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Summary

When observations are curves over some natural time interval, the field of functional
data analysis comes into play. The curves are considered to be elements of an infinite-
dimensional Hilbert space, often the space of square integrable functions on the unit
interval. In this thesis, the case where the observed curves are dependent in time is
of interest. The temporal dependence between different curves is modelled with so
called functional linear processes (FLP).

A special case of these FLPs is considered in the first part of the thesis, where the
focus is on functional ARMA processes of order (p, q). Sufficient conditions for the ex-
istence of a unique stationary solution to the model equations are derived. It is then
shown that a FLP can naturally be approximated by a vector ARMA(p, q) model
by applying the concept of functional principal components. The finite-dimensional
stationary vector model is used to predict the functional process, and a bound for
the normed difference between vector and functional best linear predictor is derived.
Finally, functional ARMA processes are applied for the modelling and prediction of
highway traffic data.

The second part of the thesis is more technical. In this part the existence of
the best linear predictor of a functional time series is investigated on a popula-
tion level. The infinite dimensionality makes the problem of finding the best linear
predictor of a FLP non-standard and difficult. By the construction of a sequence
of increasing nested subspaces of the underlying Hilbert space, the well-known In-
novations Algorithm from multivariate time series analysis is adapted to function
spaces. Depending on the decay rate of the eigenvalues of the covariance and the
spectral density operator, the resulting predictor converges with a certain rate to
the theoretically best linear predictor. Several side results characterize subprocesses
of functional linear models and special attention is paid to the interesting class of
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functional MA models.
The third part of the thesis continues this line of research by proposing a first

methodologically sound approach to estimate invertible functional time series by
fitting functional moving average processes. In a finite sample setting, the concept
of weak dependence of functional time series is used to consistently estimate the
covariance operators of the FLP. Then conditions are derived such that the func-
tional Innovations Algorithm, introduced in the second part of the thesis, provides
estimators for the coefficient operators of a functional moving average model. The
consistency of the estimators is derived in two different settings: first the sequence
of increasing nested subspaces needed for the construction of the Innovations Algo-
rithm is assumed to be known. Later on the proof is generalized to the case where
the sequence has to be estimated. Different criteria for model selection are intro-
duced and compared in a simulation study. In a real data example, highway traffic
is investigated to compare the performance of our Innovations Algorithm estimator
to known methods for the estimation of FMA(1) models.
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Zusammenfassung

Der Bereich der funktionalen Datenanalyse kommt zur Anwendung wenn Beobach-
tungen als Kurven über ein natürliches Zeitintervall gesehen werden können. Die
Kurven werden als Elemente eines unendlichdimensionalen Hilbert-Raumes inter-
pretiert. Oftmals wird hierfür der Raum der quadratischen integrierbaren Funk-
tionen auf dem Einheitsintervall verwendet. Diese Arbeit beschäftigt sich mit dem
Fall, bei dem die beobachteten Kurven zeitlich voneinander abhängen. Die zeitliche
Dynamik der Kurven wird mit funktionalen linearen Prozessen (FLP) modelliert.

Ein spezieller Fall dieser FLP wird im ersten Teil der Arbeit betrachtet, wo
der Fokus auf funktionalen ARMA-Prozessen der Ordnung (p, q) liegt. Es werden
Bedingungen für die Existenz einer eindeutigen stationären Lösung der ARMA-
Modellgleichungen hergeleitet. Weiterhin wird gezeigt, dass ein FLP durch ein
Vektor-ARMA(p, q) Modell in natürlicher Weise angenähert werden kann. Dabei
wird das Konzept der funktionalen Hauptkomponentenanalyse angewendet. Das sta-
tionäre Vektormodell wird anschließend verwendet, um eine Prognose für den funk-
tionalen Prozess aufzustellen. Es wird gezeigt, dass die normierte Differenz zwischen
dem linearen Prädiktor, basierend auf dem Vektormodell, und dem besten funk-
tionalen linearen Prädiktor eine obere Schranke besitzt. Schließlich werden funk-
tionale ARMA-Prozesse zur Modellierung und Vorhersage von Autobahnverkehrs-
daten genutzt.

Im zweiten Teil der Arbeit wird die Existenz des besten linearen Prädiktors einer
funktionalen Zeitreihe in Hilberträumen untersucht. Die Suche nach dem besten lin-
earen Prädiktor eines FLP ist schwierig, da der zugrundeliegende Funktionenraum
unendlichdimensional ist. Durch den Aufbau einer Folge von monoton wachsenden
Unterräumen des Hilbertraums wird der Innovationsalgorithmus, welcher aus der
multivariaten Zeitreihenanalyse bekannt ist, an Funktionenräume angepasst. Die
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Anwendung Innovationsalgorithmus führt zu einem linearen Prädiktor für FLPs.
Unter Bedingungen an die Eigenwerte des Kovarianz- und des Spektraldichteoper-
ators konvergiert dieser mit einer explizit gegebenen Rate gegen den theoretisch
besten linearen Prädiktor . Weitere Ergebnisse charakterisieren endlichdimensionale
Projektionen von funktionalen linearen Prozessen. Insbesondere wird die interes-
sante Klasse der funktionalen Moving-Average-Modelle untersucht.

Der dritte Teil der Arbeit setzt diese Forschungsrichtung fort und schlägt einen
ersten fundierten Ansatz zur Schätzung von invertierbaren FLPs vor. Das Konzept
der schwachen Abhängigkeit von funktionalen Zeitreihen wird verwendet, um konsis-
tente Schätzer der Kovarianzoperatoren eines FLP zu erhalten. Anschließend wer-
den Bedingungen hergeleitet, sodass der im zweiten Teil eingeführte funktionale
Innovationsalgorithmus Schätzer für die Koeffizientenoperatoren eines funktionalen
Moving-Average-Modells liefert. Die Konsistenz der Schätzer wird in zwei Fällen
bewiesen: Zunächst wird die Reihe der monoton wachsenden Unterräume, die für
die Konstruktion des Algorithmus benötigt wird, als bekannt vorausgesetzt. Im An-
schluss wird der Beweis verallgemeinert. Unterschiedliche Kriterien für die Model-
lauswahl werden eingeführt und in einer Simulationsstudie und mit Autobahn-
verkehrsdaten verglichen, und die Schätzer auf ihre Genauigkeit getestet.
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Introduction

Time series analysis

Whenever measurements are recorded repeatedly over time, the resulting dataset is
referred to as a time series. Early examples of such recordings go back to measure-
ments of the height of the Nile river, which has been reported annually since 622.
Nowadays time series can be found in any domain of applied science that involves
temporal measurements. Common examples include stock price returns, tempera-
ture or rainfall data, vehicle traffic flow and particle concentration or pollution data,
just to name a few.

Theoretical developments in modern time series analysis started in the beginning
of the last century. Since then stochastic movements are no longer merely regarded
as residuals without significance for the future structure of the process. The modern
approach rather assumes that stochastic impacts influence all components of a time
series. An observed time series is since then seen as a realization of a data generating
process (Kirchgässner et al. [33], Chapter 1). First attempts in this direction were
made in the 1920s and 1930s by Yule and Slutzky. Wold systematised their work
in his thesis [56], introducing the autoregressive moving average (ARMA) model
to describe stationary time series. It took until the 1970s before G.E.P. Box and
G.M. Jenkins published the classic book Box and Jenkins [12], which contained the
first full modelling procedure for univariate time series. This led to a widespread
application of modern time series analysis, and is still used and known as the Box-
Jenkins method. From thereon the field of time series analysis developed quickly
with generalizations from univariate linear stationary time series to more and more
complex models. Important reference books include Brockwell and Davis [13] for
a systematic account of linear time series models, Hamilton [22] for a theoretical
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introduction to traditional time series analysis combined with a review of more
recent research, Hannan [23], Lütkepohl [39] and Tsay [53] for an introduction to
multivariate time series, Shumway and Stoffer [49] for an overview on the use of
recursive computation in the state space model, and Priestley [46] for an introduction
to the spectral analysis of time series.

Since the beginning of this century, as noted for example in a survey in Tsay [52],
an important driving force of research are advances in high-volume data acquisition.
In fact, the advent of complex data challenges traditional time series techniques and
requires the development of modern statistical technology (for example Jacod and
Protter [31]). One option is the use of functional data analysis.

Functional data analysis

In recent years functional data analysis has established itself as an important and
dynamic area of statistics. Functional data come in many forms, but it always con-
sists of functions, often smooth curves. In some cases, the original observations are
interpolated from longitudinal data, in other cases data are curves observed on a
surface or in space. Quite regularly functional data are collected sequentially over
time, and the different curves of functional observations are obtained by separating
a continuous time record into disjoint natural time intervals, for example hours, days
or years. One often anticipates that the recorded curves show similar shapes. These
similarities may then be useful to the statistician in terms of complexity reduction.

One then assumes that the curve, say X(t), t ∈ [0,1], is the representation of a
random variable taking values in a function space. The parametrization t ∈ [0,1] is
standard in functional data analysis but can easily be generalized. Useful function
spaces are the Hilbert space L2[0,1], the space of square integrable functions on
[0,1], and C[0,1], the space of continuous functions on [0,1]. A key fact in functional
data analysis is that one is dealing with infinite-dimensional objects. Therefore, most
of the techniques known from multivariate data analysis cannot be directly applied.

Literature on functional data analysis is growing quickly. Ramsay and Silverman
[47] and [48] offer an introduction to and applications of functional data analysis,
Hsing and Eubank [29] furnishes theoretical foundations and an introduction to
functional linear regression models, and an overview of recent developments is given
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in Ferraty and Romain [17] and Ferraty and Vieu [18].

Functional time series

All the above references have in common that they treat the functional observations
as independent. However, in the case of sequentially recorded observations, this
assumption may not hold. For instance, a return curve of some financial asset on
day i is very likely to depend on the curves on days i− j for j < i, where i and j are
natural numbers.

As an example, Figure 1 shows how discretely observed data-points can be seen
as functional observations. The plot shows highway traffic speed data observed at a
fixed point on a highway. The recordings are measured every minute over six months,
but instead of treating them as individual data points, the dataset is split up in days,
and each day is considered as one datapoint consisting of a curve.

Figure 1: Raw and functional highway traffic speed data on 100 consecutive workings days
in 2014
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The topic of dependent functional data is quickly developing. The pioneering
work of Bosq summarized in Bosq [8] is the most important reference to this thesis.
It introduces the functional autoregressive process, develops estimation of its second
order structure and derives conditions for consistency of estimators of the model
parameters.

Frequency domain approaches have seen a quick rise in popularity in functional
time series analysis since Panaretos and Tavakoli [44] introduced functional Fourier
analysis based on functional cumulant conditions. As in multivariate time series
analysis, functional frequency domain techniques may facilitate the understanding
of temporal dependence in infinite-dimensional function spaces, as can be seen by
the definition of dynamic functional principal components in Hörmann et al. [25]
and Panaretos and Tavakoli [45]. Furthermore the frequency domain allows for the
development of tests for stationarity (Aue and Delft [2]) or periodicity (Hörmann
et al. [26]).

In the time domain analysis of functional time series, key references include
Hörmann and Kokoszka [24] who developed a theoretical framework to describe
a weak dependence concept of stationary functional time series, allowing to prove
fundamental limit results in a general setting. Furthermore Aue et al. [5] developed a
prediction technique for functional time series. This is a key publication as it builds
a bridge between known tools from multivariate time series analysis and techniques
from functional data analysis.

Time domain approaches often rely on functional principal component analysis
(PCA) (see Horvàth and Kokoszka [27], Chapter 3) as the key tool in functional
data analysis. Analogously to its multivariate counterpart, functional PCA relies on
a decomposition of the variability of functional observations into principal directions.
The principal directions are orthogonal functions, each explaining a proportion of the
total variability of the data. It can be shown that, for independent and identically
distributed data, a PCA yields the optimal finite-dimensional representation of a
functional object in the L2-norm.

The most intuitive link between multivariate time series analysis and func-
tional data is therefore to use PCA to project the infinite-dimensional curves on
a d-dimensional subspace and to then use the isometric isomorphy between d-
dimensional Hilbert spaces and Rd. As soon as data is represented as vectors in
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Rd, the entire literature on multivariate time series can be used (see Aue et al. [5]).
However, there is a drawback. The subspace generated by the first d principal direc-
tions is a good choice in terms of representing the variability of the process, but it
may not capture the dependence of the process. Principal directions not explaining
much variability might still be relevant in terms of capturing the dependence of
the model (see Kargin and Onatski [32]). Furthermore, even if the dynamics of the
functional process are known, determining the dynamics of a finite-dimensional pro-
jection of the process is a highly nontrivial task. Projecting for example a functional
autoregressive process of order p on a d-dimensional subspace does not generally
yield a d-dimensional vector autoregressive process of order p.

The aim of this thesis is to contribute to the discussion about the consequences of
projecting dependent data on the subspace generated by functional principal direc-
tions. Assuming that the dependence in a given functional dataset can be modelled
with a functional linear process, what are the consequences of projecting the data
on some finite-dimensional subspace? How can estimation and prediction be car-
ried out? What is the error induced by dimension reduction? Can consistency be
achieved not only in the finite-dimensional space but also in the functional setting?

Main results of this thesis

The thesis is structured in three main parts. The following paragraphs summarize
the results of these chapters individually.

In Chapter 1 functional autoregressive moving average (FARMA) processes, a
particular class of functional linear processes, are investigated. First sufficient con-
ditions for the existence of a unique stationary solution to the model equations are
derived. The sufficient conditions are natural extensions of the conditions developed
in Bosq [8] for functional autoregressive (AR) models. The focus of the chapter is
on prediction of FARMA(p, q) processes. As indicated, techniques known from mul-
tivariate analysis can not be directly applied as the objects under investigation live
in function spaces. With the approach of Aue et al. [5], who used the methodol-
ogy in the context of functional (AR) models, the functional process is projected
on a finite-dimensional subspace using functional PCA. However the resulting mul-
tivariate process does not a priori follow a vector ARMA model. It is shown that
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the vector process can still be naturally approximated by a vector ARMA(p, q)
model. Conditions for the approximation to be exact are investigated. The station-
ary vector model is then used to predict the functional process. The main result
(Theorem 1.4.11) of the chapter quantifies the normed difference between vector
and functional best linear predictor. The obtained bound naturally depends on two
terms: one originating from the stochastic error and another from the error induced
by reducing the dimension. Finally the methodology is applied to real data. The
goal is a realistic time series model for traffic speed, which captures the day to
day dependence. The analysis can support short term traffic regulation realised in
real-time by electronic devices during the day, which may benefit from a more pre-
cise and parsimonious day-to-day prediction. An important factor in the application
is the choice of the dimension of the underlying finite-dimensional space and the
choice of the model order. Using cross validation, a criterion based on the functional
prediction error is developed that, when minimized, yields optimal dimension and
model order. The appeal of the methodology is its ease of application. Well-known
R software packages (fda and mts) make the implementation straightforward. Fur-
thermore, the generality of dependence induced by ARMA models gives rise to a
wide range of application of functional time series.

In Chapter 2, the true dependence structure of a finite-dimensional projection
of a functional linear process is investigated. Projecting a process of the general
class of functional linear processes on a d-dimensional space results in a functional
subprocess, which is isomorph to a d-dimensional vector process. The Wold decom-
position is used on the subprocess to parametrize the true second order dependence
structure. A special case is the class of functional moving average (MA) processes:
it is shown in Theorem 2.4.7 that every subprocess of a functional MA process of
order q is isomorph to a vector MA process of order q∗, with q∗ ≤ q. A useful and
interesting side result is that every subprocess of an invertible functional linear pro-
cess is invertible (Proposition 2.4.3). The main contribution of the chapter is the
development of a functional Innovations Algorithm. The multivariate Innovations
Algorithm (Brockwell and Davis [13], Chapter 11) is extended to function spaces.
The key problem in the generalization of the algorithm is, as often in functional
data analysis, the non-invertibility of covariance operators. To resolve this problem,
a similar tool as in Bosq [8], for the estimation of functional autoregressive processes
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of order 1, is proposed. The number of principal directions, generating the space on
which covariance operators are inverted, is increased together with the sample size.
However, since the Innovations Algorithm is based on a recursion, the recursion start
always fails if the number of principal directions is chosen too large. The solution
lies in an iterative increase of the number of principal directions included in the
Innovations Algorithm. This results in the construction of a sequence of increasing
nested subspaces of the function space, which is the real novelty of this approach.
The algorithm is used to construct linear predictors of functional linear processes.
Even though the existence of the best linear predictor in function spaces has been
shown in Bosq [10], its practical implementation is highly nontrivial and appears to
be not well understood in the literature. The functional Innovations Algorithm is a
first attempt in this direction. Under conditions on the decay rate of the eigenval-
ues of the covariance and the spectral density operator, the Innovations Algorithm
constructs a computationally tractable functional linear predictor for stationary in-
vertible functional linear processes. As the sample size increases, the predictor is
equivalent to the best linear predictor introduced in [10] (Theorem 2.5.3). Explicit
rates of convergence can be derived. They are given by a combination of two tail
sums, one involving operators of the inverse representation of the process, and the
other the eigenvalues of the covariance operator.

In Chapter 2 it is assumed that quantities such as covariance operators determin-
ing the second order structure of the functional linear process are known. Chapter 3,
however, deals with the finite sample case. Chapter 3 proposes a first methodolog-
ically sound approach to estimate invertible functional linear processes by fitting
functional MA models. Making use of the property shown in Chapter 2 that subpro-
cesses of functional MA processes are isometrically isomorph to vector MA of smaller
or equal order, the idea is to estimate the coefficient operators in a functional linear
filter. To this end the functional Innovations Algorithm of Chapter 2 is utilized as a
starting point to estimate the corresponding moving average operators via suitable
projections into principal directions. The main result is the proof of consistency of
the proposed estimators (Theorem 3.3.5). The difficulty is that in order to apply
the functional Innovations Algorithm, one has to estimate both the covariance op-
erator of the functional process and the sequence of increasing nested subspaces of
the function space. To ensure appropriate large-sample properties of the proposed
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estimators, the growth-rate of the sequence of nested subspaces has to depend on
the decay rate of the infimum of the eigenvalues of the spectral density operator.
For practical purposes, several strategies to select the number of principal directions
in the estimation procedure as well as the choice of order of the functional moving
average process are discussed. An independence test is introduced to select the di-
mension of the principal projection subspace, which can be used as a starting point
for the suggested order selection procedures based on AICC and Ljung-Box criteria.
Additionally, an fFPE criterion is established that jointly selects dimension d and
order q. Their empirical performance is evaluated through Monte-Carlo studies and
an application to vehicle traffic data.

Final remarks

The above does not qualify as a full introduction to the individual subsequent chap-
ters. Neither a detailed literature review nor notational conventions or theoretical
background is given. The individual chapters are self-contained in the sense that
each of them introduces the notation, methodology and literature needed to be
comprehensible. Notations and abbreviations might differ from chapter to chapter
since different notations seem reasonable in different settings.

All chapters are based on publications or are submitted for publication.

• Chaper 1 is based on the paper [35] that is published as: J. Klepsch, C. Küppel-
berg, and T. Wei. “Prediction of functional ARMA processes with an applica-
tion to traffic data”. Econometrics and Statistics, 1:128-149, 2017.

• Chapter 2 is based on the paper [34] that is published as: J. Klepsch and C.
Klüppelberg. “An Innovations Algorithm for the prediction of functional linear
processes”. Journal of Multivariate Analysis, 155:252-271, 2017.

• Chapter 3 is based on the paper [3] that is submitted for publication as: A. Aue
and J. Klepsch. “Estimating functional time series by moving average model
fitting, preprint at arXiv:1701.00770[ME], 2017
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Chapter 1:
Prediction of functional ARMA processes
with an application to traffic data

1.1 Introduction

A macroscopic highway traffic model involves velocity, flow (number of vehicles pass-
ing a reference point per unit of time), and density (number of vehicles on a given
road segment). The relation among these three variables is depicted in diagrams
of “velocity-flow relation” and “flow-density relation”. The diagram of “flow-density
relation” is also called fundamental diagram of traffic flow and can be used to deter-
mine the capacity of a road system and give guidance for inflow regulations or speed
limits. Figures 1.1 and 1.2 depict these quantities for traffic data provided by the
Autobahndirektion Südbayern. At a critical traffic density (65 veh/km) the state of
flow on the highway will change from stable to unstable.

In this chapter we develop a statistical highway traffic model and apply it to the
above data. As can be seen from Figures 1.4 and 1.5 the data show a certain pattern
over the day, which we want to capture utilising tools from functional data analysis.
Functional data analysis is applied to represent the very high-dimensional traffic
velocity data over the day by a random function X(⋅). This is a standard procedure,
and we refer to Ramsay and Silverman [47] for details.

Given the functional data, we want to assess temporal dependence between dif-
ferent days; i.e., our goal is a realistic time series model for functional data, which
captures the day-to-day dependence. Our analysis can support short term traffic reg-
ulation realised in real-time by electronic devices during the day, which may benefit

1



2 1. Prediction of functional ARMA processes

Figure 1.1: Velocity-flow relation on highway A92 in Southern Bavaria. Depicted are av-
erage velocities per 3 min versus number of vehicles within these 3 min during the period
01/01/2014 0:00 to 30/06/2014 23:59.

from a more precise and parsimonious day-to-day prediction.
From a statistical point of view we are interested in the prediction of a functional

ARMA(p, q) process for arbitrary orders p and q. In scalar and multivariate time
series analysis there exist several prediction methods, which can be easily imple-
mented like the Durbin-Levinson and the Innovations Algorithm (see e.g Brockwell
and Davis [13]). For functional time series, Bosq [8] has proposed the functional
best linear predictor for a general linear process. However, implementation of the
predictor is in general not feasible, because explicit formulas of the predictor can
not be derived. The class of functional AR(p) processes is an exception, where ex-
plicit prediction formulas have been given (e.g. Bosq [8], Chapter 3, and Kargin and
Onatski [32]). The functional AR(1) model has also been applied to the prediction
of traffic data in Besse and Cardot [7].

In Aue et al. [5] a prediction algorithm is proposed, which combines the idea of
functional principal component analysis (FPCA) and functional time series analysis.
The basic idea is to reduce the infinite-dimensional functional data by FPCA to
vector data. Thus, the task of predicting a functional time series is transformed to
the prediction of a multivariate time series. In Aue et al. [5] this algorithm is used
to predict the functional AR(p) process.
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Figure 1.2: Flow-density relation for the data from Figure 1.1 with critical traffic density
of 65 veh/km.

In this chapter we focus on functional ARMA(p, q) processes. We start by pro-
viding sufficient conditions for the existence of a stationary solution to functional
ARMA(p, q) models. Then we obtain a vector process by projecting the functional
process on the linear span of the d most important eigenfunctions of the covariance
operator of the process. We derive conditions such that the projected process follows
a vector ARMA(p, q). If these conditions do not hold, we show that the projected
process can at least be approximated by a vector ARMA(p, q) process, and we assess
the quality of the approximation. We present conditions such that the vector model
equation has a unique stationary solution. This leads to prediction methods for func-
tional ARMA(p, q) processes. An extension of the prediction algorithm of Aue et al.
[5] can be applied, and makes sense under stationarity of both the functional and
the vector ARMA(p, q) process. We derive bounds for the difference between vector
and functional best linear predictor.

An extended simulation study can be found in Wei [55], Chapter 5, and confirms
that approximating the projection of a functional ARMA process by a vector ARMA
process of the same order works reasonably well.

This chapter is organised as follows. In Section 1.2 we introduce the neces-
sary Hilbert space theory and notation, that we use throughout. We present the
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Karhunen-Loève Theorem and describe the FPCA based on the functional covari-
ance operator. In Section 1.3 we turn to functional time series models with special
emphasis on functional ARMA(p, q) processes. Section 1.3.1 is devoted to station-
arity conditions for the functional ARMA(p, q) model. In Section 1.3.2 we study the
vector process obtained by projection of the functional process onto the linear span
of the d most important eigenfunctions of the covariance operator. We investigate
its stationarity and prove that a vector ARMA process approximates the functional
ARMA process in a natural way. Section 1.4 investigates the prediction algorithm
for functional ARMA(p, q) processes invoking the vector process, and compares it
to the functional best linear predictor. Finally, in Section 1.5 we apply our results
to traffic data of velocity measurements.

1.2 Methodology

We summarize some concepts which we shall use throughout the chapter. For details
and more background we refer to the monographs Bosq [8], Horvàth and Kokoszka
[27] and Hsing and Eubank [29]. Let H = L2 ([0,1]) be the real separable Hilbert
space of square integrable functions x ∶ [0,1] → R with norm ∥x∥ = (∫

1
0 x

2(s)ds)1/2

generated by the inner product

⟨x, y⟩ ∶= ∫
1

0
x(t)y(t)dt, x, y ∈ L2 ([0,1]) .

We shall often use Parseval’s equality, which ensures that for an orthonormal basis
(ONB) (ei)i∈N

⟨x, y⟩ =
∞

∑
i=1

⟨x, ei⟩⟨ei, y⟩, x, y ∈H. (1.2.1)

We denote by L the space of bounded linear operators acting on H. If not stated
differently, we take the standard operator norm defined for a bounded operator Ψ ∈ L
by ∥Ψ∥L ∶= sup∥x∥≤1 ∥Ψx∥.

A bounded linear operator Ψ is a Hilbert-Schmidt operator if it is compact and
for every ONB (ei)i∈N of H

∞

∑
i=1

∥Ψei∥2 < ∞.
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We denote by S the space of Hilbert-Schmidt operators acting on H, which is again a
separable Hilbert space equipped with the following inner product and corresponding
Hilbert-Schmidt norm:

⟨Ψ1,Ψ2⟩S ∶=
∞

∑
i=1

⟨Ψ1ei,Ψ2ei⟩ and ∥Ψ∥S ∶=
√

⟨Ψ,Ψ⟩
S
=

¿
ÁÁÀ

∞

∑
i=1

∥Ψei∥2 < ∞.

If Ψ is a Hilbert-Schmidt operator, then

∥Ψ∥L ≤ ∥Ψ∥S .

Let BH be the Borel σ-algebra of subsets of H. All random functions are defined
on some probability space (Ω,A, P ) and are A−BH-measurable. Then the space of
square integrable random functions L2

H ∶= L2
H(Ω,A, P ) is a Hilbert space with inner

product E ⟨X,Y ⟩ = E ∫
1

0 X(s)Y (s)ds for X,Y ∈ L2
H . We call such X an H-valued

random function. For X ∈ L2
H there is a unique function µ ∈H, the functional mean

of X, such that E⟨y,X⟩ = ⟨y, µ⟩ for y ∈H, satisfying

µ(t) = E[X(t)], t ∈ [0,1].

We assume throughout that µ = 0, since under weak assumptions on X the functional
mean can be estimated consistently from the data (see Remark 1.3.10).

Definition 1.2.1. The covariance operator CX of X acts on H and is defined as

CX ∶ x↦ E [⟨X,x⟩X] , x ∈H. (1.2.2)

More precisely,

(CXx)(t) = E [∫
1

0
X(s)x(s)dsX(t)] = ∫

1

0
E [X(t)X(s)]x(s)ds,

where the change of integration order is allowed by Fubini. ◻

CX is a symmetric, non-negative definite Hilbert-Schmidt operator with spectral
representation

CXx =
∞

∑
j=1
λj⟨x, νj⟩νj, x ∈H,
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for eigenpairs (λj, νj)j∈N, where (νj)j∈N is an ONB of H and (λj)j∈N is a sequence
of positive real numbers such that ∑∞

j=1 λj < ∞. When considering spectral repre-
sentations we assume that the λj are decreasingly ordered and that no ties in the
eigenvalues are allowed; i.e., λi > λk for i < k. Every X ∈ L2

H can be represented as
a linear combination of the eigenfunctions (νi)i∈N. This is known as the Karhunen-
Loève representation.

Theorem 1.2.2 (Karhunen-Loève Theorem). For X ∈ L2
H with EX = 0

X =
∞

∑
i=1

⟨X,νi⟩νi, (1.2.3)

where (νi)i∈N are the eigenfunctions of the covariance operator CX .The scalar prod-
ucts ⟨X,νi⟩ have mean-zero, variance λi and are uncorrelated; i.e., for all i, j ∈ N,
i ≠ j,

E ⟨X,νi⟩ = 0, E[⟨X,νi⟩ ⟨X,νj⟩] = 0, and E ⟨X,νi⟩2 = λi, (1.2.4)

where (λi)i∈N are the eigenvalues of CX .

The scalar products (⟨X,νi⟩)i∈N defined in (1.2.3) are called the scores of X. By
the last equation in (1.2.4), we have

∞

∑
j=1
λj =

∞

∑
j=1
E ⟨X,νj⟩2 = E∥X∥2 < ∞, X ∈ L2

H . (1.2.5)

Combining (1.2.4) and (1.2.5), every λj represents some proportion of the total
variability of X.

Remark 1.2.3. [The CVP method] For d ∈ N consider the d largest eigenvalues
λ1, . . . , λd of CX . The cumulative percentage of total variance CPV(d) is defined as

CPV(d) ∶=
d

∑
j=1
λj /

∞

∑
j=1
λj.

If we choose d ∈ N such that the CPV(d) exceeds a predetermined high percentage
value, then λ1, . . . , λd explain most of the variability of X. In this context ν1, . . . , νd

are called the functional principal components (FPCs). ◻
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1.3 Functional ARMA processes

In this section we introduce the functional ARMA(p, q) equations and derive suffi-
cient conditions for the equations to have a stationary and causal solution, which
we present explicitly as a functional linear process. We then project the functional
linear process on a finite dimensional subspace of H. We approximate this finite
dimensional process by a suitable vector ARMA process, and give conditions for the
stationarity of this vector process. We also give conditions on the functional ARMA
model such that the projection of the functional process onto a finite dimensional
space follows an exact vector ARMA structure.

We start by defining functional white noise.

Definition 1.3.1. [Bosq [8], Definition 3.1]
Let (εn)n∈Z be a sequence of H-valued random functions.
(i) (εn)n∈Z is H-white noise (WN) if for all n ∈ Z, E[εn] = 0, 0 < E∥εn∥2 = σ2

ε < ∞,
Cεn = Cε, and if Cεn,εm(⋅) ∶= E[⟨εm, ⋅⟩ εn] = 0 for all n ≠m.
(ii) (εn)n∈Z is H-strong white noise (SWN), if for all n ∈ Z, E[εn] = 0, 0 < E∥εn∥2 =
σ2
ε < ∞ and (εn)n∈Z is i.i.d. ◻

We assume throughout that (εn)n∈Z is WN with zero mean and E∥εn∥2 = σ2
ε < ∞.

When SWN is required, this will be specified.

1.3.1 Stationary functional ARMA processes

Formally we can define a functional ARMA process of arbitrary order.

Definition 1.3.2. Let (εn)n∈Z be WN as in Definition 1.3.1(i). Let furthermore
φ1, . . . , φp, θ1, . . . , θq ∈ L. Then a solution of

Xn =
p

∑
i=1
φiXn−i +

q

∑
j=1
θjεn−j + εn, n ∈ Z, (1.3.1)

is called a functional ARMA(p, q) process. ◻

We derive conditions such that (1.3.1) has a stationary solution. We begin with
the functional ARMA(1, q) process and need the following assumption.
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Assumption 1.3.3. There exists some j0 ∈ N such that ∥φj01 ∥L < 1.

Theorem 1.3.4. Let (Xn)n∈Z be as in Definition 1.3.2 with p = 1 and set φ1 =∶ φ.
If Assumption 1.3.3 holds, there exists a unique stationary and causal solution to
(1.3.1) given by

Xn = εn + (φ + θ1)εn−1 + (φ2 + φθ1 + θ2)εn−2

+⋯ + (φq−1 + φq−2θ1 +⋯ + θq−1)εn−(q−1)

+
∞

∑
j=q

φj−q(φq + φq−1θ1 +⋯ + θq)εn−j

=
q−1

∑
j=0

(
j

∑
k=0
φj−kθk)εn−j +

∞

∑
j=q

φj−q(
q

∑
k=0

φq−kθk)εn−j, (1.3.2)

where φ0 = I denotes the identity operator in H. Furthermore, the series in (1.3.2)
converges in L2

H and with probability one.

For the proof we need the following lemma.

Lemma 1.3.5 (Bosq [8], Lemma 3.1). For every φ ∈ L the following are equivalent:
(i) There exists some j0 ∈ N such that ∥φj0∥L < 1.
(ii) There exist a > 0 and 0 < b < 1 such that ∥φj∥L < abj for every j ∈ N.

Proof of Theorem 1.3.4. We follow the lines of the proof of Proposition 3.1.1
of Brockwell and Davis [13] and Theorem 3.1 in Bosq [8]. First we prove L2

H-
convergence of the series (1.3.2). Take m ≥ q and consider the truncated series

X
(m)
n ∶= εn + (φ + θ1)εn−1 + (φ2 + φθ1 + θ2)εn−2

+⋯ + (φq−1 + φq−2θ1 +⋯ + θq−1)εn−(q−1)

+
m

∑
j=q

φj−q(φq + φq−1θ1 +⋯ + θq)εn−j. (1.3.3)

Define

β(φ, θ) ∶= φq + φq−1θ1 +⋯ + φθq−1 + θq ∈ L.
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Since (εn)n∈Z is WN, for all m′ >m ≥ q,

E∥X(m
′)

n −X(m)n ∥2 = E∥
m′

∑
j=m

φj−qβ(φ, θ)εn−j∥
2

=
m′

∑
j=m

E ∥φj−qβ(φ, θ)εn−j∥
2

≤ σ2
ε

m′

∑
j=m

∥φj−q∥2
L
∥β(φ, θ)∥2

L.

Lemma 1.3.5 applies, giving
∞

∑
j=0

∥φj∥2
L <

∞

∑
j=0
a2b2j = a2

1 − b2 < ∞. (1.3.4)

Thus,

m′

∑
j=m

∥φj−q∥2
L
∥β(φ, θ)∥2

L ≤ ∥β(φ, θ)∥2
L a

2
m′

∑
j=m

b2(j−q) → 0, as m,m′ →∞.

By the Cauchy criterion the series in (1.3.2) converges in L2
H .

To prove convergence with probability one we investigate the following second mo-
ment, using that (εn)n∈Z is WN:

E(
∞

∑
j=1

∥φj−qβ(φ, θ)εn−j∥)
2
≤ E(

∞

∑
j=1

∥φj−q∥L∥β(φ, θ)∥L∥εn−j∥)
2

≤ σ2
ε∥β(φ, θ)∥2

L(
∞

∑
j=1

∥φj−q∥L)
2
.

Finiteness follows, since by (1.3.4),

(
∞

∑
j=1

∥φj−q∥2
L)

2
< (

∞

∑
j=1
abj−q)

2
= a2

(1 − b)2 < ∞.

Thus, the series (1.3.2) converges with probability one.
Note that the solution (1.3.2) is stationary, since its second order structure only

depends on (εn)n∈Z, which is shift-invariant as WN.

In order to prove that (1.3.2) is a solution of (1.3.1) with p = 1, we plug (1.3.2) into
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(1.3.1), and obtain for n ∈ Z,

Xn − φXn−1 =
q−1

∑
j=0

(
j

∑
k=0
φj−kθk)εn−j +

∞

∑
j=q

φj−q(
q

∑
k=0
φq−kθk)εn−j

− φ(
q−1

∑
j=0

(
j

∑
k=0
φj−kθk)εn−1−j +

∞

∑
j=q

φj−q(
q

∑
k=0
φq−kθk)εn−1−j). (1.3.5)

The third term of the right-hand side can be written as

q−1

∑
j=0

(
j

∑
k=0

φj+1−kθk)εn−1−j +
∞

∑
j=q

φj+1−q(
q

∑
k=0

φq−kθk)εn−1−j

=
q

∑
j′=1

(
j′−1

∑
k=0

φj
′−kθk)εn−j′ +

∞

∑
j′=q+1

φj
′−q(

q

∑
k=0
φq−kθk)εn−j′

=
q

∑
j′=1

(
j′

∑
k=0
φj

′−kθk − φj
′−j′θj′)εn−j′ +

∞

∑
j′=q+1

φj
′−q(

q

∑
k=0

φq−kθk)εn−j′

=
q

∑
j′=1

(
j′

∑
k=0

φj
′−kθk)εn−j′ +

∞

∑
j′=q+1

φj
′−q(

q

∑
k=0

φq−kθk)εn−j′ −
q

∑
j′=1

θj′εn−j′ .

Comparing the sums in (1.3.5), the only remaining terms are

Xn − φXn−1 = εn −
q

∑
k=0

φq−kθkεn−q +
q

∑
j′=1

θj′εn−j′ +
q

∑
k=0
φq−kθkεn−q

= εn +
q

∑
j′=1

θj′εn−j′ , n ∈ Z,

which shows that (1.3.2) is a solution of equation (1.3.1) with p = 1.

Finally, we prove uniqueness of the solution. Assume that there is another stationary
solution X ′

n of (1.3.1). Iteration gives (cf. Spangenberg [51], eq. (4)) for all r > q,

X ′
n =

q−1

∑
j=0

(
j

∑
k=0
φj−kθk)εn−j +

r−1
∑
j=q

φj−q(
q

∑
k=0
φq−kθk)εn−j

+
q−1

∑
j=0
φr+j−q(

q

∑
k=j+1

φq−kθk)εn−(r+j) + φrX ′
n−r.
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Therefore, with X(r) as in (1.3.3), for r > q,

E∥X ′
n−X

(r)
n ∥2 = E∥

q−1

∑
j=0
φr+j−q (

q

∑
k=j+1

φq−kθk)εn−(r+j) + φrX ′
n−r∥

2

≤ 2E∥
q−1

∑
j=0
φr+j−q (

q

∑
k=j+1

φq−kθk)εn−(r+j)∥
2
+ 2 E ∥φrX ′

n−r∥
2

≤ 2∥φr−q∥2
LE∥

q−1

∑
j=0
φj (

q

∑
k=j+1

φq−kθk)εn−(r+j)∥
2
+ 2∥φr∥2

LE ∥X ′
n−r∥

2
.

Since both (εn)n∈Z and (X ′
n)n∈Z are stationary, Lemma 1.3.5 yields

E∥X ′
n −X

(r)
n ∥2 → 0, r →∞.

Thus X ′
n is in L2

H equal to the limit Xn of X(r)n , which proves uniqueness. ◻

Remark 1.3.6. In Spangenberg [51] a strictly stationary, not necessarily causal
solution of a functional ARMA(p, q) equation in Banach spaces is derived under
minimal conditions. This extends known results considerably. ◻

For a functional ARMA(p, q) process we use the state space representation

⎛
⎜⎜⎜⎜⎜
⎝

Xn

Xn−1

⋮
Xn−p+1

⎞
⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Yn

=

⎛
⎜⎜⎜⎜⎜
⎝

φ1 ⋯ φp−1 φp

I 0
⋱ ⋮

I 0

⎞
⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
φ̃

⎛
⎜⎜⎜⎜⎜
⎝

Xn−1

Xn−2

⋮
Xn−p

⎞
⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
Yn−1

+
q

∑
j=0

⎛
⎜⎜⎜⎜⎜
⎝

θj 0 ⋯ 0
0 0 ⋮
⋮ ⋱
0 0

⎞
⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
θ̃j

⎛
⎜⎜⎜⎜⎜
⎝

εn−j

0
⋮
0

⎞
⎟⎟⎟⎟⎟
⎠

,

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
δn−j

(1.3.6)

where θ0 = I, and I and 0 denote the identity and zero operators on H, respectively.
We summarize this as

Yn = φ̃ Yn−1 +
q

∑
j=0
θ̃jδn−j, n ∈ Z. (1.3.7)

Since Xn and εn take values in H, Yn and δn take values in the product Hilbert
space Hp ∶= (L2([0,1]))p with inner product and norm given by

⟨x, y⟩p ∶=
p

∑
j=1

⟨xj, yj⟩ and ∥x∥p ∶=
√

⟨x,x⟩p. (1.3.8)
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We denote by L(Hp) the space of bounded linear operators acting on Hp. The
operator norm of φ̃ ∈ L(Hp) is defined as usual by ∥φ̃∥L ∶= sup∥x∥p≤1 ∥φ̃ x∥p. The
random vector (δn)n∈Z is WN in Hp.

Assumption 1.3.7. There exists some j0 ∈ N such that φ̃ as in (1.3.6) satisfies
∥φ̃j0∥L < 1.

Since the proof of Theorem 1.3.4 holds also in Hp, using the state space represen-
tation of a functional ARMA(p, q) in H as a functional ARMA(1, q) in Hp, we get
the following theorem as a consequence of Theorem 1.3.4. Let P1 be the projection
of Hp onto the first component; i.e.,

P1x = x1, x = (x1, . . . , xn)⊺ ∈Hp.

Theorem 1.3.8. Under Assumption 1.3.7 there exists a unique stationary and
causal solution to the functional ARMA(p, q) equations (1.3.1). The solution can
be written as Xn = P1Yn, where Yn is the solution to the state space equation (1.3.7),
given by

Yn = δn + (φ̃ + θ̃1)δn−1 + (φ̃2 + φ̃ θ̃1 + θ̃2)δn−2

+⋯ + (φ̃ q−1 + φ̃ q−2 θ̃1 +⋯ + θ̃q−1)δn−(q−1)

+
∞

∑
j=q

φ̃ j−q(φ̃ q + φ̃ q−1 θ̃1 +⋯ + θ̃q)δn−j,

=
q−1

∑
j=0

(
j

∑
k=0
φ̃j−kθ̃k)δn−j +

∞

∑
j=q

φ̃j−q(
q

∑
k=0

φ̃q−k θ̃k)δn−j,

where φ̃0 denotes the identity operator in Hp and Yn, δn, φ̃ and θ̃1,. . . ,θ̃q are defined
in (1.3.6). Furthermore, the series converges in L2

H and with probability one.

1.3.2 The vector ARMA(p, q) process

We project the stationary functional ARMA(p, q) process (Xn)n∈Z on a finite-dimen-
sional subspace of H. We fix d ∈ N and consider the projection of (Xn)n∈Z onto the
subspace sp{ν1, . . . , νd} spanned by the dmost important eigenfunctions of CX giving

Xn,d = Psp{ν1,...,νd}Xn =
d

∑
i=1

⟨Xn, νi⟩νi. (1.3.9)
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Remark 1.3.9. The dimension reduction based on the principal components is
optimal for uncorrelated data in terms of its L2-accuracy (cf. Horvàth and Kokoszka
[27], Section 3.2). We consider time series data, where dimensions corresponding to
eigenfunctions νl for l > d can have an impact on subsequent elements of the time
series, even if the corresponding eigenvalue λl is small. Hence FPCA might not be
optimal for functional time series.

In Hörmann et al. [25] and Panaretos and Tavakoli [45] an optimal dimension
reduction for dependent data is introduced. They propose a filtering technique based
on a frequency domain approach, which reduces the dimension in such a way that
the score vectors form a multivariate time series with diagonal lagged covariance
matrices. However, as pointed out in Aue et al. [5], it is unclear how the technique
can be utilized for prediction, since both future and past observations are required.

In order not to miss information valuable for prediction when reducing the di-
mension, we include cross validation on the prediction errors to choose the number of
FPCs used to represent the data (see Section 5). This also allows us to derive explicit
bounds for the prediction error in terms of the eigenvalues of CX (see Section 4).
◻

In what follows we are interested in

Xn ∶= (⟨Xn, ν1⟩ , . . . , ⟨Xn, νd⟩)⊺ . (1.3.10)

Xn is d-dimensional and isometrically isomorph to Xn,d (e.g. Hsing and Eubank [29],
Theorem 2.4.17).

Remark 1.3.10. For theoretical considerations of the prediction problem we as-
sume that CX and its eigenfunctions are known. In a statistical data analysis the
eigenfunctions have to be replaced by their empirical counterparts. In order to ensure
consistency of the estimators we need slightly stronger assumptions on the innova-
tion process (εn)n∈Z and on the model parameters, similarly as for estimation and
prediction in classical time series models (see Brockwell and Davis [13]).

In Hörmann and Kokoszka [24] it is shown that, under L4 −m approximability (a
weak dependence concept for functional processes), empirical estimators of mean and
covariance of the functional process are

√
n-consistent. Estimated eigenfunctions and

eigenvalues inherit
√
n-consistency results from the estimated covariance operator
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(Theorem 3.2 in Hörmann and Kokoszka [24]). Proposition 2.1 of Hörmann and
Kokoszka [24] states conditions on the parameters of a linear process to ensure that
the time series is L4 −m approximable, which are satisfied for stationary functional
ARMA processes, where the WN has a finite 4-th moment. ◻

Our next result, which follows from the linearity of the projection operator,
concerns the projection of the WN (εn)n∈Z on sp{ν1, . . . , νd}.

Lemma 1.3.11. Let (ei)i∈N be an arbitrary ONB of H. For d ∈ N we define the
d-dimensional vector process

Zn ∶= (⟨εn, e1⟩ , . . . , ⟨εn, ed⟩)⊺, n ∈ Z.

(i) If (εn)n∈Z is WN as in Definition 1.3.1(i), then (Zn)n∈Z is WN in Rd.
(ii) If (εn)n∈Z is SWN as in Definition 1.3.1(ii), then (Zn)n∈Z is SWN in Rd.

As in Section 1.3.1 we start with the functional ARMA(1, q) process for q ∈ N
and are interested in the dynamics of (Xn,d)n∈Z of (1.3.9) for fixed d ∈ N. Using the
model equation (1.3.1) with p = 1 and φ1 = φ, we get

⟨Xn, νl⟩ = ⟨φXn−1, νl⟩ +
q

∑
j=0

⟨θjεn−j, νl⟩ , l ∈ Z. (1.3.11)

For every l we expand ⟨φXn−1, νl⟩, using that (νl)l∈N is an ONB of H as

⟨φXn−1, νl⟩ = ⟨φ(
∞

∑
l′=1

⟨Xn−1, νl′⟩νl′), νl⟩ =
∞

∑
l′=1

⟨φνl′ , νl⟩ ⟨Xn−1, νl′⟩ ,

and ⟨θjεn−j, νl⟩ for j = 1, . . . , q as

⟨θjεn−j, νl⟩ = ⟨θj(
∞

∑
l′=1

⟨εn−j, νl′⟩νl′), νl⟩ =
∞

∑
l′=1

⟨θjνl′ , νl⟩ ⟨εn−j, νl′⟩ .

In order to study the d-dimensional vector process (Xn)n∈Z, for notational ease, we
restrict a precise presentation to the ARMA(1,1) model. The presentation of the
ARMA(1, q) model is an obvious extension.
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For a matrix representation of Xn given in (1.3.10) consider the notation:

⎛
⎝

Φ Φ∞

⋮ ⋮
⎞
⎠
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⟨φν1, ν1⟩ . . . ⟨φνd, ν1⟩ ⟨φνd+1, ν1⟩ . . .

⋮ ⋱ ⋮ ⋮ ⋱
⟨φν1, νd⟩ . . . ⟨φνd, νd⟩ ⟨φνd+1, νd⟩ . . .

⟨φν1, νd+1⟩ . . . ⟨νd, νd+1⟩ ⟨φνd+1, νd+1⟩ . . .

⋮ ⋱ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The matrices Θ and Θ∞ are defined analogously. For q = 1, with θ0 = I and θ1 = θ,
(1.3.11) is given in matrix form by

⎛
⎝

Xn

X∞
n

⎞
⎠
=
⎡⎢⎢⎢⎢⎣

Φ Φ∞

⋮ ⋮

⎤⎥⎥⎥⎥⎦

⎛
⎝
Xn−1

X∞
n−1

⎞
⎠
+
⎛
⎝

En

E∞
n

⎞
⎠
+
⎡⎢⎢⎢⎢⎣

Θ Θ∞

⋮ ⋮

⎤⎥⎥⎥⎥⎦

⎛
⎝
En−1

E∞
n−1

⎞
⎠
, (1.3.12)

where

En ∶= (⟨εn, ν1⟩ , . . . , ⟨εn, νd⟩)⊺ ,
X∞
n ∶= (⟨Xn, νd+1⟩ , . . . )⊺ , and

E∞
n ∶= (⟨εn, νd+1⟩ , . . . )⊺ .

The operators Φ and Θ in (1.3.12) are d × d matrices with entries ⟨φνl′ , νl⟩ and
⟨θνl′ , νl⟩ in the l-th row and l′-th column, respectively. Furthermore, Φ∞ and Θ∞

are d ×∞ matrices with ll′-th entries ⟨φνl′+d, νl⟩ and ⟨θνl′+d, νl⟩, respectively.
By (1.3.12), (Xn)n∈Z satisfies the d-dimensional vector equation

Xn = ΦXn−1 +En +ΘEn−1 +∆n−1, n ∈ Z, (1.3.13)

where

∆n−1 ∶= Φ∞X∞
n−1 +Θ∞E∞

n−1. (1.3.14)

By Lemma 1.3.11, (En)n∈Z is d-dimensional WN. Note that ∆n−1 in (1.3.14) is a
d-dimensional vector with l-th component

(∆n−1)l =
∞

∑
l′=d+1

⟨φνl′ , νl⟩ ⟨Xn−1, νl′⟩ +
∞

∑
l′=d+1

⟨θνl′ , νl⟩ ⟨εn−1, νl′⟩ . (1.3.15)

Thus, the “error term” ∆n−1 depends on Xn−1, and the vector process (Xn)n∈Z in
(1.3.13) is in general not a vector ARMA(1,1) process with innovations (En)n∈Z.
However, we can use a vector ARMA model as an approximation to (Xn)n∈Z, where
we can make ∆n−1 arbitrarily small by increasing the dimension d.
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Lemma 1.3.12. Let ∥⋅∥2 denote the Euclidean norm in Rd, and let the d-dimensional
vector ∆n−1 be defined as in (1.3.14). Then E∥∆n−1∥2

2 is bounded and tends to 0 as
d→∞.

Proof. From (1.3.14) we obtain

E∥∆n−1∥2
2 ≤ 2 (E∥Φ∞X∞

n−1∥2
2 +E∥Θ∞E∞

n−1∥2
2) . (1.3.16)

We estimate the two parts E∥Φ∞X∞
n−1∥2

2 and E∥Θ∞E∞
n−1∥2

2 separately. By (1.3.15)
we obtain (applying Parseval’s equality (1.2.1) in the third line),

E∥Φ∞X∞
n−1∥2

2 = E[
d

∑
l=1

(
∞

∑
l′=d+1

⟨⟨Xn−1, νl′⟩φνl′ , νl⟩ )
2
]

≤ E[
∞

∑
l=1

⟨
∞

∑
l′=d+1

⟨Xn−1, νl′⟩φνl′ , νl⟩
2
]

= E∥
∞

∑
l′=d+1

⟨Xn−1, νl′⟩φνl′∥
2
.

Since the scores (⟨Xn−1,l, νl⟩)l∈N are uncorrelated (cf. the Karhunen-Loève Theo-
rem 1.2.2), and then using monotone convergence, we find

E∥Φ∞X∞
n−1∥2

2 ≤ E
∞

∑
l′=d+1

⟨Xn−1, νl′⟩2∥φνl′∥2 =
∞

∑
l′=d+1

E (⟨Xn−1, νl′⟩)2 ∥φνl′∥2
.

Since by (1.2.4) E⟨Xn−1, νl′⟩2 = λl′ , we get
∞

∑
l′=d+1

E (⟨Xn−1, νl′⟩)2 ∥φνl′∥2 =
∞

∑
l′=d+1

λl′∥φ∥2
L∥νl′∥2 ≤ ∥φ∥2

L

∞

∑
l′=d+1

λl′ . (1.3.17)

The bound for E∥Θ∞E∞
n−1∥2

2 can be obtained in exactly the same way, and we
calculate

E∥Θ∞E∞
n−1∥2

2 ≤
∞

∑
l′=d+1

E⟨εn−1, νl′⟩2 ∥θνl′∥2

≤ ∥θ∥2
L

∞

∑
l′=d+1

E⟨⟨εn−1, νl′⟩εn−1, νl′⟩

= ∥θ∥2
L

∞

∑
l′=d+1

⟨Cενl′ , νl′⟩, (1.3.18)
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where Cε is the covariance operator of the WN. As a covariance operator it has finite
nuclear operator norm ∥Cε∥N ∶= ∑∞

l′=1⟨Cε(νl′), νl′⟩ < ∞. Hence, ∑∞
l′=d+1⟨Cενl′ , νl′⟩ → 0

for d → ∞. Combining (1.3.16), (1.3.17) and (1.3.18) we find that E∥∆n−1∥2
2 is

bounded and tends to 0 as d→∞.

For the vector ARMA(1, q) model the proof of boundedness of E∥∆n−1∥2
2 is

analogous. We now summarize our findings for a functional ARMA(1, q) process.

Theorem 1.3.13. Consider a functional ARMA(1, q) process for q ∈ N such that
Assumption 1.3.3 holds. For d ∈ N, the vector process of (1.3.10) has the represen-
tation

Xn = ΦXn−1 +En +
q

∑
j=1

ΘqEn−j +∆n−1, n ∈ Z,

where
∆n−1 ∶= Φ∞X∞

n−1 +
q

∑
j=1

Θ∞
j En−j,

and all quantities are defined analogously to (1.3.10), (1.3.13), and (1.3.14). Define

X̌n = ΦX̌n−1 +En +
q

∑
j=1

ΘjEn−j, n ∈ Z. (1.3.19)

Then both the functional ARMA(1, q) process (Xn)n∈Z in (1.3.1) and the d-
dimensional vector process (X̌n)n∈Z in (1.3.19) have a unique stationary and causal
solution. Moreover, E∥∆n−1∥2

2 is bounded and tends to 0 as d→∞.

Proof. Recall from (1.3.12) the d×d matrix Φ of the vector process (1.3.19). In order
to show that (1.3.19) has a stationary solution, by Theorem 11.3.1 of Brockwell and
Davis [13], it suffices to prove that every eigenvalue λk of Φ with corresponding eigen-
vector ak = (ak,1, . . . ,ak,d) satisfies ∣λk∣ < 1 for k = 1, . . . , d. Note that ∣λk∣ < 1 is equiv-
alent to ∣λj0k ∣ < 1 for all j0 ∈ N. Define ak ∶= ak,1ν1+ ⋅ ⋅ ⋅ +ak,dνd ∈H, then by Parseval’s
equality (1.2.1), ∥ak∥2 = ∑dl=1 ∣⟨ak, νl⟩∣2 = ∑dl=1 a2

k,l = ∥ak∥2
2 = 1 for k = 1, . . . , d. With

the orthogonality of ν1, . . . , νd we find ∥Φak∥2
2 = ∑dl=1 (∑dl′=1⟨φνl′ , νl⟩ak,l)

2. Defining
Ad = sp{ν1, . . . , νd}, we calculate

∥PAd
φPAd

ak∥2 =
d

∑
l=1

⟨φ(
d

∑
l′=1

ak,l′νl′), νl⟩
2∥νl∥2 =

d

∑
l=1

(
d

∑
l′=1

ak,l′⟨φνl′ , νl⟩)
2 = ∥Φak∥2

2.
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Hence, for j0 as in Assumption 1.3.3,

∣λj0k ∣ = ∥λj0k ak∥2 = ∥Φj0ak∥2 = ∥(PAd
φPAd

)j0ak∥

≤ ∥(PAd
φPAd

)j0∥
L
∥ak∥ ≤ ∥φj0∥L < 1,

which finishes the proof.

In order to extend approximation (1.3.19) of a functional ARMA(1, q) process to
a functional ARMA(p, q) process we use again the state space representation (1.3.7)
given by

Yn = φ̃Yn−1 +
q

∑
j=0
θ̃jδn−j, n ∈ Z,

where Yn, θ̃0 = I, φ̃, θ̃1, . . . , θ̃q and δn are defined as in Theorem 1.3.8 and take values
in Hp = (L2([0,1]))p; cf. (1.3.8).

Theorem 1.3.14. Consider the functional ARMA(p, q) process as defined in (1.3.1)
such that Assumption 1.3.7 holds. Then for d ∈ N the vector process of (1.3.10) has
the representation

Xn =
p

∑
i=1

ΦiXn−i +En +
q

∑
j=1

ΘjEn−j +∆n−1, n ∈ Z, (1.3.20)

where
∆n−1 ∶=

p

∑
i=1

Φ∞
i X∞

n−i +
q

∑
j=1

Θ∞
j En−j,

and all quantities are defined analogously to (1.3.10), (1.3.13), and (1.3.14). Define

X̌n =
p

∑
i=1

ΦiX̌n−i +En +
q

∑
j=1

ΘjEn−j, n ∈ Z. (1.3.21)

Then both the functional ARMA(p, q) process (Xn)n∈Z in (1.3.1) and the d-
dimensional vector process (X̌n)n∈Z in (1.3.21) have a unique stationary and causal
solution. Moreover, E∥∆n−1∥2

2 is bounded and tends to 0 as d→∞.

We are now interested in conditions for (Xn)n∈Z to exactly follow a vector
ARMA(p, q) model. A trivial condition is that the projections of φi and θj onto
A⊥d, the orthogonal complement of Ad = sp{ν1, . . . , νd}, satisfy

PA⊥
d
φiPA⊥

d
= PA⊥

d
θjPA⊥

d
= 0
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for all i = 1, . . . , p and j = 1, . . . , q. In that case X̌n = Xn for all n ∈ Z.
However, as we show next, the assumptions on the moving average parameters

θ1, . . . , θq are actually not required. We start with a well-known result that charac-
terizes vector MA processes.

Lemma 1.3.15 (Brockwell and Davis [13], Proposition 3.2.1). If (Xn)n∈Z is a sta-
tionary vector process with autocovariance matrix CXh,X0 = E[XhX⊺

0] with CXq ,X0 ≠
0 and CXh,X0 = 0 for ∣h∣ > q, then (Xn)n∈Z is a vector MA(q).

Proposition 1.3.16. Let Ad = sp{ν1, . . . , νd} and A⊥d its orthogonal complement.
If PA⊥

d
φiPA⊥

d
= 0 for all i = 1, . . . , p, then the d-dimensional process (Xn)n∈Z as in

(1.3.20) is a vector ARMA(p, q) process.

Proof. Since φi for i = 1, . . . , p only acts on Ad, from (1.3.20) we get

Xn =
p

∑
i=1

ΦiXn−i +En +
q

∑
j=1

ΘjEn−j +∆n−1

=
p

∑
i=1

ΦiXn−i +En +
q

∑
j=1

ΘjEn−j +
q

∑
j=1

Θ∞
j E∞

n−j, n ∈ Z.

To ensure that (Xn)n∈Z follows a vector ARMA(p, q) process, we have to show that

Rn ∶= En +
q

∑
j=1

ΘjEn−j +
q

∑
j=1

Θ∞
j E∞

n−j, n ∈ Z,

follows a vector MA(q) model. According to Lemma 1.3.15 it is sufficient to verify
that (Rn)n∈Z is stationary and has an appropriate autocovariance structure.

Defining (with θ0 = I)

Rn ∶=
q

∑
j=0
θjεn−j, n ∈ Z,

where θ1, . . . , θq are as in (1.3.1), observe that Rn = (⟨Rn, ν1⟩, . . . , ⟨Rn, νd⟩) is iso-
metrically isomorph to PAd

Rn = ∑dj=1⟨Rn, νj⟩νj for all n ∈ Z. Hence, stationarity of
(Rn)n∈Z immediately follows from the stationarity of (Rn)n∈Z. Furthermore,

E[⟨PAd
R0, ⋅⟩PAd

Rh] = PAd
E[⟨R0, ⋅⟩Rh]PAd

= PAd
CRh,R0PAd

.

But since (Rn)n∈Z is a functional MA(q) process, CRh,R0 = 0 for ∣h∣ > q. By the
relation between PAd

Rn and Rn we also have CRh,R0 = 0 for ∣h∣ > q and, hence,
(Rn)n∈Z is a vector MA(q).
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1.4 Prediction of functional ARMA processes

For h ∈ N we derive the best h-step linear predictor of a functional ARMA(p, q) pro-
cess (Xn)n∈Z based on X1, . . . ,Xn as defined in (1.3.20). We then compare the vector
best linear predictor to the functional best linear predictor based on X1, . . . ,Xn and
show that, under regularity conditions, the difference is bounded and tends to 0 as
d tends to infinity.

1.4.1 Prediction based on the vector process

In finite dimensions the concept of a best linear predictor is well-studied. For a
d-dimensional stationary time series (Xn)n∈Z we denote the matrix linear span of
X1, . . . ,Xn by

M′
1 ∶= {

n

∑
i=1

AniXi ∶ Ani are real d × d matrices, i = 1, . . . , n}.

Then for h ∈ N the h-step vector best linear predictor X̂n+h of Xn+h based on
X1, . . . ,Xn is defined as the projection of Xn+h onto the closure M1 of M′

1 in L2
Rd ;

i.e.,

X̂n+h ∶= PM1Xn+h. (1.4.1)

Its properties are given by the projection theorem (e.g. Theorem 2.3.1 of Brockwell
and Davis [13]) and can be summarized as follows.

Remark 1.4.1. Recall that ∥ ⋅ ∥2 denotes the Euclidean norm in Rd and ⟨ , ⟩Rd the
corresponding scalar product.
(i) E⟨Xn+h − X̂n+h,Y⟩Rd = 0 for all Y ∈ M1.
(ii) X̂n+h is the unique element in M1 such that

E∥Xn+h − X̂n+h∥2
2 = inf

Y∈M1
E∥Xn+h −Y∥2

2.

(iii) M1 is a linear subspace of Rd. ◻

In analogy to the prediction algorithm suggested in Aue et al. [5], a method for
finding the best linear predictor of Xn+h based on X1, . . . ,Xn is the following:
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Algorithm 1 1

(1) Fix d ∈ N. Compute the FPC scores ⟨Xk, νl⟩ for l = 1, . . . , d and k = 1, . . . , n by
projecting each Xk on ν1, . . . , νd. Summarize the scores in the vector

Xk ∶= (⟨Xk, ν1⟩ , . . . , ⟨Xk, νd⟩)⊺, k = 1, . . . n.

(2) Consider the d-dimensional vectors X1, . . . ,Xn. For h ∈ N compute the vector
best linear predictor of Xn+h by means of (1.4.1):

X̂n+h = ( ̂⟨Xn+h, ν1⟩, . . . , ̂⟨Xn+h, νd⟩)⊺.

(3) Re-transform the vector best linear predictor X̂n+h into a functional form X̂n+h

via the truncated Karhunen-Loève representation:

X̂n+h ∶= ̂⟨Xn+h, ν1⟩ν1 + ⋅ ⋅ ⋅ + ̂⟨Xn+h, νd⟩νd. (1.4.2)

For functional AR(p) processes, Aue et al. [5] compare the resulting predictor
(1.4.2) to the functional best linear predictor. Our goal is to extend these results
to functional ARMA(p, q) processes. However, when moving away from AR models,
the best linear predictor is no longer directly given by the process. We start by
recalling the notion of best linear predictors in Hilbert spaces.

1.4.2 Functional best linear predictor

For h ∈ N we introduce the h-step functional best linear predictor X̂n+h of Xn+h,
based on X1, . . . ,Xn, as proposed in Bosq [10]. It is the projection of Xn+h onto
a large enough subspace of L2

H containing X1, . . . ,Xn. More formally, we use the
concept of L-closed subspaces as in Definition 1.1 of Bosq [8].

Definition 1.4.2. Recall that L denotes the space of bounded linear operators
acting on H. We call G an L-closed subspace (LCS) of L2

H , if
(1) G is a Hilbertian subspace of L2

H .
(2) If X ∈ G and g ∈ L, then gX ∈ G. ◻

1Steps (1) and (3) are implemented in the R package fda, and (2) in the R package mts



22 1. Prediction of functional ARMA processes

We define

X(n) ∶= (Xn, . . . ,X1).

By Theorem 1.8 of Bosq [8] the LCS G ∶= GX(n) generated by X(n) is the closure in
L2
Hn of G′

X(n) , where

G′

X(n) ∶= {gnX(n) ∶ gn ∈ L(Hn,H) }.

For h ∈ N the h-step functional best linear predictor X̂G
n+h of Xn+h is defined as the

projection of Xn+h onto G, which we write as

X̂G
n+h ∶= PGXn+h ∈ G. (1.4.3)

Its properties are given by the projection theorem (e.g. Section 1.6 in Bosq [8])
and are summarized as follows.

Remark 1.4.3. (i) E⟨Xn+h − X̂G
n+h, Y ⟩ = 0 for all Y ∈ G.

(ii) X̂G
n+h is the unique element in G such that

E∥Xn+h − X̂G
n+h∥2 = inf

Y ∈G
E∥Xn+h − Y ∥2.

(iii) The mean squared error of the functional best linear predictor X̂G
n+h is denoted

by
σ2
n,h ∶= E∥Xn+h − X̂G

n+h∥2. (1.4.4)

◻

Since in general G′

X(n) is not closed (cf. Bosq [10], Proposition 2.1), X̂G
n+h is not

necessarily of the form X̂G
n+h = g

(h)
n X(n) for some g

(h)
n ∈ L(Hn,H). However, the

following result gives necessary and sufficient conditions for X̂G
n+h to be represented

in terms of bounded linear operators.

Proposition 1.4.4 (Proposition 2.2, Bosq [10]). For h ∈ N the following are equiv-
alent:
(i) There exists some g ∈ L(Hn,H) such that CX(n),Xn+h

= g CX(n).
(ii) PGXn+h = gX(n) for some g ∈ L(Hn,H).
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This result allows us to derive conditions, such that the difference between the
predictors (1.4.1) and (1.4.3) can be computed. Weaker conditions are needed, if
X̂G
n+h admits a representation X̂G

n+h = s(h)n X(n) for some Hilbert-Schmidt operator
s
(h)
n from Hn to H (s(h)n ∈ S(Hn,H)).

Proposition 1.4.5. For h ∈ N the following are equivalent:
(i) There exists some s ∈ S(Hn,H) such that CX(n),Xn+h

= sCX(n).
(ii) PGXn+h = sX(n) for some s ∈ S(Hn,H).

Proof. The proof is similar to the proof of Proposition 1.4.4. Assume that (i) holds.
Then, since CX(n),sX(n) = E[⟨X(n), ⋅⟩ sX(n)] = sCX(n) , we have

CX(n),Xn+h−sX(n) = 0.

Therefore, Xn+h − sX(n) ⊥X(n) and, hence, Xn+h − sX(n) ⊥ G which gives (ii).
For the reverse, note that (ii) implies

CX(n),Xn+h−sX(n) = CX(n),Xn+h−PGXn+h
= 0.

Thus, CX(n),Xn+h
= CX(n),sX(n) = sCX(n) , which finishes the proof.

We proceed with examples of processes where Proposition 1.4.4 or Proposi-
tion 1.4.5 apply.

Example 1.4.6. Let (Xn)n∈Z be a stationary functional AR(p) process with repre-
sentation

Xn = εn +
p

∑
j=1
φjXn−j, n ∈ Z,

where (εn)n∈Z is WN and φj ∈ S are Hilbert-Schmidt operators. Then for n ≥ p,
Proposition 1.4.5 applies for h = 1, giving the 1-step predictor PGXn+1 = s(1)n X(n)

for some s(1)n ∈ S.

Proof. We calculate

CX(n),Xn+1(⋅) = E[⟨X(n), ⋅⟩(φ1, . . . , φp,0, . . . ,0)X(n)] = φCX(n)(⋅),

where φ = (φ1, . . . , φp,0, . . . ,0) ∈ L(Hn,H). Now let (ei)i∈N be an ONB of H. Then
(fj)j∈N with f1 = (e1,0, . . . ,0)⊺, f2 = (0, e1,0, . . . ,0)⊺, . . . , fn = (0, . . . ,0, e1)⊺,
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fn+1 = (e2,0, . . . ,0)⊺, fn+2 = (0, e2,0, . . . ,0)⊺, . . . , f2n = (0, . . . ,0, e2)⊺, f2n+1 =
(e3,0, . . . ,0)⊺, . . . is an ONB of Hn and, by orthogonality of (ei)i∈N, we get

∥φ∥2
S = ∑

j∈N
∥φfj∥2 = ∑

i∈N

p

∑
j=1

∥φjei∥2 =
p

∑
j=1
∑
i∈N

∥φjei∥2 =
p

∑
j=1

∥φj∥2
L < ∞,

since φj ∈ S for every j = 1, . . . , p, which implies that φ ∈ S(Hn,H).

Example 1.4.7. Let (Xn)n∈Z be a stationary functional MA(1) process

Xn = εn + θεn−1, n ∈ Z,

where (εn)n∈Z is WN, ∥θ∥L < 1, θ ∈ S and θ nilpotent, such that ∥θj∥L = 0 for j > j0

for some j0 ∈ N. Then for n > j0, Proposition 1.4.5 applies.

Proof. Since ∥θ∥L < 1, (Xn)n∈Z is invertible, and since θ is nilpotent, (Xn)n∈Z can
be represented as an AR process of finite order, where the operators in the inverse
representation are still Hilbert-Schmidt operators. Then the statement follows from
the arguments of the proof of Example 1.4.6.

Example 1.4.8. Let (Xn)n∈Z be a stationary functional MA(1) process

Xn = εn + θεn−1, n ∈ Z,

where (εn)n∈Z is WN, and denote by Cε the covariance operator of the WN. Assume
that ∥θ∥L < 1. If θ and Cε commute, Proposition 1.4.5 applies.

Proof. Stationarity of (Xn)n∈Z ensures that CXn,Xn+1 = CX0,X1 . Let θ∗ denote the
adjoint operator of θ. Since θCε = Cεθ, we have that CX1,X0 = CX0,X1 which implies
θCε = Cεθ∗ = Cεθ. Hence, Cε = CX0 −θCεθ∗ = CX0 −θ2Cε. Since ∥θ∥L < 1, the operator
I + θ2 is invertible. Therefore, Cε = (I + θ2)−1CX0 , and we get

CX1,X0 = θCε = (I + θ2)−1θCX0 .

Furthermore, since the space S of Hilbert-Schmidt operators forms an ideal in the
space of bounded linear operators (e.g. Dunford and Schwartz [16], Theorem VI.5.4.)
and θ ∈ S, also (I + θ2)−1θ ∈ S.
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1.4.3 Bounds for the error of the vector predictor

We are now ready to derive bounds for the prediction error caused by the dimension
reduction. More precisely, for h ∈ N we compare the vector best linear predictor
X̂n+h = ∑dj=1

̂⟨Xn+h, νj⟩νj as defined in (1.4.2) with the functional best linear predictor
X̂G
n+h = PGXn+h of (1.4.3). We first compare them on sp{ν1, . . . , νd}, where the vector

representations are given by

X̂n+h = ( ̂⟨Xn+h, ν1⟩, . . . , ̂⟨Xn+h, νd⟩)⊺, and

X̂G
n+h ∶= (⟨X̂G

n+h, ν1⟩ , . . . , ⟨X̂G
n+h, νd⟩)

⊺
. (1.4.5)

We formulate assumptions such that for d → ∞ the mean squared distance be-
tween the vector best linear predictor X̂n+h and the vector X̂G

n+h becomes arbitrarily
small.

For l = 1, . . . , d, the l-th component of X̂G
n+h is given by

⟨X̂G
n+h, νl⟩ = ⟨

n

∑
i=1
g
(h)
ni Xi, νl⟩ = ⟨

n

∑
i=1

∞

∑
l′=1

⟨Xi, νl′⟩ g(h)ni νl′ , νl⟩

=
n

∑
i=1

∞

∑
l′=1

⟨Xi, νl′⟩ ⟨g(h)ni νl′ , νl⟩ . (1.4.6)

Using the vector representation (1.4.5), we write

X̂G
n+h =

n

∑

i=1

⎛

⎜
⎜
⎜

⎝

⟨g
(h)
ni ν1, ν1⟩ . . . ⟨g

(h)
ni νd, ν1⟩ ⟨g

(h)
ni νd+1, ν1⟩ . . .

⋮ ⋮ ⋮ ⋮ ⋮

⟨g
(h)
ni ν1, νd⟩ . . . ⟨g

(h)
ni νd, νd⟩ ⟨g

(h)
ni νd+1, νd⟩ . . .

⎞

⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⟨Xi, ν1⟩

⋮

⟨Xi, νd⟩

⟨Xi, νd+1⟩

⋮

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

=∶

n

∑

i=1
G(h)ni Xi +

n

∑

i=1
G(h)∞ni X∞

i , (1.4.7)

where G(h)ni are d × d matrices with ll′-th component ⟨g(h)ni νl′ , νl⟩ and G∞
ni are d ×∞

matrices with ll′-th component ⟨g(h)ni νd+l′ , νl⟩.
Moreover, for all Y ∈ G there exist n ∈ N and (possibly unbounded) linear oper-

ators tn1, . . . , tnn such that
Y =

n

∑
i=1
tniXi. (1.4.8)
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Similarly as in (1.4.6), we project Y ∈ G on sp{ν1, . . . , νd}, which results in

Y ∶= (⟨Y, ν1⟩ , . . . , ⟨Y, νd⟩)⊺

= (⟨
n

∑
i=1
tniXi, ν1⟩, . . . , ⟨

n

∑
i=1
tniXi, νd⟩)

⊺

=∶
n

∑
i=1

TniXi +
n

∑
i=1

T∞
niX∞

i . (1.4.9)

The d×d matrices Tni and the d×∞ matrices T∞
ni in (1.4.8) are defined in the same

way as G(h)ni and G(h)∞ni in (1.4.7). We denote by M the space of all Y:

M ∶= {Y = (⟨Y, ν1⟩ , . . . , ⟨Y, νd⟩)⊺ ∶ Y ∈ G} .

Recall M1 as defined in (1.4.1). Observing that for all Y1 ∈ M1 there exist d × d
matrices An1, . . . ,Ann such that Y1 = ∑ni=1 AniXi, there also exist operators tni such
that Tni = Ani, and T∞

ni = 0, which then gives Y1 ∈ M. Hence M1 ⊆ M.
Now that we have introduced the notation and the setting, we are ready to

compute the mean squared distance E∥X̂n+h − X̂G
n+h∥2

2.

Theorem 1.4.9. Suppose (Xn)n∈Z is a functional ARMA(p, q) process such that
Assumption 1.3.7 holds. For h ∈ N let X̂G

n+h be the functional best linear predictor
of Xn+h as defined in (1.4.3) and X̂G

n+h as in (1.4.5). Let furthermore X̂n+h be the
vector best linear predictor of Xn+h based on X1, . . . ,Xn as in (1.4.1).
(i) In the framework of Proposition 1.4.4, and if ∑∞

l=1
√
λl < ∞, for all d ∈ N,

E ∥X̂n+h − X̂G
n+h∥

2
2 ≤ 4 (

n

∑
i=1

∥g(h)ni ∥L)
2 (

∞

∑
l=d+1

√
λl)

2 < ∞.

(ii) In the framework of Proposition 1.4.5, for all d ∈ N,

E ∥X̂n+h − X̂G
n+h∥

2
2 ≤ 4 (

n

∑
i=1

(
∞

∑
l=d+1

∥g(h)ni νl∥2)
1
2 )2 ∞

∑
l=d+1

λl < ∞.

In both cases, E∥X̂n+h − X̂G
n+h∥2

2 tends to 0 as d→∞.

We start with a technical lemma, which we need for the proof of the above
Theorem.



1.4. Prediction of functional ARMA processes 27

Lemma 1.4.10. Suppose (Xn)n∈Z is a stationary and causal functional ARMA(p, q)
process and (νl)l∈N are the eigenfunctions of its covariance operator CX . Then for
all j, l ∈ N,

E [⟨Xn+h − X̂G
n+h, νl⟩ ⟨Y, νj⟩] = 0, Y ∈ G.

Proof. For all j, l ∈ N we set sl,j(⋅) ∶= ⟨⋅, νl⟩νj. First note that for all x ∈ H with
∥x∥ ≤ 1,

∥sl,jx∥ = ∥ ⟨x, νl⟩νj∥ ≤ ∥x∥ ≤ 1,

hence, sl,j ∈ L. Since G is an L-closed subspace, Y ∈ G implies sl,j(Y ) ∈ G and we
get with Remark 1.4.3(i) for all j, l ∈ N,

E ⟨Xn+h − X̂G
n+h, sl,jY ⟩ = E [⟨Xn+h − X̂G

n+h, νl⟩ ⟨Y, νj⟩] = 0.

Proof of Theorem 1.4.9. First note that under both conditions (i) and (ii), there
exist g(h)ni ∈ L such that X̂G

n+h = ∑ni=1 g
(h)
ni Xn+h−i and that S ⊂ L. With the matrix

representation of X̂G
n+h in (1.4.7) and Lemma 1.4.10 we obtain

d

∑
j=1
E[⟨Y, νj⟩⟨Xn+h − X̂G

n+h, νj⟩] = E⟨Y,Xn+h − X̂G
n+h⟩Rd

= E⟨Y,Xn+h −
n

∑
i=1

G(h)ni Xi −
n

∑
i=1

G(h)∞ni X∞
i ⟩

Rd
= 0, Y ∈ G, (1.4.10)

where Y is defined as in (1.4.9). Since (1.4.10) holds for all Y ∈ M and M1 ⊆ M, it
especially holds for all Y1 ∈ M1; i.e.,

E⟨Y1,Xn+h −
n

∑
i=1

G(h)ni Xi −
n

∑
i=1

G(h)∞ni X∞
i ⟩

Rd
= 0, Y1 ∈ M1. (1.4.11)

Combining (1.4.11) and Remark 1.4.3(i), we get

E⟨Y1, X̂n+h −
n

∑
i=1

G(h)ni Xi⟩
Rd

= E⟨Y1,
n

∑
i=1

G(h)∞ni X∞
i ⟩

Rd
, Y1 ∈ M1. (1.4.12)

Since both X̂n+h and
n

∑
i=1

G(h)ni Xi are in M1, (1.4.12) especially holds, when

Y1 = X̂n+h −
n

∑
i=1

G(h)ni Xi ∈ M. (1.4.13)
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We plug Y1 as defined in (1.4.13) into (1.4.12) and obtain

E⟨X̂n+h −
n

∑
i=1

G(h)ni Xi, X̂n+h −
n

∑
i=1

G(h)ni Xi⟩
Rd

= E⟨X̂n+h −
n

∑
i=1

G(h)ni Xi,
n

∑
i=1

G(h)∞ni X∞
i ⟩

Rd
. (1.4.14)

From the left hand side of (1.4.14) we read off

E⟨X̂n+h −
n

∑
i=1

G(h)ni Xi, X̂n+h −
n

∑
i=1

G(h)ni Xi⟩
Rd

= E∥X̂n+h −
n

∑
i=1

G(h)ni Xi∥
2

2
, (1.4.15)

and for the right-hand side of (1.4.14), applying the Cauchy-Schwarz inequality
twice, we get

E⟨X̂n+h−
n

∑
i=1

G(h)ni Xi,
n

∑
i=1

G(h)∞ni X∞
i ⟩

Rd

≤ E[∥X̂n+h −
n

∑
i=1

G(h)ni Xi∥
2
∥
n

∑
i=1

G(h)∞ni X∞
i ∥

2
]

≤ (E∥X̂n+h −
n

∑
i=1

G(h)ni Xi∥
2

2
)

1
2 (E∥

n

∑
i=1

G(h)∞ni X∞
i ∥

2

2
)

1
2
. (1.4.16)

Dividing the right-hand side of (1.4.15) by the first square root on the right-hand
side of (1.4.16) we find

E∥X̂n+h −
n

∑
i=1

G(h)ni Xi∥
2

2
≤ E∥

n

∑
i=1

G(h)∞ni X∞
i ∥

2

2
.

Hence, for the mean squared distance we obtain

E∥X̂n+h − X̂G
n+h∥

2

2
= E∥X̂n+h −

n

∑
i=1

G(h)ni Xi −
n

∑
i=1

G(h)∞ni X∞
i ∥

2

2

≤ 2E∥X̂n+h −
n

∑
i=1

G(h)ni Xi∥
2

2
+ 2E∥

n

∑
i=1

G(h)∞ni X∞
i ∥

2

2

≤ 4E∥
n

∑
i=1

G(h)∞ni X∞
i ∥

2

2
.

What remains to do is to bound
n

∑
i=1

G(h)∞ni X∞
i , which, by (1.4.7), is a d-dimensional

vector with l-th component ∑ni=1
∞

∑
l′=d+1

⟨Xi, νl′⟩⟨g(h)ni ν
′
l , νl⟩.
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(i) First we consider the framework of Proposition 1.4.4.
We abbreviate xi,l′ ∶= ⟨Xi, ν′l⟩ and calculate

E∥
n

∑
i=1

G(h)∞ni X∞
i ∥

2

2
= E∥

d

∑
l=1

(
n

∑
i=1

∞

∑
l′=d+1

xi,l′⟨g(h)ni ν
′
l , νl⟩)νl∥

2

≤ E∥
∞

∑
l=1

(
n

∑
i=1

∞

∑
l′=d+1

xi,l′⟨g(h)ni ν
′
l , νl⟩)νl∥

2

=E∥
n

∑
i=1

∞

∑
l′=d+1

xi,l′g
(h)
ni ν

′
l∥

2
(1.4.17)

by Parseval’s equality (1.2.1). Then we proceed using the orthogonality of νl and
the Cauchy-Schwarz inequality,

= E[⟨
n

∑
i=1

∞

∑
l=d+1

xi,lg
(h)
ni νl,

n

∑
j=1

∞

∑
l′=d+1

xj,l′g
(h)
nj ν

′
l⟩]

=
n

∑
i,j=1

∞

∑
l,l′=d+1

E(xi,lxj,l′)⟨g(h)ni νl, g
(h)
nj νl′⟩

≤ (
n

∑
i=1

∞

∑
l=d+1

√
E(xi,l)2∥g(h)ni νl∥)

2

= (
n

∑
i=1

∞

∑
l=d+1

√
λl∥g(h)ni νl∥)

2
, (1.4.18)

since E⟨Xi, νl⟩2 = λl by (1.2.4). The right-hand side of (1.4.18) is bounded above by

(
n

∑
i=1

∞

∑
l=d+1

√
λl∥g(h)ni ∥L∥νl∥)

2
= (

n

∑
i=1

∥g(h)ni ∥L)
2
(

∞

∑
l=d+1

√
λl)

2
,

since ∥νl∥ = 1 for all l ∈ N. Since g(h)ni ∈ L, we have ∑ni=1 ∥g
(h)
ni ∥L < ∞ for all n ∈ N and

with ∑∞
l=1

√
λl < ∞, the right-hand side tends to 0 as d→∞.

(ii) In the framework of Proposition 1.4.5 there exist g(h)ni ∈ S such that X̂G
n+h =

∑ni=1 g
(h)
ni Xn+h−i. By the Cauchy-Schwarz inequality we estimate

E∥
n

∑
i=1

G(h)∞ni X∞
i ∥

2

2
≤ (

n

∑
i=1

∞

∑
l=d+1

√
λl∥g(h)ni νl∥)

2

≤ (
n

∑
i=1

(
∞

∑
l=d+1

λl)
1
2(

∞

∑
l=d+1

∥g(h)ni νl∥2)
1
2)

2

= (
n

∑
i=1

(
∞

∑
l=d+1

∥g(h)ni νl∥2)
1
2)

2 ∞

∑
l=d+1

λl. (1.4.19)
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Now note that ∑∞
l=d+1 ∥g

(h)
ni νl∥2 ≤ ∥g(h)ni ∥S < ∞. Thus, (1.4.19) is bounded by

(
n

∑
i=1

(
∞

∑
l=d+1

∥g(h)ni νl∥2)
1/2

)
2 ∞

∑
l=d+1

λl ≤ (
n

∑
i=1

∥g(h)ni ∥1/2
S

)
2 ∞

∑
l=d+1

λl < ∞,

such that (1.4.19) tends to 0 as d→∞. ◻
We are now ready to derive bounds of the mean squared prediction error

E∥Xn+h − X̂n+h∥2.

Theorem 1.4.11. Consider a stationary and causal functional ARMA(p, q) process
as in (1.3.1). Then, for h ∈ N, X̂n+h as defined in (1.4.2), and σ2

n,h as defined in
(1.4.4), we obtain

E ∥Xn+h − X̂n+h∥
2 ≤ σ2

n,h + γd;n;h,

where γd;n;h can be specified as follows.

(i) In the framework of Proposition 1.4.4, and if ∑∞
l=1

√
λl < ∞, for all d ∈ N,

γd;n;h = 4 (
n

∑
i=1

∥g(h)ni ∥L)
2
(

∞

∑
l=d+1

√
λl)

2
+

∞

∑
l=d+1

λl.

(ii) In the framework of Proposition 1.4.5, for all d ∈ N,

γd;n;h =
∞

∑
l=d+1

λl (4 gn;d;h + 1) with gn;d;h =
n

∑
i=1

(
∞

∑
l=d+1

∥g(h)ni νl∥
2
)

1/2
≤

n

∑
i=1

∥g(h)ni ∥2
S .

In both cases, E ∥Xn+h − X̂n+h∥
2 tends to σ2

n,h as d→∞.

Proof. With (1.2.4) and since (νl)l∈N is an ONB, we get

E ∥Xn+h − X̂n+h∥
2 = E∥

d

∑
l=1

⟨Xn+h − X̂n+h, νl⟩νl +
∞

∑
l=d+1

⟨Xn+h, νl⟩νl∥
2

=
d

∑
l=1
E ∥⟨Xn+h − X̂n+h, νl⟩νl∥

2 +
∞

∑
l=d+1

E ∥⟨Xn+h, νl⟩νl∥2

=
d

∑
l=1
E⟨Xn+h − X̂n+h, νl⟩2 +

∞

∑
l=d+1

λl. (1.4.20)

Now note that by definition of the Euclidean norm,
d

∑
l=1
E⟨Xn+h − X̂n+h, νl⟩2 = E∥Xn+h − X̂n+h∥2

2.
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Furthermore, by Definition 1.4.2 of L-closed subspaces and Remark 1.4.3(i),
E⟨Xn+h − X̂G

n+h, Y ⟩ = 0 for all Y ∈ G. Observing that X̂G
n+h − X̂n+h ∈ G, we conclude

that

E⟨Xn+h − X̂G
n+h, X̂

G
n+h − X̂n+h⟩ = 0,

and, by Lemma 1.4.10,

E⟨Xn+h − X̂G
n+h, νl⟩⟨X̂G

n+h − X̂n+h, νl′⟩ = 0, l, l′ ∈ N.

Hence,

E∥Xn+h − X̂n+h∥2
2 = E∥Xn+h − X̂G

n+h∥2
2 +E∥X̂G

n+h − X̂n+h∥2
2, (1.4.21)

where for the first term of the right-hand side,

E∥Xn+h − X̂G
n+h∥2

2 = E
d

∑
l=1

⟨Xn+h − X̂G
n+h, νl⟩2 ≤

∞

∑
l=1

⟨Xn+h − X̂G
n+h, νl⟩2

= E∥Xn+h − X̂G
n+h∥2 = σ2

n,h, (1.4.22)

and the last equality holds by Remark 1.4.3(iii). For the second term of the right-
hand side of (1.4.21) we use Theorem 1.4.9. We finish the proof of both (i) and (ii)
by plugging (1.4.21) and (1.4.22) into (1.4.20).

Since the prediction error decreases with d, Theorem 1.4.11 can not be applied as
a criterion for the choice of d. In a data analysis, when quantities such as covariance
operators and its eigenvalues have to be estimated, the variance of the estimators
increases with d. Small errors in the estimation of small empirical eigenvalues may
have severe consequences on the prediction error (see Bernard [6]). To avoid this
problem a conservative choice of d is suggested. Theorem 1.4.11 allows for an inter-
pretation of the prediction error for fixed d. This is similar as for Theorem 3.2 in
Aue et al. [5], here for a more general model class of ARMA models.

1.5 Traffic data analysis

We apply the functional time series prediction theory of Section 4 to highway traffic
data provided by the Autobahndirektion Südbayern, thus extending previous work
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Figure 1.3: Functional velocity data (black) and raw data (grey) both in km/h on the last
ten working days in June 2014 (June 19th 2014 was a catholic holiday).

in Besse and Cardot [7]. Our dataset consists of measurements at a fixed point on
a highway (A92) in Southern Bavaria, Germany. Recorded is the average velocity
per minute from 1/1/2014 00:00 to 30/06/2014 23:59 on three lanes. After taking
care of missing values and data outliers, we average the velocity per minute over the
three lanes, weighted by the number of vehicles per lane. Then we transform the
cleaned daily high-dimensional data to functional data using the first 30 Fourier basis
functions. The two standard bases of function spaces used in FDA are Fourier and
B-spline basis functions (see Ramsay and Silverman [47], Section 3.3). We choose
Fourier basis functions as they allow for a more parsimonious representation of
the variability: a Fourier representation needs only 4 FPCs to explain 80% of the
variability in the data, whereas a B-spline representation requires 6 (see Wei [55],
Section 6.1). In Figure 1.3 we depict the resulting curves for the working days of
two weeks in June 2014. More information on the transformation from discrete time
observation to functional data and details on the implementation in R are provided
in Wei [55], Chapter 6.

As can be seen in Figure 1.4, different weekdays have different mean velocity
functions. To account for the difference between weekdays we subtract the empirical
individual daily mean from all daily data (Monday mean from Monday data, etc.).
The effect is clearly visible in Figure 1.5. However, even after deduction of the daily
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Figure 1.4: Empirical functional mean velocity (in km/h) on the 7 days of the week, over
the day

mean, the functional stationarity test of Horvàth et al. [28] based on projection
rejects stationarity of the time series. This is due to traffic flow on weekends: Sat-
urday and Sunday traffic show different patterns than weekdays, even after mean
correction. Consequently, we restrict our investigation to working days (Monday-
Friday), resulting in a functional time series Xn for n = 1, . . . ,N = 119, for which
the stationarity test suggested in Horvàth et al. [28] does not reject the stationarity
assumption.

A portmanteau test of Gabrys and Kokoszka [20] applied to Xn for n = 1, . . . ,N =
119 working days rejects (with a p-value as small as 10−6) that the daily functional
data are uncorrelated. The assumption of temporal dependence in the data is in
line with the results in Chrobok et al. [15] who use linear models to predict inner
city traffic flow, and with results in Besse and Cardot [7] who use the temporal
dependence for the prediction of traffic volume with a functional AR(1) model.

Next we show the prediction method at work for our data. More precisely, we
estimate the 1-step predictors for the last 10 working days of our dataset and present
the final result in Figure 1.9, where we compare the functional velocity data with
their 1-step predictor. We explain the procedure in detail.

We start by estimating the covariance operator (recall Remark 1.3.10). Figure 1.6
shows the empirical covariance kernel of the functional traffic velocity data based
on 119 working days (the empirical version of E[(X(t) − µ(t))(X(s) − µ(s))] for
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Figure 1.5: Functional velocity data (in km/h) over the day for 30 working days smoothed
by a Fourier basis before and after subtracting the weekday mean

0 ≤ t, s ≤ 1).
As indicated by the arrows, the point (t, s) = (0,0) is at the bottom right corner

and estimates the variance at midnight. The empirical variance over the day is rep-
resented along the diagonal from the bottom right to the top left corner. The valleys
and peaks along the diagonal represent phases of low and high traffic density: for
instance, the first peak represents the variance at around 05:00 a.m., where traffic
becomes denser, since commuting to work starts. Peaks away from the diagonal rep-
resent high dependencies between different time points during the day. For instance,
high traffic density in the early morning correlates with high traffic density in the
late afternoon, again due to commuting.

Next we compute the empirical eigenpairs (λej , νej ) for j = 1, . . . ,N of the empirical
covariance operator. The first four eigenfunctions are depicted in Figure 1.7.

Now we apply the CPV method from Remark 1.2.3 to the functional highway
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Figure 1.6: Empirical covariance kernel of functional velocity data on 119 working days.

velocity data. From a “CPV(d) vs. d” plot we read off that d = 4 FPCs explain 80%
of the variability of the data.

Obviously, the choice of d is critical. Choosing d too small induces a loss of
information as seen in Theorem 4.13. Choosing d too large makes the estimation
of the vector model difficult and may result in imprecise predictors: the prediction
error may explode (see Bernard [6]). As a remedy we perform cross validation on the
prediction error based on a different number d of relevant scores. This furthermore
ensures that the dependence structure of the data is not ignored when it is relevant
for prediction.

Since the prediction is not only based on the number of scores, but also on
the chosen ARMA model, we perform cross validation on the number of scores in
combination with cross validation on the orders of the ARMA models.

Thus, we apply Algorithm 1 of Section 4.1 to the functional velocity data and
implement the following steps for d = 2, . . . ,6 and N = 119.
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Figure 1.7: Four empirical eigenfunctions of the N = 119 working days functional veloc-
ity data. The criterion is 80%; i.e., ν1, ν2, ν3, ν4 explain together 80% of the total data
variability.

(1) For each day n ∈ {1, . . . ,N}, truncate the Karhunen-Loève representation
(Theorem 1.2.2) of the daily functional velocity curve Xn at d. This yields

Xn,d ∶=
d

∑
j=1

⟨Xn, ν
e
j ⟩νej , n = 1, . . . ,N.

(Figure 1.8 depicts the (centered) functional velocity data and the corresponding
truncated data for d = 4.) Store the d scores in the vector Xn,

Xn = (⟨Xn, ν
e
1⟩ , . . . , ⟨Xn, ν

e
d⟩)⊺, n = 1, . . . ,N.

(2) Fit different vector ARMA(p, q) models to the d-dimensional score vector.
Compute the best linear predictor X̂n+1 based on the vector model iteratively by the
Durbin-Levinson or the Innovations Algorithm (see e.g Brockwell and Davis [13]).

(3) Re-transform the vector best linear predictor X̂n+1 into its functional form
X̂n+1. Compare the goodness of fit of the models by their functional prediction errors
∥Xn+1 − X̂n+1∥2. (In Table 1.1 root mean squared errors (RMSE) and mean absolute
errors (MAE) for the different models are summarized.) Fix the optimal d and the
optimal ARMA(p, q) model.

As a result we find minimal 1-step prediction errors for d = 4, which confirms the
choice proposed by the CPV method, and for the VAR(2) and the vector MA(1)
model. Both models yield the same RMSE, and the MAE of the vector MA(1)



1.6. Conclusions 37
−

20
−

10
0

10

2014−04−14(M) 2014−04−15(Tu) 2014−04−16(W) 2014−04−17(Th) 2014−04−18(F) 2014−04−19(Sa)

V
el

oc
ity

(k
m

/h
)

functional truncated

Figure 1.8: Functional velocity raw data on 5 consecutive working days (black) versus the
truncated data by the Karhunen-Loève representation (grey). The criterion is 80% and
the number d of FPCs is 4.

model is slightly smaller than that of the vector AR(2) model. Since we opt for a
parsimonious model, we choose the vector MA(1) model, for which the predictor is
depicted in Figure 1.9.

Finally, we compare the performance of the 1-step prediction based on the func-
tional MA(1) model with standard non-parametric prediction methods. Our ap-
proach definitely outperforms prediction methods like exponential smoothing, naive
prediction with the last observation, or using the mean of the time series as a pre-
dictor. Details are given in Wei [55], Section 6.3.

1.6 Conclusions

We have investigated functional ARMA(p, q) models and a corresponding approxi-
mating vector model, which lives on the closed linear span of the first d eigenfunc-
tions of the covariance operator. We have presented conditions for the existence of
a unique stationary and causal solution to both functional ARMA(p, q) and ap-
proximating vector model. Furthermore, we have derived conditions such that the
approximating vector model is exact. Interestingly, and in contrast to AR or ARMA
models, for a functional MA process of finite order the approximate vector process
is automatically again a MA process of equal or smaller order.
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(p, q) (1,0) (2,0) (0,1) (0,2) (1,1) (2,1) (1,2)
d=2 RMSE 5.15 5.09 5.02 5.15 5.13 4.96 5.09

MAE 3.82 3.77 3.73 3.83 3.80 3.66 3.76
d=3 RMSE 4.97 4.87 4.86 5.30 4.94 4.89 5.08

MAE 3.70 3.62 3.61 3.87 3.68 3.63 3.69
d=4 RMSE 4.98 4.83 4.83 5.55 4.92 4.90 5.23

MAE 3.67 3.55 3.54 4.13 3.62 3.61 3.83
d=5 RMSE 5.06 5.15 4.91 5.80 5.04 5.20 5.46

MAE 3.76 3.77 3.63 4.38 3.76 3.80 4.02
d=6 RMSE 5.12 5.28 5.09 6.47 5.12 5.34 5.97

MAE 3.78 3.88 3.82 4.87 3.81 3.91 4.50

Table 1.1: Average 1-step prediction errors of the predictors for the last 10 observations
for all working days for different ARMA models and number of principal components.

For arbitrary h ∈ N we have investigated the h-step functional best linear predic-
tor of Bosq [10] and gave conditions for a representation in terms of operators in L.
We have compared the best linear predictor of the approximating vector model with
the functional best linear predictor, and showed that the difference between the two
predictors tends to 0 if the dimension of the vector model d→∞. The theory gives
rise to a prediction methodology for stationary functional ARMA(p, q) processes
similar to the one introduced in Aue et al. [5].

We have applied the new prediction theory to traffic velocity data. For finding
an appropriate dimension d of the vector model, we applied the FPC criterion and
cross validation on the prediction error. For our traffic data the cross validation
leads to the same choice of d = 4 as the FPC criterion for CPV(d) ≥ 80%. The model
selection is also performed via cross validation on the 1-step prediction error for
different ARMA models resulting in an MA(1) model.

The appeal of the methodology is its ease of application. Well-known R software
packages (fda and mts) make the implementation straightforward. Furthermore, the
generality of dependence induced by ARMA models extends the range of application
of functional time series, which was so far restricted to autoregressive dependence
structures.
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Figure 1.9: Functional velocity data in black and 1-step functional predictor based on
VMA(1) in grey (in km/h) for the last 10 working days in June 2014
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Chapter 2:
An Innovations Algorithm for the predic-
tion of functional linear processes

2.1 Introduction

We consider observations which are consecutive curves over a fixed time interval
within the field of functional data analysis (FDA). In this chapter curves are rep-
resentations of a functional linear process. The data generating process is a time
series X = (Xn)n∈Z where each Xn is a random element Xn(t), t ∈ [0,1], of a Hilbert
space, often the space of square integrable functions on [0,1].

Several books contain a mathematical or statistical treatment of dependent func-
tional data as Bosq [8], Horvàth and Kokoszka [27], and Bosq and Blanke [11]. The
main source of this chapter is the book Bosq [8] on linear processes in function
spaces, which gives the most general mathematical treatment of linear dependence
in functional data, developing estimation, limit theorems and prediction for func-
tional autoregressive processes. In Hörmann and Kokoszka [24] the authors develop
limit theorems for the larger class of weakly dependent functional processes. More
recently, Hörmann et al. [25] and Panaretos and Tavakoli [44] contribute to frequency
domain methods of functional time series.

Solving the prediction equations in function spaces is problematic and research
to-date has mainly considered first order autoregressive models. Contributions to
functional prediction go hand in hand with an estimation method for the autoregres-
sive parameter operator. Bosq [8] suggests a Yule-Walker type moment estimator,
spline approximation is applied in Besse and Cardot [7], and Kargin and Onatski [32]

41
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proposes a predictive factor method where the principal components are replaced
by directions which may be more relevant for prediction.

When moving away from the autoregressive process, results on prediction of
functional time series become sparse. An interesting theory for the prediction of
general functional linear processes is developed in Bosq [10]. Necessary and sufficient
conditions are derived for the best linear predictor to take the form φn(X1, . . . ,Xn)
with φn linear and bounded. However, due to the infinite-dimensionality of function
spaces, boundedness of φn cannot be guaranteed. Consequently, most results, though
interesting from a theoretical point of view, are not suitable for application.

More practical results are given for example in Antoniadis et al. [1], where predic-
tion is performed non-parametrically with a functional kernel regression technique,
or Chapter 1, Aue et al. [5] and Hyndman and Shang [30], where the dimensionality
of the prediction problem is reduced via functional principal component analysis. In
a multivariate setting, the Innovations Algorithm proposed in Brockwell and Davis
[13] gives a established prediction method for linear processes. However, as often in
functional data analysis, the non-invertibility of covariance operators prevents an
ad-hoc generalization of the Innovations Algorithm to functional linear processes.

We suggest a computationally feasible linear prediction method extending the In-
novations Algorithm to the functional setting. For a functional linear process (Xn)n∈Z
with values in a Hilbert space H and with innovation process (εn)n∈Z our goal is
the construction of a linear predictor X̂n+1 based on X1, . . . ,Xn such that X̂n+1 is
both computationally tractable and consistent. In other words, we want to find a
bounded linear mapping φn with X̂n+1 = φn(X1, . . . ,Xn) such that the statistical
prediction error converges to 0 for increasing sample size; i.e.,

lim
n→∞

E∥Xn+1 − X̂n+1∥2 = E∥ε0∥2. (2.1.1)

To achieve convergence in (2.1.1) we work with finite-dimensional projections of the
functional process, similarly as in Aue et al. [5] and Chapter 1. We start with a
representation of the functional linear model in terms of an arbitrary orthonormal
basis of the Hilbert space. We then focus on a representation of the model based
on only finitely many basis functions. An intuitive choice for the orthonormal basis
consists of the eigenfunctions of the covariance operator of the process. Taking the
eigenfunctions corresponding to the D largest eigenvalues results in a truncated
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Karhunen-Loéve representation, and guarantees to capture most of the variance of
the process (see Aue et al. [5]). Other applications may call for a different choice.

Though the idea of finite-dimensional projections is not new, our approach differs
significantly from existing ones. Previous approaches consider the innovations of
the projected process as the projection of the innovation of the original functional
process. Though this may be sufficient in practice, it is in general not theoretically
accurate.

The Wold decomposition enables us to work with the exact dynamics of the
projected process, which then allows us to derive precise asymptotic results. The
task set for this chapter is of a purely predictive nature: we assume knowing the
dependence structure and do not perform model selection or covariance estimation
of the functional process. This will be the topic of the subsequent chapter.

The truncated process (XD,n)n∈Z based on D basis functions is called subprocess.
We show that every subprocess of a stationary (and invertible) functional process
is again stationary (and invertible). We then use an isometric isomorphy to a D-
dimensional vector process to compute the best linear predictor of (XD,n)n∈Z with
the Multivariate Innovations Algorithm (see Brockwell and Davis [13]).

As a special example we investigate the functional moving average process of
finite order. We prove that every subprocess is again a functional moving average
process of same order or less. Moreover, for this process the Innovations Algorithm
simplifies. Invertibility is a natural assumption in the context of prediction (see
Brockwell and Davis [13], Section 5.5, and Nsiri and Roy [43]), and we require it when
proving limit results. The theoretical results on the structure of (XD,n)n∈Z enable
us to quantify the prediction error in (2.1.1). As expected, it can be decomposed in
two terms, one due to the dimension reduction, and the other due to the statistical
prediction error of the D-dimensional model. However, the goal of consistency as in
(2.1.1) is not satisfied, as the error due to dimension reduction does not depend on
the sample size.

Finally, in order to satisfy (2.1.1), we propose a modified version of the Innova-
tions Algorithm. The idea is to increase D together with the sample size. Hence the
iterations of our modified Innovations Algorithm are based on increasing subspaces.
Here we focus on the eigenfunctions of the covariance operator of X as orthonormal
basis of the function space.
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The main result of this chapter states that the prediction error is a combination
of two tail sums, one involving operators of the inverse representation of the process,
and the other the eigenvalues of the covariance operator. We obtain a computation-
ally tractable functional linear predictor for stationary invertible functional linear
processes. As the sample size tends to infinity the predictor satisfies (2.1.1) with
a rate depending on the eigenvalues of the covariance operator and of the spectral
density operator.

This chapter is organized as follows. After summarizing prerequisites of func-
tional time series in Section 2.2, we recall in Section 2.3 the framework of pre-
diction in infinite-dimensional Hilbert spaces, mostly based on the work of Bosq
(see [8, 9, 10]). Here we also clarify the difficulties of linear prediction in infinite-
dimensional function spaces. In Section 2.4 we propose an Innovations Algorithm
based on a finite-dimensional subprocess of X. The predictor proposed in Section 2.4,
though quite general, does not satisfy (2.1.1). Hence, in Section 2.5 we project the
process on a finite-dimensional subspace spanned by the eigenfunctions of the co-
variance operator of X, and formulate the prediction problem in such a way that
the dimension of the subprocess increases with the sample size. A modification of
the Innovations Algorithm then yields a predictor which satisfies (2.1.1) and re-
mains computationally tractable. The proof of this result requires some work and is
deferred to Section 2.6 along with some auxiliary results.

2.2 Methodology

Let H = L2([0,1]) be the real Hilbert space of square integrable functions with norm
∥x∥ = (∫

1
0 x

2(s)ds)1/2 generated by the inner product ⟨x, y⟩ = ∫
1

0 x(s)y(s)ds for x, y ∈
H. We denote by L the space of bounded linear operators acting on H. If not stated
differently, for A ∈ L we take the standard operator norm ∥A∥L = sup∥x∥≤1 ∥Ax∥. Its
adjoint A∗ is defined by ⟨Ax, y⟩ = ⟨x,A∗y⟩ for x, y ∈H. The operator A ∈ L is called
nuclear operator (denoted by N ), if it admits a representation A = ∑∞

j=1 λj⟨ej, ⋅⟩fj
with ∑∞

j=1 ∣λj ∣ < ∞ for two orthonormal bases (ONB) (ej)j∈N and (fj)j∈N of H. In
that case ∥A∥N = ∑∞

j=1 ∣λj ∣ < ∞. We shall also use the estimate ∥AB∥N ≤ ∥A∥L∥B∥N
for A ∈ L and B ∈ N . For an introduction and more insight into Hilbert spaces we
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refer to Chapters 3.2 and 3.6 in Simon [50].
Let BH be the Borel σ-algebra of subsets of H. All random functions are defined

on a probability space (Ω,A,P) and are A − BH-measurable. The space of square
integrable random functions L2

H ∶= L2(Ω,A,P) is a Hilbert space with inner product
E ⟨X,Y ⟩ = E ∫

1
0 X(s)Y (s)ds forX,Y ∈ L2

H . Furthermore, we say thatX is integrable
if E∥X∥ = E[(∫

1
0 X

2(t)dt)1/2] < ∞.
From Lemma 1.2 of Bosq [8] we know that X is a random function with values

in H if and only if ⟨µ,X⟩ is a real random variable for every µ ∈ H. Hence, the
following definitions are possible.

Definition 2.2.1. (i) If X ∈ L2
H is integrable, then there exists a unique µ ∈H such

that E⟨y,X⟩ = ⟨y, µ⟩ for y ∈ H. It follows that EX(t) = µ(t) for almost all t ∈ [0,1],
and EX ∈H is called the expectation of X.
(ii) If X ∈ L2

H and EX = 0 ∈H, the covariance operator of X is defined as

CX(y) = E[⟨X,y⟩X], y ∈H.

(iii) If X,Y ∈ L2
H and EX = EY = 0, the cross covariance operator of X and Y is

defined as

CX,Y (y) = C∗
Y,X(y) = E[⟨X,y⟩Y ], y ∈H.

◻

The operators CX and CY,X are in N (see Bosq [8], Section 1.5). Furthermore,
CX is a self-adjoint (CX = C∗

X) and non-negative definite operator with spectral
representation

CX(x) =
∞

∑
j=1
λj⟨x, νj⟩νj, x ∈H,

for eigenpairs (λj, νj)j∈N, where (νj)j∈N is an ONB of H and (λj)j∈N is a sequence of
positive real numbers such that ∑∞

j=1 λj < ∞. When considering spectral representa-
tions, we assume that the λj are ordered decreasingly; i.e., λi ≥ λk for i < k.

For ease of notation we introduce the operator

x⊗ y(⋅) = ⟨x, ⋅⟩y,
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which allows us to write CX = E[X⊗X] and CX,Y = E[X⊗Y ]. Using that ∥x⊗y∥N =
∥x∥∥y∥, we get (see Bosq [8], Eq. (1.59))

E∥X∥2 = E∥X ⊗X∥N = ∥CX∥N . (2.2.1)

Additionally, the following equalities are useful: for A ∈ L and xi, yi ∈ H for i = 1,2
we have

A(x1 ⊗ y1) = A(⟨x1, ⋅⟩y1) = ⟨x1, ⋅⟩Ay1 = x1 ⊗Ay1,

(x1 + x2) ⊗ (y1 + y2) = x1 ⊗ y1 + x1 ⊗ y2 + x2 ⊗ y1 + x2 ⊗ y2.
(2.2.2)

We define now functional linear processes and state some of their properties,
taken from Bosq [8], Section 1.5 and Section 3.1. We first define the driving noise
sequence.

Definition 2.2.2. (εn)n∈Z is white noise (WN) in L2
H if E εn = 0, 0 < E∥εn∥2 = σ2 <

∞, Cεn = Cε is independent of n, and if Cεn,εm = 0 for all n,m ∈ Z, n ≠m. ◻

Definition 2.2.3. Let (εn)n∈Z be WN and (ψj)j∈N a sequence in L. Define ψ0 = IH ,
the identity operator on H, and let µ ∈H. We call (Xn)n∈Z satisfying

Xn = µ +
∞

∑
j=0
ψjεn−j, n ∈ Z, (2.2.3)

a functional linear process in L2
H with mean µ. The series in (2.2.3) converges in

probability. ◻

Note that by definition a functional linear process is causal. We now state as-
sumptions to ensure stronger convergence of the above series.

Lemma 2.2.4 (Bosq [8], Lemma 7.1(2)). Let (εn)n∈Z be WN and ∑∞
j=0 ∥ψj∥2

L
<

∞. Then the series in (2.2.3) converges in L2
H and a.s., and (Xn)n∈Z is (weakly)

stationary.

Strict stationarity of a functional linear process can be enforced by assuming that
(εn)n∈Z is additionally independent. In our setting weak stationarity will suffice.
From here on, without loss of generality we set µ = 0. For a stationary process
(Xn)n∈Z, the covariance operator with lag h is denoted by

CX;h = E[X0 ⊗Xh], h ∈ Z. (2.2.4)
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We now define the concept of invertibility of a functional linear process, which
is a natural assumption in the context of prediction; see Brockwell and Davis [13],
Chapter 5.5 and Nsiri and Roy [43].

Definition 2.2.5. A functional linear process (Xn)n∈Z is said to be invertible if it
admits the representation

Xn = εn +
∞

∑
j=1
πjXn−j, n ∈ Z, (2.2.5)

for πj ∈ L and ∑∞
j=1 ∥πj∥L < ∞. ◻

In Theorem 7.2.1 of Bosq [8] a sufficient condition for the invertibility of func-
tional linear processes is given. Note that every stationary causal functional autore-
gressive moving average (FARMA) process is a functional linear process (see Span-
genberg [51], Theorem 2.3). Special cases include functional autoregressive processes
of order p ∈ N (FAR(p)), which have been thoroughly investigated. Our focus is on
functional linear models, with the functional moving average process of order q ∈ N
(FMA(q)) as an illustrating example, which we investigate in Section 2.4.2.

Definition 2.2.6. For q ∈ N a FMA(q) is a functional linear process (Xn)n∈Z in L2
H

such that for WN (εn)n∈Z and ψj ∈ L for j = 1, . . . , q,

Xn = εn +
q

∑
j=1
ψjεn−j, n ∈ Z. (2.2.6)

◻

A FMA(q) process can be characterized as follows.

Proposition 2.2.7 (Bosq and Blanke [11], Proposition 10.2). A stationary func-
tional linear process (Xn)n∈Z in L2

H is an FMA(q) for some q ∈ N if and only if
CX;q ≠ 0 and CX;h = 0 for ∣h∣ > q.

2.3 Prediction in Hilbert spaces

In a finite-dimensional setting when the random elements take values in Rd equipped
with the Euclidean norm, the concept of linear prediction of a random vector is well



48 2. An Innovations Algorithm for the prediction of functional linear processes

known (see Brockwell and Davis [13], Section 11.4). The best linear approximation
of a random vector X based on vectors X1, . . . ,Xn is the orthogonal projection of
each component of X on the smallest closed linear subspace of L2

R(Ω,A,P) generated
by the components of Xi. This results in

X̂ ∶=
n

∑
i=1

Φn,iXi

for Φn,i ∈ Rd×d. In infinite-dimensional Hilbert spaces one proceeds similarly but
needs a rich enough subspace on which to project. The concept of linear prediction
in infinite-dimensional Hilbert spaces was introduced by Bosq; see Section 1.6 in
Bosq [8]. We start by recalling the notion of L-closed subspaces (LCS), introduced
in Fortet [19].

Definition 2.3.1. G is said to be an L-closed subspace (LCS) of L2
H if G is a Hilber-

tian subspace of L2
H , and if X ∈ G and ` ∈ L imply `X ∈ G. ◻

We now give a characterization of an LCS generated by a subset of L2
H .

Proposition 2.3.2 (Bosq [8], Theorem 1.8). Let F ⊆ L2
H . Then the LCS generated

by F , denoted by LCS(F ), is the closure with respect to ∥ ⋅ ∥ of

F ′ = {
k

∑
i=1
`iXi ∶ `i ∈ L, Xi ∈ F, k ≥ 1}.

We are now ready to define the best linear predictor in an infinite-dimensional
Hilbert space analogous to the finite-dimensional setting.

Definition 2.3.3. Let X1, . . . ,Xn be zero mean random elements in L2
H . Define

Fn = {X1, . . . ,Xn} and X̂n+1 = PLCS(Fn)(Xn+1), (2.3.1)

i.e., X̂n+1 is the orthogonal projection of Xn+1 on LCS(Fn). X̂n+1 is called best linear
functional predictor of Xn+1 based on LCS(Fn). ◻

Note however that, since F ′ is not closed, X̂n+1 as in (2.3.1) has in general not
the form X̂n+1 = ∑ni=1 `iXi for `i ∈ L (see Bosq [10], Proposition 2.2). Therefore, the
practical relevance of (2.3.1) is limited. In the following we develop an alternative
approach for the computation of the best linear predictor based on finite-dimensional
projections of the functional process.
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2.4 Prediction based on a finite-dimensional pro-
jection

For a stationary functional linear process (Xn)n∈Z the infinite-dimensional setting
makes the computation of X̂n+1 as in (2.3.1) generally impossible. A natural solution
lies in finite-dimensional projections of the functional process (Xn)n∈Z. For fixed
D ∈ N we define

AD = sp{ν1, . . . , νD}, (2.4.1)

where (νi)i∈N is some ONB of H, and consider the projection of a functional random
element on AD. In Aue et al. [5] the authors consider the projection of an FAR
process (Xn)n∈Z on AD, where ν1, . . . , νD are the eigenfunctions corresponding to
the largest eigenvalues of CX . In Chapter 1 we proceed similarly with ARMA(p, q)
models. However, instead of considering the true dynamics of the subprocess, they
work with an approximation which lies in the same model class as the original
functional process; e.g. projections of functional AR(p) models are approximated by
multivariate AR(p) models. The following example clarifies this concept.

Example 2.4.1. Consider an FAR(1) process (Xn)n∈Z as defined in Section 3.2 of
Bosq [8] by

Xn = ΦXn−1 + εn, n ∈ Z, (2.4.2)

for some Φ ∈ L and WN (εn)n∈Z. Let furthermore (νi)i∈N be an arbitrary ONB of H.
Using Parseval’s identity, (2.4.2) can be rewritten in terms of (νi)i∈N as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⟨Xn, ν1⟩

⋮

⟨Xn, νD⟩

⟨Xn, νD+1⟩

⋮

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⟨φν1, ν1⟩ . . . ⟨φνD, ν1⟩ ⟨φνD+1, ν1⟩ . . .

⋮ ⋱ ⋮ ⋮ ⋱

⟨φν1, νD⟩ . . . ⟨φνD, νD⟩ ⟨φνD+1, νD⟩ . . .

⟨φν1, νD+1⟩ . . . ⟨φνD, νD+1⟩ ⟨φνD+1, νD+1⟩ . . .

⋮ ⋱ ⋮ ⋮ ⋱

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⟨Xn−1, ν1⟩

⋮

⟨Xn−1, νD⟩

⟨Xn−1, νD+1⟩

⋮

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⟨εn, ν1⟩

⋮

⟨εn, νD⟩

⟨εn, νD+1⟩

⋮

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

,
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which we abbreviate as

⎛
⎝
XD,n

X∞
n

⎞
⎠
=
⎡⎢⎢⎢⎢⎣

ΦD Φ∞
D

⋮ ⋮

⎤⎥⎥⎥⎥⎦

⎛
⎝
XD,n−1

X∞
n−1

⎞
⎠
+
⎛
⎝
ED,n

E∞
n

⎞
⎠
. (2.4.3)

We are interested in the dynamics of the D-dimensional subprocess (XD,n)n∈Z. From
(2.4.3) we find that (XD,n)n∈Z satisfies

XD,n = ΦDXD,n−1 +Φ∞
DX∞

n−1 +ED,n, n ∈ Z, (2.4.4)

which does in general not define an FAR(1) process. This can be seen from the
following example, similar to Example 3.7 in Bosq [8]. For some a ∈ R with 0 < a <
1/

√
2 let

Φ(x) = a
∞

∑
j=1

⟨x, νj⟩ν1 + a
∞

∑
i=1

⟨x, νi⟩νi+1, x ∈H.

Furthermore, assume that E⟨εn, ν1⟩2 > 0 but E⟨εn, νj⟩2 = 0 for all j > 1. Since ∥Φ∥L =√
2a < 1, (Xn)n∈Z defined by (2.4.2) with Φ as above is a stationary FAR(1) process.

However, with (2.4.4) for D = 1,

X1,n = ⟨Xn, ν1⟩ = a
∞

∑
j=1

⟨Xn−1, νj⟩ + ⟨εn, ν1⟩

= a⟨Xn−1, ν1⟩ + a
∞

∑
j=2

⟨(a
∞

∑
j′=1

⟨Xn−2, νj′⟩ν1 + a
∞

∑
i=1

⟨Xn−2, νi⟩νi+1 + εn−1), νj⟩ + ⟨εn, ν1⟩

= a⟨Xn−1, ν1⟩ + a2⟨Xn−2, ν1⟩ + a2
∞

∑
j=2

⟨Xn−2, νj⟩ + ⟨εn, ν1⟩

=
∞

∑
j=1
ajX1,n−j +En,1.

Hence, (X1,n)n∈Z follows an AR(∞) model and (X1,nν1)n∈Z a FAR(∞) model.
In Chapter 1 and in Aue et al. [5] (XD,n)n∈Z is approximated by (X̃D,n)n∈Z

satisfying

X̃D,n = ΦDX̃D,n−1 +ED,n, n ∈ Z,

such that (X̃D,n)n∈Z follows a vector AR(1) process. ◻

We pursue the idea of Example 2.4.1 for functional linear processes and work
with the true dynamics of a finite-dimensional subprocess.
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2.4.1 Prediction of functional linear processes

For a functional linear process (Xn)n∈Z we focus on the orthogonal projection

XD,n = PAD
(Xn) =

D

∑
j=1

⟨Xn, νj⟩νj, n ∈ Z, (2.4.5)

for (νi)i∈N some ONB of H and AD as in (2.4.1). We define for fixed D ∈ N

FD,n = {XD,1, . . . ,XD,n}.

We will often use the following isometric isomorphism between two Hilbert spaces
of the same dimension.

Lemma 2.4.2. Define AD as in (2.4.1). The map T ∶ AD → RD defined by Tx =
(⟨x, νi⟩)i=1,...,D is a bijective linear mapping with ⟨Tx,Ty⟩RD = ⟨x, y⟩ for all x, y ∈
AD. Hence, LCS(FD,n) is isometrically isomorphic to sp{XD,1, . . . ,XD,n}. Moreover,
(XD,n)n∈Z as defined in (2.4.5) is isometrically isomorphic to the D-dimensional
vector process

XD,n ∶= (⟨Xn, ν1⟩, . . . , ⟨Xn, νD⟩)⊺, n ∈ Z. (2.4.6)

When choosing (νi)i∈N as the eigenfunctions of the covariance operator CX of
(Xn)n∈Z, the representation (2.4.5) is a truncated version of the Karhunen-Loéve
decomposition (see Bosq [8], Theorem 1.5).

As known from Example 2.4.1, the structure of (Xn)n∈Z does in general not
immediately reveal the dynamics of (XD,n)n∈Z. Starting with the representation of
(XD,n)n∈Z as in (2.2.3) with ψ0 = IH and using similar notation as in (2.4.4), the
D-dimensional vector process (XD,n)n∈Z can be written as

XD,n = ED,n +
∞

∑
j=1

(ΨD,jED,n−j +Ψ∞
D,jE∞

n−j), n ∈ Z, (2.4.7)

where the blocks ΨD,j, Ψ∞
D,j, ED,n = (⟨εn, ν1⟩, . . . , ⟨εn, νD⟩)⊺, and E∞

n =
(⟨εn, νD+1⟩, ⟨εn, νD+2⟩, . . .)⊺ are defined analogously to the blocks in (2.4.3). Note
that (2.4.7) is in general not a vector MA(∞) representation of a process with in-
novation (ED,n)n∈Z.

The following proposition summarizes general results on the structure of
(XD,n)n∈Z. Its proof is given in Section 2.6.
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Proposition 2.4.3. Let (Xn)n∈Z be a stationary (and invertible) functional lin-
ear process with WN (εn)n∈Z, such that all eigenvalues of the covariance oper-
ator Cε of (εn)n∈Z are positive. Then (XD,n)n∈Z is also a stationary (and in-
vertible) functional linear process with some WN (ε̃D,n)n∈Z. (ε̃D,n)n∈Z is isometri-
cally isomorphic to the D-dimensional vector process (ẼD,n)n∈Z, defined by ẼD,n ∶=
(⟨ε̃D,n, ν1⟩, . . . , ⟨ε̃D,n, νD⟩)⊺. Furthermore define MD,n = sp{XD,t,−∞ < t ≤ n}. Then

ẼD,n = ED,n +Ψ∞
D,1(E∞

n−1 − PMD,n−1(E∞
n−1)) =∶ ED,n +∆D,n−1, n ∈ Z. (2.4.8)

The lagged covariance operator CXD;h of (XD,n)n∈Z is given by

CXD;h = E[PAD
X0 ⊗ PAD

Xh] = PAD
E[X0 ⊗Xh]PAD

= PAD
CX;hPAD

, h ∈ Z. (2.4.9)

By Lemma 2.4.2, (XD,n)n∈Z is isomorphic to the D-dimensional vector process
(XD,n)n∈Z as defined in (2.4.6). The prediction problem can therefore be solved by
methods from multivariate time series analysis. More precisely, we define for fixed
D ∈ N

X̂D,n+1 = PLCS(FD,n)(Xn+1),

i.e., X̂D,n+1 is the best linear functional predictor based on FD,n for n ∈ N. We
formulate the Multivariate Innovations Algorithm for this setting.

Proposition 2.4.4 (Brockwell and Davis [13], Proposition 11.4.2). Let (Xn)n∈Z be
a stationary functional linear process and (XD,n)n∈Z = (PAD

Xn)n∈Z as in (2.4.5). If
CXD

is invertible on AD then the best linear functional predictor X̂D,n+1 of Xn+1

based on LCS(FD,n) can be computed by the following set of recursions:

X̂D,1 = 0 and VD,0 = CXD;0,

X̂D,n+1 =
n

∑
i=1
θD,n,i(XD,n+1−i − X̂D,n+1−i), (2.4.10)

θD,n,n−i = (CXD;n−i −
i−1
∑
j=0
θD,n,n−j VD,j θ

∗
D,i,i−j)V −1

D,i, i = 1, . . . , n − 1, (2.4.11)

VD,n = CXD,n+1−X̂D,n+1
= CXD;0 −

n−1
∑
j=0

θD,n,n−jVD,jθ
∗
D,n,n−j. (2.4.12)
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The recursions can be solved explicitly in the following order: VD,0, θD,1,1, VD,1,
θD,2,2, θD,2,1 . . .. Thus we found a predictor which is easy to compute in contrast to
X̂n+1 from (2.3.1). However, since we are not using all available information, we lose
predictive power. To evaluate this loss we bound the prediction error. We show that
the error bound can be decomposed into two terms. One is due to the dimension
reduction and the other to the statistical prediction error of the finite-dimensional
model.

Theorem 2.4.5. Let (Xn)n∈Z be a stationary functional linear process with WN
(εn)n∈Z such that all eigenvalues of Cε are positive. Assume furthermore that CX
is invertible on AD. Recall the best linear functional predictor X̂n+1 from Defini-
tion 2.3.3.
(i) Then for all n ∈ N the prediction error is bounded:

E∥Xn+1 − X̂n+1∥2 ≤ E∥Xn+1 − X̂D,n+1∥2 = ∑
i>D

⟨CXνi, νi⟩ + ∥VD,n∥2
N . (2.4.13)

(ii) If additionally (Xn)n∈Z is invertible, then

lim
n→∞

E∥Xn+1 − X̂D,n+1∥2 = ∑
i>D

⟨CXνi, νi⟩ + ∥Cε̃D
∥2
N .

Proof. (i) Since X̂D,n+1 = PLCS(FD,n)(Xn+1) and X̂n+1 = PLCS(Fn)(Xn+1), and since
LCS(FD,n) ⊆ LCS(Fn), the first inequality follows immediately from the projection
theorem. Furthermore, since Xn+1−XD,n+1 ∈ A�

D (the orthogonal complement of AD)
and XD,n+1 − X̂D,n+1 ∈ AD, we have ⟨Xn+1 −XD,n+1,XD,n+1 − X̂D,n+1⟩ = 0. Therefore,

E∥Xn+1 − X̂D,n+1∥2 = E∥Xn+1 −XD,n+1 +XD,n+1 − X̂D,n+1∥2

= E∥Xn+1 −XD,n+1∥2 +E∥XD,n+1 − X̂D,n+1∥2.

By (2.2.1), E∥XD,n+1−X̂D,n+1∥2 = ∥E[(XD,n+1−X̂D,n+1)⊗(XD,n+1−X̂D,n+1)]∥N , which
is equal to ∥VD,n∥N by (2.4.12). Furthermore,

E∥Xn+1 −XD,n+1∥2 = E⟨ ∑
i>D

⟨Xn+1, νi⟩νi,∑
j>D

⟨Xn+1, νj⟩νj⟩

= ∑
i,j>D

E⟨Xn+1⟨Xn+1, νi⟩, νj⟩⟨νi, νj⟩

= ∑
i>D

⟨CXνi, νi⟩.
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(ii) By (i), what is left to show is that ∥VD,n∥2
N
→ ∥Cε̃D

∥2
N

for n→∞. However, this
is an immediate consequence of the Multivariate Innovations Algorithm under the
assumption that (XD,n)n∈Z is invertible (see Remark 4 in Chapter 11 of Brockwell
and Davis [13]). Invertibility of (XD,n)n∈Z is given by Proposition 2.4.3, which finishes
the proof.

The above theorem states that for a stationary, invertible functional linear pro-
cess, for increasing sample size the predictor restricted to the D-dimensional space
performs arbitrarily well in the sense that in the limit only the statistical prediction
error remains. However, our goal in (2.1.1) is not satisfied. The dimension reduction
induces the additional error term ∑i>D⟨CX(νi), νi⟩ independently of the sample size.
If AD is spanned by eigenfunctions of the covariance operator CX with eigenvalues
λi, the prediction error due to dimension reduction is ∑i>D λi.

We now investigate the special case of functional moving average processes with
finite order.

2.4.2 Prediction of FMA(q)

FMA(q) processes for q ∈ N as in Definition 2.2.6 are an interesting and not very
well studied class of functional linear processes. We start with the FMA(1) process
as an example.

Example 2.4.6. Consider an FMA(1) process (Xn)n∈Z defined by

Xn = ψεn−1 + εn, n ∈ Z,

for some ψ ∈ L and WN (εn)n∈Z. The representation of (2.4.7) reduces to

XD,n = ΨDED,n−1 +Ψ∞
DE∞

n−1 +ED,n, n ∈ Z.

As XD,n depends on ED,n−1, E∞
n−1 and ED,n, it is in general not a vector MA(1)

process with WN (ED,n)n∈Z. ◻ ◻

However, we can state the dynamics of a finite-dimensional subprocess of an
FMA(q) process.
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Theorem 2.4.7. Let (Xn)n∈Z be a stationary FMA(q) process for q ∈ N and AD

be as in (2.4.1). Then (XD,n)n∈Z = (PAD
Xn)n∈Z as defined in (2.4.5) is a stationary

FMA(q∗) process for q∗ ≤ q satisfying

XD,n =
q∗

∑
j=1
ψ̃D,j ε̃D,n−j + ε̃D,n, n ∈ Z, (2.4.14)

where ψ̃D,j ∈ L for j = 1, . . . , q∗ and (ε̃D,n)n∈Z is WN. Moreover, (ε̃D,n)n∈Z is isomet-
rically isomorphic to (ẼD,n)n∈Z as defined in (2.4.8). If q∗ = 0, then (XD,n)n∈Z is
WN.

Proof. By Proposition 2.4.3 (XD,n)n∈Z is stationary. Furthermore, by (2.4.9) and
Proposition 2.2.7 CXD;h = PAD

CX;hPAD
= 0 for h > q, since CX;h = 0 for h > q. Hence,

again by Proposition 2.2.7 (XD,n)n∈Z is a FMA(q∗) process, where q∗ is the largest
lag j ≤ q such that CXD;j = PAD

CX;jPAD
≠ 0. Thus, (2.4.14) holds for some linear

operators ψ̃D,j ∈ L and WN (ε̃D,n)n∈Z. The fact that (ε̃D,n)n∈Z is isometrically iso-
morphic to (ẼD,n)n∈Z as in (2.4.8) is again a consequence of the Wold decomposition
of (XD,n)n∈Z and follows from the proof of Proposition 2.4.3.

The fact that every subprocess of a FMA(q) is a FMA(q∗) with q∗ ≤ q simplifies
the algorithm of Proposition 2.4.4, since CXD;h = 0 for ∣h∣ > q modifies (2.4.10)-
(2.4.12) as follows: for n > q∗,

X̂D,n+1 =
q∗

∑
i=1
θD,n,i(XD,n+1−i − X̂D,n+1−i)

θD,n,k = (CXD;k −
n−k−1
∑
j=0

θD,n,n−j VD,j θ
∗
D,n−k,n−k−j)V −1

D,n−k, k = 1, . . . , q∗,

VD,n = CXD,n+1−X̂D,n+1
= CXd;0 −

q∗

∑
j=1
θD,n,jVD,n−jθ

∗
D,n,j.

We now investigate the prediction error E∥Xn+1 − X̂D,n+1∥2 of Theorem 2.4.5 for
a functional linear process. For D →∞, ∑i>D⟨CX0(νi), νi⟩ → 0. However, the second
term ∥VD,n∥N on the right-hand-side of (2.4.13) is not defined in the limit, since the
inverse of VD,j in (2.4.11) is no longer bounded when D →∞. To see this, take VD,0.
By (2.4.12), since X̂D,1 = 0 and since (XD,n)n∈Z is stationary,

VD,0 = CXD,1−X̂D,1
= CXD,1 = CXD

.
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By (2.4.9) for h = 0 we find CXD
= PAD

CXPAD
, hence for all x ∈ H, ∥(CX −

CXD
)(x)∥ → 0 for D → ∞. But, since CX is not invertible on the entire H, nei-

ther is limD→∞CXD
. Therefore, limD→∞ X̂D,n+1 is not defined.

To resolve this problem, we propose a tool used before in functional data analysis,
for instance in Bosq [8] for the estimation of FAR(1). We increase the dimension D
together with the sample size n by choosing dn ∶= D(n) and dn → ∞ with n → ∞.
However, since the Innovations Algorithm is based on a recursion, it will always start
with Vdn,0 = CXdn

, which again is not invertible on H for dn →∞. For the Innovations
Algorithm we increase D iteratively such that Vd1,0 is inverted on A1, Vd2,1 is inverted
on A2, . . . and so on. To quantify a convergence rate in Theorem 2.5.3 below we
restrict our analysis to projections on eigenspaces of the covariance operator CX of
the underlying process.

2.5 Prediction based on projections on increasing
subspaces of H

In this section we propose a functional version of the Innovations Algorithm. Start-
ing with the same idea as in Section 2.4, we project the functional data on a finite-
dimensional space. However, we now let the dimension of the space on which we
project depend on the sample size. More precisely, let (Xn)n∈Z be a stationary func-
tional linear process with covariance operator CX . For some positive, increasing
sequence (dn)n∈N in N such that dn →∞ with n→∞, we define

Adn = sp{ν1, . . . , νdn}, n ∈ N, (2.5.1)

where (νi)i∈N are now chosen as the eigenfunctions of CX , and (Adn)n∈N is an
increasing sequence of subspaces of H. Instead of applying the Innovations Al-
gorithm to (PAD

X1, . . . , PAD
Xn) as in Proposition 2.4.4, we apply it now to

(PAd1
X1, . . . , PAdn

Xn).

Proposition 2.5.1. Let (Xn)n∈Z be a stationary functional linear process with co-
variance operator CX with eigenpairs (λj, νj)j∈N, where λj > 0 for all j ∈ N. Let
(dn)n∈N be a positive sequence in N such that dn ↑ ∞ as n →∞. Define furthermore



2.5. Prediction based on projections on increasing subspaces of H 57

the best linear predictor of Xn+1 based on LCS(F ′
dn,n

) for n ∈ N as

F ′
dn,n

= {Xd1,1, . . . ,Xdn,n} and X̂dn+1,n+1 = PLCS(F ′
dn,n

)(Xn+1). (2.5.2)

Then X̂dn+1,n+1 is given by the following set of recursions:

X̂d1,1 = 0 and Vd1,0 = CXd1
,

X̂dn+1,n+1 =
n

∑
i=1
θdn−i+1,n,i(Xdn+1−i,n+1−i − X̂dn+1−i,n+1−i), (2.5.3)

θdi+1,n,n−i = (PAdn+1
CX;n−iPAdi+1

−
i−1
∑
j=0
θdj+1,n,n−j Vdj+1,j θ

∗
dj+1,i,i−j

)V −1
di+1,i

, i = 1, . . . , n − 1, (2.5.4)

Vdn+1,n = CXdn+1,n+1−X̂dn+1,n+1
= CXdn+1

−
n−1
∑
j=0

θdj+1,n,n−jVdj+1,jθ
∗
dj+1,n,n−j

. (2.5.5)

Proof. The proof is based on the proof of Proposition 11.4.2 in Brockwell and Davis
[13]. First notice that the representation

X̂dn+1,n+1 =
n

∑
i=1
θdn−i+1,n,i(Xdn+1−i,n+1−i − X̂dn+1−i,n+1−i), n ∈ N,

results from the definition of X̂dn+1,n+1 = PLCS(F ′
dn,n

)(Xn+1). Multiplying both sides
of (2.5.3) with ⟨Xdk+1,k+1 − X̂dk+1,k+1, ⋅⟩ for 0 ≤ k ≤ n and taking expectations, we get

E[(Xdk+1,k+1−X̂dk+1,k+1) ⊗ X̂dn+1,n+1]

=
n

∑
i=1
θdn−i+1,n,iE[(Xdk+1,k+1 − X̂dk+1,k+1) ⊗ (Xdn+1−i,n+1−i − X̂dn+1−i,n+1−i)]

= θdk+1,n,n−kE[(Xdk+1,k+1 − X̂dk+1,k+1) ⊗ (Xdk+1,k+1 − X̂dk+1,k+1)],

where we used that E⟨Xdn+1,n+1 − X̂dn+1,n+1,Xdk+1,k+1 − X̂dk+1,k+1⟩ = 0 for k ≠ n (see
Brockwell and Davis [13], Eq. (11.4.24)). Now with the definition of Vdk+1,k in (2.5.5),

E[(Xdk+1,k+1 − X̂dk+1,k+1) ⊗Xdn+1,n+1] = θdk+1,n,n−kVdk+1,k. (2.5.6)

By representation (2.5.3) for n = k and the fact that Vdk+1,k is finite-dimensional and
therefore invertible, since all eigenvalues of CX are positive,

θdk+1,n,n−k = (PAdn+1
CX;n−kPAdk+1

−
k

∑
i=1

E[(Xdi,i − X̂di,i) ⊗Xdn+1,n+1]θ∗di,k,k−i−1)V −1
dk+1,k

.
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However, with (2.5.6) the expectation on the right-hand-side can be replaced by
θdi,n,n+1−iVdi,i−1, for i = 1, . . . , k, which leads to

θdk+1,n,n−k = (PAdn+1
CX;n−kPAdk+1

−
k

∑
i=1
θdi,n,n+1−iVdi,i−1θ

∗
di,k,k−i−1)V −1

dk+1,k
.

Finally, the projection theorem gives

Vdn+1,n = CXdn+1,n+1−X̂dn+1,n+1
= CXdn+1

−CX̂dn+1,n+1

= CXdn+1
−
n−1
∑
j=0

θdj+1,n,n−jVdj+1,jθ
∗
dj+1,n,n−j

.

Remark 2.5.2. Notice thatXd1,1,Xd2,2, . . . ,Xdn,n is not necessarily stationary. How-
ever, the recursions above can still be applied, since stationarity is not required
for the application of the Innovations Algorithm in finite dimensions, see Proposi-
tion 11.4.2 in Brockwell and Davis [13]. ◻

If (Xn)n∈Z is invertible, we can derive asymptotics for X̂dn+1,n+1 as dn → ∞ and
n→∞.

Theorem 2.5.3. Let (Xn)n∈Z be a stationary, invertible functional linear process
with WN (εn)n∈Z such that all eigenvalues of Cε are positive. Assume furthermore
that all eigenvalues λj, j ∈ N, of CX are positive.
(i) Let mn → ∞, mn < n and mn/n → 0 for n → ∞ and dn → ∞ for n → ∞ be two
positive increasing sequences in N. Then

E∥Xn+1 − X̂dn+1,n+1 − εn+1∥2 = O( ∑
j>mn

∥πj∥L + ∑
j>dn−mn

λj) → 0, n→∞. (2.5.7)

(ii) Denote by CXdn ;h the covariance matrix of the subprocess (Xdn)n∈Z as defined
in Lemma 2.4.2. Then all eigenvalues of the spectral density matrix fXdn

[ω] ∶=
1

2π ∑h∈Z e−ihωCXdn ;h for −π < ω ≤ π are positive. Denote by αdn > 0 the infimum
of these eigenvalues. If

1
αdn

( ∑
j>mn

∥πj∥L + ∑
j>dn−mn

λj) → 0, n→∞. (2.5.8)

then for i = 1, . . . , n and for all x ∈H,

∥(θdn,n,i − γi)(x)∥ → 0, n→∞.
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The proof of this Theorem is given in Section 2.6.

Remark 2.5.4. (a) Part (i) of Theorem 2.5.3 requires only that dn →∞ as n→∞.
No rate is required, and we do not impose any coupling condition of dn with mn.
The theory would suggest to let dn increase as fast as possible. In practice, when
quantities such as the lagged covariance operators of the underlying process have
to be estimated, the variance of the estimators of PdnCX;hPdn increases with dn.
In fact, for instance, for the estimation of θd1,1,1 the statistician is faced with the
inversion of Pd1CXPd1 . Small errors in the estimation of small empirical eigenvalues
of Pd1CXPd1 may have severe consequences for the estimation of θd1,1,1. This suggests
a conservative choice for dn. The problem is similar to the choice of kn in Chapter 9.2
of Bosq [8] concerned with the estimation of the autoregressive parameter operator
in a FAR(1). The authors propose to choose kn based on validation of the empirical
prediction error. In Aue et al. [5] the authors suggest a functional FPE type criterion,
which also aims at minimizing the prediction error over different choices of dn.

(b) The choice of mn in (2.5.7) allows us to calibrate two error terms: under
the restriction that mn/n → 0, choosing a larger mn increases ∑j>dn−mn

λj, the er-
ror caused by dimension reduction. Choosing a smaller mn will on the other hand
increase ∑j>mn

∥πj∥. ◻

2.6 Proofs

Before presenting a proof of Theorem 2.5.3 we give some notation and auxiliary
results. Recall that throughout IH denotes the identity operator on H. We also
recall the notation and results provided in Section 2.2, which we shall use below
without specific referencing.

Let (Xn)n∈Z be a stationary functional linear process. Then for n ∈ N define the
covariance operator of the vector (Xn, . . . ,X1) by

Γn ∶=

⎛
⎜⎜⎜⎜⎜
⎝

E[Xn ⊗Xn] E[Xn ⊗Xn−1] . . . E[Xn ⊗X1]
E[Xn−1 ⊗X1] E[Xn−1 ⊗Xn−1] . . . ⋮

⋮ ⋱
E[X1 ⊗Xn] . . . E[X1 ⊗X1]

⎞
⎟⎟⎟⎟⎟
⎠
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=

⎛
⎜⎜⎜⎜⎜
⎝

CX CX;1 . . . CX;n−1

CX;−1 CX . . . ⋮
⋮ ⋱

CX;−(n−1) . . . CX

⎞
⎟⎟⎟⎟⎟
⎠

, (2.6.1)

i.e., Γn is an operator acting on Hn, where Hn is the Cartesian product of n
copies of H. Recall that Hn is again a Hilbert space, when equipped with the scalar
product

⟨x, y⟩n =
n

∑
i=1

⟨xi, yi⟩

(see Bosq [8], Section 5 for details). As covariance operator of (Xn,Xn−1, . . . ,X1),
Γn is self-adjoint, nuclear, and has the spectral representation (see Theorem 5.1 in
Gohberg et al. [21])

Γn =
∞

∑
j=1
λ
(n)
j ν

(n)
j ⊗ ν(n)j , n ∈ N,

with eigenpairs (λ(n)j , ν
(n)
j )j∈N.

Furthermore, define the operators P(dn) and PD acting on Hn by

P(dn) = diag (PAdn
, . . . , PAd1

) and PD = diag (PAD
, . . . , PAD

). (2.6.2)

Additionally, define the operators Γ(dn),n and ΓD,n by

Γ(dn),n ∶= P(dn)ΓnP(dn) and ΓD,n ∶= PDΓnPD.

Note that Γ(dn),n is in fact the covariance operator of (Xdn,n, . . . ,Xd1,1) and has rank
kn ∶= ∑ni=1 di, whereas ΓD,n is the covariance operator of (XD,n, . . . ,XD,1) and has
rank D ⋅n. The operators Γ(dn),n and ΓD,n are therefore self-adjoint nuclear operators
with spectral representations

Γ(dn),n =
kn

∑
j=1
λ
(n)

(dn),j
e
(n)

(dn),j
⊗ e(n)
(dn),j

and ΓD,n =
D⋅n

∑
j=1
λ
(n)
D,je

(n)
D,j ⊗ e

(n)
D,j. (2.6.3)

We need the following auxiliary results.
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Lemma 2.6.1 (Theorem 1.2 in Mitchell [41]). Let (XD,n)n∈Z be a D−variate sta-
tionary, invertible linear process satisfying

XD,n =
∞

∑
i=1

ΨiEn−i +En, n ∈ Z,

with ∑∞
i=1 ∥Ψi∥2 < ∞ (∥⋅∥2 denotes the Euclidean matrix norm) and WN (ED,n)n∈Z in

L2
RD with non-singular covariance matrix CED

. Let CXD
be the covariance matrix of

(XD,n)n∈Z. Then the spectral density matrix fXD
[ω] ∶= 1

2π ∑h∈Z e−ihωCXD;h for −π <
ω ≤ π has only positive eigenvalues. Let αD be their infimum. Then the eigenvalues
(λ(n)D,i)i=1,...,D⋅n of ΓD,n as in (2.6.3) are bounded below as follows:

0 < 2παD ≤ λ(n)D⋅n ≤ . . . ≤ λ
(n)
1 .

The following is a consequence of the Cauchy-Schwarz inequality.

Lemma 2.6.2. For j, ` ∈ N let (λj, νj) and (λ`, ν`) be eigenpairs of CX . Then for
h ∈ Z,

⟨CX;hνj, ν`⟩ ≤ λ1/2
j λ

1/2
` . (2.6.4)

Proof. With the definition of the lagged covariance operators in (2.2.4) and then
the Cauchy-Schwarz inequality, we get by stationarity of (Xn)n∈Z

⟨CX;hνj, ν`⟩ = ⟨E[⟨X0, νj⟩Xh], ν`⟩ = E[⟨X0, νj⟩⟨Xh, ν`⟩]

≤ (E⟨X0, νj⟩2)1/2(E⟨Xh, ν`⟩2)1/2
.

We find E⟨X0, νj⟩2 = E⟨⟨X0, νj⟩X0, νj⟩ = ⟨CXνj, νj⟩ = λj, which implies (2.6.4).

So far we only considered the real Hilbert space H = L2([0,1]). There is a
natural extension to the complex Hilbert space by defining the scalar product ⟨x, y⟩ =
∫

1
0 x(t)ȳ(t)dt for complex valued functions x, y ∶ [0,1] → C. As in Section 7.2 of Bosq

[8], for a sequence (ψj)j∈N of operators in L, we define the complex operators

A[z] ∶=
∞

∑
j=0
zjψj, z ∈ C, (2.6.5)

such that the series converges in the operator norm. We need some methodology
on frequency analysis of functional time series, recently studied in Panaretos and
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Tavakoli [44]. The functional discrete Fourier transform of (X1, . . . ,Xn) is defined
by

Sn(ω) =
n

∑
j=1
Xje

−ijω, ω ∈ (−π,π].

By Theorem 4 of Cerovecki and Hörmann [14], for all ω ∈ (−π,π], if (Xn)n∈Z is
a linear process with ∑∞

i=1 ∥ψj∥L < ∞, then 1√
n
Sn(ω) converges in distribution as

n→∞ to a complex Gaussian random element with covariance operator

2πFX[ω] ∶= ∑
h∈Z

CX;he
−ihω.

The spectral density operator FX[ω] of (Xn)n∈Z is non-negative, self-adjoint and
nuclear (see Proposition 2.1 in Panaretos and Tavakoli [44]).

Theorem 1 and 4 of Cerovecki and Hörmann [14] infer the following duality
between CX;h and FX[ω], with A[z] as in (2.6.5) and adjoint A[z]∗:

CX;h = ∫
π

−π
FX[ω]eihωdω, h ∈ Z and

FX[ω] = 1
2πA[e−iω]CεA[e−iω]∗, ω ∈ (−π,π]. (2.6.6)

The following Lemma is needed for the subsequent proofs, but may also be of interest
by itself.

Lemma 2.6.3. Let (Xn)n∈Z be a stationary, invertible functional linear process with
WN (εn)n∈Z, such that all eigenvalues of Cε are positive. Then for all ω ∈ (−π,π]
the spectral density operator FX[ω] has only positive eigenvalues.

Proof. The proof is an extension of the proof of Theorem 3.1 in Nsiri and Roy [43]
to the infinite-dimensional setting. Define for A[z] as in (2.6.5) and (πi)i∈N as in
(2.2.5)

P [z] ∶=
∞

∑
j=0
zjπj and D[z] ∶= P [z]A[z], z ∈ C.

Since A[z] and P [z] are power-series, D[z] can also be represented as a power-series
by

D[z] =
∞

∑
j=0
zjδj, z ∈ C,
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for δj ∈ L for all j ∈ N. Let B be the backshift operator. Then Xn = A[B]εn and
εn = P [B]Xn; in particular,

εn = P [B]Xn = P [B]A[B]εn =D[B]εn, n ∈ Z. (2.6.7)

Since all eigenvalues of Cε are positive, by equating the coefficients in (2.6.7), D[z] =
IH for all z ∈ C.

Assume that there exists some non-zero v ∈H such that FX[ω](v) = 0. Then by
(2.6.6),

1
2πA[e−iω]CεA[e−iω]∗(v) = 0.

But since all eigenvalues of Cε are positive, there exists some non-zero u ∈ H such
that A[eiω](u) = 0. However, since D[z] = P [z]A[z] = IH for all z ∈ C, this is a
contradiction, and FX[ω] can only have positive eigenvalues for all ω ∈ (−π,π].

2.6.1 Proof of Proposition 2.4.3

Stationarity of (XD,n)n∈Z follows immediately from stationarity of (Xn)n∈Z, since
PAD

is a linear shift-invariant transformation. The functional Wold decomposition
(see Definition 3.1 in Bosq [9]) gives a representation of (XD,n)n∈Z as a linear process
with WN, say (ε̃n)n∈Z in L2

H . By Lemma 2.4.2, (XD,n)n∈Z is isometrically isomorphic
to the vector process (XD,n)n∈Z as in (2.4.6). Analogously, (ẼD,n)n∈Z defined by
ẼD,n ∶= (⟨ε̃D,n, ν1⟩, . . . , ⟨ε̃D,n, νD⟩)⊺ is isometrically isomorphic to (ε̃D,n)n∈Z. We give
a representation of (ẼD,n)n∈Z.

Define MD,n = sp{XD,t,−∞ < t ≤ n}. Then, from the multivariate Wold decom-
position, the WN of (XD,n)n∈Z in L2

RD is defined by

ẼD,n = XD,n − PMD,n−1(XD,n), n ∈ Z. (2.6.8)

Now recall (2.4.7) in the following form

XD,n = ED,n +
∞

∑
j=1

ΨD,jED,n−j +Ψ∞
D,1E∞

n−1 +
∞

∑
j=2

Ψ∞
D,jE∞

n−j, n ∈ Z.

We apply the projection operator ontoMD,n−1 to all terms. PMD,n−1(ED,n) = 0, and
ED,n−j and E∞

n−j−1 belong to MD,n−1 for all j ≥ 1. Hence,

PMD,n−1(XD,n) =
∞

∑
j=1

ΨD,jED,n−j +
∞

∑
j=2

Ψ∞
D,jE∞

n−j +Ψ∞
D,1PMD,n−1(E∞

n−1), n ∈ Z,
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which together with (2.6.8) implies (2.4.8).
We now show that (XD,n)n∈Z is invertible. The Wold decomposition gives the

following representation

XD,n =
∞

∑
i=1

Ψ̃D,i(ẼD,n−i) + ẼD,n, n ∈ Z, (2.6.9)

for appropriate Ψ̃D,i and innovation process as in (2.6.8). Theorem 1 of Nsiri and Roy
[43] gives conditions for the invertibility of the stationary D-variate linear process
(XD,n)n∈Z satisfying (2.6.9).

We verify these conditions one by one.
(1) We start by showing that for all ω ∈ (−π,π] the matrix FXD

[ω] is invertible,
equivalently, ⟨FXD

[ω]x,x⟩RD > 0 for all non-zero x ∈ RD. By the isometric isomorphy
between RD and AD from Lemma 2.4.2 we have

⟨FXD
[ω]x,x⟩RD = ⟨FXD

[ω]x,x⟩.

By (2.4.9) the spectral density operator FXD
[ω] of (XD,n)n∈Z satisfies

FXD
[ω] = 1

2π ∑h∈Z
CXD;he

−ihω = 1
2π ∑h∈Z

PAD
CX;hPAD

e−ihω

= PAD
( 1

2π ∑h∈Z
CX;he

−ihω)PAD
= PAD

FX[ω]PAD
. (2.6.10)

However, since (Xn)n∈Z is invertible and all eigenvalues of Cε are positive, by
Lemma 2.6.3 all eigenvalues of FX[ω] are positive for all ω ∈ (−π,π]. Using first
(2.6.10), then x ∈ AD, and finally that all eigenvalues of FX[ω] are positive, to-
gether with PAD

= P ∗
AD

, we get

⟨FXD
[ω]x,x⟩ = ⟨PAD

FX[ω]PAD
x,x⟩ = ⟨FX[ω]x,x⟩ > 0.

Hence, ⟨FXD
[ω]x,x⟩RD > 0 and thus FXD

[ω] is invertible.
(2) We next show that the covariance matrix CẼD

of (ẼD,n)n∈Z as in (2.4.8) is
invertible. Since ED,n and ∆D,n−1 from (2.4.8) are uncorrelated, CẼD

= CED
+

C∆D
. All eigenvalues of Cε are positive by assumption. For all x ∈ AD we get

⟨x,Cεx⟩ = ⟨x,CED
x⟩Rd where x and x are related by the isometric isomorphism

T of Lemma 2.4.2. With the characterization of the eigenvalues of a self-adjoint
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operator via the Rayleigh quotient as in Theorem 4.2.7 in Hsing and Eubank [29],
all eigenvalues of CED

are positive. Therefore, all eigenvalues of CẼD
= CED

+ C∆D

are positive, and CẼD
is invertible.

(3) Finally, summability in Euclidean matrix norm of the matrices Ψ̃D,i over i ∈ N
follows from the properties of the Wold decomposition (see Theorem 5.7.1 in Brock-
well and Davis [13]) and from the summability of ∥ψi∥L over i ∈ N.

Therefore, all conditions of Theorem 1 of Nsiri and Roy [43] are satisfied and
(XD,n)n∈Z is invertible. ◻

2.6.2 Proof of Theorem 2.5.3 (i)

First note that by the projection theorem (see Theorem 2.3.1 in Brockwell and Davis
[13]),

E∥Xn+1 − X̂dn+1,n+1∥2 ≤ E∥Xn+1 −
n

∑
i=1
ηiXdn+1−i,n+1−i∥2, n ∈ N, (2.6.11)

for all ηi ∈ L, i = 1, . . . , n. Hence, (2.6.11) holds in particular for ηi = πi for i = 1, . . . , n,
where πi are the operators in the invertible representation of (Xn)n∈Z of (2.2.5).
Furthermore, by the orthogonality of εn+1 and Xk for k < n+ 1 and n ∈ N, and since
E⟨Xn+1, εn+1⟩ = E∥εn+1∥2, we get

E∥Xn+1 − X̂dn+1,n+1∥2 = E∥Xn+1 − X̂dn+1,n+1 − εn+1∥2 +E∥εn+1∥2

Now (2.6.11) with ηi = πi and then the invertibility of (Xn)n∈Z yield

E∥Xn+1 − X̂dn+1,n+1 − εn+1∥2 ≤ E∥Xn+1 −
n

∑
i=1
πiXdn+1−i,n+1−i∥2 −E∥εn+1∥2

= E∥
∞

∑
i=1
πiXn+1−i + εn+1 −

n

∑
i=1
πiXdn+1−i,n+1−i∥2 −E∥εn+1∥2

= E∥
n

∑
i=1
πi(Xn+1−i −Xdn+1−i,n+1−i) + εn+1 +∑

i>n

πiXn+1−i∥2

−E∥εn+1∥2.
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Again by the orthogonality of εn+1 and Xk, for k < n + 1, since Xdn,n = PAdn
Xn, and

then using that for X,Y ∈ L2
H , E∥X + Y ∥2 ≤ 2E∥X∥2 + 2E∥Y ∥2, we get

E∥Xn+1 − X̂dn+1,n+1 − εn+1∥2 ≤ E∥
n

∑
i=1
πi(IH − PAdn+1−i

)Xn+1−i +∑
i>n

πiXn+1−i∥2

≤ 2E∥
n

∑
i=1
πi(IH − PAdn+1−i

)Xn+1−i∥2 + 2E∥∑
i>n

πiXn+1−i∥2

(2.6.12)

=∶ 2J1 + 2J2.

We consider the two terms in (2.6.12) separately. From (2.2.1) we get for the first
term in (2.6.12)

J1 = ∥E[
n

∑
i=1
πi(IH − PAdn+1−i

)Xn+1−i ⊗
n

∑
i=1
πi(IH − PAdn+1−i

)Xn+1−i]∥
N
.

Using the triangle inequality together with properties of the nuclear operator norm
given in Section 2.2, and then the definition of CX;h in (2.2.4), we calculate

J1 ≤
n

∑
i,j=1

∥πi∥L∥πj∥L∥E[(IH − PAdn+1−i
)Xn+1−i ⊗ (IH − PAdn+1−j

)Xn+1−j]∥N

=
n

∑
i,j=1

∥πi∥L∥πj∥L∥(IH − PAdn+1−i
)CX;i−j(IH − PAdn+1−j

)∥
N

=∶
n

∑
i,j=1

∥πi∥L∥πj∥LK(i, j). (2.6.13)

By the definition of Ad in (2.5.1) and, since by (2.4.5) we have (IH−PAdi
) = ∑`>di

ν`⊗
ν`,

K(i, j) = ∥( ∑
`′>dn+1−i

ν`′ ⊗ ν`′)CX;i−j( ∑
`>dn+1−j

ν` ⊗ ν`)∥N

= ∥ ∑
`′>dn+1−i

∑
`>dn+1−j

⟨CX;i−j(ν`), ν`′⟩ν` ⊗ ν`′∥N .
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With Lemma 2.6.2, the definition of the nuclear norm given in Section 2.2 and the
orthogonality of the (νi)i∈N, we get

K(i, j) ≤ ∥ ∑
`′>dn+1−i

∑
`>dn+1−j

λ
1/2
` λ

1/2
`′ ν` ⊗ ν`′∥N

=
∞

∑
k=1

⟨ ∑
`′>dn+1−i

∑
`>dn+1−j

λ
1/2
` λ

1/2
`′ ν` ⊗ ν`′(νk), νk⟩

= ∑
k>max(dn+1−j ,dn+1−i)

λk ≤ ∑
k>dn+1−j

λk. (2.6.14)

Plugging (2.6.14) into (2.6.13), and recalling that ∑∞
i=1 ∥πi∥L =∶M1 < ∞, we conclude

J1 ≤M1

n

∑
j=1

∥πj∥L ∑
`>dn+1−j

λ`. (2.6.15)

Now for some mn < n,
n

∑
j=1

∥πj∥L ∑
`>dn+1−j

λ` =
mn

∑
j=1

∥πj∥L ∑
`>dn+1−j

λ` +
n

∑
j=mn

∥πj∥L ∑
`>dn+1−j

λ`. (2.6.16)

Since ∑mn
j=1 ∥πj∥L ≤ ∑∞

j=1 ∥πj∥L = M1 < ∞, the first term on the right-hand side of
(2.6.16) can be bounded by

mn

∑
j=1

∥πj∥L ∑
`>dn+1−j

λ` ≤M1 ∑
`>dn+1−mn

λ`. (2.6.17)

Furthermore, since ∑`>dn+1−j
λ` ≤ ∑∞

`=1 λ` = ∥CX∥N < ∞, the second term of the right-
hand-side in (2.6.16) can be bounded by

n

∑
j=mn

∥πj∥L ∑
`>dn+1−j

λ` ≤ ∥CX∥N
n

∑
j=mn

∥πj∥L. (2.6.18)

Hence, from (2.6.15) together with (2.6.16), (2.6.17) and (2.6.18) we obtain

J1 = O(
n

∑
j=mn

∥πj∥L + ∑
`>dn+1−mn

λ`). (2.6.19)

Concerning J2, the second term of (2.6.12) with (2.2.2), and then the definition of
CX;h in (2.2.4) yield

J2 = E∥∑
i>n

πiXn+1−i∥2 = ∥E[∑
i>n

πiXn+1−i ⊗∑
j>n

πjXn+1−j]∥N

= ∥ ∑
i,j>n

πiCX;i−jπ
∗
j ∥N ≤ ∑

i,j>n

∥πi∥L∥πj∥L∥CX;i−j∥N .
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Since CX;i−j ∈ N for all i, j ∈ N, there exists a constant M2 < ∞ such that ∥CX;i−j∥N <
M2 for all i, j ∈ N and for some mn < n,

J2 ≤M2(∑
i>n

∥πi∥L)
2 = O( ∑

i>mn

∥πi∥L). (2.6.20)

Finally the combination of (2.6.12), (2.6.19) and (2.6.20) yields assertion (i). ◻

2.6.3 Proof of Theorem 2.5.3 (ii)

Note first that by the projection theorem there is an equivalent representation of
X̂dn+1,n+1 to (2.5.3) given by

X̂dn+1,n+1 = PLCS(F ′
dn,n

)(Xn+1) =
n

∑
i=1
βdn+1−i,n,iXdn+1−i,n+1−i (2.6.21)

for F ′
dn,n

as in (2.5.2) and βdn+1−i,n,i ∈ L for i = 1, . . . , n. Furthermore, for
k = 1, . . . , n, we define the best linear predictor of Xn+1 based on F ′

dn,n
(k) =

{Xdn+1−k,n+1−k,Xdn−k+2,n+2−k, . . . ,Xdn,n} by

X̂dn+1,n+1(k) = PLCS(F ′
dn,n

(k))(Xn+1) =
k

∑
i=1
βdn+1−i,k,iXdn+1−i,n+1−i. (2.6.22)

We start with the following Proposition, which is an infinite-dimensional exten-
sion to Proposition 2.2 in Mitchell and Brockwell [42].

Proposition 2.6.4. Under the assumptions of Theorem 2.5.3 the following asser-
tions hold:
(i) The operators βdn+1−i,n,i from (2.6.21) and θdn+1−i,n,i from (2.5.3) are for n ∈ N
related by

θdn+1−i,n,i =
i

∑
j=1
βdn+1−j ,n,jθdn+1−i,n−j,i−j, i = 1, . . . , n. (2.6.23)

Furthermore, for every i, j ∈ N and x ∈H, as n→∞,
(ii) ∥(βdn+1−i,n,i − πi)(x)∥ → 0,

(iii) ∥(βdn+1−i,n,i − βdn+1−i−j ,n−j,i)(x)∥ → 0,
(iv) ∥(θdn+1−i,n,i − θdn+1−i−j ,n−j,i)(x)∥ → 0.
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Proof. (i) Set θdn+1,n,0 ∶= IH . By adding the term θdn+1,n,0(Xdn+1,n+1 − X̂dn+1,n+1) to
both sides of (2.5.3), we get

Xdn+1,n+1 =
n

∑
j=0
θdn+1−j ,n,j(Xdn+1−j ,n+1−j − X̂dn+1−j ,n+1−j), n ∈ N.

Plugging this representation of Xdn+1−i,n+1−i into (2.6.21) for i = 1, . . . , n yields

X̂dn+1,n+1 =
n

∑
i=1
βdn+1−i,n,i (

n−i

∑
j=0
θdn+1−i−j ,n−i,j(Xdn+1−i−j ,n+1−i−j − X̂dn+1−i−j ,n+1−i−j)).

Equating the coefficients of the innovations (Xdn+1−i,n+1−i − X̂dn+1−i,n+1−i) with the
innovation representation (2.5.3) leads by linearity of the operators to (2.6.23).
(ii) Let

B(dn),n = (βdn,n,1, . . . , βd1,n,n) and Πn = (π1, . . . , πn), (2.6.24)

which are both operators from Hn to H defined as follows: let x = (x1, . . . , xn) ∈Hn

with xi ∈ H for i = 1, . . . , n. Then B(dn),n x = ∑ni=1 βdn+1−i,n,ixi ∈ H. By definition of
the norm in Hn we have for all x ∈H

∥(B(dn),n −Πn)(x)∥ =
n

∑
i=1

∥(βdn+1−i,n,i − πi)(xi)∥.

We show that this tends to 0 as n → ∞, which immediately gives ∥(βdn+1−i,n,i −
πi)(xi)∥ → 0 for all i ∈ N. First notice that for x ∈ Hn and with P(dn) defined in
(2.6.2), the triangular inequality yields

∥(B(dn),n −Πn)(x)∥ ≤ ∥(B(dn),n −ΠnP(dn))(x)∥ + ∥Πn(IHn − P(dn))(x)∥
=∶ J1(dn, n)(x) + J2(dn, n)(x),

with identity operator IHn on Hn. We find bounds for J1(dn, n)(x) and J2(dn, n)(x).
Since uniform convergence implies pointwise convergence, we consider the operator
norm of J1(dn, n)

J1(dn, n) = ∥B(dn),n −ΠnP(dn)∥L

and show that J1(dn, n) → 0 as n→∞. From Theorem 2.1.8 in Simon [50] we find

∥B(dn),n −ΠnP(dn)∥2
L = ∥(B(dn),n −ΠnP(dn))(B(dn),n −ΠnP(dn))∗∥L. (2.6.25)
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Recall the spectral representation of Γ(dn),n as in (2.6.3). By the definition of B(dn),n

and ΠnP(dn), note that (B(dn),n − ΠnP(dn))P(dn) = B(dn),n − ΠnP(dn). Extracting the
smallest positive eigenvalue λ(n)

(dn),kn
of Γ(dn),n, we get

∥(B(dn),n −ΠnP(dn))Γ(dn),n(B(dn),n −ΠnP(dn))∗∥
L

= ∥(B(dn),n −ΠnP(dn))
kn

∑
j=1
λ
(n)

(dn),j
(e(n)
(dn),j

⊗ e(n)
(dn),j

)(B(dn),n −ΠnP(dn))∗∥
L

≥ λ(n)
(dn),kn

∥(B(dn),n −ΠnP(dn))(B(dn),n −ΠnP(dn))∗∥
L
. (2.6.26)

Since Adi
⊆ Adn for all i ≤ n we obtain A(dn) ∶= (Adn ,Adn−1 , . . . ,Ad1) ⊆ Adn ∶=

(Adn ,Adn , . . . ,Adn) and, therefore, PdnP(dn) = P(dn). Together with the definition of
Γ(dn),n this implies

Γ(dn),n = P(dn)ΓnP(dn) = P(dn)PdnΓnPdnP(dn) = P(dn)Γdn,nP(dn).

Since ⟨x,Γ(dn),nx⟩ = ⟨x,Γdn,nx⟩ for all x ∈ Adn , and A(dn) ⊆ Adn , we get

λ
(n)

(dn),kn
= min
x∈A(dn)

⟨x,Γ(dn),nx⟩
∥x∥2 = min

x∈A(dn)

⟨x,Γdn,nx⟩
∥x∥2 ≥ min

x∈Adn

⟨x,Γdn,nx⟩
∥x∥2 = λ(n)dn,dn⋅n

,

where the first and last equality hold by application of Theorem 4.2.7 in Hsing and
Eubank [29]. Furthermore, by Lemma 2.6.1, λ(n)dn,dn⋅n

≥ 2παdn . Therefore,

λ
(n)
dn,kn

≥ λ(n)dn,dn⋅n
≥ 2παdn . (2.6.27)

With (2.6.26) and (2.6.27), we get

∥B(dn),n −ΠnP(dn)∥2 ≤ 1
2παdn

∥(B(dn),n −ΠnP(dn))Γ(dn),n(B(dn),n −ΠnP(dn))∗∥
L

=∶ J ′1(dn, n). (2.6.28)

Furthermore, since ⟨Ax, y⟩ = ⟨x,A∗y⟩ for A ∈ L and x, y ∈ H, and by (2.6.24) and
the structure of Γ(dn),n,

∥(B(dn),n −ΠnP(dn))Γ(dn),n(B(dn),n −ΠnP(dn))∗∥
L

≤ ∥E[
n

∑
i=1

(βdn+1−i,n,i − πiPAdn+1−i
)Xdn+1−i,n+1−i

⊗
n

∑
j=1

(βdn+1−j ,n,j − πjPAdn+1−j
)Xdn−j+1,n−j+1]∥

L
.
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Now with (2.2.5) and (2.6.21) we get

∥E[
n

∑
i=1

(βdn+1−i,n,i − πiPAdn+1−i
)Xdn+1−i,n+1−i

⊗
n

∑
j=1

(βdn+1−j ,n,j − πjPAdn+1−j
)Xdn−j+1,n−j+1]∥

L

= ∥E[(X̂dn+1,n+1 −Xn+1 + εn+1 +∑
i>n

πiXn+1−i +
n

∑
i=1
πi(I − PAdn+1−i

)Xn+1−i)

⊗ (X̂dn+1,n+1 −Xn+1 + εn+1 +∑
j>n

πjXn+1−j +
n

∑
j=1
πj(I − PAdn+1−j

)Xn+1−j)]∥
L

With the triangular inequality, the above equation decomposes in the following four
terms giving with (2.6.28):

2παdn∥B(dn),n −ΠnP(dn)∥2

≤ ∥E[(X̂dn+1,n+1 −Xn+1 + εn+1) ⊗ (X̂dn+1,n+1 −Xn+1 + εn+1)]∥
L

+ ∥E[(∑
i>n

πiXn+1−i +
n

∑
i=1
πi(I − PAdn+1−i

)Xn+1−i)

⊗ (∑
j>n

πjXn+1−j +
n

∑
j=1
πj(I − PAdn+1−j

)Xn+1−j)]∥
L

+ ∥E[(X̂dn+1,n+1 −Xn+1 + εn+1) ⊗ (∑
j>n

πjXn+1−j +
n

∑
j=1
πj(I − PAdn+1−j

)Xn+1−j)]∥
L

+ ∥E[(∑
i>n

πiXn+1−i +
n

∑
i=1
πi(I − PAdn+1−i

)Xn+1−i) ⊗ (X̂dn+1,n+1 −Xn+1 + εn+1)]∥
L
.

(2.6.29)

Define

f(n, dn,mn) ∶= ( ∑
j>mn

∥πj∥L + ∑
j>dn−mn

λj).

By Theorem 2.5.3 the first term of (2.6.29) is of the order f(n, dn,mn). The second
term of (2.6.29) is of the same order by the calculations following (2.6.12). Con-
cerning the remaining two terms, using first that ∥CX,Y ∥L ≤ E∥X∥∥Y ∥, and then
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applying the Cauchy-Schwarz inequality gives

∥E[(X̂dn+1,n+1 −Xn+1 + εn+1) ⊗ (∑
j>n

πjXn+1−j +
n

∑
j=1
πj(I − PAdn+1−j

)Xn+1−j)]∥
2

L

≤ (E∥X̂dn+1,n+1 −Xn+1 + εn+1∥
L

∥∑
j>n

πjXn+1−j +
n

∑
j=1
πj(I − PAdn+1−j

)Xn+1−j∥)
2

(2.6.30)

≤ E∥X̂dn+1,n+1 −Xn+1 + εn+1∥
2

L
E∥∑

j>n

πjXn+1−j +
n

∑
j=1
πj(I − PAdn+1−j

)Xn+1−j∥
2

L
.

Both terms are of the order f(n, dn,mn) by Theorem 2.5.3(i). Hence, ∥B(dn),n −
ΠnP(dn)∥2 is of the order f(n, dn,mn)/αdn , and with the assumption (2.5.8),

J1(dn, n)2 → 0, n→∞. (2.6.31)

We now estimate J2(dn, n)(x), which we have to consider pointwise. For every x =
(x1, . . . , xn) ∈Hn with xi ∈H for 1 ≤ i ≤ n and ∥x∥ ≤ 1,

J2(dn, n) = ∥Πn(I − P(dn))(x)∥

= ∥(π1(IH − PAdn
), π2(IH − PAdn−1

), . . . , πn(IH − PAd1
))(x)∥

=
n

∑
i=1

∥πi(IH − PAdn+1−i
)(xi)∥.

(iii) Similarly to the proof of (ii), we start by defining for every n ∈ N,

B̃(dn),n−j ∶= (βdn,n−j,1, βdn−1,n−j,2, . . . , βdj+1,n−j,n−j,0H , . . . ,0H), j = 1, . . . , n,

where the last j entries are 0H , the null operator on H. Then B̃(dn),n−j is a bounded
linear operator from Hn to H. Analogously to the beginning of the proof of (ii),
we show that ∥B̃(dn),n − B̃(dn),n−j∥L → 0 for n → ∞. With the same calculation as
deriving (2.6.28) from (2.6.25), we obtain

∥B̃(dn),n − B̃(dn),n−j∥2
L ≤

1
2παdn

∥(B̃(dn),n − B̃(dn),n−j)Γ(dn),n(B̃(dn),n − B̃(dn),n−j)∗∥L

=∶ 1
2παdn

J̃ ′1(dn, n).
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Applying the same steps as when bounding J1(dn, n) in the proof of (ii), and setting
βdn+j ,n,m = 0 for m > n, we obtain

J̃ ′1(dn, n) = ∥E[(
n

∑
i=1

(βdn−i+1,n,i − βdn−i+1,n−j,i)Xdn+1−i,n+1−i)

⊗ (
n

∑
`=1

(βdn−`+1,n,` − βdn−`+1,n−j,`)Xdn+1−`,n+1−`)]∥
L

= ∥E[(X̂dn+1,n+1 − X̂dn+1,n+1(n − j)) ⊗ (X̂dn+1,n+1 − X̂dn+1,n+1(n − j))]∥
L
,

where X̂dn+1,n+1(k) = ∑k`=1 βdn−`+1,k,`Xdn+1−`,n+1−` is defined as in (2.6.22). By adding
and subtracting Xdn+1,n+1 + εn+1 and then using the linearity of the scalar product
we get

J̃ ′1(K,n)

= ∥E[((X̂dn+1,n+1 −Xdn+1,n+1 − εn+1) − (X̂dn+1,n+1(n − j) −Xdn+1,n+1 − εn+1))

⊗ ((X̂dn+1,n+1 −Xdn+1,n+1 − εn+1) − (X̂dn+1,n+1(n − j) −Xdn+1,n+1 − εn+1))]∥
L

≤ ∥E[(X̂dn+1,n+1 −Xdn+1,n+1 − εn+1) ⊗ (X̂dn+1,n+1 −Xdn+1,n+1 − εn+1)]∥
L

+ ∥E[(X̂dn+1,n+1(n − j) −Xdn+1,n+1 − εn+1) ⊗ (X̂dn+1,n+1(n − j) −Xdn+1,n+1 − εn+1)]∥
L

+ ∥E[(X̂dn+1,n+1 −Xdn+1,n+1 − εn+1) ⊗ (X̂dn+1,n+1(n − j) −Xdn+1,n+1 − εn+1)]∥
L

+ ∥E[(X̂dn+1,n+1(n − j) −Xdn+1,n+1 − εn+1) ⊗ (X̂dn+1,n+1 −Xdn+1,n+1 − εn+1)]∥
L
.

For n → ∞ the first term converges to 0 by Theorem 2.5.3 (i). For every fixed
j ∈ {1, . . . , n} the second term converges to 0 by the exact same arguments. Similar
arguments as in the proof of (ii) show that the third and fourth terms also converge
to 0. Indeed, applying the Cauchy-Schwarz inequality, we find as in (2.6.30),

∥E[(X̂dn+1,n+1 −Xdn+1,n+1 − εn+1) ⊗ (X̂dn+1,n+1(n − j) −Xdn+1,n+1 − εn+1)]∥
2

L

≤ E∥X̂dn+1,n+1 −Xdn+1,n+1 − εn+1∥
2
L
E∥X̂dn+1,n+1(n − j) −Xdn+1,n+1 − εn+1∥

2
L
.

Since both these terms tend to 0 for n→∞, J̃ ′1(dn, n) → 0 for n→∞, which finishes
the proof of (iii).
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(iv) By (2.6.23)

θdn+1−k,n,k =
k

∑
`=1
βdn+1−`,n,`θdn+1−k,n−`,k−`, k = 1, . . . , n,

and we get θdn,n,1 = βdn,n,1. Hence, for n→∞ and fixed j ∈ N,

∥(θdn,n,1 − θdn,n−j,1)(x)∥ = ∥(βdn,n,1 − βdn,n−j,1)(x)∥ → 0. (2.6.32)

For some fixed j ∈ N by a shift of (2.6.23), we obtain

θdn+1−k,n−j,k =
k

∑
`=1
βdn+1−`,n−j,`θdn+1−`,n−j−`,k−`. (2.6.33)

With (2.6.33) and then the triangular equality after adding and subtracting
βdn+1−`,n,`θdn+1−`,n−j−`,k−`(x) for ` = 1, . . . , k,

∥(θdn+1−k,n,k − θdn+1−k,n−j,k)(x)∥

= ∥(
k

∑
`=1
βdn+1−`,n,`θdn+1−k,n−`,k−` − βdn+1−`,n−j,`θdn+1−`,n−j−`,k−`)(x)∥

≤ ∥
k

∑
`=1
βdn+1−`,n,`(θdn+1−k,n−`,k−` − θdn+1−`,n−j−`,k−`)(x)∥

+ ∥(βdn+1−`,n,` − βdn+1−`,n−j,`)θdn+1−`,n−j−`,k−`(x)∥

By (iii) ∥(βdn+1−`,n,` − βdn+1−`,n−j,`)(x)∥ → 0 as n → ∞. Furthermore, if for all ` =
1, . . . , i − 1, ∥(θdn+1−`,n,` − θdn+1−`,n−j,`(x)∥ → 0, then ∥(θdn+1−i,n,i − θdn+1−i,n−j,i(x)∥ → 0.
The proof then follows by induction with the initial step given in (2.6.32).

We are now ready to prove Theorem 2.5.3(ii).

Proof of Theorem 2.5.3(ii). Set π0 ∶= −IH . By (2.2.5) and the definition of a linear
process (2.2.3)

−εn =
∞

∑
i=0
πi(Xn−i) =

∞

∑
i=0
πi(

∞

∑
j=0
ψjεn−i−j), n ∈ Z.

Setting k = i + j, this can be rewritten as

−εn =
∞

∑
i=0
πi(

∞

∑
j=0
ψjεn−i−j) =

∞

∑
k=0

( ∑
i+j=k

πjψi)εn−k =
∞

∑
k=0

k

∑
j=0
πjψk−jεn−k.
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Equating the coefficients we get ∑kj=0 πjψk−j = 0 for k > 0. Since −π0 = IH , extracting
the first term of the series, ∑kj=1 πjψk−j − IHψk = 0, hence,

k

∑
j=1
πjψk−j = ψk.

Furthermore, by (2.6.23) we get for all x ∈H,

∥(θdn+1−i,n,i − ψi)(x)∥ = ∥(
i

∑
j=1
βdn+1−j ,n,jθdn+1−i,n−j,i−j −

i

∑
j=1
πjψi−j)(x)∥

= ∥
i

∑
j=1

(βdn+1−j ,n,j − πj)θdn+1−i,n−j,i−j(x)

−
i

∑
j=1
πj(ψi−j − θdn+1−i,n−j,i−j)(x)∥

≤ ∥
i

∑
j=1

(βdn+1−j ,n,j − πj)θdn+1−i,n−j,i−j(x)∥

+ ∥
i

∑
j=1
πj(ψi−j − θdn+1−i,n,i−j)(x)∥

+ ∥(
i

∑
j=1
πj(θdn+1−i,n,i−j − θdn+1−i,n−j,i−j))(x)∥,

where we have added and subtracted θdn+1−i,n,i−j and applied the triangular inequal-
ity for the last equality. Now, for n → ∞, the last term tends to 0 by Proposi-
tion 2.6.4 (iv). The first term tends to 0 by Proposition 2.6.4 (ii). The second
term tends to 0 by induction, where the initial step is clear, since ψ1 = −π1 and
θdn,n,1 = βdn,n,1.
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Chapter 3:
Estimating functional time series by mov-
ing average model fitting

3.1 Introduction

With the advent of complex data came the need for methods to address novel sta-
tistical challenges. Among the new methodologies, functional data analysis provides
a particular set of tools for tackling questions related to observations conveniently
viewed as entire curves rather than individual data points. The current state of the
field may be reviewed in one of the comprehensive monographs written by Bosq [8],
Ramsay and Silverman [47], Horváth and Kokoszka [27], and Hsing and Eubank [29].
Many of the applications discussed there point to an intrinsic time series nature of
the underlying curves. This has led to an upsurge in contributions to the functional
time series literature. The many recent works in this area include papers on time-
domain methods such as Hörmann and Kokoszka [24], who introduced a framework
to describe weakly stationary functional time series, and the work in Chapter 1 and
2, Aue et al. [5] and Hyndman and Shang [30], where functional prediction method-
ology is developed; as well as frequency domain methods such as Panaretos and
Tavakoli [44], who utilized functional cumulants to justify their functional Fourier
analysis, Hörmann et al. [25], who defined the concept of dynamic functional prin-
cipal components, and Aue and van Delft [2], who designed stationarity tests based
on functional periodogram properties.

This chapter is concerned with functional moving average (FMA) processes as
a building block to estimate potentially more complicated functional time series.

77
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Together with the functional autoregressive (FAR) processes, the FMA processes
comprise one of the basic functional time series model classes. They are used, for
example, as a building block in the Lp-m-approximability concept of Hörmann and
Kokoszka [24], which is based on the idea that a sufficiently close approximation
with truncated linear processes may adequately capture more complex dynamics,
based on a causal infinite MA representation. It should be noted that, while there
is a significant number of papers on the use of both FMA and FAR processes,
the same is not the case for the more flexible functional autoregressive moving
average (FARMA) processes. This is due to the technical difficulties that arise from
transitioning from the multivariate to the functional level. One advantage that FMA
processes enjoy over other members of the FARMA class is that their projections
remain multivariate MA processes (of potentially lower order). This is one of the
reasons that makes them attractive for further study.

Here interest is in estimating the dynamics of an invertible functional linear
process through fitting FMA models. The operators in the FMA representation,
a functional linear filter, are estimated using a functional Innovations Algorithm.
This counterpart of the well-known univariate and multivariate Innovations Algo-
rithms is introduced in Chapter 2 where its properties are analyzed on a population
level. These results are here extended to the sample case and used as a first step in
the estimation. The proposed procedure uses projections to a number of principal
directions, estimated through functional principal components analysis (see, for ex-
ample, Ramsay and Silverman [47]). To ensure appropriate large-sample properties
of the proposed estimators, the dimensionality of the principle directions space is
allowed to grow slowly with the sample size. In this framework, the consistency of
the estimators of the functional linear filter is the main theoretical contribution. It
is presented in Section 3.3.

The theoretical results are accompanied by selection procedures to guide the
selection of the order of the approximating FMA process and the dimension of the
subspace of principal directions. To choose the dimension of the subspace a sequential
test procedure is proposed. Order selection based on AICC, Box–Ljung and FPE
type criteria are suggested. Details of the proposed model selection procedures are
given in Section 3.4. Their practical performance is highlighted in Section 3.5, where
results of a simulation study are reported, and Section 3.6, where an application to
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real-world data on vehicle traffic data is discussed.
To summarize, this chapter is organized as follows. Section 3.2 briefly reviews

basic notions of Hilbert-space valued random variables before introducing the setting
and the main assumptions. The proposed estimation methodology for functional
time series is detailed in Section 3.3. Section 3.4 discusses in some depth the practical
selection of the dimension of the projection space and the order of the approximating
FMA process. These suggestions are tested in a Monte Carlo simulation study and an
application to traffic data in Sections 3.5 and 3.6, respectively. Section 3.7 concludes
and proofs of the main results can be found in Section 3.8.

3.2 Setting

Functional data is often conducted in H = L2[0,1], the Hilbert-space of square-
integrable functions, with canonical norm ∥x∥ = ⟨x,x⟩1/2 induced by the inner prod-
uct ⟨x, y⟩ = ∫

1
0 x(s)y(s)ds for x, y ∈ H. For an introduction to Hilbert spaces from

a functional analytic perspective, the reader is referred to Chapters 3.2 and 3.6
in Simon [50]. All random functions considered in this chapter are defined on a
probability space (Ω,A,P) and are assumed to be A-BH-measurable, where BH
denotes the Borel σ-algebra of subsets of H. Note that the space of square inte-
grable random functions L2

H = L2(Ω,A,P) is a Hilbert space with inner product
E[⟨X,Y ⟩] = E[∫

1
0 X(s)Y (s)ds] for X,Y ∈ L2

H . Similary, denote by LpH = Lp(Ω,A,P)
the space of H-valued functions such that νp(X) = (E[∥X∥p])1/p < ∞. Let Z, N and
N0 denote the set of integers, positive integers and non-negative integers, respec-
tively.

Interest in this chapter is in fitting techniques for functional time series (Xj ∶ j ∈
Z) taking values in L2

H . To describe a wide variety of temporal dynamics, the frame-
work is established for functional linear processes (Xj ∶ j ∈ Z) defined through the
series expansion

Xj =
∞

∑
`=0
ψ`εj−`, j ∈ Z, (3.2.1)

where (ψ`∶ ` ∈ N0) is a sequence in L, the space of bounded linear operators acting on
H, equipped with the standard norm ∥A∥L = sup∥x∥≤1 ∥Ax∥, and (εj ∶ j ∈ Z) is assumed
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to be an independent and identically distributed sequence in L2
H . Additional summa-

bility conditions are imposed on the sequence of coefficient operators (ψ`∶ ` ∈ N0) if
it is necessary to control the rate of decay of the temporal dependence. Whenever
the terminology “functional linear process” is used in this chapter it is understood
to be in the sense of (3.2.1). Note that, as for univariate and multivariate time series
models, every stationary causal functional autoregressive moving average (FARMA)
process is a functional linear process (see Spangenberg [51], Theorem 2.3). Special
cases include functional autoregressive processes of order p, FAR(p), which have
been thoroughly investigated in the literature, and the functional moving average
process of order q, FMA(q), which is given by the equation

Xj =
q

∑
`=1
θ`εj−` + εj, j ∈ Z, (3.2.2)

with θ1, . . . , θq ∈ L.
While the functional linear process in (3.2.1) is the prototypical causal time

series, in the context of prediction, the concept of invertibility naturally enters; see
Chapter 5.5 of Brockwell and Davis [13], and Nsiri and Roy [43]. For a functional
time series (Xj ∶ j ∈ Z) to be invertible, it is required that

Xj =
∞

∑
`=1
π`Xj−` + εj, j ∈ Z, (3.2.3)

for (π`∶ ` ∈ N) in L such that∑∞
`=1 ∥π`∥L < ∞; see Merlevède [40]. A sufficient condition

for invertibility of a functional linear process, which is assumed throughout, is given
in Theorem 7.2 of Bosq [8].

The definition of a functional linear process in (3.2.1) provides a convenient
framework for the formulation of large-sample results and their verification. In order
to analyze time series characteristics in practice, however, most statistical methods
require a more in-depth understanding of the underlying dependence structure. This
is typically achieved through the use of autocovariances which determine the second-
order structure. Observe first that any random variable in LpH with p ≥ 1 possesses a
unique mean function in H, which allows for a pointwise definition; see Bosq [8]. For
what follows, it is assumed without loss of generality that µ = 0, the zero function.
If X ∈ LpH with p ≥ 2 such that E[X] = 0, then the covariance operator of X exists
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and is given by

CX(y) = E[⟨X,y⟩X], y ∈H.

If X,Y ∈ LpH with p ≥ 2 such that E[X] = E[Y ] = 0, then the cross covariance
operator of X and Y exists and is given by

CX,Y (y) = C∗
Y,X(y) = E[⟨X,y⟩Y ], y ∈H.

where C∗
Y,X denotes the adjoint of CY,X , noting that the adjoint A∗ of an operator A

is defined by the equality ⟨Ax, y⟩ = ⟨x,A∗y⟩ for x, y ∈H. The operators CX and CY,X
belong to N , the class of nuclear operators, whose elements A have a representation
A = ∑∞

j=1 λj⟨ej, ⋅⟩fj with ∑∞
j=1 ∣λj ∣ < ∞ for two orthonormal bases (ONB) (ej ∶ j ∈ N)

and (fj ∶ j ∈ N) of H. In that case ∥A∥N = ∑∞
j=1 ∣λj ∣ < ∞ ; see Section 1.5 of Bosq [8].

Furthermore, CX is self-adjoint (CX = C∗
X) and non-negative definite with spectral

representation

CX(y) =
∞

∑
i=1
λi⟨y, νi⟩νi, y ∈H,

where (νi∶ i ∈ N) is an ONB of H and (λi∶ i ∈ N) is a sequence of positive real
numbers such that ∑∞

i=1 λi < ∞. When considering spectral representations, it is
standard to assume that the (λi∶ i ∈ N) are ordered decreasingly and that there are
no ties between consecutive λi.

For ease of notation, introduce the operator x⊗ y(⋅) = ⟨x, ⋅⟩y for x, y ∈ H. Then,
CX = E[X⊗X] and CX,Y = E[X⊗Y ]. Moreover, for a stationary process (Xj ∶ j ∈ Z),
the lag-h covariance operator can be written as

CX;h = E[X0 ⊗Xh], h ∈ Z. (3.2.4)

The quantities in (3.2.4) are the basic building block in the functional Innovations
Algorithm and the associated estimation strategy to be discussed in the next section.

3.3 Estimation methodology

3.3.1 Linear prediction in function spaces

Briefly recall the concept of linear prediction in Hilbert spaces as defined in Sec-
tion 1.6 of Bosq [8]. Let (Xj ∶ j ∈ Z) be an invertible, functional linear process. Let L̄n,k
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be the L-closed subspace (LCS) generated by the stretch of functions Xn−k, . . . ,Xn.
LCS here is to be understood in the sense of Fortet [19], that is, L̄n,k is the smallest
subspace of H containing Xn−k, . . . ,Xn, closed with respect to operators in L. Then,
the best linear predictor of Xn+1 given {Xn,Xn−1, . . . ,Xn−k} at the population level
is given by

X̃f
n+1,k = PL̄n,k

(Xn+1), (3.3.1)

where the superscript f in the predictor notation indicates the fully functional na-
ture of the predictor and PL̄n,k

denotes projection onto L̄n,k. Note that there are
major differences to the multivariate prediction case. Due to the infinite dimension-
ality of function spaces, X̃f

n+1,k in (3.3.1) is not guaranteed to have a representation
in terms of its past values and operators in L, see for instance Proposition 2.2 in
Bosq [10] and the discussion in Chapter 2.3. A typical remedy in FDA is to resort
to projections into principal directions and then to let the dimension d of the pro-
jection subspace grow to infinity. At the subspace-level, multivariate methods may
be applied to compute the predictors; for example the multivariate Innovations Al-
gorithm; see Lewis and Reinsel [38] and Mitchell and Brockwell [42]. This, however,
has to be done with care, especially if sample versions of the predictors in (3.3.1) are
considered. Even at the population level, the rate at which d tends to infinity has
to be calibrated scrupulously to ensure that the inversions of matrices occurring, for
example, in the multivariate Innovations Algorithm are meaningful and well defined
(see Theorem 2.5.3).

Therefore, the following alternative to the functional best linear predictor de-
fined in (3.3.1) is proposed. Recall that (νj ∶ j ∈ N) are the eigenfunctions of the
covariance operator CX . Let Vd = sp{ν1, . . . , νd} be the subspace generated by the
first d principal directions and let PVd

be the projection operator projecting from H

onto Vd. Let furthermore (di∶ i ∈ N) be an increasing sequence of positive integers
and define

Xdi,j = PVdi
Xj, j ∈ Z, i ∈ N. (3.3.2)

Note that (3.3.2) allows for the added flexibility of projecting different Xj into
different subspaces Vdi

. Then, Xn+1 can be projected into the LCS generated by
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Xdk,n,Xdk−1,n−1, . . . ,Xd1,n−k, which is denoted by F̄n,k. Consequently, write

X̃n+1,k = PF̄n,k
(Xn+1) (3.3.3)

for the best linear predictor of Xn+1 given F̄n,k. This predictor could be computed by
regressing Xn+1 onto Xdk,n,Xdk−1,n−1, . . . ,Xd1,n−k, but interest is here in the equiva-
lent representation of X̃n+1,k in terms of one-step ahead prediction residuals given
by

X̃n+1,k =
k

∑
i=1
θk,i(Xdk+1−i,n+1−i − X̃n+1−i,k−i), (3.3.4)

where X̃n−k,0 = 0. On a population level, it is shown in Proposition 2.5.1 that the
coefficients θk,i with k, i ∈ N can be computed with the following algorithm.

Algorithm 3.3.1 (Functional Innovations Algorithm) Let (Xj ∶ j ∈ Z) be a
stationary functional linear process with covariance operator CX possessing eigen-
pairs (λi, νi∶ i ∈ N) with λi > 0 for all i ∈ N. The best linear predictor X̃n+1,k of Xn+1

based on F̄n,k defined in (3.3.4) can be computed by the recursions

X̃n−k,0 = 0 and V1 = PVd1
CXPVd1

,

X̃n+1,k =
k

∑
i=1
θk,i(Xdk+1−i,n+1−i − X̃n+1−i,k−i),

θk,k−i = (PVdk+1
CX;k−iPVdi+1

−
i−1
∑
j=0
θk,k−j Vj θ

∗
i,i−j)V −1

i , i = 1, . . . , n − 1, (3.3.5)

Vk = CXdk+1−X̃n+1,k
= CXdk+1

−
k−1
∑
i=0
θk,k−iViθ

∗
k,k−i. (3.3.6)

Note that θk,k−i and Vi are operators in L for all i = 1, . . . , k.

The first main goal is now to show how a finite sample version of this algo-
rithm can be used to estimate the operators in (3.2.2), as these FMA processes will
be used to approximate the more complex processes appearing in Definition 3.8.1.
Note that Hörmann and Kokoszka [24] give assumptions under which

√
n-consistent

estimators can be obtained for the lag-h autocovariance operator CX;h, for h ∈ Z.
However, in (3.3.5), estimators are required for the more complicated quantities
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PVdk+1
CX;k−iPVdi+1

, for k, i ∈ N. If, for i ∈ N, the projection subspace Vdi
is known,

consistent estimators of PVdk+1
CX;k−iPVdi+1

can be obtained by estimating CX;k−i

and projecting the operator on the desired subspace. This case will be dealt with in
Section 3.3.2. In practice, however, the subspaces Vdi

, i ∈ N, need to be estimated.
This is a further difficulty that will be addressed separately in an additional step as
part of Section 3.3.3.

Now, introduce additional notation. For k ∈ N, denote by (Xj(k)∶ j ∈ Z) the
functional process taking values in Hk such that

Xj(k) = (Xj,Xj−1, . . . ,Xj−k+1)⊺,

where ⊺ signifies transposition. Let

Γk = CXn(k) and Γ1,k = CXn+1,Xn(k) = E[Xn+1 ⊗Xn(k)].

Based on a realization X1, . . . ,Xn of (Xj ∶ j ∈ Z), estimators of the above operators
are given by

Γ̂k =
1

n − k

n−1
∑
j=k

Xj(k) ⊗Xj(k) and Γ̂1,k =
1

n − k

n−1
∑
j=k

Xj+1 ⊗Xj(k). (3.3.7)

The following theorem establishes the
√
n-consistency of the estimator Γ̂k of Γk

defined in (3.3.7).

Theorem 3.3.1. If (Xj ∶ j ∈ Z) is a functional linear process defined in (3.2.1)
such that the coefficient operators (ψ`∶ ` ∈ N0) satisfy the summability condition
∑∞
m=1∑∞

`=m ∥ψ`∥L < ∞ and with independent, identically distributed innovations
(εj ∶ j ∈ Z) such that E[∥ε0∥4] < ∞, then

(n − k)E[∥Γ̂k − Γk∥2
N ] ≤ k UX ,

where UX is a constant that does not depend on n.

The proof of Theorem 3.3.1 is given in Section 3.8. There, an explicit expression
for the constant UX is derived that depends on moments of the underlying functional
linear process and on the rate of decay of the temporal dependence implied by the
summability condition on the coefficient operators (ψ`∶ ` ∈ N0).
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3.3.2 Known projection subspaces

In this section, conditions are established that ensure consistency of estimators of a
functional linear process under the assumption that the projection subspaces Vdi

are
known in advance. In this case as well as in the unknown subspace case, the following
general strategy is pursued; see Mitchell and Brockwell [42]. Start by providing
consistency results for the regression estimators of βk,1, . . . , βk,k in the linear model
formulation

X̃n+1,k = βk,1Xdk,n + βk,2Xdk−1,n−1 + ⋅ ⋅ ⋅ + βk,kXd1,n−k+1

of (3.3.3). To obtain the consistency of the estimators θk,1, . . . , θk,k exploit then that
regression operators and Innovations Algorithm coefficient operators are, for k ∈ N,
linked through the recursions

θk,i =
i

∑
j=1
βk,jθk−j,i−j, i = 1, . . . , k. (3.3.8)

Define furthermore P(k) = diag(PVdk
, . . . , PVd1

), the operator from Hk to Hk

whose ith diagonal entry is given by the projection operator onto Vdi
. One veri-

fies that P(k)Xn(k) = (Xdk,n,Xdk−1,n−1, . . . ,Xd1,n−k)⊺, CP(k)X(k) = P(k)ΓkP(k) = Γk,d
and CX,P(k)X(k) = P(k)Γ1,k = Γ1,k,d. With this notation, it can be shown that
B(k) = (βk,1, . . . , βk,k) satisfies the population Yule–Walker equations

B(k) = Γ1,k,d Γ−1
k,d,

of which sample versions are needed. In the known subspace case, estimators of Γ1,k,d

and Γk,d are given by

Γ̂k,d = P(k)Γ̂kP(k) and Γ̂1,k,d = Γ̂1,kP(k), (3.3.9)

where Γ̂k and Γ̂1,k are as in (3.3.7). With this notation, B(k) is estimated by the
sample Yule–Walker equations

B̂(k) = Γ̂1,k,dΓ̂−1
k,d. (3.3.10)

Furthermore, the operators θk,i in (3.3.4) are estimated by θ̂k,i, resulting from Algo-
rithm 3.3.1 applied to the estimated covariance operators with Vdi

known. In order



86 3. Estimating functional time series by moving average model fitting

to derive asymptotic properties of β̂k,i and θ̂k,i as both k and n tend to infinity, the
following assumptions are imposed. Let αdk

denote the infimum of the eigenvalues
of all spectral density operators of (Xdk,j ∶ j ∈ Z).

Assumption 3.3.2. As n→∞, let k = kn →∞ and dk →∞ such that

(i) (Xj ∶ j ∈ Z) is as in Theorem 3.3.1 and invertible.

(ii) k1/2(n − k)−1/2α−1
dk
→ 0 as n→∞.

(iii) k1/2α−1
dk

(∑`>k ∥π`∥L +∑k`=1 ∥π`∥L∑i>dk+1−`
λi) → 0 as n→∞.

Invertibility imposed in part (i) of Assumption 3.3.2 is a standard requirement in
the context of prediction and is also necessary for the univariate Innovations Algo-
rithm to be consistent. Assumption (ii) describes the restrictions on the relationship
between k, dk and n. The corresponding multivariate assumption in Mitchell and
Brockwell [42] is k3/n → 0 as n → ∞. Assumption (iii) is already required in the
population version of the functional Innovations Algorithm in the proof of Theo-
rem 2.5.3. It ensures that the best linear predictor based on the last k observations
converges to the conditional expectation for k → ∞. The corresponding multivari-
ate condition in Brockwell and Mitchell [42] is k1/2∑`>k ∥π`∥ → 0 as n → ∞, where
(π`∶ ` ∈ N) here denote the matrices in the invertible representation of a multivariate
linear process.

The main result concerning the asymptotic behavior of the estimators β̂k,i and
θ̂k,i is given next.

Theorem 3.3.3. Let Vdi
be known for all i ∈ N and let Assumption 3.3.2 be satisfied.

Then, for all x ∈H and all i ∈ N as n→∞,

(i) ∥(β̂k,i − πi)(x)∥
p→ 0,

(ii) ∥(θ̂k,i − ψi)(x)∥
p→ 0.

If the operators (ψ`∶ ` ∈ N) and (π`∶ ` ∈ N) in the respective causal and invertible
representations are assumed Hilbert–Schmidt, then the convergence in (i) and (ii) is
uniform.

The proof of Theorem 3.3.3 is given in Section 3.8. The theorem establishes the
pointwise convergence of the estimators needed in order to get a sample proxy for the
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functional linear filter (π`∶ ` ∈ N). This filter encodes the second-order dependence in
the functional linear process and can therefore be used for estimating the underlying
dynamics for the case of known projection subspaces.

3.3.3 Unknown projection subspaces

The goal of this section is to remove the assumption of known Vdi
. Consequently,

the standard estimators for the eigenfunctions (νi∶ i ∈ N) of the covariance operator
CX are used, obtained as the sample eigenfunctions ν̂j of ĈX . Therefore, for i ∈ N,
the estimators of Vdi

and PVdi
are

V̂di
= sp{ν̂1, ν̂2, . . . , ν̂di

} and P̂Vdi
= PV̂di

. (3.3.11)

For i ∈ N, let ν̂′i = ciν̂i, where ci = sign(⟨ν̂i, νi⟩). Then, Theorem 3.1 in Hörmann and
Kokoszka [24] implies the consistency of ν̂′i for ν̂i, with the quality of approximation
depending on the spectral gaps of the eigenvalues (λi∶ i ∈ N) of CX . With this result
in mind, define

̂̂Γk,d = P̂(k)Γ̂kP̂(k) and ̂̂Γ1,k,d = Γ̂1,kP̂(k). (3.3.12)

Now, if the projection subspace Vdi
is not known, the operators appearing in (3.3.8)

and can be estimated by solving the estimated Yule–Walker equations
̂̂B(k) = ̂̂Γ1,k,d

̂̂Γ−1
k,d. (3.3.13)

The coefficient operators in Algorithm 3.3.1 obtained from estimated covariance
operators and estimated projection space P̂Vdi

are denoted by ̂̂
θk,i. In order to derive

results concerning their asymptotic behavior, an additional assumption concerning
the decay of the spectral gaps of CX is needed. Let δ1 = λ1 − λ2 and δj = min{λj−1 −
λj, λj − λj+1} for j ≥ 2.

Assumption 3.3.4. As n→∞, k = kn →∞ and dk →∞ such that

(iv) k3/2α−2
dk
n−1(∑dk

`=1 δ
−2
` )1/2 → 0.

This type of assumption dealing with the spectral gaps is typically encountered
when dealing with the estimation of eigenelements of functional linear processes (see,
for example, Bosq [8], Theorem 8.7). We are now ready to derive the asymptotic
result of the estimators in the general case that Adi

is not known.
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Theorem 3.3.5. Let Assumptions 3.3.2 and 3.3.4 be satisfied. Then, for all x ∈ H
and i ∈ N as n→∞,
(i) ∥(̂̂βk,i − πi)(x)∥

p→ 0,

(ii) ∥(̂̂θk,i − ψi)(x)∥
p→ 0.

If the operators (ψ`∶ ` ∈ N) and (π`∶ ` ∈ N) are Hilbert–Schmidt, then the convergence
is uniform.

The proof of Theorem 3.3.5 is given in Section 3.8. The theoretical results quan-
tify the large-sample behavior of the estimates of the linear filter operators in the
causal and invertible representations of the strictly stationary functional time series
(Xj ∶ j ∈ Z). How to guide the application of the proposed method in finite samples
is addressed in the next section.

3.4 Selection of principal directions and FMA or-
der

Model selection is a difficult problem when working with functional time series.
Contributions to the literature have been made in the context of functional au-
toregressive models by Kokoszka and Reimherr [36], who devised a sequential test
to decide on the FAR order, and Aue et al. [5], who introduced an FPE-type cri-
terion. To the best of our knowledge, there are no contributions in the context of
model selection in functional moving average models. This section introduces several
procedures. A method for the selection of the subspace dimension is introduced in
Section 3.4.1, followed by a method for the FMA order selection in Section 3.4.2. A
criterion for the simultaneous selection is in Section 3.4.3.

3.4.1 Selection of principal directions

The most well-known method for the selection of d in functional data analysis is
based on total variance explained, TVE, where d is chosen such that the first d eigen-
functions of the covariance operator explain a predetermined amount P of the vari-
ability; see, for example, Horváth and Kokoszka [27]. In order to apply the TVE cri-
terion in the functional time series context, one has to ensure that no essential parts
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of the dependence structure in the data are omitted after the projection into prin-
cipal directions. This is achieved as follows. First choose an initial d∗ with the TVE
criterion such with a fraction P of variation in the data is explained. This should
be done conservatively. Then apply the portmanteau test of Gabrys and Kokoszka
[20] to check whether the non-projected part (IH −PVd∗)X1, . . . , (IH −PVd∗)Xn of the
observed functions X1, . . . ,Xn can be considered independent. Modifying their test
to the current situation, yields the statistic

Qd∗
n = n

h̄

∑
h=1

d∗+p

∑
`,`′=d∗+1

fh(`, `′)bh(`, `′), (3.4.1)

where fh(`, `′) and bh(`, `′) denote the (`, `′)th entries of C−1
X∗;0CX∗;h and CX∗;hC−1

X∗;0,
respectively, and (X∗

j ∶ j ∈ Z) is the p-dimensional vector process consisting of the
d+1st to d+pth eigendirections of the covariance operator CX . Following Gabrys and
Kokoszka [20], it follows under the assumption of independence of the non-projected
series that Qd∗

n → χ2
p2h̄

in distribution. If the assumption of independence is rejected,
set d∗ = d∗+1. Repeat the test until the independence hypothesis cannot be rejected
and choose d = d∗ to estimate the functional linear filters. This leads to the following
algorithm.

Algorithm 3.4.1 (Test for independence) Perform the following steps.
(1) For given observed functional time series data X1, . . . ,Xn, estimate the eigen-

pairs (λ̂1, ν̂1), . . . , (λ̂n, ν̂n) of the covariance operator CX . Select d∗ such that

TVE(d∗) = ∑
d∗
i=1 λ̂i

∑ni=1 λ̂i
≥ P

for some prespecified P ∈ (0,1).

(2) While Qd∗
n > qχ2

p2h̄
,α, set d∗ = d∗ + 1.

(3) If Qd∗
n ≤ qχ2

p2h̄
,α stop and apply Algorithm 3.3.1 with di = d∗, for all i ≤ k.

Note that the Algorithm 3.4.1 does not specify the choices of P , p, H and α.
Recommendations on their selection are given in Section 3.5. Multiple testing could
potentially be an issue, but intensive simulation studies have shown that, since d∗
is initialized with the TVE criterion, usually no more than one or two iterations
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and tests are required for practical purposes. Therefore the confidence level is not
adjusted, even though it would be feasible to incorporate this additional step into
the algorithm.

3.4.2 Selection of FMA order

For a fixed d, multivariate model selection procedures can be applied to choose q.
In fact, it is shown in Theorem 2.4.7 that the projection of an FMA(q) process
on a finite-dimensional space is a VMA(q∗) with q∗ ≤ q. Assuming that the finite-
dimensional space is chosen such that no information on the dependence structure
of the process is lost, q = q∗. Then, the FMA order q may be chosen by performing
model selection on the d-dimensional vector model given by the first d principal
directions of (Xj ∶ j ∈ Z). Methods for selecting the order of VMA models are de-
scribed, for example, in Chapter 11.5 of Brockwell and Davis [13], and Chapter 3.2
of Tsai [53].

The latter book provides arguments for the identification of the VMA order
via cross correlation matrices. This Ljung–Box (LB) method for testing the null
hypothesis H0∶CX;h = CX;h+1 = ⋅ ⋅ ⋅ = CX;h = 0 versus the alternative that CX;h ≠ 0 for
a lag h between h and h is based on the statistic

Qh,h = n2
h

∑
h=h

1
n − h

tr(Ĉ⊺
X;hĈ

−1
X;0ĈX;hC

−1
X;0). (3.4.2)

Under regularity conditions Qh,h is asymptotically distributed as a χ2
d2(h−h+1)

random
variable if the multivariate procss (Xj ∶ j ∈ Z) on the first d principal directions follows
a VMA(q) model and h > q. For practical implementation, one computes iteratively
Q1,h,Q2,h, . . . and selects the order q as the largest h such that Qh,h is significant,
but Qh+h,h is insignificant for all h > 0.

Alternatively, the well-known AICC criterion could be utilized. Algorithm 3.3.1
allows for the computationally efficient maximization of the likelihood function
through the use of its innovation form; see Chapter 11.5 of Brockwell and Davis [13].
The AICC criterion is then given by

AICC(q) = −2 lnL(Θ1, . . . ,Θq,Σ) + 2nd(qd2 + 1)
nd − qd2 − 2 , (3.4.3)
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where Θ1, . . . ,Θq are the fitted VMA coefficient matrices and Σ its fitted covariance
matrix. The minimizer of (3.4.3) is selected as order of the FMA process. Both
methods are compared in Section 3.5.

3.4.3 Functional FPE criterion

In this section a criterion that allows to choose d and q simultaneously is introduced.
A similar criterion was established in Aue et al. [5], based on a decomposition of
the functional mean squared prediction error. Note that, due to the orthogonality
of the eigenfunctions (νi∶ i ∈ N) and the fact that X̂n+1,k lives in Vd,

E[∥Xn+1 − X̂n+1,k∥2] = E[∥PVd
(Xn+1 − X̂n+1,k)∥2] +E[∥(IH − PVd

)Xn+1∥2]. (3.4.4)

The second summand in (3.4.4) satisfies

E[∥(IH − PVd
)Xn+1∥2] = E[∥∑

i>d

⟨Xn+1, νi⟩νi∥2] = ∑
i>d

λi.

The first summand in (3.4.4) is, due to the isometric isomorphy between Vd and
Rd equal to the mean squared prediction error of the vector model fit on the d

dimensional principal subspace. It can be shown using the results of Lai and Lee
[37] that it is of order tr(CZ)+qd tr(CZ)/n, where CZ denotes the covariance matrix
of the innovations of the vector process. Using the matrix version Vn of the operator
Vn given through Algorithm 3.3.1 as a consistent estimator for CZ, the functional
FPE criterion

fFPE(d, q) = n + q d
n

tr(Vn) +∑
i>d

λ̂i (3.4.5)

is obtained. It can be minimized over both d and q to select the dimension of the
principal subspace and the order of the FMA process jointly. As is noted in Aue
et al. [5], where a similar criterion is proposed for the selection of the order of an
FAR(p) model, the fFPE method is fully data driven: no further selection of tuning
parameters is required.
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3.5 Simulation evidence

3.5.1 Simulation setting

In this section, results from Monte Carlo simulations are reported. The simulation
setting was as follows. Using the first D Fourier basis functions f1, . . . , fD, the D-
dimensional subspace GD = sp{f1, . . . , fD} of H was generated following the setup
in Aue et al. [5], then the isometric isomorphy between RD and GD is utilized to
represent elements in GD by D-dimensional vectors and operators acting on GD by
D ×D matrices. Therefore n + q D-dimensional random vectors as innovations for
an FMA(q) model and q D×D matrices as operators were generated. Two different
settings were of interest: processes possessing covariance operators with slowly and
quickly decaying eigenvalues. Those cases were represented by selecting two sets of
standard deviations for the innovation process, namely

σslow = (i−1∶ i = 1, . . . ,D) and σfast = (2−i∶ i = 1, . . . ,D). (3.5.1)

With this, innovations

εj =
D

∑
i=1
cj,ifi, j = 1 − q, . . . , n,

were simulated, where cj,i are independent normal random variables with mean 0
and standard deviation σ⋅,i, the ⋅ being replaced by either slow or fast, depending
on the setting. The parameter operators θ̃`, for ` = 1, . . . , q, were chosen at random
by generating D ×D matrices, whose entries ⟨θ̃`fi, fi′⟩ were independent zero mean
normal random variables with variance σ⋅,iσ⋅,i′ . The matrices were then rescaled to
have spectral norm 1. Combining the forgoing, the FMA(q) process

Xj =
q

∑
`=1
θ`εj−` + εj, j = 1, . . . , n (3.5.2)

were simulated, where θ` = κ`θ̃` with κ` being chosen to ensure invertibility of the
FMA process. In the following section, the performance of the proposed estimator is
evaluated, and compared and contrasted to other methods available in the literature
for the special case of FMA(1) processes, in a variety of situations.
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3.5.2 Estimation of FMA(1) processes

In this section, the performance of the proposed method is compared to two ap-
proaches introduced in Turbillon et al. [54] for the special case of FMA(1) processes.
These methods are based on the following idea. Denote by Cε the covariance oper-
ator of (εn∶n ∈ Z). Observe that since CX;1 = θ1Cε and CX = Cε + θ1Cεθ∗1 , it follows
that θ1CX = θ1Cε + θ2

1Cεθ
∗
1 = CX;1 + θ2

1C
∗
X;1, and especially

θ2
1C

∗
X;1 − θ1CX +CX;1 = 0. (3.5.3)

The estimators in Turbillon et al. [54] are based on solving the quadratic equation in
(3.5.3) for θ1. The first of these only works under the restrictive assumption that θ1

and Cε commute. Then, solving (3.5.3) is equivalent to solving univariate equations
generated by individually projecting (3.5.3) onto the eigenfunctions of CX . The
second approach is inspired by the Riesz–Nagy method. It relies on regarding (3.5.3)
as a fixed-point equation and therefore establishing a fixed-point iteration. Since
solutions may not exist in H, suitable projections have to be applied. Consistency
of both estimators is established in Turbillon et al. [54].

To compare the performance of the methods, FMA(1) time series were simulated
as described in Section 3.5.1. As measure of comparison the estimation error ∥θ1−θ̂1∥L
was used after computing θ̂1 with the three competing procedures. Rather than
selecting the dimension of the subspace via Algorithm 3.4.1, the estimation error is
computed for d = 1, . . . ,5.

The results are summarized in Table 3.1, where estimation errors were averaged
over 1000 repetitions for each specification, using sample sizes n = 100,500 and
1,000. For all three sample sizes, the operator kernel estimated with the proposed
algorithm is closest to the real kernel. As can be expected, the optimal dimension
increases with the sample size, especially for the case where the eigenvalues decay
slowly. The projection method does not perform well, which is also to be expected,
because the condition of commuting θ1 and Cε is violated. One can see that the
choice of d is crucial: especially for small sample sizes for the proposed method, the
estimation error explodes for large d. In order to get an intuition for the shape of
the estimators, the kernels of the estimators resulting from the different estimation
methods, using n = 500 and κ1 = 0.8, are plotted in Figure 3.1. It can again be
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n = 100 n = 500 n = 1000
d Proj Iter Inn Proj Iter Inn Proj Iter Inn

σfast

1 0.539 0.530 0.514 0.527 0.521 0.513 0.518 0.513 0.508
2 0.528 0.433 0.355 0.508 0.391 0.287 0.500 0.386 0.277
3 0.533 0.534 0.448 0.512 0.467 0.235 0.503 0.460 0.197
4 0.534 0.650 0.582 0.513 0.573 0.276 0.504 0.567 0.216
5 0.534 0.736 0.646 0.513 0.673 0.311 0.504 0.662 0.239

σslow

1 0.610 0.602 0.588 0.579 0.574 0.566 0.575 0.573 0.569
2 0.614 0.527 0.513 0.581 0.487 0.434 0.577 0.483 0.422
3 0.618 0.552 0.610 0.583 0.504 0.389 0.578 0.500 0.362
4 0.620 0.591 0.861 0.584 0.531 0.402 0.579 0.522 0.344
5 0.620 0.630 1.277 0.584 0.556 0.448 0.579 0.548 0.358

Table 3.1: Estimation error ∥θ1 − θ̂1∥L, with θ1 = κ1θ̃1 and κ1 = 0.8, with θ̂1 computed with
the projection method (Proj) and the iterative method (Iter) of [54], and the proposed
method based on the functional Innovations Algorithm (Inn). The smallest estimation
error is highlighted in bold for each case.

seen that the projection method yields results that are significantly different from
both the truth and the other two methods who produce estimated operator kernels,
whose shapes look roughly similar to the truth.

3.5.3 Model selection

In this section, the performance of the different model selection methods introduced
in Section 3.4 is demonstrated. To do so, FMA(1) processes with weights κ1 = 0.4
and 0.8 were simulated as in the previous section. In addition, two different FMA(3)
processes were simulated according to the setting described in Section 3.5.1, namely

• Model 1: κ1 = 0.8, κ2 = 0.6, and κ3 = 0.4.

• Model 2: κ1 = 0, κ2 = 0, and κ3 = 0.8.

For sample sizes n = 100, 500 and 1,000, 1,000 processes of both Model 1 and 2 were
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Figure 3.1: Estimated operator kernel of simulated FMA(1) process with κ1 = 0.8, d = 3
and σfast (first row) and σslow (second row), using n = 500 sampled functions. Labeling of
procedures is as in Table 3.1.

simulated using σslow and σfast. The estimation process was done as follows. First, the
dimension d of the principal projection subspace was chosen using Algorithm 3.4.1
with TVE such that P = 0.8. With this selection of d, the LB and AICC criteria
described in Section 3.4.2 were applied to choose q. Second, the fFPE criterion
was used for a simultaneous selection of d and q. The results are summarized in
Figures 3.2 and 3.3.

Figures 3.2 and 3.3 allow for a number of interesting observations. For both the
FMA(1) and the FMA(3) example, the model order is estimated well. In all cases,
especially for sample sizes larger than 100, all three selection methods (AIC, LB,
FPEq) for the choice of q yield the correct model order (1 or 3). The Ljung–Box
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Figure 3.2: Model selection for different MA(1) processes. The left three plots in each small
figure give the d chosen by total variation explained with P = 0.8 (TVE), Algorithm 3.4.1
(IND) and the functional FPE criterion (FPEd). The right three plots in each small figure
give the selected order q by AICC, LB and fFPE.

(LB) method seems to have the most stable results. The methods for the choice of
d are more heterogeneous. The TVE method yields the most stable results among
different sample sizes. For σfast, it almost always selects d = 2 and for σslow the choice
varies between d = 2 and d = 3. However, the TVE method seems to underestimate
d. Often there appears to be dependence left in the data, as one can see from the
selection of d by Algorithm 3.4.1. Especially in the FMA(3) case and Model 1, this
algorithm yields some large choices for d of about 7 or 8. The choice of FPEd seems
to increase with increasing sample size: this is to be expected as for increasing sample
size the variance of the estimators decreases and the resulting predictors get more
precise, even for high-dimensional models. This is valid especially for σslow where
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Figure 3.3: Model selection for different MA(3) processes. Labeling of procedures is as in
Figure 3.2.

a larger d is needed to explain the dynamics of the functional process. A similar
trade-off is occasionally observed for Algorithm 3.4.1.

3.6 Application to traffic data

In this section, the proposed estimation method is applied to vehicle traffic data pro-
vided by the Autobahndirektion Südbayern. The dataset consists of measurements
at a fixed point on a highway (A92) in Southern Bavaria, Germany. Recorded is
the average velocity per minute from 1/1/2014 00:00 to 30/06/2014 23:59 on three
lanes. After taking care of missing values and outliers, the velocity per minute was
averaged over the three lanes, weighted by the number of vehicles per lane. This
leads to 1440 preprocessed and cleaned data points per day, which were transformed
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into functional data using the first 30 Fourier basis functions with the R package
fda. The result is a functional time series (Xj ∶ j = 1, . . . , n = 119), which is deemed
stationary and exhibits temporal dependence, as evidenced in Chapter 1.5.

The goal then is to approximate the temporal dynamics in this stationary func-
tional time series with an FMA fit. Observe that the plots of the spectral norms
∥ĈX;hĈ−1

X;0∥L for h = 0, . . . ,5 in Figure 3.4 display a pattern typical for MA models
of low order. Here X stands for the multivariate auxiliary model of dimension d

obtained from projection into the corresponding principal subspace. Consequently,
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Figure 3.4: Spectral norm of estimated cross-correlation matrices for lags h = 1, . . . ,5 of
the vector model based on principal subspaces of dimension d = 1 to d = 5 (from left to
right).

the methodology introduced in Section 3.3 and 3.4 was applied to the data. First,
the covariance operator CX;0 and its first 15 eigenelements (λ1, ν1), . . . , (λ15, ν15)
were estimated to construct the vector process (X̂j ∶ j = 1, . . . , n), where X̂j =
(⟨Xj, ν̂1⟩, . . . , ⟨Xj, ν̂15⟩)⊺. Then, the methods described in Sections 3.4 were applied
to choose the appropriate dimension d and model order q.

The first four sample eigenfunctions explained 81% of the variability, hence the
TVE criterion with P = 0.8 gave d∗ = 4 to initialize Algorithm 3.4.1. The hypothesis
of independence of the left-out score vector process (X̂j[4 ∶ 15]∶ j = 1, . . . , n) was
rejected with p-value 0.03. Here Xj[i∶i′] is used as notation for the vector comprised
of coordinates i, . . . , i′, with i ≤ i′, of the original 15-dimensional vector X̂j. In the
next step of Algorithm 3.4.1, d∗ is increased to 5. A second independence test was
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run on (X̂j[5 ∶15]∶ j = 1, . . . , n) and did not result in a rejection; the corresponding
p-value was 0.25.

This analysis led to using d = 5 as dimension of the principal subspace to conduct
model selection with the methods of Section 3.4.2. Since TVE indicated d = 4, the
selection procedures were applied also with this choice. In both cases, the AICC
criterion in (3.4.3) and LB criterion in (3.4.2) opted for q = 1, in accordance with
the spectral norms observed in Figure 3.4. Simultaneously choosing d and q with
the fFPE criterion of Section 3.4.3 yields d = 3 and q = 1.

After the model selection step, the operator of the chosen FMA(1) process was
estimated using Algorithm 3.3.1. Similarly the methods introduced in Section 3.5.2
were applied. Figure 3.5 displays the kernels of the estimated integral operator for all
methods, selecting for d = 3 and d = 5. The plots indicate that, on this particular data
set, all three methods produce estimated operators that lead to kernels of roughly
similar shape. The similarity is also reflected in the covariance of the estimated
innovations. For d = 3, the trace of the covariance matrix is 43.14, 45.4 and 44.41 for
the Innovations Algorithm, iterative method and projective method, respectively.
For d = 4, the trace of the covariance of the estimated innovations is 48.19, 46.00
and 45.74 for the different methods in the same order.

3.7 Conclusions

This chapter introduces a complete methodology to estimate any stationary, causal
and invertible functional time series. This is achieved by approximating the func-
tional linear filters in the causal representation with functional moving average pro-
cesses obtained from an application of the functional Innovations Algorithm. The
consistency of the estimators is verified as the main theoretical contribution. The
proof relies on the fact that d-dimensional projections of FMA(q) processes are iso-
morph to d dimensional VMA(q∗) models, with q∗ ≤ q. Introducing appropriate
sequences of increasing subspaces of H, consistency can be established in the two
cases of known and unknown principal projection subspaces. This line of reasoning
follows multivariate techniques given in Lewis and Reinsel [38] and Mitchell and
Brockwell [42].
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Figure 3.5: Estimated FMA(1) kernel with the three methods for d = 3 (first row) and
d = 4 (second row)

The theoretical underpinnings are accompanied by model selection procedures
facilitating the practical implementation of the proposed method. An independence
test is introduced to select the dimension of the principal projection subspace, which
can be used as a starting point for the suggested order selection procedures based
on AICC and Ljung–Box criteria. Additionally, an fFPE criterion is established
that jointly selects dimension d and order q. Illustrative results from a simulation
study and the analysis of traffic velocity data show that the practical performance
of the proposed method is satisfactory and at least competitive with other methods
available in the literature for the case of FMA(1) processes.

Future research could focus on an extension of the methodology to FARMA pro-
cesses in order to increase parsimony in the estimation. It should be noted, however,
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that this not a straightforward task as identifying the dynamics of the projection
of an FARMA(p, q) to a finite-dimensional space is a non-resolved problem. In ad-
dition, the proposed methodology could be applied to offer an alternative route to
estimate the spectral density operator, a principal object in the study of functional
time series in the frequency domain; see Aue and van Delft [2], Hörmann et al. [25]
and Panaretos and Tavakoli [44].

3.8 Proofs

The notion of Lp-m-approximability is utilized for the proofs. A version of this
notion was used for multivariate time series in Aue et al. [4] and then translated to
the functional domain by Hörmann and Kokoszka [24]. The definition is as follows.

Definition 3.8.1. Let p ≥ 1. A sequence (Xj ∶ j ∈ Z) with values in LpH is called
Lp-m-approximable if

Xj = f(εj, εj−1, . . .), j ∈ Z,

can be represented as a functional Bernoulli shift with a sequence of independent,
identically distributed random elements (εj ∶ j ∈ Z) taking values in the measurable
space S, potentially different from H, and a measurable function f ∶S∞ → H such
that

∞

∑
m=0

(E[∥Xj −X(m)j ∥p])1/p < ∞,

where X(m)j = f(εj, . . . , εj−m+1, ε
(j)
j−m, ε

(j)
j−m−1, . . .) with (ε(i)j ∶ j ∈ Z), i ∈ N0, being inde-

pendent copies of (εj ∶ j ∈ Z).

Conditions can be established for most of the common linear and nonlinear func-
tional time series models to be Lp-m-approximable. In particular, the functional
linear processes (Xj ∶ j ∈ Z) defined in (3.2.1) are naturally included if the summa-
bility condition ∑∞

m=1∑∞
`=m ∥ψ`∥L < ∞ is met (see Proposition 2.1 in Hörmann and

Kokoszka [24]).

Proof of Theorem 3.3.1. Using that (Xj ∶ j ∈ Z) is L4-m-approximable, write

Xj(k) = (f(εj, εj−1, . . . ), . . . , f(εj−k+1, εj−k, . . . ))⊺

= g(εj, εj−1, . . . ),
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where g∶H∞ →Hk is defined accordingly. For k,m ∈ N and j ∈ Z, define

X
(m)
j (k) = (f(εj, . . . , εj−m+1, ε

(j)
j−m, ε

(j)
j−m−1, . . .), . . . ,

f(εj−k+1, . . . , εj−m+1, ε
(j)
j−m, ε

(j)
j−m−1, . . . ))

⊺

= g(εj, εj−1, . . . , εj−m+1, ε
(j)
j−m, ε

(j)
j−m−1, . . .).

Now, by definition of the norm in Hk,
∞

∑
m=k

(E[∥Xm(k) −X(m)m (k)∥4])1/4 =
∞

∑
m=k

(
k−1
∑
i=0

E[∥Xm−i −X(m−i)m−i ∥4])
1/4

≤
∞

∑
m=k

(
k−1
∑
i=0

E[∥Xm−i −X(m−k)m−i ∥4])
1/4

=
∞

∑
m=k

(kE[∥Xm−k −X(m−k)m−k ∥4])1/4

= k1/4
∞

∑
m=0

(E[∥Xm −X(m)m ∥4])1/4
, (3.8.1)

where the first inequality is implied by Assumption 3.3.2, since E[∥Xj −X(m−i)j ∥2] ≤
E[∥Xj − X(m)j ∥2] for all i ≥ 0, and the last inequality, since E[∥X1 − X(m−k)1 ∥2] =
E[∥Xj−X(m−k)j ∥2] by stationarity. But the right-hand side of (3.8.1) is finite because
(Xj ∶ j ∈ Z) is L4-m-approximable by assumption. This shows that (Xj(k)∶ j ∈ Z) is
also L4-m approximable.

To prove the consistency of the estimator ĈX(k), note that the foregoing implies,
by Theorem 3.1 in Hörmann and Kokoszka [24], that the bound

nE[∥ĈX(k) −CX(k)∥2
N ] ≤ UX(k),

holds, where

UX(k) = E[∥X1(k)∥4] + 4
√

2(E[∥X1(k)∥4])3/4
∞

∑
m=0

(E[∥Xm(k) −X(m)m (k)∥4])1/4

is a constant that does not depend on n. Since E[∥X1(k)∥4] = kE[∥X1∥4], (3.8.1)
yields that UX(k) = kUX , which is the assertion.

Corollary 3.8.1 The operators β̂k,i from (3.3.10) and θ̂k,i from (3.3.4) related
through

θ̂k,i =
i

∑
j=1
β̂k,j θ̂k−j,i−j, i = 1, . . . , k, k ∈ N. (3.8.2)
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Proof. The proof is based on the finite-sample versions of the regression formulation
of (3.3.1) and the innovations formulation given in (3.3.4). Details are omitted to
conserve space.

Proof of Theorem 3.3.3. (i) It is first shown that, for all x ∈Hk,

∥(B̂(k) −Π(k))(x)∥ p→ 0 (n→∞),

where Π(k) = (π1, . . . , πk)⊺ is the vector of the first k operators in the invertibility
representation of the functional time series (Xj ∶ j ∈ Z). Define the process (ej,k∶ j ∈ Z)
by letting

ej,k =Xj −
k

∑
`=1
π`Xj−` (3.8.3)

and let IHk be the identity operator on Hk. Note that

B̂(k) −Π(k) = Γ̂1,k,dΓ̂−1
k,d −Π(k)Γ̂k,dΓ̂−1

k,d +Π(k)(IHk − P(k))
= (Γ1,k,d −Π(k)Γ̂k,d)Γ̂−1

k,d +Π(k)(IHk − P(k)).

Plugging in the estimators defined in (3.3.9) and subsequently using (3.8.3), it follows
that

B̂(k) −Π(k) = ( 1
n − k

n−1
∑
j=k

((P(k)Xj,k ⊗Xj+1) − (P(k)Xj,k ⊗Π(k)Xj,k)))Γ̂−1
k,d

+Π(k)(IHk − P(k))

= ( 1
n − k

n−1
∑
j=k

(P(k)Xj,k ⊗ (Xj+1 −Π(k)Xj,k)))Γ̂−1
k,d +Π(k)(IHk − P(k))

= ( 1
n − k

n−1
∑
j=k

(P(k)Xj,k ⊗ ej+1,k))Γ̂−1
k,d +Π(k)(IHk − P(k)).
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Two applications of the triangle inequality imply that, for all x ∈Hk,

∥(B̂(k) −Π(k))(x)∥

≤ ∥( 1
n − k

n−1
∑
j=k

(P(k)Xj(k) ⊗ ej+1,k))Γ̂−1
k,d(x)∥ + ∥Π(k)(IHk − P(k))(x)∥

≤ ∥( 1
n − k

n−1
∑
j=k

(P(k)Xj(k) ⊗ (ej+1,k − εj+1)))Γ̂−1
k,d∥

L

+ ∥( 1
n − k

n−1
∑
j=k

(P(k)Xj(k) ⊗ εj+1))Γ̂−1
k,d∥

L

+ ∥Π(k)(IHk − P(k))(x)∥

≤ (∥U1n∥L + ∥U2n∥L)∥Γ̂−1
k,d∥L + ∥Π(k)(IHk − P(k))(x)∥, (3.8.4)

where U1n and U2n have the obvious definitions. Arguments similar to those used in
Proposition 2.6.4 yield that the second term on the right-hand side of (3.8.4) can be
made arbitrarily small by increasing k. To be more precise, for δ > 0, there is kδ ∈ N
such that

∥Π(k)(IHk − P(k))(x)∥ < δ (3.8.5)

for all k ≥ kδ and all x ∈Hk.
To estimate the first term on the right-hand side of (3.8.4), focus first on ∥Γ̂−1

k,d∥L.
Using the triangular inequality, ∥Γ̂−1

k,d∥L ≤ ∥Γ̂−1
k,d − Γ−1

k,d∥L + ∥Γ−1
k,d∥L. Theorem 1.2 in

Mitchell [41] and Lemma 2.6.1 give the bound

∥Γ−1
k,d∥L ≤ α−1

dk
, (3.8.6)

where αdk
is the infimum of the eigenvalues of all spectral density operators

of (Xdk,j ∶ j ∈ Z). Furthermore, using the triangle inequality and then again
Lemma 2.6.1, we get

∥Γ̂−1
k,d − Γ−1

k,d∥L = ∥Γ̂−1
k,d(Γ̂d,k − Γd,k)Γ−1

k,d∥L
≤ (∥Γ̂−1

k,d − Γ−1
k,d∥L + ∥Γ−1

k,d∥L)∥Γ̂d,k − Γd,k∥Lα−1
dk
. (3.8.7)

Hence, following arguments in the proof of Theorem 1 in Lewis and Reinsel [38],

0 ≤
∥Γ̂−1

k,d − Γ−1
k,d∥L

α−1
dk
(∥Γ̂−1

k,d − Γ−1
k,d∥L + α−1

dk
)
≤ ∥Γ̂d,k − Γd,k∥L,
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by (3.8.7). This yields

∥Γ̂−1
d,k − Γ−1

d,k∥L ≤
∥Γ̂d,k − Γd,k∥Lα−2

dk

1 − ∥Γ̂d,k − Γd,k∥Lα−1
dk

. (3.8.8)

Note that, since P(k)Pk = P(k), ∥Γk,d∥L = ∥P(k)PkΓkPkP(k)∥L ≤ ∥PkΓkPk∥L. Also,
by Theorem 3.3.1, for some positive finite constant M1, E[∥PkΓ̂kPk − PkΓkPk∥2] ≤
M1k/(n − k). Therefore,

∥Γ̂d,k − Γd,k∥ = Op(
√

k

n − k
). (3.8.9)

Hence, the second part of Assumption 3.3.2 and (3.8.8) lead first to ∥Γ̂−1
d,k−Γ−1

d,k∥L
p→ 0

and, consequently, combining the above arguments,

∥Γ̂−1
k,d∥L = Op(α−1

dk
). (3.8.10)

Next consider U1n in (3.8.4). With the triangular and Cauchy–Schwarz inequal-
ities, calculate

E[∥U1n∥] = E[∥ 1
n − k

n−1
∑
j=k

P(k)Xj(k) ⊗ (ej+1,k − εj+1)∥
L

]

≤ 1
n − k

n−1
∑
j=k

E[∥P(k)Xj(k) ⊗ (ej+1,k − εj+1)∥
L

]

≤ 1
n − k

n−1
∑
j=k

(E[∥P(k)Xj(k)∥2])1/2(E[∥ej+1,k − εj+1∥2])1/2
.

The stationarity of (Xj ∶ j ∈ Z) and the fact that Xj ∈ L2
H imply that, for a positive

finite constant M2,

E[∥U1n∥L] ≤ (E[∥P(k)Xj(k)∥2])1/2(E[∥ej+1,k − εj+1∥2])1/2

≤
√
k(E[∥PVdk

X0∥2])1/2(E[∥∑
`>k

π`X1−` +
k

∑
`=1
π`(IH − PVdk+1−`

)X1−`∥
2

])
1/2

≤
√
k(2E[∥∑

`>k

π`Xj+1−`∥2] + 2E[∥
k

∑
`=1
π`(IH − PVdk+1−`

)X1−`∥
2

])
1/2

=M2
√
k(J1 + J2)

≤M2
√
k(

√
J1 +

√
J2), (3.8.11)
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where J1 and J2 have the obvious definition. Since for X ∈ L2
H , E[∥X∥2] = ∥CX∥N ,

the term J1 can be bounded as follows. Observe that

J1 = ∥E[∑
`>k

π`X1−` ⊗ ∑
`′>k

π`′X1−`′]∥
N

= ∥ ∑
`,`′>k

π`CX;`−`′π
∗
`′∥
N

≤ ∑
`,`′>k

∥π`∥L∥π`′∥L∥CX;`−`′∥N .

Now CX;`−`′ ∈ N for all `, `′ ∈ Z, hence ∥CX;`−`′∥N ≤ M3 and J1 ≤ M3(∑`>k ∥π`∥L)2.
Concerning J2, note first that, since E[∥X∥2] = ∥CX∥N ,

J2 = ∥E[
k

∑
`=1
π`(IH − PVdk+1−`

)X1−` ⊗
n

∑
`′=1

π`′(IH − PVdk+1−`′
)X1−`′]∥

N

.

Using the triangle inequality together with properties of the nuclear operator norm
and the definition of CX;h in display (3.2.4) leads to

J2 ≤
k

∑
`,`′=1

∥π`∥L∥π′`∥L∥E[(IH − PVdk+1−`
)X1−` ⊗ (IH − PVdk+1−`′

)X1−`′]∥N

=
k

∑
`,`′=1

∥π`∥L∥π′`∥L∥(IH − PVdk+1−`
)CX;`−`′(IH − PVdk+1−`′

)∥
N

=
k

∑
`,`′=1

∥π`∥L∥π′`∥LK(`, `′). (3.8.12)

By the definition of Vd in (3.3.2) and since (IH −PVdi
) = ∑r>di

νr ⊗ νr, it follows that

K(`, `′) = ∥ ∑
s>dk+1−`′

∑
r>dk+1−`

⟨CX;`−`′(νr), νs⟩νr ⊗ νs∥
N

≤ ∥ ∑
s>dk+1−`′

∑
r>dk+1−`

√
λrλsνr ⊗ νs∥

N

=
∞

∑
i=1

⟨ ∑
s>dk+1−`′

∑
r>dk+1−`

√
λrλsνr ⊗ νs(νi), νi⟩

≤ ∑
i>dk+1−`

λi, (3.8.13)
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where Lemma 2.6.2 was applied to give ⟨CX;`−`′νr, νs⟩ ≤
√
λrλs. Plugging (3.8.13)

into (3.8.12), and recalling that ∑∞
`=1 ∥π`∥L =M4 < ∞, gives that

J2 ≤M4

k

∑
`=1

∥π`∥L ∑
i>dk+1−`

λi. (3.8.14)

Inserting the bounds for J1 and J2 into (3.8.11), for some M < ∞,

E[∥U1n∥] ≤
√
kM2(M3

√
J1 +

√
J2)

≤
√
kM2(M3∑

`>k

∥π`∥L +M4

k

∑
`=1

∥π`∥L ∑
i>dk+1−`

λi)

≤
√
kM(∑

`>k

∥π`∥L + (
k

∑
`=1

∥π`∥L ∑
i>dk+1−`

λi)). (3.8.15)

Concerning U2n in (3.8.4), use the linearity of the scalar product, the indepen-
dence of the innovations (εj ∶ j ∈ Z) and the stationarity of the functional time series
(Xj ∶ j ∈ Z) to calculate

E[∥U2n∥2] ≤ ( 1
n − k

)
2 n−1
∑
j=k

E[∥P(k)Xj(k)∥2]E[∥εj+1∥2]

≤ 1
n − k

E[∥P(k)X0(k)∥2]E[∥ε0∥2]

≤ k

n − k
E[∥X0∥2]E[∥ε0∥2].

Since both (Xj ∶ j ∈ Z) and (εj ∶ j ∈ Z) are in L2
H , (3.8.10) implies that

∥U2n∥L∥∥Γ̂−1
k,d∥L = Op(

1
αdk

√
k

n − k
).

Furthermore, (3.8.10) and (3.8.15) show that

∥U1n∥L∥∥Γ̂−1
k,d∥L = Op(

√
k

αdk

(∑
`>k

∥π`∥L +
k

∑
`=1

∥π`∥L ∑
i>dk+1−`

λi)).

Thus Assumption 3.3.2, (3.8.4) and (3.8.5) assert that, for all x ∈ Hk, ∥B̂k −
Π(k)(x)∥ p→ 0, which proves the first statement of the theorem.

(ii) First note that, for all x ∈ Hk, ∥(β̂k,i − βk,i)(x)∥ ≤ ∥(β̂k,i − πi)(x)∥ + ∥(πi −
βk,i)(x)∥

p→ 0 as n → ∞. Now θk,1 = βk,1 and by Corollary 3.8.1 θ̂k,1 = β̂k,1. Since
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furthermore ∑kj=1 πjψk−j = ψk (see, for instance, the proof of Theorem 2.5.3), ψ1 = π1.
Therefore,

∥(θ̂k,1 − ψ1)(x)∥ = ∥(β̂k,1 − π1)(x)∥
p→ 0

as n → ∞. This proves the statement for i = 1. Proceed by assuming the statement
of the theorem is true for i = 1, . . . ,N ∈ N, and then use induction on N . Indeed, for
i = N + 1, the triangle inequality yields, for all x ∈H,

∥(θ̂k,N+1 − ψN+1)(x)∥ = ∥(
N+1
∑
j=1

β̂k,j θ̂k−j,N+1−j − πjψN+1−j)(x)∥

≤
N+1
∑
j=1

∥(β̂k,j − πj)θ̂k−j,N+1−j(x)∥ + ∥πj(θ̂k−j,N+1−j − ψN+1−j)(x)∥.

Now, for n → ∞, the first summand converges in probability to 0 by part (i),
while the second summand converges to 0 in probability by induction. Therefore the
statement is proven.

Proof of Theorem 3.3.5. (i) The proof is based again on showing that, for all
x ∈ Hk, ∥( ̂̂B(k) − Π(k))(x)∥ p→ 0 as n → ∞, where ̂̂B(k) = (̂̂βk,1, . . . , ̂̂βk,k). To this
end, first note that

∥( ̂̂B(k) −Π(k))(x)∥ ≤ ∥( ̂̂B(k) − B̂(k))(x)∥ + ∥(B̂(k) −Π(k))(x)∥. (3.8.16)

Under Assumptions 3.3.2, the second term of the right-hand side converges to 0
in probability for all x ∈ Hk by part (i) of Theorem 3.3.3. The first term of the
right-hand side of (3.8.16) can be investigated uniformly over Hk. Using the plug-in
estimators defined as in (3.3.13), we get for k ∈ N

∥ ̂̂B(k) − B̂(k)∥L = ∥̂̂Γ1,k,d
̂̂Γ−1
k,d − Γ̂1,k,dΓ̂−1

k,d∥L

≤ ∥(̂̂Γ1,k,d − Γ̂1,k,d)̂̂Γ−1
k,d∥L + ∥Γ̂1,k,d(Γ̂−1

k,d −
̂̂Γ−1
k,d)∥L. (3.8.17)

Following the same intuition as in the proof of Theorem 3.3.3, start by investigating
the term ∥(Γ̂k,d−̂̂Γk,d)∥L. Applying triangle inequality, linearity of the inner product
and the inequalities ∥P(k)Xj(k)∥ ≤ ∥Xj(k)∥ and ∥P̂(k)Xj(k)∥ ≤ ∥Xj(k)∥, it follows
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that

∥(Γ̂k,d − ̂̂Γk,d)∥L = ∥ 1
n − k

n−1
∑
j=k

(P(k)Xj(k) ⊗ P(k)Xj(k) − P̂(k)Xj(k) ⊗ P̂(k)Xj(k))∥
L

≤ 2
n − k

n−1
∑
j=k

∥Xj(k)∥∥P(k)Xj(k) − P̂(k)Xj(k)∥. (3.8.18)

Note that, from the definitions of Xj(k), P(k) and P̂(k),

P(k)Xj(k) = (
dk

∑
i=1

⟨Xj, νi⟩νi, . . . ,
d1

∑
i=1

⟨Xj−k, νi⟩νi)
⊺

,

P̂(k)Xj(k) = (
dk

∑
i=1

⟨Xj, ν̂i⟩ν̂i, . . . ,
d1

∑
i=1

⟨Xj−k, ν̂i⟩ν̂i)
⊺

.

These relations show that

∥P(k)Xj(k) − P̂(k)Xj(k)∥

= ∥(
dk

∑
i=1

⟨Xj, ν̂i⟩ν̂i − ⟨Xj, νi⟩νi, . . . ,
d1

∑
i=1

⟨Xj−k, ν̂i⟩ν̂i − ⟨Xj−k, νi⟩νi)
⊺

∥

= ∥(
dk

∑
i=1

⟨Xj, ν̂i − νi⟩ν̂i, . . . ,
d1

∑
i=1

⟨Xj−k, ν̂i − νi⟩ν̂i)
⊺

∥

+ ∥(
dk

∑
i=1

⟨Xj, νi⟩(νi − ν̂i), . . . ,
d1

∑
i=1

⟨Xj−k, νi⟩(νi − νi))
⊺

∥.

Observe that, for x = (x1, . . . , xk) ∈ Hk, ∥x∥ = (∑ki=1 ∥xi∥2)1/2, Then, applications of
the Cauchy–Schwarz inequality and the orthonormality of (νi∶ i ∈ N) and (ν̂i∶ i ∈ N)
lead to

∥P(k)Xj(k) − P̂(k)Xj(k)∥

≤ (
k−1
∑
i=0

∥
di

∑
i=1

⟨Xj−i, ν̂l − νl⟩ν̂l∥
2

)
1/2

+ (
k−1
∑
i=0

∥
di

∑
l=1

⟨Xj−i, νl⟩(νl − ν̂l)∥
2

)
1/2

≤ (
k−1
∑
i=0

di

∑
l=1

∥Xj−i∥2∥ν̂l − νl∥2)
1/2

+ (
k−1
∑
i=0

di

∑
l=1

∥Xj−i∥2∥νl − ν̂l∥2)
1/2

≤ 2(
k−1
∑
i=0

dk

∑
l=1

∥Xj−i∥2∥ν̂l − νl∥2)
1/2

≤ 2∥Xj(k)∥(
dk

∑
l=1

∥ν̂l − νl∥2)
1/2

.
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Plugging this relation back into (3.8.18), it follows that

∥Γ̂k,d − ̂̂Γk,d∥L ≤ 4(
dk

∑
l=1

∥ν̂l − νl∥2)
1/2 2
n − k

n−1
∑
j=k

∥Xj(k)∥2.

Since (Xj ∶ j ∈ Z) is L4-m approximable, Theorems 3.1 and 3.2 in Hörmann and
Kokoszka [24] imply that, for some finite positive constant C1, nE[∥ν̂l−νl∥2] ≤ C1/δl,
where δl is the l-th spectral gap. Hence,

dk

∑
l=1

∥ν̂l − νl∥2 ≤ C1

n

dk

∑
l=1

1
α2
l

.

Furthermore, note that

2
n − k

n−1
∑
j=k

E[∥Xj(k)∥2] ≤ 2
k−1
∑
i=0

E[∥Xk−i∥2] = 2k∥CX∥N .

Therefore, collecting the previous results yields the rate

∥Γ̂k,d − ̂̂Γk,d∥L = Op(
k

n
(
dk

∑
l=1

1
α2
l

)
1/2

). (3.8.19)

Next, investigate ∥̂̂Γ−1
k,d∥L. Similarly as in the corresponding part of the proof

of Theorem 3.3.3, it follows that ∥̂̂Γ−1
k,d∥L ≤ ∥̂̂Γ−1

k,d − Γ̂−1
k,d∥L + ∥Γ̂−1

k,d∥L. By (3.8.10),
∥Γ̂−1

k,d∥L = Op(α−1
dk
). Furthermore, the same arguments as in (3.8.7) and (3.8.8) imply

that

∥̂̂Γ−1
k,d − Γ̂−1

k,d∥L ≤
∥̂̂Γd,k − Γ̂d,k∥L∥Γ̂−1

k,d∥2
L

1 − ∥̂̂Γd,k − Γ̂d,k∥L∥Γ̂−1
k,d∥L

. (3.8.20)

Hence, by (3.8.10) and (3.8.19),

∥̂̂Γd,k − Γ̂d,k∥L∥Γ̂−1
k,d∥2

L = Op(
k

nα2
dk

(
dk

∑
l=1

1
α2
l

)
1/2

).

Therefore, by Assumption 3.3.4 as n → ∞, ∥̂̂Γ−1
k,d − Γ̂−1

k,d∥L
p→ 0. Taken the previous

calculations together, this gives the rate

∥̂̂Γ−1
k,d∥L = Op(

1
αdk

). (3.8.21)
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Going back to (3.8.17) and noticing that ∥̂̂Γ1,k,d − Γ̂1,k,d∥L ≤ ∥(IH ,0, . . . ,0)(̂̂Γk,d −
Γ̂k,d)∥L, the first summand in this display can be bounded by

∥(̂̂Γ1,k,d − Γ̂1,k,d)̂̂Γ−1
k,d∥L ≤ ∥̂̂Γ1,k,d − Γ̂1,k,d∥L∥̂̂Γ−1

k,d∥L

≤ ∥(IH ,0, . . . ,0)(̂̂Γk,d − Γ̂k,d)∥L∥̂̂Γ−1
k,d∥L

= Op(
k

nαdk

(
dk

∑
l=1

1
α2
l

)
1/2

), (3.8.22)

where the rate in (3.8.19) was used in the last step. For the second summand in
(3.8.17), use the plug-in estimator for Γ̂1,k,d to obtain, for all k < n,

∥Γ̂1,k,d(Γ̂−1
k,d −

̂̂Γ−1
k,d)∥L ≤ ∥ 1

n − k

n−1
∑
j=k

P(k)Xj(k) ⊗Xj+1∥
L

∥Γ̂−1
k,d −

̂̂Γ−1
k,d∥L.

Since

E[∥ 1
n − k

n−1
∑
j=k

P(k)Xj(k) ⊗Xj+1∥
L

] ≤ 1
n − k

n−1
∑
j=k

E[∥P(k)Xj(k) ⊗Xj+1∥L]

≤ 1
n − k

n−1
∑
j=k

(E[∥P(k)Xj(k)∥2])1/2(E[∥Xj+1∥2])1/2

= (
k−1
∑
l=0

E[∥Xj−l∥2])
1/2

∥CX∥1/2
N

=
√
k∥CX∥N ,

the result in (3.8.20) implies that

∥Γ̂1,k,d(Γ̂−1
k,d −

̂̂Γ−1
k,d)∥L = Op(

k3/2

nα2
dk

(
dk

∑
l=1

1
α2
l

)
1/2

). (3.8.23)

Applying Assumption 3.3.4 to this rate and collecting the results in (3.8.16), (3.8.17),
(3.8.22) and (3.8.23), shows that, for all x ∈Hk as n→∞, ∥( ̂̂B(k) −Π(k))(x)∥ p→ 0.
This is the claim.

(ii) Similar to the proof of part (ii) of Theorem 3.3.3.
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