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Abstract

Protein-protein interactions are integral to all biological processes in the cell. A full
understanding of the underlying mechanism promoting binding requires atomistic
high-resolution details of the three dimensional structures of complexes, which in
turn can further serve for pharmaceutical purposes. Computational protein-protein
docking can help to complement experimental methods to bridge the big gap
between the solved atomistic protein-protein complexes and the detected protein-
protein interactions. This thesis explores the capacity and efficiency of the Markov
chain Monte Carlo based methods in resolving the protein-protein docking problem.
Following the three well-known theories for protein interaction, 'Key and Lock’,
'induced fit' and 'conformational selection’, I have proposed accordingly docking
protocols for structural prediction of protein-protein complexes based on Monte
Carlo and advanced sampling Monte Carlo methods, which have been implemented
in the computational structural prediction software suite Rosetta and the docking
engine ATTRACT. The new methods allow efficient flexible protein-protein docking
and offer a wild range of applications to systematically generate realistic models of
protein-protein complexes. Following Bayesian inference approach, I have derived
an integrative docking solution based on the framework of Markov Chain Monte
Carlo sampling docking.






Zusammenfassung

Protein-Protein Wechselwirkungen spielen eine Schliisselrolle in allen biologischen
Prozessen der Zelle. Ein volles Verstandnis des zugrundeliegenden Mechanismus
erfordert atomistische und hochaufléosende Details der dreidimensionalen
Strukturen von Proteinkomplexen. Diese Strukturen koénnen wiederum fiir
pharmazeutische Zwecke verwendet werden. Rechnergestiitztes Protein-Protein
Docking kann dazu beitragen, experimentelle Methoden zur Uberbriickung der
grofden Liicke zwischen den registrierten atomistischen Protein-Protein-Komplexen
und den erkannten Protein-Protein-Wechselwirkungen zu erginzen. Diese Arbeit
untersucht die Kapazitat und Effizienz der Markov-Chain-Monte-Carlo basierten
Methoden bei der Losung des Protein-Protein-Docking-Problems. In Anlehnung an
die drei bekannten Theorien zu Protein-Protein-Interaktionen, dem Schliissel-
Schloss-Prinzip, der Induced-Fit-Theorie und der ,Conformational Selection®, habe
ich Docking-Methoden zur Strukturvorhersage von Protein-Protein-Komplexen
entwickelt, die auf dem Monte-Carlo-Verfahren basieren. Die Methoden wurden in
die Rosetta Molecular Modelling Software-Suite und das ATTRACT Docking-
Programm implementiert. Die neuen Methoden ermdglichen ein effizientes Docking
von flexible Protein-Protein Komplexen und bieten eine Vielzahl von Anwendungen,
um systematisch realistische Modelle von Protein-Protein-Komplexen zu generieren.
Zusatzlich habe ich, basierend auf dem Markov-Chain-Monte-Carlo-Verfahren, eine
integrative Docking-Methode mit Bayesschen Ansatz entwickelt. Die Methode ist
stabil und fehlertolerant.
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Chapter 1 Introduction

1.1 Protein interactions

Proteins are one of the large biomolecules, which is coded by DNA and translated by
mRNA on ribosomes in cell. Most proteins are composed of the 20 amino acids, all of
which contain the same backbone atoms, but differ from each other by their side-
chains. The specificity of protein structure and function is thus a consequence of the
different amino acid sequences.

Proteins are virtually involved in virtually all biological processes that taking place
within or between cells, ranging from enzyme catalysis and inhibition to signal
transduction and gene regulation. However, they rarely act in isolation, but rather in
close association with other biomolecules, including nucleus acids, sugars, lipids, as
well as other proteins. In fact, many biological processes are carried out by large
molecular machines whose action is coordinated through intricate regulatory
networks of transient protein interactions. Hence, it is the inter-relationship
between molecules, rather than the individual components, that will eventually
determine the behavior of a biological system [1]. Great efforts have thus devoted to
unveil molecular interactions, among which protein-protein interactions (PPIs)
takes a great proportion.

Genome-wide studies suggest that at least 65% of proteins in the cell work as part of
a complex. The number of proteins to constitute a complex typically between two
and four, with a few complexes with up to 200 members [2]. However up to date
(November 2016), solved complexes in Protein Data Bank [3] count no more than
5% of all deposited entries.

To fully understand the mechanism behind biological process and further serving
for pharmaceutical purposes and protein engineering, high resolution structural
information is extremely valuable [4,5]. X-ray crystallography and nuclear magnetic
resonance (NMR) spectroscopy are the classical methods for experimental
structural determination at atomic resolution. As the 'gold standard' for structural
analysis of biomolecules, X-ray crystallography has so far contributed over 89%
entries deposited in the PDB. Despite of some successes in solving complex
structures, including even some macromolecular assemblies such as ribosome [6-8],
RNA polymerase [9], the RNA exosome [10] and signal-recognition particle complex
[11], X-ray crystallography faces nevertheless great challenge when coming to
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complex structures. The limitation roots in its need of obtaining diffracting protein
crystals of sufficient size and purity. This is especially challenging for (weak,
encounter or transient) complexes and membrane proteins. NMR spectroscopy has
the advantage over X-ray crystallography of allowing the determination of atomic
resolution structures in solution with near-native conditions. It is very useful and
powerful to map protein-protein interactions even for large systems, and especially
to study dynamics in proteins and dynamics linked to protein complex
formation[12]. We will see more contributions from NMR in this regard in the
coming years.

tures 3
Experimen'Z Soy

Interactions modeled
Peptide-Mediated Model PN by homology

Interactions 6

’%M =

Domain-Domain %é- > Template /

Interactions E r
F & o '%’

Interactions predicted
by ab initio docking

Hybrid models of
macromolecular
assemblies

Macromolecular - &
Complexes

27
e
/ 4
Structures showing a
multiple conformations
for the same protein
/ \ ', 7
i
Macromolecular complex Experimentally identified PPI ~—— Predicted PPI

Current Opinion in Structural Biology

Figure 1.1. Building 3D interactomes from structures experimentally solved as well as modeled,
single proteins as well as interactions between them, and interactions experimentally detected or
predicted and modeled. This image is taken from [1].

While experimental bottlenecks or time/costing issue surrounding structure
determination for complexes at high resolution, computational modeling is urgently
needed to bridge the gap between the number of identified interactions and the
number of interactions for which the 3D structure is known. Information from high-
throughput interactome data sets may not be enough to give high-resolution
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structures and accordingly better reveal the underlying mechanism that promotes
binding, they can be nevertheless used to assist computational modeling to build the
complete picture of 3D interactome (Figure 1.1). Many information about protein
complexes can be obtained by different experimental methods. Yeast two hybrid
system (Y2H), Tandem Affinity Purification (TAP) as well as mass spectrometry are
capable of detecting if two proteins interact. Quantitative immunoblotting and mass
spectrometry can be applied to determine the stoichiometry and composition of a
complex. Cryo-electron microscopy maps and small-angle X-ray scattering (SAXS)
data embody the shape of the complex. In addition, there are also experimental
methods such as Forster resonance energy transfer (FRET) and cross-linking which
can measure distances. In terms of computational modeling methods studying
biomolecular interactions, homology modeling and protein docking work in the
level of relatively small scale, with relatively more. In the level of networks scale,
modeling suite such as Interactome3D, which integrate interaction data from the
main pathway repositories for structural annotation and modeling of protein-
protein interactions, is come to life [13].

Figure 1.2. The term of DOCKING is to predict the structure of the interaction complex from
individually known substitutes.

1.2 Protein-protein docking introduction

Computational protein docking describes any in silico methodology for combining
structural knowledge (coordinates) of individual protein components with general
knowledge about protein complexes (often in form of potential energy function) to
find the best "match" between the two molecules (Figure 1.2). The goal of
computational protein-protein docking is to understand and predict molecular
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recognition, both structurally, finding likely binding mode, and energetically,
predicting binding affinity. The first docking simulation was performed in 1978 by
Wodak and Janin [14]. Since then it has emerged with increasing interest from the
scientific community.

The most simple form of docking is bound docking, that is to reconstruct the
complex using the respective bound component from the native complex structure.
For application, unbound docking is however the target. That is to predict the
complex structure between the receptor and ligand from the unbound (free) form or
bound form resolved with another interaction partner. Docking prediction involves
decoy generation and selection of the near-native structures from the generated
decoys using energy function or sometimes filters. The success of a predictive
docking thus requires an efficient method that samples complex conformations
which ideally has sufficient number of decoys close to the native complex, and an
accurate energy function which scores the near-native conformations with
low/better energies [15].

In docking practice, additional biochemical information, such as binding sites, or
distance information from experimental data as well as evolutionary information,
are often applied.

1.3 Mechanism behind sampling strategy in docking

Protein-protein docking is commonly discussed according to the complexity it deals
with and divided into two main docking stages as shown in the green blocks in
Figure 1.3: first rigid-body docking in which internal coordinates are kept rigid, then
followed by refinement, which often allows movements of sidechain or backbone
and loop motions in selected region on selected decoys. In between and afterwards,
there could also be multiple filtering, scoring as well as clustering steps for
discriminating and selection. Along with the work flow, the number of decoys that
the docking program deals with typically decreases as illustrated by the inverted
triangle [16,17].

Advances in docking methods has often gone hand in hand with new insights into
the protein-protein binding mechanism. The strategy behind the docking method
often mirrors our understanding in the past of the recognition mechanism. In the
following the docking strategy will be discussed together with the model of the
mechanism behind it.
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final predictions

Figure 1.3. Docking work flow in most docking programs. Most docking programs utilize this two-
stage docking approach (green blocks), first rigid-body docking then followed by refinement on
selected decoys. In between, one or multiple filtering, scoring or clustering procedures can be
applied for structure selection (blue blocks).

1.3.1 Lock-and-key and rigid-body docking

The earliest textbook model for protein-protein binding, 'lock-and-key' model, was
first proposed in 1894 by Fischer [18]. In the 'lock-and-key' model, the
conformation of the free and bound proteins are assumed essentially the same
(Figure 1.4). This model has been the most influential model in the development of
protein docking algorithms. The rigid-body simplification is stemmed from this
model and has been employed in most docking programs. In rigid-body docking, the
space of putative docking geometries is sampled broadly, keeping the partner
structures rigid, which corresponds to six degrees of freedom, three translational
and three rotational ones. It serves for efficient exploration of the orientational
space. For a significant number of protein-protein complexes, especially those with
neither hinge-motions nor disorder transitions and where the conformational
changes are limited to the sidechains, rigid-body docking has worked reasonably
well.
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Figure 1.4. Key and lock model of protein-protein interaction, in which the two binding partners are
assumed to be rigid without internal conformational changes.

A Discrete Enumeration (systematic search)
e high

u:

T ] low

\

B Guided Search
high

Figure 1.5. 2D illustration of systematic search and guided search. The color represents the energy
level in the 2D conformational space. In the systematic search, the conformational space is
discretized and enumerated. As for the guided search, the conformational space is explored, starting
from random position and driven by the potential function.

The searching algorithm can be divided into two big categories: systematic search
and guided search. In the systematic search, it exhaustively enumerates the
discretized conformational space, which is illustrated in Figure 1.5 using a 2D space

for convenience. For protein-protein docking, the receptor is typically kept fixed.
For each discretized rotation angle, the ligand is moved with a certain step size
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along the axis between the center of mass of the two proteins. This process is then
repeated for all rotation angles. In contrast to the discretized systematic search, the
energy landscape revealed from guided search appears to be more continuous and
more smoothed (Figure 1.5). In guided search algorithms, it doe not explicitly
explore the whole conformational space, but rather it starts from one random
position and move to the next, which is guided by the energy function, and
eventually converge to local or global energy minima.

1.3.1.1 Systematic search

Correlation methods have been explored to accelerate the systematic search. SY
Huang has shown that for docking programs with fast sampling facilitated
systematic searching algorithms, at least 50% success rate can be achieved when
top-2000 structures are considered [19]. Fast Fourier transform (FFT) correlation
based programs such as FTDock [20], DOT [21,22], ZDOCK [23], MolFi t[24,25],
SDOCK [26], PIPER [27], F2DOCK [28] and Gramm-X [29], represent the biggest
class within this category. While the potential function and the mapping of the
potential to grids vary in those docking programs, the basic principle behind are the
same. FFT correlation was first in 1992 introduced into protein docking in the
group of Vakser by Katchalski- Katzir et al [24] and was further explored since then
[30]. We illustrate here the principle algorithm using the most basic shape
complementary scoring scheme. Both receptor and ligand are digitalized in a 3D
grid in Cartesian space with dimensions of N x N x N and described by two discrete
functions a and b respectively:

1 on the surface of the protein
Q;mn =1{p inside the molecule

0 outside the protein

1 on the surface of the protein
bymn =16 inside the molecule

0 outside the protein

and association score for a given displacement («, §,y):

N N N
CaBy = Z Z Z Amn " bl+a,m+ﬁ,n+y
n=1

where ], m, and n are the grid indices. Interior parameters are setp <« —1 and
0 < 6 < 1to discriminate overlapping regions. The correlation value reflects the



Chapter 1 Introduction

complementarity of the two binding partners. When molecule b penetrates molecule
a, multiplication of the negative p with positive § results in a negative value as a
penalty to the overall correlation value. In the algorithm in stead of calculating the
product of a;p,  * bi1am+pn+y at €ach grid, the score of c for each displacement

(a, B,y) can be completed in one go three FFT transform:
¢ = FFT Y(FFT(a)XFFT (b))

With the development of grid-based FFT correlation method in protein docking,
additional pairwise scoring terms are also considered, including electrostatic energy,
desolvation effects as well as knowledge-based potentials. They have been
implemented in some docking programs with a separate grid and combined
together with shape complementary scoring or as a filter afterwards; while there
are also groups that have used a single grid, with shape information stored in the
real part and pairwise potentials in the imaginary part as follows:

1+ ivwE, on the surface of the protein
Amn = p in side the molecule

0 + ivwE, outside the protein

and

1 —ivwE, on the surface of the protein
0 inside the molecule
0 — ivwE, outside the protein

bl,m,n =

In fact, FFT correlation can not only be applied in Cartesian space, but also can be
applied to accelerate the search in the spherical polar space, such as docking
program HEX [31,32] and FRODOCK [33] as well as the work by Padhorny D et al
[34].

In addition to FFT correlation based systematic positioning of the proteins on grids,
another systematic search method is geometric-hashing, the focus of which is
surface matching. The proteins in this case are described by surface descriptors
evolved from Connolly surface to capture the essential features of the surface. The
representing docking programs of this category include PatchDock [35], SymmDock
[35] and so on.
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Figure 1.6. Schematic comparison of the energy landscape with atomistic and coarse-grained
representation. The figure illustrates the effect of the smoothing of the energy landscape in a coarse-
grained model as compared to an atomistic model. The flattening enables efficient exploration of the
energy landscape in search for the global minima, while avoiding traps in the local minima. Ideally
coarse graining preserve the global minima as shown by the green line. But in practice it is more
often the case as shown in blue.

1.3.1.2 Guided search

Guided search, in which the energy is minimized, represents the second important
category for rigid-body docking stage. Within the guided search methods, the most
popular strategy is the shot gun approach as used in RosettaDock [36], ATTRACT
[37], Haddock [38] and ICM-DISCO [39], where many thousands of randomly
generated initial conformations are shortly optimized within the energy landscape
which could be composed from more sophisticated scoring functions. The
algorithms for energy optimization can be gradient based deterministic energy
minimization as used in ATTRACT and RosettaDock, molecular dynamics as in
Haddock, Monte Carlo simulation as in RosettaDock and ICM-Disco, or genetic
algorithm [40].

In the rigid-body docking stage of both systematic sampling and shot-gun guided
search, the philosophy behind is to pursue a broad even sampling in the hope of
covering near-native structures. A contrasting philosophy is Importance Sampling. It
falls also into the guided search category. Here more computer time is spent in the
low energy region and cumulates more conformations at the bottom of the energy
landscape. Importance Sampling in the form of replica exchange Monte Carlo (REMC()
has been studied to sample the rigid-body docking stage of RosettaDock [41], and
will be discussed in detail in the respective chapter.
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One major disadvantage of guided search is that it is more computationally
expensive than the accelerated systematic search due to the rather detailed energy
function. In ICM-DISCO and ATTRACT, grid potential is used to speed up the
calculation. Each energy term is pre-calculated and stored around the receptor at
each point of a grid. In between of the grids, the energy is interpolated. The error
caused by the interpolation increases when the two partner proteins get closer. A
denser grids is then applied in ATTRACT for the short distance range to counteract
this effect.

>

RosettaDock

centroid energy
A
o

0 5 15 25
RMSD
Figure 1.7. Centroid energy versus Ca-RMSD from bound docking on 1EMV from RosettaDock low-

resolution docking stage. The centroid energy function in RosettaDock prefers an alternative binding
mode with larger buried surface area even for bound docking on target 1IEMV.

Figure 1.8. Electrostatic surface potential (bound docking 1EMV) of native (A-D) and interchain_cen
preferred conformation (E-H) in all-atom representation. A) native complex with receptor in green
and ligand in red B) electrostatics map of the native complex C) electrostatics map of native ligand
interface D) electrostatics map of native receptor interface E) interchain_cen preferred conformation
after refinement F) electrostatics map G) electrostatics map of receptor interface H) electrostatics
map of ligand interface. The yellow lines in C, D, G and H indicate the respective interface regions,
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and number pairs (e.g. 1 in C and 19 in D) indicate corresponding contact regions. Relations of
viewing angle are given between panels where required.

Coarse graining is another option for speeding up the calculation and has been
applied in docking programs such as RosettaDock, ATTRACT, pyDockCG [42] as well
as scoring potential SIPPER [43]. Detailed reviews have been given by Ravikumar
KM et al [44] and Sebastian Kmiecik et al [45] and so on. Coarse grained models
group several atoms into a pseudo atom. Taking RosettaDock for example, all the
sidechain atoms are grouped into the so-called centroid pseudo atom, to reduce the
number of particles to be considered in pairwise potential calculations. While coarse
graining considerably reduces the complexity of the potential, the energy landscape
is much more smoothed comparing to that of the all-atom representation (Figure
1.6). Ideally, the overall feature and global minima preserves after coarse graining
as shown by the green curve in Figure 1.6. But this is seldom the case in practice.
Bound docking on 1EMV in Rosetta gives a perfect example. As shown in Figure 1.7
for bound docking on 1EMV with centroid representation in Rosetta, the near-native
conformations scores far worse than alternative binding regions with RMSD
between 10 and 17 A. Scrutinizing into the alternative binding region, we found that
they are featured with a bigger buried surface area, which is preferred by the energy
function with the coarse grained model, meanwhile contain many non-
complementary charged atoms as shown in Figure 1.8. While sampled directly with
all-atom representation and accordingly the all-atom energy function, bound
docking on 1EMV gives lowest energies in the near native region (Figure 1.9).
Further more, the near-native solutions rank 2nd by size after clustering. This
makes a dramatic contrast with the results in Figure 1.7 with centroid
representation, where the near native region got rarely visited.

Top 10 clusters sampled with atomistic model
on 1EMV bound docking

120 10
>

o

B

G 140 8
Q

0

£ | 6
£ 160

S

8 4
T -180

%

3 2
1

I_rmsd (A)

Figure 1.9. Atomistic energy versus I_rmsd of bound docking on 1EMV sampled directly with
atomistic representation. Representing decoys of top 10 clusters are labeled with colors. The clusters
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are ranked by size and the rank is indicated with the colorbar. Lowest energy appears among the
near-native decoys which ranks by size also very well (2nd) after clustering.

1.3.2 Induced-fit and docking refinement

The second model for protein-protein interaction is Koshland's 'induced-fit model'
[46]. In 'induced-fit model’, ligand binds to receptor to first form an encounter
complex, then trigger mutually conformational changes (Figure 1.10). The
conformational changes can be local or global, sidechains or backbone. Up to 70%
protein structures do not deviated more than 2 A between the bound and unbound
form [47]. The rigid-body docking stage has taken advantage of this fact to narrow
down the list of possible docking solutions. A full ab initio calculation is in practice
computationally prohibitive due to the huge number of degrees of freedom.
Flexibility is thus commonly represented in the refinement stage of the two stage
docking approaches in selected regions on selected decoys after elimination in the
previous rigid-body docking stage. Many docking programs, such as RosttaDock,
iATTRACT [48] and Haddock, use atomistic representation in the docking
refinement stage to allow the optimization of the sidechains and/or backbones in
the selected region (normally interface region), while other studies perform
refinement with a coarse-grained model [49]. In either case, refinement protocols
require that the starting configurations contain at least one structure that is already
fairly close to the native structure for a docking success. This is because, rather than
enlarging the structural diversity, refinement stage mainly serves to improve the
energetics of the docked candidates for discrimination. However, since initial
docking stages commonly use a simplified energy function, it is often misled and
does not necessarily produce sufficiently many near-native candidates for the
subsequent refinement stage, especially when there is an alternative binding site
with bigger buried surface [41,50].

Figure 1.10. Induced fit model of protein-protein interaction, which assumes that binding triggers
mutual conformational changes on both binding partners.
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In my work, rather than performing refinement on selected decoys from previous
docking stage (e.g. rigid-body docking stage), I have applied enhanced sampling
Monte Carlo directly for atomistic docking refinement from a random starting
position within a certain restricted rigid body space from the native position to
mimic the scenario in docking practice, that the binding site is often approximately
known from bioinformatics information or experiments [51].

1.3.3 Conformational selection and ensemble docking

An alternative hypothesis of the binding mechanism 'conformational selection’,
which can be traced back to 1960s, is getting more experimental evidence support
recently with the development of experimental techniques [52-55]. It postulates
that all protein conformations pre-exist, and the ligand selects the most favored
conformation to bind. Following binding the ensemble undergoes a population shift,
redistributing the conformational states. Recently, Csermely et al has extended the
conformational selection model to describe the general scenario, where both
selection- and adjustment-type steps follow each other [1,54]. Following this model
of molecular recognition, conformational flexibility can be represented implicitly by
ensembles of conformers taken from, for example, NMR structures, MD simulations
or any other conformational sampling method. The conformations can span various
degrees of flexibility, from small sidechain rearrangement to large-scale global
backbone motions [2,56]. Docking of the ensemble conformers one by one (cross
docking) results in a dramatic increase of the computing time with respect to the
size of the conformational ensembles and becomes prohibitively expensive for large
ensembles. Thus studies investigating the use of ensembles with cross docking of all
ensemble members have only been performed on relatively small benchmarks or
single cases, which have shown improvement over single conformation unbound
docking in terms of the number of generated near-native decoys [34,57,58]. The
representation of the receptor binding region by multiple conformations has been found
beneficial for the docking success also in the area of docking of drug molecule candidates
to protein binding sites [59-63]. In particular, it has been found that docking in
combination with stochastically switching between different receptor structures is both
computationally efficient and improves the accuracy of the docking results [60,61].
Monte Carlo type switching between receptor binding site conformations (ordered along
the structural similarity) during docking avoids the rapid increase of the computational
demand in case of docking ligands separately to each member of the ensemble [58]. The
stochastic search rapidly settles towards the regime of receptor binding site
conformations compatible with favorable binding of a ligand [60,61].
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In my study, I have followed this theory and applied replica exchange Monte Carlo to
perform ensemble docking. The docking ensemble space as well as the rigid-body
space are both explored by Monte Carlo sampling. For the ensemble space, a model
is suggested with a probability calculated based on the similarity to the current
model, and accepted according to the metropolis criteria. This will be described in
detail in respective chapter.

1.4 Scoring in Docking

Docking prediction involves two aspects: decoy generation (sampling) and selection
(scoring). The success of predictive docking requires both, that an efficient method
that samples sufficiently many near-native decoys and an accurate energy function
that ranks the near-native conformations with better scores. The goal of the scoring
is to discriminate between near native and non-near native decoys. Two criteria to
assess a scoring function are efficiency and selectivity. On one hand, the scoring
function should be fast enough to allow its application on a large number of
conformations. This justifies the commonly applied two stage docking strategy,
where rigid-body docking quickly identify putative binding region using relatively
simple energy function with affordable computer time, while the refinement stage
employ a much more sophisticated energy function on less decoys to evaluate more
details of the interaction. On the other hand, accurately discrimination between
near-native and non near-native conformations is however the most essential and
critical need.

Various scoring functions have been developed together with or independently from
sampling algorithms. They can be categorized into two groups: "integrated" and
"edge" functions based on if they are applied during or at the end of the sampling
procedures [3,64]. The difference is that the integrated scoring function will bias the
generated ensemble towards energy conformation within the energy landscape. To
simplify the method development, sampling and scoring are often decoupled as in
the case of "edge" functions. In this way, newly designed and developed scoring
functions can be applied on pre-generated and stored decoys. Different "edge"
functions can thus be easily evaluated and compared. This has indeed greatly
facilitated the development of scoring functions. One potential problem here is that
the training decoys may lead to bias of the scoring function. To promote the
development of scoring function, the organizers of CAPRI added a separate
challenge to test scoring methods, in which scorer groups re-rank all the uploaded
models. However, the published results of CAPRI 2009 (rounds 13-19) [4,5,65] and
CAPRI 2013 (rounds 20-27) [6-8,66] show that the same group gives substantially
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more quality predictions as predictor than as scorer. Based on these results, S. Vajda
et al suggested that decoupling sampling and scoring may lead to loss of accuracy
for docking predictions, and integration of the two-steps will generally lead to better
docking results [9,67]. In contrast to "edge" functions, scoring in "integrated"
function is integrated into the search stage. It filters emerging solutions and thus
forms part of the design of the solutions [10,64]. An example of the integrated
approach would be Monte Carlo method, which employs Metropolis Hastings
criteria to decide if to accept the newly suggested move based on the energies. The
representative docking program utilizing Monte Carlo method include RosettaDock,
ICM-DISCO etc.

Over the years, scoring function has gained great improvement. Most of current
scoring functions combine a few parameters, such as van der Waals and
electrostatic interactions, desolvation energy and hydrogen bonding, as well as
empirical statistical potentials from analyzing of the existing complex structures.
Which parameters to use in the scoring function strongly depends on the docking
scenario. In rigid-body ab initio docking, the program needs to sample the entire
rotational and translational space, resulting in a six-dimensional search. To keep the
method computationally feasible, a relatively simple energy function is typically
applied. From the very beginning of protein docking, shape complementarity has
been applied to evaluate the generated conformations. It has repeatedly affirmed its
important role in docking predictions [11,24,25,68,69]. Indeed, the 3D structures of
many protein complexes have revealed good shape complementarity in the interface
between receptor and ligand. Then with the development of docking method,
electrostatics have become a routine addition to shape complementarity [19,70],
such as in docking programs like FTDOCK [13,20], ZDOCK [1,23], RosettaDock
[14,36], ATTRACT [15,37], MolFIT [25,42-44], DOT [19,21], and HEX [24,31].
Meanwhile, most docking programs also consider solvation and desolvation effects,
which are normally incorporated in the scoring function in the form of an excluded
volume model of shape complementarity. Fernandez-Recio et al showed that
solvation energy is the most important component in the total binding energy. Using
accessible surface area based desolvation energy in the ICM scoring function has
improved dramatically the predictive results [30,71]. Besides, pyDock and ASPDock
[72] have been developed with great emphasize of desolvation energy [35,72,73].
Knowledge-based empirical potentials are also used in programs like ZDOCK, PIPER
[27,35], and RosettaDock.

Despite of all the advances in the scoring function [16,36,64,74], there is no scoring
function evaluated so far that can discriminate between near native and non-near
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native binding mode on all targets. It remains one of the great challenges that
hindering docking success. Meanwhile, scoring functions will encounter great new
challenges while more and more docking programs strive to include backbone
flexibility.

Apart from using the biophysical biochemical or empirical based scoring function to
discriminate between near native and non-near native structures, biological
information can also be applied to guide the docking process or filter out non-
physical conformations. Great success in certain targets in CAPRI test where prior-
knowledge about the interaction is available, indicates that with the help of some
biological information, it is straight-forward for many current algorithms to make
good docking predictions [16,37]. Ambiguous restraints [38] or specific information
of the contacting/non-contacting residues can both improve the success rate of
docking predictions. Useful biological information could be obtained from
experiments such as mutagenesis, chemical cross-linking, or phylogenetic data
[39,64]. In this thesis, a integrative docking solution derived from Bayesian
inference in the framework of Monte Carlo based docking will be given in Chapter 5.

1.5 Monte Carlo: a natural coupling of sampling and scoring

The task of quickly and accurately exploring large regions of the conformational
space in protein-protein docking remains to be a big challenge, especially for large
systems. Grid based FFT method and geometric hashing can quickly and efficiently
explore the entire rotational and translational space in ab initio docking, but limited
in combining certain prior information and including conformational flexibility.
Monte Carlo methods, which use random numbers to examine various problems
from a stochastic perspective, is however not constrained with the two problems.
Further more, it is also suitable for all kinds of potential functions, not restricted to
derivative ones as required for deterministic minimization algorithms.

In Monte Carlo simulation, comply with detailed balance, an unbiased random move
is suggested. The acceptance of the suggested move is decided by the Metropolis
criterion with the probability:

P = min(l,exp(—AE(x,x")/kT))

where AE (x, x") is the energy change from current state to the suggested one, and
kT denoting the inverse temperature, is the product of Boltzmann's constant k and
thermodynamic temperature T.
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1.5.1 Short randomized Monte Carlo sampling docking problem

Monte Carlo method is especially useful in simulating systems with many coupled
degrees of freedom, and has been applied in many scientific disciplines. For protein-
protein docking, Monte Carlo method has been applied in docking programs such as
RosettaDock, ICM-DISCO [39], FireDock [41,75] and ROTAFIT [47,76], for rigid-body
docking stage and/or docking refinement.

In RosettaDock [36,48], short Monte Carlo simulation (500 MC steps) is applied to
optimize the rigid-body orientations on many randomly generated initial
placements with centroid representation. After the low-resolution rigid-body
docking stage, the residues are restored on the retained structures with the
sidechains from the input unbound structure. The sidechain optimization is then
achieved by Monte Carlo and minimization of the rotamers, which are the sidechain
conformations that are found with a high propensity in the protein data bank
[49,77]. Meanwhile, the rigid-body orientation is simultaneously optimized with
Monte Carlo Minimization (MCM).

In ICM-DISCO [39,41,50], ligand is initially placed around the fixed receptor with an
average distance of 15 A between neighbors. Then the sampling of the rotational
and translational degrees of freedom of the ligand starting from the initial
placements is performed by a pseudo-Brownian Monte Carlo minimization. The
interaction energy considers van der Waals potential, electrostatic potential
corrected for the solvation effect, hydrogen-bonding potential and a hydrophobicity
potential, plus a atomic solvent-accessible surfaces based solvation energy added to
revaluate the docking solutions obtained from unbound subunits [39,51]. For
computational efficiency, the interaction energy was represented by grid potentials
and pre-calculated at each point of a grid. After the initial rigid-body docking stage,
retained structures after clustering are further refined allowing full flexibility of the
interface ligand sidechains using biased probability Monte Carlo for the
minimization in the side-chain torsion angles space [52-55,78]. The intramolecular
energy for the refinement is based on the same grid potentials as in the initial rigid-
body docking stage with increased truncated threshold for van der Waals potential.
Besides, internal energy accounting the flexibility of the ligand is added. For both
rigid-body stage and refinement, ICM-DISCO has used full-atomistic representation.

FireDock [75] refines the rigid-body docking results from PatchDock allowing
rearrangement of the interface sidechains and adjustment of the relative orientation
of the molecules. The flexibility of the sidechains is also modeled as in RosettaDock
by rotamers and optimized by integer linear programming based on Dunbrack
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rotamer library. Following the rearrangement of the sidechains, the rigid-body
orientation is refined by Monte Carlo minimization.

In the ab initio docking applications summarized above, relatively short Monte Carlo
simulation is applied in RosettaDock with coarse-grained representation featured
with more smoothed energy landscape, in ICM with carefully designed initial
placements. Each Monte Carlo routine starts from one conformation and after short
simulation, output at the end one structure as the prediction. In docking refinement
of RosettaDock, ICM-DISCO and FireDock, Monte Carlo adjusts the rigid-body
orientation after sidechain movement by Monte Carlo or other methods on random
selected sidechains based on the probability in Dunbrack rotamer library. The task
of docking refinement is minimal yet trivial adjustment on the primary predictions
from rigid-body docking stage with the goal of discrimination between near native
and non-near natives.

Most of the times, the docking refinement is done with full-atom representation as
in the three refinement procedures summarized above. The energy landscape in the
full-atom representation is generally characterized by many local minima that are
separated by free-energy barriers. For this kind of systems, Monte Carlo often
suffers from long impractical equilibrium time due to the suppression of tunneling
through these barriers. To overcome this problem, enhanced sampling method can
be combined with Monte Carlo. One of such method is parallel tempering Monte
Carlo, or replica exchange Monte Carlo. The idea of the algorithm is to simulate the
system with multi-copies (replicas) at different temperatures and by exchange
between different replicas to overcome the free-energy barriers in the energy
landscape. The high temperature replicas serves to sample broadly in the phase
space, whereas low temperature replicas having precise sampling in the local region
of energy minima. By exchange with the higher temperature replicas, low
temperature ones are prevented from being trapped in local minima.

S Lorenzen and Y Zhang have thus combined Monte Carlo with replica exchange in
ROTAFIT [76] to refine the rigid-body docking solutions from FFT-based docking
method ZDOCK. In this work, Monte Carlo is applied in combination with replica
exchange to be more efficient. For each replica 2500 composite Monte Carlo steps
are run: first unbiased translation and rotation with scaled magnitude such that the
displacement of the interface atoms is under control. Following the rigid-body move
conformations of two randomly selected sidechains respectively from the receptor
and ligand in the interface are randomly changed based on the probability in
Dunbrack rotamer library [79]. The acceptance of the composite move is evaluated
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after rigid-body move and sidechain move by the Metropolis criterion. Replica
exchange is attempted between neighboring replicas after each composite move. To
ensure a smooth refinement process, a smoothed van der Waals energy function is
gradually roughened to the standard Lennard-Jones potential.

Figure 1.11. The population of mass center of the ligand from lowest (green) and highest (yellow)
temperature replicas around the receptor in replica exchange Monte Carlo sampling low-resolution
docking stage of RosettaDock. The mass center is represented by sphere and the picture is the cross
section view. In the middle is the receptor shown in red with blue sphere indicates its mass center.

1.5.2 Long trajectory Monte Carlo for protein docking

In all the applications in the above section, including even ROTAFIT which has
though combined replica exchange, Monte Carlo mainly serves to search in the
space of local minima, with each of many trajectories starting from one single
structure and evolves with relatively short Monte Carlo steps to the end output
structure as one single prediction. Using the evolution of long trajectories of Monte
Carlo simulation, is a contrasting strategy for its application in protein-protein
docking. To this end, the snapshots (evolution) along the long trajectory after every
certain Monte Carlo steps are taken as predictions for final analysis. In this way, the
population of the generated decoys is more physically meaningful. When unbiased
sampling guaranteed, the generated ensemble is canonical ensemble with
Boltzmann distribution. Following this idea, long trajectory Monte Carlo was applied
in combination with replica exchange to sample the low-resolution docking stage of
RosettaDock (Chapter 2) [41]. Attribute to the relatively smooth energy landscape
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of the coarse-grained representation, replica exchange Monte Carlo has achieved
thorough sampling for the rigid-body global docking. In the highest temperature, the
interaction between the ligand and the receptor is weak. With the receptor fixed, the
ligand is restricted with a distance threshold from diffusing away from the receptor,
such that the ligand can freely move within the restricted space and populates
relatively even. In the lowest temperature, the interaction between the ligand and
receptor is strong. The ligands are thus much closer to the receptor with denser
population in several low energy regions (Figure 1.11).

The general idea of parallel tempering is not limited to exchange or swap between
different temperatures. Apart from using temperature as the variable parameter for
replicas, other parameters which can help to minimize the barriers in the energy
landscape have also been considered. For example, Fukunishi et al. developed a
Hamiltonian replica exchange method for biomolecular systems, in which they scale
the interaction energy for different replicas [80]. Besides, multi-dimensional replica
exchange has also been proposed. Thus in our work for high-resolution docking
refinement in Rosetta, two dimensional replica exchange Monte Carlo has been
employed, with temperature as the parameter for one dimension and scaling of the
van der Waals potential as parameter for the second dimension (Chapter 3). With
full-atom representation in high-resolution docking refinement, the energy
landscape is too rugged. Even a small perturbation can produce huge change on the
system's energy. This makes the exchange extremely difficult, requiring not only big
number of replicas but also very well designed spacing between the replicas. Well-
tempered ensemble introduced by M. Bonomi and M. Parrinello is the biased
ensemble sampled by well-tempered metadynamics when the energy is used as the
collective variable [81]. One great feature of well-tempered ensemble is
approximately the same average energy as the canonical ensemble but much larger
fluctuations. This can extremely facilitate the exchange in parallel tempering. Hence,
to avoid the complex designing for the settings of the replicas, well-tempered-
ensemble technique is combined upon parallel tempering in our work. This has
greatly reduced the required number of replicas and improved the round-trip time
and thus improved the diffusion efficiency of the system. Monte Carlo is here used to
sample the rigid-body degrees of freedom as well as the rotamers of randomly
selected sidechains each time based the probability in Dunbrack rotamer library.
We have one rigid body mover, and three sidechain movers for perturbing Chi angle,
perturbing rotamer and jumping to a random rotamer. The four movers have for
each a pre-defined sampling weight. During the simulation, one of the four movers
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are randomly selected based on the pre-defined weight and applied for each Monte

Carlo step.
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Figure 1.12. ATTRACT ensemble docking on unbound target 1J2] with minimization and REMC
sampling method. We projected the mass centers of sampled ligands on the unit sphere around the
mass center of the receptor, and plotted the population of the mass center of the ligand on this unit
sphere in the first row. In the second row, the lowest energy of the decoys from the respective grid is
plotted.

In both replica exchange Monte Carlo sampling low-resolution docking stage of
RosettaDock and enhanced Monte Carlo sampling docking refinement in Rosetta,
Monte Carlo simulation always starts from one single conformation, and each
replica runs on a separate processor. The position of the starting conformation has
shown to be irrelevant with the population of the sampled ensemble for the
simulation length we have used. One disadvantage is that the waiting time is bit of
too long. In ATTRACT, de Vries has implemented the energy function based on
potential grids, which has yielded tremendous speedup. To make full use of this grid
potential, we have thus made a compromise between long trajectory Monte Carlo
and the many randomized starting points Monte Carlo (short and only the end
output as prediction), and implemented the new protocol in docking program
ATTRACT (Chapter 4). We have used several hundred starting positions. All
replicas start from the same several hundred initial placements. Replica exchange is
attempted between the decoys started originally from the same position and done
for all simultaneously. Monte Carlo simulation is used to sample in the conformer
ensemble docking space simultaneously or independently with rigid-body
orientation space based on a pre-defined probability. In Figure 1.12, we plotted the
ensemble docking results using ATTRACT with minimization and REMC sampling.
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From the figure of population and respective lowest energy from REMC sampling
ensemble docking, we can see that the compromise and the on-the-fly replica
exchange scheme although do not give strict canonical ensemble, the lowest
energies still reflects the most populated region. In the results of minimization, the
low energy regions are similar as in REMC, but the population of the sampled
ligands is irrelevant with the low energy regions.
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resolution docking stage of RosettaDock®

2.1 Introduction

Protein-protein interactions are one of the fundamental molecular mechanisms of
life, and to investigate them it is important to know the atomic structures of the
formed complexes. Since many proteins have multiple interaction partners, the
number of protein complexes is far larger than the number of individually folded
proteins. At the same time, the number of known complex structures is far lower
than that of monomeric proteins, illustrating the experimental challenges involved
in solving the structure of protein complexes [1,82,83].

Computational protein docking describes any in silico methodology for combining
structural knowledge of individual protein components with general knowledge
about protein complexes (often in form of a potential energy function) and, if
available, sparse data of the complex [64,84-86]. Popular sources of sparse data
include, cryo-EM, SAXS, NMR chemical shift perturbations or chemical crosslinking
[1,82,83,87,88].

Currently, many popular docking programs employ a two-stage approach: First,
conformational space is sampled broadly, keeping partner structures rigid. Second,
structures are refined in one or multiple steps [16,74,89-91]. To account for
possible side-chain or loop motion, many docking methods employ a low-resolution
model during their initial rigid-body search to create the required level of softness
without adding extra degrees of freedom [76,90,92]. Whereas some methods use
solely a low-resolution representation, others refine structures in an all-atom
representation, often allowing also side-chain and loop motion [23,36-38]. While the
all-atom representation allows a more exact modeling of the energetics of protein-
protein interfaces, it also leads to a rugged energy landscape that is hard to sample
[93]. As a result, the high-resolution stage generally serves only to discriminate
conformations, not to generate them.

The initial (low-resolution) structural exploration stage of common docking
programs such as Haddock [38], Attract [37], ICM-DISCO [39] or RosettaDock [36] is
driven by a shotgun approach of short energy minimizations started from many
thousands of randomly generated initial conformations. Another large class of

§ The work presented in this chapter has been published [41]
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programs such as DOT [21], ZDOCK [23], 3D-DOCK [94], and Gramm-X [29] employ
grid-based fast Fourier transform (FFT) search of rigid-body degrees of freedom to
find the low-energy conformations [74,91]. Recently, geometric hashing has been
applied to quickly identify possible binding modes [95].

The philosophy behind the low-resolution sampling in most docking programs, and
in particular those that employ shotgun sampling, is to guarantee an even sampling
in the low-resolution stage. A contrasting philosophy is Importance Sampling, which
is constructed to spend more computer time in regions of low energy than in those
with high energy. It is often argued that using Importance Sampling, too much
computer time is spent in a small number of low-energy regions of a potentially
misleading low-resolution energy function, while a thorough exploration of
conformational space is neglected. Temperature Replica Exchange, however, might
overcome the lack of exploration. Thus we address the following questions in this
study: First, does Importance Sampling in the form of Replica Exchange have a
benefit over shotgun sampling for the low-resolution stage of protein-protein
docking despite the potentially misleading low-energy function. Second, whether
the highly skewed populations of conformations generated by Importance Sampling
are advantageous or disadvantageous for the subsequent refinement stage.

We thus introduced ReplicaDock, a replica exchange Metropolis-Monte Carlo
method [96,97] for the low-resolution stage of protein-protein docking, which has
been implemented within the RosettaDock program. We chose temperature levels
such that the lowest temperature reflects a bound state and the highest temperature
an unbound state within the RosettaDock centroid energy function. Within the
unbound state, the binding partners are free to sample the whole surface. In the
bound state, the binding partners stick together and explore local conformational
space to find the lowest energy conformation accessible within the current binding
mode [98].

Of course protein-binding partners would freely diffuse in the unbound state,
rendering collision events rather rare. To counter-act this physical but undesired
behavior we introduced an artificial restraint energy. This encounter constraint is a
flat-bottom restraint energy that acts on the distance of the center of mass of both
binding partners. As it penalizes only those conformations that are too far away to
touch, the encounter constraint has no effect on the bound conformational ensemble
whatsoever. However, by constricting the available conformational space volume, it
increases the local concentration of the binding partners and enhances their
collision rate dramatically.
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As prediction of protein complex structures is still an unsolved problem [65],
protein-protein docking programs are most useful in combination with sparse
experimental data [38,85]. Nevertheless, here, we tested ReplicaDock without any
additional experimental data to fully focus on the sampling strategy and exclude any
other possible interference factors. Performance is compared to shotgun sampling,
and enumerative sampling (represented by ZDOCK) foremost via the ability to
sample the lowest-energy structures after refinement and secondly by the ability to
sample near-native conformations. Furthermore, we analyzed how well accurate
predictions of native conformations are possible after all-atom refinement with
Rosetta.

The manuscript is organized as follows. At first, we analyze the shotgun sampling
employed currently in RosettaDock [36] and demonstrate that it strongly depends
on the initial random placement and little on the energy function (Section 2.3.1).
Subsequently, ReplicaDock sampling is introduced and it is showcased at hand of
target 1ppf (Section 2.3.2). In Section 2.3.3, we show that near-native sampling
below 4A I rms to the native conformation is a necessary condition to achieve a
positive effect on structural accuracy in subsequent refinement. Thus, we analyze
the frequency of "hits" over a benchmark of 30 proteins for shotgun and
ReplicaDock sampling (Section 2.3.4), and compare to ZDOCK (Section 2.3.5). Next,
we consider all-atom refinement and analyze the sampling of distinct energy
landscape features and the recovery of the native energy basins (Section 2.3.6).
Finally, we analyze the capability to predict accurate complex structures from the
refined shotgun, ReplicaDock and ZDOCK ensembles, respectively, by employing
commonly employed metrics of prediction quality (Section 2.3.7). As discussed
above, Importance Sampling might suffer from a misleading low-resolution energy
function, and indeed we find some targets in the benchmark where this is the case.
We discuss some of the shortcomings of the low-resolution energy function of
RosettaDock that lead to alternative non-native binding modes in Section 2.3.8.

2.2 Methods
2.2.1 Energy Function

2.2.1.1 Low-resolution energy

The low-resolution stage uses the interchain_cen energy function which has been
previously introduced for RosettaDock [36,77]. This energy function consists of a
term to reward contacting residues (interchain_contact), a penalty term for
overlapping residues (interchain_vdw), a docking-specific statistical residue
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environment (interchain_env) and residue-residue pair-wise potentials
(interchain_pair) with weights 2.0, 1.0, 1.0 and 1.0, respectively.

The interchain_contact component of the low-resolution energy function in Rosetta
has originally been capped at -10 Rosetta Energy Units (REU) [36], which
corresponds to 40 contacting residues within a distance cutoff of 64 between
centroid-interaction centers of the two binding partners. The centroid pseudo atom
is the interaction center representing all sidechain atoms in Rosetta’s low-resolution
representation. The cap avoids over-stabilization of spurious binding interfaces
with large contact area, but also has the disadvantage that perturbations away from
an optimal conformation with a large contact area are no longer penalized. Here, we
obtained optimal performance by combining conformations sampled with and
without energy capping. Thus, if not otherwise noted, for Shotgun (Section 2.2.3)
and ReplicaDock (Section 2.2.4) always half of the generated conformations in low-
resolution stage are sampled with capping at -10 REU. For ReplicaDock this is
realized by running 2 of 4 trajectories with the capped energy function.

2.2.1.2 All-atom energy

The high-resolution stage uses the standard all-atom energy for RosettaDock as
given by the weight-set docking [77]. For final analysis an interface energy is
computed by subtracting the all-atom energy of non-interacting partners from the
all-atom energy of the interacting binding partners. To compute the energy of non-
interacting partners the two binding partners are moved far away from each other
while keeping all internal degrees of freedom fixed.

2.2.2 Generating initial conformations

To generate initial conformations we randomly perturb the orientation of both
binding partners. To this end, we uniformly draw rotation matrices from the
rotation group SO(3) by generating Euler angles «,f,y (in z,y,z notation) with
o,y drawn uniformly from the interval [-7,7] and setting 8 =cos™' z with z drawn

uniformly from interval [—1,1]

Subsequently, the binding partners are slid into contact using steps of 1A by first
increasing the distance between the binding partners until the energy term
interchain_vdw < 0.1, and then again decreasing until interchain_vdw >0.1.
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2.2.3 Shotgun Protocol (low-resolution stage)

Shotgun sampling in RosettaDock’s low-resolution stage proceeds in two steps.
First, a random initial conformation is generated as described in the preceding
section. Second, a Monte-Carlo (MC) sampling procedure with 500 steps is applied
to optimize the low-resolution energy. At stepia proposed conformation x, is
accepted according to the Metropolis Criterion
Paceerr (X 1x;) = min(1,exp(B[V (x;) - V(x.)])) where V(x) denotes the potential energy
of conformation x, and f the inverse temperature. The inverse temperature is kept
constant at 8=0.8"kcal' -mol and the step-sizes are adjusted every 50 steps to
maintain a 50% acceptance rate. The initial step-sizes are drawn from normal
distributions with mean value of 0.7A (translation along all the three axes) and 5°
(rotation around the axis of protein centers and tilt off this axis in a randomly-

chosen direction) [36]. At the end, the lowest energy conformation observed during
the 500 MC-steps is recorded as final output.

By presetting the number of generated decoys (-nstruct) we adjusted the computer
time expense to match ReplicaDock’s expense. We have generated about 120,000
decoys with shotgun sampling for each target. Decoys with interchain_contact >10
are discarded and the top 40,000 in energy are selected for analysis or refinement.
(Appendix Method S1: protocol_capture/rosetta_dock/)

2.2.4 ReplicaDock (alternative low-resolution stage)

As an alternative to the shotgun sampling described above we applied here a replica

exchange procedure [96,97]. Inverse temperatures are set to, 8, of 2”'kcal™ -mol,

37'kcal' -moland 5 'kcal ' -mol, and swaps are attempted every 1,000 Monte-Carlo
steps [99,100]. 4 trajectories with 3 temperature levels are run for 5x10° Monte-
Carlo steps, and snapshots are stored every 1,000 steps. In total, 60,000 decoys are
generated for each target with this protocol. For further analysis or refinement, the
highest temperature level (inverse temperature 5 'kcal'-mol) and decoys with
interchain_cen >10 were excluded. Initial configurations of trajectories were
generated as described in Section 2.2.2. All targets of the benchmark are sampled
with the same three temperature levels. The choice of temperature levels is
discussed in Results Section 2.3.2. For all targets good exchange rates (~25%) are
achieved and no further target dependent optimization is required.

To avoid unbounded diffusion of the two binding partners away from each other, we
generated an encounter constraint. This constraint is realized as flat-bottom distance
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restraint between the C,-atoms closest to the center of mass of the respective

binding partners. These center atoms are denoted in the following as C;" (i) with

i =1,2. The constraint does not penalize the conformations unless they are further
than d

and s, denotes the furthest distance of a surface C,-atoms of binding partner i to

=s, +5, + g apart, where gdenotes the chosen gap parameter (here 8A),

lim

its center C.;"(i) . For distances d>d,,, the harmonic penalty energy

lim
V.. =k(d-d, ) is applied. (Appendix Method S2:

enc

protocol_capture/replica_dock/centroid)

2.2.5 ZDOCK

To prepare for ZDOCK, protons are removed and the individual binding partners are
marked using mark_sur from ZDOCK's toolbox. 54,000 decoys are generated with
ZDOCK3.0.2 for each target and top 36,000 decoys by ZDOCK score are evaluated
and refined (Section 2.2.6).

2.2.6 Refinement (high-resolution stage)

The high-resolution stage of RosettaDock described by Gray et al. [36] was applied
without alteration and used to refine conformations generated with shotgun, ZDOCK
or ReplicaDock. (Appendix Method S3: protocol_capture/rosetta_dock/refine and
Method S4: protocol_capture/replica_dock/refine)

2.2.7 Construction of Benchmark

30 Targets were selected from the Dockground Benchmark [47], for which the x-ray
resolution of the bound complex is no worse than 2.5A and the x-ray resolution of
the individual unbound partner is no worse than 2.2A. Since the current method
does not allow backbone motion, we restricted the benchmark to targets where the

monomer C,-RMSD between bound and unbound structure is <1.5A for both

binding partners (Appendix Table S1).

2.2.8 Implementation of ReplicaDock in Rosetta3

We implemented replica exchange within the general Metropolis-Hastings
framework of the Rosetta3 software package. The replica-exchange module is
accessible through the RosettaScripts [101] interface and can be combined with any
conformational moves that are implemented as children of the
ThermodynamicMover class. To ensure detailed balance, either Movers have to yield
unbiased conformational perturbations or they have to provide the proposal density
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of the perturbation through implementation of an abstract virtual function in the
ThermodynamicMover interface. For docking we have provided the
ThermodynamicRigidBodyPerturbNoCenterMover =~ which  performs  unbiased
rotational and translational moves. Random translations drawn from Gaussian
distribution are performed along all three axes. The axis-angle notation is used to
represent rotations. A rotation axis is generated using

a=2m-x
B=cos'(1-2-y)
V =(sin B-sina,sin B - cosar,cos )

where x,y are randomly drawn from uniform distribution. This is sufficient to

guarantee unbiased rotational sampling, and a distribution for the positive rotation
angle can be chosen freely. In order to be consistent in rotational step sizes with the
parameterization of the original RigidBodyPerturbNoCenterMover, we first draw
Euler angles from a Gaussian distribution with specified magnitude, and then
transform the resulting rotation into axis-angle representation. Second, we combine
the rotation axis obtained using our unbiased sampling method, with the rotation
angle that corresponds to the Gaussian Euler angles. The resulting distribution of
rotation angles is shown for different parameters in Appendix Figure S1.

Additionally, we have implemented the DockSetupMover to select the rigid-body
degrees of freedom to be sampled (via FoldTree) and implemented the parse_my_tag
method of the existing DockinglInitialPerturbationMover [77] to render it accessible
through the RosettaScripts interface.

2.2.9 Metrics for structural accuracy and docking performance

The metrics interface RMSD (I_rms), ligand RMSD (L_rms), fraction of native
contacts (fna:) and fraction of non-native contacts (fnon-nat) are defined as in CAPRI
[102] and are calculated against the bound complex.

For the low-resolution ensemble we consider a decoy with [_rms < 2.5A as 'hit'.

2.2.10 Sampling the native energy basin

Additionally, we were interested in the native energy basin accessible by the applied
fixed-backbone, flexible-sidechain docking protocol from the unbound monomeric
starting structures. Accordingly, we started 1000 trajectories of refinement (Section
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2.2.6) from the unbound monomers superimposed onto the bound complex to
generate RelaxedNative ensembles. (Appendix Method S5:
protocol_capture/relax_native)

To assess how well a protocol samples the native energy basin, we count
conformations that overlap with the RelaxedNative ensembles as follows. A lower
left region in the interface energy vs. [_.rms plots relative to the RelaxedNative
ensemble was defined by the 50%-tile interface energy of RelaxedNatives as upper
confinement and by the 75%-tile [_.rms of the RelaxedNatives as the right
confinement (Appendix Figure S2). All conformations in this region are counted.

We define 4 categories based on the number of conformations n that overlap with
the RelaxedNative ensemble: none (0), magic points (0 <n <5), sporadic (5<n <20
), dense (20 < n).

2.2.11 Clustering after all-atom refinement

The top-2000 conformations by interface energy after all-atom refinement were
clustered using a cutoff of 5.0A of C,-atoms RMSD. Clusters are ranked by size and

are represented by the decoy with lowest interface energy within the cluster.

Ranking clusters by interface energy resulted in slightly worse performance when
evaluated using CAPRI criteria (Appendix Table S2).

2.2.12 Automated Setup

The automated setup tools available with the CS-Rosetta toolbox
(www.csrosetta.org) have been used to generate all production runs of the

benchmark. We advise users to install this toolbox from protocol capture/ 2012/
replica_docking/ csrosetta3 or from the website. If installed from the website, the
docking plugins _docking_base, rosetta_dock and replica_dock have to be copied into
the flag_library/ methods folder from /protocol capture/ 2012/ replica_docking/
csrosetta3/ flag_library/ methods. All methods presented in this work are
implemented as plugins in csrosetta3/flag_library and can be accessed through the -
method option of the setup_xxx commands. Example usage of these tools for docking
can be found in the protocol capture section (Appendix Figure S3, Appendix Method
S7: Automated Setup) and general documentation is provided at
www.csrosetta.org/manual.
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Figure 2.1. Detailed analysis of individual docking stages on bound target 1sq2. A) Interface RMSD
(ILrms) before and after the Monte-Carlo optimization in the low-resolution stage of RosettaDock’s
shotgun sampling, B-C) I_rms before and after all-atom refinement for shotgun and ReplicaDock
sampled ensembles, respectively. The colorbar indicates the density of data points at given position
of the scatter plot, A-C) use a same colorbar range. The insets show the distribution of differences
between I_rms after and before the respective sampling stage has been applied (negative values
reflect an improvement in I_rms).

2.2.13 Computational Cost

For shotgun sampling and ReplicaDock the same amount of computer time was
used. The amount of computer time required depends on the size of the binding
partners and ranges from 66 core-hours to 900 core-hours on 2.6 GHz AMD Opteron
Processors. ZDOCK requires significantly less computer time, with 1.25-7.25 core-
hours on the same machine. We refined 40,000, 36,000 and ~36,000 conformations
for shotgun, ZDOCK and ReplicaDock, respectively. Refinement requires between
14-120 core-seconds per conformation, again depending strongly on the protein
sizes.

2.3 Results

2.3.1 Shotgun sampling is dominated by initial random placement

In this section we address the question how conformational space is explored in the
shotgun approach of RosettaDock. Shotgun sampling consists of a random initial
placement followed by a short energy optimization procedure using 500 steps of
Monte Carlo sampling with adjusted step-sizes and constant inverse temperature of

B =0.8"kcal" - mol (Methods).

The short Monte-Carlo sampling explores only a small region of conformational
space around the respective starting position, which is reflected by a strong
correlation between I_rms to the native complex structure before and after the
Monte Carlo optimization (Figure 2.1A). Thus, the generated ensemble of structures
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is highly biased by the initial starting structures, rather than by the low-resolution
energy (Figure 2.2C+G; Appendix Figure S4C+G).
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Figure 2.2. Detailed analysis of shotgun and ReplicaDock sampling on target 1ppf. A) energy
distribution of shotgun sampling generated low-resolution decoys. B) energy distribution of
conformations sampled by ReplicaDock at respective inverse temperatures. C-F) Population of
sampled conformations in spherical coordinates. Partner A is fixed at the center and the position of
Partner B with respect to an idealized spherical surface around Partner A is recorded. The native
structure is labeled as white dot (arrow in C). G-J) Conformations are assigned to grid-cells as in C-F,
but shown is the lowest energy of all conformations assigned to the respective grid cell. The same
color-scale is used for each plot of a row, and the colorbars are attached to the rightmost panel.

Subsequently, the decoys of the low-resolution phase are refined using an all-atom
model and allowing side-chain flexibility on top of the rigid body motion. The energy
landscape in this phase is very rugged and the applied refinement protocol is not
very explorative. Indeed, the [_rms of low-resolution input structures and all-atom
refined structures are also strongly correlated (Figure 2.1B). Thus, a necessary
requirement for the prediction of the native complex structure is that the initial

random placement already generates sufficiently many near-native conformations.

2.3.2 Sampling with ReplicaDock generates energy-biased populations

The previous section showed that the relative populations of conformations in the
shotgun ensemble are dominated by the initial perturbation and do not reflect the
low-resolution energy landscape. Nevertheless, differences in energy are apparent
and the native structure is found in one of the low-energy basins (Figure 2.2G).
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We argued that Importance Sampling might generate ensembles of better quality
with more near-native conformations that are better suited for continuation in the
high-resolution refinement stage. Accordingly, we employ unbiased rigid body
moves and replica exchange Monte-Carlo (REXMC). The temperature levels are
chosen such that the lowest and highest temperatures reflect the bound and
unbound state, respectively.

To achieve efficient exchange rates between replica’s, the energy distribution at any
given temperature level has to overlap with the energy distributions of neighboring
temperature levels. Generally, in applications of replica exchange to biomolecular
systems this can only be achieved by employing a large number of temperature
levels combined with careful optimization for each individual system [103-105].
Here, however, only the six rigid body degrees of freedom are sampled rendering
energy distributions rather broad, such that only a small number of temperature
levels is required [80]. In an initial survey, simulations on bound target 1sq2 were

carried out with inverse temperatures, 8 , 0.6 'kcal'-mol , 0.8 'kcal'-mol ,
1"'kcal' -mol , 1.27'kcal” -mol , 1.5 'kcal’-mol , 27'kcal’-mol , 2.5 'kcal'-mol ,
5'kcal" -mol and 10~'kcal™ -mol (Section 2.2.3, Appendix Figure S5). We found that
the lowest temperature levels lead to sharp energy distributions centered at
relatively low energies. Inspection of the corresponding conformations reveals
predominantly large number of contacts consistent with bound conformations.
Another peak in the energy distribution is found at the higher temperature levels,
and inspection of the corresponding conformations shows that binding partners
have little or no contact. Inverse temperatures between 2 'kcal'-mol and
5'kcal" -mol yield broad distributions that connect the low-energies of bound
conformations with the sharp energy-peak of unbound conformations. In our initial
tests, this temperature range turned out to be most suitable to broadly sample
different binding modes, and we chose the inverse temperatures (2 'kcal”-mol,
37'kcal" -mol and 5 'kcal " -mol) for the final protocol. This choice yields consistent
results across the full range of benchmark cases in terms of energy distributions
(Appendix Figure S6) and exchange rates around 25% between replica’s with little
variation between targets (Appendix Table S3).

Replica Exchange with inverse temperatures 2 'kcal'-mol , 3 'kcal'-mol and

5'kcal" -mol is show-cased at the example of target 1ppf in Figure 2.2. Indeed,
ReplicaDock achieves good overlap in the energy distributions (Figure 2.2B) and
frequent exchanges (Appendix Figure S7). Obviously, at high temperature the
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unbound (non-contacting) conformations are more populated, whereas at low
temperatures bound (contacting) conformations are more populated. Thus,
thermodynamically speaking, the high-temperature state reflects the unbound state,
whereas the low-temperature state reflects the bound state, and the replica
exchange scheme achieves frequent exchange between both.

Independent trajectories started from different random conformations converge to
the same populations (Appendix Figure S8) demonstrating that convergence is
achieved within the simulation time. Accordingly, all generated trajectories can be
combined to improve statistics (Figure 2.2D-F). As expected from Importance
Sampling, areas of high population in the ReplicaDock ensemble coincide with the
low-energy regions in the conformational energy landscape (Figure 2.2H-]), which is
in stark contrast to the shotgun ensemble.

Surprisingly, with the lowest temperature set to §=2"'kcal'-mol, ReplicaDock
achieved significantly lower energies than shotgun sampling with temperatures set
to B=0.8"kcal' -mol. This demonstrates that significantly more than 500 Monte-

Carlo steps, as employed in the shotgun protocol, are required to consistently
equilibrate at the chosen temperature.

2.3.3 Only near-native conformations are pulled into the native energy funnel in the
refinement stage

Refinement of the ReplicaDock ensemble results in a dramatically different behavior
than refinement of the corresponding shotgun ensemble (Figure 2.1B+C). When
conformations below I_rms 3A are refined, they are likely to be pulled into the
native energy funnel, resulting in I_rms between 0 and 1A (Figure 2.1B+C). Decoys
further than 44 do not systematically improve their I_rms in refinement.

Since the shotgun centroid ensemble has a very low number of conformations with
I.rms <3A refinement is less beneficial for shotgun than for ReplicaDock
ensembles. However, for ReplicaDock decoys, some refinement trajectories also
seem to move away from the near-native regions. This seems to be caused by
clashes after switching to the high-resolution representation (data not shown). As
discussed later (Section 2.3.8), the centroid energy is dominated by interchain_cen
which may cause some overly compact conformations.
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Figure 2.3. Fraction of hits in low-resolution docking. Conformation with I_rms < 2.54 to the bound
complex are considered as a hit (Section 2.2.9). Blue, green and red represent the results of shotgun
sampling, ZDOCK and ReplicaDock, respectively.

2.3.4 ReplicaDock efficiently samples near native conformations

In the previous section, we showed dense sampling of near native conformations
during the low-resolution phase is a necessary condition for identifying the native
energy basin in the refinement phase. In the following, we analyze how successful
the shotgun approach and ReplicaDock sample near-native conformations in the
low-resolution phase on a benchmark of 30 protein-protein complexes (Methods),
where the docking partners are given as PDB-structures of the unbound proteins.

We applied ReplicaDock with inverse temperatures, 8, 2 'kcal" -mol, 3 'kcal " - mol

and 5 'kcal” -mol for low-resolution sampling. For ReplicaDock, 4 trajectories with

5x10° MC-steps were run using different amounts of computer time depending on
the target size. The same amount of computer time per target was given to shotgun
sampling by adjusting the number of generated decoys (-nstruct), accordingly.

As shown in Figure 2.3, ReplicaDock generates significantly higher fractions of near-
native decoys for nearly all targets than shotgun sampling. In three cases (1a2k,
1v7p, and 2a42) ReplicaDock did not generate any near-native decoys. Scrutinizing
the targets in detail, we find that for 1a2k a few residues on the terminus of the
receptor stick into the binding pocket and cause clashes between backbone atoms in
the superimposed structures. Similarly, in complex structure 1v7p and 2a42 loops

35



Chapter 2 Replica Exchange Improves Sampling in Low-resolution Docking Stage of
RosettaDock

in the interface area deviate substantially from the position they occupy in the
unbound monomer conformation. Without these backbone changes crucial side-
chains cannot be packed without clashes in the interface, causing the binding
partners being pushed apart. In these cases shotgun sampling also produced only a
small fraction of near-native decoys. Obviously, these problems cannot be overcome
with rigid-body docking, and thus explain the bad performance of the methods.

Additionally, if we impose further energy cut-offs and only keep the low-20k, low-5k
or low-2k of conformations (Appendix Figure S9), we find that a) for an increasing
number of targets no near-native conformations are retained, and b) that the
fraction of near-native decoys become more similar between shotgun and
ReplicaDock sampling. This shows that ranking by low-resolution energy is
problematic and only generous filters should be applied before refinement.

In summary, ReplicaDock yields a dramatic improvement of near-native sampling
for most targets. Some targets, however, are not improved or get slightly worse, and
aggressive energy-cuts have a negative impact. Possible reason for these failures of
the low-resolution energy function will be discussed further in Section 2.3.8.

2.3.5 Comparison to ZDOCK

As shown above, ReplicaDock yields ensembles with a higher fraction of near-native
decoys than RosettaDock’s shotgun sampling method. Another large class of docking
programs uses enumerative sampling on a translational and rotational grid. Here,
we run ZDOCK 3.0 as a representative of these programs. ZDOCK has been shown to
be one of the most successful docking programs [106-108].

As shown in Figure 2.3, the performance of ZDOCK and ReplicaDock is comparable.
For most targets both methods yield fractions of near-native decoys between 10~
and 107*. Moreover, both methods fail in some targets: 2a42 and 2a5t for ZDOCK,
and 1laZk, 1v7p and 2a42 for ReplicaDock. However, one should mention that
ZDOCK is more efficient due to its FFT based sampling of translational degrees of

freedom and requires only a small fraction (~1%) of the computational expense
(Methods).

2.3.6 All-atom refinement of ReplicaDock ensembles

As shown above, ReplicaDock and ZDOCK yield ensembles with a higher fraction of
near-native decoys than shotgun sampling. To analyze whether these improvements
also have a positive impact on the all-atom refinement stage of the docking protocol,
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we refined the shotgun, ZDOCK and ReplicaDock ensembles for all targets in the
benchmark. For ReplicaDock and shotgun sampling we have made sure that
ReplicaDock use always equal or slightly less overall computer time compared to
the shotgun based approach. In any case the computational expense for refinement
of any conformation, whether generated by ZDOCK, ReplicaDock or shotgun
sampling is approximately the same.
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Figure 2.4. Interface RMSD vs. Interface Energy after refinement on target 1ppf and 1mlc. A) and C)
refinement of shotgun sampling generated ensembles, B) and D) refinement of ReplicaDock
generated ensembles. The red dots represent the RelaxedNative ensembles (Results).

Next we want to test the respective sampling strategies for their ability to detect the
native energy basin of the all-atom energy function after refinement. To show the
position and form of the native energy funnel, we also generated RelaxedNative
ensembles (Methods) by starting multiple trajectories of refinement from unbound
monomers superimposed onto the bound complex.

We first introduce the typical differences between refined shotgun and ReplicaDock
ensembles at the example of target 1ppf and 1mlc. As shown in Figure 2.4A, the
refined shotgun ensemble of target 1ppf (blue) is higher in energy than the
RelaxedNative ensemble (red). Only 3-4 isolated conformations reach significantly
lower energies. The ReplicaDock ensemble, on the contrary, shows three distinct
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energy funnels that are well sampled (Figure 2.4B). One of the funnels coincides in
form and position with the funnel formed by the RelaxedNative structures,
demonstrating that the native energy basin has been found and is well sampled. But
unfortunately it is neither the lowest nor the most pronounced energy funnel,
rendering discrimination of native from non-native decoys challenging. Apparently,
the Rosetta all-atom energy function features at least three well-resolved energy
funnels for this target complex, which is confirmed by finding corresponding
clusters that are well populated (data not shown). All three of these funnels remain
poorly sampled with shotgun sampling. For target 1mlc the RelaxedNative
conformations have higher energies than the shotgun or ReplicaDock ensembles
(Figure 2.4C+D). This points to deficiencies of the energy function. However, also for
1mlc shotgun sampling produces only sporadic sampling of low energies, whereas
ReplicaDock detects distinct funnels in the energy landscape.

The main observations for ReplicaDock for targets 1ppf and 1mlc are a) that much
lower energies are sampled, b) that distinct energy funnels are sampled densely,
and c) that for 1ppf the native energy funnel is sampled densely. Next, we ask
whether similar differences in behavior between shotgun and ReplicaDock are
observable for all 30 targets. Indeed, equivalent scatter plots of all targets (Figure
2.5) show similar differences between shotgun and ReplicaDock as already
observed for targets 1ppf and 1mlc. To quantify, we computed histograms of the
lowest energies sampled per target by the respective approaches (shotgun, ZDOCK,
ReplicaDock and RelaxedNative). Whether we focus on the lowest 0.1%, 1% or 5%
of decoys, energies of shotgun ensembles are higher for all targets, and even the
RelaxedNative ensembles often do not reach energies as low as ReplicaDock (Figure
2.6). Energies of refined ZDOCK conformations are in-between those of ReplicaDock
and shotgun. These results demonstrate that the conformations in the centroid
ReplicaDock ensemble are well poised to reach low interface energies in the
subsequent all-atom refinement.

For target 1ppf and 1mlc, ReplicaDock detected funnels in the energy landscape that
were not revealed by shotgun ensembles. The same impression is reached from a
comparison of the sampling methods on all targets (Figure 2.5). Refined ZDOCK
ensembles are more comparable with refined ReplicaDock ensembles than shotgun
ensembles, but also show slightly less distinct energy funnels overall (Appendix
Figure S10).
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Figure 2.5. Interface RMSD vs. Interface Energy after refinement for all the 30 unbound docking
targets. The red dots represent the RelaxedNative ensembles(Results). The interface RMSD is shown
on the x-axis, the interface energy on the y-axis. The same energy range is used for displaying both,
shotgun sampling (blue) and ReplicaDock (black), results of each target, respectively. The vertical
gray lines correspond to I_rms of 5.0 A, and the two horizontal gray lines correspond to interface
energy -4 and -8 Rosetta Energy Units.
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We would like to quantify the performance of the two sampling strategies in
detecting funnels in the energy landscape. However, a priori it is impossible to tell
how many and which funnels should be detected by an optimal sampling strategy.
The only funnel whose existence is known a priori is the funnel formed by the
RelaxedNative ensemble (red). We thus restrict ourselves to ask whether overlap
with the RelaxedNative ensemble is achieved. Model selection is often based on
clustering, and it has been shown that cluster size is an important criterion for
ranking that it is often found to be more reliable than energies [109]. Thus a
relatively high population is crucial for the confident selection of a binding mode.
Accordingly, we discriminate four cases (Methods): a) dense, the native funnel is
densely sampled (1ppf; ReplicaDock) b) sporadic, the native funnel is sampled
sporadically (1ppe; shotgun or 1a2y; ReplicaDock) c¢) magic points, individual decoy
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structures coincide with the native funnel (1fgj; shotgun) and d) none, no decoy
structures fall within the native funnel (2hle; shotgun).

Table 2.2. Summary of structure prediction accuracy in unbound docking.
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summ | 3%/2%** TH/QF* [ H** 4k [QHH [ HHH

ary

Clusters are ranked by size and represented by the lowest interface energy decoy. In column 'CQ’
(CAPRI Quality),

'0" indicates that none of the top 10 models was of accetable quality,

" and "**' indicates that at least one of the top 10 models is of acceptable, medium or high
quality, respectively (Section 2.3.7).

Columns 'L_rms’, 'l_rms’, 'foa:" and 'faon-nat’ record the respective information of the best model within
these top 10 models.

1 CQ refers to CAPRI quality

The individual classifications for shotgun, ZDOCK and ReplicaDock are shown in
Table 2.1. In summary, we found 2 densely sampled native funnels for shotgun but
22 and 19 for ZDOCK and ReplicaDock, respectively. No funnel is found for 8 targets

in shotgun ensembles, and for 2 targets in ZDOCK or ReplicaDock ensembles. For 13
targets, ReplicaDock improves the category by at least two steps, and for 11 targets
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by one step. ReplicaDock and ZDOCK dramatically improves the ability to detect
existing funnels in the energy landscape compared to the shotgun approach.
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Figure 2.7. The centroid energy function prefers an alternative binding modes for the bound
docking target 1emv. A-B) shotgun and ReplicaDock sample the low-resolution docking stage with
'capped’ centroid energy function. C-D) shotgun and ReplicaDock sample the low-resolution docking
stage with centroid energy function with no cap. The structure indicated by the red circle will be
shown in Figure 2.8.

2.3.7 Performance in structure prediction / ranking

In previous sections we established that ZDOCK and ReplicaDock dramatically
improve sampling in the initial docking stage compared to shotgun sampling, and
refined ensembles of ReplicaDock reveal many more distinct funnel like features in
the high-resolution energy landscape. However, we also found that the improved
probing of the high-resolution energy landscape reveals many non-native energy
funnels with lower energies than the native energy. Thus, it is not clear whether the
improved sampling also leads to improved structure prediction in RosettaDock for
unbound docking with relatively rigid targets as they were selected for our
benchmark (Methods).

To address this question, we clustered refined ensembles and ranked clusters by
size. From the ten largest clusters we selected the lowest interface energy model
and evaluated using CAPRI criteria. As customary in CAPRI assessment we report
metrics for the best of the ten models (Table 2.2). As a summary, ZDOCK and
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ReplicaDock performed both better than shotgun in structure prediction, but ZDOCK
displayed the overall best performance. In CAPRI, 0, 1, 2 or 3 stars are awarded for
incorrect, acceptable, medium and high quality models [102]. Here, ZDOCK,
ReplicaDock and shotgun generate acceptable or better models for 14, 8 and 5
targets, respectively. Indeed, the consistent appearance of non-native energy
funnels in ReplicaDock ensembles obviously impedes concise selection of the native
funnel despite its dense sampling.

Figure 2.8. Electrostatic surface potential of native (A-D) and interchain_cen preferred conformation
(E-H) in all-atom representation. A) native complex with receptor in green and ligand in red B)
electrostatics map of the native complex C) electrostatics map of native ligand interface D)
electrostatics map of native receptor interface E) interchain_cen preferred conformation after
refinement F) electrostatics map G) electrostatics map of receptor interface H) electrostatics map of
ligand interface. The yellow lines in C, D, G and H indicate the respective interface regions, and
number pairs (e.g. 1 in C and 1' in D) indicate corresponding contact regions. Relations of viewing
angle are given between panels where required.

2.3.8 Targets with insufficient near-native sampling

As shown in Section 2.3.4, for some targets none or only a few near-native decoys
are sampled by both approaches. We found that in these cases the centroid energy
function fails to stabilize the native conformation and/or over-stabilizes non-native
conformations (Figure 2.7). In this section, we explore possible reasons for these
failures of the low-resolution energy function.

The low-resolution energies are dominated by the interchain_contact term, which
awards large contact surfaces (Appendix Figure S11). Indeed, all over-stabilized
alternative binding modes that we found have significantly larger contact surfaces
compared to the native complex (Figure 2.8). For example, 1emv features a spurious

binding mode with significantly larger buried surface area of 1926.39A? than its
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native state 962.19A? (Figure 2.8). Buried surface was calculated from the low-
resolution models using the POPSCOMP sever [110,111]. Performing additional
docking runs starting from the bound monomers we ruled out the possibility, that
lack of backbone flexibility prohibits full stabilization of the native conformation .

A qualitative comparison of the electrostatic potentials at the native and alternative
binding interfaces reveals a possible energetic counter-weight to the dramatic
difference in buried surface area. Whereas the native state binding mode consists of
surface patches of complementary charges, the alternative binding mode would
superpose surface patches of equal charge. A more quantitative analysis is
necessary, but this observation suggests that the electrostatic interactions are not
captured sufficiently well by the empirical interchain_pair and interchain_env
potential terms.

2.4 Conclusions

In this study, we introduced ReplicaDock, which uses temperature replica exchange
to switch between bound and unbound thermodynamic states, and benchmarked its
performance for sampling the low-resolution stage of protein-protein docking in
RosettaDock.

For most targets tested in our benchmark, ReplicaDock reached significantly lower
energies and generates drastically higher fraction of near-native decoys than
shotgun sampling. After refinement, ReplicaDock-generated decoys reach lower
interface energies and reveal funnel-like features of the energy landscape that are
hardly visible when shotgun sampling is applied. The new funnel-like features seem
to reflect distinct binding modes. Most importantly, the native energy funnels are
often exactly matched in shape and position by ReplicaDock.

Enumerative search of rigid body degrees of freedom as carried out by ZDOCK 3.0
yields similar results as ReplicaDock. It also yields a higher fraction of near-native
decoys and lower energies after refinement with Rosetta when compared to
shotgun sampling. But ZDOCK does not reveal quite as many distinct funnels in the
high-resolution Rosetta energy landscape as ReplicaDock. This is an advantage
when the goal is to predict complex structures with the correct energy function.
However, to improve methods further, it is important to have sampling methods
that can identify all low-energy regions. We expect that this and other
improvements in sampling of the Rosetta energy landscape [112,113] will help to
iteratively improve the energy function until non-native conformations will no
longer obtain spuriously low energies.
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As expected, Importance Sampling, here in the form of replica exchange Monte
Carlo, is more susceptible to spurious low energy regions than the shotgun
approach. However, our results also show that this disadvantage is far outweighed
by the much improved quality of final ensembles. Moreover, the improved sampling
of the new method will allow to thoroughly probe the docking energy landscape,
and thus to improve energy functions of both low- and high-resolution stage.

Computationally, the original shotgun approach has the advantage that it runs in an
embarrassingly parallel fashion and thus can utilize more computer power in the
same period of time than ReplicaDock. Indeed, the ReplicaDock trajectories
generated here, required 5h-72h of computing on current hardware (using 12
processors), whereas the shotgun sampling can in principle be carried out in a few
hours, if thousands of processors are used in parallel. ZDOCK uses an FFT based
search of the translational degrees of freedom, rendering it computationally
efficient. Only about 1-7 core-hours are required in total, which is <1% of the
computational expense for shotgun or ReplicaDock sampling. Additionally, ZDOCK’s
search could in principle be re-implemented to support an embarrassingly parallel
scheme, too. The FFT based search, however, requires grid-based energy functions,
and thus is more challenging or even limiting in the possibilities to model
interaction energies and to incorporate experimental data.

Despite of the drastic improvement of ReplicaDock to sample low energy structures
and to recover near-native basins, there are still a few cases in which ReplicaDock
samples very few or even no near-native conformations in the low-resolution stage
and thus fails to recover near-native basins after refinement. In these cases,
sampling is led astray by alternative binding modes with dramatically increased
buried surface area. As it might be difficult or even impossible to ever balance out
different contributions to the binding energies, especially at low-resolution and
without better treatment of electrostatics (Figure 2.8), it seems advisable to develop
energy functions that are globally flat but locally discriminative, in the sense that
well contacting conformations are stabilized regardless their overall buried surface
area, whereas miss-aligned conformations with bad shape complementarity are dis-
favored. Unfortunately, this is not achieved by simply capping the energy function at
a certain cutoff, as this quick fix removes local differences, too. Experimental data, or
a higher-resolution energy function, can then be used to discriminate native from
non-native conformations.

In this study we benchmarked the performance of replica exchange sampling in
RosettaDock. RosettaDock performs a rigid-body minimization followed by all-atom
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refinement like many other docking programs. The developed method and the
conclusions derived from the presented benchmark should thus transfer well to
other programs.

2.5 My contribution to this project

My contribution in this work include carrying out all the experiments and analysis,
implementing part of the ReplicaDock protocol into Rosetta, implementing part of
the automated setup tool for benchmarking into CS-Rosetta toolbox, and
participating in the paper writing.
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Chapter 3 Application of Enhanced Sampling Monte Carlo
Methods for High-Resolution Protein-Protein Docking in Rosetta®

3.1 Introduction

Protein-protein interactions are integral to many mechanisms of cellular activities,
ranging from enzyme catalysis and inhibition to signal transduction and gene
regulation. Atomic-level structural knowledge is essential to understand the
function of protein-protein complexes in biological processes. However,
experimental structure determination of protein-protein complexes is often difficult
and for many interactions the corresponding complex structures are lacking
[82,114]. Computational protein-protein docking methods can provide structural
models of protein-protein interactions where experimental data is absent, of low-
resolution or too sparse. Besides providing valuable structural biology information,
high-resolution protein-protein docking can also help to explain binding affinities
and specificities, the nature of the binding free energy funnel and effects of
mutations. Furthermore, these techniques are essential for computational protein-
protein interface design of the design of non-natural complexes [82,114-119]

Docking programs often employ a two-stage protocol [91,120]. First, the space of
putative docking geometries is sampled broadly, keeping the partner structures
rigid, which corresponds to six degrees of freedom. Second, structures are refined in
one or multiple steps, typically employing partner structures at atomic resolution
allowing for conformational changes of side chains and possibly also of the protein
main chain. For the rigid-body stage, the application of grid-based fast Fourier
transformation [24] or geometric hashing [69] can accelerate the search [91,120].
Alternatively, the search can also be performed efficiently at reduced resolution
using a coarse-grained model of the protein structures [36,37]. Both, at the rigid-
body search stage or during refinement, Monte Carlo (MC) methods can be very
helpful [38,39,41,76,121].

For high-resolution refinement, most protocols require a starting configuration that
is already fairly close to the native structure. The likely reason for this strong
dependence on the starting structure is the energy landscape’s ruggedness, which
frustrates the sampling and renders the global energy minimum hard to reach [122].
Accordingly, the rationale behind typical two stage docking refinement protocols is

§ The work presented in this chapter has been published [51]
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that the initial docking predictions is likely to generate at least one structure close to
the native. A justification of this assumption is given by the general hypothesis that
the native conformation coincides with the global energy minimum at the bottom of
a broad basin in a rugged energy landscape [123,124]. However, since initial
docking stages often use a simplified energy function, the initial docking stage is
routinely misled and does not actually produce sufficiently many near-native
candidates for the subsequent refinement stage, especially when there is an
alternative binding site with larger buried surface [41].

Focus of this work is to improve the sampling for high-resolution docking based on
the MC approach. In the MC method, random translational and rotational moves or
conformational changes of the partner structures are applied on the configuration in
a step-wise manner using the Metropolis criterion for acceptance of a move.
Advantages of the MC method are the generation of a physically relevant canonical
ensemble of docking configurations, use of arbitrary energy functions that can
contain discontinuities and for the possibility to include various levels of structural
flexibility. However, an exhaustive high-resolution sampling of the conformational
space with the MC method can be computationally demanding. In general, the
docking success of MC docking is limited by the sampling of putative complex
geometries and by the accuracy of the energy function used for scoring predicted
complexes.

Parallel tempering or replica exchange techniques promise to overcome these
challenges and have received wide-spread interest in recent years [96,97,125,126].
The general idea of parallel tempering is to simulate the system with M replicas at
different temperatures and to frequently exchange configurations between
neighboring replicas. The high temperature replicas sample broadly, whereas the
low-temperature replicas allow precise exploration of deep energy minima. Due to
the frequent exchanges between the (hot) broad sampling regime and the (cold)
annealing regime, configurations are less likely to get trapped in local minima. A
generalization of temperature replica exchange is to vary the Hamiltonian (H-REMC()
among replicas [80], which allows, for instance, to blend between a smoothed van
der Waals potential and a realistically hard formulation to allow overcoming of
sampling barriers in molecular dynamics simulation [127,128]. For Rosetta,
previous studies also showed that softening the Lennard-Jones repulsive term is
beneficial and better suited for side-chain modeling and prediction [129,130]. Of
course, it is possible to combine variation of temperature and Hamiltonian in multi-
dimensional replica exchange approaches [131,132]. A bottleneck in using replica
exchange is that to cover the same parameter range (temperature, or smoothness)
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the number of replicas required increases quickly with the number of degrees of
freedom sampled. This is due to the fact, that to achieve efficient exchange between
replicas, a substantial overlap between sampled energy levels of neighboring
replicas is required [133,134].

Metadynamics is another popular enhanced sampling method, in which sampling is
facilitated by a history-dependent biasing potential. It is constructed as the sum of
Gaussian functions deposited along the trajectory in the collective variable space
[135,136]. Choosing energy as collective variable gives rise to the so-called well-
tempered ensemble (WTE) with much larger fluctuations in the sampled energies
than the canonical ensemble [81]. This property of the WTE can be exploited to
overcome the major bottleneck of temperature replica exchange discussed above.
Since, the overlap of the energy distribution between neighboring replicas controls
the exchange efficiency, using WTE drastically reduces the number of replicas
required [81,137].

In the present study we have compared the efficiency of a standard MC protocol for
high resolution protein-protein docking using RosettaDock and various extensions
based on advanced sampling techniques. In particular, we tested four different
protocols, standard Monte Carlo (MC), Temperature Replica Exchange Monte Carlo
(REMC), well-tempered ensemble temperature Replica Exchange Monte Carlo
(WTE-REMC), and well-tempered ensemble two dimensional Hamiltonian Replica
Exchange Monte Carlo (WTE-H-REMC). The approaches were systematically
evaluated on protein-protein complexes using unbound partner structures and
starting in each case from the same starting placements. Overall best performance
was achieved with the WTE-H-REMC method at the same computational cost
compared to the alternative protocols.

3.2 Methods

3.2.1 Energy scoring function and starting structure generation

The standard all-atom energy function for RosettaDock as given by the weight-set
docking [77] was used in all docking protocols. The docking energy function consists
of van der Waals attractive and repulsive interactions, an implicit solvation term,
hydrogen-bonding energies, a statistical residue-residue pairwise interaction term,
a rotamer probability term and a pairwise electrostatic energy term [5,121]. For
each target, the different docking simulation protocols were started from the same
initial protein partner arrangements. The start geometries were based on unbound
partner structures and one partner was initially separated relative to the position in
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the complex in a random direction by 15 A and a random rotation by 60° relative to
the bound geometry. Only geometries without steric overlap between partners were
accepted. The ligand RMSD (L_rmsd, root mean square deviation of the mobile
protein after best superposition of the receptor protein onto native complex
structure) from the respective bound complex for all the targets was on average
~18 A with slight variation depending on the shape and size of the binding partners
(Figure 3.1). The initial placement corresponds to a scenario where the binding
region is approximately known.

Superimposed . Restricting the Sampling
Starting Geometr .
Unbound Structure g ¥ pace in Rigid Body DO

Best Prediction

~

maximum
Translation: 20A
Rotation: 90°

Translation: 15A
Rotation: 60°

with respect to initial
placement

Figure 3.1. Docking refinement conditions. Each docking starting geometry was generated by an
initial random translation of one unbound partner from the geometry in the complex by 154 and
random rotation of 60° (compare green displaced and grey cartoon representations). During the
docking search translation and rotation of one partner with respect to the other was restricted
relative to the starting geometry by 204 and 90° (indicated by red circle), respectively.

3.2.2 Restricting the sampling space in rigid body degrees of freedom

For rigid body moves, random translations drawn from Gaussian distribution are
performed along all three axes, and the axis-angle notation is used to represent
rotations [41]. In order to perform a local search in the vicinity of the starting
geometry, the sampling space in the rigid body degrees of freedom was restricted
with respect to the initial input conformation by a maximum translation of 204 and
maximum rotation of 90° (this exceeds the maximum displacement of the starting
structure from the bound configuration, see previous paragraph and illustration in
Figure 3.1). To avoid dissociation of the two binding partners, we also applied an
encounter constraint, which acts on the distance between the center of mass of the
two binding partners and only penalizes the sampled geometries if the two binding
partners are too far apart [41].

3.2.3 General Settings

We have combined enhanced sampling techniques with Monte Carlo (MC) method
to sample protein-protein docking with atomistic representation, and tested four
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protocols within Rosetta including standard MC, Temperature Replica Exchange
Monte Carlo (REMC), well-tempered ensemble temperature Replica Exchange
Monte Carlo (WTE-REMC), and well-tempered ensemble 2-dimensional Hamiltonian
Replica Exchange Monte Carlo (WTE-H-REMC). In those docking approaches, rigid
body displacements and side-chain optimization are accomplished by the rigid body
mover UnbiasedRigidBodyPerturbNoCenterMover, and sidechain movers including
JumpRotamerSidechainMover, PerturbRotamerSidechainMover and
PerturbChiSidechainMover. Those movers are applied under the control of the
Metropolis-Hastings framework. For each move, the MetropolisHastingsMover
randomly applies one out of the four movers based on their sampling weights.
Mover step size for  UnbiasedRigidBodyPerturbNoCenterMover  and
PerturbChiSidechainMover are drawn from random Gaussian distributions. In the
protocols with replica exchange, the magnitude for mover step size and sampling
weight were modulated according to the replica level during initialization such that
in the lower levels more frequent side-chain moves and fewer small rigid body
moves were applied and in the higher levels less frequent side-chain moves and
larger rigid-body moves. The magnitude of the step size and sampling weight were,
however, kept fixed along the simulation in each replica. All the settings for the
reference replica were made exactly the same as used in the standard MC protocol,
and we denote these settings as reference settings. If not indicated otherwise, for all
the protocols and on each target 2x10® MC steps were employed. Snapshots are
taken and stored every 1,000 steps. In the REMC protocols exchanges were
attempted every 1,000 MC steps.

3.2.4 Monte Carlo and Asynchronous Parallel Tempering protocol

For the standard MC docking protocol, 25 trajectories are run with temperature set
to 0.15. At the end, about 25 x 2,000 sampled structures were collected for each
target. The step size of translation and rotation for rigid-body moves are drawn
from normal distributions with small mean value of 0.1A and 1°. The sampling
weights  for = UnbiasedRigidBodyPerturbNocenter, = JumpRotamerSidechain,
PerturbRotamerSidechain and PerturbChiSidechain are set to 0.5, 4, 6 and 10,
respectively.

For the parallel tempering replica exchange (REMC) protocol, 13 temperature levels
were drawn from geometric progressions ranging from 0.15 (reference) to 0.31.
Two trajectories with the 13 replicas are run for each target. Exchanges were
attempted between neighbor replicas every 1,000 steps. For all targets, good
exchange rates (between 25% and 69% with median value 49%) are achieved and
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no further target dependent optimization was required. In replica exchange, it is
common that the speed of each replica is not exactly the same. To avoid that the
faster replica wait for the slower partner, we used an asynchronous exchange
scheme. That is the faster replicas can perform more steps instead of waiting for its
partner to reach the pre-defined exchange stride. Finally, the simulation will finish
as soon as the slowest replica has reached the required step number.

3.2.5 Well-Tempered Parallel Tempering and Hamiltonian replica exchange protocol

We applied the well-tempered ensemble (WTE) technique with parallel tempering
replica exchange Monte Carlo using a value of 5 for the tunable factor y and reduced
the temperature levels from 13 to 5 with the same range. The bin size for well-
tempered ensemble technique to collect the history-dependent bias energy is set to
two units of Rosetta docking energy. The resulting exchange rates are between 20%
and 55% with median value 37%. For the WTE-H-REMC protocol we took advantage
of the splitting of the van der Waals interactions into attractive and repulsive
components in RosettaDock. It is represented with a modified Lennard-Jones 6-12
potential which includes a linear extrapolation in the repulsive part below the
threshold of 0.60;;, where g;; is the sum of the atomic radii of atomsiandj. The
atomic radii and energy well depth are taken from the CHARMM19 parameter set
[36,121,138], and we denote this as "hard-rep". For the standard "soft-rep" in
Rosetta, the atomic radii were either held fixed or scaled by a factor of 1.07
(typically for non-polar atoms) from the hard-rep radii, and the "switch point" for
the linear extrapolation was selected empirically [129]. In the WTE-H-REMC
protocol, we applied a 2-dimensional replica exchange, with the temperature as
variable in the first dimension, and used the scaling factor for the soft Lennard-Jones
repulsive term as the second dimension. The scaling factor allows linear
interpolation of atomic radii and switch point between the hard-rep and soft-rep
potentials (see above). In the Hamiltonian scaling dimension, we used five levels:
hard_rep, soft 50%, soft 55%, soft 60% and soft 65%. In the temperature dimension
five temperatures between 0.15 and 0.3 were used (in arbitrary units depending on
the scaling of the Rosetta score), yielding a total of 25 replicas. Exchange between
neighboring replicas is attempted every 1,000 steps along the two dimensions. Well
tempered ensemble technique was applied again to improve the exchange rate with
tunable factor y=5. The bin size for well-tempered ensemble technique to collect the
history-dependent bias energy is set to two units of the Rosetta docking energy.
Note, that each replica accumulated separate history-dependent biasing potentials
depending on the individual sampling history. Replica exchange rate ranged
between 14% and 56% in the temperature dimension with median value 32%. In
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the scaling dimension, it increased along the shifting from soft to hard repulsive
interaction, and ranged between 12% and 99% with median value 39%.

3.2.6 Implementation in Rosetta

Previously, we implemented replica exchange within the general Metropolis-
Hastings framework of the Rosetta3 software package [41]. The replica exchange
module is accessible through the RosettaScripts interface and can be combined with
any conformational moves that are implemented as children of the
ThermodynamicMover class. For rigid-body docking refinement, we have applied a
rigid-body mover UnbiasedRigidBodyPerturbNoCenterMover, and sidechain movers
including JumpRotamerSidechainMover, PerturbRotamerSidechainMover and
PerturbChiSidechainMover. For detailed balance,
UnbiasedRigidBodyPerturbNoCenterMover performs unbiased rotational and
translational perturbations in the restricted space as described in the previous
section, and sidechain movers provide the proposal density of the perturbation
through implementation of the abstract virtual function
compute_proposal_density() in the ThermodynamicMover interface. The acceptance
of a move is decided by the Metropolis criterion [99].

Side-chain motion is applied on one randomly selected residue (among all the
residues and all the residue types but Proline) each time. Continuous sampling of
side chain chi angles are used instead of fixed rotamers in all the three sidechain
movers. The angles are chosen according to the Dunbrack rotamer library 2010
probabilities [139]. PerturbChiSidechainMover does a perturbation on the side
chain chi angles, either uniformly distributed or Gaussian distributed with a given
magnitude. For JumpRotamerSidechainMover and PerturbRotamerSidechainMover,
a rotamer is first selected randomly or selected such that it has the highest
probability of proposing the old chi angles according to the Dunbrack rotamer
library probabilities, respectively, then individual chi angles are chosen using
Gaussian distributed random angles with the means and standard deviations from
the Dunbrack rotamer library.

The well-tempered ensemble technique is implemented into the framework of
MetropolisHastings as ThermodynamicObserver. It is applied with a certain time
interval (here in the test stride=1 ) and deposits the Gaussians to the bias energy
with height of

W = we_[V(Srt)/AT] TG
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where 7, is the time interval or stride number, V (s, t) is the old bias energy in the
energy bin where the current decoy's energy has dropped into, w represents the
initial bias deposition rate and AT = (1 — y)T, in which y represents the tunable
factor and T is the temperature in the simulation [81,135,137,140]. When well-
tempered ensemble technique is applied, acceptance of a move or an exchange
attempt is decided based on the total energy, which is the sum of the force field
energy and the bias energy. For final analysis, only the force field scoring energy
was used.

Table 3.1. Test complex structures and partner structures

Complex Cat. Difficulty Partner | Nres 1 Partner II Nres 2 RMSD (A) DASA (&)
1EAW_A:B E rigid 1EAX A 241 9PTI_ 56 0.54 1866
1GCQ_B:C 0 rigid 1GRLB 66 1GCP_B 56 0.92 1208
1KTZ_A:B 0 rigid 1TGK_ 105 1M9Z_A 82 0.39 989

1PPE_E:I E rigid 1BTP_ 223 1LUO_A 29 0.44 1688
1S1Q_A:B 0 rigid 2FOR_A 141 1YJ1_A 69 0.98 1288
2AYO_A:B 0 rigid 2AYN_A 337 2FCN_A 72 1.39 3027

2SNI_E:1 E rigid 1UBN_A 274 2CI2_1 64 0.35 1628

3D5S_A:C 0 rigid 1C3D_A 294 2GOM_A 61 0.56 1620

3SGQ_E:I E rigid 2QA9_E 185 20V0_A 51 0.39 1211
7CEI_A:B E rigid 1UNK_D 127 1M08_B 87 0.7 1384
1AY7_A:B E rigid 1RGH_B 96 1A19 B 89 0.54 1237
1H9D_A:B 0 rigid 1EAN_A 125 1ILF_A(1) 114 1.32 2121
1HE1_C:A 0 rigid 1MH1_ 176 1HE9_A 128 0.93 2113
1JK9_A:B 0 difficult 1QUP_A 219 2JCW_A 153 2.51 2130
1MQ8_A:B 0 medium 1IAM_A 184 1MQ9_A 171 1.76 1253
1RV6_VW:X 0 rigid 1FZV_AB 189 1QSZ_A 92 1.09 1626
1YVB_A:I E rigid 2CHU_A 241 1CEW_I 108 0.51 1743
2CFH_A:C 0 medium 1S77_A 156 2BJN_A 137 1.55 2384
20UL_A:B E rigid 3BPF_A 236 2NNR_A 107 0.53 1933
2SIC_E:1 E rigid 1SUP_ 275 3SSLL 107 0.36 1617

cat: Complex category labels: E = Enzyme/Inhibitor or Enzyme/Substrate O = Others

RMSD: RMSD of Ca atoms of interface residues calculated after finding the best superposition of
bound and unbound interfaces.

DASA: Change in Accessible Surface Area upon complex formation .

3.2.7 Construction of a Benchmark

The four protocols were first tested on 10 unbound targets (Table 3.1) from the
benchmak4.0 set [141,142] with reasonable energy funnels using the RosettaDock
scoring force field. This was checked by generating 1000 decoys with standard
RosettaDock full protocol starting from the bound docking geometry (using
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unbound structures). These 10 targets belong to the group of “rigid body” docking
cases with small changes of side chains associated with complex formation
(according to the classification of the protein docking benchmark4.0 collection
[141,142]). In addition, the standard MC protocol and the WTE_H_REMC protocols
were also tested on another 10 unbound targets including one "difficult" (1JK9) and
two "medium difficulty” (1IMQ8 and 2CFH) targets (Table 3.1). The number of
residues of the 20 targets range between 122 and 409.

3.2.8 Analysis of docking results and computational efficiency

The sampled docked complex were analyzed according to ligand RMSD (L_rmsd)
and fraction of native contacts (fna), as defined in CAPRI [102] using the bound
complexes as references. To evaluate the capacity of the methods to sample near-
native decoys, we calculated the fraction of CAPRI medium (**,
foar = 0.5&L_rmsd > 14 or 0.3 < f,,; < 0.5&L_rmsd <5) or high (***, fuu =
0.5 & L_rmsd < 14) quality decoys in the collected results [65]. To evaluate the
agreement between generated complexes with closest L_rmsd and best fat
compared to the bound complex. To evaluate the scoring energies the interaction
score (I_sc) was used which is computed by subtracting the all-atom energy of non-
interacting partners from the all-atom energy of the interacting partners in the
complex. To compute the energy of non-interacting partners the two binding
partners are moved far away from each other while keeping all internal degrees of
freedom fixed. To investigate the efficiency of optimizing the scoring energies, we
calculated for a given MC step number the average difference of the sampled best
score (up to the selected MC step number) and the final most favorable score.

3.3 Results and Discussion

3.3.1 Results and Discussion

Monte Carlo docking simulations are frequently used to perform protein-protein
docking searches or for the refinement of predicted complexes at atomic resolution
including limited conformational changes of the partner structures [38,39,41,76]. In
recent years, enhanced sampling methods to improve the MC search efficiency have
been developed. In order to test the performance of such improvements we
compare the application of standard MD, parallel tempering REMC, well tempered
replica exchange (WTE-REMC), and well tempered ensemble combined with 2-
dimensional temperature and Hamiltonian replica exchange (WTE-H-REMC) to a set
of protein-protein complexes in unbound partner conformation. In each case the MC
moves included rigid body translation and rotation as well as side-chain moves
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(illustrated in Figure 3.2). For each protocol the same start configuration was used
corresponding to a random arrangement of one mobile partner placed
approximately 15 A away from the bound complex geometry (see Methods for
details). In case of the replica exchange methods only configurations in the
reference replica were retained, resulting in approximately 25x2,000 decoys for
standard MC protocol (with 2x10° MC steps), 2x2,000 for REMC protocol, 5x2,000
for WTE-REMC protocol and 1x2,000 for WTE-H-REMC protocol, respectively. On a
2.6 GHz AMD Opteron Processor (12 cores), 2x10% MC steps take between 4.5-20
hours. The sampled docking solutions were analyzed in terms of deviation from the
known complex geometry (using the root mean square backbone deviation of the
mobile ligand partner protein from the bound complex after best superposition of
the receptor protein onto the bound complex: L_rmsd) and interaction score (I_sc).

MetropolisHastingsMover

WTE Bias Energy
MC accept?
Hamiltonian Exchange

Trial Counter Observer

Silent Trajectory Recorder

Figure 3.2. Workflow represented by combination of Rosetta modules and setup of the four docking
protocols. The modules in orange, representing the enhanced sampling techniques of replica
exchange and well-tempered ensemble, are only applied in the combined protocols.

The protocols were first tested on 10 benchmark targets of the “rigid body” category
(with only limited side chain changes upon complex formation, see Methods for
details). We consider the sampling of medium or high-quality solutions (CAPRI
ok [*4% solutions, defined in Methods section) according to the CAPRI criteria as
successful docking refinement. The evolution of the sampling in terms of L_rmsd
and I[_sc scoring is showcased for two representative targets (pdblEAW and
pdb3SGQ) in Figure 3.3. For the pdb1EAW-target all methods sample progressively
lower (more favorable) force field scores with increasing number of MC steps.
However, for the first example only the WTE-H-REMC protocol samples docking
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solutions with L_rmsd < 5 A after 2x106 MC steps. Only after 107 MC steps all
techniques except the standard MC technique sample near-native solutions (Figure
3.3A). For the second example (pdb3SGQ) the MC technique successfully samples
solutions with Lrmsd < 5 A only after 107 MC steps whereas all three advanced
sampling techniques reach near-native solutions already after 3x10°> MC steps
(Figure 3.3B). Qualitatively similar trends were observed for all other test cases (see
Appendix Figures S12-514).
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Figure 3.3. Scatter plot of interaction score I_sc (Rosetta units) vs. L_rmsd (A) for the four docking
refinement protocols and two representative targets, 1IEAW (A) and 3SGQ (B). The protocol is
indicated on the left for each row of plots. The snapshots number is color-coded, that means blue and
red dots corresponding to decoys sampled at the beginning and the end of the docking searches in
each panel, respectively. The three columns of plots indicate the result after different simulation
lengths (indicated on top of each column).
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A quantitative comparison of the docking refinement solutions in terms of the
fraction of native contacts (fnat) indicates that the WTE-H-REMC method succeeded
in all 10 cases in sampling near-native docking solutions with very high quality
(Figure 3.4A). In contrast, the other protocols succeeded only in 3 (MC) or 7 (REMC
and WTE-REMC) of the first 10 cases (Figure 3.4A). Note, that near-native docking
solutions are also the best scoring solutions in several but not all docking test cases
(e.g. for targets 1KTZ, 3D5S and 7CEI docking solutions with Lrmsd > 10 A give I_sc
scores lower than the solutions closest to the bound docking geometry, Appendix
Figures S13 and S14). The results on the first 10 test cases indicate that the WTE-H-
REMC enhanced sampling protocol showed the best performance. For a second test
set of 10 targets (including also targets of the “medium” and “difficult” category, see
Table 3.1), only the standard MC and the WTE-H-REMC protocols were compared.
Again, the WTE-H-REMC protocol gave better docking results in 5 cases (IJK9,
1MQ8, 2CFH, 20UL, 2SIC) with lower final I_sc scores and Lrmsd (Figure 3.4A,
Appendix Figures S15-S17) compared to the standard MC-method. However, in two
cases (1H9D and 1HE1) the standard MC-method reached configurations closer to
the bound form compared to the WTE-H-REMC technique. Note, that especially in
these cases the score of near-native docking solutions was higher (less favorable)
than for alternative docking geometries (Appendix Figures S16 and S17). Since the
search techniques optimize the score (and not deviation from bound structure) it
may explain the failure of the WTE-H-REMC technique in these cases.

To check if slower convergence to reach low energy docking solutions was the main
reason for the failure of some protocols to reach near-native docking solutions, we
increased the trajectory length to 107 MC steps. Indeed, the success of MC, REMC,
and WTE-REMC protocols to reach near-native docking solutions increased to 8, 10
and 10 out of the first 10 targets, respectively (Figure 3.4B, see also Appendix
Figures S14 and S17). The results were further analyzed with respect to fraction of
native contacts (fnat) of near -native docking solutions and the maximum quality of
predicted docking geometries (Figure 3.4). Also for these measures and in case of
the protocol with 2x106 MC steps the WTE-H-REMC protocol achieves overall the
best performance (Figure 3.4A). For the extended protocol with 107 MC steps the
quality of solutions in terms of fna: is more similar for all 4 protocols (Figure 3.4B),
indicating that indeed the standard MC technique requires longer searches to
achieve convergence compared to the WTE-H-REMC method. The best fna: for
protocols MC, REMC and WTE-REMC all increased on average around 17%, getting
close to that of the WTE-H-REMC protocol. The best fua: for protocol WTE-H-REMC
also increased slightly (~7%, Figure 3.4B). Figure 3.3 presents two representative
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examples on targets 1IEAW and 3SGQ of ligand RMSD (L_rmsd) versus interaction
score (I_sc). Comparing these data with that from the trajectory of 2x10¢ MC steps, it
shows that the details of the energy landscape sampled by WTE-H-REMC remains
similar indicating reasonable convergence within 2x10® MC steps for most cases.
Meanwhile, the rigid-body space reached for target 1IEAW by protocols MC, REMC
and WTE-REMC, and on target 3SGQ by protocol MC, drastically improved (Figure
3.3).
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Figure 3.4. Agreement between sampled docking geometries and the corresponding bound complex.
(A, upper panel) Highest fraction of native contacts (fnat) found in the top 10 decoys (according to
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L_rmsd) sampled in each protocol (2x106 MC steps). (A, lower panel) Fraction of CAPRI medium and
high quality complexes found for each target and each protocol (the protocols MC, REMC, WTE-REMC
and WTE-H-REMC are indicated by different colors). (B) same as in (A) but for the docking
refinement runs with 107 MC steps.
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Figure 3.5. Evolution of I_sc docking interaction score (A) and best sampled Lrmsd (B) vs. MC step
number. The MC step number is scaled by x1000. For the interaction score I_sc the smallest
difference (sampled up to the selected step number) relative to the lowest scoring complex sampled
in the entire docking search is plotted. The variance in sampled scores (up to the considered number
of MC steps) is indicated by error bars for the MC protocol. It is of similar magnitude for the other
protocols (not shown). For (B) the smallest sampled L_rmsd up to the step number indicated in the x-
axis is shown.

Since the force field score is the quantity which is optimized during the docking
searches (and not the agreement with the bound structure) it is of interest to
compare the protocols in terms of the efficiency to optimize the force field score. For
each target, the average of the lowest 10 interaction scores (lowest I_sc) sampled up
to a given MC step number was considered (using the extended trajectories) and the
difference relative to the lowest score found during the search was recorded. The
average of this quantity for all 20 cases was calculated and plotted in Figure 3.5. The
enhanced sampling techniques REMC, WTE-REMC and WTE-H-REMC, consistently,
reached lower interaction scores than the standard MC method for a given number
of MC step (Figure 3.5A). The WTE-H-REMC technique reached on average lower
[_sc than the other three protocols already after ~3x105 MC steps. Interestingly, the
same analysis using the L_rmsd instead of the I_sc yields the same trend, indicating
that on average the I_sc score correlates with the L_rmsd (Figure 3.5B). Low L_rmsd
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of sampled geometries gives on average (but not for all targets) also a favorable
score.

3.3.2 Protocol Testing

A subset of three complexes (pdb-entries: 1PPE, 20UL and 2SIC) was chosen as an
independent protocol test set. For two of these three complexes, only the MC and
the WTE_H_REMC protocol had been tested in the main work. The four protocols
were run using the RosettaScripts interface with parameters as described above,
trajectory length of 2x10% MC steps and a newly created starting conformation. In
contrast to the previous docking runs, only a single starting conformation was
generated for each complex. All the protocols could be successfully executed. A
summary of the test results can be found in Table 3.2. For all three test cases, the
enhanced sampling methods yielded structures of lower L_rmsd and higher f,a: than
standard MC sampling. Enhanced sampling methods generated near-native docking
models, whereas standard MC sampling did not yield any structures of CAPRI one
star quality or better. The WTE_H_REMUC technique was the only method to generate
CAPRI three star quality structures for all three cases and thus yielded the best
performance on the test set. The results match the previously presented data for
these three complexes and thus confirm that the sampling does not depend on the
choice of the starting conformation. The randomly generated starting conformations
sometimes contained clashes, but the enhanced sampling methods were able to
refine them to high-quality solutions. Hence, it might be possible to use enhanced
sampling methods also for refinement of docked complexes using other methods
than RosettaDock.

Table 3.2 Results for protocol testing on a subset of three complexes.

PDB ID MC REMC WTE-REMC WTE-H-REMC
1PPE 5.6 4 154 224 1.04

14.5h 14 h 12.3h 17.8h

) ) ) 0.7 A

20UL 42 A 194 224

21.8h 18.3h 18h 22h
2SIC 494 0.4 A 2.84 0.54

255h 22h 19h 20h

For all complexes, the best sampled L_rmsd and the execution time on 27 threads are listed.
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3.4 Conclusions

In this work, four different Monte Carlo advanced sampling protocols implemented
in RosettaDock to predict the geometry of protein-protein complexes have been
compared. For all the protocols (on each target) the same initial protein-protein
docking start configurations were used with 15 A translational displacements and
60° rotation of one partner from the native complex structure. This situation
corresponds to the frequent scenario that the interaction region between proteins is
approximately known and start configurations are placed close to the
approximately known binding region. It is also very useful for directly comparing
the docking performance of different approaches at the computational demanding
atomistic high resolution level. Note, that the protocol is computationally too
demanding for routine applications that require to search over the entire surface of
two protein partners. If complete protein surfaces are considered it is also very
likely that the scoring function is not accurate enough to pick out near-native
solutions as lowest energy complexes. Our results on docking refinement show
indeed that the application of advanced sampling schemes improves the docking
refinement performance yielding final configurations in better agreement with the
bound structure and yield also a much larger fraction of near-native structures
compared to regular MC searches. The WTE-H-REMC consistently gave the best
performance since it explores the phase space more efficiently due to larger energy
fluctuation and due to the added biasing potential that effectively smoothes the
landscape and increases the replica exchange rates. An increase of the number of
MC steps to 107 in the standard MC protocol resulted in improved performance
achieving a similar fraction of native contacts of best sampled solutions and similar
final docking scores compared to WTE-H-REMC with 2x106 steps. Hence, in most
cases a standard MC protocol requires roughly 5 times larger computational
demand to achieve the same final docking prediction performance. It should be
emphasized that this reflects only a general trend. For some test cases even 107 MC
steps still gave inferior docking results compared to WTE-H-REMC and still the
fraction of the best solutions relative to the total number of sampled geometries is
much smaller than for the advanced sampling method. Further improvement might
be possible by an adjustment of the bin size in the WTE to collect the history
dependent bias energy. However, an even larger gain could be achieved by an
improvement of the docking scoring function to increase the gap between ranking
near-native and non-native solutions.
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3.5 My contributions to this project

In this paper "Application of Enhanced Sampling Monte Carlo Methods for High-
Resolution Protein-Protein Docking in Rosetta"”, I have conceived and designed the
experiments together with Prof. Dr. Martin Zacharias, implemented the protocol
into Rosetta together with Dr. Oliver Lange, carried out all the calculations,
performed all the analysis and written the paper.
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Chapter 4 Monte Carlo Replica Exchange based Ensemble

Docking of Protein Conformations®

4.1 Introduction

Protein-protein interactions are fundamental for all living systems and involved in almost
all biological processes, ranging from enzyme activation and inhibition to signal
transduction and gene regulation. Knowledge of the structure of complexes is essential
for the understanding of the function and mechanism of protein-protein interactions.
However, the number of protein-protein complexes is much larger than the number of
individually folded proteins [16,54,143]. Especially for transient interactions the
experimental structure determination, for example using X-ray crystallography or nuclear
magnetic resonance (NMR), can be very costly and technically difficult or even
impossible. Hence, computational structure prediction by protein-protein docking
methods plays an increasing role to generate at least models of protein-protein complexes,
guiding experimental approaches and may help in structure determination if combined
with low-resolution or sparse experimental data [16,52,64,144-146].

Protein-protein docking methods to predict the three-dimensional structure of complexes
from its known constituents have gained steady progress over the past years. The
community-wide blind docking challenge CAPRI (Critical Assessment of Predicted
Interactions) has been monitoring the performance of docking methods since its
establishment in 2001 [65,66]. Despite progress, accurate complex prediction remains
challenging especially when coming to targets in which conformational changes take
place upon binding (even for backbone RMSD changes as small as 1-2A) [55-
57,65,66,144,145,147]. In general, docking methods are much more successful when
starting from the bound than from the unbound partner structures, even in cases with
minor conformational changes [16,64,144,145]. This is suggesting that proper treatment
of structural flexibility is an important factor for protein docking generally for most
complexes, not just those exhibiting large changes upon complex formation [55,57,147-
149].

Properly dealing with flexibility and conformational changes thus becomes one of the
major challenges in the docking field. The difficulties are rooted in the large number of
degrees of freedom for protein flexibility, which makes exhaustive sampling unfeasible,
but also challenge the existing scoring functions and result in a higher rate of false-
positive solutions. Currently, many docking programs employ a two-stage protocol, first

§ The work presented in this chapter is in press on journal Proteins: Structure, Function, and Bioinformatics
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broad sampling while keeping partner structures rigid, then followed by refinement in
one or multiple steps, which normally allow conformational changes of side chains and
sometimes also of selected backbone regions [144,145]. In this kind of two-stage docking
approaches, conformational flexibility can also be accounted for in the rigid-body
docking stage implicitly by soft docking [150,151] or a coarse-grained force field [37],
which allows a certain amount of steric clashes to deal with side chain flexibility and
sometimes also small scale backbone movements. Then steric clashes can be resolved in
the proceeding refinement stage. Alternatively, relaxation in soft collective normal modes
of the proteins during docking can be helpful if global motions of the protein partners are
involved in the binding process [152,153]. In the refinement, flexibility is typically
explicitly expressed by rotamer libraries or copies of side chains [36,154] and dihedral
torsional angles for backbone possibly combined with side chain mobility [36,48,75,154-
156]. Besides, soft docking can also be included in the refinement stage through
Hamiltonian replica exchange [51]. The strategy behind those docking methods mimics
the induced-fit model for protein-protein interaction, reflects the popularity of the model
in the past decades, and also mirrors our current understanding of the recognition
mechanism.

An alternative mechanism, termed conformational selection generalized and adapted to
protein interactions [52,54,146], postulates that all binding relevant protein
conformations pre-exist (to a significant extend), and the partner selects the best fitting
conformation to bind. Following binding the ensemble undergoes a population shift,
redistributing the conformational states. Recently, Csermely et a/ has extended the
conformational selection to describe the general scenario, where both selection- and
adjustment-type steps act simultaneously [54]. Following this model of molecular
recognition, conformational flexibility can be represented by pre-calculated ensembles of
structures. The term ensemble docking typically refers to a one by one docking of each
ensemble member for partner 1 to each ensemble member of partner 2 [34,58,59,157]
which results in a dramatic increase of the computing time with respect to the size of the
conformational ensembles and becomes prohibitively expensive for large ensembles.
Thus studies investigating the use of ensembles with cross docking of all ensemble
members have only been performed on relatively small benchmarks or single cases,
which have shown improvement over single conformation unbound docking in terms of
the number of near native solutions [34,57,58]. The representation of the receptor
binding region by multiple conformations has been found beneficial for the docking
success also in the area of docking of drug molecule candidates to protein binding sites
[59-63]. In particular, it has been found that docking in combination with stochastically
switching between different receptor structures is both computationally efficient and
improves the accuracy of the docking results [60,61]. Monte Carlo type switching
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between receptor binding site conformations (ordered along the structural similarity)
during docking avoids the rapid increase of the computational demand in case of docking
ligands separately to each member of the ensemble [58]. The stochastic search rapidly
settles towards the regime of receptor binding site conformations compatible with
favorable binding of a ligand [60,61]. In the present study we follow this approach for
docking of protein partners but employ ensembles for both partners and also combine it
with replica exchange Monte Carlo (REMC) to further improve the search performance
for favorable binding geometries. The implementation employs the protein-protein
docking program ATTRACT [37]. It uses a coarse-grained protein model which is
intermediate between a residue-level and full atomistic description, and represents each
amino acid by several (up to four) pseudo atoms. The coarse-grained representation
results in a relatively smooth energy landscape which contains fewer docking energy
minima [37,158-160]. This feature can further facilitate the use of Monte Carlo methods.
We have thus in this work applied Monte Carlo combined with temperature replica
exchange (REMC) to sample the docking ensemble space as well as the rigid-body space,
making ensemble docking computationally feasible. Several docking protocols have been
compared which include minimization for unbound docking (MIN-unbound), replica
exchange Monte Carlo for unbound docking (REMC-unbound), minimization for
ensemble docking (MIN-ensemble), and replica exchange Monte Carlo for ensemble
docking (REMC-ensemble). Our results indicate that even though the generated
ensembles are not optimal, ensemble docking still outperforms unbound docking using
single conformations for each partner and REMC-ensemble docking consistently
performs better in terms of the number and quality of near-native solutions and also
reaches significantly lower scoring energy in most cases compared to other protocols.

4.2 Methods

4.2.1 Generating conformational ensemble

Rather than by a single static structure, proteins are better described by an ensemble of
conformations [54,55,58,59,147,161]. Ensemble representations have been found useful
for improving applications of molecular modeling such as protein-small molecule and
protein-protein docking as well as in protein design. Several computational methods have
been developed to model conformational ensembles. In this study, we have used normal
mode deformation [162], Rosetta backrub deformation [163,164] and MD simulation
snapshots to generate conformational ensemble starting from the free unbound structure.
All easy and medium difficulty targets except 1N2C (too big), 1QFW (HL:AB) and
10YV (B:]) in docking benchmark 4.0 have been tested. For the ligand of 1H9D, 2VIS,
20UL and 2FJU and the receptor of 1YVB and 20UL, normal modes protocol does not
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run, we have used Rosetta backrub generated models to substitute the normal modes
models.

In order to generate globally deformed variants of unbound protein structures soft normal
modes based on an elastic network model developed by Hinsen [162] was employed.
Since most of the global deformability is encoded in the softest normal modes we
performed deformations in the two possible directions along a normal mode
corresponding to an excitation with an energy of IRT (R: gas constant, T: room
temperature). Typically, this leads to a root mean square deviation (RMSD) of the
structures from the unbound reference structure of up to 0.5-2 A. To limit the number of
possible global deformations only the four softest normal modes were used (no combined
deformations were considered). The normal modes were calculated for the protein
backbone and all side chain atoms were displaced like the corresponding backbone atoms
during normal mode deformation. Thus, this procedure gives mainly structures with
collective backbone displacements but little side chain changes. To remove any steric
strain, structures were finally energy minimized using the sander program of the
Amberl14 [165] in 2000 minimization steps using the parm14SB force field [166].

The Backrub model is inspired by alternative conformations observed in high-resolution
crystal structures of proteins, and has been suggested to capture a significant fraction of
small conformational changes proteins undergo in solution [163,164]. We have run
backrub application implemented in the program Rosetta with RT value for temperature
0.35 and number of Monte Carlo trials of 10000. The generated models have RMSDs
from the starting unbound structure between 0 and 3 A mostly populated around 1 A.
This procedure yields structures that include both small (mostly localized) backbone
changes and side chain changes.

As a third method small deformations of the unbound structure were also generated using
restraint MD simulations with the unbound structure as reference conformation.
Distances between Ca atoms in the unbound structure were used as restraints to limit the
backbone. This included all Co-Ca distances within the distance interval of 8-16 A of the
unbound structure and allowing distance changes of +/- 0.5 A (further deviations were
penalized with a force constant of 1.5 kcal-mol”" A for the quadratic distance penalty
potential). All side chain atoms were completely mobile. The unbound structure was first
energy minimized (2000 steps) followed by short (10 ps, 300K) MD simulations using an
implicit Generalized Born (GB) solvation model and the Ca-Ca distance restraints using
the Amberl4 pmemd.cuda program [165] using parm14SB force field [166]. For each
conformational variant a different initial seed for the random velocities was assigned.
Final structures were again energy-minimized (2000 steps). Note, that the short range
distance restraints allow to some degree small global and local backbone changes but
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keep the local secondary structure close to the structure in the unbound reference. This
procedure produces models with RMSDs from the starting unbound structure ranging
between 0.5 and 3 A including only small backbone but more significant side chain
changes (in contrast to the normal mode displacement procedure).
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Figure 4.1. Simultaneous Monte Carlo replica exchange scheme. In the box, si, S, ... sn refer to the n
starting conformations. All of the four replicas start from the same set of conformations.

4.2.2 Randomized ensemble docking in ATTRACT with minimization

The ATTRACT CPU version supports randomized ensemble docking with minimization.
For this, ATTRACT first generates initial placements for ligand on the surface of the
receptor. Then for each initial placement, the model indices of both binding partners are
assigned randomly within the respective range of the model numbers. During the
minimization process, the respective model remains fixed and is also used for scoring and
docking metric evaluation at the end.
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4.2.3 Monte Carlo in ATTRACT explores docking ensemble space

Monte Carlo is frequently used to sample the rigid-body degrees of freedom or rotamers
in protein-protein docking and docking refinement [5,36,39,41,51,154,167]. Inspired by
the 'conformational selection' theory, we applied Monte Carlo also to sample the docking
ensemble space. Rigid body move and/or ensemble move is randomly applied based on a
pre-defined probability (25% rigid-body standalone move, 25% ensemble standalone
move, 50% rigid-body + ensemble combined move), independently or simultaneously. In
ATTRACT, a pose is represented by a translation vector and an Euler angle vector, plus
an additional model number for ensemble docking, for each binding partner. For rigid
body move, unbiased rotational and translational perturbations are applied. For ensemble
move, a conformer index is randomly suggested with probability inversely proportional
to its similarity (all-atom RMSD) to the current conformer. This RMSD is 0 for the
current conformer. To avoid singularity, it is made to have a mean probability
(1/Neonformer) to stay at the current one. Each standalone or combined move are judged by
the Metropolis-Hastings criteria to decide if it will be accepted. To improve the sampling
efficiency, we combined Monte Carlo with temperature replica exchange (REMC) [41].

Table 4.1. Summary of CAPRI classification.

CAPRI quality Conditions based on CAPRI metrics
*** (High) frae =05 & Lrmsd <1 & Irmsd <1
kkok / k% fnat 2 05
(atleast Medium) or
0.3 < frat <05 & (Lrmsd <5 or Irmsd < 2)
***/**/* fnat 2 03
(at least acceptable) or

0.1 < fr4: < 0.3 & (Lrmsd <10 or Irmsd < 4)

The coarse grained representation in ATTRACT makes the docking energy
landscape smoother and containing fewer docking energy minima. Benefiting from
this feature, we only need a small number of replicas. In the test, four replicas are
used and the values of RT for the temperature are initialized as 0.5 0.6 0.8 and 2.5
(RT units). For each replica, 200000 MC steps are run. Snapshots as results for final
analysis are taken every 2000 MC steps. Replica exchange is attempted every 2000
MC steps (100 times), between the decoys started originally from the same initial
placement and done for all. The RT value of 0.5 is fixed for the reference replica, the
other temperatures are adjusted on the fly for sampling efficiency according to the
collective exchange rate on all the decoys, to maintain an exchange rate between 30%
and 60%. The temperature of the lowest three replicas are generally very stable, the
high temperature of the highest replica in most cases converges after 80 or less
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swaps (Appendix Figure S18). In replica exchange using an ATTRACT GPU CUDA
version, we swap simply the pose representation instead of the temperature, and
then in each CUDA device, the temperature remains always the same (Figure 4.1).

4.2.4 Measuring the quality of docking solutions

The docked complex structures are analyzed according to the fraction of native contacts
(fnat), interface root mean square deviation (Irmsd) and ligand root mean square deviation
(Lrmsd). For the calculation of fraction of native contacts f,,, a contact was defined as
two residues from the two binding partner having at least one atom within a distance of 5
A. For Irmsd, the interface residues in the target were defined as those having at least one
atom within 10 A from the other binding partner. Ligand RMSD (Lrmsd) was calculated
on backbone atoms after the receptor of the prediction superimposed onto that of the
bound conformation. The CAPRI classification of predictions as "high", "medium", and
"acceptable" accuracy is summarized in Table 4.1.

To check how the generated structures score with respect to CAPRI criteria, we
calculated the success rate within selected top N decoys by ATTRACT score as well as
success rate in top clusters after clustering. The clustering was carried out on 4% selected
decoys from all. For minimization, the decoys are selected by ATTRACT score. For
REMC, we used every fifth snapshot from the first replica and kept the 80% low
ATTRACT score decoys (1/4/5%80%=4%). We clustered the structures by pair-wise
ligand-mass-center-RMSD for computational efficiency with a cutoff of 1.0A and a
minimum cluster size of 5. The clusters were then ranked by the average score of the
cluster center and top four members. A cluster is designated as of one star CAPRI quality
(*) if any of the cluster center or top four members is of one star CAPRI quality (same for
medium (**) and high (***) quality clusters.

4.3 Results and Discussion

4.3.1 Ensemble generation

The methods to generate ensembles of partner structures starting from the unbound
structures included normal mode deformation in the softest four normal modes based on
an elastic network protein model, restraint MD simulations and Rosetta backrub
simulations (see Methods). In test simulations we found that none of the methods
performed on average particularly well in producing structures closer to the bound
structure (Appendix Figure S19, and see below). For example in case of global collective
motions normal mode displacements move the structure closer to the bound form but for
more local changes MD simulations or backrub approaches are better suited. On average
the Rosetta backrub approach gave slightly better results than the two other methods.
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Hence, we decided to include models generated by all three approaches (as appropriate
fractions) in each ensemble. To investigate a proper model number per ensemble, we
first tested on 1T6B (830 residues) and 1J2J (203 residues) the use of several ensembles
of different sizes (in steps of 10 models). Application of the REMC ensemble docking
procedure revealed that beyond an ensemble size of 40 the Irmsd of the best models we
sample does not further improve (not shown).
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Figure 4.2. Distribution of differences in Irmsd of generated protein conformers after superposition
on the native complex relative to the Irmsd of the unbound protein structure after superposition on
the complex. The Irmsds are calculated for receptor (larger partner) and ligand proteins considering
all-heavy atoms or Ca-atoms, respectively. The target index (1-121 are rigid body targets, 122-149
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are medium difficult targets) is color coded. A negative difference (x-axis) indicates that a generated
ensemble protein member fits better to the bound structure than the unbound structure at the
protein-protein interface.

Thus for the systematic evaluation of the ensemble REMC docking method we generated
for each binding partner 38 models starting from the unbound structure for the 149 targets
in the benchmark, including 8 from normal mode deformation, 20 from Rosetta backrub
calculations and 10 snapshots from MD simulations. Since most bound and unbound
structures deviate by less than 2 A [141] the maximum deviation of the generated
structures from the starting unbound structure was set to ~2A. Most of the generated
models have Co-atom Irmsd from the starting unbound structure below 1A and all-atom
Irmsd below 2A (Appendix Figure S19). We then calculated the all-atom and Co-atom
Irmsd from the respective partner in the bound complex for the generated models and
compared with the RMSDs for the unbound partners (Adppendix Figure S20). For the
149x38 models generated for the receptor (larger partner), 14.6% (by all-atom Irmsd) and
17.4% (by Co-atom Irmsd) moved closer to the bound form than the corresponding
unbound structure at the known interface. In case of the 149x38 models generated for the
ligand proteins, 22.3%/24.5% (all-atom / Ca-atom Irmsd) moved on average closer to the
bound form (Figure 4.2). In total, 135 by all-atom Irmsd or 136 by Ca-atom Irmsd out of
149 targets in the benchmark showed at least some geometric improvement compared to
the unbound form on at least one binding partner (4dppendix Figure S20). The movement
of the structure closer to the bound form (compared to the corresponding unbound form)
reached, however, only up to 0.5A.

4.3.2 Comparison of REMC ensemble and minimization docking approach

Our REMC docking approach consists of translational and rotational moves of the
binding partners relative to each other as well as of random selection of conformers from
the ensemble pool. To enhance the sampling, replica exchanges between four parallel
runs at four different temperatures were performed (see Methods).

This differs from a straightforward and standard ensemble docking approach that
corresponds to a systematic cross docking of all the possible receptor-ligand pairs of the
ensembles. The latter method is computationally very expensive, and also difficult in the
analysis stage because of the huge number of generated decoys. We first evaluated our
REMC ensemble docking by comparing to a complete cross docking with minimization
(MIN-cross-docking) using default settings from ATTRACT easy online [160] on all
39x39 receptor-ligand combinations on two of the test cases pdb1T6B and pdb1J2J. This
resulted in 76,589,760 and 30,782,964 decoys for 1T6B and 1J2J, and spent 28.5 hours
and 12 hours with MIN-cross-docking, respectively, in sampling with one GPU-CUDA
device (NVIDIA-GTX980). The ATTRACT score vs. interface RMSD (Irmsd) from
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MIN-cross-docking indicates dense sampling along the Irmsd coordinate and reveals the
location of several docking funnels with few points indicating favorable docking sites
(Figure 4.3a).

MIN-cross-docking REMC-ensemble-docking
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Figure 4.3. Distribution of sampled energy scores vs. Irmsd for a complete MIN-cross-docking and
REMC-ensemble docking on two test cases pdb1T6B and pdb1]2].

Basically, the same energy landscape along the Irmsd coordinate with the same binding
funnels can be obtained using the REMC ensemble docking approach (Figure 4.3b) based
on the same ensemble as used for the exhaustive MIN-cross-docking approach. Since an
MC approach gives the highest density of states near the lowest energy solutions the
density of sampled configurations is much higher in the regime of the favorable docking
sites than in case of the exhaustive MIN-cross-docking approach (Figure 4.3). This can
be achieved within a smaller computer time of 8 h and 2.2 h (on a single GPU) for the
two 1T6B and 1J2] test targets, respectively.

In the following, we compare four different sampling protocols for global docking on 149
targets from the docking benchmark 4.0 [141]: minimization for unbound docking (MIN-
unbound), REMC for unbound docking (REMC-unbound), minimization for ensemble
docking (MIN-ensemble) and REMC for ensemble docking (REMC-ensemble).
Ensemble docking has been run with 38 generated models and 1 unbound structure for
both binding partners (ensemble-39). Note, that in case of the MIN-ensemble docking
before the starting of the minimization one pair of structures is taken at random from the
ensemble and minimized.

For the minimization approach, the program was run on 2.6 GHZ AMD CPU clusters
using 48 cores for each target with running time ranging from 2 minutes to 3 hours
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depending on the size of the target. For REMC approach, the program was run with GPU
accelerated version using 4 CUDA devices for each target, with slightly longer runtime of
20 minutes to 4 hours. The number of generated decoys for each target is the same across
the four protocols, and ranges between 106,000 to 656,000 depending on the target size.
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Figure 4.4. Number of best docking solutions in terms of fnat, Irmsd and Lrmsd for Min-unbound,
REMC-unbound, MIN-ensemble and REMC-ensemble docking not considering score ranking of
solutions. The sum of the bars with the same color equals to 149 (the total number of target).

We first compare the best fnat, best Irmsd and best Lrmsd (with respect to the bound
structure) of the sampled decoys for each of the 149 targets (without looking at score
ranking). We count the number of cases for each protocol that it has the best solution in
terms of fnat, Irmsd and Lrmsd cross the four protocols as shown in Figure 4.4. Strikingly,
REMC-ensemble docking almost always reaches better quality solutions with regard to
all the three metrics for over twice the targets comparing to the other three protocols. For
minimization approaches, ensemble docking on average reaches better solutions for about
twice the number of targets as in unbound docking except for fnat (MIN-ensemble 17 vs.
MIN-unbound 21). If comparing ensemble docking and unbound docking collectively,
ensemble docking has reached better fnat, Irmsd and Lrmsd on 89, 94 and 97 targets
comparing to 60, 55 and 52 for unbound docking. This is suggesting that even though the
generated models are not optimal, they do help in improving docking predictions in terms
of generating better quality solutions.

We then plotted the distribution of top-100 fnat of each target across the whole
benchmark for the four docking protocols (Figure 4.5). We can see that the distribution is
sampling method related. REMC sampling, especially combined with ensemble docking,
always recovers more native contacts in a lot of more decoys. It is especially of interest in
the range of higher fnat. In the selected 149x100 top fnat structures, REMC sampling has
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around 70% for ensemble docking and 50% for unbound docking with over 50% native
contacts recovered compared to about 38% structures for minimization approaches.
Furthermore, with a stricter criterion checking only for fnat solutions above 80%, the
improvement of REMC sampling compared to the minimization approach is even more
prominent. It is surprising that REMC sampling still has over 3% structures when we
consider over 90% native contacts recovery, comparing to below 0.1% for minimization
approach. These results show that the REMC method samples more high quality decoys,
at least in terms of the fnat metric (see also Figure 4.6).
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Figure 4.5. Distribution of top-100 fnat across the whole benchmark for the four docking protocols.
Each circle represents the ratio of decoys above the corresponding fnat value. The fnat (x-axis) range
is [0 1]. The maximum of y-axis is 1.
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Figure 4.6. Distribution of the fraction of near-native (at least one CAPRI star) decoys for each
protocol.
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Figure 4.7. Success rate of CAPRI quality decoys in the top N decoys selected by ATTRACT score.

Table 4.2. Summary of the CAPRI star case number each protocol has best reached.

CAPRI MIN-unbound REMC-unbound MIN-ensemble REMC-ensemble

quality

wokk 4 8 2 9
kK 136 124 141 131
* 9 14 6 7
Failed 0 3 0 2

Considering the success rate for sampling medium (**) or high quality (***)
solutions REMC-ensemble docking also performs slightly better than the other
protocols (Table 4.2) but it failed on two cases, 2A5T and 2]7P (1BGX, 11B1 and 2]7P
for REMC-unbound docking). This is reasonable because in those cases, the
ATTRACT energy in the near native regions is far too high comparing to alternative
binding regions. We further exploited the success rate within selected top N decoys
by ATTRACT score to check the selectivity of the energy function (Figure 4.7). Here,
the ranking of quality solution in the top predictions is slightly better for the
minimization vs. the REMC approaches. Apparently, if a high quality solution is
found, it is slightly better ranked by energy minimization than by REMC because in
the same energy funnel, energy minimization will always reach lower energies than
a MC approach. However, as an importance sampling method, REMC spends more
time in low-energy regions not necessarily close to near-native (see also Appendix
Figure S21). When we compare ensemble docking and unbound docking within each
sampling method, minimization or REMC, with the same number of selected top-
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energy decoys, the success rate for ensemble docking is almost always higher than
single model unbound docking.
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Figure 4.8. Success rate of CAPRI quality clusters for the top scoring clusters of docking solutions.
Same color scheme as in Figure 4.7.
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Figure 4.9. Comparison of cluster ranking by average score and by cluster size on the REMC-
ensemble-39 docking results.
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Figure 4.10. ATTRACT score energy distribution obtained with four simulation protocols. The
energies for each target and method have been normalized by the absolute value of the best energy
observed for the respective target across all of the four protocols. Shown are the distribution of A)
top-10 energies and B) top-1% tile energies across the whole benchmark.

In Figure 4.8 we plot the success rate in the top ranking clusters by ATTRACT score to
exploit if clustering will reveal an improvement of scoring upon REMC sampling. The
score of a cluster is the average value of the five representing decoys: the center of the
cluster and the top-four score decoys. After clustering, only one target from one protocol
(1PPE from MIN-ensemble docking) has still high (***) quality clusters. If we count
high/medium (***/**) and high/medium/acceptable (***/**/*) quality clusters, ensemble
docking is more successful regard to the success rate compared to the single body
unbound docking (Figure 4.8).

Based on this impression on REMC docking results, we investigated if ranking the
clusters by the cluster size alone allows already the identification of near native docking
geometries. Comparison with ranking using the scores of clusters indicates that indeed
the cluster size criterion alone is in most cases as useful as the best rank scoring (Figure
4.9). Apart from the ability to sample near-native regions it is also interesting to explore
the energy optimization efficiency of the protocols. It is possible to normalize the

79



Chapter 4 Monte Carlo Replica Exchange based Ensemble Docking of Protein
Conformations

ATTRACT scores by the absolute value of the best energy observed for the respective
target across all of the four methods (Figure 4.10). When considering both top 10 and top
1 %-tile energies, REMC-ensemble docking reaches much lower ATTRACT energies in
most cases compared to the other three protocols.

ATTRACT score

50
Irmsd, range [0 5] (A)

Figure 4.11. ATTRACT score versus interface RMSD (Irmsd) in the near-native (below 5 A) region
on the REMC ensemble docking application to 36 targets. The range of x-axis [0 5] A and y-axis [-40 0]
are all the same for all panels. Results from REMC-ensemble-40 (included bound form partner) and
REMC-ensemble-39 are shown in blue and green, respectively. The Irmsd and scoring energy of the
energy minimized bound complex is shown as red circle with cross in each panel.

It is also of interest to the test the performance of the REMC ensemble docking in case of
including the bound structures of each partner in the ensemble. In this case the
ensembles contained 40 models (included the respective bound partner, denoted as
REMC-ensemble-40) and we considered a subset of benchmark cases (36 cases). In the
majority (but not all) of cases (26 of 36) inclusion of the bound structures resulted in
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improved docking results and docking geometries in closer agreement with the native
structure were sampled (Figure 4.11). However, in a subset of cases (pdb-entries: IBVK,
1D6R, 1EZU, 1FCC, 1FLE, 1FQJ, 1GHQ, 1BGX, 1ACB, INW9) inclusion of the bound
partner structures did not always improve the docking results because the near native
sampling region scored much worse than alternative regions in the energy landscape
(even for the bound partner pair, see Appendix Figure S22). This result indicates that in
these cases the sampling quality is not limiting but limitations in the docking scoring
function are decisive and even an improved ensemble (with conformations closer to
native) may not improve the docking performance.

4.4 Conclusion

A REMC protein-protein docking protocol has been designed that includes partner
flexibility by picking partner structures in an MC approach from pre-generated
conformational ensembles. The MC switching between conformers is such that at each
trial step conformers with close similarity to the current conformer are selected. The
approach is similar to methods used in small-ligand docking to an ensemble of receptor
conformers [60-63] but has so far not been applied to protein-protein docking. It
outperforms a standard all-against-all docking of each ensemble pair of partner structures
in terms of computational speed and accumulates more low energy structures and also on
average more structures close to the native docking solution. Previous protein-protein
docking efforts based on ensemble representation of protein partners have also found
improved performance compared to docking just the unbound partner proteins
[34,57,58,157]. Although the structural ensemble used for docking contained only few
conformers in better agreement with the bound form than the unbound partner structure
the REMC ensemble docking gave overall better results in terms of scoring and number
of native contacts or Irmsd of the final solutions.

A possible reason is the use of a coarse-grained model in ATTRACT that may allow for
improved fit of docking partners in near-native geometry even if the structures still
deviate from the bound form (e.g. toleration of alternative packing of residues at the
interface). However, also non-native docking geometries can profit from the use of an
ensemble of partner conformations resulting in more low-energy predictions that deviate
from the native structure. Indeed, Appendix Figure S20 demonstrates this effect on two
examples. Inclusion of the bound partner structures in the docking ensemble gives in the
majority of cases docking solutions closer to native with favorable score. This indicates
that the ensemble of protein conformers is nevertheless critical for the success of the
approach and ensemble members in closer agreement with the bound form can further
improve the performance.
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The focus of the present study is not on designing an optimal ensemble but to
demonstrate that even a non-optimal ensemble combined with the REMC method can
already improve the protein-protein docking performance. Designing an optimal
ensemble with more structures closer to the bound form will be subject of future research.
Our current experience and limited success on employing several standard methods
indicates that this is a difficult task that may also involve systematic force field
improvements and inclusion of explicit solvent molecules during the ensemble generation
step.

4.5 My contributions to this project

[ have conceived and designed the research work together with Prof. Dr. Martin
Zacharias. I have implemented the protocol together with Uwe Ehmann. All the
calculations and analysis are carried out by me. And [ have wrote the paper.
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Chapter 5 Perspectives on Bayesian inference in Monte Carlo
sampling data driven protein-protein docking

5.1 Introduction

Studies have shown that integrating experimental or predicted information about
the interaction to bias the sampling and/or scoring of protein-protein docking can
consequently increased the accuracy of the docking predictions [16,168]. NOE data
from NMR experiment gives specific short interacting distances; Forster resonance
energy transfer, chemical cross linking and electron paramagnetic resonance
spectroscopy are able to provide unambiguous distances over larger distances; NMR
chemical shift perturbation allows to narrowing down the interface surface as been
employed in Haddock; SAXS, small angle neutron scattering (SANS) as well as cryo-
EM can provide shape information about the complex. All the prior information
could be used one way or another. The most simple way is implemented as a post
filter. That is to evaluate on the generated decoys of its agreement with the prior
information. This imposes no influence upon the generation of the decoys. Another
more comprehensive way is through a restraint energy term explicitly included in
the sampling, as being used in Haddock, RosettaDock and so on. In Haddock [38],
the prior information is translated into a set of ambiguous interaction restraints
(AIRs) and calculated with a harmonic potential to penalize the violation against the
upper limit of the effective distance which is formulated as follows:

1
Natoms NresB Natoms

afl={ ) Z P

mian
mig=1 k=1 ngp=1 tATkB

where N,:,ms indicates all atoms of a given residue and N, the sum of active and
passive residues for a given protein. The atom-atom distances contribute inversely
to this effective distance. As long as a residue comes in close with any active or
passive residue of the partner molecule, the restraint will be satisfied. Besides,
Haddock in each trial by default uses only 50% randomly selected AIR restraints to
counteract possible false positives in the prior information.

In our canonical Monte Carlo sampling framework, we could integrate the prior
information in a Bayesian inference fashion. This suites better in the context when
the data is sparse, of low resolution or might be ambiguous, erroneous or even
conflicting.
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protein-protein docking

With Markov chain Monte Carlo (MCMC) we can construct an ensemble with a
defined distribution as {x;} ~ P(X|Y) where X is the conformation and Y is the prior
knowledge. According to Bayes' theorem, the probability changing from state x;to x;
given prior data Y can be reformulated as follows:

r(1Y) _ p(lx)p(x)/p() _ p(lx) px)
p(xlY)  p(Yx)p(x)/p(Y)  pYlx) p(x)

That is:

p(x[Y) ~ p(Y|x)p(x)

This could be explained as the posterior probability of conformation x given prior
information Y is the product of prior probability and the likelihood of the
conformation [169-171]. In standard Monte Carlo simulation, the acceptance of a
state is given by:

p= min(l, e(—AE/kT))
Thus the posterior probability could be written as:
p(x|Y) ~ en®X10) 4 o(~EG)/KT)

That is:

E(x)—kT*ln(p(Y|x)))

paelV) ~ el

For implementation, —kT * In(p(Y|x) makes a new term into the energy function
and

Etotar(x) = E(x) — kT * In(p(Y]x))

For the likelihood p(Y|x), an unfounded but convenient assumption of amino acid
pair independence leads to the expression:

pr) = | [poil

For application, assume we have a set of data of contacting or no-contacting atom
pairs. But we are not 100% confident with the accuracy and correctness of the data.
Based on the common sense, atom pairs within a certain distance cutoff have a
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higher probability (denotes as A1) to be observed in experiment in contact, while
pairs beyond this cutoff have a higher probability (denotes as ) to be observed not
in contact. Then we have:

A d< dcutoff

p(ycontactlx) = {1 —u else

1-2 d< dcutoff

p(yno contactlx) = { U else

5.2 Preliminary Results and Discussion

This has been implemented into Rosetta and tested by running the low-resolution
replica exchange docking protocol [41] using artificial data on unbound docking
target 1BVN and 200B. We have used only the Ca atom for each residue. In the test, |
have used 0.7 for A, 0.95 for u and 8A for Ca atom distance cutoff deytosy- For
example for 200B, we assume that we have prior information from experiment or
evolutionary analysis about interacting / non-interacting residue pairs shown in
Figure 5.1. For the blue dashed line connected pairs, we give true information about
if they are in contact. For the pair with red dashed line, residue 4A and B39, we
suppose the prior information suggesting they are in contact to simulate error in
experiment observations. Last but not least, the prior information is not limited to
pairwise information. It can also be in the form of in or not in binding site from only
one side of the binding partners.

Figure 5.1. The native structure of 200B with Ca-atom distances labeled for the
residue pairs which have been used for testing Bayesian inference approach for
integrative docking.
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Bayes inference approach for prior data

A 0.7

u 0.95

dcuto ff 8

70A 10B in contact # true

47A 2B in contact # true

4A 39B in contact # simulate error in observation
18A 25B no contact # true

AtomPair Constraint

AtomPair CA 70A CA 10B BOUNDED 0 8 5 CST
AtomPair CA 47A CA 2B BOUNDED 0 8 5 CST
AtomPair CA 4A CA 39B BOUNDED 0 8 5 CST
SiteConstraint CA 18A B SIGMOID 5 -2 #discourage contact

Ambiguous AtomPair Constraint

AmbiguousConstraint

AtomPair CA 70A CA 10B BOUNDED 0 8 5 CST
AtomPair CA 47A CA 2B BOUNDED 0 8 5 CST
AtomPair CA 4A CA 39B BOUNDED 0 8 5 CST
END_AMBIGUOUS

SiteConstraint CA 18A B SIGMOID 5 -2 #discourage contact

Ambiguous AtomPair Constraint

AmbiguousConstraint

AtomPair CA 70A CA 10B SIGMOID 0 8 5 CST
AtomPair CA 47A CA 2B SIGMOID 0 8 5 CST
AtomPair CA 4A CA 39B SIGMOID 0 8 5 CST
END_AMBIGUOUS

SiteConstraint CA 18A B SIGMOID 5 -2 #discourage contact

For comparison, I have also run the same low-resolution replica exchange docking
protocol, but with the prior information used as Rosetta standard constraints. The
profile of the constraint functions are shown in Figure 5.2.
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Figure 5.2. Profile of constraint functions from Rosetta, which are used for comparison with Bayes
inference approach.

In our simulation, the weight for likelihood in Bayes approach, AtomPairConstraint
and SiteConstraint are 5, 5 and 50, respectively. In Figure 5.3, we show the scatter
plot from replica exchange low-resolution docking with no prior information. In
stead of near-native region, the low-resolution energy function favors structures of
about 7 and 10 A away from the native. In Figure 5.4, we show in the first column
the scatter plot of total score versus the Ca-RMSD from the native structure, in the
second column score for evaluating the prior information versus Ca-RMSD. We can
see that the Bayes inference approach is most solid and tolerant with the misleading
prior information. Further more, the Bayes inference approach has also benefited
greatly from the included correct prior information and leads the docking procedure
to the correct direction with lower scores for the low Ca-RMSD structures. However,
for the standard constraints, when all pairs applied as shown in the second row, the
constraint between residue 4A and B39 has strongly biased the docking result to a
completely wrong region. When using ambiguous constraint as shown in the third
and fourth rows, the bottom of the scatter plot of the score evaluating the prior
information versus Ca-RMSD is rather flat. The bottom of the scatter plot of total
score versus Ca-RMSD is also flattened. This is better than that in the case with no
prior information as shown in Figure 5.3 the decoys below 5 A have much higher
energies than binding modes with about 7 and 10 A away from native. This is
suggesting that using the prior information as the traditional constraint can be
helpful, but with limited effect, and not as helpful as in Bayes inference approach.

total score
no prior info

0 5 15 20

10
RMSD

Figure 5.3. Total score vs. Ca-RMSD of unbound docking on 200B from replica exchange Monte
Carlo sampling low-resolution docking in Rosetta with no prior information applied.
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Figure 5.4. Docking results with prior information applied in Bayesian inference fashion and in the
form Rosetta constraints. The first column shows the total score versus Ca-RMSD. The second column
is the score evaluating only the prior information versus Ca-RMSD. Red, green and cyan dots
correspond to top 25, top 100, top 500 decoys by energy in each panel.
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Chapter 6 Conclusion

Proteins are virtually involved in all biological events that taking place within or
between cells, ranging from enzyme catalysis and inhibition to signal transduction
and regulation. In carrying out these functions, proteins rarely work alone, but
rather in close association with other biomolecules. In fact, many biological
processes are carried out by large molecular machines whose action is coordinated
through intricate regulatory networks of transient macromolecular interactions,
among which protein-protein interaction counts the largest proportion. To fully
understand the mechanism underlying these biological processes and further serve
for pharmaceutical purposes, high resolution structural is extremely valuable.
However, the classical experimental high resolution structure determination
methods, X-ray crystallography and Nuclear Magnetic Resonance, are surrounded
by the experimental bottlenecks when coming to the structure determination of
complexes.

This thesis studies the recognition of macromolecules, to be more specific,
recognition between protein and proteins, through computational method —
protein-protein docking. The focus of this work is investigating the application of
Monte Carlo and Monte Carlo based sampling methods in addressing the
computational protein-protein docking problem. Following the three theoretical
model of protein-protein interaction: key and lock, induced fit and conformational
selection, | have developed three Monte Carlo method based docking protocols, with
each corresponding to a different scenario in docking practice.

Rigid-body docking, stemmed from the key and lock model, commonly applies a
systematic search (enumeration) as used in ZDOCK, or shotgun approach, in which
thousands of independent random-start trajectories minimise the rigid-body
degrees of freedom. I have in Chapter 2 introduced an alternative strategy,
ReplicaDock, using a small number of long trajectories of replica exchange Monte
Carlo to sample putative interaction geometries. I have compared ReplicaDock
sampling the low-resolution stage of RosettaDock with RosettaDock’s original
shotgun sampling as well as with ZDOCK. Better performance is observed for
ReplicaDock and ZDOCK comparing to shotgun sampling while benchmarking.
ReplicaDock and ZDOCK consistently reach lower energies and generate
significantly more near-native conformations than shotgun sampling. Accordingly,
they both improve the CAPRI quality metrics of complex structures also after
refinement. Additionally, I have shown that the refined ReplicaDock ensembles
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reach significantly lower interface energies and many previously hidden features of
the docking energy landscape become visible when ReplicaDock is applied.

Induced fit model justifies the many docking refinement protocols developed in the
community. They carry out minor yet non-trivial adjustments from the primary
predictions from rigid-body docking, achieving optimisation of energy and further
facilitating the discrimination between near native and non-near native
conformations. In Chapter 3 I have explored the efficiency of Monte Carlo based
methods sampling the docking refinement stage with atomistic representation in
Rosetta. Long trajectories are started from a random position with defined deviation
from native conformation and explored with the rigid-body space fairly restricted to
simulate the docking scenario that the binding site is approximately known in
docking practice. Several enhanced sampling techniques, including temperature or
Hamiltonian replica exchange and well-tempered ensemble approaches have been
combined with the Monte Carlo method and were evaluated on 20 protein
complexes using unbound partner structures. The well-tempered ensemble method
combined with a two dimensional temperature and Hamiltonian replica exchange
scheme (WTE-H-REMC) was identified as the most efficient search strategy.
Comparison with prolonged standard MC searches indicates that the WTE-H-REMC
approach requires approximately 5 times fewer MC steps to identify near native
docking geometries compared to conventional MC searches.

In Chapter 4 I have developed a replica exchange Monte Carlo (REMC) ensemble
docking approach in docking engine ATTRACT that allows efficient exploration of
protein-protein docking geometries. In addition to Monte Carlo steps in translation
and orientation of binding partners, possible conformational changes upon binding
are included based on Monte Carlo selection of protein conformations stored as
ordered pre-generated conformational ensembles. The conformational ensembles of
each binding partner protein were generated by three different approaches starting
from the unbound partner protein structure with a range spanning a root mean
square deviation of 1-2.5 A with respect to the unbound structure. Since MC
sampling is performed to select appropriate partner conformations on the fly, the
approach is not limited by the number of conformations in the ensemble compared
to ensemble docking of each conformer pair in ensemble cross docking. Although
only a fraction of generated conformers was in closer agreement with the bound
structure, the REMC ensemble docking approach achieved improved docking results
compared to REMC docking with only the unbound partner structures or using
docking energy minimisation methods. The approach has significant potential for
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further improvement in combination with more realistic structural ensembles and
better docking scoring functions.

In Chapter 5, [ have integrated the prior interacting or non-interacting information
in our canonical Monte Carlo sampling framework in a Bayesian inference fashion. It
suites especially better in the context when the prior data is sparse, of low
resolution or might be ambiguous, erroneous or even conflicting. For comparison, I
have run the same low-resolution replica exchange docking protocol on unbound
docking target 200B, with artificial prior data, which includes both correct and
incorrect information about interacting/non-interacting, used in Bayesian inference
fashion and Rosetta standard constraints. Simulation results demonstrate that the
Bayesian inference approach is most solid and tolerant with the misleading prior
information. Using the prior information as the traditional constraints can be
helpful, but with limited effect when the data is erroneous. The Bayesian inference
approach can nevertheless benefit the most from the correct one among the mixed
information and lead the docking procedure to the correct direction with lower
scores for lower RMSD structures.
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Supplementary Figures
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Figure S1: The distribution of  rotation angles generated by Rosetta's

RigidBodyPerturbNoCenterMover for various "magnitude" parameters. Blue, green, red and cyan
correspond to different input parameters of the magnitude.
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Figure S2: Example of refined decoys overlap with the RelaxedNative ensemble. A) red dots
represent the RelaxedNative ensemble, black dots represent decoys refined from centroid decoys
generated with one of the three methods shotgun, ZDOCK or ReplicaDock. The green lines define the
lower left region and correspond to 50%-tile interface energy and 75%-tile I_rms of RelaxedNatives,
respectively. B) zoomed figure of A).
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Figure S3: Automated setup work flow.
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Figure S4: Detailed analysis of shotgun and ReplicaDock sampling on a bound target 1sq2. A) energy
distribution of shotgun sampling generated low-resolution decoys. B) energy distribution of
conformations sampled by ReplicaDock at respective temperature levels. C-F) Population of sampled
conformations in spherical coordinates. Partner A is fixed at the center and the position of Partner B
with respect to an idealized spherical surface around Partner A is recorded. The native structure is
labeled as white dot (arrow in C). G-]) Conformations are assigned to grid-cells as in C-F, but shown is
the lowest energy of all conformations assigned to the respective grid cell. The same color-scale is
used for each plot of a row, and the colorbars are attached to the rightmost panel.
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Figure S5: Initial survey of temperature selection on bound target 1sq2. Energy distribution of
conformations sampled by ReplicaDock at respective temperature levels.
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Figure S6: Energy distribution of the three temperatures in ReplicaDock for all the benchmark
targets. Blue, green and red correspond to the inverse temperatures 2~ *kcal™!-mol, 37 1kcal™*. mol
and 57 kcal™!. mol. Note that the overall value of the interchain_env term is highly target dependent

(mainly due to system size), such that the position of the energy-peak reflecting non-contacting
conformations changes drastically between targets.
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Figure S7: Frequent exchange between bound and unbound state on target 1ppf. RMSD of the
snapshots of lowest temperature conformations from the sampled trajectory. 3 colors corresponding

to the 3 replicas.
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A energy histogram of each temperature of ReplicaDock
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Figure S8: Different start conformations converge to the same populations. Panel A) and B)
correspond to ReplicaDock trajectories with different start conformations. Each panel is equivalent
to Figure 2.2 of the main text. (first row) energy distribution of conformations sampled by
ReplicaDock at respective temperature level; (second row) population of sampled conformations in
spherical coordinates in respective temperature level; (third row) lowest energy of the
conformations assigned to each grid.
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Figure S9: Fraction of hits in low-resolution decoys with different cutoffs. A) Fraction of hits in top-
2000 low-resolution decoys, B) Fraction of hits in top-5000 decoys, C) fraction of hits in top-20000
decoys. Blue, green and red correspond to shotgun, ZDOCK and ReplicaDock. Shotgun and
ReplicaDock decoys are selected by RosettaDock centroid energy, ZDOCK decoys are selected by
ZDOCK score.
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Figure S10: Interface RMSD vs. Interface Energy after refinement of ZDOCK and ReplicaDock
ensembles. The red dots represent the RelaxedNative ensembles(Results). The interface RMSD is
shown on the x-axis, the interface energy on the y-axis. The same energy range is used for displaying
both, ZDOCK (blue) and ReplicaDock (black), results of each target, respectively. The vertical gray
lines correspond to I_rms of 5.0 &, and the two horizontal gray lines correspond to interface energy -
4 and -8 Rosetta Energy Units.
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Figure S11: Interchain_contact dominates docking centroid energy. A-H) shotgun sampling with
capped low-resolution energy function on bound target 1emv, I-P) shotgun sampling without energy
capping (Section 2.2.1). A-D, I-L) total centroid energy versus each individual centroid energy term,
i.e. interchain_vdw, interchain_contact, interchain_env and interchain_pair in order. E-H, M-P) [_rms
versus each individual centroid energy term. The red circle in M-P) corresponding to the denoted
decoy in Figure 2.7 of the main text. The decoy in E-H) denoted as red circle has similar structure to
the denoted decoy in Figure 2.7 of the main text.

100



Appendix

MC
I_sc

REMC
I_sc

I_sc

|_sc

WTE-H-REMC WTE-REMC

MC
I_sc

REMC
I_sc

I_sc

I_sc

WTE-H-REMC WTE-REMC

1EAW 1KTZ 1PPE 1S1Q
— e o o ETT
‘Q‘g; ) 9. am ,@?@@ & ;@@ .
' ® ﬁr & o OB;-
2 058 o0 R TE @ o e ools ° ° 2 °% °
;ﬁf% Al | " 2,7 g ¢ gt foo
g
- 1 g @ T G < T G o i T
| T AT | e
2AYO 2SNI 3D5S 3SGQ 7CEl
> A el Y
o ¢ ~ &
b | g & L ° > ,.
', ¢ fﬁ ¢ ® iQ
WW e’
¥ i
&) @ 000 CEPOOD Oy %a}p @ ® c;n _:;p@::
B8 Y % o 20" o ~
e | ake i .. # %
L 8 [
L_rmsd (A) L_rmsd (A) L_rmsd (A) L_rmsd (A) L_rmsd (A)

Figure S12. Scatter plot of interaction score (I_sc) vs. ligand RMSD (L_rmsd) for the first 10 targets
after 3x10° MC steps. All the panels have the same L_rmsd range of [0..30], and the same I_sc range of
[-15..0 Rosetta score units]. For each target, the tested protocols are grouped together and the
corresponding protocol is indicated in the score-axis label on the left side. The snapshot number is
color-coded, with dark blue and dark red dots corresponding to decoys sampled at the beginning and
towards the end of the sampling interval, respectively.
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Figure S13. Same as Figure S12 but for the docking searches up to 2x10¢ MC steps.
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Figure S14. Same as Figure S12 but for the docking refinement simulation with 107 MC steps.

103



Appendix

=- 1AY7 1H9D 1HE1 1MQ8
Qo
2 L Pk NP ° B o 20 SE
Eof g ¢ Rt »” § P . T | R e
T E 8
L
S
03 ‘d i ﬁ
|
=- 1RV6 1YVB 2CFH
g 00 m®§m . ;&O @O @ O ‘?0 D Oy
Bl o oe ®0% | e #88 L
%8 " % .
i
= L_rmsd (A) L_rmsd (A) L_rmsd (A) L_rmsd (A) L_rmsd (A)

Figure S15. Scatter plot of interaction score (I_sc) vs. ligand RMSD (L_rmsd) for the additional 10
targets with 3x105 MC steps. For each target, the tested protocols are grouped together and the
corresponding protocol is indicated in the score-axis label on the left side. The snapshots number is
color-coded, with dark blue and dark red dots corresponding to decoys sampled at the beginning and

the end, respectively.
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Figure S16. Same as Figure S15 but for docking searches up to 2x10¢ MC steps.
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Figure S17. Same as Figure S15 but for docking searches with 107 MC steps.
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Figure S18. The evolution of the RT values for the temperature on one example (REMC-ensemble
docking 1A2K). The RT values of the lowest three replicas are generally very stable, the value of the
highest replica normally converges after 80 or less replica exchange attempts. The value of RT of the
highest replica converging to varies from target to target.
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Figure S19. Distribution of interface RMSD (Irmsd) differences between generated models and the
respective starting unbound structure. Irmsd is calculated with native bound structure as reference,
using all-atom and only Ca-atom respectively.
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Figure S20. Irmsd of the generated models from the respective bound partner. The black line is the
Irmsd of the unbound structure from the respective bound partner. Data of models generated for
ROSETTA backrub are shown in blue, for MD simulation are in green, and for normal mode
deformation are in red.
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Figure S21. ATTRACT score versus interface RMSD (Irmsd) for REMC sampled results on targets 7CEI
and 1WE].
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Figure S22. Full scatter plot of Irmsd against ATTRACT score on the 10 cases which has failed to
identify the native bound position when native bound partner included in REMC-ensemble docking.
Results from REMC-ensemble-40 and REMC-ensemble-39 are shown in blue and green. The Min-
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native-bound are shown as red circle with cross. The red horizontal line indicates the energy of the
Min-native-bound.

Supplementary Tables

1 2 3 4 5 6 7 8 9 10 11 12

1a2k AB:C lgy6 AB:AB 100 1.32 1.6 3ran A:C 99.54 132 2.15
la2y AB:C Ivfa  AB:AB 100 0.68 1.8 3lzt A:C 99.22 1.3 0.93

lacb E:I lget AE 9837 033 1.6 legl Al 97.78 131 2
1bvn P:T 1hx0  A:P 98.19 0.64 1.38 1lhoe A:T 100 0.45 2
Icse E:I Iscn  E:E 100 0.3 1.9 legl Al 100 1.21 2
1e96 AB Imhl A:A 9891 0.72 1.38 1hh8 A:B 99.51 0.63 1.8
1f7z Al ldpo A:A 99.55 0.33 1.59 Spti Al 100 0.32 1
1fm9 D:A lzgy A:D 100 1.13 1.8 2plt A:A 100 0.74 1.8
1fqj AB Itnd C:A 914 054 2.02 1fqi AB 100 145 1.94
1jps LH:T 1jpt LH:LH 100 1.02 1.85 1boy A:T 100 133 22
1mlc AB:E Imlb AB:AB 100 093 2.1 3lzt A:E 100 0.75 0.93

1nby AB:C ldqq CD:AB 100 0.73 1.8 3lzt A:C 99.22 144 093
loph A:B Iqlp A:A 97.72 1.19 2 2ayw A:B 99.55 033 097

lppe  EiI Ibtp AE 974 043 22 10 Al 96.6 0.44 1.03
Ippf  Eil 2rg3  AE 100 039 1.8 2gkr LI 100 05 1.16
1ror  EiI lscn  E:E 100 032 19 2gkr LI 100 0.62 1.16
1t6b XY lacc A:X 9986 143 21 1Ishu XY 100 059 1.5
1tmq A:B lige  A:A 100 039 165 Ilblu A:B 99.15 098 2.2

1tx4 A:B Irgp  A:A 99.49  0.69 2 1lkmq A:B 99.43 043 1.55
1v7p AB:C lukm AB:AB 100 0.64 19 1dzi A:C 99.46 0.67 2.1

1wql GR Iwer A:G 100 0.97 1.6 2ce2 X:R 98.8 1.23 1
125y D:E 116p  A:D 99.2 1.15 1.65 2blk A:E 99.3 1.06 1.9
2a42 A:B 2fxu  A:A 100 0.82 135 2dnj A:B 100 04 2
2a5t A:B Ipb7  A:A 100 0.59 135 2a5s A:B 100 1.06 1.7
2b42 A:B Itee  X:A 99.48 0.56 1.7 1xnb A:B 100 1.02 1.49
2bnq DE:AB 2bnu AB:DE 99.76 1.13 1.4 1i4f AB:AB 100 1.14 1.4
2hle A:B 2bba  A:A 100 148 1.65 liko P:B 100 0.86 1.92
2mta HL:A 2bbk  JM:HL 975 037 1775 2rac  A:A 100 0.62 1.3
200b B:A lyjl A:B 100 0.87 1.3 200a A:A 100 0.6 1.56
2pav A:P 2fxu  A:A 100 1.07 135 1fil A:P 100 0.81 2

Table S1: Targets in the benchmark set. Columns 1-2 are co-crystallized structure. Columns 3-7 are
unbound structure of the first binding partner, and columns 8-12 are unbound structure of the
second binding partner.

Column1: pdb code of co-crystallized structure.

Column 2: interacting chains of co-crystallized structure, separated by colon.

Column 3: pdb code of unbound structure of the first binding partner.

Column 4: chains before colon are in unbound structure, chains after colon are in co-crystallized
structure. Column 5: sequence indentity between unbound and co-crystallized structure of the
first binding partner.

Column 6: C,-rmsd of unbound and co-crystallized structure of the first binding partner.

Column 7: crystal structure resolution.

Column 8: pdb code of unbound structure of second binding partner.

Column 9: chains before colon are in unbound structure; chains after colon are in co-crystallized
structure.

Column 10: sequence indentity between unbound and co-crystallized structure of second binding
partner.

Column 11: C,-rmsd of the unbound and co-crystallized structure of second binding partner.
Column 12: crystal structure resolution.
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shotgun refined ZDOCK refined ReplicaDock refined
Target CQ ! L_ I_ f;lat f;lonn CQ ! L_ I_ f;lat f;lonn CQ ! L_ I_ f;lat f;lonn
rms  rms o rms  rms o rms  rms e
la2k 0 340 142 0.021 077 0 203 11.1 0.000 1.00 O 30.0 123 0.146 1.72
1a2y 0 139 8.0 0.023 1.02 0 229 6.9 0.068 145 0 18.1 10.7 0.068 1.04
lacb 0 175 7.6 0.014 0.66 * 9.81 3.8 0.145 0.89 ** 487 2.70 0.333 0.58
1bvn 0 17.8 7.6 0.068 0.75 0 14.7 6.1 0.110 1.01 * 472 248 0274 0.78
lcse 0 176 7.9 0.013 122 0 189 7.8 0.000 0.82 * 124 390 0.241 0.54

1e96 27.5

0 31.8 17.7 0.000 1.17 0 2 145 0.000 195 O 27.7 7.01 0.000 1.95
17z 0 156 53 0.098 0.62 0 144 373 0.066 1.06 0 177 4.16 0.197 0.83
1fm9 0 479 19.0 0.000 0.68 0 55.1 20.0 0.000 0.72 0 38.0 184 0.000 1.13
1fqj 0 31.7 157 0.000 121 O 31,5 146 0.000 1.15 0 276 11.8 0.000 2.25
1jps 0 372 103 0.000 097 0 33,5 158 0.000 098 0 453 16.8 0.000 1.15
1mlc 0 222 88 0.036 073 O 268 688 0.054 096 O 564 15,5 0.000 2.19
Inby 0 25,5 142 0.000 081 0 199 106 0.041 0.75 0 48.0 18.6 0.000 1.31
loph 0 379 128 0.000 1.01 0 253 5.16 0.032 098 O 194 4.60 0.145 0.93
1ppe *¥kx 265 095 0.746 0.08 *** 176 0.79 0.761 0.19 *** 211 0.88 0.775 0.11
1ppf k% 2069 094 0824 0.19 ** 357 1.12 0.824 0.27 *** 289 0.99 0.745 0.25
1r0r 0 175 63 0.000 080 * 103 276 0394 042 0 146 481 0.167 0.66
1t6b 0 182 87 0.046 096 0 263 141 0.077 0.61 O 424 145 0.000 1.16
1tmgq 0 19.8 11.8 0.026 0.77 ** 494 143 0579 044 ** 445 136 0.618 0.51
1tx4 0 30.8 13.7 0.000 0.73 0 283 124 0.031 095 O 221 11.1 0.062 1.20
1v7p 0 232 113 0.048 1.04 0 239 862 0.145 1.08 0 23,5 11.8 0.048 1.29
1wql 0 224 96 0.011 0.69 O 162 7.67 0.165 0.62 0 11.5 6.87 0.011 1.01
1z5y * 412 192 0273 042 * 6.18 322 0333 050 0 10.0 4.83 0.288 0.51
2a42 0 37.6 109 0.021 1.18 0 433 116 0.042 1.16 O 434 149 0.000 1.95
2aSt 0 31.0 16.0 0.034 127 0 163 848 0.017 128 0 21.3 102 0.000 1.28
2b42 0 29.0 127 0.000 0.61 * 9.28 4.15 0.157 0.74 O 17.6  7.31 0.079 0.73
2bnq 0 36.7 149 0.000 131 0 655 241 0.000 175 0 62.5 242 0.000 2.90

2hle 10.2

0 249 107 0.000 0.77 * 6.63 291 0464 040 O 36.6 8 0.083 0.61
2mta * 725 334 0457 063 ** 10.1 252 0543 056 0 21.0 897 0.000 1.17
200b 0 10.6 5.7 0.111 0.66 0 203 527 0.074 0.77 O 153 9.22 0.000 0.88
2pav 0 18.6 104 0.000 0.87 ** 335 145 0509 033 0 469 119 0.000 1.40
summ

Table S2: summary of structure prediction accuracy in unbound docking. Clusters are ranked by the
median of its top 10 interface energies and represented by the lowest interface energy decoy. In
column 'CQ" (CAPRI Quality), '0' indicates that none of the top 10 models was of accetable quality, "*,
"**"and "***' indicates that at least one of the top 10 models is of acceptable, medium or high quality,
respectively (Section 2.3.7). Columns 'L_rms', 'I_.rms', 'fuet" and 'fuonnat' record the respective
information of the best model within these top 10 models. 1 CQ refers to CAPRI quality

111



Appendix

Target  Exchange rate

la2k 0.2404
la2y 0.2394
lacb 0.2504
1bvn 0.2396
lcse 0.2423
1e96 0.2432
17z 0.2467
1fm9 0.2578
1fqj 0.2542
1jps 0.2448
Imle 0.2471
1nby 0.2553
loph 0.2564
1ppe 0.2687
1ppf 0.2737
1r0r 0.2586
1t6b 0.2566
1tmq 0.2521
1tx4 0.2474
1v7p 0.2582
1wql 0.2427
1z5y 0.2513
2a42 0.2553
2aSt 0.2515
2b42 0.2494
2bnq 0.2678
2hle 0.2394
2mta 0.2385
200b 0.3399
2pav 0.2498

Table S3: Average exchange rate between temperature levels across the tested benchmark.

Supplementary Methods

Method S1: protocol_capture/rosetta_dock/centroid

# RosettaDock' shotgun approach sampling in low-resolution stage

# COMMANDLINE :
$ROSETTA3_BIN/docking protocol.mpi.linuxgccrelease \
-out:file:silent S$DECOYS.out
-database $ROSETTA3_DB
-docking:randomizel -docking:randomize2
-low_res_protocol_only
-nstruct $SNSTRUCT
-in:file:native $PROTAB.pdb
-score:weights interchain_cen
-in:file:s $P.pdb
-partners $CHAIN1_ $CHAIN2

About 120000 decoys for each target are generated in the low-resolution stage with
RosettaDock's shotgun approach. For analysis and refinement we take the lowest 36% of
decoys by energy and filter out interchain_contact > 10. An example decoys file is given in
/protocol_capture/2012 /replica_docking/example_runs/rosetta_dock/udock_1bvn/run/de
coys.out
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With this decoy selection would look like this:

# get the tags of the selected decoys. 50 decoys in all in this example
file, so select 50*0.36=18 decoys for analysis and refine
for i in $(ls decoys_000?.out); do echo $i; cat $i | grep SCORE: >> decoys.fsc;
done

scripts/silent data.py decoys.fsc score interchain contact description | awk
'$2<=10{print}' | sort -n -k 1 | head -n 18 | awk '{print $3}' > tag_low

# extract the selected decoys from decoys.out
for i in $(1ls decoys_000?.out); do echo $i; scripts/extract_tagged decoys.py $i
tag _low > low_$i; done

Method S2: protocol_capture/replica_dock/centroid

ReplicaDock is run with RosettaScripts. The temperature levels used are 2.0, 3.0 and 5.0.
For each target, 4 trajectories with 3 replicas each are run. The trajectory is 5000,000
Monte-Carlo steps and snapshots are stored every 1000 steps. That is for each target
ReplicaDock generates 3*4*5e+6/1000=60000 decoys. Decoys with interchain_contact
<=10 are selected from the lowest two temperatures (2.0 and 3.0), which makes about
36000 decoys for each targets.

To run ReplicaDock, MPI-mode is required. Please note that specific numbers of
processors have to be used: calculate number of processes using the formula: nstruct *
n_replica + 2. The extra 2 processes are dedicated to the job distributor and File IO.
n_replica is the number of temperature levels (here 3), and nstruct can be any positive
integer. ReplicaDock outputs the trajectory in the form of two silent-files: one containing
decoy+score information (name: decoys_<input_pdb>_nnnn_traj.out), and the second file is
a copy of just the score information (scores_<input_pdb>_nnnn_traj.out). Decoytags are of
the form P_tttt_rrr_ssssssss where tttt informs about trajctory number, rrr about the replica,
and ssssssss about the snapshot number within the trajectory. The temperature levels are
switched between different replicas. The current temp_level or temperature of a replica at
the moment a decoy was recorded is found in the score-columns temp_Ilevel and

temperature.

At the end of a trajectory the final decoy is written to the file 'decoys.out’; this file is a
relict of using the JD2-framework and can be ignored. Additionally, the file 'trial.stat' is
produced which gives information about acceptance rates in each temperature level.

# ReplicaDock sampling in low-resolution docking

# COMMANDLINE :
$ROSETTA3_BIN/rosetta_ scripts.mpi.linuxgccrelease \
-database $ROSETTA3_DB
-parser:protocol dock cen.xml
-n_replica 3
-run:intermediate_structures
-out:file:silent decoys.out # store final decoys, which can be
# ignored.
-out:file:scorefile scores.fsc
-nstruct 4 # 4 trajectories running
-partners $CHAIN1_ $CHAIN2
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-in:file:native $PROTAB.pdb
-in:file:s $P.pdb
-score:weights interchain_cen

# ReplicaDock SUPPORT FILES:

# RosettaScripts file dock cen.xml

<dock_design>

<SCOREFXNS>

<score_dock_low weights="interchain_cen" />

</SCOREFXNS>

<FILTERS>

</FILTERS>

<MOVERS>

# sampling in low-resolution stage, thus switch2centroid
<SwitchResidueTypeSetMover name=switch2centroid set=centroid/>

# unbiased rigid-body move. Constant parameter for step size, alternatively
use dock cen inter.xml, which interpolates the parameter based on temperature
level.

<ThermodynamicRigidBodyPerturbNoCenter name=rb mover rot mag=l
trans_mag=0.5/>

# setup jumps via fold tree, store movable jump into RigidBodyInfo
<DockSetupMover name=setup_jump/>

# very loose AtomPair constraint between closest-to-mass-center Ca-atoms
<AddEncounterConstraintMover name=encounter_ cst gap=8/>

# randomly reorient the two docking partners
<DockingInitialPerturbation name=init_pert randomize2=1 randomizel=1l />

# sampling engine

# acceptance rate recorder, write to file 'trial stats' at the end
<TrialCounterObserver name=count file="trial.stats"/>

# temp file contains the temperature configurations. exchange between
neighbor temperatures is attempted every 1000 steps. No specific reason for
using HamiltonianExchange mover instead of ParallelTempering, only because I
started with it and it works as well for temperature only exchange.

<HamiltonianExchange name=h_exchange temp_ file="hamiltonians_cen.txt"
temp_stride=1000/>

# take snapshots every 1000 steps and write the snapshots into a trajectory
silent file

<SilentTrajectoryRecorder name=traj score_stride=1 stride=1000
cumulate_replicas=1 />

# normally use trials=5000,000. Empirically, it is enough for converge.
<MetropolisHastings name=sampler trials=5000000 scorefxn=score dock low >
<Add mover_name=h_exchange/>
<Add mover_name=traj/>
<Add mover_name=count/>
<Add mover_name=rb_mover/>
</MetropolisHastings>

</MOVERS>

<APPLY TO POSE>

</APPLY_TO_POSE>

<PROTOCOLS>
<Add mover name=switch2centroid/>
<Add mover name=setup_jump/>
<Add mover_name=encounter_cst/>
<Add mover_name=init_pert/>
<Add mover name=sampler/>

</PROTOCOLS>

</dock_design>
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# temperatures configuration file "hamiltonians cen.txt"
GRID DIM 1
GLOBAL_PATCH atom_pair_constraint = 5 # set atom_pair_constraint weight to 5
# for all replicas
interchain cen # define temp and score of replicas
interchain cen
interchain cen

w N =
U wN
« e e
o o o

For analysis and refinement, decoys are selected as follows:

# get the tags of the selected snapshots
cat scores_P 000*fsc > scores_traj.fsc

scripts/silent_data.py scores_traj.fsc temperature interchain_ contact
description | awk '$1<4&&$2<=10{print $3}' > tag low

# extract selected decoys from the trajectory silent file
for i in $(ls decoys_P 000?_traj.out); do echo $i;
scripts/extract_tagged decoys.py $i tag low > low_$i; done

Method S3: protocol_capture/rosetta_dock/refine

Refinement of low-resolution ensemble is carried out with standard parameters. If
disulfide bonds are present in the unbound structures, extra flags are added:

-detect_disulf true -rebuild disulf true -fix disulf $DISULF_FILE

# COMMANDLINE:
$ROSETTA3_BIN/docking_protocol.mpi.linuxgccrelease \
-database SROSETTA3_DB
-evaluation:rmsd IRMS _input FULL
-in:file:native SPROTAB.pdb
—-docking local_ refine
-exl1
-ex2aro
-nstruct 1
-score:weights docking
-use_input_sc
—-unboundrot SPROTAB.pdb

-detect _disulf true # these three disulf related flags used
-rebuild disulf true # only if disulfide bonds are present
-fix disulf $DISULF_FILE # in the unbound structures

-in:file:silent $SELECTED LOW_RES.out
-out:file:silent SREFINED.out

Method S4: protocol_capture/replica_dock/refine

Refinement of low-resolution ensembles from ReplicaDock as well as ReplicaDock-LoT
are done using exactly the same protocol as refinement of low-resolution ensemble from
shotgun approach.

Method S5: protocol_capture/relax_native

Using the same refinement protocol as for refinement of low-resolution ensembles, we
generated the RelaxedNative ensembles starting from the superimposed reference
structure with 1000 decoys for each target.

# COMMANDLINE:
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$ROSETTA3_BIN/docking protocol.mpi.linuxgccrelease \

-database $ROSETTA3_DB

-evaluation:rmsd IRMS _input FULL

-in:file:native $PROTAB.pdb

-docking local_refine

-ex1

-ex2aro

-nstruct 1000 # generate 1000 decoys as RelaxedNative for
# each target

-score:weights docking

-use_input_sc

-unboundrot $PROTAB.pdb

-detect_disulf true
-rebuild disulf true

-fix disulf $DISULF FILE

-in:file:s $PROTAB.pdb # start from the superimposed structure
-out:file:silent SREFINED.out

Method S6: Flags in commandlines in Method S1-S5

Here we list out the explanations for the flags mentioned in Method S1-S5 as follows.

flags interpretation

-out:file:silent specify the filename of output silent file

$DECOYS.out

-database $ROSETTA3_DB | specify the directory of your rosetta database

-docking:randomizel randomizel and randomize2 using together to do

-docking:randomize?2 global docking

-low_res_protocol_only low-resolution stage only with RosettaDock --- shotgun
sampling

-nstruct SNSTRUCT specify how many decoys to generate

-score:weights centroid docking energy function

interchain_cen

-partners specify the docking partners, for example "AB_C"

$PARTNER1_$PARTNER2 | means docking chain C to chain AB, and keep chain AB
rigid

-evaluation:rmsd evaluate the Ca-RMSD for the entire structure

IMRS_input FULL

-docking local_refine only do refinement with RosettaDock

-ex1 -ex2aro adding extra sidechain rotamers

-use_input_sc Use accepted rotamers from the input structure
between Monte-Carlo with Minimization (MCM) cycle

-unboundrot use unbound rotamers

$PROTAB.pdb

-detect_disulf true these three flags are added if disulfide bonds are
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-rebuild_disulf true
-fix_disulf $DISULF_FILE

present in the unbound structures. in $DISULF_FILE
residue pairs forming disulfide bonds are specified, like
ll28 35"

$TARGETLIB protocol_capture/2012/replica_docking/dock_targetlib

$PROTAB.pdb PDB-file with unbound partners superimposed onto
the bound complex, used as the reference structure for
RMSD related calculation

$P.pdb PDB-file with the two binding partners in
$PROTAB.pdb fully randomized, used as the start
conformation to avoid initial bias

-n_replica number of replicas, need to be consistent with the

number of  temperature levels in file
hamiltonians_cen*.txt

Method S7: Automated Setup

All the production runs of the benchmark in this work are generated with the

automated setup tools available with the CS-Rosetta toolbox(www.csrosetta.org). The

workflow of this automated setup is shown in Figure S12. Methods for docking used in this

work are included in the folder under

protocol_capture/replica_docking/csrosetta3/flag_library/methods/, i.e. _docking_base,

rosetta_dock and replica_dock. To run this toolbox, a minmal installation is required as

detailed below.

To install:

# go to the directory

cd /csrosetta3/

# check all the options available for the installation

install.py -h

# use option -nopicking since fragment picking is not required for docking,
and provide path to ROSETTA as follows
install.py -nopicking -rosetta ~/rosetta -rosetta_database

~/rosetta/rosetta_database

# You will see some installation information. Finally you should see
'created symlink /home/zhezhang/csrosetta3/com/init.bashrc -->
/home/zhezhang/csrosetta3/com/init' with /home/zhezhang/ replaced by your own
user directory. To use the toolbox in your shell run
source /home/zhezhang/csrosetta3/com/init
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setup targets library

This step assembles target related input files to build the target library (Figure S12). By
default the library is stored in ~/cs_targetlib. You can also specify a directory using flag '-
target_prefix' as follows. Absolute path is recommended for '-target_prefix'.

# Setup a target for rosetta dock
setup_target -method rosetta_dock -target udock_lbvn -target_prefix
$TARGETLIB_DIR -disulf disulf file -native protAB.pdb -pdb P.pdb -partners
partners

# Setup a target for replica dock either explicitly using
setup target -method replica dock -target udock_ lbvn -target prefix
$TARGETLIB_DIR -native protAB.pdb -pdb P.pdb -partners partners

# or copying the inputs from a previously prepared 'rosetta dock' setup as
follows:
setup target -method replica dock -target udock_ lbvn -target prefix
$TARGETLIB_DIR -transfer method rosetta_dock

setup runs

This step creates a run-ready directory as specified with flag -dir’, in which job-scripts,
input files, RosettaScripts-xml as well as flag files are contained. For flag '-dir’, absolute path
is recommended. For job scripts, you can use different types (e.g. moab) according to your
queuing system, as shown in Figure S12. I will keep slurm (-job slurm) here as example.

For single-machine/interactive use, you can simply specify with flag '-job interactive’
when setup the run, then start the running under the corresponding run/ directory using
'source production.interactivejob -n $Np' with $Np specifying the processor numbers.

# setup a run of ReplicaDock in queuing system
setup_run -method replica_dock -target udock_ lbvn -target_prefix $TARGETLIB_DIR
-dir $TEST_REPLICA_DIR -job slurm -extras mpi -score interchain_cen -nstruct 1
-protocol rep cen -xml uniform -n_replica 3

# rosetta dock's shotgun sampling in low-resolution stage
setup_run -method rosetta_dock -target udock_ lbvn -target_prefix $TARGETLIB_DIR
-dir $TEST ROSETTA_DIR -job slurm -extras mpi -protocol centroid -batches 2
-score interchain_cen -nstruct 100

# refine decoys sets
setup_run -method rosetta_dock -target udock_ lbvn -target_prefix $TARGETLIB_DIR
-dir $TEST REFINE DIR -job slurm -extras mpi -protocol refine -pattern
"low_decoys_*out" -prefix refine -score docking -nstruct 1 -start
SABSOLUTE_PATH OF FOLDER_FOR_DECOYS

# refine protAB.pdb to generate relaxNative ensemble
setup_run -method rosetta_dock -target udock_ lbvn -target_prefix $TARGETLIB_DIR
-dir $TEST_RELAX NATIVE_DIR -job slurm -extras mpi -protocol refine -out
relax_native.out -score docking -nstruct 1000

change/add file in /jobtemplates

You can easily modify the jobtemplates for use with your own queuing system. Shown
here is a job template for slurm. The $CM_ variables are replaced by the automatic setup
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tool when run setup_run. #SBATCH and $SLURM_ are specific to SLURM queuing
environment.

#!/bin/bash -x
#SBATCH -J csrosetta
### start of jobscript

NSLOTS=$SLURM_ NTASKS
module load openmpi/gcc

LOGS=logs_~echo $SLURM JOB_ID | awk -v FS="." '{print $1}'"
mkdir -p $LOGS

## have NSLOTS - 3 worker processes -- determines number of structures per
generation...

NSTRUCT="echo $NSLOTS | awk '{print $1-3}'"

echo "running on $NSLOTS cpus ..."

EXE=$CM_EXECUTEABLE.$CM EXEC_EXT

CMDLINE="-out:level 300 -mute all_high mpi_rank_filebuf -out:mpi_tracer_to_ file
$LOGS/log -database $CM_ROSETTA DATABASE $CM_COMMANDLINE"
CYCLES=$CM_AUTO_NSTRUCT

$MPI_RUN -n $NSLOTS $EXE $CMDLINE $CYCLES
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