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Abstract

The introduction of more electric vehicles and stationary batteries could multiply the global produc-
tion of lithium-ion batteries. However, the batteries’ safety and performance deterioration over their
lifetime remain a concern. More sophisticated on-line measurement systems, including electrochemical
impedance spectroscopy, could help address these problems.

Outside ideal laboratory conditions, electrochemical impedance spectroscopy is prone to systematic
measurement deviations coming from two main sources: the cell itself and the measurement system. A
high excitation amplitude improves the signal-to-noise ratio, but at the same time causes the battery to
respond in a non-linear, non-stationary way. In this thesis, the deviations depending on the excitation
amplitude were analyzed and an equation was derived, with which the prospective measurement devi-
ation can be determined on an embedded controller before the measurement is taken. The calculations
are mainly based on previous impedance measurements. The cause of these deviations are grouped
into four categories: non-stationarity (1) of the State-of-Charge, (2) of the temperature, (3) of the
Open-Circuit-Voltage and (4) non-linearity of the impedance towards the applied current. The change
of the State-of-Charge causes an additional signal in the second harmonic, which is relevant for multi-
sine measurements. This thesis shows, that the temperature change can be estimated from the real
part of the impedance from high frequencies down to constant charge/discharge currents. The change
in Open-Circuit-Voltage only introduces a deviation for the imaginary part and is independent from
the excitation amplitude. Different methods to measure non-linearity are analyzed and measurements
with the developed Microcycle-Impedance method are shown for the real and imaginary part of a
cylindrical Lithium Iron Phosphate (LiFePO4) cell. The non-linearity, described by the Butler-Volmer
equation is the most critical contributor to the overall deviation for measurement deviations that come
from the cell itself. But at low frequencies (≤ 10 mHz), the temperature increase from impedance
heating also contributes a significant part to the overall deviation.

Drifts in the voltage response can make the measured impedance unusable. Different drift correc-
tion methods are compared against each other and a new one is presented in the frequency-domain.
The most important types of voltage drifts are the linear and the exponential drifts. The presented
new approach in the frequency-domain can correct both without the need to identify which type of
drift is present. At high frequencies below the x-axis in the Nyquist plot, the real part of the impedance
increases. Thus, the Nyquist curve looks like as it has been ‘twisted’ counter-clockwise. This effect,
often referred to as the skin effect, was attributed to the parasitic shunt inductance. The excitation
current of an on-line electrochemical impedance spectroscopy needs to be generated by already existing
switched-mode power electronic converters in order to reduce costs. These converters cause harmonics,
which can alias into the measurement frequency bandwidth and cause distortions. A distortion-free
measurement frequency grid has been developed and proposed to avoid these distortions. The only
downside of this grid is that for high frequencies, the measurement time needs to be increased by
several measurement periods.
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Kurzfassung

Die Verbreitung von Elektrofahrzeugen und die Nutzung von stationären Speichern haben das Po-
tenzial, die weltweite Produktion von Lithium-Ionen-Batterien zu vervielfachen. Die Alterung und die
Sicherheit dieser Energiespeicher sorgen bei dieser Entwicklung für Beunruhigung. Bessere Messver-
fahren, wie die elektrochemische Impedanzspektroskopie welche regelmäßig während der Benutzung
oder in Pausenzeiten durchgeführt werden, könnten dazu beitragen diese Probleme zu lösen.

Außerhalb von idealen Laborbedingungen ist sie allerdings mehreren systematischen Messabwei-
chungen ausgesetzt, welche hauptsächlich aus zwei Quellen stammen: von der Batteriezelle selbst und
vom Messsystem. Eine hohe Anregungsamplitude verbessert den Störspannungsabstand, führt aber
gleichzeitig dazu, dass die Batterie den linearen, stationären Bereich verlässt. Die Messabweichun-
gen abhängig von der Anregungsamplitude wurden analysiert und eine Gleichung aufgestellt, welche
erlaubt, die voraussichtliche Abweichung bereits vor der eigentlichen Messung zu bestimmen. Die Be-
rechnungen basieren zum größten Teil auf vorangegangenen Impedanzmessungen. Die Ursache der
Abweichungen können in vier Kategorien eingeteilt werden: Verletzung der Stationaritätsbedingung
durch (1) Veränderung des Ladezustandes, (2) der Zelltemperatur, (3) der Ruhespannung und (4)
Verletzung der Linearitätsbedingung der Impedanz bezüglich der Stromamplitude. Die Änderung des
Ladezustandes führt zu einer zweiten Harmonischen, was für die Anregung mit Breitbandsignalen re-
levant ist. Diese Arbeit zeigt, dass die Temperaturänderung über den Realteil der Impedanz über den
gesamten Frequenzbereich abgeschätzt werden kann, von den hohen Frequenzen bis hin zum Kon-
stantstrom. Die Änderung der Ruhespannung führt zu einer Messabweichung im Imaginärteil, welcher
unabhängig von der Anregungsamplitude ist. Unterschiedliche Messmethoden zur Bestimmung der
Nichtlinearität wurden miteinander verglichen, und die Nichtlinearität des Real- und Imaginärteils für
eine zylindrische Lithium-Eisenphosphat-Zelle mit der Mikrozyklus-Impedanz Methode vermessen. Die
Nichtlinearität, beschrieben mit der Butler-Volmer Gleichung, ist die kritischste Ursache für Messab-
weichungen, die von der Zelle selbst kommen. Bei kleinen Frequenzen (≤ 10 mHz), trägt allerdings
auch der Temperaturanstieg einen erheblichen Teil zur Messabweichung bei.

Eine Spannungsdrift kann eine Impedanzmessung unbrauchbar machen. Unterschiedliche Driftkor-
rekturen werden miteinander verglichen und eine neue, im Frequenzbereich, vorgestellt. Die wichtigsten
Spannungsdriftarten sind die lineare und die exponenzielle Drift. Die neue, hier vorgestellte Methode
kann beide korrigieren, ohne die Art der Drift identifizieren zu müssen. Bei hohen Frequenzen unter-
halb der x-Achse in der Nyquist-Ortskurve nimmt der Realteil der Impedanz zu. Die Nyquist-Ortskurve
scheint sich gegen den Uhrzeigersinn zu verdrehen. Dieser Effekt, welcher oft als “Skin Effekt” bezeich-
net wird, konnte dem Einfluss der parasitären Induktivität des Stromshunts zugeordnet werden. Der
Anregungsstrom einer “on-line” elektrochemischen Impedanzspektroskopie sollte aus Kostengründen
möglichst von bereits vorhandenen getakteten leistungselektronischen Wandlern erzeugt werden. Die-
se Wandler verursachen Harmonische, deren Aliase im Bereich der Messfrequenzen stören können.
Um diese Störungen zu vermeiden, wurden Regeln für ein störungsfreies Raster zur Platzierung der
Messfrequenzen ausgearbeitet. Der einzige Nachteil dieses Rasters ist, dass es die Messzeit für hohe
Messfrequenzen um mehrere Messperioden erhöht.

III





Acknowledgement

Carrying out this thesis and achieving the presented results has been made possible thanks to the support
of various institutions and persons. The experimental work has been performed at the Campus for
Research Excellence And Technological Enterprise (CREATE) in Singapore as well as at the Institute
for Electrical Energy Storage (EES) Technology of the Technical University Munich.

Among the individuals who have contributed to this thesis I would like to thank, first of all, Professor
Dr.-Ing. Andreas Jossen for his supervision of the thesis, his support and expertise. I also would like to
thank all colleagues who supported me in Munich and Singapore with their knowledge and as discussion
partners to test my hypotheses. I thank Patrick Osswald for the entropy measurements in this thesis
recorded with the δV/δT method and Andreas Hauser for the impedance measurement at high frequencies
in figure 4.14.

During the time working on the doctoral thesis I supervised several Bachelor, Master and Diploma
theses. Those students contributed to the success of this thesis. In particular are to mention: Sebastian
Kneuer, Florian Wilde, Max Horsche, Ilya Zilberman, Christian Vergote, Patrick Dumm, Christoph
Riebel and Kostadin Kotev.

V



This thesis was typeset using LATEX . It contains vector graphics created with Inkscape® version 0.91
and photos edited with GIMP® version 2.8.16. Most calculations were performed using MATLAB®

version R2014a. The graphs were created using MATLAB® scripts with MATLAB2TikZ.



Contents

Abstract I

Kurzfassung III

1 Introduction 1
1.1 Lifetime and Safety of Lithium-Ion Batteries . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Crowd-sourced, Cloud-computed Battery Diagnostics . . . . . . . . . . . . . . . . . . . . 2
1.3 On-line Electrochemical Impedance Spectroscopy . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Fundamentals 7
2.1 Lithium-ion Battery Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Construction and Mode of Operation . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Overpotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 State-of-Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Measurement of Inner Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Current Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Electrochemical Impedance Spectroscopy . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Excitation Options for Electrochemical Impedance Spectroscopy . . . . . . . . . 17
2.2.4 Discrete Data Analysis for Electrochemical Impedance Spectroscopy . . . . . . . 18
2.2.5 Measurement Deviation Possibilities of the Discrete Data Analysis for Electro-

chemical Impedance Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Excitation Amplitude Limit 25
3.1 Measurement Deviation Caused by State-of-Charge Change . . . . . . . . . . . . . . . . 29

3.1.1 Impedance Dependency on State-of-Charge . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Single-sine Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2.1 State-of-Charge Change . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2.2 Impedance Measurement Deviation . . . . . . . . . . . . . . . . . . . . 31

3.1.3 Multi-sine Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3.1 State-of-Charge Change . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3.2 Impedance Measurement Deviation . . . . . . . . . . . . . . . . . . . . 34

3.1.4 Constant Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.4.1 State-of-Charge Change . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.4.2 Impedance Measurement Deviation . . . . . . . . . . . . . . . . . . . . 38

3.2 Measurement Deviation Caused by Temperature Change . . . . . . . . . . . . . . . . . . 42
3.2.1 Impedance Temperature Dependency . . . . . . . . . . . . . . . . . . . . . . . . . 43

VII



Contents

3.2.2 Reversible Heat Generation from Sinusoidal Currents . . . . . . . . . . . . . . . . 46
3.2.3 Irreversible Heat Generation from Sinusoidal Currents . . . . . . . . . . . . . . . 49

3.2.3.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.3.2 Impedance as an Indicator for the Irreversible Heat Generation Rate . . 51
3.2.3.3 Impedance Measurement Deviation Caused by Alternating Part of Impedance

Heating for a Single-sine Measurement . . . . . . . . . . . . . . . . . . 52
3.2.4 Irreversible Heat Generation from Pulsed Currents . . . . . . . . . . . . . . . . . 55

3.2.4.1 Decomposition of Pulse Trains . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.4.2 Irreversible Heat Generation Dependency on Pulse Frequency . . . . . . 56

3.2.5 Irreversible Heat Generation from Constant Charge/Discharge Currents . . . . . 57
3.2.5.1 Time Constant of the Heat Transfer to the Cell Casing . . . . . . . . . 58
3.2.5.2 Impedance Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.5.3 Impedance Measurement Derivation Caused by Constant Current . . . 62

3.2.6 Impedance Measurement Deviation Caused by Multi-sine Measurement . . . . . 64
3.3 Measurement Deviation Caused by Open-Circuit-Voltage Displacement . . . . . . . . . . 66

3.3.1 Open-Circuit-Voltage Displacement from State-of-Charge Change . . . . . . . . . 66
3.3.1.1 Open-Circuit-Voltage Displacement . . . . . . . . . . . . . . . . . . . . 66
3.3.1.2 Impedance Measurement Deviation . . . . . . . . . . . . . . . . . . . . 69

3.3.2 Open-Circuit-Voltage Displacement from Temperature Change . . . . . . . . . . 73
3.3.2.1 Open-Circuit-Voltage Displacement . . . . . . . . . . . . . . . . . . . . 74
3.3.2.2 Impedance Measurement Deviation . . . . . . . . . . . . . . . . . . . . 74

3.3.3 Comparison of Measurement Deviations . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 Measurement Deviation Caused by Impedance Non-linearity . . . . . . . . . . . . . . . . 77

3.4.1 Double Butler-Volmer Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.2 Measurement of Non-linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.2.1 Charge/Discharge Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.2.2 Microcycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4.2.3 Microcycle-Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4.2.4 Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.3 Magnitude of Non-linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4.4 Impedance Measurement Deviation Caused by Single-sine Measurement . . . . . 91
3.4.5 Impedance Measurement Deviation Caused by Multi-sine Measurement . . . . . 94
3.4.6 Measurement Deviation from Impedance Non-linearity Caused by Constant Cur-

rent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.5 Comparison of Measurement Deviation Sources . . . . . . . . . . . . . . . . . . . . . . . 98

4 On-line Electrochemical Impedance Spectroscopy Measurements 105
4.1 Drift Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.1.1 Time-Domain Drift Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.1.2 Drift Measurement Deviation Suppression by Windowing . . . . . . . . . . . . . 110
4.1.3 Drift Correction in the Frequency-Domain . . . . . . . . . . . . . . . . . . . . . . 111

4.1.3.1 Linear Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.1.3.2 Exponential Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.1.4 Comparison of Correction Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.2 Impedance Measurement Deviation Caused by the Parasitic Current Shunt Inductance . 125
4.3 Narrowband Distortions Caused by Switched-mode Excitation . . . . . . . . . . . . . . . 128

VIII



Contents

4.3.1 Harmonics Caused by Switched-mode Excitation . . . . . . . . . . . . . . . . . . 128
4.3.2 Impedance Measurement Deviation Caused by Narrowband Distortions . . . . . 130
4.3.3 Topologies for On-line Electrochemical Impedance Spectroscopy Implementation 133

4.3.3.1 Charger Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.3.3.2 Balancing Unit Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.3.3.3 DC-Supply Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.3.3.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.3.4 Distortion Reduction by Adjusting the DC-link Voltage . . . . . . . . . . . . . . 145
4.4 Distortion-free Frequency Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.4.1 Process to Define Distortion-Free Grid . . . . . . . . . . . . . . . . . . . . . . . . 150
4.4.2 Repetition of Carrier Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.4.3 Safe Lower Frequency Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.4.4 Frequency Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.4.5 Example for the Distortion-Free Frequency Grid . . . . . . . . . . . . . . . . . . 157

5 Conclusion 159

References 163

Glossary 173

Abbreviations 177

Formula Symbols 179

Appendix 191

A Battery Cells Used 193
A.1 Cylindrical LFP Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
A.2 Cylindrical NMC Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
A.3 Cylindrical LCO Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
A.4 Cylindrical NCA Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
A.5 NMC Pouch Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

B Prototype Used 205

C Mathematical Lemmas 207
C.1 Trigonometric Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
C.2 Definite integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
C.3 Indefinite integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
C.4 Bessel Function of the First Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
C.5 Modified Bessel Function of the First Kind . . . . . . . . . . . . . . . . . . . . . . . . . 210
C.6 Imaginary Unit to the Power of a Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . 213

D Mathematical Derivations for Impedance Non-linearity 215
D.1 Harmonics generated by Butler-Volmer equation . . . . . . . . . . . . . . . . . . . . . . 215
D.2 Ratios of harmonics generated by Butler-Volmer equation . . . . . . . . . . . . . . . . . 216
D.3 Single-sine measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
D.4 Multi-sine measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

IX



Contents

D.5 Measurement with constant current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

E Mathematical Derivation of Generated Harmonics by Switched Mode Excitation 221
E.1 General Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
E.2 Charger Topology Using DC-link adjustment . . . . . . . . . . . . . . . . . . . . . . . . 223
E.3 Balancing Unit Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
E.4 DC Supply Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

X



1 Introduction

The production and usage of lithium-ion (li-ion) batteries continues to expand [96]. The invention
of the li-ion battery eased the introduction and widespread use of cell phones, it replaced, by large
quantities, the usage of other types of batteries in laptops, power tools and cameras. They made
new products possible, which before did not exist in that way such as the electric cigarette and the
autonomous electric vacuum cleaner or mower. In transportation, the low weight of the li-ion battery
made the introduction of plug-in hybrid electric vehicles and fully electric vehicles possible. Electric
scooters and bikes powered by li-ion batteries created a large new market and are becoming more and
more popular. The fluctuating generation of energy by renewable energy sources will make energy
storage in batteries necessary in the future [109].
This increased usage of li-ion batteries is a development that should be welcomed. The new products
make our life easier and create several new employment opportunities. Locally emission-free trans-
portation, as provided by electric cars, scooters and bikes, improves our health and the quality of life
in our cities. The seamless integration of renewable energy sources into the electric grid by stationary
batteries will help to reduce carbon emissions and help to limit global warming.
The usage of li-ion battery packs for electric cars and stationary batteries is already gaining some
ground. The potential is immense and it could multiply the worldwide production of li-ion batter-
ies. New developments in li-ion batteries will help to pave the way for their widespread use in these
applications [96; 109].

1.1 Lifetime and Safety of Lithium-Ion Batteries

For a continuing increase of the usage of li-ion batteries, they need to overcome certain issues. Besides
the limited capacity, high costs and limited operational temperature, their deterioration over time and
safety are two major concerns for the application of li-ion batteries.
The deterioration over time, or their ‘aging’, is noticeable for the user of the battery in two ways: by
capacity fade and by power fade, i.e. an increase in inner resistance. However, both are to some extent
intertwined [60]. Up to now, only a qualitative understanding exists of what causes li-ion batteries
to age. These effects are dependent on the chemistry of the cathode and materials of the anode. A
quantitative estimation of how much a certain operation pattern will deteriorate the battery is only
obtained by replicating this pattern in exactly the same way in the laboratory and wait until a mea-
surable deterioration takes place. Aging is dependent on various parameters, such as temperature,
State-of-Charge (SoC), depth of discharge, and C-rate. Due to the lack of knowledge about the quan-
titative interrelation between these parameters, these tests require a multidimensional test plan. This
means, for example, that when the aging at a new temperature is tested, it has to be tested varying all
the other parameters. An interpolation from existing measurements is only valid if the already existing
measurements are in close proximity. Once this matrix of measurements is obtained, it is only valid for
one specific battery, which is determined by its chemistry, its electrolyte, its coating thickness of the
electrodes, its mechanical construction and other battery parameters. If one of them is changed, the
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1 Introduction

whole matrix needs to be redone, since the influence of this particular change on the aging is difficult
to estimate.

There have been incidents of battery failures, where the battery did or could have seriously hurt
humans. These incidents are rare and difficult to reproduce, even if similar batteries from the same
batch are used. Usually, only little knowledge is available about the conditions of the battery before
the incident.

1.2 Crowd-sourced, Cloud-computed Battery Diagnostics

A continuous measurement system or at least one that does measurements on a regular basis could
overcome these difficulties. It could acquire measurement data from the battery and upload it to a
server. Various batteries of the same type would pool their data on this server, where the data could be
analyzed and compared. By doing this, the knowledge of the quantitative deterioration of this battery
under various conditions would be obtained. If another battery is about to run a similar pattern as
the batteries before, the prospective deterioration could be estimated.
For example, to increase grid stability, there exists the idea that electric cars could be charged during
the times of the day when electricity prices are low. By doing this the car owner could save money
and has an incentive to help stabilizing the grid. In general, however, charging a li-ion battery with a
lower current will deteriorate it less [61]. Taking advantage of low energy prizes will always mean that
the battery is not charged during a certain time interval and therefore charged with a higher current
during another time interval. If deterioration is not taken into account, the car owner might end up
losing more money due to wear and tear of the battery than he saves through the lower electricity
prices.
If the information would exist about how much deterioration a certain charging process will cause, this
could be avoided. This information could be obtained from several other batteries of the same kind,
which already experienced similar charging patterns.

In case of a destructive battery failure, the data gathered on a server would not be destroyed with the
battery. Moreover, that data would not be limited by a small memory of the device. Most importantly,
it would be possible to compare the state of a failed battery with batteries of the same type in similar
applications. By using that information, rare failures could be better understood, reconstructed or
even prevented because a similar pattern is recognized.

1.3 On-line Electrochemical Impedance Spectroscopy

Crowd-sourced, cloud-computed battery diagnostics are only possible if measurements, which until now
are restricted to the laboratory, are available on-line. This means that these measurements can be done
continuously or at least in regular time intervals. It should not be necessary to take out the battery
from its usual location in the application. The measurements should also be done automatically and
without human intervention.
Electrochemical impedance spectroscopy (EIS) is such a measurement, which could be applied on-line
and deliver valuable information about the battery. Since a battery usually does not run full cycles,
the total capacity is difficult to measure. EIS measurements could serve as an additional parameter
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for the assessment of battery aging. Kazuhiko et al. showed in [60] a strong correlation between
impedance and capacity. Wei Chou filed a patent on the utilization of this relationship for lead-
acid batteries [126]. Tröltzsch et al. showed in [118] that model parameters derived from impedance
measurements, such as the series resistance RΩ, the charge transfer resistance Rct and the Warburg
coefficient σW , are a good proxy for the number of charge/discharge cycles a battery experiences.
He used a combination of the evolution and Levenberg-Marquardt algorithm to extract these model
parameters [23; 58]. Schranzhofer et al. [107] showed that EIS can detect an increase of the Solid-
Electrolyte-Interface (SEI) layer better than any other known non-destructive measurement method.
The distribution of relaxation times, can be derived from impedance spectra and isolate processes with
different time constants to give a better insight into the dynamics of the battery [22; 28; 124]. Cuadras
and Kanoun showed in [29] that for the battery cells they studied the modulus and phase can be used
to determine the SoC. Nowadays, only the temperature of the most critical cells in a battery pack is
measured because of the costs associated with measuring the temperature of all cells. EIS gives the
possibility to measure temperature without any additional sensors [69; 93; 105; 114].

Even without the additional benefit of pooling the data on a server, on-line EIS could improve the
state-estimation of a battery done by the battery management system (BMS) [75; 89–91]. On-line
EIS could also improve the operation of a battery. It is necessary to adapt the management of the
battery and the operation of the supplied system depending on the state of the battery [122]. The
maximum power capability should be determined depending on the current inner resistance of the
battery, especially when the battery is cold [16; 17].
Maintenance and replacement of batteries could be done dependent on the necessity and not on a
regular basis, which is typically done much earlier than a battery failure can occur. On-line EIS could
identify batteries of critical performance. This is especially beneficial for batteries that never run full
cycles or are hardly used, such as batteries in uninterruptible power supplys (UPSs). In these cases,
the current performance of the battery is difficult to determine. EIS measurements, however, can even
be performed with these batteries [63].

The requirements for an on-line EIS system for li-ion battery packs are different from their laboratory
counterparts. The frequency range is more limited, but should still covers several decades. The
frequencies should range from 10 mHz, to monitor aging proposed by Tröltzsch et al. [118], up to
1 kHz, to measure sensor-less the cell temperature as proposed in [67; 93; 114]. The current has two
boundaries. On one side, it should be large to cause a voltage response high enough to be resolved
by the voltage analog-to-digital converter (ADC) available and high enough to guarantee a sufficient
signal-to-noise ratio (SNR). On the other side, it should not cause the battery cell to respond in a
non-linear way or cause the state of the battery to change. The boundary of linearity is commonly
assumed with the 10 mV-Criterion [9], which states that the battery should not respond with a voltage
amplitude higher than 10 mV. This criterion only considers the non-linearity described by the Butler-
Volmer equation.

Several attempts have already been made to prove the applicability of on-line EIS. The always present
noise on the power buslines was used as an excitation signal to evaluate the battery impedance by
Christophersen et al. in [26; 27]. The DC/DC converter, managing the energy between a photovoltaic
panel and a lead-acid battery, superimposed a sinusoidal current on the battery current to measure
the impedance of the lead-acid battery [31]. A small motor controller generated pseudo-random noise
in order to measure the impedance of the li-ion battery stack that supplied it [52]. The output of
a switched-mode amplifier mimicked an electric vehicle charger to generate a sinusoidal current for
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1 Introduction

the stimulus of an EIS measurement on a li-ion battery stack [65]. A specifically designed charger
was used to estimate the state-of-health (SoH) by using EIS on a lead-acid battery. All of these EIS
measurements were intended as a proof of concept. However, several ones showed quite large deviations
to the reference curve the on-line EIS measurement was compared to. All of them used some kind
of switched-mode excitation generation instead of an analog amplifier typically used in laboratory
impedance meters.

The biggest difficulty for implementing a measurement system like on-line EIS is to achieve a reliable
measurement by keeping the implementation cost low at the same time. In this thesis, the systematic
measurement deviations of interest for an on-line EIS measurement are analyzed and their quantitative
estimation is shown. New methods to compensate or avoid measurement deviations are introduced
and, when applicable, compared to existing ones.

1.4 Outline of the Thesis

This thesis is separated into two main parts. The first discusses the measurement deviations introduced
from the cell itself and the second from the on-line EIS implementation. Figure 1.1 gives a graphical
overview of the topics and how they are related to each other.
In the fundamentals, the first part gives the theoretical background for chapter 3 and the second part
for chapter 4. Chapter 3 discusses the 10 mV-Criterion and its applicability to li-ion batteries. It
includes three additional effects to the impedance non-linearity: the change in SoC (section 3.1), the
change of the cell temperature (section 3.2) and of the Open-Circuit-Voltage (OCV) (section 3.3).
These effects cause the battery to be non-stationary. In section 3.4 it evaluates the actual impedance
non-linearity of a li-ion battery cell. In summary, it will combine these four effects in section 3.5 and
conclude that the 10 mV-Criterion is too strict, at least for the battery evaluated.

Chapter 4 will discuss three sources of measurement deviation, which are of specific interest for on-
line EIS meters. Section 4.1 gives a summary over drift corrections and introduces a new one in the
frequency-domain. Section 4.2 explains the measurement deviation caused by the parasitic current
shunt inductance. This potential source of measurement deviation, applicable to all EIS meters, is
particularly relevant when comparing the results of high frequency measurements between an on-line
EIS meter and a laboratory impedance meter, which uses a different current shunt. Section 4.3 shows
which magnitude of harmonics are generated by a switched-mode excitation for the three different
topologies: Battery Charger Topology, Balancing Unit Topology and DC Supply Topology. In order
to avoid these distortions, section 4.4 proposes a distortion-free frequency grid.

This thesis does not discuss measurement noise, i.e. random measurement deviations caused by a low
SNR and their implications on the measurement or on the design of the on-line EIS meter. It also does
not discuss long term drifts of the battery under test. One example of such a drift is the still changing
impedance even after long hours of relaxation as published by Kindermann et al. in [64].
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Figure 1.1: Graphical overview of the thesis.
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2 Fundamentals

Abstract
The construction of a lithium-ion battery cell determines the components of the inner resistance.

The first part of this chapter introduces these components and discusses the two most critical ones
responsible for the non-linearity of the inner resistance in detail: the double layer capacitance Cdl and
the charge transfer resistance Rct. The first part concludes with introducing the entropy, two ways
of measuring entropy, and the State-of-Charge of a battery cell. In this way the first part gives the
fundamental understanding necessary for chapter 3 of this thesis.

The second part of this fundamentals chapter introduces various ways to measure the impedance
of the inner resistance. Starting with the interpretation and the Linear-Time-Invariant condition for
an electrochemical impedance spectroscopy measurement, going over different excitation methods and
finishing with the data analysis for the calculation of the impedance. It serves as the fundamental
knowledge necessary for chapter 4 of this thesis.

2.1 Lithium-ion Battery Cells

2.1.1 Construction and Mode of Operation

A li-ion battery has two electrodes: a negative and a positive one. The electrodes consist of active
material and current collectors. The negative electrode contains the li-ions before discharge. During the
discharge the li-ions move into the positive one. In today’s most common commercial li-ion batteries
the active material of the negative electrode is made of graphite. A new active material for the negative
electrode for high power applications is lithium titanate (see table 2.1).

Different chemistries can be used for the active material of the positive electrode, which are identified
by three letter acronyms. The most common ones are shown in table 2.2. Between the two electrodes
is a separator, which is usually made of polymer. The two electrodes and the separator are covered in
liquid electrolyte. This is the medium which is necessary for the li-ion to flow. It is a liquid, consisting
of an organic solvent, salt and additives. It has no water, since water would decompose into Hydrogen
and Oxygen at 1.229 Volt. A li-ion battery has a voltage between 2.0 and 4.35 Volt. The exact window
of operation depends on the used active materials and the cell design. A commonly used electrolyte
in batteries is EC:DEC (ethylene carbonate : diethyl carbonate) or EC:DMC (ethylene carbonate :
dimethyl carbonate) [57] and the most commonly dissolved salt is LiPF6 [57].

The current collectors are layers of a thin conductive material, to connect the active material to an
outside device. Typically aluminum is used for the positive electrode and copper is used for the negative
electrode. In a cylindrical cell, the two electrodes and the separator in between are rolled up to form
a jelly roll or coil. This jelly roll is then connected to the casing via connection flags.
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Figure 2.1: Construction of a li-ion battery cell and its equivalent electrical circuit for the inner resis-
tance.

When the li-ions are in the negative electrode they do not react with the graphite. The graphite acts
as a host lattice for the li-ions. The absorption of the li-ions by the graphite host lattice is called
intercalation. During discharging, the li-ions are reduced on the positive electrode. During charging
the roles are reversed.
The positive electrode is commonly called the cathode and the negative the anode. However, this
nomenclature is not strictly correct. By definition the cathode is the electrode to which the positively
charged li-ion move towards to. Therefore, the nomenclature is only correct when the battery cell is
discharged. For charging the names would need to be reversed. Since it is commonly accepted to stick
with the nomenclature which applies for the discharge case, this thesis will also do so.
The separator only lets li-ions pass through. The electrons of the lithium atom, as they are stored in

Acronyms Description Chemical formula
Carbon graphite C6
LTO lithium titanate Li4Ti5O12

Table 2.1: Negative electrode types, their acronyms and chemical formulas.
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Acronyms Description Chemical formula
LCO lithium cobalt oxide LiCoO2
LFP lithium iron phosphate LiFePO4
LMO lithium manganese oxide LiMn2O4

NMC lithium nickel manganese Li(NixMnyCoz)O2cobalt oxide

NCA lithium nickel cobalt LiNiCoAlO2aluminum oxide

Table 2.2: Positive electrode types, their acronyms and chemical formulas.

the anode, have to move outside the battery through the device or application. In that way this device
or application is powered by the battery cell.

In the first initial cycles in the life of freshly assembled li-ion battery cell, the electrolyte decomposes
at the anode under the consumption of lithium. This forms an insulating layer over the anode, which
is called the SEI. The electrode surface area forms a capacitor, as charge on the electrode is face to
face with the ions of the electrolyte. This capacitor is called the double layer capacitor Cdl. In parallel
to the double layer capacitor Cdl the charge transfer takes place. This is the transfer from electronic
condictivity to ionic conductivity which is caused by a Faraday process: This process is described by a
resistance, the charge transfer resistance Rct. In most commonly used batteries the surface layer exists
twice, once on the cathode and once on the anode.
Dispersed through the whole battery cell are ohmic resistances. Starting with the ionic resistance of
the electrolyte Relectrolyte, followed by the ionic and electronic resistance of the electrode material
(Rcathode, Ranode), the electronic resistance of the copper and aluminium current collectors (Rcu, Ral),
the resistance of the connection flags Rflag, from the jelly roll to the casing, and ending at the resistance
of the casing Rcase itself [56].
Any conductor which creates a loop also creates an inductance Lbat. Creating an inductance in batteries
is inevitable. Firstly, as for any electrical system, the battery needs some distance between its two
poles as an insulation distance. Secondly, in the case of a cylindrical cell for a certain desired capacity,
it is inevitable to put long electrodes inside the battery. Therefore, their distance is very small but
their length is very long and mainly causes the inductance.
During charging and discharging the li-ions are moved from one electrode to the other. This mass
transfer does not occur infinitely fast and causes additional overpotential. The Warburg resistance
ZW describes this diffusion effect.

2.1.2 Overpotential

In order to charge the cell, a voltage higher than the current OCV of the cell has to be applied. This
overpotential is the difference between the OCV of the cell and battery voltage at its terminals. It is
the voltage drop over all the resistances in the cell introduced in the previous section 2.1.1.
With the exception of the charge transfer resistance Rct, they do not change with changing current
magnitudes [63]. The dependency of the overpotential on the magnitude of the current for a single
electrode can be described with the Butler-Volmer equation 2.1 [80]. It consists of two terms, one for
the anodic current and one for the cathodic current. Figure 2.2 shows that for higher overpotentials,
one of the terms can be neglected since its impact becomes small, leading to the so-called Tafel equation
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[8], which only considers one of the terms.

ict = i0 · e
(1−α)zF (Vbat−VOCV )

RT︸ ︷︷ ︸
=ianode

−i0 · e
−αzF (Vbat−VOCV )

RT︸ ︷︷ ︸
=icathode

(2.1)

With α being the charge transfer coefficient, z the number of electrons exchanged in the electrochemical
system and F the Faraday constant. The two parameters that determine the shape of the Butler-Volmer
curve are the charge transfer coefficient α and the exchange current i0. The charge transfer coefficient
α can be considered as the symmetry factor. It determines whether a reaction happens quicker in one
current direction than in the other. The exchange current i0 is an indicator for the general speed of
the reaction and calculated according to equation 2.2 [80]

i0 = z F Akαa k
1−α
c cαRc

1−α
O (2.2)

This equation is usually given for the current exchange density. This is why the electrode surface A
was included in order to arrive at the exchange current. ka and kc are the rate constants for the anodic
and cathodic current and dependent on the porosity and the tortuosity of the electrode material. cR
and cO are the concentrations of the reduced and oxidized species.
The charge transfer resistance is SoC and strongly temperature dependent [56]. The temperature
appears in the denominator of the exponential argument of the Butler-Volmer equation and therefore
increases the resistance for higher temperature. However, the dominant effect comes from the exchange
current determining rate constant. This one depends on temperature by an exponential function with
the temperature in the denominator of the negative exponential argument. The Arrhenius equation
2.3 states this dependency. It makes the resistance decrease with increasing temperature.

k = A · e−
EA
RT (2.3)

For very large currents the concentrations which are used in the calculation of the exchange current i0
in equation 2.2 are changing. For large currents the mass transport of li-ion inside the battery is not
occurring fast enough and the concentration gradient from the bulk to the electrode surface becomes
noticeable.
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Figure 2.2: Overpotential of charge transfer reaction following a Butler-Volmer equation.

In order to accommodate for this diffusion effect, the Butler-Volmer equation needs to be modified to
equation 2.4 [8; 18].

ict,lim = i0 ·
(

1− i

il,a

)
· e

(1−α)zF (Vbat−VOCV )
RT − i0 ·

(
1− i

il,c

)
· e
−αzF (Vbat−VOCV )

RT (2.4)

The limiting currents il,c , il,a are the theoretical maximum currents when the concentration at the
electrode-electrolyte interface becomes zero.
Figure 2.2 shows all four different curves, the Tafel cathodic and anodic current, the Butler-Volmer
curve and the Butler-Volmer curve with diffusion limitation.

For a small current I1 a relatively high overpotential V1 is needed. This can be considered as the
region of activation loss, similar to the one in fuel cells when operated at low current. The large signal
resistance, shown by a straight line through V1 and I1, is therefore high (line R1 is shallow). The large
signal resistance for a higher current, as shown by the line through V2 and I2, is much smaller (line
R2 is steeper than line R1). The small signal resistance is the resistance, which the electrochemical
system would show for an incremental change in overpotential. It depends on the present operation
point. In figure 2.2 the small signal resistance shown at I2 and V2 is with the ratio of Vδ and Iδ,
even smaller than the large signal resistance at that operation point (line R2s is steeper than line R2).
When the battery cell operates in the area limited by diffusion, the large signal resistance increases
again as shown in figure 2.2 at V3 and I3 (line R3 is shallower than line R2). The diffusion and its
associated parameter il,c , il,a is dependent on the SoC caused by several effects. For example, in lead
acid batteries, the porosity decreases during discharge which leads to a lower diffusion [56].
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2.1.3 Entropy

The Gibbs’ free energy G describes the usable electrical energy of a reaction. It is defined as the
reaction enthalpy ∆H minus the reversible heat T ·∆S (see equation 2.5).

∆G = ∆H − T ·∆S (2.5)

Equation 2.6 shows how the Gibbs’ free energy G is dependent on the OCV.

∆G = −zF · VOCV (2.6)

Entropy can be measured in two different ways: by the OCV change for a given temperature change
(δV/δT method [84]) or by the reversible heat generated for a given electric charge charged and/or
discharged (Qrev method [70], [106]). The first δV/δT method takes advantage of the fact that in
equation 2.5 if the SoC of a battery is held constant, the only summand which can change is T ·∆S.
In this case a change in OCV is only dependent on the term T ·∆S. Figure 2.3a shows how after a
temperature change ∆ϑ the OCV adjusts to a new value. With this voltage change ∆V , the entropy
change ∆S can be calculated by combining equation 2.5 and equation 2.6 to equation 2.7 [30; 94].

∆S = z F · ∆VOCV
∆ϑ (2.7)

With F being the Faraday constant and z the number of exchanged electrons. For li-ion batteries z
equals 1.
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Figure 2.3: ∆S measurement methods (cylindrical NMC-cell A.2, Îm = 3 CA, SoCstart = 50 %, fm =
1 mHz)

.

The second Qrev method determines the reversible heat generated by the change of a certain electric
charge by subtracting the irreversible heat Qirr from the total heat. This is best done by applying a
current in the one direction and then the same current in the other direction. Figure 2.3b shows this
for a sinusoidal signal applied to a battery cell in a calorimeter. The calorimeter makes sure that all
the heat generated contributes to an increase of the cell temperature. The irreversible heat generated
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is equally large for the positive half-sine wave as it is for the negative half-sine wave. However, a
difference in temperature increase can be observed. This difference is coming from the irreversible
heat generated because a certain amount of electric charge passed through the battery cell during the
time of the positive half-sine wave. Since only the temperature of the casing of the battery cell can
be measured, a small time delay ttherm occurs between the zero crossing of the sinusoidal current and
the point at which no temperature increase is observed (see figure 2.3b). Equation 2.8 shows how the
entropy can be calculated by this method.

∆Qrev = ∆ϑrev · Cth

∆Qrev = T

z F
·
∫ Tm

2

0
i(t) dt

∆S = ∆ϑrev · Cth ·
z F

T
· 1∫ Tm

2
0 i(t) dt

(2.8)

Where Cth is the thermal capacity of the battery cell. Figure 2.4 shows that the results of both
measurement methods correspond well with each other. The entropy is strongly dependent on the
SoC. The comparison of the two measurement methods and the figures in this section have been
presented in [70]. Schmidt et al. published a similar Qrev measurement method using a temperature
chamber instead of a calorimeter in [106]. Murashko et al. [77] was able to use the same principle
without the use of an expensive calorimeter or temperature chamber, but by using a gradient heat flux
sensor at room temperature. The time needed for the two different measurement methods is about 150
minutes per SoC-point for the δV/δT method [84] and 5.6 minutes per SoC-point for the Qrev method
[106] when both methods are optimized for speed.
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Figure 2.4: Comparison of the results of the δV/δT method and the Qrev method with fm = 1 mHz
(cylindrical Lithium Nickel Manganese Cobalt Oxide (Li(NixMnyCoz)O2) (NMC)-cell A.2).
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2.1.4 State-of-Charge

During charging and discharging, the li-ions are moving from one host structure <Host> to another
host structure following the general chemical equation [128]:

<Host> + xLi+ + xe− < −− > Lix<Host> (2.9)

x, can take values from zero to one. In practical designs the range of x is not going down to zero and
stays below one. These can be translated, in case of the anode, into the SoC of a battery going from
0% to 100%. Therefore SoC corresponds to the amount of charge and not to the amount of energy
available in the battery cell. However, during the change of the SoC, also the available energy, the
Gibbs’ free energy, of the cell changes, which corresponds to the change in OCV as shown by equation
2.6.

2.2 Measurement of Inner Resistance

The inner resistance of a battery determines by how much the voltage at the terminals drops if a current
is drawn from the battery cell. It determines the maximum power capability of a battery, which can
be drawn from it before a minimum voltage necessary for the device to operate is undercut. During
charging it determines when the battery charger has to switch from constant-current (CC) to constant-
voltage (CV) mode and thus significantly increases the charging time. This resistance is not constant
but dependent on the current, SoC, temperature, and age of the battery cell [122]. There are various
ways to measure the inner resistance. These methods differ in terms of the physical measurement
method but also in terms of the data treatment of the measured voltage and current waveforms.
Figure 2.5 shows the two categories of measurement methods: current pulses and electrochemical
impedance spectroscopy.

2.2.1 Current Pulses

Current pulses can be used to study the inner resistance of a battery. The observed voltage response
can be fitted to the expected response from an assumed equivalent circuit. Figure 2.5 shows this
for a simple equivalent circuit with an ohmic resistance RΩ and an RC-element of the double layer
capacitance Cdl and the charge transfer resistance Rct. Their values are obtained by assuming a very
quick voltage step from the ohmic resistance RΩ and an exponential function from the RC-element.

Barsoukov et al. [10] and Yoon et al. [129] showed that this approach is also possible in the frequency-
domain via Laplace transformation. This method uses any kind of excitation signal as long as there
exists a Laplace transform for it. He fitted the voltage response not to the time-domain data but to
a ‘carrier-function’ which he obtained by multiplying the applied current excitation function with the
assumed equivalent circuit as Laplace transforms (Z(s)·I(s)). By proposing this method he introduced
a lot of versatility to the current pulse method. With his Laplace transformation method, it is easier
to apply any kind of current excitation signal or assume any kind of equivalent circuit which can be
described by a linear network.

It is possible to determine the impedance of at various frequencies from the fitted equivalent circuit
and receive a similar result as obtained by an EIS measurement. However, Gabrielli et al. [44] showed

14



2.2 Measurement of Inner Resistance
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Figure 2.5: Current pulse method versus electrochemical impedance spectroscopy.

that the deviation of the identified impedance rises strongly at higher frequencies. Barsoukov et al.
[10] came to the same conclusion when using the Laplace transformation method.

The fitting of the equivalent circuit to the observed voltage response, whether in time-domain or
frequency-domain, is limited by how well the selected equivalent circuit does represent the inner re-
sistance of the battery cell. It also requires in both cases a fitting algorithm which can have a long
computation time. The frequency-domain method relies heavily on the correct application of the ex-
citation signal, e.g. the current pulse. A long rise time in a current pulse, for example, would change
the voltage response. The method however, still assumes an infinitely fast rise time.

Using current pulses is effective when the final outcome of the measurement should be an equivalent
circuit. It is not very effective for any pattern recognition or single frequency measurement in order to
monitor aging as in [63] or to measure the inner temperature of a battery cell [69; 93; 105; 114].
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2.2.2 Electrochemical Impedance Spectroscopy

The analysis of the inner resistance at various frequencies in the frequency-domain is called electro-
chemical impedance spectroscopy. This measurement technique generates current excitations Im of
certain frequencies fm and measures the voltage response VZm (galvanostatic mode). Or it generates
voltage excitations and measures the current response (potentiostatic mode). The galvanostatic mode
makes sure that the SoC does not drift during the measurement, and is therefore preferred for battery
cells. With the voltage and current readings, the complex impedance can be calculated as the transfer
function of the battery:

Zm(jω) = VZm(jω)
Im(jω) = V̂Zm · e(jφV )

Îm · e(jφI)
= |Zm| · ej(φZ) = Zreal + jZimag (2.10)

The time lag of the voltage response, as seen for the current pulse method, causes a phase delay of the
voltage to the current excitation during the frequency measurement. The result is a complex impedance
with a real and an imaginary part. Impedance is only defined for linear systems. Nevertheless, it can
be applied to a non-linear system as a battery, if its impedance can be approximated as being linear
and time-invariant (Linear-Time-Invariant (LTI) - condition). This means that the complex impedance
was linear and did not change over time during the measurement, or at least was very close to linear
and did almost not change over time. This is usually the case when the following conditions are met:

1. The battery is charged or discharged as little as possible during the measurement. This changes
the state of charge (SOC) during the measurement and is unavoidable since the excitation current
itself is charging and discharging the battery.

2. The temperature of the cell does only slightly change during the measurement. Temperature
changes are unavoidable due to the excitation current itself generating heat during the measure-
ment.

3. The Open-Circuit-Voltage does not change during the measurement. The OCV is dependent on
SoC and temperature. As their change the change in OCV is unavoidable as well.

4. The inner resistance behaves linearly during the measurement. This is generally assumed if the
excitation current does not cause the battery to respond with a voltage amplitude higher than
10 mV (10 mV-Criterion [9]).

All these requirements are impossible to perfectly fulfill, a detailed analysis of the measurement devi-
ation caused by the violation of these rules is given in chapter 3.

The amplitudes of the current stimulus should be low enough in order for the battery voltage response
to stay linear, but large enough to provide a sufficient signal-to-noise ratio. The frequencies of most
interest for batteries are between fmin = 10 mHz and fmax = 2 kHz [9].

After measuring several frequencies, the complex impedance can be drawn in the characteristic Nyquist
plot, in which -Zimag is plotted over Zreal as shown in figure 2.5. From certain sections of the Nyquist
plot the equivalent circuit parameters of the battery cell are derived. The inductance Lbat of the
battery cell is derived from the imaginary impedance of the high frequency measurements. The purely
ohmic inner resistance RΩ is identified at the frequency, when the imaginary part becomes zero. The
values for the double layer capacitance Cdl and the charge transfer resistance Rct are derived from the
semicircle between the point where the imaginary part becomes zero and the local minima. For most
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Figure 2.6: Excitation Signals used for EIS measurements (synthetic data).

battery cells, however, the semicircle is usually depressed and needs to be fitted with special equivalent
circuit elements or a series of RC-elements [21]. At the frequencies below the local minima the diffusion
arc for low frequencies can be fitted with a Constant Phase Element (CPE) like the Warburg impedance
ZW . The Warburg impedance is defined by the Warburg coefficient over the square root of the angular
frequency (σW /

√
ω). The total transfer function of the equivalent circuit shown on the right side in

figure 2.5 can be stated with:

Z(ω) = RΩ + Rct
1 + ω2Cdl2Rct2

+ σW√
ω

+ j ·
[
ωLbat −

ωCdlRct
2

1 + ω2Cdl2Rct2
− σW√

ω

]
(2.11)

2.2.3 Excitation Options for Electrochemical Impedance Spectroscopy

For the excitation signal, several options are possible. Figure 2.6 gives an overview of the four dominant
excitation categories. The single-sine measurement only measures one frequency. The sinus-sweep
measurement applies several frequencies one after another. The inevitable transition between one
frequency to another does introduce a deviation into the measurement [44]. Continuing the same
trajectory of the excitation in order to keep these transition effects as small as possible, can avoid
steps and its associated measurement deviations.

In order to identify the dynamics of processes inside an electrochemical device, with time constants
which are magnitudes apart from each other, the measurement frequencies for EIS are logarithmically
distributed according to equation 2.12.

fk = αf · fk−1, with αf = e

[ ln fmax−ln fmin
N−1

]
(2.12)

Where k is the index of every single frequency, N is the number of frequencies to be measured, fmin
is the the minimum measurement frequency and fmax the maximum measurement frequency. Every
single frequency fk is determined by setting the first frequency to fmin and using equation 2.12 for
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calculating every subsequent frequency based on the previous frequency fk−1. The Nth frequency fN
will be equal to fmax. The single measurement periods Tm form a geometric series with α−kf Tmin

whose sum over all measurements gives the total measurement time Tm, total when only one period per
frequency is applied.

Tm, total = Tmin

N−1∑
k=0

α−kf = Tmin
1− α−Nf
1− α−1

f

(2.13)

Tmin is the corresponding period of the minimum measurement frequency fmin and therefore the
longest period of all applied frequencies. The multi-sine measurement promises to reduce that time
to only the measurement period of the lowest frequency Tmin. It is a broadband signal, which tries
to apply all measurement frequencies in one signal [88]. Figure 2.6 shows a signal with only five
frequencies. The limit for the number of frequencies is a sufficient SNR ratio while still trying to
comply with the 10 mV-Criterion. In order to comply with the 10 mV-Criterion the phase of the single
frequencies are optimized to reduce the crest factor of the signal [88; 100].

Another broadband signal category is any kind of random signal. This can be a pseudo-random binary
sequence, a chirp signal or simply random noise. The benefit of this kind of signal is achieving a large
frequency resolution and even the simplicity of the excitation if already present noise is used [88].

2.2.4 Discrete Data Analysis for Electrochemical Impedance Spectroscopy

The Fourier transformation converts a signal in the time-domain into its frequency-domain represen-
tation. Equation 2.14 shows the definition for a continuous signal.

F{x(t)} = X(jω) =
∫ +∞

−∞
x(t) · e−jω·tdt (2.14)

Although it is possible to measure impedance with a fully analog circuitry, it is quite complex, in-
flexible and costly. The vast majority of impedance analyzers today are based on an analog-to-digital
conversion of the current and voltage measurements and an analysis of the measured data by a digital
processor. The main workload of the analysis is the frequency transformation of the time-domain mea-
surement data into the frequency-domain. In this section six different methods for this transformation
are presented:

1. Discrete Fourier Transformation

2. Fast Fourier Transform

3. Goertzel algorithm

4. sliding Discrete Fourier Transformation

5. sliding Goertzel algorithm

6. power spectrum of the cross-correlation
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Figure 2.7: DFT principle.

The Discrete Fourier Transformation (DFT) is the Fourier transformation for discrete signals as it is
needed on an embedded controller or any other electronic computer which analyses data that had been
discretized by an ADC. Equation 2.15 shows the definition of the DFT [113].

F{x(t)}[k] = Xk =
N∑
n=0

x(n) · e−j
ω0︷ ︸︸ ︷

2π/N ·k·ndt (2.15)

With N being the maximum number of samples taken, it determines the smallest possible frequency
ω0 which can be analyzed. k determines the multiple, or harmonics, of the smallest frequency which is
analyzed. k can take values from 0 to N−1. Figure 2.7a shows the term e−j2π/N ·n·k as a phasor which
turns at the frequency ω0 · k. Since the phasor does not turn continuously but only exists for discrete
values, these discrete values are called twiddle factors. These twiddle factors are multiplied with the
sampled datapoints. If a part of the measurement signal turns with the same speed as the twiddle
factors, all of the multiplications add up, creating a very high value. If the measurement signal does
not turn with the same speed some of the multiplications add up and some multiplications compensate
them (see figure 2.8).

A single-sine measurement or a sinus-sweep measurement can be best analysed with a DFT or the
Goertzel algorithm.

The Fast Fourier Transform (FFT) optimises the DFT by measuring several frequencies at the same
time. For several frequencies some of the twiddle factor multiplications performed are the same. The
FFT takes advantage of that fact and calculates intermediate results, which it then can reuse for several
other intermediate results until it combines all the input sample points to the output values in the
frequency-domain. There are several ways to improve either storage or processing time depending on
what is more limited on the used processor [25; 92]. One of the largest drawbacks of the FFT is the
strict requirement of having N = 2x sample points. If not all sample points are filled with measurement
data, zero padding is applied, i.e. filling up the remaining sample points with zeros. This process leads
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to spectral leakage and to an inexact interpretation of the measured data. If not all frequencies are
needed and the excitation frequency is known, the DFT is still quicker and should be preferred. For
multi-sine measurement the FFT could be an option if it is guaranteed that all the frequencies end up
finishing an integer multiple of their period at N = 2x sample points.

Gerald Gortzel [48] introduced an algorithm which allows a more efficient way to calculate the DFT
in terms of computation effort. It can be described by a infinite impulse response (IIR) filter with the
transfer function [54]

HG(z) = 1− e−j2πk/N ·z−1

1− 2 · cos(2πk/N) · z−1 + z−2 (2.16)

The sliding DFT, similar to the Goertzel algorithm, is also an IIR filter with the filter transfer function
[54]

HSDFT (z) = 1− z−N
1− e−j2πk/N ·z−1 (2.17)

The sliding Goertzel algorithm is a combination of the sliding DFT and the Goertzel algorithm which
creates a filter with the finite impulse response (FIR) filter transfer function [24; 54; 83]

HSG(z) = (1− e−j2πk/N ·z−1)(1− z−N )
1− 2 · cos(2πk/N) · z−1 + z−2 (2.18)

The ‘power spectrum of the cross-correlation’ method is best used for measurement signals with no
definite frequency component. Therefore it is the method of choice for any noise signal excitation. Even
if a frequency in a noise signal would be known, it could cancel itself out by shifting its phase during
the measurement. To apply this method, first, the auto-correlation of the input (for galvanostatic EIS
the current i(t)) and the cross-correlation of the input with the output need to be calculated [113].

rii(τ) =
∫ +∞

−∞
i(t) · i(t+ τ)dt (2.19)

riv(τ) =
∫ +∞

−∞
i(t) · v(t+ τ)dt (2.20)

The desired impedance is the division of the power spectrum of the cross-correlation with the one of
the auto-correlation [52].

Zm(jω) = Siv(jω)
Sii(jω) =

∫ +∞
−∞ riv(τ) · e−jωτdτ∫ +∞
−∞ rii(τ) · e−jωτdτ

(2.21)

For obvious reasons, the correlation has to be done for a finite amount of samples and for the calculation
in a microprocessor, discrete values have to be used. Howey et al. applied this method in [52] to an
on-line EIS system.

The FFT and the ‘power spectrum of the cross-correlation’ need both the whole measurement data
in order to perform their calculations on it. This is a huge disadvantage for the use in an embedded
system where memory, especially fast one, is scarce. All the other four methods can discard the
incoming measurements once they went through their algorithm.
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Figure 2.8: Comparison of the frequency response of the DFT (DFT), the Goertzel algorithm (Go-
ertzel), the sliding DFT (sDFT), the sliding Goertzel algorithm (sGoertzel) and the ‘power
spectrum of the cross-correlation’ (PSX) used with a rectangular box window ( fm = 10 Hz,
Ta = 10 · Tm ).

The Goertzel algorithm, the sliding DFT and the sliding Goertzel algorithm can lead to instabilities
from rounding errors due the their recursive nature. However, the introduction and availability of
controllers and processors with word lengths of 16, 32 or even 64 bits make this disadvantage hardly
relevant.

The sliding DFT and the sliding Goertzel algorithm calculate for every new incoming measurement
sample x(n) a new value for Xk(n) in the frequency-domain. In order to get the first value for the
impedance calculation, N samples need to have gone through these filters. The calculation for the first
frequency-domain value is more time consuming than for their respective non-sliding version. But every
next value comes with just another iteration step and is therefore extremely efficient when compared
to the non-sliding alternative. Because of this, they are especially beneficial when used for monitoring
a single impedance value. This has been done by Nevaranta et al. for monitoring a mechanical system
in [79] by using the sliding DFT.

Figure 2.8 shows the frequency response of the different transformations and filters in the frequency-
domain. There is no difference between the different methods in terms of frequency response, except
for the ‘power spectrum of the cross-correlation’. The cross- and the auto-correlation of this method
multiply the excitation data with itself or the excitation with the response data. This causes the
observed difference in the frequency response.

2.2.5 Measurement Deviation Possibilities of the Discrete Data Analysis for
Electrochemical Impedance Spectroscopy

The algorithms introduced in the last section 2.2.5 are the only way to use the Fourier transformation
in a real world setting, since the continuous form of the Fourier transformation demands an integration
from negative infinity to positive infinity and a theoretical infinite resolution. Both requirements are
impossible to implement in practice. These algorithms, therefore only assumes a finite sampling time
and a finite length of recording. Both simplifications lead to the two main difficulties when applying
these algorithms. The first one is Aliasing and the second one is spectral leakage.
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Figure 2.9: Possible measurement deviations occurring by the Fourier transformation with DFT (syn-
thetic data).

The maximum frequency which can be measured is determined by the Nyquist-Shannon sampling
theorem with half the sampling frequency fs. Figure 2.9a shows how a signal, sampled with a too low
sampling frequency (black circles) can be interpreted with a wrong frequency (red dashed line) which
is much lower than the original frequency (blue line).
Figure 2.9b shows how the actual frequency is mirrored at fs

2 and interpreted in a lower frequency
band with the wrong frequency [113]. Figure 2.9d shows what happens, when the DFT is not done over
integer multiples of the measurement period Tm (see incomplete signal in figure 2.9c). The twiddle
factor from figure 2.7a does not make a full rotation with the measurement data. Therefore some values
are not summed up and others which have been already summed up cannot be compensated during
the remaining part of the rotation. This leads to the actual applied frequency not being measured
with its full amplitude and various other frequencies not ending up at a zero value.
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2.2 Measurement of Inner Resistance

Chapter Conclusion
The impedance of the inner resistance is determined by the construction and the chemistry of the

battery cell. The charge transfer reaction causes the most important non-linearity of a battery cell,
which can be mathematically described by the Butler-Volmer equation. Other important values that
characterize a battery are the entropy S and the State-of-Charge.

The impedance can be measured by current pulses or by electrochemical impedance spectroscopy,
which applies a sinusoidal current and compares it to the voltage response. For electrochemical
impedance spectroscopy, several algorithms exist to transform the sampled measurement data from
the time-domain into the frequency-domain. Most of these algorithms have the same frequency re-
sponse and are prone to the same measurement deviations like Aliasing and spectral leakage. Therefore
calculations on measurement deviations can be done with one of them, e.g. the Discrete Fourier Trans-
formation, and the results are valid for all algorithms with the same characteristics.

This thesis always assumes that integer multiples of all applied frequencies are measured. Except for
section 4.4 of chapter 4, it assumes a sufficiently high sampling rate to resolve all applied frequencies.
In this case, the result of the continuous Fourier transformation and the Discrete Fourier Transfor-
mation or other algorithms with the same characteristics are the same. Because of this, all Fourier
transformations in this thesis are only done using the continuous form of the Fourier transformation
over an integer number of periods.
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3 Excitation Amplitude Limit

Abstract
Impedance is only defined for a Linear-Time-Invariant system. This means that the impedance is

not changing during the time of the measurement. A prerequisite of this requirement is that there is no
current flowing into or out of the battery and that it is at a completely relaxed state, i.e. the terminal
voltage was allowed to stabilize at the open circuit voltage for several hours.

Strictly speaking, this requirement is impossible to fulfill, since the measurement method itself causes
the impedance to change during the time of the measurement. The sinusoidal current that is applied
for the excitation of the battery changes the State-of-Charge by a sinusoidal function. The impedance
is dependent on the State-of-Charge and therefore changes during the measurement. Every current that
runs through a battery, as well as the excitation current for the impedance measurement, causes the
cell to heat up. The impedance of a battery cell is strongly dependent on the temperature and therefore
even small changes in temperature can significantly change the impedance measurement. The Open-
Circuit-Voltage changes with the State-of-Charge and temperature and therefore distorts the voltage
reading by an additional sinusoidal signal. An ideal impedance would have a linear dependency between
the applied magnitude of the current and the voltage response. Although being very linear, lithium-ion
batteries are not perfectly linear.

Because of these effects, the magnitude of the excitation current should be as small as possible in
order to keep the described measurement deviations as low as possible. But a small excitation current
results in a small voltage response. This in turn means that the voltage readings have to be very ac-
curate in order not to obtain a noisy voltage measurement. Because of this, the optimum is neither a
very large excitation current nor a very small one.

In order to make impedance measurements on-line, the measurement has to be done during the
operation of the battery or during charging. Alternatively they could be done with a multi-sine signal
in the short breaks when the battery is not in use. This leads to constant currents or additional current
signals at other frequencies than the measurement frequency which are present during the measurement.

In this chapter the impact on the measurement caused by these effects is discussed, analyzed and
its deviation on the measurement quantitatively evaluated. With these results, a deviation estimation
can be given before the measurement is taken based on previous measured battery parameters, the mea-
surement frequency and the excitation amplitude.
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3 Excitation Amplitude Limit

The final result of this chapter is an equation, which gives a complete and detailed picture of the
measurement deviations occurring during an impedance measurement. With it, the deviation made by
selecting a certain excitation current amplitude and an underlying constant current can be determined.
Setting maximum measurement deviation thresholds allows the determination of the maximum per-
missible excitation current. The equation relies on an extensive characterization of the battery. The
equation and this chapter only covers deviations that come from the cell itself and are not caused
by the measurement sequence, the excitation current generation, how the current and the voltage are
measured or the measured data is analyzed. Figure 3.1 shows the four different categories into which
the sources of these measurement deviations can be separated. These four categories built the first
four sections of this chapter.

◦C
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Figure 3.1: Possible sources of measurement deviation during an electrochemical impedance measure-
ment.

The first section 3.1 analyzes the dependency of the impedance on the SoC and the measurement
deviation which is introduced by this dependency. Section 3.2 covers the effect that any current,
whether the excitation current itself or an additional constant current, generates heat in the cell
and causes the temperature to rise. It shows the dependency of the impedance from temperature
and introduces a way to estimate the temperature increase from sinusoidal and constant currents
with impedance measurements. Section 3.3 takes into consideration that the OCV changes with
changing SoC and temperature. A change in OCV, which results in a different OCV at the end of the
measurement, is called voltage drift, and can be compensated as shown in the next chapter in section
4.1. The impedance measurement assumes a linear relationship between the excitation current and the
voltage measurement. The larger the excitation current, the more this relationship deviates from this
assumption. Section 3.4 shows the magnitude of this impedance non-linearity and discusses different
ways to measure it.

Each section derives the equations to determine the measurement deviation of the impedance measure-
ment introduced by each effect. These equations are derived for single-sine measurements, multi-sine
measurements and underlying constant currents. The last section 3.5 summarizes the measurement de-
viation equations for a single-sine measurement and an underlying constant current into one equation.
The contribution of every effect is compared to each other and discussed.

Most commercially available impedance meters define a maximum impedance modulus deviation of
less than 1 % and a maximum phase deviation of less than 1 ◦ [14; 40]. In order to assess the maximum
permissible excitation current the same thresholds are used. For section 3.1 to 3.4 thresholds of 0.1 %
for the modulus deviation and 0.1 ◦ for the phase deviation are considered critical. Setting the threshold
for each category by a factor of 10 lower as the final deviation threshold is reasonable since in this
chapter already four sources of measurement deviations are introduced and chapter 4 will introduce
three more.
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This chapter makes the following simplifications in order to determine an analytical expressions for
the impedance measurement deviation:

1. If not further specified, the excitation current Im is given by its peak value and not by its effective
value.

2. The transformation of the time-domain measurement data into the frequency-domain uses the
Fourier transformation in its continuous form (see equation 2.14).

3. An underlying constant current, which can be present additional to the excitation current, is
charging or discharging the battery for the whole impedance measurement time. Random chang-
ing currents introduce an additional frequency component. Since this frequency is unknown, it
cannot be guaranteed that a full period of this frequency is recorded. This results in measurement
deviations for all evaluated frequencies caused by spectral leakage.

4. The proposed method can be extended to multi-sine measurements. But only if the measured
frequencies are integer multiples or integer fractions of each other. The reason is that full periods
of each frequency have to be recorded in order to avoid spectral leakage.

5. The impedance dependency on SoC for any given impedance measurement at a specific SoC can
be approximated by a linear function. This means that the impedance decreases/increases by a
constant value for the same capacity charged or discharged according to equation 3.1).

Z0+∆SoC = ∆Z
∆SoC

∣∣∣∣
T,∆SoC

·∆SoC + Z0 (3.1)

Where ∆Z
∆SoC

∣∣∣∣
T,∆SoC

is the linear dependency of the impedance on SoC for a given temperature,

SoC and change of SoC. This simplification is assumed for the real and the imaginary part of
the impedance. The error made by this assumption is small as long as the SoC change during
the measurement is small, i.e. < 1 %.

6. The impedance dependency on temperature for any given impedance measurement at a specific
temperature can be approximated by an exponential function. This means that the impedance
decreases/increases according to the Arrhenius equation 2.3. This assumption is valid as long as
the temperature change during the measurement is small, i.e. < 1 ◦C.

7. The OCV dependency on SoC for any given impedance measurement at a specific SoC can be
approximated by a linear function. This means that the OCV decreases/increases by a constant
value for the same capacity charged or discharged. The error made by this assumption is small
as long as the SoC change during the measurement is small, i.e. < 1 %.

The method used to derive the single components of the total measurement deviation equation is
to use characterized cells whose impedance over SoC and temperature as well as entropy, OCV and
impedance non-linearity was determined under various conditions. Based on this characterization, the
deviation equations are derived assuming a simplified mathematical model to describe the battery. The
characterization allows to verify the derived deviation equations with simulations. Purely experimental
studies do not allow to extract the contribution to the measurement deviation of every single effect
since all the effects contribute at the same time, especially at high currents, and are impossible to
separate.
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The sections 3.1 to 3.4 assess the effect of a changing parameter, like SoC, OCV, temperature and
current magnitude on the impedance measurement deviation by evaluating the Fourier transforma-
tion of the voltage measurement. For deriving the respective equations the Fourier transformation is
separated into the real and imaginary part as shown in equations 3.2 to 3.6. The continuous form of
the Fourier transformation is used with finite limits. In this chapter, measurement deviations from
spectral leakage are not considered.

The measured impedance is calculated by dividing the Fourier transformation of the voltage evaluated
at the measurement frequency through the one of the current. In this chapter the current is assumed to
be perfectly sinusoidal therefore it can be replaced by the amplitude of the sinusoidal excitation current.
Only sinusoidal currents which start at i(t) = 0 A with the positive half-sine wave are used. This is
why, after the Fourier transformation the current is purely imaginary (equation 3.7). Each section
ends with the statement of the relative impedance measurement deviation according to equation 3.8.
For cases when the wrongly measured voltage can be determined directly, equation 3.9 applies.

F{v(t)} = 2
Tm

∫ Tm

0
v(t) · e−jωmtdt (3.2)

F{v(t)} = 2
Tm

∫ Tm

0
v(t) · (cos(ωmt)− j sin(ωmt)) dt (3.3)

F{v(t)} = a1 − jb1 (3.4)

a1 = 2
T

∫ Tm

0
v(t) · cos(ωmt)dt (3.5)

b1 = 2
T

∫ Tm

0
v(t) · sin(ωmt)dt (3.6)

Zm = F{v(t)}|fm
F{i(t)}|fm

= F{v(t)}|fm
−jÎm

(3.7)

eZ = Ze
Z0

= Zm − Z0

Z0
= F{v(t)}
−jÎm · Z0

− 1 (3.8)

eZ = F{ve(t)}
−jÎm · Z0

(3.9)
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3.1 Measurement Deviation Caused by State-of-Charge Change

3.1 Measurement Deviation Caused by State-of-Charge Change

3.1.1 Impedance Dependency on State-of-Charge

The impedance of any battery cell is dependent on SoC. Only electrochemical systems with a theo-
retically infinite source such as fuel cells or redox-flow-batteries do not show this kind of dependency.
Impedance values at very high and low SoC values are difficult to measure when the battery cell volt-
age should stay within its operating voltage window. For this reason this section will focus on the
SoC-range from 10 % to 90 %. Most cells show an increase in impedance towards low and high SoCs as
shown in Figure 3.2a. Figure 3.2b shows that the relative change of impedance for a 1 % SoC change is
in a similar range independent whether the cell has in general a high impedance (e.g. shown Lithium
Cobalt Oxide (LiCoO2) (LCO) cell) or low impedance (e.g. shown Lithium Iron Phosphate (LiFePO4)
(LFP) cell).
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Figure 3.2: Impedance dependency on SoC for cylindrical cells with different li-ion chemistries (LFP-
cell A.1, NMC-cell A.2, LCO-cell A.3, NCA-cell A.4, ϑ = 25 ◦C, fm = 10 mHz).

3.1.2 Single-sine Measurement

3.1.2.1 State-of-Charge Change

The excitation current itself is responsible for a change of the SoC during the measurement. Depending
on whether the sinus starts with the positive half-sine wave (as shown in Figure 3.3a) or negative half-
sine wave, the change in SoC during the measurement is either positive or negative. This leads to a
change of the cell impedance during the measurement. Figure 3.3a shows a quite significant change
in SoC during the impedance measurement. For an unusually high excitation current of 3 CA and
a measurement frequency of 10 mHz the SoC changes by up to 2.65 %. This results in a changing
impedance over the time of the impedance measurement. Figure 3.3b shows the relative real and
imaginary impedance change over the measurement time. Because of the changing impedance the
voltage response is not perfectly sinusoidal. The blue line in figure 3.3b shows the relative deviation of
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3 Excitation Amplitude Limit

the measured voltage response from the response if no SoC change would occur. Due to the non-zero
phase of the impedance itself, the relative deviation is not a sinusoid with a single frequency.
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Figure 3.3: Changes of SoC and subsequent simulated changes in impedance and voltage response
during an impedance measurement. (cylindrical LFP-cell A.1, Îm = 3.0 CA, SoCstart =
30 %, ϑ = 25 ◦C, fm = 10 mHz).

Equations 3.10, 3.12 and 3.11 respectively show the equations for the maximum SoC-change (SoC
sweep ∆ŜoCm), the mean SoC-change (SoC shift ∆SoCm) and the SoC-change dependent on time
during the impedance measurement.

∆ŜoCm = Îm
Cel
·
∫ Tm

2

0
sin(2πfmt+ ϕ) dt

= Îm
Cel
·
[
−Tm2π cos

(
2π 1
Tm

t+ ϕ

)]Tm
2

0

= −Tm2π
Îm
Cel
· [cos (π + ϕ)− cos (0 + ϕ)]

= −Tm2π
Îm
Cel
·

cosπ︸ ︷︷ ︸
−1

· cosϕ− sin π︸︷︷︸
0

· sinϕ− cosϕ


= −Tm2π

Îm
Cel
· [− cosϕ− cosϕ]

= Tm
π

Îm
Cel
· cosϕ (3.10)

∆SoCm = Tm
2π

Îm
Cel
· cosϕ (3.11)

∆SoCm(t) = Îm
Cel
·
∫

sin(2πfmt+ ϕ) dt

= Îm
Cel
·
[
−Tm2π cos(2πfmt+ ϕ)

]
+ c

= −Tm2π
Îm
Cel
· cos(2πfmt+ ϕ) + Tm

2π
Îm
Cel
· cosϕ

= Tm
2π

Îm
Cel
· [− cos(2πfmt+ ϕ) + cosϕ] (3.12)
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3.1 Measurement Deviation Caused by State-of-Charge Change

3.1.2.2 Impedance Measurement Deviation

In order to determine the equation for the measurement deviation, the impedance change is simplified
to change linearly over SoC for a given temperature. The two end points of that linear interpolation
are the starting SoC and the SoC at maximum deviation. The linear factor is then calculated according
to equation 3.13:

∆Z
∆SoC

∣∣∣∣
T,∆SoC

=
Z
SoCstart+∆ŜoCm

− ZSoCstart
∆ŜoCm

(3.13)

With that value the impedance deviation over time of the measured impedance from a change in SoC
caused by the sinusoidal excitation current can be described according to equation 3.15:

Ze(t) = ∆Z
∆SoC

∣∣∣∣
T,∆SoC

·∆SoCm(t) (3.14)

Ze(t) = ∆Z
∆SoC

∣∣∣∣
T,∆SoC

· Tm2π
Îm
Cel
· [− cos(ωmt+ ϕ) + cos(ϕ)] (3.15)

For this calculation the excitation current is assumed to be a sinusoid with no initial phase ϕ = 0.
The voltage and voltage deviation respectively can be determined by multiplying the time changing
impedance deviation by the excitation current:

v(t) = Z(t) · Îm · sin(ωmt) = (Z0 + Ze(t)) · Îm · sin(ωmt) = v0(t) + ve(t) (3.16)

ve(t) = ∆Z
∆SoC

∣∣∣∣
T,∆SoC

· Tm2π
Îm
Cel
· [− cos(ωmt) + 1] · Îm · sin(ωmt) (3.17)

The equations for the total impedance and voltage response (equation 3.16) are only presented to show
where the equations for the impedance deviation and voltage come from. Going forward, only the
equation of the voltage deviation 3.17 is needed. The Fourier transformation of the voltage deviation
is best calculated by separating the real part a1 from the imaginary part b1:

F{ve(t)} = 2
Tm

∫ Tm

0
ve(t) · e−jωmtdt = a1 − jb1 (3.18)

F{ve(t)} = 1
π

Îm
2

Cel

∆Z
∆SoC

∣∣∣∣
T,∆SoC

·∫ Tm

0
[− cos(ωmt) + 1] · sin(ωmt) · e−jωmtdt (3.19)

a1 = 1
π

Îm
2

Cel

∆Z
∆SoC

∣∣∣∣
T,∆SoC

·
∫ Tm

0
− cos(ωmt) · sin(ωmt) · cos(ωmt)︸ ︷︷ ︸

1
2 ·sin(2ωmt) with C.3

dt

︸ ︷︷ ︸
=0

+ 1
π

Îm
2

Cel

∆Z
∆SoC

∣∣∣∣
T,∆SoC

·
∫ Tm

0
sin(ωmt) · cos(ωmt)︸ ︷︷ ︸

1
2 ·sin(2ωmt) with C.3

dt

︸ ︷︷ ︸
=0

(3.20)

a1 = 0 (3.21)
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3 Excitation Amplitude Limit

b1 = 1
π

Îm
2

Cel

∆Z
∆SoC

∣∣∣∣
T,∆SoC

·
∫ Tm

0
− cos(ωmt) · sin(ωmt) · sin(ωmt)︸ ︷︷ ︸

1
2 ·(1−cos(2ωmt)) with C.4

dt

︸ ︷︷ ︸
=0

+ 1
π

Îm
2

Cel

∆Z
∆SoC

∣∣∣∣
T,∆SoC

·
∫ Tm

0
sin(ωmt) · sin(ωmt)︸ ︷︷ ︸

1
2 ·(1−cos(2ωmt)) with C.4

dt

︸ ︷︷ ︸
=

1
2 ·Tm

(3.22)

b1 = Tm
2π

Îm
2

Cel

∆Z
∆SoC

∣∣∣∣
T,∆SoC

(3.23)

F{ve(t)} = −j Tm2π
Îm

2

Cel

∆Z
∆SoC

∣∣∣∣
T,∆SoC

(3.24)

With equation 3.9 the relative deviation from SoC change caused by a single sinusoidal current can be
stated as:

eZ = F{ve(t)}
−jÎm · Z0

= Tm
2π

Îm
Cel

∆Z/Z0

∆SoC

∣∣∣∣
T,∆SoC

(3.25)

Although the change in imaginary impedance in figure 3.3b of over 1.3 % is quite significant, the
resulting measurement deviation of the impedance modulus and phase are smaller. The impedance
deviation is the averaged impedance change over which the SoC has swept. For the modulus deviation
the imaginary part only makes a minor contribution. The phase deviation is measured in absolute
terms and is therefore less affected by a large relative imaginary impedance change on a rather small
imaginary impedance value compared to the real impedance value.

Figure 3.4 shows that the permissible excitation current amplitude for staying below an impedance
modulus deviation of 0.1 % is lower than for staying below an impedance phase deviation of 0.1 ◦. As
equation 3.25 shows, the measurement deviation is linearly dependent on Îm as well as on Tm. The
higher the frequency fm, the higher the permissible excitation current becomes.
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Figure 3.4: Measurement deviation caused by SoC change during impedance measurements with dif-
ferent excitation current magnitudes. (cylindrical cells A.1 to A.4, SoCstart = 30 %,
ϑ = 25 ◦C, fm = 10 mHz).
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3.1 Measurement Deviation Caused by State-of-Charge Change

Figure 3.5 reconfirms that it is easier to stay below the phase deviation threshold of 0.1 ◦ than below
the one of the impedance modulus threshold of 0.1 %. Especially for SoC values below 30 % and above
80 % the modulus deviation breaks through this threshold.
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Figure 3.5: Measurement deviation caused by SoC change during impedance measurements at different
SoCs. (cylindrical cells A.1 to A.4, Îm = 0.5 CA, ϑ = 25 ◦C, fm = 10 mHz).

An option for eliminating this measurement deviation is simply not to assume that the measurement
is taken at the start-SoC, but at the start-SoC plus the SoC shift ∆SoC. The more ∆Z

∆SoC is a constant
value, the more this assumption is correct. If this is done the deviation reduces to the non-linearity of
the ∆Z

∆SoC relationship, which is negligible for small SoC changes below 1 %. Figure 3.6 proves this. It
is based on impedance measurement data for every 1 % SoC change. The first curve Zsim of this figure
is obtained by using the measurement data in a simulation. In this simulation the voltage response
for a given excitation current amplitude is calculated by multiplying the current with the impedance
which changes with the SoC. Between the measurement points spaced with 1 % SoC resolution the
impedance was linearly interpolated. The simulated voltage response is then Fourier transformed
divided by the excitation current to obtain the impedance. The shown deviation is the difference
between the impedance determined by this simulation and the impedance which was measured at the
SoC where the simulation started. The second curve Zlin calculates the deviation based on the linear
interpolation between the start-SoC and the end-SoC, which is ∆ŜoCm higher than the start-SoC by
using the equations 3.13 and 3.25. The third curve Zdiff is the difference between Zsim and Zlin. The
figure shows that the non-linearity is negligible and the measurement deviation stays below 0.1 % and
0.1 ◦, even for an SoC shift of up to 10 %, when the measured impedance is considered to be taken at
SoCstart + ∆SoCm. Another option to eliminate this deviation introduced by SoC change is to use a
cosine function to stimulate the battery. The drawback of this method is the sudden current ‘jump’
at the beginning of the measurement which would lead to a very long settling time until the battery
follows the excitation current. If used, a whole period would need to be waited for the battery to settle.
A settling time of less than a period would result in an SoC at the end of the measurement that is
different from that at the beginning. If several frequencies are applied in a sinus-sweep measurement,
every single frequency measurement would then be measured at a slightly different SoC.
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Figure 3.6: Comparison of equation 3.25 with a linear impedance to SoC dependency to a simulation
with an impedance resolution of 1 % (cylindrical LFP-cell A.1, SoCstart = 30 %, ϑ = 25 ◦C,
fm = 10 mHz).

3.1.3 Multi-sine Measurement

3.1.3.1 State-of-Charge Change

For a multi-sine signal the SoC displacement is dependent on all of its single components. The max-
imum displacement cannot be easily determined as its calculation involves solving a function with
several local minimas [49; 100]. However, the time dependency of the SoC shown by equation 3.26 is
enough to derive the equations for the introduced measurement deviation in the next section.

∆SoCm,MS(t) =
N∑
n=1

Tn
2π

În
Cel
· [− cos(2πfnt+ ϕn) + cos(ϕn)] (3.26)

3.1.3.2 Impedance Measurement Deviation

In contrast to section 3.1.2.2 the measurement deviation for multi-sine measurement is derived with an
initial phase ϕn for all the single components of the multi-sine signal. The initial phase is important,
since it is often used to reduce the Crest factor [20; 108]. The measurement deviation of the impedance
Ze(t) and the associated voltage deviation ve(t) are calculated by assuming a linear dependency of the
impedance to SoC.

Ze(t) = ∆Z
∆SoC

∣∣∣∣
T,∆SoC

·
N∑
n=1

Tn
2π

În
Cel
· [− cos(ωnt+ ϕn) + cos(ϕn)] (3.27)

ve(t) = ∆Z
∆SoC

∣∣∣∣
T,∆SoC

·
N∑
n=1

Tn
2π

În
Cel
· [− cos(ωnt+ ϕn) + cos(ϕn)] · În · sin(ωnt+ ϕn) (3.28)

In a multi-sine signal all frequencies are applied at the same time. The time Ta for which these
frequencies are applied is equal to the period of the lowest frequency component of the multi-sine
signal Tmin. This is the reason for calculating the Fourier transformation of the voltage deviation over
this period. Any of the frequency components fn indicated with the index n of the multi-sine signal
could have an influence on the Fourier transformation of the measurement frequency fm indicated
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3.1 Measurement Deviation Caused by State-of-Charge Change

with the index m. Therefore, the following equations have to be considered for every measurement
frequency fm.

F{ve(t)} = 2
Tmin

∫ Tmin

0
ve(t) · e−jωmtdt = a1 − jb1 (3.29)

F{ve(t)} = 1
π

1
Tmin

1
Cel

∆Z
∆SoC

∣∣∣∣
T,∆SoC

·

∫ Tmin

0

N∑
n=1

TnÎ
2
n · [− cos(ωnt+ ϕn) + cos(ϕn)] · sin(ωnt+ ϕn) · e−jωmtdt (3.30)

a1 = 1
π

1
Tmin

1
Cel

∆Z
∆SoC

∣∣∣∣
T,∆SoC

·

∫ Tmin

0

N∑
n=1
−TnÎ2

n · cos(ωnt+ ϕn) · sin(ωnt+ ϕn)︸ ︷︷ ︸
1
2 [sin(2ωnt) cos(2ϕn)+cos(2ωnt) sin(2ϕn)] with C.6

· cos(ωmt)dt

︸ ︷︷ ︸
=− 1

4TnÎ
2
n·Tmin·sin(2ϕn) with C.7 and C.9 for ωn= 1

2ωm, otherwise =0

+ 1
π

1
Tmin

1
Cel

∆Z
∆SoC

∣∣∣∣
T,∆SoC

·

∫ Tmin

0

N∑
n=1

TnÎ
2
n cos(ϕn) · sin(ωnt+ ϕn) · cos(ωmt)dt︸ ︷︷ ︸

= 1
2TnÎ

2
n·Tmin·cos(ϕn)·sin(ϕn) with C.10 for ωn=ωm, otherwise =0

(3.31)

b1 = 1
π

1
Tmin

1
Cel

∆Z
∆SoC

∣∣∣∣
T,∆SoC

·

∫ Tmin

0

N∑
n=1
−TnÎ2

n · cos(ωnt+ ϕn) · sin(ωnt+ ϕn)︸ ︷︷ ︸
1
2 [sin(2ωnt) cos(2ϕn)+cos(2ωnt) sin(2ϕn)] with C.6

· sin(ωmt)dt

︸ ︷︷ ︸
=− 1

4TnÎ
2
n·Tmin·cos(2ϕn) with C.8 and C.7 for ωn= 1

2ωm, otherwise =0

+ 1
π

1
Tmin

1
Cel

∆Z
∆SoC

∣∣∣∣
T,∆SoC

·

∫ Tmin

0

N∑
n=1

TnÎ
2
n cos(ϕn) · sin(ωnt+ ϕn) · sin(ωmt)dt︸ ︷︷ ︸

= 1
2TnÎ

2
n·Tmin·cos(ϕn)·cos(ϕn) with C.11 for ωn=ωm, otherwise =0

(3.32)

With equation 3.9 the relative impedance measurement deviation from SoC change caused by a mul-
tisinusoidal current is:

eZ =


1

2π
1
Cel

∆Z/Z0
∆SoC

∣∣∣∣
T,∆SoC

·
[
−Tm Î2

n

Îm
(cos(2ϕn) + j · sin(2ϕn))

]
for ωn = 1

2ωm

1
2π

1
Cel

∆Z/Z0
∆SoC

∣∣∣∣
T,∆SoC

· TmÎm · cos(ϕn) · (cos(ϕn) + j · sin(ϕn)) for ωn = ωm

(3.33)

The analysis in this section applies for multi-sinus signals if the measured frequencies of the multi-
sinus are even integer multiples or fractions of each other. From the derivation of the measurement
deviation it becomes evident that the SoC dependency of the impedance causes deviations at different
frequencies. One in the baseband frequency fm and one in the second harmonic 2·fm. Figure 3.7 shows
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3 Excitation Amplitude Limit

the harmonics of a single-sine signal based on a simulation with an impedance over SoC resolution
for every 1 % SoC change. With the assumption of a linear change of the impedance with the SoC
change only the first and the second harmonic should have non-zero values. However, figure 3.7 shows
also small values compared to the first and second harmonic for the third harmonic and above. These
values are caused by the deviation from the linear behavior of the impedance change with the SoC
change.
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Figure 3.7: Harmonics caused by a change in voltage response due to the SoC change during impedance
measurements. (cylindrical LFP-cell A.1, Îm = 3 CA, SoCstart = 30 %, ϑ = 25 ◦C, fm =
10 mHz).

This effect opens up the possibility for compensating the deviations introduced by the SoC dependency
of the impedance. If a signal with half the measurement frequency would be superpositioned onto the
actual measurement signal, the second harmonic of the additional signal at half the measurement
frequency could compensate the deviation of the measurement frequency. Equation 3.33 indicates that
the additional signal would need an initial phase of zero, or an integer multiple of π, and that both
amplitudes need to have the same value and either the same or opposite sign. Figure 3.8 shows the
two signals, their sum and their combined resulting SoC change.
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Figure 3.8: Introducing an additional current at half the measurement frequency eliminates the mea-
surement deviation introduced by SoC change. Figure shows change in SoC and subsequent
changes in impedance and voltage response during an impedance measurement (cylindrical
LFP-cell A.1, ÎTm = 1 CA, Î2·Tm = −1 CA, ϕ2·Tm = 0 ◦, SoCstart = 30 %, ϑ = 25 ◦C,
fm = 10 mHz).

In this case the signal with the measurement frequency fm would perform two periods in the time in
which the underlying signal with a frequency of 1

2fm only performs one period. The measurement of the
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3.1 Measurement Deviation Caused by State-of-Charge Change

actual measurement signal with fm is done twice, once with the SoC changed by the superpositioned
signal with 1

2fm towards negative SoC values and once towards positive SoC values, the deviations of
these two measurements cancel each other out.
The total SoC shift and the SoC sweep is certainly higher than before. This is only critical if the
assumption of a linear impedance to SoC relationship does not hold true. Section 3.1.2.2 showed that
with this assumption the modulus deviation can be kept below 1 % and the phase deviation below 1 ◦

over the entire SoC range from 10 % to 90 %. However, other sources, such as temperature increase (see
section 3.2) and impedance non-linearity (see section 3.4), will introduce a larger deviation because of
the additional signal.

3.1.4 Constant Current

3.1.4.1 State-of-Charge Change

An underlying constant current that charges or discharges the battery violates the Linear-Time-
Invariant-condition. The SoC not only changes during the measurement as it happens with the si-
nusoidal excitation current, but also the end-SoC is different from the start-SoC. The possibility to
perform EIS measurements during charging would be a great opportunity for on-line EIS measure-
ments since the battery goes through a number of different SoCs during the charging process at which
the battery could be characterized. For constant currents during the EIS measurement, equation 3.34,
3.35 and 3.36 respectively show the SoC sweep, the SoC shift and the time dependency of the SoC
change.

∆ŜoCdc = Idc
Cel
· Tm (3.34)

∆SoCdc = 1
2
Idc
Cel
· Tm (3.35)

∆SoCdc(t) = Idc
Cel
· t (3.36)

Figure 3.9 shows a constant current causing the same average SoC shift as the 3 CA excitation current
from figure 3.3a.
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Figure 3.9: Changes of SoC and subsequent changes in impedance and voltage response due to constant
charging during an impedance measurement. (cylindrical LFP-cell A.1, Idc = 3.0

π CA,
SoCstart = 30 %, ϑ = 25 ◦C, fm = 10 mHz). The figure shows simulated values and only
the effect of the constant current. ∆vbat assumes a sinusoidal excitation current of 0.5 CA
but only shows the effect of the impedance change caused by the constant current. The
figure therefore omits for all waveforms the changing SoC effect of the sinusoidal excitation
current.

Please note that for illustrative the graph shows the constant over two periods. However, the equations
derived in this section only consider one period. The constant current is by a factor of 1

π smaller than
the amplitude of the excitation current. A constant current is therefore much more critical than a
large excitation current.

3.1.4.2 Impedance Measurement Deviation

This section derives the measurement deviation from the SoC dependency of the impedance caused
by a constant current for a single-sine measurement. The initial phase of the sinusoidal excitation
current is again considered to be ϕ = 0. The deviation of the impedance Ze(t) and the voltage ve(t)
are calculated by assuming a linear dependency of the impedance to SoC and that the SoC shift is
only caused by the constant current. The two end points for the linear interpolation are the start-SoC
and the end-SoC and their respective impedances. The gradient is calculated similar to equation 3.13
with equation 3.37.

∆Z
∆SoC

∣∣∣∣
T,∆SoC

=
Z
start+∆ŜoCdc

− Zstart
∆ŜoCdc

(3.37)

Ze(t) = ∆Z
∆SoC

∣∣∣∣
T,∆SoC

· Idc
Cel
· t (3.38)

ve(t) = ∆Z
∆SoC

∣∣∣∣
T,∆SoC

· Idc
Cel
· t · Îm · sin(ωmt) (3.39)
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3.1 Measurement Deviation Caused by State-of-Charge Change

The Fourier transformation of the voltage deviation is calculated over the period of the impedance
excitation current Tm. The real part a1 and the imaginary part b1 are calculated separately.

F{ve(t)} = 2
Tm

∫ Tm

0
ve(t) · e−jωmtdt = a1 − jb1 (3.40)

F{ve(t)} = 2
Tm

Idc · Îm
Cel

∆Z
∆SoC

∣∣∣∣
T,∆SoC

·
∫ Tm

0
t · sin(ωmt) · e−jωmtdt (3.41)

a1 = 2
Tm

Idc · Îm
Cel

∆Z
∆SoC

∣∣∣∣
T,∆SoC

·
∫ Tm

0
t · sin(ωmt) · cos(ωmt)︸ ︷︷ ︸

1
2 ·sin(2ωmt) with C.3

dt

︸ ︷︷ ︸
= 1

2

 sin(2ωmt)
(2ωm)2︸ ︷︷ ︸

=0

− t·cos(2ωmt)
2ωm


Tm

0

=− 1
2
T2
m

4π with C.12

(3.42)

a1 = Tm
2
Idc · Îm
Cel

∆Z
∆SoC

∣∣∣∣
T,∆SoC

·
[
− 1

2π

]
(3.43)

b1 = 2
Tm

Idc · Îm
Cel

∆Z
∆SoC

∣∣∣∣
T,∆SoC

·
∫ Tm

0
t · sin(ωmt) · sin(ωmt)︸ ︷︷ ︸

1
2 ·(1−cos(2ωmt)) with C.4

dt

︸ ︷︷ ︸
=

[
1
4 t

2
]Tm

0︸ ︷︷ ︸
=Tm2

4

−

cos(2ωmt)
(2ωm)2︸ ︷︷ ︸

=0

+
t · sin(2ωmt)

2ωm︸ ︷︷ ︸
=0


Tm

0

=Tm2
4 with C.13

(3.44)

b1 = Tm
2
Idc · Îm
Cel

∆Z
∆SoC

∣∣∣∣
T,∆SoC

(3.45)

With equation 3.9, the relative deviation from SoC change caused by a constant current can be written
as:

eZ = Tm
2
Idc
Cel

∆Z/Z0

∆SoC

∣∣∣∣
T,∆SoC

·
[
1− j

2π

]
(3.46)

Figure 3.10 shows the measurement deviation caused by a constant current charge at different C-rates.
For very low constant currents the deviation already goes over the 0.1 % and 0.1 ◦ threshold. As for
the single-sine measurement, the modulus deviation increases much quicker with increasing current
amplitude as the phase deviation.

Figure 3.11 shows the dependency of the deviation on the start-SoC. An excitation current, which
starts with a positive half-sine wave, was assumed for this simulation. The figure is similar as figure
3.5 but not the same. The 0.1 % modulus deviation threshold is violated almost over the entire SoC
range from 10 % to 90 %. The 0.1 ◦ phase deviation threshold is easier to comply with.

In order to get the combined measurement deviation from constant current and excitation current, the
deviation derived here needs to be added to the deviation derived in section 3.1.2.2 or 3.1.3.2. The best
way to avoid the deviation introduced by a constant current and the excitation current is to assume
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Figure 3.10: Measurement deviation from SoCs change caused by constant current charging during
impedance measurements. (LFP-cell A.1, NMC-cell A.2, LCO-cell A.3, NCA-cell A.4,
SoCstart = 30 %, ϑ = 25 ◦C, fm = 10 mHz).
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Figure 3.11: Measurement deviation caused by SoC change due to a constant charging current during
the impedance measurement at different SoCs (LFP-cell A.1, NMC-cell A.2, LCO-cell
A.3, NCA-cell A.4, constant current charge rate = 3

πCA, SoCstart = 30 %, ϑ = 25 ◦C,
fm = 10 mHz).

that the measurement is taken at the start-SoC plus the average SoC shift of the excitation current
∆SoCm and the constant current ∆SoCdc as shown in equation 3.47.

Zm = Z0 + Ze = Z0 + ∆Z
∆SoC

∣∣∣∣
T,∆SoC

·
(
∆SoCm + ∆SoCdc

)
(3.47)

For calculating the linear factor ∆Z
∆SoC

∣∣∣∣
T,∆SoC

equation 3.48 applies.

∆Z
∆SoC

∣∣∣∣
T,∆SoC

=
Z
start+∆ŜoC − Zstart

∆ŜoC
(3.48)

When choosing between ∆ŜoCm and ∆ŜoCdc, the one with the larger deviation from the starting SoC
should be used. This is because a wrong assumption of the linear behavior of the impedance over SoC
is then less critical. When ∆ŜoCm is smaller as ∆ŜoCdc, then during the impedance measurement the
sinusoidal SoC sweep will also be along the line between the start-SoC and the end-SoC. If ∆ŜoCm is
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3.1 Measurement Deviation Caused by State-of-Charge Change

larger than ∆ŜoCdc, then the SoC sweep of the impedance measurement will surpass the SoC change
caused by the constant current and will be more important for the total measurement deviation.

Section Conclusion
A change in State-of-Charge during the impedance measurement changes its result. Any current

flowing out or into the battery causes the State-of-Charge to change. Due to the nature of the impedance
measurement, which relies on a sinusoidal current, even a single sine measurement is changing the
State-of-Charge during the measurement. Especially excitation currents, which follow a sinus function
and not a cosinus function, cause an additional deviation. Underlying constant currents that might be
present during charging or discharging cause a similar effect.

This section derived the theoretical measurement deviations caused by a single-sine measurement,
multi-sine measurement and an underlying constant current. The equations are derived under the as-
sumption of a linear dependency of the impedance on the State-of-Charge. This assumption was verified
by a comparison between a high resolution simulation and the linear assumption. Due to this simpli-
fication, the deviation can also be reduced significantly by assuming that the impedance measurement
was taken at the starting State-of-Charge plus the average State-of-Charge shift.
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3 Excitation Amplitude Limit

3.2 Measurement Deviation Caused by Temperature Change

The impedance of a battery is temperature dependent. Section 3.2.1 introduces a mathematical de-
scription of this dependency. This dependency causes measurement deviations when the temperature
is changing during the impedance measurement. Any current charging or discharging a battery causes
it to heat up, also the alternating excitation current of an EIS measurement. Section 3.2.2 covers the
influence of entropy heating of a sinusoidal current as a reversible heat source and the impedance mea-
surement deviation it causes. Section 3.2.3 covers the influence of impedance heating of a sinusoidal
current as an irreversible heat source and the impedance measurement deviation it causes. Section
3.2.4 shows how the results shown in section 3.2.3 can be expanded to pulsed currents. Section 3.2.5 in-
troduces the expansion of section 3.2.4 to constant currents and the impedance measurement deviation
they cause. The derived equations estimate the heat generation, the temperature increase and the de-
viation of an impedance measurement based on the information of previous impedance measurements,
the entropy and the impedance temperature dependency.

As introduced in the fundamentals chapter 2, there are several ways to measure entropy. The entropy
data used in this thesis were acquired by the δU/δT measurement method [84]. Several heat generation
studies have been carried out so far. Bandhauer et al. [7] provides an extensive summary of these
studies. Most of them are conducted under isothermal conditions. In section 3.2.3 to section 3.2.5 the
irreversible heat generated by an NMC cell (see appendix A.2) is studied under adiabatic conditions.
Al Hallaj et al. [2] studied the temperature increase of several cells under adiabatic conditions, but only
for full charge/discharge cycles. Physiochemical models rely on an accurate heat generation model.
Xiao and Choe [127] used four different heat sources to model the heat generated by the battery cell
in its physiochemical model:

1. Entropy heating: The reversible heat caused by entropy and a current running through the
battery. It either cools or heats the battery depending on the direction of the current and the
sign of the entropy value.

2. Ohmic heating: Irreversible heat generated by the ohmic resistances of electronic and ionic
conductors inside the battery.

3. Heat by charge transfer and ionic transport: Irreversible heat generated by the the inter-
calation of lithium into graphite and the phase changes on the cathode.

4. Heat of mixing: The formation and relaxation of concentration gradients creates heat. This
irreversible heat represents the fact that the battery cell still keeps generating heat after the
current has been turned off. It only represents a minor heat source [117].

Section 3.2.3 and 3.2.5 will show that for simpler models at least the two irreversible heat sources,
ohmic and heat by charge transfer and ionic transport can be grouped together and modelled by only
the heat generated over the real part of the impedance. Section 3.2.5 shows that this is possible over the
whole frequency range down to constant currents. A similar approach was done by Nieto et al. [82] but
instead of using impedance data he used the ohmic drop measured from current pulse measurements.

42



3.2 Measurement Deviation Caused by Temperature Change

3.2.1 Impedance Temperature Dependency

In the fundamental chapter, section 2.1.2 already introduced the exponential temperature dependency
of the exchange current. Figure 3.12 shows an exponential dependency of the impedance real and
imaginary part on temperature for different measurement frequencies.
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Figure 3.12: Temperature dependency of the impedance at different measurement frequencies. (NMC
pouch cell A.5, SoC = 50 %).

Andre et al. reported in [3] an exponential temperature dependency for all measured frequencies.
Eddahech et al. [37] showed this effect for the resistances of equivalent circuits for li-ion batteries.
Linden and Reddy showed in [73] the same behavior for Nickel-Metal Hydride (NiMH) batteries.

Although exponential, the impedance at every measurement frequency has a differently strong depen-
dence on temperature. The dependency can be expressed by equation 3.49, with different values of Θ
for each measurement frequency.

Z = ZΘ + Z6Θ = A · eT/Θ + Z 6Θ (3.49)

By fitting the impedance measurements at different temperatures with the equation 3.49 the solid lines
in figure 3.12 were drawn with the values in table 3.1.

10 mHz 1 Hz 10 Hz

real part Θ (K) -11.5104 -9.9625 -12.4715
ZΘ (mΩ) 0.6267 0.5000 0.4642

imaginary part Θ (K) -24.1531 -7.8905 -8.1989
ZΘ (mΩ) -0.0620 -0.0178 -0.0079

Table 3.1: Parameters Θ and Z 6Θ used for drawing the solid lines in figure 3.12.

The parameter A in equation 3.49 is not calculated since the impedance at one temperature is deter-
mined starting with the knowledge of the impedance of another temperature and by using the fitted
parameters Θ, Z 6Θ with equation 3.50. The calculation has to be done separately for the real and for
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3 Excitation Amplitude Limit

the imaginary part.

Z2 − Z 6Θ = e(T 2−T 1)/Θ · (Z1 − Z 6Θ) (3.50)

Z 6Θ is the temperature independent part, which also has a physical representation. In a battery some
of the resistance is created by the current collectors and wires, which have a negligible temperature
dependency. A temperature independent negative phase shift is introduced by the parasitic capacitor
which is created by the two current collectors. These are two sheets which are packed closely together
and are insulated against each other. A temperature independent positive phase shift is introduced by
the loop created by the current collectors and wires inside the battery. Dependent on the frequency, the
negative or the positive phase shift is more present. ZΘ = Z − Z 6Θ is the temperature dependent part
of the impedance. The exponential temperature dependency can also be derived from the Arrhenius
equation 3.51. Equation 3.52 to 3.57 show how an equation 3.57 similar to equation 3.50 can be derived
from the Arrhenius equation. However, the parameters of equation 3.50 cannot be directly compared
with the ones of the Arrhenius equation, but would need to be adjusted by the constant factors c1, c2
and c3 in order to get a direct correspondence between them.

k = A · e−EA/(RT ) (3.51)
k1

k2
= e

[(−EA
RT1

)
−
(−EA
RT2

)]
(3.52)

ln
k1

k2
= −EA · (T2 − T1)

RT1T2
(3.53)

−RT1T2

EA
(ln(k1)− ln(k2)) = T2 − T1 (3.54)

T1T2 · ln(k2)− T1T2 · ln(k1) = T2 − T1

R/EA
(3.55)(

eln(k2))T1T2(
eln(k1)

)T1T2
= e

T2−T1
R/EA (3.56)

kT 1T 2
2︸ ︷︷ ︸

c1·(Z2−Z6Θ)

= e
(T 2−T 1)/

c3·Θ︷ ︸︸ ︷(
R

EA

)
· kT 1T 2

1︸ ︷︷ ︸
c2·(Z1−Z 6Θ

(3.57)

Figure 3.13 shows the frequency dependency of the complex parameter Θ for 10 % and 50 % SoC.
Low negative values of Θ signify a high temperature dependency. High negative values of Θ signify a
low temperature dependency. The temperature dependency decreases sharply above a measurement
frequency of 30 Hz for the real part and above a measurement frequency of 100 Hz for the imaginary
part. A negative value indicates that the impedance decreases with increasing temperature, which is
the case for all frequencies.

Figure 3.14 shows the frequency dependency of the complex parameter Z 6Θ for 10 % and 50 % SoC.
This value determines how much of the impedance is subject to temperature change. (Z1 − Z 6Θ) is
affected by the temperature change, whereas Z 6Θ is not. The temperature dependent part (Z1 − Z 6Θ)
changes depending on the starting temperature T1 used in equation 3.50. The value Z 6Θ, however, stays
the same over the whole temperature range. The quickly rising real and imaginary part of Z 6Θ above
the intercept frequency create a smaller temperature dependency. This and the simultaneously quickly
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3.2 Measurement Deviation Caused by Temperature Change
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Figure 3.13: Frequency dependency of the parameter Θ for the real and imaginary part of the
impedance at 10 % and 50 % SoC (NMC pouch cell A.5, fitting range ϑ = 15 to 45 ◦C).

rising exponential factor Θ indicate that the overall temperature dependency reduces so strongly above
the intercept frequency that the temperature dependency is negligible. Above intercept frequency, the
generated heat in the battery can also be neglected since the impedance measurements at these high
frequencies can be done very quickly.
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Figure 3.14: Frequency dependency of the temperature independent part of the impedance Z 6Θ at 10%
and 50% SoC (NMC pouch cell A.5, fitting range ϑ = 15 to 45◦C).
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3.2.2 Reversible Heat Generation from Sinusoidal Currents

This section shows by how much a sinusoidal current can heat up a cell during a single-sine measurement
by entropy heating and the deviation it introduces to the measured impedance. Entropy heating is
a reversible heating, meaning it can heat or cool a battery depending on the direction of the current
flow. During charging, the battery is heated if the entropy value is positive, the battery is cooled if the
entropy is negative. The effect is reversed during discharging. Equation 3.58 shows the temperature
change over time when a current is flowing through the battery. Entropy is SoC dependent, but can
be assumed constant for small SoC changes of less than one percent.

∆ϑ(t) =
∫

∆S(SoC) T
zF︸ ︷︷ ︸

=HGRe

· 1
Cth
· I(t) · dt (3.58)

For simplifying the equation an entropic heat generation rate HGRe is defined. It describes the amount
of heat generated in Joule per Coulomb, which is charged into or discharged from the battery cell.
The ratio HGRe over Cth is the temperature increase in Kelvin per Coulomb, which is charged into
or discharged from the battery cell. By integrating the current over time equation 3.59 gives the time
dependent temperature change during an impedance measurement.

∆ϑ(t) =
∫
HGRe
Cth

· Îm · sin(ωmt) · dt = −HGRe
Cth

Îm · Tm
2π · cos(ωmt) (3.59)

Section 3.2.1 derived the temperature dependency of the impedance. It separated the impedance into
a temperature dependent part ZΘ and a temperature independent part Z 6Θ. The response voltage can
be equally separated into a temperature dependent part vΘ(t) and a temperature independent part
v 6Θ(t).

Z(t) = ZΘ · e
∆T (t)

Θ + Z 6Θ (3.60)

Z(t) = ZΘ · e−
HGRe
Cth

Îm·Tm
2π·Θ ·cos(ωmt) + Z 6Θ (3.61)

v(t) = Z(t) · Îm · sin(ωmt) (3.62)

v(t) = ZΘ · e−
HGRe
Cth

Îm·Tm
2π·Θ ·cos(ωmt) · Îm · sin(ωmt)︸ ︷︷ ︸

=vΘ(t)

+Z6Θ · Îm · sin(ωmt)︸ ︷︷ ︸
=v 6Θ(t)

(3.63)

For the derivation of the deviation caused by entropy heating, the temperature dependent part vΘ(t)
is the one that causes the measurement deviation and is transformed into the frequency-domain by
separating the Fourier transformation into the real part a1 and imaginary part b1.

F{vΘ(t)} = 2
Tm

∫ Tm

0
ZΘ · e−

HGRe
Cth

Îm·Tm
2π·Θ ·cos(ωmt) · Îm · sin(ωmt)︸ ︷︷ ︸

=vΘ(t)

·e−jωmtdt = a1 − jb1 (3.64)
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a1 = ZΘÎm
Tm

· 2
∫ Tm

0
e
−HGReCth

Îm·Tm
2π·Θ ·cos(ωmt) · sin(ωmt) · cos(ωmt)︸ ︷︷ ︸

1
2 ·sin(2ωmt) with C.3

dt (3.65)

= ZΘÎm
Tm

∫ Tm

0
e
−HGReCth

Îm·Tm
2π·Θ ·cos(ωmt) · sin(2ωmt)dt︸ ︷︷ ︸

0 with C.26

(3.66)

= 0 (3.67)

b1 = ZΘÎm
Tm

· 2
∫ Tm

0
e
−HGReCth

Îm·Tm
2π·Θ ·cos(ωmt) · sin2(ωm · t)︸ ︷︷ ︸

1
2 ·(1−cos(2ωmt)) with C.4

dt (3.68)

= ZΘÎm
Tm

∫ Tm

0
e
−HGReCth

Îm·Tm
2π·Θ ·cos(ωmt)dt︸ ︷︷ ︸

Tm·I0
(
HGRe
Cth

Îm·Tm
2π·Θ

)
with C.29

− ZΘÎm
Tm

∫ Tm

0
e
−HGReCth

Îm·Tm
2π·Θ ·cos(ωmt) · cos(2ωmt)dt︸ ︷︷ ︸

(−1)2Tm·I2
(
HGRe
Cth

Îm·Tm
2π·Θ

)
with C.24

(3.69)

= ZΘÎm ·

(
I0

(
HGRe
Cth

Îm · Tm
2π ·Θ

)
− I2

(
HGRe
Cth

Îm · Tm
2π ·Θ

))
(3.70)

F{vΘ(t)} = −j · ZΘÎm ·

(
I0

(
HGRe
Cth

Îm · Tm
2π ·Θ

)
− I2

(
HGRe
Cth

Îm · Tm
2π ·Θ

))
(3.71)

The measured impedance consists of both the response of the temperature dependent part F{vΘ(t)}
from equation 3.71 and the temperature independent part, which does not introduce any measurement
deviation (see equation 3.72). Therefore, the temperature independent part reduces the deviation
by the ratio Z 6Θ

Z0
. Equation 3.73 shows a modified version of equation 3.8. With it, the relative

measurement deviation from entropy heat generation caused by a sinusoidal current can be stated as
shown in equation 3.74.

Zm = F{vΘ(t)}
−jÎm

+ Z 6Θ (3.72)

eZ = F{vΘ(t)}
−jÎm · Z0

+ Z0 − ZΘ

Z0
− 1 = F{vΘ(t)}

−jÎm · Z0
− ZΘ

Z0
(3.73)

eZ = ZΘ

Z0
·

[
I0

(
HGRe
Cth

Îm · Tm
2π ·Θ

)
− I2

(
HGRe
Cth

Îm · Tm
2π ·Θ

)
− 1
]

(3.74)

Figure 3.15 shows the change in impedance during an impedance measurement caused by entropy
heating. With a 3 CA current amplitude, the maximum impedance change during the measurement
goes beyond 0.1 % for both, the real part and the imaginary part.
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Figure 3.15: Simulated impedance change from entropy heating caused by the excitation current during
the impedance measurement. The graphs show no transitory effect but show one period
of a theoretically infinitely long applied excitation current (NMC pouch cell A.5, SoC =
50 %, fm = 10 mHz).

With the derived equation the deviations for the modulus and the phase can be calculated directly.
Figure 3.16 shows these two deviations over the measurement frequency for different excitation current
amplitudes. The modulus deviation for a 3 CA excitation current amplitude with 10 mHz measurement
frequency is below 10−3 % and the phase deviation even around 10−5 ◦. Both are well below the initially
set thresholds of 0.1 % and 0.1 ◦, the phase deviation even more than the modulus deviation.
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Figure 3.16: Maximum measurement deviation by temperature change from entropy heating caused
by the excitation current dependent on the measurement frequency and C-rates (NMC
pouch cell A.5, SoC = 50 %, ϑ = 25 ◦C).

The reason why the rather large change in impedance from figure 3.15 did not result in a large
modulus and phase deviation is that the change in impedance has a phase shift of π

2 to the phase
of the excitation current. Therefore, the change in impedance of the real part shown in figure 3.15a
does affect the measured impedance of the imaginary part. Since the imaginary part has a minor
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3.2 Measurement Deviation Caused by Temperature Change

contribution to the modulus, any deviation in the imaginary impedance hardly changes the impedance
modulus. It has, however, a large effect on the relative deviation of the impedance phase. But in this
case only the absolute value is considered, to which the imaginary part, again, has little effect.

3.2.3 Irreversible Heat Generation from Sinusoidal Currents

A preliminary study and measurements have been carried out during the supervision of the Master
Thesis of Vergote [121]. The measurements shown here are from a different battery cell and data set,
which were not acquired or used in his Master Thesis.

This section discusses by how much a sinusoidal current can increase the temperature of a battery cell.
It introduces a method for estimating this temperature change from the real part of the impedance.
It derives an equation for the associated deviation of the impedance measurement, which can be
assessed before the measurement is even taken based on past impedance measurements. Section 3.2
already introduced several different heat sources. Section 3.2.2 discussed the measurement deviation
introduced by entropy heating. This section will summarize all the other heating types introduced
at the beginning of section 3.2 to the term impedance heating, since their heat contribution can be
estimated from the impedance measurement. As opposed to entropy heating, which is reversible, the
impedance heating is irreversible. Section 3.2.3.1 will introduce the measurement setup, which was
used to produce the results in this and the following two sections 3.2.4 and 3.2.5. Section 3.2.3.2 will
show that the impedance measurement is a possible predictor of the irreversible heat generated by
a sinusoidal current throughout the whole frequency range. The heat generated during a sinusoidal
current is not constant, it has its maximum during the negative or positive amplitude and a minimum
when the current passes through zero. Section 3.2.3.3 takes this effect into account and derives the
deviation on the impedance measurement caused by a sinusoidal excitation current.

3.2.3.1 Measurement Setup

The heat generation rate under different conditions was determined in the following measurement setup.
By running a large current signal through a battery cell, the cell heat itself by its inner resistance. At
the same time, the change in cell temperature under adiabatic conditions was monitored. Figure 3.17
shows the measurement as it was carried out in an Accelerated Rate Calorimeter (ARC). This device
simulates an adiabatic environment for which no heat is transferred between the system under test and
the outside world. A battery cell (cylindrical LFP-cell A.1) was placed in the ARC. A signal generator
(Agilent 33500B Waveform Generator) and an amplifier (Servowatt DCP780/30) connected to the
cell charged and discharged the cell with sinusoidal currents, current pulses and constant currents of
various current amplitudes and frequencies at several SoCs. Besides the power wires with which the
cell was connected to the amplifier, the cell was connected with sense wires to a high resolution data
acquisition system (DEWEsoft®). Besides the temperature sensors of the ARC, a thermocouple was
placed directly on the steel casing of the cell. Due to the adiabatic environment of the ARC, the cell
could not cool itself by a heat transfer to the surrounding air. The ARC’s heating coils ensured that
the air temperature in the compartment in which the cell was placed always followed the temperature
measured on the casing of the cell. The excitation current, voltage response and cell temperature were
recorded at the same time.
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3 Excitation Amplitude Limit

Figure 3.18 shows the measurement principle. A current signal is applied to the cell. Because of the
functionality of the ARC, all the heat generated in the cell goes into an increase in temperature of
the cell. As long as current is flowing, the temperature of the cell increases continuously over the
measurement time. The more heat is generated, the steeper is the slope of the temperature increase.
The current signal can have any form: sinusoidal, pulsed or constant. For the further explanation of
the measurement principle, a sinusoidal current is assumed.
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Figure 3.17: Measurement Setup. Figure 3.18: Measurement Principle.

The inclination of this slope is an indicator of the amount of heat generated. The total heat flux can
be calculated by equation 3.75 and should be equal to the estimation derived from the real part of the
impedance as shown in equation 3.76. The heat generation rate HGR used throughout this chapter
is the heat generated in Watt normalized by the square of the effective current that generates it (see
equation 3.77). For a single frequency sinusoidal current, it is equal to the real part of the impedance
Zreal.

Q̇ = Cth ·
∆ϑ
∆t (3.75)

P = Q̇ = Zreal · I2
eff (3.76)

HGR = Zreal = Cth
I2
eff

· ∆ϑ
∆t (3.77)

At this point it seems unnecessary to define a new term when the value corresponds to the impedance
real part at a particular frequency. In the next two sections 3.2.4 and 3.4.6, this will not be the case
anymore and the definition of the heat generation rate HGR will become beneficial. In order to stay
consistent with that terminology and the entropic heat generation rate from the last section 3.2.2 it is
already used here.

For most frequencies, the change of temperature occurs in a straight line, since the time constant of the
heat transfer from the jelly roll to the casing is much larger than the period of the excitation current. For
low frequencies this is not the case anymore. Figure 3.18 shows this effect for a measurement frequency
of fm = 1 mHz. In this case, the temperature rise is no longer a straight line but superpositioned with a
sinusoidal signal with double the frequency of the measurement frequency. The superpositioned signal
has double the measurement frequency since the heat is generated equally during the positive and the
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3.2 Measurement Deviation Caused by Temperature Change

negative half-sine wave. It is actually only almost equal as section 3.4 will show, but sufficiently equal
for this measurement. Over the course of the test, the temperature of the cell changes significantly.
With the increase in temperature the impedance value of the cell decreases. Figure 3.18 shows this
effect. The superpositioned sinusoidal signal causes the temperature to increase in ‘steps’ for every half-
sine wave of the sinusoidal excitation current. The strongest inclination occurs during the amplitude
of the current and the ‘plateaus’ are reached once the excitation current crosses through zero. The
first ‘step’, when the cell was at 35◦C to 36◦C, is larger than the next and any other subsequent ‘step’
after that.

This changing impedance over the course of the measurement requires special care during the analysis
of the measurement data. For high frequencies, the period is much shorter than the heat transfer time
from the jelly roll to the casing. For them the measurement of the inclination at the measurement
temperature should include a few periods in order to eliminate noise. For low frequencies, the period
is longer than the heat transfer time from the coil to the casing. The measurement of the inclination
should include only one period, with half a period before and after the measurement temperature.
It is important that the slope of the temperature increase is measured over one whole period of the
excitation current. Half of the sine wave is not sufficient, since an entropy value different from zero
can make the heat contribution from the positive and the negative sine wave diverge.

The measurement setup did not secure perfect adiabatic conditions since the cables needed for the
excitation current, the measurement of the voltage response and the cell temperature constituted a
path for heat to escape the adiabatic system. The calibration of the ARC before the experiment
series takes this into account as any other heat flux, which escapes the system through the imperfect
insulation of the test compartment. The measurements of the heat generation rate were therefore not
affected. However, the thermal capacity used in the experiments was affected. A separate measurement
of the thermal capacity of the bare cell could not be used in the equation 3.75. The heat capacity of
the bare cell was higher than the heat capacity of the actual cell used. All the wires attached helped
the heat to escape. Therefore the measurement at 1 kHz was used in order to determine the effective
thermal capacity of the cell and the connected wires for the experiments undertaken. Equation 3.78
determined a thermal capacity of 33.8 Ws K−1. This value is used for all following calculations.

Cth = Zreal
∆ϑ
∆t

∣∣∣∣
1 kHz

·

(
Îm√

2

)2

(3.78)

The thermal capacity of the bare cell was determined by a standard calorimetric measurement per-
formed in the same calorimeter used for the experiments in this section. The measured thermal capacity
was 38.4 Ws K−1, which is closer to other values reported in the literature for 18650 cells [46]. Since
the determined value is a bit lower, it confirms that heat was lost over the wires connected to the cell.

3.2.3.2 Impedance as an Indicator for the Irreversible Heat Generation Rate

Figure 3.19 plots the heat generation rate measured in the experiment by red crosses. It was calculated
by equation 3.77 using the thermal capacity Cth = 33.8 Ws K−1. It compares these measurements with
the real part of the impedance Zreal. The figure proves the possibility of using the real part of the
impedance as an estimator for the generated heat. The two values compare very well with each other.
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3 Excitation Amplitude Limit

Only for the lower frequencies the heat generation rate derived from Zreal overestimates the generated
heat.
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Figure 3.19: Heat generation rate for sinusoidal currents. measured by direct measurements in an ARC
and indirect measurements by EIS (cylindrical LFP-cell A.1, SoC = 50 %, ϑ = 40 ◦C,
Îm = 3 CA).

This conclusion also holds true for different SoC levels. Figure 3.20a shows the same match for an
experiment series at 90 % SoC. Figure 3.20b shows that the measurement values from the ARC and
the estimation with Zreal match each other over the temperature range measured and for different
current amplitudes. The best consistency is achieved when the impedance is measured with the same
amplitude as the current with which the ARC experiment is performed. The measurement deviation
that is obtained by using a different amplitude is governed by the same sources as discussed throughout
this chapter.

3.2.3.3 Impedance Measurement Deviation Caused by Alternating Part of Impedance Heating
for a Single-sine Measurement

With the heat generation rate from equation 3.77 and the thermal capacity the time dependent tem-
perature increase over the course of an impedance measurement can be expressed by integrating over
the square of the current signal:

∆ϑ(t) =
∫
HGRfm
Cth

·
(
Îm · sin(ωmt)

)2

︸ ︷︷ ︸
= Îm2

2 (1−cos(2ωmt)) with C.4

·dt (3.79)

∆ϑ(t) = HGRfm
Cth

· Îm2 t

2︸ ︷︷ ︸
constant part

−HGRfm
Cth

· Îm
2 · Tm
8π · sin(2ωmt)︸ ︷︷ ︸

alternating part

(3.80)

The constant part of the impedance heating during the impedance measurement follows the same rules
as an additional constant current. This is why it will be dealt with in the section 3.2.5. This section
only focuses on the alternating part. The voltage response is the voltage drop caused by the sinusoidal
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3.2 Measurement Deviation Caused by Temperature Change

10−3 10−2 10−1 100 101 102 103 104
12

16

20

24

28

32

36

frequency (Hz)

H
G
R

(m
W

/A
2 )

estimation from Zreal ARC measurement

(a) Heat generation rate for 90 % SoC (ϑ = 40 ◦C,
Îm = 3 CA).
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(b) Heat generation rate over temperature dependent
on the current amplitude. (SoC = 50 %, fm =
300 Hz). Solid lines indicate the estimation from
Zreal and the dots the values obtained from the
ARC measurement.

Figure 3.20: Proof of the consistency of the EIS measurement as an indicator for the heat generation
rate for different SoCs, current amplitudes and temperatures (cylindrical LFP-cell A.1).

measurement current over the impedance. For deriving the deviation, only the voltage response of the
temperature dependent impedance part ZΘ is changed by the alternating temperature change from
equation 3.80. Only this part is of interest and transformed into the frequency-domain via the Fourier
transformation (see equation 3.81). The Fourier transformation is separated into the real a1 and into
the imaginary part b1:

F{vΘ(t)} = 2
Tm

∫ Tm

0
ZΘ · e−

HGRfm
Cth

· Îm
2·Tm

8π·Θ ·sin(2ωmt) · Îm · sin(ωmt) · e−jωmtdt = a1 − jb1 (3.81)

a1 = ZΘÎm
Tm

· 2
∫ Tm

0
e
−
HGRfm
Cth

· Îm
2·Tm

8π·Θ ·sin(2ωmt) · sin(ωmt) · cos(ωmt)︸ ︷︷ ︸
1
2 ·sin(2ωmt) with C.3

dt (3.82)

= ZΘÎm
Tm

∫ Tm

0
e
−
HGRfm
Cth

· Îm
2·Tm

8π·Θ ·sin(2ωmt) · sin(2ωmt)dt (3.83)

= −ZΘÎm · I1

(
HGRfm
Cth

· Îm
2 · Tm

8π ·Θ

)
with C.25 (3.84)
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3 Excitation Amplitude Limit

b1 = ZΘÎm
Tm

· 2
∫ Tm

0
e
−
HGRfm
Cth

· Îm
2·Tm

8π·Θ ·sin(2ωmt) · sin2(ωmt)︸ ︷︷ ︸
1
2 ·(1−cos(2ωmt)) with C.4

dt (3.85)

= ZΘÎm
Tm

∫ Tm

0
e
−
HGRfm
Cth

· Îm
2·Tm

8π·Θ ·sin(2ωmt)dt︸ ︷︷ ︸
Tm·I0

(
HGRfm
Cth

· Îm
2·Tm

8π·Θ

)
with C.29

− ZΘÎm
Tm

∫ Tm

0
e
−
HGRfm
Cth

· Îm
2·Tm

8π·Θ ·sin(2ωmt) · cos(2ωmt)dt︸ ︷︷ ︸
=0 with C.27

(3.86)

= ZΘÎm · I0

(
HGRfm
Cth

· Îm
2 · Tm

8π ·Θ

)
(3.87)

F{vΘ(t)} = −ZΘÎm ·

[
I1

(
HGRfm
Cth

· Îm
2 · Tm

8π ·Θ

)
+ jI0

(
HGRfm
Cth

· Îm
2 · Tm

8π ·Θ

)]
(3.88)

As in section 3.2.2, equation 3.89 introduces again the temperature independent part of the impedance,
which reduces the relative deviation by the ratio Z 6Θ

Z0
. Equation 3.90 shows the measurement deviation

introduced by impedance heating caused by the alternating part of the excitation current.

eZ = F{vΘ(t)}
−jÎm · Z0

+ Z0 − ZΘ

Z0
− 1 = F{vΘ(t)}

−jÎm · Z0
− ZΘ

Z0
(3.89)

eZ = ZΘ

Z0
·

[
I0

(
HGRfm
Cth

· Îm
2 · Tm

8π ·Θ

)
− jI1

(
HGRfm
Cth

· Îm
2 · Tm

8π ·Θ

)
− 1
]

(3.90)

Figure 3.21 shows the change in impedance during an impedance measurement caused by impedance
heating. With a 3 CA measurement current amplitude at a measurement frequency of 10 mHz, the
maximum impedance change during the measurement goes beyond 0.1 % for the real part and the
imaginary part.
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Figure 3.21: Simulated impedance change from the alternating part of the impedance heating caused by
the excitation current during the impedance measurement (NMC pouch cell A.5, SoC =
50 %, fm = 10 mHz).
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3.2 Measurement Deviation Caused by Temperature Change

Figure 3.22 shows the resulting modulus and phase deviation directly calculated with the equation
3.90. The maximum modulus deviation is 0.46 % and the maximum phase deviation is 0.26 ◦ for an
excitation current of 3 CA and a measurement frequency of 10 mHz.

The deflection of the real and imaginary impedance shown in figure 3.21 is only around 30% larger than
the ones shown in figure 3.15. The modulus deviation is by a factor of 100 and the phase deviation by
a factor of 104 larger. This is mainly caused by the fact that the deflection in the real and imaginary
impedance only has a small phase delay. I0 is much larger as I1 for the same argument (see appendix
C.5). This makes the deflection in real impedance directly affect the real impedance measurement.
The same is true for the imaginary impedance. The deflection of the real impedance for entropy
heating shown in figure 3.15a had a phase delay of π2 and therefore affected the imaginary impedance
measurement. The same is true for the deflection in imaginary impedance and the real impedance
measurement. This indirect effect on the impedance measurement causes the low modulus and phase
deviations in the case of entropy heating. For impedance heating the deviations shown in figure 3.22
correspond well with the deflections shown in figure 3.21.
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Figure 3.22: Measurement deviation by temperature change from impedance heating caused by the
excitation current dependent on the measurement frequency and measurement current
amplitude (NMC pouch cell A.5, SoC = 50 %).

3.2.4 Irreversible Heat Generation from Pulsed Currents

A preliminary study and measurements have been carried out during the supervision of the Master
Thesis of Vergote [121]. The measurements shown here are from a different battery cell and data set,
which was not acquired or used in his Master Thesis.

Real sinusoidal currents as shown in the previous section 3.2.3 usually do not occur in a real application.
Load currents are rather random functions, pulses or long constant currents. Frequency decomposition
is a method in which the frequency components of signal are examined separately. In this section the
applicability of this method is proven for the determination of the heat generated inside a battery cell.
Section 3.2.4.1 uses a pulse to exemplify this method. Section 3.2.4.2 proofs the applicability of this
method for the determination of the heat generation rate of pulses.
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3 Excitation Amplitude Limit

3.2.4.1 Decomposition of Pulse Trains

When decomposing a signal into its frequency parts it is transformed into the frequency-domain.
Which constitutes an equivalent representation of the same signal. Figure 4.7 shows this method for
the example of a pulse train with a duty cycle of 50 %.

The frequency-domain in figure 3.23b shows the fundamental frequency in red, which is the same
frequency as the one of the pulse. Besides the fundamental there are several harmonics that occur at
uneven multiples of the harmonic frequency. Equation 3.91 to 3.93 give the rules for the magnitude of
the harmonics.

D = ton
ton + toff

= 1
2 (3.91)

ak = 2
k
· 2I
π
· sin (kπD) = 2

k
· 2I
π
· sin

(
k
π

2

)
(3.92)

|ak| =

0 for k = 0, 2, 4, ...
2
k ·

2I
π for k = 1, 3, 5, ...

(3.93)

0 1 2 3 4 5
−1.2
−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
1.2

time (s)

cu
rr
en
t
(A

)

pulse train with D=0.5

(a) Time-domain.

1 3 5 7 9 11 13 15 17 190

0.2

0.4

0.6

0.8

1

1.2

1.4

frequency (Hz)

am
pl
itu

de
(A

)

pulse train with D=0.5

(b) Frequency-domain.

Figure 3.23: Decomposition of pulse trains into their harmonic components (synthetic data).

3.2.4.2 Irreversible Heat Generation Dependency on Pulse Frequency

With the knowledge of the amplitude of the frequency components the equation 3.76 is applied to all
the harmonics present.

P = Q̇ =
N∑
k=1

Zreal

∣∣∣∣
k·fpulse

·
(
ak√

2

)2
(3.94)

Figure 3.24 shows the result of applying this method. The estimated heat has a similar shape as figure
3.19 but shifted towards higher heat generation rates. The measured heat generation rates from the
ARC measurements do match the estimated power from the frequency decomposition of the pulse.
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3.2 Measurement Deviation Caused by Temperature Change
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Figure 3.24: Heat generation rate of a pulsed current measured by direct measurements in an ARC and
indirect EIS measurements of Zreal (cylindrical LFP-cell A.1, SoC = 50 %, ϑ = 40 ◦C,
Îpulse = 3 CA, D = 50 %).

This proves that the estimation of the heat generated from the real part of the impedance is also
possible when applying it to pulses that are decomposed into their frequency components. It can be
assumed that the same method will also work if the pulse has a duty cycle not equal to 50 % or the
signal, is a random signal which is decomposed into its frequency components.

3.2.5 Irreversible Heat Generation from Constant Charge/Discharge Currents

Heat generated from constant currents is more difficult than that from sinusoidal currents. The ap-
proach used here is to extrapolate the method of the last section 3.2.4 and assume that a constant
charge event is a very long pulse, for which the negative current part never happens. Similarly, a
constant discharge event is a very long pulse, for which the positive part never happens.

Two main problems make the immediate application of this approach difficult. Firstly, the impedance
needs to be measured at various SoCs and at frequencies below 1 mHz. For a constant charge of 1 CA
the time needed is 3600 s. The positive and negative part of a full pulse with D = 0.5 would need
7200 s. This means the frequency that needs to be measured is around 139 µHz. In order to obtain
consistent measurements, it would be best if that frequency would be measured with a measurement
current amplitude of 4

π = 1.27 CA and this at several well-spaced SoCs. This requirement is impossible
to fulfill, since the SoC sweep is around 81 %. Section 3.2.5.2 will discuss this problem and its solution
in detail.
Secondly, the effect of the entropy is no longer compensated. The previous two sections 3.2.3 and 3.2.4
could take advantage of the fact that thanks to the alternating signal applied, the effect of the entropy
was compensated. The entropy causes the cell to heat up or cool down depending on its sign and
the direction of the current flow. When the signal has a mean value of zero the effect of the positive
current exactly cancels out the effect of the negative current. When applying a signal, which has a
mean component this is no longer the case and the entropy needs to be considered as well. Figure 3.25
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3 Excitation Amplitude Limit

shows how these two heat sources add up to a total temperature increase of the jelly roll inside the
cell.
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τDimpedance
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Figure 3.25: Principle of the temperature prediction during a constant charge/discharge event.

For the verification of the introduced method, the temperature increase is predicted for one constant
charge and for one constant discharge with a current of 1 CA. Since only the outside temperature of
the cell casing can be measured during the experiment, the time constant of the heat transfer from the
jelly roll inside the cell to the outer casing is determined in section 3.2.5.1. A cylindrical NMC cell was
used for the development of the method and its verification. Its detailed characteristics are available
in appendix A.2. The equation for the measurement derivation from entropy and impedance heating
caused by a constant current is derived in section 3.2.5.3.

3.2.5.1 Time Constant of the Heat Transfer to the Cell Casing

A battery cell or any other compact item can thermally be approximated by a 1st-order lag element
(PT1 element). This behavior can be seen in the results of Schmidt et al. in [104] and from Fleck-
enstein et al. in [42]. They performed thermal impedance Zth measurement over a whole frequency
range calling it electrothermal impedance spectroscopy. Some higher order thermal model than a 1st-
order lag element were needed to exactly model all the measurement points they showed without any
deviation. Barsoukov et al. [10] showed for higher frequencies that the 1st-order lag element needs to
be complemented with another 1st-order lag element for high frequencies making it a 2nd-order lag
element by showing a second arc in the Nyquist plot for some battery cells he studied. He was able
to measure this second arc by using single heat pulses up to 10 Hz as an excitation and the Laplace
transform to evaluate the measured data. Schmidt et al. [104] and Fleckenstein et al. [42] used con-
tinuous sinusoidal excitation. With that method they could not measure below 100 mHz (Schmidt et
al.) or 50 mHz (Fleckenstein et al.). All three publications show that for low frequencies when the
accuracy does not have to be extremely high, as it is for this section and the next, an approximation
with a 1st-order lag element is sufficient.

The determination of the time constant is based on the same concept of the comparison of action and
reaction during heat generation experiment with a sinusoidal current. The time measured between
the heat generating current and the temperature increase of the casing is the time constant τD of the
heat transfer from the jelly roll to the casing of the cell. It is equal to the exponential time constant
of an exponential function according to which the casing temperature would adapt to the jelly roll
temperature after a current pulse was applied (see figure 3.26). Assuming a 1st-order lag element, it
is unnecessary to perform a whole spectroscopy as done in [104], [42] and [10], when only the corner
frequency or the time constant τD is needed. This value was determined from a heat generation
experiment at a frequency of 1 mHz. Figure 3.27 shows the steps necessary for this calculation.
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Figure 3.26: Icell in this graph is a short current
pulse in order to generate a heat
pulse inside the cell. ϑcell is the
temperature measured on the casing
of the cell, which increases accord-
ing to a 1st-order lag element. The
phase delay τD is the time constant
of this 1st-order lag element (syn-
thetic data).
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Figure 3.27: Determination of phase delay ∆Φ
due to heat transfer in the cell.

First, the temperature data has to be transformed into the heat data which generated it. Every heat
generated inside the cell ended up accumulating as temperature of the cell ϑcell. The transformation
back is done by fitting the temperature slope of the casing with an average rise ϑfit, which neglects
the sinusoidal temperature changes within the excitation period. Then this fitted slope is subtracted
from the temperature of the casing (ϑcell − ϑfit). The heat generated has originally been transformed
into temperature by the integration of a sin2(x) function. This integration yields a cosinus function
with twice the frequency. This means the phase shift of π2 came naturally with the integral behavior
of the transformation between heat generation and cell temperature. This is why the resulting signal
(ϑcell − ϑfit) has to be shifted backward by π

2 (see signal (ϑcell − ϑfit)′ in the middle graph of figure
3.27). The resulting signal is a good proxy for the heat generated inside the jelly roll plus a time
delay due to the heat transfer from the jelly roll to the cell casing. Squaring the current values gives a
signal with double the frequency of the sinusoidal current, which exactly represents the heat generated
inside the jelly roll without the time delay. Comparing this signal to the modified cell temperature
(ϑcell − ϑfit)′ gives the phase delay ∆Φ between the two signals.

The phase delay ∆Φ needs to be turned into the time delay constant τD shown in figure 3.26. The
similar time delay constant for an RC-low-pass filter would be R ·C. The angle between the imaginary
and the real part of this circuit follows the equation tan ∆Φ = Zimag

Zreal
= 1

ωC·R = 1
ωτD

. The same
relationship between ∆Φ and τD applies in this case. Equation 3.95 calculates the time delay constant
τD with the measured phase delay ∆Φ. The time delay constant τD of the used cylindrical NMC cell
was 77 s.

τD =

tan
(

ΦIcell2 − (ΦTcell−Tfit + π

2 )
)

︸ ︷︷ ︸
∆Φ

·2π · 2fIcell︸ ︷︷ ︸
fm


−1

(3.95)
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3 Excitation Amplitude Limit

3.2.5.2 Impedance Heating

A constant charge or discharge event sweeps over all the SoCs. In order to take the changing impedance
with SoC into account, the impedance needs to be measured at a decent amount of SoC levels. In
this section, nine measurements from 10 % to 90 % were used. For frequencies below 1 mHz, the
measurement takes very long and the impedance cannot be measured anymore with the amplitude
equivalent to the constant current magnitude. This is because the capacity that will be charged during
the positive half-sine wave is more than the remaining free capacity that can absorb charge when the
measurement is done at 90 % SoC. This is why the frequencies below 1 mHz cannot be taken at the
same current amplitude as the other frequencies.

In real applications, making measurements at frequencies below 1 mHz would result in a very long
measurement time in which the battery would not be available for operation. The diffusion part at low
frequencies of most cells follows a linear slope in the logarithmic-domain. Instead of actually measuring
at these low frequencies the value of Zreal can simply be extrapolated from impedance measurements
at higher frequencies. This method is shown in figure 3.28.
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Figure 3.28: Determining the charge/discharge impedance heating by extrapolating the diffusion
branch of the graph of the heat generation rate (cylindrical NMC-cell A.2, SoCstart =
50 %, ϑ = 40 ◦C, Îm = 1.27 CA).

By knowing ∆f1 and ∆Zreal,1, the real part of the impedance at a lower frequency with ∆f2 can
simply be calculated by using equation 3.96.

∆Zreal,1 = log(∆f1)
log(∆f2) ·∆Zreal,2 (3.96)

In order to verify this approach, the heat generated from a constant charge and a constant discharge
event with a current of 1 CA is estimated and compared to the real measurement data in an adiabatic
environment of an ARC. Figure 3.29a shows the estimated heat flux Q̇ of the entropy heating HGRe ·I
and of the impedance heating HGRdc ·I2, which was determined from the directly measured impedance
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3.2 Measurement Deviation Caused by Temperature Change

at 1
7200 Hz and its higher harmonics. It also shows the sum of the two Q̇Σ and the heat flux directly

measured from the temperature increase by the ARC Q̇ARC .

A direct comparison of the last two values is difficult to make, since the heat flux measured from the
ARC experiment is derived from the measurement on the outside of the cell casing. The estimated heat
flux, however, is the estimated heat generated in the jelly roll of the cell. Because of this shortcoming
figure 3.29b shows the heat flux Q̇Σ turned into the temperature of the cell casing. The estimated heat
flux Q̇Σ is then delayed by the heat transfer constant τD as determined in section 3.2.5.1. ∆ϑΣ,1000s

shows the estimation by extrapolating from impedance measurements at 1
1000 Hz and 1

300 Hz. The
temperature estimation can only make an estimation of the temperature difference but not on the
absolute temperature. This is why the temperatures of the measurement in the ARC ∆ϑARC and the
estimations ∆ϑΣ,7200s and ∆ϑΣ,1000s were pegged at 50 % SoC. To peg both data sets at 0 % SoC,
a higher resolution between 0 % and 10 % would have been necessary, since the impedance and the
entropy change significantly at low SoCs.
Figure 3.29b shows that the estimation of the temperature swing caused by the constant charge event
corresponds quite well with the measured progress of the temperature. The estimation done with
extrapolated data from measurements at 1 mHz and its harmonics overestimates the temperature
swing by around 0.25 ◦C.
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(a) Heat flux Q̇ from impedance heating HGRdc · I2,
entropy heating HGRe · I, the sum of the two Q̇Σ
and from the temperature increase measured by
the ARC Q̇ARC .
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Figure 3.29: Measured and estimated heat flux and temperature over SoC for a constant current charge
event with 1 CA (cylindrical NMC-cell A.2).
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3 Excitation Amplitude Limit

Figure 3.30 shows the same data as figure 3.29 for the constant discharge event. The data sets of
the measurement in the ARC) ∆ϑARC and the two estimations ∆ϑΣ,7200s and ∆ϑΣ,1000s were pegged
at 100 % SoC. The estimation done with extrapolated data from measurements at 1 mHz and its
harmonics, again, overestimates the temperature swing for the discharging event by around 1 ◦C.
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and from the temperature increase measured by
the ARC Q̇ARC .
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Figure 3.30: Measured and estimated heat flux and temperature over SoC for a constant current dis-
charge event with 1 CA (cylindrical NMC-cell A.2).

Nieto et al. [82] recorded similar measurements in an adiabatic environment of a calorimeter. By
adding irreversible heat and entropic heat he estimated the total heat produced by the battery cell.
He determined the irreversible heat by a 1 CA discharge pulse. Unfortunately he did not give the exact
length of the pulse, but from his figure 4, it can be estimated that it was between 15 and 20 s in length.

3.2.5.3 Impedance Measurement Derivation Caused by Constant Current

The temperature increase from a constant current is caused by entropy heating and by impedance
heating. The same effect is also caused by the constant part of the temperature change of a sinusoidal
excitation current. Equation 3.97 sums up the three sources of a constant temperature increase during
an impedance measurement.

∆T (t)
∆t = HGRe

Cth
· Idc︸ ︷︷ ︸

constant
entropy heating

+ HGRdc
Cth

· Idc2︸ ︷︷ ︸
constant

impedance heating

+ HGRfm
Cth · 2

· Îm2︸ ︷︷ ︸
constant part caused

by the excitation current

(3.97)

The impedance drift caused by an increasing temperature throughout the impedance measurement
time is exponentially decreasing but only affects the temperature dependent part of the impedance
ZΘ. Figure 3.31 shows an example for such an impedance drift caused by constant impedance heating
of a constant current. The measurement frequency used in this figure is still too high in order to see
clearly the exponential decrease of the impedance value.
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3.2 Measurement Deviation Caused by Temperature Change

For determining the measurement derivation caused by the temperature dependency, the temperature
dependent part of the voltage response vΘ(t) is transformed into the frequency-domain by separating
real part a1 and imaginary part b1:

F{vΘ(t)} = 2
Tm

∫ Tm

0
ZΘe

∆T (t)
∆t ·

1
Θ ·t · Îm sin(ωmt) · e−jωmtdt = a1 − jb1 (3.98)

a1 = ZΘÎm
Tm

· 2
∫ Tm

0
e

∆T (t)
∆t ·

1
Θ ·t · sin(ωmt) · cos(ωmt)︸ ︷︷ ︸

1
2 ·sin(2ωmt) with C.3

dt (3.99)

= ZΘÎm
Tm

·
∫ Tm

0
e

∆T (t)
∆t ·

1
Θ ·t · sin(2ωmt)dt (3.100)

By using lemma C.14:

= ZΘÎm
Tm

·
e

∆T (t)
∆t ·

1
Θ ·Tm ·

(
∆T (t)

∆t ·
1
Θ · 0−

4π
Tm
· 1
)
− e

∆T (t)
∆t ·

1
Θ ·0
(

∆T (t)
∆t ·

1
Θ · 0−

4π
Tm
· 1
)

(
∆T (t)

∆t ·
1
Θ

)2
+ 16π2

Tm2

= ZΘÎm
Tm

·
4πTm

(
1− e

∆T (t)
∆t ·

1
Θ ·Tm

)
(

∆T (t)
∆t ·

1
Θ

)2
Tm2 + 16π2

(3.101)

b1 = ZΘÎm
Tm

· 2
∫ Tm

0
e

∆T (t)
∆t ·

1
Θ ·t · sin2(ωm · t)︸ ︷︷ ︸

1
2 ·(1−cos(2ωmt)) with C.4

dt (3.102)

= ZΘÎm
Tm

·

[∫ Tm

0
e

∆T (t)
∆t ·

1
Θ ·tdt−

∫ Tm

0
e

∆T (t)
∆t ·

1
Θ ·t · cos(2ωmt)dt

]
(3.103)

By using lemma C.15:

= ZΘÎm
Tm

·

e∆T (t)
∆t ·

1
Θ ·Tm − 1

∆T (t)
∆t ·

1
Θ

−
∆T (t)

∆t ·
1
Θ · Tm

2 ·
(
e

∆T (t)
∆t ·

1
Θ ·Tm − 1

)
(

∆T (t)
∆t ·

1
Θ

)2
Tm2 + 16π2

 (3.104)

With equation 3.89 the deviation caused by a constant increase in temperature during the impedance
measurement can be stated as:

eZ = ZΘ

Z0
·

[[
e

∆T (t)
∆t ·

1
Θ ·Tm − 1

∆T (t)
∆t ·

1
Θ · Tm

−
∆T (t)

∆t ·
1
Θ · Tm ·

(
e

∆T (t)
∆t ·

1
Θ ·Tm − 1

)
(

∆T (t)
∆t ·

1
Θ

)2
Tm2 + 16π2

+

j ·
4π
(

1− e
∆T (t)

∆t ·
1
Θ ·Tm

)
(

∆T (t)
∆t ·

1
Θ

)2
Tm2 + 16π2

]
− 1
]

(3.105)

Equation 3.97 includes the constant part of the excitation current’s impedance heating. This means
that this kind of deviation is always present, except for the rare case when the entropy cooling of a
constant current would exactly compensate the impedance heating. This is why this part always needs
to be considered. Figure 3.31 shows the change in impedance for the real and the imaginary part.
Compared to the change in impedance caused by the alternating part and the excitation current’s
temperature increase in figure 3.21, the magnitude of the change is around ten times higher.

The impedance measurement deviation shown in figure 3.32 is compared to the one from the alternating
part of the excitation current’s temperature increase in figure 3.22 also by a factor of around ten
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3 Excitation Amplitude Limit

higher. The phase deviation, however, changes quite significantly for lower frequencies making the
phase deviation from the alternating part for some frequencies more important than the constant part.
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Figure 3.31: Impedance change caused by the constant part of the excitation current’s impedance
heating during the impedance measurement (NMC pouch cell A.5, SoC = 50 %, fm =
10 mHz).

The modulus measurement deviation caused by the constant part of the excitation current’s temper-
ature increase is the most critical one for all amplitudes for the shown NMC pouch cell (A.5).

The measurement deviation for an additional constant current is not shown here, since they would
qualitatively behave similar to the constant part of the excitation current’s temperature increase. The
additional constant current would make the deviation much worse. The temperature change from the
constant part of the excitation current’s temperature increase is much smaller than the temperature
change from an additional constant current. Equation 3.97 shows this. HGRfm is determined by the
impedance part at higher frequencies than HGRdc. When only considering frequencies above 1 Hz, at
higher frequencies, the real part of the impedance is lower. Additionally, HGRdc includes its harmonics
and HGRfm is divided by the factor of two, whereas HGRdc is not.

3.2.6 Impedance Measurement Deviation Caused by Multi-sine Measurement

There is no closed algebraic solution for the alternating part of the temperature change caused by a
multi-sine excitation. The part of the constant temperature increase, however, can still be included.
The term ∆T (t)

∆t needs to be extended by the temperature increase caused by every single frequency
component of the multi-sine excitation signal:

∆T (t)
∆t = HGRe

Cth
· Idc︸ ︷︷ ︸

constant
entropy heating

+ HGRdc
Cth

· Idc2︸ ︷︷ ︸
constant

impedance heating

+ ΣNk=1
HGRfk
Cth · 2

· Î2
k︸ ︷︷ ︸

constant part caused
by all components of the

multi-sine excitation current

(3.106)

Section 3.2.5.3 showed that the constant part of the temperature change is much more significant
for the measured impedance deviation as the alternating part. Therefore, considering only the con-
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3.2 Measurement Deviation Caused by Temperature Change
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Figure 3.32: Measurement deviation by temperature change from the constant part of the excitation
current’s impedance heating dependent on the measurement frequency and excitation
current amplitude (NMC pouch cell A.5, SoC = 50 %).

stant temperature increase during a multi-sine measurement is a sufficient approximation of the total
measurement deviation.

Section Conclusion
This section showed that the impedance of a cell can be separated into a temperature dependent part

and a temperature independent part. The temperature dependent part follows an exponential function.
Xiao and Choe [127] separate the heat generated into joule and reaction heating. This section

showed that, for non-physico-chemical models, this method is unnecessary since both joule and reaction
heating can be determined by the real part of the impedance throughout the whole frequency range down
to very low constant currents. This method can be applied over the whole State-of-Charge range and
at different temperatures and amplitudes. This section also proved that this method not only can be
applied to a sinusoidal current but to any type of signal by using the method of frequency decomposition.
For charge/discharge events, the entropy and the thermal conductivity of the cell need to be taken into
account, when predicting the temperature of the cell casing.

A changing temperature during the impedance measurement introduces a deviation into the measured
impedance. From the initially set deviation thresholds of 0.1 % modulus deviation and 0.1 ◦ phase
deviation, the modulus deviation is the more difficult one to comply with. A sinusoidal excitation
current changes the temperature of a cell in three ways: alternating temperature change caused by
entropy heating, alternating temperature change caused by impedance heating and constant temperature
increase caused by impedance heating. Out of these three, the constant temperature increases caused
by impedance heating is the most critical one in order to comply with the 0.1 % modulus deviation and
0.1 ◦ phase deviation thresholds.
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3 Excitation Amplitude Limit

3.3 Measurement Deviation Caused by Open-Circuit-Voltage
Displacement

Any current flowing in or out of a battery cell displaces the SoC and with it the OCV of the battery
cell under test. This section assesses the measurement deviation introduced by a sinusoidal excitation
current, which is changing the OCV in an equally sinusoidal way during the EIS measurement. This
section does not assess the measurement deviation caused by a constant current. The OCV change
introduced by it is called a voltage drift. A voltage drift is characterized by a different voltage at
the end of the measurement compared to the voltage at which the measurement started. This OCV
displacement can be identified and corrected. Section 4.1 introduces various ways to correct deviations
caused by drift.

3.3.1 Open-Circuit-Voltage Displacement from State-of-Charge Change

Figure 3.33 shows how a deviation is caused by the SoC displacement. The excitation current causes
the SoC to change. With it changes the enthalpy and entropy of the cell. As shown in the funda-
mentals section 2.1.4, enthalpy and entropy are related to the OCV of a battery cell. During positive
currents, the excitation current is charging the battery and therefore increases the OCV. During nega-
tive currents, the excitation current is discharging the battery and therefore decreases the OCV. This
behavior results in an additional signal measured by the EIS measurement. This deviation can only
be determined and compensated with the knowledge of the OCV curve over the SoC.

∆ SoC

OCV

eZ

EIS

∆ OCV

SoC t

V,I

Figure 3.33: The origin of the OCV displacement is a change in SoC in combination with the OCV
curve of the cell.

3.3.1.1 Open-Circuit-Voltage Displacement

Section 3.1.2.1 already derived the change in SoC caused by the excitation current. When starting
with the positive half-sine wave, the effective SoC at which the cell is measured is higher than the
starting SoC. If started with the negative half-sine wave the effective SoC is lower. In contrast to
the measurement deviation caused by the impedance dependency on SoC, the deviation caused by the
open circuit voltage displacement occurs no matter with which phase the excitation current is started.
Equation 3.107 shows the additional signal which is introduced by the OCV change and which is
measured simultaneously with the voltage response of the impedance of the battery. The change in
SoC described by equation 3.12 directly translates into an OCV change with the linear dependency of
the OCV on SoC dVOCV

dSoC . Since the SoC change is the integration of the excitation current, it trails
by π

2 behind the excitation current. Therefore the additional signal also has a phase delay of π2 to the
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3.3 Measurement Deviation Caused by Open-Circuit-Voltage Displacement

excitation current. This phase delay is independent of the phase of the measured impedance.

im(t) = Îm · sin(2πfmt+ ϕ)

v∆SoC(t) = dVOCV
dSoC · Tm2π

Îm
Cel
· [− cos(2πfmt+ ϕ) + cosϕ] (3.107)

Figure 3.34 shows for an LFP lithium-ion battery and for an NMC lithium-ion battery the original
response of the actual impedance of the battery VZ0, the displacement in open circuit voltage VOCV
and the sum of the two VZm. The effect is usually very small and difficult to see, this is why a
measurement frequency of fm = 1 mHz and an excitation current magnitude of Îm = 3 CA was chosen.
This results in an SoC sweep of 26.5 %. The simulation was started at 50 % SoC where the LFP-cell
has a very shallow slope, therefore figure 3.34a does not show much difference between the pristine
impedance response and the one which also includes the change in Open-Circuit-Voltage. For the
NMC cell however, figure 3.34b shows a noticeable difference. This is why for the remainder of this
section the NMC cell is used to illustrate the deviations coming from an OCV displacement.
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(a) Cylindrical LFP-cell A.1.
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Figure 3.34: Time-domain voltages during an EIS measurement of the pristine impedance response
VZ0, the displacement in open circuit voltage VOCV and the sum of the two VZm. Simula-
tion in which the SoC sweeps from 50 % to around 76.5 % during the measurement making
it possible to see the effect of the OCV displacement. (Îm = 3 CA, SoCstart = 50 %,
ϑ = 25 ◦C, fm = 1 mHz).

Figure 3.34 was generated by a simulation with an OCV-curve resolved with around 3,000 points.
For deriving equations in this section, the linear approximation of equation 3.108 is used, which
approximates the OCV-curve linearly between the starting SoC and the point of maximum OCV
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3 Excitation Amplitude Limit

displacement, which is SoCstart + ∆ŜoCm for a sinusoidal excitation current with zero initial phase.

V
OCV, SoCstart+∆ŜoCm

= ∆VOCV
∆SoC

∣∣∣∣
T,∆SoC

·∆ŜoCm + VOCV (3.108)

∆VOCV
∆SoC

∣∣∣∣
T,∆SoC

=
V
OCV, SoCstart+∆ŜoCm

− VOCV

∆ŜoCm
(3.109)

A real battery cell has a non-constant slope, as figure 3.35 shows for four battery cells with different
chemistries. With the exception of a LFP battery cell, most li-ion cells are operated in a similar
voltage window. This similar window and the normalized capacity by using SoC on the x-axis keeps
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Figure 3.35: OCV and Change of OCV for cylindrical cells with different li-ion chemistries (LFP-cell
A.1, NMC-cell A.2, LCO-cell A.3, NCA-cell A.4, ϑ = 25 ◦C).

the change of OCV per 1 % SoC change almost at the same magnitude for all battery chemistries. For
small changes in SoC, it can be even considered constant.

The non-constant slope results in a non-linear response caused by the change in OCV. This non-
linearity can be examined in the frequency-domain. Figure 3.36 shows the harmonics of the real and
the imaginary part for the combined response from the voltage drop over the impedance and the OCV
change for the time-domain voltages of figure 3.34b.
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Figure 3.36: Harmonics of the real and imaginary part normalized to the amplitude of the fundamental
for the combined response of the voltage drop over the impedance and the OCV change
from figure 3.34b (cylindrical NMC-cell A.2, Îm = 3 CA, SoCstart = 50 %, ϑ = 25 ◦C,
fm = 1 mHz).

The harmonics and therefore the distortion is higher for the imaginary part as for the real part. The
total harmonic distortion (THD) shown in table 3.2 also shows the higher values for the imaginary
part. This causes the deviation of the imaginary part to be higher even if the deviation is compensated
by the equation 3.120 derived in the next section 3.3.2.2. Table 3.2 gives a summary of the THD values
for the LFP and NMC cell.

THDreal THDimag

LFP 0.0004 0.1319
NCM 0.0004 0.0638

Table 3.2: Comparison of the THD caused by an OCV change during an EIS measurement (LFP-cell
A.1, NMC-cell A.2, fm = 1 mHz, Îm = 3 CA).

3.3.1.2 Impedance Measurement Deviation

The measurement current Im, the pristine impedance response VZ0 and the displacement in Open-
Circuit-Voltage VOCV change during the impedance measurement with the same frequency. Because
of this, their frequency component can be disregarded and they can be seen as static phasors. The
phasor diagram in figure 3.37 illustrates their location in the complex plane and the superposition
of VZ0 with VOCV . For the diagram and further calculation, the excitation current is assumed to be
sinusoidal with no initial phase ϕ = 0.

69



3 Excitation Amplitude Limit

Im

Re

φZ

Im = Îm · e−j
π
2

VZm = V̂Zm · ej(φZ−
π
2 )

VOCV = −V̂OCV · e−j0

VOCV

VZ0

Figure 3.37: Visualization of the superposition of the real Impedance voltage VZ0, the impact of the
change in Open-Circuit-Voltage VOCV and the resulting measured voltage VZm.

The current starts on the negative imaginary axis (equation 3.110), VOCV trails π
2 behind the current

(equation 3.111). The location of the pristine impedance response VZ0 in the phasor diagram depends
on the impedance phase value φZ . It trails behind the current for negative values and precedes the
current for positive values (equation 3.112).

The actual voltage response which can be measured at the battery terminals VZm is the sum of VZ0

and VOCV (equation 3.113).

Im = Îm · e−j
π
2 = −jÎm (3.110)

VOCV = V̂OCV · e−jπ = −V̂OCV · e−j0 (3.111)

VZ0 = V̂Z0 · ej(φZ0−π2 ) (3.112)

VZm = V̂Zm · ej(φZ−
π
2 ) = VZ0 + VOCV (3.113)

With these phasors, the measured impedance Zm can be determined according to equation 3.114 and
3.115. The two equations assume a constant slope ∆OCV

∆SOC and use equation 3.12 derived in section
3.1.2.1 for the time dependency of the SoC during an impedance measurement.

Zm = VZm

Im
= VZ0 + VOCV

Im
(3.114)

Zm =
V̂Z0e

j(φZ0−π2 ) − ∆OCV
∆SoC

∣∣∣∣
T,∆SoC

ÎmTm
2πCel e

−j0

Îme−j
π
2

(3.115)
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3.3 Measurement Deviation Caused by Open-Circuit-Voltage Displacement

In order to eliminate the complex current in the denominator, the nominator and denominator are
multiplied by the conjugate-complex value of the current (equation 3.116 and 3.117).

Zm =

[
V̂Z0 · cos

(
φZ0 − π

2
)

+ jV̂Z0 · sin
(
φZ0 − π

2
)
− ∆OCV

∆SoC

∣∣∣∣
T,∆SoC

ÎmTm
2πCel

]
· jÎm

−jÎm · jÎm
(3.116)

Zm = j
V̂Z0Îm

Îm2
cos
(
φZ0 −

π

2

)
︸ ︷︷ ︸

+ sin(φZ)

− V̂Z0Îm

Îm2
sin
(
φZ0 −

π

2

)
︸ ︷︷ ︸
−cos(φZ)

−j Îm
2

Îm2
· ∆OCV

∆SoC

∣∣∣∣
T,∆SoC

Tm
2πCel

(3.117)

The summands of the resulting equation 3.118 can be attributed to the particular parts of the
impedance measurement.

Zm = V̂Z0

Îm
cos (φZ0)︸ ︷︷ ︸
Zreal

+j V̂Z0

Îm
sin (φZ0)︸ ︷︷ ︸
Zimag︸ ︷︷ ︸

Z0

−j∆OCV
∆SoC

∣∣∣∣
T,∆SoC

Tm
2πCel︸ ︷︷ ︸

ZOCV/SoC

(3.118)

The impedance measurement therefore consists of two parts, the pristine impedance Z0 and the devi-
ation ZOCV/SoC which is measured due to the change in OCV. The deviation is only imaginary, as its
root cause is the change in SoC and OCV, which trails by π

2 behind the measurement current.

Zm = Z0 + ZOCV/SoC (3.119)

ZOCV/SoC = −j∆OCV
∆SoC

∣∣∣∣
T,∆SoC

Tm
2πCel

(3.120)

If a constant slope of the OCV is assumed there is no effect on other frequencies or harmonics than the
measurement frequency. For a multi-sine measurement there is no difference in the deviation which is
generated since the effect of the other frequencies is suppressed by the narrowband selectivity of the
Fourier transformation.

Figure 3.38a shows the imaginary part of impedance measurements performed at several start-SoCs.
The imaginary deviation ZOCV/sim is simulated by using an OCV curve with over 3,000 points. It
is compared to ZOCV/SoC calculated by equation 3.120, which assumes a linear slope of the OCV
between the start-SoC and the SoC at maximum deviation from the start-SoC. Both results are almost
identical. In figure 3.38b the difference between the two approaches is shown by ∆eimag. It represents
the remaining deviation assuming the measured imaginary impedance was corrected by equation 3.119.
The ereal curve shows the measurement deviation present on the real part of the impedance without
any correction. This curve confirms that the deviation only affects the imaginary part. The deviation
of both curves comes from the incorrect assumption that the OCV is a straight line. The fact that
both deviations are mainly between 0 % an 0.3 % percent shows that this assumption approximates
the actual behavior very well.

Figure 3.39a shows that this also holds true when the imaginary part is plotted over the measurement
frequency, with all measurements starting from the same SoC. The only difference in the correction
equation 3.120 is then the measurement period, which causes ZOCV/SoC to form a straight line on
a double logarithmic scale. The small dent between 10 mHz and 30 mHz comes from changes in the
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Figure 3.38: Measurement deviation due to the change in OCV during an impedance measurement.
The figure shows the measured impedance Zm, the deviation caused by OCV displacement
determined by a simulation ZOCV/sim and by the linear estimation ZOCV/SoC according to
equation 3.120 and the corrected impedance Z0 (cylindrical NMC-cell A.2, Îm = 0.5 CA,
ϑ = 25 ◦C, fm = 10 mHz).

assumed linear slope of the OCV. This is because the end SoC changes with every frequency. The
Nyquist plot in figure 3.39b shows how the diffusion branch comes down towards the x-axis, when the
imaginary impedance part is corrected.

Equation 3.120 shows that the measurement deviation is dependent only on the OCV-slope and on
the measurement period. There is no dependency on the amplitude of the measurement current Îm.
The measurement current increases the SoC sweep during an impedance measurement but at the same
time it also increases the voltage response VZm in general. Since both are linearly dependent on the
amplitude of the measurement current Îm the two effects cancel each other out.
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Figure 3.39: Imaginary measurement deviations for EIS measurement frequencies from 1 mHz to 500 Hz
(cylindrical NMC-cell A.2, Îm = 0.5 CA, SoCstart = 50 %, ϑ = 25 ◦C).

Because of this independence on the measurement current, the measurement deviations introduced
by an OCV displacement cannot really be treated as a false measurement. It must be considered as
an intrinsic effect that is dependent on the slope of the OCV, i.e. the SoC and the period of the
measurement Tm, i.e. the measurement frequency fm.

3.3.2 Open-Circuit-Voltage Displacement from Temperature Change

Figure 3.40 shows the difference between the effect discussed in this section and the one in the previous
section 3.3.1. In this section the OCV displacement does not result from the change in SoC but in
the change in temperature in combination with the entropy of the cell. The excitation current causes
the temperature of the cell to change. The temperature dependent OCV therefore changes during the
measurement and results in an additional signal measured by the EIS measurement. This deviation
can only be determined and compensated with the knowledge of the entropy of the reaction ∆S.

∆ T

∆S

eZ

EIS

∆ OCV

SoC t

V,I

Figure 3.40: The origin of the OCV displacement is a change in temperature in combination with the
entropy ∆S of the cell.
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3 Excitation Amplitude Limit

3.3.2.1 Open-Circuit-Voltage Displacement

In the fundamentals, section 2.1.3 already showed that for small temperature changes, the OCV can
be considered to be linearly dependent on the temperature. The change in OCV can be stated as:

∆VOCV = ∆S
z F
·∆ϑ (3.121)

The result is a changing OCV dependent on temperature. Figure 3.41 compares the the OCV difference
of an NMC cell at 5, 15 and 35 ◦C to the OCV at 25 ◦C, which is obtained by a slow charge/discharge
cycle of 0.1 CA, but where the battery is charged and discharged at 25 ◦C in between in order to have
the same starting point for all OCV curves. If the starting SoC is not set with the same temperature,
the end of charge SoC is slightly higher and the cut-off voltage is slightly lower at higher temperatures.
The difference is in the range of a few 0.01 % of the SoC but crucial for the right alignment of the
different curves in figure 3.41. The OCV difference is in most SoC ranges positive when temperature
difference and entropy have both equal signs and is negative when they have opposite signs. The
comparison is not perfect since the continuous charge current smears the edges of the entropy profile
and it also heats the battery itself making it difficult to keep the temperature constant. This effect is
especially dominant at low SoCs where entropy and impedance heating are especially high. Although
not perfect, figure 3.41 shows that the OCV is dependent on the temperature of the cell.
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Figure 3.41: Comparison between the entropy ∆S and the OCV difference to ϑ = 25 ◦C at 5 ◦C, 15 ◦C
and 35 ◦C (cylindrical NMC-cell A.2).

3.3.2.2 Impedance Measurement Deviation

Since the temperature dependency of the OCV is, for small temperature changes, linear, any steady
increase in temperature leads directly to a linear voltage drift of the voltage. A drift can be identified
and compensated. Section 4.1 introduces various ways to correct them. This section only deals with
the sinusoidal part of the temperature change. Equation 3.122 shows the two sinusoidal parts of the
temperature change, one comes from impedance heating and the other one from entropy heating.
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3.3 Measurement Deviation Caused by Open-Circuit-Voltage Displacement

The first shows a behavior of double the EIS measurement frequency. This part is irrelevant for the
measurement since the Fourier transformation will suppress it. The second part has the same frequency
as the EIS measurement. With this remaining part, the OCV change due to temperature change is
similar to the OCV change due to SoC change (see equation 3.120 and 3.123). It also has a phase shift
of π2 to the excitation current. This means the same considerations from section 3.3.2 apply and the
same equations can be used. Equation 3.124 shows the impedance measurement deviation introduced
by an OCV displacement caused by a temperature change. Similar to the one caused by an SoC change
it is purely imaginary.

∆ϑ(t) = −HGRfm
Cth

· Îm
2 · Tm
8π · sin(2ωmt)︸ ︷︷ ︸

impedance heating

− ∆S · T
z F · Cth

Îm · Tm
2π · cos(ωmt)︸ ︷︷ ︸

entropy heating

(3.122)

v∆ϑ(t) = −∆S
zF
· ∆S · T
z F · Cth

Îm · Tm
2π · cos(ωmt) (3.123)

ZOCV/ϑ = −j ∆S2

z2 F 2
T

Cth

Tm
2π (3.124)

3.3.3 Comparison of Measurement Deviations

During an EIS measurement, both sources of measurement deviations, SoC change and temperature
change occur at the same time (see equation 3.125). They have different magnitudes for different
battery cell types. In general, the square of the Faraday constant significantly reduces the magnitude
of the deviation, which comes from a temperature change. Figure 3.42 compares the magnitude of
both effects. The deviation due to temperature dependency eOCV/ϑ is by a factor of 10−4 smaller than
the deviation due to SoC dependency eOCV/SoC . Therefore, its contribution can be neglected and the
impedance change ZOCV can be considered to be only caused by OCV displacement from SoC change
(see equation 3.127).
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Figure 3.42: Comparison of the measurement deviation introduced by SoC change eOCV/SoC and in-
troduced by temperature change eOCV/ϑ (cylindrical NMC-cell A.2, ϑ = 25 ◦C).
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3 Excitation Amplitude Limit

ZOCV = ZOCV/SoC + ZOCV/ϑ (3.125)

ZOCV = −j Tm2π ·
[

∆OCV
∆SoC

∣∣∣∣
T,∆SoC

1
Cel

+ ∆S2(T,SoC)
z2 F 2

T

Cth

]
(3.126)

ZOCV ≈ ZOCV/SoC (3.127)

For a multi-sine measurement, the part with double the measurement frequency of equation 3.122
would be relevant. But since the effect is in general negligible, a discussion about the impact the
deviation has on a multi-sine measurement is omitted.

Section Conclusion
This section has shown that the change of the Open-Circuit-Voltage introduces an additional signal

besides the signal that is caused by the voltage drop over the complex impedance. This Open-Circuit-
Voltage change can come from two different sources. The first one is the change in State-of-Charge.
The second source is the change in temperature. The entropy ∆S of a cell is a measure of how much
the Open-Circuit-Voltage changes with a change of temperature.

The additional signal introduced by both sources has a phase delay of π2 . Therefore, this additional
signal only introduces a change in the imaginary part of the impedance. This is only true as long as
the battery cell parameters ∆OCV

∆SoC or the entropy ∆S can be considered constant during the measure-
ment. Even if this is not the case, the measurement deviation on the real part is small compared to the
imaginary part. This is again because of the phase delay of π2 .

A comparison of the magnitude of the two sources revealed that the deviation introduced by tem-
perature change is negligible compared to the deviation introduced by a State-of-Charge change. In
both cases the deviation introduced is not dependent on the excitation current amplitude but mainly
on the measurement frequency. This deviation is always present and can be considered as an inherent
State-of-Charge and measurement frequency dependent part of the impedance of the cell. Due to this
fact it is not relevant for further considerations on the amplitude of the excitation current and section
3.5 in which all the different impedance measurement deviations are compared with each other, will not
consider it.
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3.4 Measurement Deviation Caused by Impedance Non-linearity

3.4 Measurement Deviation Caused by Impedance Non-linearity

Diard et al. [34], [32] built a theoretical framework to describe the measurement deviation introduced
by an impedance measurement over a polarisation resistance governed by the Butler-Volmer equation.
In order to derive his equations, he used the MacLaurin series and assumed that α = 0.5. The
MacLaurin series approximates the Butler-Volmer equation at an overvoltage of zero with a Taylor
series expansion [8]. In [34] he verified his theory experimentally with a semiconductor diode and in
[32] with an electrochemical redox system.

3.4.1 Double Butler-Volmer Equation

There are two electrode/electrolyte surfaces in a commercial li-ion battery full cell: one on the cathode
and one on the anode. The current passing through this interface can be described by the Butler-
Volmer equation. These electrode/electrolyte surfaces are the main source of non-linear behavior of the
impedance itself. Most other components in the cell, such as the electronic conducting current collectors
and the ionic conducting separator have a almost constant ohmic resistance. This means that the non-
linear behavior can be described by two non-linear resistances, related to the two electrode/electrolyte
surfaces in series whose current is described for each one by the Butler-Volmer equation. Equation 3.128
shows the difficulty to solve this equation. The voltage distribution over the two electrode/electrolyte
surfaces cannot be easily determined. One of the two equations would need to be solved for the voltage
vC or vA and then entered into the exponent of the exponential function of the other equation. This
cannot be done in a closed form and would need to be done iteratively.

i2xct = i0C ·
[
e

(1−αC )zF (vC−v0)
RT − e

(−αC )zF (vC−v0)
RT

]
= i0A ·

[
e

(1−αA)zF (vA−v0)
RT − e

(−αA)zF (vA−v0)
RT

]
(3.128)

Most studies on Nernstian- or Tafel-systems, which follow the Butler-Volmer equation, are performed
for a system in which only one redox-couple is present. Applied to batteries, it means that only one
electrode of a li-ion full cell is studied. When using complex models, which are capable of iterative
calculations, full cells with two electrode/electrolyte surfaces and two Butler-Volmer equations are
used [98].

The main difficulty is that there is no mathematical rule with which two exponential functions can be
simplified to a single exponential function. However, a simplification is necessary since the equation
3.128 is too complex for further calculations. Figure 3.43 shows two Butler-Volmer equations, the
series connection of the two and a single Butler-Volmer equation fitted to the series connection of the
two.

The fitted single Butler-Volmer equation is hardly capable of approximating the series connection
of the two original Butler-Volmer equations. The resulting curve is more linear. This makes sense,
considering the the 10 mV-Criterion rests mainly on the fact that the Butler-Volmer curve can be
approximated with a linear function at voltage values below 10 mV. If now several similar equations
are combined, this approximation holds true for a wider voltage range. Adding a linear function to
it could therefore result in a better fit. This added linear function is equivalent to adding an ohmic
resistance to the resulting equivalent circuit.
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Figure 3.43: Two single Butler-Volmer equations, their series connection and the attempt to fit the
series connection with a single Butler-Volmer equation. (i0C = 0.5, i0A = 0.25, αC = 0.5,
αA = 0.35).

Figure 3.44 summarizes all the three options by showing their equivalent circuit. The first one is the
already discussed single Butler-Volmer equation. The second one is the Butler-Volmer equation in
series with an ohmic resistance. The third one is the Butler-Volmer equation with an ohmic resistance
in parallel.
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Figure 3.44: Different options to approximate two in-series Butler-Volmer equations.
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The respective mathematical descriptions of these three options are shown by equation 3.129, 3.130
and 3.131.

iBV = i0 ·
[
e

(1−α)zFvBV
RT − e

−αzFvBV
RT

]
(3.129)

iser = i0 ·
[
e

(1−α)zFvBV
RT − e

−αzFvBV
RT

]
= v − vBV

r
(3.130)

ipar = i0 ·
[
e

(1−α)zFvBV
RT − e

−αzFvBV
RT

]
+ vBV

r
(3.131)

Figure 3.45 shows the comparison of the different equivalent circuits to the sum of the two Butler-
Volmer equations already introduced before. The single Butler-Volmer equation shows the biggest
deviation of all three equivalent circuits. The series and parallel equivalent circuit result in an equal
quality of the fit.
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Figure 3.45: Sum of two Butler-Volmer equations according to equation 3.128, fitted by a single Butler-
Volmer equation, a serial and a parallel circuit (i0C = 0.5 A, i0A = 0.25 A, αC = 0.5,
αA = 0.35). The fitting was done for the current interval from −2.5 A to 2.5 A.

Figure 3.46 shows the r2 value as a measure of the quality of the fit for various parameter values of
i0A/i0C , αA and αC .
All three equivalent circuits work best if the α and the i0 values of the anode and cathode are close
to each other. The more they differ, the worse the fit quality becomes. Especially for αA < 0.25
or αA > 0.75 the fit quality deteriorates. However, α values for a single Butler-Volmer equation are
reported to be in close vicinity of 0.5 [41].

Considering that α has only values in the interval from 0.25 to 0.75, the following conclusions can be
drawn: For the parallel and serial circuit, both are consistently better than a single Butler-Volmer
equation. For most parameter values, the parallel circuit has a slightly better fit quality than the serial
circuit.
For equation 3.130 of the serial equivalent circuit, only the current through the non-linear BV-equation
or the ohmic resistance has to be determined, since the two currents are identical. The problem is that
the distribution of the voltage drop between the non-linear resistance governed by the Butler-Volmer
equation and the linear resistance r is unknown and can only be determined by an iterative process.
The goal of this chapter is to derive equation for the measurement deviation in closed algebraic form.
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Figure 3.46: r2 value for the fitting of a double Butler-Volmer equation 3.128 with a single Butler-
Volmer equation 3.129, with the serial circuit (equation 3.130) and with the parallel
circuit (equation 3.131).

This is only possible for the parallel equivalent circuit, for which the voltage over the linear resistance
r is the same as the voltage over the non-linear resistance governed by the Butler-Volmer equation.
For an easier mathematical use of the parallel circuit and the fact that the parallel circuit achieves
generally a better fit quality, this equivalent circuit is used.

3.4.2 Measurement of Non-linearity

The measurement of non-linearity is difficult since several effects take place at the same time. In order
to get into the non-linear region high currents have to be applied to the battery cell. These currents
cause the battery and especially the electrode/electrolyte interface to heat up [12]. This again changes
the measurement result. Additionally the current is changing the SoC during the measurement, which
can be significant depending on how long the current is applied. There are four different ways to
measure non-linearity of a battery half or full cell:

1. Charge/Discharge cycles

2. Microcycles

3. Microcycle-Impedance

4. Harmonics

3.4.2.1 Charge/Discharge Cycles

The measurement method follows the following sequence: Firstly, the OCV is determined for the
battery. Secondly, a battery is charged and discharged by various currents in order to obtain the
overvoltage at that particular current for all SoCs. For a particular SoC, the currents are plotted over
the obtained overvoltage.
There is no measurement deviation introduced by a change in SoC since this deviation is ruled out when
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3.4 Measurement Deviation Caused by Impedance Non-linearity

the various charge/discharge curves are aligned. However, the deviation by a change in temperature
is significant. The method requires the current to be applied for an entire charge or discharge cycle
of the cell. During that time the temperature increases. Even if the temperature is measured at the
same time the measurement points are all at different temperatures and cannot be compared with each
other.
Figure 3.47 shows a measurement with this method without any temperature compensation. The
graph reveals two other shortcomings of the method. Very small currents and voltages take a long
time to measure. The lowest current in Figure 3.47 is 0.02 CA, for which it takes around 100 hours
to complete the charge/discharge cycle. This is why a high resolution close to zero Ampere is very
difficult to achieve.
The other disadvantage is that positive currents can only be measured as long as they do not cause
the cell voltage to exceed the maximum voltage of the cell, i.e. as long as the battery does not go into
constant-voltage mode. This caused the current-voltage curve for 80 % SoC in figure 3.47 to stop at
around 2.5 A. The last drawback of this method is that it can only measure the non-linearity for a
constant current signal, and not, for example, a 1 kHz signal. This means, that the non-linearity of
very large time constants is measured for which also the diffusion effect due to charge transport occurs.
This is an additional non-linear effect besides the one described by the Butler-Volmer equation. The
benefit on the other hand is that it is easy to use since the non-linearity can be derived from simple
charge/discharge curves, which might be already available from other measurements.
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Figure 3.47: Non-linearity for different SoCs measured with the charge/discharge method (cylindrical
NMC-cell A.2).

3.4.2.2 Microcycles

In this method not entire charge/discharge cycles are applied, but shorter pulses are used. Farmann
et al. in [41] and Gaberscek et al. [43] used this method with pulses around 2 to 20 s in length. The
left side of figure 3.48 shows the measurement principle. A current pulse is applied, at the end of the
pulse the current and voltage is measured. The measurement is valid for the SoC at the end of the
pulse. After one positive pulse its negative counterpart is applied. Due to this alternation of pulses
the SoC stays the same after each charge/discharge cycle. The result is the large signal response of the
battery. If several pulses are applied these measurement points can be combined and give a current-
overvoltage curve that represents the non-linearity of the battery. This curve can then be fitted with
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3 Excitation Amplitude Limit

the parallel equivalent circuits derived in the previous section 3.4.1. The benefit of this method is that
the heat generated inside the cell for short pulses below ten seconds is negligible. For longer pulses,
the measurements need to be compensated by the temperature change. The equations for deviations
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Figure 3.48: Comparison of two different methods to measure the non-linearity of impedance.

caused by constant current introduced in section 3.2.5.3 can serve as a starting point. The equations
in that section give the deviation in impedance, which need to be converted into a voltage deviation.

3.4.2.3 Microcycle-Impedance

The Microcycle-Impedance method is similar to the Microcycle method. The current pulse is super-
positioned with a sinusoidal current signal causing the battery to respond with a sinusoidal change of
the battery voltage with the same frequency. Karden et al. [59] used a similar method on lead-acid
batteries in order to avoid artefacts caused by constant charging and discharging but not for deter-
mining Butler-Volmer parameters. He called them minicycles. Dumm in [36] used a similar method
and applied pulses with a smaller length and therefore called them Microcycles. At the beginning,
the current pulse causes a response of the battery voltage similar to an exponential function, which
then turns into a rather linear change. Only the last period of the sinusoidal signal, before the pulse
is turned off, is evaluated. This is done because a linear drift is easier to compensate as the initial
exponential drift and that transients at the beginning would distort the impedance measurement [45].
The result is the small signal impedance at different magnitudes of the current pulse.

Here, the heat generated inside the cell for short pulses below ten seconds is negligible. For longer
pulses, the measurements can be compensated by the equations developed in section 3.2.5.3. The data
derived is split into the real and imaginary part as opposed to only the modulus giving this method
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3.4 Measurement Deviation Caused by Impedance Non-linearity

an advantage over the Microcycle method. Because of this advantage, this method has been applied
to determine the non-linearity of a cell in the next section 3.4.3. The detailed analysis of the data is
also explained in that section.

3.4.2.4 Harmonics

A sinusoidal signal of a certain frequency applied to a function that is not linear, e.g. an exponential
function, causes the response to have the original frequency and several harmonics of that frequency.
Harmonics are frequencies of an integer multiple of a base frequency. In this case the base frequency is
the applied measurement frequency. Diard et al. [33; 34], Kiel et al. [63] and Kiel [62] showed how and
at which magnitudes voltage harmonics are generated by a sinusoidal current. Kiel et al. considered
it as an indication of a too high current excitation and suggested that the amplitude of the harmonics
could be monitored in order to control the excitation current amplitude. But he did not give any
further analysis which harmonic that should be, which threshold corresponds to which measurement
deviation or which threshold should be taken. Both authors proposed to use the harmonics of the
electrochemical system’s response in order to correct the impedance measurements to a linear system.
Diard et al. showed this with experimental data on a redox electrochemical system for which the
influence of the non-linearity was very strong and whose measurement deviations were in the range of
several percent (5 % to 50 %).

From the analytical derivation of the harmonics, it could be possible to determine the parameters of
the underlying Butler-Volmer equation. For the case of an underlying constant current, Kiel et al.
[63] simplified the Butler-Volmer equation to the Tafel equation, and with the help of a Taylor series
expansion, derived the theoretical magnitudes of every harmonic. The mathematical trick of using a
Taylor expansion comes with the cost that the expansion has to be done for every constant current
applied. The Taylor expansion only fits the data well for values in close vicinity of the operation point
at which the expansion was done. For the case of no underlying constant current, he simplified the
Butler-Volmer equation to the sinus-hyperbolicus function assuming that α is always 0.5. Diard et al.
[33] did something similar by assuming α = 0.5 and by using a Maclaurin series. In both cases, only
the value of i0 can be varied. This simplification reduces the general applicability of this equation,
since α is pinned to a fixed value of 0.5.

Equation 3.132 shows the general equation for any harmonic current in caused by a sinusoidal voltage
used in a Butler-Volmer equation. For the detailed derivation of this equation refer to appendix D.1.

F{in(t)} = (−j)n · 2i0 · e
(1−α)zFVdc

RT · In

(
(1− α)zF V̂m

RT

)

− (−j)n · 2i0 · e
−αzFVdc

RT · In

(
−αzF V̂m
RT

)
(3.132)

Figure 3.49 shows an example of this equation for specific values up to the 5th harmonic and compares
it with values obtained from a simulation.
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Figure 3.49: Fundamental and harmonics of the current created by a sinusoidal voltage applied to a
Butler-Volmer equation (Vdc = 0.1V , V̂m = 0.1 V, i0 = 0.5 + 2i A, α = 0.65 + j0.45). The
values for Vdc, V̂m were intentionally chosen large, in order to obtain large values for the
harmonics.

It is valid for any voltage deflection of the battery from its OCV caused by a constant current. However,
it assumes that the excitation is potentiostatic. For a galvanostatic excitation, the constant overvoltage
Vdc, caused by the constant current, or the amplitude of the sinusoidal voltage V̂m, caused by a
sinusoidal current, need to be pre-determined. An iterative solution process or a lookup table in which
all overvoltages are mapped to a current can give this information. Kiel et al. [63] and Kiel’s [62]
equations directly use a galvanostatic excitation.

The linearization effect caused by two charge transfer reactions in series and discussed in section 3.4.1
and any other ohmic resistance only needs to be taken into account for the fundamental frequency.
They do not affect the harmonics, since any linear part only causes the fundamental frequency of the
response to be higher but not the harmonics.

The following two paragraphs discusses the applicability of the harmonics to identify:

1. the parameters of the Butler-Volmer equation.

2. a too high excitation current.

Can the harmonics be used to identify the parameters of the Butler-Volmer equation, namely i0 and
α? For determining two unknowns, two independent equations are needed. The equations for two
harmonics could be used for this purpose. In order to know which harmonics would be the best ones to
use, all considerations are made for potentiostatic excitation, which can, once proven possible, trans-
ferred to galvanostatic excitation.
The theoretical considerations are done in the first step for the case when there is no constant voltage
Vdc present and in the second step if there is a constant voltage Vdc present. For the case when there is
no constant voltage present: The modified Bessel function of the first kind In is for even order numbers
of n an even function and for odd order numbers of n an odd function. Or in mathematical terms:
In(−x) = In(x) for n = 0,2,4,... and In(−x) = −In(x) for xn = 1,3,5,.... Equation 3.132 shows
that the two summands can be added for odd order numbers but need to be subtracted for even order
numbers. This becomes especially harmful the closer α is to the value 0.5. Then, the two summands
cancel each other out for even order numbers. Because of this only the third and the fifth harmonic can
be used. This is theoretically possible, but in a real application the result of the fifth harmonic is very
small and will be subject to a lot of noise. Figure 3.50a shows the ratio of I1(x)/I5(x). Depending on
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3.4 Measurement Deviation Caused by Impedance Non-linearity

the argument, 3.50a shows the amplification factor which need to be used to convert a value measured
at the fifth harmonic to the fundamental. Also, any kind of noise would be amplified with the same
factor. Because of this, the results derived from the fifth harmonic will most likely be unusable.
For the case when there is a constant voltage present. One summand of the equation 3.132 can be
neglected since the value of its exponential function becomes very small. Because of this, it becomes
possible to use the second and the third harmonic. However, as will be shown in section 4.1, the ad-
ditional drift which is caused by an underlying constant voltage (or constant current for galvanostatic
excitation) causes harmonics as well. These are much larger than the ones caused by the non-linearity
of the Butler-Volmer equation making this approach also highly erroneous.
Although there is no formal inverse function for the modified Bessel function of the first kind In(x),
it can be inverted for only positive or negative values of x with a lookup table, meaning that for every
value of In(x) there is only one x which results to that value (appendix C.5 shows examples of In(x)).
For both cases, measurements without constant overvoltage or with constant overvoltage, the resulting
equation for α is a transcendental equation, which does not have a closed form solution and would
need to be solved by an iterative process.
To summarize, in most cases and at least for on-line applications, the noise at the fifth harmonic will
be too large to derive any reasonable result. A drift causes additional harmonics, which make the
simplification with the Tafel equation impossible. Even if these effects would not exist, the calcula-
tion would involve an iterative process using a lookup table. For those reasons the identification is
theoretically possible but extremely difficult to apply in practice.

How applicable is the usage of the harmonics to identify a too high excitation current? This seems to be
an interesting approach, since equation 3.132 shows that the fundamental and the harmonics are calcu-
lated in a similar way. Ratios between the fundamental and the harmonics could be used, making the
exact identification of the parameteres unnecessary. To answer this question, only the Butler-Volmer
equation is considered without any additional linear components. This allows the determination of the
impact of the Butler-Volmer equation to the fundamental without the other linear components. All
the considerations are made for potentiostatic excitation, which can, once proven possible, transferred
to galvanostatic excitation. Equation D.7 shows the ratio for measurements without constant voltage.
Equation D.9 shows the ratio for measurements with positive constant voltage for which the second
term of equation 3.132 has been neglected, since for a positive constant voltage the factor e

(1−α)zFVdc
RT

becomes large and the factor e
−αzFVdc

RT becomes small. For the reasons given above, for measurements
without constant voltage, the third harmonic should be used and for measurements with constant
voltage, the second harmonic should be used. For a detailed derivation of equations 3.133 and 3.133
please refer to appendix D.2.

F{in=1(t)}
F{in=3(t)} = −j

(−j)3 ·

I1

(
(1−α)zF V̂m

RT

)
− I1

(−αzFVdc
RT

)
I3

(
(1−α)zF V̂m

RT

)
− I3

(−αzFVdc
RT

)
 (3.133)

F{in=1(t)}
F{in=2(t)} = −j

(−j)2 ·
I1

(
(1−α)zF V̂m

RT

)
I2

(
(1−α)zF V̂m

RT

) (3.134)

Equation D.7 already shows that without the knowledge of α no factor between the third harmonic
and the fundamental frequency can be stated. Figure 3.50b shows the ratio of I1(x)/I2(x).
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Figure 3.50: Ratios of the modified Bessel function of the first kind In(x). The argument −αzF V̂mRT

with α = 0.5 would have a value of around 0.1 when V̂m = 10 mV (minimum shown here)
and 2.0 when V̂m = 100 mV (maximum shown here).

Unfortunately, there is no constant factor between them, which would make it possible to conclude
from the harmonic with any argument in the modified Bessel function of the first kind In(x) to the
fundamental with the same argument in I1(x). This makes it necessary to know the value of the
argument. The same is true for any other ratios of the modified Bessel function of the first kind.

To know the argument it is necessary to know α. If α would be known, the ratio of I1(x)/In(x) could
be determined and by multiplying it with −j/(−j)n the factor between the harmonic value and the
fundamental value could be determined without ever calculating the exchange current i0. Calculating
α poses the problems already discussed in the paragraph above, which discussed the possibility of
identifying the Butler-Volmer parameters. But if α would be known, determining i0 would be possible
as well and instead of calculating the non-linear impact on the fundamental, the measurement deviation
caused by the Butler-Volmer non-linearity could be directly calculated according to the equations
introduced in the next two sections 3.4.4 and 3.4.6. The problem of identifying a too high excitation
current by evaluating the harmonics of the measurement is therefore the same as the problem to
identify the parameters by evaluating the harmonics. The answer to the question whether it is possible
to identify a too high excitation current is therefore also the same: It is theoretically possible but
extremely difficult to apply in practice.

3.4.3 Magnitude of Non-linearity

The raw measurements shown in this section were carried out during the supervision of the Master
Thesis of Dumm [36]. They were only partly included in his thesis. The raw measurements were
evaluated and fitted again in order to include them in this thesis.

Among the four different ways to measure non-linearity introduced in section 3.4.2 the Microcycle-
Impedance was identified to be the best. The impact on temperature increase can be kept to a minimum
due to the short apply time of the pulses and it does not rely on very noise free and extremely accurate
sensors as the method using harmonics does. Compared to the Microcycles method, it also gives
information on the real and imaginary part. Since this whole chapter is always dealing with both
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3.4 Measurement Deviation Caused by Impedance Non-linearity

parts and revealed more insights because to this separation, this way is continued for measuring the
impedance non-linearity.

Typically the Butler-Volmer equation is only defined for the real part. Since the charge transfer
resistance Rct in parallel to the double layer capacitance Cdl is a variable resistance (see figure 3.51).

Rct

Cdl

Figure 3.51: Theoretical model of the non-linearity of the charge transfer resistance Rct and the double
layer capacity Cdl.

The capacitance Cdl is considered to be independent from the current magnitude applied. However,
for the imaginary part a similar effect as for the real part, i.e. a decrease in resistance with increasing
current, was measured. Figure 3.54b and A.1.5b show this effect. Some capacitances are known to
be voltage dependent, e.g. the capacitance of tantal capacitors. But for a li-ion battery the voltage
change across the double layer capacitor Cdl during an EIS measurement is too small to be relevant.
Throughout this chapter the equation for real and imaginary part were the same. Only the parameters
which need to be applied are different. In an attempt to stick to similar equations, the same modified
Butler-Volmer equation 3.131 is used for the real and for the imaginary part. Fitting the imaginary
measurements with the same Butler-Volmer equation was often possible. Figure 3.54b shows one data
set for which the fitted data was not able to retrace the measurement data at high currents. In this case,
due to the low imaginary overvoltage, the argument in the exponent does not become large enough
when the value of α is in the range of 0.05 and 0.95. If larger values in the argument of the exponential
function in equation 3.131 are be possible, the equation would also be able to fit the measured data
very well.

The measurements were taken as described in section 3.4.2.3. The battery cell under test was placed
in a liquid cooled copper block with a cylindrical opening, which was just large enough to accomodate
the cylindrical battery cell. Thermal grease was additionally applied to improve the heat conductivity
from the cell casing to the copper block. The thermal conductivity from the jelly roll to the casing of
the cell cannot be improved and can be seen as the weakest link in the cooling chain. Because of this,
a temperature change within the cell could not be entirely avoided during a Microcycle-Impedance
pulse. In order to avoid the impact of a temperature increase from a precedent measurement pulse,
large waiting times (see figure 3.48) between pulses were used.

To fit the measurement with the parallel equivalent circuit. First the ohmic resistance RΩ was removed
from the real part of the measured impedance. The data then represents the small signal impedance,
real and imaginary part, at different magnitudes of the pulse current for the parallel equivalent circuit.
Figure 3.52 shows how this piecewise small signal impedance values can be multiplied with the current
step magnitudes in order to obtain the respective voltage values of a large signal response. Equation
3.136 and equation 3.137 respectively show the calculation of the voltage values for negative current
and positive current. Please note that the obtained voltage values have a real and an imaginary part.
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Figure 3.52: Piecewise current over voltage curve reconstruction with the knowledge of the impedance
over current.

Vdc(0) = 0 (3.135)

Vdc(x) = Vdc(x− 1) + (Idc(x)− Idc(x− 1))︸ ︷︷ ︸
=Iδ(x)

·12 [Zdc(x) + Zdc(x− 1)] for x = 1..n (3.136)

Vdc(x) = Vdc(x+ 1) + (Idc(x)− Idc(x+ 1))︸ ︷︷ ︸
=Iδ(x)

·12 [Zdc(x) + Zdc(x+ 1)] for x = −1..− n (3.137)

These real and imaginary voltage curves are then fitted with the equation for the parallel equivalent
circuit 3.131.
Table 3.3 shows the fitting results of measurements at different measurement frequencies taken at the
same temperature ϑ = 25 ◦C. A frequency with a higher non-linearity than another one produces
lower values for the exchange current i0 and higher values for the linear resistance r. The charge
transfer coefficient α is an indicator for the symmetry of the resistance. A value of α between 0.5 and
1 indicates that the cell shows lower resistance during discharging than during charging. This is the
case for the real part of the 10 mHz measurement. A value between 0 and 0.5 indicates that a cell
shows lower resistances during charging than discharging. This is the case for the real part of the 1 kHz
measurement. In the fitting process the value of α was limited to values between 0.05 and 0.95 in order
to avoid unreasonable values. The more α deviates from 0.5, the more unsymmetric is the impedance.
This reduces the range around 0 V in which the Butler-Volmer equation can be considered linear.

From only the fitting values, it is hard to tell which frequency is more non-linear. For example, the
real part of the 10 mHz measurement has a very low value for r, indicating a very linear behavior, but
also a very low value for i0, indicating a non-linear behavior. The deviation of α from 0.5 makes an
assessment even more difficult. For the real part of the 10 Hz measurement the values are the exact
opposite: high r, high i0 and α very close to 0.5. The values for the imaginary part do not show any
trend in any direction making any assessment of the non-linearity impossible. Section 3.4.4 assesses
the impact of those values to the deviation of the impedance measurement. Since the deviation to the
impedance measurement is the most interesting indicator, this value can also be used as a proxy for
assessing quantitatively in one value the non-linearity of a Butler-Volmer curve.
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3.4 Measurement Deviation Caused by Impedance Non-linearity

frequency RΩ (mΩ) i0 (A) α r (mΩ) r2

Zreal

10 mHz 16.2 0.27 0.71 28 0.9996
100 mHz 16.2 1.15 0.68 28 1.0000
1 Hz 16.2 0.33 0.35 10 1.0000
10 Hz 16.2 2.88 0.47 116 0.9998
100 Hz 16.2 6.40 0.41 129 0.9989
1 kHz 0.0 0.05 0.28 16 0.9999

Zimag

10 mHz 0.0 -0.09 0.70 -13 0.9991
100 mHz 0.0 -7.41 0.95 -23 0.9978
1 Hz 0.0 -17.97 0.05 -10 0.9968
10 Hz 0.0 -9.30 0.45 -7 0.9995
100 Hz 0.0 -8.78 0.42 -24 0.9996
1 kHz 0.0 29.76 0.05 21 0.9992

Table 3.3: Selected Microcycle-Impedance non-linearity measurements of the real and imaginary part
fitted with the modified Butler-Volmer equation of 3.131. Parameter dependency on fre-
quency. Raw measurements taken by [36].

Figure 3.53 shows the two measurements at 10 mHz and 10 Hz. The real part does not show the effect
of the additional ohmic resistance RΩ in series with the equivalent parallel circuit. Adding RΩ would
further linearize the curve. Especially the curve of the 10 mHz measurement shows the non-symmetry
of the impedance for positive and negative currents. The same 2 A current needs 45 mV overvoltage in
the charging direction and only −40 mV overvoltage in the discharging direction.

Table 3.4 shows the measurements at different temperatures with the measurement frequency 1 Hz.
There is a clear trend for the real part and imaginary part of i0 to increase with increasing temperature.
The imaginary part of r shows a clear trend to decrease with increasing temperature. The real part only
shows a weak tendency in this direction. Both values, i0 and r indicate a more linear behaviour with
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Figure 3.53: Impedance non-linearity dependency on frequency of a full cell. (cylindrical LFP cell A.1,
ϑ = 25 ◦C, SoC = 50 %). For reasons of clarity only a subset of the measured points is
shown. Raw measurements taken by [36].

increasing temperature. The real part of the α values are in a similar range. For all the measurements,
the charge transfer coefficient α has a value below 0.5 indicating that the cell shows less resistance in
charging direction than in discharging direction at 1 Hz regardless of the temperature.

89



3 Excitation Amplitude Limit

temperature RΩ (mΩ) i0 (A) α r (mΩ) r2

Zreal

10 ◦C 17.5 0.02 0.40 27 0.9985
20 ◦C 16.4 0.13 0.38 14 1.0000
25 ◦C 16.2 0.33 0.35 10 1.0000
30 ◦C 15.9 1.71 0.41 10 1.0000
40 ◦C 14.9 6.26 0.35 12 0.9995

Zimag

10 ◦C 0.0 -6.13 0.47 -190 0.9918
20 ◦C 0.0 -14.01 0.27 -27 0.9907
25 ◦C 0.0 -17.97 0.05 -10 0.9968
30 ◦C 0.0 -23.25 0.05 -8 0.9838
40 ◦C 0.0 -27.67 0.05 -3 0.9669

Table 3.4: Selected Microcycle-Impedance non-linearity measurements of the real and imaginary part
fitted with the modified Butler-Volmer equation of 3.131. Parameter dependency on tem-
perature. Raw measurements taken by [36].

Figure 3.54 shows the two measurements at 10 ◦C and 25 ◦C. As expected, the impedance of the
10 ◦C measurement is higher than the impedance of the 25 ◦C measurement. The fitted curve for the
imaginary part for the 25 ◦C measurement does not really fit the measurement data for high currents.
The fitting process could not further change the parameter α to smaller values, since it already reached
0.05 which was set as the lower bound for this value. The low imaginary overvoltage makes it difficult
to obtain high values in the argument of the exponential function. This makes it difficult to adequately
bend the fitted curve in order to represent the measured data. This difficulty was found also at 30 ◦C
and 40 ◦C, raising the question whether a further modified equation of the Butler-Volmer equation
should be applied for the imaginary part.
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Figure 3.54: Impedance non-linearity dependence on temperature of a full cell Lithium-Ion battery
cell. (cylindrical LFP cell A.1, fm = 1 Hz, SoC = 50 %). For reasons of clarity only a
subset of the measurement points are shown. Raw measurements taken by [36].

The LFP cell used showes very low dependency of the impedance over SoC. The same is true for its
non-linearity over SoC. The table with the fitted parameters and a figure with 10 % and 90 % SoC is
shown in the appendix A.1.

90



3.4 Measurement Deviation Caused by Impedance Non-linearity

3.4.4 Impedance Measurement Deviation Caused by Single-sine Measurement

Appendix D.3 derives equation 3.138 - the Fourier transformation of the measured current assuming
a potentiostatic excitation. A potentiostatic excitation during the impedance measurement is first
assumed, since the Butler-Volmer equation cannot be analytically converted into a closed form that
would give the voltage for a certain current.

F{im(t)} = −j 2i0
Tm
· Tm · I1

(
(1− α)zF V̂m

RT

)

+ j
2i0
Tm
· Tm · I1

(
−αzF V̂m
RT

)

− j V̂m
r

(3.138)

with the Fourier transformed current response, the conductance and the deviation of the conductance
is:

Ym = F{im(t)}
−jV̂m

(3.139)

Ym = 2i0
V̂m
·

(
I1

(
(1− α)zF V̂m

RT

)
− I1

(
−αzF V̂m
RT

))
+ 1
r

(3.140)

Z
′

0 is the impedance value if there is no deflection of the Open-Circuit-Voltage, i.e. V̂m = 0. In this
case the two modified Bessel functions of the first kind I1 go towards zero, but at the same time
the fraction i0/V̂m goes towards infinity. Therefore the limit of the expression when V̂m goes towards
zero yields the value Z ′0. This value can be used as the reference impedance in equation 3.143 for the
measurement deviation.

Z
′

0 = lim
V̂m→0

Ym
−1 (3.141)

eZ = |Ze|
Z
′
0 +RΩ

= |Ym
−1 − Z ′0|

Z
′
0 +RΩ

(3.142)

eZ = 1
Z
′
0 +RΩ

·

[[
2i0
V̂m
·

(
I1

(
(1− α)zF V̂m

RT

)
− I1

(
−αzF V̂m
RT

))
+ 1
r

]−1

− Z
′

0

]
(3.143)

In order to avoid an unintentional shift in SoC during the EIS measurement a galvanostatic excitation
is usually used for batteries. The voltage drop over the non-linear resistance in the parallel equivalent
circuit is equal to the voltage drop over the whole parallel circuit r||ZNL. The resistance of that circuit
is equal to Z ′0 when no current is flowing. Under the assumption that the difference between Z ′0, when
no current is flowing, and the parallel circuit r||ZNL, when current is flowing, is rather small, it can
be approximated for the whole range with Z ′0. Therefore V̂m is replaced by Îm · Z

′

0 in equation 3.144
for the measurement deviation of the impedance:

eZ ≈
1

Z
′
0 +RΩ

·

∣∣∣∣∣
[

2i0
ÎmZ

′
0
·

(
I1

(
(1− α)zF ÎmZ

′

0
RT

)
+ I1

(
αzF ÎmZ

′

0
RT

))
+ 1
r

]−1

− Z
′

0

∣∣∣∣∣ (3.144)
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3 Excitation Amplitude Limit

The measurement deviation shown here is dependent on the modified Bessel function of the first kind.
In appendix C.5, several examples can be seen for this function. The general shape of the function
as exponentially increasing with increasing argument fits with the curves published by Diard et al. in
[33]. He derived his curves with a Taylor series expansion at the operation point.

The impedance measurement deviation eZ is dependent on the battery specific parameters i0, α, r and
on the measurement current amplitude Îm. The additional parameter RΩ decreases the deviation, but
only for the real part. eZ is inversely proportional to the value of i0. The larger that value, the lower
the measurement deviation.
Dependence on Îm is more difficult to see, since it is also present in the exponential argument. Figure
3.55a shows this dependence. The measurement deviation increases quickly with increasing measure-
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0 · Îm with

Z
′
0 = 7.2 mΩ.

Figure 3.55: Measurement deviation caused by the non-linearity of a battery cell (synthetic data with
the parameters i0 = 1 A, RΩ = 0 mΩ, r = 10 mΩ).

ment current amplitudes. When no constant current is present, the deviation is the same for values of
α symmetrical to 0.5, like α = 0.2 and α = 0.8. Figure 3.55b shows how the impedance measurement
deviation is dependent on α. It is lowest at 0.5 and increases the further it deviates from that value
towards 0 or 1. Both figures show that the impact of Îm is stronger than the impact of α.

Figure 3.56a and 3.56b show the measurement deviation introduced by impedance non-linearity for
different measurement frequencies. The measurement deviation of the real part increases with decreas-
ing frequency and increasing current. Excitation current amplitudes of 3 CA cause a deviation of over
5 % for a 10 mHz measurement. Only when staying below 0.5 CA the deviation stays below the defined
0.1 % threshold over the whole frequency range.
The deviation of the imaginary part does not follow such a strict rule. The deviation of the 100 mHz
measurement rises much quicker than the deviation of the 10 mHz measurement. In general, the devi-
ation caused by large measurement currents is smaller for the imaginary part than for the real part of
the impedance.
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3.4 Measurement Deviation Caused by Impedance Non-linearity

Figure 3.56c and 3.56d show the measurement deviation introduced by impedance non-linearity for
different temperatures at a measurement frequency of 1 Hz. Although not entirely consistent, the
deviation of both the real and the imaginary part increases with increasing current and in general also
with decreasing temperature.
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(a) Impedance real part deviation depending on the
measurement frequency (ϑ = 25 ◦C).
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(b) Impedance imaginary part deviation depending
on the measurement frequency (ϑ = 25 ◦C).
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(c) Impedance real part deviation depending on the
temperature (fm = 1 Hz).
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Figure 3.56: Measurement deviation caused by the impedance non-linearity of a battery cell (cylindrical
LFP-cell A.1, SoCstart = 50 %).
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3 Excitation Amplitude Limit

3.4.5 Impedance Measurement Deviation Caused by Multi-sine Measurement

For a multi-sine measurement, the other measurement frequencies deviate the cell from the equilibrium
voltage. A simple closed algebraic equation for the deviation introduced is impossible to give, since
the excitation currents at other frequencies as the currently evaluated measurement frequency change
the operating point on the Butler-Volmer curve in a non-predictable way. However, when the Butler-
Volmer curve is symmetrical, i.e. α = 0.5, the deviation caused by the deflection to the positive side
and to the negative side cancel each other out. Equation 3.145 would apply in this case. Refer to
appendix D.4 for a detailed derivation of this equation.

eZ ≈
1

Z
′
0 +RΩ

·

∣∣∣∣∣
[

2i0
ÎmZ

′
0
· ΣNn=1

(
2j cos

(π
2 · xn

)
· Ixn

(
0.5zF ÎmZ

′

0
RT

))
+ 1
r

]−1

− Z
′

0

∣∣∣∣∣ (3.145)

xn is the ratio of the measurement frequency evaluated fm to another measurement frequency fn

also applied in the same multi-sine signal (xn = fm
fn

). The simplification in equation 3.145 shows
that for even multiples of the measurement frequencies, no deviations are caused for the measurement
frequency. However, it is unavoidable that lower frequencies cause a measurement deviation and it is
unavoidable that in a multi-sine measurement signal, some frequencies will be lower than others.
Also, for values of α in close vicinity of 0.5 or low excitation currents, this equation could still be valid.
The exact limits of its applicability would need to be determined by simulations since they depend on
the parameters of the multi-sine signal, such as its amplitudes, frequencies and phases.

3.4.6 Measurement Deviation from Impedance Non-linearity Caused by
Constant Current

Appendix D.5 derives in detail equation 3.146 - the current response of for a potentiostatic excitation
where a constant current Vdc is present.

F{im(t)} = −j · 2i0 · e
(1−α)zFVdc

RT · I1

(
(1− α)zF V̂m

RT

)

+ j · 2i0 · e
−αzFVdc

RT · I1

(
−αzF V̂m
RT

)

− j V̂m
r

(3.146)

Equation 3.146 shows that the factor e
(1−α)zFVdc

RT and e
−αzFVdc

RT introduced by the constant current can
be considered as a modification of the exchange current i0. This modification factor is dependent on
the battery parameters α, z and on the overvoltage caused by the constant current Vdc. The only un-
known factor is the impedance causing the constant overvoltage at a certain constant charge/discharge
current. This value is equal to the heat generating rate for a constant current HGRdc from section
3.2.5, since the overvoltage is generating exactly the amount of irreversible heat. Figure 3.57a shows the
dependency of this factor on the overvoltage Vdc = HGRdc ·Idc. The factor is not dependent on i0 itself.
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3.4 Measurement Deviation Caused by Impedance Non-linearity

With equation 3.139 and equation 3.142, the deviation caused by impedance non-linearity when during
the impedance measurement the battery is charged or discharged with a constant current becomes:

eZ = 1
Z
′
0 +RΩ

·

[[
2

ÎmZ
′
0
·

(
i0 · e

(1−α)zF ·HGRdcIdc
RT · I1

(
(1− α)zF ÎmZ

′

0
RT

)
+

i0 · e
−αzFHGRdcIdc

RT · I1

(
αzF ÎmZ

′

0
RT

))
+ 1
r

]−1

− Z
′

0

]
(3.147)

Z
′

0 in this case is the small signal impedance when the constant voltage displacement Vdc and the
sinusoidal voltage excitation V̂m goes to zero. The term e

(1−α)zFVdc
RT is most relevant for positive

currents and voltages, since for negative current and voltages the term becomes very small. For the
same reason the term e

−αzFVdc
RT is most relevant for for negative current and voltages. A high value

for the charge transfer coefficient α indicates that the reactions are occurring quicker for the negative
side and the overvoltage needed to achieve the same current is lower compared to the positive side.
This also affects the linearity of the curve. Although the curve is steeper, for high values of α, it is
less linear on the negative side, whereas it is less steep but more linear on the positive side.

Figure 3.57b shows the dependency of the impedance deviation eZ on the constant overvoltage Vdc =
HGRdc ·Idc caused by a constant current. The lower the parameter α is, the higher is the measurement
deviation caused by a positive constant current since the Butler-Volmer curve is less linear on the
positive side. The opposite is the case for high values of α. The reason why the deviation curve for
α = 0.5 increases with increasing constant overvoltage is that the constant overvoltage causes the
operation point to deflect and at that point the Butler-Volmer equation is no longer symmetrical.
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(b) Measurement deviation caused by the non-
linearity of a battery cell depending on α and
overvoltage Vdc (Îm = 0.5 A, i0 = 1 A, RΩ =
0 mΩ, r = 10 mΩ).

Figure 3.57: i0 modifying factor and impedance measurement deviation depending on the magnitude
of a constant positive overvoltage Vdc = HGRdc · Idc (Idc = 0 to 1 CA, HGRdc = 50 mΩ).

Figure 3.58a shows the impedance real part deviation over the underlying constant current Idc for
several frequencies. A look at table 3.3 explains the differences between the curves. The reason for the
10 Hz curve being different and crossing 10 mHz and 100 mHz while Idc increases can be seen in figure
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3 Excitation Amplitude Limit

3.57b. α is for the 10 Hz curve close to 0.5, whereas the other two are close to 0.7. Over the increasing
constant current Idc, the measurement deviation of the curve with α = 0.5 overtakes the one with the
higher α. The 1 kHz curve has a low α and no ohmic resistance part RΩ, which would lead to high
deviations. Its exchange current density, however, is very small, which leads to the opposite effect.
Since α is in the exponent of the modifying factor of i0, it becomes more important the higher the
constant current Idc is.

Table 3.3 can also explain the impedance deviation of the imaginary part in figure 3.58b. The low
measurement deviation of 10 mHz is mainly caused by the low exchange current density i0. The high
deviation of 100 mHz and 1 kHz is due to the extreme values of α which are either at the lower or the
upper set bound. Although in opposite extremes, the effective HGRdc for the imaginary part is much
lower as for the real part. Therefore the curve never leaves the left part of the figure 3.57b where also
higher values of α cause higher deviations than a value of α close to 0.5. This is why the 100 mHz
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Figure 3.58: Measurement deviation caused by the non-linearity of a battery cell depending on the
measurement frequency (cylindrical LFP-cell A.1, SoCstart = 50 %, ϑ = 25 ◦C, Îm =
0.5 CA).

curve, with α = 0.95, has a much higher measurement deviation than the 10 Hz curve with α = 0.45.
The HGRdc for the imaginary part was calculated by the same extrapolation method introduced in
section 3.2.5.2 for Zreal and then compensated by the imaginary deviation caused by the OCV change
as describe in section 3.3.2.2.
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3.4 Measurement Deviation Caused by Impedance Non-linearity

Section Conclusion
This section discussed the problem of approximating the two electrode/electrolyte interfaces of com-

mercial lithium-ion cells with one Butler-Volmer equation. It introduced an equivalent circuit of a
non-linear resistance following the Butler-Volmer equation and an ohmic resistance in parallel as an
approximation for two Butler-Volmer equations in series.

There are four different measurement methods for impedance non-linearity. The charge/discharge
method has difficulties to compensate for the temperature influence at high current amplitudes and
takes several hours, if not days, for low current amplitudes. The Microcycle method can only deter-
mine the absolute value of the non-linearity and does not separate it into real and imaginary parts.
The Microcycle-Impedance method overcomes this shortcoming and was used for non-linearity measure-
ments. The last method uses the harmonics acquired during an impedance measurement to determine
the Butler-Volmer equation parameters or to identify a too high excitation. This method would require
a low-noise environment with extremely accurate voltage and current sensors making it very difficult
to apply in practice.

The non-symmetry and non-linearity is particularly pronounced for the imaginary impedance. This
is aggravated by the absence of additional ohmic resistances, which exist for the real part. The mea-
surement deviation introduced by impedance non-linearity is particularly large for low frequencies and
low temperatures. An additional constant current increases the deviation significantly by displacing the
operation point on the Butler-Volmer curve. The value of α in combination with the direction of the
constant current is particularly critical in this case.

97



3 Excitation Amplitude Limit

3.5 Comparison of Measurement Deviation Sources

The equation for the measurement deviation derived in this chapter often assumed worst case condi-
tions. The heat generated inside a cell, in section 3.2, assumed that there is no cooling of the battery
cell during the time the excitation or the additional constant current was applied.
The impedance non-linearity, in section 3.4, simplified the overvoltage with Îm · Z

′

0 where Z ′0 is the
impedance without any deviation from non-linearity. The large signal resistance over a resistance de-
scribed by a Butler-Volmer equation would result in a smaller value for Z0 and therefore in a smaller
overvoltage as the one assumed with this simplification. This simplification therefore overestimates
the measurement deviation.
In reality the deviations are able to compensate each other. The temperature introduced by impedance
heating could be partly compensated by entropy heating. A positive deviation introduced by impedance
non-linearity could be partly compensated by a change in SoC. Due to the worst case estimations, the
summation of all the deviations is invalid. When combining the deviations only their absolute values
can be added and the result of it can only be considered a worst case estimation. Equation 3.148
describes the worst case measurement deviation caused by the excitation current of the impedance
measurement and an additional constant current:

eZ =
∣∣∣∣∣ 1
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2π

∆Z
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∣∣∣∣
T,∆SoC

· Îm
Cel

∣∣∣∣∣︸ ︷︷ ︸
Deviation from sinusoidal measurement current

and SoC dependency of impedance (equation 3.25).
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dependency of impedance (equation 3.46).
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Îm · Tm
2π ·Θ

)
− 1
] ∣∣∣∣∣︸ ︷︷ ︸

Deviation from alternating temperature change caused by the entropy heating of the sinusoidal
measurement current and temperature dependency of impedance (equation 3.74).
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Deviation from alternating temperature change caused by impedance heating of the sinusoidal
measurement current and temperature dependency of impedance (equation 3.90).
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Deviation from the temperature dependency of the impedance and the constant change of temperature
caused by entropy heating or impedance heating of a constant current or the constant

temperature increase caused by a sinusoidal current (equation 3.105).
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Deviation from impedance non-linearity (equation 3.147).
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The term ∆T (t)
∆t is defined as:

∆T (t)
∆t = HGRe

Cth
· Idc + HGRdc

Cth
· Idc2 + HGRfm

Cth · 2
· Îm2 (3.149)
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3.5 Comparison of Measurement Deviation Sources

The combination of the different measurement deviations does not take into account any cross depen-
dencies of the different sources. The impedance non-linearity would actually cause the overvoltage
to be smaller than assumed in the equation for the measurement deviation caused by temperature
change from impedance heating. The changing SoC would also cause all the other parameters, like
entropy, impedance, impedance non-linearity used in the other equations, to change. These cross-
dependencies could turn out to increase or decrease the deviation estimated without considering these
cross-dependencies. Their impact would be rather small and less significant than other simplifications
already done in this chapter. Therefore, they are only mentioned here but not further considered.

Equation 3.148 contains natural constants, such as the Faraday constant F , the gas constant R and
some battery cell specific constants such as the thermal capacity Cth and the electrical capacity Cel
(constant over the time of the impedance measurement). It also contains a lot of battery cell specific
variables. Table 3.5 shows these variables and reveals that most of these variables can be derived from
the impedance Z.
Besides the impedance, only the entropy ∆S, the exchange current i0 and the charge transfer coefficient
α are needed. These values are dependent on the measurement frequency fm, the State-of-Charge SoC
and the cell temperature ϑcell over which they would need to be characterized. The two parameters
for the impedance measurement which can be freely chosen are the excitation amplitude Îm and the
measurement frequency, or its inverse value the measurement period Tm.

battery cell description derived dependent on
variable from fm SoC ϑcell

Z0 impedance with no measurement deviation Z X X X

ZΘ
temperature dependent part of

Z X Xthe impedance ZΘ = Z0 − Z 6Θ.

Θ exponential parameter for the temperature
Z X Xdependency of the impedance

heat generation rate of impedance
HGRfm heating at the measurement frequency Z X X X

HGRfm = Zreal [fm].
heat generation rate of impedance

HGRdc heating for constant current Z X X X
HGRdc = ΣNk=1Zreal

[
k · ( IdcCel )

−1
]
·
(

4·Idc
k·π·
√

2

)2
.

RΩ purely ohmic resistance of the impedance Z X X X
HGRe entropic heat generation rate HGRe = ∆S T

z F ∆S X X
i0 exchange current i0 X X X
α charge transfer coefficient α X X X

Table 3.5: Battery cell specific variables (1st column), their description (2nd column), from which
battery cell parameter they can be derived (3rd column) and from which parameters the
variable is dependent on (4th to 6th column).

Unfortunately, equation 3.148 cannot be solved to the excitation amplitude Îm. But certain scenarios
can be shown to get a better understanding of what sources for measurement deviation introduced
in this chapter are the most relevant ones. Figure 3.59 shows the deviation components caused by a
sinusoidal measurement. The dominant measurement deviation for imaginary and real part is mainly
the deviation from impedance non-linearity. For low frequencies, however, the other parts start to be
important as well. For the 10 mHz measurement the SoC change during the measurement causes a
significant deviation for the real part and a larger deviation than the impedance non-linearity for the
imaginary part.

99



3 Excitation Amplitude Limit
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(a) Impedance real part.
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(b) Impedance imaginary part.
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(c) Impedance modulus.
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(d) Impedance phase.

Figure 3.59: Impedance measurement deviation components depending on measurement frequency fm.
‘Σ’: sum of all components, ‘BV’: deviation from impedance non-linearity, ‘ϑi’: deviation
from temperature increase by impedance heating, ‘SoC’: deviation from State-of-Charge
change, ‘ϑe’: deviation from temperature increase by entropy heating, ‘Vlimit’: deviation
limit from 10 mV-Criterion (cylindrical LFP-cell A.1, SoCstart = 50 %, ϑ = 25 ◦C, Îm =
1 CA).

The measurement deviation introduced by impedance heating is especially large for the imaginary
part of the 10 mHz measurement. The deviation from entropy heating does not have a significant
contribution irrelevant from the measurement frequency, neither for the real nor the imaginary part.

Kiel et al. [63] attributed the impedance change at low frequencies to the change of the charge transfer
resistance at high excitation amplitudes. Here the imaginary measurement deviation at low frequencies
at even a moderate current excitation amplitude of 1 CA is mainly caused by temperature increase.
Kiel et al. used Lead-Acid-Batteries, whereas here an LFP li-ion battery cell was used. Nevertheless,
the contribution of heat on the imaginary part of the impedance at low frequencies should be considered
as a possible source of impedance measurement deviation also for other battery chemistries and battery
types as the one used here.
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3.5 Comparison of Measurement Deviation Sources

Since the real part is much larger than the imaginary part, the modulus deviation is mainly governed
by the deviations in the real part. Only the temperature increase due to impedance heating contributes
noticeably for the 10 mHz measurement to the imaginary part. For the phase deviation it is even the
main contributor for the 10 mHz measurement. In the case shown, the deviation does not get close
to the 1 ◦ threshold. This is mainly due to the fact that it is measured in absolute values and not in
relative terms. The 10 mHz measurement also shows that the main cause of the phase deviation is a
measurement deviation in the imaginary part.
There is no error in the sum for figure 3.59d where the total phase deviation is smaller than the phase
deviation from impedance heating. It is not the direct sum of the single phase deviations of each source.
The sum of the phase deviation is the phase of the sum of the real and imaginary part subtracted from
the phase of the impedance without deviation.

Figure 3.60 shows the measurement deviation for a measurement frequency of 1 Hz and an excitation
amplitude of 3 CA. It is mainly the impedance non-linearity that dominates the measurement deviation
over all temperatures.
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(a) Impedance modulus.
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Figure 3.60: Impedance measurement deviation depending on cell temperature ϑcell. ‘Σ’: sum of all
components, ‘BV’: deviation from impedance non-linearity, ‘ϑi’: deviation from temper-
ature increase by impedance heating, ‘SoC’: deviation from State-of-Charge change, ‘ϑe’:
deviation from temperature increase by entropy heating, ‘Vlimit’: deviation limit from
10 mV-Criterion (cylindrical LFP-cell A.1, SoCstart = 50 %, fm = 1 Hz, Îm = 3 CA).

The scenario shown in this figure as well as in the previous figure 3.59 show that despite large excitation
amplitudes of 1 CA and 3 CA the total deviation stays below the 1 % and 1 ◦ threshold. The deviation
caused when following the 10 mV-Criterion, which says that the voltage response amplitude should
not be higher than 10 mV is indicated in both figures by the black dashed line. These values are often
by several decades below the 1 % and 1 ◦ threshold. This shows that for this kind of battery cell, the
10 mV-Criterion is too restrictive when setting the excitation amplitude.

Figure 3.61 shows the measurement deviation caused with an underlying constant charge current of
1 CA. The deviation is compared to the impedance value at no constant current. The measurement
deviation components are grouped into the deviations caused by the sinusoidal excitation current
(‘SIN’), the constant current (‘DC’) and the impedance non-linearity (‘BV’). The impedance non-
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3 Excitation Amplitude Limit

linearity was not grouped into the first two categories since its contribution to the measurement
deviation cannot be clearly separated into these two parts.
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(a) Impedance modulus.
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Figure 3.61: Impedance measurement deviation depending on measurement frequency fm with under-
lying constant current when comparing the measurement to a measurement at no un-
derlying constant current. ‘Σ’: sum of all components, ‘BV’: deviation from impedance
non-linearity, ‘DC’: deviation from constant current, ‘SIN’: deviation from sinusoidal ex-
citation current (cylindrical LFP-cell A.1, SoCstart = 50 %, ϑ = 25 ◦C, Îm = 1 CA,
Idc = 0.5 CA).

Equation 3.148 shows that the constant current creates a factor that increases the deviation of the
sinusoidal excitation current. The modulus deviation caused with an underlying constant charge
current can be well above 10 % and is almost entirely governed by impedance non-linearity. It also
affects both real and imaginary part in similar ways as can be seen by the fact that the modulus
deviation increases significantly but the phase deviation stays small.

These large deviations only occur when the measured impedance is compared to the impedance value
at no constant current. When the impedance measurement is compared to a measurement at the same
constant current and therefore the same shift on the Butler-Volmer curve but with an infinitesimal
small excitation amplitude, the introduced deviation is only slightly higher than for the cases with no
constant current shown in figure 3.59 and 3.60.
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3.5 Comparison of Measurement Deviation Sources

Chapter Conclusion
This chapter introduced a methodology to determine the systematic impedance measurement devi-

ation caused by the battery under test itself. It derived an equation with which the deviation can be
estimated before the impedance measurement is taken. The deviation estimation is based on previous
measurement results of impedance, entropy and impedance non-linearity described by an introduced
modified Butler-Volmer equation. By setting a desired deviation limit, with this equation, the maxi-
mum excitation current for electrochemical impedance spectroscopy can be determined.

The distinction between ohmic heat and reaction heat is unnecessary when deriving the irreversible
heat generation rate from impedance measurements. The irreversible heat generated can be derived from
the impedance measurements down to very low frequencies and even to the constant charge/discharge
case. A change in Open-Circuit-Voltage was identified as having an impact on the impedance imaginary
part but is independent on the amplitude of the excitation current. The impedance non-linearity was
shown to be also present for the imaginary part. The mathematical description of this non-linearity
would need further research as neither the traditional nor a modified Butler-Volmer equation does per-
fectly fit the measured data.

The biggest contributor to the total deviation of an electrochemical impedance spectroscopy mea-
surement is for most conditions, the impedance non-linearity, followed by the temperature change from
impedance heating, followed by the State-of-Charge change and, least important, the temperature change
from entropy heating. The 10 mV-Criterion was shown to be too restrictive to limit the excitation cur-
rent for the battery cell used. This might be similar for other lithium-ion battery cells. This finding
opens up the possibility of higher excitation currents, which would come with the benefit of less noise
in the impedance measurement.
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Abstract
On-line Electrochemical impedance spectroscopy means that the battery can stay in the location of

operation. Batteries are often in operation and only have little downtime. Therefore measurements
should be done during operation or charging. Alternatively, measurements should at least be done right
after the usage, a time in which the battery is not charged or discharged but the terminal voltage is still
in relaxation. These conditions cause drifts in the voltage measurement, which introduce high mea-
surement deviations into the calculated impedance. These deviations can be suppressed or corrected by
various drift correction methods on the voltage readings.

On-line implementation of an electrochemical impedance spectroscopy system should make use of
already existing components in the battery system in order to save cost. Analog amplifiers are expen-
sive and must be built specifically for the task. The widespread use of power electronic circuits ensures
that around a battery in operation there is often a power electronic circuit that charges it, balances
the capacity of the single cells, or stabilizes the voltage of the battery to a fixed value. These power
electronic circuits can operate as switched-mode amplifiers to generate the desired excitation current
for the on-line electrochemical impedance spectroscopy measurement. Switched-mode excitation causes
narrowband distortions, which alias over the sampling rate to the measurement frequency bandwidth.
These distortions can be avoided by selecting only distortion-free measurement frequencies.

The voltage and current sensors of these devices as well as the voltage readers of the battery moni-
tors inside the battery management system could be used to record the measurement signals. However,
these sensors and converters have a parasitic behavior. The parasitic current shunt inductance can
cause measurement deviations for the real and the imaginary part at high frequencies above the inter-
cept frequency.

Figure 4.1 shows the different parts necessary for an on-line EIS implementation of the excitation with
a switched-mode amplifier. First, the stimulus signal is generated on a micro-controller or read out
from a non-volatile memory. By controlling the power electronic switches of the amplifier the desired
stimulus frequency is modulated on a carrier signal frequency. It then passes through a low pass filter in
order to attenuate the switching frequency before it stimulates the battery. An ADC converts voltage
and current into a discrete series of measurements. They are then transferred to a processor, where
the data is analyzed, compensated and transformed into the frequency-domain. The ratio of voltage
and current in the frequency-domain is the desired complex impedance.

The aspects that can introduce measurement deviations and are of particular interest for an on-line EIS
measurement are covered in this chapter. This chapter is organized in the reverse way as the described
process. Section 4.1 covers various ways of compensating, suppressing and correcting the drift, which
might be present in the voltage readings and the resulting impedance. Section 4.2 of this chapter
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Figure 4.1: Sequence for switched-mode EIS excitation.

discusses influence of the parasitic current shunt inductance on the impedance measurement. Section
4.3 deals with the distortions introduced by the switched-mode amplifier. Baseband harmonics can
introduce measurement deviations directly. The switching frequency and sideband harmonics introduce
measurement deviations over their aliases. It also shows methods to reduce these distortions. These
distortions stay relevant in the last section 4.4 about a distortion-free frequency grid on which the
measurement frequencies can be placed during the stimulus design process.
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4.1 Drift Correction

The word drift is often used in different contexts, which can lead to confusion. In general, a drift
describes the effect, that the system under test is non-stationary. Drifts can be grouped into three
categories:

1. Voltage drift: The voltage at the end of an EIS measurement is not the same as at the beginning.

2. Short term drifts in the state of the battery: The state of the battery at the end of the
measurement period is not the same as the state at the beginning of the measurement period.
These kind of drifts cause the battery to be non-stationary and were covered in chapter 3.

3. Long term drifts in the state of the battery: These are changes in the state of the battery
which take several hours or days. They are so slow, that during the EIS measurement, the state
of the battery can be considered stationary. Kindermann et al. reported such a drift in [64], when
he reported a still changing impedance of his li-ion batteries after several hours of relaxation.
These kind of drifts are not covered in this thesis.

The voltage drift is the main aspect covered in this section. They can cause such high measurement
deviations, that the measured impedance can become completely useless. According to the development
of the voltage during the impedance measurement this chapter categorizes two different drift types:
linear and exponential. These two types can have different reasons why they occur:

1. Linear voltage drift: The battery has been charged or discharged during the measurement
and the OCV at the end of the measurement period is different from the one at the beginning
of the measurement period. The change in OCV can come from a change in SoC or a change in
temperature.

2. Exponential voltage drift: The battery was recently charged or discharged and the OCV is
in relaxation. This leads to an exponential drift, since the battery is approaching a final steady
value.

Steps, due to load changes, and logarithmic-like drifts that occur at the beginning of charging or
discharging processes, although relevant for the real application, are left out in this section.

Figure 4.2 gives an overview of five different drift correction types and at what point in the data analysis
they are employed. One of them, the drift correction in the frequency-domain is a new method. The
five methods are:

1. Time-domain drift correction

2. Windowing

3. Frequency-domain drift correction

4. Time-course interpolation

5. Z-domain drift correction via Z-Hit

Time-domain drift correction and windowing are applied on the time-domain measurement data,
whereas frequency-domain drift correction acts on the already Fourier-transformed voltage measure-
ment. Time course interpolation and Z-domain drift correction performs its correction on the final
impedance data. Time course interpolation does not correct voltage drifts but drifts in the state of the
electrochemical system under study. Z-domain drift correction corrects both, voltage drifts and drifts
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in the state of the electrochemical system. The first three methods correct only a voltage drift and
cannot be combined with each other. The time-course interpolation and Z-domain drift correction can
be additionally applied independent from each other and the first three. The last two methods are not
the focus of this section, but are introduced briefly in the next two paragraphs.

Some electrochemical systems are not stationary and their state changes over time, since their com-
ponents deteriorate or their reactants change during operation. This becomes critical if the change
is significant during the time of one sinus-sweep measurement. If the impedance spectra is recorded
with several consecutive sinus-sweep measurements in order to observe the evolution of the impedance
change, none of the spectra gives a ‘snapshot’ picture of the state of the electrochemical system at
a particular point in time. The time-course interpolation is able to correct the spectra in order to
obtain a ‘snapshot’ spectra. The method relies on several consecutive measurements. Due to the
observed evolution of the impedance for every measurement frequency the governing function how the
impedance changes over time can be determined. With that knowledge, the impedance at any time
instant can be interpolated. Usually the time instant chosen is the one when the high frequencies were
measured during the sinus-sweep measurement. Since they are performed so quickly they can be con-
sidered instantaneous and do not have to be interpolated. Stoynov [115; 116] introduced that method.
Savova-Stoynov and Stoynov [101] further elaborated how to design experiments for tracking changes
in a non-stationary system. Schiller et al. [103] used that method to track the change in impedance of
a fuel cell that changed rapidly during carbon monoxide poisoning.

Ehm et al. described the Z-domain correction via Z-HIT in [38; 39]. The name Z-HIT stands for
impedance (Z), because it is applied to impedance, and Hilbert tranform (HIT), because it uses the
Hilbert transform. Impedance spectra often form a two-pole transfer function, which shows an in-
terrelation between phase and modulus. The Hilbert transform is the logarithmic version of the
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Kramers-Kronig relationship [71; 72]. The Hilbert transform and the Kramers-Kronig relationship can
be used to detect deviations from minimal-phase characteristics and verify whether the impedance
spectra represents a system that fulfills the conditions of stability, causality, linearity and continuity
[1]. However, the integration for both methods has to be done from negative infinity to infinity. The
Z-HIT method operates on a finite bandwidth. The method relies on equation 4.1 [38; 39] in which
the impedance modulus is reconstructed from the impedance phase.

ln |H(ω0)| ≈ 2
π
·
∫ ω0

ωmax

ϕ(ω)d lnω︸ ︷︷ ︸
integration

+ π

6 ·
dϕ(ω)
d lnω

∣∣∣∣
ω0︸ ︷︷ ︸

derivation

+ const.︸ ︷︷ ︸
adjustment

(4.1)

The equation consists of three summands. The first one is the integration of the phase over the
logarithmic frequency from the maximum measured frequency ωmax to ω0, the frequency at which the
curve should be reconstructed. The second summand is the derivative of the phase at ω0. The last
one is a constant value. The reconstructed modulus without this value is, in ideal cases, parallel to the
measured modulus. By fitting the reconstructed modulus onto the measured modulus, this constant
value is determined. The application of the Z-HIT method raises two main questions. On the one
hand it focuses on generating a system with minimal-phase characteristic. It remains unclear whether
the corrected system is the best representation of the measured system. On the other hand it relies
heavily on the phase measurement. Section 3.3 showed that for lower frequencies, the imaginary part
of the impedance carries a measurement deviation due to the Open-Circuit-Voltage change. For low
frequencies this significantly changes the phase of the measured impedance. The Z-HIT correction is
typically done for low frequencies, since these frequencies particularly suffer from drifts. It is unclear
if the Z-HIT method corrects the imaginary impedance deviation shown in section 3.3 or if it would
use the wrong phase in order to calculate a wrong modulus.
Wagner and Schulze applied this method alongside the time-domain drift compensation and the time-
course interpolation in [123] for a fuel cell under carbon monoxide poisoning.

4.1.1 Time-Domain Drift Correction

This method directly uses the time-domain measurements. To correct a given measurement time it
records, the initial voltage y(k0) waits a measurement period NTm and records the voltage y(k0+NTm).
If no drift would be present, these two voltages are the same. If they are different, the method assumes
a linear progression between these two voltages. To rectify any existing drift, it applies equation 4.2
to the stored voltage measurements at every sample y(k0 + k) in order to arrive at a corrected voltage
yc(k0 + k). An adjusted drift is applied after every measurement period. In this way this method can
also correct drifts, which can be approximated by a series of linear drifts. However, this is more and
more difficult the smaller the measurement frequency is. Schiller et al. [102] and Kiel [62] described
this method.

yc(k0 + k) = y(k0 + k)− y (k0 +NTm)− y(k0)
NTm

· k (4.2)

Figure 4.3 shows an example of this method with synthetic data. The measurement data ym with
an amplitude of one has a drift ydrift with a slope of 1 over the measurement period Tm. This drift
causes the imaginary part of the measurement Ym to be less than half of the actual signal Ysin. If the
measurement is compensated by the linear drift compensation, the correct value is recovered.
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Figure 4.3: Time-domain and complex plane representation of a linear drift correction in time-domain
(synthetic data).

4.1.2 Drift Measurement Deviation Suppression by Windowing

The effect of a drift is similar to the one of spectral leakage. The measurement is not periodic over the
measurement time and therefore causes a measurement deviation for all evaluated frequencies. Because
of this similarity, the remedy ‘windowing’ also works for drift measurement deviations. A window forces
the beginning and the end of a measurement sequence to zero. Several proposed windows exist in the
literature. The ones considered here, are the Box window, the Kaiser window, which uses the modified
bessel function of the first kind I with a fixed value for αKaiser of 3 (equation 4.3). And three
windows based on the cosinus function with different complexity: the Hamming window (equation
4.4), the Blackman-Nuttal window (equation 4.5) and the Flat-Top window (equation 4.6).

wK(k) =
I0

(
πα
√

1− ( 2k
N−1 − 1)2

)
I0(πα) (4.3)

wH(k) = a0 − a1 · cos
(

2πk
N − 1

)
with a0 = 0.54, a1 = 0.46 (4.4)

wBN (k) = a0 − a1 · cos
(

2πk
N − 1

)
+ a2 · cos

(
4πk
N − 1

)
− a3 · cos

(
6πk
N − 1

)
with a0 = 0.3636, a1 = 0.4892, a2 = 0.1366, a3 = 0.01064 (4.5)

wFT (k) = a0 − a1 · cos
(

2πk
N − 1

)
+ a2 · cos

(
4πk
N − 1

)
− a3 · cos

(
6πk
N − 1

)
+ a4 · cos

(
8πk
N − 1

)
with a0 = 1.0, a1 = 1.93, a2 = 1.29, a3 = 0.388, a4 = 0.028 (4.6)

Figure 4.4 shows the trade-off that is made when using a window function. The window reduces the
frequency resolution of the measurement.

A minimum number of measurement periods wx can be defined, which is necessary for the window not
to suppress the actual measurement frequency. It can be identified in figure 4.4 at the point at which
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Figure 4.4: Comparison of the frequency response of the Box, Kaiser, Hamming,
Blackman-Nuttal and the Flat-Top window in combination with a
DFT (fm = 10 Hz, Ta = 10 · Tm).

the window changes from the passband to the stopband. It is wx ≈ 1 for the Box window, wx ≈ 1.5 for
the Kaiser window (although 2 periods are necessary in this case to avoid spectral leakage), wx ≈ 2 for
the Hamming window, wx ≈ 4 for the Blackman-Nuttal window and wx ≈ 5 for the Flat-Top window.

The benefit of windowing compared to the time-domain drift correction is that the single measurements
do not have to be stored until the end of the period in order to window them. Every new incoming
measurement is directly multiplied by its respective factor of the window and then transferred to the
Fourier transformation. Afterwards it can be discarded.

Figure 4.5 shows an example of this method with a similar synthetic data as in figure 4.3 for the
time-domain drift correction. The same drift is stretched out over 10 periods in order to comply with
the minimum number of measurement periods for every applied window. The figure 4.5a shows the
measurement signal multiplied with the Blackman-Nuttal window. The multiplication causes the signal
to go to zero at the beginning and at the end of the measurement time. Because of this, the method
does not really compensate the measurement deviation; it rather suppresses it. Figure 4.5b includes
all the introduced windows. Only the Blackman-Nuttal and the Flat-Top window can suppress the
measurement deviation from the drift sufficiently. The Kaiser and the Hamming window are still away
from the actual value. The threshold applied for this assessment is again the 0.1% and 0.1◦ deviation
limit introduced in chapter 3. It seems that the suppression below 10−4 of the Blackman-Nuttal and
the Flat-Top window is necessary in order to comply with this threshold.

4.1.3 Drift Correction in the Frequency-Domain

Each of the two methods introduced in the previous sections had one significant shortcoming. The
drift correction in the time-domain needed to store the data during one entire measurement period,
before it could apply the correction and start with the Fourier transformation. The windowing method
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Figure 4.5: Time-domain and complex plane representation of a linear drift suppression by windowing
(synthetic data).

required a minimum number of measurement periods. The more effective the window was to suppress
the measurement deviation caused by a drift the more periods it required. The drift correction in the
frequency-domain can overcome both of these shortcomings. It does not need to store measurement
data and it only requires one period of the measurement frequency.

A drift of a voltage or current signal can be interpreted as a simple superposition of the drift signal
and the sinusoidal response to the excitation signal. Transformed into the frequency-domain, the same
superposition of the two signals still takes place (see equations 4.7).

F {ydrift + ysin} = Ydrift + Ysin (4.7)

The Fourier transformation of the pristine response of the actual measurement signal Ysin only appears
at the measurement frequency itself. The Fourier transformation of the drift signal Ydrift also appears
at other frequencies. Its Fourier transformed signal can be separated into its real and imaginary part,
whose calculation can be done separately (see equation 4.8 to 4.10).

cn = 2
T

∫ T

0
ydrift · e−j2π

n
T tdt = an − jbn (4.8)

an = 2
T

∫ T

0
ydrift · cos

(
2π n
T
t
)

dt (4.9)

bn = 2
T

∫ T

0
ydrift · sin

(
2π n
T
t
)

dt (4.10)

The idea of the frequency-domain drift correction is that the Fourier transformed measurement signal
is compensated by the part that was caused by the drift signal. This results in the pristine response of
the impedance. The difficulty is that only both signal can be measured at the measurement frequency.
By calculating various harmonic values of the real part an and imaginary part bn and knowing their
dependency on each other, the drift value at the measurement frequency a1 and b1 can be estimated.
The next sections show these dependencies between the harmonics for a linear and an exponential drift.
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To a apply the method in practice, it needs some additional Fourier transformations on harmonics of the
measurement frequency running at the same time as the Fourier transformations of the measurement
frequency. Like the windowing, the time-domain data does not need to be stored. Like the time-
domain drift correction, it can be applied even when only one period is measured. A similar method
was patented by Petrescu et al. [86; 87], presented by Diard and Petrescu [35] and is used in EIS meters
from Bio-logic Instruments [13]. This uses two additional Fourier transformations, one to the left of
the measurement frequency and one to the right. It takes the average of both and assumes that this
is the contribution of the drift at the measurement frequency. It therefore corrects the measurement
frequency by this value. This method is applied separately for the imaginary part and for the real
part of the impedance. This approach does not completely coincide with the analysis given in the next
two section, neither for the linear drift, nor for the exponential drift. Measuring half the measurement
frequency means that the measurement time has to be twice as long, which is unnecessary when
analyzing the dependencies of the harmonics as done in the next two sections.

4.1.3.1 Linear Drift

A linear drift A · t + B has actually two parameters A and B. However, when transforming the drift
into the frequency-domain, the constant part B disappears. Therefore a linear drift can be considered
as a one parameter function A · t.
The real part fundamental a1 and harmonics an of the linear drift is Fourier transformed separately
(see equation 4.13) from the imaginary part fundamental b1 and harmonics bn (see equation 4.17).

ydrift = A · t (4.11)

an = 2
Tm

∫ Tm

0
A · t · cos

(
2π n

Tm
t

)
dt (4.12)

= 2A
Tm

∫ Tm

0
t · cos

(
2π n

Tm
t

)
dt (4.13)

Starting with the real part, the integral for the slope of equation 4.13 is solved by using lemma C.13,
but ends up to be zero (see equation 4.14)

an = 2A
T

[
cos
(
2π nT t

)(
2π nT

)2 +
t · sin

(
2π nT t

)
2π nT

]T
0

an = 2A
T


cos (2πn)(

2π nT
)2︸ ︷︷ ︸

= 1

(2π n
T )2

− cos (0)(
2π nT

)2︸ ︷︷ ︸
= 1

(2π n
T )2


+ 2A

T

T · sin (2πn)
2π nT︸ ︷︷ ︸

=0

− 2A
T

0 · sin (0)
2π nT︸ ︷︷ ︸

=0

 (4.14)

an = 0 (4.15)

With this information we can state the
alin,n-rule for calculating the fundamental real part at the measurement frequency:
The real part of a linear drift is 0 (see equation 4.16). The real part at the measurement frequency a1
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does not need to be corrected.

alin,n = a1 (4.16)

Continuing with the imaginary part, the integral for the slope can be solved by using lemma C.12.
Compared to the real part, the imaginary part is not zero.

ydrift = A · t

bn = −2
Tm

∫ Tm

0
A · t · sin

(
2π n

Tm
t

)
dt

= −2A
Tm

∫ Tm

0
t · sin

(
2π n

Tm
t

)
dt (4.17)

bn = −2A
Tm

sin
(

2π n
Tm
t
)

(
2π n

Tm

)2 −
t · cos

(
2π n

Tm
t
)

2π n
Tm


Tm

0

bn = −2A
Tm


sin (2πn)(
2π n

Tm

)2

︸ ︷︷ ︸
=0

− sin (0)(
2π n

Tm

)2

︸ ︷︷ ︸
=0

−
−2A
Tm


Tm · cos (2πn)

2π n
Tm︸ ︷︷ ︸

=Tm·cos(2πn)
2π n
Tm

− 0 · cos (0)
2π n

Tm︸ ︷︷ ︸
=0



bn = 2A
Tm
· Tm ·

=1︷ ︸︸ ︷
cos(2πn)

2π n
Tm

(4.18)

bn = ATm
π
· 1
n

(4.19)

The k = 2x-harmonics of the imaginary part form a geometric series, where the value of one series
element is equal to the sum of all series elements which follow. As any geometric series, the sum over
all its elements has a finite value (see equation 4.20).

∞∑
k=0

p0q
k = p0

1− q with p0 = AT

π
, q = 1

2 , k = 2, 4, 8, 16, 32, ... (4.20)

The value of the harmonic at every point in the series is always the sum of the remaining elements.
Two rules can be stated for the imaginary part:

1. blin,ΣN-rule for calculating the fundamental imaginary part at the measurement
frequency:
The real imaginary part over k = 2x forms a geometric series. The fundamental imaginary part
b1 is corrected by the sum of N series elements and the last element is added twice (see equation
4.21).

blin,ΣN = b1 −
N∑
n=1

b2n + b2N (4.21)
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2. blin,n-rule for calculating the fundamental imaginary part at the measurement fre-
quency:
The values of the harmonics for the imaginary part decrease with higher harmonic numbers in a
1
n way. The fundamental imaginary part b1 is corrected by the nth harmonic by multiplying its
value by n (see equation 4.22).

blin,n = b1 − n · bn (4.22)

Figure 4.6a shows that for a linear drift the deviation of the real part is constant for all harmonics
and almost zero. Figure 4.6b shows a simple ”Division-by-2” pattern for the imaginary part of the
linear drift for k = 2x harmonics. The progress of the Fourier summation of the imaginary part reveals
another interesting possibility. The k = 2x harmonics arrive at half the period at half their final value.
On the other hand, all the k = 2x harmonics arrive at the same value at half the period. This allows
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Figure 4.6: Harmonics calculation of the real and imaginary part for a linear drift (synthetic data).

to perform the Fourier transformation for the first half of the period for one harmonic and for the
other half for another harmonic. The summation, carried out during the Fourier transformation for
the other harmonic would start again from zero after the first half. Since the real part is always zero,
it does not have to be calculated at all.

The two rules, blin,ΣN and blin,n, are applied to synthetic data in order to show their applicability.
Figure 4.7a shows a linear drift ydrift, which distorts the impedance measurement Ym as shown in
figure 4.7b. Equation 4.23 shows the blin,ΣN -rule for calculating YlinΣ64. Equation 4.24 shows the
blin,n-rule for calculating Ylin4.

YlinΣ64 = Ym − j

[ 6∑
n=1

b2n + b64

]
(4.23)

Ylin4 = Ym − j · 4 · b4 (4.24)
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Figure 4.7: Time-domain, complex plane and frequency-domain representation of a linear drift correc-
tion in the frequency-domain (synthetic data).

Figure 4.7b shows two corrections of a measurement distorted by a drift Ym. The first one YlinΣ64

was done with equation 4.23 using harmonics up to the 64th. The second one Ylin4 was done with
equation 4.24. Both methods compensate the drift deviation on synthetic data. Equation 4.23 uses
several higher harmonics. This comes with the benefit, that it creates a mean over several measurement
values. However, higher harmonics are small compared to the fundamental. They are used with high
multiplication factors. These factors also amplify the noise which is measured with the harmonics.
When equation 4.24 is used with the lowest harmonic possible the associated noise is hardly amplified.
Figure 4.7c and 4.7d show the real and imaginary part in the frequency-domain if the measurement is
evaluated for a continuous frequency range from 0 Hz to 10 · fm. Please note that except for integer
multiples of the measurement frequency, spectral leakage occurs.

4.1.3.2 Exponential Drift

The exponential drift is considered as a two parameter function A · e− 1
τ ·t with the factor A and the

exponential time parameter τ . As for the linear drift, the Fourier transformation is done separately
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4.1 Drift Correction

for the real part fundamental and harmonics an (see equation 4.25), and for the imaginary part
fundamental and harmonics bn (see equation 4.32).

Lemma C.15 solves the integral 4.25 for the real part to equation 4.26.

ydrift = A · e− 1
τ ·t

an = 2A
Tm

∫ Tm

0
e−

1
τ ·t · cos

(
2π n

Tm
t

)
dt (4.25)

an = 2A
Tm

e− 1
τ ·t
(
− 1
τ · cos

(
2π n

Tm
t
)

+ 2π n
Tm
· sin

(
2π n

Tm
t
))

1
τ2 +

(
2π n

Tm

)2


Tm

0

an = 2A
Tm

 − 1
τ

1
τ2 +

(
2π n

Tm

)2

e−Tmτ · cos (2πn)︸ ︷︷ ︸
=1

−e− 0
τ · e0 · cos (0)︸ ︷︷ ︸

=1




+ 2A
Tm

 2π n
Tm

1
τ2 +

(
2π n

Tm

)2

e−Tmτ · sin (2πn)︸ ︷︷ ︸
=0

−e− 0
τ · e0 · sin (0)︸ ︷︷ ︸

=0




an = 2A
1
τ

Tm
τ2 + 4π2 1

Tm
n2

(
1− e−

Tm
τ

)
(4.26)

Substituting the terms in equation 4.26 with
pa = 2A

(
1− e−Tmτ

)
, q = Tm

τ2 , r = 4π2 1
Tm

yields a simplified equation for the harmonics:

an = pa
q + rn2 (4.27)

The harmonic of any number n1 can then be put into relation to another harmonic of any other number
n2:

an1

an2
=

pa
q+rn2

1
pa

q+rn2
2

an1

an2
= q

q + rn2
1

+ rn2
2

q + rn2
1

an1

an2
= 1

1 + r
qn

2
1

+
r
qn

2
2

1 + r
qn

2
1

(4.28)

an1

an2
·
(

1 + r

q
n2

1

)
= 1 + r

q
n2

2

an1

an2
+ an1

an2
· r
q
n2

1 −
r

q
n2

2 = 1

r

q
=

1− an1
an2

an1
an2

n2
1 − n2

2
(4.29)

aexpn1/n2-rule for calculating the fundamental real part at the measurement frequency:
The relationship between two harmonics is determined by calculating the term r

q with equation 4.30.
The index n1

n2
is used to indicate with which harmonics this term was calculated. Once determined,
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4 On-line Electrochemical Impedance Spectroscopy Measurements

the real part at the measurement frequency is calculated with equation 4.31. It is similar to equation
4.28 with n1 = 1. The index expn1/n2 is used to indicate based on which harmonics the term r

q was
calculated. For equation 4.31 one of the harmonics an1, an2 for calculating r

q or any other harmonic
can be used. It is best to use the highest harmonic which is free of systematic measurement deviations
in order to keep the amplification of potentially present noise as low as possible.

r

q n1
n2

=
1− an1

an2
an1
an2

n2
1 − n2

2
(4.30)

aexpn1/n2 =

 1
1 + r

q n1
n2

+
r
q n1
n2

n2
x

1 + r
q n1
n2

 · anx (4.31)

For the imaginary part, lemma C.14 solves its integral 4.32 to equation 4.33.

ydrift = A · e− 1
τ ·t

bn = 2A
Tm

∫ Tm

0
e−

1
τ ·t · sin

(
2π n

Tm
t

)
dt (4.32)

bn = 2A
Tm

e− 1
τ ·t
(
− 1
τ · sin

(
2π n

Tm
t
)
− 2π n

Tm
· cos

(
2π n

Tm
t
))

1
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2π n

Tm

)2


Tm
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(
2π n
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=0
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bn = 2A
2π n

Tm
Tm
τ2 + 4π2 1

Tm
n2

(
1− e−

Tm
τ

)
(4.33)

Substituting the terms in equation 4.26 with
pb = 4πA

Tm

(
1− e−Tmτ

)
, q = Tm

τ2 , r = 4π2 1
Tm

yields a simplified equation for the harmonics:

bn = pb · n
q + rn2 (4.34)
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The harmonics can then be put into relation to each other:

bn1

bn2
=

pb·n1
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1
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2
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2
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(
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bexpn1/n2-rule for calculating the fundamental imaginary part at the measurement fre-
quency:
The process is the same for the imaginary part as for the real part with the aexpn1/n2-rule. The
relationship between two harmonics is determined by calculating the term r

q with equation 4.37. The
index n1

n2
is used to indicate with which harmonics this term was calculated. Once determined, the

imaginary part at the measurement frequency is calculated with equation 4.38. It is similar to equation
4.35 with n1 = 1. The index expn1/n2 is used to indicate based on which harmonics the term r

q was
calculated. For equation 4.38 one of the harmonics an1 or an2 for calculating r

q or any other harmonic
can be used. It is best to use the highest harmonic which is free of systematic measurement deviations
to keep the amplification of the potentially present noise as low as possible.

r

q n1
n2

=
n1
n2
− bn1

bn2
bn1
bn2
n2

1 − n1n2
(4.37)

bexpn1/n2 =

 1
nx

1 + r
q n1
n2

+
r
q n1
n2

nx

1 + r
q n1
n2

 · bnx (4.38)

Figure 4.8a shows that the deviation of the real part is not constant for an exponential drift as it is
for a linear drift. It decreases fast with higher harmonics due to the n2 term in equation 4.26. In this
example a4 is already very close to zero. Figure 4.8b does not show the simple ‘Division-by-2’ pattern
figure 4.6b shows for the linear drift. The value of the harmonics for the imaginary part decreases
much slower than for the real part.

By using the aexpn1/n2-rule and bexpn1/n2-rule the combined measurement of the voltage response and
the drift during an EIS measurement Ym is corrected by using equation 4.39

Yexpn1/n2 = Ym −
(
aexpn1/n2 − jbexpn1/n2

)
(4.39)

Two approaches were used one with n1 = 2 and n2 = 4, labeled Yexp2/4 and one with n1 = 4 and
n2 = 8, labeled Yexp4/8. The results of these two approaches can be seen in figure 4.9b. Both are
applied on the synthetic signal distorted by an exponential drift Ym. The exponential correction works
for both approaches. Figure 4.9c and 4.9d show the real and imaginary part in the frequency-domain if
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Figure 4.8: Harmonics calculation of the real and imaginary part for an exponential drift (synthetic
data).

the measurement is evaluated for a continuous frequency range from 0 Hz to 10 ·fm. Except for integer
multiples of the measurement frequency, a spectral leakage deviation occurs for the other frequencies.
For the correction, various harmonics can be used in order to correct the measurement. The higher
the order of the harmonic, the stronger measurement noise is amplified.

The exponential drift correction in the frequency-domain incorporates the linear drift correction in the
frequency-domain. A linear drift can be seen as an exponential drift with a very large time constant τ
compared to the measurement period Tm. When substituting the exponential function with a Taylor
series expansion, which is stopped after the linear element (1st derivative), equation 4.13 and 4.17 turn
into equation 4.25 and 4.32. Only the linear slope A changes to the value −Aτ .

4.1.4 Comparison of Correction Methods

The application of the three methods introduced so far is mutually exclusive. Determining the effec-
tiveness of the three methods is therefore of interest. Figure 4.10a and table 4.1 show the method
applied to a sinusoidal frequency with 2 measurement periods distorted by a linear drift. The linear
drift correction in the frequency-domain Yfdlin4, the linear drift correction in the time-domain Ytd and
the exponential drift correction in the frequency-domain Yfdexp2/4 are all able to correct that mea-
surement deviation. The Blackman-Nuttal window YwBN does not work properly since the minimum
number of measurement periods wx is not met. For the same drift with a measurement of 4 periods
the Blackman-Nuttal window is able to suppress the drift measurement deviation sufficiently. The
Hamming window YwH does work but has an insufficient suppression.
The method proposed by Petrescu et al. [86; 87] was applied by evaluating the measurement data at
half the measurement frequency and one and a half the measurement frequency. Due to the size of
the frequency bins the Fourier transformation cannot be performed at frequencies which are closer to
the measurement frequency. This is only possible if the more periods are measured, which is unprac-
tical since it extends the total measurement time. Figure 4.10a and table 4.1 show that this method
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Figure 4.9: Time-domain, complex plane and frequency-domain representation of an exponential drift
correction in the frequency-domain (synthetic data).

overcompensates the imaginary drift deviation (see YfdPetrescu-value). Section 4.1.3.1 showed that the
imaginary part for a linear drift shows a 1

n relationship. Assuming that the imaginary part at half
the measurement frequency has a value of 6. In this case the imaginary part at the measurement
frequency which is double that frequency has a value of 3 and the imaginary part at one and a half
the measurement frequency is triple that frequency has a value of 2. Petrescu’s method now takes
the average of 6 and 2 and corrects the imaginary part wrongly at the measurement frequency by 4.
Figure 4.10a shows this overcompensation by a factor of 4/3 of the actual deviation.

Figure 4.10b and table 4.2 show the same comparison for an exponential drift with 2 periods. The linear
drift correction in the frequency-domain Yfdlin4 and the linear drift correction in the time-domain Ytd
only correct the imaginary part of the impedance. Both methods overcompensate the imaginary drift
measurement deviation, since the applied rules from both methods, are not suitable for an exponential
drift. If the measurement is taken over more periods the correction of the imaginary part becomes
better. Due to the additional periods, the linear drift correction in the time-domain Ytd as well as in
the frequency-domain Yfdlin4 would be then able to approximate the exponential drift by several linear
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Figure 4.10: Correction comparison of an exponential drift (synthetic data).

ones, significantly improving the correction of the imaginary part. However, the real part would still
not be corrected as these two methods are not operating on the real part.
The exponential drift correction in the frequency-domain Yfdexp2/4 is able to correct the imaginary
and the real measurement deviation. Both window functions do make the measurement better but do
not suppress the entire deviation. As for the linear drift, Petrescu’s method improves the measurement
but overcompensates it and leaves it with a quite high measurement deviation.

Yc
Ysin − Yc Ym − Yc

∆Yreal ∆Yimag ∆Y ∆Yreal ∆Yimag ∆Y
Ytd 0.0000 0.0000 0.0000 0.0000 0.1591 0.1591
Yfdlin4 0.0000 0.0000 0.0000 0.0000 0.1591 0.1591
Yfdexp2/4 0.0000 0.0000 0.0000 0.0000 0.1591 0.1591
YwH 0.0000 0.0216 0.0216 0.0000 0.1808 0.1808
YwBN -0.1879 0.1077 0.2166 -0.1879 0.2668 0.3264
YfdPetrescu 0.0000 0.0531 0.0531 0.0000 0.2122 0.2122

Table 4.1: Numerical data for the correction comparison of a linear drift from figure 4.10a (corrected
signal Yc, ∆Y =

√
∆Y 2

real + ∆Y 2
imag).

Yc
Ysin − Yc Ym − Yc

∆Yreal ∆Yimag ∆Y ∆Yreal ∆Yimag ∆Y
Ytd -0.0504 -0.0182 0.0535 0.0000 -0.1574 0.1574
Yfdlin4 -0.0504 -0.0169 0.0531 0.0000 -0.1562 0.1562
Yfdexp2/4 0.0000 0.0000 0.0000 0.0504 -0.1392 0.1481
YwH 0.0235 0.0089 0.0251 0.0739 -0.1303 0.1498
YwBN -0.0157 -0.0501 0.0525 0.0346 -0.1894 0.1925
YfdPetrescu 0.0364 -0.0137 0.0389 0.0867 -0.1530 0.1759

Table 4.2: Numerical data for the correction comparison of an exponential drift from figure 4.10b
(corrected signal Yc, ∆Y =

√
∆Y 2

real + ∆Y 2
imag).

Up to now only the correction for one signal at one frequency was compared. The impedance is a ratio
of two signals, taken at several frequencies. Figure 4.11 shows a sinus-sweep measurement performed
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4.1 Drift Correction

with a cylindrical Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) (NCA) cell and the Bio-Logic
SP300 [14] with an additional constant discharging current of 1 A. Because of this constant current,
the voltage experienced a drift.
The Zref curve was measured immediately afterwards with the same settings except the constant
discharge current. The current and voltage were measured additionally with a high resolution data
acquisition system (DEWEsoft®). The DFT on the externally measured data resulted in the impedance
Zm, for which almost every frequency is distorted. The Bio-Logic SP300 measured Zbio without the
drift correction box checked in their software. The better shape of the curve suggests that some kind of
correction mechanisms are still applied by the instrument. However, once the sinus-sweep measurement
enters frequencies below 1 Hz the impedance values remain wrongly at the local minima. The time-
domain drift correction Ztd is able to redraw the diffusion branch but the curve is not smooth and
‘jumps’ from one frequency to the other. Lastly, the frequency-domain exponential drift correction
Zfdexp2/4 is able to correct the measurement deviations. But also for this method some ‘jumps’ are
visible.
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Figure 4.11: Comparison of different correction methods on a EIS sinus-sweep measurement (cylindri-
cal NCA cell A.4).
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Section Conclusion
This section discussed various ways of correcting a drift in an electrochemical impedance spec-

troscopy measurement. It focused on voltage drifts and not on drifts in the state of the battery. For
the voltage drift it compared three methods: time-domain correction, windowing and frequency-domain
correction. It introduced a new method in the frequency-domain. this method takes advantage of the
information that can be derived from harmonics of the measurement frequency. For linear and ex-
ponential drifts, there are fixed relationships between the real and imaginary part of the fundamental
frequency and its harmonics. For a linear drift, evaluating one harmonic is sufficient, because a linear
drift has only one variable: the slope. For an exponential drift two harmonics are necessary, since an
exponential drift y = A · e−t/τ has two variables: the time constant in the exponent and the constant
factor before the exponent. Using a peculiarity, the computational effort of the linear drift correction
can be reduced to a quarter of a full Fourier transformation: only the imaginary part has to be evaluated
until half the frequency and can then be multiplied by two. The variables themselves, although possible,
do not need to be calculated. Only the ratios between the harmonics are important. When applying the
exponential drift rules, it already incorporates the linear drift rules, making it therefore unnecessary to
identify which kind of drift is present.

This method has an advantage especially for on-line electrochemical impedance spectroscopy, where
the calculations are done on an embedded controller for which fast memory is scarce. Compared to the
linear time-domain drift correction, the embedded controller does not need to store all the measurement
data in order to correct it at the end of half the measurement period. It is applicable to a single period
impedance measurement and therefore still keeps the time benefit compared to the windowing method
for which it is mandatory to record several periods of the measurement frequency.
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4.2 Impedance Measurement Deviation Caused by the Parasitic
Current Shunt Inductance

Most commercial impedance meters measure the current over a shunt resistance. The voltage drop
over the shunt resistance is linear to the current that flows through it. This is an inexpensive way to
measure the current. Because of this, an on-line EIS meter would most likely use a shunt resistance to
measure current. This section shows how and by which value an measurement deviation is introduced
by the parasitic inductance of the current shunt of an impedance meter.
Like all electric and electronic components, shunt resistors have a parasitic behavior. The parasitic
behavior that is most dominant for a shunt resistance is its inductance. This becomes most relevant for
high frequencies, where the battery can be simplified by an equivalent circuit of the ohmic resistance
RΩ and the inductance Lbat. The shunt resistor can be seen as the actual ohmic resistance Rsh in
series with a parasitic inductance Lsh. Figure 4.12 shows the simplified equivalent circuits and formula
symbols used in this section.

Vbat

Ibat

RΩ

V0

Lbat

RshLsh

VZm =
Vbat − V0

Vsh

ADC

signal
generator

and
amplifier

EIS measurement system

Ish

Figure 4.12: Simplified schematic of a EIS meter and simplified equivalent circuit of a battery.

The voltage drop over the shunt is

Vsh = Ish · (Rsh + j · 2πfm · Lsh)

Shunts are usually calibrated with their DC resistance. A constant current is forced through the
resistor and the voltage is measured. An amplification factor Gsh = 1

Rsh
is determined in this way and

stored in the impedance meter. The measured current therefore becomes:

Im = Gsh · Vsh = 1
Rsh
· Vsh

Im = Ish ·
(

1 + j · 2πfm ·
Lsh
Rsh

)

The impedance measurement in galvanostatic mode is performed by driving a current through the
battery and measuring the voltage response. In this case the actual current Ish, not the measured
current Im, flows through the battery:

VZm = Ish · Zm
VZm = Ish · (RΩ + j · 2πfm · Lbat)
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The impedance is calculated by dividing the voltage response through the current measured over the
shunt:

Zm = VZm
Im

= VZm,real + jVZm,imag
Ish,real + jIsh,imag

= Ish ·RΩ + jIsh · 2πfm · Lbat
Ish + jIsh · 2πfm · LshRsh

Zm =
(RΩ + j · 2πfm · Lbat) ·

(
1− j2πfm · LshRsh

)
1 + 4π2fm2 · L

2
sh

R2
sh

Zm =
RΩ + 4π2fm

2 · Lbat · LshRsh

1 + 4π2fm2 · L
2
sh

R2
sh︸ ︷︷ ︸

Zm,real

+j
2πfm ·

(
Lbat −RΩ · LshRsh

)
1 + 4π2fm2 · L

2
sh

R2
sh︸ ︷︷ ︸

Zm,imag

(4.40)

In equation 4.40 Ish disappears and only battery and shunt variables remain. Equation 4.40 shows that
the real part of the measured impedance increases at higher frequencies and moves towards Lbat

Lsh
·Rsh.

It increases more rapidly the larger the ratio Lbat
RΩ

is compared to the ratio Lsh
Rsh

. The imaginary part
of the measured impedance decreases with higher frequencies and moves towards zero. The measured
impedance is positive, if Lbat

RΩ
> Lsh

Rsh
, is negative, if Lbat

RΩ
< Lsh

Rsh
, and zero, if Lbat

RΩ
= Lsh

Rsh
independent

from the measurement frequency.

For the relative deviation, the dependencies on frequency are again different. Figure 4.13 shows the
measurement deviation for the real and the imaginary part for the battery parameters of a cylindrical
LFP cell (A.1) and various values of LshRsh

.
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Figure 4.13: Measurement deviation from parasitic shunt impedance for different values of LshRsh
(battery

values from cylindrical LFP cell A.1, RΩ = 16.2 mΩ, Lbat = 228 nH).

Figure 4.13 shows that the shunt inductance not only affects the imaginary part, but also the real part
with increasing frequency. This should be the explanation for the peculiarity that is often seen for
the high frequency part of the Nyquist plot. The Nyquist curve ‘twists’ counter-clockwise for higher
frequencies. This effect is often referred to as skin effect [56]. Skin effect describes the effect that at
high frequencies the current is displaced from the center of a conductor to its surface. However, this
effect usually only becomes relevant for frequencies above 10 kHz. Figure 4.14 shows the Nyquist plot
of an LFP cell (A.1). At 10 kHz, the ‘twist’ is already noticeable.

The ratio Lsh
Rsh

can be identified by fitting the measurement data, assuming a fixed value for RΩ and
Lbat. Figure 4.14 shows the results of the identification process. The minimum real impedance over
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4.2 Impedance Measurement Deviation Caused by the Parasitic Current Shunt Inductance

the spectrum was used as RΩ and the battery inductance was calculated from the imaginary part at
50 kHz by L = Zimag

ω . When fitting the real part of equation 4.40 to the measurement data from
3.5 to 25 kHz, the Lsh

Rsh
ratio was identified to be 2.0 · 10−6 s, which is a value in a reasonable range

and reconfirmed by similar values obtained by this fitting process with other battery cell impedances
measured with the same current range. With these values the ‘twist’ can be redrawn with only the
equation 4.40, the identified ratio Lsh

Rsh
and the fixed battery parameters RΩ and Lbat. For very high

frequencies above 25 kHz, the imaginary part increases in a way equation 4.40 cannot represent. In
this frequency range, other parasitic effects in the impedance meter could become relevant or it could
be an actual imaginary impedance change of the battery cell.
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Figure 4.14: Nyquist curve ‘twists’ counter-clockwise for higher measurement frequencies explained by
the parasitic shunt inductance. EIS measurements and fit with equation 4.40 (cylindrical
LFP cell A.1, fm = 100 mHz to 50 kHz).

Section Conclusion
The measurement deviation introduced by the parasitic inductance of the shunt resistor was derived.

The measurement deviation is not only imaginary, but it also affects the real part for higher frequen-
cies. It increases the measured real part and makes the Nyquist curve ‘twist’ counterclockwise for high
frequencies. This explains this peculiarity of the Nyquist plot, often referred to as skin effect.
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4 On-line Electrochemical Impedance Spectroscopy Measurements

4.3 Narrowband Distortions Caused by Switched-mode Excitation

4.3.1 Harmonics Caused by Switched-mode Excitation

The content of this section has been published in parts in [65].

The most simplest form of a switched-mode amplifier is a half bridge with a low pass filter as shown
in figure 4.15. A half bridge is sufficient since the battery can be charged and discharged by switching
between the supply voltage Vdc higher than the battery voltage and the negative terminal of the battery.
This topology can be found in any bidirectional vehicle charger and could therefore serve as a low-cost
implementation.

Vdc Filter Battery

Va

Bidirectional
Charger

Figure 4.15: Half Bridge for switched mode exci-
tation.
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Figure 4.16: Pulse width modulation process
with a sawtooth triangle carrier and
a sinusoidal reference signal (M=
0.7, synthetic data).

In a switched mode amplifier the desired measurement frequency fm is not directly generated, but
modulated onto a carrier frequency fc, which is the switching frequency of the amplifier. For the
modulation process the measurement frequency becomes the modulated frequency. Figure 4.16 shows
this process. A reference signal is compared to the sawtooth carrier signal. If the reference signal is
larger than the carrier signal the pulse-width modulation (PWM) output signal is turned high, which
turns on the upper switch of the half bridge. With the modulation process several other frequencies
with different amplitudes are present at the output of a non-filtered switched-mode amplifier whose
output voltage can be described as follows [50]:

va(t) = C00

2
+ C01 e

jωmt+θm

+
∞∑
n=2

C0n e
jn(ωmt+θm)

+
∞∑
m=1

Cm0 e
jm(ωct+θc)
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+
∞∑
m=1

∞∑
n=−∞
(n6=0)

Cmn e
jn(ωmt+θm)+jm(ωct+θc) (4.41)

Each line of equation 4.41 corresponds to the respective line of the following list of voltage components:

1. The DC offset

2. The fundamental modulated frequency ωm

3. Harmonics of the modulated frequency (with n being the baseband harmonics index)

4. The carrier frequency ωc and the harmonics of the carrier frequency (with m being the carrier
harmonics index)

5. Sidebands of the fundamental frequency around the carrier frequency and the harmonics of the
carrier frequency (with m being the carrier harmonics index and n being the sideband harmonics
index)

Figure 4.17 shows these components for a ωc
ωm

- ratio of 16 and a modulation index of M = 0.10. The
modulation index is defined as the ration of the actual mean output voltage to the maximum possible
output voltage M = Va

Vdc
. This results in a THD value of 13.7 which means that the geometric sum of

all harmonic amplitudes is 13.7 times higher than the amplitude of the measurement frequency (see
equation 4.42).

THD =

√∑∞
n=2 C

2
0n +

∑∞
m=1

∑∞
n=−∞ C2

mn

C01
(4.42)

Although a high value, it is not surprising since the modulation index is very low withM = 0.10. Such
a small modulation index is necessary due to the small current which is needed for an EIS measurement
and the capability of delivering very high currents for a typical half bridge of a bidirectional vehicle
charger.
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Figure 4.17: Fundamental, harmonics and sidebands of a sawtooth trailing edge pulse width modula-
tion process ( ωcωm = 16 and M = 0.10, synthetic data).
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4.3.2 Impedance Measurement Deviation Caused by Narrowband Distortions

This section will provide an answer to the question why the narrowband distortions described in
the previous section can cause deviations for an on-line impedance measurement and how critical this
deviation is. Narrowband distortions become a source of measurement deviation when they are beyond
the Nyquist theorem frequency of half the sampling frequency fs. An ADC with a high horizontal
resolution, i.e. a high sampling frequency, would solve this. However, for an EIS measurement an
ADC with a high vertical resolution, i.e. a low number for the ‘voltage per bit’ resolution, is required
due to the small voltage amplitudes. In the design of an ADC vertical and horizontal resolution can
be traded against each other. In the case of a Sigma-Delta-ADC these two values can sometimes even
be traded against each other by the final application engineer. In an on-line EIS system the sampling
frequency will most likely be just a few factors above the highest measurement frequency because of
the desire of a high vertical resolution and because higher resolution costs more. Because of this, the
sampling frequency fs would only be 2 to 10 times higher than the maximum measurement frequency.
The same is true for the switching frequency. High switching frequencies are most beneficial if the
control loop is also very fast. High switching frequencies also increase the losses inside the electronic
switch which increases the effort to cool it. Fast control loops and effective cooling systems are
costly and therefore the switching frequency is kept rather low at around 5 to 20 times the maximum
measurement frequency. When they are sampled they fold back into the measurement frequency range.
If they fall to one of the bins of a measurement frequency they superposition with the actual signal
at that frequency. What makes this case worse is that the harmonics have a different phase than the
measurement frequency. Every harmonic can have a different one. Although every single phase can be
determined by equations derived in the next sections, for now, they are considered random from −π
to +π, since the deviation in this section is determined in general and not for a particular harmonic.

This aliasing effect happens for the current and the voltage. Figure 4.18a shows this case for the
voltage response. It shows the actual voltage response VZ0fm at the measurement frequency (here
1 kHz), the voltage response at the harmonic frequency VZ0fh (here 16 kHz), which cannot be resolved
as shown in the figure since the sampling frequency only measures at the blue crosses (fs = 5 kSPS).
The resulting voltage measurement VZm is the result of this superposition. Figure 4.18b shows this in
the complex plane. The harmonic evaluated at the measurement frequency VZ0

a
fh

is like an additional
phasor which displaces the actual voltage response VZ0fm to a measured voltage response VZm which
is distorted in modulus and phase.
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Figure 4.18: Aliasing of an impedance response from a frequency fh higher than the Nyquist theorem
to the measurement frequency fm (synthetic data).
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The result is not only the weighted average of two impedance responses at different frequencies. It is
even more distorted by the difference in phase of the current at the measurement frequency and the
current at the harmonic frequency (see equation 4.43).

Zm =
VZ0fm + VZ0fh

Imfm + Imfh

= V̂Z0fm · ejφV fm + V̂Z0fh · ejφV fh
Îmfm · ejφIfm + Îmfh · ejφIfh

(4.43)

In order to assess the necessary attenuation for a modulus deviation below 0.1 % and a phase deviation
below 0.1 ◦, equations 4.44 and 4.47 are used.

φZm = tan
(
Vimag
Vreal

)
− tan

(
Iimag
Ireal

)

φZm = tan


Vimag︷ ︸︸ ︷

V̂Z0fm · sin(φV fm) + V̂Z0fh · sin(φV fh)
V̂Z0fm · cos(φV fm) + V̂Z0fh · cos(φV fh)︸ ︷︷ ︸

Vreal



− tan


Iimag︷ ︸︸ ︷

Îmfm · sin(φIfm) + Îmfh · sin(φIfh)
Îmfm · cos(φIfm) + Îmfh · cos(φIfh)︸ ︷︷ ︸

Ireal

 (4.44)

|Zm| =

√
V 2
real + V 2

imag√
I2
real + I2

imag

(4.45)

√
V 2
real + V 2

imag =
(
V̂Z0

2
fm cos2(φV fm)︸ ︷︷ ︸

= 1
2 (1+cosφV fm ) with C.5

+V̂Z0
2
fh

cos2(φV fh)︸ ︷︷ ︸
= 1

2 (1+cosφV fh ) with C.5

+ 2V̂Z0fm V̂Z0fh · cos(φV fm) · cos(φV fh)︸ ︷︷ ︸
cos(φV fm+φV fh )+sin(φV fm )·sin(φV fh ) with C.2

+ V̂Z0
2
fm sin2(φV fm)︸ ︷︷ ︸

= 1
2 (1−cosφV fm ) with C.4

+V̂Z0
2
fh

sin2(φV fh)︸ ︷︷ ︸
= 1

2 (1−cosφV fh ) with C.4

+ 2V̂Z0fm V̂Z0fh · sin(φV fm) · sin(φV fh)︸ ︷︷ ︸
− cos(φV fm+φV fh )−cos(φV fm )·cos(φV fh ) with C.2

) 1
2

=
(1

2 V̂Z0
2
fm + 1

2 V̂Z0
2
fh

+ 1
2 V̂Z0

2
fm + 1

2 V̂Z0
2
fh

+ 2V̂Z0fm V̂Z0fh · [sin(φV fm) · sin(φV fh)− cos(φV fm) · cos(φV fh)]︸ ︷︷ ︸
=− cos(φV fm+φV fh )

) 1
2 (4.46)

Deriving
√
I2
real + I2

imag is done in the same way as deriving
√
V 2
real + V 2

imag.

|Zm| =

√√√√√√√√√
(V̂Z0fm)2 + (V̂Z0fh)2 − 2V̂Z0fm V̂Z0fh · cos(

2·φIfm+φZfm+φfh+φZfh︷ ︸︸ ︷
φV fm + φV fh )

(Îmfm)2 + (Îmfh)2 − 2Îmfm Îmfh · cos(φIfm + φIfh︸ ︷︷ ︸
2·φIfm+φfh

)
(4.47)
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Since these equations are too complex and have too many variables, the phases are set to typical values
of a li-ion battery cell and the impedance moduli are normalized and set to the same value:

φZ0fm = −10 ◦ (4.48)

φZ0fh = 30 ◦ (4.49)

|Z0fm | = 1 Ω (4.50)

|Z0fh | = 1 Ω (4.51)

φIfm = 0 ◦ (4.52)

Îmfm = 1 A (4.53)

The variables that are left are the random phase φfh and the ratio of the magnitude of the current at
the harmonic frequency to the one at the measurement frequency Afh.

φfh = φIfh (4.54)

Afh = Îmfh

Îmfm
(4.55)

Figure 4.19a and 4.19b show the modulus and the phase deviation respectively dependent on these two
variables. The maximum and the minimum are not around 0 ◦ or 180 ◦ plus or minus the impedance
phases, because at these angles the voltage and the current would increase or decrease both simultane-
ously. A simultaneous change of both, voltage and current, does not change the impedance modulus.
The phase deviation threshold of 0.1 ◦ is met with an attenuation Afh of around 2 · 10−3 for any value
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Figure 4.19: Modulus and phase deviation of the measurement frequency according to equation 4.47
and 4.44 depending on the phase φfh and modulus Afh of the higher frequency harmonic
fh (synthetic data).

of the phase φfh. When the harmonic is over ten times as high as in figure 4.17 of section 4.3.1, the
attenuation of this harmonic would need to be around 74 dB in order to not cause any deviation higher
than the defined threshold. With that attenuation Afh also the modulus deviation threshold of 0.1 %
is met for any value of the phase φfh.
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4.3.3 Topologies for On-line Electrochemical Impedance Spectroscopy
Implementation

The content of this section has been published in parts in [65] and [67] and was developed during the
supervision of the Master Thesis of Riebel [95].

In a real-world application, a battery is often surrounded by power electronic circuits as shown in figure
4.20. A charger charges the battery if the user deems the SoC too low. Manufacturing tolerances and
different operating conditions like different ambient temperatures cause the batteries to age differently
and also to show different self-discharge rates. A balancing circuitry helps to keep the battery cells at

Battery DC/DC

Appli−
Converter

Charger

Balancing
Unit

cation

Figure 4.20: Topologies for stimulus generation: ‘Battery Charger Topology’, ‘Balancing Unit Topol-
ogy’ and ‘DC Supply Topology’.

the same SoC. In its most basic form, the balancing circuitry consists of a switch and a resistor. A lot
of devices need a fixed voltage. DC/DC converters stabilize the voltage of a battery which otherwise
would change with its SoC.

All these power electronic components can generate the stimulus current for an impedance spectroscopy
on the battery cells. Due to the applied switching process none of these topologies generate a perfect
sinusoidal current, but generate additional harmonics which vary in magnitude and phase. Additionally,
these components come with DC-link capacitors, inductors and output capacitors which attenuate the
harmonics but also the measurement frequency.

According to the characteristic harmonics and the effective filter, the different implementation ap-
proaches are separated into three categories and named according to the device which is used: ‘Battery
Charger Topology’, ‘Balancing Unit Topology’ and ‘DC Supply Topology’.

The Battery Charger Topology and the DC Supply Topology can benefit from the fact that around a
hundred cells are connected in series. The excitation current for these batteries only has to be generated
once on the whole pack level and then passes through all the cells in series. For safety reasons the
battery management system always measures the cell voltage of each individual cell in series and the
pack current. With the excitation current and the voltage response the complex impedance can be
calculated. Cells in parallel have to be considered as one large cell.

The maximum frequency measured should be 1 kHz for large format batteries used in battery packs,
above that frequency the battery behaves purely inductive and not much information can be derived
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4 On-line Electrochemical Impedance Spectroscopy Measurements

from the measurement. The switching frequency of most high voltage inverters is around 4 to 8 kHz.
The Insulated Gate Bipolar Transistors (IGBTs) used in these inverters can be switched at a much
higher frequency when they are operated below their rated current [110]. Since usually only a fraction
of the rated current of the power converters and chargers is needed for an EIS measurement it can be
assumed that the switching frequency could be set well above 10 kHz at limited current.

The disadvantages of this kind of amplifier are similar to the comparison of switched mode power
supplys (SMPSs) to linear regulators. Just as a SMPS, the switched-mode amplifier is much more
efficient as its linear counterpart at the cost of a higher output current ripple and a lower output
voltage accuracy. At a first glance this low accuracy seems to make this type of implementation
undesirable. For a continuous measurement of the battery impedance, very accurate measurements
have to be achieved, since changes in the battery impedance occur very slowly. For on-line EIS being
a valuable instrument these changes have to be identified at a very early stage. The introduction of
Class D amplifiers in audio applications show that switched-mode amplifiers can be at the same time
efficient and highly accurate. But the way they operate and especially the disturbance they generate
has to be well understood in order to use it for EIS.

Knowledge of the effective filter is important when designing the EIS system in order to make sure that
the measurement frequencies can pass through but harmonics which occur due to the switching process
are attenuated as much as possible. A detailed knowledge of the generated harmonics allows to estimate
how much the battery will heat up and therefore change its temperature during the measurement. This
is necessary in order to assess the validity of the EIS measurement.

4.3.3.1 Charger Topology

The battery in this topology is at the output of an AC/DC converter. This converter first rectifies
the alternating voltage of the grid to a constant DC-link voltage at its input and then converts the
DC-link voltage down to the voltage of the battery with a buck converter at its output. In order to
perform EIS with no constant current, the output stage has to be bidirectional and therefore consist
of a half-bridge as shown in figure 4.21.
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−Âcurrent

0
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Figure 4.21: Battery Charger Topology.

The input stage of the AC/DC converter has to be bidirectional, by replacing the rectifying diodes
with switches, or the DC-link capacitor has to be large enough to accommodate the energy that comes
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from the battery during the discharging half-sine wave. Depernet et al. [31], Nguyen et al. [81] and
Koch and Jossen [65] published tests using that topology.

The desired measurement frequency is modulated onto a carrier frequency with the switches of the
output half-bridge. Afterwards, an output filter smooths the generated pulse train signal. In its
simplest form it consists only of the output choke. Koch et al. has shown in [68] that due to the
intrinsic inductive behavior of every battery cell, it is best to use an LC-Filter in order to attenuate
frequencies outside the measurement frequency band.

The amplitude of each of the components can be determined either by simulation or analytically. The
analytical method gives a better insight into the interdependencies of the magnitudes of the harmonics
to the modulation indexM , the DC-link voltage and modulation method; and was therefore used. The
method of the Double Fourier Integral is used to calculate the amplitude of these harmonic frequencies
with algebraic equations. It was first presented by Black [15], applied to power electronic converters
by Bowes et al. [19] and extensively explained by Holmes and Lipo in [50] and Holmes and McGrath
in [51]. With this method, equation 4.56 to 4.60 for a regular sampled sawtooth trailing edge PWM
process can be derived, which show the dependence of the harmonics on Vdc, the modulated frequency
ωm, the carrier frequency ωc and the modulation index M .

From Holmes et al. [50]:

C00 = Vdc
2 (4.56)

C01 = Vdc
2 M (4.57)

C0n = Vdc
π

J n
(
nωmωc πM

)
nωmωc

·
[
sin
(
n
π

2

)
− j cos

(
n
π

2

)]
(4.58)

Cm0 = j
Vdc
mπ

[cos (mπ)− J 0 (mπM)] (4.59)

Cmn = Vdc
π

J n
([
m+ nωmωc

]
πM

)
[
m+ nωmωc

] ·
[
sin
(
n
π

2

)
− j cos

(
n
π

2

)]
(4.60)

With J x being the xth Bessel function,m the carrier harmonics index and n the baseband and sideband
harmonics index. For this calculation a Vdc with a double output voltage was assumed. The influence of
a different DC-link voltage will be further discussed in section 4.3.4. Table 4.3 compares the theoretical
values and the experimental values of the total harmonic distortion and of single frequency magnitudes.

Figure 4.22 shows the time and frequency-domain signals of a Battery Charger Topology with a LC-
Filter consisting of a 46µH choke and a 135µF foil capacitor (f3 dB = 2 kHz). The stack used consisted
of three cells (cylindrical LCO cell A.3) totaling to an Open-Circuit-Voltage of around VOCV = 11.5 V.
The DC-link voltage Vdc was at double the Open-Circuit-Voltage of the stack. For figure 4.22 and table
4.3 the unfiltered signals before the LC-Filter were used in order to measure substantial distortions.
For the impedance calculation in figure 4.23 and table 4.4 the filtered signals after the LC-Filter were
used.

The experimentally obtained distortion of the half-bridge output voltage is slightly higher than the
theoretical values, which is due to the idealized feedback control for the theoretical values. The
theoretical battery voltage response disturbance corresponds well with the measured battery current
disturbance. But the measured battery voltage disturbance is much higher. This is due to the inductive
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behavior of the battery at high frequencies and the measured noise that becomes quite significant, since
the measured voltage amplitudes are in the range of a few mV.
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Figure 4.22: Time-domain and frequency-domain signals for the Battery Charger Topology (fm =
1 kHz, fc = 16 kHz, measured signals except for Y theoryva ).

Signal THD HD2 HD3 HD16 HD32 HD64

va, theory 8.3817 0.0161 0.0004 7.4966 0.4828 0.7879
va 10.5343 0.0670 0.1932 9.6601 0.5050 0.8383
iL 0.8264 0.0285 0.0660 0.8027 0.0207 0.0185
ibat 0.1079 0.0204 0.0226 0.1005 0.0014 0.0003
vout, theory 0.1003 0.0183 0.0002 0.0967 0.0015 0.0006
vout 0.1984 0.0240 0.0188 0.1914 0.0044 0.0009

Table 4.3: Comparison of the total harmonic distortion and selective normalized harmonic frequency
magnitudes for the Battery Charger Topology (values as factors of the measurement fre-
quency amplitude C01, measured values except for the ones with index ‘theory’).

Figure 4.23 shows the Nyquist plot of the impedance of three LCO cells (A.3) obtained in the Battery
Charger Topology with two successive measurements compared to a measurement taken with the
EISmeter Zref , a commercially available impedance meter. Table 4.4 shows the deviation of the
impedance measurements.

136



4.3 Narrowband Distortions Caused by Switched-mode Excitation

100 150 200 250 300 350 400 450 500
−10

0
10
20
30
40
50
60
70
80
90

Zreal (mΩ)

-Z
im

ag
(m

Ω
)

Zref ZBC1 ZBC2

Figure 4.23: Measured Impedance with the Bat-
tery Charger Topology (Îm =
200 mA, fm = 10 mHz to 2 kHz,
fc = 64 kHz) compared to a refer-
ence measurement with the EISme-
ter (1 % accuracy modulus, 1 ◦ accu-
racy phase).

Modulus Phase Impedance
max max max mean(∣∣∣∆|Z||Z| ∣∣∣) (|∆φZ |)

( |∆Z|
|Z|

) ( |∆Z|
|Z|

)
[in %] [in ◦] [in %] [in %]

(ZBC1, Zref ) 2.9282 2.2474 4.0537 2.0233
(ZBC2, Zref ) 3.1007 2.1977 4.0260 2.1496
(ZBC1, ZBC2) 0.7123 0.0604 0.7124 0.2012

Table 4.4: Deviation of two successive EIS mea-
surements ZBC1/2 measured with the
Battery Charger Topology and the
reference EIS measurement Zref (for
the first line:

∣∣∣∆|Z||Z| ∣∣∣ = |Zref |−|ZBC1|
|Zref | ,

|∆φZ | = |φZref − φZBC1|, |∆Z||Z| =
|Zref−ZBC1|
|Zref | , for the other lines the

same logic applies).

4.3.3.2 Balancing Unit Topology

Figure 4.24 shows a balancing resistor and a switch, which were originally intended to equilibrate the
SoC of the cells in a stack. In this topology, they generate the excitation current.
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Figure 4.24: Balancing Unit Topology.

Since there is usually no filter in place, the battery current is completely pulsed. In the case that the
battery is buffered with a capacitor, this would have a filtering effect. The excitation can only occur
with a DC-offset, since the balancing resistor can only discharge the battery. Due to this DC-offset,
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4 On-line Electrochemical Impedance Spectroscopy Measurements

the SoC of the batteries changes after each measurement. There is either the possibility to operate the
switch directly with the desired measurement frequency as shown in Figure 4.25 or to modulate the
measurement frequency onto a higher carrier frequency as shown in Figure 4.26. The non-modulated
signal can be represented as superposition of an infinite series of sinusoidal signals. The mathematical
expression of this series can be stated as [6; 55]:

Va = Vdc
4
π

∞∑
k=1

sin ((2k − 1)ωmt)
2k − 1 (4.61)

The harmonics for a modulated signal can be derived from the Double Fourier Integral as done in
appendix E.3 by replacing the DC-link voltage Vdc with the battery current Ibat = Vbat/Rbal:

ibal(t) = C00

2

+
2∑

n=1
C0n e

jn(ωmt+θm)

+
∞∑
m=1

Cm0 e
jm(ωct+θc)

+
∞∑
m=1

∞∑
n=−∞
(n6=0)

Cmn e
jn(ωmt+θm)+jm(ωct+θc) (4.62)

C00 = 2Idc (4.63)

C0n = Vbat
Rbal

1[
nωmωc

]
π
J n
(
n
ωm
ωc

πM ′
)
·
[
sin
(
n
π

2

)
− j cos

(
n
π

2

)]
(4.64)

Cm0 = Vbat
Rbal

1
mπ
· sin

(
2m Idc

Ibal
π

)
+ j

Vbat
Rbal

1
mπ

(
cos
(

2m Idc
Ibal

π

)
− J 0 (mπM ′)

)
(4.65)

Cmn = Vbat
Rbal

1
π
[
m+ nωmωc

]J n(πM ′ [m+ n
ωm
ωc

]) [
sin
(
n
π

2

)
− j cos

(
n
π

2

)]
(4.66)

Table 4.5 and table 4.6 compare the theoretical values with the experimental values. The experi-
mentally obtained distortion of the battery current ibat compares well with the theoretical values for
both the non-modulated and the modulated signal. For both, the distortion of the battery voltage
response is also significantly higher. This again is due to the inductive behavior of the battery at high
frequencies and the measured noise.
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V0) when excitation current is unmodulated.
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normalized to the amplitude of the measurement frequency.

Figure 4.25: Time-domain and frequency-domain signals for the Balancing Unit Topology with a non-
modulated duty cycle of 50 % (fm = 500 Hz, fc = 8 kHz, measured signals except for
Y theoryvbat

).

THD HD2 HD3 HD16 HD32 HD64

ibat, theory 0.4834 0.0000 0.3333 0.0000 0.0000 0.0000
ibat 0.4767 0.0024 0.3339 0.0020 0.0017 0.0009
vbat 0.7236 0.0083 0.3341 0.0028 0.0061 0.0055

Table 4.5: Comparison of the total harmonic distortion and selective normalized harmonic frequency
magnitudes of a non-modulated measurement frequency signal in the Balancing Unit Topol-
ogy (values as factors of the measurement frequency amplitude, fm = 500 Hz, fc = 8 kHz,
measured values except for the ones with index ‘theory’).
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(a) Time-domain signals of ibat, vbat (without the battery OCV
V0) and the corresponding duty cycle (on-time of switch S1
divided by the switching period).

1 16 32 48 64 8010−5
10−4
10−3
10−2
10−1

100
101
102

f/fm (no unit)

m
ag
ni
tu
de

(n
o
un

it)

Yibat Yvbat Ytheory
vbat

(b) Amplitude spectrum of ibat, vR and theoretical values for vR
normalized to the amplitude of the measurement frequency.

Figure 4.26: Time-domain and frequency-domain signals for the Balancing Unit Topology with a mod-
ulated duty cycle (fm = 500 Hz, fc = 8 kHz, measured signals except for Y theoryvbat

).

THD HD2 HD3 HD16 HD32 HD64

ibat, theory 1.3930 0.0781 0.0092 0.7544 0.4665 0.2490
ibat 1.3784 0.0630 0.0717 0.7637 0.4670 0.2456
vbat 3.8944 0.0661 0.0865 1.4062 1.4090 1.3162

Table 4.6: Total harmonic distortion and selective normalized harmonic frequency magnitudes of a
modulated measurement frequency signal in the Balancing Unit Topology (values as factors
of the measurement frequency amplitude, fm = 500 Hz, fc = 8 kHz, measured values except
for the ones with index ‘theory’).
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4.3 Narrowband Distortions Caused by Switched-mode Excitation

Figure 4.27 shows the Nyquist plot of three successive impedance measurements of three LCO cells in
series (see appendix A.3) obtained in the Balancing Unit Topology. Three cells in series and treating
them as a single cell would not make sense in a real balancing circuit. Also the used measurement
current is not in the range of a typical balancing circuit. However, in order to make the measurements
comparable with the ones in the Battery Charger Topology and Battery DC-Source Topology the same
stack and the same current magnitude was also used for this topology. Section 4.3.3.4 compares the
three circuits with each other. Due to the inherent discharge, the SoC changed by 2 % during each
measurement. For this reason, the measurements are not compared in a table.
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Figure 4.27: Measured Impedance with the Balancing Unit Topology (Îm = 200 mA, fm = 10 mHz to
2 kHz, fc = 64 kHz).

4.3.3.3 DC-Supply Topology

Most electronic equipment requires a very stable voltage source over the whole SoC range of the battery.
In these cases, the battery supplies a DC/DC converter, which generates a stabilized voltage as shown
in figure 4.28a. In order to perform EIS with no DC-offset, the DC/DC converter has to be bidirectional
and therefore consist of a half-bridge. In the case of a DC/AC voltage supply a half-bridge is already
necessary to produce the alternating current. In the case of a three phase DC/AC converter, the
three half-bridges allow to cancel certain harmonics, which leads to a shift of the harmonic frequencies
towards higher frequencies by a factor of three. Since the DC/AC converters are based on a similar
hardware as the bidirectional DC/DC converter, only the latter is discussed in this section. Howey et
al. [52] used this topology in his experiments.

In the Battery Charger Topology of figure 4.21, the current through the battery is continuous. When
the current IL is positive, it increases when the switch S1 is turned on. Besides some higher frequency
currents that are attenuated by the filter capacitor Cf , the same current runs through the battery.
If the switch S1 is turned off, the current freewheels over the diode of S2 and in that way still runs
through the battery. The same is the case when IL is negative and the switch S2 is turned on and off.
Therefore a continuous current through the battery is secured.
In the case of the DC Supply Topology of figure 4.28 there is no continuous current through the
battery. The current of the battery is interrupted once the switch S1 is turned off. Although the
current freewheels over the diode of S2, if S1 is turned off, it only continues to supply the output
of the converter. Once S1 is turned on again, the instantaneous current iL, which runs through the
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−Âcurrent

0
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Figure 4.28: DC Supply Topology.

inductor Lf , is drawn from the battery. For the battery, the converter acts as a current source or
load that supplies or draws in every switching period the current, which has been set by the PWM
controller. Therefore, the current that is supplied and drawn from the battery is a pulsed sinusoidal
current, which is chopped into time slices of the switching period. The combination of the capacitor
Cin and the inner impedance of the battery Zbat act as a filter for the pulsed current and smoothen
its shape.
Figure 4.29 shows the current of a three cell stack (cylindrical LCO cell A.3) with a 2 mF input
capacitor. The pulsed current as well as the pulsed voltage response of the battery can still be seen.

To calculate the harmonics in the case of a Battery Charger Topology of section 4.3.3.1, it was assumed
that the DC-link voltage Vdc is turned on and off. In order to calculate the harmonics, which are
generated on the input of a DC/DC converter as in the DC Supply Topology, the sinusoidal current
that is controlled through the inductance Lf is switched on and off. By replacing the DC-link voltage
in the Double Fourier Integral with a sinusoidal current, the generated harmonics can be analytically
determined with (for details see appendix E.4):

iin(t) = C00

2

+
2∑

n=1
C0n e

jn(ωmt+θm)

+
∞∑
m=1

Cm0 e
jm(ωct+θc)

+
∞∑
m=1

∞∑
n=−∞
(n 6=0)

Cmn e
jn(ωmt+θm)+jm(ωct+θc) (4.67)
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C00 = AA
2 ·M (4.68)

C01 = AA
2 (4.69)

C02 = AA
4 ·M (4.70)

Cm0 = AA
mπ
J 1(mπM) (4.71)

Cm(n=−1 or +1) = AA
2πm [sin(mπ)− j (J 0(mπM)− J 2(mπM)− cos(mπ))] (4.72)

Cmn = −j AA2πm
[
jn+1J n+1(mπM) + jn−1J n−1(mπM)

]
for n 6= −1, n 6= 1 (4.73)

With AA = M ·Vdc
|Zload| being the amplitude of the sinusoidal modulated frequency. Please note that C01 is

the amplitude of the measurement frequency used for the EIS measurement of the battery. It is only
half of the amplitude of the modulated frequency. For these equations, a continuous control circuit
was assumed. This usually does not lead to baseband harmonics. However, in this case, there is still
a quite high amplitude at the baseband harmonic C02.
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(a) Time-domain signals of ibat, vin (without the battery OCV V0)
and the corresponding duty cycle (on-time of switch S1 divided
by the switching period).
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Figure 4.29: Time-domain and frequency-domain signals of the battery current ibat and the battery
response voltage vin for the DC Supply Topology with 2 mF input capacitor (fm = 1 kHz,
fc = 16 kHz, measured signals except for Y theoryiin

).
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Table 4.7 compares the theoretical values with the experimental values. The experimentally obtained
distortions of the battery current ibat compare acceptable with the theoretical values. As for the
previous topologies, the distortion of the battery voltage response is significantly higher, here as well.
This is caused by the inductive behavior of the battery at high frequencies and the measured noise.

THD HD2 HD3 HD16 HD32 HD64

ibat,theory 0.5695 0.1017 0.0000 0.1933 0.1647 0.0768
ibat 0.3091 0.1058 0.0389 0.0548 0.0291 0.0103
vbat 0.6703 0.1208 0.0314 0.1154 0.0869 0.0668

Table 4.7: Comparison of the total harmonic distortion and selective normalized harmonic frequency
magnitudes for the DC Supply Topology (values as factors of the measurement frequency
amplitude, fm = 1 kHz, fc = 16 kHz, measured values except for the ones with index
‘theory’).

Figure 4.30 shows the Nyquist plot of the impedance of three cells in series (cylindrical LCO cell A.3)
obtained in the DC Supply Topology with two successive measurements compared to a measurement
taken with the EISmeter. Although the Nyquist plots look very close together table 4.8 shows similar
deviations of the impedance measurement as for the Battery Charger Topology. This is because the
impedances of every single frequency are compared to each other. The single measurement points
deviate from each other but are still on the same Nyquist plot. This gives the impression that the
deviation is small.
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Figure 4.30: Measured Impedance with the DC
Supply Topology (Îm = 200 mA,
fm = 10 mHz to 2 kHz, fc = 64 kHz)
compared to a reference measure-
ment with the EISmeter (1 % accu-
racy modulus, 1 ◦ accuracy phase).

Modulus Phase Impedance
max max max mean(∣∣∣∆|Z||Z| ∣∣∣) (|∆φZ |)

( |∆Z|
|Z|

) ( |∆Z|
|Z|

)
[in %] [in ◦] [in %] [in %]

ZDC1, Zref 3.5971 4.6650 8.1642 2.6747
ZDC2, Zref 3.6117 4.2014 7.3340 2.6493
ZDC1, ZDC2 0.5103 0.4636 0.9248 0.0826

Table 4.8: Deviation of two successive EIS mea-
surements ZDC1/2 measured with the
DC Supply Topology and the reference
EIS measurement Zref (for the first
line:

∣∣∣∆|Z||Z| ∣∣∣ = |Zref |−|ZDC1|
|Zref | , |∆φZ | =

|φZref − φZDC1|, |∆Z||Z| = |Zref−ZDC1|
|Zref | ,

for the other lines the same logic ap-
plies).
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4.3.3.4 Comparison

All of the different implementation approaches come with advantages and disadvantages. The Bat-
tery Charger Topology has the most pristine current generation, due to the LC-filter; that forms in
combination with the battery inductance, a filter of third order. The DC Supply Topology only forms
a filter of second order with its input capacitor and the battery inductance. However, it only has to
filter a chopped sinusoidal current, which has much lower harmonics as the chopped DC-link voltage
of the Battery Charger Topology. Therefore these topologies almost have similar values. The worst
distortion values of the excitation signal has the Balancing Unit Topology since there is no filter in
place.

A problematic disadvantage of the Battery Charger Topology and the DC Supply Topology is that if
the current is not measured by the BMS, it has to be measured by the charger or DC/DC converter.
In that case, the current and voltage need to be transferred and synchronized during the measurement.
The Balancing Unit Topology measures current and voltage in one place.

Additionally, the Balancing Unit Topology can generate a different excitation current for each battery
cell. It can be optimized according to the current state of the battery cell. The other two topologies
only can create one current for the whole stack that will stimulate all the cells equally.

The most important disadvantage of the Balancing Unit Topology is that the excitation current is
limited to the balancing current, which is usually not larger than 100 mA. Battery cells and paralleled
cells, with combined capacity of more than 10 Ah, often have an inner resistance of less than 10 mΩ
and therefore the battery voltage response amplitude is only 1 mV, which requires a very accurate
voltage measurement. The Battery Charger Topology and the DC Supply Topology do not have that
limitation since they are usually designed for much higher currents.

All topologies suffer from the fact that the components are often unidirectional and only become
bidirectional if they are specifically designed for this purpose, with the exception of the Balancing
Unit Topology, which is not capable of charging the cell. This disadvantage can be overcome if the
charger can communicate with the BMS, which controls the balancing unit. In that case the battery
charger can compensate the discharge, which is caused by the balancing unit.

4.3.4 Distortion Reduction by Adjusting the DC-link Voltage

The content of this section has been published in parts in [65].

Keeping the DC-link voltage Vdc at double the battery voltage provides symmetrical conditions, but it
is unnecessary. The required excitation current only needs to provide a voltage response amplitude of
a few mV per battery cell. Instead of decreasing the modulation index, the DC-link voltage could also
be lowered, making the upper switch of the half-bridge operate at higher duty cycles. This method can
be applied to the Battery Charger Topology and the Battery DC-Supply Topology. In this section only
the Battery Charger Topology is analyzed in detail. All equations, figures and tables therefore only
apply to the Battery Charger Topology and the schematic in figure 4.21. Vbat instead of V0 is used for
the battery voltage which includes the overvoltages over the complex impedance. From the equations
4.56, 4.57, 4.58, 4.59 and 4.60 only the equations 4.56 and 4.59 need to be adjusted to equation 4.74
and 4.75, since they are the only ones that are affected. Equation 4.74 shows the desired result: The
static DC output of the half-bridge is equal to the battery voltage (in equation 4.41 the DC value is
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only half the value of C00). Equation 4.75 describes how the carrier frequency and its harmonics are
affected by this change. The amplitude as well as the phase of Cm0 changes with Vbat

Vdc
.

C00 = 2Vbat (4.74)

Cm0 = Vdc
mπ

[
sin
(

2Vbat
Vdc

mπ

)]
+ j

Vdc
mπ

·
[
cos
(

2Vbat
Vdc

mπ

)
− J 0 (mπM)

]
(4.75)

The modulation index describes how much the voltage of the measurement frequency varies as a factor
of the maximum possible variation and therefore needs to be adjusted with decreasing DC-link voltage.
For reasons of clarity, this has not been done. The modulation index is simply limited depending on
Vdc as in equation 4.76. For the calculation of the harmonics at decreased Vdc with equations 4.74,
4.58, 4.75 and 4.60, the same modulation index, if the output could be varied between zero Volt and
half of Vdc, needs to be used.

Mmax = Vdc
Vbat

− 1 (4.76)

As an additional benefit, with decreased DC-link voltage, the electronic switches of the half-bridge can
be rated at lower blocking voltages. However, the necessary modulation index for the highest battery
impedance value, the attenuation of the filter over the whole measurement frequency range, a voltage
reserve for dynamic changes of the feedback control system and the minimum off-time of the electronic
switches constitute a lower limit for the DC-link voltage.

The overall distortion factor is reduced by a decreased DC-link voltage as shown in figure 4.31. Once
the DC-link voltage is chosen, the only way to change the signal amplitude is to alter the modulation
index, since usually the DC-link voltage is stabilized with large capacitors that make dynamic changes
difficult. Changing the modulation index has great implications on the harmonic distortions. For
example, the DC-link voltage is set to be Vdc = 1.2 · Vbat where a signal of 0.04 · Vbat can be generated
at a THD of around 3. If now a signal of 0.01 · Vbat needs to be generated, a total harmonic distortion
of around 12 occurs. If the DC-link voltage would have been set to Vdc = 1.1 · Vbat, only a THD of
4 would occur. It is therefore beneficial if the output amplitude and the modulation index change as
little as possible. This becomes especially important if the DC-link voltage is already very small, since
further reductions of the modulation index make the distortions increase very sharply.

Changing the amplitude is necessary due to the changing complex impedance of the battery depending
on the frequency as well as the different attenuation of the output low-pass filter. For a li-ion battery
at VOCV = 3 V, generating a signal of 0.04 · Vbat would generate a 120 mV signal per cell when only
a 10 mV signal is needed. Even with taking the attenuation of the low-pass filter into account, this
constitutes the upper limit of the signal generated, since Voltage drops over the IGBT switches and
resistances that are not part of the battery are tried to be kept as low as possible to increase efficiency.
A signal of 0.0025 ·Vbat for a li-ion battery at VOCV = 4.2 V would generate a 10.5 mV signal and could
be considered as the lower limit of the output amplitude.

To verify the theoretical values, tests were performed on a small stack of three cells in series (cylindrical
LCO cell A.3). Each of the cell was at VOCV = 3.8 V. This corresponds to an SoC of around 50 %.
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Figure 4.31: Total harmonic distortion depending on the DC-link voltage factor Vdc
Vbat

and signal am-
plitude s.

The DC-link voltage was set to double the stack voltage (3 · 3.8 V · 2 = 22.8 V) and to 1.2 times the
stack voltage (3 · 3.8 V · 1.2 = 13.7 V) to test its influence on the generated harmonics.

Table 4.9 shows the theoretical values and experimental results for the total harmonic distortion and the
amplitude of the carrier frequency C10. Figure 4.32 shows the time-domain and frequency-domain plots
of the generated voltages and currents as well as the duty cycle and the used LC-Filter characteristic.

Vdc = 2 · Vbat Vdc = 1.2 · Vbat
theory experiment theory experiment

va
THD (no unit) 9.29 11.8 2.50 4.92
C10 (no unit) 8.43 11.1 1.54 3.22

ibat
THD (no unit) 0.136 0.112 0.029 0.056
C10 (no unit) 0.136 0.110 0.025 0.031

Table 4.9: Comparison of THD and the amplitude of the carrier frequency C10 for the Battery Charger
Topology switched output voltage va and battery current ibat (signal amplitude s = 1 A).

The amplitude of the carrier frequency is over a third smaller with the lower DC-link voltage (3.22
to 11.1). The THD is with 4.92 over two times lower than the THD of 11.8, for the DC-link voltage
at twice the battery stack voltage. Compared to the theoretical values, the experimental results for
the output voltage Va are all higher especially for the case when Vdc = 1.2 · Vbat. This could be due
to additional disturbances created by the feedback control loop. In the time-domain, it can be clearly
seen that the current and also the voltage response of the battery is much smoother for Vdc = 1.2 ·Vbat.
Further reductions of the DC-link voltage are not possible since the electronic switch S1 already
operates close to 100 % duty cycle (see figure 4.32b). With a battery stack of several hundred volts,
total stack voltage further reductions are possible since the voltage drop over the switches and the
ohmic resistance of the choke and cables will stay the same.
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Figure 4.32: Time-domain waveforms of the inductor current iL, the battery current ibat, the output
voltage vout and the duty cycle of the Battery Charger Topology. Spectrum of the switched
output voltage va (measured values), the battery current ibat after the LC-filter (measured
values) and the used filter (theoretical values) at different DC-link voltages Vdc. The
amplitude of the measurement frequency at 1 kHz is normalized to 1.
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4.3 Narrowband Distortions Caused by Switched-mode Excitation

Section Conclusion
A cost effective implementation of on-line electrochemical impedance spectroscopy would use already

existing components. Depending on the place of the battery and the power electronic circuit used,
different topologies for on-line electrochemical impedance spectroscopy are created. They differ in the
harmonics they generated and in the filter that attenuates these harmonic frequencies. All topologies
are capable of generating accurate impedance spectra. There is no implementation that is superior to
the other. It is up to the application engineer to decide which is the best approach for his specific
application and his capability to change the hardware and software of the components involved.

All topologies create some kind of switched-mode excitation. The associated distortions with this
excitation can cause deviations in the impedance measurement. Therefore, the distortions need to be
reduced. A cost-effective way to reduce the distortions is the reduction of the DC-link voltage.
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4 On-line Electrochemical Impedance Spectroscopy Measurements

4.4 Distortion-free Frequency Grid

Stimulus design for system identification is a wide research topic [88], especially for broadband signals,
which contain several frequencies and there are several possibilities for optimization. The phase of
the single frequency components can be optimized [20; 49; 108] or only frequencies measured with the
highest information content [99; 100]. Some of them are only applicable to batteries with limitations
as, for example, the suggestion to increase the stimulus amplitude for frequencies of interest [88; 100].
As shown in chapter 3 of this thesis, for li-ion batteries, this can cause systematic measurement devi-
ations.
Usually, it is assumed that the frequencies can all be measured on a continuous spectrum. Geerardyn
et al. showed in [47] that for a multi-sine signal, a quasi-logarithmic frequency grid consisting of mul-
tiples of the lowest frequency should be used. This reduces the measurement time and avoids spectral
leakage at the same time.
In the scope of this thesis, [66] was published. It presents an approach to avoid narrowband distortions,
which alias to the measurement bandwidth. It uses a computational intensive algorithm to determine
the best frequencies to measure the impedance in order to avoid these narrowband distortions. This sec-
tion tries to extend on the idea of the avoidance of narrowband distortions by introducing a frequency
grid with permissible frequencies, which are free from narrowband distortions. It gives a recommen-
dation on the minimum measurement time for frequencies on this grid. Minimum measurement times
are necessary to avoid narrowband disturbances, as measurement bins of the Fourier transformation
increase in size with decreasing measurement time.

4.4.1 Process to Define Distortion-Free Grid

Figure 4.33 shows the principle of the proposed distortion-free frequency grid. The idea is to select the
ratio between the sampling frequency fs and the carrier frequency fc in such a way that the aliased
harmonics of the carrier frequency repeat themselves in a deterministic way with frep. Since it is
unavoidable that some aliased harmonics fall very close to 0 Hz, a harmonic mCH is defined for which
the distortion is small enough to be considered to be zero. This harmonic is made to fall exactly to
zero. In this way a safe lower frequency bandwidth is created in which the measurement frequencies
can be selected freely. Above this safe lower frequency bandwidth a frequency grid with the spacing
fgrid is defined which is distortion-free. The finer this frequency grid is made the longer the necessary
measurement time becomes. The steps needed to create the whole distortion-free frequency grid are:

1. Define the carrier harmonics mCH whose magnitude is small enough not to create undesired
distortions.

2. Define p in order to define the ratio between the sampling frequency fs and the carrier frequency
fc with equation 4.77.

3. The aliased carrier harmonic frequencies will repeat themselves with frep (equation 4.78) from
0 Hz to 1

2fs.

4. Define the sideband harmonic nSB whose magnitude is small enough not to create undesired
distortions.

5. A safe lower frequency band is defined up the frequency fm,safemax according to equation 4.82.
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4.4 Distortion-free Frequency Grid

6. Select the granularity of the grid by selection q which defines the possible measurement frequen-
cies above the safe lower frequency bandwith according to equation 4.84.

7. Apply the measurement frequency for the apply time Ta to make the frequency bin narrow
enough to avoid carrier and sideband harmonics which might be right next to the measurement
frequency (see equation 4.91).

0 fac3 fac2 fac1 1
2fs fc1

fm,safemax fgrid

frep

fac8 fac5 fac6 fac7 fac4
frequency

fs/2 carrier frequency and its aliases measurement frequencies

Figure 4.33: Principle of the distortion-free frequency grid.

4.4.2 Repetition of Carrier Harmonics

Depernet et al. used in [31] the output of a DC/DC converter to implement a on-line EIS measurement
system on a lead-acid battery. He selected the sampling rate fs to exactly be the switching frequency
fc of his DC/DC converter. With this selection, the alias of the switching frequency falls exactly to
0 Hz, a frequency he did not want to measure. However, the sidebands of the switching frequency are
exactly on the measurement frequency. He used the Battery Charger Topology and also claimed that
he sufficiently suppressed the sidebands of the switching frequency.
Section 4.3.3.3 showed that for the DC Supply topology, it is not the switching frequency that has
the highest amplitude, but its two first sidebands C1,1 and C1,−1 to the left and to the right. If the
selection of fs = fc would be made, the most significant harmonics would distort the measurement.
Both first sidebands of the switching frequency will fall to the measurement frequency, since the side-
band on the negative side of 0 Hz will mirror to the positive side. Even worse, all the harmonics of the
switching frequency will also fall to 0 Hz. Their sidebands Cx,1 and Cx,−1 will distort the measurement
frequency as well. Even if the measurement frequency is changed the distortions will exactly follow
the measurement frequency, since the first sidebands are always the modulated frequency apart from
the switching frequency and its harmonics. Therefore, this is not a advisable setting for on-line EIS.
Nevertheless, it is a very likely setting to be chosen. Controllers and similar control systems often
incorporate a module for PWM control and a module with an ADC. They often run on a single clock,
which can be divided, but not by uneven numbers. Often this ratio is limited to a 2x value. If the
ADC clock is set to any 2x-ratio of the PWM clock, the switching frequency falls to 0 Hz again. This
makes it likely for others to use the setting of Depernet et al. as well.

In order to avoid that the carrier frequency, its harmonics or their sidebands fall to the frequency
bin of the measurement frequency, they need to alias to the measurement frequency bandwidth in
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4 On-line Electrochemical Impedance Spectroscopy Measurements

a foreseeable way. For on-line EIS this should also be quick and simple, and should not need long
computations as used in [66]. The harmonics should fall to the measurement bandwidth in such a way
that there is either no or only a small increase in measurement time per measurement frequency. When
harmonics are present in close proximity of the measurement frequency, an increase in the number of
recorded periods is necessary in order to make the frequency bin of the Fourier transformation smaller.
For example, a Fourier transformation at 10 Hz with only one measurement period will be distorted
by all the aliased frequency harmonics from 0 Hz to 20 Hz.
One of the infinite series of carrier harmonics will unavoidably fall to 0 Hz. Equation 4.77 shows at
what combination of the carrier or switching frequency fc and the sampling rate fs this will happen
for the carrier harmonic index mCH :

fs = fc ·mCH

p
with GCD( p ,mCH ) = 1 (Greatest Common Denominator) (4.77)

In this case the mCH
th harmonic of the switching frequency fc falls to 0 Hz. p is a integer number

which does not have a common divisor with mCH except 1. The selection of mCH should be based on
an assessment of the harmonics and the filters in place. It should be chosen with the assumption that
at the mCH

th carrier harmonic and above all the harmonics are small enough to be irrelevant. The
aliased measurement frequencies repeat themselves on a grid equally spaced between 0 Hz and fs

2 with
the frequency spacing:

frep = fs
mCH

(4.78)

Figure 4.34 shows this for mCH = 3. The switching frequency fc1 is mirrored over fs
2 to the measure-

ment frequency band to fac1. The second harmonic of the switching frequency fc2 is aliased to fac2 and
finally the third one fc3 is aliased to 0 Hz.
The benefit of selecting a small value for mCH is that between 0 Hz and fs

mCH
, there never is an alias

of a carrier harmonic. This safe lower frequency band is the larger, the smaller mCH is.
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Figure 4.34: Repetition of the switching frequency harmonics when the sampling frequency is set ac-
cording to equation 4.77 (mCH = 3, p = 2, synthetic data).

Equation 4.79 gives the aliasing frequency fah dependent on the sampling rate fs and the harmonic
frequency fh. This definition is unusual, but it comes with the benefit that the mathematical rules of
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4.4 Distortion-free Frequency Grid

the modular arithmetic can be used.

fah =



fh mod fs k · fs2 ≤ fh < (k + 1) · fs2 for k = 0,2,4,6,8, ...
fs
2 −

(
fh −

fs
2

)
︸ ︷︷ ︸

−fh+fs

mod fs

︸ ︷︷ ︸
−fh mod fs

k · fs2 ≤ fh < (k + 1) · fs2 for k = 1,3,5,7,9, ...
(4.79)

The mathematical proof for equation 4.77 is given by the use of modular arithmetic. This is possible,
since the frequency grid proposed in this section is based on fraction of the switching frequency fc.
When multiplying the modular arithmetic formulas by the denominator of that fraction and dividing
the formulas by the switching frequency fc, all the numbers become integer values and the normal
rules of modular arithmetic can be applied. In the second case of equation 4.79, the constant part
+fs can be deleted, because the modulo is taken over exactly this value. For the first case of equation
4.79, the mCH

th switching frequency harmonic falls to 0 Hz when the integer number m, the carrier
harmonics index, fulfills the following equation:

(m · fc) mod fs
!= 0

⇒ (m · fc) mod
(
fc ·mCH

p

)
!= 0

⇒ m · p mod mCH
!= 0 (4.80)

Equation 4.80 was multiplied by p and divided by fc in order to arrive at integer numbers. Equation
4.80 only becomes 0 if m = mCH because GCD(p,mCH) = 1.
For the second case of equation 4.79 the following equation needs to become 0 for an integer number
of m:

−m · p mod mCH
!= 0 (4.81)

Equation 4.81 also only becomes 0 if m = mCH because GCD(p,mCH) = 1.

By having only the mCH
th carrier harmonic fall to 0 Hz instead of the first one, this shifts the effective

harmonics that are causing measurement deviations to higher frequencies. Perfect Butterworth filters,
as they are used in power electronics, are almost impossible to apply with a battery. The extremely
low resistance of the battery requires very large capacitors and very low inductors. In these non-
ideal Butterworth filters, the frequencies for which the attenuation per decade fits to the order of
the Butterworth filter are shifted towards higher frequencies [68]. By setting the sampling frequency
according to equation 4.77, this shortcoming of the filter can be avoided. The mCH

th switching
frequency harmonic is also much lower than the first one, even without filter attenuation. Anti-aliasing
filter before the ADCs are another solution, but can introduce an additional measurement deviation if
the one for the current and the one for the voltage do not have exactly the same transfer characteristics.
The additional electronics for the Anti-aliasing filter, especially accurate ones, are costly and cannot
be assumed to be present in an on-line EIS system.
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4 On-line Electrochemical Impedance Spectroscopy Measurements

4.4.3 Safe Lower Frequency Bandwidth

The frequency grid for the carrier frequency and its harmonics creates a safe lower frequency bandwidth,
where no distortions can be found. This is beneficial, because due to the often-used logarithmic spacing,
most measured frequencies are in the lower frequency range.
The only harmonics that can enter the frequencies below frep are the sidebands. The sidebands are,
by the measurement frequency, apart from the aliased carrier frequency or its harmonics facx. This
reduces the size of this safe frequency bandwidth by the number of sidebands (nSB − 1) to avoid times
the measurement frequency fm. To effectively suppress the distortions in a Fourier transformation,
windows other than the Box window can be applied. Section 4.1.2 already introduced several windows,
with their characteristic minimum number of measurement periods wx. If measured by a factor of Ta

Tm

longer than the minimum number of measurement periods, the frequency bin width reduces by this
factor. With these considerations, a maximum measurement frequency for the safe lower frequency
bandwidth can be defined by:

fac1 − (nSB − 1) · fm,safemax =
(
Ta
Tm

wx + 1
)
· fm,safemax

⇒ fm,safemax = fac1
Ta
Tm
wx + nSB

= fs

mCH · ( TaTmwx + nSB)
(4.82)

Figure 4.35 shows this for nSB = 4 and a Blackman-Nuttal window for which wx = 4.
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Figure 4.35: Safe lower frequency bandwidth illustration with a Blackman-Nuttal window (nSB = 4,
synthetic data).

4.4.4 Frequency Grid

Not all measurement frequencies can be put into the safe lower frequency bandwidth. High switching
and sampling frequencies come with higher costs. Especially for on-line EIS systems, these costs need
to be limited.
All measurement frequencies higher than fm,safemax should be set on a grid following equation 4.83

154



4.4 Distortion-free Frequency Grid

and 4.84:

fm = k · fgrid with k ∈ N (4.83)

fgrid = fs
q

with GCD( q , mCH ) = 1 (Greatest Common Denominator) (4.84)

The measurement frequencies on this grid must avoid the harmonics generated by the switching process.
If inequation 4.85 becomes true, one of the alias of the switching frequency harmonics or their sidebands
fall to the measurement frequency. It needs to be verified that for no combination of the carrier
harmonic index m and the sideband harmonic index n this inequation becomes true, except for the
designed case of m = mCH and n = 1. Equation 4.85 was multiplied by p ·q and divided by fc in order
to arrive at integer numbers.±m · fc ± n · 1

q
·

fs︷ ︸︸ ︷
fc ·mCH

p

 mod


fs︷ ︸︸ ︷

fc ·mCH

p

 !
6= 1
q
·

fs︷ ︸︸ ︷
fc ·mCH

p

⇒ (±m · p · q ± n ·mCH) mod (mCH · q)
!
6= mCH

⇒



(+m · p · q ± n ·mCH) mod (mCH · q)
!
6= mCH

k · mCH2 ≤ m < (k + 1) · mCH2 for k = 0,2,4,6,8, ...

(−m · p · q ± n ·mCH) mod (mCH · q)
!
6= mCH

k · mCH2 ≤ m < (k + 1) · mCH2 for k = 1,3,5,7,9, ...

(4.85)

The case separation in equation 4.85 is strictly not correct. In order to determine whether the harmonic
frequency fh falls into case 1 or case 2, also n needs to be considered. The sideband harmonics index
n is not considered in order to arrive at a general proof of the proposed frequency grid. If it would
be considered, the equation would need to be distinguished case by case, which is only possible in a
simulation. By neglecting the right side, the first and the second case of equation 4.85 need to be
applied to more values of n than necessary. Since the proof should be made that inequation 4.85 is
not true (except for the combination m = mCH and n = 1), increasing the amount of possible cases
will not lead to a wrong conclusion.
The two summands are evaluated separately by applying the general modular arithmetic equation:

a+ b mod c = (a mod c+ b mod c) mod c (4.86)

The separate evaluation of both summands, allows to determine all possible remainders of the two
summands. These are theleast residue systems with which, in a second step, the sum of the two
summands can be solved. The least residue system Ψm of the left side of equation 4.85 is shown for
both cases by 4.87 and the least residue system of the right side Ψn by 4.88.

Ψm =
[
0, p, 2 p, 3 p, ..., mCH

2 p
]

(4.87)

Ψn = [0, mCH , 2mCH , 3mCH , ..., (q − 1)mCH ] (4.88)
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4 On-line Electrochemical Impedance Spectroscopy Measurements

The carrier harmonics repeat themselves after mCH
2 · p and take values in steps of p. They do not

repeat themselves by mCH · p because after mCH
2 the second part of equation 4.85 applies. The

sideband harmonics repeat themselves after (q − 1) ·mCH and take values in steps of mCH . Now the
summation of both can be evaluated. The first solution, when equation 4.85 becomes true is when
m = mCH and n = 1. This is the case that was designed to happen.
There are two cases which need to be considered for evaluating whether another solution might occur.
The first is when mCH is even and an integer number of repetition frequencies frep falls between 0 Hz
and 1

2fs. The second is when mCH is odd and the gap between the carrier harmonic closest to 1
2fs

and 1
2fs is 1

2frep.
For the first case a solution might occur if the left side of the summand results in a value of exactly(
mCH

2 − r
)
· p and the right side becomes r · p±mCH , for which r is a integer from 1 to mCH

2 . Since
p and mCH do not have a common divisor, this can only happen if n = qp± 1. In this case the right
side would take a value of mCHqp±mCH , or after the modulo applied p±mCH . As the least residue
system of the right side 4.88 shows us, this can never happen since mCH and p do not have a common
divisor and therefore n would need to become q ·mCH .
For the second case, when mCH is odd, the carrier harmonics could fall to a value at which they only
need p

2 before they reach mCH
2 · p, at which they would repeat themselves. In this case the right side

only needs to become a value of p2 ±mCH . Here again, this can never happen since p and mCH do not
have a common divisor.
This means that on the frequency grid the number of avoided sidebands is infinite except for the
designed case of m = mCH and n = 1.

The frequency gap fgap is the minimum gap any measurement frequency has to its own aliased side-
bands and to the carrier harmonics if it follows equation 4.83. Equation 4.89 shows that it is dependent
on fgrid. The finer the grid the smaller this gap becomes. The frequency bins of the measurement need
to be adjusted according to fgrid. In order for the bin to change from the passband to the stopband
within this frequency gap, a minimum number of periods must be measured according to equation
4.90.

fgap = frep
q

= fs
mCH · q

= fgrid
mCH

= fm
mCH · k

(4.89)

Tm
Ta

wx · fm = fgap = fm
mCH · k

Ta
Tm

= mCH · wx · k (4.90)

Tm
Ta

wx · fm = fgap = fgrid
mCH

Ta
Tm

= mCH · wx
fgrid

(4.91)

Equation 4.91 shows that once a frequency grid is chosen and only k is modified the measurement
time for all measurement frequencies on the grid stays the same. However, the frequency grid can be
switched during a sinus-sweep measurement. The lowest time is needed if k is always kept at 1. If k
is kept constant, the number of measurement periods for all measurement frequencies stays the same.

If the measurement frequencies are not on the grid, harmonics distort the measurement. This can
be seen by the experiment of Howey et al. in [52]. He used an electric motor controller in the DC
Supply Topology to perform an EIS on a li-ion battery stack. He used pseudo random noise as a
stimulus signal. Pseudo random noise is a broadband signal, which stimulates in a certain bandwidth
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all the frequencies. The sidebands of the carrier harmonics are therefore also all the frequencies of
that bandwidth. His measurements show a funnel-like increase of the measurement deviation towards
higher frequencies. Even without the exact knowledge of his switching frequency or sampling rate, it
can still be assumed that these deviations come from distortions of the aliased harmonics.

4.4.5 Example for the Distortion-Free Frequency Grid

Figure 4.36 shows an example with synthetic data for a measurement frequency on a distortion-free
frequency grid for a Battery Charger Topology with a predefined switching frequency fc = 4 kHz. The
process introduced in section 4.4.1 is now applied to this example with specific values:

1. mCH = 10.

2. For p = 9 the sampling rate is set to fs = 4444 SPS.

3. This leads to a repetition frequency of frep = 444.4 Hz.

4. nSB = 5.

5. The safe lower frequency bandwidth for a maximum apply time of the measurement frequency
of one period and using the Blackman-Nuttal window goes from 0 Hz to fm,safemax = 49.38 Hz.

6. For q = 19 the measurement frequency grid fgrid becomes 233.9 Hz.

7. The gap to possible harmonics of the carrier frequency and its sidebands is fgap = 23.39 Hz.
Therefore, the measurement frequency fm = 233.9 Hz needs to be measured with wx ·mCH = 40
periods when using a Blackman-Nuttal window.
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Figure 4.36: Example of a measurement frequency on the frequency grid with a Blackman-Nuttal
window and harmonics from the Battery Charger Topology (fc = 4 kHz, mCH = 10,
p = 9, q = 19, fs = 4444 SPS, fm = 233.9 Hz). The Blackman-Nuttal window is only
represented from 0.8fm to 1.2fm (synthetic data).

Due to the linear scale of the x-axis, the safe lower frequency bandwidth is difficult to see. When
the measurement frequency is placed in this frequency bandwidth, the sidebands in figure 4.36 look
different, since they are dependent on the measurement frequency fm.
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Section Conclusion
This section introduced a frequency grid, which prevents narrowband distortions caused by the

switching process of a switched-mode amplifier. With the suggested frequency grid, the effective har-
monics that cause measurement deviations can be shifted to such high frequencies that they become
irrelevant. A safe lower frequency bandwidth was defined in which the measurement frequencies can be
chosen freely. For higher frequencies, the measurement frequencies need to be placed on a frequency
grid, which is defined by fractions of the sampling frequency.

Chapter Conclusion
Voltage drifts during the measurement cause high deviations in the impedance measurement. Vari-

ous ways to correct, suppress and compensate these drifts were presented. A new method based on the
Fourier transformed measurement signals was introduced.

The parasitic inductance of the current shunt causes the increase in impedance real part or counter-
clockwise ‘twist’ of the Nyquist plot for higher frequencies. The parasitic inductance of the current
should be calibrated and its introduced measurement deviation corrected.

In order to save cost, already existing power electronic circuits should be used for an on-line elec-
trochemical impedance spectroscopy measurement. These switched-mode amplifiers can be grouped into
three categories: ’Battery Charger Topology’, ’Balancing Unit Topology’ and ’DC Supply Topology’.
They differ in terms of their generated harmonics and the effective filter. These harmnonics can be
reduced by adjusting the DC-link voltage and can be avoided by selecting measurement frequencies on
a distortion-free measurement grid.
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The impedance that is measured by electrochemical impedance spectroscopy is only valid if the an-
alyzed system fulfills the Linear-Time-Invariant condition. Batteries are inherently non-linear and
time-variant. The impedance that is measured for them is therefore prone to several systematic de-
viations. This thesis described the four most common ones: the change (1) of the State-of-Charge,
(2) of the cell temperature and (3) of the Open-Circuit-Voltage as well as (4) the non-linearity of
the impedance towards the applied current. An equation was developed with which the deviation of
an impedance measurement can be estimated based on previous characterizations of the same bat-
tery cell. These characterizations are mainly based on previous impedance measurements. Since the
equation is not based on an iterative calculation or other computation intensive calculations, it can
be implemented into the embedded controller of an on-line electrochemical impedance spectroscopy
system.

Measurement deviations caused by drift and narrowband distortions especially occur for electrochem-
ical impedance spectroscopy measurements on batteries, which are in their real-world application. A
new way of compensating voltage drifts in the frequency-domain was presented. It is especially inter-
esting for on-line applications, since the measurement data does not need to be stored before the drift
correction is applied. Neither does it increase the measurement time. The generation of harmonics
of three different on-line electrochemical impedance spectroscopy topologies was derived by algebraic
equations. The knowledge of their magnitude can help to estimate the measurement deviation intro-
duced by them when they are aliased into the measurement frequency bandwidth. Additionally, a
distortion-free frequency grid was proposed, which is capable of avoiding all harmonics of a relevant
magnitude.

The 10 mV-Criterion for lithium-ion batteries has been disproven. Another explanation for the skin
effect in the Nyquist plot was found.
The 10 mV-Criterion states that the maximum amplitude of the voltage response during an electro-
chemical impedance spectroscopy measurement should not surpass 10 mV. This thesis showed that for
the lithium-ion battery used and for all measurement frequencies and conditions applied, the 10 mV-
Criterion was too restrictive for a maximum measurement deviation threshold of 1 % for the modulus
and 1 ◦ for the phase. Although not universally transferable, it shows that this battery cell had a very
linear behavior, and other lithium-ion battery cells might have as well.
The term skin effect is often used, when in the Nyquist plot, the real part of the impedance increases
for frequencies below the x-axis in the Nyquist plot. For these higher frequencies the Nyquist curve
looks like, as it ‘twists’ counter-clockwise. In this thesis, this effect was attributed to the parasitic
inductance of the current shunt. The inductance does not only affect the imaginary part, it also affects
the real part for high frequencies.

The perfect on-line electrochemical impedance spectroscopy system would be quick, cheap, accurate
and requiring little computation. Achieving all four goals at the same time is impossible. The engineer
who designs such a system needs to balance all of these four parameters. The more measurement

159



5 Conclusion

periods are taken, the smaller the frequency bin becomes and the more narrowband distortions and
voltage drifts could be avoided. If measurement time has to be quick, this is not an option. But then
voltage drift corrections have to be done by computation and narrowband distortions might deteriorate
the accuracy of the measurement. A sophisticated analog circuit with an anti-aliasing filter and an
analog-to-digital converter with high vertical resolution would make the system very accurate and
reduce narrowband distortions but it would also make it very expensive. A calibration of the current
shunt, not only with a DC but also with an AC signal, would make it possible to compensate the
measurement deviation introduced by the parasitic shunt inductance. But calibration is undesired in
any manufacturing plant, since it involves valuable manufacturing time and equipment.

The extensive explanation of how and to what extent measurement deviations occur for an electro-
chemical impedance spectroscopy measurement on lithium-ion batteries, as presented in this thesis,
could serve for designing reliable on-line impedance meters and their control. But it should not stop
there. Once implemented on-line, impedance measurements will serve for state estimations. These
are complex algorithms for which the measurements serve as inputs. But the output of such a state
estimation can only be as good as the input. With the calculation of the actual state, e.g. State-of-
Charge, the deviation boundaries which come with it should also be estimated from the quality of the
measurements on the basis of which it is calculated.

A complete description of the measurement deviations for an impedance measurement should also
include measurement noise, i.e. random measurement deviations. With a complete understanding of
how noise on current and voltage affect the reliability of the impedance measurement, an informed
choice could be made regarding the type of analog-to-digital converter and its resolution. The confi-
dence interval for which the measurement is correct could be determined and handed down to state
estimation algorithms to calculate the confidence interval of their state estimation.

Some questions are left unanswered by this thesis. In chapter 3, section 3.4.3, the non-linearity of the
imaginary part of the impedance was fitted with the same modified Butler-Volmer equation as the
real part. During the fitting process the value of the charge transfer coefficient α arrived at the lower
or higher bounds of 0.05 or 0.95 for some data sets. This raises the question whether the imaginary
part does follow the same equation or should not rather be fitted to a further modified version of the
Butler-Volmer equation.

Section 3.4.6, on the measurement deviation caused by impedance non-linearity, introduced an ex-
change current modifying factor in the equation for determining the measurement deviation when a
constant current is applied. For the imaginary part, the DC overvoltage was determined in the same
way as for the real part minus the linear correction shown in section 3.3. Whether this approach is
correct is unconfirmed. This imaginary overvoltage was not confirmed by an other experiment as it
was done for the real part with the heat generation experiment in section 3.2.3.

Section 3.3 showed that for lower frequencies, the imaginary part of the impedance carries a systematic
measurement deviation due to the Open-Circuit-Voltage change. For low frequencies this significantly
changes the phase of the measured impedance. The Z-HIT method introduced in section 4.1 uses
the phase in order to reconstruct a modulus with which the measured modulus is corrected. This is
typically done for low frequencies, since these frequencies particularly suffer from drifts. It is unclear
if the Z-HIT method corrects the imaginary impedance deviation shown in section 3.3 or if it would
use the wrong phase in order to calculate an equally wrong modulus. In this case it would not correct
the measurement but introduce an additional systematic measurement deviation.
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In order to make on-line electrochemical impedance spectroscopy a reality, more work needs to be done
on the application of such additional information. Some work has already been done, especially for
the determination of aging [118] or the sensor-less temperature measurement [69; 93; 105; 114]. But
still more applications are needed. The ones already published need to become more robust towards
other effects that might be wrongly interpreted.
The strength of electrochemical impedance spectroscopy is also its weakness. A lot of changes in the
battery affect the impedance spectra, often even on a broad range of measurement frequencies. To
single out the effect that could have caused one change, other effects need to be held constant. For
on-line electrochemical impedance spectroscopy in its real-life application this is impossible. Another
way is to fully understand how and by what value all possible effects change the impedance spectra.
This comprehensive knowledge still does not exist and further research needs to done in this area.
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Glossary

10 mV-Criterion Criterion used to assess
whether an excitation current is too large
and caused the battery to respond in a
non-linear way. The response is assumed
to be sufficiently linear when the voltage
amplitude did not surpass 10 mV.

Aliasing Aliasing is an effect that occurs when
a signal is sampled and transformed
into the frequency-domain, but the sig-
nal containes frequencies that were higher
than half the sample frequency (Nyquist-
Shannon sampling theorem).

anode Electrode to which the negative electrons
move towards to and the positive li-ion
move away from. In this thesis it refers
to the negative electrode.

Accelerated Rate Calorimeter An adiabatic
environment that makes sure that there
is no heat exchange from the inside to the
outside of its enclosed container.

Arrhenius The Arrhenius equation states the
exponential temperature dependency of
the rate constant.

Blackman-Nuttal The Blackman-Nuttal win-
dow is a windowing function for digital sig-
nal processing.

Box The Box window is a windowing function
for digital signal processing.

Butler-Volmer The Butler-Volmer equation de-
scribes the electrochemical kinetics of an
electrode. Named after J.A.V. Butler and
M. Volmer.

C-rate Current amplitude in reference to the
capacity of the battery cell. The unit used

is CA. 1 CA equals the current to charge
or discharge the battery by 100 % in one
hour.

cathode Electrode to which the positive li-ion
move towards to and the negative elec-
trons move away from. In this thesis it
refers to the positive electrode.

Crest factor The ratio of peak (amplitude)
value to effective (root-mean-square) value
of a signal.

Double Fourier Integral The Double Fourier
Integral is a method to determine the har-
monics generated by a switched-mode con-
verter [50].

drift The term describes the effect when the
voltage or the state of the battery at the
end of the impedance measurement is not
equal to the one at the beginning of the
measurement. In this thesis mainly used
for voltage drifts.

duty cycle Ratio between on and off state of a
switch or high and low state of a signal,
especially pulse signals. For the Charger
Topology, the Balancing Unit Topology
and the DC-Supply Topology it is the on-
time of switch S1 divided by the switching
period.

enthalpy Part of the Gibbs’ free energy that
is the internal energy and the product of
pressure and volume.

entropy Part of the Gibbs’ free energy that de-
scribes its dependency on temperature.

entropy heating Heat generated by an exother-
mal reaction or cold generated by an en-
dothermal reaction.

Flat-Top The Flat-Top window is a windowing
function for digital signal processing.

Fourier transformation Method to transform
time-domain data into the frequency-
domain. The method is based on summing
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up the the time-domain data multiplied
with a reference phasor of the evaluated
frequency.

galvanostatic Excitation mode of the EIS for
which a current perturbation is generated
and the voltage response is observed.

Gibbs’ free energy Gibbs free energy of a sys-
tem is the energy available to perform
work.

Half-Bridge-converter Power electronic con-
verter consisting only of one half-bridge leg
with two switches and a choke.

Hamming The Hamming window is a window-
ing function for digital signal processing.

heat generation rate Normalized amount of
heat generated by the current. For entropy
heating, it is linearly dependent on current
(for the definition see equation 3.58). For
impedance heating, it is dependent on the
square of the current (for the definition see
equation 3.77).

impedance heating Heat generated by all ways
that can be explained by the impedance
measurement. These are sources such as
ohmic heating, reaction heating, etc.

impedance non-linearity Non-linearity of the
impedance described by the Butler-
Volmer equation and other effects caused
directly by the impedance itself.

inner resistance The term ‘inner resistance’ is
used in this thesis for all the equivalent
circuit components, e.g. resistive, capaci-
tive, inductive, inside the battery cell ex-
cept the voltage source.

intercept frequency Intercept frequency with
the x-Axis in the Nyquist plot. Fre-
quency at which the imaginary part of the
impedance becomes zero.

Kaiser The Kaiser window is a windowing func-
tion for digital signal processing. It has an
adjustable parameter α.

least residue system A set of integer values
containing the smallest representative of
all residue classes of a congruence relation.

Linear-Time-Invariant A system whose param-
eters do not change over time and the in-
puts affect the outputs only in a linear way
is called a Linear-Time-Invariant System.
These two properties allow the superposi-
tion of different inputs.

Maclaurin series The Maclaurin series is a Tay-
lor series expansion at x = 0.

Microcycle-Impedance During the Microcycle-
Impedance method, current pulses su-
perpositioned with a sinusoidal current
are applied in order to investigate the
impedance non-linearity.

Microcycle Microcycles are current pulses in
order to investigate the voltage drop they
cause. They are used to investigate the
impedance non-linearity.

modulus Absolute value of the impedance.
|Z| =

√
Zreal2 + Zimag2.

multi-sine excitation Excitation signal of a
multi-sine measurement.

multi-sine measurement Impedance measure-
ment for which several frequencies are ap-
plied at the same time.

Goertzel Algorithm, performing a frequency
transformation, published in [48], named
after Gerald Goertzel.

potentiostatic Excitation mode of the EIS for
which a voltage perturbation is generated
and the current response is observed.

r2 A measure of the quality of a fitted regression
line. Measures how close the data points
are to the regression line.
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single-sine measurement Impedance measure-
ment for which only a single frequency is
applied.

sinus-sweep measurement Impedance mea-
surement for which several single-sine
measurements are applied one after an-
other.

SoC shift Average change in SoC caused by a
current signal. The average SoC shift
is the average change in SoC, which was
present throughout the time when the sig-
nal was applied. E.g. if a rectangular cur-
rent signal charged a battery from 50 % to
60 % and back to 50 % SoC, the final SoC
change was 0% but the SoC shift was 5 %.

SoC sweep Range of SoC a current signal
caused a battery to move over. E.g. if a
rectangular current signal charged a bat-
tery from 50 % to 60 % and back to 50 %
SoC, the SoC sweep was 10 %.

spectral leakage Spectral leakage is an effect
that occurs when not an integer number of
periods of the evaluated frequency is used
in a Fourier transformation.

switched-mode Switched-mode excitation
means that the electronic switch that
generates the excitation is operated in
switching-mode compared to an analog
continuous-mode.

Tafel The Tafel equation describes either only
the anodic or the cathodic part of the
Butler-Volmer equation.

total harmonic distortion Ratio of the geomet-
ric sum of all harmonics divided by
the fundamental frequency: THD =√

Σ∞n=2harmonicsn

fundamental .
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Abbreviations

ADC analog-to-digital converter

ARC Accelerated Rate Calorimeter

BMS battery management system

CPE Constant Phase Element

DFT Discrete Fourier Transformation

EIS electrochemical impedance spectroscopy

FFT Fast Fourier Transform

FIR finite impulse response

IGBT Insulated Gate Bipolar Transistor

IIR infinite impulse response

LCO Lithium Cobalt Oxide (LiCoO2)

LFP Lithium Iron Phosphate (LiFePO4)

li-ion lithium-ion

LMO Lithium Manganese Oxide (LiMn2O4)

LTI Linear-Time-Invariant

NCA Lithium Nickel Cobalt Aluminum Oxide
(LiNiCoAlO2)

NiMH Nickel-Metal Hydride

NMC Lithium Nickel Manganese Cobalt Oxide
(Li(NixMnyCoz)O2)

OCV Open-Circuit-Voltage

PWM pulse-width modulation

SEI Solid-Electrolyte-Interface

SMPS switched mode power supply

SNR signal-to-noise ratio

SoC State-of-Charge

SoH state-of-health

SPS samples per second

THD total harmonic distortion

UPS uninterruptible power supply
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Formula Symbols

α Charge transfer coefficient. α is used as the
cathodic charge transfer coefficient in this
thesis. The anodic one is 1 − α. This is
the same notation as used by Newman and
Thomas-Alyea [80]. [α] = no unit

C amplitude Cmn of the mth carrier and nth

sideband harmonic, [C] = no unit

Cel electrical capacity, [Cel] = As

Cdl double layer capacitor of the SEI-layer,
[Cdl] = F

Cth thermal capacity, [Cth] = Ws K−1

D duty cycle ratio, D = ton
ton+toff , [D] = no unit

eZ relative deviation of an electrochemical
impedance measurement, [eZ ] = no unit

F Faraday constant, F = 96 485.3329 As mol−1

fc carrier frequency of a modulation process,
equal to the switching frequency of a
switched-mode amplifier, [fc] = Hz

fi intercept frequency, [fi] = Hz

fm measurement frequency or modulated fre-
quency, [fm] = Hz

frep repetition frequency of the aliased carrier
harmonics, [frep] = Hz

fs sampling rate or sampling frequency,
[fs] = Hz

G Gibb’s free energy

H enthalpy, [H] = J mol−1

HGR heat generation rate of impedance heat-
ing

HGRdc heat generation rate of impedance
heating caused by a direct current,
[HGRe] = J A−2 s−1

HGRe heat generation rate of entropy heating,
[HGRe] = J A−1 s−1

HGRfm heat generation rate of impedance
heating cause by the measurement fre-
quency, [HGRfm] = J A−2 s−1

I modified bessel function of the first kind

i0 exchange current, [i0] = A

Idc constant current, [Idc] = A

im measurement current changing over time,
[im] = A

Im measurement current, [Im] = A

Îm amplitude of the measurement current,
[Îm] = A

J bessel function of the first kind

Lbat battery inductance, [Lbat] = H

m carrier harmonics index, m ∈ N0

M modulation index, M = 0...1

M ′ modified modulation index, M ′ =
0...M ′max, M ′max < 1 (see equation E.13
and equation E.35)

mCH first carrier harmonic which aliases to
0 Hz, mCH ∈ N

n baseband and sideband harmonics index, n ∈
Z

nSB first sideband harmonic, which falls into
the measurement frequency bin, nSB ∈ Z

NTm number of samples for one period of the
measurement frequency NTm = fs

fm

ωc angular frequency of the carrier frequency fc,
ωc = 2πfc, [ωc] = Hz
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ωm angular frequency of the measurement or
modulated frequency fm, ωm = 2πfm,
[ωm] = Hz

p carrier harmonics divisor for defining
the distortion-free grid, p ∈ N,
GCD( p , mCH ) = 1

φI current phase angle, [φI ] = rad

φV voltage phase angle, [φV ] = rad

φZ impedance phase angle, [φZ ] = rad

φZ0 impedance phase angle of the impedance
without any measurement deviations,
[φZ0] = rad

q carrier harmonics divisor for defining
the distortion-free grid, q ∈ N,
GCD( q , mCH ) = 1

Q̇ heat flux, [Q̇] = J s−1

Qirr irreversible heat, [Qirr] = J

Qrev reversible heat, [Qrev] = J

r linear resistance in the equivalent circuit for a
double Butler-Volmer non-linear circuit, r
is a complex value, [r] = Ω

R gas constant, R = 8.314 459 8 J mol−1 K−1

Rct charge transfer resistance of the SEI-layer,
[Rct] = Ω

RΩ purely ohmic resistance of the impedance,
not subject to impedance non-linearity, it
is the real part of the impedance at the
intercept frequency fi, [RΩ] = Ω

S entropy, [S] = J mol−1 K−1

σW Warburg coefficient, [σW ] = Ω s0.5

SoC State-of-Charge, [SoC] = %, i.e. 0.0 to 1.0

∆SoC SoC shift, [∆SoC] = %, i.e. 0.0 to 1.0

∆ŜoC SoC sweep, [∆ŜoC] = %, i.e. 0.0 to 1.0

T absolute temperature, [T ] = K

Tm period of the measurement frequency, Tm =
f−1
m , [Tm] = s

Tmin period of the lowest frequency in a multi-
sine measurement, [Tmin] = s

Ta applied time of a frequency for an impedance
measurement, [Ta] = s

τD time constant of the heat transfer from the
coil to the casing of the cell, [τD] = s

ϑ temperature in ◦C beginning with 0 ◦C at
273.15 K, [ϑ] = ◦C

Θ exponential parameter for the temperature
dependency of the impedance, [Θ] = K

ϑcell temperature of the battery cell,
[ϑcell] = ◦C

V0 equilibrium voltage, [V0] = V

Vdc constant voltage, [Vdc] = V

ve voltage signal of an electrochemical
impedance measurement causing a mea-
surement deviation based by the absolute
impedance deviation Ze, [ve] = V

vm measurement voltage changing over time,
[vm] = V

V̂m amplitude of the measurement voltage for
potentiostatic excitation, [V̂m] = V

VOCV Open-Circuit-Voltage, [VOCV ] = V

VZ0 voltage response of the impedance without
any measurement deviations, [VZ0] = V

V̂Z0 amplitude of the voltage response of the
impedance without any measurement de-
viations, [V̂Z0] = V

VZm voltage response of the measured
impedance, [VZm] = V

V̂Zm amplitude of the voltage response of the
measured impedance, [V̂Zm] = V

vBV difference between electrode potential and
the equilibrium potential for the Butler-
Volmer equation [vBV ] = V
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wx minimum number of measurement periods,
for which a window does not suppress
the measurement frequency itself, [wx] =
no unit

Ym measured conductance, [Ym] = 1
Ω

z Number of electrons exchanged in an electro-
chemical system, [z] = no unit

Z complex impedance value, [Z] = Ω

Z0 reference impedance without any measure-
ment deviations assuming that the mea-
surement could be done with Im = 0 A
and instantly fast, [Z0] = Ω

Z
′

0 reference impedance without any measure-
ment deviations and without the ohmic re-
sistance RΩ, , [Z ′0] = Ω

Ze absolute deviation of an electrochemical
impedance measurement, [Ze] = Ω

Zimag imaginary part of the impedance,
[Zimag] = Ω

Zm measured impedance, [Zm] = Ω

ZOCV impedance deviation caused by OCV dis-
placement, [ZOCV ] = Ω

ZOCV/SoC impedance deviation caused by OCV
displacement from a change in state-of-
charge. This deviation is only imaginary,
[ZOCV/SoC ] = Ω

ZOCV/ϑ impedance deviation caused by OCV
displacement from entropy and a change in
temperature. This deviation is only imag-
inary, [ZOCV/ϑ] = Ω

Zreal real part of the impedance, [Zreal] = Ω

Zth thermal impedance, [Zth] = J
W

Z 6Θ temperature independent part of the
impedance, [Z 6Θ] = Ω

ZΘ temperature dependent part of the
impedance, [ZΘ] = Ω

ZW Warburg impedance, [ZW ] = Ω
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50 %, ϑ = 25 ◦C, Îm = 1 CA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.60 Impedance measurement deviation depending on cell temperature ϑcell. ‘Σ’: sum of
all components, ‘BV’: deviation from impedance non-linearity, ‘ϑi’: deviation from
temperature increase by impedance heating, ‘SoC’: deviation from State-of-Charge
change, ‘ϑe’: deviation from temperature increase by entropy heating, ‘Vlimit’: devia-
tion limit from 10 mV-Criterion (cylindrical LFP-cell A.1, SoCstart = 50 %, fm = 1 Hz,
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A Battery Cells Used

A.1 Cylindrical LFP Cell

Figure A.1.1: Photo of a cylindrical LFP cell
from A123.
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Figure A.1.2: OCV over SoC of a cylindrical LFP
cell from A123.

parameter value source

manufacturer A123 systems [4]
type APR 18650 M1A [4]
chemistry LiFePO4 [5]

nominal capacity 1.1Ah [4]
nominal voltage 3.3V [4]
nominal energy 3.63Wh [4]
outer dimensions (hxd) 64.95x18.2mm [4]
weight 39 g [4]
voltage window 2.0 to 3.6V [4]
std. charge current 1.5A [4]
max. cont. charge current 4A [4]
max. cont. discharge current 30A [4]

|Zi| @ 1 kHz N/A
RΩ 16.2 mΩ measurement
Rct 18 mΩ measurement
Cdl 0.76 F measurement
Lbat 228 nH measurement
fi 1112 Hz measurement

Table A.1: Specifications of a cylindrical LFP cell and measurements at SoC = 50 %, ϑ = 25 ◦C.
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A.1 Cylindrical LFP Cell
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Figure A.1.3: Impedance dependency on SoC and temperature.
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Figure A.1.4: ∆S over SoC.
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SoC RΩ (mΩ) i0 (A) α r (mΩ) r2

Zreal

10 % 16.2 0.26 0.39 17 0.9999
30 % 16.3 0.48 0.40 10 1.0000
50 % 16.2 0.33 0.35 10 1.0000
70 % 16.2 0.28 0.36 9 1.0000
90 % 16.2 0.37 0.38 10 1.0000

Zimag

10 % 0.0 -9.95 0.33 -85 0.9940
30 % 0.0 -18.21 0.05 -20 0.9997
50 % 0.0 -17.97 0.05 -10 0.9968
70 % 0.0 -15.44 0.05 -4 0.9994
90 % 0.0 -18.01 0.25 -31 0.9993

Table A.2: Microcycle-Impedance non-linearity measurements of the real and imaginary part fitted
with the modified Butler-Volmer equation of 3.131. Parameter dependence on SoC. Raw
measurements taken by [36].
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Figure A.1.5: Impedance non-linearity dependence on SoC (ϑ = 25 ◦C, SoC = 50 %). For reasons of
clarity only a subset of the measured points is shown. Raw measurements taken by [36].
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A.2 Cylindrical NMC Cell

A.2 Cylindrical NMC Cell

Figure A.2.1: Photo of a cylindrical NMC cell.
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Figure A.2.2: OCV over SoC of a cylindrical
NMC cell.

parameter value source

manufacturer Panasonic [119]
type UR18650 SAX [119]
chemistry Li(NixMnyCoz)O2 [120]

nominal capacity 1.25Ah [119]
nominal voltage 3.7V [119]
nominal energy 4.625Wh
outer dimensions (hxd) 64.8x18.1mm [119]
weight 45 g [119]
voltage window 2.5 to 4.2V [119]
std. charge current 0.875A [119]
max. cont. charge current N/A
max. cont. discharge current 10A [119]

|Zi| @ 1 kHz N/A
RΩ 14.6 mΩ measurement
Rct 3.2 mΩ measurement
Cdl 1.16 F measurement
Lbat 303 nH measurement
fi 824 Hz measurement

Table A.3: Specifications of a cylindrical NMC cell and measurements at SoC = 50 %, ϑ = 25 ◦C.
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(b) Bode plot over Temperature.

Figure A.2.3: Impedance dependency on SoC and temperature.
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Figure A.2.4: ∆S over SoC.
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A.3 Cylindrical LCO Cell

A.3 Cylindrical LCO Cell

Figure A.3.1: Photo of a cylindrical LiCoO cell.
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Figure A.3.2: OCV over SoC of a cylindrical
LCO cell.

parameter value source

manufacturer Samsung SDI Co., Ltd. [53]
type ICR18650-30B [53]
chemistry LiCoO2

nominal capacity 2.95Ah [53]
nominal voltage 3.78V [53]
nominal energy 11.15Wh
outer dimensions (hxd) 65.0x18.4mm [53]
weight 48 g [53]
voltage window 2.75 to 4.35V [53]
std. charge current 1.475A [53]
max. cont. charge current 2.95A [53]
max. cont. discharge current 5.9A [53]

|Zi| @ 1 kHz 100 mΩ [53]
RΩ 50 mΩ measurement
Rct 13 mΩ measurement
Cdl 3.53 F measurement
Lbat 815 nH measurement
fi 704 Hz measurement

Table A.4: Specifications of a cylindrical LCO cell and measurements at SoC = 50 %, ϑ = 25 ◦C.
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Figure A.3.3: Impedance dependency on SoC and temperature.
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A.4 Cylindrical NCA Cell

A.4 Cylindrical NCA Cell

Figure A.4.1: Photo of a cylindrical NCA cell.

0% 20% 40% 60% 80% 100%
3

3.2

3.4

3.6

3.8

4

4.2

SoC (%)

vo
lta

ge
(V

)

OCVNCA
cha/dch

Figure A.4.2: OCV over SoC of a cylindrical
NCA cell.

parameter value source

manufacturer Sanyo (now Panasonic) [78]
type NCR18650PD [78]
chemistry LiNiCoAlO2

nominal capacity 2.88Ah [78]
nominal voltage 3.6V [78]
nominal energy 10.4Wh [78]
outer dimensions (hxd) 65.2x18.6mm [78]
weight 46.5 g [78]
voltage window 2.5 to 4.2V [78]
std. charge current 1.36A [78]
max. cont. charge current N/A
max. cont. discharge current 10A [78]

|Zi| @ 1 kHz 35 mΩ [78]
RΩ 22 mΩ measurement
Rct 24 mΩ measurement
Cdl 1.1 F measurement
Lbat 412 nH measurement
fi 718 Hz measurement

Table A.5: Specifications of a cylindrical NCA cell and measurements at SoC = 50 %, ϑ = 25 ◦C.
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Figure A.4.3: Impedance dependency on SoC and temperature.

202



A.5 NMC Pouch Cell

A.5 NMC Pouch Cell

Figure A.5.1: Photo of an NMC pouch cell from
DOW KOKAM.
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Figure A.5.2: OCV over SoC of an NMC pouch
cell from DOW KOKAM.

parameter value source

manufacturer DOW KOKAM LLC [111]
type SLPB110255255H [111]
chemistry Li(NixMnyCoz)O2 [112]

nominal capacity 60Ah [111]
nominal voltage 3.7V [111]
nominal energy 222Wh
outer dimensions (hxwxd) 10.7x266x263mm [111]
weight 1.49 kg [111]
voltage window 2.7 to 4.2V [111]
std. charge current 30A [111]
max. cont. charge current 180A [111]
max. cont. discharge current 720A [111]

|Zi| @ 1 kHz 0.45± 0.10 mΩ [111]
RΩ 0.51 mΩ measurement
Rct 0.31 mΩ measurement
Cdl 16.3 F measurement
Lbat 73 µH measurement
fi 155 Hz measurement

Table A.6: Specifications of an NMC pouch and measurements at SoC = 50 %, ϑ = 25 ◦C.
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B Prototype Used

(a) Photo.

Vdc
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(b) Simplified schematic.

Figure B.0.1: Developed prototype used as an experimental platform for EIS measurements with
switched-mode excitation.

parameter value manufacturer

max. Voltage (IGBT version) 400V N/A
max. Current (IGBT version) 20A N/A
max. Voltage (FET version) 60V N/A
max. Current (FET version) 40A N/A

IGBT module FS100R07N3E4 Infineon
FET module SK85MH10T Semikron
shunt Rsh 4 pcs., size SMT Isabellenhütte
filter choke Lf , Rf 46 µH, 15 mΩ self-built
filter capacity Cf Σ = 140 µF foil capacitors WIMA
controller STM32F407 ST Microelectronics
ADC ADS1278 Sigma-Delta Texas Instruments
instrumentation amplifier INA826 Texas Instruments
operation amplifier for anti-
aliasing filter

THS4521 Texas Instruments

Table B.1: Specifications and components used in the developed prototype.
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C Mathematical Lemmas

C.1 Trigonometric Identities

From Barth et al. [11], page 38 to 39

sin(α+ β) = sin(α) · cos(β) + cos(α) · sin(β) (C.1)

cos(α+ β) = cos(α) · cos(β)− sin(α) · sin(β) (C.2)

sin(2α) = 2 · sin(α) · cos(α) (C.3)

sin2(α2 ) = 1
2 · (1− cos(α)) (C.4)

cos2(α2 ) = 1
2 · (1 + cos(α)) (C.5)

By combining the five trigonometric identities, the following identities can be derived:
With C.1 and C.3

cos(α+ β) · sin(α+ β)

= [cos(α) · cos(β)− sin(α) · sin(β)] · [sin(α) · cos(β) + cos(α) · sin(β)]

= cos2(β)︸ ︷︷ ︸
1
2 + 1

2 cos(2β)

· cos(α) · sin(α)︸ ︷︷ ︸
1
2 sin(2α)

+ cos2(α)︸ ︷︷ ︸
1
2 + 1

2 cos(2α)

· cos(β) · sin(β)︸ ︷︷ ︸
1
2 sin(2β)

− sin2(α)︸ ︷︷ ︸
− 1

2 + 1
2 cos(2α)

· cos(β) · sin(β)︸ ︷︷ ︸
1
2 sin(2β)

− sin2(β)︸ ︷︷ ︸
− 1

2 + 1
2 cos(2β)

· cos(α) · sin(α)︸ ︷︷ ︸
1
2 sin(2α)

= 1
2 · sin(2α) · cos(2β) + 1

2 · cos(2α) · sin(2β) (C.6)

C.2 Definite integrals

Based on the trigonometric identities of the previous section C.1 the following definite integrals can
be derived:
With C.3∫ 2π

0
sin(ax) · cos(bx) dx = 1

2 · sin(2ax) for a = b, otherwise = 0 (C.7)

With C.4∫ 2π

0
sin(ax) · sin(bx)︸ ︷︷ ︸

1
2 (=1−cos(2ax)) for a=b, otherwise =0

dx = 1
2 · 2π for a = b, otherwise = 0 (C.8)
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With C.5∫ 2π

0
cos(ax) · cos(bx)︸ ︷︷ ︸

1
2 (=1+cos(2ax)) for a=b, otherwise =0

dx = 1
2 · 2π for a = b, otherwise = 0 (C.9)

With C.1 and C.3∫ 2π

0
sin(ax+ ϕ) · cos(bx) dx

= cos(ϕ) ·
∫ 2π

0
sin(ax) · cos(bx) dx+ sin(ϕ) ·

∫ 2π

0
cos(ax) · cos(bx) dx

= cos(ϕ) ·
∫ 2π

0

1
2 sin(2ax) dx︸ ︷︷ ︸

=0

+ sin(ϕ) ·
∫ 2π

0

1
2 (1 + cos(2ax)) dx for a = b, otherwise = 0

= sin(ϕ) · 1
2 · 2π for a = b, otherwise = 0 (C.10)

∫ 2π

0
sin(ax+ ϕ) · sin(bx) dx

= cos(ϕ) ·
∫ 2π

0
sin(ax) · sin(bx) dx+ sin(ϕ) ·

∫ 2π

0
cos(ax) · sin(bx) dx

= cos(ϕ) ·
∫ 2π

0

1
2 (1− cos(2ax)) dx+ sin(ϕ) ·

∫ 2π

0

1
2 sin(2ax) dx︸ ︷︷ ︸

=0

for a = b, otherwise = 0

= cos(ϕ) · 1
2 · 2π for a = b, otherwise = 0 (C.11)

C.3 Indefinite integrals

From Papula [85], appendix, integral 208∫
x · sin(ax) dx = sin(ax)

a2 − x · cos(ax)
a

(C.12)

From Papula [85], appendix, integral 232∫
x · cos(ax) dx = cos(ax)

a2 + x · sin(ax)
a

(C.13)

From Papula [85], appendix, integral 322∫
eax · sin(bx) dx = eax

a2 + b2
[a · sin(bx)− b · cos(bx)] (C.14)

From Papula [85], appendix, integral 324∫
eax · cos(bx) dx = eax

a2 + b2
[a · cos(bx) + b · sin(bx)] (C.15)
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C.4 Bessel Function of the First Kind

C.4 Bessel Function of the First Kind

The following lemmas were used to solve the Double Fourier Integral for determining the harmonics
of a half-bridge with varying DC-link voltage, the balancing resistor topology and the DC source
topology in Appendix E. An extensive description of Bessel functions and their applications in science
and engineering can be found in Watson [125] and Mc Lachlan [76].

From Holmes and Lipo [50], Appendix 2, Integral A2.12 and from it derived equations∫ π

−π
e±jξ cos(θ) cos(nθ) dθ = 2πj±nJn(ξ) = 2π(±1)njnJn(ξ) (C.16)∫ π

−π
e±jξ sin(θ) sin(nθ) dθ = 2πj±nJn(ξ) = 2π(±1)njnJn(ξ)

The integration from the limits π to π yields the same result as from 0 and 2π. For n = 1, shifting the
integration limits by π is equal to multiplying the exponential argument with −1 (because sin(ϕ+π) =
− sin(ϕ) and cos(ϕ + π) = − cos(ϕ)). The same is true for uneven values of n. For even values of n
the shift of the integration limits by π does not change the term at all. This can be expressed by a
multiplication with (−1)n):∫ 2π

0
e∓jξ cos(θ)(−1)n cos(nθ) dθ = 2π (−1)n(∓1)n︸ ︷︷ ︸

(±1)n

jnJn(ξ)

∫ 2π

0
e∓jξ sin(θ)(−1)n sin(nθ) dθ = 2π (−1)n(∓1)n︸ ︷︷ ︸

(±1)n

jnJn(ξ)

For n = 1 this equation can be stated as:∫ 2π

0
e±jξ sin(θ) sin(θ) dθ = ±j2πJ1(ξ)∫ 2π

0
e±jξ cos(θ) cos(θ) dθ = ±j2πJ1(ξ)

From Holmes and Lipo [50], Appendix 2, Integral A2.13 and from it derived equations∫ π

−π
e±jξ cos(θ) sin(nθ) dθ = 0 (C.17)∫ 2π

0
e±jξ cos(θ) sin(nθ) dθ = 0∫ 2π

0
e±jξ sin(θ) cos(nθ) dθ = 0

From Holmes and Lipo [50], Appendix 2, Integral A2.14 and from it derived equations∫ π

−π
ejξ cos(θ)ejnθ dθ = 2πjnJn(ξ) (C.18)

For equation C.16 it has been shown, that the integration limits can be shifted by π without a change
in the mathematical expression. Since ejnθ = cos(nθ) + j · sin(nθ) this can also be done for equation
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C.18. ∫ 2π

0
e±jξcos(θ)ejnθ dθ = 2πj±nJn(ξ) = 2π(±1)njnJn(ξ) (C.19)∫ 2π

0
e±jξcos(θ)e−jnθ dθ = 2πj±nJn(ξ) = 2π(±1)njnJn(ξ)∫ 2π

0
e±jξsin(θ)ejnθ dθ = 2π(±1)njn+1Jn(ξ)∫ 2π

0
e±jξsin(θ)e−jnθ dθ = 2π(±1)njn−1Jn(ξ)

From [76] Chapter 3, Section 3.42, equation (3) and from it derived equations∫ pi

−pi
ejξcos(θ) dθ = 2πJ0(ξ) (C.20)∫ 2π

0
e±jξcos(θ) dθ = 2πJ0(ξ)∫ 2π

0
e±jξsin(θ) dθ = 2πJ0(ξ)
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Figure C.4.1: Bessel function of the first kind.

From Holmes and Lipo [50], Appendix 2, Integral A2.17 and Integral A2.20

J−n(ξ) = (−1)nJn(ξ) = Jn(−ξ) (C.21)

C.5 Modified Bessel Function of the First Kind

The following lemmas were used to solve the measurement deviation caused by the temperature de-
pendency of the impedance in section 3.2 and the measurement deviation caused by the impedance
non-linearity in section 3.4. An extensive description of Bessel functions and their applications in
science and engineering can be found in Watson [125] and Mc Lachlan [76].
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From Mc Lachlan [76], Chapter 6, equation (8)

In(x) = j−nJn(jx) (C.22)

From Mc Lachlan [76], Chapter 6, equation (9)

In(−jx) = j−nJn(x) = (−j)nJn(x) (C.23)

With equation C.22 equation C.16 can be rewritten as∫ 2π

0
e±ξ cos(θ) cos(nθ) dθ = 2π(±1)nIn(ξ) (C.24)∫ 2π

0
e±ξ sin(θ) sin(nθ) dθ = 2π(±1)nIn(ξ) (C.25)

With equation C.22 equation C.17 can be rewritten as∫ 2π

0
e±ξ cos(θ)sin(nθ) dθ = 0 (C.26)∫ 2π

0
e±ξ sin(θ)cos(nθ) dθ = 0 (C.27)

With equation C.22 equation C.18 can be rewritten as∫ 2π

0
e±ξ cos(θ)ejnθ dθ = 2π(±1)nIn(ξ) (C.28)∫ 2π

0
e±ξ cos(θ)e−jnθ dθ = 2π(±1)nIn(ξ)∫ 2π

0
e±ξ sin(θ)ejnθ dθ = 2π(±1)njIn(ξ)∫ 2π

0
e±ξ sin(θ)e−jnθ dθ = 2π(∓1)njIn(ξ)

With equation C.22 equation C.19 can be rewritten as∫ 2π

0
e±ξ cos(θ)dθ = 2πI0(ξ) (C.29)∫ 2π

0
e±ξ sin(θ)dθ = 2πI0(ξ)
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Figure C.5.1: Modified Bessel function of the first
kind.

From Mc Lachlan [76] Chapter 6, equation (10) and (11)

I−n(x) = (−1)nIn(−x) = In(x) (C.30)
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C.6 Imaginary Unit to the Power of a Fraction

C.6 Imaginary Unit to the Power of a Fraction

For integer multiples of the exponent of the imaginary unit, the result is defined as:

√
−1 = j (C.31)

(−1)n = (j2)n = j2n (C.32)

For the calculation of the measurement deviation of a multi-sine measurement in section 3.4.5, an
equation with the imaginary unit to the power of a variable is given. This exponent of the imaginary
unit can become a fraction. Figure C.6.1 shows the complex result when the exponent has any fraction
between -2 and 2. The result follows the formula:

jx = cos(π2 · x) + j · sin(π2 · x) (C.33)

j
1
3 = 0.866 + j0.5

−2 −1 0 1 2
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o
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real imaginary

Figure C.6.1: Factor jx.
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D Mathematical Derivations for Impedance
Non-linearity

The Butler-Volmer equation gives the current for a certain voltage deflection from the OCV. Equation
D.1 states the algebraic equation of the measurement current im for a potentiostatic excitation. A
potentiostatic excitation during the impedance measurement is first assumed (see equation D.2), since
the Butler-Volmer equation cannot be analytically converted into a closed form that would give the
voltage for a certain current.

im = i0 ·
[
e

(1−α)zF (Vdc+vBV )
RT − e

−αzF (Vdc+vBV )
RT

]
+ Vdc + vBV

r

im = i0 ·
[
e

(1−α)zFvBV
RT − e

−αzFvBV
RT

]
+ vBV

r
for Vdc = 0 (D.1)

vm = vBV =V̂m · sin(ωmt) (D.2)

D.1 Harmonics generated by Butler-Volmer equation

This section derives the harmonics generated by a single-sine potentiostatic excitation. It therefore
evaluates the Fourier transformation of the resulting measurement current im at integer multiples n
of the measurement frequency fm. The evaluation frequency is then ωn = n · ωm. For deriving the
harmonics n 6= 1 is assumed.

F{in(t)} = 2
Tmin

∫ Tmin

0
im(t) · e−jnωmtdt (D.3)

F{in(t)} = 2
Tmin

∫ Tmin

0
i0 · e

(1−α)zFVdc
RT · e

(1−α)zFV̂m
RT ·sin(ωmt) · e−jnωmtdt

− 2
Tmin

∫ Tmin

0
i0 · e

−αzFVdc
RT · e

−αzFV̂m
RT ·sin(ωmt) · e−jnωmtdt

+ 2
Tmin

∫ Tmin

0

Vdc + V̂m · sin(ωmt)
r

· e−jnωmtdt︸ ︷︷ ︸
=0 for n 6=1

(D.4)

With equation C.28 the integrals become:

F{in(t)} = 2i0
Tmin

· e
(1−α)zFVdc

RT · (−j)n · Tmin · In

(
(1− α)zF V̂m

RT

)

− 2i0
Tmin

· e
−αzFVdc

RT · (−j)n · Tmin · In

(
−αzF V̂m
RT

)
(D.5)
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F{in(t)} = (−j)n · 2i0 · e
(1−α)zFVdc

RT · In

(
(1− α)zF V̂m

RT

)

− (−j)n · 2i0 · e
−αzFVdc

RT · In

(
−αzF V̂m
RT

)
(D.6)

D.2 Ratios of harmonics generated by Butler-Volmer equation

This section derives the ratios of the current harmonics equation from section D.1.
For the ratio of the fundamental to the third harmonic without constant voltage Vdc:

F{in=1(t)}
F{in=3(t)} =

(−j)1 · 2i0 ·
[
I1

(
(1−α)zF V̂m

RT

)
− I1

(
−αzF V̂m

RT

)]
(−j)3 · 2i0 ·

[
I3

(
(1−α)zF V̂m

RT

)
− I3

(
−αzF V̂m

RT

)]
= −j

(−j)3 ·

I1

(
(1−α)zF V̂m

RT

)
− I1

(−αzFVdc
RT

)
I3

(
(1−α)zF V̂m

RT

)
− I3

(−αzFVdc
RT

)
 (D.7)

(D.8)

For the ratio of the fundamental to the second harmonic with constant voltage. For a positive constant
voltage the factor e

(1−α)zFVdc
RT becomes large and the factor e

−αzFVdc
RT becomes small. Therefore, the

second term of equation D.6 with the latter factor is neglected.

F{in=1(t)}
F{in=2(t)} =

−j · 2i0 · e
(1−α)zFVdc

RT · I1

(
(1−α)zF V̂m

RT

)
(−j)2 · 2i0 · e

(1−α)zFVdc
RT · I2

(
(1−α)zF V̂m

RT

)
F{in=1(t)}
F{in=2(t)} = −j

(−j)2 ·
I1

(
(1−α)zF V̂m

RT

)
I2

(
(1−α)zF V̂m

RT

) (D.9)
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D.3 Single-sine measurement

This section derives analytically the measurement deviation introduced by a non-linear resistance de-
scribed by a Butler-Volmer equation in parallel with an ohmic resistance. Equations D.1 and D.2 allow
the conversion of the current response im into the frequency-domain via the Fourier transformation:

F{im(t)} = 2
Tm

∫ Tm

0
im(t) · e−jωmtdt (D.10)

F{im(t)} = 2
Tm

∫ Tm

0
i0 · e

(1−α)zFV̂m
RT ·sin(ωmt) · e−jωmtdt

− 2
Tm

∫ Tm

0
i0 · e

−αzFV̂m
RT ·sin(ωmt) · e−jωmtdt

+ 2
Tm

∫ Tm

0

V̂m · sin(ωmt)
r

· e−jωmtdt︸ ︷︷ ︸
2·V̂m
Tm·r

∫ Tm

0
sin(ωmt) · cos(ωmt)︸ ︷︷ ︸

=0

−j
∫ Tm

0
sin(ωmt)·sin(ωmt)

dt

(D.11)

F{im(t)} = 2i0
Tm
·

[
−j · Tm · I1

(
(1− α)zF V̂m

RT

)]
using Lemma C.28

− 2i0
Tm
·

[
−j · Tm · I1

(
−αzF V̂m
RT

)]
using Lemma C.28

+ 2 · V̂m
Tm · r

·

[
−j ·

∫ Tm

0

1
2 −

1
2 · cos(2ωmt)dt

]
︸ ︷︷ ︸
−j ·

[
1
2 t−

1
2
Tm
4π · sin(2ωmt)

]Tm
0︸ ︷︷ ︸

=−j 1
2Tm

using Lemma C.4 (D.12)

F{im(t)} = −j 2i0
Tm
· Tm · I1

(
(1− α)zF V̂m

RT

)

+ j
2i0
Tm
· Tm · I1

(
−αzF V̂m
RT

)

− j V̂m
r

(D.13)
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D.4 Multi-sine measurement

F{im(t)} = 2
Tmin

∫ Tmin

0
ΣNn=1in(t) · e−jxnωntdt (D.14)

F{im(t)} = 2
Tmin

∫ Tmin

0
ΣNn=1i0 · e

(1−α)zFV̂m
RT ·sin(ωnt) · e−jxnωntdt

− 2
Tmin

∫ Tmin

0
ΣNn=1i0 · e

−αzFV̂m
RT ·sin(ωnt) · e−jxnωntdt

+ 2
Tmin

∫ Tmin

0
ΣNn=1

V̂m · sin(ωnt)
r

· e−jxnωntdt︸ ︷︷ ︸
−j· V̂mr

1
2Tmin

(D.15)

F{im(t)} = 2i0
Tmin

· ΣNn=1(−1)xnjxn · Tmin · Ixn

(
(1− α)zF V̂m

RT

)

− 2i0
Tmin

· ΣNn=1(+1)xnjxn · Tmin · Ixn

(
αzF V̂m
RT

)

− j V̂m
r

(D.16)

Entering equation D.16 into equation 3.139. Entering the resulting Ym into equation 3.142 with the
approximation of V̂m by Îm · Z

′

0 yields:

eZ ≈
1

Z
′
0 +RΩ

·

∣∣∣∣∣
[

2i0
ÎmZ

′
0
· ΣNn=1

(
(−1)xn−1jxn−1 · Ixn

(
(1− α)zF ÎmZ

′

0
RT

)
−

(+1)xn−1jxn−1 · Ixn

(
αzF ÎmZ

′

0
RT

))
+ 1
r

]−1

− Z
′

0

∣∣∣∣∣ (D.17)

With the assumption of α = 0.5:

eZ ≈
1

Z
′
0 +RΩ

·

∣∣∣∣∣
[

2i0
ÎmZ

′
0
·

ΣNn=1

((
(−1)xn−1jxn−1 − (+1)xn−1jxn−1)︸ ︷︷ ︸

=2j cos(π2 ·xn)

·Ixn

(
0.5zF ÎmZ

′

0
RT

))
+ 1
r

]−1

− Z
′

0

∣∣∣∣∣ (D.18)
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D.5 Measurement with constant current

D.5 Measurement with constant current

When the impedance is measured during charging or discharging, the constant charge/discharge current
is superpositioned with a sinusoidal current. Equation D.19 assumes first that instead of a galvanostatic
excitation, a potentiostatic excitation is present.

F{im(t)} = 2
Tm

∫ Tm

0
i0 · e

(1−α)zF (Vdc+V̂m·sin(ωmt))
RT · e−jωmtdt

− 2
Tm

∫ Tm

0
i0 · e

−αzF (Vdc+V̂m·sin(ωmt))
RT · e−jωmtdt

+ 2
Tm

∫ Tm

0

Vdc + V̂m · sin(ωmt)
r

· e−jωmtdt (D.19)

F{im(t)} = 2i0
Tm
· e

(1−α)zF ·Vdc
RT ·

∫ Tm

0
e

(1−α)zF ·V̂m·sin(ωmt)
RT · e−jωmtdt

− 2i0
Tm
· e
−αzF ·Vdc

RT ·
∫ Tm

0
e
−αzF ·V̂m·sin(ωmt)

RT · e−jωmtdt

+ 2
Tm

∫ Tm

0

Vdc
r
· e−jωmtdt︸ ︷︷ ︸

=0

+ 2
Tm

∫ Tm

0

V̂m · sin(ωmt)
r

· e−jωmtdt (D.20)

With this equation the two superpositioned parts, constant and sinusoidal, can be separated. The
overvoltage caused by the constant current is independent from time and is not integrated but treated
as a constant factor. Equation D.20 only differs from equation D.11 by the factor e

(1−α)zF ·Vdc
RT and

e
−αzF ·Vdc

RT . Hence, all the steps for deriving equation D.21 are the same except for this factor. With
Lemma C.28, the integrals of equation D.20 become:

F{im(t)} = −j · 2i0 · e
(1−α)zFVdc

RT · I1

(
(1− α)zF V̂m

RT

)

+ j · 2i0 · e
−αzFVdc

RT · I1

(
−αzF V̂m
RT

)

− j V̂m
r

(D.21)
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E Mathematical Derivation of Generated Harmonics by
Switched Mode Excitation

In this appendix, the mathematical expressions for the theoretical harmonic distortions are derived. It
uses the Double Fourier Integral method extensively explained by Holmes and Lipo in [50]. He derived
the algebraic equation for various power converters including a half bridge converter with double the
DC-link voltage. The cases used in this thesis, which were not covered in his book and are covered in
this appendix, are:

1. The output voltage vout(t) of the DC-link voltage adjustment for the Battery Charger Topology.

2. The balancing current ibal(t) of the Balancing Unit Topology.

3. The input current iin(t) of the DC Source Topology.

E.1 General Process

Double Fourier Integral

Equation E.1 shows the Double Fourier Integral used by Holmes and Lipo [50].

Cmn = Amn + jBmn = 1
2π2

∫ π

−π

∫ πMcosy′

−π
Vdc · ej(mx+ny′) dxdy (E.1)

with

x(t) = ωct+ θc (E.2)

y(t) = ωmt+ θm (E.3)

It assumes an infinitely fast control circuit like an analog feedback loop would provide. For a digital
controller on a processor, the reference signal is updated in a loop, making it to a discrete variable
which changes in steps. Equation E.4 modifies the variable y from equation E.2 to accommodate for
that fact. Among the various ways to compare the reference signal to a carrier signal, the regular
trailing edge pulse width modulation was chosen.
Time signal variables:

y′(t) = y(t)− ωm
ωc

(x− 2πm) with m as mth carrier interval (E.4)
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E Mathematical Derivation of Generated Harmonics by Switched Mode Excitation

This modifies equation E.1 for a continuous control signal to equation E.5 for a discrete regular trailing
edge pulse width modulated control signal.

Cmn = Amn + jBmn = 1
2π2

∫ π

−π

∫ πM cos(y)

−π
Vdc · ej([m+nωmωc ]x+ny) dx dy (E.5)

Verification

Figures and tables are shown for each of the three typologies to verify the derived equations. They
compare the results of a simulation with the results of the derived equations. Equation E.6 shows
the output voltage va(t) with a series of sinusoidal signals according to Holmes and Lipo [50], for a
half-bridge converter with DC-link voltage double has high as the mean output voltage. Its harmonics
are calculated by the equation E.7 to E.11.

va(t) = C00

2
+ C01 e

jωmt+θm

+
∞∑
n=2

C0n e
jn(ωmt+θm)

+
∞∑
m=1

Cm0 e
jm(ωct+θc)

+
∞∑
m=1

∞∑
n=−∞
(n6=0)

Cmn e
jn(ωmt+θm)+jm(ωct+θc) (E.6)

C00 = Vdc
2 (E.7)

C01 = Vdc
2 M (E.8)

C0n = Vdc
π

J n
(
nωmωc πM

)
nωmωc

·
[
sin
(
n
π

2

)
− j cos

(
n
π

2

)]
(E.9)

Cm0 = j
Vdc
mπ

[cos (mπ)− J 0 (mπM)] (E.10)

Cmn = Vdc
π

J n
([
m+ nωmωc

]
πM

)
[
m+ nωmωc

] ·
[
sin
(
n
π

2

)
− j cos

(
n
π

2

)]
(E.11)

Figure E.1.1 and table E.1 verify the equations with a simulation for which the signals were simulated in
the time-domain and then Fourier-transformed into the frequency-domain to determine the harmonics.

THD C02 C10 C1−1 C1+1 C20 C2−1 C2+1

DFS theory 13.7044 0.0098 12.5769 0.9892 0.9862 0.3065 0.9544 0.9544
sim and DFT 13.6382 0.0100 12.5144 0.9892 0.9861 0.3084 0.9542 0.9542
difference 0.0662 0.0002 0.0625 0.0001 0.0001 0.0019 0.0003 0.0003

Table E.1: Numerical values to figure E.1.1.
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E.2 Charger Topology Using DC-link adjustment
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Figure E.1.1: Harmonics of the Battery Charger Topology determined with the Double Fourier Integral
theory and a simulation with subsequent DFT.

E.2 Charger Topology Using DC-link adjustment

Section 4.3.4 shows the option to reduce the harmonic content of the switched mode excitation by
reducing the DC-link voltage to levels between the battery voltage and double the battery voltage.
This section derives the modified equations of the harmonics for a half-bridge converter with a varying
DC-link voltage. A reduced DC-link voltage causes the effective driving voltage vL over the choke of
the half-bridge converter to be unsymmetrical. This causes the positive slope of the choke current to
be lower than the negative slope (see figure E.2.2).

vdc

va

Lf

iL

vout

ibat
S1

S2
Cf

Zbat

V0

iaiin

Cin

Figure E.2.1: Battery Charger Topology.

-Vbat
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T
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0

ÂC01

time

iL
ifundamental

Figure E.2.2: Generated voltage and current
of the Battery Charger Topology
(synthetic data).
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E Mathematical Derivation of Generated Harmonics by Switched Mode Excitation

Preconditions and Definitions

For the current to be zero the output voltage has to fulfill equation E.12.

Va,I=0 =
(

2Vbat
Vdc

− 1
)
· Vbat (E.12)

Equation E.13 shows the modified modulation index M ′ for a varying DC-link voltage. For DC-link
voltages less than double the battery voltage, the modulation index can no longer take values up to 1.

M ′ = Vdc
Vbat

− 1 (E.13)

Figure E.2.2 shows that the sawtooth carrier signal x(t) is no longer symmetrical to zero. The lower
bound for the integration over x of integral E.5 is no longer −π but the larger, the smaller the DC-link
voltage is (see equation E.14).

xlow = −2Vbat
Vdc

π (E.14)

Derivation of the Harmonic Components

Starting from the double Fourier integral equation from Holmes and Lipo [50] modified by the lower
bound from equation E.14:

Cmn = 1
2π2

∫ π

−π

∫ πM ′ cos y′

−2VbatVdc
π

Vdc e
j([m+nωmωc ]x+ny) dx dy (E.15)

The indexes m and n are set to 0 in turns to evaluate the different harmonic components.

For m = n = 0 (DC offset):

C00 = Vdc
2π2

∫ π

−π

(
πM ′ cos y + 2Vbat

Vdc
π

)
dy

= Vdc
2π2


∫ π

−π
πM ′ cos y dy︸ ︷︷ ︸

0

+
∫ π

−π
2Vbat
Vdc

π dy︸ ︷︷ ︸
4π2 Vbat

Vdc


= Vdc

2π2 4π2Vbat
Vdc

= 2Vbat (E.16)
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E.2 Charger Topology Using DC-link adjustment

For m = 0, n > 0 (fundamental and baseband harmonics):

C0n = Vdc
2π2

∫ π

−π

∫ πM ′ cos y

−2VbatVdc
π

ejn
ωm
ωc

xejny dx dy

C0n = −j Vdc

2π2
[
nωmωc

] ∫ π

−π

(
ejn

ωm
ωc

πM ′ cos y − e−j2n
ωm
ωc

Vbat
Vdc

π

)
ejny dy

C0n = −j Vdc

2π2
[
nωmωc

] ∫ π

−π
ejn

ωm
ωc

πM ′ cos yejny dy −
∫ π

−π
e
−j2nωmωc

Vbat
Vdc

π
ejny dy (E.17)

Lemma C.18 solves the first integral of E.17.

C0n = −j Vdc

2π2
[
nωmωc

]2πjnJ n
(
n
ωm
ωc

πM ′
)

+ j
Vdc

2π2
[
nωmωc

]e−j2nωmωc Vbat
Vdc

π · e
jnπ − e−jnπ

jn︸ ︷︷ ︸
=0 when n 6= 0

(E.18)

(
ejnπ−e−jnπ

jn

)
is zero for all non-zero values of n and with jn = ej

π
2 n equation E.18 becomes

C0n = Vdc[
nωmωc

]
π
J n
(
n
ωm
ωc

πM ′
)
·
[
sin
(
n
π

2

)
− j cos

(
n
π

2

)]
(E.19)

For m > 0, n = 0 (carrier frequency and its harmonics):

Cm0 = Vdc
2π2

∫ π

−π

∫ πM ′ cos y

−2VbatVdc
π

ejmx dx dy (E.20)

Cm0 = Vdc
2π2

∫ π

−π

ejmπM ′ cos y − e−j2m
Vbat
Vdc

π

jm

 dy (E.21)

Cm0 = Vdc
j2mπ2

∫ π

−π
ejmπM

′ cos y dy − Vdc
j2mπ2 e

−j2mVbat
Vdc

π
∫ π

−π
dy (E.22)

Lemma C.19 solves the first integral of E.22. Eulers Formula ejx = cos(x) − j sin(x) simplifies the
second term.

Cm0 = −j Vdc
mπ
· J 0 (mπM ′) + j

Vdc
mπ
· cos

(
2mVbat

Vdc
π

)
+ Vdc
mπ
· sin

(
2mVbat

Vdc
π

)
(E.23)

Cm0 = Vdc
mπ
· sin

(
2mVbat

Vdc
π

)
+ j

Vdc
mπ

(
cos
(

2mVbat
Vdc

π

)
− J 0 (mπM ′)

)
(E.24)
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E Mathematical Derivation of Generated Harmonics by Switched Mode Excitation

For m > 0, n 6= 0 (sidebands of carrier frequency harmonics):

Cmn = Vdc
2π2

∫ π

−π

∫ πM ′ cos y

−2VbatVdc
π

ej([m+nωmωc ]x+ny) dx dy

Cmn = Vdc

2π2j
[
m+ nωmωc

] ·
∫ π

−π

[
ej(πM

′ cos y[m+nωmωc ]) − ej
(
−2VbatVdc

π[m+nωmωc ]
)]
· ejny dy

Cmn = Vdc

2π2j
[
m+ nωmωc

] · 2πjnJ n(πM ′ [m+ n
ωm
ωc

])
−

Vdc

2π2j
[
m+ nωmωc

] · ej(−2VbatVdc
π[m+nωmωc ]

)
· e

jnπ − e−jnπ

jn︸ ︷︷ ︸
=0 when n 6= 0

(E.25)

(
ejnπ−e−jnπ

jn

)
is zero for all non-zero values of n. Then the whole second term becomes zero. With

jn = ej
π
2 n the first term can be rewritten:

Cmn = Vdc

π
[
m+ nωmωc

]J n(πM ′ [m+ n
ωm
ωc

]) [
sin
(
n
π

2

)
− j cos

(
n
π

2

)]
(E.26)

Result

va(t) = C00

2

+
2∑

n=1
C0n e

jn(ωmt+θm)

+
∞∑
m=1

Cm0 e
jm(ωct+θc)

+
∞∑
m=1

∞∑
n=−∞
(n6=0)

Cmn e
jn(ωmt+θm)+jm(ωct+θc) (E.27)

C00 = 2Vbat (E.28)

C01 = Vdc[
ωm
ωc

]
π
J 1

(
ωm
ωc

πM ′
)

(E.29)

C0n = Vdc[
nωmωc

]
π
J n
(
n
ωm
ωc

πM ′
)
·
[
sin
(
n
π

2

)
− j cos

(
n
π

2

)]
(E.30)

Cm0 = Vdc
mπ
· sin

(
2mVbat

Vdc
π

)
+ j

Vdc
mπ

(
cos
(

2mVbat
Vdc

π

)
− J 0 (mπM ′)

)
(E.31)

Cmn = Vdc

π
[
m+ nωmωc

]J n(πM ′ [m+ n
ωm
ωc

]) [
sin
(
n
π

2

)
− j cos

(
n
π

2

)]
(E.32)
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E.3 Balancing Unit Topology

Verification
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Figure E.2.3: Harmonics of the Battery Charger Topology with DC-link adjustment determined with
the Double Fourier Integral theory and a simulation with subsequent DFT.

THD C02 C10 C1−1 C1+1 C20 C2−1 C2+1

DFS theory 11.7485 0.0098 8.8939 0.9892 0.9862 6.0600 0.9544 0.9544
sim and DFT 11.6760 0.0098 8.8289 0.9892 0.9861 6.0252 0.9541 0.9541
difference 0.0724 0.0000 0.0650 0.0001 0.0001 0.0348 0.0003 0.0003

Table E.2: Numerical values to figure E.2.3.

E.3 Balancing Unit Topology
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Figure E.3.1: Balancing Unit Topology.
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the Balancing Unit Topology (syn-
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E Mathematical Derivation of Generated Harmonics by Switched Mode Excitation

Preconditions and Definitions

For the Balancing Unit Topology the maximum balancing current is equal to the battery voltage over
the resistor. It reaches its maximum value if the balancing switch is continuously turned on (equation
E.33). For a sinusoidal current a constant current Idc of at least the amplitude of the sinusoidal
measurement current Îm needs to be added (equation E.34) to the total excitation signal.

Ibal,max = Vbat
Rbal

(E.33)

Ibat = Idc + Îm · sin(2πωmt) (E.34)

A modified modulation index M ′ is defined with a range depending on the maximum current Ibal,max
and the additionally applied constant current Idc (equation E.35). It takes into account the limits of
the amplitude of the sinusoidal measurement current depending on these two current values.

M ′max =

 2Idc
Ibal,max

0 < Idc ≤ Ibal,max
2

1− 2Idc
Ibal,max

Ibal,max
2 < Idc < Ibal,max

(E.35)

The second line with Ibal,max
2 < Idc < Ibal,max of equation E.35 discharges the battery more than

necessary. Since the goal is an EIS measurement and not balancing the cells, this case is not considered
and only the first case for Idc ≤ Ibal,max

2 is used for further calculations.

Figure E.2.2 shows that the sawtooth carrier signal x(t) is no longer symmetrical to zero. The lower
bound for the integration over x(t) in integral E.5 is no longer −π but the larger, the smaller the
constant current Idc is (see equation E.36).

xlow = −2IdcRbal
Vbat

π (E.36)

Derivation of the Harmonic Components

Equation E.37 shows a similar structure as the Double Fourier Integral in appendix E.2. The solution
of the integral yields the same results with Vdc replaced with Vbat

Rbal
and Vbat replaced with Idc. As a

proof the calculation is done for the case of m = 0 and n = 0.

Cmn = 1
2π2

∫ π

−π

∫ πM ′ cos y

−2 IdcRbalVbat
π

Ibal e
j([m+nωmωc ]x+ny) dx dy (E.37)
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E.3 Balancing Unit Topology

For m = n = 0 (DC offset):

C00 = Vbat
Rbal

1
2π2

∫ π

−π

(
πM ′ cos y + 2IdcRbal

Vbat
π

)
dy (E.38)

= Vbat
Rbal

1
2π2


∫ π

−π
πM ′ cos y dy︸ ︷︷ ︸

0

+
∫ π

−π
2IdcRbal

Vbat
π dy︸ ︷︷ ︸

4π2 IdcRbal
Vbat

 (E.39)

= Vbat
Rbal

1
2π2 4π2 IdcRbal

Vbat
(E.40)

= 2Idc (E.41)

Result

ibal(t) = C00

2

+
2∑

n=1
C0n e

jn(ωmt+θm)

+
∞∑
m=1

Cm0 e
jm(ωct+θc)

+
∞∑
m=1

∞∑
n=−∞
(n 6=0)

Cmn e
jn(ωmt+θm)+jm(ωct+θc) (E.42)

C00 = 2Idc (E.43)

C01 = Vbat
Rbal

1[
ωm
ωc

]
π
J 1

(
ωm
ωc

πM ′
)

(E.44)

C0n = Vbat
Rbal

1[
nωmωc

]
π
J n
(
n
ωm
ωc

πM ′
)
·
[
sin
(
n
π

2

)
− j cos

(
n
π

2

)]
(E.45)

Cm0 = Vbat
Rbal

1
mπ
· sin

(
2m Idc

Ibal
π

)
+ j

Vbat
Rbal

1
mπ

(
cos
(

2m Idc
Ibal

π

)
− J 0 (mπM ′)

)
(E.46)

Cmn = Vbat
Rbal

1
π
[
m+ nωmωc

]J n(πM ′ [m+ n
ωm
ωc

]) [
sin
(
n
π

2

)
− j cos

(
n
π

2

)]
(E.47)

Verification

THD C02 C10 C1−1 C1+1 C20 C2−1 C2+1

DFS theory 12.8698 0.0098 10.8922 0.9892 0.9862 5.2503 0.9544 0.9544
sim and DFT 12.8918 0.0098 10.9172 0.9893 0.9862 5.2474 0.9546 0.9546
difference 0.0220 0.0000 0.0250 0.0000 0.0000 0.0029 0.0001 0.0001

Table E.3: Numerical values to figure E.3.3.
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Figure E.3.3: Harmonics of the Balancing Unit Topology determined with the Double Fourier Integral
theory and a simulation with subsequent DFT.

E.4 DC Supply Topology

When a battery is used at the input of a DC/DC-converter like the Half-Bridge-converter shown in
figure E.4.1, the current of the battery is not constant but chopped into slices by the switches of the
converter. During the positive half-periods of the controlled sinusoidal current, current is drawn from
the battery during the ON-time of the switch S1 and freewheels over the diode of S2 during the OFF-
time of S1. During the negative half-periods, the current in the inductance Lf is increased during
the ON-time of S2. The inductance Lf continues the current during the OFF-time of S2 and pushes
current into the battery over the diode of S1. Figure E.4.2 shows the current waveforms in case the
current through Lf is controlled to be sinusoidal.

vdc
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Figure E.4.1: Battery DC Supply Topology.
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Âideal

time

iin iin,idealised iin,error

Figure E.4.2: Generated voltage and current of
the Battery DC Supply Topology
(synthetic data).
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E.4 DC Supply Topology

Preconditions and Definitions

For the theoretical calculation of the current harmonics, the current is assumed to be sinusoidal and
chopped into slices by the switches of the DC/DC-converter (iin,idealised). This neglects the current rip-
ple on top of the sinusoidal waveform iin,error which is sawtooth-like shaped with changing amplitudes
shown in figure E.4.2.

The Double Fourier Integral E.1 describes how the input voltage Vdc is switched to the output by
the modulation process. In the case of a voltage source converter, a constant and stiff DC-voltage is
assumed. The inductance of the DC/DC-converter creates a current source converter for the battery
at the input. For calculating the current on the input of the DC/DC-converter, the current could
be considered constant if a constant current iout would be controlled at the output of the converter.
But for an EIS measurement, a sinusoidal current has to be controlled on the output of the converter
according to equation E.48.

Asin(y) = M · Vdc
|Zload|

· cos(y + ϕload) = AA · cos(y + φload) (E.48)

Therefore, in the Double Fourier Integral E.1, Vdc is replaced by the controlled sinusoidal current
through the inductance Lf :

Cmn = Amn + jBmn = 1
2π2

∫ π

−π

∫ πM cos(y)

−π
AA · cos(y) · ej(mx+ny) dx dy (E.49)

For equation E.49, the equation for a continuous control signal was used instead of a discrete regular
trailing edge pulse width modulated control signal. The angle φload is set to 0 since the integration is
performed over the full period.

Lemmas for Solving the Double Fourier Integral

From [97]:

cos(x) · cos(z) = cos(x+ z) + sin(x) · sin(z)

sin(x) · sin(nx) = −1
2 (cos[(n+ 1)x]− cos[(n− 1)x]) (E.50)

cos(y) · cos(ny) = cos[(n+ 1)y]− 1
2 cos[(n+ 1)y] + 1

2 cos[(n− 1)y]

= 1
2 cos[(n+ 1)y] + 1

2 cos[(n− 1)y] (E.51)
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sin(x) · cos(z) = sin(x+ z)− sin(z) · cos(x)

sin(x) · cos(nx) = 1
2 (sin[(n+ 1)x]− sin[(n− 1)x]) (E.52)

sin(y) · cos(ny) = sin[(n+ 1)y]− 1
2 sin[(n+ 1)y]− 1

2 sin[(n− 1)y]

= 1
2 sin[(n+ 1)y]− 1

2 sin[(n− 1)y] (E.53)

cos(y)ejy = cos2(y) + j cos(y) · sin(y)

cos2(y) = 1
2 + 1

2 · cos(2y)

cos(y) · sin(y) = 1
2 · sin(2y)

cos(y)ejy = 1
2 + 1

2 · cos(2y) + j
1
2 · sin(2y)

cos(y)ejy = 1
2 + 1

2 · e
j2y (E.54)

Derivation of the Harmonic Components

The indexes m and n of equation E.49 are set to 0 in turns to evaluate the different harmonic compo-
nents.

For m = 0, n = 0 (DC offset):

C00 = AA
2π2

∫ π

−π

∫ πM cos(y)

−π
cos(y) dxdy

C00 = AA
2π2

∫ π

−π
(πM cos(y) + π) · cos(y) dy

C00 = AA
2π2

[
πM ·

∫ π

−π
cos2(y) dy + π

∫ π

−π
cos(y) dy

]

With lemma C.5:

C00 = AA
2π2

πM ·
[

1
2 + 1

4 · sin(2y)
]π
−π︸ ︷︷ ︸

=0

+π · [sin(y)]π−π︸ ︷︷ ︸
=π


C00 = AA

2 ·M (E.55)
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For m = 0, n > 0 (fundamental and baseband harmonics):

C0n = AA
2π2

∫ π

−π

∫ πM cos(y)

−π
cos(y) · ejny dx dy

C0n = AA
2π2

∫ π

−π
(πM cos(y) + π) · cos(y) · ejny dy

C0n = AA
2π2

∫ π

−π

(
πM cos2(y) + π cos(y)

)
· ejny dy

With lemma C.5:

C0n = AA
2π2

∫ π

−π

(
Mπ

2 + Mπ

2 · cos(2y) + πcos(y)
)
· ejny dy

C0n = AA
2π2

Mπ

2

(
ejnπ − e−jnπ

jn
)
)

︸ ︷︷ ︸
=0 for n 6=0

+ AA
2π2

∫ π

−π

Mπ

2

cos(2y) cos(ny) + j cos(2y) sin(ny)︸ ︷︷ ︸
=π for n=2

 dy

+ AA
2π2

∫ π

−π
π

cos(y) cos(ny) + j cos(y) sin(ny)︸ ︷︷ ︸
=π for n=1

 dy (E.56)

The case n = 1 is solved by integrating the second line of equation E.56:∫ π

−π
cos(y) cos(y) dy =

∫ π

−π

1
2 + 1

2 cos(2y) dy

=
[

1
2y + 1

4 sin(2y)
]π
−π

=
(π

2 + 0 + π

2 − (−0)
)

= π∫ π

−π
cos(y) sin(y) dy =

∫ π

−π

1
2 sin(2y) dy

=
[
−1

4 sin(2y)
]π
−π

=
(
−1
4 −

−1
4

)
=

= 0

C01 = AA
2π2 · π

2 = AA
2 (E.57)

The case n = 2 is solved in the same way as the case n = 1 by integrating the first line of equation
E.56:

C02 = AA
2π2 ·

Mπ2

2 = AA
4 ·M (E.58)
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For the n > 2 equation E.56 becomes 0, which can be shown by using the lemmas E.51 and E.53:∫ π

−π
cos(y) cos(ny) dy =

∫ π

−π

1
2 cos((n+ 1)y) + 1

2 cos((n− 1)y) dy

= 1
2(n+ 1) [sin((n+ 1)y)]π−π︸ ︷︷ ︸

=0

+ 1
2(n− 1) [sin((n− 1)y)]π−π︸ ︷︷ ︸

=0

= 0∫ π

−π
cos(y) sin(ny) dy =

∫ π

−π

1
2 sin((n+ 1)y) + 1

2 sin((n− 1)y) dy

= −1
2(n+ 1) [cos((n+ 1)y)]π−π︸ ︷︷ ︸

=0

+ −1
2(n− 1) [cos((n− 1)y)]π−π︸ ︷︷ ︸

=0

= 0

For m > 0, n = 0 (carrier frequency and its harmonics):

Cm0 = AA
2π2

∫ π

−π

∫ πM cos(y)

−π
cos(y) · ejmx dxdy

Cm0 = AA
2π2

1
jm

∫ π

−π
ejmπM cos(y) · cos(y) dy︸ ︷︷ ︸

2πjJ 1(mπM) with C.16

−e−jmπ
∫ π

−π
cos(y) dy︸ ︷︷ ︸
=0

Cm0 = AA
2π2

1
jm

2πjJ 1(mπM)

Cm0 = AA
mπ
J 1(mπM) (E.59)

For m > 0, n 6= 0 (sidebands of carrier frequency harmonics):

Cmn = AA
2π2

∫ π

−π

∫ πM cos(y)

−π
cos(y) · ej(mx+ny) dx dy

Cmn = AA
2π2

1
jm

∫ π

−π
cos(y)ejny

(
ejmπMcos(y) − e−jmπ

)
dy

Cmn = AA
2π2

1
jm

∫ π

−π

(
cos(y) cos(ny) + j cos(y) sin(ny)

)
·
(
ejmπM cos(y) − e−jmπ

)
dy (E.60)

Lemmas E.50 and E.52 simplify the first part of this integral:

cos(y)cos(ny) + jcos(y)sin(ny)

= 1
2 (cos[(n+ 1)x] + j sin[(n+ 1)y]) + 1

2 (cos[(n− 1)y] + j sin[(n− 1)y])

= 1
2e

j(n+1)y + 1
2e

j(n−1)y (E.61)
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With E.61 the integral E.60 is solved to:

Cmn = AA
2π2

1
jm

∫ π

−π

1
2e

j(n+1)yejmπM cos(y) dy

+ AA
2π2

1
jm

∫ π

−π

1
2e

j(n−1)yejmπM cos(y) dy

+ AA
2π2

1
jm

∫ π

−π
−1

2e
−jmπej(n+1)y dy

+ AA
2π2

1
jm

∫ π

−π
−1

2e
−jmπej(n−1)y dy

Lemma C.18 solves the first two lines

Cmn = AA
2π2

1
j2m

[
2πjn+1J n+1(mπM)

]
+ AA

2π2
1

j2m2πjn−1J n−1(mπM)

− AA
2π2

1
j2me−jmπ

[
ej(n+1)π − e−j(n+1)π

j(n+ 1)

]
︸ ︷︷ ︸

=0 for n 6=−1

− AA
2π2

1
j2me−jmπ

[
ej(n−1)π − e−j(n−1)π

j(n− 1)

]
︸ ︷︷ ︸

=0 for n 6=1

Cmn = −j AA2πm
[
jn+1J n+1(mπM) + jn−1J n−1(mπM)

]
for n 6= −1, n 6= 1 (E.62)

With lemma E.54, equation E.60 can be solved for n = +1 and n = −1.
For m > 0, n = +1 (positive first sideband of carrier frequency harmonics):

Cm+1 = AA
2π2

1
jm

∫ π

−π

1
2 · e

jmπM cos(y) dy︸ ︷︷ ︸
=πJ 0(mπM) with C.19

+AA
2π2

1
jm

∫ π

−π

1
2e

j2y · ejmπM cos(y) dy︸ ︷︷ ︸
=−πJ 2(mπM) with C.18

(E.63)

− AA
2π2

1
jm

∫ π

−π

1
2 · e

−jmπ dy︸ ︷︷ ︸
= 1

2 e
−jmπ(π−(−π))

−AA2π2
1
jm

∫ π

−π

1
2e

j2y · e−jmπ dy︸ ︷︷ ︸
= 1

2 e
−jmπ ej2π−e−j2π

j2 =0

Cm+1 = AA
2πm [sin(mπ)− j (J 0(mπM)− J 2(mπM)− cos(mπ))] (E.64)
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For m > 0, n = −1 (negative first sideband of carrier frequency harmonics):

Cm−1 = AA
2π2

1
jm

∫ π

−π

1
2 · e

jmπM cos(y) dy︸ ︷︷ ︸
=πJ 0(mπM) with C.19

+AA
2π2

1
jm

∫ π

−π

1
2e
−j2y · ejmπM cos(y) dy︸ ︷︷ ︸

=−πJ 2(mπM) with C.18

(E.65)

− AA
2π2

1
jm

∫ π

−π

1
2 · e

−jmπ dy︸ ︷︷ ︸
= 1

2 e
−jmπ(π−(−π))

−AA2π2
1
jm

∫ π

−π

1
2e
−j2y · e−jmπ dy︸ ︷︷ ︸

= 1
2 e
−jmπ ej2π−e−j2π

−j2 =0

Cm−1 = AA
2πm [sin(mπ)− j (J 0(mπM)− J 2(mπM)− cos(mπ))] (E.66)

Result

iin(t) = C00

2

+
2∑

n=1
C0n e

jn(ωmt+θm)

+
∞∑
m=1

Cm0 e
jm(ωct+θc)

+
∞∑
m=1

∞∑
n=−∞
(n6=0)

Cmn e
jn(ωmt+θm)+jm(ωct+θc) (E.67)

C00 = AA
2 ·M (E.68)

C01 = AA
2 (E.69)

C02 = AA
4 ·M (E.70)

Cm0 = AA
mπ
J 1(mπM) (E.71)

Cm+1/−1 = AA
2πm [sin(mπ)− j (J 0(mπM)− J 2(mπM)− cos(mπ))] (E.72)

Cmn = −j AA2πm
[
jn+1J n+1(mπM) + jn−1J n−1(mπM)

]
for n 6= −1, n 6= 1 (E.73)

Verification

THD C02 C10 C1−1 C1+1 C20 C2−1 C2+1

DFS theory 1.3912 0.0500 0.0988 0.6249 0.6249 0.0951 0.0229 0.0229
sim and DFT 1.3925 0.0504 0.0193 0.6312 0.6320 0.0185 0.0090 0.0090
difference 0.0013 0.0004 0.0795 0.0063 0.0071 0.0766 0.0139 0.0139

Table E.4: Numerical values to figure E.4.3.

The difference of the carrier frequency amplitude, their harmonics and sidebands can be attributed
the the additional sawtooth-like signal, which was neglected at the beginning. The larger the ratio ωm

ωc

is, the larger the influence of this additional signal becomes.

236



E.4 DC Supply Topology

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

1 16 32 48
f/fm - ratio (no unit)

am
pl
itu

de
(fa

ct
or

of
C
01
)

simulation and DFT
Double Fourier Series theory

(a) Comparison.

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

1 16 32 48
f/fm - ratio (no unit)

am
pl
itu

de
(fa

ct
or

of
C
01
)

difference

(b) Difference.

Figure E.4.3: Harmonics of the DC Supply Topology determined by the Double Fourier Integral theory
and a simulation with subsequent DFT.
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