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Abstract 

Background 

High density genotyping data are indispensable for genomic analyses of complex traits in 

animal and crop species. Maize is one of the most important crop plants worldwide, 

however a high density SNP genotyping array for analysis of its large and highly dynamic 

genome has not been available so far. 

Results 

We developed a high density maize SNP array composed of 616,201 variants (SNPs and 

small indels). Initially, 57 M variants were discovered by sequencing 30 representative 

temperate maize lines and then stringently filtered for sequence quality scores and 

predicted conversion performance on the array resulting in the selection of 1.2 M 

polymorphic variants assayed on two screening arrays. To identify high-confidence variants, 

285 DNA samples from a broad genetic diversity panel of worldwide maize lines including 

the samples used for sequencing, important founder lines for European maize breeding, 

hybrids, and proprietary samples with European, US, semi-tropical, and tropical origin were 

used for experimental validation. We selected 616 k variants according to their performance 

during validation, support of genotype calls through sequencing data, and physical 

distribution for further analysis and for the design of the commercially available Affymetrix® 

Axiom® Maize Genotyping Array. This array is composed of 609,442 SNPs and 

6,759 indels. Among these are 116,224 variants in coding regions and 45,655 SNPs of the 

Illumina® MaizeSNP50 BeadChip for study comparison. In a subset of 45,974 variants, 

apart from the target SNP additional off-target variants are detected, which show only a 

minor bias towards intermediate allele frequencies. We performed principal coordinate and 
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admixture analyses to determine the ability of the array to detect and resolve population 

structure and investigated the extent of LD within a worldwide validation panel. 

Conclusion 

The high density Affymetrix® Axiom® Maize Genotyping Array is optimized for European 

and American temperate maize and was developed based on a diverse sample panel by 

applying stringent quality filter criteria to ensure its suitability for a broad range of 

applications.  

Contribution 

The candidate made major contributions to: development of the variant selection strategy; 

analysis of genotyping data from screening arrays and optimization of the final 600 k array; 

creation of all figures and tables; writing of the manuscript and revision of the paper. 
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Unterseer S, Pophaly SD, Peis R, Westermeier P, Mayer M, Seidel MA, Haberer G, Mayer 

KFX, Ordas B, Pausch H, Tellier A, Bauer E, Schön C-C (2016) A comprehensive study of 

the genomic differentiation between temperate Dent and Flint maize. Genome Biology 

17:137; doi: 10.1186/s13059-016-1009-x. 

Abstract 

Background 

Dent and Flint represent two major germplasm pools exploited in maize breeding. Several 

traits differentiate the two pools, like cold tolerance, early vigor and flowering time. A 

comparative investigation of their genomic architecture relevant for quantitative trait 

expression has not been reported so far. Understanding the genomic differences between 

germplasm pools may contribute to a better understanding of the complementarity in 

heterotic patterns exploited in hybrid breeding and of mechanisms involved in adaptation to 

different environments. 
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Results 

We perform whole-genome screens for signatures of selection specific to temperate Dent 

and Flint maize by comparing high-density genotyping data of 70 American and European 

Dent and 66 European Flint inbred lines. We find 2.2 % and 1.4 % of the genes are under 

selective pressure, respectively, and identify candidate genes associated with agronomic 

traits known to differ between the two pools. Taking flowering time as an example for the 

differentiation between Dent and Flint, we investigate candidate genes involved in the 

flowering network by phenotypic analyses in a Dent–Flint introgression library and find that 

the Flint haplotypes of the candidates promote earlier flowering. Within the flowering 

network, the majority of Flint candidates are associated with endogenous pathways in 

contrast to Dent candidate genes, which are mainly involved in response to environmental 

factors like light and photoperiod. The diversity patterns of the candidates in a unique panel 

of more than 900 individuals from 38 European landraces indicate a major contribution of 

landraces from France, Germany, and Spain to the candidate gene diversity of the Flint elite 

lines. 

Conclusions 

In this study, we report the investigation of pool-specific differences between temperate 

Dent and Flint on a genome-wide scale. The identified candidate genes represent a 

promising source for the functional investigation of pool-specific haplotypes in different 

genetic backgrounds and for the evaluation of their potential for future crop improvement 

like the adaptation to specific environments. 

Contribution 

The candidate made major contributions to: conceiving the study and discussion of results; 

analysis of genotypic data of elite lines and landraces; analysis of sequence data; 

investigation of the introgression library data; creation of all figures and tables; writing of the 

manuscript and revision of the paper. 
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1 Introduction 

Maize (Zea mays ssp. mays L.) is one of the most important crops worldwide and represents 

an intensively studied organism. The objective of this study was the identification of 

genomic regions under differential selective pressure in two major temperate maize 

germplasm pools and the investigation of candidate genes underlying phenotypic variation. 

The species maize as well as population genetic approaches for the detection of signatures 

of selection are introduced in section 1.1, followed by the outline of the thesis given in 

section 1.2. 

 

1.1 Background 

Maize is an important source for food, livestock feed and industrial products and can be 

cultivated in a wide range of environmental conditions, for example in the Americas from 

Canada to Chile. The success of maize can be summarized by two key factors: i) a 

tremendous genetic diversity that facilitated its adaptation to various climates, and ii) the 

establishment of divergent heterotic groups in hybrid breeding, leading to an enormous 

increase in yield. 

The genomic diversity of maize has been shaped by adaptation and selection since its 

domestication. Maize was domesticated from its wild ancestor teosinte about 9,000 years 

ago in Mexico (Matsuoka et al. 2002; van Heerwaarden et al. 2011) by stringent selection for 

naturally occurring maize-like phenotypes, e.g. plants with shortened lateral branches 

tipped by female ears (Piperno et al. 2014). These changes in phenotypes were 

accompanied by considerable changes of the genetic, transcriptional and structural 

architecture of maize (Hufford et al. 2012; Matsuoka et al. 2002; Piperno et al. 2014; 

Swanson-Wagner et al. 2012). Subsequent to domestication, maize landraces were 

subjected to artificial selective pressure for important agronomic traits such as yield and 

resistance to biotic and abiotic stresses, thus giving rise to improved maize lines. Based on 

a survey of the genetic composition of 774 genes, which were compared between modern 

maize lines and teosinte, it has been estimated that 2-4% of all genes have been under 

artificial selective pressure in maize, thus corresponding to roughly 1,000 genes (Wright et 

al. 2005). In a comparative study based on teosinte accessions, landraces and improved 

maize lines, it was shown that landraces retained more than 80% of the genetic diversity of 

the wild ancestor, which is more than in other crop species (Hufford et al. 2012). The study 

also revealed that the effect of domestication on the genome-wide pattern of diversity in 
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modern maize lines was stronger compared to the impact of improvement and that elite 

lines retained more than 98% of the genetic diversity of landraces (Hufford et al. 2012). 

Furthermore, a recent study in maize showed that the majority of quantitative trait loci (QTL) 

exhibit phenotypic effects dependent on a given environmental condition (Millet et al. 2016). 

Thus, the high proportion of retained genetic diversity in the elite lines could be explained by 

the improvement of locally adapted landraces for different agronomic traits, which also 

paved the way for modern hybrid breeding. 

A key step in corn production was the discovery of heterotic effects in maize hybrids, which 

arise from the combination of inbred lines from different germplasm (Shull 1909). Two major 

heterotic pools exploited in European hybrid maize breeding are Dent and Flint, with their 

names referring to different kernel phenotypes (Smith et al. 2004). Dent lines have 

characteristic indented kernels with high soft starch content, whereas Flint lines have 

kernels with a thick, hard, and vitreous outer layer. Worldwide, many hybrid breeding 

programs exploit heterotic effects between different pools within Dent, like in the US. The 

modern US Corn Belt Dent germplasm consists of multiple heterotic pools, which can be 

classified into Iowa Stiff Stalk Synthetic (BSSS), Iodent, and Lancaster Sure Crop (LSC) as 

well as a group of lines with diverse background that is referred to as non-BSSS herein 

(Bennetzen and Hake 2009; Mikel and Dudley 2006). To maximize hybrid performance in 

breeding schemes, ongoing selective pressure resulted in increased divergence between 

these germplasm pools associated with an increase of genetic similarity within each pool 

(van Heerwaarden et al. 2012). The majority of modern US Dent germplasm traces back to a 

small number of founder lines including the genome reference sequence line B73 (BSSS), 

PH207 (Iodent), and Mo17 (LSC; Mikel and Dudley 2006). This is exemplarily depicted in 

Figure 1 based on pedigree information that was available for a set of Dent lines included in 

this study. Most of the Dent lines investigated in this thesis were US Corn Belt Dent, 

whereas most of the Flint lines were derived from European breeding programs. European 

maize has a diverse background due the introduction of maize from different parts of 

America. Maize was introduced to Europe at the end of the 15th century, when Columbus 

brought subtropical maize from the Caribbean Islands to Southern Spain, followed by 

travellers importing Northern Flint from Canada to Northern France (Figure 2; Dubreuil et al. 

2006). Northern Flint reached very high latitudes, which required the adaptation to cooler 

and shorter vegetation periods (Brown and Anderson 1947). It was a major progenitor of 

maize in most European regions enabling its rapid adaptation to European climates 

(Bouchet et al. 2013; Rebourg et al. 2003). Therefore, especially in cooler regions of Central 

Europe, breeding programs exploit heterotic effects between Dent lines tracing back to US 
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Corn Belt Dent and Flint lines, with Flint contributing early vigour and good cold tolerance 

and Dent contributing high productivity to the hybrids (Schmidt 2003; Schnell 1992). 

 
Figure 1: Contribution of important founder lines (black boxed) to the pedigree of Dent lines under 
study. Founder lines and their progenies are grouped along the vertical line according to the 
respective year of release. 

 

Figure 2:  Historical expansion routes of maize and geographic distribution of the maize material 
investigated in this thesis. Arrows represent hypothetical expansion routes of maize during its 
historical spread along the Americas from its centre of origin in Mexico (star; modified after Tenaillon 
and Charcosset 2011). Yellow colour indicates the geographic distribution of the majority of lines 
from (sub)tropical regions. Material of most of the Dent lines was derived from the US Corn Belt 
region (red colour), whereas the majority of the Flint lines as well as the landraces were obtained from 
Europe (blue colour).   
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For hybrid breeding, profound knowledge of genes involved in heterotic effects would be 

valuable to maximize heterosis by targeted crossing of beneficial allelic combinations. More 

than one century has passed since the first description of heterosis by Shull (Shull 1908), 

and research efforts still focus on the investigation of molecular mechanisms underlying this 

phenomenon (Baranwal et al. 2012; Birchler et al. 2010; Feng et al. 2015; Kaeppler 2012; 

Schön et al. 2010). Enormous technological and bioinformatic advancements enabled the 

creation of comprehensive whole-genome sequencing data, which provided insights into 

the flexible and dynamic genome of maize. The reference sequence genome of the maize 

inbred line B73 was published in 2009 (Schnable et al. 2009). It revealed that almost 85% of 

the sequence was composed of transposable elements (Schnable et al. 2009; Wei et al. 

2009), originating from an ancient explosion of repetitive DNA (Du et al. 2006). By analysing 

additional 27 inbred lines as part of the maize HapMap project (Gore et al. 2009), it was 

estimated that the B73 reference sequence assembly might contain only 70% of the 

existing gene space of maize. In 2012, the HapMap2 dataset was published comprising 

103 lines of maize and its ancestor teosinte, reporting varying genome sizes and extensive 

structural variations (Chia et al. 2012). These findings advanced the concept of a pan-

genome, which comprises genomic segments common to all lines and dispensable 

segments that can be line-specific or partially shared between lines (Morgante et al. 2007). 

Recent studies investigated the relevance of the pan-genome and pan-transcriptome for 

phenotypic trait variation (Hirsch et al. 2014b; Lu et al. 2015; Springer et al. 2009; Swanson-

Wagner et al. 2010) and showed their contribution to heterotic effects exploited in hybrid 

breeding (Jin et al. 2016). 

Knowledge-driven improvement of breeding strategies requires a comprehensive 

understanding of genes under selection. This includes the investigation of maize germplasm 

on a genomic level to elucidate how pool-specific selection shaped its genomic diversity. 

Selection creates specific patterns of diversity in the genome and these local signatures can 

be used for the detection of regions under selection (Nielsen 2005). In a hard sweep 

scenario, a new mutation with favourable effects on the phenotype will rise in frequency in a 

given population up to fixation. As the favourable allele spreads through the population, 

long, unbroken haplotypes flanking the selected allele are transmitted as the dispersal of the 

favourable allele is faster than recombination is able to break down linkage disequilibrium 

(LD), the non-random association of alleles at two or more loci. Therefore, not only the 

selected site, but also the surrounding sites are characterized by low nucleotide diversity 

and extreme allele frequencies, as the unfavourable allele and its adjacent sites will 

gradually be replaced. Based on these sweep characteristics, several methods have been 
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proposed to detect signatures of selection (Vitti et al. 2013) and methods often are 

combined to minimize the possibility of false positives (Long et al. 2013; Pickrell et al. 2009; 

Qanbari et al. 2011). Some tests focus on the detection of local changes in allele 

frequencies, as a sweep is characterized by sequence variants with high derived allele 

frequencies (Fay and Wu 2000; Zeng et al. 2006) and a surplus of rare alleles due to the 

independent occurrence of new mutations in the regions flanking the selected site (Tajima 

1989). Other tests are designed to detect recent sweeps based on long haplotype blocks 

with high LD surrounding the selected site (Sabeti et al. 2002; Voight et al. 2006). A third 

class of tests is based on population differentiation (Fariello et al. 2013; Lewontin and 

Krakauer 1973). The assumption underlying the latter class of tests is that in case of a 

group-specific sweep the resulting local changes in allele frequency within this group are 

associated with an increase in allele frequency differences between groups (Beaumont 

2005).  

For the detection of hard sweeps, especially frequency-dependent metrics are powerful as 

the allele frequency spectrum contains most information in case of this sweep scenario (Kim 

and Nielsen 2004). However, the identification of hard sweeps can be hampered in some 

circumstances. Adjacent hard sweeps can be disguised as partial or soft sweeps due to the 

interference of neighbouring selected alleles rising in frequency (Schrider et al. 2015). Soft 

sweeps refer to different sweep scenarios that share the selection of several haplotypes at 

varying frequencies. As a result, soft sweeps can partially retain the original variation at 

linked neutral sites (Hermisson and Pennings 2005). Soft sweeps can arise in case of 

i) selection on standing genetic variation, where a favourable allele was selected that had 

existed before the onset of selective pressure, ii) selection of one of several favourable 

alleles, and iii) parallel selection of favourable alleles in structured populations (Hermisson 

and Pennings 2005; Innan and Kim 2004; Messer and Petrov 2013; Przeworski et al. 2005). 

If a population is structured, for example due to local adaptation or varying artificial selective 

pressure, also hard sweeps can be masked, as the allele frequency distribution will be 

biased towards a higher fraction of intermediate allele frequencies. This can resemble soft 

sweeps and bias furthermore the estimation of the differentiation level between populations 

(Beaumont and Balding 2004; Muirhead 2001). Additionally, the identification of selective 

sweeps can be hampered by demography, such as changes in population size over time 

(Wright and Gaut 2005). For example in case of recent population growth, expansion is 

associated with an increase of segregating sites with low allele frequencies, which gives rise 

to patterns that might be interpreted as signals of positive selection (Maruyama and Fuerst 

1984). Population size changes can be modelled to avoid demographic effects as 
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confounding factors in population genetic analyses (Schraiber and Akey 2015; Wu et al. 

2014). However, theory-driven population genetic models imply many assumptions 

including homogeneous, randomly mating populations, constant effective population size 

and constant selection intensity over time and space, as well as absence of interfering 

effects such as background selection and recurrent mutations at the same position in the 

genome. Most of these assumptions are violated in populations under artificial selection as 

in case of maize. Its demographic history has been modelled recently with respect to 

domestication (Beissinger et al. 2016), though a comprehensive demographic model has not 

been inferred so far that is considering its complex breeding history with multiple genetic 

bottlenecks and admixture events, drift and population structure. In spite of these 

challenges, selective sweeps have been detected in different species by comparing the 

allelic composition of defined genetic regions with the genomic background (Horton et al. 

2012; Hufford et al. 2012; Xie et al. 2015). Candidate genes were identified and phenotypic 

effects of candidate genes were confirmed for example by QTL mapping or genome-wide 

association studies. However, a direct validation of the phenotypic effects of identified 

candidate genes has been rarely reported in the literature so far (Hufford 2016). 

 

1.2 Outline 

Different types of data can be used for the investigation of genomic differences between 

maize germplasm. Whole-genome sequencing data provide high-density information, which 

is favourable for population genetic analyses for example. In maize, the identification of 

sequence variants for genomic analyses faces specific challenges due to its evolutionary 

history and the high variability of its genome. As an ancient polyploid species, the maize 

genome is characterized by numerous duplicated chromosomal regions giving rise to 

paralogous sequences (Ahn and Tanksley 1993; Schnable et al. 2009; Schnable et al. 2011). 

Furthermore, the high amount of transposable elements, paralogs, and structural variation, 

including copy number and presence/absence variation, represents a challenge for variant 

identification due to ambiguous sequence read mapping results (Chia et al. 2012; Schnable 

et al. 2009; Springer et al. 2009). As sequence coverage, and thus data quality, depends on 

the trade-off between costs and the number of sequenced samples, the genotyping by 

sequencing technology is increasingly used (Elshire et al. 2011). With lower costs compared 

to whole-genome shotgun sequencing, this approach has been applied to more than 60 k 

maize samples up to now, and for the latest release of the HapMap project (Bukowski et al. 

2015). The approach is based on the sequencing of genomic regions targeted by restriction 
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enzymes (Elshire et al. 2011). However, data generated by the genotyping by sequencing 

technology are characterized by non-uniform distribution of sequence reads, low variant call 

rates and a substantial amount of missing calls (Beissinger et al. 2013; Romay et al. 2013).  

On the other hand, genotyping arrays represent complexity-reducing alternatives to whole-

genome sequencing efforts (Voss-Fels and Snowdon 2016). They offer a high-throughput 

and cost-efficient possibility to gain high-quality genomic information with low bioinformatic 

demands. At the beginning of this thesis, a commercial mid-density genotyping array was 

available for maize, which included 56,112 SNPs (Ganal et al. 2011). However, with respect 

to the genome size of maize and its high level of diversity, higher marker density was 

desirable. Moreover, it was reported that LD decays rapidly in diverse maize panels (Lu et al. 

2011; Romay et al. 2013; Yan et al. 2009), thus emphasising the requirement of higher 

marker densities than so far available on genotyping arrays for dissecting complex 

agronomic traits using QTL mapping or genome-wide association studies (GWAS). To gain 

higher genome-wide coverage of sequence variants, a new high density genotyping array 

was developed as part of this thesis based on the available B73 reference sequence and 

whole-genome sequence data of a panel of representative European and US maize lines. 

Based on a stringent multi-step filtering approach and the validation of a filtered set of 

sequence variants by genotyping a broad genetic diversity panel of worldwide maize lines, 

high-confidence variants were selected for the development of a 600 k genotyping array. 

The array was optimized for European and American temperate maize and is well suited for 

fine-mapping of genomic regions, haplotype construction, detection of marker-trait 

associations, and first insights into the genomic composition of large diversity panels. The 

discovery of sequence variants, the variant filtering process, the design of the final 

genotyping array, and its exemplary application for resolving population structure and LD in 

a panel of temperate Dent and Flint inbred lines were described in Unterseer et al. (2014). 

The divergence of the Dent and Flint germplasm groups has been described in diversity 

studies based on molecular markers (Dubreuil et al. 2006) and also in genetic studies 

mapping QTL underlying agronomic traits. In a recent study that utilized Dent and Flint 

nested association mapping populations (Bauer et al. 2013), little overlap of QTL was found 

for five complex traits between the two pools (Giraud et al. 2014). Thus, this thesis aimed at 

identifying genes under differential selective pressure in temperate maize to shed light on 

the genomic differentiation between temperate Dent and Flint germplasm and to unravel 

candidate genes for crop improvement. In maize, different approaches have been applied to 

investigate its genetic and phenotypic diversity, evolutionary processes shaping its genome, 

the genetic base of quantitative traits, and heterotic effects exploited in hybrid breeding. 
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Effects of selection were studied in case of individual (Vann et al. 2015; Wang et al. 2005; 

Wills et al. 2013; Xu et al. 2014) or a limited number of genes (Vigouroux et al. 2002; 

Yamasaki et al. 2005). To obtain a comprehensive view of the effects of selection on the 

genome, long-term divergent and recurrent selection experiments have been published 

(Beissinger et al. 2014; Durand et al. 2015; Hirsch et al. 2014a; Sekhon et al. 2014; Teixeira 

et al. 2015) and genome-wide screens were successfully applied with respect to signatures 

of domestication and improvement (Hufford et al. 2012; Jiao et al. 2012). However, the 

majority of studies focused on the US Dent pool and/or tropical maize, thus questions about 

genome-wide targets of differential selective pressure between Dent and Flint have not been 

addressed so far. Well adapted to cooler climates, the Flint pool is an integral part of 

European breeding programs. Moreover, the Flint germplasm pool might represent an 

important source of alleles associated with early vigour as well as early flowering (Brown 

and Anderson 1947; Rebourg et al. 2003). This could be of special relevance considering 

that the effects of climate change might be mitigated by shifting production areas towards 

higher latitudes (Lobell and Tebaldi 2014). In a comparative genomics approach, pool-

specific genomic differences between Dent and Flint were investigated in Unterseer et al. 

(2016). Based on a combination of population genetic statistics, hundreds of candidate 

genes for Dent and Flint were identified. Focussing exemplarily on the flowering network in 

maize, its differential modulation was shown in Dent and Flint lines. Furthermore, the Flint 

candidate gene haplotypes were linked to phenotypic effects, thus revealing their positive 

impact on promoting earlier flowering time. Finally, it was demonstrated that most of the 

selective pressure preceded the development of modern Flint elite lines from European Flint 

landraces. 

Here, results presented in Unterseer et al. (2014) and Unterseer et al. (2016) are 

complemented by additional findings relevant for the evaluation of the performed genome-

wide screen for signatures of differential selective pressure in temperate Dent and Flint and 

the discussion of the obtained results.  
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2 Material and methods 

As part of this thesis, a high-density maize genotyping array was developed and used for 

population genetic analyses based on different maize datasets (Unterseer et al. 2014; 

Unterseer et al. 2016). An overview of the investigated datasets is given in section 2.1, 

followed by the description of the genotyping array development in section 2.2. Population 

genetic metrics are introduced in section 2.3 and analyses of population structure and the 

investigation of LD in the genetic material under study are presented in section 2.4. 

Section 2.5 describes the identification of candidate genes under differential selective 

pressure in Dent and Flint and section 2.6 summarizes the investigation of these genes 

based on additional datasets. 

 

2.1 Overview of datasets 

Different datasets were investigated within this thesis, which are summarized in Figure 3 

and will be described in the following paragraphs. 

 

Figure 3: Overview of datasets analysed in this thesis. 
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For the establishment of a high-density array for maize, a discovery panel was sequenced to 

obtain a comprehensive view of Flint- and Dent-specific genomic variation. The panel 

comprised 17 Flint and 13 Dent lines, which were selected to represent temperate Dent and 

Flint germplasm exploited in US and European breeding programs (Bauer et al. 2013). 

Fourteen Flint and 12 Dent lines were sequenced with on average 12-fold and three Flint 

and one Dent line with on average 50-fold coverage. In total, 56,938,462 variant positions 

were detected (Unterseer et al. 2014). 

To select sequence variants for the construction of the genotyping platform, variants were 

filtered for quality parameters, distribution along the genome, and predicted conversion 

performance (Unterseer et al. 2014). A total of 1,228,505 sequence variants remained for 

experimental validation in the validation panel. This panel was composed of 285 DNA 

samples and reflected the diversity of maize with special emphasis on temperate US and 

European germplasm. Excluding proprietary material and replicates, genotype calls could 

be obtained for 129 temperate Dent and Flint inbred lines (including the 30 lines of the 

discovery panel), 13 tropical lines, ten doubled haploid lines from three European Flint 

landraces, three lines with no available pool assignment, two teosinte accessions and 23 F1 

hybrids from Mendelian trios with both parental lines present in the validation panel. The 

best performing 616,201 variants were included on the 600 k array (Unterseer et al. 2014). 

To evaluate the performance of the genotyping array concerning analyses of population 

structure and LD, a subset of the validation panel, dataset A, was investigated in Unterseer 

et al. (2014). Dataset A consisted of homozygous genotype calls of 155 public lines of the 

validation panel, namely 129 temperate Dent and Flint lines, 13 tropical lines, ten doubled 

haploid lines from three European Flint landraces, and three lines with no available 

germplasm assignment. For PCoA and ADMIXTURE analysis, 45,974 sequence variants 

classified as “off-target variants” (OTVs; for details of quality categories see section 2.2) 

were included with the respective genotype call of the target variant as well as the 

information on presence or absence of flanking variants, resulting in 616 k plus 46 k 

variants. For all analyses based on dataset A, indels were treated as bi-allelic SNPs and 

variants with ≥ 10% of missing data were excluded. 

For the identification of genes under differential selective pressure between Dent and Flint 

as well as the investigation of population structure and haplotype blocks, dataset G was 

created (Unterseer et al. 2016). It comprised 136 temperate lines of dataset A and was 

composed of 70 Dent lines and 66 Flint lines with unambiguous germplasm assignment. 

Upon exclusion of monomorphic SNPs and SNPs that were designed to specifically 



 
 
 

 

11 
 

Material and methods 

differentiate between two Dent lines (Frascaroli et al. 2013; Ganal et al. 2011), analyses of 

dataset G were based on 547,412 best-quality SNPs (PHR; for details of quality categories 

see section 2.2). 

To compare the allelic composition of candidate and non-candidate genes between elite 

lines and landraces, dataset L was investigated (Unterseer et al. 2016). Dataset L comprised 

genotype calls of dataset G and genotype calls of 906 individuals from 38 European 

landraces (Table 1) with 31 landraces displaying Flint-type kernels and seven landraces at 

least partially Dent-type kernels. Landraces were selected with the aim to reflect the genetic 

and phenotypic diversity of Central and Western Europe and were represented by 22 to 

24 individuals each. Samples were genotyped using the 600 k array and a genotype cluster 

model file that was generated based on genotype calls of the validation set. Analyses were 

based on 486,208 SNPs, which were of best quality in elite lines and landraces. 

To study derived allele frequencies, dataset O was created. It included genotype calls of 

dataset G and information from the maize-sorghum (Sorghum bicolor L.) genome alignment. 

The alignment was downloaded from http://pipeline.lbl.gov/downloads.shtml and was used 

to obtain the nucleotide in sorghum representing the ancestral maize allele. Information 

regarding the ancestral allele state was available for 298,388 SNPs of dataset G and used to 

polarize the genotype calls of dataset G with respect to sorghum (Unterseer et al. 2016). 

In dataset S, candidate genes identified based on dataset G were investigated (Unterseer et 

al. 2016). Genotype calls of the discovery panel were combined with calls of ten temperate 

Dent and Flint inbred lines from the maize HapMap2 project for the respective SNPs (Chia et 

al. 2012; Hufford et al. 2012). Thus, dataset S was composed of genotype calls of 

19 temperate Flint and 21 temperate Dent lines and included 13,246,294 bi-allelic and 

homozygous SNPs. SNPs were further filtered for ≤ 50.0% missing values across the 

40 lines for the estimation of the level of allelic differentiation between Dent and Flint and for 

≤ 50.0% missing values within germplasm pools for the calculation of gene-wise diversity.  
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Table 1: Landraces under study with their geographic origin (modified after Unterseer et al. 2016). 

Landrace Abbreviation Geographic origin 

Altreier AL Altrei, South Tyrol, Italy 

Andoain AN Andoain, Basque Country, Spain 

Barisis  BA Barisis, Nord-Pas-de-Calais-Picardie, France 

Bugard BU Bugard, Languedoc-Roussillon-Midi-Pyrénées, France 

Castellote CA Castellote, Aragon, Spain 

Colmar  CO Colmar, Alsace-Champagne-Ardenne-Lorraine, France 

Fleimstal FL Fiemme Valley, South Tyrol, Italy 

Gazost  GA Gazost, Languedoc-Roussillon-Midi-Pyrénées, France 

Gelber Badischer 
Landmais 

GB Upper Rhine valley, Germany 

Gleisdorfer GL Gleisdorf, Styria, Austria 

Kemater Landmais KL Kematen, Tyrol, Austria 

Knillis KN Styria, Austria 

Krajova c29 KR Craiova, Moravské Lieskové, Slovakia 

Lacaune  LC Lacaune, Languedoc-Roussillon-Midi-Pyrénées, France 

Lalin LL Lalín, Galicia, Spain 

Lucq de Bearn  LD Lucq-de-Béarn, Aquitaine-Limousin-Poitou-Charentes, 
France 

Mahndorfer MD Northern Germany 

Maleksberger MB Northern Germany 

Millette du Lauragais 2 ML Lauragais, Languedoc-Roussillon-Midi-Pyrénées, France 

Moncassin  MO Moncassin, Languedoc-Roussillon-Midi-Pyrénées, 
France 

Nostrano dell Isola ND Northern Italy, Italy 

Oberhuber Martha OM Innsbruck, Tyrol, Austria 

Österreichische 
Landsorte 

OE Upper Austria, Austria 

Petkuser Ferdinand 
Rot 

PE Northeastern Germany 

Pfarrkirchner PF Pfarrkirchen, Bavaria, Germany 

Polnischer Landmais PL Poland 

Rheintaler Monsheim RM Monsheim, Rhineland-Palatinate, Germany 

Rheintaler St. Gallen RT St. Gallen, St. Gallen, Switzerland 

Rottaler RO Rottal-Inn, Bavaria, Germany 

Roux de Chalosse  RD Chalosse, Aquitaine-Limousin-Poitou-Charentes, France 

Santiago SA Santiago de Compostela, Galicia, Spain 

Schindelmeiser SC Northeastern Germany 

Sornay SO Sornay, Bourgogne-Franche-Comté, France 

Strenzfelder SF Southeastern Germany, Germany 

Tremesino TR Mediterranean Spain 

Tui TU Tui, Galicia, Spain 

Viana VI Viana, Galicia, Spain 

Wantzenau  WA La Wantzenau, Alsace-Champagne-Ardenne-Lorraine, 
France 
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Dataset T was investigated with respect to differences in allele frequencies of candidate and 

non-candidate genes between tropical and temperate maize lines. It included genotype calls 

of dataset S and of ten tropical lines obtained from the HapMap2 study (Chia et al. 2012), 

namely CML52, CML69, CML103, CML228, CML247, CML277, CML322, CML333, Ki3 and 

Tzi8. For analyses based on dataset T, the 13,246,294 SNPs included in dataset S were 

further filtered for SNPs with ≤ 50.0% missing values. 

Dataset P refers to an introgression library (IL) that was investigated with respect to the 

effect of specific genomic segments carrying candidate genes identified based on dataset G 

on the phenotype (Unterseer et al. 2016). The IL was composed of 535 lines carrying 

genomic segments of a Flint parent in a Dent genetic background with 97 lines carrying a 

single Flint segment. Two field experiments were conducted in 2014 to assess flowering 

time, recorded as days after sowing, for the introgression lines, the two parental lines, and a 

check. Each experiment was laid out as an α-lattice design with two replications, except for 

parental lines and the check that were repeated three and five times, respectively. The 

genomic composition of the 97 single-segment IL lines was determined based on 267 SNPs 

of the Illumina® MaizeSNP50 array (50 k array; Ganal et al. 2011). 

 

2.2 Development of the 600 k genotyping array 

The Affymetrix® Axiom® Maize Genotyping Array (600 k array) was developed as a new tool 

to study genomic differences in maize at high density (Unterseer et al. 2014). Based on 

whole-genome sequence data of the 30 temperate Dent and Flint elite lines of the discovery 

panel, a total of 57 M variant positions was identified by mapping the generated sequence 

reads to the B73 reference sequence version 2 (Chia et al. 2012). A multi-step filtering 

approach was then applied to reduce the number of sequence variants to 1.2 M variants for 

experimental validation on screening arrays. This approach included filtering for sequence 

variants that were identified independently by two different programs, SAMtools (Li et al. 

2009) and GATK (McKenna et al. 2010), and that were associated with intermediate read 

coverage, high mapping and SNP quality scores, as well as high predicted conversion 

quality scores according to the Affymetrix® Axiom® myDesign GW bioinformatics pipeline. 

Using a bin-based approach, the next filtering step created a set of physically equally 

distributed variants with a balanced representation of germplasm-specific as well as shared 

variants between Dent and Flint. The resulting set of 1.2 M sequence variants included 

150,394 coding variants and 48,324 variants from the 50 k array (Ganal et al. 2011) and was 
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used to genotype the validation set. To assemble a robust set of variants for designing the 

final 600 k array, the conversion performance of the variants was investigated based on 

genotype call rates, signal cluster separation, and reproducibility, polymorphism in the 

validation panel, and consistent Mendelian inheritance from parents to off-spring in trios. 

The classification of sequence variants based on signal cluster metrics will be explained 

below as the application of a flexible clustering algorithm (Affymetrix 2007) is a special 

feature of the Affymetrix® GeneTitan® platform in contrast to a stable cluster file used by 

Illumina®. 

On the Affymetrix® GeneTitan® platform, single-stranded DNA hybridizes to an array probe 

complementary to one of the flanking sequences of the bi-allelic target variant. Depending 

on the target variant allele, one of two labelled probes binds to the remaining sequence of 

the DNA strand resulting in a signal that is interpreted by the software. In the two-colour 

system of the platform, signal clusters are generated based on signal intensity and signal 

contrast between the signal types of the samples under consideration (signal A, signal B, or 

their combination in case of a heterozygous genotype; labelled blue, red or yellow in 

Figure 4). A priori expected cluster positions are then adjusted by the algorithm according to 

observed hybridization signals to obtain the respective genotype calls. Variants are 

classified into one of six quality categories based on cluster metrics such as the distance 

between the signal A and signal B clusters: i) “PolyHighResolution” (PHR) characterized by 

short distances between signal localization and the respective cluster center, clearly 

separated clusters, and the appearance of all three signal types mentioned above, ii) 

“NoMinorHom” comparable with PHR, but without signals for one of the two homozygous 

signal clusters, iii) “MonoHighResolution” with all genotype signals assigned to only one 

homozygous signal A or signal B cluster, iv) “CallRateBelowThreshold” comparable to PHR, 

but with too many missing calls compared to the applied threshold, v) “Other” in case of 

one or more cluster metrics not passing the thresholds, and vi) “off-target variant” (OTV) 

describing variants for which a cluster can be observed in addition to the expected signal 

clusters for homozygous and heterozygous genotype calls (labelled cyan in Figure 4). The 

latter can arise for example if undetected variants in the flanking regions of the target variant 

occur, which lead to an unstable hybridization between the array probe and the sample 

DNA and thus to a reduction of signal intensity. For OTVs, genotype calls with expected 

signal intensities can be analysed. In addition, the information regarding the presence or 

absence of putative adjacent variants can be taken into account by distinguishing between 

samples with reduced and expected signal intensities. 
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Figure 4: Representative cluster plot for sequence variants categorized as “off-target variant” (OTV).    
X-axis: contrast of the two colour channels for allele A and B, respectively, Y-axis: signal intensity; 
blue triangles: homozygous genotype calls for A, yellow circles: heterozygous genotype calls, red 
triangles: homozygous genotype calls for B, cyan diamonds: OTV genotype calls, yellow circles 
without colour filling: a posteriori genotype cluster positions. 

Raw hybridization intensity data processing, clustering, genotype and OTV calling, as well 

as variant classification according to genotype cluster metrics were performed using 

Affymetrix® Power Tools version 1.15.0 and the package SNPolisher version 1.3.6.6 (Hong 

Gao 2012) according to the Axiom® Genotyping Solution Data Analysis Guide. For initial 

genotype calling, generic a priori cluster positions were used since no information about 

expected cluster positions was available. The three possible genotype clusters were then 

redefined in a posteriori cluster positions, taking the observed genotype call positions into 

account. Variants were classified based on their respective cluster metrics. In a second, 

extended analysis different levels of inbreeding were taken into account for a posteriori 

cluster definition because of the high amount of lines in the validation panel that exhibited 

only a small proportion of heterozygosity in contrast to populations in Hardy-Weinberg 

equilibrium. The inbred correction was achieved by a parameter that included sample-

specific penalties for re-defining a priori cluster positions for genotype calling and thus, to 

adjust the probability of observing a heterozygous call given the inbreeding level of the 

sample. Based on a range from zero to 16, the following values were assigned: 0 for 

F1 hybrids, 12 for inbred lines with unclear homozygosity level, and 14 for advanced inbred 

and doubled haploid lines. Variant classification and results of the analyses with and without 

inbred correction were compared and a set of randomly selected genotype clusters visually 

checked. Variants were preferentially selected for building the final 600 k array, if they 

exhibited stable category assignments with clearly separated clusters to avoid restrictions 

dependent on the inbreeding level.  
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For the selection of high-confidence variants for the 600 k array, a voting system was 

applied using a customized script based on i) their performance on the screening arrays, ii) 

concordance of array genotyping calls with in silico variant calls from sequencing data of 

the discovery panel, and iii) over- or under-representation of the corresponding physical bin 

(Unterseer et al. 2014). To ensure a high performance on the final array, the highest weight 

was assigned to the first criterion focussing on clearly separated genotype clusters with little 

variance that were not influenced by information regarding the inbreeding level. For the 

second criterion, the number of calls per variant matching between sequencing and 

genotyping calls of the lines of the discovery panel was normalized to the total number of 

calls per variant resulting in a value in the range of zero to one. The criterion of lowest 

impact, the over- or underrepresentation of a 100 kb bin, was taken into account by 

calculating the deviation of the number of variants in the corresponding bin to the mean of 

variants in the five bins up- and downstream, respectively, and scaling the values between 

minus one and one. The highest scoring sequence variants were selected for the final array. 

In case of the in total 48,324 SNPs of the 50 k genotyping array (Ganal et al. 2011), which 

were tiled from both sides on the screening arrays, the probe with the higher rank was 

included in the final set. If both probes of a variant exhibited the same rank, one probe was 

chosen randomly. Due to erroneous mapping of 2,669 SNPs of the 50 k array to the B73 

reference sequence, a non-polymorphic position was obtained on the screening arrays and 

these non-validated SNPs were not included on the final array. The top 616,201 variants 

were selected for the final array design with 45,655 variants originating from the 50 k array.  

For OTV validation, sequence reads of four deep sequenced lines were mapped to the B73 

reference sequence version 2 (Chia et al. 2012) using the CLC Genomics Workbench 

version 7.5.1 (http://www.clcbio.com). After standard import of raw sequencing data, the 

read sequences were trimmed with default parameter setting except that the maximum 

number of ambiguous nucleotides was set to one. OTVs identified based on the 600 k array 

were visually checked to investigate sequence variation in the region of the array probe. 

 

2.3 Investigation of population structure and LD 

To investigate population structure and LD within datasets A and G, missing genotype calls 

were imputed based on flanking markers using Beagle version 3.3.1 (Browning and 

Browning 2009). Analyses of population structure were performed using ADMIXTURE 

(Alexander et al. 2009). This software was used to estimate the most likely number of 
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groups within a panel of individuals, and the proportion of ancestry per individual that is 

attributable to one or more of these groups. For a given number of K groups, an iterative 

process was applied to obtain i) an ancestry coefficient matrix based on the fractions of an 

individual´s genome contributed by each of the K groups and ii) the population frequency 

matrix according to the allele frequencies for each of the K groups. Based on the obtained 

maximum likelihood estimates of the ancestry coefficients and the allele frequencies 

contributed by each of the K groups, the most likely number of groups was evaluated based 

on a cross-validation procedure. By partitioning the samples into five equally sized folds, 

prediction errors were estimated by comparing observed, but masked genotypes with the 

ones predicted by the procedure. As the approach implemented in ADMIXTURE does not 

account for LD, marker sets were pruned based on an r2 threshold of 0.8. In this step, a 

sliding window approach was applied, removing one SNP per pair that exhibited an r2 > 0.8 

with a window size of 50 SNPs (sliding by 10%). 

Two commonly used measures of LD are r² (Hill and Robertson 1968) and D’ (Lewontin 

1964). Both measures are based on the difference between the observed and the expected 

frequency of the haplotype AB in case of two bi-allelic loci (Lewontin and Kojima 1960): 

஺஻ܦ ൌ ஺஻݌	 െ  ஻݌஺݌

with pAB referring to the frequency of haplotypes consisting of the pair of alleles A and B at 

two loci, and pA and pB denoting the frequency of allele A at the first locus and the 

frequency of allele B at the second locus, respectively. DAB is the coefficient of LD and is 

also written as D in case of two bi-allelic SNPs (Slatkin 2008). The LD measure r² is defined 

as the squared coefficient of LD between the two loci divided by the product of the 

frequencies of the alleles A, B, and their two alternative alleles, a, and b (Hill and Robertson 

1968). It ranges from zero to one, but can only be one in the presence of two haplotypes 

and equal allele frequencies. Values of r² are reduced by mutation and recombination. 

Lewontin (Lewontin 1964) introduced another measure of LD, D’. It is defined as the 

coefficient of LD divided by the maximum value of D given the allele frequencies in the 

material under study. The largest positive value D can take is pApb or papB, whichever is 

smaller, while the largest negative value D can take is either pApB or papb, whichever is 

smaller. Possible values of D’ range from zero to one like for r². In contrast to the latter, the 

definition of D' has the property that the absolute value of D' only equals one if at least one 

of the four possible haplotypes cannot be observed, regardless of the allele frequencies. 

Thus, values of D' that are smaller than one are indicative for historical recombination 

events. 
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To obtain an estimate of the level of LD within dataset A, r² was calculated between pairs of 

SNPs as r² is considered to be more robust with respect to allele frequencies and sample 

sizes compared to D’ (Du et al. 2007). r² was calculated between pairs of SNPs on a 

chromosome within a distance of 50 Mb using PLINK version 1.07 (Purcell et al. 2007). The 

LD decay distance between SNPs was estimated by plotting the r² values of the SNP pairs 

against their physical distance, fitting a nonlinear regression curve (Hill and Weir 1988) and 

deriving the crossing point between curve and chosen r² threshold of 0.2. LD decay analysis 

was performed using the R package “synbreed” (Wimmer et al. 2012). 

Haplotype blocks refer to a particular combination of adjacent SNPs, which are inherited 

together, and can be inferred based on a local reduction of diversity (Daly et al. 2001) or 

recombination (Gabriel et al. 2002; Reich et al. 2001). Haplotype blocks were identified 

according to the method proposed by Gabriel and colleagues (Gabriel et al. 2002) using the 

Haploview software (Barrett et al. 2005) via PLINK version 1.90 (Chang et al. 2015). The 

chosen approach was based on the identification of historical recombination events and 

thus, on D’. As values of D’ can be inflated in case of small sample sizes or in the presence 

of rare alleles, confidence intervals for D’ were constructed based on the observed data for 

each pair of sites. Pairs of SNPs were defined to be in “strong LD” if the lower boundary of 

the confidence interval exceeded 0.70 and the upper 0.98, consistent with no historical 

recombination. Contrary, SNP pairs were considered as revealing “strong evidence for 

historical recombination” if the upper boundary was below 0.90. A haplotype block was 

detected based on a contiguous set of SNPs, for which at least 95% of SNP pairs, assigned 

to either of the two categories, were classified to be in “strong LD”. 

 

2.4 Overview of population genetic metrics 

Positive selection can be detected based on deviations of observed allele frequency 

distributions from expectations under neutrality. For testing neutrality, different estimators of 

the composite parameter ߠ are often compared, which is defined by  

ߠ ൌ 4 ௘ܰݑ 

with Ne denoting the effective population size and u the generation mutation rate (Watterson 

1975). Assuming that mutations do not occur at the same position in the sequence more 

than once and that mutations are segregating in the population unless they get fixed or lost 

by drift in the absence of selection, ߠ describes the probability that two alleles, sampled at 
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random from a population, have not been inherited from a recent common ancestor 

(Hamilton 2009). Three estimators of ߠ, namely ߠ෠ௌ, ߠ෠గ, and ߠ෠௅, will be introduced below. 

Under the infinite-sites model of mutation (Kimura 1969), every mutation can be recognized 

as a sequence variant that is segregating in the population and thus, ߠ can be estimated by 

෠ௌߠ 	ൌ
ܵ

∑ 1
݅

௡ିଵ		
௜ୀଵ

	 

using the absolute number of segregating sites S in n sequences under study (Hamilton 

2009; Watterson 1975). 

 can also be estimated based on nucleotide diversity, which is often symbolized as π and ߠ

known as the average number of pairwise nucleotide differences in n sequences (Nei and Li 

1979; Tajima 1983). According to Tajima (1983), ߠ෠గ is defined by 

෠గߠ ൌ 	
1

൫௡ଶ൯
෍෍ߨ௜௝

௡

௝வ௜

௡ିଵ

௜

 

with πij referring to the number of pairwise nucleotide differences between the ith and the jth 

sequence. 

 ෠గ give comparable results for a random mating population in the absence ofߠ ෠ௌ andߠ

selection as proposed by the neutral mutation hypothesis (Kimura 1968, 1969; Kimura 

1983). To test this hypothesis, Tajima (Tajima 1989) compared these two estimators of ߠ: 

TD ൌ 	
෠గߠ െ	ߠ෠ௌ

ට ෠ܸሺߠ෠గ െ	ߠ෠ௌሻ
 

with ෠ܸ ሺߠ෠గ െ	ߠ෠ௌሻ denoting the estimated variance of ሺߠ෠గ െ	ߠ෠ௌሻ. If TD is close to zero, the 

neutral mutation hypothesis can explain the observed diversity pattern in the samples under 

study. Deviations from zero indicate that alternative explanations have to be taken into 

account. ߠ෠ௌ is affected by the existence of segregating sites, but not by their respective 

allele frequencies in contrast to ߠ෠గ. Rare alleles for example, are associated with a 

segregating site, but have limited influence on the average number of pairwise sequence 

variants. Therefore, negative values of TD indicate an excess of rare alleles associated with 

directional selection or recent population growth, for example after a bottleneck event. 

Contrary, positive values indicate an excess of alleles at intermediate frequency as in case 



 
 
 

 

20 
 

Material and methods 

of balancing selection or population shrinkage. Thus, TD is sensitive to deviations from 

neutrality due to demography as well as selection. 

To distinguish between demography and selection, ߠ෠గ can be compared with another 

estimator of ߠ ,ߠ෠௅, which includes outgroup information. In case of a selective sweep, 

hitchhiking due to positive selection is associated with high frequencies of derived alleles. 

Therefore, the normalized Fay and Wu's H statistic (Zeng et al. 2006), Hnorm, contrasts high- 

and intermediate-frequency variants based on the comparison of ߠ෠గ and ߠ෠௅, with 

௡௢௥௠ܪ ൌ 	
෠గߠ െ	ߠ෠௅

ට ෠ܸሺߠ෠గ െ	ߠ෠௅ሻ
 

and 

෠௅ߠ 	ൌ
1

݊ െ 1
෍ ௜ߞ	݅

௡ିଵ		

௜ୀଵ

		 

where ߞ௜ denotes the number of segregating sites with i copies of the derived allele that are 

observed within n samples. If Hnorm is close to zero, the neutral mutation hypothesis can 

explain the observed allele frequency pattern. Due to the weighting factor i, negative 

deviations from zero are expected in case of an excess of high derived allele frequencies. In 

contrast to TD, Hnorm has been shown to be unaffected by population growth as the 

overrepresentation of rare alleles is associated with low derived allele frequencies (Zeng et 

al. 2006). Thus, negative values of Hnorm are indicative for positive selection. 

Selective sweeps can also be detected by comparing the allele frequency distribution of 

genomic segments to theoretically expected or empirical distributions of allele frequencies. 

To determine whether a selective sweep occurred at a given set of positions in the genome, 

the composite likelihood ratio test (CLR) can be performed, as implemented in the software 

SweepFinder (Nielsen 2005). In the CLR, the likelihoods of two hypotheses are compared: 

the likelihood of a neutrally evolving sequence that is calculated based on the genome-wide 

distribution of allele frequencies (null hypothesis), and the likelihood of the alternative 

hypothesis that a selective sweep gave rise to the observed allele frequency distribution of a 

genomic region. In case of a sweep, the probability of each individual to escape the sweep 

is a function of the physical distance between the SNP and the selected site, the effective 

population size, the recombination rate, and the selection coefficient. Given that some 

individuals have escaped the selective sweep by recombination, the probability is calculated 

to observe a specific allele frequency at a given SNP in a certain distance to the selected 

site under the alternative hypothesis of a sweep. The composite likelihood (CL) of the two 
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hypotheses are then formed by multiplying the probabilities of observing alleles at different 

frequency classes based on SNPs within the respective genomic region in case of the 

alternative hypothesis and based on the whole chromosome in case of the null hypothesis. 

The CLR statistic is given by  

	ܴܮܥ ൌ 	2 ∗ ሾ	݈݃݋ሺܮܥ௦௪௘௘௣ሻ	–  ሿ	௕௔௖௞௚௥௢௨௡ௗሻܮܥሺ݃݋݈	

High values of the CLR statistic support the hypothesis that the respective genomic region 

has been subjected to selection based on an excess of extreme allele frequencies. The test 

has been shown to be relatively robust under different demographic scenarios and varying 

recombination rates (Nielsen 2005; Williamson et al. 2007). 

Genomic regions under differential selective pressure in two groups are associated with 

allele frequency differences between these groups, which can be measured by the fixation 

index FST (Weir and Cockerham 1984). This index estimates the proportion of genetic 

variance of allele frequencies between groups in relation to the total genetic variance of their 

frequencies (Weir and Cockerham 1984). A value of zero indicates comparable allele 

frequencies in the two groups under study and the absence of population structure if both 

groups are considered as one group. Contrary, values up to one are suggestive for different 

allele frequencies in the two groups and thus for population structure in the entire set of 

individuals. 

 

2.5 Identification of candidate genes in Dent and Flint 

For detecting putative signatures of differential selective pressure between Dent and Flint 

lines of dataset G, a combined approach based on four metrics was applied (Unterseer et 

al. 2016). Nucleotide diversity π (Tajima 1983) and TD (Tajima 1989) were calculated for 

each panel of inbred lines using a customized script. The fixation index FST (Weir and 

Cockerham 1984) was calculated between the two panels using PLINK version 1.90 (Chang 

et al. 2015). Metrics were calculated per SNP and averaged over windows of 40 SNPs 

(sliding by 10%), using the R package “zoo” (Zeileis and Grothendieck 2005). The CLR test 

was calculated for each panel using the software SweepFinder (Nielsen et al. 2005). For 

CLR, the grid size was 150 kb, which was the same magnitude as the maximal distance 

between two SNPs with r² > 0.2 in dataset A (Unterseer et al. 2014). Windows exhibiting 

values below the 10% quantile for π and TD as well as above the 90% quantile for FST and 
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CLR were submitted for candidate gene analysis based on the B73 reference sequence 

version 2 (Chia et al. 2012) annotation, version 5b60, which contained 39,656 gene models. 

To assess the number of false-positives due to reduced levels of recombination, the lower 

bounds of recombination events were calculated for Dent and Flint based on dataset G 

using the four-gamete test, which gives a conservative estimate of recombination events in 

the history of a sample (Hudson and Kaplan 1985). Values for the pairwise tests of 

neighbouring SNPs were averaged over 1,000 SNPs and recombination events were 

reported per Mb. Regions of low recombination rates were defined as regions exhibiting 

rates below the 10% quantile per chromosome. 

 

2.6 Characterization of candidate genes 

Gene ontology terms of the candidate gene sets for Dent and Flint were tested for 

enrichment using agriGO (Du et al. 2010). Enrichment analyses were performed based on 

maize gene IDs by applying a hypergeometric test with a Benjamini-Yekutieli correction 

(Benjamini and Yekutieli 2001) to account for multiple testing and a significance threshold of 

α = 0.05. Pathway analysis was performed using MapMan version 3.5.1 (Thimm et al. 2004) 

based on the mapping of the first transcript of each gene to the file 

Zm_B73_5b_FGS_cds_2012.m02 downloaded from the MapMan webpage. Furthermore, 

candidate genes were assigned to the flowering network in maize based on literature, gene 

ontology terms, and/or sequence homology to flowering time genes characterized in other 

species (Unterseer et al. 2016). 

Genes identified as candidate genes under differential selective pressure in dataset G were 

investigated based on additional datasets consisting of 600 k genotyping array data and of 

whole-genome sequencing data. Gene-wise values of π and FST were calculated based on 

dataset L to investigate the contribution of landraces to the reduced candidate gene 

diversity observed for Dent and Flint based on dataset G. Hnorm (Zeng et al. 2006) was 

calculated per gene based on dataset O to test if candidate genes were enriched for high 

derived allele frequencies compared to non-candidate genes. Gene-wise values of π, TD, 

and FST were obtained for dataset S and compared between candidate genes and non-

candidate genes to confirm the reduction of candidate gene diversity observed based on 

dataset G. Gene-wise values of FST were calculated based on dataset T to investigate allele 

frequency differences between temperate and tropical lines in case of candidate gene sets 

and non-candidates using VCFtools version 0.1.11 (Danecek et al. 2011). Analyses based 
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on dataset L and O were performed using customized scripts and analyses based on 

dataset S using Variscan version 2 (Hutter et al. 2006). For gene-wise calculations, the 

longest protein-coding transcript, including 5 kb upstream, was used and metrics were 

calculated if at least five SNPs were available for analysis. For the analysis of exonic, genic, 

500 bp, and 5 kb upstream regions, FST was determined between Dent and Flint lines in 

case of at least five SNPs per region based on dataset S using VCFtools version 0.1.11 

(Danecek et al. 2011). Two-sided Wilcoxon rank sum tests (Wilcoxon 1945) were performed 

to test for differences between candidate genes and non-candidate genes within pools. 

The phenotypic effect of a Flint segment, carrying one or more candidates associated with 

the flowering network in maize, was investigated based on a Dent–Flint introgression library 

(Unterseer et al. 2016). Based on two experiments, adjusted means for male and female 

flowering time were calculated for 97 IL lines of dataset P in a two stage approach using 

Plabstat (Utz 2011). In the first stage, adjusted entry means were calculated across 

replicates per location by standard lattice analysis. An outlier detection was performed at 

the first stage (Anscombe and Tukey 1963) and extreme residuals set to missing (ratio 

between residual and measurement ≤ -1.9 and ≥ 1.9, respectively). In the second stage, 

adjusted means of the 97 single-segment IL lines and the Dent parental line were calculated 

across locations considering genotypes as fixed effects and location and interaction 

between location and genotype as random effects. Student’s t-tests were performed to test 

for significance between adjusted means of flowering time of lines carrying a Flint segment 

including Flint flowering candidates, Dent flowering candidates and non-candidate genes, 

respectively. The least significant difference in adjusted means between the 97 single-

segment lines and the Dent parent was determined at two significance levels of α = 0.05 

and α = 0.05/97, the latter to correct for multiple testing. To estimate the length of individual 

donor genome fragments, the distance between markers on the respective donor genome 

fragment plus half the distance to the adjacent marker flanking the donor genome fragment 

on either side of the fragment was calculated. 
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3 Discussion  

The objective of the study was the identification of candidate genes under differential 

selective pressure in two temperate maize germplasm pools. In this chapter, results 

presented in the two publications underlying this thesis are discussed and complemented 

by additional findings. The first two sections present the design of the developed 

genotyping array and its application to resolve population structure and LD extent in the 

lines under study. The subsequent two sections address the identification of candidate 

genes and their biological relevance focussing exemplarily on the elucidation of the complex 

network of flowering time in maize. Potential effects of ascertainment bias and 

consequences of varying levels of population and LD structure on the sensitivity of the 

performed selection screen are discussed in section 3.5, followed by a summary of the 

major findings of the thesis. 

 

3.1 Design of the 600 k genotyping array 

High-throughput genotyping has revolutionized genetic analyses in humans, livestock 

species, crop and model plants in the past decade by offering an efficient alternative to 

whole genome sequencing for gaining genomic information (Hayes et al. 2013; Langridge 

and Fleury 2011; Ragoussis 2009). Technological advances in genomic research paved the 

way for the generation of an increasing number of genotyping arrays for various 

agronomically important plant species, including rice (Chen et al. 2014), wheat (Winfield et 

al. 2016), sunflower (Livaja et al. 2016), apple (Bianco et al. 2016), soybean (Wang et al. 

2016), brassica (Clarke et al. 2016) and oil palm (Kwong et al. 2016). To ensure the utility of 

a genotyping array for a wide range of research questions and study designs, its 

establishment requires the identification of a large number of variants that are polymorphic 

in a representative discovery panel. For the establishment of a high-density genotyping 

array for maize, a discovery panel, comprising 30 important founder lines of maize breeding 

in Europe and the US, was sequenced for variant discovery at intermediate to high coverage 

(Unterseer et al. 2014). After applying a stringent multi-step filtering procedure, 1.2 M of the 

57 M initially identified sequence variants were experimentally investigated by genotyping a 

validation panel, a diverse panel of 285 maize samples that represented the genetic diversity 

of European and US temperate maize as well as a set of tropical maize lines. Based on 

genotype call cluster separation, cluster variance, and cluster position, variants were 

assigned to one out of six quality categories. As the majority of samples exhibited only a 
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minor level of heterozygosity, category assignment was compared between the assignment 

with and without inbreeding correction. For inbreeding correction, sample-specific factors 

were incorporated in the genotype calling algorithm to adjust the probability of observing a 

heterozygous call given the inbreeding level of the sample. Category assignments changed 

in 36.2% of all variants upon inbred correction with the category of variants fulfilling all 

cluster metric criteria and classified as PHR benefitting most. Thus, applying the inbred 

correction was highly recommended for data analysis using the flexible genotype calling 

algorithm provided by Affymetrix®. Based on category assignment, physical distribution, 

and concordance with in silico variant calls from sequencing data, a final selection of 

609,442 SNPs and 6,759 indels was created for the 600 k genotyping array. Except 

262 variants derived from the 50 k array, all remaining variants of the 600 k array (99.9%) 

were polymorphic in dataset A, for which polymorphism rates of more than 95% were 

observed for Dent, Flint and F1 hybrids (Unterseer et al. 2014). 

The 600 k array included 116,224 variants, which were located in coding regions. Based on 

the B73 filtered gene set, 26,620 genes (67%) were tagged with at least one variant in their 

coding, intronic, or untranslated region, compared to 17,520 genes tagged by SNPs of the 

50 k array (44%). Including 5 kb up- and downstream regions, 35,089 genes (88%) were 

represented by at least one variant, thus providing an excellent basis for finding marker-trait 

associations in targeted and genome-wide approaches. The average distance between two 

sequence variants was 3.4 kb compared to 45 kb for the 50 k array (Ganal et al. 2011). The 

physical distribution of the 616 k high-quality variants followed the estimated recombination 

rate profile along the chromosomes with less sequence variants in centromeric compared to 

telomeric regions. This reduction of variant numbers around centromeres was also observed 

in other maize studies (Chia et al. 2012; Gore et al. 2009; Romay et al. 2013) and resulted 

from the high proportion of repetitive DNA around the centromeres for which no markers 

could be developed. The high reproducibility of the genotype calls was shown by up to 

99.8% of identical genotype calls for replicates and by up to 94.3% of variants with stable 

Mendelian inheritance in trios consisting of parental lines and the corresponding hybrid. The 

level of reproducibility of genotype calls was in the same range as reported for the 50 k 

array (Ganal et al. 2011), thus highlighting the advantage of genotyping arrays to generate 

robust and reproducible genotype calls. To ensure a high genotype concordance between 

laboratories and across genotyping platforms in case of the flexible Affymetrix® genotype 

calling algorithm, a genotype cluster model file was established for stable PHR cluster 

positions that is available via the Affymetrix® website. Furthermore, 45,655 variants of the 
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50 k array (Ganal et al. 2011) were successfully validated and included for study 

comparison.  

The 600 k genotyping array is the largest SNP array currently publicly available for maize 

and represents a powerful tool for fine-mapping of genomic regions, haplotype construction 

and detection of marker-trait associations. The high-density array was applied to determine 

population structure and LD extent (Unterseer et al. 2014) and to identify candidate genes 

under differential selective pressure between Dent and Flint (Unterseer et al. 2016) as shown 

in the following sections. Furthermore, the array was successfully applied in targeted 

approaches to narrow down a candidate region for haploid induction (Hu et al. 2016) and to 

resolve genomic variation underlying expression-based presence/absence variation (Jin et 

al. 2016). Additional applications of the 600 k array may include its use in the imputation of 

genotypes from genetic material analysed with lower density marker panels and the 

saturation of specific genomic regions with SNPs for fine-mapping, map-based cloning 

studies or marker-assisted selection. 

 

3.2 Population structure and the extent of LD 

The identification of population structure is crucial for quantitative genetic or population 

genetic studies since admixture may affect the estimation of population genetic parameters, 

the detection of marker-trait associations, or accuracies of genomic prediction. Therefore, 

dataset A and dataset G were investigated with respect to the population structure 

underlying 155 temperate and (sub)tropical lines (Unterseer et al. 2014) and the subset of 

136 temperate Dent and Flint lines (Unterseer et al. 2016), respectively. 

Analysis of population structure revealed seven groups within dataset A and six groups 

within dataset G, namely the Dent groups BSSS, LSC, Iodent and non-BSSS, the Flint 

groups Northern and non-Northern Flint as well as an additional group including 

(sub)tropical lines in case of dataset A. Except for two lines with a presumable contribution 

of (sub)tropical lines in their pedigree, pool assignment was consistent between dataset A 

and dataset G for Dent resulting in 14 BSSS, 14 Iodent, nine LSC, and 33 non-BSSS in case 

of dataset G. This was expected considering that the majority of these lines were US Corn 

Belt Dent lines and that Corn Belt Dent comprises several heterotic pools, which were 

established based on few founder lines followed by divergent selection during the last 

decades (Mikel and Dudley 2006; Nelson et al. 2008; van Heerwaarden et al. 2012). 

Furthermore, van Heerwaarden and colleagues reported strong genetic differentiation 
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between modern North American maize lines of BSSS, Iodent and non-BSSS, including 

LSC (van Heerwaarden et al. 2012). In line with this finding, the level of genome-wide 

differentiation between the four Dent pools based on dataset G was substantial (Table 2). 

The percentage of polymorphic SNPs observed in pairwise comparisons of BSSS, Iodent 

and LSC was lower than in pairwise comparisons between one of these pools and non-

BSSS (73.5-75.6% vs. 91.6-91.8%). This might result from smaller pool sizes in case of 

BSSS, Iodent and LSC compared to non-BSSS, but could also indicate heterogeneous 

selective pressure in the genome. 

Table 2: Level of differentiation between the four Dent pools of dataset G. Average values of FST 
between BSSS, Iodent, LSC, and non-BSSS are shown in the upper triangle. The respective number 
of polymorphic SNPs is listed in the lower triangle. 

	 BSSS Iodent LSC Non-BSSS 

BSSS - 0.299 0.290 0.125 

Iodent 409,696 - 0.320 0.170 

LSC 413,965 402,595 - 0.144 

Non-BSSS 502,539 502,194 501,512 - 

 

Most Flint lines in this thesis were derived from material introduced to Europe around 

500 years ago by several expeditions and varying trade routes (Figure 2). The diverse 

background of the Flint lines under study was reflected by their non-consistent group 

assignment in dataset A and dataset G. With both datasets, two groups of temperate Flint 

lines were identified, referred to as Northern and non-Northern Flint according to their 

geographic distribution within Europe (Unterseer et al. 2014; Unterseer et al. 2016). A total 

of 24 lines from Germany and France was assigned to Northern Flint in case of both 

datasets, whereas only 18 of the remaining 42 non-Northern Flint lines of dataset G were 

also assigned to non-Northern Flint based on dataset A. The remaining non-Northern Flint 

lines of dataset G were assigned to Northern Flint and a group including (sub)tropical lines 

based on dataset A (10 and 14 lines, respectively). In line with the absence of a pronounced 

population structure in the temperate Flint lines under study, a low level of genetic 

differentiation was observed between the two groups within dataset G (mean FST of 0.078). 

The majority of early European maize hybrids resulted from crosses between US Dent lines 

and European Flint lines (Barrière et al. 2006). Until the end of the 1970s, the European Flint 

germplasm was strongly influenced by few founder lines such as F7 and F2, which were 

derived from the French landrace Lacaune (Barrière et al. 2006). Lines with major Lacaune 

contribution in their pedigree have been reported to form a distinct genetic group (Camus-
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Kulandaivelu et al. 2006) as these lines were derived from the hybridisation zone of the 

Pyrenees and Galicia, where maize with Caribbean and Northern Flint background mixed 

(Dubreuil et al. 2006; Mir et al. 2013). The historical importance of maize material from this 

hybridization zone for the Flint lines under study was seen in the comparison of Flint elite 

lines and 31 Flint-type European landraces based on dataset L. For most of the landraces 

from south-western France, the level of FST between Flint elite lines and Flint-type landraces 

was lower compared to the average of all 31 Flint-type landraces (Table 3; Figure 5). 

 

Figure 5: Geographic origin of 38 European landraces included in dataset L. Abbreviations of 
landraces refer to Table 1. Landraces with Dent-type kernels are indicated by D.  

 

Table 3: Average level of FST between Flint elite lines and 31 Flint-type landraces of dataset L. 
Abbreviations of landraces (LR) refer to Table 1. 

LR     FST LR     FST LR     FST LR     FST LR     FST 

AN 0.097 KL 0.095 ML 0.066 RM 0.134 TU 0.084 

BA 0.092 KR 0.085 MO 0.088 RO 0.087 VI 0.078 

BU 0.101 LC 0.081 ND 0.153 RT 0.136 WA 0.089 

CO 0.073 LD 0.055 OM 0.089 SA 0.078 All 0.094 

FL 0.191 LL 0.058 PE 0.101 SC 0.096   

GA 0.058 MB 0.082 PF 0.129 SF 0.082   

GB 0.081 MD 0.137 RD 0.069 SO 0.075   
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The extent of LD in a population influences the resolution that can be obtained in genetic 

analyses. LD decays with physical distance between two sequence variants and therefore, 

the level of LD within a given set of lines is often described by an average decay distance. 

This distance can be used as an estimate for SNP densities required in genetic analyses, 

such as association mapping (Van Inghelandt et al. 2011). LD decay distances of several 

hundred base pairs up to few kilobase pairs have been reported in highly diverse maize 

panels (Chia et al. 2012; Lu et al. 2011; Romay et al. 2013; Yan et al. 2009). Most of these 

panels included tropical material that exhibits a faster LD decay than temperate maize (Lu et 

al. 2011; Yan et al. 2009). Furthermore, analyses varied with respect to the number and the 

distribution of markers as well as the applied window sizes (Chia et al. 2012; Riedelsheimer 

et al. 2012; Romay et al. 2013) and were in some cases restricted to a limited number of 

genes or loci (Remington et al. 2001; Tenaillon et al. 2001). In this study, the dependency of 

the LD decay estimation on the chosen window size was exemplarily investigated for 

chromosome 5 based on the Flint lines of dataset G. The decay distance was slightly 

underestimated in case of 50 Mb windows compared to a chromosome-wide calculation 

(174.8 kb vs. 187.1 kb). For smaller window sizes, a clear dependency of the obtained LD 

decay distance on the chosen window size was observed (Table 4). This dependency 

resulted from long-range LD that was accounted for when applying larger window sizes. LD 

over longer distances can arise from population structure, selection, and demographic 

effects like recurrent bottlenecks (Long et al. 2013; Schaper et al. 2012; Voight et al. 2006). 

Given the breeding history of maize, long-range LD would not be unexpected and was 

indeed observed previously. Chia and colleagues reported for example extensive haplotype 

sharing among improved lines (Chia et al. 2012). Van Heerwaarden and colleagues observed 

an increase of shared haplotypes among modern inbred lines compared to earlier lines (van 

Heerwaarden et al. 2012) and Riedelsheimer and colleagues detected considerable long-

range LD in elite lines (Riedelsheimer et al. 2012). 

Table 4: Dependency of LD decay distance estimates on the chosen window size. Values are shown 
exemplarily for LD decay calculations based on 66 Flint lines of dataset G in case of chromosome 5. 

Window size [kb] LD decay distance [kb] 

5 12.578 

50 28.246 

500 87.312 

5,000 134.205 

50,000 174.784 

Whole chromosome 187.104 
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For dataset A, average LD decay distances per chromosome were determined based on LD 

calculations between pairs of markers within windows of 50 Mb (Unterseer et al. 2014). This 

window size was chosen as a trade-off between the aim to consider short- as well as long-

range LD along the chromosome and computational limitations in the calculation of 

chromosome-wide LD. LD decayed to an r2 value of 0.2 within an average distance of 

158 kb with smallest distances for (sub)tropical lines (70 kb) and largest for BSSS (36 Mb; 

Unterseer et al. 2014). LD levels found here were higher compared to previous studies 

investigating highly diverse maize lines (Chia et al. 2012; Yan et al. 2009). This might be due 

to the sample panel analysed, which mainly comprised temperate maize lines belonging to 

distinct germplasm pools and the rather small pool size in BSSS and Iodent. In line with the 

literature, a substantially higher level of LD was observed in BSSS and Iodent compared to 

non-BSSS due to a closer relationship and a smaller number of founder lines within BSSS 

and Iodent compared to non-BSSS (Liu et al. 2003; Mikel and Dudley 2006; Romay et al. 

2013).  

 

3.3 Candidate genes for Dent and Flint 

A comprehensive investigation of pool-specific targets of selection would be valuable for a 

better understanding of genomic and phenotypic differences between Dent and Flint and a 

knowledge-driven optimization of existing breeding schemes. To identify genomic regions 

under selective pressure in one of the two germplasm groups, dataset G was screened for 

extreme allele frequencies over extended linked sites in a window-based approach by 

calculating nucleotide diversity π, Tajima´s D (TD) and the composite likelihood ratio test 

(CLR) for each of the two germplasm groups (Unterseer et al. 2016). To ensure that the 

selection signature was specific for one of the two pools, windows had also to be 

associated with a high level of differentiation between Dent and Flint measured by the 

fixation index FST. As changes in allele frequencies were expected to be most prominent in 

genomic regions under selective pressure compared to the genomic background, an outlier-

based approach was applied. Windows were selected for further investigation if they 

exhibited values below the 10% quantile for π and TD and above the 90% quantile for CLR 

and FST. Adjacent windows were combined for candidate gene analysis as the observed 

changes in allele frequency were likely caused by the same selective sweep event. This 

resulted in the selection of 265 windows for Dent and 158 windows for Flint with an average 

size of 331.4 kb and 267.8 kb, respectively (Unterseer et al. 2016). Thus, 4.3% and 2.1% of 

the maize genome, as calculated from the B73 reference sequence, were identified to be 
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under putative differential selective pressure in Dent and Flint, respectively. Based on these 

candidate regions, 876 and 545 candidate genes with haplotypes near fixation or fixed in 

either of the two elite germplasm were identified for Dent and Flint, thus corresponding to 

2.2% and 1.4% of the annotated maize gene set, respectively. 

The high level of LD in temperate Dent and Flint lines facilitated the detection of selective 

sweeps, but might have also decreased the power to discriminate between sweep signals 

caused by genetic hitchhiking due to positive selection and negative background selection 

in regions with reduced levels of recombination (Charlesworth et al. 1993; Stephan 2010). 

However, the hypothesis of positive selection being the driving force of the observed allele 

frequency changes was supported by the observation that with 75% of the Dent and 81% 

of the Flint candidates the majority of the identified candidate genes were not located in 

regions with low levels of recombination such as centromeric regions (Unterseer et al. 2016). 

In addition, candidate genes were enriched for high derived allele frequencies as expected 

in case of a classic sweep scenario in contrast to background selection. The investigation of 

dataset S supported the reduced diversity of the identified candidates by a significant 

reduction of mean gene-wise π and TD in Dent and Flint candidate gene sets compared to 

non-candidate genes based on whole-genome sequence data. To examine, if genic and 

upstream regions contributed equally to the differentiation between temperate Dent and 

Flint, values of FST were investigated separately for 5 kb and 500 bp upstream regions, genic 

regions, and exons based on dataset S. FST values between Dent and Flint lines were 

significantly higher for candidate gene sets compared to non-candidate genes for all four 

categories (5 kb, 500 bp, genic, exonic) as expected based on the results obtained from 

dataset G. However, distributions of FST values were similar between all four categories in 

each of the candidate gene sets. Thus, the power to resolve whether selection acted 

differentially in upstream and genic regions was probably limited by the high level of linkage 

disequilibrium observed in temperate Dent and Flint (Unterseer et al. 2016). Results of 

ongoing large-scale whole genome and transcriptome sequencing projects will allow 

investigating the impact of selection on the regulation of gene activity in these two 

germplasm pools and their consequence for the differentiation between Dent and Flint. 

The assess whether the selection targets were surrounded by long blocks of high LD, 

haplotype blocks were identified for the Dent and Flint lines of dataset G based on D’. A 

total of 36,085 haplotype blocks was identified for Flint and of 34,250 blocks for Dent with 

an average length of 39.3 kb and 44.3 kb, respectively. Thus, haplotype blocks were 

abundant in the genome of both pools, but were significantly longer in Dent compared to 

Flint (p-value = 3.6e-07). Haplotype blocks that included non-candidate genes, revealed a 
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comparable length of 154.2 kb for Dent and 152.0 kb for Flint on average, though more 

blocks were found for Dent compared to Flint (Table 5). As expected for sweeps, haplotype 

blocks that included candidate genes were significantly longer compared to blocks, which 

did not harbour selection candidates (Table 5). Haplotype blocks were enriched for 

candidate genes including 59.5% of the Dent and 52.5% of the Flint candidate genes 

compared to 39.8% and 35.9% of non-candidate genes, respectively. Tracing the extent of 

haplotype blocks including candidate genes in maize material of different breeding stages 

will offer an interesting opportunity to increase existing knowledge on how modern Dent and 

especially Flint germplasm evolved.  

Table 5: Characteristics of haplotype blocks identified in Dent and Flint based on dataset G. Total 
number, mean and median length of blocks including non-candidate and candidate gene sets for 
Dent (D) and Flint (F), respectively. p-value: significance of difference between the length of haplotype 
blocks including non-candidate and candidate genes as determined by two-sided Wilcoxon rank sum 
tests. 

Group Including non-candidate genes 

Number      Mean [kb]   Median[kb] 

Including candidate genes 

Number      Mean [kb]   Median[kb] 

p-value 

D 6,743 154.200 87.620 200 601.800 195.800 <2.2e-16 

F 6,522 152.000 85.210 123 371.800 173.600 5.1e-09 

 

As most of the European Flint inbred lines were assumed to be derived from few European 

landraces (Barrière et al. 2006), the hypothesis was tested that selection on the Flint 

candidates had occurred prior to modern breeding efforts (Unterseer et al. 2016). The level 

of differentiation between Flint-type landraces and Flint elite lines was significantly lower for 

Flint candidates compared to non-candidate genes based on dataset L (FST of 0.072 vs. 

0.095; p-value = 6.0e-04). This finding supported the hypothesis that selection acted on 

Flint candidates in Flint-type landraces prior to modern line improvement. Lowest levels of 

FST were observed for landraces from France, Germany, and Spain, which suggested a 

major contribution of these Flint-type landraces to the Flint candidate gene diversity 

observed in the Flint elite lines (Unterseer et al. 2016). This observation was in line with the 

report of Barrière and colleagues that the German landrace Gelber Badischer Landmais 

played an important role in the development of flint lines after 1980 (Barrière et al. 2006). 

The study also reported that lines from Germany and Canada as well as Northern Flint gave 

rise to significant improvements in early vigour in cooler climates possibly with a 

contribution of introgressions of maize from the tropical highlands, southern parts of 

Argentina and Chile. Thus, comparing the genomic composition of these maize groups with 

European Flint-type landraces might offer additional insights into targets of adaptation to 
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cooler climates. The remaining seven European landraces displayed at least partially Dent-

type kernels and their allelic composition was compared to Dent elite lines of dataset G. 

Dent-type landraces revealed considerable levels of differentiation for Dent candidates 

compared to non-candidate genes (FST of 0.164 vs. 0.111, p-value = 0.026), which indicated 

that European Dent-type landraces exhibited a different allelic composition of the Dent 

candidates than the Dent elite lines under study. 

Considering the phenotypic characteristics of Dent and Flint, candidate gene sets were 

tested for enrichment of specific biological processes or pathways. No significant GO term 

enrichment could be observed for the identified genes, though indication for a pool-specific 

enrichment for genes associated with tetrapyrroles in Dent and with terpenoid metabolism 

in Flint was observed (Unterseer et al. 2016). Based on sequence similarity to Arabidopsis 

thaliana, Flint candidate genes associated with terpenoid metabolism might be involved in 

the biosynthesis of β-caryophyllenes, which are part of an indirect defence response 

mechanism against herbivores that has been shown to be largely lost in temperate US Dent 

in contrast to European Flint (Degen et al. 2004; Kollner et al. 2008; Rasmann et al. 2005). 

Tetrapyrroles represent precursors of chlorophyll and heme and have been reported to be 

involved in drought signalling (Nagahatenna et al. 2015). Furthermore, six Flint candidates 

associated with cold tolerance were identified and for half of these, differential expression 

upon exposure to chilling temperature has been reported in the literature for maize or the 

homologous gene in rice. Finally, 30 candidates could be assigned to the flowering network 

in maize and linked to phenotypic effects as it will be presented in the following section. 

Bridging the gap between observed genomic differences between Dent and Flint and 

putative effects of germplasm-specific candidate gene haplotypes on the phenotype is 

essential for assessing their potential for further improvement of modern maize germplasm. 

Up to now, RNA expression data across various developmental stages and tissues are 

mainly available for US Dent lines like B73. Thus, follow-up studies are required for a 

comprehensive characterization of the identified candidate genes on the transcriptional, 

structural, and functional level especially in the Flint germplasm. 

 

3.4 Differential selective pressure on the flowering network 

Genomic analyses offer an excellent opportunity to gain insights into evolutionary 

processes. Indications for phenotypic effects of candidate regions from selection screens 

have been obtained using QTL mapping or genome-wide association studies for example 
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(Horton et al. 2012; Hufford et al. 2012; Xie et al. 2015). However, only rare examples exist 

that provide direct support for the functional effects of identified candidate genes or regions 

in the species under study (Hufford 2016). Flowering time is essential for local adaptation 

and represents a major determinant for other agronomic traits, such as grain filling and 

yield. Differences in flowering time have been well described in maize with Dent germplasm 

flowering on average later compared to Flint (Camus-Kulandaivelu et al. 2006). Thus, 

candidate genes associated with flowering time were investigated with respect to the 

differentiation between Dent and Flint in Unterseer et al. (2016). Based on literature, gene 

ontology terms, and/or sequence homology to flowering time genes characterized in other 

species, 18 candidate genes could be identified for Dent and 12 candidates for Flint that 

were associated with the flowering network. For assessing the phenotypic effects of these 

candidates, dataset P was used. The maize introgression library (IL) included 97 lines, which 

carried a single Flint genomic segment in a Dent genetic background, and was investigated 

with respect to changes in flowering time compared to the parental Dent line. Of the 

97 lines, 22 lines carried a Flint introgression with one or several of in total 14 Dent and Flint 

flowering time candidates (six Dent candidate genes and eight Flint candidates). Six of the 

lines carried a segment with a combination of Dent and Flint candidates. The comparison of 

flowering time between these 22 lines and the remaining 75 lines, which did not carry a 

genomic segment with a flowering time candidate identified in the screen, revealed that the 

seven lines carrying the Flint haplotype of a Flint candidate flowered significantly earlier 

(93.1 versus 96.1 days, p-value = 0.011). Contrary, nine lines which carried the Flint 

haplotype of a Dent flowering time candidate did not exhibit a significant shift in flowering 

time compared to the 75 lines. The obtained results demonstrated that the Flint haplotypes 

of the Flint flowering candidates promoted earlier flowering in contrast to the respective 

Dent haplotypes, thus linking candidate genes identified based on allele frequency changes 

to phenotypic effects. The IL offers a unique study system to investigate the effect of 

specific haplotypes on the phenotype and a further reduction of the size of the introgressed 

segments would be highly desirable for further studies. Moreover, the comparison of Dent 

and Flint can be extended to other candidate genes by phenotyping additional traits, 

measuring transcriptional and metabolomics data, and by investigating interactions of 

candidate genes with the genomic background. 

Timing of the transition from the vegetative to the reproductive phase is crucial for the 

adaptation to different environments and the agronomic performance of maize. Many 

developmental and physiological traits are influenced by flowering time and maturity, which 

makes the profound understanding of the regulation of the genetic network underlying 
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flowering time highly desirable. The flowering network comprises pathways associated with 

the integration of environmental signals, e.g. light perception and photoperiod, as well as of 

endogenous signals via autonomous, age and phytohormone-dependent pathways and has 

been well characterized for example in rice (Lee and An 2015) and Arabidopsis thaliana 

(Bouche et al. 2016). It has been shown that the progressive adaptation of short-day plants 

like maize, rice and tomato to temperate climates required the loss of photoperiod 

sensitivity (Hung et al. 2012; Nakamichi 2015). In maize, the complex genetic architecture of 

flowering time has been studied in a large number of studies mapping QTL with a meta-

analysis revealing 62 flowering time consensus QTL (Chardon et al. 2004). Phenotypic 

differences in maize flowering time are mainly caused by the accumulation of many small-

effect QTL (Buckler et al. 2009). Only a few large-effect genes have been characterized in 

maize so far (Colasanti et al. 1998; Danilevskaya et al. 2008; Muszynski et al. 2006; Salvi et 

al. 2002; Vladutu et al. 1999) and were included in a conceptual gene regulatory network 

model for flowering time control in maize (Dong et al. 2012). In this study, the 30 flowering 

time candidates were assigned to different pathways within the flowering network based on 

the function of their homologs in Arabidopsis thaliana or maize-specific reports (Unterseer et 

al. 2016). This revealed that the majority of the Dent candidates was involved in light 

perception and photoperiod dependent pathways (12 of 18 Dent candidates), whereas in 

Flint the majority of the candidates was associated with endogenous signal integration and 

flower developmental processes (10 of 12 Flint candidates). Thus, it could be shown that 

different pathways of the flowering network were under selective pressure in temperate 

Dent and Flint. Taking the results of the analysis of the IL lines into account, the Flint-

specific haplotypes of Flint candidate genes very likely constitute a promising source for the 

adaptation of maize germplasm pools to shorter vegetation periods by promoting earlier 

flowering through endogenous signalling pathways. 

The observation that different components of the flowering network were found to be under 

differential selective pressure in temperate Dent and Flint maize motivated further 

investigation with specific emphasis on the history of the material under study. As indicated 

in Figure 2, Corn Belt Dent arose from the historical hybridization between Northern Flint 

from the north-eastern US and Southern Dent from the south-eastern US roughly 200 years 

ago with a major contribution from Southern Dent (Anderson and Brown 1952). Therefore, it 

is likely that the screen for signatures of differential selective pressure in Dent compared to 

Flint had a high sensitivity with respect to genomic regions tracing back to Southern Dent. 

As Southern Dents are closely related to southern Mexican varieties with some influence of 

Caribbean material (Brown and Anderson 1948; Doebley et al. 1988; Liu et al. 2003), genes 
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identified as being under selective pressure in Dent might partially trace back to targets of 

selection in tropical material. Thus, the following hypothesis could be stated: If genes had 

been under selective pressure in tropical material, their reduced diversity might have 

contributed to a reduced diversity in Southern Dent and to the observed low level of 

diversity of Dent candidates in the Dent lines. To address this hypothesis, the allelic 

composition of 13 tropical lines was compared to the allelic composition of Dent and Flint 

lines based on dataset T.  

The hypothesis of a relatively close genetic relationship between Dent and tropical maize 

was supported by a significantly lower level of differentiation between tropical lines and 

Dent compared to Flint (FST = 0.063 vs. FST = 0.114; p-value < 2.2e-16). If Dent candidate 

genes experienced selective pressure exclusively in Dent, or if candidate gene haplotypes 

with different allelic composition were selected in tropical maize and Dent, higher levels of 

FST between Dent and tropical maize would be expected for Dent candidates compared to 

non-candidates. However, no significant change of gene-wise levels of FST was observed 

between tropical and Dent lines for Dent candidate genes compared to non-candidate 

genes (Table 6). Together with the distribution of gene-wise FST values (Figure 6), this might 

indicate that the majority of the identified Dent candidates experienced selective pressure in 

the tropical lines and suggested the presence of targets of selection common to US Dent 

and tropical maize. Thus, the reduced diversity of Dent candidate genes observed in the 

Dent lines of dataset G might partially trace back to a reduced diversity of these genes in 

tropical maize, probably via the contribution of Southern Dent to modern US Corn Belt Dent. 

For Dent flowering time candidates, gene-wise levels of FST between tropical and Dent lines 

were also not significantly different. Five of the 17 genes revealed values of FST that 

exceeded 0.1, which were all associated with the response to photoperiod and the circadian 

system (Unterseer et al. 2016) and might have contributed to the adaptation of Dent to 

temperate climates. Additional investigation of the genetic composition of these genes in 

Southern Dent and the effect of their respective haplotypes on the phenotype might provide 

further support for this hypothesis. 
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Table 6: Gene-wise FST values for Dent (D) and Flint (F) candidate gene sets compared to non-
candidates based on dataset T. Gene-wise values of FST between tropical and Dent lines are shown 
for the comparison of Dent candidates vs. non-candidates and gene-wise levels of FST between 
tropical and Flint lines for Flint candidates vs. non-candidates. p-value: significance of difference 
between non-candidate and candidate genes as determined by two-sided Wilcoxon rank sum tests. 

Candidate gene set Non-candidate genes 

Number      Mean    Median 

Candidate genes 

Number       Mean    Median 

p-value 

D - All 32,579 0.068 0.048 725 0.079 0.044 0.527 

D - Flowering 32,579 0.068 0.048 17 0.067 0.038 0.679 

F - All 31,787 0.106 0.082 421 0.185 0.151 < 2.2e-16 

F - Flowering 31,787 0.106 0.082 10 0.182 0.152 0.016 

 

 

Figure 6: Distribution of gene-wise FST values between tropical and Dent lines (left) and tropical and 
Flint lines (right) based on dataset T. Non-candidate genes are shown in black, Dent candidates in 
red, Dent flowering time candidates in orange, Flint candidates in blue and Flint flowering time 
candidates in cyan. 

 

The average level of differentiation was significantly higher between tropical and Flint lines 

than between Dent and Flint lines based on dataset T (FST = 0.114 vs. FST = 0.098; p-

value < 2.2e-16). In line with the assumed genetic distance between Flint and tropical maize, 

Flint candidate genes exhibited significantly higher values of FST compared to non-

candidates (Table 6). This observation might result from selective pressure on these genes 

in Flint in contrast to tropical maize, but might furthermore point towards differential 

selection. Differential selective pressure has been reported for example in case of the Vgt1 

locus (Ducrocq et al. 2008), a major QTL for flowering that was also found to be under 

differential selective pressure in Flint in this study (Unterseer et al. 2016). It regulates a 

downstream located gene encoding the ethylene-responsive transcription factor Rap2 

(ZmRap2.7, GRMZM2G700665), which was also identified as a Flint candidate in this study 
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and which exhibited with 0.371 the highest level of gene-wise FST between Flint and tropical 

maize within the Flint candidates. The majority of Flint flowering time candidates exhibited 

high values of gene-wise FST compared to the average gene-wise FST for non-candidates 

(Figure 6). Considering the effect of Flint flowering candidate gene haplotypes on promoting 

earlier flowering in the IL, the modulation of endogenous signalling might have been of 

special relevance for the regulation of flowering time and thus, the successful adaptation of 

Flint to shorter vegetation periods in temperate climates. 

 

3.5 Factors influencing the sensitivity of the selection screen 

The sensitivity of the chosen approach for detecting signatures of differential selective 

pressure seemed to have had a higher sensitivity towards the detection of Dent-specific 

signatures of selection as indicated by 67.7% more windows and 60.7% more genes 

identified in Dent compared to Flint based on dataset G. The detection of selection 

candidates might have been affected by the type of genotyping data as well as by the 

choice of genetic material as will be discussed in the following. 

The SNPs included on the 600 k genotyping array were initially identified based on whole-

genome sequence data of the 30 lines of the discovery panel and filtered according to 

various quality criteria (Unterseer et al. 2014; Unterseer et al. 2016). The sampling bias, 

which arises during such SNP discovery and selection processes results in a systematic 

deviation from the theoretically expected allele frequency distribution for a given population 

due to the non-random sampling of lines for the discovery panel and the sequence variants 

and is summarized by the term ascertainment bias. Its magnitude is primarily determined by 

the composition and the size of the discovery panel as the probability to identify rare 

variants depends on their allele frequencies in the discovery panel (Nielsen et al. 2004). As a 

consequence, predominantly older variants will be preferentially selected due to their higher 

allele frequencies and variants included on genotyping arrays are enriched for intermediate 

frequencies as it was shown for dataset A (Unterseer et al. 2014). Ascertainment bias is not 

specific to SNP array genotyping data and has been shown for microsatellites (Eriksson and 

Manica 2011), restriction site polymorphisms (Eller 2001), restriction site associated DNA 

sequencing data (Arnold et al. 2013), and sequencing data (Pool et al. 2010). Ascertainment 

bias can affect the estimation of population genetic parameters and LD (Nielsen and 

Signorovitch 2003) as well as measures of genetic differentiation (Albrechtsen et al. 2010), 

especially if the degree of bias varies between the material under consideration (McTavish 
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and Hillis 2015). In maize, the effect of ascertainment bias has been shown to be more 

pronounced in European Flint compared to European Dent for a set of sequence variants 

included on the 50 k array, which were selected with the aim to detect polymorphisms 

between two Dent lines, the BSSS line B73 and the LSC line Mo17 (Frascaroli et al. 2013). 

Several approaches have been proposed for the correction of ascertainment bias (Kuhner et 

al. 2000; McGill et al. 2013; Nielsen 2000; Wakeley et al. 2001). If sequencing data are 

available, raw data can be modified to reverse-engineer a particular ascertainment scheme 

(Albrechtsen et al. 2010). Alternatively, ascertainment bias can be incorporated into 

theoretical population genetic models if the variant discovery and filtering process is known 

(Nielsen and Signorovitch 2003). However, it remains challenging to appropriately model the 

ascertainment scheme underlying the investigated data and to evaluate the modelled 

sampling distribution of variants and multiple linked loci (Lachance and Tishkoff 2013; 

Nielsen and Signorovitch 2003). 

With the aim to generate a high-density 600 k genotyping array suitable for a broad range of 

applications, sequence variants were identified based on whole-genome sequence data of a 

diverse discovery panel. As the sequence reads of the 30 lines were mapped to the 

B73 Dent reference genome for sequence variant discovery, genomic regions not 

represented in the B73 reference sequence could not be taken into account (Unterseer et al. 

2014). Considering the high genetic variability of the maize genome (Chia et al. 2012; Fu and 

Dooner 2002; Gore et al. 2009; Lai et al. 2010; Springer et al. 2009), this aspect might be of 

special relevance for germplasm that is genetically distant from the reference sequence 

such as Flint or tropical maize. Additionally it has to be considered that sequence reads 

might not map to the reference sequence in case of diverged genomic regions, which could 

influence the detection of sequence variants. To enhance the sensitivity of detecting 

sequence variants in Flint for genomic regions represented in the B73 reference genome, 

more Flint than Dent lines were sequenced at slightly higher coverage on average (17 lines 

vs. 13 lines; 18.4- vs. 15.1-fold coverage). Upon quality filtering, selected sets of sequence 

variants were used to investigate dataset A and dataset G. It is important to note that the 

discovery panel was representative for the two datasets with respect to the covered 

geographic area, the contribution of the two germplasm pools, and their allelic composition 

(Unterseer et al. 2014). Nevertheless, an enrichment of intermediate allele frequencies was 

observed for dataset A (Unterseer et al. 2014). Window-based values of π were comparable 

in the selection screen between Dent and Flint (average π of 0.308 vs. 0.310; Unterseer et al. 

2016) and were tightly correlated with values of TD (0.905 vs. 0.934). Average values of TD 

were slightly higher in Dent compared to Flint (0.730 vs. 0.682). This probably resulted from 
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more SNPs being monomorphic in Dent compared to Flint (6.9% vs. 4.6%) and a higher 

average minor allele frequency of the remaining SNPs in Dent than in Flint (0.241 vs. 0.237). 

Thus, it can be assumed that in the extent of ascertainment bias was comparable in the two 

germplasm pools Dent and Flint. 

The varying population and LD structure of the Dent and Flint lines of dataset G probably 

had impact on the sensitivity of the performed selection screen. Haplotype blocks including 

candidate genes differed in number and size between Dent and Flint with an average length 

of 601.8 kb and 371.8 kb for Dent and Flint, respectively (Table 5). For Dent, these blocks 

covered in total 120.4 Mb of the genome in contrast to 45.7 Mb in Flint. In both cases, 

haplotype blocks might have been even longer, as D’ has been shown to be underestimated 

in the presence of ascertainment bias (Nielsen and Signorovitch 2003). The long haplotype 

blocks including Dent candidates were probably maintained over time and might even trace 

back to founder lines of modern Dent germplasm. This would be in line with the hypothesis 

of van Heerwaarden and colleagues that the number of lines contributing to the genetic 

composition of modern North American germplasm has decreased over time and that the 

US Dent germplasm was initially derived from a relatively homogeneous landrace population 

(van Heerwaarden et al. 2012). LD can be maintained by drift in case of small effective 

population sizes due to a bottleneck event, low levels of recombination, or a combination of 

these two factors (Hamilton 2009; Hill and Robertson 1968). This might have contributed to 

the establishment of long blocks with a major haplotype at high frequency in Dent. 

Furthermore, this likely resulted in the identification of more Dent than Flint candidates as 

the reduction of diversity and the presence of extreme allele frequencies were extended 

over more adjacent SNPs in Dent compared to Flint. Therefore, differences in population 

structure as well as presence of longer haplotype blocks in Dent can be considered as the 

predominant reason for observing 60.7% more candidates for Dent compared to Flint. 

The effect of ascertainment bias on the estimation of the fixation index FST between elite 

lines, landraces and tropical lines will be discussed in the following. Landraces are 

considered as important genetic resources with yet untapped genetic diversity (McCouch et 

al. 2013). Since landraces were not included in the discovery panel, their level of diversity 

was probably not fully captured by the 600 k genotyping array. It has been reported that FST 

can be affected by ascertainment bias depending on the array design and especially in case 

of a bias in favour of one of the groups under study (Albrechtsen et al. 2010; McTavish and 

Hillis 2015). In the 600 k array development, the discovery panel included a diverse panel of 

Flint lines derived from European landraces. Therefore, Flint elite lines and Flint-type 

landraces of dataset L can be considered as genetically related material and might share a 
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comparable LD structure. Thus, the comparison of the allelic differentiation between Flint 

elite lines and Flint-type landraces for Flint candidate genes and non-candidate genes might 

have been affected by ascertainment bias only to a minor extent. European Dent-type 

landraces can be assumed to be genetically distinct from the Dent elite lines under study, 

which were primarily composed of lines derived from US Corn Belt Dent material. In this 

case, local LD might vary considerably between Dent elite lines and Dent-type landraces 

and also the amount of genetic diversity captured by the 600 k array. Due to the array 

design, the SNPs are likely to better reflect the diversity of the Dent elite lines compared to 

the sequence variation within Dent-type landraces. This probably affected FST estimates 

between Dent elite lines and European Dent-type landraces in line with reports of group-

biased ascertainment schemes (Albrechtsen et al. 2010; Clark et al. 2005; McTavish and 

Hillis 2015). For the estimation of FST between temperate and tropical lines of dataset T, the 

type of bias was different. Genotype calls of lines obtained from the HapMap2 project (Chia 

et al. 2012) were combined with genotype calls of the discovery panel if available. Due to 

the restriction to SNPs with less than 50% missing calls, especially SNPs with a high 

amount of missing calls in the HapMap2 lines were excluded as the HapMap2 lines were 

sequenced at lower coverage than the lines of the discovery panel on average (8-fold vs. 

12- and 50-fold coverage). Furthermore, polymorphic sites in tropical lines were missed if 

they were monomorphic in the temperate discovery panel. This probably resulted in the 

underestimation of the diversity of tropical lines in dataset T. Therefore, no gene-wise 

diversity statistics were reported for tropical lines. The extent of bias was most likely 

comparable for FST estimates between tropical lines and Dent or Flint lines of dataset T, as 

sites that were polymorphic only in tropical maize were missed in both comparisons. 

For SNP array data, off-target variants have been suggested to mitigate effects of 

ascertainment bias (Didion et al. 2012; Fu et al. 2012). Thus, their potential for genetic 

analyses was investigated based on dataset A. The detection of off-target variants is 

conditioned on the target variant, which itself was affected by the filtering steps during array 

development. Furthermore, the occurrence of off-target variants depends on the genetic 

distance between the material under study and the B73 reference sequence. As expected 

for initially undetected variants, the lowest amount of genotype calls with reduced signal 

intensity was observed for Dent lines, especially of BSSS to which the reference line B73 

belongs, and the highest for genetically distant material like Flint and tropical lines based on 

dataset A. To gain insights into the genetic composition of off-target variants, respective 

genomic regions were investigated by mapping sequence reads of four deep sequenced 

lines (three Flint and one Dent line) to the B73 reference sequence. For this analysis, 



 
 
 

 

42 
 

Discussion 

632 OTVs of dataset A were selected. Reduced signal intensities indicated the presence of 

off-target variants in case of 1,264 genotype calls. Except eight missing calls, the remaining 

1,256 genotype calls revealed expected signal intensities. In case of the latter, the majority 

of genomic regions could be analysed (760 of 1,256; 61%) and validated (741 of 760; 98%). 

In case of regions, which were expected to exhibit off-target variants based on array data, 

sequence mapping information was available for 15% of the regions (192 of 1,264). 

Investigating those, sequence variants were detected within most flanking regions of the 

target variant (159 of 192; 83%). The majority of these off target variants were SNPs, but 

also insertions, deletions or combinations of these types of sequence variation were 

observed. Thus, off-target variants identified by reduced signal intensity can be attributed to 

different types of sequence variation. This will probably hamper an incorporation of off-

target variants in population genetic analyses as population genetic models usually do not 

account for the combination of sequence variants arising from different mutational 

mechanisms with varying mutation rates. However, future studies might address the 

potential of OTVs to investigate for example structural variation based on differences in 

signal intensities between samples. 

 

3.6 Conclusion 

The focus of this thesis was the identification of genes under differential selective pressure 

in temperate Dent and Flint. The major conclusions can be summarised as follows: 

 A new high density genotyping array, the commercially available Affymetrix® 

Axiom® Maize Genotyping Array genotyping array, was developed based on 

sequence data of 30 representative temperate European and US maize lines and 

validated using a diversity panel. The 616,201 variants included on the array were 

selected in a multi-step approach to ensure the selection of best quality SNPs and 

small indels for the analysis of different types of material. As the selected variants 

have been shown to be polymorphic in a broad maize panel, the 600 k array is well 

suited for fine-mapping of genomic regions, haplotype construction, and detection of 

marker-trait associations. It represents the largest currently publically available 

genotyping array for maize offering an efficient alternative to whole genome 

sequence data for gaining genomic information in high-throughput and high-density 

for many studies. 
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 The investigation of off-target variants was suggested to mitigate ascertainment bias 

in population genetic analyses in the literature. In case of the 600 k array, a set of 

variants indicated the presence of additional, initially undetected sequence variants 

in the flanking regions of the target variant. However, off-target variants were not 

incorporated in LD and population genetic analyses in this thesis as different types of 

sequence variation were observed in the flanking regions of the target variants. 

 The investigation of a diverse panel of temperate maize lines based on the 600 k 

array revealed distinct genetic groups with elevated levels of LD. In line with known 

breeding history, population structure was pronounced in Corn Belt Dent. Contrary, 

no pronounced population structure was observed in European Flint. The genetic 

composition of the Flint lines was primarily influenced by the historical introduction 

of Northern Flint from North America consistent with the literature. 

 Hundreds of candidate genes were identified as being under differential selective 

pressure in temperate Dent and Flint and were corroborated by additional analyses, 

including the investigation of phenotypic data. Candidate genes were shown to 

promote early flowering in case of Flint candidate gene haplotypes. Candidate gene 

analyses indicated that selection acted on germplasm-specific targets within the 

flowering network. The candidates constitute a promising source of genes for further 

investigation aiming towards a better understanding of germplasm-specific 

differences between Dent and Flint at the genomic, transcriptomic and phenomic 

level. 

 Analyses of identified selection candidates were expanded to a large 600 k dataset 

of 38 European landraces that comprised more than 900 individuals and revealed a 

major contribution of landraces from Germany, France and Spain to the candidate 

gene diversity in European Flint lines. It was shown that selective pressure occurred 

for the majority of Flint candidate genes prior to modern breeding efforts in Flint-type 

landraces. The generated dataset represents a unique resource that will facilitate a 

more detailed investigation of landraces and the assessment of their potential to 

further improve maize breeding in a targeted way. 

 Differences in population and LD structure affected the sensitivity of the chosen 

comparative approach resulting in the identification of more candidate genes for 

Dent compared to Flint. Considering the history of the material under study, results 

suggested the presence of partially shared targets of selection between Dent and 
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tropical maize, probably due to a historical contribution of Southern Dent to modern 

Dent germplasm. Thus, the identified candidates likely contributed not only to the 

differentiation of temperate Dent and Flint germplasm, but might have partially 

reflected also the differentiation between Northern Flint and Southern Dent. 
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4 Summary 

Maize provides a rich reservoir of genetic diversity to elucidate the effects of adaptation and 

selection on the genome. Genotyping arrays represent a powerful tool for characterizing 

genomic diversity, fine-mapping genomic regions and detecting marker-trait associations. In 

this thesis, one of the largest publicly available SNP arrays in crop species was developed 

based on sequencing data of 30 representative temperate maize lines. High-confidence 

variants were selected and experimentally validated. The Affymetrix® Axiom® Maize 

Genotyping Array is composed of 616,201 SNPs and small indels that were shown to be 

polymorphic in a broad genetic diversity panel of worldwide maize, thus ensuring the 

suitability of the array for a wide range of applications. The potential of the genotyping array 

to resolve population structure and LD extent in diverse maize germplasm with high 

resolution was illustrated. 

Understanding genomic differences between maize germplasm pools may contribute to a 

better understanding of the complementarity in heterotic patterns and of mechanisms 

involved in adaptation to different environments. To elucidate how selection shaped the 

pool-specific genomic diversity of maize, divergence of two major germplasm pools 

exploited in maize breeding, Dent and Flint, was investigated on a genome-wide scale. By 

screening a panel of 136 temperate maize lines for extreme allele frequencies over extended 

linked sites, candidate genes under differential selective pressure in Dent and Flint were 

identified. The significant enrichment in derived allele frequencies for these genes provided 

strong indication that the candidate regions represented selective sweeps. The identified 

candidates included genes associated with traits that are known to differentiate Dent and 

Flint like cold tolerance and flowering time. By investigating the effect of the flowering time 

candidates in a Dent-Flint introgression library, it was shown that the Flint haplotypes of 

these candidates promoted earlier flowering. Within the flowering network of maize, a Flint-

specific enrichment of genes associated with endogenous pathways was discovered in 

contrast to Dent, where selection seemed to act predominantly on genes involved in the 

response to environmental factors. Low levels of differentiation of Flint flowering time 

candidate genes between European Flint elite lines and European landraces indicated a 

major contribution of landraces from France, Germany, and Spain to the candidate gene 

diversity of the Flint elite lines. The findings of this study highlight the role of genomic 

regions that have undergone intense selection and contributed to the differentiation of 

temperate Dent and Flint. The identification of pool-specific selection signatures enabled 

insights into the patterns of diversity of temperate Dent and Flint and provides new targets 

for future functional analyses and crop improvement. 
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5 Zusammenfassung 

Mais bietet auf Grund seiner genetischen Diversität ideale Bedingungen, um die 

Auswirkungen von Selektion und Adaptation auf das Genom zu erforschen. Hoch-Durchsatz 

Genotypisierungsarrays sind von zentraler Bedeutung für die umfangreiche 

Charakterisierung genomischer Diversität, eine genauere Kartierung von Genen und die 

verbesserte Detektion von genetischen Markern, die mit phänotypischen 

Merkmalsausprägungen in Zusammenhang stehen. Im Rahmen dieser Dissertation wurde 

einer der umfangreichsten, kommerziell erwerbbaren Arrays für Kulturpflanzen entwickelt. 

Basierend auf den Sequenzdaten von 30 repräsentativen Maislinien aus den gemäßigten 

Breiten wurden hoch-qualitative Sequenzvarianten ausgewählt und experimentell validiert. 

Der Affymetrix® Axiom® Maize Genotyping Array erfasst 616.201 Genompositionen, die in 

einer Vielzahl von Maislinien variabel sind und dadurch seine Eignung für zahlreiche 

Anwendungen gewährleisten. Mit Hilfe des Arrays wurde die Populationsstruktur einer 

Auswahl von Maislinien aus dem Dent- und Flintpool mit großer Genauigkeit erfasst und das 

Ausmaß des Kopplungsungleichgewichts innerhalb der Gruppen geschätzt. 

Um die molekularen Grundlagen der Heterosis sowie lokaler Adaptation zu verstehen, 

müssen zunächst die genomischen Unterschiede zwischen Maisgruppen erfasst werden. In 

der vorliegenden Arbeit wurden an Hand von lokalen Änderungen der Allelfrequenzen 

genomweit Gene identifiziert, die spezifisch in Dent oder Flint unter Selektionsdruck 

standen. Die Anreicherung evolutionär junger Allele von hoher Frequenz in den 

Kandidatengenen untermauerte die Hypothese, dass primär positiv selektierte Gene 

identifiziert worden waren. Zahlreiche Kandidatengene konnten mit Merkmalen in 

Verbindung gebracht werden, deren Ausprägung sich zwischen Dent und Flint 

unterscheiden, wie beispielsweise Kühletoleranz und Blühzeitpunkt. In Bezug auf die 

Regulation des Blühzeitpunktes schienen Kandidaten für Dent überwiegend die Integration 

externer Signale zu modulieren, wohingegen ein Großteil der Kandidaten für Flint endogene 

Signalwege beeinflusste. Hierbei wurde mittels einer Introgressionsbibliothek gezeigt, dass 

die Flinthaplotypen der Kandidaten einen positiven Effekt auf einen frühen Blühzeitpunkt 

hatten. Zudem wurde gezeigt, dass ein Großteil der Flintkandidaten bereits in europäischen 

Landrassen unter Selektionsdruck stand und insbesondere Landrassen aus Frankreich, 

Deutschland und Spanien den europäischen Flintpool maßgeblich prägten. Die gewonnenen 

Erkenntnisse tragen entscheidend zu einer umfassenden Charakterisierung von Dent und 

Flint bei und lieferten zahlreiche Kandidaten für künftige funktionale Studien und eine 

gezielte genetische Verbesserung von modernem Zuchtmaterial.   
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Abstract

Background: High density genotyping data are indispensable for genomic analyses of complex traits in animal and
crop species. Maize is one of the most important crop plants worldwide, however a high density SNP genotyping
array for analysis of its large and highly dynamic genome was not available so far.

Results: We developed a high density maize SNP array composed of 616,201 variants (SNPs and small indels).
Initially, 57 M variants were discovered by sequencing 30 representative temperate maize lines and then stringently
filtered for sequence quality scores and predicted conversion performance on the array resulting in the selection of
1.2 M polymorphic variants assayed on two screening arrays. To identify high-confidence variants, 285 DNA samples
from a broad genetic diversity panel of worldwide maize lines including the samples used for sequencing, important
founder lines for European maize breeding, hybrids, and proprietary samples with European, US, semi-tropical, and
tropical origin were used for experimental validation. We selected 616 k variants according to their performance during
validation, support of genotype calls through sequencing data, and physical distribution for further analysis and for the
design of the commercially available Affymetrix® Axiom® Maize Genotyping Array. This array is composed of
609,442 SNPs and 6,759 indels. Among these are 116,224 variants in coding regions and 45,655 SNPs of the Illumina®
MaizeSNP50 BeadChip for study comparison. In a subset of 45,974 variants, apart from the target SNP additional
off-target variants are detected, which show only a minor bias towards intermediate allele frequencies. We performed
principal coordinate and admixture analyses to determine the ability of the array to detect and resolve population
structure and investigated the extent of LD within a worldwide validation panel.

Conclusions: The high density Affymetrix® Axiom® Maize Genotyping Array is optimized for European and American
temperate maize and was developed based on a diverse sample panel by applying stringent quality filter criteria to
ensure its suitability for a broad range of applications. With 600 k variants it is the largest currently publically available
genotyping array in crop species.
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Background
High-throughput genotyping has revolutionized genetic
analyses in humans, livestock species, crop and model
plants in the past decade [1-3]. Covering genomes with
high resolution, single nucleotide polymorphism (SNP)
genotyping arrays facilitate the detection of associations
between SNPs and phenotypes. They represent a power-
ful tool for dissecting complex traits via genome-wide
association studies (GWAS) or quantitative trait locus
(QTL) analysis as well as for fine mapping genes of
interest and forward genetics cloning strategies [4-7]. In
addition, they are broadly used in crop and livestock
breeding for germplasm characterization and marker
assisted selection [8]. The availability of high density geno-
typing arrays has enabled breakthroughs in genome-wide
approaches such as genomic prediction and detection of
selection signatures [9-12]. Here, we describe the develop-
ment of the currently largest publicly available SNP array
in crop species and discuss its potential for different appli-
cations in maize.
Maize is one of the most important crops worldwide

serving as food, livestock feed, and component of indus-
trial products. A key step in corn production was the es-
tablishment of divergent heterotic patterns for hybrid
breeding [13]. Most worldwide hybrid breeding pro-
grams exploit heterotic effects between different sub-
groups within the Dent pool, whereas crosses between
the two maize pools, Dent and Flint, are mainly used in
hybrid breeding for the cooler regions in Central Europe.
Maize production has continuously risen over time, but
to further increase selection gain and accelerate breeding
processes profound knowledge is required regarding
genes and genomic regions involved in agronomically
important traits.
Genotyping arrays offer an efficient alternative to whole

genome sequence data for gaining genomic information in
high-throughput. However, the establishment of a high
density genotyping array requires the identification of a
large number of variants polymorphic in a representative
discovery panel to ensure its utility for a wide range of ap-
proaches and study designs. In maize, the identification of
sequence variants for genomic analyses faces specific chal-
lenges due to its evolutionary history and high variability
of its genome. As an ancient polyploid species, the maize
genome is characterized by numerous duplicated chromo-
somal regions giving rise to paralogous sequences [14-16].
A reference sequence exists for maize, which covers around
90% of the 2.4 Gb genome of inbred line B73 (AGP_v2),
but the high amount of transposable elements, paralogs,
copy number variants (CNV) as well as structural variants
like presence/absence variants (PAV), is a challenge for reli-
able sequence read alignment and variant identification due
to ambiguous sequence read mapping results [15,17,18].
Despite recent reports like the comprehensive genotyping

of the USA national maize inbred seed bank [19] using
SNPs identified through genotyping by sequencing
(GBS) at low sequence coverage [20], sequencing-based
approaches such as GBS have to cope with large
amounts of missing data and require the establishment
of demanding bioinformatics pipelines and imputing al-
gorithms, which may not be routine in all labs.
The highest resolution of a commercially available

genotyping array for maize has been achieved by the
Illumina® MaizeSNP50 BeadChip [21]. It has been used
extensively for genetic studies [22-25] and is composed
of 50 k usable SNPs. This number of SNPs is in the
same range as for recently published genotyping arrays
for rice [8], soybean [26], and wheat [27], but much
lower compared to high density genotyping arrays which
are available for animal species, e.g. chicken [28] and
cattle with 648 k and 777 k, respectively [29,30], as well
as for humans with more than 900 k SNP variants [5].
Especially for maize with its large genome size and high
level of diversity, high marker resolution is desirable. In
addition, linkage disequilibrium (LD) decays rapidly in
some germplasm, e.g. in landraces or highly diverse sam-
ple panels [31] emphazising the requirement of higher
marker densities than so far available on genotyping
arrays.
We selected sequence variants for the design of a high

density 600 k SNP genotyping array for maize based on
57 M SNPs and small indels that were discovered by
mapping whole genome sequencing reads of 30 repre-
sentative temperate maize lines against B73 AGP_v2.
For experimental validation, we selected 1.2 M variants
by applying stringent filtering criteria. This 1.2 M subset
was used to genotype 285 maize samples representing
the genetic diversity of European (EU) and American
(US) temperate maize as well as a sample of tropical
maize lines. We created a final selection of 616,201 high
quality variants based on their assay performance, phys-
ical distribution, and concordance with in silico variant
calls from sequencing data. Here, we describe the design
of the high density Affymetrix® Axiom® Maize Genotyping
Array which represents a powerful tool for fine-mapping
of genomic regions, genome-wide studies, and detection of
marker-trait associations. We also demonstrate its applica-
tion for investigating subpopulation structure and LD in
diverse maize germplasm.

Results and discussion
Discovery and pre-selection of variants
For variant (i.e. SNP and indel) discovery we se-
quenced 30 maize inbreds composed of 17 European
Flint lines as well as nine European and four US Dent
lines (Additional file 1: Table S1). The lines represent
important founder lines for maize breeding in Europe
and the US and have been used in previous studies
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[32,33]. Mapping the generated sequence reads to the
B73 reference sequence (AGP_v2) resulted in 50-fold
sequence coverage on average of four deep sequenced
lines (DK105, EP1, F7, PH207) as well as 12-fold cover-
age on average of the 26 remaining lines. Based on the
mapped sequence reads 56,938,462 variant positions
were identified.
A filtered list of variants was created for quality score

determination similar to the dual approach of Chia
et al. [18]. Variants were included in this list if they
were identified independently by two different pro-
grams, SAMtools [34] and GATK [35] and were charac-
terized by high quality scores as well as presence of
reference (B73) and non-reference alleles in the discov-
ery panel. Applying these filters, the initial variant
number was reduced by a factor of 10. We finally se-
lected 5,593,169 bi-allelic variants for further analysis.
66.7% (3,731,960) of these variant positions were con-
gruent with variants reported by [18] for the maize
HapMap2 data. Of 46,660 variants from the Illumina®
MaizeSNP50 BeadChip which could be uniquely an-
chored to the B73 reference sequence, 43,615 (93.5%)
were also covered by in silico SNP calls from sequencing

in our set of 5.6 M variants. This proportion is higher than
the 72.3% overlap reported in the maize HapMap2 SNP
dataset reported by [36] and can most likely be attributed
to the higher sequence coverage in our study.

Selection of high-confidence variants for array
construction
A multi-step filtering approach was applied to reduce
the number of 5.6 M variants to a subset of 1.2 M vari-
ants for experimental validation on two Affymetrix®
Axiom® 600 k screening arrays (Figure 1). From those,
616 k were selected for the design of the 600 k array.

Variant selection according to in-silico analysis of sequence
data
The 5.6 M variants were filtered according to quality
and their support by sequence reads. The sequenced
lines were inbred lines with only minor residual hetero-
zygosity (mean of 0.65%, Additional file 1: Table S2) as
determined from Illumina® MaizeSNP50 data. In the
5.6 M variants, we observed 23.3% heterozygous com-
pared to 72.7% homozygous calls, which was not ex-
pected from the Illumina® MaizeSNP50 genotyping data.

Figure 1 Flow diagram with the major filtering steps. Flow diagram showing steps and major criteria of the variant selection process during
development of the maize 600 k genotyping array.
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Besides “true” heterozygous calls, such calls may arise
from the large fraction of segmental duplications as well
as orthologous and paralogous sequences retained in the
ancient polyploid maize genome [15]. In line with this,
the false discovery rate (FDR) of heterozygous calls was
significantly higher (87.0%) compared to the FDR of
homozygous calls (1.6%) as determined by compari-
son with variant calls from the Illumina® MaizeSNP50
BeadChip. Thus, in order to create a list of high quality
variants only homozygous calls were considered for further
analysis.
We decided to include all available 150,394 coding

variants on the screening arrays, as these variants have a
greater potential than non-coding variants to affect gene
function. To enable comparison across studies, we fur-
ther included 48,324 SNPs of the Illumina® MaizeSNP50
BeadChip as “must-have” variants. The remaining ~ 1 M
positions on the screening arrays were filled with non-
coding variants based on their distribution across the
genome. Similar to the strategy reported by Kranis et al.
[28], we applied a bin based approach with the intention
to create a subset of physically equally distributed vari-
ants. We observed that variant numbers in centromeric
bins were always lower than in telomeric bins, indicating
lower polymorphism rates in the centromeric regions.
This reduction of variant numbers around the centro-
meres was also observed in other maize studies [18,19,37]
and may result from the high proportion of repetitive
DNA around the centromeres for which no markers can
be developed. Aiming simultaneously for a balanced rep-
resentation of pool-specific as well as shared variants be-
tween Dent and Flint, 931,340 variants were included
in the list for validation. We selected 158,448 additional
variants to specifically increase the number of variants
in under-represented bins to reach a final number of
1,228,506 variants which could be placed on the screen-
ing arrays. The marker density on the screening arrays
was one variant per ~ 1.7 kb on average over all chro-
mosomes (Additional file 1: Table S3).

Variant validation by genotyping 285 representative maize
samples
In order to assemble a robust set of variants for design
of the 600 k array, the selected set of 1.2 M variants was
used to genotype 285 DNA samples from 280 diverse
worldwide maize inbred lines and hybrids for the evalu-
ation of variant performance (Additional file 1: Table S4).
We investigated conversion performance of the variants
on the array with respect to (i) genotype call rates, cluster
separation, and reproducibility, (ii) polymorphism in the
panel under study, and (iii) consistent Mendelian inherit-
ance from parents to off-spring in trios.
Hybridization intensity signals were clustered by the

Affymetrix Axiom GT1 algorithm and interpreted as

homozygous, heterozygous, or no calls, respectively. Dif-
ferent from the situation in humans or animals, where
samples are highly heterozygous, most of the samples in
our maize validation panel were highly inbred. Thus, we
compared genotype calls obtained with and without ap-
plying an inbred correction factor (Additional file 2:
Figure S1). This factor was assigned to each sample to
adjust the probability of observing a heterozygous call
given the inbreeding level of the sample. The average
call rate of the screening arrays could be increased by
2.3% to 98.1% upon inbred correction (Additional file 1:
Table S5). With inbred correction, inbred line B73 ex-
hibited the highest call rate (99.5%) and one F1 hybrid
(UH007 x Lo11, 92.2%) together with Teosinte (acc.
GID265285, 92.2%) the lowest call rates. Furthermore,
American maize lines revealed higher call rates on aver-
age compared to European lines, followed by call rates
of tropical lines and hybrids. This is in accordance with
the literature [21] and suggests a negative correlation
between call rate and increasing sequence divergence to
the reference sequence of B73 from which probe se-
quences on the array were derived.
Based on genotype call cluster separation, cluster vari-

ance, and cluster position, variants were assigned to one
out of six quality categories (Additional file 2: Figure S2).
Comparing the category assignments with and without in-
bred correction resulted in a change of category in 36.2%
of all variants (Additional file 1: Table S6). As expected,
the category of variants fulfilling all cluster metric criteria
and classified as “PolyHighResolution” (PHR) increased
most, resulting in a gain of 30.7% upon inbred correction.
Details on the number of variants from each category with
and without inbred correction are given in Additional
file 1: Table S6. In total, 25.1% of the newly developed
1,131,860 variants (excluding the Illumina® MaizeSNP50
variants) failed to convert and did not give reliable geno-
type calls upon inbred correction (designated “other” in
Additional file 1: Table S6). The proportion of 74.9% con-
verted variants is lower than in a similar study in chicken,
where 82.0% of the variants could be converted into suc-
cessful variants [28]. In rice which has an around five-fold
smaller and less complex genome than maize, 84% of vari-
ants of the Illumina® RiceSNP50 array [8] were converted
successfully (GenTrain score > 0.5). Given the higher com-
plexity of the maize genome compared to chicken or rice,
our conversion rate is in the expected range.

Selection of high-confidence variants and composition of
the 600 k array
For the selection of high-confidence variants for the
600 k array, we applied a voting system based on (i) their
performance on the screening arrays, (ii) concordance of
array genotyping calls with in silico variant calls from se-
quencing data of the 30 maize lines in the discovery
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panel, and (iii) over- or under-representation of the cor-
responding bin. To ensure a high performance on the
final array, the highest weight was assigned to the first
criterion. We focussed on clearly separated genotype
clusters with little variance that were not influenced by
information regarding the inbreeding level (Additional
file 2: Figure S1). Applying this procedure the 570,546
highest scoring variants as well as 45,655 SNPs of the
Illumina® MaizeSNP50 BeadChip were included in the
final selection for the 600 k array (Additional file 1:
Table S6).
The 600 k genotyping array is composed of 616,201

variants (609,442 SNPs and 6,759 indels), corresponding
to an average density of one variant per ~ 3.4 kb (median
density one variant per 0.3 kb; Additional file 1: Table
S3, Additional file 2: Figure S3). The average genetic dis-
tance between variants is 0.0025 cM, which corresponds
to 406 variants per cM. The variants are evenly distrib-
uted across the chromosomes with the only exception of
one region on the short arm of chromosome 6, where
the maximal distance between neighboring variants ex-
ceeds 1.2 Mb. Despite a specific filter aiming for equal
variant distribution according to the physical map dis-
tance, the final distribution followed the average re-
combination rate along chromosomes, which reflects
varying polymorphism rates in the material under study
(Figure 2). The highest density of variants was found in
gene enriched telomeric regions, thus ensuring the
maximal possible amount of genetic information in re-
gions with high recombination rates. A comparable pat-
tern of variant distribution as well as a lack of variants
on the short arm of maize chromosome 6 in the nucle-
olus organizer region (NOR; approximate position 7–
28 Mb) has been reported previously [18,19]. From the
616,201 variants represented on the Affymetrix® Axiom®
Maize Array 561,751 (91.2%) are also present in the
maize HapMap2 variants [18].

All 616,201 variant positions were annotated based on
the B73 filtered gene set which comprises 39,656 genes
(Additional file 1: Table S7), resulting in 26,620 genes
(67.1%) tagged with at least one variant in their coding,
intronic, or UTR region, compared to 17,520 genes
tagged by SNPs of the Illumina® MaizeSNP50 BeadChip
(44.2%). Including 5 kb up- and downstream regions,
35,089 genes (88.5%) were represented by at least one
variant, thus providing an excellent basis for finding
marker-trait associations in targeted and genome-wide
approaches.
To determine the reproducibility of variants repre-

sented on the 600 k array, technical and biological repli-
cates were analysed. First, three technical B37 replicates
as internal controls exhibited up to 99.8% of identical
genotype calls (Additional file 1: Table S8). Three bio-
logical replicates from different seed sources exhibited a
high level of concordant genotype calls in the range of
99.76% to 99.84%. Furthermore, two lines (DK105 and
EP1) were represented by two samples each comprised
of a single plant and a pooled sample, respectively,
showing 99.51% and 97.73% concordance. Some lack of
concordance here can be explained by residual heterozy-
gosity in the pooled samples. For determination of stable
Mendelian inheritance, 23 trios with both parental lines
as well as the corresponding F1 hybrid were analysed.
These trios revealed stable Mendelian inheritance be-
tween parental lines and their offspring in 94.3% of the
variants. After excluding the trio with the lowest call rate
(UH007, Lo11, UH007 x Lo11) stable Mendelian inherit-
ance could be observed in 97.6% of the variants, under-
lining the call rate as an indication of sample quality.
The analysis of biological and technical replicates and
trios confirmed the high reproducibility of genotype calls
obtained with the variants represented on the Affymetrix®
Axiom® Maize Array which is in the same range as re-
ported for the Illumina® MaizeSNP50 BeadChip [21].

A

Chromosome

B

Figure 2 Physical distribution of 616 k variants and recombination rate. Physical distribution of variants and average recombination rate
along the ten maize chromosomes depicted for 2 Mb windows. A) Distribution of 616 k variants represented on the 600 k array, B) Average
recombination rate in cM/Mb from [32].
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The usefulness of a genotyping array is characterized
by the number of variants polymorphic in the panel of
genotypes under study. In the 155 public maize lines,
two Teosinte accessions, and 23 F1 hybrids used in this
study for validation, 99.9% of the 600 k array variants
were polymorphic. Only a small number of 262 variants
(all derived from the Illumina® MaizeSNP50 BeadChip)
were monomorphic across all samples of the validation
panel. After excluding three genotypic samples without
clear germplasm group assignment, 95.6% of the 600 k
variants were polymorphic within Dent (N = 73), 98.7%
in Flint (N = 79), and 97.2% within F1 hybrids (N = 23),
respectively (Figure 3). Only 42.2% of the variants were
polymorphic within the two Teosinte accessions. It must
be noted however, that with only two samples the diver-
sity in Teosinte is not well captured in our validation
panel. Additionally, the array was not optimized for wild
maize relatives as they were not included in the discov-
ery panel. The high overall polymorphism rate depicts
the quality of the filtering procedure and is in line or
even exceeding results obtained by other studies regard-
ing genotype array validation in animals and plants
[8,21,38,39]. It confirms the utility of the array for a wide
range of applications in maize germplasm.
Among the selected variants, one category called “Off-

Target Variants” (OTVs) was of special interest since
these 45,974 variants detect previously uncharacterized
variants in the flanking region of the target variant. Due
to a reduced hybridization efficiency OTVs are charac-
terized by cluster splits or additional relatively low signal
intensity clusters compared to expected homozygous and
heterozygous genotypes (Additional file 2: Figure S2) and
have been shown to be reproducible [40]. These 46 k vari-
ants offer the possibility not only to analyse the genotype

call of the target variant, but provide in addition informa-
tion on presence or absence of putative additional variants
in the flanking regions. The latter information can be
treated as a bi-allelic flanking variant and was included for
population structure analyses.

Analysis of population substructure
The identification of population substructure is crucial
for quantitative genetic or population genetic studies
since population stratification or admixture may affect
detection of marker-trait associations, genomic predic-
tion, or estimation of population genetic parameters. To
determine the ability of the variants represented on the
maize 600 k genotyping array to resolve population
structure, we performed principal coordinate (PCoA)
and admixture analyses of 155 public inbred lines. The
first principal coordinate revealed a clear separation of
Dent and Flint with a small group of samples located in
the center (Figure 4A). This central group included
(sub)tropical Flint and Dent lines, the popcorn acces-
sion, two lines with unknown pedigree as well as Flint
lines that originated from Southern Spain and one Flint
line tracing back to Argentina. The clear separation of
Dent and Flint reflects their genetic differentiation for
more than 2,500 years [41], accompanied by varying
adaptive and selective pressures. Similar results were ob-
tained in studies based on isozymes [42], RFLPs [43,44],
SSRs [41], and SNPs [45]. Analyzing the 73 Dent lines
separately (Figure 4B), the first two axes further subdi-
vided the samples into distinct subgroups, namely Iowa
Stiff Stalk Synthetic (BSSS), Iodent, and Lancaster Sure
Crop (LSC), with several non-BSSS and tropical lines in
the center. The three groups BSSS, non-BSSS (including
LSC), and Iodent represent three major heterotic groups

3,417

23,047

12,830

13

568,999

413

Dent (N=73)

95.64%

Flint (N=79)

98.72%

Hybrids (N=23)

97.24%

7,112

Figure 3 Polymorphic variants of the 600 k array. Venn diagram showing the number of polymorphic variants represented on the 600 k array
in 73 Dent and 79 Flint samples and 23 hybrids of the validation panel.
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within temperate Dent, whose strong differentiation is
well-known [46,47]. Compared to US material, European
samples clustered within each group more towards the
center (Figure 4B), suggesting a lower level of differenti-
ation and population substructure [31].
In Central Europe, Flint plays an important role for

hybrid breeding programs relying on the Dent x Flint
heterotic pattern. PCoA of 76 Flint lines as well as
one popcorn and two sweetcorn accessions resulted
in the separation of European Flint lines adapted to
more Northern or Mediterranean climate, respectively
(Figure 4C). This split has also been observed in other
studies based on phenotypic and RFLP marker data [48]
and can be traced back to the introgression of maize to
Europe. Maize was introduced to Europe starting at the
end of the 15th century, when Columbus brought sub-
tropical maize from the Caribbean Islands to Southern
Spain, later followed by travelers importing so called
Northern Flint [49] from Canada to Northern France
[48,50-52]. The “non-Northern” Flint group in our study
was further subdivided in the PCoA by the second axis
depicting the relatedness of a subset of samples which
had the French line F7 in their ancestry. Thus, the first
two axes revealed two main subgroups of European Flint
although the substructure was not as pronounced as in
Dent. As indicated in Figure 4 (B, C), the sequenced lines
of the variant discovery panel were nicely distributed
across the different germplasm pools.
Cross-validation results obtained by ADMIXTURE

[53] suggested K = 7 as the most likely number of groups
(Additional file 2: Figure S4, Additional file 2: Figure S5)
with four clear clusters in Dent for BSSS, Iodents, LSC,
and a mixed group of non-BSSS lines, as well as two
clusters for Northern Flints and non-Northern Flints,
and a mixed group of (sub)tropical lines or lines with
ancestors of (sub)tropical origin. This grouping well
reflects the main subgroups observed with PCoA. In

accordance with an increasing sequence divergence to
the reference sequence of B73, ADMIXTURE analysis
based on the 46 k flanking OTVs resulted in the subdiv-
ision of Dent, Flint, and a group including tropical lines
as well as Flint lines originating from Argentina, Spain,
and Italy (Additional file 2: Figure S6, Additional file 2:
Figure S7).
We conclude that the variants represented on the

600 k array are well suited for dissecting the diversity
and genetic composition of temperate maize lines. Per-
formance of the array with regard to the analysis of trop-
ical material or wild maize relatives will need further
investigation.

Extent of linkage disequilibrium
The extent of LD in a population is influenced by re-
combination rate, drift, mutation, selection, and popula-
tion structure. It has thus influence on experimental
design, resolution, and analysis of genome-wide studies.
In the public inbred lines genotyped for validation, LD
decay (r2 ≤ 0.2) could be observed within 158 kb on aver-
age with some chromosomal differences (Table 1).
Group specific analysis of the LD extent revealed a sub-
stantially higher level of LD in the two Dent groups of
Iodents and BSSS with mean LD decay distances of 19.5
and 36.2 Mb, respectively, compared to non-BSSS lines
(excluding the LSC group) where LD decayed within
239 kb. Due to the rather small sample size in LSC (N = 9),
decay distances were not calculated for this subset. Mean
LD decay values in Flint were highest for non-Northern
Flints, which included several lines sharing a common an-
cestor, with 4.6 Mb, followed by Northern Flints (312 kb).
The fastest LD decay was observed in (sub)tropical lines
(70 kb). This corroborates previous reports supporting the
close relationship and small number of founder lines
within Iodent and BSSS compared to the other groups
[19,47]. The low values of the non-BSSS as well as the
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(sub)tropical lines in our study might be explained by the
high heterogeneity of both groups. Still, LD levels in our
panel of maize lines were higher compared to previous
studies reporting the breakdown of LD within distances be-
tween 5 and 10 kb [18,54] in highly diverse maize lines.
The higher LD extent in our study might be due to the
sample panel analysed, which mainly comprised temperate
elite maize inbred lines belonging to distinct germplasm
pools but no landraces or wild species. The variants se-
lected for the 600 k array fulfill the requirements by [55],
after which genotyping arrays should have sufficient cover-
age to capture the fastest LD decay of the considered het-
erotic pools. Thus, especially for analysis of diverse sample
panels, high density genotyping arrays are of interest for
estimating global and local LD.

Other potential applications of the maize high density
array
We presented the usefulness of the maize high density
600 k array for the analysis of population structure and
LD, but of course it is suitable for many other applica-
tions in maize research and breeding. For population
genetic analyses based on genotyping data ascertainment
bias is a central aspect [56]. The lines sequenced in this
study were chosen to represent the diversity within the
more comprehensive validation panel. However, bias
may be introduced by the filtering steps that are applied
during array development and typically results in a bias
towards intermediate allele frequencies. Flanking OTVs
have the advantage of not being directly targeted by the
variant filtering procedure itself offering thus the

potential to counteract ascertainment bias [40]. Compared
to the minor allele frequency (MAF) distribution of the
complete set of variants of the 600 k array where only
3.8% of the variants detect rare alleles with a MAF < 0.05,
OTVs showed with 40.8% rare alleles (MAF < 0.05) a
reduced bias towards intermediate allele frequencies
(Figure 5). Thus, even if the specific type of the variant
as well as its exact location is unknown, flanking OTVs

Table 1 Mean linkage disequilibrium (LD) given as r2 and average LD decay distancea in kb per chromosome in 155
lines (all) and in sixb subgroups as determined by ADMIXTURE

All Dent – BSSS Dent –
Non-BSSS

Iodent Non-Northern
Flint

Northern Flint (Sub) Tropical

(N = 155) (N = 14) (N = 32) (N = 14) (N = 18) (N = 34) (N = 34)

Chr. mean r2 r2 decay mean r2 r2 decay mean r2 r2 decay mean r2 r2 decay mean r2 r2 decay mean r2 r2 decay mean r2 r2 decay

1 0.029 119.14 0.202 14,411.28 0.049 156.32 0.212 15,949.23 0.133 4,007.83 0.049 197.98 0.037 43.38

2 0.027 126.13 0.260 30,329.28 0.048 178.63 0.177 9,411.84 0.133 4,211.89 0.059 332.88 0.039 64.29

3 0.034 199.62 0.263 31,772.64 0.057 306.29 0.170 8,340.20 0.199 15,545.48 0.055 352.29 0.044 96.22

4 0.031 192.41 0.207 16,123.82 0.054 319.43 0.310 50,389.31 0.128 3,114.28 0.063 404.96 0.037 83.82

5 0.027 119.91 0.224 18,692.30 0.047 172.69 0.154 5,681.66 0.144 4,626.09 0.056 262.24 0.038 57.22

6 0.025 106.65 0.198 14,001.18 0.049 188.22 0.170 8,886.16 0.099 955.38 0.049 206.58 0.036 40.20

7 0.033 176.04 0.214 16,901.24 0.057 246.89 0.228 18,945.94 0.141 3,737.87 0.060 379.57 0.042 75.11

8 0.033 183.72 0.257 28,937.29 0.053 254.27 0.280 37,984.38 0.120 1,537.13 0.052 322.23 0.039 81.56

9 0.033 167.58 0.309 53,758.98 0.057 263.68 0.263 28,009.93 0.151 5,020.05 0.056 314.73 0.041 61.48

10 0.033 192.64 0.396 136,831.20 0.057 303.38 0.256 11,899.95 0.130 2,916.32 0.054 343.07 0.041 96.65

Mean 0.031 158.38 0.253 36,175.92 0.053 238.98 0.222 19,549.86 0.138 4,567.23 0.055 311.65 0.039 69.99

Median 0.032 171.81 0.241 23,814.80 0.054 250.58 0.220 13,924.59 0.133 3,872.85 0.055 327.55 0.039 69.70
aDistances in kb for r2 = 0.2 calculated per 50 Mb window.
bLD decay distances were not calculated for LSC (N = 9).
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Figure 5 Minor allele frequency distribution for 616 k variants
and 46 k flanking OTVs. Minor allele frequency (MAF) distribution
in 155 maize lines for the 616 k variants (transparent grey) and for
46 k flanking OTVs (black).
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represent an interesting subset of variants for popula-
tion genetic analyses like screens for selection signa-
tures based on genotyping data which we will address
in further studies.
Further applications of the 600 k array include its use

in genome-wide and targeted approaches. The array
should have the desired density for genome-wide associ-
ation studies in maize, for which the currently available
density of the Illumina® MaizeSNP50 BeadChip was
shown to provide limited resolution [57]. Due to the ex-
tremely high marker density, the array can be used for
bulked segregant analysis to identify genomic regions in-
volved in phenotypic traits with monogenic or oligogenic
inheritance [58]. Further applications may be seen in the
context of plant variety protection and in the investigation
of pedigree relationships, identity-by-descent regions and
ancestral lineages [59]. A panel of representative lines ge-
notyped with the 600 k array should also allow high accur-
acy in imputation of genotypes from genetic material
analysed with lower density marker panels [60]. Finally,
custom sets of SNPs may be assembled from any genomic
region and converted into other highly flexible SNP assay
formats to saturate specific regions in fine-mapping, map-
based cloning studies or marker-assisted selection, since
flanking sequence information is available and conversion
rates among SNP platforms are generally high.

Conclusions
This paper describes the establishment of the currently
largest publicly available SNP array in crop species com-
posed of 616,201 SNPs and small indels. The Affymetrix®
Axiom® Maize Array is optimized for European and
American temperate maize. It is well suited for fine-
mapping of genomic regions, genome-wide studies, and
detection of marker-trait associations. Important aspects
in the development of the maize 600 k genotyping array
were: (i) identification of polymorphic, high-confidence
variants based on whole genome sequence data of 30
representative temperate maize lines, (ii) selection of
physically equally distributed variants for validation, tak-
ing predicted variant performance and subgroup specific
segregation into account, (iii) experimental variant valid-
ation by genotyping 285 DNA samples originating from
diverse subgroups of maize, and (iv) final selection of
variants upon stringent filtering based on cluster met-
rics, concordance with in silico calls, and physical pos-
ition. We have shown that the variants selected for the
600 k genotyping array were polymorphic in a broad
maize panel, ensuring its suitability for a wide range of ap-
plications. We investigated a subset of variants (OTVs)
that showed almost no bias towards intermediate allele
frequencies, thus are potentially of interest for population
genetic analyses. Finally, we performed principal coordin-
ate, admixture, and LD analyses to illustrate the potential

of the array to analyse population substructure and LD
decay with high resolution.

Methods
Sequencing of 30 maize lines in the variant discovery
panel
For whole genome sequencing of 30 maize inbred lines
(Additional file 1: Table S1), DNA was extracted from
leaf material frozen in liquid nitrogen following the
protocol of [61]. For deep-sequencing of the three Flint
lines DK105, EP1, and F7, as well as the Dent line
PH207, DNA was extracted from a single plant each. For
sequencing of the other 26 maize lines, DNA was ex-
tracted from bulked leaf samples of 8–10 plants per line.
Sequencing was performed on an Illumina® HiSeq 2000
platform, generating 2x100 bp paired-end reads from
standard 300 bp libraries using manufacturer’s protocols.

In silico variant discovery and pre-selection
Sequence reads were mapped against reference sequence
B73 AGP_v2 using BWA (version 0.7.5) [62]. Align-
ments were post-processed by marking duplicates and
fixing paired-end information applying the PICARD
toolbox (version 1.84) [63] and by performing local re-
alignments using the Genome Analysis Toolkit (GATK,
version 2.4-9) [35]. Quality scores of called variant positions
(SNPs and short insertions/deletions) were improved by re-
calibrating values according to results of several covariate
analyses (homopolymer, cycle, dinucleotide, quality score)
done on a set of trusted variants. As no SNP database was
available for the maize varieties under study, a database of
high quality trusted SNPs was created following the recom-
mendation on the GATK website (http://www.broadinsti-
tute.org/gatk/guide/tagged?tag=baserecalibrator).
Briefly, initial variants were called independently using

two algorithms to obtain a more robust SNP set, as rec-
ommended by [64]. We used SAMtools (version 0.1.18)
[34] and the intersection to the initial GATK variants
was further filtered for SNP quality (≥ 50); low and ex-
cessive read coverage (50 ≤DP < 3000); presence of the
reference allele; and homozygous non-reference calls in
at least two of the 30 lines. In a second round, variants
were identified from the base quality recalibrated bam
files by the GATK Unified Genotyper. For the final set
of candidate variants, several stringent filters were ap-
plied. First, variants were excluded if they were located
in regions with genomic copy number ≥ 50 (based on
16-kmer counts). Second, variants were not forwarded
to the next step if (i) more than 5% of reads had map-
ping quality 0, (ii) coverage was more than six fold
higher compared to the mean coverage, or (iii) a SNP
quality score was below 100. In addition, variants had to
exhibit a minimal distance of 20 bp between neighboring
variants located in at least one flanking sequence. In
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summary, the final pre-selection variant set scored for til-
ing by the Affymetrix® Axiom® myDesign GW bioinfor-
matics pipeline comprised a total of 5,641,493 bi-allelic
variants. For annotation of the variants, version 5b60 of
the reference sequence B73 AGP_v2 was used (ftp://ftp.
gramene.org/pub/gramene/maizesequence.org/release-5b/
filtered-set/) which contains 39,656 gene models. Variant
effects were predicted using SNPeff (version 3.2) [65].

Variant selection for the screening arrays according to
predicted conversion quality, physical position, and
segregation in Dent and Flint
For all variants from the 5.6 M list p-convert values were
calculated per probe according to the Affymetrix® Axiom
myDesign GW bioinformatics pipeline and categorized
as “recommended”, “neutral”, “not recommended”, and
“not possible”, respectively. The p-convert value can take
a value between 0 and 1 and describes the predicted
probability to convert on the array by taking its se-
quence, binding energies, expected degree of non-
specific binding and hybridization to multiple genomic
regions into account. Two probe sets (forward and re-
verse) for each SNP from the Illumina® MaizeSNP50
BeadChip (GenTrain score > 0) were directly included in
the list of variants for the screening arrays without fur-
ther filtering unless they were classified as “not possible”.
For the newly identified variants only probe sets cate-
gorized as “recommended” or “neutral” were further
analyzed. For coding variants, the probe with the higher
p-convert value was chosen based on this classification,
whereas for all remaining variants probe sets were fur-
ther filtered according to the following multi step ap-
proach. Based on the reference genome size of 2.066
Gb, first, the maize genome was partitioned in 20,660
bins of size 100 kb, aiming at an equal physical distri-
bution of variants. Assuming up to 1.23 M possible var-
iants, which could be tested on two screening arrays,
after substracting the fixed variants (150 k coding vari-
ants and 2*48 k Illumina® MaizeSNP50 BeadChip
SNPs), each 100 kb bin would contain on average 48
variants. Three cases were distinguished to fill the
physical bins: (i) all possible variants of a bin were in-
cluded if less than 48 “recommended” or “neutral” vari-
ants were identified in the corresponding bin, (ii)
“recommended” variants were considered as fixed, if
their number did not exceed 48 and remaining “neu-
tral” variants were subjected to another filtering step,
and (iii) “recommended” variants were further filtered,
if ≥ 48 were observed in the corresponding bin. For this
filtering step to fill up underrepresented bins, allele fre-
quencies were determined for Dent (N = 13) and Flint
(N = 17) lines separately by calculating the ratio of homo-
zygous non-reference allele calls in relation to all available
calls per variant. Variants were classified according to

their pool-specific allele frequency as class “A”, corre-
sponding to intermediate (between 0.2 and 0.8), or “B” to
extreme non-reference allele frequencies (< 0.2 or > 0.8).
One third of the variants, which filled up the bins, were
chosen to be specific for Flint (category Dent “A” | Flint
“B”) and one third specific for Dent (Dent “B” | Flint “A”),
respectively. Further, one sixth each had to be either com-
mon (category Dent “A” | Flint “A”) or rare for both
groups (Dent “B” | Flint “B”), respectively.
In a final step, 50 kb bins were considered if the ori-

ginal 100 kb bin had been filled with less than 48 vari-
ants. Additional variants were selected if there were less
than 8 variants per 50 kb bin to avoid underrepresenta-
tion of genomic regions by choosing variants randomly
(i) from “recommended” variants with at least six, but
less than 22 homozygous reference allele calls in at least
28 of the 30 lines of the discovery panel to avoid ex-
treme allele frequencies (maximal six variants per 50 kb
bin), and (ii) if further variants were required, from all
remaining variants. Altogether, a final list of 1,228,506
variants was established for validation with a diverse panel
of maize lines on two customized 675 k Affymetrix®
Axiom® myDesign GW screening arrays.

Plant material for genotyping
The selected set of 1.2 M variants was used to genotype
285 DNA samples from genetically diverse maize germ-
plasm to evaluate their assay performance. The valid-
ation panel was composed of 224 Dent and Flint inbred
lines of which 92 were proprietary lines. From those, line
B37 was included three times as technical replicate and
three lines (B73, DK105, EP1) were represented by two
biological replicates each. In addition, 13 tropical lines
(ten Flint, three Dent), ten doubled haploid lines from
three European Flint landraces, four lines with no avail-
able pool assignment, and two Teosinte accessions were
analysed. Finally, we included 27 hybrids, among which
there were 23 F1 hybrids from Mendelian trios with both
parental lines present in the public elite line panel, and
four proprietary hybrids (Additional file 1: Table S4). The
Dent elite lines comprised representative samples belong-
ing to the subgroups Iowa Stiff Stalk Synthetic (BSSS),
Lancaster Sure Crop (LSC), or Iodent, as well as other
non-BSSS samples, and samples with tropical origin. The
Flint panel was composed of European Northern Flints
and lines originating from Spain, Italy, and France, as well
as sweetcorn, popcorn, and tropical lines. Except for the
92 proprietary inbred lines, the elite inbred lines were se-
lected according to their frequency of use and citation
[46,47] as well as based on utilization in other studies,
pedigree information or classifcation available from litera-
ture [66,67] or from internet sources [68] with the aim to
represent diverse temperate material. The 96 proprietary
samples were included in the analysis of the screening
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array for training of the variant clustering algorithm, but
not in further analyses presented here.
DNA for genotyping was extracted from seeds available to

the authors or kindly provided by the following institutions:
INRA UMR de Génétique Végétale (Gif-sur-Yvette, France),
Universität Hohenheim (Stuttgart, Germany), USDA-ARS
(Ames, USA), CIAM (La Coruña, Spain), CRA-MAC Maize
Research Unit (Bergamo, Italy), and CSIC (Pontevedra,
Spain).

Comparison of variant calls with the Illumina®
MaizeSNP50 BeadChip
The 30 sequenced lines (Additional file 1: Table S1) were
genotyped with the Illumina® MaizeSNP50 BeadChip fol-
lowing manufacturer’s protocols using a total of 50 ng
genomic DNA. Raw hybridization intensity data process-
ing, clustering, and genotype calling were performed using
the software GenomeStudio (v2011.1, Illumina®) and the
public cluster file II described in [21].

Experimental variant validation by genotyping
From each sample, 200 ng genomic DNA per array was
used for analysis on the Affymetrix GeneTitan® platform
with the Axiom myDesign GW genotyping array follow-
ing manufacturer’s protocol. After array processing, four
samples were excluded from further analyses as signal
intensity files could be created for only one of the two
screening arrays, resulting in 281 samples remaining for
further investigation (Additional file 1: Table S4).
Raw hybridization intensity data processing, clustering,

genotype calling (genotypes AA, AB, BB), off-target vari-
ant (OTV; genotypes AA, AB, BB, OO) calling, and vari-
ant categorization according to genotype cluster metrics
(Additional file 2: Figure S2) were performed using Affy-
metrix Power Tools (APT, version 1.15.0) and the pack-
age SNPolisher (version 1.3.6.6) [69] for R (version 3.0.1)
[70] according to the Axiom Genotyping Solution Data
Analysis Guide. For initial genotype calling generic a
priori cluster positions were used since no information
about expected cluster positions was available. The three
possible genotype clusters were then redefined in a pos-
teriori cluster positions, taking the observed genotype
call positions into account and variants were finally clas-
sified according to selected cluster metrics. A first ana-
lysis was performed according to the recommendations
of Affymetrix, but with a reduced threshold (0.90) for
the variant call frequency instead of the default value
(0.97) to account for the high amount of PAVs in the
maize genome [17].
In a second, extended analysis different levels of in-

breeding were taken into account for a posteriori cluster
definition because of the high amount of lines in the valid-
ation panel exhibiting only a small proportion of heterozy-
gosity in contrast to populations in Hardy-Weinberg

equilibrium. The inbred correction was achieved by a par-
ameter assigning sample-specific penalties using the
“−read-inbred” parameter for the “apt-probeset-genotype”
command in APT. This parameter takes values from 0 for
fully heterozygous to 16 for completely homozygous sam-
ples and includes this information for re-defining a priori
cluster positions for genotype calling. We assigned values
of 0 for F1 hybrids, 12 for inbreds with unclear homozy-
gosity level, and 14 for pure inbred and doubled haploid
lines to allow some remaining heterozygosity (Additional
file 1: Table S4). Results of the analyses with and without
inbred correction were compared and a subset of ran-
domly selected genotype clusters were visually checked.

Selection of high-confidence variants for construction of
the final 600 k array
Variants were preferentially selected if they were exhi-
biting stable category assignments (Additional file 2:
Figure S2) with clearly separated clusters to avoid re-
strictions dependent on the inbred-level. Categories
were assigned by the classification step of SNPolisher using
the following parameters: CR.cut = 90, FLD.cut = 3.6,
HetSO.cut = −0.1, HetSO.OTV.cut = −0.3, HomRO2.
cut = 0.3, HomRO3.cut = −0.9, HomRO.flag = TRUE,
nMinorAllele.cut = 2. For high quality variant selection, a
total of 523,154 variants classified as “PolyHighResolution”
(PHR) with and without inbred correction were directly
forwarded to the final list as they were characterized by
distinct and narrow clusters in both analyses. These vari-
ants were used to define customized cluster quality cri-
teria for OTVs to ensure a clear separation of genotype
clusters, but allowing in addition lower heterozygous
cluster signal intensities due to cluster splits caused by
unexpected off-target variants in the flanking region of the
target variant or potential tri-allelic variants. The “Fisher´s
Linear Discriminant” (FLD) value characterized the cluster
quality being highest in case of well-separated and narrow
clusters. The “Heterozygous Cluster Strength Offset”
(HetSO) measured the difference in the signal intensities
of the genotype clusters as the heterozygous cluster should
have higher signal intensity on average compared to the
homozygous ones due to technical features of the array.
The “Homozygote Ratio Offset” (HomRO) described the
distance of the homozygous clusters to the heterozygous
one to detect potentially misplaced clusters. The chosen
thresholds upon inbred correction were the following: no
monomorphic variants, ≤ 10% missing calls (corresponding
to ≤ 30 missing calls), FLD > 3.5, HetSO > −3.5, and
HomRO> 1. As FLD and HetSO values were exhibiting
missing values in some variants with only two clusters, an
additional threshold was set in this case using a FLD value
between homozygous clusters (homFLD) of > 5. All 42,877
variants which were classified in both analyses (with and
without inbred correction) as OTV and passed in addition
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the above thresholds were included in the selection for the
final array.
Remaining variants were ranked by applying a voting

system. First, variants were ranked according to their
classification with and without inbred correction. Vari-
ants, which were classified as “OTVstable” or changed
their category from “NoMinorHom” (only one homozy-
gous and one heterozygous genotype cluster) without in-
bred correction to PHR after inbred correction, were
assigned a weight of 10. Variants, which belonged to any
other class without inbred correction, but changed to
PHR after inbred correction received a weight of 5, and
all remaining variants not fulfilling the previous criteria
obtained a weight of 0. Second, variants were weighted
regarding the concordance of their calls with the in silico
variant calls from sequencing. The number of matching
calls per variant across the 30 sequenced lines from the
discovery panel, which all were also analyzed on the
genotyping test arrays, was normalized to the total num-
ber of calls per variant resulting in a value in the range
of 0 to 1. As a third criterion, the over- or underrepre-
sentation of the corresponding 100 kb bin was taken
into account by calculating the deviation of the number
of variants in the corresponding bin to the mean of vari-
ants in the five bins up- and downstream, respectively,
and scaling the value into a range of values between −1
and 1. For the final rank, the sum was built of (i) the
weight of the variant class that was multiplied with 35 to
ensure a high performance on the final array (range: 0 to
750), (ii) the value of the sequence match multiplied
with 90 to minimize false-positives (range: 0 to 90), and
(iii) the weight of the bin representation, which was
multiplied by 10 for lowest impact (range: −10 to 10).
For the 48,324 Illumina® MaizeSNP50 SNPs which were
tiled from both sides, the probe with the higher rank
was included in the final set in case of varying ranks. If
both probes of a variant exhibited the same rank, one
probe was chosen randomly. Due to an erroneous map-
ping of 2,669 Illumina® MaizeSNP50 BeadChip SNPs to
the B73 reference sequence a wrong (non-polymorphic)
position was assayed on the screening arrays and these
non-validated SNPs were not included on the final array.
The top 616,201 variants were selected for the final array
design among which 45,655 originated from the Illumina®
MaizeSNP50 BeadChip. Information on SNP IDs, genome
positions, probe sets, and alleles are available at NCBI
GEO as platform GPL18778 (http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GPL18778) or from the prod-
uct information of manufacturer Affymetrix.

Analyses of population substructure and linkage
disequilibrium
For all analyses indels were treated as bi-allelic SNPs. In
PCoA and ADMIXTURE analyses OTVs were included

with their genotype calls of the target variant as well as
information on presence or absence of a flanking variant,
resulting in 616 k plus 46 k variants. Variants with ≥ 10%
of missing data were excluded. Remaining missing data
were imputed using Beagle [71] via the R package “syn-
breed” [72] with R version 3.0.1 [70]. Public inbreds
(N = 155, replicates excluded) of the validation panel
were investigated with PCoA and ADMIXTURE for
population structure as well as for LD decay. LD prun-
ing was performed for PCoA and ADMIXTURE ana-
lyses by applying a r2 threshold of 0.8. PCoA based on
Rogers´ distances was performed using R with the
packages “synbreed” [72], “adegenet” [73], and “ape”
[74]. Analysis of population substructure was calcu-
lated using ADMIXTURE (version 1.23) [53] running
with default settings for K = 1 to K = 15. LD was calcu-
lated chromosome-wise per 50 Mb window using Plink
(version 1.07) [75] and LD decay analysis was per-
formed using the R package “synbreed” [72].

Availability of supporting data
Supporting sequence data are available in the NCBI
Sequence Read Archive (SRA) repository under BioProject
accession number PRJNA260788 (http://www.ncbi.nlm.
nih.gov/bioproject/PRJNA260788). Information on SNP
IDs, genome positions, probe sets, and alleles can be re-
trieved from NCBI GEO, platform GPL18778 (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL18778).

Additional files

Additional file 1: Table S1. Description of the sequence variant
discovery panel with group assignment, origin (Europe or USA), raw
sequence coverage, number of replicates per line, and assigned inbred
penalty (cf. genotype calling in Material and Methods section). Table S2.
Percentage of heterozygous and missing calls, respectively, for samples of
the discovery panel calculated from 49,574 Illumina® MaizeSNP50
BeadChip SNPs with a GenTrain score > 0. Table S3. Number of variants
as well as median, mean, and maximal distance between neighboring
variants in kb per chromosome and mean genetic distance in cM for
screening arrays and final array, respectively. Table S4. Description of
validation panel with group assignment, origin (CA: Canada, EU: Europe,
MX: Mexico, SA: South Africa, US: United States of America, “-“: no
information available), source of the material (proprietary: plant material
from KWS SAAT AG), inbred penalty, and number of replicates. Table S5.
Call rates of validation samples (N = 281) on the two screening arrays,
without and with inbred correction. Samples are sorted according to
mean call rate with inbred correction across arrays (last column). Table S6.
Number and percentage of variants per category with and without inbred
correction for new identified and Illumina® MaizeSNP50 BeadChip variants,
respectively, on the screening arrays and on the 600 k array. Table S7.
Annotation and prediction of variant effects for the 616,201 variants of the
maize 600 k array. Predictions were obtained with SNPeff [65]. Multiple entries
per variant are possible. Table S8. Overview of replicates included in the
validation panel and corresponding percentage of genotype call concordance
calculcated from 570 k SNPs (omitting variants with flanking OTVs).

Additional file 2: Figure S1. Effects of inbred correction on genotype
calling in predominantly homozygous inbred lines shown for two
variants. Figure S2. Representative cluster plots for the six categories
according to SNPolisher. Figure S3. Variant density shown for the
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screening arrays (light grey) and for the variants of the Affymetrix® Axiom®
Maize Array (black) across the 10 maize chromosomes. Centromere
positions are indicated by a black horizontal bar. Figure S4. Cross-validation
errors from ADMIXTURE for different values of K for 155 maize lines
based on 251,152 variants including OTVs (markers in LD with r2 > 0.8
were excluded). Figure S5. Subgroups identified in 155 maize lines of
the validation panel as revealed by ADMIXTURE for K = 7 based on
251,152 variants including OTVs (markers in LD with r2 > 0.8 were
excluded). Figure S6. Cross-validation errors from ADMIXTURE for
different values of K for 155 maize lines based on 27,099 flanking OTVs
(markers in LD with r2 > 0.8 were excluded). Figure S7. Subgroups
identified in the 155 public lines of the validation panel as revealed by
admixture for K = 3 based on 27,099 flanking OTVs (markers in LD with
r2 > 0.8 were excluded).
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Abstract

Background: Dent and Flint represent two major germplasm pools exploited in maize breeding. Several traits
differentiate the two pools, like cold tolerance, early vigor, and flowering time. A comparative investigation of their
genomic architecture relevant for quantitative trait expression has not been reported so far. Understanding the
genomic differences between germplasm pools may contribute to a better understanding of the complementarity
in heterotic patterns exploited in hybrid breeding and of mechanisms involved in adaptation to different
environments.

Results: We perform whole-genome screens for signatures of selection specific to temperate Dent and Flint maize
by comparing high-density genotyping data of 70 American and European Dent and 66 European Flint inbred lines.
We find 2.2 % and 1.4 % of the genes are under selective pressure, respectively, and identify candidate genes
associated with agronomic traits known to differ between the two pools. Taking flowering time as an example for
the differentiation between Dent and Flint, we investigate candidate genes involved in the flowering network by
phenotypic analyses in a Dent–Flint introgression library and find that the Flint haplotypes of the candidates
promote earlier flowering. Within the flowering network, the majority of Flint candidates are associated with
endogenous pathways in contrast to Dent candidate genes, which are mainly involved in response to
environmental factors like light and photoperiod. The diversity patterns of the candidates in a unique panel of
more than 900 individuals from 38 European landraces indicate a major contribution of landraces from France,
Germany, and Spain to the candidate gene diversity of the Flint elite lines.

Conclusions: In this study, we report the investigation of pool-specific differences between temperate Dent and
Flint on a genome-wide scale. The identified candidate genes represent a promising source for the functional
investigation of pool-specific haplotypes in different genetic backgrounds and for the evaluation of their potential
for future crop improvement like the adaptation to specific environments.
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Background
Maize is one of the world’s major staple crops but con-
siderable concern is arising that ongoing anthropogenic
global warming will have drastic effects on maize pro-
duction and might result in a reduction of up to 10 % in
yield in the near future [1]. Expanding production areas
to higher latitudes could moderate the effect, but this
would require the adaptation of breeding material to
shorter vegetation periods. Breeders can cope with this
challenge by taking advantage of the tremendous genetic
diversity of maize that is available in different temperate
breeding pools. Two of the major pools exploited in
breeding are the Dent and Flint germplasm pools with
their names referring to different kernel phenotypes [2].
Dents have characteristic indented kernels with high soft

starch content, whereas Flints have kernels with a thick,
hard, and vitreous outer layer (Fig. 1a). The genetic di-
vergence of these two pools can be explained by their
historic geographical separation [3] and adaptation to
different environments. Among all maize germplasm,
Northern Flints reached the highest latitudes like the
northern regions of the U.S. and Canada, which required
selection for early maturity and cold tolerance [3]. These
Northern Flints, together with Caribbean germplasm,
were major progenitors of European maize and enabled
the rapid adaptation to European climates [4]. Especially
in cooler regions of Europe, breeding programs exploit
heterotic effects between Dent lines tracing back to U.S.
Corn Belt Dents and Flint lines, with Flint contributing
early vigor and good cold tolerance and Dent contributing

Fig. 1 Population structure of the investigated 136 Dent and Flint elite lines and detection of pool-specific selection signatures. a Images of maize
cobs with Dent-type (left) and Flint-type kernels (right) as an example for phenotypic differences between the two germplasm pools. b Population
structure and assignment of 136 temperate maize elite lines to Dent (red; N = 70) and Flint (blue; N = 66) pools. Bar plots indicate the relative
ancestral composition of the lines. c Sweep statistics based on the panel of 136 temperate inbred lines shown exemplarily for a region on
chromosome 8 that includes the Vgt1 locus (dashed gray lines) and Rap2 (solid gray line). Within-group statistics (π, TD, and CLR) are shown in red
for Dent and in blue for Flint. Horizontal dashed lines indicate the cutoff per statistic (10 % quantile for π and TD, 90 % quantile for CLR and FST).
For the region encompassed by the two loci Vgt1 and Rap2, the four major haplotypes observed in the panel are shown. Light gray boxes indicate
the B73 reference allele and dark gray boxes the alternative allele of each SNP. Numbers on the right side of the haplotype plot refer to the number
of observations per haplotype within the Dent and the Flint panels
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high productivity to the hybrids. The divergence of the
Dent and Flint germplasm pools has been described in di-
versity studies based on molecular markers [5] and also in
genetic studies mapping quantitative trait loci (QTL)
underlying agronomic traits. A recent study utilizing Dent
and Flint nested association mapping (NAM) populations
[6] found little overlap of QTL for five complex traits
between the two pools [7]. Although QTL mapping is a
useful tool to elucidate the genetic architecture of pheno-
typic traits, it can only unravel genomic regions for which
the genetic material under study is segregating, whereas
regions under selection can be missed in case of near or
complete fixation. Thus, alternative approaches are
needed to investigate the divergence of Dent and Flint on
a genomic level and to further elucidate how selection
shaped the pool-specific genomic diversity.
Selection creates specific patterns of diversity in the

genome [8] and these signatures can be used for the de-
tection of regions under selection. When a favorable,
new (derived compared to the ancestral) allele rises in
frequency within a population, selective sweeps are gen-
erated, which are characterized by a local reduction in
nucleotide diversity and high derived allele frequencies
[9–11]. In addition, strong and recent sweeps will dis-
play large blocks with high linkage disequilibrium sur-
rounding the derived mutation as the dispersal of the
new allele will be faster than recombination is able to
break down linkage disequilibrium [12, 13]. The identifi-
cation of selection signatures through genome-wide
screens provides an efficient way to detect selection can-
didates and methods for their detection are often com-
bined to reduce the number of false-positives [14–16].
In maize, genome-wide screens for selection signatures
were successfully applied to identify genes involved in
domestication and improvement and allowed insights
into evolutionary processes shaping the genome diversity
of maize [17–20]. Taking advantage of the characteristics
of selective sweeps and using high-density genotyping
data from a maize 600 k single nucleotide polymorphism
(SNP) array [21], we screened a panel of 136 temperate
Dent and Flint elite lines for extreme allele frequencies
over extended linked sites to identify genomic regions
under selective pressure and to gain insights into the
genomic variation underlying the differentiation of Dent
and Flint. We included outgroup information from
Sorghum bicolor to further support the identified candi-
date genes based on derived allele frequencies. We fur-
thermore investigated the candidate genes based on
whole-genome sequence data of 40 Dent and Flint lines
[21, 22] and examined if genic and upstream regions
contributed equally to the differentiation between tem-
perate Dent and Flint.
The elite line panel under study comprised frequently

used and important founder lines exploited in breeding

programs for temperate climates. The Dent lines in our
panel represent U.S. Corn Belt and European material,
whereas most of the Flint lines originated from European
breeding programs. Based on the selection screens, we ex-
amined pool-specific enrichment of candidate genes for
metabolic pathways and investigated candidates associated
with traits that are known to differentiate Dent and Flint
like cold tolerance and flowering time [23, 24]. Flowering
time is essential for local adaptation and represents a
major determinant for other agronomic traits, such as
grain filling and yield. The complex genetic architecture
of flowering time has been studied in maize in a large
number of studies mapping QTL with a meta-QTL ana-
lysis revealing 62 flowering time consensus QTL [25].
Phenotypic differences in maize flowering time are mainly
caused by the accumulation of many small-effect QTL
[26] and only a few large-effect genes have been character-
ized so far [27–30]. Hundreds of homologs to A. thaliana
flowering time genes have been found in the maize gen-
ome [31], but in most cases their functional roles in the
maize flowering network remain to be elucidated [25, 26,
29, 32–37]. In this study, we identified candidate genes
from the flowering network with haplotypes near fixation
or fixed in either of the two elite pools. We used this set
of genes as an example to characterize genomic differenti-
ation between Dent and Flint in more detail. We evaluated
the effect of these genes on flowering time in a Dent–Flint
introgression library and investigated their assignment to
different pathways within the flowering network. To assess
the congruency of the allelic composition of the candidate
genes between elite lines and landraces, we expanded our
candidate gene analysis to a large dataset of 38 European
landraces that comprises more than 900 individuals. By
exploring this unique resource, we gained insights into the
genetic variation of the selection candidates between land-
races and elite lines and investigated, which landraces
likely contributed to the observed candidate gene diversity
in the elite lines and if haplotypes not yet exploited in
breeding could be detected. Taken together, our study
allowed insights into patterns of differentiation between
temperate Dent and Flint germplasm and provided candi-
dates for follow-up studies to characterize their biological
and molecular functions, to investigate their impact on
phenotypes, and to assess their potential use for further
crop improvement.

Results and discussion
Characterization of the Dent and Flint panels
We genotyped a diverse panel of 136 temperate inbred
lines (Additional file 1: Table S1) at high density with the
Axiom® Maize Genotyping Array [21]. The array com-
prises more than 600 k SNP markers, which were identi-
fied based on mid- to high-coverage whole-genome
sequence data of 30 representative temperate Dent and
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Flint maize lines [21]. Markers were filtered according to
quality scores and stable performance on the array, thus
representing high-confidence sequence variants, and their
final distribution followed the average recombination rate
along the chromosomes [21]. After stringent quality filter-
ing of the 616,201 markers included on the array, 547,412
high-quality SNPs (88.8 %) remained for analysis. These
SNPs tagged 19,759 genes (49.8 % of the annotated gene
set of maize) with, on average, two SNPs in their coding
region (52.6 % synonymous and 47.4 % non-synonymous).
Slightly more SNPs were polymorphic in the Flint com-
pared to the Dent panel (95.4 % versus 93.1 %), but the
majority of SNPs segregated in both germplasm pools
(88.6 %).
The panel of 136 temperate Dent and Flint inbred

lines comprised frequently used and important founder
lines exploited in breeding programs in Europe and the
U.S., including lines which were used as parents for the
U.S. and European NAM panels [6, 38, 39]. The 70 Dent
lines were selected according to available pedigree infor-
mation and their frequency of use and citation [40, 41]
to assemble a representative set of lines. Besides 16
European Dent lines, the lines represent U.S. Corn Belt
Dent and include lines from the Maize Association Popula-
tion [42] and the list of inbred lines with expired U.S. plant
variety protection [43]. The 66 Flint lines investigated in
this study comprised important founder lines of European
breeding programs like F2 and F7 originating from the
French landrace Lacaune, EP1 from the Spanish landrace
Lizargarate, and derivatives of the German landrace Gelber
Badischer Landmais [44]. The Flints comprised in total 34
lines from France, 20 from Germany, four from Spain,
three from Italy, three from North America, as well as one
from Switzerland and Austria. Between the elite lines of
the two germplasm pools, we observed a clear separation
of pools (Fig. 1b) and a high genome-wide level of differen-
tiation (FST = 0.14), which is consistent with the long-term
genetic differentiation between Dent-type and Flint-type
maize [2, 3].

Genome-wide screens for selection signals
Taking advantage of the characteristics of selective
sweeps, we screened the genome for extreme allele fre-
quencies over extended linked sites to detect regions
under differential selective pressure between Dent and
Flint. Signatures of selection in only one of the two
pools, Dent or Flint, were detected based on low levels
of nucleotide diversity (π) [9] and Tajima’s D (TD) [10]
in the respective pool. In addition, a signature had to be
supported by a high value of the composite likelihood
ratio (CLR) test [11] within the respective pool, which
indicates a deviation of the allelic composition of a gen-
etic region compared to a neutrally evolving sequence
determined by the genomic background. To ensure that

the selection signature was specific for one of the two
pools, it had to be associated with a high level of differ-
entiation between Dent and Flint measured by the fix-
ation index FST [45]. Except for the CLR statistic, which
was calculated for non-overlapping grids of 150 kb, we
applied a sliding window approach averaging data over
windows of 40 SNPs (sliding by 10 %) and filtered for re-
gions below the 10 % quantile for π and TD and above
the 90 % quantile for FST and CLR (Additional file 1:
Table S2). Following the approach reported by [17], adja-
cent windows passing the threshold for all four statistics
were grouped together for candidate gene analysis, as
the observed changes in allele frequency were likely
caused by the same selective sweep event. This resulted
in a filtered set of 265 windows for Dent and 158 win-
dows for Flint, with an average length of 331.40 kb and
267.80 kb, respectively, and thus comparable to the
length of domestication windows found in a previous
study [17]. An example of a signature of differential se-
lection in Dent and Flint determined by all four metrics
(π, TD, CLR, and FST) is shown in Fig. 1c for a region on
chromosome 8 harboring two candidate genes. The
underlying genetic region was composed of four major
haplotypes. The first three haplotypes occurred at inter-
mediate frequencies in Dent, whereas the fourth haplo-
type was almost exclusive for Flint.
Genome-wide patterns of diversity and the resulting

distribution of selection signatures in the Dent and Flint
panels are given in Additional file 2: Figure S1. Within
the filtered set of windows, which covered 4.3 % of the
total length of the maize genome for Dent and 2.1 % for
Flint, we identified 876 genes as candidates under differ-
ential selective pressure in Dent and 545 genes for Flint
with 14 genes common to both candidate genes sets
(Additional file 3: Table S3). This corresponded to 2.2 %
and 1.4 % of the filtered gene set of maize, respectively,
and is in the same order of magnitude as the estimated
number of genes under selective pressure during maize
domestication and improvement [17]. When comparing
the candidate gene sets with the 571 improvement can-
didates reported by [17], 26 genes overlapped with the
list of Dent candidates but only one gene with the Flint
candidate gene set. Considering that the genetic material
studied in [17] comprised mainly U.S. Dent and (sub-)
tropical lines and that pool-specific sequence variation
in temperate Dent and Flint has been reported here and,
for example, by [5], these results emphasize the rele-
vance of a representative panel of lines belonging to
divergent germplasm pools to obtain a comprehensive
picture of the genomic diversity in maize.
In genome-wide screens for signatures of positive selec-

tion, also other forces than selection, such as heteroge-
neous mutation and recombination rates along the
genome, past demographic history and background
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selection shape the genomic diversity and can give rise to
false-positive signals. It is beyond the scope of this paper
to infer a full demographic history of maize for the elite
lines and landraces as the breeding history of maize is
complex and violates several assumptions of the classic
population genetics models (e.g. discussed in [46]), as, for
example, the assumption of panmictic populations and ap-
plicability of the coalescent at short time scales. We there-
fore applied the CLR test [11], which detects selective
sweeps based on the comparison of the site-frequency
spectrum within a specific genomic region to the average
site-frequency spectrum over the genome, a method
which has been successfully used in human and other spe-
cies to detect selective sweeps [11, 47, 48]. To further de-
crease the rate of false-positives, the CLR test was
combined with three additional metrics (π, TD, and FST)
and we identified signatures of positive selection based on
this conservative approach with an overlap of genome-
wide extreme values per metric. The high level of linkage
disequilibrium in temperate Dent and Flint elite lines [21]
facilitates the detection of selective sweep signals over suf-
ficiently large genomic regions by the CLR test. On the
other hand, the extent of linkage disequilibrium may de-
crease the power to discriminate between signals caused
by genetic hitchhiking due to positive selection and nega-
tive background selection in regions with reduced levels
of recombination [49, 50]. To assess the number of false-
positives due to this effect, we explored the recombination
landscape in the Dent and Flint panels by estimating lower
bounds of historical recombination events [51]. The pro-
portion of candidate genes located in regions with strongly
reduced recombination rates and high linkage disequilib-
rium like (peri-) centromeric regions was then estimated.
We found that 74.8 % of the Dent and 80.9 % of the
Flint candidates were not located in regions with low
levels of recombination (10 % quantile per chromo-
some; Additional file 1: Figure S2) indicating that the
majority of candidates represent targets of selection ra-
ther than false-positive signals. Furthermore, in a classic
selective sweep scenario (in contrast to background selec-
tion) targets of selection are to be enriched for derived al-
leles. As an additional test of our candidate regions, we
included information from Sorghum bicolor to distinguish
between ancestral and derived alleles. The Dent and Flint
candidate gene sets revealed significantly higher de-
rived allele frequencies compared to the remaining
genes as measured by Fay and Wu’s normalized H [52]
(p < 2.2e-16; Additional file 1: Table S4), which also sup-
ported positive selection as the driving force of the ob-
served allele frequency changes.

Gene ontology and pathway analyses of candidate gene sets
Considering genetic differentiation and distinct pheno-
typic characteristics of Dent and Flint, we tested whether

the candidate gene sets were enriched for specific bio-
logical processes or pathways. Gene ontology (GO)
terms associated with the identified genes were available
for around 40 % of the candidates (333 for Dent and 214
for Flint). No significant GO term enrichment of bio-
logical processes, cellular components, and molecular
functions could be detected for either of the two sets
(Additional file 1: Figure S3). To investigate if candidate
genes revealed a pool-specific enrichment for metabolic
pathways, we performed pathway analyses using Map-
Man [53]. Based on information available for 58 Dent
and 40 Flint candidate genes, we observed a grouping of
genes associated with tetrapyrroles (chlorophyll and
heme precursors) for Dent and for terpenoid metabolism
for Flint (Additional file 1: Figure S4). The latter in-
cluded the two genes ZmPPS7.3 (GRMZM2G014508)
and ZmPPS8.2 (GRMZM2G483889), which encode a
large and a small subunit of the geranyl diphosphate
synthase complex in maize, respectively [54]. Like their
homologues in A. thaliana [55], they are assumed to be
involved in the biosynthesis of precursors of hormones
from the isoprenoid pathway (e.g. gibberellins, brassinos-
teroids, and abscisic acid). The ability to produce other
downstream products of this enzyme, namely β-caryo-
phyllenes, has been shown to differ between European
Flint and U.S. Dent lines and suggested that this defense
response signal against herbivores was largely lost in
temperate U.S. Dent [56, 57]. The analysis of candidates
associated with other traits that are known to differenti-
ate Dent and Flint revealed six Flint candidates that, ac-
cording to GO terms, are related to cold tolerance, a
trait that is characteristic for temperate Flint [24]. For
two of the candidates, differential expression upon expos-
ure to chilling temperature has been reported in maize
(GRMZM2G035584 [58] and GRMZM2G095562 [59]) as
well as for the homologous gene of GRMZM2G139680 in
rice [60]. The molecular and functional characterization of
the identified candidate genes in maize and the investiga-
tion of differences between Dent and Flint in the regula-
tion of phytohormone pathways or secondary metabolism
may provide further insights in the adaptation of maize to
different environments. Up to now, comprehensive RNA
expression data across various developmental stages and
tissues are mainly available for U.S. Dent lines like B73,
which underlines the need for a better structural and
functional genomic characterization of the Flint germ-
plasm pool and its unique properties.

Assessing the phenotypic effects of candidate genes on
flowering time in a Dent–Flint introgression library
In the genome-wide selection screens, we identified 18
candidates for Dent and 12 candidates for Flint, which
could be assigned to the flowering pathway based on
previous reports in maize, GO terms, and/or sequence
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homology to flowering genes characterized in other spe-
cies [30, 32–34, 61, 62]. We focused exemplarily on candi-
date genes associated with the flowering network in maize
as flowering time is an important agronomic trait that dif-
ferentiates temperate Dent and Flint. However, functional
studies of these genes in maize were available for only
30 % of the candidates (Additional file 4: Table S5). Here,
we investigated the effect of the flowering time candidate
genes in more detail using a maize introgression library.
The introgression library had a Dent genetic back-

ground with introgressions from a Flint donor line and
comprised 97 lines, which carried single Flint segments
and covered in total 50.9 % of the Flint donor genome
(1048.7 Mb) with a median length of the donor genome
segment size of 10.6 Mb (average: 30.8 Mb; Additional
file 5: Table S6). We obtained phenotypic data for male
and female flowering time based on a field experiment
carried out at two locations in Germany. Heritabilities
were 0.60 (CI0.95 = [0.40; 0.73]) and 0.51 (CI0.95 = [0.27;
0.67]) for male and female flowering time, respectively.
Phenotypic differences between the Dent and Flint par-
ent were larger for male than for female flowering time
(23.2 and 17.8 days, respectively). Based on the least sig-
nificant difference (α = 0.05), 63 (64.9 %; Fig. 2a) and 16
lines (16.5 %; Fig. 2b) differed significantly from the re-
current Dent parent for male and female flowering time,
respectively. Fifteen of these lines had significant effects
for both male and female flowering time (α = 0.05).
When correcting for multiple testing (α = 0.05/97), six
lines (6.2 %) differed significantly for male and none for
female flowering time.
Of the 97 lines, 22 carried a Flint introgression harbor-

ing one or several of the flowering time candidates identi-
fied in the selection screens (Additional file 5: Table S6).
Fourteen of the 30 candidates were represented in these

22 introgression lines. Seven lines carried a segment with
one or more of seven flowering time candidates identified
in Flint and nine lines carried one or more of six flowering
time candidates identified in Dent. Six lines carried a seg-
ment with a combination of Dent and Flint candidates. Al-
though 75 lines did not carry one of the flowering time
candidates identified in our selection screens, they may
carry other flowering time genes with alleles differing be-
tween the Dent and the Flint parent of the introgression
library. Lines carrying the Flint haplotype of a Flint candi-
date differed significantly from the 75 lines which did not
carry one of the flowering time candidates from the selec-
tion screens (93.1 versus 96.1 days, p value = 0.011; Fig. 2a).
For the lines which carried the Flint haplotype of a Dent
selection candidate, this difference was not significant.
The results indicate that in the genetic material under
study, the Flint haplotypes of Flint candidates promoted
flowering time more than the Flint haplotypes of Dent
candidates.
Of the six lines with significant difference in male flower-

ing compared to the Dent parent after correcting for mul-
tiple testing (α = 0.05/97), two carried Flint haplotypes of
Flint candidates and one a Flint haplotype of a Dent candi-
date. One of the lines included the well-characterized
large-effect region comprising the ethylene-responsive
transcription factor Rap2 (related to APETALA2 7,
ZmRap2.7, Rap2, GRMZM2G700665) and its regulatory
upstream locus Vgt1 [62], a major QTL for flowering time
in maize [29, 30]. The other line contained Zcn1 (one of
several members of the ZEA CENTRORADIALIS or
TERMINAL FLOWER1 (TFL1)-like gene family [32];
also Phosphatidylethanolamine-binding protein1, Pebp1,
GRMZM2G092008), for which so far only a moderate ef-
fect on flowering time was reported in maize [63]. This
gene is related to TFL1 in A. thaliana [32], which is an

Fig. 2 Effect of candidate genes on flowering time in a Dent–Flint introgression library. Adjusted means of (a) male and (b) female flowering
times for 97 introgression lines (circles) and the Dent and the Flint parental line (red and blue squares, respectively). Lines carrying a segment with
Dent or Flint flowering time candidate genes are highlighted in red or blue, respectively, and lines with a Dent and a Flint candidate are shown in
black. The dotted and dashed lines represent the significance thresholds without (α = 0.05) and with correction for multiple testing (α = 0.05/97).
Boxplots of adjusted means of flowering times are depicted in the lower parts of (a) and (b) for seven lines carrying Flint haplotypes of Flint
flowering time candidates (blue), nine lines carrying Flint haplotypes of Dent flowering time candidates (red), and the 75 lines not carrying a
flowering time candidate (gray). For details about the respective lines see Additional file 5: Table S6. Boxplots show the upper and lower quartile,
median (horizontal bar), and whiskers (vertical bars) of the adjusted means. Points above and below the whiskers indicate values ± 1.5 times the
interquartile range. Significance of Student’s t-tests with p < 0.05 is indicated by *
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antagonist of the FLOWERING LOCUS T (FT) [64, 65]
and required for the maintenance of an indeterminate in-
florescence meristem identity and the regulation of flower-
ing time in A. thaliana and maize [63–66]. The line with
the Dent candidate carried Zmm22 (MADS-transcription
factor 69, Mads69, GRMZM2G171650), which was re-
cently reported to be associated with variation in flowering
time in maize [67] and is considered a candidate for maize
domestication and/or improvement [68, 69].
Overall, our findings in the introgression library sup-

port the relevance of the investigated genomic regions
and their associated candidates for promoting flowering
time and confirm the quantitative nature of flowering
time in maize, determined by many genes with small ef-
fects [26] and only few genes with larger effects. Here,
the effects of Zcn1 and Zmm22 were stronger than re-
ported previously, which may be attributed to a stronger
substitution effect when replacing a Dent haplotype with
a Flint haplotype. We will target potential expression dif-
ferences of flowering time candidates in the Dent–Flint
introgression library in future studies to characterize
possible differences in the regulation of the flowering
network between germplasm pools adapted to different
environments.

Differential selection on components of the flowering
network within temperate maize
We investigated the 30 flowering time candidates with
respect to their assignment to endogenous pathways and
pathways regulated by environmental factors within the
flowering network to determine if different components
of the flowering network were under selective pressure
in Dent and Flint, respectively. Within the flowering net-
work, Flint candidates were involved predominantly in
endogenous signaling, hormone-dependent, and devel-
opmental processes (10 of 12 candidates, 83.3 %),
whereas the Dent candidates indicated a prevalence for
response to environmental factors like light and photo-
period (12 of 18 candidates, 66.7 %; Fig. 3a, Additional
file 4: Table S5). As described above, Flint candidates
included the well-characterized Rap2/Vgt1 locus and
Zcn1. Furthermore, we found the Squamosa promoter
binding protein-transcription factor 25 (Sbp25,
GRMZM2G414805) and Gnarley1 (Gn1; also Homeobox
protein KNOTTED1-like 4, Knox4, GRMZM2G452178)
that are associated with aging and hormone-dependent
pathways (Additional file 4: Table S5). Gn1 is likely to
act upstream of the “green revolution” gene encoding
gibberellin 20-oxidase [70] and to regulate Gibberellin 2-
oxidase 1 expression in maize, thus influencing vegeta-
tive to reproductive phase transition, pollen tube growth,
and stem elongation by changing the availability of
gibberellin [71]. Gibberellin 2-oxidase 1 is additionally
regulated by Knotted1 (Kn1, GRMZM2G017087) which

was identified as a Dent candidate gene [71]. Another
well-characterized Dent candidate is Constans1 (Conz1,
GRMZM2G405368), which is a putative ortholog of the
photoperiod genes CONSTANS from A. thaliana and
Heading date1 in rice [72]. To the best of our know-
ledge, 20 of the 30 detected flowering time candidates
have not yet been functionally characterized in the con-
text of maize flowering time, but were associated with

Fig. 3 Selection candidates of the maize flowering network and
their nucleotide diversity in 136 elite lines and 38 European
landraces. a Candidates associated with the maize flowering
network identified under selective pressure in 70 Dent (red) and 66
Flint (blue) lines based on genotyping data. Candidates are grouped
according to their putative function in endogenous pathways and
pathways regulated by environmental factors. For details about the
candidate genes and their classification, see Additional file 4: Table
S5. Ambiguous assignments according to GO annotations and
literature are indicated by *. b Nucleotide diversity π of nine Flint
(blue) and 13 Dent (red) flowering time candidate genes for 136
temperate elite lines as well as 31 Flint-type and seven Dent-type
European landraces. Mean values for each gene were calculated for
the panels of Dent and Flint elite lines (left) and for each of the 38
landraces (right). For details about candidate genes, gene-wise π
values, and order of landraces, see Additional file 6: Table S8
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the flowering network based on GO terms or reports in
other species such as A. thaliana and rice (Additional
file 4: Table S5). Thus, our study revealed candidates
that warrant further investigation of their functional
relevance in maize flowering time. Based on the ob-
served allele frequency differences of the candidate
genes within the 136 elite lines and with respect to their
function in maize or, for example, A. thaliana, we
hypothesize that different components of the flowering
network were under selective pressure in Dent and Flint.
The Flint-specific haplotypes of these genes might con-
stitute a promising source for the adaptation of maize
germplasm pools to shorter vegetation periods.

Diversity of flowering time candidates in elite lines and
European landraces
As most of the European Flint inbred lines are assumed to
be derived from few landraces [44], we compared the di-
versity and the allelic composition of 22 flowering time
candidates (13 Dent and 9 Flint candidates tagged by at
least five SNPs) between the elite lines and a unique panel
of 38 European landraces (Additional file 1: Table S7). For
each landrace, 22 to 24 plants were genotyped at high
density with the Axiom® Maize Genotyping Array [21].
The majority of the landraces (N = 31) had Flint-type
kernels. These landraces exhibited lower levels of diversity
in the Flint flowering time candidates (gene-wise average:
π = 0.130) compared to the Dent flowering time candi-
dates (π = 0.243), thus confirming the pattern found in the

Flint elite lines (Fig. 3b, Additional file 6: Table S8).
We further investigated the level of differentiation be-
tween Flint-type landraces and Flint elite lines and
observed low levels of FST for the Flint flowering time
candidates (FST = 0.060; Fig. 4a, FT) with ten land-
races from France, Germany, and Spain displaying
values even smaller than 0.050 (Additional file 7:
Table S9). These low values of differentiation suggested a
major contribution of the Flint-type landraces to the flow-
ering time candidate gene diversity observed in the Flint
elite lines. This hypothesis was corroborated by the
finding that the entire set of Flint candidate genes also re-
vealed significantly lower levels of differentiation com-
pared to all other genes, which were not under differential
selection between Dent and Flint elite lines (FST = 0.072
versus 0.095, p value = 6.0e-04; Fig. 4a, A versus C).
Consistent with the hypothesis that Flint elite lines

and Flint-type landraces have a common history, sig-
nificantly higher levels of differentiation were ob-
served for Dent candidate genes compared to all
remaining genes (FST = 0.111 versus 0.095, p value =
0.017; Fig. 4b, A versus C). Together, these findings
indicated that the reduced diversity observed for Flint
candidate genes in Flint elite lines was already present
in a broad panel of European landraces and that the
candidate gene diversity of the Flint elite lines origin-
ate from a limited number of Flint-type landraces
used for elite line development in some historically
important breeding centers [44].

Fig. 4 Differentiation between elite lines (EL) and landraces (LR) for candidate genes. The upper panel shows the differentiation (FST) between 66
Flint elite lines and 31 Flint-type landraces for (a) Flint (blue) and (b) Dent (red) candidate gene sets. The lower panel depicts the differentiation
between 70 Dent elite lines and seven Dent-type landraces for (c) Dent (red) and (d) Flint (blue) candidate gene sets. The boxplots show FST
values for all (A; gray) genes except the candidates, the candidate (C) genes, and for the subset of candidates associated with flowering time (FT).
Boxplots show the upper and lower quartile, median (horizontal bar), and whiskers (vertical bars) of the FST values. Points above and below the
whiskers indicate values ± 1.5 times the interquartile range. Significance of two-sided Wilcoxon rank sum tests with p < 0.05 are indicated by *
and with p < 0.001 by **. For details see Additional file 7: Table S9

Unterseer et al. Genome Biology  (2016) 17:137 Page 8 of 14



The remaining seven landraces displayed at least
partially Dent-type kernels. These landraces revealed
high levels of diversity for Dent and Flint flowering time
candidates (π = 0.225 and 0.260, respectively; Fig. 3b,
Additional file 6: Table S8) and showed a high level of
differentiation with Dent elite lines for the Dent flower-
ing time candidates (FST = 0.170; Fig. 4c, FT). The same
pattern was found in the analysis of the entire Dent
candidate gene set, which revealed significantly higher
levels of differentiation compared to all remaining genes
(FST = 0.164 versus 0.111, p value = 0.026; Fig. 4c, A ver-
sus C), but no significant difference for Flint candidates
compared to all remaining genes (FST = 0.138 versus
0.112, p value = 0.209; Fig. 4d, A versus C; Additional
file 7: Table S9). These results indicated that the European
Dent-type landraces exhibit a different allelic composition
in the Dent candidates compared to the Dent elite lines
and did most likely not contribute to the Dent elite mater-
ial under study.

Selection on upstream and genic regions of the
candidates
To examine how specific elements of the genic regions
contributed to the differentiation between Dent and
Flint, we compared levels of differentiation for 5 kb and
500 bp upstream regions, genic regions, and exons be-
tween the candidate gene sets and all remaining genes.
To increase the resolution of our analyses, we investi-
gated the candidate gene sets based on whole-genome
sequence data of 40 temperate elite lines (21 Dent and
19 Flint) [21, 22], which were part of the panel of 136
elite lines genotyped with the 600 k array with the ex-
ception of three lines (Additional file 1: Table S1). Based
on 13,246,294 bi-allelic SNPs, we observed a significant
reduction of mean π and TD in 727 Dent and 403 Flint
candidate genes tagged by at least five SNPs (of in total
876 and 545 candidates, respectively) compared to
31,163 remaining genes (p value < 2.2e-16; Additional file
1: Figure S5 and Additional file 1: Table S4). FST values
calculated between Dent and Flint were significantly
higher for candidate gene sets compared to all remaining
genes for 5 kb and 500 bp upstream as well as genic and
exonic regions. Together, these findings supported the
results obtained from the selection screens in the panel
of 136 temperate inbred lines genotyped with the 600 k
array.
Previous studies in maize suggested an important role

of the divergence of regulatory elements in the context
of domestication [73–75]. In our study, distributions of
FST values were comparable for 5 kb and 500 bp up-
stream as well as genic and exonic regions in each of the
two candidate gene sets (Additional file 1: Figure S6 and
Additional file 1: Table S4). However, the power to re-
solve whether selection acted differentially in upstream

and genic regions was probably limited by the high level
of linkage disequilibrium observed in temperate Dent
and Flint lines [21]. The outcome of ongoing large-scale
whole genome and transcriptome sequencing will allow
the investigation of the impact of selection on the regu-
lation of gene activity in the two pools and its conse-
quence for the genomic differentiation between Dent
and Flint.

Conclusions
In this study, we report genomic differentiation between
two major temperate maize germplasm pools, Dent and
Flint. By comparing a representative panel of Dent and
Flint elite lines, we identified candidate genes under dif-
ferential selective pressure in Dent and Flint. The signifi-
cant enrichment in derived allele frequencies for these
genes provided strong indication that the candidate re-
gions represented selective sweeps. Candidate genes as-
sociated with agronomic traits known to differ between
Dent and Flint could be identified. Most of the detected
flowering time candidates have not yet been functionally
characterized in maize. Investigating the effect of the
flowering time candidates in a Dent–Flint introgression
library, we found that Flint haplotypes of these candi-
dates promoted earlier flowering. Within the flowering
network of maize, a Flint-specific enrichment of genes
associated with endogenous signaling, hormone-
dependent pathways, and developmental processes was
discovered in contrast to Dent, where selection seemed
to act predominantly on genes involved in the response
to environmental factors. Low levels of differentiation of
Flint flowering time candidate genes between European
Flint elite lines and European landraces indicated that
the allelic composition of the elite lines was comparable
to those of the Flint-type landraces and suggested a
major contribution of landraces from France, Germany,
and Spain to the candidate gene diversity in the Flint
elite lines. Our findings highlight the role of genomic re-
gions that have undergone intense selection and contrib-
uted to the differentiation of temperate Dent and Flint
with likely effects on different agronomic traits. The
identification of pool-specific selection signatures en-
abled insights into different patterns of diversity between
temperate Dent and Flint and provides new targets for
future functional analyses and crop improvement.

Methods
Plant material and genotyping of elite lines and landraces
The 136 elite inbred lines (Additional file 1: Table S1) were
selected to represent the genetic diversity of European and
American temperate maize and were genotyped with the
600 k Affymetrix® Axiom® Maize Array described in [21].
Landraces were selected to reflect the genetic and pheno-
typic diversity within Central and Western Europe
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(Additional file 1: Table S7) and were represented by
22 to 24 plants each. All 906 landrace individuals
were genotyped using the 600 k array and the genotype
cluster model file (http://www.affymetrix.com/catalog/
prod820010/AFFY/Axiom%26%23174%3B-Maize-Genoty
ping-Array).
If not denoted otherwise, analyses were performed

using R version 3.0.1 [76]. SNP positions were assigned
to the reference sequence B73 v2 [22] for all datasets.
Analyses of the elite line panel were based on 566,961
best quality SNPs [21] with heterozygous calls masked
as missing. Indels, unmapped markers, SNPs with ≥ 10 %
missing values in the elite line panel [21], markers de-
signed to specifically differentiate between two Dent
lines [77], and monomorphic SNPs were excluded,
resulting in 547,412 SNPs for analyses of temperate elite
lines. Analyses including the landraces were based on a
subset of 486,208 SNPs.

Population structure analysis and estimation of historical
recombination rates
For population structure analyses of the genotyped panel
of 136 elite lines, missing data were imputed using Bea-
gle [78] version 3.3.1 via the R package “synbreed” [79]
version 0.10-3. A linkage disequilibrium pruning step
was performed applying an r2 threshold of 0.8 followed
by the estimation of ancestry using ADMIXTURE [80]
version 1.23. To obtain an estimate of the historical re-
combination rates in Dent and Flint based on the geno-
type data of the elite line panel, the four-gamete test
[51] was calculated. This test gives a conservative esti-
mate (i.e. the minimum number) of recombination
events in the history of a sample. Values for the pairwise
tests of neighboring SNPs were averaged over 1000 sites
and the mean of each 1000 site bin was plotted. Re-
ported were recombination events per Mb and regions
of low recombination rates were defined as regions exhi-
biting rates within the 10 % quantile per chromosome.

Screens for selection signatures
Nucleotide diversity π [9] and Tajima’s D (TD) [10] were
calculated for each panel of inbred lines using a custom-
ized script. The fixation index FST [45] was calculated
across the two panels using PLINK [81] version
v1.90b2m. Metrics were calculated per SNP and aver-
aged over windows of 40 SNPs (sliding by 10 % and cor-
responding to an average physical distance of 10 kb),
using the R package “zoo” [82]. The grid-based compos-
ite likelihood ratio (CLR) test was calculated for each
panel as implemented in SweepFinder [11]. For CLR, the
size of the non-overlapping grids was 150 kb, which is
the same magnitude as the maximal distance between
two SNPs with r2 > 0.2 in the elite line panel [21]. Win-
dows exhibiting values within the 10 % quantile (π, TD)

and the 90 % quantile (FST, CLR) were submitted for
candidate gene analysis based on the B73 v2 [22] anno-
tation, version 5b60 (ftp://ftp.gramene.org/pub/gramene/
maizesequence.org/release-5b/filtered-set/), containing
39,656 gene models. GO terms were tested for enrich-
ment using the resources developed by [83] based on
maize gene IDs by applying a hypergeometric test with a
Benjamini–Yekutieli correction ([84]; FDR = 0.05) to ac-
count for multiple tests. Pathway analysis was performed
using MapMan version 3.5.1 [53] based on the mapping
of the first transcript of each gene to the file
Zm_B73_5b_FGS_cds_2012.m02 downloaded from the
MapMan webpage (http://mapman.gabipd.org/web/
guest/mapmanstore). For visualization, arbitrary values
of –4.5 and 4.5 were assigned to Dent and Flint candi-
date gene transcripts, respectively.

Whole-genome sequence datasets
For Fay and Wu’s normalized H [52], the maize-
sorghum genome alignment (http://pipeline.lbl.gov/
downloads.shtml) was parsed with a custom Perl script
to obtain the nucleotide in sorghum representing the an-
cestral maize allele for 298,388 SNPs of the genotyped
panel of elite lines. Whole-genome sequence data for 30
elite lines were used to call SNPs and small indels by
employing an integrative analysis pipeline [21] and filter-
ing for high mapping (MQ ≥ 30) and genotyping quality
(GQ > 5), major allele frequency ≥ 90 %, a minimal dis-
tance of 3 bp between adjacent SNPs, and a minimal
and maximal coverage by three and 60 MQ30 reads for
lines sequenced to medium coverage, respectively. The
latter criterion was adjusted for four deep sequenced
lines requiring ten and 300 MQ30 reads, respectively.
We combined the obtained marker set with whole-
genome sequence data from ten temperate inbred Dent
and Flint lines from the maize HapMap2 project [17, 22]
resulting in a VCF file including 13,246,294 bi-allelic
SNPs. We filtered for SNPs with ≤ 50 % missing values
across the 40 lines (FST) and within germplasm pools
(π and TD). The combined VCF file was converted to
hapmap format with a customized Perl script, and π
and TD per gene were obtained with Variscan version
2 [85] with runmode “12”.
For gene-wise calculations based on the genotyped

panels of 136 elite lines and 38 European landraces (nor-
malized H, FST) or on whole-genome sequence data of
40 elite lines (π and TD), the genic region of the longest
protein-coding transcript, including 5 kb upstream, was
used and metrics were calculated if at least 5 SNPs were
available for analysis. For a separate analysis of exonic,
genic, 500 bp, and 5 kb upstream regions, FST was deter-
mined in case of at least 5 SNPs per region based on
whole-genome sequence data using vcftools v0.1.11 [86].
Two-sided Wilcoxon rank sum tests [87] were
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performed on gene-wise metrics to test for differences
between candidate genes and remaining genes within
pools.

Introgression library
To represent the Flint genome as introgression segments
in a Dent genetic background, a European Dent inbred
line was crossed with a European Flint inbred line,
followed by backcrossing, marker-assisted selection, and
several rounds of selfing [88]. The Dent parental line
originated from south-eastern Europe and exhibits a
high general combining ability for kernel yield. The Flint
parental line was selected for high general combining
ability for biomass yield and good performance in Cen-
tral European climates. The introgression library used in
the present study comprised 535 lines, with 97 lines car-
rying a single segment of the Flint parent. To estimate
the length of individual donor genome fragments, the
distance between markers on the respective donor gen-
ome fragment plus half the distance to the adjacent
marker flanking the donor genome fragment on either
side of the fragment was calculated. For the introgres-
sion lines, the two parental lines, and a check, male and
female flowering times were obtained from two field ex-
periments conducted in 2014 at the German trial loca-
tions Roggenstein (N 48°11′13.24″, E 11°19′50.86″,
517 m AMSL, average temperature in 2014: 9.8 °C) and
Freising (N 48°24′11.62″, E 11°43′21.99″, 480 m AMSL,
average temperature in 2014: 9.7 °C). Each experiment
was laid out as an α–lattice design with two replications,
except for parental lines and the check that were re-
peated three and five times, respectively. Male and fe-
male flowering time was recorded as days after sowing
until 50 % of plants per plot exhibited emerged anthers
and silks, respectively. Adjusted means for flowering
time were calculated using Plabstat [89]. The difference
in adjusted means between the 97 single-segment intro-
gression lines and the Dent parental line was tested at a
significance level of α = 0.05 and α = 0.05/97 to correct
for multiple testing. Adjusted means of flowering times
for seven lines carrying Flint haplotypes of Flint flower-
ing time candidates, nine lines carrying Flint haplotypes
of Dent flowering time candidates, and the 75 lines not
carrying a flowering time candidate gene were tested for
significant differences by calculating Student’s t-test.
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