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Zusammenfassung X

Zusammenfassung

Während der technische Fortschritt in der Genotypisierung dazu geführt hat, dass eine große

Anzahl Getreidesorten schnell und günstig analysiert werden kann, gilt die Feldphänotypisie-

rung noch immer als arbeitsintensiv und teuer. Die Lösung könnten Spektralsensoren sein, mit

denen Pflanzenzüchter und Pflanzenwissenschaftler verschiedene Pflanzeneigenschaften mes-

sen können, wobei auf arbeitsintensive Methoden (visuelle Bonituren) verzichtet werden kann.

Vorangegangene Studien mit Mais und Weizen haben gezeigt, dass die Trockenmasse und die

N-Aufnahme mit dieser sensorgestützten „Hochdurchsatz-Phänotypisierung“ erfolgreich de-

tektiert werden können. Informationen über einzelne Pflanzenorgane waren bisher allerdings

nicht verfügbar.

Diese Studie wurde durchgeführt, um mit einer Multi-Sensor Plattform phänotypische Unter-

schiede in Sommer- und Wintergerste zu erfassen. Neben einem passiven Spektrometer und

zwei Distanzsensoren, ist das Fahrzeug mit drei ’aktiven’ Spektralsensoren ausgestattet. Drei-

ßig Sommer- und sechzig Wintergerstensorten wurden in den Jahren 2013 bis 2016 in der For-

schungsstation Dürnast der Technischen Universität München angebaut und die entsprechen-

den Pflanzenproben in Halme, Blätter, Blattscheiden und Ähren separiert. Die Sensormessun-

gen wurden mit einer partial least squares regression (PLSR) und traditionellen Vegetationsin-

dices ausgewertet, um organspezifische Trockenmassen, N-Aufnahme und Pflanzenhöhen zu

ermitteln.

Für die PLS Regressionen wurden die Wellenlängen zwischen 400 und 1000 nm des passiven

Spektrometers verwendet. Die Modelle für „Blätter“ und „Halme“ zeigten dabei die besten Er-

gebnisse. Zudem konnte mit einer Messung zur Blüte der finale Kornertrag prognostiziert wer-

den, wobei es noch immer eine Schwierigkeit darstellt, den Proteingehalt zu bestimmen. Der

Ultraschalldistanzsensor konnte durch sein großes Messfeld die reale Pflanzenhöhe am besten

nachbilden. Spektralmessungen in Verbindung mit PLS Regressionen stellen ein vielverspre-
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chendes Werkzeug für Pflanzenzüchter und -wissenschaftler dar, um die Biomasseentwicklung

und N-Aufnahme von Sommer- und Wintergerste zu erfassen. Ein spezialisiertes Sensorfahr-

zeug bietet zudem größte Flexibilität.
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Summary

In contrast to high-throughput genotyping which can handle large numbers of plants at low

cost, phenotyping of many individuals in field trials is still laborious and expensive. Spectral

proximal sensing may represent a useful tool for plant breeders to phenotype various plant

traits by avoiding laborious methods such as visual scoring in the field. Previous work done

with wheat and maize indicated the feasibility of advanced high-throughout phenotyping un-

der field conditions for wheat and for maize. Results from these studies as well as previous

work has established that aboveground biomass and nitrogen uptake of various plant species

can successfully be detected, challenging the option to deliver plant or organ specific informa-

tion which is not yet in the hand of plant breeders. This study was conducted to assess phe-

notypic differences in spring and winter barley (Hordeum vulgare L.) by using the lightweight

vehicle based multi-sensor platform PhenoTrac IV, equipped with several active light sensors,

a bidirectional passive sensor making it independent of the ambient incident radiation and two

distance sensors. Thirty spring barley cultivars and sixty winter barley cultivars were grown

during 2013-16 at the Dürnast Research Station of the Chair of Plant Nutrition. The plants were

separated into culms, spikes, leaves and leaf sheaths. Sensor measurements were analyzed by

partial least squares regression (PLSR) and ’traditional’ vegetation indices to predict organ spe-

cific biomass, N-uptake and plant height. PLS regression models were calculated using hyper-

spectral wavelength information from a bidirectional passive spectrometer from 400 to 1000 nm.

Best results were achieved with models of leaves and culms. Additionally, a mid-season predic-

tion of the final grain yield is possible, however, the prediction of the protein content remains

challenging. Plant heights were obtained by using commercially available distance sensors.

The ultrasonic distance sensor outperformed the laser distance sensor due to a wider measur-

ing field. Spectral proximal sensing may be a useful tool for breeders to screen spring and

winter barley. PLS regression represents a promising method for analyzing wavelength spectra

and predicting parameters such as biomass development or N-uptake. Bidirectional measure-
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ment allowed for measurements independent of the ambient light conditions. The lightweight

construction of the carrier vehicle enabled a highly flexible usage.
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1. Introduction

1.1. Challenges in Plant Science and Plant Breeding

New technologies in plant breeding, such as ’next-generation sequencing’ or ’marker-assisted

selection’, led to an acceleration of breeding processes and an enhanced necessity to test new

genotypes in the field (FURBANK & TESTER, 2011; WHITE ET AL., 2012; ARAUS & CAIRNS,

2014). Field trials are necessary to assess specific plant traits, such as the biomass, nitrogen

content and plant height in realistic production environments. Plant breeders and agronomists,

however, face a bottleneck in phenotyping (WINTERHALTER ET AL., 2011; WHITE ET AL., 2012)

due to a lack of efficient high-throughput field phenotyping methods that keep pace with the

achievements in high-throughput genomics (WHITE ET AL., 2012). Current field phenotyping

approaches, such as visual scoring, are time consuming, labour intensive, costly and biased due

to the person’s individual experience (ERDLE ET AL., 2013A; KIPP ET AL., 2014) and emphasise

the need for new high-throughput methods. Furthermore, biomass samples need to be taken

destructively (Figures 1.1 and 1.2), which can be problematic in small plots.
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Figure 1.1.: Biomass sampling at anthesis, in particular, breathing protection and
protection goggles are needed to avoid possible allergic reactions

Figure 1.2.: Harvest of biomass samples. Waterproof and rugged clothing is required
in high and wet crop stands.
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In early selection cycles in plant breeding, large numbers of plants need to be tested, and in

agronomic field testing, extensive evaluation of plant performance is also required. Both seed

availability and financial constraints frequently necessitate testing of plants in one or several

rows, with space limitations also contributing to a need for small plot sizes. Limited resources,

therefore, necessitate smaller plots (BROWN & CALIGARI, 2008). In general, plot size depends

on the type of experiment, breeding objectives, available resources and equipment, and the

stage of breeding (ACQUAAH, 2012). However, plot sizes vary substantially among field trials,

ranging from single-plant plots to plots of several hundred square meters (PETERSON, 1994).

Small plots with 2-3 rows are usually used in early stages of breeding projects to evaluate va-

rieties quickly and inexpensively (Figure 1.3). In advanced selection cycles, when selection for

yield also occurs, larger plots are used, and the data may be collected from middle rows (AC-

QUAAH, 2012). Such plot trials, thus, aim to predict the performance of the tested varieties

by mimicking agricultural field conditions. However, such predictions may be inaccurate since

the phenotypic performance of plants grown at different spacing may differ from that of plants

grown using conventional agricultural practices (BROWN & CALIGARI, 2008). The small size

of plots may be disadvantageous because border row effects are known to influence yield. De-

pending on the type of plot trial, external rows may show increased yield (ROMANI ET AL.,

1993) due to increased tillering (AUSTIN & BLACKWELL, 1980).

Figure 1.3.: Field trial with winter barley cultivars in two-rowed micro plots
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1.2. Section I: Referencing laser and ultrasonic height

measurements of barley cultivars by using a herbometre as

standard

In addition to tiller number and biomass, plant height represents an important factor for the

assessment of crop stands and consequently for fertiliser and pesticide applications (EHLERT

ET AL., 2009; LLORENS CALVERAS ET AL., 2011). Plant breeders often select dwarfed cultivars

to reduce lodging. In opposition to this, there is a tendency to choose taller plants, especially for

the production of energy, due to the shift from fossil-based resources to renewable resources in

Europe (HEIERMANN ET AL., 2009; DINUCCIO ET AL., 2010; ZUB ET AL., 2011) or the selection

of suitable parental lines for hybrid breeding (LONGIN ET AL., 2012). For agronomists and plant

breeders, the most common methods used to measure plant height is by using a meter stick or

visual scoring. The German Federal Office of Plant Varieties recommends the use of a ruler to

average a plant height by taking a single measurement within each plot and recording the top-

most part of the plant, including the ears and awns (BUNDESSORTENAMT, 2000). However, this

method is time consuming and not objective due to individual decisions for the highest repre-

sentative part of a plant. Therefore, the quality might change during the measurements, and

it remains challenging to assess the true or representative height of a cultivar by only measur-

ing a few plants within a plot. Measurements of plant height should also reflect a meaningful

agronomical or physiological property. Since in cereals such as wheat, barley, rye and oat, but

also in rice, particularly after the termination of shooting, photosynthesis predominantly takes

place in the top canopy layer, an averaged plant height representing such an activity might be

more useful than choosing just the top most position of a plant. This is also reflected in vertical

gradients of the nitrogen distribution within plants that are optimised towards the top canopy

layer in such cereals. A further challenge represents the leaf angle and the inclination of leaves

varying from erectophile to planophile and also being subject to further changes across the de-

velopment of the plants. Height measurements in barley plants are particularly challenging due

to the increased number of tillers per plant differing in height and due to the highly variable

length of the flag leaf. In the past few years, several approaches were tested to measure plant

height by using distance sensors for cereals or grasses, for example winter wheat (SCOTFORD

& MILLER, 2004A; EHLERT & ADAMEK, 2007), rye, grass (EHLERT & ADAMEK, 2007), rice

(TILLY ET AL., 2014) and corn (KATAOKA ET AL., 2002; FREEMAN ET AL., 2007; YIN ET AL.,
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2011). In contrast, no investigations have been made regarding barley (Hordeum vulgare L.), and

no attempts were made to find out whether it is possible to differentiate between uniformly fer-

tilised varieties at a certain growth stage. Primarily, previous studies focused on the technical

feasibility of different concepts, whereas the agronomic aspects were frequently not included

in the focus. Most authors used industrial distance sensors that operate either as time-of-flight

or as triangulation sensors. The time-of-flight sensors are known for their ability to measure

long ranges, whereas triangulation sensors are restricted to short ranges due to their construc-

tion (maximum a few meters) by having a higher accuracy. The sensors have to fulfil particular

requirements for usage in field trials. For instance, the sensors should be insensitive to dust,

vibrations of the carrier platform, direct sunlight and high temperatures. Additionally, the sen-

sor should be able to detect materials such as plant tissues. Detailed measuring principles have

been reported by EHLERT ET AL. (2010) and DWORAK ET AL. (2011). Reference measurements

represent an important aspect of these trials and have mainly been achieved by using meter

sticks (SCOTFORD & MILLER, 2004A; CHATZINIKOS ET AL., 2013); however, in most publica-

tions a detailed description of the reference method is missing. In this study, we have adopted

as novel reference method for cereals a herbometre, which is often used to record plant height

or biomass in pastures and grassland (PAULY ET AL., 2012). This principle confers advantages

compared with meter sticks because it allows the measurement of a weighted height, which is

considered to be more representative and informative of the average estimated plant height,

and further increases the objectivity of the process.

1.3. Section II: High-throughput phenotyping of wheat and

barley plants grown in single or few rows in small plots

using active and passive spectral proximal sensing

Since the management of field trials comprising a large number of plots is highly labour-

intensive, new methods, such as spectral proximal sensing for the estimation of specific plant

traits, are becoming increasingly more important (WHITE ET AL., 2012; ERDLE ET AL., 2013A).

However, commercially available spectral proximal sensors, such as the GreenSeeker (NTech In-

dustries Inc., Ukiah, CA, USA), as well as hyperspectral passive sensors (ERDLE ET AL., 2011;

RISCHBECK ET AL., 2016), were originally designed and tested for field conditions and not
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specifically for small-plot testing. Therefore, assessment of the sensors in plot trials is of great

importance, and particular attention should be paid to the evaluation of the sensed areas. Such

evaluation requires the consideration of technical aspects, such as sensor-target distances, and

the influences of environmental conditions, such as light intensity and temperature (WINTER-

HALTER ET AL., 2013; KIPP ET AL., 2014). Sensors should be compatible with various plot

designs, which ultimately requires a match between the sensors’ field of view and the tested

target. Field trials comprising different plot designs (Figure 1.4) and cropped with one or multi-

ple species, are challenging to evaluate, and their potential for assessment by proximal sensing

needs to be determined. Non-invasive assessments of small plots must take into account uneven

growth due to differences in the light availability or enhanced nutrient and water uptake. It is

also important to consider whether middle rows are to be assessed preferentially or an integral

assessment of the whole plot is desired. Additionally, reflectance sensors differ in their spec-

tral fields of view, ranging from linear to oval and circular shapes (ERDLE ET AL., 2011; KIPP

ET AL., 2014), and are also influenced whether the sensor’s orientation is parallel or opposed to

the row. Numerous studies have described border row effects (REBETZKE ET AL., 2014) and the

advantages and disadvantages of different field trial designs (DEPAUW, 1975; KRAMER ET AL.,

1982; MAY & MORRISON, 1986; ROMANI ET AL., 1993), in addition to comparing different

spectral sensors (ERDLE ET AL., 2011; KIPP ET AL., 2014; ELSAYED ET AL., 2015). To the best

of our knowledge, no studies have compared the performances of active and passive sensors

in assessing the single or multiple rows used in breeding or agronomic experiments; such a

comparison was the goal of this work.
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Figure 1.4.: Field trials within a rain-out shelter platform, illustrating different row
designs for spring barley grown in two rows (foreground) and for winter
barley grown in six rows (background).

1.4. Section III: Active and passive high-throughput field

phenotyping of leaves, leaf sheaths, culms and ears of

spring barley cultivars

A fast and non-invasive method to obtain information about the characteristics of cultivars

could be spectral proximal sensing (WHITE ET AL., 2012; ERDLE ET AL., 2013B; KIPP ET AL.,

2013). Vehicles (e.g., tractors, buggies) are particularly advantageous when a high number of

genotypes and/or large plots of field trials need to measured. A further benefit of vehicles is

the possibility of combining several sensors on a carrier vehicle to take measurements simul-

taneously (WINTERHALTER ET AL., 2011; DEERY ET AL., 2014). Studies have been performed

for the spectral proximal sensing of cereal plant traits, such as the estimation of aerial biomass

or the nitrogen status of spring and winter wheat (ØVERGAARD ET AL., 2013B; ERDLE ET AL.,

2013B; LI ET AL., 2013A; XIU-LIANG ET AL., 2014; BAI ET AL., 2016), durum (FERRIO ET AL.,

2005), winter barley and rye, corn (HABOUDANE ET AL., 2004; WINTERHALTER ET AL., 2013)

and spring barley (YU ET AL., 2012; BENDIG ET AL., 2014, 2015A; XU ET AL., 2014; ELSAYED
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ET AL., 2015; LAUSCH ET AL., 2015; TILLY ET AL., 2015; RISCHBECK ET AL., 2016). However,

data analysis remains a major challenge. While many authors rely on various vegetation indices

(such as the: NDVI, REIP, PRI, WI, SAVI, TCARI) (BEHRENS ET AL., 2006; YU ET AL., 2012; ER-

DLE ET AL., 2013B; LI ET AL., 2013A; BENDIG ET AL., 2015A; ELSAYED ET AL., 2015; TILLY

ET AL., 2015), additional methods, such as ’contour maps’ and ’partial least squares regression’

(PLSR), have been highlighted as particularly interesting to optimize data analysis. HANSEN &

SCHJOERRING (2003) used these methods to detect the biomass and nitrogen status, LI ET AL.

(2013A) used these methods to estimate the nitrogen content, and ELSAYED ET AL. (2015) and

RISCHBECK ET AL. (2016) used these methods to predict the drought stress and grain yield

in barley. However, most authors have investigated biomass parameters that are subjected to

increasing nitrogen fertilizer applications with occasionally strong nitrogen deficiencies. By

contrast, in plant breeder nurseries, uniform fertilizer treatments are applied, thus lowering

the variance due to agronomic treatments. Hence, breeders require spectral sensors and al-

gorithms that allow differences among cultivars to be distinguished from differences resulting

from varying agronomic management practices. ACQUAAH (2012) has reported on the various

points of view of plant breeders regarding the importance of different plant organs. In addition

to grains, there are other important plant organs, such as culms for the production of straw.

Furthermore, culms are the most important storage organs of assimilates for translocation pro-

cesses after anthesis (BIDINGER ET AL., 1977; MIROSAVLJEVIC ET AL., 2015). Unadapted or

stressed cultivars particularly rely on the dry matter and nitrogen reserves of culms (PRZULJ

& MOMCILOVIC, 2001A,B). Knowledge regarding the characteristics of the leaves of a cultivar

or variety is important for plant breeders when optimization of the photosynthetic active area

is intended (HABOUDANE ET AL., 2004). ZHU ET AL. (2010) mentioned that an improvement

of the leaf area and architecture may avoid saturation effects of individual leaves and support

higher grain yields. Additionally, leaves act as a sink for nutrients as well as a source of pro-

teins and are therefore important for grain yield formation (ACQUAAH, 2012). The role of leaf

sheaths as a vertical part of leaves has not been widely reported in the literature. SCHNYDER

(1993) characterized leaf sheaths as long-term storage for carbohydrates that are influenced by

environmental conditions. In this study, cultivars were observed that accumulated up to 20 kg

N ha-1 in leaf sheaths at anthesis (supplemental Table B.2). The question is, how precisely can

these plant organs be detected by spectral sensors? Three active and one passive bidirectional

spectrometer were used in this study. While the passive spectrometer depends on sunlight

as its source of light, the active sensors use independent light sources, such as LED or Xenon
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lamps (ERDLE ET AL., 2011). The advantage of active sensors is that they can be applied during

changing light conditions or at night without any effect on their readings (HATFIELD ET AL.,

2008; KIM ET AL., 2012; KIPP ET AL., 2014). However, the passive spectrometer used in this

study is equipped with two detectors. The first one measures global radiation as a reference

signal, and the second one measures the reflectance of the plant canopy to avoid effects due to

changing light conditions (MISTELE & SCHMIDHALTER, 2010). Technical comparisons among

different sensor systems for the prediction of specific plant traits have been performed multi-

ple times. ERDLE ET AL. (2011), WINTERHALTER ET AL. (2013) and ELSAYED ET AL. (2015)

evaluated active and passive sensors in winter wheat, corn and spring barley, respectively. The

performance of active sensors under changing environmental conditions was evaluated by KIM

ET AL. (2012) for the GreenSeeker and KIPP ET AL. (2014) for the GreenSeeker, CropCircle and

AFS N-Sensor.

1.5. Section IV: Mid-season prediction of grain yield and

protein content of spring barley cultivars using

high-throughput spectral sensing

Spring barley is the most important crop for malt and beer production. More than 60 % of

global production comes from the European Union, the Balkan countries, Russia and Canada

(FAOSTAT, 2015). A reliable forecast of grain yield and protein content before harvest would

be useful, especially for the malting and brewing industry. It would simplify the acquisition

and management of raw materials (WEISSTEINER & KUEHBAUCH, 2005). A solid prediction of

yield parameters is also a major advantage for plant breeders (FERRIO ET AL., 2005). Knowing

the performance of different cultivars in the early stages of breeding saves costs and time, since

this makes it possible to focus on high-performance cultivars only (ROYO ET AL., 2003). How-

ever, a practical method for predicting yield parameters needs to be timesaving, non-destructive

and cost-efficient (accounting for both labor and analytic costs). Spectral proximal sensing ful-

fills these requirements (PRASAD ET AL., 2007; WHITE ET AL., 2012; XIU-LIANG ET AL., 2014).

In addition to common vegetation indices such as the NDVI (APARICIO ET AL., 2000) and the

REIP (PETTERSSON ET AL., 2006), new methods such as the contour map method and Partial

Least Squares Regression (PLSR) have been found to be useful for yield prediction (ELSAYED
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ET AL., 2015; RISCHBECK ET AL., 2016). Different approaches have been tested for in-season es-

timation of yield parameters. For winter wheat, RAUN ET AL. (2001) and MOGES ET AL. (2005)

found strong relationships between NDVI and grain yield. However, XUE ET AL. (2007) stated

that vegetation indices such as GNDVI or NDVI did not provide a reliable prediction of protein

content. The PLSR method was used to predict the yields of twenty-five Durum wheat cultivars

by FERRIO ET AL. (2005). They concluded that it worked better for ranking different genotypes

than for making accurate predictions of their grain yields. Other studies used the PLSR method

to estimate the grain yield and protein content of spring wheat (ØVERGAARD ET AL., 2013B)

and winter wheat (XIU-LIANG ET AL., 2014). Their predictions of protein content were more

accurate than predictions using vegetation indices. Additionally, ØVERGAARD ET AL. (2013B)

highlighted the importance of using several years of data to construct a stable PLSR model.

Yield predictions have also been made for spring barley. HANSEN ET AL. (2002) evaluated

predictions of grain yield and protein content by comparing ten vegetation indices and PLSR

under different nitrogen fertilizer levels and seeding densities. Good relationships were found

between grain yield and PLSR; however, only poor results were obtained for protein content.

A better prediction was obtained by SÖDERSTRÖM ET AL. (2010), by combining spectral sens-

ing with weather data. WEISSTEINER & KUEHBAUCH (2005) developed a model using satellite

spectral remote sensing and ancillary data such as meteorological or pedological data. In differ-

ent drought stress scenarios, ELSAYED ET AL. (2015) compared vegetation indices against PLSR,

and RISCHBECK ET AL. (2016) found that PLSR models were improved when spectral sensing

was combined with plant canopy thermal data. Although several authors emphasized the need

for a fast and inexpensive method to predict yield and protein content before harvest, most

of them used hand-held field spectrometers or satellite data (WEISSTEINER & KUEHBAUCH,

2005; SÖDERSTRÖM ET AL., 2010) with coarse spatial resolution. Only a few authors used

vehicle-based spectral proximal sensing to estimate plant traits (MISTELE & SCHMIDHALTER,

2008; ERDLE ET AL., 2013B; KIPP ET AL., 2014). To the best of our knowledge, there have been

only a few studies that used independent datasets to validate PLSR models. No studies using

ground-based spectral proximal sensing evaluated their models using independent field trials.

Most authors were primarily seeking to optimize fertilization strategies, and very few studies

were seeking to advance breeding-related phenotyping.
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2. Objectives

The main objectives of this Ph.D. thesis are indicated separately for Section I to IV.

The aims of Section I were a comparison of the performance of a low-cost ultrasonic sensor

and a laser distance sensor implemented in a mobile phenotyping high-throughput platform in

field trials to test the possible differentiation of barley cultivars based on sensor measurements.

The purpose of Section II was to assess the performance of active and passive spectral sensing

in plot designs of one, two, three, and four rows, like those commonly used in breeding trials

for wheat and barley. Previous studies have shown no difference in spectral performance when

assessing plots with six or more rows. In this work, the influence of different plot designs on

biomass and grain yield is illustrated, highlighting the performance of spectral sensors in the

non-invasive detection of these traits.

The potential of spectral proximal sensors to detect the characteristics of different plant organs

was first shown by ERDLE ET AL. (2013B). In contrast to ERDLE ET AL., who considered later

growth stages in winter wheat, Section III focuses on spring barley during anthesis and dough

ripeness. Sensor measurements were made by using two commercially available and two cus-

tom built spectral sensors. The aims of this study were to perform (i) a comparison of different

spectral proximal sensors and (ii) a comparison of published vegetation indices, contour maps

and PLSR to assess leaves, leaf sheaths, culms and ears in spring barley.

The aims of Section IV were (i) to find optimized vegetation indices, (ii) to create PLSR mod-

els that could predict the grain yield and protein content of spring barley, (iii) to compare the

performance of different vegetation indices and PLSR using independent field trials and (iv) to

highlight the advantages of vehicle-based sensing in this context.
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3. Materials and Methods

All field experiments were conducted at the Dürnast Research Station of the Technical Uni-

versity of Munich (TUM) in Germany (11°41’60”E, 48°23’60”N, elevation 448 m) between 2013

and 2015. The soil is a mostly homogeneous Cambisol of silty clay loam texture, the annual

precipitation is approximately 800 mm and the average temperature is 7.5 °C.

3.1. Field experiments of Section I

The study encompassed three site-years of investigation comprising 1 year of spring barley in

2013 and 2 years of winter barley in 2014 and 2015. The experimental design was a randomized

block design with four replications using 30 spring barley cultivars in 2013, three winter barley

hybrids and 11 lines in 2014 and 12 hybrids and 48 lines of winter barley in 2015. The plots

consisted of 12 rows, 6 m in length. The fungicide and fertilisation treatments followed local

recommendations.

3.2. Field experiments of Section II

A randomized block design was used to test both barley (cv. Sandra) and wheat (Triticum aes-

tivum L.) (cv. Kerubino), with four planting-row designs and four replicates totaling 40 plots

(Fig. 3.1).
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Figure 3.1.: UAV image of the field trial. Different plot designs, including one-, two-,
three- and four-row designs, were tested using winter wheat and winter
barley as crops.

The plots were 10 m in length. The planting-row designs consisted of plots with a single row,

plots with two rows with 25-cm row spacing, and plots with three and four rows with 12.5-cm

row spacing. The wider 25-cm row spacing is frequently used for testing the performance of

barley, whereas the narrower spacing of 12.5 cm is commonly used for testing wheat in breeding

nurseries in Germany. Fungicide treatments followed local recommendations. Weeds were

removed by hand to remove possible bias in interpreting the results. Nitrogen fertilizer was

applied in a single dose at ZS 15 (ZADOKS ET AL., 1974) as ammonium sulphate using the

nitrification inhibitor ENTEC (HU ET AL., 2013) with 150 kg N/ha and 60 kg S/ha in amounts

corresponding to the different numbers of rows.
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3.3. Field experiments of Section III and Section IV

The 3-year study, conducted at the Chair of Plant Nutrition, used 30-34 spring barley cultivars

(Table 3.1) in a randomized block design with 4 replicates. The cultivars were chosen to rep-

resent different usages. Along with malting and fodder barley cultivars, four hull-less barley

cultivars used for human food were cultivated. Due to seed limitations, the cultivar Pirona

could be tested in only two of the three years. Plots consisted of 12 rows, 10.9 m in length (16.35

m2). Fungicide and fertilization treatments followed local recommendations.

Table 3.1.: Overview of spring barley cultivars grown in different years.
Cultivar Usage 2013 2014 2015

Aspen Malting X X X
Barke Malting X X X
Baronesse Malting X X X
Br8993a3 - X
Braemar Malting X X X
Calcule Fodder X X X
Carina Malting X X X
Djamila Fodder X X X
Eunova Fodder X X X
Grace Malting X X X
Hora* Human food X
IPZ 24727 Malting X X X
Irina Malting X X X
Lawina* Human food X
Mackay [AUS] Malting X X X
Marthe Malting X X X
Melius Malting X X X
Paradiesgerste* Human food X
Pirona* Human food X X
Power Malting X X X
Quench Malting X X X
Salome Malting X X X
Scarlett Malting X X X
Shakira Malting X X X
Sissy Malting X X X
Solist Malting X X X
Streif Fodder X X X
Trumpf/Triumph Malting X X X
Union Malting X X X
Ursa Malting X X X
UTA Malting X
Vespa Fodder X X X
Volla Malting X X X
Wiebke Malting X X X
*hull-less barley
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3.3.1. Independent validation experiments for the application of PLSR

models of Section IV

Field experiments used for evaluating the PLSR models were provided by the Chair of Phy-

topathology at the Technical University of Munich. These field experiments were located ap-

proximately 3 km from the Dürnast Research Station. Methods for sensor measurements, grain

harvest and protein-content determinations were similar to those used in the other field exper-

iments. Plots consisted of 12 planting rows, 7.5 m in length (11.25 m2).

3.3.1.1. Experiment 1 (IV-1)

For experiment IV-1, the cultivars Grace and Scarlett were grown under 3 nitrogen fertilizer lev-

els with 8 and 12 replicates in 2013 and 2014, respectively. In 2015, only Grace was grown with

4 nitrogen fertilizer levels and 12 replicates for each nitrogen level. The nitrogen levels were

0, 40, 80 and 140 kg N ha-1, applied as calcium ammonium nitrate fertilizer. The experimental

design was a strip design. Fungicide treatments followed local practices.

3.3.1.2. Experiment 2 (IV-2)

Experiment IV-2 was conducted in 2015 using the cultivars Quench, Grace and Scarlett. The

experimental design was a block design with 32 replicates. In this field trial, protein content

was not determined. Fungicide and fertilization treatments followed local recommendations.

3.4. Biomass sampling and protein content determination

In Section II, biomass samplings were performed at Zadoks stage 32 (stem elongation), ZS 60

(anthesis) and ZS 85 (soft dough) by cutting plants above the ground along 1 m of each row.

The fresh biomass was immediately determined in the field by weighing, and a subsample was

oven-dried.

In Section III and Section IV, biomass sampling was performed at anthesis (ZS 65) and at soft

dough ripeness (ZS 85) by harvesting 30 plants from each plot randomly. The plants were
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separated into ears, leaves, leaf sheaths (2014 and 2015) and culms. Grain was harvested from

each plot using a plot harvester. The biomass samples were oven dried at 60 °C for 2 days to

achieve a uniform moisture content and then weighed. The N content was detected by mass

spectrometry using an Isotope Radio Mass Spectrometer with an ANCA SL 20-20 preparation

unit (Europe Scientific, Crewe, UK), and N uptake was calculated by multiplying the plant dry

weight by the total N content. The protein content was calculated by multiplying the total N

content by 6.25.

3.5. Description of the PhenoTrac 4

The phenotyping platform PhenoTrac 4 is a former yard trac made by Mapro Systems AB, Swe-

den (Fig. 3.2). The vehicle is equipped with custom made axes that are stepless adjustable for

an individual track width. Furthermore, the ground clearance was enhanced up to 0.8 m. The

PhenoTrac is all-wheel drive with a hydrostatic drive train. The maximum speed is with regard

to German street laws limited to 6 km h-1 Vmax. Further technical specifications can be found

in Table 3.2.

Figure 3.2.: Phenotyping platform PhenoTrac 4.
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Table 3.2.: Technical data of the Phenotrac 4.
Technical Data

Manufacturer Mapro Systems AB, Sweden
Car classification (Germany) Self-propelled monitoring car
Empty weight 950 kg
Maximum permissible weight 1200 kg
Length x Height x Width (without sensor boom) 2980 mm x 2380 mm x 2160 mm
Engine Daihatsu
Engine displacement 953 ccm
Layout/Number of cylinders Line 3
Fuel Diesel
Emission standard Not classified
Power 19 kW / 1600 rpm
Maximum speed (Germany) 6 km h-1

Ground clearance 80 cm
Adjustable track width 1350 mm - 2000 mm
Other specifications and customizations Hydraulic front loader (incl. bucket)

Improved braking system
Mechanic speed limitation to 6 km h-1

Removable roll bar
Removable laptop table
Improved alternator
Electric sockets for sensors
Schuko plug sockets

All sensors are attached to a boom on the front loader. For the power supply of 12 sensors and

a laptop, a bigger alternator was implemented. All sensor outputs are co-recorded with RTK

GPS, converted and saved to the laptop.

3.5.1. Sensors used on the PhenoTrac 4

3.5.1.1. Thermal sensors

For the detection of heat and drought stress, two Heitronics KT15D (Heitronics GmbH, Wies-

baden, Germany) infrared thermometers are mounted on the PhenoTrac 4. The spectral re-

sponse is between 8 and 20 µm and the temperature resolution is 0.06 °C. At a distance of about

1 m, the field of view is 3-10 cm which enables point measurements. To reference the ambi-

ence temperature, the sensors are equipped with rotating mirrors for the measurement of their

own case temperature. This allows reliable measurements under changing environmental con-

ditions. The sensors are mounted from two opposed oblique views at an angle of 45 ° on the
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PhenoTrac 4. This angle avoids measurements of the soil and maximizes the plant surface frac-

tion (Elsayed et al. 2015; Rischbeck et al. 2016). The software used on the PhenoTrac 4 is able

to distinguish between the sun-lit and the shaded plant canopy by using data of the position of

the sun from the reference sensor of the bidirectional passive spectrometer. This method avoids

measuring errors when the vehicle is turned around at the end of the field.

3.5.1.2. Distance sensors

The PhenoTrac 4 is equipped with three distance sensors, mounted in a red frame (Fig. 3.3).

The sensors selected are a SICK DT20 (black), SICK UM30-14113 (blue, white) (Sick, Waldkirch,

Germany) and a Welotec OWTG 4100 PE S1 (orange) (Welotec, Laer, Germany).

Figure 3.3.: Distance sensors on the PhenoTrac 4.

The sensors used are commercially available and are often used for the positioning of objects

(e.g. trains, aircrafts), collision avoidance (robotic arms in production lines), silo fillings or the

measurement of object surfaces (e.g. ore on conveyor belts). For the use in field trials, several

requirements must be complied. The sensors have to be resistant to dust, vibrations, shocks and

the influence of direct sunlight (Ehlert et al. 2009). The measurement principles of each sensor

is different. While the OWTG and the DT20 are using laser light sources for the measurement,

the UM30 is ultrasonic based. Furthermore, the UM30 and OWTG operate as ’time-of-flight’

sensors and the DT20 uses the principle of ’laser triangulation’. The advantage of the ’time-of-

flight’ sensors is the increased measuring range (up to several hundred meters) compared to
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the laser triangulation, however, laser triangulation sensors are known for their high accuracy

of about a few micrometer (Fig. 3.4). A further description of the sensor performance can be

found in Section I.

Figure 3.4.: Different principles of height measurement (Ehlert et al. 2009)

3.5.1.3. Spectral proximal sensors

One passive bidirectional spectrometer and three active spectral proximal sensors are mounted

on the PhenoTrac 4 (Fig. 3.5).

The passive hyperspectral bidirectional reflectance sensor contains two Zeiss MMS1 silicon

diode array spectrometers with a spectral detection range from 300 to 1700 nm at a bandwidth

of 3.3 nm (Mistele and Schmidhalter 2010). One spectrometer measures the canopy reflectance

of the plants (Fig. 3.5A1), while the second spectrometer is linked to a diffuser using solar radi-

ation as a reference signal (Fig. 3.5A2). It allows stable measurements under changing environ-

mental conditions. The passive spectrometer was calibrated before each measurement using

a grey standard. The first active spectral proximal sensor is a CropCircle ACS-470 (Holland
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Figure 3.5.: Spectral proximal sensors of the PhenoTrac 4

Scientific, Inc, Lincoln, NE) (Fig. 3.5B), which is a LED based sensor with a selection of filters

for wavelengths at 670, 730, and 760 nm. Another active proximal sensor is the GreenSeeker

RT100 (NTech Industries, Ukiah, CA, USA) (Fig. 3.5C) that uses two LEDs as a light source and

detects the reflection of both in the VIS (656 nm, 25 nm band width) and NIR (774 nm, 25 nm

band width) spectral regions. The third active sensor is custom made active flash sensor (AFS)

(Fig. 3.5D) that is similar to the N-Sensor ALS (YARA International, ASA). In contrast to the

GreenSeeker and CropCircle, the AFS uses a flashing xenon light and filters in the wavelength

region of 730, 760, 900, and 970 nm (Erdle et al. 2011). With reference to the manufacturers’

information, active sensors were calibrated before delivery and no additional calibration is re-

quired. A further description of the sensor performance can be found in Section II, III and IV.

3.6. Section I: Distance sensors for the measurement of plant

height

3.6.1. Plant height measurement

Reference measurements of the height were obtained by using a self-constructed low-cost her-

bometre, similar to a rising plate meter, consisting of a Styrofoam board, 50 cm × 50 cm in size

and 4 cm thick, having a weight of 200 g, attached centrally to a conventional folding rule (Fig-

ures 3.6 and 3.7). The board was carefully placed on the plant surface, and the ruler was pushed

through the hole without exerting any pressure on the board. Depending on the cultivar and
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the growth stage, the plants were compressed by 0.3-3 cm by the herbometre. The compression

was decreasing with progressing maturation of the plants. A barrel roller was used to flatten the

soil in early spring to minimise the risk of imprecise measurements due to a rough soil surface.

The height measurements were conducted four times within each plot shortly before flowering

at ZS 55, as this represents a sensitive growth stage relevant to agronomic and breeder decisions.

Figure 3.6.: Illustration of the herbometre height measurements serving as the
reference method in barley trials at anthesis.

3.6.2. Height measurements with ultrasonic and laser sensor devices

The performances of an ultrasonic sensor and a laser distance sensor were compared under

field conditions. The sensors selected were a UM30-14113 ultrasonic sensor (Sick, Waldkirch,

Germany) and an OWTG 4100 PE S1 laser distance sensor (Welotec, Laer, Germany) (Table 3.3).

The sensors were mounted as closely as possible to each other on a boom, 1.5 m in front of the

PhenoTrac IV (RISCHBECK ET AL., 2016), a mobile phenotyping platform of the Chair of Plant

Nutrition of the Technical University Munich, in a nadir down-looking position. The sensor

outputs were linked and synchronised to the GPS coordinates from a TRIMBLE-RTK-GPS. Cal-

ibration of the sensors was conducted on a bare plot. The sensor boom was held at a height of 1
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Figure 3.7.: Usage of the self-built herbometer at early growth stages in winter barley

m above the plants, and the driving speed was 3.5 km h-1. The data output comprises 25 mea-

surements across the 6-m plot length. Average values of all of the measurements per plot were

calculated, and averaged maximum values, representing the subset of the five highest records,

were additionally calculated to gain further information about the highest areas within each

plot. The plant height was calculated as:

plant height = distancesensor to soil surface − distancesensor to plant surface.

Furthermore, the ultrasonic sensor is equipped with a ’first-fix’ algorithm that analyses the

echogram considering the upper part of the plants and the soil. Threshold values were defined

to avoid implausible high or low values that may affect the calculation of mean values for the

plant height.
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Table 3.3.: Technical data of the ultrasonic and distance sensors. Higher frequency
records of the distance sensors were averaged to be in line with the GPS
records.

Technical data UM30
ultrasonic distance sensor

OWTG 4100 PE S1
laser distance sensor

Measurement method Time-of-flight Time-of-flight
Measuring range 250-3400 mm 200-10 000 mm
Measuring field 0.5 m2 6 mm
Resolution 1 mm 1 mm
Accuracy ≤ 2% of final value 14-17 mm
Sampling interval (modified) 25 Hz 25 Hz
Transducer frequency 120 kHz -
Wavelength - 650 nm
Temperature measurement range -20 °C - 70 °C -10 °C - 60 °C
Weight 310 g 295 g
Price (2006) 400 e 280 e

3.6.3. Comparison between the folding ruler and the herbometre

A comparison between the herbometre and a folding ruler was conducted in wheat plots at

heading in 2014. For each plot, three measurements were made for the folding ruler and the

herbometer, respectively. The uniformity of herbometre measurements within the plots was

assessed by means of four replicate measurements in 2014 and 2015. Two operators measured

independently of each other winter barley at ZS 55 in 2015 to find out the deviation between

twofolding ruler measurements. According to the German Federal Office of Plant Varieties, a

single measurement in the centre of each plot was taken.

3.7. Section II, III and IV: Spectral proximal sensors for

high-throughput phenotyping of spring barley

All sensor measurements were taken under a clear sky at noon. While collecting information in

the field, the sensor outputs were co-recorded along with GPS coordinates from the TRIMBLE

RTK-GPS (Trimble, Sunnyvale, CA, USA). The passive hyperspectral bidirectional reflectance

sensor contains two Zeiss MMS1 silicon diode array spectrometers with a spectral detection

range from 300 to 1700 nm and has a bandwidth of 3.3 nm (Mistele and Schmidhalter, 2008),
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but it was restricted in this study to 1000 nm. One spectrometer was linked to a diffuser that

detected solar radiation as a reference signal. The second spectrometer measured the canopy re-

flectance with a field of view (FOV) of 12° that was circular in shape, resulting in a scanned area

of 0.28 m2 and covering an area of 5.45 m2 along the plot. The passive spectrometer was cali-

brated before each measurement using a grey standard. The active spectral sensor, GreenSeeker

RT100 (NTech Industries, Ukiah, CA, USA), uses two LEDs as a light source and detects the re-

flection of both in the VIS (656 nm, 25 nm band width) and NIR (774 nm, 25 nm band width)

spectral regions. The FOV of the GreenSeeker was a strip of approximately 61 by 1.5 cm, result-

ing in a scanned area of approximately 0.009 m2 (Fig. 3.9). As a second active spectral sensor, an

active flash sensor (AFS) was used that was similar to the N-Sensor ALS (YARA International,

ASA) with a flashing xenon light as a light source, producing a spectral range of 650-1100 nm

with 10 flashes per second. In this experiment, filters similar to those of the YARA ALS system

were chosen: 730, 760, 900, and 970 nm (ERDLE ET AL., 2011). The third active spectral sensor

was a CropCircle ACS-470 (Holland Scientific, Inc., Lincoln, NE), which emits white light (light

source: 400 to 800 nm), with a selection of filters for wavelengths of 670, 730, and 760 nm. The

CropCircle was only used in 2013 and 2015. With reference to the manufacturers’ information,

the active sensors were calibrated before delivery and no additional calibration was required.

Table 3.4 shows the vegetation indices selected for this experiment.

Figure 3.8.: Phenotyping platform PhenoTrac 4 of the Chair of Plant Nutrition from the
Technical University of Munich
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Figure 3.9.: Illustration of different shapes of sensors’ fields of view (FOV) in
single-row trials. Yellow colour indicates decreasing light intensity in the
periphery of the LED-based GreenSeeker (unpublished data).

Table 3.4.: Selected vegetation indices of the four sensor systems used.
Device Vegetation Index Reference

GreenSeeker R774/R656
NDVI (ROUSE ET AL., 1974)

CropCircle

R730/R670
R760/R730 (MISTELE & SCHMIDHALTER, 2008)
R760/R670 (MISTELE & SCHMIDHALTER, 2008)
NDVI (ROUSE ET AL., 1974)

AFS R760/R730 (MISTELE & SCHMIDHALTER, 2010)
R900/R970 (PEÑUELAS ET AL., 1993)

Passive spectrometer

R780/R550 (MISTELE & SCHMIDHALTER, 2008)
R780/R670 (PEARSON ET AL., 1972)
R780/R700 (GUYOT ET AL., 1988)
R760/R670 (ERDLE ET AL., 2011)
R760/R730 (MISTELE & SCHMIDHALTER, 2010)
R780/R740 (MISTELE & SCHMIDHALTER, 2010)
R900/R970 (PEÑUELAS ET AL., 1993)
REIP (GUYOT ET AL., 1988)
NDVI (ROUSE ET AL., 1974)
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3.8. Statistical analyses

R version 3.1.2 (R Foundation for Statistical Computing, Vienna, Austria) was used for calcu-

lating the coefficients of variation, the standard errors, and linear regressions between the data

obtained from the sensors and the destructive measurements. A regression analysis and a one-

way ANOVA were used to compare the ultrasonic and distance sensor and the herbometre

reference measurements in Section I, the grouping and differentiation between planting-row

designs in Section II and the means of the observed and predicted grain yields in Section IV.

Tukey’s HSD (honest significant difference) multiple comparison test (p ≤ 0.05) was applied for

the grouping of the cultivars and the differentiation between planting-row designs.

3.8.1. Partial least squares regression

Unscrambler® X 10.3 (Camo Software AS, Oslo, Norway) was used to calculate PLS regression

models. PLSR is a multivariate statistical method used to find ’latent’ structures in the wave-

length spectra (X) that best predict the measured parameter (Y). This method is advantageous

when dependent (response) variables need to be predicted from large datasets of predictor vari-

ables. The dataset is reduced to a few ’principal components’ (PC) or ’factors’ that are used for

prospective predictions of the response variables. A detailed description of PLSR can be found

in ESBENSEN ET AL. (2002). In this study, PLSR was used to model the correlation between

canopy reflectance spectra (X) between 400 nm and 1000 nm, as measured by the passive spec-

trometer at anthesis and dough ripeness, and the dry weights and N uptake of the plant organs,

grain yield and protein content (Y). All of the spectral data used in Section III to calculate the

PLSR models were corrected for light scattering using Standard Normal Variate Transformation

(SNV). All spectral data used in Section IV for developing the PLSR models were mean-centered

and normalized using unit vector normalization. To develop the PLSR models, all data from the

3 years were used. The dataset was randomly separated into subsets, using 2⁄3 of the observa-

tions for model calibration and 1⁄3 for model validation.
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3.8.2. Section II, III and IV: Selection of optimized vegetation indices via

contour maps, NDVI and REIP

The R package "lattice" (R version 3.0.2, R Foundation for Statistical Computing 2013) was used

to calculate contour maps. Contour maps are matrices consisting of coefficients of determina-

tion for all binary combinations of wavelengths and biomass parameters, grain yield or protein

content. NDVI and REIP were chosen since these indices are well known and often used in the

literature. NDVI was calculated as follows (ROUSE ET AL., 1974):

NDVI =
R774 − R656

R774 + R656

REIP was calculated as follows (GUYOT ET AL., 1988):

REIP = 700 + 40
R670+R780

2 −R700

R740 − R700

The optimized vegetation index obtained from the contour maps in Section IV was calculated

as follows:

SR =
R820

R720

In addition to NDVI and REIP, SR (R780/R670) (PEARSON ET AL., 1972), WI (R900/R970)

(PEÑUELAS ET AL., 1993), PRI (R531-R570)/(R531+R570) (GAMON ET AL., 1992) and VARI

(R550-R650)/(R550+R650-R470) (GITELSON ET AL., 2002) were tested. However, results for these

indices were low or inconsistent, and are therefore not shown in this study. To assess the qual-

ity of the PLSR models, the vegetation indices and the optimized vegetation indices obtained

from the contour maps, root mean square errors (RMSE) and the coefficients of determination

(R2) were compared. Finding models with a combination of a low RMSE and a high R2 was the

target objective.
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4. Results

4.1. Section I: Referencing laser and ultrasonic height

measurements of barley cultivars by using a herbometre as

standard

4.1.1. Comparison between the folding ruler and the herbometre

A comparison between the herbometre and a folding ruler is shown in Fig. 4.1a indicating a

rather weak relationship with R2 = 0.29. The relationship between two operators using a folding

stick is indicated in Fig. 4.1b. The coefficient of determination was R2 = 0.83, however, the slopes

were statistically different. A comparison of herbometre measurements by different operators

was not aimed at in this study, because the handling should deliver comparable values. This is

supported by the fact, that very low coefficients of variation were observed for the individual

within plot measurements for the herbometre in 2014 and 2015 amounting to 2.8 % and 3.0 %,

respectively.
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Figure 4.1.: (a) Relationship between a folding ruler and the herbometre in winter
wheat 2014. (b) Comparison between the measurements of two different
operators in winter barley in 2015. Regression lines and the 1 : 1 lines are
indicated.

4.1.2. Relationship between the herbometre reference method and distance

sensors

In the year 2013, with spring barley as the crop, the ultrasonic distance sensor was best related

to the herbometre reference measurements with R2 = 0.59** for the average values and with R2

= 0.64** for the maximum values (Fig. 4.2 and Table 4.1). The laser distance sensor was less

closely related to the herbometre measurements with R2 = 0.30** for the averaged values and

R2 = 0.37** for the maximum values. In the years 2014 and 2015, with winter barley as the

crop, improved results, particularly for the ultrasonic distance sensor, were obtained, and the

coefficients of determination ranged from R2 = 0.76** in 2014 to 0.83** in 2015. The best results

for the laser distance sensor were obtained in 2014 with R2 = 0.66**, with the level always lower

compared with the ultrasonic sensor (Table 4.1). A deviation between the reference herbometre

measurements and the sensors was found, particularly for the laser sensor (Table 4.2), deviating

up to 37 cm. Both the laser and the ultrasonic distance sensor underestimated the observed

plant heights in 2014 and 2015, whereas in 2013, an overestimation by the ultrasonic sensor was

observed.
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4.1.3. Discrimination of cultivars by herbometre and distance sensor

measurements

The grouping of the cultivars for the herbometre, the laser sensor and the ultrasonic distance

sensor for 2014 and 2015 is shown in Table A.1. However, for the laser distance sensor a clas-

sification was not possible, due to excessive scattering of the sensor output in 2015. For the

spring barley cultivars in 2013, no differentiation between cultivars was found either for the

plant heights recorded by the herbometre or for the distance sensors.

4.1.4. Time and labour requirements of reference and distance sensor

measurements

Measurement of the plant height by the herbometre was revealed to be tedious for a single per-

son, although two people could significantly accelerate the work, with one person performing

the herbometre measurements and the other recording the height. Altogether, the complete

measurements of the field trial required 2 h and 30 min in 2013, 1 h and 10 min for the winter

barley trial in 2014 and 4 h for the field trial in 2015, including the subsequent data process-

ing. Thus, the manual measurement of a single plot required 1 min and 20 s, depending on

the size of the field trial and the distance between plots. In contrast, the sensor measurements

required only one person, and the measurement of 120 plots took 35 min in 2015, 18 min for 56

plots in 2014 and 50 min for 250 plots in 2015. Depending on the design of the field trials (plot

number in one row and space required for a turnaround of the vehicle) and the driving speed,

the measurement of one 6-m-long plot took 20 s, including subsequent data processing. Thus,

the sensor measurements on the mobile sensor platform were four times faster than herbometre

measurements. In this experiment, all of the plots had a size of 10.8 m2. The assessed area cov-

ered by the herbometre was 1 m2 with four measurements taken per each plot. The ultrasonic

distance sensor covered 3 m2 across the whole plot, and the laser distance sensor, with its field

of view of 6 × 6 mm, covered one planting row or 0.036 m2. According to the driving speed,

the sensor output comprised 25 measurements per plot.
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Table 4.1.: Coefficients of determination between the sensors and the reference heights
as determined by a herbometre (P ≤ 0.01). Averaged and maximum values
are reported for the ultrasonic and the laser distance sensor

Year Ultrasonic Laser Max. ultrasonic Max. laser

2013 0.59** 0.30** 0.64** 0.37**
2014 0.76** 0.54** 0.76** 0.66**
2015 0.80** 0.31** 0.83** 0.37**
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Figure 4.2.: Relationships between manually recorded plant heights by herbometre
and sensor measurements in the years 2013, 2014 and 2015. Regression
lines and the 1 : 1 lines are indicated.
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Table 4.2.: Coefficients of variation (CV), number of samples (n), standard errors of the
means (s.e.), heritability (H2) and deviations (in cm) from the observed
plant heights obtained from the herbometre reference measurements.
Averaged values and maximum values (Max.) of the height measurements
are indicated.

Year 2013 2014 2015

Measured plant height Min. 54 28.5 37.3
Mean 68.4 53.0 61.8
Max. 86 66.6 86.1
n 116 66 250
CV 0.06 0.13 0.12
s.e. 0.63 0.83 0.45
H2 0.24 0.68 0.24

Ultrasonic Min. 58.4 20.2 29.5
Mean 71.6 45.4 58.2
Max. 90.0 56.9 80.8
RMSE 5.42 8.40 4.94
Deviation 3.18 -7.59 -3.56
CV 0.09 0.16 0.13
s.e. 0.62 0.90 0.49
H2 0.42 0.95 0.70

Laser Min. 20.7 12.6 8.9
Mean 37.7 32.9 24.0
Max. 54.8 45.7 55.0
RMSE 37.4 20.66 38.27
Deviation -30.7 -20.05 -37.70
CV 0.20 0.21 0.29
s.e. 0.70 0.85 0.44
H2 0.27 0.81 0.40

Max. ultrasonic Min. 59.9 21.1 30.7
Mean 73.1 46.9 60.0
Max. 91.7 58.2 81.6
RMSE 6.3 7.04 3.64
Deviation 4.6 -6.09 -1.79
CV 0.09 0.15 0.13
s.e. 0.61 0.88 0.49
H2 0.44 0.95 0.71

Max. laser Min. 30.8 19.1 13.4
Mean 54.5 45.6 41.0
Max. 75.3 59.0 72.1
RMSE 15.82 8.70 22.25
Deviation -13.95 -7.39 -20.75
CV 0.17 0.17 0.25
s.e. 0.88 0.97 0.64
H2 0.24 0.88 0.38
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4.2. Section II: High-throughput phenotyping of wheat and

barley plants grown in single or few rows in small plots

using active and passive spectral proximal sensing

4.2.1. Effects of different row designs on plant fresh and dry weight,

aboveground biomass nitrogen uptake, and grain yield

Even at early stages of development, the different row designs exhibited clear differences. Com-

pared to a reference plot with 10 rows, the single-row plots showed an increase in fresh weight

of 124 % for barley and 90 % for wheat at ZS 32. At ZS 65 and ZS 85, this difference grew to

an increase of 235 % in wheat biomass in the single-row plot design compared to the 10-row

plot. Mean values of the destructively-assessed plant parameters are given in Table 4.3. Sig-

nificant differences (p ≤ 0.05) were found between the designs in aboveground fresh and dry

weights, as well as in the calculated N uptake; however, no differences in aboveground plant

N content were found. Especially for wheat at early stages of growth, no distinction among the

one-, two-, and three-row designs, or among the two-, three-, and four-row designs was found

for plant fresh weight or dry weight. These designs were characterized by excessive tillering.

This trend remained until ZS 85, when the two-, three-, and four-row designs still had compa-

rable biomasses. Even the one-row design showed increases of up to 75 % in plant dry weight

compared to the two-row design. Barley showed similar responses, though the four-row de-

sign differed significantly from the two-row design at ZS 32 and 65. At ZS 85, however, the

two-, three-, and four-row designs all had similar plant fresh weight and dry weight. A statisti-

cal grouping of grain yields showed a high compensatory performance, particularly for wheat.

No difference was observed among the two-, three-, and four-row designs. Compared to the

ten-row plots, grain yields gradually increased with decreasing number of rows.
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4.2.2. Relationship between plant parameters obtained from the

combination of four plot designs and spectral reflectance

measurements

Relationships between sensor measurements and four plant parameters for the combined row

designs at three sampling dates are given in Table 4.4. In general, the passive spectrometer

showed closer linear relationships between selected spectral reflectance indices and plant pa-

rameters of both species than did the active sensor. The GreenSeeker showed a closer rela-

tionship only for wheat at anthesis. Since neither sensor could detect all biomass parameters

from wheat at ZS 85 with the vegetation indices available from the GreenSeeker, a contour map

method that allowed testing of all possible dual reflectance indices from the passive spectrome-

ter was further evaluated to find whether enhanced vegetation indices could be obtained. These

indices, R820/R755 for barley and R720/R400 for wheat, resulted in markedly improved relation-

ships in later growth stages.
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Table 4.4.: Significant relationships between sensor measurements and plant
parameters of wheat and barley, indicated by coefficients of determination
(R2) at * p ≤ 5%, ** p ≤ 1%. Relationships are indicated for different indices.

GreenSeeker Passive spectrometer
R774/R656 NDVI R774/R656 NDVI R800/R770 R820/R755 R720/R400

Barley ZS 32
Fresh weight 0.53** 0.48** 0.49** 0.37* 0.86**
Dry weight 0.41** 0.35* 0.37* 0.28* 0.85**
N-content
N-uptake 0.46** 0.46** 0.44** 0.43** 0.84**

Barley ZS 65
Fresh weight 0.25* 0.34* 0.85** 0.70**
Dry weight 0.20* 0.74** 0.61**
N-content 0.21*
N-uptake 0.21* 0.29* 0.71** 0.50**

Barley ZS 85
Fresh weight 0.50** 0.45** 0.67** 0.64** 0.77**
Dry weight 0.46** 0.44** 0.60** 0.64** 0.72**
N-content 0.20* 0.30* 0.27*
N-uptake 0.43** 0.35** 0.63** 0.53** 0.71**

Wheat ZS 32
Fresh weight 0.62** 0.60** 0.86** 0.52**
Dry weight 0.63** 0.58** 0.88** 0.54**
N-content
N-uptake 0.59** 0.55** 0.93** 0.55**

Wheat ZS 65
Fresh weight 0.74** 0.69** 0.67** 0.60**
Dry weight 0.72** 0.70** 0.65** 0.59*
N-content
N-uptake 0.51* 0.47* 0.37* 0.33*

Wheat ZS 85
Fresh weight 0.66**
Dry weight 0.63**
N-content
N-uptake 0.40*

Compared to the simple ratio R774/R656, the NDVI showed reduced coefficients of determina-

tion caused by saturation effects. In this regard, the simple ratios were less sensitive. For the N

content, only weak relationships were obtained. Figures 4.3 and 4.4 depict results from linear

regressions for the combined row designs for barley and wheat, respectively. The spread of the

regression points for the three sampling dates made it necessary to consider each sampling date

separately. For barley, the results from the GreenSeeker demonstrated considerable scatter, and

the regressions of both the NDVI and the simple ratio were considerably less similar than were
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the same indices obtained for wheat.

Figure 4.3.: Relationships between spectral indices derived from the two types of
sensors and plant dry weight at ZS 65 for wheat, obtained from linear
regressions combining the four different row designs
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Figure 4.4.: Relationships between spectral indices derived from the two types of
sensors and plant dry weight at ZS 65 for barley, obtained from linear
regressions combining the four different row designs
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4.3. Section III: Active and passive high-throughput field

phenotyping of leaves, leaf sheaths, culms and ears of

spring barley cultivars

4.3.1. Agronomic parameters and weather conditions

The year 2014 was the most favorable for spring barley due to an average temperature of ap-

proximately 18.3 °C during anthesis and evenly distributed precipitation. By contrast, unfa-

vorable weather conditions between germination and anthesis led to a dry weight that was

reduced by approximately 42% in 2013. The number of ears per square meter was comparable

in all three years, with approximately 635 ears sqm-1. With regard to the total dry weight and

total N uptake, significantly lower values were observed in cultivars processed for human nu-

trition in all years. An exception to this result was the cultivar Pirona, which accumulated the

highest total dry weight of all cultivars while having the lowest ear dry weight in 2014.

4.3.2. Detection of the dry weight and N uptake of leaves

An overview of the descriptive statistics of the dry weight and N uptake of leaves is given in

supplemental Table B.1. Low dry weight and N uptake were observed due to the unfavorable

weather conditions in 2013. The highest leaf biomass values were observed for Pirona and the

lowest for Hora. Both cultivars have hull-less grains and are processed for human nutrition;

however, Pirona was the tallest cultivar, whereas Hora was one of the smallest. A comparable

tendency was observed for culms. Table 4.5 shows the results of the PLSR, and Tables 4.6 and

4.7 shows the linear regressions of the vegetation indices obtained for each sensor.

Table 4.5.: Results of PLSR analysis of the dry weight and N uptake of leaves
Leaves (kg/ha) Cal Val

PC Slope Offset RMSE R2 Slope Offset RMSE R2

Anthesis Dry weight 4 0.62 383.9 160.36 0.62 0.60 373.6 181.29 0.65
N uptake 4 0.74 5.61 5.20 0.74 0.76 4.71 5.23 0.76

Dough ripeness Dry weight 4 0.56 384 168.04 0.56 0.52 426 181.97 0.52
N uptake 5 0.66 3.8 2.85 0.66 0.58 4.4 3.52 0.62
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Fair relationships were found for the dry weight, whereas for N uptake, slightly better results

were found. Compared to the PLSR, the vegetation indices showed much higher RMSEs to-

gether with lower coefficients of determination. For the detection of the dry weight and N

uptake of leaves, the R780/R670 vegetation index was found to be most promising. Slight ad-

vantages for the passive spectrometer for detecting leaf dry weight at anthesis were observed;

however, the CropCircle performed comparably for measuring N uptake.
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4.3.3. Detection of the dry weight and N uptake of leaf sheaths

The descriptive statistics of the leaf sheaths can be found in supplemental Table B.2. In 2015,

an approximately 35 % higher dry weight and 66 % higher N uptake at anthesis were found

compared to those in 2014. The cultivars Shakira and Pirona showed the lowest dry weight

and N uptake in both years, and IPZ 24727 showed the highest. The results of the PLSR are

presented in Table 4.8. Good relationships were found for the N uptake of leaf sheaths; however,

the dry weight of this plant organ was barely detectable by sensing at dough ripeness.

Table 4.8.: Results of PLSR analysis of the dry weight and N uptake of leaf sheaths
Leaf sheaths (kg/ha) Cal Val

PC Slope Offset RMSE R2 Slope Offset RMSE R2

Anthesis Dry weight 4 0.62 383.9 160.36 0.62 0.6 373.6 181.29 0.65
N uptake 4 0.76 1.97 2.32 0.76 0.79 1.30 2.64 0.69

Dough ripeness Dry weight 3 0.25 562 182.71 0.25 0.20 617 218.22 0.21
N uptake 5 0.49 4.3 2.42 0.49 0.54 4.0 2.16 0.50

Linear regressions between the leaf sheaths and vegetation indices are shown in Tables 4.9 and

4.10. For the vegetation indices, only weak relationships with high RMSEs were observed. The

best coefficient of determination (R2 = 0.38) was delivered by the AFS sensor for N uptake at

anthesis.
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4.3.4. Detection of the dry weight and N uptake of culms

The descriptive statistics of the culms are given in supplemental Table B.3. The culm N uptake of

2013 and 2015 was on a comparable level; however, in 2014, 38 % less nitrogen was accumulated

at anthesis. In contrast to 2013 and 2015, in 2014, the culms reached the highest dry weight at

dough ripeness. In the other years, decreasing dry weight in later growth stages was observed.

For the PLSR (Table 4.11), good relationships with R2 = 0.53-0.66 were found for both the dry

weight and N uptake of culms. However, the N uptake at anthesis showed a high number of

principal components and a marked difference between the calibration and validation results.

Table 4.11.: Results of PLSR analysis of the dry weight and N uptake of culms
Culms (kg/ha) Cal Val

PC Slope Offset RMSE R2 Slope Offset RMSE R2

Anthesis Dry weight 5 0.59 1627 721.76 0.59 0.63 1470 728.36 0.54
N uptake 7 0.66 23.64 12.41 0.66 0.73 19.77 12.31 0.53

Dough ripeness Dry weight 4 0.65 1317 606.73 0.65 0.54 1635 763.03 0.61
N uptake 6 0.61 6.1 4.45 0.61 0.55 7.0 4.72 0.60

The results of the linear regressions are shown in Tables 4.12 and 4.13. The passive spectrom-

eter showed improved performance with regard to the R900/R970 and R780/R670 indexes. The

coefficients of determination of the VIs and PLSR were comparable; however, the RMSEs for

the VIs were almost four times higher considering the dry weight. The best performance of the

passive spectrometer was obtained at dough ripeness, whereas CropCircle showed enhanced

performance at anthesis.
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4.3.5. Detection of the dry weight and N uptake of ears

The lowest dry weights and N uptake were observed in 2014 (Supplemental Table B.4). The

results of the PLSR analysis are shown in Table 4.14. Medium correlations between the biomass

parameters and wavelengths were found. Additionally, a high number of principal components

was found to be optimal.

Table 4.14.: Results of PLSR analysis of the dry weight and N uptake of ears
Ears (kg/ha) Cal Val

PC Slope Offset RMSE R2 Slope Offset RMSE R2

Dough ripeness Dry weight 7 0.57 2299 924.41 0.57 0.64 2158 951.59 0.49
N uptake 7 0.57 29.7 12.19 0.57 0.63 27.8 12.46 0.50

Considering the linear regressions of the vegetation indices shown in Table 4.15, no correla-

tions were observed. The RMSEs were as high as the mean values observed for the biomass

parameters.
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4.4. Section IV: Mid-season prediction of grain yield and

protein content of spring barley cultivars using

high-throughput spectral sensing

4.4.1. Calculating PLSR models

Descriptive statistics for grain yield and protein content are given in Table 4.17. Unfavorable

weather and soil conditions in spring and early summer 2013 contributed to low grain yields

and protein contents that year. The hull-less barley cultivars had the lowest grain yields in all

three years. However, these cultivars had the highest protein contents, as high as 16.6 %.

Table 4.17.: Descriptive statistics of grain yield and protein content in field trials used
for developing the PLSR models (2013-2015).

Grain yield in kg ha-1 Protein content in %

2013

N 114 112
Min 1782.9 7.9
Max 6852.8 11.7
Mean 5510.6 9.1
CV (%) 12.8 7.7
h2 0.22 0

2014

N 116 115
Min 4079.5 6.7
Max 9079.0 14.3
Mean 6488.6 8.5
CV (%) 11.9 7.3
h2 0.79 0.46

2015

N 132 129
Min 1732.7 7.7
Max 8543.3 16.6
Mean 5729.9 10.7
CV (%) 14.6 5.0
h2 0.72 0.80

Using the contour map analysis (Figure 4.5), good relationships were obtained between grain

yield and the R820/R720 spectral index at anthesis. For protein content, by contrast, an optimized

spectral index could not be derived and neither NDVI or REIP was able to explain the observed

variation. For vegetation indices such as VARI, PRI or WI, only low coefficients of determination

with high RMSEs were obtained. Table 4.18 compares the PLSR models and the vegetation
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indices. For NDVI and REIP, differences were found between the calibration and validation

subsets. Regression plots of PLSR and the optimized index R820/R720 are shown in Figure 4.6.

As an alternative method to predict protein content, a PLSR model of leaf N uptake at anthesis

was tested.

Figure 4.5.: Correlation matrices (contour maps) showing coefficients of determination
(R2) with grain yield (a) and protein content (b) for all wavelength
combinations in a range of 400 - 1000 nm from the passive spectral sensor.

Table 4.18.: Description of the PLSR models for grain yield and protein content, and
the linear regression of the contour-map-based spectral index.

PLS regression Cal Val

PC Slope Offset RMSE R2 Slope Offset RMSE R2

Grain yield in kg ha-1 4 0.77 1131.3 646.1 0.78 0.89 546.4 543.7 0.80
Protein content in % 5 0.57 3.98 0.77 0.57 0.55 4.14 0.80 0.54
Leaf N uptake in kg ha-1 4 0.74 5.61 5.20 0.74 0.76 4.71 5.23 0.76

Linear regression

R820/R720 - 0.00019 1.10 5313.2 0.73 0.00022 0.98 5292.2 0.74
NDVI - 0.00006 0.45 5312.5 0.62 0.00006 0.57 5282.2 0.57
REIP - 0.00090 715.9 4621.6 0.65 0.00094 715.83 4584.9 0.58
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Figure 4.6.: Regression plots of the PLSR models and the optimized spectral index for
grain yield and protein content predictions.

4.4.2. Application of PLSR in independent field trials.

A description of yield parameters from the independent field trials is given in Table 4.19.
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For predicting yield parameters using PLSR and linear regression models, each field experiment

was predicted separately. Coefficients of determination between the predicted and observed

yield parameters are shown in Table 4.20. Fair results were obtained for grain yield in 2014

and 2015. However, for predictions of protein content, only weak correlations (R2 = 0.28) were

obtained in 2014. Predictions of protein content by the PLSR model for leaf N uptake provided

good correlations for 2014 and 2015 while having high RMSEs; however, high overestimations

of the true protein contents were observed.

Figures 4.7 and 4.8 show regression plots between the observed and predicted values. Predic-

tion results were shifted relative to observed results. Compared to the observed grain yields in

experiment IV-1, the predicted yields were 39 % and 29 % lower in 2013 and 2014, respectively.

An opposite shift was seen in 2015, when the PLSR model predicted an average grain yield

of 5138.0 kg ha-1, which represents an overestimation of approximately 12 %. For experiment

IV-2, an underestimation of 9 % was observed. Results for REIP and PLSR were comparable,

they but differed from results for the linear regression of the optimized vegetation index. While

the coefficients of determination and the over- or under-estimation were of similar magnitude

among these three methods, the RMSEs for linear regression were several times higher than

those for REIP and PLSR. The PLSR prediction was able to differentiate among the cultivars of

experiment IV-2 (Figure 4.9), but the REIP results were less precise.
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Figure 4.7.: Regressions between observed and predicted yield parameters from 2013
to 2015.
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Figure 4.8.: Predictions of grain yields in experiment IV-2.
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Figure 4.9.: Comparisons between observed and predicted grain yields using PLSR.
Different letters indicate statistically significant differences at p≤0.05.
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5. Discussion

5.1. Section I: Referencing laser and ultrasonic height

measurements of barley cultivars by using a herbometre as

standard

Even though the meter or yard stick is considered as reference method for assessing the height

of plants in breeding plots, there is no commonly adopted procedure for assessing the plant

height in performing such measurements. Depending on the individual observer height assess-

ments in breeding plots can be based on the inspection of the top most leaf (leaves) or are based

on the visual inspection of an estimated averaged canopy height, which is indeed subjective.

Depending on the plant development, particularly measurements at earlier growth stages tend

to be tedious, requiring the observer to bend towards the observation point, and are indicating

also some degree of variance and subjectivity as evidenced in Fig. 4.1b. It follows, that an exact

definition of putatively assumed reference height measurements does not exist or is individu-

ally adopted. There is also little agronomic value in the detection of the top most position of

an individual leaf (leaves), which varies considerably among cultivars with different growth

habits, represented for example, by erectophile or planophile leaves, and being further affected

by environmental conditions such as the wind. Therefore, the assessment of a standardised

height measurement such as delivered by the herbometre approach is clearly preferred to a

yardstick measurement, as the herbometre is less susceptible to variation between individual

observers and reflects physiologically more relevant information indicative of enhanced pho-

tosynthetic activity within canopies where gradients in the distribution of the nitrogen content

and light interception occur. Previous efforts to assess the height of plants have primarily em-

phasised technical aspects of the methodology. In contrast, this report also focuses on the fea-
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sibility of distance sensors being used for agronomic decisions, particularly for plant breeders.

The results over the 2 years indicate that the sensors can obviously differentiate barley cultivars

in height, stressing, however, the need for multi-annual assessments due to the different plant

heights observed in 2014 and 2015 (Fig. 5.1 and supplemental Table A.1). The accuracy of the

sensors was revealed to be sufficient to distinguish cultivars in the uniformly fertilised field

trials typical for breeder nurseries. The results of other investigations frequently included non-

uniform treatments and were based on different seeding rates (SCOTFORD & MILLER, 2004B),

different biomass densities (EHLERT ET AL., 2010), different nitrogen fertiliser treatments (YIN

ET AL., 2011) or compiled measurements across different growth stages. Although such as-

sessments are common in Plant Sciences, plant breeders require measurements under uniform

management conditions to be able to differentiate cultivars. The use of a herbometre as a ref-

erence method compared with a regular folding rule proved to be advantageous. This method

incorporates several advantages, making the measurement of the maximum height probably

more objective, which is of particular relevance if several operators are involved in visual in-

spections of the plant height. It is argued, that the herbometre provides a weighted height,

allowing for a better representation of the average plant height by smoothly bending the leaves

and awns and by exerting the same force on a given area. Additionally, the measurement com-

prises an area of 0.25 m2, which is advantageous compared with single plant estimates with

a ruler as reported by SCOTFORD & MILLER (2004B) and YIN ET AL. (2011). The low values

of the heritability in 2013 and 2015 (Table 4.2) are caused by heterogeneous soils. Soil analysis

showed significantly differing and partly low pH values in two of the four replications in 2013,

which likely affected plant growth site-specifically. The field trial in 2015 was conducted on

a field site characterised by varying topography attributes. The upper part of the field had a

lower soil water-holding capacity than the lower part, which again influenced the uniformness

of plant growth in the individual replications. The research station Dürnast, where the experi-

ments were performed, is located in the tertiary hill sites including rather heterogeneous field

sites. It is plausible that replicate measurements of plant growth will show a lower variance on

more homogeneous field sites used for breeding purposes leading also to a higher heritability.

Commercial distance sensors must comply with several requirements to allow for successful use

in field trials, such as resistance to dust, vibrations, shocks and the influence of direct sunlight

(EHLERT ET AL., 2009). The distance sensors used in this work used the time-of-flight mea-

suring principle and were chosen for their higher measuring range, up to 10 m, which makes

them suitable for measurements of tall plants such as maize crops (compared with triangulation
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sensors), and for their low acquisition costs. The results indicate that these sensors, mounted

on a vehicle and exposed to a rugged drive characteristic for tramlines in field experiments,

were able to distinguish different heights of contrasting winter barley cultivars at anthesis in

2014 and 2015, whereas no differentiation could be made with either measurement principle or

with the herbometre reference in 2013. In part, this may have been caused by the wet weather

conditions during the early summer, resulting in rather uneven crop stands, in addition to deep

and uneven (bumpy) wheel ruts. Vibrations and swinging of the front loader appeared to be

the main source of errors and inaccuracies, especially at higher driving speeds. A further im-

provement could be achieved with a stabilising wheel (CHATZINIKOS ET AL., 2013) or a feeler

rod as described by EHLERT ET AL. (2009). The sensor performance depends further on the

leaf angle, the size of the leaves and the covered area (KATAOKA ET AL., 2002). This might

be a further reason for decreased accuracies in plant height as obtained by the laser distance

sensor in barley, due to the risk of measuring interspaces between planting rows caused by the

small measuring area of 6 mm × 6 mm. In contrast, the ultrasonic distance sensor, measur-

ing an area of 0.5 m2, is apparently less affected by the variable crop stand density of barley.

EHLERT ET AL. (2010) suggested that the laser sensor readings not only reflect the highest but

also the lower parts of a plant. Therefore, in addition to the average plant height, we have

recorded the maximum plant height averaged from the five most increased measurement val-

ues, and this is most likely the reason for the negative deviations from the referenced plant

height shown in Table 4.2. The ultrasonic distance sensor performed better than the laser dis-

tance sensor due to the increased measuring area of 0.5 m2 and consequently higher accuracies

obtained within the barley crops stands (Fig. 4.2). Nevertheless, industrial distance sensors are

evidently beneficial in saving costs and workloads by assuring a constant data quality. Fur-

thermore, a single person can do such measurements during regular fertiliser and pesticide

applications and during paralleled other measurements, allowing the person to phenotype the

plants with high-throughput. ERDLE ET AL. (2013B) and KIPP ET AL. (2014) have previously

reported examples of concomitant measurements done with the PhenoTrac IV sensor platform,

including assessments of the biomass and nitrogen uptake at anthesis. Data fusion of spec-

tral, thermal and canopy height parameters allowed for improved yield prediction of drought

stressed spring barley (RISCHBECK ET AL., 2016). Available and cost-effective industrial dis-

tance sensors represent a powerful high-throughput phenotyping tool for breeders and plant

scientists to estimate plant height and identify a distinction among cultivars for specific breed-

ing goals. If the sensors were attached to a tractor used for fertiliser or pesticide applications,
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measurements can be done simultaneously and no further costs for transport, deployment or

maintenance will occur. The view has been expressed that smaller cultivars contribute to the

goal of preventing lodging (STANCA ET AL., 1979; MATUŠINSKY ET AL., 2015), fostering the

need for detailed detection of the plant height. Sensing the height in a fast and economical way

may allow enhanced selection along these lines.

Figure 5.1.: Plant heights of different barley cultivars assessed in 2014 and 2015 by
herbometre measurements.

5.2. Section II: High-throughput phenotyping of wheat and

barley plants grown in single or few rows in small plots

using active and passive spectral proximal sensing

Border row effects, which cause enhanced growth of plants in border rows, have long been

well-known, and recommendations for their avoidance, such as harvesting border rows and

front sides separately (PETERSON, 1994), have been reported. However, due to the small num-
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bers of seeds and limited resources available in early selection cycles, plots sharing one to three

rows are common and yield estimates are, therefore, biased (ROMANI ET AL., 1993; ACQUAAH,

2012). This is of lesser importance in early selection cycles that focus on the overall performance

of varieties, but it should be avoided in later cycles due to competitive effects of neighbouring

plants. Still REBETZKE ET AL. (2014) mentioned that the results of small plots are not represen-

tative and that there is a need for multi-row plots to simulate field conditions. This agrees with

the findings of our study. At all three growth stages, both wheat and barley showed relatively

higher fresh and dry weights, as well as greater nitrogen uptake, in single and multiple-row

plots than in a plot comprising 10 rows. However, these results cannot be generalized since

only single varieties of each species were tested. Further research of the performance of mul-

tiple cultivars in small plots needs to be done. Several authors (WINTERHALTER ET AL., 2011;

WHITE ET AL., 2012; KIPP ET AL., 2013) have demonstrated that spectral proximal sensing is a

suitable tool for breeders and plant scientists to evaluate plant parameters in a non-destructive

and high-throughput manner. Studies performed with wide plots of 10 rows demonstrated

comparable or, frequently, superior performance of passive sensors compared to active sensors,

including the one tested in this study, for wheat (ERDLE ET AL., 2011), maize (WINTERHALTER

ET AL., 2013), and barley (ELSAYED ET AL., 2015). These sensors were also tested in different

environments by considering the effects of temperatures, light intensity, and surface conditions

(KIM ET AL., 2012; KIPP ET AL., 2014). However, no previous study had tested the perfor-

mance of spectral proximal sensors in different plot designs. The results showed decreasing

spectral reflectance in the one- and two-row plots, indicating an interfering signal received by

the sensor. This was most likely due to the higher fraction of soil in the sensor’s FOV. Chemical

analysis of the harvested plant material and visual scoring of the plots indicated that neither nu-

trient deficiencies nor plant diseases occurred in the different plots, and weeds and other objects

were manually removed before each measurement. Therefore, it can be concluded that spectral

information from bare soil interfered with the spectral sensing of plants, particularly at early

growth stages. In later growth stages, distances between sensors and soil increase resulting in

a reduced influence of the soil. The GreenSeeker, in particular, with its extended FOV of 1.5 ×
61 cm (Figure 3.9), may be more susceptible to spectral information from the soil in the one- or

two-row plots, in which the planted rows were 15 and 35 cm apart, respectively, especially at

early stages of growth. The one-row design covered approximately 25 % of the measurement

field of the GreenSeeker, whereas this value was approximately 34 % for the passive spectrom-

eter. For the two-row design, these values were approximately 57 % for the GreenSeeker and
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80 % for the passive spectrometer. In addition, the light intensity decreases on the periphery

of the GreenSeeker, which leads to lower reflection values. KIM ET AL. (2012) showed that the

best performance was obtained in central positions within 30 cm of the light strip. Previous re-

search has indicated that the intensity of LED light emitted decreases with increasing distance

(WINTERHALTER ET AL., 2013; KIPP ET AL., 2014). As a result, the crop stand is not entirely

perceived. This is in contrast to passive sensing, which uses the sun as a light source, the inten-

sity of which does not appreciably decrease within the crop stand. However, this may increase

the likelihood that passive sensing will detect information from the soil surface in less dense

crop stands. The results from this study also show that fresh and dry weights do not increase

linearly in plots with different numbers of rows, with the largest values observed in the one-

row design. It is likely that optimized light conditions, together with improved nutrient and

water supply, enhanced growth in border rows or in designs with fewer rows. Since only one

cultivar of each species was investigated, different performances of other cultivars cannot be

excluded. A comparison of the performance of the sensors and evaluation of the best perform-

ing indices revealed that the best results were obtained from the passive sensor with the indices

R774/R656 and R800/R770. In agreement with previous results (ERDLE ET AL., 2011), saturation

effects became apparent for the index NDVI independent of the sensor. The passive hyperspec-

tral sensor generally outperformed the active sensor, with superior performance of the active

sensor found only for wheat at anthesis. Active sensors have the advantage of being indepen-

dent of light conditions, enabling their use at night, though the bi-directional passive sensor

used in this study does allow compensation for changes in light conditions in the day. Overall,

the results show that spectral sensing can be carried out quite successfully in plot designs with

few rows; however, some further optimization is still needed, particularly for single rows. The

sensors’ FOV did not optimally match such a design, offering one avenue for improvement. For

example, the GreenSeeker could be aligned along single rows, while the passive sensor could

be positioned closer to the plants, thus covering a higher fraction of the plants’ area because

the measurements are not distance dependent. Still, superior performance of the passive sensor

has been demonstrated for plot designs with two, three, or four rows. Taken together, these re-

sults suggest that enhanced high-throughput spectral sensing can be used in plot designs with

few rows, thereby allowing the evaluation of the performance of varieties or cultivars in early

selection cycles. Since early selection cycles, in particular, evaluate many hundreds or thou-

sands of varieties, a highly interesting potential for enhanced breeding is indicated. However,

neighboring effects due to different varieties being in close contact with each other should be
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considered or avoided. Follow-up work should address the feasibility to extend these findings

to an extended set of cultivars or varieties representing different species.

5.3. Section III: Active and passive high-throughput field

phenotyping of leaves, leaf sheaths, culms and ears of

spring barley cultivars

The performance of three active spectrometers and one passive spectrometer was evaluated to

detect differences in the measured dry weight and nitrogen uptake of leaves, leaf sheaths, culms

and ears of a set of 30-34 spring barley cultivars at anthesis and dough ripeness. Furthermore,

contour maps and PLSR were compared with various published vegetation indices.

5.3.1. Contour maps

The contour map method, testing all possible dual indices, did not provide improved re-

sults compared to the selected indices. While LI ET AL. (2013A,B), ELSAYED ET AL. (2015),

RISCHBECK ET AL. (2016) and YU ET AL. (2012) indicated improvements of contour map

based vegetation indices compared to published VIs, no improved wavelength combination

was found in this study. Although ELSAYED ET AL. (2015) and RISCHBECK ET AL. (2016) used

a similar set of cultivars and the same sensors, their results differ from those found in this study.

This discrepancy might be due to the increased variance in their studies induced by different

nitrogen fertilizer levels or drought stress levels.

5.3.2. PLSR

Without exception, PLSR analysis outperformed the simple vegetation indices as well as the

indices derived from contour map analysis. Markedly reduced RMSEs and higher coefficients

of determination were achieved by PLSR, in agreement with the results from other studies on

winter wheat (HANSEN & SCHJOERRING, 2003; LI ET AL., 2013A), spring wheat (ØVERGAARD

ET AL., 2013B), durum wheat (FERRIO ET AL., 2005) and spring barley (ELSAYED ET AL., 2015).
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ØVERGAARD ET AL. (2013B) reported that at least 2 years of data are necessary to obtain stable

PLSR models. The results from this study are in line with this recommendation since the PLSR

models showed increased precision when further data were added (results not shown). The

best results were obtained for leaves, culms and leaf sheaths at anthesis. However, for culms

at anthesis and ears, a marked difference between the calibration and validation models was

obtained. A large number of principle components points to a rather unstable model.

5.3.3. Published vegetation indices

Although ERDLE ET AL. (2013B) reported that the R760/R730 index is suitable for the detection of

the dry weight of ears in winter wheat, neither a published VI nor the PLSR was able to provide

satisfactory relationships for spring barley. The perpendicular positioning of the sensors could

be a possible reason. Since the ears were still in a vertical posture at dough ripeness, the sensors

may not have been able to detect these organs. Considering the performance of the published

VIs, R780/R670 was found to be the most closely related to the biomass parameters of leaves and

culms. Saturation effects of the NDVI were observed, especially for the passive spectrometer

and GreenSeeker at anthesis. The same problem was reported by HABOUDANE ET AL. (2004).

In general, moderate coefficients of determination were observed between the published VIs

and dry weight and nitrogen uptake of culms and leaves. Other studies on spring barley (e.g.,

BEHRENS ET AL. (2006); BENDIG ET AL. (2015B); ELSAYED ET AL. (2015); TILLY ET AL. (2015))

presented better or at least similar results; however, those previous findings were based on

different fertilizer levels or drought and heat stress.

5.3.4. Comparison of sensors

Several comparisons between spectral proximal sensors have been previously performed. ER-

DLE ET AL. (2011), WINTERHALTER ET AL. (2013) and ELSAYED ET AL. (2015) found a slight

advantage of the passive spectrometer, in particular, when nitrogen parameters were detected.

These findings were confirmed by this study. The R780/R670 index and NDVI were more precise

when measured with the passive spectrometer. The performance of the active sensors depends

on their light source, which is weaker than sunlight (WINTERHALTER ET AL., 2013). Further-

more, their performance depends on the target distance. The emitted light follows the inverse
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square law. A doubled measuring distance leads to a four times lower light intensity (KIPP

ET AL., 2014). Since the sensor carrier was positioned 1 m above the plant canopy (in line with

the recommendations of the manufacturers), differences in the canopy density, plant architec-

ture and penetration depth may contribute to the slightly decreased performance of the active

sensors (WINTERHALTER ET AL., 2013; KIPP ET AL., 2014).

5.3.5. Biomass parameter

The year 2013 was characterized by remarkably low heritability (h2 = 0.18-0.49) due to severe

weather conditions and a flood in certain areas of the field trial. This also led to an inconsis-

tent dry weight and N uptake in the cultivars. The highest and most consistent heritability

was observed for leaves (h2 = 0.75-0.85), whereas culms showed low heritability (h2 = 0.31-

0.38), particularly at dough ripeness. The dry weight and N uptake of leaves are important

factors that plant breeders use to assess the photosynthetic potential of a plant (ZHU ET AL.,

2010; ACQUAAH, 2012). In this study, the dry weight of leaves amounted to 25 % of the total

aboveground biomass and accumulated up to 30 % of the total N uptake at anthesis. The dry

weight of culms was approximately 75 % of the total aboveground biomass and stored approxi-

mately 70 kg N ha-1 at anthesis. At dough ripeness, only 16 kg N ha-1 remained within the culm

biomass. These findings are in line with the studies of BIDINGER ET AL. (1977) and MIROSAVL-

JEVIC ET AL. (2015), which described the culm as the most important storage organ. The leaf

sheaths showed inconsistent behavior. While culms and leaves translocated dry weight and ni-

trogen during grain filling, leaf sheaths accumulated dry weight and nitrogen. The assumption

of SCHNYDER (1993), who identified wheat leaf sheaths as a type of storage organ, were be

supported in this study for barley. Furthermore, the spectral sensors showed limitations con-

sidering the detection of leaf sheaths, especially at dough ripeness. In this growth stage, only

a weak relationship (R2 = 0.27) between the total aboveground biomass and leaf sheaths was

found, and no relationships were observed between the biomass parameters of leaf sheaths and

leaves or culms. The same results were obtained for the relationships of the biomass parameter

of ears with the other plant organs. However, a highly significant relationship (R2 = 0.73) was

found for the dry weight of ears at dough ripeness and total biomass at anthesis. It is assumed

that the detectability of different plant organs is mainly influenced by their contribution to the

total aboveground biomass. Spectral proximal sensing combined with suitable PLSR models is

a convenient method for obtaining information about leaves and culms at anthesis and dough
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ripeness. A suitable phenotyping platform enhances the performance of phenotyping. By driv-

ing at an average speed of approximately 5.5 km h-1, the measurement of a single plot takes

approximately 0.8 to 1.8 seconds, while destructive measurements with subsequent laboratory

analysis is tedious and time consuming. Spectral sensors are non-invasive and objective and

therefore offer an enhanced tool that can keep pace with high-throughput genotyping tech-

niques and thereby widen the phenotyping bottleneck (WINTERHALTER ET AL., 2011; WHITE

ET AL., 2012; KIPP ET AL., 2014).

5.4. Section IV: Mid-season prediction of grain yield and

protein content of spring barley cultivars using

high-throughput spectral sensing

5.4.1. Performance of contour maps and vegetation indices

The contour maps in Figure 4.5(a) show a narrow (orange) band of wavelengths in the near-

infrared area, indicating vegetation indices potentially suited for predicting grain yield. This

result is in agreement with ELSAYED ET AL. (2015) and RISCHBECK ET AL. (2016), who found

strong correlations in the same wavelength band. In this work, the R820/R720 index was found

to be the optimal vegetation index. Although coefficients of determination explained 94 % of

the variation in experiment IV-1 in 2015, the index showed the highest RMSEs and the high-

est over- or under-estimations compared to the measured yields. For protein content (Figure

4.5b), no wavelength combination could be found to explain the observed variation. Good rela-

tionships were obtained between NDVI and grain yield, whereas yield predictions for the uni-

formly fertilized cultivars in experiment IV-2 showed only moderate correlations. This agrees

with the findings of ELSAYED ET AL. (2015) for spring barley and ØVERGAARD ET AL. (2013B)

for spring wheat. NDVI is prone to saturation, particularly in highly fertilized treatments. In

contrast with PETTERSSON ET AL. (2006), who conducted measurements at stem elongation,

in this study better results were obtained from the REIP index at anthesis. REIP outperformed

PLSR in 2013 and 2014.
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5.4.2. Performance of the PLSR analysis

In this work, the PLSR models were calculated using data from field trials with approximately

30 cultivars representing a range of different uses. The specific objective was to develop a model

comparing the spectral signatures of different cultivars, rather than differentiating among ni-

trogen management practices. PLSR models developed to compare cultivars performed better

at predicting the grain yield and protein content of spring barley under different nitrogen fertil-

izer levels than vice versa. ØVERGAARD ET AL. (2013B) recommended using at least two years

of data to obtain reliable models. Results from this study are in line with this recommendation,

since the PLSR models showed an increased precision when further data were added. Com-

pared to the results of HANSEN ET AL. (2002), slightly better results were obtained in this study

for the PLSR model for protein content prediction. HANSEN ET AL. (2002) did not find any

effect of nitrogen fertilizer level on protein content, which agrees with our findings. They fur-

ther stated that protein content is mainly related to events after anthesis. This might explain the

low prediction results (R2 = 0.28) in this study. Protein content predictions from a PLSR model

of leaf N uptake gave better results; however, the values were largely overestimated and had

high RMSEs. SÖDERSTRÖM ET AL. (2010) found improved models for protein content when

combining spectral data and weather data. For predicting grain yields via PLSR, most authors

used a combination of ancillary data (such as: weather, soil conditions, phenology) and spectral

data (WEISSTEINER & KUEHBAUCH, 2005; PETTERSSON ET AL., 2006; SÖDERSTRÖM ET AL.,

2010; RISCHBECK ET AL., 2016), or a combination of different vegetation indices (HANSEN

ET AL., 2002; ELSAYED ET AL., 2015). In this study, only the wavelengths between 400 and

1000 nm were used for PLSR. Another novel aspect of this study is the use of independent field

trials to test grain yield predictions. As seen in Table 4.20, the performance of these predictive

tools is promising. Although FERRIO ET AL. (2005) suggested that an accurate quantification is

difficult, and the best use of PLSR is a simple ranking, we found close relationships between ob-

served and predicted grain yields. Additionally, it was possible to distinguish among cultivars.

However, for experiment IV-1 in 2013 and 2014, a strong underestimation of the yield was seen.

This could be due to differences in crop management practices between the independent field

trials and the field trials used for developing the PLSR models. Although management followed

local recommendations, the dates of sowing and the dates of pesticide and nitrogen applications

differed between the two sets of field trials. Almost all authors using PLSR for the prediction

of grain yield in wheat (FERRIO ET AL., 2005; ØVERGAARD ET AL., 2013A; XIU-LIANG ET AL.,
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2014) and barley (PETTERSSON ET AL., 2005; ELSAYED ET AL., 2015; RISCHBECK ET AL., 2016)

concluded that PLSR is a superior method to vegetation indices. However, in this study, REIP

was found to be comparably accurate. The advantage of PLSR is the simultaneous analysis of

several predictor variables, which can improve the stability of the model. In contrast, REIP is

easily calculated and needs only four different wavelengths, which can be measured using a

less-expensive spectrometer.

5.4.3. Duration of plot measurements

As seen in Table 4.19, different durations were recorded for the measurements done on each

plot. The duration depended on the soil conditions and the design of the field trial. The wheel

ruts were bumpy in 2013, which led to an average driving speed of about 3.8 km h-1, whereas

flat soil conditions in 2015 made it possible to take measurements at 5.5 km h-1. Higher speeds

would be possible, but German laws limit custom vehicles to 6 km h-1 Vmax. Additionally,

turning around at the end of each plot row can take a substantial amount of time, depending on

the available space. In contrast with 2014, which used a quadratic field trial design, experiment

IV-2 in 2015 had more plots in one row, which resulted in a long and narrow field trial design

with fewer turn-arounds. The main advantage of vehicle-based spectral proximal sensing is the

fast, non-invasive assessment of plant traits, which also decreased labor and analytic expenses

(MONTES ET AL., 2007; ELSAYED ET AL., 2015).
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A. Supplemental Tables Section I
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Table A.1.: Plant heights obtained from herbometre reference measurements and
maximum and average height values recorded by the laser and the
ultrasonic distance sensor, with each value representing the average of four
replicated plot measurements in 2014 and 2015 for the investigated barley
varieties.

2014 2015

Variety Average plant
height from
herbometre
(cm)

Average max-
imum height
from ultra-
sonic sensor
(cm)

Average max-
imum height
from laser dis-
tance sensor
(cm)

Average plant
height from
herbometre
(cm)

Average max-
imum height
from ultra-
sonic sensor
(cm)

BA5 42.8g 42.1d
STR2 51.7fg 46.6cd
SCB5 53.1fg 50.3bcd
IGP1 54.3fg 54.2bcd
BA1 54.6efg 50.8bcd
LFL3 55.1defg 51.6bcd
STR3 55.7cdefg 54.3abcd
ACM1 55.7bcdefg 54.3abcd
LFL2 57.7bcdefg 57.1abcd
STR7 57.9bcdefg 56.9abcd
SY Pabloo 58.4bcdef 56.9abcd
BR10 58.5abcdef 57.8abcd
BR3 59.4abcdef 58.4abcd
STR4 54.8abcd 43.7def 44.4abc 59.5abcdef 55.4abcd
SCB1 55.1abcd 45.6cde 44.5abc 59.7abcdef 55.9abcd
LFL5 45.4e 37.0f 35.9cd 59.7abcdef 57.6abcd
STR6 59.8abcdef 59.0abcd
BA4 57.2abcd 52.2abc 52.4ab 60.0abcdef 60.6abcd
SCB3 60.0abcdef 57.7abcd
BR7 60.2abcdef 58.6abcd
STR5 60.2abcdef 55.6abcd
SY Leoo 53.9abcde 49.3abcd 44.7abc 60.2abcdef 58.8abcd
NS1 59.4ab 54.1ab 51.5ab 60.3abcdef 58.42abcd
SCB2 60.9abcdef 57.9abcd
SCB4 61.4abcdef 59.2abcd
SY Hobbit 57.5abc 50.3abcd 48.5ab 61.5abcdef 60.4abcd
BR12 35.9f 28.5g 28.6d 61.6abcdef 61.8abc
SY Tatoo 61.7abcdef 59.8abcd
SY Galation 56.5abcd 48.7bcd 50.1ab 61.8abcdef 60.9abcd
BA3 62.2abcdef 60.0abcd
BA2 62.2abcdef 60.9abcd
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Supplemental Table A.1 continued
2014 2015

Variety Average plant
height from
herbometre
(cm)

Average max-
imum height
from ultra-
sonic sensor
(cm)

Average max-
imum height
from laser dis-
tance sensor
(cm)

Average plant
height from
herbometre
(cm)

Average max-
imum height
from ultra-
sonic sensor
(cm)

EKD1 48.3cde 39.5ef 35.4cd 63.3abcdef 60.2abcd
EKD2 62.3a 56.6a 55.9ab 63.4abcdef 59.5abcd
SCB7 63.8abcdef 60.8abcd
SY Trooper 63.9abcdef 62.9abc
SY Volume 64.0abcdef 60.0abcd
SY Jallon 64.2abcdef 61.7abc
BR11 64.7abcdef 66.0ab
BR8 65.1abcdef 61.4abc
BR4 65.2abcdef 62.8abc
SY Wootan 65.2abcdef 64.0abc
ACM4 53.0abcde 48.2bcd 42.5bc 65.9abcdef 63.7abc
SY Zzoom 50.2bcde 48.3bcd 47.81abc 65.9abcdef 62.2abc
SY Troophy 66.3abcdef 62.9abc
STR1 66.3abcdef 67.4ab
KWS2 55.2abcd 51.6abc 51.28ab 66.3abcdef 65.6ab
BR1 55.7abcd 49.8abcd 48.87ab 66.6abcdef 68.3a
BR5 67.1abcdef 60.9abcd
SY Quadra 67.1abcde 67.4ab
BR2 68.2abcde 64.5ab
BR6 68.8abcde 69.0a
ACM5 47.6de 42.6def 43.46abc 69.2abcde 69.1a
SCB6 69.3abcde 70.4a
SY Tektoo 70.4abcd 68.2a
ACM2 70.9abc 70.4a
BR9 71.8ab 67.4ab
ACM3 52.3bcde 50.3abcd 47.78abc 73.8a 69.3a
LFL4 62.2abcdef 60.8abcd
SY Celoona 62.5abcdef 60.0abcd
LFL1 63.1abcdef 60.3abcd
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B. Supplemental Tables Section III

Table B.1.: Descriptive statistics of barley leaves
Leaves (kg/ha) Anthesis Dough ripeness

Year Dry weight N uptake Dry weight N uptake

2015

CV (%) 22.41 25.06 23.95 30.52
Heritability (h2) 0.75 0.84 0.74 0.84
Std. error 21.86 0.65 20.64 0.44
Std. Dev. 245.36 7.33 228.95 4.79
N 126 126 123 121
Min 397.93 8.11 327.82 3.07
Max 1680.26 44.80 1548.66 27.81
Mean 918.65 24.57 818.98 12.40

2014

CV (%) 14.90 20.35 18.53 26.74
Heritability (h2) 0.69 0.66 0.71 0.71
Std. error 28.08 0.79 27.43 0.55
Std. Dev. 297.20 8.33 289.03 5.83
N 112 111 111 111
Min 629.18 15.50 515.40 5.89
Max 2451.52 55.77 1904.66 29.79
Mean 1271.08 30.27 1052.43 15.39

2013

CV (%) 18.42 26.74 17.63 23.46
Heritability (h2) 0.38 0.49 0.30 0.24
Std. error 15.65 0.31 12.93 0.17
Std. Dev. 167.82 3.31 138.10 1.76
N 115 115 114 113
Min 334.49 4.05 306.62 2.09
Max 1277.08 22.01 1160.99 12.41
Mean 815.20 10.56 772.71 7.09
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Table B.2.: Descriptive statistics of barley leaf sheaths
Leaf sheaths (kg/ha) Anthesis Dough ripeness

Year Dry weight N uptake Dry weight N uptake

2015

CV (%) 21.14 21.24 34.39 27.68
Heritability (h2) 0.39 0.78 0.53 0.67
Std. error 15.43 0.27 28.10 0.31
Std. Dev. 173.23 3.06 311.65 3.36
N 126 126 123 120
Min 315.29 4.82 286.62 3.97
Max 1189.40 22.30 1943.35 23.65
Mean 698.55 11.99 866.71 10.63

2014

CV (%) 35.35 45.97 16.86 20.10
Heritability (h2) 0.27 0.30 0.46 0.53
Std. error 15.43 0.19 13.13 0.15
Std. Dev. 163.28 1.97 138.34 1.60
N 112 111 111 111
Min 240.23 1.96 344.96 3.58
Max 1698.50 19.70 984.95 11.07
Mean 425.65 4.02 640.87 6.77
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Table B.3.: Descriptive statistics of barley culms
Culms (kg/ha) Anthesis Dough ripeness

Year Dry weight N uptake Dry weight N uptake

2015

CV (%) 17.87 19.12 21.36 24.74
Heritability (h2) 0.57 0.73 0.31 0.38
Std. error 94.00 1.61 81.82 0.36
Std. Dev. 1055.11 18.08 907.38 4.02
N 126 126 123 122
Min 2463.03 29.34 1701.83 5.59
Max 7622.66 135.50 6533.70 29.70
Mean 4842.49 77.07 3631.65 14.31

2014

CV (%) 15.49 17.25 15.96 25.71
Heritability (h2) 0.77 0.68 0.68 0.55
Std. error 82.64 1.07 102.39 0.77
Std. Dev. 874.56 11.23 1078.79 8.12
N 112 111 111 111
Min 1855.09 26.84 2513.00 11.40
Max 6896.53 86.21 8365.79 51.42
Mean 3820.60 49.8 7 4710.70 22.94

2013

CV (%) 20.94 17.74 19.37 21.54
Heritability (h2) 0.37 0.14 0.38 0.38
Std. error 65.70 1.38 50.50 0.26
Std. Dev. 704.51 14.80 539.19 2.77
N 115 115 114 114
Min 1393.72 30.87 1435.54 5.57
Max 5522.94 119.34 4396.35 18.42
Mean 3259.61 80.92 2790.98 11.21
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Table B.4.: Descriptive statistics of barley ears
Ears (kg/ha) Dough ripeness

Year Dry weight N uptake

2015

CV (%) 16.95 18.71
Heritability (h2) 0.67 0.78
Std. error 111.12 1.53
Std. Dev. 1227.37 16.81
N 122 120
Min 2632.56 35.36
Max 9479.07 123.13
Mean 5936.00 77.83

2014

CV (%) 20.36 21.27
Heritability (h2) 0.63 0.66
Std. error 108.79 1.39
Std. Dev. 1146.17 14.65
N 111 111
Min 1877.72 27.07
Max 7379.50 107.15
Mean 4200.37 54.56

2013

CV (%) 16.63 17.45
Heritability (h2) 0.18 0.28
Std. error 94.17 1.22
Std. Dev. 1005.45 13.03
N 114 114
Min 2132.40 30.66
Max 8179.26 103.44
Mean 5816.68 76.11
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C. Author contributions and Abstracts

C.1. Section I: Referencing laser and ultrasonic height

measurements of barley cultivars by using a herbometre as

standard

G.B.1 and U.S.2 conceived and designed the experiments; B.M.3 built and adjusted the sensor system;

G.B. performed the experiments; G.B analyzed the data; G.B. (3⁄4) and U.S. (1⁄4) wrote the paper.

Assessment of plant height is an important factor for agronomic and breeder decisions; how-

ever, current field phenotyping, such as visual scoring or using a ruler, is time consuming,

labour intensive, costly and subjective. For agronomists and plant breeders, the most common

method used to measure plant height is still a meter stick. In a 3-year study, we have adopted

a herbometre similar to a rising plate meter as a reference method to obtain the weighted plant

height of barley cultivars and to evaluate vehicle-based ultrasonic and laser distance sensors.

Sets of 30 spring barley cultivars and 14 and 60 winter barley cultivars were tested in 2013, 2014

and 2015, respectively. The herbometre was well suited as a reference method allowing for an

increased area and was easy to handle. The herbometre measurements within a plot showed

very low coefficients of variation. Good and close relationships (R2 = 0.59, 0.76, 0.80) between

the herbometre and the ultrasonic distance sensor measurements were observed in the years

2013, 2014 and 2015, respectively, demonstrating also increased values of heritability. Hence,

both sensors were able to differentiate among barley cultivars in standard breeding trials. For

the sensors, we observed a 4-fold faster operating time and 6-fold increase of measurement

points compared with the herbometre measurement. Based on these results, we conclude that

1Gero Barmeier
2Urs Schmidhalter
3Bodo Mistele
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distance sensors represent a powerful and economical high-throughput phenotyping tool for

breeders and plant scientists to estimate plant height and to differentiate cultivars for agro-

nomic decisions and breeding activities potentially being also applicable in other small grain

cereals with dense crop stands. Particularly, ultrasonic distance sensors may reflect an agro-

nomically and physiologically relevant plant height information.

C.2. Section II: High-throughput phenotyping of wheat and

barley plants grown in single or few rows in small plots

using active and passive spectral proximal sensing

G.B. and U.S. conceived and designed the experiments; G.B. performed the experiments; G.B analyzed

the data; G.B. (3⁄4) and U.S. (1⁄4) wrote the paper.

In the early stages of plant breeding, breeders evaluate a large number of varieties. Due to

limited availability of seeds and space, plot sizes may range from one to four rows. Spectral

proximal sensors can be used in place of labour-intensive methods to estimate specific plant

traits. The aim of this study was to test the performance of active and passive sensing to as-

sess single and multiple rows in a breeding nursery. A field trial with single cultivars of winter

barley and winter wheat with four plot designs (single-row, wide double-row, three rows, and

four rows) was conducted. A GreenSeeker RT100 and a passive bi-directional spectrometer

were used to assess biomass fresh and dry weight, as well as aboveground nitrogen content

and uptake. Generally, spectral passive sensing and active sensing performed comparably in

both crops. Spectral passive sensing was enhanced by the availability of optimized ratio veg-

etation indices, as well as by an optimized field of view and by reduced distance dependence.

Further improvements of both sensors in detecting the performance of plants in single rows can

likely be obtained by optimization of sensor positioning or orientation. The results suggest that

even in early selection cycles, enhanced high-throughput phenotyping might be able to assess

plant performance within plots comprising single or multiple rows. This method has significant

potential for advanced breeding.
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C.3. Section III: Active and passive high-throughput field

phenotyping of leaves, leaf sheaths, culms and ears of

spring barley cultivars

G.B. and U.S. conceived and designed the experiments; G.B. performed the experiments; G.B analyzed

the data; G.B. (3⁄4) and U.S. (1⁄4) wrote the paper.

To optimize plant architecture (e.g., photosynthetic active leaf area, leaf-stem ratio), plant phys-

iologists and plant breeders rely on destructively and tediously harvested biomass samples. A

fast and non-destructive method for obtaining information about different plant organs could

be vehicle-based spectral proximal sensing. In this 3-year study, the mobile phenotyping plat-

form PhenoTrac 4 was used to compare the measurements from active and passive spectral

proximal sensors of leaves, leaf sheaths, culms and ears of 34 spring barley cultivars. Published

vegetation indices (VI), partial least square regression (PLSR) models and contour map analy-

sis were compared to assess these traits. The PLSR models of leaves, leaf sheaths and culms

showed strong correlations (R2 = 0.61-0.76). Published vegetation indices depicted similar co-

efficients of determination; however, their RMSEs were substantially higher. No wavelength

combination could be found by the contour map method to improve the results of the PLSR

or published VIs. The best results were obtained for the dry weight and N uptake of leaves

and culms. The PLSR models yielded satisfactory relationships for leaf sheaths at anthesis (R2

= 0.69), only a low performance for all of the sensors and methods was observed at dough

ripeness. No relationships with ears were observed. Active and passive sensors performed

comparably, with slight advantages observed for the passive spectrometer. The results indicate

that tractor-based proximal sensing in combination with PLSR models may represent a suitable

tool for plant breeders to assess relevant morphological traits, allowing for a better understand-

ing of plant architecture, which is closely linked to physiological performance.
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C.4. Section IV: Mid-season prediction of grain yield and

protein content of spring barley cultivars using

high-throughput spectral sensing

G.B. and U.S. conceived and designed the experiments; G.B. and K.H.4 performed the experiments; G.B

analyzed the data; G.B. (3⁄4) and U.S. (1⁄4) wrote the paper.

The ability to forecast grain yields and protein contents of spring barley is of particular interest

for the malting and brewing industry, as well as for plant breeding. However, methods for early

predictions of grain yield and protein content should ideally be timesaving, non-destructive and

inexpensive. In this 3-year study using the mobile phenotyping platform PhenoTrac 4, proxi-

mally sensed reflectance data of 34 cultivars were used to develop vegetation indices and to

calibrate PLSR models, followed by subsequent validation in independent field trials. A com-

parison among PLSR, the NDVI and REIP indices and an optimized vegetation index indicated

that PLSR and REIP (R2 = 0.71-0.95) gave superior predictions of grain yield. In contrast, protein

content could not be predicted reliably. As an alternative, a PLSR model of leaf N uptake at an-

thesis was tested to predict grain protein content. Satisfactory correlations were obtained with

R2 = 0.61, but protein content was considerably overestimated. The results show that tractor-

based proximal sensing is a high-throughput, non-destructive and precise method to predict the

grain yield of spring barley and could be a suitable tool to deliver information for the brewing

industry and plant breeders.

4Katharina Hofer
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Referencing laser and ultrasonic height measurements of barley
cultivars by using a herbometre as standard
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Abstract. Assessment of plant height is an important factor for agronomic and breeder decisions; however, current field
phenotyping, such as visual scoring or using a ruler, is time consuming, labour intensive, costly and subjective. For
agronomists and plant breeders, the most common method used to measure plant height is still a meter stick. In a 3-year
study, we have adopted a herbometre similar to a rising plate meter as a reference method to obtain the weighted plant height
of barley cultivars and to evaluate vehicle-based ultrasonic and laser distance sensors. Sets of 30 spring barley cultivars and
14 and 60 winter barley cultivars were tested in 2013, 2014 and 2015, respectively. The herbometre was well suited as a
reference method allowing for an increased area and was easy to handle. The herbometre measurements within a plot
showed very low coefficients of variation. Good and close relationships (R2 = 0.59, 0.76, 0.80) between the herbometre and
the ultrasonic distance sensor measurements were observed in the years 2013, 2014 and 2015, respectively, demonstrating
also increased values of heritability. Hence, both sensors were able to differentiate among barley cultivars in standard
breeding trials. For the sensors, we observed a 4-fold faster operating time and 6-fold increase of measurement points
compared with the herbometre measurement. Based on these results, we conclude that distance sensors represent a
powerful and economical high-throughput phenotyping tool for breeders and plant scientists to estimate plant height
and to differentiate cultivars for agronomic decisions and breeding activities potentially being also applicable in other
small grain cereals with dense crop stands. Particularly, ultrasonic distance sensors may reflect an agronomically and
physiologically relevant plant height information.

Additional keywords: breeding, distance sensor, high-throughput, phenomics, plant height, precision phenotyping,
rising plate meter.
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Introduction

New technologies in plant breeding, such as ‘next-generation
sequencing’ or ‘marker-assisted selection’, led to an acceleration
of breeding processes and an enhanced necessity to test new
genotypes in the field (Furbank and Tester 2011; White et al.
2012; Araus and Cairns 2014). Field trials are necessary to assess
specific plant traits, such as the biomass, nitrogen content and
plant height in realistic production environments. Plant breeders
and agronomists, however, face a bottleneck in phenotyping
(Winterhalter et al. 2011; White et al. 2012) due to a lack of
efficient high-throughput field phenotyping methods that keep
pace with the achievements in high-throughput genomics (White
et al. 2012). Current field phenotyping approaches, such as
visual scoring, are time consuming, labour intensive, costly
and biased due to the person’s individual experience (Erdle
et al. 2013; Kipp et al. 2014) and emphasise the need for new
high-throughput methods.

In addition to tiller number and biomass, plant height
represents an important factor for the assessment of crop stands
and consequently for fertiliser and pesticide applications (Ehlert
et al. 2009; Llorens et al. 2011). Plant breeders often select

dwarfed cultivars to reduce lodging. In opposition to this,
there is a tendency to choose taller plants, especially for the
production of energy, due to the shift from fossil-based resources
to renewable resources in Europe (Heiermann et al. 2009;
Dinuccio et al. 2010; Zub et al. 2011) or the selection of
suitable parental lines for hybrid breeding (Longin et al. 2012).

For agronomists and plant breeders, the most common
methods used to measure plant height is by using a meter stick
or visual scoring. The German Federal Office of Plant Varieties
recommends the use of a ruler to average a plant height by
taking a single measurement within each plot and recording
the topmost part of the plant, including the ears and awns
(Bundessortenamt 2000). However, this method is time
consuming and not objective due to individual decisions for
the highest representative part of a plant. Therefore, the
quality might change during the measurements, and it remains
challenging to assess the true or representative height of a
cultivar by only measuring a few plants within a plot.
Measurements of plant height should also reflect a meaningful
agronomical or physiological property. Since in cereals such as
wheat, barley, rye and oat, but also in rice, particularly after
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the termination of shooting, photosynthesis predominantly
takes place in the top canopy layer, an averaged plant height
representing such an activity might be more useful than choosing
just the top most position of a plant. This is also reflected in
vertical gradients of the nitrogen distribution within plants that
are optimised towards the top canopy layer in such cereals. A
further challenge represents the leaf angle and the inclination of
leaves varying from erectophile to planophile and also being
subject to further changes across the development of the plants.
Height measurements in barley plants are particularly challenging
due to the increased number of tillers per plant differing in height
and due to the highly variable length of the flag leaf.

In the past few years, several approaches were tested to
measure plant height by using distance sensors for cereals or
grasses, for example winter wheat (Scotford and Miller 2004;
Ehlert et al. 2007), rye, grass (Ehlert et al. 2007), rice (Tilly
et al. 2014) and corn (Kataoka et al. 2002; Freeman et al. 2007;
Yin et al. 2011). In contrast, no investigations have been made
regarding barley, and no attempts weremade to find out whether it
is possible to differentiate between uniformly fertilised varieties
at a certain growth stage. Primarily, previous studies focused
on the technical feasibility of different concepts, whereas the
agronomic aspects were frequently not included in the focus.

Most authors used industrial distance sensors that operate
either as time-of-flight or as triangulation sensors. The time-of-
flight sensors are known for their ability to measure long ranges,
whereas triangulation sensors are restricted to short ranges due
to their construction (maximum a fewmeters) by having a higher
accuracy. The sensors have to fulfil particular requirements
for usage in field trials. For instance, the sensors should be
insensitive to dust, vibrations of the carrier platform, direct
sunlight and high temperatures. Additionally, the sensor
should be able to detect materials such as plant tissues.
Detailed measuring principles have been reported by Ehlert
et al. (2010) and Dworak et al. (2011).

Reference measurements represent an important aspect of
these trials and have mainly been achieved by using meter
sticks (Scotford and Miller 2004; Chatzinikos et al. 2013);
however, in most publications a detailed description of the
reference method is missing. In this study, we have adopted as
novel reference method for cereals a herbometre, which is often
used to record plant height or biomass in pastures and grassland
(Pauly et al. 2012). This principle confers advantages compared
with meter sticks because it allows the measurement of a
weighted height, which is considered to be more representative
and informative of the average estimated plant height, and
further increases the objectivity of the process.

The aims of this 3-year study were a comparison of the
performance of a low-cost ultrasonic sensor and a laser distance
sensor implemented in a mobile phenotyping high-throughput
platform in field trials with 30 spring barley and 60 winter
barley cultivars and to test the possible differentiation of
barley cultivars based on sensor measurements.

Materials and methods
Field experiments and height measurement

The field experiments were conducted at the Dürnast research
station of the Technical University of Munich in Germany

(1184106000E, 4882306000N, elevation 448m). The soil is mostly
Cambisol with silty clay loam texture. The annual precipitation
is ~800mm, and the average temperature is 7.58C.

The study encompassed three site-years of investigation
comprising 1 year of spring barley in 2013 and 2 years of
winter barley in 2014 and 2015. The experimental design was a
randomised block design with four replications using 30
spring barley cultivars in 2013, three winter barley hybrids
and 11 lines in 2014 and 12 hybrids and 48 lines of winter
barley in 2015. The plots consisted of 12 rows, 6m in
length. The fungicide and fertilisation treatments followed local
recommendations.

Reference measurements of the height were obtained
by using a self-constructed low-cost herbometre, similar to
a rising plate meter, consisting of a Styrofoam board,
50 cm� 50 cm in size and 4 cm thick, having a weight of
200 g, attached centrally to a conventional folding rule
(Fig. 1). The board was carefully placed on the plant surface,
and the ruler was pushed through the hole without exerting
any pressure on the board. Depending on the cultivar and the
growth stage, the plants were compressed by ~0.3–3 cm
by the herbometre. The compression was decreasing with
progressing maturation of the plants. A barrel roller was used
to flatten the soil in early spring to minimise the risk of
imprecise measurements due to a rough soil surface. The
height measurements were conducted four times within each
plot shortly before flowering at ZS 55 (Zadoks et al. 1974),
as this represents a sensitive growth stage relevant to
agronomic and breeder decisions.

Height measurements with ultrasonic and laser
sensor devices

The performances of an ultrasonic sensor and a laser distance
sensor were compared under field conditions. The sensors
selected were a UM30–14113 ultrasonic sensor (Sick, Waldkirch,
Germany) and an OWTG 4100 PE S1 laser distance sensor
(Welotec, Laer, Germany) (Table 1). The sensors were mounted
as closely as possible to each other on a boom, 1.5m in front of
the PhenoTrac IV (Rischbeck et al. 2016), a mobile phenotyping
platform of the Chair of Plant Nutrition of the Technical
University Munich, in a nadir down-looking position. The
sensor outputs were linked and synchronised to the GPS
coordinates from a TRIMBLE-RTK-GPS. Calibration of the
sensors was conducted on a bare plot. The sensor boom was
held at a height of ~1m above the plants, and the driving speed
was 3.5 kmh–1. The data output comprises ~25 measurements
across the 6-m plot length. Average values of all of the
measurements per plot were calculated, and averaged maximum
values, representing the subset of the five highest records, were
additionally calculated to gain further information about the
highest areas within each plot. The plant height was calculated as:

plant height ¼ distancesensor to soil surface

� distancesensor to plant surface:

Furthermore, theultrasonic sensor is equippedwith a ‘first-fix’
algorithm that analyses the echogram considering the upper part
of the plants and the soil. Threshold values were defined to avoid
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implausible high or low values that may affect the calculation of
mean values for the plant height.

Comparison between the folding ruler and the herbometre

A comparison between the herbometre and a folding ruler was
conducted in wheat plots at heading in 2014. For each plot,
three measurements were made for the folding ruler and the
herbometer, respectively.

The uniformity of herbometre measurements within the
plots was assessed by means of four replicate measurements in
2014 and 2015.

Two operators measured independently of each other winter
barley at ZS 55 in 2015 to find out the deviation between two-
folding ruler measurements. According to the German Federal
Office of Plant Varieties, a single measurement in the centre of
each plot was taken.

Statistical analyses

R version 3.1.2 was used for statistical analysis. A regression
analysis and a one-way ANOVA were used to compare the
ultrasonic and distance sensor and the herbometre reference
measurements. Tukey’s HSD multiple comparison test was
applied for the grouping of the cultivars, with a P-value of 5%.

Results

Comparison between the folding ruler and the herbometre

A comparison between the herbometre and a folding ruler
is shown in Fig. 2a indicating a rather weak relationship
with R2 = 0.29. The relationship between two operators using
a folding stick is indicated in Fig. 2b. The coefficient of
determination was R2 = 0.83, however, the slopes were
statistically different.

A comparison of herbometre measurements by different
operators was not aimed at in this study, because the handling
should deliver comparable values. This is supported by the
fact, that very low coefficients of variation were observed for
the individual within plot measurements for the herbometre in
2014 and 2015 amounting to 2.8% and 3.0%, respectively.

Relationship between herbometre reference method
and distance sensors

In the year 2013, with spring barley as the crop, the ultrasonic
distance sensor was best related to the herbometre reference
measurements with R2 = 0.59** for the average values and
with R2 = 0.64** for the maximum values (Fig. 3 and Table 2).
The laser distance sensor was less closely related to the
herbometre measurements with R2 = 0.30** for the averaged
values and R2 = 0.37** for the maximum values.

In the years 2014 and 2015, with winter barley as the
crop, improved results, particularly for the ultrasonic distance
sensor, were obtained, and the coefficients of determination
ranged from R2 = 0.76** in 2014 to 0.83** in 2015. The best

Fig. 1. Illustration of the herbometre height measurements serving as the reference method in barley trials at
anthesis.

Table 1. Technical data of the ultrasonic and distance sensors. Higher
frequency records of the distance sensors were averaged to be in line

with the GPS records

Technical data UM30 ultrasonic
distance sensor

OWTG 4100 PE S1
laser distance sensor

Measurement method Time-of-flight Time-of-flight
Measuring range 250–3400mm 200–10 000mm
Measuring field 0.5m2 6mm
Resolution 1mm 1mm
Accuracy �2% of final value 14–17mm
Sampling interval (modified) 25Hz 25Hz
Transducer frequency 120 kHz –

Wavelength – 650 nm
Temperature measurement range �208C�708C �108C�608C
Weight 310 g 295 g
Price (2006) 400 e 280 e

Referencing laser and ultrasonic height measurements Crop & Pasture Science C



results for the laser distance sensor were obtained in 2014
with R2 = 0.66**, with the level always lower compared with
the ultrasonic sensor (Table 2). A deviation between the
reference herbometre measurements and the sensors was
found, particularly for the laser sensor (Table 3), deviating up
to 37 cm. Both the laser and the ultrasonic distance sensor
underestimated the observed plant heights in 2014 and 2015,
whereas in 2013, an overestimation by the ultrasonic sensor was
observed.

Discrimination of cultivars by herbometre and distance
sensor measurements

The grouping of the cultivars for the herbometre, the laser sensor
and the ultrasonic distance sensor for 2014 and 2015 is shown in
table S1, available as Supplementary material at journal’s
website. However, for the laser distance sensor a classification
was not possible, due to excessive scattering of the sensor output
in 2015. For the spring barley cultivars in 2013, no differentiation
between cultivars was found either for the plant heights recorded
by the herbometre or for the distance sensors.

Time and labour requirements of reference and distance
sensor measurements

Measurement of the plant height by the herbometre was revealed
to be tedious for a single person, although two people could
significantly accelerate the work, with one person performing
the herbometre measurements and the other recording the
height. Altogether, the complete measurements of the field
trial required 2 h and 30min in 2013, 1 h and 10min for the
winter barley trial in 2014 and 4 h for the field trial in
2015, including the subsequent data processing. Thus, the
manual measurement of a single plot required ~1min and 20 s,
depending on the size of the field trial and the distance between
plots. In contrast, the sensor measurements required only one
person, and the measurement of 120 plots took ~35min in
2015, 18min for 56 plots in 2014 and 50min for 250 plots
in 2015. Depending on the design of the field trials (plot number

in one row and space required for a turnaround of the vehicle)
and the driving speed, the measurement of one 6-m-long plot
took ~20 s, including subsequent data processing. Thus, the
sensor measurements on the mobile sensor platform were four
times faster than herbometre measurements. In this experiment,
all of the plots had a size of 10.8m2. The assessed area covered
by the herbometre was 1m2 with four measurements taken per
each plot. The ultrasonic distance sensor covered 3m2 across
the whole plot, and the laser distance sensor, with its field
of view of 6� 6mm, covered one planting row or ~0.036m2.
According to the driving speed, the sensor output comprised
~25 measurements per plot.

Discussion

Even though the meter or yard stick is considered as reference
method for assessing the height of plants in breedingplots, there is
no commonly adopted procedure for assessing the plant height in
performing such measurements. Depending on the individual
observer height assessments in breeding plots can be based on the
inspection of the top most leaf (leaves) or are based on the visual
inspection of an estimated averaged canopy height, which is
indeed subjective. Depending on the plant development,
particularly measurements at earlier growth stages tend to be
tedious, requiring the observer to bend towards the observation
point, and are indicating also some degree of variance and
subjectivity as evidenced in Fig. 2b. It follows, that an exact
definition of putatively assumed reference height measurements
does not exist or is individually adopted. There is also little
agronomic value in the detection of the top most position of an
individual leaf (leaves), which varies considerably among
cultivars with different growth habits, represented for example,
by erectophile or planophile leaves, and being further affected by
environmental conditions such as the wind.

Therefore, the assessment of a standardised height
measurement such as delivered by the herbometre approach is
clearly preferred to a yard stickmeasurement, as the herbometre is
less susceptible to variation between individual observers and
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Fig. 2. (a) Relationship between a folding ruler and the herbometre in winter wheat 2014. (b) Comparison between the
measurements of two different operators in winter barley in 2015. Regression lines and the 1 : 1 lines are indicated.
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reflects physiologically more relevant information indicative of
enhanced photosynthetic activity within canopies where
gradients in the distribution of the nitrogen content and light
interception occur.

Previous efforts to assess the height of plants have primarily
emphasised technical aspects of themethodology. In contrast, this
report also focuses on the feasibility of distance sensors being
used for agronomic decisions, particularly for plant breeders. The

results over the 2 years indicate that the sensors can obviously
differentiate barley cultivars in height, stressing, however, the
need for multi-annual assessments due to the different plant
heights observed in 2014 and 2015 (Fig. 4 and table S1). The
accuracy of the sensors was revealed to be sufficient to distinguish
cultivars in the uniformly fertilised field trials typical for breeder
nurseries. The results of other investigations frequently included
non-uniform treatments and were based on different seeding
rates (Scotford and Miller 2004), different biomass densities
(Ehlert et al. 2010), different nitrogen fertiliser treatments
(Yin et al. 2011) or compiled measurements across different
growth stages. Although such assessments are common in Plant
Sciences, plant breeders require measurements under uniform
management conditions to be able to differentiate cultivars.

The use of a herbometre as a reference method compared with
a regular folding rule proved to be advantageous. This method
incorporates several advantages, making the measurement of
the maximum height probably more objective, which is of
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Table 2. Coefficients of determination between the sensors and the
reference heights as determined by a herbometre (P < 0.01). Averaged
and the maximum values are reported for the ultrasonic and the laser

distance sensor

Year Ultrasonic Laser Max. ultrasonic Max. laser

2013 0.59** 0.30** 0.64** 0.37**
2014 0.76** 0.54** 0.76** 0.66**
2015 0.80** 0.31** 0.83** 0.37**
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particular relevance if several operators are involved in visual
inspections of the plant height. It is argued, that the herbometre
provides a weighted height, allowing for a better representation
of the average plant height by smoothly bending the leaves
and awns and by exerting the same force on a given area.
Additionally, the measurement comprises an area of 0.25m2,
which is advantageous compared with single plant estimates
with a ruler as reported by Scotford and Miller (2004) and Yin
et al. (2011). The low values of the heritability in 2013 and 2015
(Table 3) are caused by heterogeneous soils. Soil analysis
showed significantly differing and partly low pH values in two
of the four replications in 2013, which likely affected plant
growth site-specifically. The field trial in 2015 was conducted

on a field site characterised by varying topography attributes.
The upper part of thefield had a lower soil water-holding capacity
than the lower part, which again influenced the uniformness of
plant growth in the individual replications. The research station
Dürnast, where the experiments were performed, is located in
the tertiary hill sites including rather heterogeneous field sites. It
is plausible that replicate measurements of plant growth will
show a lower variance on more homogeneous field sites used for
breeding purposes leading also to a higher heritability.

Commercial distance sensors must comply with several
requirements to allow for successful use in field trials, such as
resistance to dust, vibrations, shocks and the influence of direct
sunlight (Ehlert et al. 2009). The distance sensors used in this
work used the time-of-flight measuring principle and were
chosen for their higher measuring range, up to 10m, which
makes them suitable for measurements of tall plants such as
maize crops (compared with triangulation sensors), and for their
low acquisition costs. The results indicate that these sensors,
mounted on a vehicle and exposed to a rugged drive characteristic
for tramlines in field experiments, were able to distinguish
different heights of contrasting winter barley cultivars at
anthesis in 2014 and 2015, whereas no differentiation could be
made with either measurement principle or with the herbometre
reference in 2013. In part, this may have been caused by the
wet weather conditions during the early summer, resulting in
rather uneven crop stands, in addition to deep and uneven
(bumpy) wheel ruts. Vibrations and swinging of the front
loader appeared to be the main source of errors and inaccuracies,
especially at higher driving speeds. A further improvement
could be achieved with a stabilising wheel (Chatzinikos et al.
2013) or a feeler rod as described by Ehlert et al. (2009). The
sensor performance depends further on the leaf angle, the size
of the leaves and the covered area (Kataoka et al. 2002). This
might be a further reason for decreased accuracies in plant
height as obtained by the laser distance sensor in barley, due
to the risk of measuring interspaces between planting rows
caused by the small measuring area of 6mm� 6mm. In
contrast, the ultrasonic distance sensor, measuring an area of
0.5m2, is apparently less affected by the variable crop stand
density of barley. Ehlert et al. (2010) suggested that the laser
sensor readings not only reflect the highest but also the lower
parts of a plant. Therefore, in addition to the average plant
height, we have recorded the maximum plant height averaged
from the five most increased measurement values, and this is
most likely the reason for the negative deviations from the
referenced plant height shown in Table 3.

The ultrasonic distance sensor performed better than the
laser distance sensor due to the increased measuring area of
0.5m2 and consequently higher accuracies obtained within the
barley crops stands (Fig. 3). Nevertheless, industrial distance
sensors are evidently beneficial in saving costs and workloads
by assuring a constant data quality. Furthermore, a single
person can do such measurements during regular fertiliser
and pesticide applications and during paralleled other
measurements, allowing the person to phenotype the plants
with high-throughput. Erdle et al. (2013) and Kipp et al.
(2014) have previously reported examples of concomitant
measurements done with the PhenoTrac IV sensor platform,
including assessments of the biomass and nitrogen uptake at

Table 3. Coefficients of variation (CV), number of samples (n),
standard errors of the means (s.e.), heritability (H2) and deviations
(in cm) from the observed plant heights obtained from the herbometre
reference measurements. Averaged values and maximum values (Max.)

of the height measurements are indicated

Year 2013 2014 2015

Measured plant height Min. 54 28.5 37.3
Mean 68.4 53.0 61.8
Max. 86 66.6 86.1
n 116 66 250
CV 0.06 0.13 0.12
s.e. 0.63 0.83 0.45
H2 0.24 0.68 0.24

Ultrasonic Min. 58.4 20.2 29.5
Mean 71.6 45.4 58.2
Max. 90.0 56.9 80.8
RMSE 5.42 8.40 4.94
Deviation 3.18 –7.59 –3.56
CV 0.09 0.16 0.13
s.e. 0.62 0.90 0.49
H2 0.42 0.95 0.70

Laser Min. 20.7 12.6 8.9
Mean 37.7 32.9 24.0
Max. 54.8 45.7 55.0
RMSE 37.4 20.66 38.27
Deviation –30.7 –20.05 –37.70
CV 0.20 0.21 0.29
s.e. 0.70 0.85 0.44
H2 0.27 0.81 0.40

Max. ultrasonic Min. 59.9 21.1 30.7
Mean 73.1 46.9 60.0
Max. 91.7 58.2 81.6
RMSE 6.3 7.04 3.64
Deviation 4.6 –6.09 –1.79
CV 0.09 0.15 0.13
s.e. 0.61 0.88 0.49
H2 0.44 0.95 0.71

Max. laser Min. 30.8 19.1 13.4
Mean 54.5 45.6 41.0
Max. 75.3 59.0 72.1
RMSE 15.82 8.70 22.25
Deviation –13.95 –7.39 –20.75
CV 0.17 0.17 0.25
s.e. 0.88 0.97 0.64
H2 0.24 0.88 0.38
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anthesis. Data fusion of spectral, thermal and canopy height
parameters allowed for improved yield prediction of drought-
stressed spring barley (Rischbeck et al. 2016). Available and
cost-effective industrial distance sensors represent a powerful
high-throughput phenotyping tool for breeders and plant
scientists to estimate plant height and identify a distinction
among cultivars for specific breeding goals. If the sensors
were attached to a tractor used for fertiliser or pesticide
applications, measurements can be done simultaneously and
no further costs for transport, deployment or maintenance will
occur.

The view has been expressed that smaller cultivars contribute
to the goal of preventing lodging (Stanca et al. 1979; Matušinsky
et al. 2015), fostering the need for detailed detection of the
plant height. Sensing the height in a fast and economical way
may allow enhanced selection along these lines.

Conclusions

In this study, an ultrasonic and a laser distance sensor were
evaluated for the assessment of barley plant heights as part
of breeding activities. A herbometre was used to reference
the plant heights as objectively as possible. The ultrasonic
distance sensor was best related to the herbometre reference
measurements. This may be attributed to the increased
measuring field of 0.5m2, whereas the laser distance sensor
only had a measuring field of 6 by 6mm and was more prone
to failures resulting from measurements of the interspaces
between the planting rows. For winter barley, the sensors were
able to differentiate different cultivars in uniformly managed
field trials typical in breeder nurseries. We found a 4-fold faster
operating time and 6-fold increase of the measurement density

compared with the herbometre reference assessments. Possible
inaccuracies of tractor-based sensors may occur due to vibrations
resulting from uneven wheel ruts. Industrial distance sensors
proved to be advantageous in terms of saving costs and
workloads and by providing a consistent and objective quality
of data. We further suggest that the averaged plant height as
estimated by the herbometre measurements, and best mimicked
by ultrasonic measurements, represents the most agronomical
and physiologically meaningful plant height record.
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Abstract: In the early stages of plant breeding, breeders evaluate a large number of varieties.
Due to limited availability of seeds and space, plot sizes may range from one to four rows.
Spectral proximal sensors can be used in place of labour-intensive methods to estimate specific plant
traits. The aim of this study was to test the performance of active and passive sensing to assess single
and multiple rows in a breeding nursery. A field trial with single cultivars of winter barley and winter
wheat with four plot designs (single-row, wide double-row, three rows, and four rows) was conducted.
A GreenSeeker RT100 and a passive bi-directional spectrometer were used to assess biomass fresh and
dry weight, as well as aboveground nitrogen content and uptake. Generally, spectral passive sensing
and active sensing performed comparably in both crops. Spectral passive sensing was enhanced by
the availability of optimized ratio vegetation indices, as well as by an optimized field of view and by
reduced distance dependence. Further improvements of both sensors in detecting the performance
of plants in single rows can likely be obtained by optimization of sensor positioning or orientation.
The results suggest that even in early selection cycles, enhanced high-throughput phenotyping might
be able to assess plant performance within plots comprising single or multiple rows. This method
has significant potential for advanced breeding.

Keywords: border-row effect; high-throughput; phenomics; phenotyping; plant breeding; plot design;
precision; spectral proximal sensing

1. Introduction

In early selection cycles in plant breeding, large numbers of plants need to be tested, and in
agronomic field testing, extensive evaluation of plant performance is also required. Both seed
availability and financial constraints frequently necessitate testing of plants in one or several
rows, with space limitations also contributing to a need for small plot sizes. Limited resources,
therefore, necessitate smaller plots [1]. In general, plot size depends on the type of experiment,
breeding objectives, available resources and equipment, and the stage of breeding [2]. However,
plot sizes vary substantially among field trials, ranging from single-plant plots to plots of several
hundred square meters [3]. Small plots with 2–3 rows are usually used in early stages of breeding
projects to evaluate varieties quickly and inexpensively. In advanced selection cycles, when selection
for yield also occurs, larger plots are used, and the data may be collected from middle rows [2]. Such
plot trials, thus, aim to predict the performance of the tested varieties by mimicking agricultural
field conditions. However, such predictions may be inaccurate since the phenotypic performance of
plants grown at different spacing may differ from that of plants grown using conventional agricultural
practices [1]. The small size of plots may be disadvantageous because border row effects are known to
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influence yield. Depending on the type of plot trial, external rows may show increased yield [4] due to
increased tillering [5].

Since the management of field trials comprising a large number of plots is highly labour-intensive,
new methods, such as spectral proximal sensing for the estimation of specific plant traits, are becoming
increasingly more important [6,7]. However, commercially available spectral proximal sensors, such as
the GreenSeeker (NTech Industries Inc., Ukiah, CA, USA), as well as hyperspectral passive sensors [8,9],
were originally designed and tested for field conditions and not specifically for small-plot testing.
Therefore, assessment of the sensors in plot trials is of great importance, and particular attention
should be paid to the evaluation of the sensed areas. Such evaluation requires the consideration of
technical aspects, such as sensor-target distances, and the influences of environmental conditions,
such as light intensity and temperature [10,11]. Sensors should be compatible with various plot designs,
which ultimately requires a match between the sensors’ field of view and the tested target.

Field trials comprising different plot designs (Figure 1) and cropped with one or multiple
species, are challenging to evaluate, and their potential for assessment by proximal sensing needs to
be determined.

Non-invasive assessments of small plots must take into account uneven growth due to differences
in the light availability or enhanced nutrient and water uptake. It is also important to consider whether
middle rows are to be assessed preferentially or an integral assessment of the whole plot is desired.
Additionally, reflectance sensors differ in their spectral fields of view, ranging from linear to oval and
circular shapes [8,11], and are also influenced whether the sensor’s orientation is parallel or opposed
to the row.

Numerous studies have described border row effects [12] and the advantages and disadvantages
of different field trial designs [4,13–15], in addition to comparing different spectral sensors [8,11,16].
To the best of our knowledge, no studies have compared the performances of active and passive
sensors in assessing the single or multiple rows used in breeding or agronomic experiments; such a
comparison was the goal of this work. Since wide plots with many rows have already been tested
repeatedly [7,10,16,17], the purpose of this work is to assess the performance of active and passive
spectral sensing in plot designs of one, two, three, and four rows, like those commonly used in breeding
trials for wheat and barley. Previous studies have shown no difference in spectral performance when
assessing plots with six or more rows. In this work, the influence of different plot designs on biomass
and grain yield is illustrated, highlighting the performance of spectral sensors in non-invasive detection
of these traits.
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2. Materials and Methods

2.1. Plot Experiments and Biomass Sampling

Field experiments were conducted at the Dürnast Research Station of the Technical University
of Munich (TUM) in Germany (11◦41′60” E, 48◦23′60” N) in 2014. The soil is a mostly homogeneous
Cambisol of silty clay loam texture, the annual precipitation is approximately 800 mm, and the average
temperature is 7.5 ◦C.

A randomized block design was used to test both barley (Hordeum vulgare L. cv. Sandra) and
wheat (Triticum aestivum L. cv. Kerubino), with four planting-row designs and four replicates, totalling
40 plots (Figure 2).
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Figure 2. UAV image of the field trial. Different plot designs, including one-, two-, three- and four-row
designs, were tested using winter wheat and winter barley as crops.

The plots were 10 m in length. The planting-row designs consisted of plots with a single row,
plots with two rows with 25-cm row spacing, and plots with three and four rows with 12.5-cm
row spacing.

The wider 25-cm row spacing is frequently used for testing the performance of barley, whereas the
narrower spacing of 12.5 cm is commonly used for testing wheat in breeding nurseries in Germany.

Fungicide treatments followed local recommendations. Weeds were removed by hand to remove
possible bias in interpreting the results. Nitrogen fertilizer was applied in a single dose at ZS 15 [18] as
ammonium sulphate using the nitrification inhibitor ENTEC [19] with 150 kg·N/ha and 60 kg·S/ha in
amounts corresponding to the different numbers of rows.

Biomass samplings were performed at Zadoks stage 32 [18] (stem elongation), ZS 60 (anthesis)
and ZS 85 (soft dough) by cutting plants above the ground along 1 m of each row. The fresh biomass
was immediately determined in the field by weighing, and a subsample was oven-dried at 60 ◦C
for three days until a constant dry weight was reached. The nitrogen content was determined by
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mass spectrometry using an isotope ratio mass spectrometer with an ANCA SL 20-20 preparation unit
(Europe Scientific, Crewe, UK) and nitrogen uptake was calculated by multiplying plant dry weight by
N concentration.

2.2. Spectral Reflectance Measurements

Two different sensors were used in this study: a passive bi-directional reflectance sensor
customized by the Chair of Plant Nutrition from the TUM and a GreenSeeker RT100 (NTech Industries
Inc., Ukiah, CA, USA). The passive bidirectional reflectance sensor contained two Zeiss MMS1 silicon
diode array spectrometers with a spectral detection range from 300 to 1000 nm and a bandwidth of
3.3 nm [20]. One spectrometer was linked to a diffuser detecting the solar radiation as a reference
signal. The second spectrometer measured the canopy reflectance with a field of view (FOV) of 12◦

within a circular shape, resulting in a sensor-target distance of approximately 1 m with a FOV of
approximately 0.28 m2. The GreenSeeker used two LEDs as a light source and detected the reflection of
visible (656 nm, ~25 nm band width) and near-infrared (774 nm, ~25 nm band width) spectral regions.
The FOV of the GreenSeeker was a strip of approximately 61 by 1.5 cm, resulting in a scanned area of
approximately 0.009 m2 (Figure 3) [8]. Both sensors were mounted on a frame in front of the PhenoTrac
IV [9], a sensor-vehicle platform customized by TUM (Figure 4), at a height of approximately 1 m above
the plant canopy. The measurements were conducted under clear sky conditions at noon, one hour
after biomass sampling. Afterwards, the normalized difference vegetation index (NDVI) [21] was
calculated as follows:

NDVI =
R774 nm− R656 nm
R774 nm + R656 nm

In addition, the simple ratio (SR) was determined as follows:

SR =
R774 nm
R656 nm

and three simple ratios were further selected based on a contour map analysis depicting all dual
wavelength combinations:

SR =
R800 nm
R770 nm

SR =
R820 nm
R755 nm

SR =
R720 nm
R400 nm
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2.3. Statistical Analysis

R version 3.1.2 (R Foundation for Statistical Computing, Vienna, Austria) was used for calculating
the coefficients of variation, the standard errors, and linear regressions between the data obtained from
the sensors and the destructive measurements. An analysis of variance (ANOVA) with Tukey’s HSD
(honest significant difference) test (p ≤ 0.05) was used to group and differentiate between planting-row
designs. For an enhanced analysis of optimized wavelength combinations, a contour map analysis
was used.

3. Results

3.1. Effects of Different Row Designs on Plant Fresh and Dry Weight, Aboveground Biomass Nitrogen Uptake,
and Grain Yield

Even at early stages of development, the different row designs exhibited clear differences.
Compared to a reference plot with 10 rows, the single-row plots showed an increase in fresh weight of
124% for barley and 90% for wheat at ZS 32. At ZS 65 and ZS 85, this difference grew to an increase
of 235% in wheat biomass in the single-row plot design compared to the 10-row plot. Mean values
of the destructively-assessed plant parameters are given in Table 1. Significant differences (p ≤ 0.05)
were found between the designs in aboveground fresh and dry weights, as well as in the calculated N
uptake; however, no differences in aboveground plant N content were found. Especially for wheat
at early stages of growth, no distinction among the one-, two-, and three-row designs, or among the
two-, three-, and four-row designs was found for plant fresh weight or dry weight. These designs
were characterized by excessive tillering. This trend remained until ZS 85, when the two-, three-,
and four-row designs still had comparable biomasses. Even the one-row design showed increases of
up to 75% in plant dry weight compared to the two-row design.

Barley showed similar responses, though the four-row design differed significantly from the
two-row design at ZS 32 and 65. At ZS 85, however, the two-, three-, and four-row designs all had
similar plant fresh weight and dry weight.

A statistical grouping of grain yields showed a high compensatory performance, particularly for
wheat. No difference was observed among the two-, three-, and four-row designs. Compared to the
ten-row plots, grain yields gradually increased with decreasing number of rows.
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Table 1. Destructively-assessed values of aboveground plant fresh and dry weight, N content, and aboveground nitrogen uptake of wheat and barley plants as
obtained from different plot designs. The plot designs included 1, 2, 3, 4, or 10 rows, and samples were collected from plants at three different stages of development
(ZS 32, 65, and 85). Coefficients of variation, standard errors of the means, and plant parameters per plot for the different row designs are indicated, with each value
representing the average of four replicates. Rankings are derived from Tukey’s HSD-Test, are indicated at p ≤ 0.05 indicating differences within rows. Different letters
(a,b,c,d) denote significant differences.

Variant
One-Row Two-Row

Fresh-Weight (g) Dry-Weight (g) N-Content (%) N-Uptake (g) Fresh-Weight (g) Dry-Weight (g) N-Content (%) N-Uptake (g)

Barley

ZS 32
Means 1113 a 243.6 a 2.9 a 7.1 a 1607.1 ab 372.4 ab 2.5 a 9.4 ab

CV 0.14 0.20 0.06 0.21 0.12 0.12 0.08 0.13
SE 78.58 23.82 0.09 0.75 95.15 21.97 0.11 0.62

ZS 65
Means 1626.2 a 483.3 a 1.7 a 8.2 a 2180.7 ab 666.9 ab 1.7 a 11.9 a

CV 0.14 0.04 0.09 0.10 0.13 0.11 0.12 0.22
SE 117.60 9.31 0.08 0.43 144.01 35.75 0.11 1.29

ZS 85
Means 1745.9 a 706.7 a 1.2 a 8.8 a 2295.5 b 936.9 ab 1.1 a 10.8 a

CV 0.25 0.22 0.06 0.22 0.19 0.15 0.13 0.25
SE 218.73 78.50 0.04 0.97 221.52 69.72 0.08 1.35

Wheat

ZS 32
Means 463.2 a 109.6 a 2.6 a 2.8 a 842 ab 190.9 ab 2.5 a 4.7 ab

CV 0.10 0.08 0.04 0.09 0.09 0.06 0.05 0.09
SE 23.50 4.40 0.05 0.13 36.44 5.60 0.06 0.22

ZS 65
Means 1820 a 574.1 a 1.8 a 10.5 a 2584 ab 767.9 ab 1.6 a 12.5 a

CV 0.06 0.13 0.04 0.17 0.10 0.08 0.08 0.12
SE 58.80 36.74 0.03 0.88 129.08 32.13 0.07 0.75

ZS 85
Means 2111.7 a 971.2 a 0.8 a 8.4 2994.1 ab 1383.9 b 0.9 ab 13

CV 0.02 0.06 0.06 0.06 0.04 0.04 0.17 0.17
SE 21.54 28.85 0.03 0.26 61.88 24.95 0.08 1.14
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Table 1. Cont.

Variant
Three-Row Four-Row

Fresh-Weight (g) Dry-Weight (g) N-Content (%) N-Uptake (g) Fresh-Weight (g) Dry-Weight (g) N-Content (%) N-Uptake (g)

Barley

ZS 32
Means 1959.2 ab 425.4 bc 2.9 a 12.5 ab 2396.7 b 545.7 c 2.7 a 14.7 b

CV 0.07 0.08 0.09 0.17 0.16 0.14 0.11 0.16
SE 66.06 17.83 0.13 1.05 189.86 38.82 0.15 1.16

ZS 65
Means 2595.5 b 799.8 b 1.8 a 15 a 2882.7 b 857.3 b 1.8 a 16.2 a

CV 0.11 0.10 0.08 0.19 0.17 0.12 0.23 0.33
SE 149.18 40.01 0.08 1.43 239.40 51.92 0.22 2.65

ZS 85
Means 2663.9 b 1059.5 ab 1.3 a 14.3 a 2984.6 b 1143.7 b 1.2 a 14.6 a

CV 0.21 0.17 0.12 0.29 0.12 0.07 0.15 0.21
SE 278.86 91.74 0.08 2.11 177.28 41.60 0.09 1.56

Wheat

ZS 32
Means 949.9 bc 200.9 ab 2.5 a 5.1 bc 1163.2 c 266.3 c 2.6 a 7 c

CV 0.17 0.12 0.01 0.12 0.12 0.09 0.08 0.16
SE 79.89 11.88 0.01 0.30 72.34 12.46 0.11 0.57

ZS 65
Means 2931.7 bc 887.2 b 1.8 a 16.4 a 3406.7 c 1004.4 b 1.8 a 18.5 ab

CV 0.14 0.14 0.10 0.23 0.08 0.10 0.13 0.22
SE 207.99 60.37 0.09 1.87 139.37 52.70 0.12 2.07

ZS 85
Means 2822.7 b 1338.3 b 0.8 ab 10.6 3347.8 b 1562.5 b 0.9 ab 14.2

CV 0.17 0.18 0.08 0.13 0.12 0.11 0.14 0.21
SE 243.30 121.83 0.03 0.71 195.63 84.89 0.06 1.51
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Table 1. Cont.

Variant
Complete Plot (10 Row)

Fresh-Weight (g) Dry-Weight (g) N-Content (%) N-Uptake (g)

Barley

ZS 32
Means 4631.8 c 1085.5 d 2.4 a 26.8 c

CV 0.09 0.09 0.11 0.14
SE 198.34 50.32 0.14 1.92

ZS 65
Means 5254.5 c 1809.9 c 1.8 a 34 b

CV 0.13 0.16 0.14 0.31
SE 352.90 145.62 0.13 5.27

ZS 85
Means 5843.7 c 2403.8 d 1.3 a 31.4 b

CV 0.10 0.12 0.09 0.13
SE 297.01 139.30 0.06 2.03

Wheat

ZS 32
Means 2773.2 d 574.7 d 2.7 a 15.3 d

CV 0.17 0.15 0.08 0.08
SE 231.69 42.96 0.11 0.58

ZS 65
Means 6420.5 d 1760.2 c 1.7 a 30.5 b

CV 0.08 0.09 0.09 0.14
SE 255.45 75.08 0.08 2.11

ZS 85
Means 6000 c 2896 c 0.6 b 19.4

CV 0.04 0.04 0.13 0.11
SE 132.96 56.94 0.04 1.11
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3.2. Relationship between Plant Parameters Obtained from Combination of the Four Plot Designs and Spectral
Reflectance Measurements

Relationships between sensor measurements and four plant parameters for the combined row
designs at three sampling dates are given in Table 2. In general, the passive spectrometer showed closer
linear relationships between selected spectral reflectance indices and plant parameters of both species
than did the active sensor. The GreenSeeker showed a closer relationship only for wheat at anthesis.
Since neither sensor could detect all biomass parameters from wheat at ZS 85 with the vegetation
indices available from the GreenSeeker, a contour map method that allowed testing of all possible dual
reflectance indices from the passive spectrometer was further evaluated to find whether enhanced
vegetation indices could be obtained. These indices, R820/R755 for barley and R720/R400 for wheat,
resulted in markedly improved relationships in later growth stages.

Table 2. Significant relationships between sensor measurements and plant parameters of wheat and
barley, indicated by coefficients of determination (R2) at * p≤ 5%, ** p≤ 1%. Relationships are indicated
for different indices. The closest relationships are indicated in bold.

GreenSeeker Passive Spectrometer

Barley ZS 32 774/656 NDVI 774/656 NDVI 800/770 820/755 720/400
Fresh weight 0.53 ** 0.48 ** 0.49 ** 0.37* 0.86 **
Dry weight 0.41 ** 0.35 * 0.37 * 0.28 * 0.85 **
N-content
N-uptake 0.46 ** 0.46 ** 0.44 ** 0.43 ** 0.84 **

Barley ZS 65
Fresh weight 0.25 * 0.34 * 0.85 ** 0.70 **
Dry weight 0.20 * 0.74 ** 0.61 **
N-content 0.21 *
N-uptake 0.21 * 0.29 * 0.71 ** 0.50 **

Barley ZS 85
Fresh weight 0.50 ** 0.45 ** 0.67 ** 0.64 ** 0.77 **
Dry weight 0.46 ** 0.44 ** 0.60 ** 0.64 ** 0.72 **
N-content 0.20 * 0.30 * 0.27 *
N-uptake 0.43 ** 0.35 ** 0.63 ** 0.53 ** 0.71 **

Wheat ZS 32
Fresh weight 0.62 ** 0.60 ** 0.86 ** 0.52 **
Dry weight 0.63 ** 0.58 ** 0.88 ** 0.54 **
N-content
N-uptake 0.59 ** 0.55 ** 0.93 ** 0.55 **

Wheat ZS 65
Fresh weight 0.74 ** 0.69 ** 0.67 ** 0.60 **
Dry weight 0.72 ** 0.70 ** 0.65 ** 0.59 *
N-content
N-uptake 0.51 * 0.47 * 0.37 * 0.33 *

Wheat ZS 85
Fresh weight 0.66 **
Dry weight 0.63 **
N-content
N-uptake 0.40 *

Compared to the simple ratio R774/R656, the NDVI showed reduced coefficients of determination
caused by saturation effects. In this regard, the simple ratios were less sensitive. For the N content,
only weak relationships were obtained.

Figures 5 and 6 depict results from linear regressions for the combined row designs for barley and
wheat, respectively. The spread of the regression points for the three sampling dates made it necessary
to consider each sampling date separately. For barley, the results from the GreenSeeker demonstrated
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considerable scatter, and the regressions of both the NDVI and the simple ratio were considerably less
similar than were the same indices obtained for wheat.
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Figure 5. Relationships between spectral indices derived from the two types of sensors and plant dry
weight at ZS 65 for wheat, obtained from linear regressions combining the four different row designs.
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Figure 6. Relationships between spectral indices derived from the two types of sensors and plant dry
weight at ZS 65 for barley, obtained from linear regressions combining the four different row designs.

4. Discussion

Border row effects, which cause enhanced growth of plants in border rows, have long been
well-known, and recommendations for their avoidance, such as harvesting border rows and front
sides separately [3], have been reported. However, due to the small numbers of seeds and limited
resources available in early selection cycles, plots sharing one to three rows are common and yield
estimates are, therefore, biased [2,4]. This is of lesser importance in early selection cycles that focus on
the overall performance of varieties, but it should be avoided in later cycles due to competitive effects
of neighbouring plants. Still [12] mentioned that the results of small plots are not representative and
that there is a need for multi-row plots to simulate field conditions. This agrees with the findings of
our study. At all three growth stages, both wheat and barley showed relatively higher fresh and dry
weights, as well as greater nitrogen uptake, in single and multiple-row plots than in a plot comprising
10 rows. However, these results cannot be generalized since only single varieties of each species were
tested. Further research of the performance of multiple cultivars in small plots needs to be done.
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Several authors [6,17,22] have demonstrated that spectral proximal sensing is a suitable tool for
breeders and plant scientists to evaluate plant parameters in a non-destructive and high-throughput
manner. Studies performed with wide plots of 10 rows demonstrated comparable or, frequently,
superior performance of passive sensors compared to active sensors, including the one tested in
this study, for wheat [8], maize [10], and barley [16]. These sensors were also tested in different
environments by considering the effects of temperatures, light intensity, and surface conditions [11,23].
However, no previous study had tested the performance of spectral proximal sensors in different plot
designs. The results showed decreasing spectral reflectance in the one- and two-row plots, indicating
an interfering signal received by the sensor. This was most likely due to the higher fraction of soil in
the sensor’s FOV. Chemical analysis of the harvested plant material and visual scoring of the plots
indicated that neither nutrient deficiencies nor plant diseases occurred in the different plots, and weeds
and other objects were manually removed before each measurement. Therefore, it can be concluded
that spectral information from bare soil interfered with the spectral sensing of plants, particularly at
early growth stages. In later growth stages, distances between sensors and soil increase resulting in a
reduced influence of the soil. The GreenSeeker, in particular, with its extended FOV of 1.5 × 61 cm
(Figure 3), may be more susceptible to spectral information from the soil in the one- or two-row plots,
in which the planted rows were 15 and 35 cm apart, respectively, especially at early stages of growth.

The one-row design covered approximately 25% of the measurement field of the GreenSeeker,
whereas this value was approximately 34% for the passive spectrometer. For the two-row design,
these values were approximately 57% for the GreenSeeker and 80% for the passive spectrometer.
In addition, the light intensity decreases on the periphery of the GreenSeeker, which leads to lower
reflection values. Kim et al. [23] showed that the best performance was obtained in central positions
within 30 cm of the light strip. Previous research has indicated that the intensity of LED light emitted
decreases with increasing distance [10,11]. As a result, the crop stand is not entirely perceived. This is
in contrast to passive sensing, which uses the sun as a light source, the intensity of which does not
appreciably decrease within the crop stand. However, this may increase the likelihood that passive
sensing will detect information from the soil surface in less dense crop stands.

The results from this study also show that fresh and dry weights do not increase linearly in plots
with different numbers of rows, with the largest values observed in the one-row design. It is likely that
optimized light conditions, together with improved nutrient and water supply, enhanced growth in
border rows or in designs with fewer rows. Since only one cultivar of each species was investigated,
different performances of other cultivars cannot be excluded.

A comparison of the performance of the sensors and evaluation of the best performing indices
revealed that the best results were obtained from the passive sensor with the indices R774/R656
and R800/R770. In agreement with previous results [8], saturation effects became apparent for the
index NDVI independent of the sensor. The passive hyperspectral sensor generally outperformed
the active sensor, with superior performance of the active sensor found only for wheat at anthesis.
Active sensors have the advantage of being independent of light conditions, enabling their use at night,
though the bi-directional passive sensor used in this study does allow compensation for changes in
light conditions in the day.

Overall, the results show that spectral sensing can be carried out quite successfully in plot
designs with few rows; however, some further optimization is still needed, particularly for single
rows. The sensors’ FOV did not optimally match such a design, offering one avenue for improvement.
For example, the GreenSeeker could be aligned along single rows, while the passive sensor could
be positioned closer to the plants, thus covering a higher fraction of the plants’ area because the
measurements are not distance dependent. Still, superior performance of the passive sensor has been
demonstrated for plot designs with two, three, or four rows.

Taken together, these results suggest that enhanced high-throughput spectral sensing can be used
in plot designs with few rows, thereby allowing the evaluation of the performance of varieties or
cultivars in early selection cycles. Since early selection cycles, in particular, evaluate many hundreds



Sensors 2016, 16, 1860 13 of 14

or thousands of varieties, a highly interesting potential for enhanced breeding is indicated. However,
neighbouring effects due to different varieties’ being in close contact with each other should be
considered or avoided. Follow-up work should address the feasibility to extend these findings to an
extended set of cultivars or varieties representing different species.
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