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 Chapter 

General introduction 

  



Estimation of breeding values and selection in dairy cattle 

During the history of animal breeding, availability of selection criteria has evolved with 

progress in performance testing, computing facilities and the development of the statistical 

toolbox. Animal breeders have always been eager to use new and more precise sources of 

information in order to make breeding decisions as accurate as possible. In the beginning of 

animal breeding, qualitative or quantitative phenotypes served as selection criteria. Response to 

selection depended essentially on the heritability of a trait in this context. Consequently, for 

centuries, genetic gain has remained quite small. After important contributions had been made 

by Fisher (1918), Wright (1921a-e) and Haldane (1932) in the development of quantitative 

genetics theory, the selection index (Hazel, 1943) was another step forward to analyze the 

genetically determined part of phenotypic observations and enabled the selection of animals 

based on their breeding values estimated from phenotypic information of the animal itself and 

its relatives. Main disadvantages of the selection index were that environmental effects had to 

be known (which is often not the case in practice) and that the phenotypic covariance matrix 

had to be constructed for each different constellation of information sources, which led to 

suboptimal approximations only for the sake of simplicity. The development of best linear 

unbiased prediction (BLUP; e.g. Henderson, 1973, 1975) using the mixed model equations was 

a quantum leap in genetic evaluation. Simultaneous estimation of fixed and random effects 

with the BLUP individual animal model assured unbiased estimates for many kinds of real-life 

data structures. Henderson (1976) developed an algorithm to build the inverse relationship 

matrix directly, which enabled the application of the individual animal model to real world 

populations. BLUP has worked successfully for the past decades and has assured remarkable 

genetic gains in a variety of traits and in different livestock species. Several adaptations of the 

BLUP animal model have been developed to account for special data structures and in order to 

reduce computational demands in specific situations. For example, breeding values of sires 
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with progeny records were often estimated by means of a sire model and multiple-trait models 

have enabled simultaneous evaluation of several traits using information from genetically 

correlated traits mutually (e.g. Henderson and Quaas, 1976). Fixed and random regression 

models have been developed to evaluate longitudinal data, e.g. lactation curves based on test 

day records (e.g. Schaeffer, 2004).  

 

Evolution of genomic evaluation 

Marker-assisted selection 

In the 1980s, first DNA-based markers began to become available. Minisatellites (variable 

number of tandem repeats), microsatellites (simple sequence repeats) and restriction fragment 

length polymorphisms were the typical markers at this time. Reflections about how to use this 

new type of genetic information in order to improve genetic progress led to the concept of 

marker-assisted selection (MAS; e.g. Fernando and Grossman, 1989). Quantitative traits have a 

continuous distribution and the observed genetic variance of quantitative traits is caused by a 

multitude of gene loci which are called quantitative trait loci (QTL) (Geldermann, 1975). 

Linkage as well as linkage disequilibrium between markers and (unknown) QTL is exploited in 

MAS when effects of markers are estimated as surrogates for QTL effects. While at the 

beginning of MAS, the number of QTL causing genetic variation of a specific trait was 

assumed to be small to medium (e.g. Hayes and Goddard, 2001), many newer results indicate 

that genetic architecture of quantitative traits is closer to the infinitesimal model: each out of 

many loci contributes a tiny effect to the genetic variation of the trait (e.g. Reed et al., 2008). 

Although sophisticated statistical approaches have been developed to estimate marker effects 

and to map QTL positions (e.g. Churchill and Doerge, 1994; Sillanpää and Corander, 2002; 

Meuwissen and Goddard, 2004), effects have often been overestimated and could rarely be 

exploited consistently in real breeding schemes. Until now France has remained the only 
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country that implemented MAS for several years in its breeding scheme (Guillaume et al., 

2008). 

 

Genomic selection 

During the years of improvement and refinement of MAS, the insight rose, that many more 

markers than assumed in the MAS concept were required to accurately capture genetic 

variation of a specific trait. Meuwissen et al. (2001) elaborated the conceptual base of genomic 

selection by estimating breeding values based on the effects of genotypes at many thousands of 

markers covering the whole genome. The pioneering work by Meuwissen et al. (2001) has 

initiated the development of procedures for genomic evaluation of breeding values in the 

following decade. In the genomic selection concept, each QTL is expected to be in high 

linkage disequilibrium with at least one of many markers. Marker effects are estimated 

simultaneously in genomic selection without imposing a significance threshold in order to 

avoid the Beavis effect (Beavis, 1998), the overestimation of the largest marker effects. 

The complete sequencing of the bovine genome in 2009 (e.g. Liu et al., 2009; Zimin et al., 

2009) laid the technological base for the development of single nucleotide polymorphism 

(SNP) chips to efficiently genotype individuals for thousands of SNP distributed all over the 

genome. SNP are the markers of choice for the implication of genomic selection. They are 

located at a single nucleotide, are usually biallelic and numerously distributed all over the 

genome. Re-sequencing of 129 Holstein, 47 Angus, 43 Fleckvieh and 15 Jersey animals has 

identified 26.7 million SNP in the cattle genome (Daetwyler et al., 2014). Commercial high-

throughput and high-density genotyping chips (Gunderson et al., 2005; Steemers et al., 2006; 

Steemers and Gunderson, 2007) are offered e.g. by the companies Illumina Inc. and Affymetrix 

Inc. Illumina’s Bovine50 BeadChip comprising around 54,000 SNP (Illumina Inc., 2015a) was 
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the first and has remained up to now the most common SNP chip for genotyping of cattle. 

More recently, Illumina developed denser (~777,000 SNP; Illumina Inc., 2015b) and less dense 

(Illumina Inc., 2015c: ~8,000 SNP; Wiggans et al., 2012: ~3,000 SNP) SNP chips for cattle. 

Affymetrix offers a genotyping array comprising ~640,000 SNP (Affymetrix Inc., 2015). 

Most valuable contributions to the development of genomic selection have been the 

suggestions of VanRaden (2008) to calculate the genomic or marker-based relationship matrix 

and the work of both Legarra et al. (2009) and Christensen and Lund (2010) who 

independently developed the combination of genomic and pedigree relationships in the single-

step method of genomic evaluation. Already Meuwissen et al. (2001) have suggested a ridge 

regression model – a linear model where SNP effects follow a normal distribution and a priori 

have equal variance – for genomic evaluation. The genomic BLUP (GBLUP) model has 

proven to be equivalent to the ridge regression model by Habier et al. (2007). In the GBLUP 

model, the numerator relationship matrix is replaced by the relationship matrix calculated from 

marker genotypes (e.g. VanRaden, 2008). Realized relationships are calculated from genotypes 

of markers covering the whole genome that trace Mendelian sampling during meiosis – in 

contrast to numerator relationships based on pedigree information. Genomic breeding values 

for selection candidates are much more reliable than parent averages (VanRaden et al., 2009) 

because they estimate Mendelian sampling terms based on realized relationships with all 

proven bulls. 

Pre-correction and aggregation of phenotypes to different types of pseudo-phenotypes has the 

favorable effect that the proportion of genetic variance compared to total variance increases. 

This can increase the power of genomic analyses (e.g. genomic prediction, genome-wide 

association study) or, alternatively, smaller samples are sufficient to obtain significant results. 

Genetic evaluation is the most consequent method to separate the genetic part from the total 

variation of a phenotype. Estimated breeding values of proven bulls rely on records of large 
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numbers of daughters and are highly reliable. Estimated breeding values are frequently used as 

phenotypes e.g. in genome-wide association studies (Pausch et al., 2011). In the estimation 

process, breeding values are regressed towards the population mean depending on their 

information content. De-regression of breeding values restores the original variance of records 

(e.g. Thomsen et al., 2001; Garrick et al., 2009). Garrick et al. (2009) recommended removing 

parent average effects before de-regressing to avoid double-counting of information. De-

regressed breeding values, also known as de-regressed proofs (DRP; Garrick et al., 2009), are 

frequently used in genomic analyses because they can be obtained relatively easily from 

estimated breeding values and the respective reliabilities. Daughter yield deviations (DYD; 

VanRaden and Wiggans, 1991) are the aggregated phenotypes that are the closest to real 

observations. Phenotypes of daughters are corrected for fixed effects, non-genetic random 

effects as well as the breeding value of their dam and averaged to obtain the DYD of a bull. 

A GBLUP model is a linear model as follows: 

𝐲 = 𝐗𝐛 + 𝐙𝐮 + 𝐞, 

where y is a vector of pseudo-phenotypes, typically DRP or DYD. X is an incidence matrix 

and b is a vector of fixed effects. Usually, a single fixed effect is modelled as intercept because 

other non-genetic effects have been removed during pre-correction of phenotypes. Z is a design 

matrix that relates y to genomic breeding values. Genomic breeding values u have the 

covariance matrix 𝐆𝜎𝐴
2, where G is the genomic relationship matrix calculated from marker 

genotypes and σA
2  is the additive genetic variance. Genomic breeding values for calibration and 

validation animals are predicted by means of BLUP: 

𝐮̂ = 𝐆𝜎𝐴
2𝐙′𝐕−1(𝐲 − 𝐗𝐛̂), 

where 𝐛̂ = (𝐗′𝐕−1𝐗)−1𝐗𝐕−1𝐲, and V, the covariance matrix of y, is calculated as  

𝐕 = 𝐙(𝐆𝜎𝐴
2)𝐙′ + 𝐅𝜎𝐸

2,  
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where 𝜎𝐸
2 is the error variance and F is a diagonal matrix with reciprocals of the equivalent 

number of own performances (EOP). EOP are calculated as follows:  

𝐸𝑂𝑃 =
𝜎𝑒

2

𝜎𝑎
2

𝑅𝑦
2

1−𝑅𝑦
2, 

where 𝑅𝑦
2 is the reliability of pseudo-phenotypes y. 

VanRaden (2008) suggested calculating the genomic relationship matrix in the following way: 

𝐆 =
𝐖𝐖′

2 ∑ 𝑝𝑘(1−𝑝𝑘)𝑚
𝑘=1

, 

where W is a genotype matrix having a dimension of the number of individuals (n) by the 

number of loci (m) and is calculated as W = M - P. The elements of M are -1 and 1 for 

opposite homozygous genotypes and 0 for heterozygous genotypes. Column k of the matrix P 

is 2(pk – 0.5) and pk is the allele frequency at locus k. Preferably, the allele frequencies of the 

unselected base population are used as pk to assure consistency with pedigree-based evaluation. 

Base allele frequencies can be estimated with the method of Gengler et al. (2007). Meuwissen 

et al. (2011) suggested scaling of the genomic relationship matrix towards the numerator 

relationship matrix to account for e.g. genetic variance not totally explained by marker 

genotypes. Additional combination with a small proportion of the numerator relationship 

matrix can be useful to improve numerical stability of the genomic relationship matrix (e.g. 

VanRaden, 2008).  

The United States were the first country to implement GBLUP based on 50K genotypes of 

insemination bulls and candidate bulls in national genetic evaluation of Holstein, Jersey and 

Brown Swiss in 2009 (Wiggans et al., 2011). Many other important cattle breeding countries 

followed soon and started to estimate and publish genomic breeding values, predominantly 

using GBLUP. In Germany and Austria, official genomic breeding values for Fleckvieh and 

Brown Swiss were published in 2011 for the first time. In the beginning of genomic evaluation, 
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only 50K genotypes were available because the 50K chip was the first commercial SNP chip. 

When Illumina released a low-density chip with 2,900 SNP (3K) and a high-density chip with 

777,962 SNP (HD) in 2010, it became necessary to include also these other marker sets in 

genomic evaluation. Different software packages are available for the imputation from sparse 

to dense marker sets. The most frequently used imputation programs in animal breeding are: 

BEAGLE (Browning and Browning, 2007), findhap (VanRaden et al., 2011, 2013), FImpute 

(Sargolzaei et al., 2011) and AlphaImpute (Hickey et al., 2011). Although imputation programs 

use information about linkage and linkage disequilibrium between markers intensively, a small 

percentage of imputation errors occurs with every program. Chen et al. (2011) reported that 

between 1.6% and 3.3% of alleles were not correctly imputed from 3K to 50 K.  Error rate in 

imputation from 3K to 50K ranged from 2.1% to 5.5% in a study of Dassonneville et al. 

(2011). With higher marker density, it is more probable that a marker is in high linkage 

disequilibrium with a QTL. Several studies examined the hypothesis that accuracy of genomic 

evaluation should increase with higher marker density. However, only minor gains could be 

realized when using (imputed) HD genotypes instead of 50K genotypes in different Holstein 

populations (Harris et al., 2011; Erbe et al., 2012; Su et al., 2012; VanRaden et al., 2013). In 

these studies, the question was not addressed if the reported small gains in reliability were 

significant. 

 

Breeding program for Fleckvieh in Bavaria 

The current breeding program for Fleckvieh animals in Bavaria (in effect since 2012) is 

schematically depicted in Figure 1. The breeding program is based on 605,000 Fleckvieh cows 

in the herd-books of Bavarian Fleckvieh breeding associations. Each year, based on their 

breeding values, around 25,000 cows are suggested as potential dams of artificial insemination 

(AI) bulls. From these 25,000 potential bull dams, 12,000 are selected to breed candidate bulls. 
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Some candidates are excluded because of undesired properties and out of around 5,000 male 

candidates, 270 bulls are selected for AI (“young genomic AI bulls”). These young AI bulls are 

bred to about 30% of the cow population and after performance-testing of daughters, 75 bulls 

are selected for broad AI use. Each year, 40 young genomic bulls and 20 performance-tested 

bulls are selected as bull sires and are bred to 40% and 60% of 12,000 selected bull dams, 

respectively. 

 

Figure 1: Current breeding program for Fleckvieh in Bavaria [adapted from Bayerisches 

Staatsministerium für Ernährung, Landwirtschaft und Forsten (2015)]  

 

Dominance – new applications in the genomic era? 

Dominance results from the interaction of alleles at a locus and is - together with additivity and 

epistasis - an important component of genetic variance. Estimates of dominance variance in 
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dairy cattle that are based on pedigree data range from 7.3% to 49.8% of the total genetic 

variance for conformation traits (Tempelman and Burnside, 1990b; Misztal et al., 1997) and 

from 3.4% to 42.9% for milk production traits (Tempelman and Burnside, 1990a; Miglior et 

al., 1995; Van Tassell et al., 2000). Classically, dominance variation has been ignored in pure-

breeding programs for several reasons: First, the computational demand of large-scale genetic 

evaluations for dominance is challenging. Second, the accuracy of estimates for dominance 

effects is relatively low. Third, using dominance variance in planned matings is complex and 

computationally demanding. With the availability of SNP genotypes, there are new 

possibilities for the evaluation of dominance effects analyzing heterozygosity and differences 

in heterozygosity at marker loci. Analyses can be performed at the marker level, as suggested 

e.g. by Toro and Varona (2010) and Wellmann and Bennewitz (2012). An alternative is to 

calculate marker-based dominance relationships in a GBLUP framework (Su et al., 2012; 

Vitezica et al., 2013). 

The above mentioned GBLUP model can be extended for dominance as follows: 

𝐲 = 𝐗𝐛 + 𝐙𝐮 + 𝐙𝐯 + 𝐞, 

where y is a vector of phenotypes, which are usually pre-corrected for environmental effects. 

For genomic analyses of dominance effects, direct records from the genotyped animals are 

required and it is necessary that the dominance effect is not removed from the pseudo-

phenotype during pre-correction. Yield deviations (YD; VanRaden and Wiggans, 1991) 

contain dominance deviations and can therefore be used as phenotypes in dominance models. 

DYD or DRP, however, cannot be used because they do not contain a dominance component. 

Z is a design matrix that relates y to both genomic breeding values and genomic dominance 

deviations. Genomic dominance deviations v have the covariance matrix 𝐆𝐃𝜎𝐷
2, where 𝐆𝐃 is 
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the genomic dominance relationship matrix calculated from marker genotypes and 𝜎𝐷
2 is the 

dominance variance, and are predicted by means of BLUP: 

𝐯̂ = 𝐆𝐃𝜎𝐷
2𝐙′𝐕−1(𝐲 − 𝐗𝐛̂), 

where 𝐛̂ = (𝐗′𝐕−1𝐗)−1𝐗𝐕−1𝐲, and V, the covariance matrix of y, is calculated as:  

𝐕 = 𝐙(𝐆𝜎𝐴
2)𝐙′ + 𝐙(𝐆𝐃𝜎𝐷

2)𝐙′ + 𝐖𝜎𝐸
2, 

where 𝜎𝐸
2 is the error variance and W is a diagonal matrix with reciprocals of the equivalent 

number of own performances (EOP). EOP are calculated as follows: 

𝐸𝑂𝑃 =
𝜎𝐸

2

𝜎𝐴
2+𝜎𝐷

2

𝑅𝑦
2

1−𝑅𝑦
2, 

where 𝑅𝑦
2 is the reliability of pseudo-phenotypes y. 

Vitezica et al. (2013) suggested calculating 𝐆𝐃 in the following way: 

𝐆𝐃 =
𝐖𝑑𝐖𝑑′

4 ∑ 𝑝𝑘
2𝑞𝑘

2𝑚
𝑘=1

, 

where Wd has dimensions of the number of individuals (n) by the number of loci (m), with 

elements that are equal to -2qk² for genotype A1A1, 2pkqk for genotype A1A2, and -2pk² for 

genotype A2A2. 

Variance components can be estimated both with the restricted maximum likelihood (REML) 

method and with Gibbs sampling. The BLUPF90 package (Misztal et al., 2002) contains the 

relevant FORTRAN programs REMLF90 and GIBBS1F90. With REML estimation, the 

likelihood ratio test evaluates if extending the model with an additional random effect (e.g. 

dominance) fits the data significantly better. Standard errors of variance component estimates 

can be calculated from Gibbs sampling chains. 
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Although usually the interest in genomic evaluation lies on genetic values for animals, the 

setup of a marker model (ridge regression BLUP; RR-BLUP) is equivalent to the GBLUP 

model as shown by Habier et al. (2007), Goddard (2009) and Hayes et al. (2009). A RR-BLUP 

model of the type 

𝐲 = 𝐗𝐛 + 𝐓𝐚 + 𝐗𝐝 + 𝐞 

can be solved e.g. with GS3 software (Legarra et al., 2014). a and d are vectors of additive and 

dominance effects of the SNP, and T and X are incidence matrices coded as {-1, 0, 1} and {0, 

1, 0} for the three possible genotypes. The assumed variance-covariance structure is V(a) = 

I𝜎𝑎
2 and V(d) = I𝜎𝑑

2. The quantities 𝜎𝑎
2 and 𝜎𝑑

2 are additive and dominance variance 

components at the marker level. Assuming that markers are in linkage equilibrium and marker 

effects are not correlated, animal level variance components can be calculated from marker 

level variance components and allele frequencies (Gianola et al., 2009; Vitezica et al., 2013): 

𝜎𝐴
2 = ∑(2𝑝𝑘𝑞𝑘)

𝑚

𝑘=1

𝜎𝑎
2 + ∑[2𝑝𝑘𝑞𝑘(𝑞𝑘 − 𝑝𝑘)2]

𝑚

𝑘=1

𝜎𝑑
2 

𝜎𝐷
2 = ∑(4𝑝𝑘

2𝑞𝑘
2)

𝑚

𝑘=1

𝜎𝑑
2 

The other way round, marker level variance components can be calculated from variance 

components of the animal model:  

𝜎𝑑
2 =  

𝜎𝐷
2

∑(4𝑝𝑘
2𝑞𝑘

2)
 

𝜎𝑎
2 = 

𝜎𝐴
2−∑[2𝑝𝑘𝑞𝑘(𝑞𝑘−𝑝𝑘)2]𝜎𝑑

2

∑(2𝑝𝑘𝑞𝑘)
 

Instead of deducing from animal model parameters, marker level variance components can be 

estimated e.g. by means of a Markov Chain Monte Carlo algorithm as e.g. implemented in 

GS3.  
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If dominance variance amounts to a relevant part of genetic variation, it should be interesting to 

use this extra genetic variance for management purposes. For example, in the case that 

dominance deviations and total genetic values can be predicted from genotypic data with 

acceptable accuracy, this information could be used to select calves for dairy production. The 

remaining calves with less promising total genetic values in the relevant traits would then be 

used for beef or veal production. This early step of selection could anticipate the culling of 

cows that are already in milk but do not fulfill the farmer’s demands. 

The next step straightforward could be to select production cows not only as calves but already 

when the mating decision is taken for the dam. Matings could be planned to optimize expected 

production performance of resulting offspring if the prediction of expected total genetic value 

of a mating is possible. 

Toro and Varona (2010) suggested to predict the total genetic value 𝑔𝑖𝑗 of progeny from a 

mating between bull i and cow j as follows: 

𝑔̂𝑖𝑗 = ∑ [𝑃𝑟𝑖𝑗𝑘(𝐴𝐴)𝑎̂𝑘 + 𝑃𝑟𝑖𝑗𝑘(𝐴𝑎)𝑑̂𝑘 − 𝑃𝑟𝑖𝑗𝑘(𝑎𝑎)𝑎̂𝑘]𝑘 , 

where 𝑃𝑟𝑖𝑗𝑘() is the probability of the corresponding genotype at locus k. Analogously, the 

breeding value 𝑢𝑖𝑗 of progeny from a mating between bull i and cow j can be predicted as:  

𝑢̂𝑖𝑗 = ∑ [𝑃𝑟𝑖𝑗𝑘(𝐴𝐴)(2 − 2𝑝𝑘)𝛼̂𝑘𝑘 + 𝑃𝑟𝑖𝑗𝑘(𝐴𝑎)(1 − 2𝑝𝑘)𝛼̂𝑘 + 𝑃𝑟𝑖𝑗𝑘(𝑎𝑎)(−2𝑝𝑘)𝛼̂𝑘], 

where 𝛼̂𝑘 = 𝑎̂𝑘 + 𝑑̂𝑘(𝑞𝑘 − 𝑝𝑘).  

Matings can be selected on 𝑢̂ to maximize additive genetic gain or on 𝑔̂ to maximize total 

genetic superiority. The latter maximizes the productive performance of the offspring, which 

might be a farmer’s interest. However, 𝑔̂ can be maximized only for the next generation 

because a gain in the dominance part of 𝑔̂ cannot be accumulated in subsequent generations. 
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Selection on 𝑢̂ leads to maximum additive gain, which can be accumulated in subsequent 

generations, and thus optimizes cumulative multi-generational genetic gain. A desirable 

objective might be to maximize 𝑔̂ of matings and at the same time to keep the expected 𝑢̂ of 

the offspring as high as possible. This could be realized by pre-selection of bulls on their 

breeding value and subsequent optimization of matings based on expected total genetic values. 

 

Joint evaluation of bulls’ and cows’ genotypes 

As soon as cows are genotyped in addition to bulls, phenotypes of genotyped cows have to be 

integrated in the genomic evaluation scheme. Basically, genomic evaluation can be based 

directly on phenotypes that are typically recorded on cows. This procedure is known as one-

step or single-step evaluation and was independently developed by Legarra et al. (2009) and 

Christensen and Lund (2010). The model is classical BLUP augmented by a genomic 

component: 

𝐲 = 𝐗𝐛 + 𝐙𝐀 [
𝐮𝟏

𝐮𝟐
] + 𝐞, 

where y is a vector of observations, b is a vector of fixed effects, X is a design matrix, 𝐮 =

[
𝐮𝟏

𝐮𝟐
] is a vector of breeding values (subscripts 1 and 2 indicate non-genotyped and genotyped 

animals, respectively) and e is a vector of residual errors [𝐞~N(0; 𝐈𝜎𝐸
2)]. 𝐙𝐀 is a design matrix 

that connects observations with the corresponding animals. The variance-covariance structure 

of breeding values is 𝐮~N(0; 𝐇𝜎𝐴
2), where H is the single-step (combined pedigree and 

genomic) relationship matrix. The combined relationship matrix H integrates pedigree and 

genomic information and is calculated in the following way from pedigree and genomic 

relationships (Aguilar et al., 2010): 
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𝐇 = [
𝐇𝟏𝟏 𝐇𝟏𝟐

𝐇𝟐𝟏 𝐇𝟐𝟐
] = [

𝐀𝟏𝟏 − 𝐀𝟏𝟐𝐀𝟐𝟐
−𝟏𝐀𝟐𝟏 + 𝐀𝟏𝟐𝐀𝟐𝟐

−𝟏𝐆𝐀𝟐𝟐
−𝟏𝐀𝟐𝟏 𝐀𝟏𝟐𝐀𝟐𝟐

−𝟏𝐆

𝐆𝐀𝟐𝟐
−𝟏𝐀𝟐𝟏 𝐆

] 

𝐀 is the pedigree-based relationship matrix between all animals in the pedigree and 𝐆 is a 

genomic relationship matrix between genotyped animals, which can be calculated e.g. by the 

method  of VanRaden (2008).  

Aguilar et al. (2010) showed the following way to calculate in the inverse of H directly: 

𝐇−𝟏 = 𝐀−𝟏 + [
𝟎 𝟎
𝟎 𝐆−𝟏 − 𝐀𝟐𝟐

−𝟏] 

In the multi-step procedure, evaluation of genotyped animals is based on pseudo-phenotypes 

(DYD/YD, DRP, EBV) that have been estimated in a previous conventional genetic evaluation 

(e.g. VanRaden 2008; cf. chapter 1). Genomic breeding values are recombined with 

conventional estimates by means of a selection index. A challenge in multi-step evaluation is 

the correct scaling of genomic breeding values as they are estimated only from the subset of 

genotyped animals but not from the entire data set. Different attempts have been made to scale 

the genomic relationship matrix in order to have genomic and conventional breeding values on 

the same scale (e.g. VanRaden 2008; Meuwissen et al., 2011; Vitezica et al., 2011). Despite 

these scaling techniques it has been reported that the dispersion of predicted breeding values 

was closer to the expected values with the single-step procedure using all information 

simultaneously (Gao et al., 2012; Su et al., 2012). In turn convergence problems have been 

reported with large single-step evaluations (Harris et al., 2013; Liu et al., 2014). In order to 

overcome the difficulties of full single-step analysis and at the same time to profit maximally 

from single-step mechanisms, different groups of authors (Gao et al., 2012; Su et al., 2012; 

Harris et al., 2013) have applied adapted approaches analyzing pseudo-phenotypes of 

genotyped and non-genotyped animals jointly. We will call this type of model ‘reduced single-

step’ in this thesis. When bulls’ information is to be included in the evaluation of breeding 
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values and dominance deviations, a single-step model has to be applied because dominance 

effects have to be associated with individual genotypes of cows. In addition to convergence 

problems, the inversion of the dominance relationship matrix might not be feasible with large 

single-step data sets and the direct calculation of the inverse dominance relationship matrix via 

sire-dam subclasses (Hoeschele and VanRaden, 1991) would even increase the model size. A 

reduced single-step model including DYD of bulls and YD of a subset of (genotyped) cows 

might be a useful alternative for this type of evaluation. In chapter 4 of this thesis, estimated 

breeding values and dominance deviations have been compared between reduced and full 

single-step models. 

 

How to measure reliability of breeding values? 

Model-based reliability 

Both the amount of information available for an animal (from own records and/or from 

performance of relatives) and the variance components determine the prediction error variance 

(PEV) of a breeding value. The prediction error variance is the variance of the difference 

between true and predicted breeding value and thus related to the reliability of the predicted 

breeding value. Prediction error variance of the breeding value of animal i can be calculated 

directly from the inverted coefficient matrix of the mixed model equation (Henderson, 1975): 

𝐏𝐄𝐕𝐢 = 𝑣𝑎𝑟(𝐮𝐢 − 𝐮𝐢̂) = 𝐂𝐢𝐢
𝟐𝟐𝜎𝐸

2 = (1 − 𝐫𝐢
2)𝜎𝐴

2, 

where 𝐂𝐢𝐢
𝟐𝟐 is the i-th element of the block referring to breeding values of the generalized 

inverse of the coefficient matrix and 𝐫𝐢
2 is the model-based reliability of the i-th breeding 

value. From the above equation, 

𝐫𝐢
2 = 1 − 𝐂𝐢𝐢

𝟐𝟐 𝜎𝐸
2

𝜎𝐴
2. 
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In practice, inversion of the coefficient matrix is not feasible because of its size. Iterative 

procedures have been developed to approximate the diagonal elements 𝐂𝐢𝐢
𝟐𝟐 (e.g. Meyer, 1989). 

 

Cross-validation reliability 

Cross-validation is an empirical method to assess prediction reliability. For cross-validation, 

the data set is repeatedly divided in a training set and a validation set. Genomic breeding values 

are predicted by only using phenotypic information from the training set. The predicted 

genomic breeding values of validation animals are compared with their aggregated phenotypes 

or breeding values including records from the validation set. The squared correlation between 

true and predicted breeding values of validation animals is a measure of prediction reliability 

(e.g. Legarra et al., 2008). As the true breeding value can only be known in simulation studies 

but not in real data analyses, cross-validation reliability is computed as the squared correlation 

between the pseudo-phenotype (e.g. DYD) and the predicted breeding value divided by the 

reliability of the pseudo-phenotype. When pseudo-phenotypes of validation animals have 

different reliabilities, a weighted regression should be calculated and the coefficient of 

determination of this regression – divided by the mean reliability of pseudo-phenotypes – can 

be used as cross-validation reliability. Predicted genomic breeding values, dominance 

deviations and total genetic values in chapter 3 of this thesis were validated by cross-

validation. 

 

Forward prediction reliability 

Forward prediction is a special type of validation without replication. The youngest animals are 

defined as validation set and genomic breeding values are predicted for validation animals only 

using phenotypic information from the training set. For validation, also phenotypes of 
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validation animals are included. Forward prediction is a realistic imitation of predicting 

genomic breeding values for young bulls after genotyping and comparing these GBV with 

EBV when daughter information is available. The Interbull GEBV test is calculated by means 

of forward prediction (Mäntysaari et al., 2010). Empirical reliability from forward prediction is 

substantially smaller than the model-based reliability from the inverse of the BLUP coefficient 

matrix when the validation animals are selected (Bijma, 2012; Edel et al., 2012). 

Genomic breeding values predicted in chapter 2 as well as genomic breeding values, 

dominance deviations and total genetic values of validation cows in chapter 4 of this thesis 

were validated in a forward prediction analysis. 

The objectives of this thesis were to investigate the potential benefits from genome-wide SNP 

genotypes at higher marker density and from female genotypes in addition to bulls’ genotypes 

in genomic evaluation of the Fleckvieh breed. 
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Abstract 

This study investigated reliability of genomic predictions using medium-density (40,089; 50K) 

or high-density marker sets (HD; 388,951). We developed an approximate method to test 

differences in validation reliability for significance. Model based reliability and the effect of 

HD genotypes on inflation of predictions were analyzed additionally. Genomic breeding values 

were predicted for at least 1,321 validation bulls based on phenotypes and genotypes of at least 

5,324 calibration bulls by means of a linear model in milk, fat and protein yield; somatic cell 

score; milkability; muscling; udder, feet and legs score as well as stature. In total, 1,485 bulls 

were actually HD genotyped and HD genotypes of the other animals were imputed from 50K 

genotypes using FImpute software. Validation reliability was measured as the coefficient of 

determination of the weighted regression of daughter yield deviations on predicted breeding 

values divided by the reliability of daughter yield deviations and inflation was evaluated by the 

slope of this regression. Model based reliability was calculated from the model. Distributions 

for validation reliability of 50K markers were derived by repeated sampling of 50,000-marker 

samples from HD to test differences in validation reliability statistically. Additionally, the 

benefit of HD genotypes in validation reliability was tested by repeated sampling of validation 

groups and calculation of the difference in validation reliability between HD and 50K 

genotypes for the sampled groups of bulls. The mean benefit in validation reliability of HD 

genotypes was 0.015 compared with real 50K genotypes and 0.028 compared with 50K 

samples from HD affected by imputation error and was significant for all traits. The model 

based reliability was, on average, 0.036 lower and the regression coefficient was 0.036 closer 

to the expected value with HD genotypes. The observed gain in validation reliability with HD 

genotypes was similar to expectations based on the number of markers and the effective 

number of segregating chromosome segments. Sampling error in the marker-based relationship 

coefficients causing overestimation of the model based reliability was smaller with HD 
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genotypes. Inflation of the genomic predictions was reduced with HD genotypes, accordingly. 

Similar effects on model based reliability and inflation, but not on the validation reliability, 

were obtained by shrinkage estimation of the realized relationship matrix from 50K genotypes. 

 

Introduction 

The use of genomic information for the prediction of breeding values is now widespread in 

dairy cattle breeding all over the world. Genomic breeding values for selection candidates that 

are predicted with dense marker genotypes are much more reliable than parent averages 

(VanRaden et al., 2009). Breeding animals are genotyped with high-throughput technologies 

for thousands of SNP covering the whole genome. Genotyped markers are used as surrogates 

for unknown QTL in the estimation of the realized relationship matrix. Realized relationships 

between animals deviate from the expected numerator relationships because of Mendelian 

sampling during meiosis. In a genomic BLUP (GBLUP) model (VanRaden, 2008), the 

numerator relationship matrix is replaced by the marker-based relationship matrix. This 

improves the reliability of breeding values of selection candidates that are predicted based on 

realized relationships with proven bulls that have phenotypic information. Although currently 

used assays enable efficient genotyping of more than 50,000 SNP (50K), a high-density (HD) 

assay was developed for genotyping more than 777,000 SNP, providing genomic information 

at a higher resolution (Illumina Inc., San Diego, CA). In several investigations, reliabilities of 

predicted breeding values were compared when breeding values were predicted either from 

50K or from HD genotypes using a GBLUP model, but only minor, if any, gains in validation 

reliability were observed (Erbe et al., 2012; Su et al., 2012). In this study, we examined the 

gain in validation reliability from HD genotypes in the Fleckvieh breed, which is known to be 

genetically more diverse with lower levels of linkage disequilibrium between pairs of markers 

than Holstein (Pryce et al., 2011). We inferred distributions for the validation reliability of 
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genomic breeding values predicted with varying 50K marker sets to test a potential advantage 

of HD genotypes for statistical significance. Furthermore, we analyzed the effect of higher 

marker density on model-based reliability and inflation of the predictions. The observed 

difference in validation reliability with HD genotypes was compared with theoretical 

expectations. 

 

Materials and Methods 

Data 

Genotypes for 21,092 Fleckvieh bulls and candidates were available from the German-Austrian 

joint genomic evaluation program. The genotypes were generated with Illumina Bovine SNP50 

(v1 and v2) Genotyping BeadChips (Illumina Inc.). A total of 1,492 bulls and 2,038 cows were 

additionally genotyped with an Illumina BovineHD Genotyping BeadChip. The following 

editing criteria were applied to 50K markers: SNP that had a mean call rate below 0.95 or 

deviated from Hardy-Weinberg equilibrium with P < 10
-5

 were excluded from the data set. 

Genotypes with a minor allele frequency below 0.02 were also discarded. The same editing 

criteria were applied to HD markers with an adjusted minor allele frequency threshold of 0.005 

due to the smaller number of HD genotyped animals. In total 41,274 50K and 624,892 HD 

markers passed the quality criteria and were used for imputation. Consistency between 

genomic and pedigree information was checked by a 2-step approach. In step 1, the genotypes 

of parent-offspring pairs were compared directly and conflicting genotype-configurations were 

eliminated. In step 2, relationships to genotyped grandsires and (or) within half- and full-sib 

groups were checked based on marker-based identity-by-descent (IBD)-coefficients (Wang, 

2007). Conflicting genotypes were either partly or completely set to missing or the sire or the 

dam was removed from the animal’s pedigree following a defined protocol. Imputation of 50K 
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to HD genotypes was performed with the program FImpute (Sargolzaei et al., 2011). After 

imputation, genotypes of 629,028 SNPs were available. Although all available genotypes were 

used for imputation to obtain maximum imputation accuracy by exploiting comprehensive 

pedigree information, the analysis was based on 50K and imputed HD genotypes of 10,240 

bulls registered at AI stations and, thus, potentially possessing phenotypic information. Among 

these 10,240 bulls, 1,492 were actually HD genotyped and HD genotypes of the remaining 

8,748 bulls were imputed from 50K genotypes; 50K and imputed HD genotypes were 

additionally checked for redundancy. A SNP was considered as redundant when it was in very 

high linkage disequilibrium (r² >0.99) with an adjacent locus. From redundant SNP, the first 

with regard to UMD3 assembly (http://www.cbcb.umd.edu/research/bos_taurus_ 

assembly.shtml) position was kept in the data set. For computational reasons, the redundancy 

check was performed only within chromosomes but not across the whole genome. After 

exclusion of redundant SNP, 388,951 loci remained in the imputed HD dataset and 40,089 

remained in the 50K data set. 

Phenotypes for the investigation were daughter yield deviations (DYD; VanRaden and 

Wiggans, 1991) for milk, fat and protein yield, SCS, stature, muscling, udder and feet and legs 

and deregressed proofs (DRP; Garrick et al., 2009) for milkability from the December 2012 

German-Austrian routine evaluation. A fraction of 2,265 bulls did not have phenotypes yet. 

Genomic Prediction 

Forward predictions were computed using GBLUP (VanRaden, 2008). Bulls born before April 

2005 were assigned to the calibration group and the younger bulls served as validation animals. 

Calibration and validation groups were defined separately for each trait according to the 

amount of phenotypic information. Only data from validation bulls with phenotypic 

information equivalent to at least 20 effective daughter contributions (Wilmink and 

Dommerholt, 1985) in the respective trait were used to validate the genomic predictions. For 
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the different traits, calibration and validation groups consisted of at least 5,324 and 1,321 bulls, 

respectively. Birth years of analyzed bulls are shown in Figure 1. Direct genomic values 

(DGV) were predicted for validation bulls based on genotypes and phenotypes of the 

calibration group. The genomic relationship matrix G
*
 was calculated following the approach 

of VanRaden (2008): 

 
*

1

'

2 (1 )
m

k k

k

p p






ZZ
G , 

where Z is a genotype matrix having a dimension of the number of individuals (n) by the 

number of loci (m) and is calculated as Z = M - P. The elements of M are -1 and 1 for opposite 

homozygous genotypes and 0 for heterozygous genotypes. Column k of the matrix P is 2(pk – 

0.5) and pk is the base allele frequency of locus k estimated according to the approach of 

Gengler et al. (2007); G
*
 was additionally scaled toward the numerator relationship matrix A 

(Meuwissen et al., 2011) and finally combined with A as G = 0.99G
*
 + 0.01A to improve 

numerical stability.  

The following model was applied to predict genomic breeding values g: 

   y Dg e , 

where y is a vector of DRP (milkability) or DYD (other traits) of calibration animals, μ is the 

intercept and D is a design matrix that relates y to breeding values; g is a vector of DGV for all 

animals with genotypes in D, including calibration and validation animals. Genomic breeding 

values were predicted for calibration and validation animals by best linear unbiased prediction 

(Henderson, 1973): 

 2 1ˆ ˆ' ( )a   ng G D V y 1 , 
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where 'n1  is a vector of 1, 1 1 1ˆ ( ' ) '   
n n n

1 V 1 1 V y , 2

a  is the additive genetic variance and 

V, the covariance matrix of DYD or DRP, was calculated as  

 2 2( ) 'a e  V D G D W , 

where 2

e  is the error variance and W is a diagonal matrix with reciprocals of the equivalent 

number of own performances (EOP); EOP are calculated as follows: 
2 2

2 21

e DYD

a DYD

R
EOP

R







, 

where 
2

DYDR  is the reliability of the DYD. The parameters 
2

a  and 
2

e  were adopted from the 

German-Austrian routine evaluation. 

 

Figure 1. Birth years of bulls with known phenotypes.  
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The reliability of the prediction as observed in the validation group was measured by means of 

the coefficient of determination of the weighted regression of DYD on DGV divided by the 

average reliability of DYD [R² (validation)] of validation bulls. We will refer to this reliability 

as “validation reliability” hereinafter. The model-based reliability [R² (model based)] was 

computed by direct inversion of the genomic equation system. The weighted regression 

coefficient of DYD on DGV [b(DYD, DGV)] was calculated to estimate the inflation of the 

predictions. Inflation means that b(DYD, DGV) is not equal to its expectation (Mäntysaari et 

al., 2010). For milkability, DYD were not available and DRP were used instead of DYD to 

calculate R² (validation) and b(DYD, DGV). 

To create an empirical distribution of validation reliabilities of 50K predictions, 500 random 

subsets of 40,089 markers (the number of 50K markers in this analysis; designated as 50K) 

were sampled from the HD markers and used for calibration and prediction of DGV. This kind 

of comparison is regarded as fair because 50K samples are affected by imputation error to the 

same extent as HD genotypes in contrast to real 50K markers that were actually genotyped and 

thus not affected by imputation error. To obtain samples with a structure similar to the original 

50K Illumina Bead Chip, the chromosomes were subdivided in bins of 1-Mb length. The 

number of markers sampled per 1-Mb bin was determined by the number of 50K markers 

observed in this 1-Mb bin. Predictions based on sampled 50K markers were performed to 

obtain an empirical distribution of validation reliability for 50K marker sets. For each trait, we 

calculated the probability that a value from the empirical distribution of 50K validation 

reliabilities exceeds the observed reliability from GBLUP using HD genotypes.   

For computational reasons, we performed the sampling of 50K markers in all traits with the 

results from only 1 validation group. However, because the difference in validation reliability 

between HD and 50K genotypes might also be influenced by the structure of the validation 

group, we additionally sampled 50 groups of 500 animals with replacement from all potential 
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validation animals. The difference in R² (validation) between HD and real 50K in each trait 

was calculated for each validation sample. This difference is the result of the relevant 

comparison valid in the current situation that all selection candidates are genotyped with 50K 

and only a fraction of bulls are HD genotyped. By means of a one-sided t-test, we tested the 

null hypothesis that validation reliability with HD genotypes is not larger than with 50K 

genotypes.  

Both Goddard et al. (2011) and Endelman and Jannink (2012) proposed to reduce the sampling 

error of genomic relationship coefficients, which is basically a function of the number of 

markers, by shrinking the coefficients toward a target. Goddard et al. (2011) recommended 

shrinking against the pedigree-based numerator relationship matrix. The shrinkage target of 

Endelman and Jannink (2012) is a diagonal matrix with elements 1 + f, where f is the mean 

inbreeding coefficient of the current population. We evaluated the impact of shrinkage 

estimation of the realized relationship matrix in GBLUP with 50K genotypes, following the 

approach of Endelman and Jannink (2012), on the validation and model based reliability as 

well as on the inflation of DGV and compared the results to the HD results. For this approach, 

the realized relationship matrix was first calculated as described above using estimates of 

current allele frequencies. In a second step, the matrix was shrunk toward 1 + f. According to 

Endelman and Jannink (2012), the genomic relationship matrix (calculated from marker 

genotypes) 
1 1

' 1 1
'

m m

k k

k km m m
 

 

   
ZZ

S Z Z  has to be shrunk unless the number of markers is 

much larger than the number of animals to reduce the mean squared error of the genomic 

relationship coefficients. Shrinkage of S leads to the realized relationship matrix 
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where δ is the optimal shrinkage intensity ranging from 0 to 1 with the heuristic 
2

~
n

m CV



. 

n is the number of genotyped animals, I is an identity matrix of dimension n, m the number of 

markers and CV is the coefficient of variation of the eigenvalues of S. The optimal shrinkage 

intensity was estimated dependent on the number of markers. 

 

Results 

The validation reliability of genomic breeding values when mainly imputed high-density 

genotypes were used ranged from 0.313 in udder to 0.559 in SCS and was larger than the 

reliability from 50K genotypes for all traits (Table 1). The differences in validation reliability 

between DGV based on mainly imputed HD and actually genotyped 50K markers, however, 

were not large and ranged from 0.008 to 0.023. The mean increase in validation reliability of 

HD over all traits was 0.015. In contrast to the validation reliability, the model-based reliability 

with HD genotypes was lower than with 50K genotypes. The model-based reliability with HD 

genotypes ranged from 0.547 in feet and legs to 0.662 in milk yield and was 0.626, on average. 

The mean model-based reliability for 50K genotypes was 0.662. 

The slopes of the regression of DYD on DGV for HD genotypes ranged from 0.689 in protein 

yield to 1.024 in milkability and were in all traits closer to the expected value when HD 

genotypes were used instead of 50K genotypes. The mean of b(DYD, DGV) over all traits was 

0.839 for HD and 0.803 for 50K genotypes. The mean difference in b(DYD, DGV) indicates 

less inflation of the predictions from HD genotypes. The correlation between 50K and HD 

predictions was between 0.959 and 0.974 for the different traits. This leads to moderate 

differences in the ranking of the bulls. 

For all analyzed traits, the validation reliability from HD genotypes was clearly larger than the 

mean of the distribution of R² (validation) of sampled 50K marker sets. As an example, the 
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results from the sampling of 50K markers are shown in Figure 2 for the traits milk yield, SCS, 

udder, and stature. The dotted line indicates the 95% quantile of the distribution of validation 

reliability from sampled 50K genotypes. The observed validation reliability from HD 

genotypes exceeds this 95% quantile for all traits. The probabilities that a sample of 50K SNP 

from HD genotypes results in at least the same validation reliability as HD genotypes are given 

in Table 2 and they are always smaller than 1% for the different traits.  

Table 1. Validation [R² (validation); adjusted for reliability of daughter yield deviations 

(DYD)] and model-based reliability [R² (model based)] and regression coefficients [b(DYD, 

DGV), where DGV = direct genomic value] of genomic predictions with 50,000-SNP (50K) 

and high-density (HD) genotypes 

 R² (validation) R² (model based) b(DYD, DGV) 

Trait 50K  HD 50K  HD 50K  HD 

Milk yield 0.398 0.414 0.701 0.662 0.700 0.739 

Fat yield 0.419 0.427 0.696 0.657 0.777 0.810 

Protein yield 0.378 0.392 0.691 0.653 0.658 0.689 

SCS 0.548 0.559 0.679 0.643 0.818 0.837 

Milkability 0.458 0.481 0.685 0.648 0.962 1.024 

Muscling 0.480 0.501 0.627 0.594 0.821 0.846 

Udder 0.297 0.313 0.633 0.599 0.845 0.886 

Feet and legs 0.315 0.330 0.575 0.547 0.824 0.858 

Stature 0.366 0.379 0.669 0.632 0.824 0.863 

Average 0.407 0.422 0.662 0.626 0.803 0.839 

 

The validation reliability for sampled 50K subsets averaged 0.394 (Table 2) and was 0.013 

smaller than that observed from the real 50K chip. The difference in validation reliability 

between HD and the mean of sampled 50K genotypes ranged from 0.021 to 0.036 with an 
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average of 0.028. The sampling of validation animals resulted in statistically significant (P < 

0.001) differences in validation reliability between HD and 50K genotypes for every trait 

analyzed.  

 

Figure 2. Validation reliability of genomic predictions [R² (validation); adjusted for reliability 

of daughter yield deviations (DYD)] resulting from high-density (HD) markers (solid line) and 

from sampled 50,000-SNP (50K) subsets from HD (solid curve; dashed line = mean; dotted 

line = 95% quantile) in milk yield, SCS, udder, and stature. 

 

Applying shrinkage estimation to 50K genotypes, had almost no effect on the validation 

reliability of the genomic prediction. The validation reliability resulting from 50K genotypes 

with shrinkage amounted to 0.409, on average, and was just 0.002 larger than without 
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shrinkage (Table 3). Model-based reliability from 50K genotypes, however,  decreased by 

0.026 with shrinkage estimation and approached the model-based reliability from HD 

genotypes. In the same manner, the regression coefficient b(DYD, DGV) from 50K genotypes 

with shrinkage approached the result from HD genotypes. On average, it amounted to 0.832 

and was 0.029 larger than without shrinkage. The remaining difference to HD genotypes was 

only 0.007, on average. 

Table 2. Validation reliability [adjusted for reliability of daughter yield deviations (DYD)] of 

genomic predictions resulting from high-density (HD) markers and from sampled 50,000-SNP 

(50K) subsets from HD, and P-values for the statistical test of the hypothesis that any value 

from the distribution of 50K markers exceeds the validation reliability from HD markers 

 50K subset    

Trait Mean 95% quantile HD Difference 

(HD - 50K 

subset) 

P-value 

Milk yield 0.382 0.397 0.414 0.032 1.9 × 10
-4

 

Fat yield 0.393 0.408 0.427 0.034 9.4 × 10
-5

 

Protein yield 0.359 0.374 0.392 0.033 1.5 × 10
-4

 

SCS 0.536 0.549 0.559 0.023 2.0 × 10
-3

 

Milkability 0.445 0.458 0.481 0.036 5.6 × 10
-6

 

Muscling 0.474 0.487 0.501 0.027 2.4 × 10
-4

 

Udder 0.290 0.303 0.313 0.023 1.8 × 10
-3

 

Feet and legs 0.308 0.322 0.330 0.022 5.7 × 10
-3

 

Stature 0.358 0.371 0.379 0.021 2.9 × 10
-3

 

Average 0.394 - 0.422 0.028 - 
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Table 3. Validation [R² (validation); adjusted for reliability of daughter yield deviations 

(DYD)] and model-based reliability [R² (model based)] and regression coefficients [b(DYD, 

DGV), where DGV = direct genomic value] of genomic predictions from 50,000-SNP (50K) 

genotypes with shrinkage estimation (50K shr.) compared with high-density (HD) genotypes 

 R² (validation) R² (model based) b(DYD, DGV) 

Trait 50K shr. HD 50K shr. HD 50K shr. HD 

Milk yield 0.403 0.414 0.672 0.662 0.730 0.739 

Fat yield 0.422 0.427 0.667 0.657 0.810 0.810 

Protein yield 0.382 0.392 0.662 0.653 0.684 0.689 

SCS 0.547 0.559 0.651 0.643 0.845 0.837 

Milkability 0.466 0.481 0.657 0.648 1.004 1.024 

Muscling 0.480 0.501 0.605 0.594 0.837 0.846 

Udder 0.298 0.313 0.610 0.599 0.872 0.886 

Feet and legs 0.314 0.330 0.556 0.547 0.848 0.858 

Stature 0.370 0.379 0.645 0.632 0.856 0.863 

Average 0.409 0.422 0.636 0.626 0.832 0.839 

 

Discussion 

The aim of the present study was to investigate whether a change from 50K to HD genotypes 

in the German-Austrian routine evaluation would present an immediate benefit that justifies the 

additional costs. Therefore, we used the standard GBLUP model of the routine evaluation and 

the same variance components. The use of GBLUP in the genomic analysis is justified, as no 

clear evidence exists that the infinitesimal model does not apply to the majority of quantitative 

traits in dairy cattle populations (VanRaden et al., 2009, 2013; Erbe et al., 2012; Su et al., 

2012) and especially in the Fleckvieh breed (Gredler et al., 2010; Pausch et al., 2011; Pryce et 

al., 2011). Moreover, GBLUP has the practical advantage that genetic base population and 
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variance components do not need to be changed when it is assured that the genomic 

relationship matrix has the same scale as the numerator relationship matrix which should be the 

case in our study. In this context, the objective of this study was to analyze to what extent the 

higher marker density improves the estimate of a large genomic relationship matrix and 

reliability and inflation of genomic predictions in a Fleckvieh population given the GBLUP 

model. 

The use of mainly imputed HD genotypes as compared with 50K genotypes resulted in a small 

gain in validation reliability of 0.015, on average. Other groups, which compared the 

reliabilities of genomic breeding values of 50K and HD markers predicted with GBLUP, found 

similar or even smaller differences in reliability between HD and 50K genotypes (Erbe et al., 

2012; Su et al., 2012). Gains in validation reliability with HD genotypes were not much larger 

when nonlinear models were applied (Harris et al., 2011; Erbe et al., 2012; Su et al., 2012; 

VanRaden et al., 2013). The investigations show that only small, if any, gains in the validation 

reliability can be obtained with HD genotypes using a GBLUP model. The advantage of 0.015 

in validation reliability that we achieved with mainly imputed HD genotypes in our study 

might not be the true gain which is attainable with HD in the GBLUP model. High-density 

genotypes were affected by imputation error and this should be taken into account when 

comparing with results from 50K genotypes. Likewise, the HD genotypes in the studies cited 

above were imputed from 50K and thus affected by imputation error. The effect of genotype 

error on the validation reliability is reported in the Appendix. These results show that the 

decrease of 0.013 in validation reliability with 50K samples compared with real 50K genotypes 

was caused by imputation error in 50K samples because introduction of a genotype error 

equivalent to imputation error in Fleckvieh led to a very similar decay of 0.015 compared with 

original 50K not affected by imputation error. 

2
nd

 chapter HD genotypes in genomic BLUP 47 

 



By means of sampling of 50K marker sets and comparison of the resulting distribution of 

validation reliability with HD genotypes and sampling of validation animals, we were able to 

show that the advantage of HD over 50K is statistically significant in all 9 analyzed traits. To 

assess the quality of the 50K samples for the estimation of genomic breeding values, we 

compared the mean of all samples to that of the original 50K set. The difference in validation 

reliability between sampled and original 50K marker sets is likely caused by imputation error 

affecting imputed HD and sampled 50K genotypes, but not real 50K genotypes.  The results in 

Table 1 represent the current situation that all bulls are genotyped with the 50K chip and only a 

fraction of bulls are genotyped with the HD chip. Imputed HD genotypes of the remaining 

bulls are affected by imputation error in contrast to their 50K genotypes. Table 2 summarizes 

the fair comparison when both marker sets are equally affected by imputation error. These 

differences apply equally to a setting where all bulls are genotyped with both marker sets or 

where imputation without error is possible. By means of sampling of validation bulls, we were 

able to show that the difference between HD and real 50K genotypes is significant even under 

the unfavorable conditions that 50K markers are genotyped and HD markers are imputed with 

some level of error. 

The observed small but significant increase in validation reliability with HD genotypes in the 

GBLUP model should be compared with theoretical expectations. The effective number of 

chromosome segments segregating in the population (Goddard, 2009; Hayes et al., 2009) is a 

common measure for haplotype diversity and determined by the amount of linkage 

disequilibrium in the respective population (Goddard et al, 2011). Goddard et al. (2011) 

derived a theoretical expectation of the reliability of predicted breeding values dependent on 

the number of calibration animals, mean heritability of the phenotypes, number of markers, and 

the effective number of chromosome segments segregating in the population. We calculated 

the expected relative gain from HD markers based on this formula to obtain the expected 
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validation reliability from HD markers. This expectation was consistent with the observed 

validation reliability from HD markers (Table 4). Contrary to the small gain in validation 

reliability with HD genotypes, the model-based reliability decreased with the larger number of 

markers. In a simulation study, Goddard et al. (2011) demonstrated that an increase in the 

variance of sampling errors of realized relationship coefficients [V(E)] causes model-based 

reliability to be overestimated. As V(E) is reciprocally related to the number of markers (Yang 

et al., 2010), overestimation of the model-based reliability is reduced with HD genotypes. 

Using HD genotypes has thus the effect that is intended by the use of shrinkage of estimated 

genomic relationships (Goddard et al., 2011; Endelman and Jannink, 2012): it reduces the 

variance of the relationship coefficients and induces accordance of model-based and true 

reliability.  

Table 4. Observed validation reliability [adjusted for reliability of daughter yield deviations 

(DYD)] with 50,000-SNP (50K) and high-density (HD) genotypes and expectation of the 

validation reliability for HD genotypes 

 50K HD 

Trait Observed Expected Observed 

Milk yield 0.398 0.407 0.414 

Fat yield 0.419 0.428 0.427 

Protein yield 0.378 0.386 0.392 

SCS 0.548 0.560 0.559 

Milkability 0.458 0.468 0.481 

Muscling 0.480 0.490 0.501 

Udder 0.297 0.303 0.313 

Feet and legs 0.315 0.322 0.330 

Stature 0.366 0.374 0.379 

Average 0.407 0.415 0.422 
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Figure 3. Dependency of the optimal shrinkage intensity on the number of markers in our 

Fleckvieh data set. 

 

Endelman and Jannink (2012) showed that the sampling error of the relationship coefficients 

depends on the ratio of n (number of animals) and CV² (squared coefficient of variation of the 

eigenvalues of the realized relationship matrix). Notably, with fixed m and CV, the sampling 

error will become larger if the number of genotyped animals increases. Even though the 

shrinkage target in the method of Endelman and Jannink (2012) is different from that of 

Goddard et al. (2011), the aim is likewise to reduce the estimation error of realized relationship 

coefficients. The optimal shrinkage was estimated from our data set for different numbers of 

markers (depicted in Figure 3). Because the optimal shrinkage intensity decreases 

hyperbolically with the number of markers, it is negligible for our HD data set. From this point 
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of view, the relationships estimated from HD genotypes should reflect the realized 

relationships at QTL quite well, provided that the distribution of QTL follows approximately 

the infinitesimal model and that QTL and markers do not differ systematically in their 

properties. 

Shrinkage estimation resulted in a decrease in model-based reliability, whereas validation 

reliability remained unchanged. Endelman and Jannink (2012) did not detect any increase in 

prediction accuracy in validation animals with shrinkage estimation either. In contrast to higher 

marker density, shrinkage estimation does not provide additional information for the prediction 

of breeding values but ensures that the variance of the realized relationship coefficients is not 

overestimated. Nevertheless, model-based reliabilities in this investigation are still 

considerably larger than validation reliabilities. Possible reasons for this discrepancy are 

markers not capturing all of the additive genetic variance, preselection of validation bulls to 

genotyping and error in validation reliability due to the limited size of the validation group 

(VanRaden et al., 2009). Preselection of validation bulls to genotyping and errors in the 

validation reliability due to limited sample size are independent of the number of markers and 

affect concordance of model-based and validation reliability irrespective of the marker set. In 

the German-Austrian genomic routine evaluation, trait-optimized proportions of polygenic 

variance ranging from 10 to 25% are included in the analysis to account for genetic variance 

that is not captured by markers. Therefore, the reported results do not reflect necessarily the 

situation in the routine evaluation. 

Direct genomic values that were predicted with HD genotypes showed less inflation than 

predictions from 50K genotypes. This finding is confirmed by Su et al. (2012) who predicted 

genomic values with 50K and HD genotypes and reported that the regression coefficient of 

deregressed proofs on predicted genomic values was larger when HD genotypes were used. As 

already pointed out, the variance of estimated relationship coefficients is higher with a limited 
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number of markers. The consequence is that the variance of predicted breeding values is 

inflated. This results in b(DYD, DGV) farther from the expectation. With an increasing number 

of markers, this variance decreases and, consequently, the inflation of the predictions is 

reduced. However, the inflation of DGV that is still observable with HD probably indicates 

that even HD does not capture all of the additive genetic variance assumed by the model 

(Goddard et al., 2011). 

 

Conclusions 

Prediction of genomic breeding values in the Fleckvieh breed with HD genotypes instead of 

50K genotypes in a GBLUP model leads to small gains in validation reliability and reduces the 

inflation of predicted breeding values. Model-based reliabilities that are overestimated with 

50K genotypes decrease with HD genotypes because the sampling error of the realized 

relationship matrix is reduced. Similar effects on inflation and model-based reliabilities are 

obtained by shrinkage estimation of the realized relationship matrix from 50K genotypes. 

However, whereas HD genotypes increase validation reliability, shrinkage estimation only 

reduces inflation and potentially overestimated model-based reliability. 
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Appendix 

We found that shrinkage of the identity-by-state (IBS) matrix results in lower model based 

reliability while validation reliability remains constant. To assess the effect of wrongly imputed 

genotypes on the validation reliability, we introduced different degrees of error into the 50K 

genotypes. For each animal, a proportion of genotypes was drawn at random and substituted by 

false genotypes. When the original genotype was heterozygous, it was replaced by one of the 

homozygotes with equal probability. Homozygous genotypes were replaced by either the 

heterozygote or the alternative homozygote with equal probability. Thus, 50K datasets were 

created with 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0% false genotypes and used for the prediction of 

genomic breeding values. The validation reliability was calculated as the coefficient of 

determination of the regression of DYD on DGV of validation animals divided by the 

reliability of DYD of validation animals. For each error percentage, 30 replicates were 

performed to obtain a reliable estimate of R² (validation). 

The effect of erroneous genotypes on the validation reliability is presented in Figure 4 for 

different error rates. The validation reliability decreased almost linearly with increasing error 

percentage. The extent of the decrease differed between the traits. Fat and protein yield were 

most and milkability was least affected by genotype errors. Validation reliabilities are reported 

for 1.5% false genotypes in Table 5 and compared with mean validation reliability from 50K 

samples and validation reliability from the 50K chip. Validation reliability from 50K genotypes 

with 1.5% errors was, on average, 0.015 lower than validation reliability from original 50K 
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genotypes. The decay in validation reliability with 1.5% error was very similar to the decrease 

with sampled 50K subsets from HD genotypes. This indicates that the imputation error was 

approximately equivalent to a homogeneous genotype error of 1.5%. Analysis of imputation 

from 50K to HD with FImpute in Fleckvieh resulted in 1.6% genotype error. Similar 

reductions of validation reliability with imputation error were reported by Chen et al. (2011) 

and Dassonneville et al. (2011). 

 

Figure 4. Decay in validation reliability [adjusted for reliability of daughter yield deviations 

(DYD)] for different percentages of false genotypes. 50K = 50,000 SNP. 
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Table 5. Validation reliability [adjusted for reliability of daughter yield deviations (DYD)] 

from original 50,000-SNP (50K) genotypes, 50K genotypes with 1.5% homogeneous error, and 

sampled 50K genotypes from high density (HD) 

Trait 50K 50K with 1.5% 

error 

50K subsets 

Milk yield 0.398 0.384 0.382 

Fat yield 0.419 0.399 0.393 

Protein yield 0.378 0.362 0.359 

SCS 0.548 0.527 0.536 

Milkability 0.458 0.452 0.445 

Muscling 0.480 0.466 0.474 

Udder 0.297 0.286 0.290 

Feet and legs 0.315 0.298 0.308 

Stature 0.366 0.355 0.358 

Average 0.407 0.392 0.394 
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Summary and Authors’ Contributions 

This study investigated reliability of genomic predictions with medium-density (40,089; 50K) 

or high-density marker sets (HD; 388,951). Differences in validation reliability were tested for 

significance by means of an approximate method. Model based reliability and the effect of HD 

genotypes on inflation of predictions were analyzed additionally. Genomic breeding values 

were predicted for at least 1,321 validation bulls based on at least 5,324 calibration bulls. In 

total, 1,485 bulls were actually HD genotyped and HD genotypes of the other animals were 

imputed from using FImpute software. Distributions for validation reliability of 50K markers 

were derived by repeated sampling of 50,000-marker samples from HD to test differences in 

validation reliability. The benefit of HD genotypes in validation reliability was tested by 

repeated sampling of validation groups and calculating the difference between marker densities 

for the samples. The mean benefit in validation reliability of HD genotypes was 0.015 

compared with real 50K genotypes and 0.028 compared with 50K samples from HD affected 

by imputation error and was significant for all traits. The model based reliability was, on 

average, 0.036 lower and the regression coefficient was 0.036 closer to the expected value with 

HD genotypes. Sampling error in the marker-based relationship coefficients causing 

overestimation of the model based reliability was smaller with HD genotypes. Inflation of the 

genomic predictions was reduced with HD genotypes. Similar effects on model based 

reliability and inflation, but not on the validation reliability, were obtained by shrinkage 

estimation of the realized relationship matrix from 50K genotypes. 

J. Ertl performed the analysis using own-written R programs and drafted the manuscript. J. 

Ertl, C. Edel and K.-U. Götz designed the study. C. Edel and R. Emmerling prepared 

phenotypic and genotypic data. C. Edel imputed HD genotypes. C. Edel, R. Emmerling, H. 

Pausch, R. Fries and K.-U. Götz revised the manuscript.   
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Abstract 

Background 

Estimates of dominance variance in dairy cattle based on pedigree data vary considerably 

across traits and amount to up to 50% of the total genetic variance for conformation traits and 

up to 43% for milk production traits. Using bovine SNP (single nucleotide polymorphism) 

genotypes, dominance variance can be estimated both at the marker level and at the animal 

level using genomic dominance effect relationship matrices. Yield deviations of high-density 

genotyped Fleckvieh cows were used to assess cross-validation accuracy of genomic 

predictions with additive and dominance models. The potential use of dominance variance in 

planned matings was also investigated. 

Results 

Variance components of nine milk production and conformation traits were estimated with 

additive and dominance models using yield deviations of 1996 Fleckvieh cows and ranged 

from 3.3% to 50.5% of the total genetic variance. REML and Gibbs sampling estimates 

showed good concordance. Although standard errors of estimates of dominance variance were 

rather large, estimates of dominance variance for milk, fat and protein yields, somatic cell 

score and milkability were significantly different from 0. Cross-validation accuracy of 

predicted breeding values was higher with genomic models than with the pedigree model. 

Inclusion of dominance effects did not increase the accuracy of the predicted breeding and total 

genetic values. Additive and dominance SNP effects for milk yield and protein yield were 

estimated with a BLUP (best linear unbiased prediction) model and used to calculate 

expectations of breeding values and total genetic values for putative offspring. Selection on 

total genetic value instead of breeding value would result in a larger expected total genetic 
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superiority in progeny, i.e. 14.8% for milk yield and 27.8% for protein yield and reduce the 

expected additive genetic gain only by 4.5% for milk yield and 2.6% for protein yield. 

Conclusions 

Estimated dominance variance was substantial for most of the analyzed traits. Due to small 

dominance effect relationships between cows, predictions of individual dominance deviations 

were very inaccurate and including dominance in the model did not improve prediction 

accuracy in the cross-validation study. Exploitation of dominance variance in assortative 

matings was promising and did not appear to severely compromise additive genetic gain. 

 

Background 

Dominance arises when the effects of alleles at a locus are not only additive, but interact so that 

the value of the heterozygous genotypes deviates from the mean of the values of the 

homozygous genotypes. With a and –a being the genotypic values of homozygous genotypes 

A1A1 and A2A2, let d be the genotypic value of the heterozygous genotype A1A2 [1]. If d = 0, 

there is no dominance action at the locus and the genotypic values at the locus are purely 

additive. The additive effects of genotypes at a locus are expressed as breeding values, which 

include part of the dominance effect because animals pass alleles, not genotypes, to their 

offspring. Breeding values are 2q[a + d(q-p)] for genotype A1A1, (q-p)[a + d(q-p)] for 

genotype A1A2 and -2p[a + d(q-p)] for genotype A2A2, where p is the frequency of allele A1 in 

the population and q the frequency of allele A2. The dominance deviation for a given genotype 

at the locus is the difference between genotypic value and breeding value, and is equal to -2q²d, 

2pqd and -2p²d for genotypes A1A1, A1A2 and A2A2, respectively [1]. 
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Until recently, studies on dominance deviations were sparse because without genomic 

information, the availability of large datasets with sufficient proportions of individuals with 

non-null dominance effect relationships, such as full-sibs, is essential for accurate estimation of 

dominance variance. Estimates of dominance variance in dairy cattle that are based on pedigree 

data range from 7.3% to 49.8% of the total genetic variance for conformation traits [2,3] and 

from 3.4% to 42.9% for milk production traits [4-6]. 

At the individual animal level, dominance is hardly used in animal breeding [7], although it 

contains a relevant part of genetic variation. The reasons are the heavy computational demand 

of large-scale genetic evaluations for dominance, the relatively low accuracy of resulting 

estimates of dominance effects, and the complexity of planning and computing the outcome of 

planned matings [8]. 

With the availability of SNP genotypes, dominance at a marker locus can be readily 

determined, dominance effects of markers can be estimated [9,10] and computing the expected 

outcome of planned matings based on SNP genotypes is straightforward [9]. Furthermore, 

covariance matrices of genomic dominance effects among individuals can be calculated, 

similar to matrices of genomic additive relationships, which are widely used in genomic 

selection, such that dominance effects can be estimated in a GBLUP (genomic best linear 

unbiased prediction) model [11,12]. 

In this work, we explored the possibilities of including dominance effects in genomic 

evaluation and furthermore in planned matings in dairy cattle. We estimated variance 

components, including dominance variance, in a dataset of genotyped Bavarian Fleckvieh 

cows, analyzed the predictions of breeding and total genetic values using cross-validation, and 

predicted total genetic values of specific matings.  
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Methods 

Estimation of variance components 

First-lactating cows from 145 Bavarian dairy herds (all first-lactating cows of each herd were 

genotyped), born in 2008 and 2009, were genotyped with the Illumina BovineHD Genotyping 

BeadChip that includes 777 962 SNPs. SNPs with a call rate lower than 0.9, a minor allele 

frequency higher than 0.005 and a highly significant deviation (P < 10
-5

) from the Hardy 

Weinberg equilibrium, and SNPs that were not annotated (UMD3) on the autosomes or on the 

pseudo-autosomal region of the X-chromosome were excluded from the analysis. A total of 

629 028 SNPs remained in the dataset after editing. High-density SNP genotypes and yield 

deviations (YD) for nine traits (milk yield, fat yield, protein yield, somatic cell score, 

milkability, stature, udder score, udder depth and feet and legs score) from 1996 Bavarian 

Fleckvieh cows were available to (a) estimate variance components, including dominance 

variance and (b) perform cross-validation in order to evaluate the predictive ability of a model 

with dominance effects in comparison to a purely additive model. Both studies were done 

within a GBLUP framework. YD were calculated based on test-day observations adjusted for 

non-genetic effects, but not for permanent environmental effects, for each lactation and 

interpolated by the method of best prediction [13,14]. A weighted mean was calculated across 

lactation YD of a cow in order to obtain one multi-lactation YD per cow. The effective number 

of own performances (EOP) [15] was provided as a weight for the multi-lactation YD. For 

conformation traits, a permanent environmental effect was not modeled because repeated 

measurements are not available for cows. 

Additive genetic (𝜎𝐴
2) and residual (𝜎𝐸

2) variance components were estimated with models MA 

and MG. 

MA: y = µ + Zu + e 
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MG: y = µ + Zu + e,  

where y is a vector of multi-lactation YD, µ is the overall mean, Z is a design matrix relating 

YD to breeding values, u is a vector of breeding values of cows, and e is a vector of residuals. 

Covariance matrices of additive effects were V(u) = A𝜎𝐴
2 in model MA and V(u) = G𝜎𝐴

2 in 

model MG, where A is the numerator relationship matrix and G is the genomic relationship 

matrix. The genomic relationship matrix G
*
 was calculated based on the approach of 

VanRaden [16] using PREGSF90 [17]: 

𝐆∗ =
𝐖𝑎𝐖𝑎′

2 ∑ 𝑝𝑘𝑞𝑘
𝑚
𝑘=1

, 

where matrix Wa has dimensions of the number of individuals (n) by the number of loci (m), 

with elements that are equal to 2-2pk and -2pk for opposite homozygous and 1-2pk for 

heterozygous genotypes, pk is the minor allele frequency of locus k, and qk =1-pk. Matrix G
*
 

was scaled so that the means of diagonals and off-diagonals are the same as in A [18,19] and 

then combined with A to G = 0.95 G
*
 + 0.05 A in order to improve numerical stability. The 

variance matrix of residual effects was V(e) = F𝜎𝐸
2 for both models, where F is a diagonal 

matrix with reciprocals of the EOP as weights. Extending model MG with dominance effects 

leads to model MGD: 

MGD: y = µ + Zu + Zv +e, 

where v is a vector of dominance deviations of cows. V(u) and V(e) are defined as in model 

MG. The covariance matrix of dominance effects is V(v) = D𝜎𝐷
2, where D is the genomic 

dominance relationship matrix and 𝜎𝐷
2 is the dominance variance. Matrix D

*
 was calculated as: 

𝐃∗ =
𝐖𝑑𝐖𝑑′

4 ∑ 𝑝𝑘
2𝑞𝑘

2𝑚
𝑘=1

, 
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where Wd has dimensions of the number of individuals (n)  by the number of loci (m), with 

elements that are equal to -2qk² for genotype A1A1, 2pkqk for genotype A1A2, and -2pk² for 

genotype A2A2. Matrix D
*
 was then combined with the identity matrix I as D = 0.95 D

*
 + 0.05 

I to improve numerical stability. 

Estimation of variance components was performed with REMLF90 [20]. Goodness of fit of the 

respective models to the data was measured by the likelihood. The superiority of model MGD 

over model MG was tested by a likelihood ratio test, which was calculated as -2ln(likelihood 

for MG) + 2ln(likelihood for MGD). The likelihood ratio follows a mixture of χ²-distributions 

with 0 and 1 degree of freedom [21]. In addition, variance components of model MGD were 

estimated by Gibbs sampling using the GIBBS1F90 software [20] in order to compare them 

with REML results and to calculate standard errors of the estimates. A total of 200 000 

iterations of the sampler were run, with the first 20 000 iterations discarded as burn-in samples 

and every 50
th

 sample included in the posterior analysis. Convergence to the final distribution 

was checked with the Geweke diagnostics [22] of the R package coda [23,24]. 

Additive and dominance variance components at the marker level (𝜎𝑎
2 and 𝜎𝑑

2) were also 

estimated with the GS3 software [25] in a Markov chain Monte Carlo algorithm, using a model 

at the marker level (referred to as the MGD-SNP model hereinafter), in contrast to the previous 

animal level models:  

𝐲 = 𝟏𝜇 + 𝐓𝐚 + 𝐗𝐝 + 𝐞, 

where a and d are vectors of additive and dominant effects of the SNPs, and T and X are 

incidence matrices coded as {-1, 0, 1} and {0, 1, 0} for the three possible genotypes. The 

assumed variance-covariance structure was V(a) = I𝜎𝑎
2 and V(d) = I𝜎𝑑

2. From the resulting 

estimates, additive and dominance variance components on the animal level were calculated as: 
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𝜎𝐴
2 = ∑ (2𝑝𝑘𝑞𝑘)𝑚

𝑘=1 𝜎𝑎
2  

+ ∑ [2𝑝𝑘𝑞𝑘(𝑞𝑘 − 𝑝𝑘)2]𝑚
𝑘=1 𝜎𝑑

2  

and 𝜎𝐷
2 = ∑ (4𝑝𝑘

2𝑞𝑘
2)𝑚

𝑘=1 𝜎𝑑
2 [12].  

A total of 300 000 iterations of Gibbs sampling were performed for each trait. The first 20 000 

iterations were discarded as burn-in samples and from the remaining 280 000 every 50
th

 sample 

was considered for analysis of the posterior distribution. 

Prediction of breeding values and total genetic values – cross-validation 

Genotyped cows with YD for the respective traits were randomly divided in ten groups in order 

to perform cross-validation analysis. Typically, splitting at random implies that some 

validation animals have descendants in the training dataset, which means that the cross-

validation is based on descendants, a case of no interest in reality and which will inflate 

accuracies [26]. In our dataset, genotyped cows were from a single generation. Therefore, a 

predicted cow could not have daughters (but, e.g., half- or full-sibs) in the training dataset – 

hence limiting upward bias in the estimation caused by progeny of validation animals in the 

training data. In this setting, the cross-validation accuracy measures the accuracy to predict 

contemporary cows including half- and full-sibs of training cows. Each group served once as 

validation group and the calibration group consisted of the other nine groups. Breeding values 

and total genetic values for the validation group were predicted based on models MA, MG, and 

MGD with their respective variance components estimated with REMLF90. The correlation 

between predicted breeding values and YD in the validation group [𝑟(𝑌𝐷, 𝑢̂)] was calculated, 

as well as the regression of YD on predicted breeding values [𝑏(𝑌𝐷, 𝑢̂)]. For model MGD, the 

correlation between predicted total genetic values and YD [𝑟(𝑌𝐷, 𝑔̂)] and the regression of YD 

on predicted total genetic values [𝑏(𝑌𝐷, 𝑔̂)] were also calculated. These measures were 

averaged over the ten validation groups. 
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Prediction of total genetic values of matings 

Genotype probabilities and expectations of purely additive breeding values (u) and total genetic 

values (𝑔), that include dominance deviations, were calculated for the offspring  of all possible 

matings between 1996 cows and 50 bulls for milk yield and protein yield. The bulls were 

genotyped and selected for the respective trait on their conventional breeding value after 

progeny test (including the records of 1996 genotyped cows) from the German-Austrian 

genetic evaluation. SNP effects a and d were estimated in a BLUP model (BLUP-SNP; equal 

to model MGD-SNP but with variance components known) using GS3. Variance components 

𝜎𝑎
2 and 𝜎𝑑

2 were fixed to values calculated from REMLF90 variance components 𝜎𝐴
2 and 𝜎𝐷

2 

(model MGD): 

𝜎𝑑
2 =  

𝜎𝐷
2

∑(22𝑝𝑘
2𝑞𝑘

2)
; 𝜎𝑎

2 = 
𝜎𝐴

2−∑[2𝑝𝑘𝑞𝑘(𝑞𝑘−𝑝𝑘)2]𝜎𝑑
2

∑(2𝑝𝑘𝑞𝑘)
.  

The total genetic value 𝑔𝑖𝑗 of progeny from a mating between bull i and cow j was predicted as 

in Toro and Varona [9]: 

𝑔̂𝑖𝑗 = ∑ [𝑃𝑟𝑖𝑗𝑘(𝐴𝐴)𝑎̂𝑘 + 𝑃𝑟𝑖𝑗𝑘(𝐴𝑎)𝑑̂𝑘 − 𝑃𝑟𝑖𝑗𝑘(𝑎𝑎)𝑎̂𝑘]𝑘 , 

where 𝑃𝑟𝑖𝑗𝑘() is the probability of the corresponding genotype at locus k. Analogously, the 

breeding value 𝑢𝑖𝑗 of progeny from a mating between bull i and cow j was predicted as:  

𝑢̂𝑖𝑗 = ∑ [𝑃𝑟𝑖𝑗𝑘(𝐴𝐴)(2 − 2𝑝𝑘)𝛼̂𝑘𝑘   

+𝑃𝑟𝑖𝑗𝑘(𝐴𝑎)(1 − 2𝑝𝑘)𝛼̂𝑘 + 𝑃𝑟𝑖𝑗𝑘(𝑎𝑎)(−2𝑝𝑘)𝛼̂𝑘], 

where 𝛼̂𝑘 = 𝑎̂𝑘 + 𝑑̂𝑘(𝑞𝑘 − 𝑝𝑘).  

Matings can be selected on 𝑢̂ to maximize additive genetic gain or on 𝑔̂ to maximize total 

genetic superiority. The latter maximizes the productive performance of the offspring, which 
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might be a farmer’s interest. However, 𝑔̂ can be maximized only for the next generation 

because gain in the dominance part of 𝑔̂ cannot be accumulated in subsequent generations. In 

our example, additive gain is assured by pre-selection of bulls on their conventional breeding 

value. Selection on 𝑢̂ leads to maximum additive gain, which can be accumulated in 

subsequent generations, and thus optimizes cumulative multi-generational genetic gain. A 

desirable objective might be to maximize 𝑔̂ of matings and at the same time to keep the 

expected 𝑢̂ of the offspring as high as possible. 

In order to compare the results of these two possible selection strategies, 𝑔̂ and 𝑢̂ of all 

possible matings between the 1996 cows and 50 bulls were calculated for milk and protein 

yields. For each cow, the top mating was selected with respect to 𝑔̂ or 𝑢̂, with the restriction 

that a single bull was not mated to more than 200 cows. The expected additive genetic gains 

and total genetic superiorities with selection on 𝑢̂ or 𝑔̂ were calculated as the difference 

between the mean 𝑢̂ or 𝑔̂ of selected matings and the mean 𝑢̂ or 𝑔̂ of all possible matings. 

 

Results 

Estimation of variance components 

Figure 1 shows the histograms of off-diagonal elements of the additive and dominance 

genomic relationship matrices. Means of off-diagonals of G (before scaling) and D were equal 

to 0, which implies that the population was in Hardy-Weinberg equilibrium. The standard 

deviation of off-diagonals of G was equal to 0.036, which is five times larger than the standard 

deviation of off-diagonals of D, i.e. 0.007. The proportion of off-diagonals that were smaller 

than -0.05 or larger than 0.05 was 6.27% for G but only 0.02% for D. Therefore, matrix D was 

less informative than G. 
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Figure 1 Histograms of off-diagonal elements of relationship matrices G (unscaled) (a)  and D 

(b) 

Table 1 Estimates of additive and dominance variance components obtained using 

REMLF90 for models MA, MG and MGD 

Trait MA MG MGD 

 𝜎𝐴
2 𝜎𝐴

2 𝜎𝐴
2 𝜎𝐷

2 𝜎𝐸
2 𝜎𝐷

2

𝜎𝐴
2 + 𝜎𝐷

2 

Milk yield 261500 214200 208900 92640 164700 0.308 

Fat yield 279.4 274.4 267 104 198 0.281 

Protein yield 213.4 175.4 166 115 154 0.409 

Somatic cell score 0.2302 0.2640 0.256 0.261 0.555 0.505 

Milkability 0.0193 0.0216 0.0122 0.0076 0.0029 0.390 

Stature 3.412 5.728 5.80 0.20 6.51 0.033 

Udder score 1.845 1.998 1.99 0.27 9.29 0.118 

Udder depth 0.313 0.380 0.380 0.119 0.517 0.238 

Feet and legs score 1.323 1.198 1.19 0.21 9.89 0.153 

Estimated variance components for model MGD are in Table 1. Dominance variance 

(expressed as a percentage of total genetic variance) for milk production traits ranged from 

28.1% for fat yield to 40.9% for protein yield. For somatic cell score and milkability, 

dominance variance was estimated at 39.0 and 50.5% of the genetic variance. Estimates of 

dominance variance for conformation traits were quite small, except for udder depth, ranging 
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from 3.3% for stature to 15.3% for feet and legs score. For udder depth, dominance variance 

was estimated at 23.8% of the genetic variance. For comparison, additive variances estimated 

with models MA and MG are also in Table 1. With the exception of milkability, the estimates 

of additive variance from model MG were consistent with additive variance estimates from the 

dominance model. Estimates of additive variance obtained with the pedigree model MA 

differed to some extent from those obtained with the genomic models. Estimates of variance 

components obtained using Gibbs sampling with model MGD and with an equivalent MGD-

SNP model are in Table 2 and were similar to REML estimates with model MGD. Geweke 

statistics [22] showed convergence for model MGD but for the MGD-SNP model, the Gibbs 

chains did not converge even after 300 000 iterations. However, the means of the Gibbs chains 

for the MGD-SNP model were similar to those for the MGD model. For stature, udder score 

and feet and legs score, the estimated dominance variance was clearly larger with both Gibbs 

sampling analyses than with REML estimation because of a skewed posterior distribution of 

the Gibbs samples. Estimates of the ratio between dominance and total genetic variance had 

standard errors around 0.10, which is fairly good for such a small dataset. 

For all traits, model MG, which exploited genomic information, fitted the data better than 

model MA, which included pedigree information only. The superiority of model MGD, which 

included a dominance effect, compared to model MG was significant for milk yield, fat yield, 

protein yield, somatic cell score and milkability, based on the likelihood ratio test. Likelihood 

measures and statistics of the likelihood ratio test between models MG and MGD are in Table 

3. The likelihood ratio test statistics were asymptotically χ²-distributed [27]. The χ²-distribution 

function can take only non-negative values because it is defined as a sum of squared values. 

For two traits (stature and udder score), the likelihood ratio test statistics were negative (but 

very close to 0), which was due to numerical rounding or not finding the mode of the 

likelihood exactly. 
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Table 2 Estimates of additive and dominance variance components from Gibbs sampling 

for models MGD and MGD-SNP  

Trait MGD MGD-SNP 

 𝜎𝐴
2 𝜎𝐷

2 𝜎𝐸
2 𝜎𝐷

2

𝜎𝐴
2 + 𝜎𝐷

2 
𝜎𝐴

2 𝜎𝐷
2 𝜎𝐸

2 𝜎𝐷
2

𝜎𝐴
2 + 𝜎𝐷

2 

Milk yield 211124 

±28668 

98430 

±45503 

161657 

±33376 

0.306 

±0.108 

202367 

±23929 

115345 

±32156 

152862 

±27651 

0.358 

±0.067 

Fat yield 270.2 

±36.9 

112.5 

±53.3 

193.5 

±36.9 

0.283 

±0.105 

261.9 

±31.0 

119.1 

±34.4 

192.4 

±29.6 

0.308 

±0.064 

Protein yield 168.2 

±26.3 

117.8 

±43.7 

152.7 

±28.9 

0.401 

±0.105 

166.2 

±23.0 

105.6 

±30.5 

160.9 

±25.0 

0.383 

±0.072 

Somatic cell score 0.268 

±0.067 

0.261 

±0.121 

0.554 

±0.096 

0.471 

±0.155 

0.220 

±0.070 

0.130 

±0.068 

0.680 

±0.088 

0.352 

±0.101 

Milkability 0.01228 

±0.00188 

0.00735 

±0.00169 

0.00315 

±0.00102 

0.375 

±0.082 

0.0116 

±0.00119 

0.00724 

±0.00149 

0.00397 

±0.00123 

0.382 

±0.061 

Stature 5.874 

±0.869 

0.616 

±0.493 

6.119 

±0.802 

0.091 

±0.065 

5.754 

±0.749 

1.325 

±0.497 

5.517 

±0.809 

0.184 

±0.058 

Udder score 2.016 

±0.521 

1.089 

±0.787 

8.527 

±0.921 

0.322 

±0.161 

2.010 

±0.498 

1.134 

±0.452 

8.466 

±0.819 

0.352 

±0.070 

Udder depth 0.3852 

±0.0608 

0.1656 

±0.0952 

0.4730 

±0.1024 

0.285 

±0.120 

0.387 

±0.055 

0.181 

±0.059 

0.457 

±0.082 

0.312 

±0.067 

Feet and legs score 1.212 

±0.451 

0.947 

±0.676 

9.209 

±0.831 

0.407 

±0.192 

1.320 

±0.382 

0.936 

±0.370 

9.118 

±0.700 

0.408 

±0.070 

The results are given as estimate ± standard error. 

 

Table 3 Goodness of fit of models MA, MG, and MGD and likelihood ratio test (χ²-value 

and P-value) between models MG and MGD 

 -2 log likelihood Likelihood ratio test 

 MA MG MGD χ²-value P-value 

Milk yield 31531.5 31488.1 31484.3 3.8 0.026 

Fat yield 18363.1 18299.5 18295.9 3.6 0.029 

Protein yield 17852.5 17824.6 17817.6 7.0 0.004 

Somatic cell score 6072.9 6055.0 6050.6 4.4 0.018 

Milkability -1243.5 -1297.6 -1323.9 26.3 1.46*10
-7

 

Stature 9979.0 9907.9 9908.4 -0.5 1.000 

Udder score 9916.5 9902.4 9902.5 -0.1 1.000 

Udder depth 5287.9 5239.7 5238.5 1.2 0.137 

Feet and legs score 9884.9 9880.9 9880.9 0.0 1.000 

The measures of goodness of fit (-2 log likelihood) for models MA, MG and MGD are reported as well as the 

likelihood ratio test statistics (χ²-value = −2ln 
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑜𝑟 𝑀𝐺

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑜𝑟 𝑀𝐺𝐷
) between models MG and MGD and the 

corresponding P-values. 
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Prediction of breeding values and total genetic values – cross-validation 

Mean accuracies of predicted breeding values [𝑟(𝑌𝐷, 𝑢̂)] and slopes of the regression of YD on 

predicted breeding values [𝑏(𝑌𝐷, 𝑢̂)] are in Table 4. For model MA, 𝑟(𝑌𝐷, 𝑢̂) ranged from 

0.102 for somatic cell score to 0.228 for fat yield, with an average of 0.165. Replacing pedigree 

with genomic relationships increased 𝑟(𝑌𝐷, 𝑢̂) to between 0.108 (feet and legs) and 0.327 

(milkability), with an average of 0.242. 𝑟(𝑌𝐷, 𝑢̂) did not change when dominance effects were 

added to the model. Average standard errors of 𝑟(𝑌𝐷, 𝑢̂) were equal to 0.024, 0.021 and 0.021 

in models MA, MG and MGD, respectively. 𝑟(𝑌𝐷, 𝑔̂) with the dominance model ranged from 

0.109 for feet and legs score to 0.325 for fat yield. The difference between 𝑟(𝑌𝐷, 𝑔̂) and 

𝑟(𝑌𝐷, 𝑢̂) in model MGD ranged from -0.004 for protein yield to 0.003 for udder score. The 

standard errors of 𝑟(𝑌𝐷, 𝑔̂) were similar to those for 𝑟(𝑌𝐷, 𝑢̂), with a mean of 0.021. 

For models MA and MG, 𝑏(𝑌𝐷, 𝑢̂) ranged from 0.563 (milkability) to 1.201 (feet and legs 

score) and from 0.744 (milkability) to 1.068 (fat yield), respectively, with means of 0.964 and 

0.971. 𝑏(𝑌𝐷, 𝑢̂) for model MGD ranged from 0.924 (protein yield) to 1.085 (fat yield), with a 

mean of 1.016. The standard errors of 𝑏(𝑌𝐷, 𝑢̂) were rather large, with means of 0.151, 0.106 

and 0.111 for models MA, MG and MGD, respectively. The slope of the regression of YD on 

predicted total genetic values ranged from 0.889 (protein yield) to 1.060 (feet and legs score), 

with a mean of 0.995 and was slightly smaller than 𝑏(𝑌𝐷, 𝑢̂) for most traits for the same 

model. The fact that slopes were generally not significantly different from 1 suggests that 

predictions were essentially unbiased, except for milkability. 

Prediction of total genetic values of matings 

For milk yield, 16 bulls were chosen as mating partners when matings were selected on 𝑔̂. The 

restriction of at most 200 cows per bull was reached for seven bulls. The remaining nine bulls 

were mated to 197, 147, 139, 86, 19, 4, 2, 1 and 1 cows. When matings were selected on 𝑢̂, 
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nine bulls were mated to the maximum number of 200 cows and two other bulls to 176 and 20 

cows, respectively. For protein yield, 24 bulls were chosen as mating partners when matings 

were selected on 𝑔̂. The restriction of 200 cows per bull was reached for seven bulls. The 

remaining 17 bulls were mated to 134, 115, 114, 63, 62, 29, 26, 21, 8, 7, 4, 3, 3, 3, 2, 1 and 1 

cows. When matings were selected on 𝑢̂, eight bulls were mated to the maximum number of 

200 cows and the four other bulls to 190, 157, 33 and 16 cows. 

Table 4 Accuracies and regression coefficients of predicted breeding values and total 

genetic values for models MA, MG, and MGD 

Trait 𝒓(𝒀𝑫, 𝒖̂)1 𝒓(𝒀𝑫, 𝒈̂)
2 

𝒃(𝒀𝑫, 𝒖̂)3 𝒃(𝒀𝑫, 𝒈̂)4 

 MA MG MGD MGD MA MG MGD MGD 

Milk yield 0.221 

± 0.029 

0.277 

± 0.030 

0.278 

± 0.031 

0.275 

± 0.032 

0.925 

± 0.109 

0.955 

± 0.099 

0.967 

± 0.101 

0.950 

± 0.104 

Fat yield 0.228 

± 0.018 

0.325 

± 0.020 

0.325 

± 0.019 

0.325 

± 0.019 

1.031 

± 0.085 

1.068 

± 0.078 

1.085 

± 0.079 

1.072 

± 0.075 

Protein yield 0.202 

± 0.031 

0.236 

± 0.016 

0.238 

± 0.016 

0.234 

± 0.016 

0.958 

± 0.148 

0.889 

± 0.070 

0.924 

± 0.072 

0.889 

± 0.069 

Somatic cell score 0.102 

± 0.018 

0.169 

± 0.020 

0.169 

± 0.019 

0.168 

± 0.015 

0.866 

± 0.165 

1.007 

± 0.131 

1.031 

± 0.133 

0.973 

± 0.107 

Milkability 0.133 

± 0.042 

0.327 

± 0.025 

0.324 

± 0.028 

0.322 

± 0.027 

0.563 

± 0.182 

0.744 

± 0.057 

1.053 

± 0.099 

1.004 

± 0.087 

Stature 0.180 

± 0.017 

0.308 

± 0.014 

0.308 

± 0.014 

0.308 

± 0.014 

1.082 

± 0.117 

1.030 

± 0.059 

1.023 

± 0.059 

1.021 

± 0.059 

Udder score 0.121 

± 0.017 

0.159 

± 0.022 

0.159 

± 0.022 

0.158 

± 0.022 

1.023 

± 0.144 

1.004 

± 0.142 

1.007 

± 0.142 

1.002 

± 0.146 

Udder depth 0.192 

± 0.017 

0.269 

± 0.020 

0.269 

± 0.020 

0.272 

± 0.020 

1.031 

± 0.119 

0.988 

± 0.095 

0.991 

± 0.094 

0.988 

± 0.095 

Feet and legs 

score 
0.106 

± 0.026 

0.108 

± 0.023 

0.108 

± 0.023 

0.109 

± 0.024 

1.201 

± 0.290 

1.055 

± 0.221 

1.063 

± 0.223 

1.060 

± 0.225 

The results are given as mean ± standard error. 
1 𝑟(𝑌𝐷, 𝑢̂) = accuracy of predicted breeding values (cross-validation correlation between YD and predicted 

breeding values). 
2 𝑟(𝑌𝐷, 𝑔̂) = accuracy of predicted total genetic values (cross-validation correlation between YD and predicted 

total genetic values). 
3 𝑏(𝑌𝐷, 𝑢̂) = regression coefficient of YD on predicted breeding values. 
4 𝑏(𝑌𝐷, 𝑔̂) = regression coefficient of YD on predicted total genetic values. 

 

Expected total genetic superiorities and additive genetic gains obtained with the selected 

matings are in Table 5, both in absolute numbers and relative to the standard deviations (SD) of 
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𝑢̂ and 𝑔̂. When matings were selected on 𝑔̂ for milk yield, the expected total genetic 

superiority was estimated to be equal to 165.2 kg, which is equivalent to 1.01 SD of 𝑔̂. The 

expected total genetic superiority was reduced to 143.8 kg (0.88 SD) when matings were 

selected on 𝑢̂. The expected additive genetic gain was less sensitive to the selection criterion 

applied since it was only slightly reduced when selection was done on 𝑔̂ (137.7 kg; 0.85 SD) 

instead of on 𝑢̂ (143.8 kg; 0.89 SD). The results were similar for protein yield. With selection 

on 𝑔̂, the expected additive genetic gain was slightly smaller (0.74 vs. 0.76 SD) but the 

expected total genetic superiority was clearly larger (1.01 vs. 0.79 SD) compared to selection 

on 𝑢̂. 

Table 5 Expected total genetic superiority (G) and additive genetic gain (U) with 

selection on total genetic value (𝒈̂) or breeding value (𝒖̂) 

 ΔG ΔU 

 absolute (kg) relative to SD absolute (kg) relative to SD 

Milk yield     

Selection on 𝑔̂ 165.2 1.01 137.7 0.85 

Selection on 𝑢̂ 143.8 0.88 143.8 0.89 

Protein yield     

Selection on 𝑔̂ 4.15 1.01 3.09 0.74 

Selection on 𝑢̂ 3.24 0.79 3.16 0.76 

Expected total genetic superiority (ΔG) and expected additive genetic gain (ΔU) for the alternative selection 

criteria total genetic value (𝑔̂) and breeding value (𝑢̂) in absolute value (kg) and relative to the standard deviations 

(SD) of 𝑔̂ and 𝑢̂ of all possible matings; the maximum number of matings per bull was restricted to 200. 

 

 

Discussion 

This study analyzed the importance of dominance variation for several milk production and 

conformation traits in the Fleckvieh breed using the GBLUP methodology. Additive and 

dominance genomic relationship matrices were calculated similar to Su et al. [11], except that 

standard quantitative genetic approaches were used, with the dominance variance at locus k 
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defined as [2pk qk d]² [1,12]. This resulted in the reported estimates of dominance variance to 

be compatible with pedigree-based estimates. 

Independence between u and v is the classical treatment [1] and it is convenient because it 

allows orthogonality of the estimates and thus an easy translation into variances and 

covariances of u and v. However, this independence is contradictory with the phenomena of 

inbreeding depression and hybrid vigor; presence of inbreeding depression indicates that 

dominance is directional, e.g. [28]. Wellmann and Bennewitz [10,29] reviewed biological 

information on milk yield and productive life in Holstein cattle to suggest a priori 

dependencies between a and d (which would result in dependencies between u and v) and 

Bayesian regression models that could accommodate those dependencies. The treatment of 

dependencies between breeding values and dominance deviations is rather complex and the 

computational requirements are large, thus, we did not consider this method although it should 

be a field of further research. 

Estimates of dominance variance varied from 3.3 to 50.5% of total genetic variance for the 

analyzed traits. Estimated dominance variance (as a percentage of total genetic variance) was 

greater for milk production traits than for conformation traits. These results agree with those of 

Misztal et al. [7], who found larger dominance variance for production than for conformation 

traits. Moreover, Misztal et al. [3] reported estimates of dominance variance in US Holstein 

cattle for 14 conformation traits that ranged from 7.3 (rump angle) to 22.3% (strength) of the 

total genetic variance. This is comparable to the estimates of dominance variance for the 

conformation traits analyzed in this study. In the literature, reported estimates of dominance 

variance for milk production traits of Holstein cattle vary considerably ranging from 1.4 to 

42.9% of the total genetic variance [4-7], which are within the same range but smaller than 

those found in our study. Two reasons may explain the relatively large estimates of dominance 
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variance for milk production traits obtained in our study compared to values reported in the 

literature: (1) Fleckvieh cattle are genetically more diverse than Holstein cattle, as reflected by 

the considerably larger effective population size of the Fleckvieh breed [30], which is expected 

to result in more heterozygosity and in QTL alleles with more intermediate frequencies; (2) all 

estimates of dominance variance available in the literature were obtained using relationship 

matrices based on pedigree data; the use of genomic information is expected to improve 

estimates of dominance effect relationships and reduce potential confounding with additive 

effects and residuals which is likely to result in different estimates. 

Although moderate changes in estimates of additive variance were observed between pedigree 

and genomic models, estimates of additive variance were consistent for genomic additive and 

dominance models, except for milkability. Su et al. [11] reported a small difference in 

estimates of additive variance between additive and dominance models. However, the additive 

and dominance variances reported in Su et al. [11] result from an alternative partitioning of 

genetic variance and are thus not directly comparable to the classical partitioning of genetic 

variance [12]. In studies based on pedigree information, estimates of additive variance have 

been similar between additive and dominance models [5,6,31]. 

Both Gibbs sampling with model MGD and at the marker level with the MGD-SNP model 

resulted in estimated variance components that were comparable with REML estimates for 

most traits. The relative standard error (calculated as standard error divided by the estimate) of 

dominance variance was on average 2.7 times larger than the relative standard error of the 

estimated additive variance, which is expected based on the properties of G and D. However, 

in other studies the ratio between relative standard errors of dominance and additive variances 

was even larger, i.e. 4.1 in Misztal [32] and 4.5 in Su et al. [11]. In order to estimate dominance 

variance more accurately, more dominance specific information is needed. This could be 
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achieved, e.g., by increasing the number of full-sibs in the dataset. The present dataset 

contained 3% full-sibs.  

Despite the large estimates of dominance variance for most analyzed traits (significantly larger 

than 0 for five traits), prediction accuracy of breeding values and total genetic values did not 

change when dominance effects were included in the model. Estimates of additive variance did 

not differ much between models MG and MGD, which means that additive variance is already 

captured quite accurately in the additive model. Thus, additive effects are relatively well 

predicted, whether the dominance effect is modeled or not. The accuracy of predictions of total 

genetic values in cross-validation was not higher with the dominance than with the additive 

model because the proportion of full-sibs and dominance effect relationship coefficients 

between the training and validation datasets were small. Thus, little information was 

transferred from the reference to the validation group in cross-validation for prediction of 

dominance effects. Su et al. [11], who analyzed non-additive effects for average daily gain with 

a dataset of 1911 purebred pigs, observed that the estimates of the additive variance with the 

additive and dominance models remained fairly constant and that gains in accuracies of 

predicted breeding values and predicted total genetic values reached only 0.004 and 0.011 with 

the dominance model. The proportion of full-sibs in the pig dataset was not reported in Su et al. 

[11] but is expected to be substantially larger than in our cow dataset, which might be the 

reason for the gain in accuracy of predicted total genetic values with inclusion of dominance in 

the model. Based on a simulation study, Varona et al. [33] observed that relevant changes in 

breeding values when switching from an additive to a dominance model were obtained only for 

animals that had full-sibs or full-sib progeny and little other information. A cow dataset with a 

larger proportion of full-sibs would contain more information in order to accurately estimate 

dominance effects but in practice such data is not available. Analysis of full-sib progeny from 
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elite animals, which generally are available, would not be representative for the whole 

population. 

The regression coefficient of YD on predicted breeding values was generally close to 1, with a 

few exceptions. With the dominance model, this regression coefficient was slightly closer to 1 

for most traits but differences were small, which is similar to the data reported by Su et al. [11], 

i.e. 0.927 and 0.983 with the additive and dominance models, respectively. In our study, the 

regression coefficient of YD on predicted total genetic values for model MGD was slightly 

smaller than the regression on predicted breeding values, which agrees with Su et al. [11], but 

it remained close to the expectation, which means that predictions were unbiased. In general, 

bias can originate from preferential treatment, unrecognized pre-selection of validation 

animals, or inappropriate modeling of predictions (i.e. using incorrect variance components). 

The results show that selection of matings on 𝑔̂ instead of 𝑢̂ led to 14.8% (milk yield) and 

27.8% (protein yield) greater expected total genetic superiorities and maximized expected 

productive performance of the offspring. Although the accuracy of estimates of total genetic 

values was not greater than that of estimates of breeding values, as indicated by the cross-

validation results (Table 4), expected total genetic superiority was not impaired by this result 

because predicted genetic values are best linear unbiased predictions and therefore unbiased 

expectations [34]. Toro and Varona [9] reported that expected total genetic superiority with 

optimized mate allocation was 16% greater than with selection on the breeding value only, for 

a trait with additive and dominance variances amounting to 40 and 10% of the phenotypic 

variance. Expected additive genetic gain was reduced by only 4.5% for milk yield and by 2.6% 

for protein yield with selection of matings on 𝑔̂ instead of 𝑢̂. Thus, optimization of 𝑔̂ of the 

offspring appears to be feasible without a great loss in 𝑢̂. Our considerations of optimized 

matings are limited to the first generation offspring. Toro and Varona [9] found that response 

78 Genomic analysis of dominance effects in Fleckvieh 3
rd

 chapter 

 



from assortative mating was only realized in the first generation without any additional 

response in subsequent generations. Thus, optimization of matings with respect to total genetic 

value has to be applied in each generation, otherwise the dominance-specific advantage is lost. 

Toro and Varona [9] pre-selected males and females on their estimated breeding values and 

then optimized the total genetic value of matings between these pre-selected animals. In our 

example, only bulls were pre-selected on their conventional breeding value and the optimal 

bull was determined for each cow based on the expected total genetic value of the offspring. 

However, the potential of assortative mating to exploit dominance variance optimally by 

combining mates that are expected to produce offspring with large total genetic values is 

limited even for these two traits with sizeable dominance variation. This can be caused either 

by cancellation effects across the genome (i.e., it is extremely unlikely to combine all positive 

dominance effects) or by a reduced accuracy of the dominance deviation of a mating because 

of uncertainty about the resulting marker genotypes. 

 

Conclusions 

Estimates of genomic variance due to dominance in Fleckvieh cattle ranged from 3 to 50% of 

the genetic variance and were within the range of published pedigree-based estimates for dairy 

cattle. The computational complexity and modeling were straightforward. Predictive ability of 

breeding and total genetic values by cross-validation was not improved when dominance 

effects were included in the prediction model, probably because of the limited size of the 

dataset and the small proportion of full-sibs. There is potential to exploit dominance variance 

in planned matings in order to increase total genetic value of the offspring (i.e. future 

performance) without compromising additive genetic gain. Use of planned matings could also 

be a way to motivate farmers that are otherwise not interested in using genomic breeding 

values for breeding schemes. 
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density genotyped Fleckvieh cows were used to assess cross-validation accuracy of genomic 

predictions with additive and dominance models. Cross-validation accuracy of predicted 

breeding values was higher with genomic models than with the pedigree model, but inclusion 

of dominance effects did not increase the accuracy of the predicted breeding and total genetic 

values. Due to small dominance effect relationships, predictions of individual dominance 

deviations were inaccurate and including dominance in the model did not improve prediction 

accuracy in cross-validation. Expected breeding values and total genetic values for putative 

offspring were calculated by means of SNP effects. Selection mating partners based on total 

genetic value instead of breeding value would result in a larger expected total genetic 

superiority in progeny, i.e. 14.8% for milk yield and 27.8% for protein yield and reduce the 

expected additive genetic gain only by 4.5% for milk yield and 2.6% for protein yield. 
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Summary 

Single-step models including dominance can be an enormous computational task and can even 

be prohibitive for practical application. In this study, we try to answer the question whether a 

reduced single-step model is able to estimate breeding values of bulls and breeding values, 

dominance deviations and total genetic values of cows with acceptable quality. Genetic values 

and phenotypes were simulated (500 repetitions) for a small Fleckvieh pedigree consisting of 

371 bulls (180 thereof genotyped) and 553 cows (40 thereof genotyped). This pedigree was 

virtually extended for 2,407 non-genotyped daughters. Genetic values were estimated with the 

single-step model and with different reduced single-step models. Including more relatives of 

genotyped cows in the reduced single-step model resulted in a better agreement of results with 

the single-step model. Accuracies of genetic values were largest with single-step and smallest 

with reduced single-step when only the cows genotyped were modelled. The results indicate 

that a reduced single-step model is suitable to estimate breeding values of bulls and breeding 

values, dominance deviations and total genetic values of cows with acceptable quality. 

 

1 | Introduction 

The single-step model has been developed to estimate additive-genetic breeding values using 

pedigree and genomic information jointly (Aguilar et al., 2010; Christensen & Lund, 2010; 

Legarra, Aguilar, & Misztal, 2009; Misztal, Legarra, & Aguilar, 2009). As methods to 

calculate the dominance relationship matrix from SNP genotypes are now available (Vitezica, 

Varona, & Legarra, 2013), it is straightforward to extend the single-step model by a dominance 

part. Several studies have found non-negligible amounts of dominance variance in different 

traits of dairy cattle (Ertl et al., 2014; Miglior, Burnside, & Kennedy, 1995; Tempelman & 

88 Considering dominance in reduced single-step genomic evaluations 4
th
 chapter 

 



Burnside, 1990; Van Tassell, Misztal, & Varona, 2000). As more and more cows are 

genotyped, it might be interesting to apply dominance models for an optimal genetic evaluation 

of cows. However, inversion of the dominance relationship matrix is computationally not 

feasible for large systems and the direct calculation of the inverted dominance relationship 

matrix via sire-dam subclass effects (Hoeschele & VanRaden, 1991) can result in a very large 

matrix. A possible solution for computational and convergence problems with the single-step 

method might be to reduce the size of the model using daughter yield deviations (DYD; 

VanRaden & Wiggans, 1991) for bulls and yield deviations (YD; VanRaden & Wiggans, 1991) 

for a subset of (genotyped) cows as pseudo-phenotypes in a reduced single-step model. Several 

groups of authors (Gao et al., 2012; Harris, Winkelman, & Johnson, 2013; Su et al., 2012) have 

tested reduced (additive) single-step models, which have reduced dimension as compared to 

single-step models, with de-regressed proofs as pseudo-phenotypes. Unlike de-regressed 

proofs, YD contain dominance deviations by definition (VanRaden & Wiggans, 1991) and can 

therefore be used as pseudo-phenotypes of cows in a dominance model. In this study, we 

compared results from a full single-step evaluation containing additive and dominance effects 

with several reduced models combining the DYD of bulls and YD of selected cows.  

 

2 | Material and Methods 

Suppose a sex-limited trait like milk yield of dairy cattle where only cows can have 

observations. Following quantitative genetics theory and supposing that there is additive-

genetic and dominance variation in the trait, the phenotype of a cow (yi) can be partitioned into 

additive-genetic, dominance and residual components: 

yi = µi + ui + vi + ei, 
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where µi is the sum of fixed effects for cow i, ui is its breeding value, vi is its dominance 

deviation and ei is the residual. Phenotypic variance (𝜎𝑌
2) consists of additive-genetic (𝜎𝐴

2), 

dominance (𝜎𝐷
2) and residual variance (𝜎𝐸

2). Breeding values of animals i and j are correlated 

by their (additive-genetic) relationship coefficient sij. Dominance deviations of animals i and j 

are correlated by their dominance relationship coefficient tij. Thus, distributions of breeding 

values, dominance deviations and residuals follow covariance structures 𝐒𝜎𝐴
2, 𝐓𝜎𝐷

2 and 𝐈𝜎𝐸
2, 

respectively, where S and T are true additive-genetic and dominance relationship matrices. 

True relationship matrices are never known and estimated by means of either additive-genetic 

(A) and dominance (𝐀𝐃) numerator relationship matrices (using pedigree information) or 

additive-genetic (G) and dominance (𝐆𝐃) genomic relationship matrices (typically using SNP 

genotypic information; e.g., VanRaden, 2008; Vitezica et al., 2013). For the case that not all 

animals are genotyped, pedigree and genomic information can be combined into single-step 

relationship matrices (Aguilar et al., 2010; Christensen & Lund, 2010; Legarra et al., 2009): 

𝐇 = [
𝐇𝟏𝟏 𝐇𝟏𝟐

𝐇𝟐𝟏 𝐇𝟐𝟐
] = [

𝐀𝟏𝟏 − 𝐀𝟏𝟐𝐀𝟐𝟐
−𝟏𝐀𝟐𝟏 + 𝐀𝟏𝟐𝐀𝟐𝟐

−𝟏𝐆𝐀𝟐𝟐
−𝟏𝐀𝟐𝟏 𝐀𝟏𝟐𝐀𝟐𝟐

−𝟏𝐆

𝐆𝐀𝟐𝟐
−𝟏𝐀𝟐𝟏 𝐆

] 

𝐇𝐃 = [
𝐇𝐃𝟏𝟏 𝐇𝐃𝟏𝟐

𝐇𝐃𝟐𝟏 𝐇𝐃𝟐𝟐
] = [

𝐀𝐃𝟏𝟏 − 𝐀𝐃𝟏𝟐𝐀𝐃𝟐𝟐
−𝟏 𝐀𝐃𝟐𝟏 + 𝐀𝐃𝟏𝟐𝐀𝐃𝟐𝟐

−𝟏 𝐆𝐃𝐀𝐃𝟐𝟐
−𝟏 𝐀𝐃𝟐𝟏 𝐀𝐃𝟏𝟐𝐀𝐃𝟐𝟐

−𝟏 𝐆𝐃

𝐆𝐃𝐀𝐃𝟐𝟐
−𝟏 𝐀𝐃𝟐𝟏 𝐆𝐃

] 

Subscripts 1 and 2 indicate not genotyped and genotyped animals, respectively. These 

equations assume no covariance between breeding values and dominance deviations, that is no 

inbreeding. 

For this study, we simulated repeatedly breeding values, dominance deviations, total genetic 

values and phenotypes for a semi-real pedigree, estimated the genetic values both with a 

single-step model and with reduced single-step models and compared the estimates between 

models and with the true values. We used a small real-life pedigree structure from the 

Fleckvieh pedigree consisting of 371 bulls and 553 cows from the German-Austrian routine 
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evaluation. We extended this core pedigree with 2,407 female descendants to construct the 

final example pedigree. For a subset of 180 bulls and 40 cows of this core pedigree the 

genotypes (Illumina 50K SNP chip) were available. A subset of 10 of the 40 genotyped cows 

was defined to be validation cows for testing the predictive ability of the model. Each 

validation cow had a full-sister among the remaining 30 genotyped cows. There was one pair 

of full-sisters among the remaining 30 genotyped cows. Table 1 summarizes some 

characteristics of the example pedigree. 

Table 1. Summary of the animals in the pedigree 

 Genotyped Not genotyped Total 

Core pedigree    

Bulls 180 191 371 

Cows with records 30 513 543 

Cows without records 10 0 10 

Additional daughters 

(comprising DYD of bulls 

in reduced models) 

0 2,407 2,407 

Total 220 3,111 3,331 

 

In each of 500 repetitions, simulated true breeding values (u), dominance deviations (v), total 

genetic values (g; g = u + v) and residuals (e) for the animals in the pedigree were generated by 

drawing a single sample from a corresponding multivariate normal distribution assuming 

𝐮~N(0; 𝐇𝜎𝐴
2),  𝐯~N(0; 𝐇𝐃𝜎𝐷

2) and e~ N(0; 𝐈𝜎𝐸
2) with 𝜎𝐴

2 = 0.4 and 𝜎𝐷
2 = 0.2 and 𝜎𝐸

2 = 0.4. 𝐇 

and 𝐇𝐃 are additive and dominance single-step relationship matrices built for the pedigree 

structure and genotypes described above and were treated as true relationship matrices for 

simulation. For the purpose of comparison of single-step and reduced single-step models, this 

approximation should be valid even if the simulation of genetic values was based only on 
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estimated polygenic relationships but not on linkage disequilibrium information. Phenotypes of 

cows (y) were calculated by summing up breeding values, dominance deviations and residuals: 

𝐲 = 𝟏µ + 𝐙𝐀𝐮 + 𝐙𝐃𝐯 + 𝐞, 

where µ is an overall mean and 1 is a vector of 1s,. 𝐙𝐀 and 𝐙𝐃 are design matrices connecting 

observations with the corresponding animals. 

For means of comparison, breeding values and dominance deviations were estimated both with 

the single-step model (1S) as described by Legarra et al. (2009) and Aguilar et al. (2010) and 

with a reduced single-step model (R1S) following Harris et al. (2013). In 1S, genetic 

evaluation is based on records of cows directly: 

𝐲 = 𝟏µ + 𝐙𝐀 [
𝐮𝟏

𝐮𝟐
] + 𝐙𝐃 [

𝐯𝟏

𝐯𝟐
] + 𝐞 

G was calculated by the method of VanRaden (2008) using allele frequencies estimated from 

11,344 Fleckvieh genotypes of the April 2014 German-Austrian routine evaluation. The 

pedigree-based dominance relationship matrix 𝐀𝐃 was calculated as described in Mrode 

(2005). The genomic dominance relationship matrix 𝐆𝐃 was computed by the method 

described by Vitezica et al. (2013). 𝐆 and 𝐆𝐃 were scaled to 𝐀 and 𝐀𝐃 using the method of 

Vitezica, Aguilar, Misztal, and Legarra (2011). The variance-covariance matrix of observations 

is given by:  

𝐕 = 𝐙𝐀(𝐇𝜎𝐴
2)𝐙𝐀

′ + 𝐙𝐃(𝐇𝐃𝜎𝐷
2)𝐙𝐃

′ + 𝐈𝜎𝐸
2 

The estimator of the vector of fixed effects is given by: 

µ̂ = (𝟏′𝐕−1𝟏)−𝟏𝟏′𝐕−1𝐲 

Breeding values and dominance deviations are estimated with the following equations: 

𝐮̂ = 𝐇𝜎𝐴
2𝐙𝐀

′ 𝐕−1(𝐲 − 𝟏µ̂); 𝐯̂ = 𝐇𝐃𝜎𝐷
2𝐙𝐃

′ 𝐕−1(𝐲 − 𝟏µ̂) 
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In R1S, doubled daughter yield deviations (2DYD) of 371 bulls and yield deviations (YD) of 

different subsets of cows, that is 

i 30 genotyped cows (with records),  

ii  30 genotyped cows plus their 29 dams,  

iii 30 genotyped cows plus their 36 daughters and  

iv  30 genotyped cows plus their 29 dams and 36 daughters,  

were used as pseudo-phenotypes instead of records. These subsets of animals included in R1S 

will be referred to as sub models 1-4 in the results. 

A conventional additive-genetic evaluation was run first in order to obtain YD and 2DYD. YD 

of genotyped cows were omitted in the calculation of 2DYD of their sire in order to avoid 

double counting. 2DYD and YD are used jointly in R1S: 

[
𝟐𝐃𝐘𝐃

𝐘𝐃
] = 𝟏µ∗ + 𝐖𝐀 [

𝐮𝟏
∗

𝐮𝟐
∗ ] + 𝐖𝐃 [

𝐯𝟏
∗

𝐯𝟐
∗] + [

𝐞𝐃𝐘𝐃

𝐞𝐘𝐃
] 

𝐖𝐀 and 𝐖𝐃 are design matrices which connect pseudo-phenotypes with breeding values and 

dominance deviations. Breeding values and dominance deviations as well as the respective 

relationship matrices are marked with an asterisk to indicate that the dimension of these vectors 

and matrices is reduced in R1S compared to 1S. Dominance deviations are by definition 

included in YD, but not in DYD. The variance of 𝐞𝐘𝐃 is 𝜎𝐸
2 and of 𝑒DYD𝑖

 (the i-th element of 

𝐞𝐃𝐘𝐃) is 
2𝜎𝐴

2+4(𝜎𝐷
2 +𝜎𝐸

2)

𝑛𝑑𝑎𝑢𝑖

 (Carillier et al., 2013). 𝑛𝑑𝑎𝑢𝑖
 is the number of daughters’ YD included in 

the calculation of the i-th DYD. The variance-covariance matrix of [
𝟐𝐃𝐘𝐃

𝐘𝐃
] is: 

𝐕∗ = 𝐖𝐀(𝐇∗𝜎𝐴
2)𝐖𝐀

′ + 𝐖𝐃(𝐇𝐃
∗𝜎𝐷

2)𝐖𝐃
′ + [

𝐍(2𝜎𝐴
2 + 4(𝜎𝐷

2 + 𝜎𝐸
2)) 𝟎

𝟎 𝐈𝜎𝐸
2] 
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where 𝐍 is a diagonal matrix with 
1

𝑛𝑑𝑎𝑢𝑖

 as i-th element of the diagonal. No covariance was 

assumed between 𝐞𝐃𝐘𝐃 and 𝐞𝐘𝐃 although in reality such covariance might exist. The estimator 

of the overall mean for R1S is given by: 

µ∗̂ = (𝟏′𝐕∗−𝟏𝟏)−𝟏𝟏′𝐕∗−𝟏 [
𝟐𝐃𝐘𝐃

𝐘𝐃
] 

Breeding values and dominance deviations were estimated with the following equations: 

𝐮∗̂ = 𝐇∗𝜎𝐴
2𝐖𝐀

′ 𝐕∗−𝟏 ([
𝟐𝐃𝐘𝐃

𝐘𝐃
] − 𝟏µ∗̂); 𝐯∗̂ = 𝐇𝐃

∗𝜎𝐷
2𝐖𝐃

′ 𝐕∗−𝟏 ([
𝟐𝐃𝐘𝐃

𝐘𝐃
] − 𝟏µ∗̂) 

Besides the two dominance models, purely additive 1S and R1S models were applied for the 

sake of comparison. The model equation of the additive 1S is given by:  

𝐲 = 𝟏µadd + 𝐙𝐀 [
𝐮𝐚𝐝𝐝𝟏

𝐮𝐚𝐝𝐝𝟐
] + 𝐞𝐚𝐝𝐝 

The variance of 𝐞𝐚𝐝𝐝 is 𝜎𝐷
2 + 𝜎𝐸

2. The fixed effect µadd and breeding values 𝐮𝐚𝐝𝐝 were 

estimated as described above just omitting the dominance part. The additive R1S was modelled 

as: 

[
𝟐𝐃𝐘𝐃

𝐘𝐃
] = 𝟏µadd

∗ + 𝐖𝐀 [
𝐮𝐚𝐝𝐝𝟏

∗

𝐮𝐚𝐝𝐝𝟐
∗ ] + [

𝐞𝐚𝐝𝐝𝐃𝐘𝐃

𝐞𝐚𝐝𝐝𝐘𝐃
] 

The variance of 𝐞𝐚𝐝𝐝𝐘𝐃 is 𝜎𝐷
2 + 𝜎𝐸

2 and of 𝑒𝑎𝑑𝑑𝐷𝑌𝐷𝑖
 is 

2𝜎𝐴
2+4(𝜎𝐷

2 +𝜎𝐸
2)

𝑛𝑑𝑎𝑢𝑖

.  

Simulation and estimation of breeding values and dominance deviations were repeated 500 

times. In each repetition, the correlation between estimated values from 1S and R1S models as 

well as the correlation between true and estimated breeding values [𝑟(𝑢, 𝑢̂)], dominance 

deviations [𝑟(𝑣, 𝑣)] and total genetic values [𝑟(𝑔, 𝑔̂)] were calculated for different groups of 

animals: (i) 30 genotyped cows with YD in R1S, (ii) 10 genotyped validation cows which have 

no records but full-sisters with YD in R1S and (iii) 180 genotyped bulls with DYD in R1S. 
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Additionally, the regression coefficients of true on estimated breeding values [𝑏(𝑢, 𝑢̂)], 

dominance deviations [𝑏(𝑣, 𝑣)] and total genetic values [𝑏(𝑔, 𝑔̂)] were calculated. 

 

3 | Results 

3.1 | Correlations between true and estimated values 

Mean 𝑟(𝑢, 𝑢̂), 𝑟(𝑣, 𝑣) and 𝑟(𝑔, 𝑔̂) for single-step and reduced single-step models with dams 

and/or daughters of genotyped cows either modelled in R1S or not are given in Tables 2, 3, and 

4 for genotyped cows with YD, genotyped validation cows and genotyped bulls, respectively. 

Compared to 1S, R1S resulted in slightly reduced accuracies of breeding values, dominance 

deviations and total genetic values for genotyped cows with YD. Accuracies with R1S were 

largest when dams and daughters were modelled in addition to genotyped cows and lowest 

when only genotyped cows were modelled. This decrease in accuracy was more pronounced 

for breeding values than for dominance deviations or total genetic values. Modelling of 

daughters of genotyped cows in R1S tended to result in slightly larger accuracy than modelling 

of dams of genotyped cows.  

𝑟(𝑢, 𝑢̂), 𝑟(𝑣, 𝑣) and 𝑟(𝑔, 𝑔̂) for validation cows were considerably smaller than for cows with 

records. With 1S, 𝑟(𝑢, 𝑢̂) and 𝑟(𝑔, 𝑔̂) were considerably larger and 𝑟(𝑣, 𝑣) was slightly larger 

than with R1S models. With R1S, accuracies were largest when dams and daughters were 

modelled additionally to genotyped cows but were not much smaller when only dams were 

modelled in addition to genotyped cows. 

Compared to 1S, 𝑟(𝑢, 𝑢̂) and 𝑟(𝑔, 𝑔̂) for genotyped bulls were reduced with R1S but not 

affected by inclusion of dams or daughters of genotyped cows in the R1S model. 𝑟(𝑣, 𝑣) was 

very small for both 1S and R1S models. Accuracies of estimated values for bulls did not 

depend on modelling of dams and/or daughters of genotyped cows. 
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Table 2. Correlations between true and estimated breeding values, dominance deviations and 

total genetic values for genotyped cows with YD in the reduced single-step model (n = 30) 

obtained from single-step (1S) and reduced single-step models (R1S) with different sets of 

cows in the model (mean ± standard error from 500 replications) 

Model 𝒓(𝒖, 𝒖̂) 

(additive 

models) 

𝒓(𝒖, 𝒖̂) 𝒓(𝒗, 𝒗̂) 𝒓(𝒈, 𝒈̂) 

1S 0.732 ± 0.004 0.732 ± 0.004 0.483 ± 0.007 0.807 ± 0.003 

R1S (sub model 1) 0.687 ± 0.005 0.686 ± 0.005 0.464 ± 0.007 0.796 ± 0.003 

R1S (sub model 2) 0.702 ± 0.005 0.702 ± 0.005 0.471 ± 0.007 0.799 ± 0.003 

R1S (sub model 3) 0.710 ± 0.005 0.709 ± 0.005 0.473 ± 0.007 0.801 ± 0.003 

R1S (sub model 4) 0.723 ± 0.004 0.722 ± 0.004 0.479 ± 0.007 0.804 ± 0.003 

 

Table 3. Correlations between true and estimated breeding values, dominance deviations and 

total genetic values for genotyped validation cows (n = 10) obtained from single-step (1S) and 

reduced single-step models (R1S) with different sets of cows in the model (mean ± standard 

error from 500 replications) 

Model 𝒓(𝒖, 𝒖̂) 

(additive 

models) 

𝒓(𝒖, 𝒖̂) 𝒓(𝒗, 𝒗̂) 𝒓(𝒈, 𝒈̂) 

1S 0.584 ± 0.010 0.584 ± 0.010 0.276 ± 0.009 0.592 ± 0.009 

R1S (sub model 1) 0.475 ± 0.010 0.470 ± 0.010 0.272 ± 0.009 0.529 ± 0.009 

R1S (sub model 2) 0.479 ± 0.010 0.474 ± 0.010 0.270 ± 0.009 0.530 ± 0.009 

R1S (sub model 3) 0.476 ± 0.010 0.472 ± 0.010 0.271 ± 0.009 0.527 ± 0.009 

R1S (sub model 4) 0.480 ± 0.010 0.476 ± 0.010 0.269 ± 0.009 0.529 ± 0.009 
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Table 4. Correlations between true and estimated breeding values, dominance deviations and 

total genetic values for genotyped bulls (n=180) obtained from single-step (1S) and reduced 

single-step models (R1S) with different sets of cows in the model (mean ± standard error from 

500 replications) 

Model 𝒓(𝒖, 𝒖̂) 

(additive 

models) 

𝒓(𝒖, 𝒖̂) 𝒓(𝒗, 𝒗̂) 𝒓(𝒈, 𝒈̂) 

1S 0.771 ± 0.002 0.771 ± 0.002 0.070 ± 0.002 0.634 ± 0.003 

R1S (sub model 1) 0.726 ± 0.002 0.723 ± 0.002 0.064 ± 0.002 0.596 ± 0.003 

R1S (sub model 2) 0.726 ± 0.002 0.723 ± 0.002 0.064 ± 0.002 0.596 ± 0.003 

R1S (sub model 3) 0.726 ± 0.002 0.723 ± 0.002 0.064 ± 0.002 0.596 ± 0.003 

R1S (sub model 4) 0.726 ± 0.002 0.723 ± 0.002 0.064 ± 0.002 0.596 ± 0.003 

 

Accuracies of breeding values estimated with the additive 1S and R1S models were 

comparable to, but slightly larger than the respective accuracies from 1S and R1S models 

including dominance in all cases. Accuracy of estimated breeding values from additive models 

was largest with 1S and second largest with R1S sub model 4 when cows served as validation 

group. There was no difference between R1S sub models in the accuracy of estimated breeding 

values of genotyped bulls. 

 

3.2 | Inflation of estimated genetic values 

Mean 𝑏(𝑢, 𝑢̂), 𝑏(𝑣, 𝑣) and 𝑏(𝑔, 𝑔̂) for 1S and R1S models with dams and/or daughters of 

genotyped cows either modelled in R1S or not are given in Table 5 for genotyped cows with 

YD, genotyped validation cows and genotyped bulls. As the R1S sub model 4 had turned out to 

be closest to 1S in all cases, results are only presented for this sub model. 𝑏(𝑢, 𝑢̂), 𝑏(𝑣, 𝑣) and 

𝑏(𝑔, 𝑔̂) were very close to 1 in both models for genotyped cows with YD. For validation cows 
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and genotyped bulls, 𝑏(𝑢, 𝑢̂), 𝑏(𝑣, 𝑣) and 𝑏(𝑔, 𝑔̂) with 1S were not far from 1 while 𝑏(𝑢, 𝑢̂) 

and 𝑏(𝑔, 𝑔̂) with R1S were larger than 1 and 𝑏(𝑣, 𝑣) amounted to 0.569 (validation cows) and 

only 0.021 (genotyped bulls), which means that dispersion of estimated dominance deviations 

was far too large. In contrast to R1S, dispersion of predicted dominance deviations was 

approximately correct for genotyped bulls with 1S even if the predicted dominance deviations 

were not accurate at all and impaired accuracy of predicted total genetic values. The standard 

error of the mean 𝑏(𝑣, 𝑣) was quite large for validation cows (both 1S and R1S) and genotyped 

bulls (only 1S). For additive 1S and R1S models 𝑏(𝑢, 𝑢̂) was close to 1. 

Table 5. Regression coefficients of true on estimated breeding values, dominance deviations 

and total genetic values for genotyped cows with YD in the reduced single-step model, 

genotyped validation cows and genotyped bulls obtained from single-step (1S) and reduced 

single-step model (R1S) with dams and daughters of genotyped cows in the model (mean ± 

standard error from 500 replications) 

Model 𝒃(𝒖, 𝒖̂) 

(additive 

models) 

𝒃(𝒖, 𝒖̂) 𝒃(𝒗, 𝒗̂) 𝒃(𝒈, 𝒈̂) 

Genotyped cows with YD (n = 30) 

1S 1.001 ± 0.008 1.008 ± 0.008 1.004 ± 0.016 0.992 ± 0.011 

R1S (sub model 4) 1.000 ± 0.009 1.017 ± 0.009 1.011 ± 0.017 1.006 ± 0.012 

Genotyped validation cows (n = 10) 

1S 1.008 ± 0.023 1.010 ± 0.023 0.924 ± 0.456 1.003 ± 0.034 

R1S (sub model 4) 1.064 ± 0.035 1.157 ± 0.039 0.569 ± 0.302 1.180 ± 0.054 

Genotyped bulls (n = 180) 

1S 0.993 ± 0.003 0.996 ± 0.003 1.007 ± 0.119 1.002 ± 0.005 

R1S (sub model 4) 0.994 ± 0.004 1.143 ± 0.005 0.021 ± 0.009 1.072 ± 0.009 
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3.3 | Comparison between estimated values from single-step and reduced single-step 

models 

Mean correlations between breeding values, dominance deviations and total genetic values 

estimated with 1S and different R1S models are shown in Table 6.  

Table 6. Correlations between estimated breeding values, dominance deviations and total 

genetic values from single-step (1S) and different reduced single-step models (R1S) for 

genotyped cows with YD in the reduced single-step model, genotyped validation cows and 

genotyped bulls (mean ± standard error from 500 replications) 

Correlation of 

estimated values 

between 1S and R1S 

… 

Breeding 

value 

(additive 

models) 

Breeding 

value 

Dominance 

deviation 

Total genetic 

value 

Genotyped cows with YD (n = 30) 

Sub model 1 0.934 ± 0.001 0.928 ± 0.002 0.959 ± 0.001 0.984 ± 0.000 

Sub model 4 0.985 ± 0.000 0.983 ± 0.000 0.989 ± 0.000 0.996 ± 0.000 

Genotyped validation cows (n = 10) 

Sub model 1 0.739 ± 0.008 0.730 ± 0.008 0.612 ± 0.013 0.733 ± 0.008 

Sub model 4 0.755 ± 0.008 0.746 ± 0.008 0.657 ± 0.012 0.747 ± 0.008 

Genotyped bulls (n = 180) 

Sub model 1 0.941 ± 0.001 0.938 ± 0.001 0.036 ± 0.004 0.926 ± 0.001 

Sub model 4 0.942 ± 0.001 0.938 ± 0.001 0.032 ± 0.004 0.927 ± 0.001 

 

The concordance of estimated breeding values, dominance deviations and total genetic values 

for cows with YD was large with correlations between estimates from both models >0.92 when 

only genotyped cows were modelled in R1S and >0.98 when dams and daughters were 

modelled in addition to genotyped cows in R1S. Concordance of estimated values for 

validation cows with 1S and R1S models was much smaller than for cows with records. 
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Correlations between dominance breeding values/total genetic values of genotyped bulls 

estimated with 1S and R1S models were quite large while correlations between dominance 

deviations of genotyped bulls estimated with 1S and R1S models were close to 0. Correlations 

between estimated values with 1S and R1S sub models 2 and 3 always lay between the results 

for sub models 1 and 4 and are not reported in Table 6. 

 

4 | Discussion 

Single-step genomic evaluation has the important advantage that all available information is 

considered and weighted optimally (e.g., Legarra et al., 2009). However, several authors have 

reported difficulties in the convergence of large single-step systems (Harris et al., 2013; Liu, 

Goddard, Reinhardt, & Reents, 2014). The problem of convergence will be even more severe 

when dominance deviations are modelled in addition to breeding values in real-world systems. 

Another issue might be the calculation of the inverse of 𝐀𝐃 because inversion of routine-size 

matrices is computationally not feasible. For the additive part, Henderson (1976) has presented 

an algorithm to compute the inverse of 𝐀 directly. When dominance is modelled, the inverse of 

𝐀𝐃 is required in addition to the inverse of 𝐀. Although Hoeschele and VanRaden (1991) have 

described an algorithm to calculate this inverse directly (for non-inbred pedigrees), the 

computation might still be unfeasible in routine-size genetic evaluations. A reduced single-step 

model which uses DYD of bulls and YD of a subset of genotyped cows could therefore be a 

practical alternative to a full 1S model because the dimension of the model is considerably 

reduced with aggregation of daughters’ records to DYD. 

The aim of this study was to analyze whether a R1S model with DYD and YD as pseudo-

phenotypes can be a practical alternative to 1S when dominance is modelled. For a practical 

application of R1S, it would be required that the accuracies of breeding values, dominance 
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deviations and total genetic values of cows (with or without own records) estimated with R1S 

should not be much smaller than with 1S. Dominance deviations and total genetic values of 

bulls are predicted inaccurately because these bulls do not have own records in female traits 

and have only small dominance relationships with record-tested cows, but for these bulls, 

dominance deviations and total genetic values are not relevant and the only relevant criterion 

for bulls is that 𝑟(𝑢, 𝑢̂) with R1S should be comparable to 1S. We additionally examined 

whether it is sufficient to model only the genotyped cows that one is interested in with their 

YD in the reduced single-step model or if it would be necessary to model the dams and/or 

daughters of these cows additionally in the reduced single-step model. 

Although 1S performed better in the analysed criteria, accuracy and dispersion of both genetic 

values (breeding values, dominance deviations and total genetic values) of reference cows and 

breeding values of reference bulls estimated with R1S were satisfactory. Predictive ability of 

R1S for the additive part, however, was worse than 1S in our study. Perhaps, refined modelling 

techniques could improve prediction accuracy of R1S but, as every R1S model contains by 

definition less information than a 1S model, a certain difference will remain. The results 

demonstrated that an R1S model can be an acceptable alternative to a full 1S model when the 

purpose is to estimate breeding values, dominance deviations and total genetic values of cows 

with records and breeding values of bulls with daughter records.  

We could not expect, of course, that R1S estimates genetic values with the same quality as a 

full 1S model because (especially dominance-specific) information gets lost during calculation 

of DYD (VanRaden & Wiggans, 1991). Other attempts of additive reduced single-step 

evaluation also resulted in reduced accuracy of breeding values compared to single-step 

evaluation (Baloche et al., 2014). Apart from the modelling of dominance, a difference of our 

study to other reduced single-step analyses (Harris et al., 2013; Su et al., 2012) is the use of 

YD and DYD as pseudo-phenotypes instead of de-regressed proofs (Garrick et al., 2009). 
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Either DYD/YD or de-regressed proofs are used in genomic evaluations and there is no evident 

advantage of one of both types of pseudo-phenotypes over the other. However, in an analysis 

that includes dominance deviations, YD have to be used as pseudo-phenotypes for cows 

because de-regressed breeding values do not contain dominance-specific information. In 

contrast, dominance deviations are not expected to be removed during calculation of YD 

because the dominance covariance structure is not similar to the covariance structure of any 

random environmental effect. Simulation studies with different data structures could help to 

enlighten this question but were beyond the scope of this investigation. Estimation quality of 

dominance deviations and total genetic values for bulls should not be considered when 

comparing 1S and R1S because for bulls these values are typically not relevant. Taking this 

into account, R1S is an acceptable alternative to 1S without too many compromises for 

relevant estimates. 

R1S combines the advantage of 1S (correct weighting of pedigree, genomic, phenotypic 

information) with the reduced computational cost of a multiple-step approach; however, 

genetic values (i.e., breeding values, dominance deviations and total genetic values) are 

estimated only for a subset of animals whose genetic values one is interested in. Prediction 

quality of R1S additionally depends essentially on the quality of DYD and YD as pseudo-

phenotype inputs in this model. 

Provided that an investigator is interested in both breeding values of bulls (genotyped or not 

genotyped; with daughter records) and breeding values, dominance deviations and total genetic 

values of genotyped cows with records, all available bulls should be modelled in R1S with 

their DYD, and genotyped cows should be modelled with their YD. Depending on the 

computational capacities, female relatives of the genotyped cows (i.e., dam and/or daughters) 

should be modelled additionally in order to increase the accuracy of the estimates. From a 

practical point of view, it must be considered that, typically, records of the dam of a cow are 
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available whereas records of a daughter of a cow are only available as soon as the daughter is 

in her first lactation. Thus, dams of genotyped cows are expected to be able to contribute 

information the earliest possible to R1S genomic evaluation and should be modelled 

preferably. Also full- and half-sisters will contribute information, but their impact on R1S 

evaluation was not analysed in the present study. This should be a question of further research. 

The computational effort depends essentially on the dimension of the model. Thus, the 

computational benefit (or, more precisely, the saving of computational capacity) is proportional 

to 
k²−l²

k²
, where k is the number of animals in the 1S model and l is the number of animals in the 

R1S model. In our example, the computational benefit amounts to 98.6%, 98.3%, 98.3% and 

98.0%, respectively, for R1S sub models 1–4. 

The results of this analysis are based on the infinitesimal model used for simulation. In reality, 

traits are defined by a usually very large, however, finite number of quantitative trait loci. It 

should be a matter of further research to analyze 1S and R1S with real phenotypes.  

The evaluation model assumes Hardy-Weinberg equilibrium (HWE). Vitezica, Legarra, Toro, 

and Varona (2017) have described a non-additive model that remains orthogonal even if the 

population is not in HWE. In this case, the additive and dominance effects of individuals will 

remain orthogonal and their accuracies will keep a straightforward interpretation, but the 

additive effect does no longer have the meaning of a breeding value because breeding values 

do not exist for populations deviating from HWE.  

Given the fact, that accuracy of breeding values was not larger with dominance than with 

additive models, and with respect to the computational costs, a dominance model should only 

be applied when there is interest in dominance deviations and/or total genetic values of cows. 
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5 | Conclusions 

The results indicate that a reduced single-step dominance model which is based on DYD of 

bulls and YD of genotyped cows is suitable to estimate breeding values of bulls and breeding 

values, dominance deviations and total genetic values of cows with acceptable quality and can 

be an alternative to a single-step model when the single-step method cannot be applied due to 

computational limitations. The more cows are modelled in the reduced single-step model the 

closer the results are to single-step results.  
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Potential advantages from higher SNP marker density and female genotypes in genomic 

analysis of Fleckvieh cattle were studied in this thesis. In the genomic analysis of female 

genotypes, the emphasis lay on the importance and on the potential use of dominance variance. 

The studies drew benefit from methodological contributions of many authors e.g. in the 

development of GBLUP (Meuwissen et al., 2001; VanRaden, 2008), single-step evaluation 

(Legarra et al., 2009; Christensen and Lund, 2010; Aguilar et al., 2010), and analysis of 

dominance effects (Toro and Varona, 2010; Vitezica et al., 2013). Valuable work in the 

application of GBLUP to practical conditions in Fleckvieh and in preparation of phenotypes 

and genotypes had been carried out by the team of the Institute of Animal Breeding at Bavarian 

Research Centre for Agriculture (Edel et al., 2011). 

Although many types of statistical models have been tested for their suitability in genomic 

analyses, the genomic BLUP model, a linear model which is based on the infinitesimal model 

and assumes normal distribution of SNP effects, has turned out to perform well under the very 

most of practical conditions in dairy cattle populations (Hayes et al., 2009; VanRaden et al., 

2009, 2013; Erbe et al., 2012; Su et al., 2012) and especially in the Fleckvieh breed (Gredler et 

al., 2010; Pausch et al., 2011; Pryce et al., 2011). Furthermore, the GBLUP model is 

compatible with conventional BLUP procedures in genetic evaluation and allows for the 

estimation of individual prediction reliabilities, unlike non-BLUP models. Computational 

demands are manageable with GBLUP, unlike many non-linear approaches. For these reasons, 

I have focused on BLUP models in this thesis evaluating the impacts of high-density and 

female genotypes. In the following general discussion I would like to comment on some 

aspects arising from the analyses. 
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Effects of marker density on the properties of genomic relationship matrices 

and predictive ability 

Several authors have assessed the effect of higher marker density on predictive ability of 

genomic breeding values. Often favorable effects on prediction accuracy have been found, 

although gains in accuracy were not large (Harris et al, 2011; Erbe et al., 2012; Su et al., 2012; 

VanRaden et al., 2013). Harris et al. (2011) found in a simulation study of a trait with 50% 

heritability and genetic architecture close to the infinitesimal model that forward prediction 

accuracy with 100,000 SNP was 3.2 percentage points larger than with 20,000 SNP using ridge 

regression BLUP, which is equivalent to GBLUP, and with 4,799 bulls and their 15,000 

genotyped daughters in the calibration data set. Erbe et al. (2012) reported losses in validation 

accuracy of  2, 0 and 1 percentage points for milk, fat and protein yield, respectively, and with 

a mixed Holstein-Jersey reference set and a Holstein validation set when 800K SNP were 

analyzed instead of 50K SNP. With a Jersey validation set in turn accuracy increased by 1, 2 

and 4 percentage points, respectively. Su et al. (2012) found small gains in prediction 

reliability of 0.4, 0.9 and 0.0 percentage points in the traits protein yield, fertility and udder 

health, respectively, when 777K SNP were used instead of 50K SNP to predict genomic 

breeding values of Holstein cattle with GBLUP. In Nordic Red Dairy cattle, Su et al. (2012) 

found gains in prediction reliability of 1.2, 0.7, and 1.3 percentage points for the same type of 

comparison and the same traits. In chapter 2 of this thesis, validation reliability with imputed 

777K SNP in Fleckvieh was on average 1.5 percentage points (ranging from 0.8 percentage 

points in fat yield to 2.3 percentage points in milkability) larger than with actually genotyped 

50K SNP. We were able to show in the Appendix of chapter 2 that the potential gain in 

reliability with higher marker density was limited by the error arising from imputation from 

50K to 777K genotypes. Other groups of authors equally reported negative impacts of 

imputation error on the reliability of genomic predictions (Chen et al., 2011; Dassonneville et 
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al., 2011; VanRaden et al., 2013). In a situation without imputation error or with the same level 

of imputation error in the different marker sets, the gain in prediction reliability with 777K 

SNP instead of 50K SNP was 2.8 percentage points, on average, and ranged from 2.1 

percentage points in stature to 3.6 percentage points in milkability. In the studies of Harris et 

al. (2011), Erbe et al. (2012) and Su et al. (2012), it was not investigated if the reported gains 

in accuracy were statistically significant. Chapter 2 of this thesis proposes an approach for 

testing the difference in prediction accuracy with 50K and HD for significance. Reliability of 

genomic predictions with 777K SNP was compared with the distribution of reliabilities from 

different 50K samples out of 777K. All differences in prediction reliability were significant 

because 777K reliabilities were larger than the respective 95% quantile of the empirical 50K 

reliability distribution. The probability that the observed difference occurred by chance was in 

all traits even smaller than 1%. In addition, sampling of validation bulls showed that the 

difference between HD (affected by imputation error) and real 50K genotypes was significant. 

The regression of pseudo-phenotypes on predicted breeding values is a common measure in 

validation studies. A regression coefficient < 1 indicates that the dispersion of predicted 

breeding values is too large. Top predicted breeding values will then be overestimated and 

bottom predicted breeding values will be underestimated. Such an inflation of breeding values 

leads to suboptimal selection decisions (Patry and Ducrocq, 2009; VanRaden et al., 2009; 

Mäntysaari et al., 2010). The inclusion of a polygenic effect in the model, weighted 

combinations of genomic and pedigree-based relationships and single-step evaluation (cf. 

chapter 4) have been suggested to reduce inflation (e.g. Aguilar et al., 2010; Liu et al., 2011). 

As reported by Su et al. (2012), the coefficient of the regression of pseudo-phenotypes on 

predicted breeding values was larger with 777K than with 50K and thus closer to the expected 

value. This means that the variance of predicted breeding values with 50K was larger than the 

variance of predicted breeding values with 777K.  Predicted breeding values were inflated with 
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both marker densities but inflation was less with the higher marker density. In direct 

association to this observation, the model-based reliability of predicted breeding values 

decreased with higher marker density, in contrast to validation reliability. A plausible 

explanation for both observations is the finding of both Goddard et al. (2011) and Endelman 

and Jannink (2012) that there is a sampling error in genomic relationships calculated from 

markers due to finite sample size. This sampling error depends reciprocally on the number of 

markers (Yang et al., 2010) and causes the variance of predicted breeding values to be 

overestimated because genetic variance and genomic relationship coefficients (that have too 

large dispersion because of sampling error) are treated as true parameters in the BLUP 

procedure. 

In direct association to the observed inflated predictions of breeding values, the model-based 

reliability of predicted breeding values decreased with higher marker density in chapter 2, in 

contrast to validation reliability. The reason is identical: The model-based reliability is 

overestimated because of sampling error of genomic relationships that causes too large 

variance in the coefficient matrix (e.g. Goddard et al., 2011). 

Endelman and Jannink (2012), based on results of Ledoit and Wolf (2004), claimed that the 

sampling error of genomic relationship coefficient was not only reciprocally proportional to the 

number of markers but proportional to 
𝑛

𝑚∗𝐶𝑉²
, where m is the number of markers, n is the 

number of genotyped animals and CV is the coefficient of variation of the eigenvalues of the 

genomic relationship matrix. They proposed a shrinkage procedure in the calculation of the 

genomic relationship matrix to correct for the sampling error. The shrinkage target is a 

diagonal matrix with diagonal elements 1+f, where f is the individual genomic inbreeding 

coefficient. An equivalent approach had been already suggested by Hayes and Hill (1981) in 

order to render covariance matrices positively semi-definite and was called ‘bending’. Indeed, 
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shrinkage resulted in reduced inflation of predicted breeding values and in reduced model-

based reliabilities, just as could be expected from the reflections about sampling error. 

 

Impact of imputation error on reliability of genomic breeding values 

It could be shown that the reduction of prediction reliability by about 0.013 when 50K samples 

from HD genotypes were used instead of original 50K genotypes was caused by imputation 

error in HD genotypes, by introducing an artificial genotype error - equivalent to imputation 

error in Fleckvieh - in original 50K genotypes. The introduction of artificial errors resulted in a 

decay of prediction reliability of 0.015 percentage points. Inaccuracy in the imputation of 

genotypes is known to hamper the predictive ability of genomic breeding values predicted by 

means of imputed genotypes (Chen et al., 2011; Dassonneville et al., 2011; VanRaden et al., 

2013). Even though several genomic prediction studies were conducted with imputed 

genotypes (Erbe et al., 2012; Su et al., 2012), these authors have ignored the impact of 

imputation error on prediction accuracy. Pimentel et al. (2014) found in an analysis of imputed 

genotypes that most imputation errors occurred through replacement of a rare allele by a 

common allele. As a consequence, predicted breeding values of the best animals were shrunk 

towards the population mean, and predictions for the worst animals increased. Obviously, this 

phenomenon reduces the dispersion of genomic predictions, but it affects the model-based 

reliabilities as well. These latter impacts of imputation error on genomic predictions were not 

analyzed in chapter 2 of this thesis. But we have to be aware of such potential impacts of 

imputation error when analyses are based on imputed genotypes. 
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Including dominance in genomic evaluations 

Genetic variance can be partitioned in additive, dominance and epistasic variance (Cockerham, 

1954; Kempthorne, 1954). Additive-genetic variance results from additive (and dominance; 

Falconer and Mackay, 1996) effects of alleles at the different loci and is classically exploited in 

purebreeding schemes for livestock and plant species. Usually, additive-genetic variance 

covers a large part of total genetic variance, is convenient to work on because of the linear 

structure and has successfully been used for decades to select breeding animals by means of 

estimated breeding values to generate sustainable genetic progress. Non-additive genetic 

variance contains dominance and epistatic variance. Epistasis is the sum of interaction effects 

between gene loci. Non-additive genetic analysis in this thesis concentrated on dominance and 

its variance. Dominance arises from interaction between alleles at a locus such that the genetic 

value of a heterozygous genotype at a locus deviates from the sum of the respective (additive) 

allelic effects. Well-known examples for dominance actions are some qualitative traits like coat 

color: The coat color of cattle resulting from a heterozygote genotype with alleles for red and 

black color is not a mixture of black and red pigments but the same black color as of 

homozygous black genotypes because there is complete dominance of the black allele. 

Similarly, dominance gene action can exist also in quantitative traits and is classically 

exploited in crossbreeding schemes of e.g. maize, chicken and swine in order to obtain desired 

specific genotypes with maximal total (additive plus dominance) genetic value.  

Breeding values and dominance deviations are orthogonal by definition (e.g. Falconer and 

Mackay, 1996) and thus no covariance exists between them. Chapters 3 and 4 of this thesis are 

based on this classical parametrization as implemented by Vitezica et al. (2013) for genomic 

analysis of dominance. However, the existence of inbreeding depression indicates that 

dominance can be directional (e.g. Lynch and Walsh, 1998). Wellmann and Bennewitz (2011, 

2012) suggested that biologically additive and dominance effects can be interdependent. This 
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would result in dependence between breeding values and dominance deviations. Although the 

question of dependence or independence should be further investigated, the investigations of 

this thesis relied on the classical parametrization of independence between breeding values and 

dominance deviations.  

It has already been known from pedigree-based estimation of variance components that there is 

non-negligible dominance variation in production and conformation traits of Holstein cattle 

(Tempelman and Burnside, 1990a, b; Miglior et al., 1995; Misztal et al.,, 1997; Van Tassell et 

al., 2000). In pedigree-based estimation of dominance variance, a sufficient proportion of full-

sibs are required in the data set to have enough dominance relationships between individuals. 

Van Tassell et al. (2000) for example selected their data set such that at least 14% full-sibs 

were contained in the data. Tempelman and Burnside (1990a, b) obtained a data set with 15% 

and 16% full-sibs, respectively in conformation and production analysis, by means of selection 

from a larger data set. Typically, full-sib pairs are not very frequent in dairy cattle, unlike in 

multiparous species like pigs. In chapter 3 of this thesis, the analyzed data set was not selected 

for full-sib relationships and contained only 3% full-sibs, which is a typical proportion in dairy 

cattle. However, in addition to full-sib relationships, many genomic dominance relationships 

with small absolute values were present in the data set (cf. Figure 1b in chapter 3). 

Albeit information content in the data set was apparently sufficient to obtain significant 

estimates for dominance variance in most traits, information or more specifically dominance 

relationships have not been sufficient to accurately predict genomic dominance deviations of 

validation cows in cross-validation analysis. As it is known from several studies about genomic 

prediction of breeding values, a sufficiently close relationship between training and validation 

animals is an essential factor for obtaining precise predictions (e. g. Habier et al., 2007, 2010; 

Pszczola et al., 2012). Analogously, larger genomic dominance relationships, i.e. more full-sib 

relationships, between training and validation cows would have been required to predict 
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dominance deviations more precisely. From a practical point of view, the full-sister has to have 

passed her first lactation before dominance deviations of a validation animal can be predicted 

with a larger accuracy. Given that a training cow is 24 months old at first calving, has finished 

her first lactation at the age of 34 months and has - due to use of sexed semen of a certain bull 

in artificial insemination - a full-sister born every 12 months after her own birth, the 

information available at the end of her first lactation could be used to predict dominance 

deviations and total genetic values of her genotyped full-sisters and to decide if (1) the oldest 

full-sister at the age of 22 months should be kept for dairy production, (2) the second-oldest 

full-sister at the age of 10 months should be raised for own replacement, (3) the third-oldest 

full-sister (at this time a fetus two months pre natum) should be raised for own replacement or 

sold for breeding/fattening purposes or (4) which out of several genotyped full-sib embryos to 

be conceived in five months from multiple ovulation should be carried to term (Table 1). 

 

Table 1. Age, production stage and potential use of predicted total genetic values for different 

full-sisters 

Age Production stage Use of predicted total genetic 

value 

34 months First lactation completed - 

22 months First calving in 2 months Decide whether to keep for 

dairy production or to sell 

10 months Insemination in 5 months Decide whether to keep for 

own replacement or to sell for 

breeding/fattening 

-2 months Birth in 2 months Decide whether to raise for 

own replacement or to sell 

the calf for breeding/fattening 

-14 months Conception of multiple 

embryos in 5 months 

Decide which embryos to 

carry out 
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The earlier in the production process dominance deviations and total genetic values are 

available for an animal, the more the farmer can benefit from this information because he can 

save raising costs. On the other hand, as accurate predictions are only achievable for full-

sisters, the selection candidate has to have the same parents as the reference full-sister which 

tends to prolong the generation interval. This can imply that the farmer has to renounce to 

additive-genetic gain that could have been acquired in the meantime. Positive dominance 

deviations have thus to be traded off against a reduction of additive-genetic gain. Furthermore, 

the within-herd variability would be reduced, because many cows would be full-sisters. On the 

other hand, this could improve the estimation of dominance variance and dominance effects. 

Systematic genotyping and analysis of full-sisters should be undertaken to investigate this 

subject. Prolonged generation interval could principally be avoided by using embryo transfer. 

An even more consequent application of information about dominance effects is the selection 

of the optimal mating partner for a cow in order to maximize total genetic value in the 

offspring. Breeders and farmers choose nowadays the mating partner for a cow with respect to 

maximal expected breeding value of the progeny. While breeders can be indifferent to 

dominance deviations that occur only in a specific animal and are not transmitted to subsequent 

generations, farmers want to maximize the production of their cows and are therefore interested 

in maximal total genetic values in order to obtain maximal phenotypic values. Since the total 

genetic value is the sum of breeding value and dominance deviation, the optimal mating 

partner should be chosen to generate both excellent breeding values and positive dominance 

deviations in the offspring of the specific mating. Based on the approach of Toro and Varona 

(2010), expected breeding values, dominance deviations and total genetic values were 

calculated in chapter 3 for all potential matings between a certain cow and 50 bulls for the 

traits milk yield and protein yield. The top mating was selected for each of the 1996 cows with 

respect to (1) maximal breeding value or (2) maximal total genetic value. We have imposed the 
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restriction that one bull is not mated to more than 200 cows. The expected total genetic 

superiority was 14.8% (milk yield) and 27.8% (protein yield) larger when matings were 

selected on the expected total genetic value instead of the expected breeding value. The effect 

was larger for protein yield where the estimated proportion of dominance variance as compared 

to total genetic variance was larger. The results coincide with the finding of Toro and Varona 

(2010) in a simulation study that expected total genetic superiority was with selection of 

matings on the total genetic value 16% larger than with selection on the breeding value only. 

Despite the remarkable expected advantage from selection on the expected total genetic value, 

the expected breeding values did only decrease by 4.5% for milk yield and 2.6% for protein 

yield. This would not severely reduce additive genetic gain, notably because only breeding 

values of cows (in producer herds) but not those of AI bulls would be affected by this small 

reduction. While for loci where the mating partners are homozygous the genotype of the 

offspring can be predicted perfectly (either also homozygous when genotypes of mating 

partners are identical or heterozygous when mating partners are alternatively homozygous), 

different genotypes will be expected with varying probabilities in all other combinations. A 

weighted average of local breeding values, dominance deviations and total genetic values, 

respectively, was calculated for these loci, which resulted in values closer to the population 

mean than values of loci with predictable genotypes. This inaccuracy has to be accepted while 

the expected genetic values are still unbiased. The approach of summing up the product of 

values and the probability for the respective genotype has also been suggested to perform a 

genome-wide association study for dominance effects using the expectations of genotypes of 

un-genotyped cows by Boysen et al. (2013). 

Potential positive dominance deviations that have been realized by means of a planned mating 

are not inherited to subsequent generations because the dominance deviation is associated with 

the individual genotype and not with the gametes. This characteristic arises from quantitative 
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genetic theory (e.g. Cockerham, 1954) and was confirmed by the simulation study of Toro and 

Varona (2010). For each generation, the optimal mating partner has to be chosen anew in order 

to obtain large total genetic values in the next generation. 

The extension of the strategy of planned matings to multiple traits and to the aggregate 

genotype is straightforward even if the procedure will be much more complex then. A web-

based application could be developed where a farmer provides the genotype of a cow, chooses 

a number of bulls as potential mating partners, defines the most preferred selection criterion 

and receives a mating proposal for the bull which maximizes the expected total genetic value 

(or breeding value) of matings. 

 

Combining genotypic, phenotypic and pedigree information of bulls and 

cows in genomic analyses including dominance 

In chapter 3 of this thesis, dominance effects were analyzed based on a data set of 1,996 

genotypes cows. Although records of cows are valuable phenotypes with relatively large 

information content, it is a pity to reject to the huge amount of information that could be 

available from (un-genotyped) daughters of genotyped bulls. The studies on single-step 

genomic evaluation (Legarra et al., 2009; Aguilar et al., 2010; Christensen and Lund, 2010) 

have resulted in an elegant BLUP model that combines all sources of information (genotypes, 

phenotypes, pedigree) in an optimal way. However, the computation of a full single-step model 

containing additive and dominance effects is not feasible with the present technology. In order 

to demonstrate ways to evaluate a data set consisting of genotyped bulls and both genotyped 

and un-genotyped cows for breeding values and dominance deviations, a single-step model 

including dominance was applied to a relatively small semi-real data set adapted from the 

German-Austrian routine genomic evaluation.  
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Since its development, the single-step model has been subject of extensive investigations under 

a multitude of aspects. The main advantages of optimal use and weighting of all available 

information in single-step evaluation are increased reliability of estimates and predictions, and 

less bias and inflation of genomic predictions. This has been confirmed by a series of studies 

(e. g. Gao et al., 2012; Su et al., 2012). In practice limited computational capacities and 

potential convergence problems (Harris et al., 2013; Liu et al., 2014) raise the demand for a 

reduced single-step evaluation procedure. Given that a full single-step model contains all 

breeding bulls and all cows (a small proportion genotyped and the remaining large proportion 

not genotyped), the reduction of the model to bulls and genotyped cows is a consequent 

approach to save computing time and memory. For example, with the data set in chapter 4 of 

this thesis, the size of the model shrank from 3,331 to 411 animals. This is only 12% of the full 

single-step model size and would result in a 66-fold reduction of computation time for 

operations with quadratic increase of computation time with increasing model size. The more 

un-genotyped cows are included in the reduced single-step model, the more the results 

converge towards the full single-step model. But in this case, computing time converges 

towards the full single-step model requirements, too. This is not a problem when the number of 

genotyped cows is much smaller than the number of bulls in the evaluation as it was the case in 

the example of chapter 4. But in the United States already 1,187,231 genotypes of Holstein 

cows and heifers have been included in the genomic evaluation (Council on Dairy Cattle 

Breeding, 2017) and inclusion of their dams in a reduced single-step model would considerably 

increase the model size. The extent of model reduction and savings in computation time has to 

be traded off against the reduced reliability of estimated genetic values. 

The finding that the accuracy of predicted breeding values was larger with full than with 

reduced single-step in additive analyses (e.g. Baloche et al., 2014) was confirmed by the results 

from additive full and reduced single-step models in chapter 4 of this thesis. The same finding 
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held also in general for the dominance models. The extent of benefits in accuracy of full single-

step depended on the type of genetic value (breeding value, dominance deviations or total 

genetic value) and on the type of validation animal (cow with records, cow without records, 

bull with records of daughters). 

Estimated breeding values showed similar properties between additive and dominance models 

for full and reduced single-step. This indicates that the modelling of dominance did not impair 

the quality of breeding value estimation – neither in the full nor in the reduced single-step 

model. 

Predicted breeding values of validation cows were not inflated, neither with full, nor with 

reduced single-step models. Several papers have reported that single-step evaluation has the 

desired effect of reducing inflation in comparison to multi-step GBLUP (Gao et al.; 2012; Su et 

al., 2012). However the dispersion of predicted dominance deviations of validation cows was 

somewhat underestimated. Vitezica et al. (2011) outlined that scaling of genomic relationships 

towards the respective numerator relationships results in less bias and inflation of predictions. 

This scaling approach was applied in both the full and the reduced single-step model. 

A reduced single-step evaluation is an acceptable alternative to the full single-step model even 

for estimation of dominance deviations, when computational resources are limited. Estimated 

dominance deviations for bulls were not valuable at all but are neither relevant for breeders. In 

turn, the inclusion of dominance in the single-step model did not affect the estimation of 

breeding values for bulls. 
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Summary 

 

The objectives of this thesis were to investigate the potential benefits from genome-wide SNP 

genotypes at higher marker density and from female genotypes in addition to bulls’ genotypes 

in genomic evaluation of the Fleckvieh breed. In the genomic analysis of female genotypes, the 

emphasis lay on the importance and on the potential use of dominance variance. 

To investigate the difference in reliability of genomic predictions with medium-density 

(40,089; 50K) or high-density marker sets (388,951; HD) in Fleckvieh, an approximate method 

was developed to test differences in validation reliability for significance. The mean benefit in 

validation reliability of HD genotypes was 0.015 compared with real 50K genotypes and 0.028 

compared with 50K samples from HD affected by imputation error and was significant for all 

analyzed traits. The model based reliability was, on average, 0.036 lower and the regression 

coefficient was 0.036 closer to the expected value with HD genotypes. Sampling error in the 

marker-based relationship coefficients causing overestimation of the model based reliability 

was smaller with HD genotypes. Inflation of the genomic predictions was reduced with HD 

genotypes, accordingly. Similar effects on model based reliability and inflation, but not on the 

validation reliability, were obtained by shrinkage estimation of the realized relationship matrix 

from 50K genotypes. 

Variance components of nine milk production and conformation traits were estimated using 

yield deviations of 1996 genotyped Fleckvieh cows and estimated dominance variance ranged 

from 3.3% to 50.5% of the total genetic variance. Due to small dominance effect relationships 

between cows, predictions of individual dominance deviations were very inaccurate and 

including dominance in the model did not improve prediction accuracy in the cross-validation 

study. Additive and dominance SNP effects for milk yield and protein yield were estimated 
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with a BLUP model and used to calculate expectations of breeding values and total genetic 

values for putative offspring. Selection on total genetic value instead of breeding value would 

result in a larger expected total genetic superiority in progeny, i.e. 14.8% for milk yield and 

27.8% for protein yield, and reduce the expected additive genetic gain by only 4.5% for milk 

yield and 2.6% for protein yield. 

For a small real Fleckvieh pedigree consisting of 371 bulls (180 bulls thereof genotyped) and 

553 cows (40 cows thereof genotyped) and extended for 2407 virtual non-genotyped daughters, 

genetic values were simulated and estimated with a single-step model including dominance and 

various reduced single-step models. Accuracies of breeding values, dominance deviations and 

total genetic values of genotyped cows with own performance were largest with single-step 

(0.726, 0.489 and 0.800, respectively) and smallest with reduced single-step when only 

genotyped cows were modelled (0.672, 0.470 and 0.788, respectively). For validation cows 

(without own performance but having a full-sister with own performance), accuracies were 

also largest with single-step (0.574, 0.315 and 0.609, respectively) and smallest with reduced 

single-step when only genotyped cows were modelled (0.481, 0.302 and 0.548, respectively). 

For genotyped bulls, accuracies were 0.774, 0.067 and 0.634, respectively, with single-step and 

0.725-0.726, 0.066, and 0.597-0.598, respectively, with different reduced single-step models. 

A reduced single-step dominance model is suitable to estimate breeding values of bulls and 

breeding values, dominance deviations and total genetic values of cows with acceptable quality 

and can be an alternative when running a full single-step genomic model including dominance 

is not feasible. 
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Zusammenfassung 

 

Ziele dieser Arbeit waren es, den möglichen Nutzen von genomweiten SNP-Genotypen mit 

höherer Markerdichte zu untersuchen sowie den möglichen Vorteil durch die Nutzung von 

weiblichen Genotypen zusätzlich zu den Genotypen von Bullen in der genomischen 

Zuchtwertschätzung beim Fleckvieh abzuschätzen. 

Eine näherungsweise Methode wurde entwickelt um beobachtete Unterschiede in der 

Sicherheit der genomischen Vorhersage beim Fleckvieh zwischen Genotypen mit mittlerer (50 

K; 40 089) und hoher Markerdichte (HD; 388 951) auf Signifikanz zu testen. Der mittlere 

Zugewinn in der Validierungssicherheit mit HD-Genotypen betrug 0,015 im Vergleich mit 

wirklichen 50K-Genotypen und 0,028 im Vergleich mit 50K-Stichproben aus den HD-

Genotypen, die von einem Imputationsfehler betroffen waren, und war signifikant bei allen 

untersuchten Merkmalen. Die aus dem Modell berechnete Sicherheit war mit HD-Genotypen 

im Durchschnitt um 0,036 geringer und der Regressionskoeffizient um 0,036 näher am 

erwarteten Wert. Der Stichprobenfehler in den aus der Markerinformation errechneten 

Verwandtschaftskoeffizienten, der die Überschätzung der aus dem Modell berechneten 

Sicherheit bedingte, war mit HD-Genotypen kleiner. Damit übereinstimmend war die Streuung 

der genomischen Zuchtwerte mit HD-Genotypen weniger überhöht. Durch eine Manipulation 

(„Shrinkage“) der mit 50K-Genotypen berechneten Verwandtschaftsmatrix wurden ähnliche 

Auswirkungen auf die aus dem Modell berechnete Sicherheit und die Streuung der 

genomischen Zuchtwerte, aber nicht auf die Validierungssicherheit, erreicht wie mit HD-

Genotypen. 

Aus den Leistungsabweichungen von 1996 genotypisierten Fleckviehkühen wurden die 

additiven und Dominanz-Varianzkomponenten von neun Milchleistungs- und 
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Exterieurmerkmalen geschätzt. Die geschätzte Dominanzvarianz betrug zwischen 3,3% und 

50,5% der gesamten genetischen Varianz. Wegen der kleinen Dominanz-

Verwandtschaftskoeffizienten zwischen den Kühen waren die individuellen 

Dominanzzuchtwerte sehr ungenau und die Aufnahme von Dominanz in das Modell 

verbesserte nicht die Vorhersagegenauigkeit in der Kreuzvalidierung. Additive und 

Dominanzeffekte von SNP für Milchmenge und Eiweißmenge wurden mit einem BLUP-

Modell geschätzt und zur Berechnung von erwarteten Zuchtwerten und Genotypwerten von 

möglichen Nachkommen verwendet. Die Auswahl des Paarungspartners nach dem 

Genotypwert statt nach dem Zuchtwert würde zu einer zusätzlichen Verbesserung im 

Genotypwert der Nachkommen um 14,8% in der Milchmenge und um 27,8% in der 

Eiweißmenge führen und im Gegenzug den erwarteten additiven Zuchtfortschritt nur um 4,5% 

in der Milchmenge und 2,6% in der Eiweißmenge reduzieren. 

Für ein kleines echtes Fleckvieh-Pedigree mit 371 Bullen (davon 180 genotypisiert) und 553 

Kühen (davon 40 genotypisiert), das um 2407 nicht genotypisierte Töchter erweitert wurde, 

wurden genetische Werte simuliert und Zuchtwerte mit einem Single-Step-Modell inklusive 

Dominanz sowie verschiedenen reduzierten Single-Step-Modellen geschätzt. Die 

Genauigkeiten der Zuchtwerte, Dominanzabweichungen und Genotypwerte von 

genotypisierten Kühen mit eigener Leistung waren mit dem Single-Step-Modell am größten 

(0,726, 0,489 und 0,800) und am kleinsten mit einem reduzierten Single-Step-Modell, in dem 

nur genotypisierte Kühe enthalten waren (0,672, 0,470 und 0,788). Für die Validierungskühe 

(ohne Eigenleistung, aber Vollschwester mit Leistung) waren die Genauigkeiten ebenfalls mit 

dem Single-Step-Modell am größten (0,574, 0,315 und 0,609) und am kleinsten mit dem auf 

genotypisierte Kühe reduzierten Single-Step-Modell (0,481, 0,302 und 0,548). Für 

genotypisierte Bullen betrugen die Genauigkeiten mit dem Single-Step-Modell jeweils 0,774, 

0,067 und 0,634 und für die verschiedenen reduzierten Single-Step-Modelle jeweils 0,725-
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0,726, 0,066 und 0,597-0,598. Ein reduziertes Single-Step-Modell mit Dominanz eignet sich 

dafür, Zuchtwerte von Bullen und Zuchtwerte, Dominanzabweichungen und Genotypwerte von 

Kühen mit akzeptabler Qualität zu schätzen und kann als Alternative dienen, wenn ein volles 

Single-Step-Modell mit Dominanz aus Kapazitätsgründen nicht gerechnet werden kann. 
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