that, in O(n) time, a tree T ′ containing
the forest G′ as a subgraph and such that ∆(T ′) = ∆(G′) and diam∗(T ′) = diam∗(G) can be computed.
Furthermore, in this case, every cut (B′,W ′) in T ′ is also a cut in G′ and eG′(B′,W ′) ≤ eT ′(B′,W ′).
Thus, it suffices to compute a cut in T ′. So, from now on, assume that G = (V,E) is a tree. Observe
that Lines 12-13 treat Case 1 and Case 2a, Lines 15-18 treat Case 2b, and Lines 20-23 treat Case 3a and
Case 3b, whose construction differs only in the definition of the set Ṽ .
As in the implementation of the algorithm contained in Theorem 5.6, Algorithm 6.1 does not identify

vertices with their labels. From now on, L(x) is used to refer to the label of a vertex x ∈ V and L−1(a) is
used to refer to the vertex which received label a ∈ [n]. For example, for a vertex v ∈ V , the vertex whose
label comes m steps after the label of v in the numeration is L−1(L(v) +m). Furthermore, the definition
of the P -distance is adjusted such that it refers to two vertex names, i. e.,

dP (x, y) = |{v ∈ VP : L(v) is between L(x) and L(y), v 6= y}|

for all x, y ∈ V (G). As usually, only the set B of the desired cut (B,W) is returned and throughout the
algorithm, all sets are stored as unordered lists of vertices.

Next, the running time of Algorithm 6.1 is analyzed line by line. The aim is to show that Algorithm 6.1
can be implemented to run in linear time, i. e., O(n) time. As there are no loops, it suffices to show that
each line can be implemented to take at most linear time. Lines 1-3 take O(n) time by Lemma 5.16b).
As in Algorithm 5.3 in the proof of Lemma 5.19, Lines 4-6 take O(n) time. Recall that there, it was
argued that the P -labeling can be stored in two arrays, such that the algorithm can convert between
labels and vertex names in constant time. Note that for each x ∈ V the number d1(x) as defined in
Line 7 is the number of vertices in VP whose label is smaller than x. Hence, Line 7 takes O(n) time by

219

Chapter 6 Minimum k-Section

Algorithm 6.1: Computing an m-cut in a tree with the properties in Lemma 6.2.
Input: tree G = (V,E) on n vertices and m ∈ [n− 1].
Output: m-cut (B,W) with the properties in Lemma 6.2.

1 If ∆(G) ≤ 2 then
2 Return an arbitrary m-cut (B,W) in G with eG(B,W) ≤ ∆(G);
3 Endif
4 Compute a longest path P = (VP , EP) in G and let LP be a list of the vertices on P ;
5 d← diam∗(G);
6 Compute a P -labeling of the vertices in G and the path-vertex for every vertex of G.

For each x ∈ V , denote by L(x) the label of x and, for each a ∈ [n], denote by L−1(a) the
vertex that received label a;

7 For each x ∈ V compute d1(x) = dP (L−1(1), x);
8 Determine a vertex v ∈ V with dP (v, L−1(L(v) +m)) = bmdc and v ∈ VP or v +m ∈ VP ;
9 M ← {w ∈ V : L(w) is between L(v) and L(v) +m− 1};

10 If v ∈ VP then
11 If L−1(L(v) +m) ∈ VP or L−1(L(v) +m− 1) ∈ VP then
12 B ←M ;
13 Return (B, V \B);
14 Endif
15 Let z be the path-vertex of v +m;
16 m̃← 2|T ′z ∩M |;
17 Let (Bz,Wz) be a cut in Tz with eTz (Bz,Wz) ≤ ∆(G), z ∈Wz, and 1

2m̃ ≤ |Bz| ≤ m̃;
18 Ṽ ← (M \ T ′z) ∪Bz;
19 Else
20 Let z be the path-vertex of v;
21 m̃← 2|T ′z ∩M |;
22 Let (Bz,Wz) be a cut in Tz with eTz (Bz,Wz) ≤ ∆(G), z ∈Wz, and 1

2m̃ ≤ |Bz| ≤ m̃;
23 If z = v +m then Ṽ = Bz else Ṽ ← (M \ (T ′z ∪ {z})) ∪Bz ∪ {v +m};
24 Endif
25 Compute an m-cut (B̃, W̃) in G[Ṽ] with the properties in Theorem 5.6;
26 B ← B̃;
27 Return (B, V \B);

using the List LP . Using d1(x), the algorithm can compute dP (x, x+m) and dP (x−m,x) for all x ∈ VP
since dP (x, y) = d1(y) − d1(x) for all x, y ∈ V with L(x) ≤ L(y). As argued above, a vertex v with
the properties in Line 8 always exists and can now be determined in O(|VP |) = O(n) time. The set M
in Line 9 can be read off the labeling in O(n) time. Using that x ∈ VP if and only if the path-vertex
of x is x itself, the algorithm can determine in constant time whether a vertex x ∈ V is in VP . Hence,
Lines 10-11 take constant time and Lines 12-13, if executed, take O(n) time together. Assume for now
that Lines 15-18 are executed. As the algorithm already computed all path-vertices, Line 15 takes constant
time. Next, the algorithm determines the vertex z′ on P before z by using the list LP , which takes O(n)
time. Note that T ′z ∩M is precisely the set of vertices with labels between L(z′) + 1 and L(v) +m− 1
and, hence, determining m̃ in Line 16 takes O(n) time. To implement Line 17, note that T ′z is the set of
vertices with labels between L(z′) + 1 and L(z)− 1, and can be read off the labeling. As described above,

220

6.2 Minimum k-Section in Trees

if |T ′z| ≤ m̃, then the algorithm sets Bz = T ′z. Otherwise, it computes the tree Tz and applies the algorithm
in Lemma 4.1 to Tz with size-parameter m̃, which together takes at most O(n) time. Moreover, M \ T ′z
is the set of vertices with labels between L(v) and L(z′) and can be read off the labeling in O(n) time.
Using that the sets M \ T ′z and Bz are disjoint, Line 18 can be implemented as a concatenation of lists,
and in total takes O(n) time. Similarly to Lines 15-18, one can argue that Lines 20-23 together take O(n)
time. Finally, computing the subgraph G[Ṽ] in Line 25 and applying the algorithm corresponding to
Theorem 5.14 takes O(n) time, see also Remark 5.15. 2

The proof of Lemma 6.2 uses Theorem 5.6 to estimate the width of the exact cut in G̃, which can be
improved by using Theorem 5.12. Then, the bound on the width of the cut in Lemma 6.2 improves to

eG(B,W) ≤ 2∆(G) + 1
2 ∆(G)

((
log2

(
2

diam∗(G)

))2
+ 7 log2

(
2

diam∗(G)

)
+ 6
)

≤ 1
2 ∆(G)

((
log2

(
1

diam∗(G)

))2
+ 9 log2

(
1

diam∗(G)

)
+ 18

)
(6.2)

and the following improved version of Theorem 6.1 is obtained.

Theorem 6.3 (improved version of Theorem 6.1).
For every k ≥ 2, for every forest G on n vertices, and for all m1,m2, . . . ,mk ∈ N0 with

∑k
`=1m` = n,

there is a cut (B1, B2, . . . , Bk) in G with |B`| = m` for all ` ∈ [k] and

eG(B1, B2, . . . , Bk) ≤ (k − 1) ∆(G)
2

((
log2

(
1

diam∗(G)

))2
+ 9 log2

(
1

diam∗(G)

)
+ 18

)
.

A cut (B1, B2, . . . , Bk) with these properties can be computed in O(kn) time.

Last but not least for k-sections in trees, we mention that it looks like the analysis of the algorithm
contained in Theorem 6.1 and Lemma 6.2 cannot easily be tightened to obtain an algorithm that computes
a k-section in a tree in linear time such that the running time is independent of k. Indeed, fix an
integer k ≥ 2 and let T be a tree on n vertices. For ` ∈ [k], the `th application of Lemma 6.2 takes O(n`)
time, where n` denotes the number of vertices in the remaining graph after cutting off the sets B1, . . . , B`−1

for the final k-section (B1, . . . , Bk). In the proof of Theorem 6.1, the number n` was estimated by n` ≤ n.
Using the exact values, i. e., n` = n− (`− 1)nk = (k − `+ 1)nk when n is divisible by k, the running time
of computing a k-section is still proportional to

∑

`∈[k−1]

n` = n

k

k−1∑

`=1
(k − `+ 1) = n

k

k∑

h=2
h = n

k

(
1
2k(k + 1)− 1

)
≥ n

k
· k

2

2 = 1
2nk.

So to achieve a running time of O(n) for computing a k-section in T , the `th application of Lemma 6.2
may only take O

(
n
k

)
time. This is not easy for the following two reasons: First, Line 8 in Algorithm 6.1

might require the algorithm to go through the entire set VP , which can have size Ω(n). Second, the cuts
in Line 17 and Line 22 might require to go through the entire tree Tz. So, if Tz is large, say it has Ω(n)
vertices, then T ′z \ Ṽ is large and the algorithm might have to go through T ′z \ Ṽ again if the same vertex z
is chosen in the next application of Algorithm 6.1.

However, the running time can become linear in certain cases when a cut into k pieces of specified size
is desired. For example, consider the case when n` = c`ñ for all ` ∈ [k] with some suitable constants ñ ∈ N

221

Chapter 6 Minimum k-Section

and c ∈ [0, 1), i. e., a cut into k pieces of sizes m` = n` − n`+1 = (1− c)c`ñ for ` ∈ [k − 1] and mk = nk is
desired. Then, the running time is bounded by

O


 ∑

`∈[k−1]

n`


 = O

(
cñ

k−2∑

`=0
c`

)
= O(cñ) = O(n1) = O(n),

which is linear in the input size and does not depend on k.

6.3 Extension to General Graphs
The aim of this section is to generalize the bound for the width of a minimum k-section in a tree to
general graphs by using tree decompositions, similarly as Theorem 1.1 can be generalized to Theorem 1.3.
The techniques of both generalizations are very similar. Recall that, instead of working with the relative
diameter, the general version of the theorem for bisections uses the relative weight of a heaviest path in a
given tree decomposition. Before restating the theorem for k-sections in arbitrary graphs, this definition
is quickly repeated. Consider a tree decomposition (T,X) of some graph G with X = (Xi)i∈V (T) and a
path P ⊆ T . The weight of P with respect to X is wX (P) :=

∣∣∣
⋃
i∈V (P)X

i
∣∣∣ and the relative weight of P

with respect to X is w∗X (P) = 1
nwX (P), where n denotes the number of vertices of G. Furthermore, r(T,X)

was defined to be the relative weight of a heaviest path in T , i. e., r(T,X) = w∗X (P ∗) where P ∗ ⊆ T is a
path with wX (P ∗) ≥ wX (P) for all paths P ⊆ T . See Section 5.3 for more details and a discussion on the
relationship between the relative diameter in trees and the relative weight of a heaviest path in a tree
decomposition.

Theorem 6.4 (Theorem 1.16 restated and generalized).
For every graph G on n vertices, for every tree decomposition (T,X) of G of width t − 1, and for
all m1,m2, . . . ,mk ∈ N0 with

∑k
`=1m` = n, there is a cut (B1, B2, . . . , Bk) in G with |B`| = m` for

all ` ∈ [k] and

eG(B1, B2, . . . , Bk) ≤ (k − 1) t∆(G)
2

((
log2

(
1

r(T,X)

))2
+ 11 log2

(
1

r(T,X)

)
+ 24

)
.

If V (G) = [n], a cut (B1, B2, . . . , Bk) with these properties can be computed in O(k‖(T,X)‖) time and
requires only the tree decomposition (T,X) as input.

The main idea of the proof of this theorem is similar to the proof of Theorem 6.1, i. e., the pieces B`
are cut off successively from the graph G while ensuring that the relative weight of a heaviest path in
the tree decomposition induced by the remaining part is at least as large as the relative weight of a
heaviest path in the original tree decomposition. Lemma 6.5 below states this formally. Afterwards,
Theorem 6.4 is derived from Lemma 6.5. As in the case of trees, almost all technical details are hidden
in this lemma. Its proof is a generalization of the proof of Lemma 6.2 and uses the same techniques as
the generalization of Theorem 1.1 to Theorem 1.3 or, more precisely, the generalization of Lemma 5.7 to
Lemma 5.22. Therefore, some notations and definitions from Section 5.3.2 are repeated before the proof
of Lemma 6.5 is presented.

Proof of Theorem 1.16

As mentioned above, the main idea to prove Theorem 1.16 and its more general version Theorem 6.4 is
the following lemma, which is a generalization of Lemma 6.2.

222

6.3 Extension to General Graphs

Lemma 6.5.
For every graph G on n vertices, for every tree decomposition (T,X) of G of width t − 1, and for
every m ∈ [n− 1], there is an m-cut (B,W) in G with

eG(B,W) ≤ t∆(G)
2

((
log2

(
1

r(T,X)

))2
+ 11 log2

(
1

r(T,X)

)
+ 24

)
,

and such that the tree decomposition (T ′,X ′) induced by G[W] in (T,X) satisfies r(T ′,X ′) ≥ r(T,X).
Let G0 be an arbitrary graph with G ⊆ G0 and V (G0) = [n0] for some integer n0 and let (T0,X0) be an
arbitrary tree decomposition of G0 such that (T,X) is the tree decomposition induced by G in (T0,X0).
If (T0,X0) and a list of the vertices in G are provided as input, then a cut (B,W) in G with the above
properties can be computed in O(‖(T0,X0)‖) time.

Proof of Theorem 6.4. Let G be an arbitrary graph, fix an arbitrary tree decomposition (T,X) of G
of width t − 1, and let m1, . . . ,mk be as in the statement. Without loss of generality, we may assume
that m` > 0 for all ` ∈ [k], as otherwise, for each ` ∈ [k] with m` = 0, one can set B` = ∅ in the beginning
and discard m`. The idea is to apply Lemma 6.5 iteratively for k−1 times to obtain the sets B1, . . . , Bk−1.
Define G0 = G and (T0,X0) = (T,X). For each ` ∈ [k−2], let G` = G−

⋃`
h=1Bh and define (T`,X`) as the

tree decomposition that is induced by G` in (T,X). Furthermore, for ` ∈ [k− 1], denote by (B`,W`) a cut
with the properties in Lemma 6.5 when applied to the graph G`−1 with the tree decomposition (T`−1,X`−1)
and size-parameter m`. The application of Lemma 6.5 is always feasible as mk > 0 by our assumption
and, hence, |V (G`−1)| ≥ m` +mk > m` for each ` ∈ [k − 1]. Finally, set Bk = Wk−1. Observe that, for
all ` ∈ [k − 1], the graph G` is identical to the graph G`−1[W`] and (T`,X`) is also the tree decomposition
induced by G` in (T`−1,X`−1). So, (B1, . . . , Bk) is a cut in G and Lemma 6.5 implies that the following
invariants hold for each ` ∈ [k − 1].
(i) The width of (T`−1,X`−1) is at most t− 1 and r(T`−1,X`−1) ≥ r(T,X).
(ii) The cut (B`,W`) in the graph G`−1 satisfies

eG`−1(B`,W`) ≤
t∆(G)

2

((
log2

(
1

r(T,X)

))2
+ 11 log2

(
1

r(T,X)

)
+ 24

)
.

Now, (ii) implies that the desired bound on the width of the cut (B1, B2, . . . , Bk) is satisfied. Moreover,
the running time of the corresponding algorithm follows immediately from Lemma 6.5 by keeping track
of the vertices in the graph G` for each ` ∈ [k − 1]. Observe that Proposition 2.20 cannot be applied
as V (G`−1) = [n`−1] for some integer n`−1 is not necessarily satisfied. This can be accomplished through a
binary array of length n0, where the entries of the vertices not yet assigned to one of the sets B1, . . . , B`−1

are set to one. Then, a list of the vertices in the remaining graph G`−1 = G−
⋃`−1
h=1Bh, that is used in

the `th application of Lemma 6.5, can be obtained in O(n0) = O(‖(T,X)‖) time. 2

The statement of the running time in Lemma 6.5 might look unnecessary complicated due to the extra
graph G0. Clearly, one can set G = G0 and the running time of the algorithm contained in Lemma 6.5
becomes proportional to ‖(T,X)‖. The proof of Theorem 6.4 shows that the graph G0 and the tree
decomposition (T0,X0) are convenient, as Lemma 6.5 is applied to subgraphs of the graph in which we
would like to find a k-section. If Lemma 6.5 was stated with G0 = G, then it would be necessary to
return a tree decomposition (T ′,X ′) of G′, which is not difficult due to Proposition 2.31. However, for
reapplying Lemma 6.5, it then is necessary to set up a bijection between the vertices of G′ and [n′],
where n′ denotes the number of vertices of G′. This might speed up the actual running time of the
algorithm in Theorem 1.16, but does not speed up the asymptotic running time of O(k‖(T0,X0)‖) for

223

Chapter 6 Minimum k-Section

computing a k-section in the graph G0 with the tree decomposition (T0,X0). Recall that, for trees, our
method achieved a running time of O(kn) for computing a k-section in a tree on n vertices, see also
Theorem 6.1. Furthermore, during the proof of Lemma 6.5 it will become clear that some parts of the
original tree decomposition (T0,X0) might need to be traversed several times, for example when applying
the simple approximate cuts or when computing a heaviest path.

Notation and Vertex Labeling

Here, some notations and the vertex labeling introduced in Section 5.3.2 are repeated. Readers familiar
with these can skip this paragraph, as nothing new is introduced. Consider a tree decomposition (T,X)
of width t− 1 and a path P ⊆ T , denote by G = (V,E) its underlying graph, and let n be the number
of vertices of G. Let T = (VT , ET), P = (VP , EP), X = (Xi)i∈VT , and fix one end i0 of P . Then,
R :=

⋃
i∈VP X

i is called the set of root vertices of P and S := V \R. To partition the sets S and R along
the path P , denote by Ti the component of T − EP that contains i, for each i ∈ VP . For each x ∈ R, the
unique node i ∈ VP that is closest to i0 among all nodes j ∈ VP with x ∈ Xj is called the path-node of x.
Then, defining

Ri := {x ∈ Xi : i is the path-node of x} and Si :=
⋃

j∈V (Ti)

Xj \R

for all i ∈ VP partitions the sets R and S according to Proposition 5.25b). Furthermore, for x ∈ S, the
node i ∈ VP is called the path-node of x if and only if x ∈ Si. Note that every vertex x ∈ V has a unique
path-node i ∈ VP .
Consider two neighboring nodes i and j on P . We say that i is the node before j on P , if i is passed

before j when traversing P from i0 to its other end j0, and otherwise we say that i is the node after j
on P . For technical reasons, this notion is extended to the nodes i0 and j0 by saying that i0 is the node
after j0 on P and that j0 is the node before i0 on P . Furthermore, the end i0 of P is called nonredundant
if Xi0 6= ∅ and, if i0 6= j0, additionally Xi 6⊆ Xi− for all i ∈ VP \ {i0}, where i− denotes the node
before i on P . It is easy to see that every path P ⊆ T is nonredundant, if (T,X) is a nonredundant tree
decomposition. Recall Proposition 5.25a), which says that, for every i ∈ VP , the set Ri is not empty, if
the path P is nonredundant.
When labeling the vertices of G with {1, 2, . . . , n}, we say that the vertices in V ′ ⊆ V (G) receive

consecutive labels if there are k, k′ ∈ [n] ∪ {0} such that each vertex in V ′ receives a label in [k] \ [k′] and
vice versa. A P -labeling of G with respect to (T,X) is a labeling of the vertices in V with {1, 2, . . . , n},
such that
• for each node i ∈ VP , the vertices of Ri ∪ Si receive consecutive labels and the vertices in Ri receive
the largest labels among those, and

• for all nodes i, j ∈ VP with i 6= j, if i0 is closer to i than to j, then each vertex in Ri ∪ Si has a
smaller label than every vertex in Rj ∪ Sj .

As mentioned above, the sets Ri and Si form a partition of V and, hence, a P -labeling exists always. A
P -labeling is useful for finding certain cuts, related to the sets Ri and Si in the graph G. Fix an arbitrary
node i ∈ VP \{i0, j0}. Then, the graph G−EG(i) decomposes into the following disjoint parts: an isolated
vertex for every v ∈ Ri, the part G[Si], the part induced by the vertices in

⋃
j∈V (P−)(Rj ∪ Sj), and the

part induced by the vertices in
⋃
j∈V (P+)(Rj ∪ Sj), where P− and P+ denote the paths into which P

decomposes when i is removed. See Proposition 5.26 for the details. In the next section, we will again
identify vertices with their labels for the existence part of the proof, and we will consider any number
that differs by a multiple of n from a label in [n] to be the same as that label. When we talk about

224

6.3 Extension to General Graphs

labels and vertices, in particular when comparing them, we always refer to an integer in [n]. The notion
of “a is between b and c” for three vertices a, b, c ∈ V is adapted from Section 6.2 and was also used in
Section 5.3.2.
The algorithm in Lemma 6.5, uses some subroutines from Section 5.3. Recall that most of these

subroutines receive a tree decomposition (T,X) as input that satisfies the restriction V (G) = [n] for
the underlying graph G, where n := |V (G)|. Hence, it will sometimes be necessary to set up bijections
between the vertex set of the considered graph G′ and [n′] for n′ := |V (G′)|. Lemma 5.32 and Lemma 5.35
say that a heaviest path P in (T,X) and the set of P -parameters can be computed in O(‖(T,X)‖) time
when the underlying graph G satisfies V (G) = [n] for some integer n. In this section, bijections will be set
up such that we can assume that V (G) = [n]. Then the set of P -parameters consists of
• a P -labeling of the vertices of G, stored in two integer arrays AL and AV , each of length n, such

that, for x ∈ V (G) = [n], the entry AL[x] is the label of vertex x and, for ` ∈ [n], the entry AV [`] is
the vertex that received label `,

• a binary array AR of length n such that, for each x ∈ V (G), the entry AR[x] is one if and only
if x ∈ R,

• an integer array AP of length n such that, for each x ∈ V (G), the entry AP [x] is the path-node of x,
• the trees Ti for all i in P , each stored as an arborescence with root i, including pointers to the
corresponding clusters from (T,X), as well as,

• a list LP of the nodes on P in the order in which they occur when traversing P from i0 to j0,
including, for each i ∈ V (P), a pointer to the root of Ti.

This is slightly less general than the original version introduced in Definition 5.33. Recall that all array
indices refer to vertex names and not labels, except the ones of AV . As in Section 5.3.4 and Section 5.3.5,
the set of P -parameters is useful to store the P -labeling of the vertices and related information as the
path-nodes. Furthermore, the set of P -parameters allows the algorithm to check in constant time whether
a vertex x is in the set Si for some fixed i ∈ VP as stated in Proposition 5.34b).

Proof of Lemma 6.5

The idea for the proof of Lemma 6.5 is very similar to its tree version, namely the proof of Lemma 6.2,
see also Table 6.1 for an overview of the notation. One difference is that, instead of cutting along single
edges of the decomposition tree, we will work with cuts related to removing entire clusters from the
graph. This is also reflected by the slightly different polylogarithmic terms in the bounds in Theorem 6.3
and Lemma 6.5. Again we will define a set Ṽ that contains enough vertices to form the desired set B
by applying Theorem 5.21 to a graph G̃ with V (G̃) = Ṽ and a suitable tree decomposition (T̃ , X̃). In
Section 6.2, the forest induced by the set Ṽ was not connected and, hence, it was easy to take care of some
rounding effects related to its relative diameter. Now, when working with tree decompositions, the graph
induced by Ṽ might be connected and also it requires more work to reorganize the tree decomposition.
More precisely, we will artificially disconnect the graph G[Ṽ], and then glue two tree decompositions of
subgraphs of G[Ṽ] together to obtain one tree decomposition of G̃. Despite these difficulties, that require
more work than in the tree case, there is also a simplification, namely that Case 2 and Case 3 will be
more similar than in the proof of Lemma 6.2 and Case 3 does not need to be split into two subcases.

First, it is shown that a cut with the desired properties exists and then it is discussed how to compute
such a cut. Let G = (V,E) be an arbitrary graph on n vertices and fix some integer m ∈ [n− 1]. Consider
an arbitrary tree decomposition (T,X) of G of width t−1 with T = (VT , ET) and X = (Xi)i∈VT . Without
loss of generality, we may assume that (T,X) is nonredundant, because otherwise one can contract edges
of T to obtain a nonredundant tree decomposition by Proposition 5.23. Now, fix a heaviest path P

225

Chapter 6 Minimum k-Section

Proof of Lemma 6.2 Proof of Lemma 6.5

forest G = (V,E)
on n vertices,

graph G = (V,E)
on n vertices,

tree decomposition (T,X) of G
of width at most t− 1,
T = (VT , ET), X = (Xi)i∈VT ,

assume that G is a tree, assume that (T,X) is non-
redundant,

aim: m-cut (B,W) in G with
diam∗(G[W]) ≥ diam∗(G),

aim: m-cut (B,W) in G such that r(T ′,X ′) ≥ r(T,X) holds for
the tree decomposition (T ′,X ′) induced by G[W] in (T,X),

P = (VP , EP) longest path
in G, ends x0 and y0,

R =
⋃
i∈VP X

i, S = V \R, P = (VP , EP) heaviest path
in T , ends i0 and j0,

d = diam∗(G), |VP | = dn, |R| = rn, r = w∗X (P),

Tv = components of G−EP , Ti = components of T − EP ,
v ∈ VP , Ri = {x ∈ Xi : i is the path-

node of x},
i ∈ VP ,

T ′v = V (Tv) \ {v}, Si =
⋃
j∈V (Ti)X

j \R,

label the vertices of G, label the vertices of G, no labeling of the nodes in T ,

P -distance dP (x, y) = R-distance dR(x, y) =
|{v ∈ VP : v is between x

and y, v 6= y}|.
|{v ∈ VP : v is between x and y, v 6= y}|.

Table 6.1: Overview on the notation used in the existence parts of the proofs of Lemma 6.2 and Lemma 6.5.

in (T,X), let i0 and j0 be the ends of P , and note that the end i0 of P is nonredundant as (T,X) is
nonredundant. For i ∈ VP , define the trees Ti, the sets R, Ri, and Si as above. Consider a P -labeling of
the vertices of G, where Ri0 contains the vertex that received label 1 and Rj0 contains the vertex that
received label n, and identify each vertex with its label. Furthermore, let r be the relative weight of P ,
which satisfies |R| = rn.

Analog to the P ′-distance for a path P ′ in a tree T ′ in Section 6.2, for two vertices x, y ∈ V , define the
R-distance of x and y as

dR(x, y) = |{v ∈ R \ {y} : v is between x and y}| .

It is easy to see that, for all x, y ∈ V with x 6= y,

dR(x, y)− dR(x+ 1, y) ∈ {0, 1}

and

dR(x+ 1, y)− dR(x+ 1, y + 1) ∈ {0,−1}.

Therefore

|dR(x, y)− dR(x+ 1, y + 1)| ≤ 1 for all x, y ∈ V . (6.3)

226

6.3 Extension to General Graphs

.
i j

P

B = M

v + m
v v + m − 1

Figure 6.6: Proof of Lemma 6.5. Construction of the black set in Case 1, where v ∈ R and v + m ∈ R. The
vertex v +m− 1 is not necessarily in Rj .

Note that, for every x ∈ V and all integers `, `′ ∈ [n− 1], we have dR(x, x) = 0 as well as

dR(x, x+ `) + dR(x+ `, (x+ `) + `′) =




dR(x, x+ `+ `′) if `+ `′ < n,

|R|+ dR(x, x+ `+ `′) if `+ `′ ≥ n.

Fix some arbitrary x0 ∈ V and define x` = x0 + `m for all ` ∈ [n]. Note that xn = x0 + nm = x0 and
n∑

`=1
dR(x`−1, x`) = m|R| = mrn.

Therefore, there are two vertices x′, x′′ ∈ V with

dR(x′, x′ +m) ≤ rm and dR(x′′, x′′ +m) ≥ rm.

Using that dR(x, y) is an integer for all x, y ∈ V to strengthen the first inequality and loosening the
second one, yields

dR(x′, x′ +m) ≤ brmc and dR(x′′, x′′ +m) ≥ brmc .

Now, (6.3) implies that there is a vertex x∗ with dR(x∗, x∗ +m) = brmc. If x∗ or x∗ +m is in R, then
let v = x∗. Otherwise, let i and j be the path-nodes of x∗ and x∗ +m, respectively, and let xR and x′R
be the smallest vertex in Ri and Rj , respectively. Note that such vertices exist, as Rh 6= ∅ for all h
in P due to Proposition 5.25a). Let s = min{xR − x∗, x′R − (x∗ + m)} and define v = x∗ + s. Then,
the path-nodes of v and v + m are the path-nodes of x∗ and x∗ + m, i. e., i and j. Moreover, we have
dR(v, v +m) = dR(x∗, x∗ +m) = brmc and v ∈ R or v +m ∈ R. Define

M := {u ∈ V : u is between v and v +m− 1},

and note that |M | = m.
As in the figures in Section 5.3, the tree T is drawn in the top and the vertex sets containing vertices of

the graph G are drawn underneath the corresponding node of P . More precisely, for each i ∈ VP , the

227

Chapter 6 Minimum k-Section

.
i j′ j

P

B = M

v + m − 1

v + m

v

Figure 6.7: Proof of Lemma 6.5. Construction of the black set in Case 2a, where v ∈ R and v +m− 1 ∈ R.

node i is drawn in black, the tree Ti is indicated by a triangle and the sets Ri and Si are represented by
a cycle and a trapezoid, respectively. Areas that are colored blue inside a set Ri symbolize that some
vertices of Ri are counted by dR(v, v +m).
Case 1: v ∈ R and v +m ∈ R.

Define B := M , W := V \B, and note that |B| = m. Applying Proposition 5.26 to i and j shows that
every edge that is cut by (B,W) is in EG(i) ∪ EG(j), see Figure 6.6. Therefore,

eG(B,W) ≤ eG(i) + eG(j) ≤ 2t∆(G) ≤ t∆(G)
2

((
log2

(
1
r

))2
+ 11 log2

(
1
r

)
+ 24

)
,

as r ≤ 1. Let (T ′,X ′) be the tree decomposition induced by G[W] in (T,X). Then,

r(T ′,X ′) ≥ wX ′(P)
|W |

= |R ∩W |
|W |

= |R| − dR(v, v +m)
|W |

≥ rn− rm
n−m

= r,

as desired.
Case 2: v ∈ R and v +m 6∈ R.

Similarly to Case 2 in the proof of Lemma 6.2, the cut (M,V \M) might cut too many edges in G[Sj].
Again, we define a set Ṽ such that (Ṽ , V \ Ṽ) cuts few edges and show that an application of Theorem 5.21
to a graph G̃ ⊆ G[Ṽ] and the tree decomposition that G̃ induces in (T,X) does not cut too many edges.
Also the case when v +m− 1 ∈ R is treated separately again for technical reasons.
Case 2a: v +m− 1 ∈ R.

As in Case 1, the cut (B,W) with B := M and W := V \M satisfies all requirements. Denote by j′

the path-node of v +m− 1. To prove that eG(B,W) ≤ 2t∆(G), apply Proposition 5.26 to i and j′, see
Figure 6.7.
Case 2b: v +m− 1 6∈ R.

Let j′ be the node before j on P . As P is nonredundant, Rj′ cannot be empty due to Proposition 5.25a).
Hence, the vertex v + m − 1 must be in the set Sj and Sj ∩M 6= ∅. Let m̃ = 2|Sj ∩M | and note
that 2 ≤ m̃ ≤ 2m. If m̃ ≥ |Sj |, define Bj := Sj and Wj := ∅, which satisfies 1

2m̃ ≤ |Bj | ≤ m̃. Otherwise,
using the tree decomposition that G[Sj] induces in (T,X) and the size-parameter m̃, Lemma 4.6 says that
there is a simple approximate m̃-cut (Bj ,Wj) in G[Sj] with eG[Sj](Bj ,Wj) ≤ t∆(G), i. e., Bj ∪̇Wj = Sj

228

6.3 Extension to General Graphs

.
i j′ j

P

Ṽ

WjBj

v v + mv + m − 1

Figure 6.8: Proof of Lemma 6.5. Construction of Ṽ in Case 2b, where v ∈ R and v +m /∈ R.

and 1
2m̃ ≤ |Bj | ≤ m̃. Now, define Ṽ = (M \ Sj) ∪ Bj and note that Ṽ satisfies |Ṽ | = m − 1

2m̃ + |Bj |
as M \ Sj and Bj ⊆ Sj are disjoint. Using the bounds on |Bj | and m̃ from above gives

m ≤ |Ṽ | ≤ m+ 1
2m̃ ≤ 2m. (6.4)

Note that Ṽ might contain vertices from Xj , the cluster of node j and, hence, G[Ṽ] might be connected.
Consider the graph G̃ obtained from G[Ṽ] by removing all edges that are incident to some vertex in Xj .
Now, G̃ does not contain any edge between the vertices in Bj ⊆ Sj and the vertices in Ṽ \Bj ⊆ V \ Sj
by Proposition 5.26, see Figure 6.8. Let (T̃1, X̃1) be the restriction of (T,X) to T̃1 = T − (V (Tj) \ {j})
and G̃[Ṽ \ Bj], which is a tree decomposition of G̃[Ṽ \ Bj] as Ṽ \ Bj contains no vertex that is in the
set Sj =

⋃
h∈Tj\{j}X

h \ R. Observe that wX̃1
(P̃1) ≥ dR(v, v + m) holds for P̃1 := P , as every vertex

counted by dR(v, v + m) is in Ṽ \ Bj = M \ Sj . Furthermore, let (T̃2, X̃2) be the restriction of (T,X)
to T̃2 = Tj and G[Bj], which is a tree decomposition of G[Bj], since every vertex in Bj ⊆ Sj is only in
clusters Xh with h ∈ Tj \ {j} due to Property (T3’) of tree decompositions. Let h0 be a node in T̃2 whose
cluster in X̃2 is non-empty. Such a node h0 exists as Bj 6= ∅. Denote by P̃2 the path consisting only of
the node h0 and observe that wX̃2

(P̃2) ≥ 1. Now, let T̃ be the tree obtained from taking one copy of the
tree T̃1 and one copy of the tree T̃2 with disjoint node sets and adding an edge between j0 and h0. Denote
by X̃ the union of the cluster collections X̃1 and X̃2, with an adjustment of the indices, and note that
(T̃ , X̃) is a tree decomposition of G̃. Furthermore, let P̃ be the path corresponding to the nodes of P̃1

and P̃2 after the adjustment of the indices. Then,

wX̃ (P̃) ≥ wX̃1
(P̃1) + wX̃2

(P̃2) ≥ dR(v, v +m) + 1 ≥ rm,

because the clusters in X̃1 and X̃2 are pairwise disjoint. Now, (6.4) implies that

r(T̃ , X̃) ≥ wX̃ (P̃)
|Ṽ |

≥ rm

2m ≥ 1
2r.

Using the tree decomposition (T̃ , X̃) and size-parameter m, Theorem 5.21 implies that there is an
m-cut (B̃, W̃) in G̃ with

eG̃(B̃, W̃) ≤ t∆(G̃)
2

((
log2

(
2
r

))2
+ 9 log2

(
2
r

)
+ 8
)

(6.5)

229

Chapter 6 Minimum k-Section

≤ t∆(G)
2

((
log2

(
1
r

))2
+ 11 log2

(
1
r

)
+ 18

)
.

Now, define B := B̃ and W := V \ B̃. Furthermore, denote by (T ′,X ′) the tree decomposition induced
by G[W] in (T,X). By construction, there are exactly dR(v, v + m) vertices of R in Ṽ and, hence, at
most dR(v, v +m) vertices of R are in B ⊆ Ṽ . Consequently, at least |R| − dR(v, v +m) vertices of R are
in W and

wX ′(P) ≥ |R ∩W | ≥ |R| − dR(v, v +m) ≥ r(n−m),

as well as
r(T ′,X ′) ≥ wX ′(P)

|W |
≥ r(n−m)

n−m
≥ r.

Next, the width of the cut (B,W) in G is analyzed. Let Ĝ := G − EG(i) − EG(j). The graph Ĝ

contains no edges between the sets M \ Sj , Sj , and V \ (M ∪ Sj) by Proposition 5.26 applied to i and j.
So, eG(Ṽ , V \ Ṽ) ≤ 2t∆(G) + eĜ(Ṽ , V \ Ṽ). As mentioned above, the cut (Bj ,Wj) cuts at most t∆(G)
edges in G[Sj]. Using that Ṽ = (M \ Sj) ∪Bj yields

eG(Ṽ , V \ Ṽ) ≤ 2t∆(G) + eĜ(Ṽ , V \ Ṽ) ≤ 2t∆(G) + eG[Sj](Bj ,Wj) ≤ 3t∆(G).

Note that the previous estimation also counts all edges that were removed from G[Ṽ] when constructing G̃,
as these edges are in EG(j). Using (6.5) to count the edges cut by (B̃, W̃) in G̃ yields

eG(B,W) ≤ 3t∆(G) + t∆(G)
2

((
log2

(
1
r

))2
+ 11 log2

(
1
r

)
+ 18

)

≤ t∆(G)
2

((
log2

(
1
r

))2
+ 11 log2

(
1
r

)
+ 24

)
,

as desired.
Case 3: v 6∈ R and v +m ∈ R.

This case is similar to Case 2b, but not completely analogous, as in the proof of Lemma 6.2. Instead
of splitting Sj = Bj ∪Wj , now Si is split. To do so, let m̃ := 2|Si ∩M |, which satisfies 2 ≤ m̃ ≤ 2m
as v ∈ Si ∩M . As in Case 2b, let (Bi,Wi) be a cut in G[Si] with Bi ∪Wi = Si, eG[Si](Bi,Wi) ≤ t∆(G),
and 1

2m̃ ≤ |Bi| ≤ m̃. Then, Ṽ := (M \ Si) ∪Bi satisfies m ≤ |Ṽ | ≤ 2m. Consider the graph G̃ obtained
from G[Ṽ] by removing all edges that are incident to some vertex in Xi and note that G̃ does not contain
any edge between the vertices in Bi and the vertices in Ṽ \Bi, see Figure 6.9. Similarly to Case 2b, a tree
decomposition (T̃ , X̃) of G̃ with r(T̃ , X̃) ≥ 1

2r can be constructed from a tree decomposition of G̃[Ṽ \Bi]
and a tree decomposition of G̃[Bi] by using that dR(v, v + m) vertices of R are in Ṽ \ Bi and Bi 6= ∅.
Using the tree decomposition (T̃ , X̃) and the size-parameter m, Theorem 5.21 implies that there is an
m-cut (B̃, W̃) in G̃ with

eG̃(B̃, W̃) ≤ t∆(G)
2

((
log2

(
1
r

))2
+ 11 log2

(
1
r

)
+ 18

)
.

Now, define B := B̃ andW := V \B̃, which satisfies |B| = m. Using that the set Ṽ contains dR(v, v+m)
vertices of R, one can show analogously to Case 2b that the tree decomposition (T ′,X ′) induced by G[W]
in (T,X) satisfies r(T ′,X ′) ≥ r. Analog to Case 2b, one can show that the width of the cut (B,W) in G
is within the desired bound, by considering the graph Ĝ := G− EG(i)− EG(j), which does not contain
any edges between Si, M \ Si, and V \ (M ∪ Si).

230

6.3 Extension to General Graphs

.
i j

P

Ṽ

BiWi

v + mv v + m − 1

Figure 6.9: Proof of Lemma 6.5. Construction of Ṽ in Case 3, where v 6∈ R and v +m ∈ R. Note that v +m− 1
is not necessarily in R.

Next, it is discussed how to implement an algorithm that computes such a cut (B,W) in a graph G.
Recall that the algorithm in Lemma 6.5 neither receives G nor (T,X) as input, but receives a tree
decomposition (T0,X0) of some graph G0 on n0 vertices with V (G0) = [n0] and G ⊆ G0 as well as a
list LG of the vertices of G as input. First, the algorithm computes a tree decomposition of G, more
precisely, the tree decomposition (T,X) that is induced by G in (T0,X0) and then follows the construction
presented above, which is summarized in Algorithm 6.2. As in the implementation of the algorithm
contained in Theorem 5.21, Algorithm 6.2 does not identify vertices with their labels. From now on, L(x)
is used to refer to the label of a vertex x ∈ V and L−1(a) is used to refer to the vertex which received
label a ∈ [n]. Furthermore, the definition of the R-distance is adjusted such that it refers to two vertex
names, i. e.,

dR(x, y) = |{v ∈ R : L(v) is between L(x) and L(y), v 6= y}|

for all x, y ∈ V (G). As usually, only the set B of the desired cut (B,W) is returned and throughout the
algorithm, all sets are stored as unordered lists of vertices.

The aim is to show that Algorithm 6.2 can be implemented to run in O(‖(T0,X0)‖) time. To do so, it
suffices to show that every line can be executed in time proportional to m, n, n0, ‖(T,X)‖, or ‖(T0,X0)‖
as ‖(T,X)‖ ≤ ‖(T0,X0)‖ and m ≤ n ≤ n0 ≤ ‖(T0,X0)‖. Before executing Line 1, the algorithm sets up a
bijection between the vertices in G and [n], which takes O(n0) time by Lemma 2.21a). Then, (T,X) is
computed, which takes time proportional to (T0,X0) according to Proposition 2.31b) and Lemma 2.21c),
and while doing so the algorithm renames the vertices with the bijection such that, from now on, we may
assume that V (G) = [n]. Then, Line 2 and Line 3 each take O(‖(T,X)‖) time by Proposition 2.32b),
Lemma 5.32, and Lemma 5.35. Denote by AL, AV , AR, AP , and LP the arrays and the list of the set of
P -parameters. Recall that all array indices refer to vertex names, except the ones in AV . Similarly to the
implementation of Algorithm 6.1 in the proof of Lemma 6.2, for each x in V , the number d1(x) as defined
in Line 4 is the number of vertices in R, whose label is strictly smaller than L(x). So the algorithm
first sets d1(x) = 0 for the vertex x = L−1(1). Then it goes through all other vertices x in increasing
order of their labels, i. e., in the order in which they are stored in AV , and sets d1(x) = d1(x−) + 1

231

Chapter 6 Minimum k-Section

Algorithm 6.2: Computing an m-cut with the properties in Lemma 6.5.
Input: a list of the vertices of a graph G on n vertices, a tree decomposition (T0,X0) of a graph G0

with G ⊆ G0 and V (G0) = [n0], and an integer m ∈ [n− 1].
Output: an m-cut (B,W) in G with the properties in Lemma 6.5.

1 Compute the tree decomposition (T,X) induced by G in (T0,X0);
2 Turn (T,X) into a nonredundant tree decomposition;
3 Compute a heaviest path P in T with respect to X , its relative weight r = r(T,X), and the set of

P -parameters of G. To state the algorithm, let R be the set of root vertices of P , denote by L(x) the
label of vertex x ∈ V and by L−1(a) the vertex that received label a ∈ [n];

4 For each x ∈ V (G) compute d1(x) = dR(L−1(1), x);
5 Determine a vertex v ∈ V with dR(v, v +m) = brmc and v ∈ R or L−1(L(v) +m) ∈ R;
6 M ← {w ∈ V (G) : L(w) is between L(v) and L(v) +m− 1};
7 If v ∈ R then
8 If L−1(L(v) +m) ∈ R or L−1(L(v) +m− 1) ∈ R then
9 B ←M ;

10 Return (B, V (G) \B);
11 Endif
12 Let h be the path-vertex of L−1(L(v) +m);
13 Else
14 Let h be the path-vertex of v;
15 Endif
16 m̃← 2|Sh ∩M |;
17 Let (Bh,Wh) be a cut in G[Sh] with eG[Sh](Bh,Wh) ≤ t∆(G) and 1

2m̃ ≤ |Bh| ≤ m̃;
18 Ṽ ← (M \ Sh) ∪Bh;
19 Let (T̃ , X̃) be a tree decomposition of G̃ = G[Ṽ]− EG(h) with r(T̃ , X̃) ≥ 1

2r;
20 Compute an m-cut (B̃, W̃) in G̃ as in Theorem 5.39 by using the tree decomposition (T̃ , X̃);
21 B ← B̃;
22 Return (B, V (G) \B);

if x− ∈ R and d1(x) = d1(x−) otherwise, where x− denotes the vertex with label L(x)− 1. Hence, Line 4
takes time proportional to n, as the algorithm can check in constant time whether a vertex is in R by
using the array AR. Using d1(.), it is easy to compute dR(x, x+m) and dR(x, x−m) in constant time
for an arbitrary x ∈ R as dR(x, y) = d1(y) − d1(x) for all x, y ∈ V with L(x) < L(y). To determine
a vertex v with the property in Line 5, the algorithm goes through all vertices in R, i. e., it traverses
the array AR and considers only vertices x with AR(x) = 1, and checks whether dR(x, x−m) = brmc
or dR(x, x + m) = brmc is satisfied. As argued above, a vertex v with the property in Line 5 exists
always. Hence, Line 5 can be executed in time proportional to n0. The set M in Line 6 can be read off
the array AV in O(m) time. The conditions in Line 7 and Line 8 can be checked in constant time by
using the arrays AR, AL, and AV . Line 9 and Line 10, if executed, take time proportional to m. Note
that here, the algorithm needs to convert the current vertex names of G back to the vertex names in G0,
which takes constant time for each vertex by Lemma 2.21b).

From now on, assume that Lines 9-10 are not executed. So either Line 12 or Line 14 is executed and each
of them takes constant time by using the array AP . Furthermore, Lines 16-22 are executed and discussed
now. To compute m̃ in Line 16, the algorithm traverses the set M and checks for each vertex v ∈ M

232

6.3 Extension to General Graphs

whether it is in Sh, which takes constant time for each v ∈M by Proposition 5.34b). All other vertices
are in M \Sh and are collected in a list L1

Ṽ
, which will be useful for Line 18. All in all, Line 16 takes time

proportional to m. To execute Line 17, the algorithm first determines a list of the vertices in Sh in O(n)
time by going through all vertices x in G, i. e., going through the set [n], and checking whether x ∈ Sh
as in Proposition 5.34b). While doing so, the algorithm also determines nh := |Sh|. If |Sh| ≤ m̃, it
sets Bh = Sh. Otherwise, (Bh,Wh) is a simple approximate m̃-cut in G[Sh] and can be computed with
the algorithm contained in Lemma 4.6. To do so, a tree decomposition of G[Sh] needs to be provided and
the vertex set of G[Sh] needs to be [nh]. Both can be achieved in O(n+ ‖(T,X)‖) time by Lemma 2.21
and Proposition 2.31b). Hence, Line 17 takes O(n+ ‖(T,X)‖) = O(‖(T,X)‖) time, including the time
needed to convert back the names of the vertices in the set Bh. Then, Line 18 is a concatenation of
disjoint lists and takes constant time.
To implement Line 19, recall that (T̃ , X̃) was constructed from two tree decompositions, as the tree

decomposition induced by G̃ in (T,X) might not satisfy the requirements. So the algorithm computes the
sizes n1 and n2 of the sets M \ Sh and Bh, respectively, as well as a bijection from M \ Sh to [n1] and a
bijection from Bh to [n1 + n2] \ [n1], which takes O(n1 + n2) = O(n) time together by Lemma 2.21a).
Note that both bijections together result in a bijection renaming the vertices of G̃ to [n1 + n2]. Then, the
algorithm computes the restriction (T̃1, X̃1) of (T,X) to T̃1 := T − (V (Th) \ {h}) and G[M \ Sh], and the
restriction (T̃2, X̃2) of (T,X) to Th and G[Sh]. Using that the tree Th is known from the set of P -parameters,
it follows that this takes O(‖(T,X)‖) time by Lemma 2.21 and Proposition 2.31b). To ensure that the
node sets of T̃1 and T̃2 are disjoint, the algorithm renames each of them, which takes time proportional
to |V (T̃1)|+ |V (T̃2)| ≤ ‖(T̃ , X̃)‖ by Lemma 2.22. Then, the algorithm determines a node h0 in T̃2 whose
cluster in X̃2 is non-empty, and joins T̃1 and T̃2 by inserting the edge {j0, h0}, which together takes at
mostO(‖(T̃2, X̃2)‖) time. As described in the construction, the new tree T̃ obtained from T̃1 and T̃2 together
with the union of the clusters X̃1 and X̃2 form a tree decomposition (T̃ , X̃) of G̃ with the desired property
for Line 19. Then, an application of the algorithm in Theorem 5.39 to G̃ with the tree decomposition (T̃ , X̃)
and the size-parameter m takes time proportional to ‖(T̃ , X̃)‖ = ‖(T̃1, X̃1)‖ + ‖(T̃2, X̃2)‖. So all in all,
Line 20 takes O(‖(T,X)‖+ ‖(T̃1, X̃1)‖+ ‖(T̃2, X̃2)‖) = O(‖(T,X)‖) time, including to convert back the
vertex names in B̃. Finally to return the set B := B̃, the algorithm needs to convert back the vertex
names, which takes constant time for each vertex by Lemma 2.21b).

233

Chapter 7

Open Problems

Finally, this last chapter presents a selection of open problems. Probably the most intriguing open questions
concerning the Minimum Bisection Problem are the following two. Is it NP-hard to approximate the
width of a minimum bisection within a constant factor? Does the Minimum Bisection Problem remain
NP-hard when restricted to planar graphs? The following four open questions are closely related to the
methods used in this thesis.

Question 7.1.
Consider a class G of bounded-degree graphs with strongly sublinear separators, which means that there
are constants ∆0 ∈ N, σ > 0, and δ < 1 such that every graph G in G on n vertices satisfies ∆(G) ≤ ∆0

and has a 1
2 -separator of size at most σnδ. Furthermore, assume that G is closed under taking subgraphs.

The techniques applied in Section 3.1 can be used to show that there is a constant cσ such that every
graph G ∈ G on n vertices satisfies MinBis(G) ≤ cσn

δ. Furthermore, similar to Theorem 3.9 and
Theorem 3.13, it seems that, for every c > 0, there is a γ = γ(c,∆0) > 0 such that, for every graph G ∈ G
on n vertices, the following holds

MinBis(G) ≥ cnδ ⇒ tw(G) ≥ γnδ − 1.

What upper bounds on the tree-width of the graphs in the class G can be derived? Does large minimum
bisection width imply large tree-width for graphs in G? Recall that, for bounded-degree planar graphs,
large minimum bisection width implies large tree-width, which is equivalent to containing a large grid as a
minor. Is there some property for G that is equivalent to having large tree-width?

Question 7.2.
As discussed in the beginning of Section 3.3, the algorithm in Theorem 1.10 is a constant-factor approxi-
mation for the Minimum Bisection Problem in bounded-degree planar graphs that are (γ, k, `)-grid-
homogeneous for certain parameters γ, k, and `. The property of being grid-homogeneous was only used
to derive a lower bound on the minimum bisection width but not when constructing a bisection. Consider
a class G of bounded-degree planar graphs, where each graph G ∈ G is (γ, k, `)-grid-homogeneous for
some γ < 1

2 , some constant `, and some k that depends on the number of vertices of G. What upper
bounds can be derived for the minimum bisection width of the graphs in G? Is it possible to use these
ideas algorithmically, i. e., when given a graph G and a certificate that G is (γ, k, `)-grid-homogeneous, is
it possible to compute a bisection whose width is within such a bound in polynomial time?

235

Chapter 7 Open Problems

Question 7.3.
It is open whether, for planar graphs G, it is NP-hard to determine grid(G), which is defined as the
largest integer k such that G contains a k×k grid as a minor. Can the ideas used in Section 3.3.4 to
show that the HGM Problem is NP-hard be modified to show that, for planar graphs G, it is NP-hard
to determine grid(G)? Can these ideas be used to show that other more restricted versions that ask for
containing a grid as a minor with additional properties are NP-hard? For example, consider the following
two problems. Given a planar graph G, determine the largest integer k such that G contains a subgraph H
that is a subdivision of a k×k grid. Given a planar graph G and an integer ` ∈ N, determine the largest
integer k such that G contains the k×k grid as an `-shallow minor, which is defined as follows. For ` ∈ N,
a graph G contains a graph H as an `-shallow minor if there is a collection of nonempty pairwise disjoint
sets (Mx)x∈V (H) with Mx ⊆ V (G) for each x ∈ V (H) such that the following holds:
• For each x ∈ V (H), the graph G[Mx] has radius at most `, i. e., there is a vertex y ∈ Mx such
that distG[Mx](y, y′) ≤ ` for all y′ ∈Mx.

• If each set Mx is contracted to one vertex x, then the graph H is obtained.

Question 7.4.
The algorithms for computing a k-section of small width in trees and tree-like graphs, that were presented
in Theorem 6.3 and Theorem 6.4, respectively, do not run in linear time. Is it possible to speed up these
algorithms to run in linear time?

236

Appendix A

Generalizing the Concept of
Path-Prosperous Graphs

In the following, the definition of path-prosperous graphs is generalized and a lower bound on the minimum
bisection width in these graphs is proved. The following definition is a generalization of Definition 3.20,
which relaxes property (P1). To this purpose, the collection of clusters is not anymore required to be a
partition of V ′, but all vertices in V ′ appear in almost the same amount of clusters. The parameter ε
captures this deviation and the parameter a denotes the average number of times a vertex v ∈ V ′ appears
in a cluster in X .

Definition A.1 ((γ, ε, k, c)-path-prosperous).
Let 0 ≤ ε < 1, 0 ≤ γ < 1, k ∈ N, 0 < c ≤ 1. A graph G = (V,E) is called (γ, ε, k, c)-path-prosperous
if it contains a subgraph G′ = (V ′, E′) with |V ′| ≥ (1 − γ)|V | such that there exists a collection of
clusters X = (Xi)i∈I with Xi ⊆ V ′ satisfying the following properties. First, let

Iv :=
{
i ∈ I : v ∈ Xi

}
for all v ∈ V ′ and a := 1

|V ′|
∑

v∈V ′
|Iv| .

(P1’) for all v ∈ V ′, the set Iv satisfies (1− ε)a ≤ |Iv| ≤ (1 + ε)a,
(P2) for all i ∈ I, the set Xi satisfies |Xi| ≥ k,
(P3) for all d ∈ [k], for all i1, i2 ∈ I, and for all Z1 ⊆ Xi1 , Z2 ⊆ Xi2 with |Z1| = |Z2| = d, there exist

at least cd edge-disjoint Z1,Z2-paths in G′.

Observe that for ε = 0 and a = 1, that is, whenever each vertex v ∈ V ′ belongs to exactly one of the
sets Xi with i ∈ I, property (P1’) in the above definition is equivalent to property (P1) in Definition 3.20.
Consider a (γ, k, c)-path-prosperous graph G, where X = (Xi)i∈I is a collection of clusters with the
properties in Definition 3.20 and further consider a minimum bisection (B,W) in G. In the proof of
Lemma 3.22, it was easy to find two indices iB and iW such that the corresponding clusters in X contained
many vertices in B and W , respectively. Such indices also exist for (γ, ε, k, c)-path-prosperous graphs, as
is shown in the next lemma. Its proof constitutes most of the work needed to derive a lower bound on the
minimum bisection width in (γ, ε, k, c)-path-prosperous graphs. It uses the following notion: For a set S

237

Appendix A Generalizing the Concept of Path-Prosperous Graphs

and a subset S′ ⊆ S, let

1S′(x) :=
{

1 if x ∈ S′,
0 otherwise

for all x ∈ S and note that
∑
x∈S 1S′(x) = |S′| holds for all S′ ⊆ S.

Lemma A.2.
For all 0 ≤ γ < 1

2 and for all 0 ≤ ε < 1− γ there is an αγ,ε > 0 such that the following holds. For every
graph G = (V,E) with |V | even, every subgraph G′ = (V ′, E′) with |V ′| ≥ (1− γ)|V | and every collection
of clusters X = (Xi)i∈I with Xi ⊆ V ′ that satisfies (P1’) with respect to ε, the following is true.
For every bisection (B,W) of G, there are indices iB , iW ∈ I with

∣∣XiB∩B
∣∣ ≥ αγ,ε

∣∣XiB
∣∣ and

∣∣XiW ∩W
∣∣ ≥ αγ,ε

∣∣XiW
∣∣ .

In particular, one can choose

αγ,ε = (1− 2γ)(1− γ − ε)
(1− γ)(1− 2γ) + 1 .

Proof. Fix some 0 ≤ γ < 1
2 and 0 ≤ ε < 1 − γ. Let G = (V,E) be an arbitrary graph with |V | even,

G′ = (V ′, E′) a subgraph of G with

|V ′| ≥ (1− γ) |V | , (A.1)

and X = (Xi)i∈I with Xi ⊆ V ′ a collection of clusters that satisfies (P1’) with respect to ε. As in
Definition A.1, for each v ∈ V ′ define Iv := {i ∈ I : v ∈ Xi} and let a := 1

|V ′|
∑
v∈V ′ |Iv|. Then,

a |V ′| =
∑

v∈V ′
|Iv| =

∑

v∈V ′

∑

i∈I
1Xi(v)

=
∑

i∈I

∑

v∈V ′
1Xi(v) =

∑

i∈I

∣∣Xi
∣∣ . (A.2)

Furthermore, (P1’) guarantees that

(1− ε)a ≤ |Iv| ≤ (1 + ε)a for all v ∈ V ′. (A.3)

Define

αγ,ε := (1− 2γ)(1− γ − ε)
(1− γ)(1− 2γ) + 1 . (A.4)

Let us quickly argue that αγ,ε > 0. The parameters γ and ε satisfy 1−γ−ε > 0 and 1−2γ > 0. Therefore,
both the numerator and denominator in the fraction in (A.4) are positive and, hence, αγ,ε > 0.
Next, it is shown that αγ,ε ≤ 1

2 . Clearly,

(1− γ)(1− 2γ) ≤ 1 ≤ 1 + 2ε(1− 2γ)

holds and consequently

2(1− 2γ)(1− γ)− 2ε(1− 2γ) ≤ (1− γ)(1− 2γ) + 1
⇔ 2(1− 2γ)(1− γ − ε) ≤ (1− γ)(1− 2γ) + 1,

which shows that αγ,ε ≤ 1
2 .

238

Let B ∪̇W = V be an arbitrary bisection in G. As |V | is even, |B| = |W | = 1
2 |V |. Fix some arbitrary

index j ∈ I. Each vertex in Xj is either in Xj ∩ B or in Xj ∩W , and therefore |Xj ∩ B| ≥ 1
2 |X

j | or
|Xj ∩W | ≥ 1

2 |X
j | holds. Since αγ,ε ≤ 1

2 , assume without loss of generality that |Xj ∩B| ≥ αγ,ε|Xj | and
choose iB = j.

Assume for a contradiction that there is no i ∈ I with |Xi ∩W | ≥ αγ,ε|Xi|, i. e.,
∣∣Xi ∩W

∣∣ < αγ,ε
∣∣Xi
∣∣ for all i ∈ I. (A.5)

Then,
∣∣Xi ∩B

∣∣ > (1− αγ,ε)
∣∣Xi
∣∣ for all i ∈ I, (A.6)

as for every i ∈ I, each vertex in Xi is either in Xi ∩B or in Xi ∩W . To derive the desired contradiction,
define

SB :=
{

(v, i) ∈ (V ′∩B)× I : v ∈ Xi
}

SW :=
{

(v, i) ∈ (V ′∩W)× I : v ∈ Xi
}
.

Since γ < 1
2 , there are strictly more than 1

2 |V | vertices in V ′. Hence, some vertex in V ′ must lie in B
and some vertex in V ′ must lie in W . Therefore V ′∩B 6= ∅, V ′∩W 6= ∅, and so the following maximum
and minimum are being taken over non-empty sets

amax
B := max {|Iv| : v ∈ V ′∩B} , amin

W := min {|Iv| : v ∈ V ′∩W} . (A.7)

Next, by estimating the sizes of the sets SB and SW , a lower bound for amax
B and an upper bound

for amin
W are derived. The set SB satisfies

|SB | =
∑

v∈V ′∩B

∑

i∈I
1Xi(v) =

∑

v∈V ′∩B
|Iv|

(A.7)
≤ |V ′∩B| amax

B

≤ 1
2 |V | a

max
B

(A.1)
≤ 1

2(1− γ) |V
′| amax

B

and

|SB | =
∑

i∈I

∑

v∈V ′∩B
1Xi(v) =

∑

i∈I

∣∣Xi ∩B
∣∣ (A.6)

>
∑

i∈I
(1− αγ,ε)

∣∣Xi
∣∣ (A.2)= (1− αγ,ε) a |V ′| .

Therefore,

(1− αγ,ε) a |V ′| < |SB | ≤
1

2(1− γ) |V
′| amax

B ,

which implies

amax
B > 2(1− γ)(1− αγ,ε)a. (A.8)

The set SW satisfies

|SW | =
∑

v∈V ′∩W

∑

i∈I
1Xi(v) =

∑

v∈V ′∩W
|Iv|

(A.7)
≥ |V ′∩W | amin

W

≥ (|W | − |V \ V ′|) amin
W

(A.1)
≥

(1
2 − γ

)
|V | amin

W ≥
(1

2 − γ
)
|V ′| amin

W

239

Appendix A Generalizing the Concept of Path-Prosperous Graphs

and

|SW | =
∑

i∈I

∑

v∈V ′∩W
1Xi(v) =

∑

i∈I
|Xi ∩W |

(A.5)
<

∑

i∈I
αγ,ε|Xi| (A.2)= αγ,εa|V ′|.

Consequently,
(1

2 − γ
)
|V ′| amin

W ≤ |SW | < αγ,εa |V ′| ,

which implies that

amin
W <

αγ,ε(1
2 − γ

)a. (A.9)

The remainder is now reduced to pure computation. Recall the definition of αγ,ε in (A.4), that is

αγ,ε := (1− 2γ)(1− γ − ε)
(1− γ)(1− 2γ) + 1 .

This is equivalent to

(1− γ)(1− 2γ)− ε(1− 2γ) = αγ,ε(1− γ)(1− 2γ) + αγ,ε

⇔ (1− γ)(1− 2γ)(1− αγ,ε)− αγ,ε = ε(1− 2γ)

⇔ 2(1− γ)(1− αγ,ε)−
αγ,ε(1
2 − γ

) = 2ε. (A.10)

Finally,

2εa = (1 + ε)a− (1− ε)a
(A.3)
≥ max {|Iv| : v ∈ V ′} −min {|Iv| : v ∈ V ′}

≥ amax
B − amin

W

(A.8),(A.9)
> 2(1− γ)(1− αγ,ε)a−

αγ,ε(1
2 − γ

)a (A.10)= 2εa,

which is a contradiction. Hence, there is an index iW ∈ I that satisfies |XiW ∩W | ≥ αγ,ε|Xi|. 2

Consider a (γ, ε, k, c)-path-prosperous graph G. Let X be a collection of clusters that shows that G
satisfies Definition A.1. The previous lemma states that, for every bisection (B,W) in G, there exists a
cluster with many vertices in B and there exists a cluster with many vertices in W . Then, (P3) guarantees
many edge-disjoint paths that start in B and end in W , which will now be used to derive a lower bound
for the width of a minimum bisection in G.

Theorem A.3.
For every 0 ≤ γ < 1

2 and for every 0 ≤ ε < 1− γ there is an αγ,ε > 0 such that the following holds. For
every (γ, ε, k, c)-path-prosperous graph G = (V,E) with |V | even

MinBis(G) ≥ αγ,ε · ck,

where αγ,ε can be chosen as in Lemma A.2.

Proof. Fix some 0 ≤ γ < 1
2 and 0 ≤ ε < 1− γ. Let αγ,ε be as in Lemma A.2. Moreover, let G = (V,E)

be an arbitrary (γ, ε, k, c)-path-prosperous graph with |V | even. Then, there is a subgraph G′ and a
collection X = (Xi)i∈I of clusters with Xi ⊆ V (G′) for all i ∈ I with the properties in Definition A.1.
Consider a minimum bisection (B,W) in G. By Lemma A.2 there exist indices iB and iW with |XiB∩B| ≥

240

αγ,ε|XiB | and |XiW∩W | ≥ αγ,ε|XiW |. Using (P2), it follows that |XiB∩B| ≥ αγ,εk and |XiW∩W | ≥ αγ,εk.
Moreover, define

d := min
{∣∣XiB∩B

∣∣ ,
∣∣XiW ∩W

∣∣ , k
}
,

which satisfies αγ,εk ≤ d ≤ k. Now, choose ZB ⊆ XiB∩B and ZW ⊆ XiW∩W with |ZB | = |ZW | = d. Then,
(P3) implies that there are at least cd edge-disjoint ZB ,ZW -paths in G′ and, hence, also in G. Each such
path has length at least one, i. e., it contains at least one edge, since ZB ∩ZW ⊆ B∩W = ∅. Consequently,
each path contains at least one edge that is cut by the bisection (B,W). Thus eG(B,W) ≥ cd ≥ αγ,εck.2

241

Appendix B

Embeddings of the Grid and
Minimal Graphs Containing a Grid

as a Minor

Here, a proof for Remark 3.15, which is restated in the following, is presented.

Remark B.1 (Remark 3.15 repeated).
For every integer k ≥ 3, every minimal graph containing a k×k grid as a minor is uniquely embeddable.

Instead of working with embeddings of graphs, the following theorem is employed. Recall that a graph G
is uniquely embeddable if, for any two embeddings of G in the plane, there is a topological isomorphism
between the embeddings.

Theorem B.2 (Whitney, see Theorem 4.3.2 in [Die12]).
Every 3-connected, planar graph is uniquely embeddable.

Consequently, it would suffice to show that, for k ≥ 3, every minimal graph G containing a k×k grid as
a minor is 3-connected. However, even the k×k grid itself is not 3-connected, as can be seen by removing
the vertices (1, 2) and (2, 1), which results in the vertex (1, 1) being isolated. In general, every graph
on at least four vertices with a vertex of degree two cannot be 3-connected. However, when studying
embeddings, vertices of degree two can be neglected in the following way. Consider a graph G that is
uniquely embeddable, then every graph that is a subdivision of G is also uniquely embeddable.

Corollary B.3.
Every subdivision of a 3-connected planar graph is uniquely embeddable.

The reverse operation of subdividing an edge is to suppress a vertex of degree 2. More formally,
let G = (V,E) be a graph and let v ∈ V be a vertex with degG(v) = 2 and such that the two neighbors
of v, say u and w, are not adjacent. Then, the graph obtained from G by suppressing v is the graph, that
is obtained from G by deleting the vertex v and inserting the edge {u,w}.

243

Appendix B Embeddings of the Grid and Minimal Graphs Containing a Grid as a Minor

As usual, denote the k×k grid by Gk. For k ≥ 3, the vertices (1, 1), (1, k), (k, 1), and (k, k) are referred
to as the corners of Gk. For k ≥ 3, let G′k be the graph obtained from Gk by suppressing each of its
corners. For i ∈ [k], the ith column of G′k is the vertex set obtained by intersecting the ith column
of Gk with V (G′k) and similarly, for j ∈ [k], the jth row of G′k is the vertex set obtained by intersecting
the jth row of Gk with V (G′k). Furthermore, an edge e ∈ E(G′k) is called a horizontal edge if e is a
horizontal edge of Gk and e ∈ E(G′k) is called a vertical edge if e is a vertical edge of Gk. Observe that G′k
contains exactly four edges that are neither vertical nor horizontal.

One way to show that G′k is 3-connected is to use the following variant of Tutte’s Wheel Theorem. In
this context, a contraction of an edge e = {v, w} in a graph G is called a Tutte contraction if degG(v) ≥ 3
and degG(w) ≥ 3. A sequence of graphs (G̃1, . . . , G̃d) is called a sequence of Tutte contractions from G̃1

to G̃d if, for all h ∈ [d− 1], the graph G̃h+1 is obtained from G̃h by a Tutte contraction. For simplicity,
a Tutte contraction-sequence from a graph G to a graph isomorphic to K4 is called a complete Tutte
contraction-sequence for G.

Theorem B.4 (variant of Tutte’s Wheel Theorem, see Theorem 3.2.5 in [Die12]).
A graph G is 3-connected if and only if there exists a complete Tutte contraction-sequence for G.

Now, the previous theorem will be used to prove that, for k ≥ 3, the graph G′k is 3-connected. Hence,
for k ≥ 3, the k×k grid is uniquely embeddable.

Lemma B.5.
The graph G′k is 3-connected for all k ≥ 3.

Proof. Recall that V (Gk) = {(i, j) : i ∈ [k], j ∈ [k]} and therefore, for k ≥ 3,

V (G′k) = {(i, j) : i ∈ [k], j ∈ [k]} \ {(1, 1), (1, k), (k, 1), (k, k)}.

By Theorem B.4, it suffices to show that, for every integer k ≥ 3, there is a complete Tutte contraction-
sequence for G′k. This is done by induction on k.

Base: The base is at k = 3. Set G = G′3 and note that degG((1, 2)) = degG((2, 1)) = 3. Further-
more, (1, 2) and (2, 1) are adjacent in G and, when contracting the edge between them, a complete
graph G̃ on four vertices is obtained, see Figure B.1a). Hence, (G, G̃) is a complete Tutte contraction-
sequence for G.

Step: Fix some k ≥ 4 and assume that there exists a complete Tutte contraction-sequence for G′k−1. In
order to show that there is a complete Tutte contraction-sequence for G′k, it suffices to show that there
is a Tutte contraction-sequence from G′k to a graph isomorphic to G′k−1. The idea is to contract all
horizontal edges between the second and the third column of G′k and then all vertical edges between
the second and the third row of the remaining graph, see Figure B.1c) for an example. It is now argued
that, when contracting the horizontal edges between the second and the third column of G′k successively,
then each contraction is a Tutte contraction. Arguing that each contraction of a vertical edge is a Tutte
contraction is analogous.

For h ∈ [k], set vh := (2, h), wh := (3, h), and eh := {vh, wh}, see Figure B.1b). Define G̃0 := G′k and,
for h ∈ [k], let G̃h be the graph obtained from G̃h−1 by contracting eh. As degG̃0

(v1) = degG̃0
(w1) = 3,

the contraction of e1 in G̃0 is a Tutte contraction. For h ∈ [k − 1] \ {1}, in the graph G̃h−1, the
vertex vh = (2, h) is adjacent to all of (1, h), (2, h+ 1), wh = (3, h), and the vertex resulting from the
contraction of eh−1, which implies that degG̃h−1

(vh) = 4. Similarly, it follows that degG̃h−1
(wh) = 4 and

244

G̃0

v1

v4 w4

G̃3

a) Contraction in the base case, i. e., for k = 3.

G̃0

v1 w1

v2 w2

v3 w3

v4 w4

e1

e2

e3

e4

b) Notation in the step, example with k = 4.

G̃0 G̃1 G̃2 G̃3

G̃4 G̃5 G̃6 G̃7

c) Example for contractions as involved in the step, example with k = 4.

Figure B.1: Contractions in the proof of Lemma B.5. Right before contracting an edge it is colored blue and
right after the contraction the resulting vertex is colored blue.

therefore the contraction of eh in G̃h−1 is a Tutte contraction. Moreover, in G̃k−1, the vertex vk = (2, k)
is adjacent to all of (1, k − 1), wk = (3, k), and the vertex resulting from the contraction of ek−1, which
implies that degG̃k−1

(vk) = 3. Similarly, it follows that degG̃k−1
(wk) = 3 and therefore the contraction

of ek in G̃k−1 is a Tutte contraction. 2

Using Lemma B.5, we can now prove Remark B.1.

Proof of Remark B.1. Let k ≥ 3. Let H = (V,E) be a minimal graph that contains a k×k grid as a
minor. Denote the k×k grid by Gk, and let G′k be the graph obtained from Gk by suppressing all of its
corners. Consider a partition of V into non-empty setsMi,j with i, j ∈ [k] such that contractingMi,j to one
vertex (i, j) yields Gk, see also Proposition 3.24. As long as H contains a vertex v with degH(v) = 2 such
that the neighbors of v are not adjacent, suppress v. Denote by H ′ = (V ′, E′) the graph obtained from H

in this way. Clearly, H is a subdivision of H ′. Furthermore, all vertices v ∈ V ′ satisfy degH′(v) = degH(v).
Assume for a contradiction that H ′ contains a vertex v with degH′(v) = 2. Then, v was not suppressed
because its two neighbors in H ′, say u and w, are adjacent. Thus, (u, v, w) must be a cycle in H ′. This
implies that H contains a cycle C such that at most two vertices x in C satisfy degH(x) ≥ 3. When
contracting H to Gk, the cycle C cannot be contracted to a single vertex of Gk as otherwise there would
be i, j ∈ [k] with V (C) ⊆Mi,j . Thus, contradicting Proposition 3.24a). Consequently, when contracting H
to Gk, there must be a cycle in Gk that contains at most two vertices x with degGk(x) ≥ 3, which is again
a contradiction. Consequently, H ′ does not contain a vertex v with degH′(v) = 2.

245

Appendix B Embeddings of the Grid and Minimal Graphs Containing a Grid as a Minor

For i, j ∈ [k], set M ′i,j = Mi,j ∩ V ′. Clearly, the sets M ′i,j with i, j ∈ [k] form a partition of V ′. For
all i, j ∈ [k] such that (i, j) is a vertex of G′k, the set M ′i,j is non-empty by Proposition 3.16. If v, w ∈ V
are two vertices with degH(v) ≥ 3 and degH(w) ≥ 3, then v and w must both be vertices of H ′ and, for
each v,w-path P in H, there exists a v,w-path P ′ in H ′ with

{
(i, j) : P ′ uses a vertex from M ′i,j

}
⊆ {(i, j) : P uses a vertex from Mi,j} .

Thus, Proposition 3.24 implies the following.
(i) For all i, j ∈ [k] such that (i, j) is a vertex of G′k, the graph H ′[M ′i,j] is connected.
(ii) For all i, j, ĩ, j̃ ∈ [k] such that (i, j) and (̃i, j̃) are adjacent vertices of G′k, there is exactly one edge

in H ′ that joins a vertex in M ′i,j to a vertex in M ′
ĩ,j̃
.

For all i, j, ĩ, j̃ ∈ [k] such that (i, j) and (̃i, j̃) are vertices of G′k that are not adjacent, there is no
edge in H ′ that joins a vertex in M ′i,j to a vertex in M ′

ĩ,j̃
.

Therefore, when taking H ′ and contracting each set M ′i,j to one vertex (i, j) for all i, j ∈ [k] such that (i, j)
is a vertex of G′k yields G′k. Let i, j ∈ [k] such that (i, j) is a vertex of G′k. Proposition 3.16 now implies
that either |M ′i,j | = 1 or |M ′i,j | = 2 and in the latter case each vertex v ∈ M ′i,j satisfies degH′(v) = 3.
Hence, if |M ′i,j | ≥ 2, then a contraction of M ′i,j in H ′ to a single vertex is a Tutte contraction. Moreover,
when contracting M ′i,j in H ′, the degree of each vertex not in M ′i,j does not decrease due to (ii).

All in all, there exists a sequence of Tutte contractions from H ′ to G′k, which can be extended to a
complete Tutte contraction-sequence for H ′ by Lemma B.5. Therefore, it follows from Theorem B.4
that H ′ is 3-connected. Recalling that H is a subdivision of H ′ now implies that H is uniquely embeddable
by Corollary B.3. 2

246

Appendix B

Bibliography

[ACP87] S. Arnborg, D. G. Corneil, and A. Proskurowski. “Complexity of Finding Embeddings in a
k-Tree”. In: SIAM Journal on Algebraic Discrete Methods 8.2 (1987), pp. 277–284.

[AKK99] S. Arora, D. Karger, and M. Karpinski. “Polynomial Time Approximation Schemes for Dense
Instances of NP-Hard Problems”. In: Journal of Computer and System Sciences 58.1 (1999),
pp. 193–210.

[AR06] K. Andreev and H. Räcke. “Balanced Graph Partitioning”. In: Theory of Computing Systems
39.6 (2006), pp. 929–939.

[BBG11] S. Borgwardt, A. Brieden, and P. Gritzmann. “Constrained Minimum-k-Star Clustering and
its Application to the Consolidation of Farmland”. In: Operational Research 11.1 (2011),
pp. 1–17.

[BK02] P. Berman and M. Karpinski. “Approximation Hardness of Bounded Degree MIN-CSP and
MIN-BISECTION”. In: Automata, Languages and Programming. Vol. 2380. Lecture Notes
in Computer Science. Berlin: Springer, 2002, pp. 623–632.

[BK10] M. de Berg and A. Khosravi. “Optimal Binary Space Partitions in the Plane”. In: Computing
and Combinatorics: 16th Annual International Conference, COCOON 2010, Nha Trang,
Vietnam, July 19-21, 2010. Proceedings. Ed. by M. T. Thai and S. Sahni. Berlin, Heidelberg:
Springer, 2010, pp. 216–225.

[BL84] S. N. Bhatt and F. T. Leighton. “A Framework for Solving VLSI Graph Layout Problems”.
In: Journal of Computer and System Sciences 28.2 (1984), pp. 300 –343.

[BL91] B. Bollobás and I. Leader. “Edge-Isoperimetric Inequalities in the Grid”. In: Combinatorica
11.4 (1991), pp. 299–314.

[Bod96] H. L. Bodlaender. “A Linear-Time Algorithm for Finding Tree-Decompositions of Small
Treewidth”. In: SIAM Journal on Computing 25.6 (1996), pp. 1305–1317.

[Bod98] H. L. Bodlaender. “A Partial k-Arboretum of Graphs with Bounded Treewidth”. In: Theore-
tical Computer Science 209.1-2 (1998), pp. 1–45.

[Bui+87] T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser. “Graph Bisection Algorithms with
Good Average Case Behavior”. In: Combinatorica 7.2 (1987), pp. 171–191.

247

Bibliography

[Bul+02] R. Bulterman, F. van der Sommen, G. Zwaan, T. Verhoeff, A. van Gasteren, and W. Feijen.
“On Computing a Longest Path in a Tree”. In: Information Processing Letters 81.2 (2002),
pp. 93–96.

[Cor+09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. 3rd ed.
MIT Press, 2009.

[CW90] E. R. Canfield and S. G. Williamson. “The Two Basic Linear Time Planarity Algorithms:
Are They the Same?” In: Linear and Multilinear Algebra 26.4 (1990), pp. 243–265.

[Cyg+14] M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. “Minimum Bisection
is Fixed Parameter Tractable”. In: Proceedings of the 46th Annual ACM Symposium on
Theory of Computing. STOC ’14. New York, NY, USA: ACM, 2014, pp. 323–332.

[DB13] M. De Biasi. Complexity of Finding Large Grid Minors. 2013. url: http://cstheory.
stackexchange.com/questions/18301/complexity-of-finding-large-grid-minors
(visited on 11/02/2016).

[Die12] R. Diestel. Graph Theory. 4th ed. Vol. 173. Graduate texts in mathematics. Springer-Verlag,
Heidelberg, 2012.

[Dik+93] K. Diks, H. N. Djidjev, O. Sykora, and I. Vrto. “Edge Separators of Planar and Outerplanar
Graphs With Applications”. In: Journal of Algorithms 14.2 (1993), pp. 258 –279.

[Dji82] H. N. Djidjev. “On the Problem of Partitioning Planar Graphs”. In: SIAM Journal on
Algebraic Discrete Methods 3.2 (1982), pp. 229–240.

[DM14] J. Díaz and G. B. Mertzios. “Minimum Bisection is NP-hard on Unit Disk Graphs”. In:
CoRR abs/1404.0117 (2014).

[DV97] H. N. Djidjev and S. M. Venkatesan. “Reduced Constants for Simple Cycle Graph Separation”.
In: Acta Inform. 34.3 (1997), pp. 231–243.

[ELM03] R. Elsässer, T. Lücking, and B. Monien. “On Spectral Bounds for the k-Partitioning of
Graphs”. In: Theory of Computing Systems 36.5 (2003), pp. 461–478.

[Fel13] A. E. Feldmann. “Fast Balanced Partitioning is Hard Even on Grids and Trees”. In: Theore-
tical Computer Science 485 (2013), pp. 61 –68.

[FF15] A. E. Feldmann and L. Foschini. “Balanced Partitions of Trees and Applications”. In:
Algorithmica 71.2 (2015), pp. 354–376.

[FHL08] U. Feige, M. Hajiaghayi, and J. R. Lee. “Improved Approximation Algorithms for Minimum
Weight Vertex Separators”. In: SIAM Journal on Computing 38.2 (2008), pp. 629–657.

[FK02] U. Feige and R. Krauthgamer. “A Polylogarithmic Approximation of the Minimum Bisection”.
In: SIAM Journal on Computing 31.4 (2002), pp. 1090–1118.

[FST13] C. G. Fernandes, T. J. Schmidt, and A. Taraz. “On the Structure of Graphs with Large
Minimum Bisection”. In: The Seventh European Conference on Combinatorics, Graph Theory
and Applications. Ed. by J. Nešetřil and M. Pellegrini. Vol. 16. CRM Series. Scuola Normale
Superiore, 2013, pp. 291–296.

[FST15a] C. G. Fernandes, T. J. Schmidt, and A. Taraz. “On Minimum Bisection and Related Partition
Problems in Graphs with Bounded Tree Width”. In: Electronic Notes in Discrete Mathematics
49 (2015), pp. 481–488.

248

http://cstheory.stackexchange.com/questions/18301/complexity-of-finding-large-grid-minors
http://cstheory.stackexchange.com/questions/18301/complexity-of-finding-large-grid-minors

Bibliography

[FST15b] C. G. Fernandes, T. J. Schmidt, and A. Taraz. “Approximating Minimum k-Section in Trees
with Linear Diameter”. In: Electronic Notes in Discrete Mathematics 50 (2015), pp. 71–76.

[FSTa] C. G. Fernandes, T. J. Schmidt, and A. Taraz. “On Minimum Bisection and Related Cut
Problems in Trees and Tree-Like Graphs”. Submitted to the Journal of Graph Theory.

[FSTb] C. G. Fernandes, T. J. Schmidt, and A. Taraz. “Approximating Minimum k-Section in Trees
with Linear Diameter and an Extension to Tree-Like Graphs”. In preparation.

[FSTc] C. G. Fernandes, T. J. Schmidt, and A. Taraz. “Structural Results and Algorithms for Planar
Graphs with Large Minimum Bisection Width”. In preparation.

[FW15] A. E. Feldmann and P. Widmayer. “An O(n4) Time Algorithm to Compute the Bisection
Width of Solid Grid Graphs”. In: Algorithmica 71.1 (2015), pp. 181–200.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1979.

[GJS76] M. R. Garey, D. S. Johnson, and L. Stockmeyer. “Some Simplified NP-Complete Graph
Problems”. In: Theoretical Computer Science 1.3 (1976), pp. 237–267.

[Gol78] E. M. Gold. “Deadlock Prediction: Easy and Difficult Cases”. In: SIAM Journal on Computing
7.3 (1978), pp. 320–336.

[Gri11] A. Grigoriev. “Tree-Width and Large Grid Minors in Planar Graphs”. In: Discrete Mathe-
matics & Theoretical Computer Science 13.1 (2011).

[GT08] Q.-P. Gu and H. Tamaki. “Optimal Branch-Decomposition of Planar Graphs in O(n3) Time”.
In: ACM Trans. Algorithms 4.3 (2008), 30:1–30:13.

[GT11] Q.-P. Gu and H. Tamaki. “Constant-Factor Approximations of Branch-Decomposition and
Largest Grid Minor of Planar Graphs in O(n1+ε) Time”. In: Theoretical Computer Science
412.32 (2011), pp. 4100 –4109.

[Ham16] F. Hamann. “Über kleinste Bisektionen und k-Sektionen in gewichteten Bäumen”. German.
Bachelor’s Thesis. Germany: Technische Universität Hamburg, 2016.

[HK73] J. E. Hopcroft and R. M. Karp. “An n5/2 Algorithm for Maximum Matchings in Bipartite
Graphs”. In: SIAM Journal on Computing 2.4 (1973), pp. 225–231.

[HO92] J. Hao and J. B. Orlin. “A Faster Algorithm for Finding the Minimum Cut in a Graph”. In:
SODA ’92: Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 1992, pp. 165–174.

[HT74] J. Hopcroft and R. E. Tarjan. “Efficient Planarity Testing”. In: Journal of the Association
for Computing Machinery 21.4 (1974), pp. 549–568.

[Jan+05] K. Jansen, M. Karpinski, A. Lingas, and E. Seidel. “Polynomial Time Approximation Schemes
for MAX-BISECTION on Planar and Geometric Graphs”. In: SIAM Journal on Computing
35.1 (2005), pp. 110–119.

[KNS09] R. Krauthgamer, J. S. Naor, and R. Schwartz. “Partitioning Graphs into Balanced Com-
ponents”. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms. SODA ’09. New York: Society for Industrial and Applied Mathematics, 2009,
pp. 942–949.

[KR92] D. E. Knuth and A. Raghunathan. “The Problem of Compatible Representatives”. In: SIAM
J. Discret. Math. 5.3 (1992), pp. 422–427.

249

Bibliography

[KT06] J. Kleinberg and É. Tardos. Algorithm Design. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2006.

[LEC67] A. Lempel, S. Even, and I. Cederbaum. “An Algorithm for Planarity Testing of Graphs”. In:
Theory of Graphs. Ed. by P. Rosenstiehl. New York: Gordon and Breach, 1967, pp. 215–232.

[Lei92] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Array, Trees, Hyper-
cubes. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1992.

[Lic82] D. Lichtenstein. “Planar Formulae and their Uses”. In: SIAM Journal on Computing 11.2
(1982), pp. 329–343.

[LST90] J. K. Lenstra, D. B. Shmoys, and É. Tardos. “Approximation Algorithms for Scheduling
Unrelated Parallel Machines”. In: Mathematical Programming 46.1 (1990), pp. 259–271.

[LT79] R. J. Lipton and R. E. Tarjan. “A Separator Theorem for Planar Graphs”. In: SIAM Journal
on Applied Mathematics 36.2 (1979), pp. 177–189.

[Moh92] B. Mohar. “Laplace Eigenvalues of Graphs - a Survey”. In: Discrete Mathematics 109.1-3
(1992), pp. 171–183.

[MT01] B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins studies in the mathematical
sciences. Baltimore: The Johns Hopkins University Press, 2001.

[PS96] C. H. Papadimitriou and M. Sideri. “The Bisection Width of Grid Graphs”. In: Mathematical
Systems Theory 29.2 (1996), pp. 97–110.

[Ree97] B. A. Reed. “Tree Width and Tangles: A New Connectivity Measure and Some Applications”.
In: Surveys in Combinatorics, 1997. Ed. by R. Bailey. Cambridge University Press, 1997,
pp. 87–162.

[RLWW97] H. Ripphausen-Lipa, D. Wagner, and K. Weihe. “The Vertex-Disjoint Menger Problem in
Planar Graphs”. In: SIAM Journal on Computing 26.2 (1997), pp. 331–349.

[RST94] N. Robertson, P. D. Seymour, and R. Thomas. “Quickly Excluding a Planar Graph”. In:
Journal of Combinatorial Theory, Series B 62.2 (1994), pp. 323–348.

[Räc08] H. Räcke. “Optimal Hierarchical Decompositions for Congestion Minimization in Networks”.
In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing. STOC 2008.
Victoria, British Columbia, Canada: ACM, 2008, pp. 255–264.

[Sch13] T. J. Schmidt. Bisecting Trees and Planar Graphs. Master’s thesis. Technische Universität
München, Germany, 2013.

[Shm97] D. B. Shmoys. “Approximation Algorithms for Cut Problems and their Application to
Divide-and-Conquer”. In: Approximation Algorithms for NP-hard Problems. Ed. by D. S.
Hochbaum. Boston, MA, USA: PWS Publishing Co., 1997, pp. 192 –235.

[ST97] H. D. Simon and S.-H. Teng. “How Good is Recursive Bisection?” In: SIAM Journal on
Scientific Computing 18.5 (1997), pp. 1436–1445.

[SW11] R. Sedgewick and K. Wayne. Algorithms. 4th ed. Addison Wesley, 2011.

[Ye01] Y. Ye. “A .699-Approximation Algorithm for Max-Bisection”. In: Mathematical Programming
90.1 (2001), pp. 101–111.

250

	Summary
	Acknowledgments
	Contents
	Introduction
	Minimum Bisection and Related Problems
	Minimum Bisection
	Minimum k-Section
	Related Problems and Applications

	Overview of Results
	Structural Results for Tree-Like Graphs with Large Minimum Bisection Width
	Structural Results for Planar Graphs with Large Minimum Bisection Width
	Algorithmic Results for Bisections
	Approximate Cuts in Tree-Like Graphs
	Minimum k-Section in Tree-Like Graphs
	Further Remarks

	Organization of the Thesis

	Preliminaries and Notation
	Basic Definitions
	Some Facts Concerning Graphs
	Tree Decompositions
	Algorithms
	Graphs
	Tree Decompositions

	Planar Graphs
	Using Separators to Construct Exact Cuts
	Constructing an Exact Cut by Successively Removing Separators
	Using the Planar Separator Theorem
	Using Tree Decompositions
	Using Planar Separators and Tree Decompositions

	Planar Graphs with Large Minimum Bisection Width
	Minimum Bisection Width, Tree-Width, and Grid Minors in Planar Graphs
	Grid-Homogeneous Graphs
	Proof of the Lower Bound for Grid-Homogeneous Graphs

	Investigating the Algorithmic Use of Grid-Homogeneous Graphs
	The HEG Problem and the HGM Problem
	The SAT Problem and Selected Variants
	Proof of Hardness Results for the HEG Problem
	Proof of a Hardness Result for the HGM Problem
	Proof of Approximability Results for the HEG Problem

	Approximate Cuts in Tree-Like Graphs
	Approximate Cuts in Trees and Forests
	Approximate Cuts in Tree-Like Graphs
	Constructing Exact Cuts Through Approximate Cuts

	Exact Cuts in Trees and Tree-Like Graphs
	Getting to Know the Techniques
	Results for Trees
	Upper Bound for the Width of Exact Cuts in Trees
	Proof of the Doubling Lemma for Trees
	Improving the Bound on the Width of the Cut
	Linear-Time Algorithm for Trees

	Extension to Tree-Like Graphs
	Upper Bound for the Width of Exact Cuts in Tree-Like Graphs
	Proof of the Doubling Lemma for Tree-Like Graphs
	Computing a Heaviest Path and the Set of P-parameters
	Algorithm for Tree-Like Graphs
	Improving the Running Time

	Minimum k-Section
	Recursive Bisections and Cuts
	Minimum k-Section in Trees
	Extension to General Graphs

	Open Problems
	Generalizing the Concept of Path-Prosperous Graphs
	Embeddings of the Grid and Minimal Graphs Containing a Grid as a Minor
	Bibliography

