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Bone has an intrinsic healing capacity that may be exceeded when the fracture gap is too
big or unstable. In that moment, osteogenic measures need to be taken by physicians. It
is important to combine cells, scaffolds and growth factors, and the correct mechanical
conditions. Growth factors are clinically administered as recombinant proteins. They are,
however, expensive and needed in high supraphysiological doses. Moreover, their half-life
is short when administered to the fracture.Therefore, gene therapy may be an alternative.
Cells can constantly produce the protein of interest in the correct folding, with the phys-
iological glycosylation and in the needed amounts. Genes can be delivered in vivo or ex
vivo by viral or non-viral methods. Adenovirus is mostly used. For the non-viral methods,
hydrogels and recently sonoporation seem to be promising means. This review will give
an overview of recent advancements in gene therapy approaches for bone regeneration
strategies.

Keywords: gene therapy, bone regeneration, bone morphogenetic proteins, hydrogel, sonoporation, adenovirus

INTRODUCTION
Bone tissue can heal relatively well in a natural way. A defect in
cortical bone will spontaneously heal if the gap is smaller than
2 mm. A prerequisite for bone healing is absolute fracture sta-
bility (Gaston and Simpson, 2007). Unfortunately, trauma, bone
tumor resections, or arthritis may lead to larger bone defects that
may have a compromised healing. Delayed healing or non-union
occurs in 5–10% of all fractures and 20% of high impact frac-
tures (Brydone et al., 2010). This impaired healing is caused by
the body’s inability to regenerate the bone and additional surgi-
cal interventions, besides stabilization, may be needed to replace
the lost bone. Autografts, allografts, and bone grafts substitutes are
mainly used for this purpose in an attempt to fill these non-healing
bone defects. Osteogenic growth factors may also be added to the
bone graft substitutes in order to kick-start or accelerate bone
healing. More recently, autologous stem cells derived from bone
marrow have been administered to enhance the healing of the
non-union bone defects.

Thus, the important prerequisites for bone healing are: (i)
cells with osteogenic potential, (ii) osteoconductive matrix, (iii)
osteoinductive stimulus, and (iv) a mechanical stable environment
(Giannoudis et al., 2007). The authors named this the “diamond
concept” and all components must be active for a successful
bone-union to occur.

Recombinant growth factors, however, are expensive and cum-
bersome to produce. This is because, eukaryotic cells are needed in
order to have a correct folding as well as glycosylation of the pro-
tein. Furthermore, once transferred to the body, the growth factors
have a short half-life and need to be administered in high supra-
physiological concentrations. Therefore, gene therapy may be an
alternative (Figure 1). Indeed, there are several advantages of gene
delivery over protein delivery, which are well supported by a fair
number of scientific studies. The most relevant advantages of gene

therapy include the flexibility to express the protein locally and
focally, or in a disseminated fashion, as needed. Of note, gene ther-
apy brings the possibility for intra-cellular production of proteins.
Thus, this facilitates therapeutic pathways to take place. Unlike
its recombinant equivalent, the protein delivered via gene transfer
will be nascent and uncontaminated by a variable percentage of
incorrectly folded and possibly antigenic molecules (Evans, 2012).
Moreover, additional advantages of gene delivery include the abil-
ity to express proteins for extended periods of time and the level
of transgene expression can be regulated.

A second aspect of the need of high protein doses is possible
side effects that may hamper safety of the therapy. Adverse events
for the use of BMP-2 mainly in spinal fusion are ectopic bone for-
mation, swelling, seroma, retrograde ejaculation, dysphagia, and
tumor formation (Woo, 2012; Fu et al., 2013). Swelling due to
use of BMP-2 in anterior cervical spine fusion was observed in
28% of the patients (Smucker et al., 2006). In anterior interlum-
bar interbody fusion, several adverse events may occur. Retrograde
ejaculation occurs in 6.3–7.4% of the patients, which may lead to
a two times increased incidence of urinary retention (Carragee
et al., 2011; Comer et al., 2012). A controversy exists concerning
cancer risk upon BMP-2 administration. Several studies conclude
that no increased cancer risk occurs when BMP-2 is used for spinal
arthrodesis (Cooper and Kou, 2013; Kelly et al., 2014). However,
Carragee et al. (2013) reported that high doses of BMP-2 in spinal
arthrodesis result in a five times increased cancer risk 2 years after
surgery.

Thus, gene therapy often reduces the amounts of therapeutic
molecules. It may only need to be delivered once and in a rel-
atively small amount (Evans, 2012). Thereby, the adverse events
described above may not occur. The cancer risk e.g., was only
increased when high doses of BMP-2 were used and by using gene
therapy, only low amounts of protein are produced not leading
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FIGURE 1 | Gene therapy has advantages and disadvantages. The
advantages outreach the limitations.

to this increased cancer risk. In addition to its therapeutic poten-
tial, gene delivery is a valuable experimental tool for laboratory
research into the biology of bone. Translating these facts to the
osteology area, gene transfer to bone has demonstrated its huge
therapeutic capabilities. As a matter of fact, gene transfer using
viral vectors has already shown that bone healing and treatment of
other bone disorders such as bone tumors or osteogenesis imper-
fecta can be possible. Although limitations are associated with viral
vectors, studies clearly reveal the strong advantages of using gene
therapy over treatments with the recombinant protein. Indeed,
integration occurs even with integration non-competent viruses
such as adeno-associated viruses (Kaeppel et al., 2013). However,
this did not lead to tumorigenicity. Another important issue is the
fact that preexisting antibodies or memory T-cells may diminish
the efficacy of AAV gene therapy (Mingozzi and High, 2013). To
screen patients beforehand may improve the effectiveness. How-
ever, many patients may than be excluded as AAV are commonly
encountered in normal life and thereby an immune-memory has
developed. Nevertheless, there is a believable proof of principle in
both in vitro and animal model experiments that gene transfer can
be successfully used to regenerate bone (Evans, 2012).

HISTORY OF GENE THERAPY
The first idea related with a gene therapy approach evolved as early
as 1966 and was mentioned by Edward Tatum when he speculated
that viruses could be used effectively to introduce new genes into
defective cells of particular organs (Tatum, 1966). Tatum also sug-
gested the first definition of a field that was called “human genetic
engineering” at that time. He defined human genetic engineer-
ing as the alteration of existing genes in an individual and stated
that the first successful genetic engineering would be performed
with the patient’s own cells (Tatum, 1966). One year later, Leder-
berg mentioned the term “virogenic therapy” in a publication in
the Washington Post in which he defended the idea that viruses
could be used to transfer DNA molecules that could encode for
a therapeutic entity into cells of patients suffering from heredi-
tary defects (Lederberg, 1968). In 1969, the first isolation of a gene
succeeded by Beckwith (1969) promising a brilliant future to the
so-called human genetic engineering. However, growing debates

on social and ethical implications accompanied the field through-
out the 1960s and 1970s. The gene therapy concept was criticized
as being remote and improbable, even unnecessary. Several promi-
nent scientists rejected all the rationale behind gene therapy and
the use of DNA with therapeutically aims (Burnet, 1971). Together
with this hostile background, Stanfield Rogers failed, when he per-
formed the first attempt at human gene therapy, in the late 1960s.
He injected the Shope papilloma virus into patients with arginase
deficiency. His assumption that the virus contained an arginase
gene and that would induce arginase expression or leads to the
preferential growth of cells with higher arginase activity, could not
be proven. The treated patients did not show any effect on their
arginase levels after injection of the virus. In 1980,a second attempt
is registered when Cline and colleagues tried to transfect the
β-globin gene into human bone marrow cells. The cells were sub-
sequently transplanted into patients suffering from thalassemia.
Their trial was criticized for both scientific and procedural reasons
(Wolff and Lederberg, 1994). Both trials lacked a sound practice
and well-proven cell culture and animal experiments.

It was not until the development of recombinant DNA tech-
nology together with early transfection and cell culture techniques
that major progress was made in gene transfer. Subsequently, sev-
eral disease-related genes (e.g., herpes TK gene, APRT, and human
HPRT) were successfully transferred into mammalian cells prov-
ing the feasibility of the technique. Therefore, the first approved
gene therapy case took place at the NIH for treating a genetic
defect that caused a severe immune system deficiency (ADA-SCID)
in 1990. The results were successful, however temporary. Up to
the present, a fair number of clinical trials for chronic and acute
lymphocytic leukemia, multiple myeloma, thalassemia, coronary
artery disease, HIV, and retinal diseases among others have been
or are being conducted using a gene therapy approach.

DELIVERY PLATFORMS FOR GENE THERAPY FOR BONE
ENGINEERING
Despite the above-mentioned advancements, transfections of
bone-related cells, bone-derived stem cells, or bone tissue aim-
ing to bone regeneration have hardly been performed. Different
strategies exist to perform gene therapy for bone engineering:

1. In vivo
a. Viral
b. Non-viral

2. Ex vivo
a. Viral
b. Non-viral

In the in vivo approach, the vector (viral or non-viral) is admin-
istered to the fracture gap and resident cells are expected to be
transfected (van Griensven et al., 2002). They will locally pro-
duce the osteogenic protein. The administration can be via direct
injection or associated with a biomaterial. The latter combination
of vector and biomaterial is called gene activated matrix (GAM).
Regarding the ex vivo approach, one does not rely on the cells
to be transfected in situ. Autologous cells will be harvested [e.g.,
mesenchymal stem cells from bone marrow (BMSC) or adipose
tissue (AdMSC)] and transduced outside the body. The transduced
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cells are subsequently implanted in the fracture gap. Again, direct
injection or using a biomaterial as carrier is the main method of
application.

VIRAL GENE TRANSDUCTION
Viruses are widely used as their mode of action is to trans-
fect mammalian cells with their genetic material. Most used
virus types for gene therapy are adenoviruses, adeno-associated
viruses, lentiviruses, and retroviruses. Recombinant viral vectors
are widely used. It has the ability to infect different cell types with
high efficiency. No differences in efficiency are reported for using
dividing or non-dividing cells. The gene of interest is not incor-
porated in the human genome and will be non-detectable after
several cell cycles. Reports in bone regeneration mainly employ
adeno- or retrovirus vectors carrying plasmids that encode for
bone morphogenetic proteins (BMPs) (Park et al., 2003; Tsuda
et al., 2003). In addition, GAM have been also used in vivo for
bone healing. Those are mainly based on the loading of BMPs
plasmid/viral vectors complexes onto biomaterials (e.g., collagen,
chitosan, polyesters, and calcium phosphates) to be implanted at
the defect site (Chang et al., 2010; Zhang et al., 2011).

Rat femoral defects have been treated with adenoviral con-
structs encoding BMP-2, Runx2, or VEGF. BMP-2 healed the
femoral defects dose-dependently (Betz et al., 2007b) upon direct
percutaneous injection (Betz et al., 2006). When the authors did
not immediately apply the vector, but performed delayed injection,
the results were even more pronounced (Betz et al., 2007a). When
performing a GAM approach using transduced muscle or adipose
grafts, no difference could be obtained with autograft (Evans et al.,
2009; Betz et al., 2013). Similar effects were obtained with a hydro-
gel formulation (Sonnet et al., 2013). When using MSC transduced
with adenoviral BMP-2, efficient healing could also be detected
(Lieberman et al., 1999; Peterson et al., 2005). Using the more
downstream runx2 signal transduction molecule within an ade-
noviral vector, induced higher bone mineral density upon direct
injection in the bone marrow of a rat femur (Bhat et al., 2008).
However, not only osteogenic genes result in improved fracture
healing, also inducing angiogenesis by a VEGF-adenoviral vector
was able to promote bone formation (Tarkka et al., 2003).

Besides rat studies, also larger animals are used such as rabbits,
sheep, and pig. The latter is mainly studied for calvarial defects.
A rabbit femur segmental defect could be healed by injection of
a BMP-2 encoding adenoviral vector (Baltzer et al., 2000). Also
in sheep, this treatment was successful (Egermann et al., 2006b).
Even when the sheep were osteoporotic, the BMP-2 could induce
fracture healing (Egermann et al., 2006a). Goat have similar phys-
iologic properties as sheep. Tibial defects in goats were treated
with a scaffold composed of biphasic calcined bone and autolo-
gous BMSC transduced with human BMP-2. Five goats showed
complete healing and three partial healing after 26 weeks (Dai
et al., 2005). However, a temporary cellular and persistent humoral
immune responses against adenovirus could be detected (Xu et al.,
2005).

NON-VIRAL GENE THERAPY FOR BONE ENGINEERING
Despite all the above-mentioned restraints, viruses currently
remain the carriers of choice in most of the gene therapy studies

and clinical trials. However, safety concerns are continuously
raised associated with their use. This is based on the fact that
they naturally transfer their genetic material very efficiently into
the cells. For viral gene therapy, the viral genome is modified
by removing the sequences that contribute to their pathogenicity
(Evans, 2012). However, the safety concerns are constantly grow-
ing together with the fact that viral vectors can be expensive and
their production is complicated (Schleef et al., 2010; Elsabahy et al.,
2011).

Therefore, high interest has been placed in the use of non-
viral vectors during the last two decades. Cationic polymers, lipids,
peptides and even calcium phosphate, and other inorganic nano-
materials have been explored for their capabilities as carriers of
genetic information into a target cell for in vivo gene therapy
(Loh and Lee, 2012). Among them, cationic liposomes and cationic
polymers are by far the most widely utilized carriers for gene and
nucleic acid delivery today (Tros de Ilarduya et al., 2010; Won et al.,
2011). Because of their opposite surface charge, they are com-
monly utilized for gene transfer by forming a complex (lipoplexes
or polyplexes) with negatively charged DNA molecules. A com-
mon disadvantage of those systems is their still relatively low
transfection efficiency when compared to viral vectors, especially
when “difficult-to-transfect cells” such as MSCs represent the tar-
get cell. Although it is worth mentioning that progress in lipid
development has achieved quite satisfactory levels of transfections
in recently published studies (Jain et al., 2013; Locatelli et al., 2013;
Sarker et al., 2013). Unfortunately, they often have toxic effects on
the cells. Both cationic lipids and polymers are not biodegradable
and therefore, the risk of their accumulation in the body is high.
Based on all the aforementioned facts, it can be concluded that
the development of highly efficient and less toxic gene carriers is
the most challenging work in the field of non-viral gene therapy
(Medina-Kauwe et al., 2005; Shan et al., 2012).

The work of Tomas’ group is encouraging, demonstrating a
successful transfection of adipose tissue-derived MSCs with a G4
PAMAM/BMP-2 plasmid dendriplex inducing this cells to dif-
ferentiate into the osteogenic phenotype, even when only low
transfection efficiencies were achieved (Santos et al., 2009). Also
delivering BMP-2 cDNA in an alginate hydrogel is promising. Bio-
logically active BMP-2 is released from the BMSC present in the
gel over a period of 5 weeks. This leads in vivo to ectopic osteo-
genesis (Wegman et al., 2011). Other hydrogels such as fibrin or
hyaluronic acid may also be used as carriers for nucleic acid vectors
(Schillinger et al., 2008; des Rieux et al., 2009; Lei et al., 2010, 2011).
They can be used for delivering osteogenic genes and induce bone
formation and accelerate fracture healing (Yang et al., 2012; Kaipel
et al., 2014).

Another novel method for transducing cells is the so-called
sonoporation (Mehier-Humbert et al., 2005; Li et al., 2009).
Ultrasound is used in combination with microbubbles to trans-
fect cells. Therefore, a novel osteoinductive non-viral in vivo
gene therapy approach using sonoporation was investigated in
ectopic and orthotopic models (Sheyn et al., 2008; Feichtinger
et al., 2014b). BMP-2 and BMP-7 co-expression plasmids were
repeatedly applied for 5 days with or without sonoporation. Trans-
duction efficiency was observed using a luciferase plasmid and
bioluminescence imaging in an ectopic model. Luminescence
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demonstrated increased transduction efficiency in sonoporated
animals in comparison with passive gene delivery (Feichtinger
et al., 2014b). Using osteogenic plasmids like BMP-2/BMP-7 or
BMP-9, enhanced ectopic bone formation was detected for sono-
poration compared to passive gene delivery (Sheyn et al., 2008;
Osawa et al., 2009; Feichtinger et al., 2014b). Also orthotopic
application in a rat femur non-union model demonstrated sim-
ilar results using sonoporation. Sonoporated animals showed an
increased union rate (Feichtinger et al., 2014b).

NOVEL APPROACHES OTHER THAN GROWTH FACTORS
Besides the use of genes for BMP or other growth factors, much
attention has been given recently to miRNA use with therapeu-
tic aims. miRNAs are small (approximately 20 nt), non-coding
RNAs. Over 4,000 miRNAs have been identified so far in the
human genome. They regulate many biological processes in the
human body. They are known to adjust and switch regulatory cir-
cuits governing tissue repair. Key elements of tissue repair such
as stem cell biology, inflammation, and angiogenesis are under
control of a network of miRNAs (Sen, 2011). They were first
discovered associated with cancer treatments and cardiovascular
diseases. Recently, several miRNAs have been identified so far to be
associated with bone pathologies (Seeliger et al., 2014). For exam-
ple, miRNA-218 has been reported to be a pro-osteoblastic factors
by acting on Wnt inhibitors. A DNA aptamer that binds sclerostin
has a similar activity (Shum et al., 2011). miRNA-148a is a pro-
osteoclastic factor by blocking MAFB signaling (van Wijnen et al.,
2013). In addition to miRNA-218, 10 other miRNAs have been
identified to control osteoblast differentiation and are expressed
in osteoblastic cells (i.e., miRNA-23a, miRNA-30c, miRNA-34c,
miRNA-133a, miRNA-135a, miRNA-137, miRNA-204, miRNA-
205, miRNA-217, and miRNA-338) (van Wijnen et al., 2013).
From a therapeutic perspective, in vivo approaches that promote
the activity of pro-osteoblastic miRNA or inhibit pro-osteoclastic
miRNAs are highly attractive for stimulating bone formation.
However, efficient tools for delivering those miRNA mimics (e.g.,
to stimulate pro-osteoblastic miRNA) or inhibitors (e.g., to block
pro-osteoclastic miRNAs) to specific target tissue are limited.
Two possibilities were shown by Li et al. They could show that
transfected MSCs with miRNA26a in hydroxalapatite–tricalcium
phosphate scaffolds induced bone formation subcutaneously. Fur-
thermore, a hydrogel delivery system consisting of HyStem-HP
could enhance bone regeneration in a rat calvarial model (Li et al.,
2013). Using miRNA transfected MSCs is common. Transfection
of MSCs with miRNAs can be improved using magnetic nanopar-
ticles (Schade et al., 2013, 2014). miRNA-31 transfected MSCs in a
polyglycol sebacate scaffold accelerated and improved the healing
of a rat critical-size calvarial defect (Deng et al., 2014). miRNA-138
transfected MSCs on a cell sheet and implanted subcutaneously in
immunocompromised mice showed bone formation (Yan et al.,
2014).

Besides the modulating miRNA, mRNA can be blocked using
silencing RNA (siRNA). Depending on the target, osteogenesis can
be promoted. Using siRNA against glucocorticoid receptors encap-
sulated in poly(lactid-co-glycolic acid) resulted in an upregulation
of alkaline phosphatase and RunX2 in MSCs (Hong et al., 2012).
Similar results on these two genes were obtained using siRNA

against Noggin delivered in PEG hydrogels (Nguyen et al., 2014).
The RunX2 pathway is very important for osteogenesis and the
siRNA against guanine nucleotide-binding protein α-stimulating
activity polypeptide 1 is modulating this. It was shown that in
MSCs treatment with this siRNA lead to upregulation of col-
lagen type I, osteopontin, and alkaline phosphatase (Rios et al.,
2012). This siRNA and siRNA against prolyl hydroxylase domain-
containing protein 2 increased bone volume when implanted in a
fibroin–chitosan cage above ovine periosteum in vivo (Rios et al.,
2012). This biomaterial seems favorable for the delivery of siRNA.
Chitosan sponges were loaded with siRNA against casein kinase
2 interaction protein 1 and soluble vascular endothelial growth
factor receptor 1. This induced expression of osteocalcin, alka-
line phosphatase, and vascular endothelial growth factor in MSCs.
Moreover, mineralization as evidenced by alizarin red staining
was increased. Furthermore, administration in a critical-size cal-
varial model resulted in accelerated, complete bone regeneration
(Jia et al., 2014). Finally, siRNA against LNK protein accelerated
femur fracture healing in a mouse model. This was accompanied
by increased osteoblast activity (Kawakami et al., 2013).

OPTIMIZING DELIVERY, EXPRESSION, AND FUNCTION
All of the above-mentioned novel approaches need optimiza-
tion. The genes need to be locally expressed in specific target
cells (spatial control). This may be achieved by using aptamers
that specifically bind osteogenic progenitor cells (Ardjomandi
et al., 2013). Another possibility is using a tissue specific pro-
motor for conditional expression of the gene of interest (Lian
et al., 2000). Furthermore, the level of gene expression needs
to be controlled. This may be achieved by using molecular sen-
sors and negative feedback loops (Kaempfer, 2003). Moreover,
the period of expression needs to be controlled. This may be
achieved by using TET-on/TET-off systems and administration
of doxycycline (Feichtinger et al., 2014a). Finally, angiogenesis
is important for bone regeneration. Combining osteogenic and
angiogenic factors may enhance bone formation as shown already
in the siRNA approach against guanine nucleotide-binding pro-
tein α-stimulating activity polypeptide 1 and prolyl hydroxylase
domain-containing protein 2 (Rios et al., 2012). But also BMP and
vascular endothelial growth factor gene co-delivery may enhance
osteogenesis (Huang et al., 2005; Samee et al., 2008; Wu et al.,
2012).

CONCLUSION
Today, the scientific community worldwide has identified main
problems and limitations behind the current gene therapy
approach. However, it remains undoubted that a safe and efficient
gene therapy approach could have a huge impact on non-curable
diseases today. Therefore, a fair number of scientific efforts are
aimed to find solutions and optimize this approach. Currently, we
are aware of the need for a therapeutically functional DNA after
it has been transported to the nuclei. The risks of stimulating the
immune system in a way that the effectiveness of the therapy will be
diminished are always present. The chances for tumor formation
as a consequence of a wrongly integrated DNA have also occurred
in earlier clinical trials. Viruses represent one of the most efficient
means to transfer the genetic information to the cells. However,
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they also carry a variety of strong limitations. Some examples are
toxicity, immune responses, and the potential risk for recovering
their ability of causing diseases.

Gene therapy for bone regeneration is important and should
be further investigated. Combinations of different genes in associ-
ation with biomaterials are in our opinion the most promising
to bring the field forward. At the moment, one clinical trial
has just started November 11th 2014 with a GAM based on
collagen-hydroxyapatite including the gene for vascular endothe-
lial growth factor-A165 to treat alveolar bone loss (clinicaltri-
als.gov: NCT02293031). No other clinical trials are ongoing at
the moment. We think that in the near future gene therapy for
bone regeneration will not be implemented in the clinical arena.
However, as science and technology progress, clinical translation
is not out of reach.
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