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ABSTRACT

Popular software applications (e.g. web browsers) are tar-
geted by malicious organizations which develop potentially
unwanted programs (PUPs). If such a PUP executes on be-
nign user devices, it is able to manipulate the process mem-
ory of popular applications, their locally stored resources or
their environment in a profitable way for the attacker and in
detriment to benign end-users. We describe the implemen-
tation of a tamper detection mechanism based on code self-
checksumming, able to detect static and dynamic patching of
executables, performed by PUPs or other attackers. As op-
posed to other works based on code self-checksumming, our
approach can also checksum instructions which contain ab-
solute addresses affected by relocation, without using calls
to external libraries. We implemented this solution for the
x86 ISA and evaluated the performance impact and effective-
ness. The results indicate that the run-time overhead of self-
checksumming grows proportionally with the level of pro-
tection, which can be specified as input to our implementa-
tion. We have applied our implementation on the Chromium
web-browser and observed that the overhead is practically
unobservable for the end-user.
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1. INTRODUCTION

Code patching is performed for various reasons and by
various stakeholders of a software application. Incremen-
tal updates are a typical example. Similarly, attackers patch
the code of a software application either statically or during
runtime, in order to change the program’s behavior. Histor-
ically, this kind of attack was mainly aimed at cracking li-
cense checks in computer games, which was detrimental for
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the profit of the game vendors. Starting from the late 2000s
some organizations started to automate such code patching
attacks targeting popular applications (e.g. web browsers) in
order to change their behavior in a way that would bring fi-
nancial gains to those organizations.

Such automated attacks fall into a category called poten-
tially unwanted programs (PUPs). PUPs are often bundled to-
gether with (seemingly) useful software, which leads end-
users into unknowingly installing them. Once installed, PUPs
change a program’s behavior by tampering with process mem-
ory, locally stored resources or the environment in which they
run. For instance, they change the default search engine of
a web-browser, aggressively display pop-up advertisements,
track actions of end-users, cause an overall system slowdown
and ask for fees to “fix performance.”

Recent work on PUPs indicates that Google Safe Brows-
ing generates over 60 million warnings related to PUPs per
week, three times that of malware warnings [33]. Techniques
employed by PUPs (e.g. code injection in the process mem-
ory, run-time memory patching, system call interposition)
generally, do not raise any alarms in anti-virus software be-
cause they are also performed by non-malicious third party
software including anti-virus software, accessibility and graph-
ics driver tools [32]. Some anti-virus products are able to de-
tect PUPs. However, the vendors of popular software ap-
plications (e.g. web browsers) cannot assume that such anti-
virus software is present on all end-user systems. Therefore,
developers of popular applications aim to incorporate light-
weight software protection mechanisms inside of their own
products, i.e. mechanisms that introduce a tolerable amount
of overhead and are transparent for end-users.

This paper presents a mechanism that detects code patch-
ing attacks at runtime. The idea is based on software self-
checking [5, [16] which can detect code tampering attacks,
without communicating with a trusted server. The idea is
to create a white-list containing checksums of pieces of code,
which are invariant from one execution to another on any
fixed OS version and at various states during execution. In-
tegrity checks are interleaved with existing code and verify if
invariants hold during execution. If these invariants do not
hold, then process memory modification has been detected
and a response action is executed. To prevent patching at-
tacks on the code that performs the checksums itself, our
integrity checks form a strongly connected network where
multiple checks protect other checks.

We make the following contributions:

e Extending the state of the art on self-checking, we pro-
pose a way of checksumming instructions that contain
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absolute addresses, which may change each time the
program is loaded into memory by the OS loader. More-
over, our idea does not employ system calls, which are
susceptible to system call interposition attacks [12].

e We provide an open source implementation on top of
the Google Syzygy Transformation Toolchain [14], which
can be applied directly to binary executables

e We evaluate the effectiveness against attackers who are
aware of the details of our protection mechanism and
show that some attacks do not scale while others can
be countered by obfuscating the code of checks.

e We evaluate the performance overhead that our mech-
anism has on multiple types of applications, including
Chromium. We show that the overhead is acceptably
small for applications that are not CPU intensive.

The rest of this paper is organized as follows. §2| presents
related work. §3|describes the general design of our approach,
while gﬂ presents its implementation for x86 Assembly lan-
guage. presents the evaluation of our implementation,
and §6concludes and gives directions for future work.

2. RELATED WORK

Software tamper protection consists of mechanisms that
detect or prevent unauthorized modifications of software. One
simple form of tamper protection is binary whitelisting [23]
which checks the hash of a binary against a securely man-
aged list. A second technique uses the currently executing
code as a decryption key for code that is executed next [25].
This mechanism can be circumvented because the attacker
can get all the correct keys and code by monitoring the exe-
cutions of a non-patched program. Other tamper protection
techniques are based on software self-checking [5} |16, [13],
which have been successfully combined with self-modifying
code. Unfortunately, self-modifying code as a defense mech-
anism requires memory pages which are both writable and
executable, which enables remote code injection attacks [37].

Self-checksumming [5, |16] protects against tampering by
adding code to an application. This code reads other parts
of the code and compares their checksums to precomputed
values. Junod et al. [21] have implemented a tamper protec-
tion mechanism based on the same self-checksumming tech-
niques as our work. They do not include any details on how
absolute addresses in code are handled, which is one of the
main contributions of this paper.

Oblivious Hashing (OH) [6]], computes a checksum over
the dynamic state of an execution trace (e.g. code counters,
memory values, branch conditions, etc.). This offers higher
stealth than self-checking, because OH does not imply un-
usual execution patterns like self-checksumming does, i.e. a
program reading its own code. However, OH has some short-
comings that makes it unusable for many applications, e.g. OH
cannot handle branches based on program inputs.

Tamper protection via communication with trusted servers
is employed in massive multiplayer online games (MMOGs)
to detect cheating. Anti-cheat software such as PunkBuster
[10], Valve Anti-Cheat (VAC) [35], Fides [22] and Warden [15]
perform client-side computation, which are validated by a
trusted server. Pioneer [30] and Conqueror [24] work simi-
larly as anti-cheat software but target the protection of legacy
systems. Jakobsson and Johansson [19] propose a similar
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technique for detecting malware on mobile devices. Collberg
et al. [8] propose tamper protection by pushing continuous
updates from a trusted server to the client, which force the
attacker to repeat reverse engineering and patching on each
update. One disadvantage of these tamper protection tech-
niques is their dependence on external trusted servers. This
dependence may cause a denial-of-service to end-users of the
protected software applications which are also meant to be
used offline, in case Internet connectivity is unavailable. Our
solution proposed operates locally, i.e., without dependence
on a trusted server.

Tamper protection via trusted computing is usually enabled
by trusted hardware. Intel has released a hardware based
tamper resistance mechanism [1]], known as Software Guard
eXtension (SGX), which enables trusted computing. Morgan
et al. [26] propose building a hypervisor to perform integrity
checks at higher privilege levels than the attacker. Dewan et
al. [9] also use a trusted hypervisor to protected the sensi-
tive memory of programs. Feng et al. [11] propose perform-
ing randomly-timed stealthy measurements using Intel’s Ac-
tive Management Technology [17], which can be validated
locally. These approaches provide high security guarantees.
However, they require trusted hardware to be available and
the installation of a hypervisor. Software developers of pop-
ular software (e.g. web browsers), generally do not want to
restrict their user base by imposing such requirements.

Banescu et al. [2] as well as Blietz and Tyagi [4] propose
tamper detection techniques based on runtime monitoring.
The target program is transformed at compile time to report
its control flow to a separate monitoring process, which ver-
ifies it according to a whitelist. The monitor can be pro-
tected using code hardening techniques because it is com-
pact, e.g., by white-box cryptography [36] or control-flow ob-
fuscation [29], without causing significant runtime overhead
on the target program. However, this approach fails to detect
code patches not violating control flow integrity, e.g. inline
patching of sequential code. Moreover, this approach em-
ploys system calls, which are vulnerable to system call inter-
position attacks [12]. Our approach does not employ system
calls and can detect inline patching of sequential code.

3. DESIGN

The idea behind software self-checking is to interleave check-
ers with the original code of an application. A checker is a
piece of code which, firstly, reads a number of machine code
bytes from different parts of the memory of the same pro-
cess it is executing in. Checkers read continuous sequences
of code bytes, so-called blocks of code, that we refer to as
checkees. Secondly, the checker computes a checksum of those
checkees, which we also refer to as hash. Thirdly, it compares
the hash against a hard-coded precomputed value of the chec-
kees. If the checksum matches the precomputed value, then
normal execution continues, i.e., as in the original code. Oth-
erwise, a response function is invoked. Typical response func-
tions include halting execution (immediately or after a cer-
tain amount of time), degradation of output(s), logging the
attack and/or restoring the patched code [20].

3.1 Checksumming Absolute Addresses

One challenge is checksumming absolute addresses which
change dynamically each time the program is loaded in mem-
ory. This is illustrated in Figure[T} which shows x86 assembly
code snippets (left column), their corresponding static ma-
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N

o

x86 Assembly static code dynamic code

call 0x00212348 ; FuncX.DLL1 1| e8 44 23 21 00 1| e8 44 23 41 03
mov edi, 0x00494344 ; FuncY.DLL2 bf 44 43 49 00 bf 44 43 59 02
mov [ebx+64h], eax 3|89 43 40 3|89 43 40

N
N

call 0x003394560 ; FuncZ.DLL2 4| e8 5c 94 33 00 4| e8 5c 94 43 02
push eax 5( 50 5[ 50
call 0x002593024 ; FuncW.DLL1 6| e8 20 93 25 00 6| e8 20 93 45 03

Figure 1: x86 Assembly vs. static and dynamic machine code.

chine code (middle column) and the machine code once it has
been loaded in memory (right column). Note that the code
does not fulfill any useful function and that similar problems
occur for other CPU architectures, such as x64, ARM, MIPS,
etc. The top snippet in Figure[T} starts with a call to the FuncX
function from a dynamically loaded, shared library called
DLLI1. For ease of readability, we provide the function name
in a comment following the absolute address of the function
in the call instruction. The code snippet continues with mov-
ing the absolute address of the FuncY function from DLL2
into the edi register, and one more mov instruction without
any absolute references.

Statically, absolute addresses are constant, because they
are the sum of a base address of a binary (which is zero before
the program is loaded) and a constant offset (in that binary,
e.g., a DLL), of the function being referenced. This means
that the precomputed checksum value on the static code is
fixed. However, at runtime absolute addresses change be-
cause executables are loaded at random base addresses, due
to address space layout randomization (ASLR) [31]], a software
protection mechanism used against code injection attacks.
ASLR loads binary executables and shared libraries at differ-
ent memory locations if their preferred memory location is
already occupied. For instance, Figure [[shows that the un-
derlined part of the absolute addresses (little-endian format)
in the static and dynamic machine code are different. This is
because after loading the code in memory, the base address
of DLL1 and DLL2 are randomly assigned to 0x03200000, re-
spectively 0x02100000. These base addresses get added to
the offsets in the static code. Therefore, the checksum of the
dynamic code from Figure[T} may be different every time the
program is loaded in memory. The checksum computed at
runtime then differs from the precomputed checksum, which
(incorrectly) triggers the response function. This causes end-
user annoyance and leads the software vendor to erroneously
believe that code tampering has taken place.

3.2 Computing Invariant Checksums

A first approach to checksumming absolute addresses is
to simply ignore all those machine code bytes which repre-
sent absolute addresses. This guarantees that any precom-
puted checksum will always be the same as the dynamically
computed checksum. However, in order to compute such
checksums at runtime, the checkers require information re-
garding the offsets of all bytes which represent absolute ad-
dresses. This increases the size of the checkers and lowers
performance because these offsets need to be added to the
code and used during checking. Moreover, it allows attack-
ers to modify the ignored absolute addresses because they
are skipped by self-checksumming.

We propose a different approach to checksumming abso-
lute addresses based on the following two observations. Firstly,
an absolute address a is the sum of the base address b of that PE

loaded in memory and a relative offset o inside that PE, i.e.,
a = b+ o. b may change whenever the PE is started. In con-
trast, o is constant and, as we have seen the same in the static
and the dynamic cases.

Secondly, we can eliminate variable base addresses if we
subtract two absolute addresses with the same base. Let a’
be another absolute address with the same base address as
a but a different offset o', i.e. a’ = b + o’. Then we elimi-
nate the common base address by subtracting two absolute
addresses: a—a’ = (b+0)—(b+0') = 0—0', and 0—0’ is invari-
ant across multiple runs of the same program. If two check-
ees contain absolute addresses a and ', respectively, then
the difference between the two checkees will be constant. We
are hence interested in finding a byte array checksumming
function H which maintains this invariant,a — a’ = 0 — 0’:

H(a) — H(a') = H(o) — H(0"). 1)

The left-hand side of Eq.[I]is computed while the protected
program is running. The right-hand side can be precom-
puted from the static binary code, because the offsets in a
PE do not change across different times that PE is loaded
into memory by the OS. Therefore, we can hard-code H (o) —
H(0') as a precomputed checksum and use it at runtime.

Another solution for eliminating a variable base address
from an absolute address is to somehow obtain the base ad-
dress b of the dynamic libraries and subtract their values from
the corresponding absolute address a, i.e. H(a) — H(b) =
H (o), which is constant. Obtaining base addresses can be
done using system calls. However, attackers such as PUPs
can easily detect and intercept (“hook”) system calls via a
technique called system call interposition (SCI) [12]. Using SCI
a PUP can block or modify a system call such that it returns
a different (incorrect) value.

Instead of using system calls, we propose statically insert-
ing sequences of inconsequential instructions that reference
the base address b of the binary or library, which is refer-
enced by the absolute address a = b+ o, whose base address
needs to be canceled. Since the location of these inserted in-
structions is known, we can dynamically compute a hash of
them, and know that they only contain one absolute refer-
ence, namely the base address b of the binary or library ref-
erenced by a. Hence, we can use this hash to eliminate the
base address of a, i.e. H(a) — H(b). However, this requires
inserting additional code in the binary that we want to pro-
tect. Therefore, in order to reduce the amount of inserted in-
structions, we will only resort to inserting such instructions
only when we cannot find a checkee containing an absolute
address o’ with the same base address as a, such that Eq.
cannot be applied.

3.3 Generalization

We can generalize this idea to the level of multiple instruc-
tions with references to multiple external dynamic libraries.
To do this, the set of checkees associated with one checker is
selected such that combining their checksums will cancel out
all base addresses in absolute references according to the ob-
servation from Eq.|1} For example, the snippet of code (chec-
kee) from the bottom of Figure [1| contains two instructions
(lines 4 and 6) with absolute references to functions from the
same DLLSEI as the snippet (checkee) from the top of Figure

Technically speaking the absolute addresses from both snippets in Figure
are pointing to the so called import address table (IAT) in the data segment o
the PE. The entries in the IAT actually contain absolute addresses to the ac-



This means that at runtime, the two call instructions from Fig-
ure [1] bottom, have the same base addresses as the first two
instructions from FigureT} top. If we denote the sequence of
all dynamic code bytes of the checkees from Figure [l|as B;
(top) and Bs (bottom), then the value H(B1) — H(B2) will be
invariant across all application restarts.

This observation carries over to multiple blocks that call
functions in DLLs with different base addresses multiple times.
For instance, assume a PE with references to three DLLs hav-
ing base addresses b1, b2, and b3. Assume a (loaded) block B3
referencing absolute addresses b1 + o1, b2 + 02, and b3 + 03;
block B4 referencing absolute addresses b2 + 02 and b2 + 04;
and block Bs referencing by + 0s, b1 + 0g, b3 + 03 and bs + o7,
for arbitrary constant offsets o1, . . ., 0o7. Then we need to gen-
erate the linear combination —2 « H(Bs) + H(B4) + H(Bs),
which is constant across multiple executions of the PE, be-
cause the base addresses cancel each other out.

More generally, let B be a set of blocks with |B| = n, and
a set of dynamically linked libraries (DLLs) D with |D| = d.
We can statically analyze how many times a block references
functions from a DLL and store this information in matrix
Q € N"¥4. Q(i,j) is the number of calls from block i to
functions in DLL j. We will use the notation Q(¢) to denote
the i-th row of Q. Let B € N? be the set of base addresses
of the DLLs that are dynamically assigned at load time. B(%)
hence is the base address of DLL i. Remember that B cannot
easily be obtained at runtime without using system calls (see
§3.2). We now show how to exploit the idea of cancelling out
base addresses with linear combinations.

3.3.1 Egquation systems

Let H,, € Z" be the statically and H, € Z" the dynamically
computed checksums of each block, e.g., using function H
that performs word addition modulo 2", where a word has
N-bits. Because all base addresses are zero in the static code,
we want to ensure H,(i) = H, (i) — ijl Q(i,7) * H(B(j))
mod 2% at runtime, for all 1 < i < n, which we write as

H,=H,—Q-H(B) mod 2" )
when using matrix multiplication notation. The idea now is
to compute linear combinations of checksums that add up to
zero. Let x € Q" be the respective vector of coefficients. We
want to find values for the components of x # 0 such that
V1<j<d:Y ", Q7) * (i) = 0, which we rewrite as

QT~x:0,orxT~Q:0 3)

where -” denotes the transpose of a matrix. Multiplication of
Eq. with 27 then cancels out the base addresses:

xT-HpExT-HT—xT~Q~H(B)Ea:T-Hr mod 2%.
To perform integrity checks at runtime, we hence need to
store only the non-zero values of the vector x satisfying Eq.
and the scalar =7 - H,,.

Eq.[3|is a linear equation system for which it is easy to
compute rational solutions (if they exist). However, for large
numbers of blocks and rational coefficients, rounding errors
are likely to materialize, and it is hard to predict their effects.
It is therefore desirable to consider Eq.[3|as a linear Diophan-
tine equation system and stipulate x € Z".

tual function entry points in dynamic libraries loaded at different locations in
memory. This level of indirection is similar for other executable formats.

Linear Diophantine equation systems can effectively be sol-
ved using SMT solvers [3]. However, in our special case,
effectiveness, scalability and efficiency quickly become con-
cerns. Statically, the equation system may become too large
to be handled by the SMT solver. The equation system need
not have a non-zero solution, possibly not even a rational
one. This can trivially be the case, for instance, if a DLL
is called by exactly one block. Dynamically, if a frequently
executed block needs to compute checksums of very many
blocks, runtime performance becomes a concern.

3.3.2  Reducing large equation systems

Matrix @ is usually very sparse in practice. A first idea is
thus to reduce @) to the dimension of its rank by computing
the basis. However, this essentially is done by the SMT solver
anyway, so we cannot expect too much effect here.

Because of the sparseness of ), we can hope to compute
a set of rather small submatrices for which we can solve the
corresponding equation systems independently and in par-
allel. To do so, we choose subsets P of the rows of QQ such
that it is ensured that for each column of P, there are none or
more than one non-zero elements. The interpretation is that
we choose sets of blocks such that any DLL (column) is called
either never (all elements zero) or by at least two blocks (at
least two elements of this column are non-zero). By remov-
ing the all-zero columns we get a smaller equation system,
and making sure that the sets P together cover all rows of Q,
we have simplified the problem.

The algorithm takes as input a set of rows R of matrix @
and outputs a set of sets of rows {W1,..., Wi} C 2% such
that (1) all rows of R are covered (Uf:1 W; = R) and (2) and
for each set of rows (blocks) W; and each column (DLL) d,
d is either not called by any row in W;, or there are rows
r1 # ro in W; that both call d at least once. Each W; is one
independent equation system, usually much smaller than R.

The algorithm starts by initializing the counter of blocks of
blocks (rows), i = 0 and consists of the following steps:

Step 0: Remove from R all rows that contain zeros only, all
columns that contain zeros only, and all columns that contain
exactly one non-zero element. The latter will be catered to by
adding bogus calls to the respective DLL in a block that does
not call any other DLL in

Step 1: If R = (), stop. Otherwise, W; := {r} for a random
row r € R. Wj is the currently computed set of rows.

Step 2: Otherwise, if R # 0, compute the fitness o(r', W;)
for each r’ € R as described below. The row with the best
fitness will be added to the current submatrix W;. A fit-
ness value of —oo indicates that the respective row does not
help complete the equation system represented by W; be-
cause there is no overlap with the DLLs called in W;. Choose
r’" = argmax,,c g (¢(r', W;)) to be the row with the highest
fitness.

Step 3: If p(r”", W;) # —oo, let W; := W; U {r"} and R :=
R\ {r"} (because further blocks of the partition will usually
not need to consider r”'). If W; now is such that every DLL is
either called by no or by at least two rows, the current block
of rows is ready. Let i := i + 1 and goto step 1. Otherwise
goto step 2.

Step 4: Otherwise, if ¢(r", W;) = —oo, we need to resort
to a row that has been picked before. Compute (1, W;) for
all rows 7’ € |J;_; W; that have already been picked earlier,
and pick the best: "’ = arg max, ey . w, (p(r', Wy)).

Step 5: Because we have gotten rid of rows that make



equation systems inherently unsolvable in step 0, o(r""’, W;) #
—oo must hold. We let W; := W, U {r""}and R := R\ {r"'}.
If W; is now such that every DLL is either called by no or by
at least two rows, we let i := i+ 1 and goto step 1. Otherwise
goto step 2.

Note that this schema gives priority to rows that have not
been assigned to a previously computed W; with j < 4. It
may hence well be, and sometimes is, the case that a per-
fectly fitting row in such a W; would make the equation sys-
tem represented by W; solvable. The reason for this heuristic
is runtime performance: With this approach, the number of
fitness computations can greatly be decreased. Otherwise, n
fitness computations need to be done for every pick of a can-
didate row to be included in any W; which, for large num-
bers of blocks becomes a practical concern.

The fitness of a row r w.r.t. a set of rows W; is computed
as follows. Note that because » may have been chosen from
Wi, it is possible that r € W;. Firstly, leta = |{j € D :
r(j) = 0AYr € W;\ {r} : r'(j) = 0} be the number of
DLLs that are called neither by r nor by any row in W; \ {r}.
We do not really care about these, but the larger this number,
the better. Secondly, letb = |{j € D : 7(j) # 0 AVr €
Wi\ {r} : r'(§) = 0}| be the number of DLLs that are called
by r but by none of the rows in W; \ {r}. These make the
row r “inattractive” because we will need to find additional
matching rows in further steps, which will potentially lead
to large numbers of blocks that need to be hashed together.
Thirdly, let ¢ = |[{j € D : 7(j) # 0A T € Wi\ {r} :
r'(j) # 0}| count the number of DLLs in W; that call a DLL
that is also called by r and by one row in W; \ {r}. These
DLLs make the row r “attractive” because adding r to W;
reduces the number of DLLs for which no match has been
found yet. Finally, if ¢ = 0 let the fitness o (r, W;) = —oco and
otherwise ¢(r, W;) = a-a+ b+ cfor suitable parameters
o, B,7. Each W; then gives rise to one equation system that
can be solved in isolation. Note that the above computation
amounts to a heuristic breakdown of R into smaller systems
without any optimality guarantees.

In our performance experiments, we (somewhat arbitrar-
ily) set &« = 1,8 = —2,7 = 4 and varied the values of n €
{50,100, 500, 1000} and d € {100, 200, 300, 400}. Due to lack
of space, we present the results in Table [2|in the Appendix.
Note that the time needed by our algorithm increases signif-
icantly as d increases, while the increase is not as significant
as n increases. This is convenient, since most executables will
have a high value for n, while d is much lower, e.g. in our
Chromium experiments from n=4749 and d = 277.

3.3.3 No integer solutions

It may of course happen that the equation system, or one
of the reduced systems, has no non-zero solution, not even
a rational one. Let Q' consist of the m non-zero rows of one
W; as computed above. The problem then can be solved by
artificially making the equation system Q7 - 2 = 0™ under-
determined. To do so, we relax the requirement that the right
hand side be 0 and rather leave that open: QT -z =yforan
undetermined vector y € Z™ (that we construct below; its
first d — m + 1 entries will be those of vector s below). If
m < d, we simply juxtapose an upper diagonal matrix D of
dimension d x (d — m + 1) to the right of Q'" and add slack
variables s1, . .., S¢—m+1 to z, resulting in a vector z’. We can
then solve Q'F D-z' = 0 which, by construction, is equivalent

to solving QT - = = (s1,...,84—m+1,0,...,0). Because by

IDA View of BB

push offset fileName
call LoadLibrary

mov edi, GetProcAddress
mov [ebx+64h], eax

Hex View of BB

68 E8 EA C5 01 FF 15
6C EO C5 01 8B 3D BO
EO C5 01 89 43 64 85

~ H,(BB) = 0x98

test eax, eax CO 74 6B
jz short loc 1C25645
IDA View of BB Hex View of BB

push offset fileName
call LoadLibrary

mov edi, GetProcAddress
Do bad stuff

test eax, eax

jz short loc 1C25645

Figure 2: Code patching attack (red bytes) to bypass the
checksum function H (byte-wise addition modulo 256)

68 E8 EA C5 01 FF 15
6C EO C5 01 8B 3D BO
EO C5 01 84 47 65 85
C0 74 6B

— H,(BB) = 0x98

construction this system is underdetermined, it will have a
non-zero integer solution.

Intuitively, the above construction of adding columns to
Q' corresponds to adding rows to Q' which corresponds to
adding bogus blocks to the program. These bogus blocks are
never executed, because they are placed in dead branches of
opaque predicates. However, statically they call the one DLL
for which the entry in the respective row of Q"7 is 1.

3.4 Multiple Hash Functions

One attack on this self-checksumming mechanism is patch-
ing the code such that the checksum (addition module some
number, denoted H ) is preserved, as illustrated in Figure
The idea is to replace original code BB by malign code M
and then replace other instructions by inconsequential in-

structions, such that the checksum of the modified code matches

that of the original code. One such inconsequential instruc-
tionis ADD x, x. When choosing x such that H (ADD x, x)+
H{(M) = H4+(BB) mod 2", this tampering will not be de-
tected by our algorithm. (Note that [ actually is applied to
the machine code representation of ADD x, x.)

Because of the block structure of our schema, tampering
must be performed in place, that is the malicious code M
must be smaller than the benign code BB to be replaced.

To counter this attack, we may use a second checksum-
ming function, other than H, which includes an operation
over the individual machine code bytes. If we want to min-
imize the number of possible input bytes that result in the
same checksum output, i.e. checksum collisions we can use a
cryptographic hash function. However, computing such a
function for every basic block would impose a higher run-
time performance impact than using a lightweight checksum-
ming or hashing function. One of the most lightweight check-
summing functions is byte-wise XOR-ing (denoted Hg). One
can verify that byte-wise XOR-ing the machine code bytes
before and after run-time memory patching (depicted in Fig-
ure ) results in different checksums. Of course, using both
Hg and Hy together does not guarantee that there will be
no collisions. However, it does reduce the probability of a
collision.

Note that the above replacement attack as such is difficult
(but not impossible) if M contains a call to some DLL. This
invariably changes the hash values at runtime. However, the
second hash function is necessary because PUPs may also
tamper with other checkees and call exactly the same DLLs
as M, hence “fixing” the hash value.

Regarding absolute addresses, Hg suffers from the same
problems as H described in In fact, we are not aware
of functions other than byte-wise addition which produce an



invariant checksum over all application restarts. Since x86
instructions are of variable length and are not aligned, at
runtime we do not know where an absolute address begins
in a sequence of machine code bytes. Therefore, given only
the starting address and the size of a contiguous sequence
of machine code bytes, one cannot know where the abso-
lute addresses are without additional information or with-
out performing disassembly on the fly, which would have
a high performance impact. One could argue that such in-
formation is available in the reloc section of a PE. However,
this would require the checksumming function (which must
be lightweight), to look-up whether the current offset it is
reading-from contains an absolute address. We consider this
far too expensive to be performed before each byte that is
read by the checksumming function. Our simple solution
therefore is to ignore absolute addresses when using Hg;
they are checked by H only. Absolute addresses are ig-
nored by choosing the checkee blocks (statically, using the
x86 Assembly), such that the instructions do not make any
references to absolute addresses.

3.5 Cyeclic Checks

We inject checks into blocks and want the checkers to be
checked themselves. Which blocks check which other blocks
is not discussed here; this can be done randomly or be the
result of code execution frequency considerations. Let CB; =
IC;; BB; be a checker ¢ that combines the integrity check IC;
with the code of block BB;. Assume that IC; needs to check
the checkee blocks b(CB;); the identification of these blocks
is the result of the computation of a W; above. Note b(CB;)
may or may not contain CB;.

Let b; = |b(CB;)| be the number of blocks checked by IC;.
The code of IC; consists of: (1) b; addresses, sizes and co-
efficients (computed by solving the equation system corre-
sponding to W; as constructed above and used as constant
factors) of checkees, CHiy, ..., CH;,, each of which differs
from the others, (2) one constant hash value for comparison
of the aggregate hash values from all checkees,

KBi= >

CB,€b(CB;)

Cij * H(CB]'),

which is invariant across different runs of the system (which
in turn is made sure by the above construction of linear Dio-
phantine equations; the c;; are the computed coefficients in
vector x for the equation system corresponding to W;); and
(3) a pivot X;, which is a placeholder for a value we need in
order to account for cyclic dependencies. We hence havﬂ

CB; = CHu;...; CHy,; KBi; X4; BB,

The constant value of KB; is determined by computing
the linear combination of the hash values of the blocks as
explained above; remember that the construction of the hash
function is such that DLL base addresses are canceled out.

We now need to incorporate hash values for the integrity
checks as well. The challenge is to check the integrity if there
are cyclic dependencies between checkers, e.g. CB1 checks
CB; checks CB3 checks CB;. If the code of IC;s are not part
of the checksummed bytes, then cyclic checks are not an is-
sue. However, assume IC;s are subject to integrity checking
and there are cyclic dependencies.

3This is slightly misleading because KB; is a number; think of it as being
subtracted from the sum of the hash values and compared to 0.

If H(A; B) = H(A)+H (B), which is the case for the check-
sum functions we are using, we have

H(CB;) = H(BB:) + H(Xi) + H(KBi) + X5, en(cn,) H(CHij).

H(BB;), H(KB;)and ZCBjeb(CBi) H(CH,;) are constants.
Let G; denote their sum. We then need to find integer solu-
tions for all X; such that H(X;) = G, — H(CB;), which is
easy to solve if H is addition modulo some number.

4. IMPLEMENTATION

We have implemented the self-checking mechanism for the
PE format and the x86 instruction set architecture (ISA). Be-
cause the x86 ISA has a variable length encoding where in-
structions can vary between one and fifteen bytes, byte-by-
byte summation modulo 256 (denoted H ) is the natural check-
summing function candidate for satisfying Eq.[I} However,
there is an issue with using H, which we discuss in

4.1 Granularity of Checks

The impact on run-time performance is characterized by
the frequency of the checks and the amount of data that is
checked. We leave frequency considerations to future work.
In terms of the amount of data, checksumming can be ap-
plied at various levels of granularity, e.g. memory segments,
functions, basic blocksﬂ tuples of instructions.

To precompute checksums H,,, we need the compiled and
linked machine code. Therefore, we cannot perform the trans-
formation of adding checks at source code level. We have
implemented the self-checking transformation such that it is
applicable post binary compilation and linking, which also
minimizes the impact on the software development process.
Because we want to apply our approach to Google Chromium,
we use the Google Syzygy Transformation Toolchain as a bi-
nary instrumentation framework which is used to post pro-
cess Chromium (but works for any PE). Among other things,
Syzygy performs basic block optimizations via reordering,
which improves the cold start times, executable layout and
cache efficiency of the instrumented program [14].

Since Syzygy performs a mandatory basic block reorder-
ing, the coarsest level of granularity for our transformation
is that of basic blocks. If we checksum a function composed
of several basic blocks, Syzygy will likely reorder its basic
blocks, possibly interleaving them with basic blocks of other
functions. It is thus not guaranteed that all basic blocks of a
function will be placed contiguously in the resulting binary.

4.2 Issues with Byte-by-Byte Addition

In deriving Eq.[T|we used the fact that the difference o be-
tween an absolute address a and a base address b is constant
and we assumed that the difference between the byte-by-
byte summation of these addresses will always be equal to
the byte-by-byte summation of the offset o, i.e.,

H(a)— Hy(b) = Hy(0) mod 2~ 4)

where H is addition modulo some number. This relation is
always true for Microsoft Windows PEs that are smaller than
512 KBs because on 32-bit systems all base addresses are 16-
bit aligned [27], which means that the base address will al-
ways have its least significant 16-bits equal to 0. However,

* A basic block is defined by a list of sequential instructions ending either with
a jump or a return instruction. A basic block has branch-ins only onto its first
instruction and branch-outs only from its last instruction.



for PEs larger than 216 % 8 = 512 KBs, it could be the case that
the base address b plus the offset o leads to a carry bit from
one less significant byte to a more significant byte in the ab-
solute address a. For example, consider b = 0x02E00000, 0 =
0x00321234, and a = b + 0 = 0x03121234. Relation @ does
not hold for these addresses: Hy(a) = 03 + 12 + 12 + 34 =
5B, H (b) = 02 + EO + 00 + 00 = E2, and H (0) = 00 + 32+
12 + 34 = 78;but Hy (a)— H4 (b) = Hy (0)+1 mod 2", The
reason is the bit that is carried from the 2nd byte of the ab-
solute address to the most significant byte after adding the
offset to the base address.

One intuitive solution would be to simply change the H
function such that it does not perform byte-by-byte addition,
but word-by-word addition instead. This would solve the is-
sue of the carry bit from one byte of the address to another.
Unfortunately, this is not possible because instructions in x86
machine code have variable length, i.e. an instruction can
have anywhere between 1 and 15 bytes in length. For ex-
ample, the call instruction from Figure [1]is five bytes long,
while the push instruction is one byte long. Therefore, if
the H; function read one word (four bytes on a 32-bit sys-
tem) at a time, it would be highly likely that the read words
would contain the entire absolute addresses. Moreover, ba-
sic blocks have a size equal to a number of bytes divisible
by four, which means that reading word-by-word could go
outside the boundary of a basic block. Note, however, that
word-by-word addition would work on an ISA with fixed
width instructions (e.g. ARM, MIPS, etc.).

Another intuitive solution would be to partition the PE
into 512 KB blocks and pick checkees and checkers only from
within the same partition block, in order to be able to per-
form strict equality comparison. However, these partitions
may not fall at function or basic block boundaries, plus the
basic blocks are reordered by Syzygy after the checker to
checkee associations are chosen (see §4.1).

Since the base address of a program is chosen randomly by
ASLR, we cannot know the exact number of times this carry
bit situation could occur. However we can statically com-
pute how many absolute addresses a basic block contains
and we can place an upper-bound on how many times this
carry bit situation could occur across all possible program
restarts (i.e. base addresses). Therefore, for binaries larger
than 512 KBs we do not perform an equality comparison of
the dynamically computed checksum d to the statically pre-
computed checksum s. Instead, we check that |d— s| is below
the number of absolute addresses in these basic blocks.

Approximately comparing the statically computed against
the dynamically precomputed checksum weakens the pro-
tection mechanism. Assume an attacker patches a few in-
structions in protected basic blocks such that their new dy-
namically computed checksum is equal to d’. If |[d' — s| <
|d— s|, then this attack will not be detected by H . In §4.4|we
add another checksumming function, which further raises
the bar for such patching attacks along the lines of

4.3 Processing Executable Files

Since a user may not want to protect all functions of an ex-
ecutable, our tool takes as additional input a list of function
names to be protected. The tool first disassembles the exe-
cutable and generates a graph of basic blocks. Second, the
following sequence of assembly instructions—the checker—
is inserted before each basic block in a function to be pro-
tected. These instructions can be obfuscated.

1. Save four values on the stack for each of the N checkees
associated with the checker: (i) k; the coefficients which
will be multiplied by the checksum of the checkees, (ii)
l; the number of bytes of each checkee, (iii) a; the start-
ing address of each checkee and (iv) n; the number of
checkees of each checkee, which are needed for the fol-
lowing reason: each checkee is indicated by an absolute
address with the base address equal to the base of the
current executable, denoted b. Since the instructions of
the checkee also include code that was inserted to per-
form checks on other checkees, we need to cancel out
the absolute addresses of those checkees.

2. Call the checksumming function which reads the ma-
chine code bytes at the previously stored addresses on
the stack. The checksumming function internally com-
putes the byte-wise addition modulo 256, of the ma-
chine code bytes of each checkee. It also computes the
checksum of the base address for the current binary (de-
noted H+(b) The linear combination of the check-
sums for all checkees (c+), which will be the return
value of the hash function is:

cr =20 ks ((Zé";ol Mla; + j]) - mH+(b)> mod 256,

where M denotes an array representing the process mem-
ory of the protected application. The intuition as to
why absolute addresses are canceled out by this linear
combination of checksums is given in

3. Compare the value returned by the checksumming func-
tion (i.e. c¢4) with a hard-coded pre-computed value.

4. Trigger the response functions if the values in the pre-
vious comparison are not equal, otherwise continue the
normal execution of the original binary.

Thirdly, the basic blocks are reordered by Syzygy and laid
out in the output executable. This reordering changes several
relative and absolute addresses. In the final step, our tool
hence patches the precomputed checksums (in-place) such
that they will match the dynamically computed checksums.

4.4 Detecting Checksum Collisions

To detect patching attacks which result in checksum colli-
sions we resort to using Hg only over consecutive instruc-
tions which do not contain absolute addresses (§3.4). We call
them chunks. This checksumming function is used in addi-
tion to H for basic blocks that contain absolute addresses.
Note that we can use any checksum or hash function to hash
such code chunks; we chose Hg because it has a low perfor-
mance overhead. Technically, we consider chunks of code to
be any maximum subset of consecutive instructions inside of
a basic block that do not contain references to absolute ad-
dresses. For example, the basic block from Fig. 2] contains 2
chunks: the first consists of only the first instruction, and the
second consists of the last 3 instructions.

For each of the M chunks associated with it, the checker
saves the following values on the stack: (i) /; the size in bytes
of the chunk and (ii) a; the starting address of the chunk. Let
cg denote the return value of the function:

M fl-1
ce = Z (@ Ma; +j]> mod 256.

i=1 \ j=0

5This base address is known because (in the implementation of H) we in-
serted a mov instruction that copies the value of a reference to the base of this
binary in an auxiliary register, which it then dynamically hashes.



The output of this Hg checksum function is combined with
the result of the H; checksum function: ¢+ + ¢g mod 256.
The resulting value is hard-coded in the protected PE and is
compared against the checksum computed at runtime. If the
comparison fails, the response function is called.

4.5 Response Functions

Response functions ideally are (1) transparent, i.e. not no-
ticeable to the end-user. They must be effective against at-
tacks and should be (2) stealthy, i.e. an attacker should not be
able to identify and disable the response. We are not aware of
response functions which are both transparent and stealthy.
However, we did implement one transparent and one stealthy
response function.

The transparent yet non-stealthy response function con-
sists of sending a signal to a trusted server indicating a change
in the process memory. This can only be achieved by using a
system call that accesses the OS network interface.

The stealthier response function crashes the program after
tampering is detected. Crashing could be implemented in a
variety of ways, i.e. instead of comparing the precomputed
hash to a hard-coded checksum, we can use the hash to com-
pute a jump target or perform an operation with the stack
pointer. This may not crash the program immediately, but
eventually will lead to a crash with high probability.

4.6 Limitations

Currently we assign checkees randomly to checkers with
the constraint that a linear combination of their hashes is in-
variant to application restarts. However, to reduce perfor-
mance impact this random approach can be improved to al-
ways pick hot code as checkees and less hot code as checkers.

Due to the way in which self-checksumming works, it causes

issues during debugging. Generally debuggers (e.g. the Mi-
crosoft Windows debugger, GDB) replace the first byte of a
basic block with cc, which is the opcode for the int 3 assem-
bly instruction. This is the standard way for debuggers to
gain control, from the application that is being debugged. Af-
ter the debugger gains control it changes the CC value back
to its original value. Therefore, if the application that is being
debugged employs self-checksumming, then it could happen
that a checker computes a checksum over a basic block where
the debugger has changed the first byte to cC. This will lead
to the wrong checksum value which will trigger the response
function during debugging.

A solution to this issue is to use hardware breakpoints if the
debugger supports them. These kinds of breakpoints do not
cause the debugger to replace the first byte of a basic block
with cC. The drawback to this solution is that the number of
hardware breakpoints on the x86 architecture is limited to 4.

S. EVALUATION

5.1 Performance Evaluation

We evaluated the performance of our implementation over
two categories of applications: (1) CPU-intensive applica-
tions such as an XML parser, which indicates the worst-case
performance overhead due to a higher frequency of check-

summing, and (2) GUI applications (that are less CPU-intensive)

such as the Chromium browser, which involve continuous
human-user interaction and indicate an average performance
overhead for self-checksumming protection.

14¢| --- unprotected
1l — H,

total execution time (second)

0 50 100 150 200 250 300
number of protected blocks
Figure 3: Run-time of tinyxmi2 with various protection levels.

5.1.1 XML Parser

We selected tinyxmi2 [34] from Github’s trending reposito-
ries as the first candidate for our performance evaluation. It
is an open source XML file parser library that reads an in-
put file and constructs the corresponding Document Object
Model (DOM). The library is written in C++ and consists of
4571 lines of code. The compiled binary consists of 340 basic
blocks and occupies 136 KB of disk space.

To measure the overhead of our implementation, we se-
lected ten random combinations of 5, 10, 15, 20, 50, 100, 150,
200, 300 and 340 basic blocks, and used them as input config-
urations for our tool. For each input configuration we gener-
ated two protected binaries: one where only the H check-
sum was used, and one where both H; & Hg were used.
This resulted in 10 x 10 x 2 = 200 protected binaries.

These protected binaries were executed with the same in-
put XML file set shipped with the library, which varies in size
from 0 KB (empty test) up to 142 KB (dream. xm1). We mea-
sured the total process run-time as the difference between the
timestamp when the process terminated its execution and the
time when execution was started. The total process run-time
was measured 100 times for every application. The mean
and standard deviation were computed across all applica-
tions that have the same number of protected functions, in
order to weed out random influences on runtime performance.
Figure J]illustrates the evaluation results for protection with
H; and with Hy & Hg. The baseline execution time of 0.4
seconds (y-axis) can be seen for zero protected blocks (x-axis).
Using H, slows down execution about 20 times when all
340 blocks of the application are protected, while the slow-
down induced by Hy & Hg it about 35 times. This slow-
down may be unacceptable in scenarios which require high-
responsiveness or high-throughput. However, it may be ac-
ceptable in scenarios where behavior integrity of some soft-
ware functions (e.g. license checks), is of utter importance.

5.1.2 Chromium

Chromium involves user interaction and therefore is not
as CPU intensive as the XML parser. By measuring the to-
tal process run-time of versions of Chromium protected us-
ing different input configurations, we could not observe a
slowdown compared to the unprotected version. Another
reason for this low overhead is the multi-process and multi-
threaded architecture of Chromium, where several processes
depend on input values gathered via OS system calls (e.g. net-
work communication) and are not controlled by the end-user
inputs. Therefore, we measured the overhead incurred per
protected function, i.e. the relative increase in run-time of a
protected function w.r.t. its unprotected counterpart.
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Figure 4: Performance overhead of 10 Chromium functions.

| Protection | Mean | Std. Dev. | Median | Maximum |

H, 134 | 116 1.00 8.2
H, & Hg | 134 |0.89 1.06 5.0
Table 1: Relative performance overhead in ms (protected
function run-time divided by unprotected function run-time)
of self-checksumming protection in Chromium.

One way of measuring the overhead per function is using a
binary profiling tool such as SyzyProf, offered by the Syzygy
toolchain. However, such tools also require instrumenting
the application. Applying SyzyProf on an application trans-
formed by our tool breaks the precomputed checksums due
to the profiling instructions that SyzyProf adds to the code.
Applying SyzyProf first and then transforming it using our
tool solves this issue, however, it causes the profiling infor-
mation collected by SyzyProf to be inaccurate, because code
is inserted and reordered by our tool.

We therefore extract the profiling information from a pro-
tected version of Chromium via the browser itself using the

chrome:/ /profiler URL. Before the profile information is saved

we let the browser run for 30 seconds. During this time it
loads its homepage (i.e. https:/ /www.google.com), then we
search for the word “hello”. After the search results are loaded
we open the chrome://profiler. From the profile informa-
tion we compute the average execution time per function by
dividing the total execution time and the number of times
a function was executed, for each of the protected functions.
Similarly to the XML parser, we protect Chromium both with
H, only and with both H & Hg.

We have protected 400 functions from Chromium, 73 of
which were executed and consistently appearing in the pro-
file information across 20 executions of Chromium. Look-
ing at the names of the remaining functions, we realized that
they are only called when performing other end-user actions,
e.g. changing browser preferences, downloading files, etc.,
which we did not perform in our test runs. Table[T|shows the
average overhead over these 73 functions protected with H
only and protected with Hy & Hg. The mean values are the
same for both, however, the median is larger when both H
& Hg are used. Remarkably the maximum overhead was
observed for a function protected with H, . Figured|shows a
bar chart with the average execution times and the standard
deviation of 10 randomly chosen functions from Chromium
protected with H only, protected with H & Hg and unpro-
tected. From the bar chart we can see that the impact of self-
protection is relatively moderate. Also it seems that for some
functions the performance impact of protection with H, is
lower than with H; & Hg. This is counter-intuitive, how-
ever, we are not certain that the inputs for these functions
during different runs are the same, due to the previously

mentioned reason, i.e. Chromium performs several system
calls, whose execution times vary depending on the OS state.

5.1.3 Protection Time and Protected Binary Size

The time required to protect an executable, i.e., to stati-
cally add the checking code, increases linearly with the num-
ber of basic blocks to be protected. For instance, protecting
400 functions with 4749 basic blocks from Chromium, takes
around 27 minutes, out of which 14 minutes are used only
by the Syzygy binary disassembler, which is performed be-
fore our protection mechanism is applied. On the other hand,
protecting 5 functions with 49 basic blocks from Chromium,
takes around 15 minutes, out of which 14 minutes are still re-
quired by the binary disassembler stage. Therefore, the dis-
assembly stage is constant for a certain executable file, while
our protection mechanism increases linearly with the num-
ber of protected basic blocks.

The size of the protected executable is increased w.r.t. the
unprotected executable. Similarly to protection time, the size
of the protected executable also increases linearly with the
number of protected basic blocks. For each protected basic
block the added integrity check code with H is at least 82
bytes, when the added code is not obfuscated via superdiver-
sification [18]. Note that this integrity check has two check-
ees and the size of the machine code that pushes the infor-
mation on the stack for each checkee is 20 bytes per chec-
kee. Adding also Hg also requires pushing the information
for four chunks and some extra instructions to call the Hyg,
hash function, save its result and combine it with the re-
sult of the H; hash function. The size of the machine code
that pushes the information on the stack for each chunk is
15 bytes per chunk. Therefore, the total size of the result-
ing integrity check code is 163 bytes (unobfuscated) per basic
block, when both H; & Hyg, are used.

5.2 Security Evaluation

One intuitive way of evaluating the security of our ap-
proach is to develop or use an existing PUP which tampers
with the process memory of the application. However, we
argue this is not a fair evaluation since such a browser hi-
jacker would not be aware of the protection mechanism we
are employing and would therefore be detected.

An alternative way of performing the security evaluation
is to assume that the attacker is fully aware of all details of
our protection mechanism and consider possible actions of
such an attacker. The attack tree in Figure[5|on the next page
shows possible attacks which an attacker may implement to
bypass our protection mechanism. The root of the tree shows
the goal of the attacker and each of the leaves are alternative
ways to achieve this goal. The following subsections discuss
each of the leaves of this attack tree.

5.2.1 Disable Checker of Targeted Code Bytes

Each basic block in a protected function is checked by at
least one other basic block located in a different function.
This causes cyclic dependencies between checks which are
discussed in resulting in a connected directed graph
where each node is a basic block and each arc indicates the
source node performing an integrity check over the destina-
tion node, illustrated in Figure

Additionally, each basic block in the protected executable
also checks a number of chunks spread across different basic
blocks, which adds another kind of directed arcs (showed
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Figure 5: Attack tree for our self-checksumming tool.
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with dashed lines in Figure [6b) to the previously mentioned
graph. Dashed lines also indicate that Hg is not computed
over the entire destination basic block but only on a part of
it (i.e. a chunk). This strongly connected graph forces the
attacker to identify and disable all checkers before being able to
patch any of the basic blocks in the executable.

The attacker could perform a pattern matching attack to
identify all checkers inside a protected executable and dis-
able them by replacing their code by NOP instructions. In
order to avoid patterns in the integrity check code, we em-
ployed an obfuscation transformation known as superdiver-
sification [18]], i.e. replacing one sequence of instructions in
a basic block by another sequence of instructions which is
functionally equivalent. The drawback of employing this
kind of obfuscation is that the size of the integrity check-
ing code, which is added to each protected basic block, is
increased 2-4 times relative to the current size of the code
(see §5.1.3).

Another way of detecting and disabling checkers was pre-
sented by Qiu et al. [28]. They taint the code bytes of an exe-
cutable and perform backward and then forward taint anal-
ysis to identify checker instructions, which use the (tainted)
code as data for branch decisions. Together with the authors
of [28], we employed their tool on an execution trace gen-
erated by a protected version of Chromium running for 1
minute. The tool executed on machine with 32GB of RAM
and an Intel Xeon CPU with 2.0 GHz clock speed and was
able to process 1% of the trace per day. We conclude that this
attack is effective, however, it does not scale for applications
which generate large execution traces.

The time interval (detection interval) between a patching at-
tack and detection of the patch via our self-checksumming
mechanism can vary greatly due to the random way in which
checkers and checkees are picked, i.e. if a basic block exe-
cuted rarely is checking another basic block which is patched,
then the detection interval will be relatively large compared
to the scenario where the basic block which is performing
the check would be executed frequently. Checkers could be
bypassed if the attacker patches the targeted code before it
executes and reverts the patch after it executed and before
any checksum is performed on it. We call this just-in-time

patch & repair. However, due to Chrome’s multi-process and
multi-threaded architecture it is highly unlikely that this at-
tack could succeed reliably across a large number of end-
users, due to the unpredictability of the OS scheduler [7].
In order to minimize the detection interval for more security
sensitive code we propose using heuristics based on profiling
information of the protected application. This way, security
sensitive code would be checked by multiple integrity checks
in frequently executing code. We leave this straightforward
extension of our implementation for future work.

5.2.2 Disable Response Function

A process running under the same privileges as the target
application process (which is the case for PUPs) can intercept
all system calls and prevent the transparent response func-
tion from sending any information to a trusted server. This
means that even if there were multiple response functions
obfuscated and spread-out across the code of the PE, attacks
such as system call hooking could still detect and stop such
response functions.

An attacker would need to employ the techniques of
to identify the stealthy response function. A delayed crash is
even harder to trace back to its root cause by an attacker.

5.2.3 Patch Code Bytes and Preserve Checksum

This attack was described in §§3.4]and The idea is to
patch a certain number of bytes in the machine code such
that the checksum is preserved, as illustrated in Figure @ To
reduce collisions we added the Hg checksum function over
chunks. This does not completely exclude the possibility of a
collision, however, it decreases its likelihood.

Another attack is to modify bytes in the code even if the
checksum is not preserved and then patch the pivot byte
such that the checksum is corrected. This is detected by check-
ing the chunk containing the pivot byte.

5.2.4 Modify Hash Function to Always Return
Correct Checksum Value

An attacker who knows our self-checksumming implemen-
tation may attempt to modify the machine code of the check-
summing function such that it always returns the correct check-
sum. This is possible by reading bytes starting from the re-
turn address of the checksumming function until a compari-
son instruction is first encountered (the check if the statically
and dynamically computed hash values are identical). The
attacker could then take the constant value from this instruc-
tion and return it from the checksumming function. We can
raise the bar against this attack by employing superdiversifi-
cation [18], i.e. use different types of instructions to compare
the return value of the checksumming function with the pre-
computed checksum in different checkers.



6. CONCLUSIONS AND FUTURE WORK

We have presented the design, implementation and evalu-
ation of a mechanism for software tamper detection via self-
checksumming. The results indicate that for CPU-intensive
applications, the run-time of an application having all func-
tions protected may be 20 times as high as the unprotected
application when using one checksumming function, and up
to 35 times higher when using two checksumming functions.
This kind of overhead may appear prohibitive for some ap-
plications. However, we note that an application developer
may not necessarily want to protect all functions of an appli-
cation, which significantly lowers the overhead. Moreover,
the performance of a protected application depends on how
frequently checks are executed. If checks are inserted inside
frequently executing code such as deeply nested loops, then
performance impact is higher than if checks are inserted in
less frequently executed code.

For non CPU-intensive multi-process and multi-threaded
applications such as GUI applications, the performance im-
pact experienced by the end-user may be acceptable, which
is the case in our Chrome case study.

Obfuscating the instructions of the inserted checks increases
the security, but degrades the performance and increases the
size of the protected binary. This makes application of self-
checksumming practical for less CPU-intensive applications
and in situations where only a subset security critical set of
the functions of the PE are protected.

One possible direction of future work is protecting the in-
formation from data blocks. This feature would protect hard
coded values such as URLs and pointers to functions in other
libraries. Another direction of future work is using profil-
ing information from the original (unprotected) PE, to create
groups of basic blocks or functions according to their execu-
tion frequency. This would enable picking checkees as hotter
code and checkers as less hot code. This feature would re-
duce the performance overhead of the protected binary.
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APPENDIX
Blocks vs. DLLs ]| 100 200 300 400
50 0394 [ 0481 0.676 1.240
100 0580 | 1.105 1.317 1.086
500 3.045 | 223579 | 6299.026 | 14894.043
1000 7.057 | 376.748 | 9023.435 | 21225.647

Table 2: Time (in seconds) needed by equation system reduc-
tion algorithm (presented in Section[3.3.2), to output the solu-
tion (including equation solving by the SMT solver), corre-
sponding to randomly generated Q matrices having n blocks
(indicated in the first column) and d DLLs (indicated in the
first row). Note that the performance numbers may vary de-
pending on the actual values inside of the Q matrix and the
random seed used by the SMT solver.
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