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Zusammenfassung

Die Verfügbarkeit von Wind- und Solarenergie ist inhärent unsicher. Während sich die

Forschung bislang auf ihre lang- und kurzfristige Unsicherheit konzentriert hat, erhielt

der mittelfristige Zeitraum über das kommende Jahr weniger Aufmerksamkeit. Dabei ist

er hochrelevant für Investoren, Banken und Versicherungen, sowie Systemplaner. Aus

diesem Grund umfasst diese Dissertation drei Aufsätze über den Umgang mit mittel-

fristiger Unsicherheit in der erneuerbaren Stromerzeugung: in einem virtuellen Kraftwerk,

mit Windstromfutures und bei der Nutzung von Investitions- und Einsatzmodellen zur

Systemplanung.

Aufsatz I: Viele Eigentümer von Photovoltaik- und Windkraftanlagen nutzen virtuelle

Kraftwerke um Zugang zum Strommarkt zu erhalten. Ihre Stromerzeugung ist inhärent

unsicher und ihr Umsatz damit riskant. Wir untersuchen in welchem Maß eine Bündelung

verschiedener Technologien und Regionen im Portfolio eines virtuellen Kraftwerks das

Risiko mindern kann. Zu diesem Zweck entwickeln wir stochastische Modelle für die Fak-

toren, die das Preis- und Volumenrisiko der Anlagen treiben und setzen ein Modell zur

risikooptimierten Portfoliobildung darauf auf. Am Beispiel des deutschen Marktes zeigen

wir, dass unsere optimalen Portfolios ein eindeutig besseres Risikoertragsprofil haben als

das Marktportfeuille. Diese Erkenntnis gilt für den Fall ohne Subventionen, aber auch

für den Fall von Einspeisevergütungen.



Aufsatz II: Windenergie ist unsicher, was sich auf die Gewinne von Windstrom- wie

auch von konventionellen Erzeugern auswirkt. Aktuell haben beide Gruppen nur begren-

zte Möglichkeiten ihr resultierendes Volumenrisiko abzutreten. Die European Energy

Exchange (EEX) führte daher in 2016 börsengehandelte Windstromfutures ein um diese

Marktunvollkommenheit zu adressieren. Wir schlagen ein stilisiertes Gleichgewichtsmod-

ell mit zwei repräsentativen Agenten vor und analysieren die erwarteten Preise von Wind-

stromfutures, sowie den Mechanismus hinter ihren Risikoprämien. Wir kalibrieren und

simulieren stochastische Modelle für Windstromerzeugung, Strompreise und -nachfrage,

sowie weitere relevante Quellen von Unsicherheit. Die damit durchgeführte Fallstudie

für den deutschen Markt analysiert Preise, Hedgingeffektivität, sowie Risikoprämien.

Unsere Ergebnisse deuten darauf hin, dass Windstromerzeuger bereit sind eine Ver-

sicherungsprämie an konventionelle Erzeuger zu zahlen um ihre Risiken zu reduzieren.

Aufsatz III: Der Technologiemix im erneuerbaren Stromsystem kann durch Investitions-

und Einsatzmodelle optimiert werden, die Kosten minimieren. Die Ergebnisse dieser

Modelle werden stark beeinflusst von ihrer Abbildung der Residuallast, also der Dif-

ferenz aus Stromverbrauch und erneuerbarer Erzeugung. Aktuelle Modelle fokussieren

sich meist entweder auf eine hohe zeitliche Auflösung oder auf eine stochastische Mod-

ellierung. Bisherige Forschung zeigt, dass beide Stoßrichtungen die Qualität der Model-

lergebnisse substanziell verbessern, aber ihre Kombination die erforderliche Rechenleis-

tung stark erhöht. Daher entwickle ich ein sparsames Investitions- und Einsatzmodell,

das in der Lage ist zeitlich hochaufgelöste, stochastisch simulierte Eingangsdaten zu ver-

arbeiten. Eine Anwendung des Modells auf das deutsche Stromsystem zeigt den Wert der

stochastischen Modellierung. Dasselbe Modell mit deterministischer Residuallast unter-

schätzt sowohl die erforderliche Windkraft- und Photovoltaik-, als auch die notwendige

Speicherkapazität deutlich. Folgerichtig unterschätzt es auch die Systemkosten.



Abstract

The availability of wind and solar energy is inherently uncertain. While much research

has focused on dealing with its long- and short-term uncertainty, the medium-term, or the

time period over the coming year, has received less attention. Yet it is highly relevant to

renewable investors, funding and insurance providers as well as system planners. Hence,

this dissertation presents three essays on how to deal with medium-term uncertainty in

variable renewable energy generation: in a virtual power plant, with wind power futures

and using investment and dispatch models for system planning.

Essay I: Many photovoltaic and wind generation capacity owners gain access to power

markets by signing up with virtual power plants. Power generation from these renewable

sources of electricity is inherently uncertain and, consequently, revenue is random, which

induces a risk for the owner. In this study, we investigate to what extent pooling different

technologies and locations in the portfolio of a virtual power plant can reduce aggregate

risk. To this end, we develop stochastic models for factors driving the assets’ underlying

market and volume risks on which we base a model for risk-optimized pooling. Using

the German market as an example, we demonstrate that optimal portfolios have a clearly

better risk/return profile than the market portfolio. This finding holds in the case without

subsidies as well as the case with feed-in tariffs.



Essay II: Generation from wind power plants is uncertain and affects profits of wind

power generators and conventional generators alike. Currently, generators have limited

options for transferring the resulting wind-related volume risks. The European Energy

Exchange (EEX) recently introduced exchange-traded wind power futures to address this

market imperfection. We propose a stylized equilibrium pricing model featuring two rep-

resentative agents and analyze equilibrium prices as well as the mechanics behind risk

premia for wind power futures. We calibrate and simulate stochastic models for wind

power generation, power prices, electricity demand, as well as other relevant sources of

uncertainty and use the resulting scenarios to conduct a case study for the German mar-

ket, analyzing prices, hedging effectiveness, and risk premia. Our main result suggests

that wind generators are willing to pay an insurance premium to conventional generators

to reduce their risks.

Essay III: The technology mix in a renewables-based power system can be optimized

by investment and dispatch models minimizing cost. These models’ outcomes are strongly

driven by their representation of residual load, which is the difference between power

demand and renewable generation. Models usually either focus on a high temporal res-

olution or on a stochastic model. Available research suggests that both of these aspects

make the model output substantially more accurate (e.g., Haller et al., 2012; Haydt et al.,

2011), but their combination strongly increases computational requirements. Hence, I de-

velop a parsimonious investment and dispatch model that allows to be based on residual

load with high temporal resolution and a stochastic simulation. An application of the

model to the German power system demonstrates the value of stochastic modeling. The

same model with deterministic residual load underestimates the required wind and solar

power, as well as storage capacities. Consequentially, it also underestimates the overall

system costs.
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Chapter 1

Introduction

Our current level of greenhouse gas emissions is causing anthropogenic climate change.

The resulting warmer temperatures are expected to yield negative consequences for hu-

man civilization as we know it. With the Paris Agreement of December 12, 2015, 195

nations have agreed to hold the ”increase in the global average temperature to well below

2◦C above pre-industrial levels and to pursue efforts to limit the temperature increase

to 1.5◦C above pre-industrial levels, recognizing that this would significantly reduce the

risks and impacts of climate change”.

The signing parties also agree that net anthropogenic emissions need to be reduced

to zero in the second half of the 21st century to reach the 2◦C objective (United Nations

Framework Convention on Climate Change, 2015). In any case, a reduction of this

magnitude is a mammoth task for the next couple of generations.

Today the large majority of CO2 and other climate-damaging emissions are created

by energy conversion processes with which humans generate or consume energy. Hence,

the task at hand is to transition to energy carriers, which can be generated and consumed

without emitting greenhouse gases. Popular candidates for emission-free energy carriers

are power, hydrogen and biomass, among which power has gained a pole position as it

can be generated and consumed much more efficiently than hydrogen and be used on a
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larger scale than biomass.

Hence, mainly two complementary lines of attack are pursued at the moment to

advance the global energy transition:

1. Consume more power instead of other energy carriers: Heat generation and trans-

portation are our two main applications of currently non-electrified energy con-

sumption.

2. Generate more emission-free power: This requires a shift of power generation to

emission-free technologies such as PV (photovoltaic), wind, hydro, nuclear, geother-

mal or biogas-fired power generation. This line of attack is the general focus of my

dissertation.

Among emission-free power generation technologies, PV and wind power are clearly

the winners of the technology race. The main reasons are their large resource potential,

fast build-out pace and low cost. For these reasons, PV and wind power attracted 95%

of renewable energy investments in 2015; a sum of 270 billion USD (UN Environment

Programme et al., 2016). But PV and wind power generation is variable, which means it

has three unique characteristics: intermittency, uncertainty and decentrality (Hirth et al.,

2015).

1. Intermittency is the uninfluencable weather-dependent variation in PV and wind

power generation over time. Output cannot be adjusted to match demand in the

same way as it is possible with conventional power plants. Hence, other dispatchable

generation capacities are required to satisfy demand during times of low variable

generation.

2. The uncertainty of PV and wind power at a specific point in time results in devi-

ations between forecasted and actual generation volume. The deviations are sub-

stantially greater than for conventional power plants and create challenges in a large

number of areas discussed later in this section.
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3. The decentral nature of PV and wind power, away from today’s geographic con-

sumption centers, requires the expansion of grids to transport generated power to

its place of consumption. This definition of decentrality has a wider scope than its

more narrow meaning of ’power plants being installed on consumer’s premises’.

Conventional generation technologies, such as gas- or coal-fired generation, do not

show these three characteristics. Consequently, PV and wind power cannot replace them

in a ’plug-and-play’ fashion. A transition of the entire power system, including all of its

components, is necessary to cope with intermittency, uncertainty and decentrality. Any

lack of their detailed understanding is likely to disturb the energy transition process and

make it either more costly or more timely. It might also derail the transition process

altogether.

Hence, research that expands the detailed understanding of the three characteristics

is valuable and this dissertation’s objective is to contribute to it. Its focus is thereby

on the uncertainty characteristic, which is arguably the least obvious of the three. After

all, intermittency is the cornerstone characteristic for PV and wind power. In fact the

term ’intermittent’ is often used synonymously to ’variable’ renewables. Decentrality is

taken into consideration during every investment decision for a variable generation site

or a network expansion. Uncertainty, on the contrary, can be most easily overlooked.

This is true in particular for medium-term uncertainty ; defined here as uncertainty

about generation volumes in the coming months to years. As I demonstrate in the fol-

lowing section it is far less researched than short-term uncertainty over the next minutes

to weeks or long-term uncertainty over greater than 10 years, which is the typical invest-

ment horizon for PV and wind power plants. Nevertheless, medium-term uncertainty is

substantial. The yearly German-wide utilization of wind power plants for instance has

varied between 14% and 22% from 2011 to 2014 (see Section 2.3 for details).
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1.1. ONE OVERARCHING RESEARCH QUESTION

1.1 One overarching research question

The three essays in my dissertation can be subsumed under one overarching research

question:

How to deal with the medium-term uncertainty of wind and solar power?

To illustrate the question’s relevance, I ask ’Who needs to deal with medium-term

uncertainty?’ and differentiate between a micro- and a macroeconomic perspective.

On the one hand, the central actors with a microeconomic perspective are PV and

wind power investors. They make a CAPEX-heavy and typically highly leveraged invest-

ment decision. Medium-term uncertainty in their generation volumes naturally leads to

volatility in their revenues over the course of the power plant’s lifetime. Moreover, as

subsidy mechanisms change, power price risks also become more relevant to renewable

energy investors, which additionally increases volatility. The resulting revenue volatility

in turn requires less leveraging and/or higher liquidity, which both raise the overall costs

of variable renewable energy sources.

Several other actors are affected by medium-term uncertainty in variable generation

as well. Conventional generators are exposed to volume risks, as their own generation

volume and prices are negatively correlated to renewable generation volume. Hence, a

good wind year is likely a bad year for conventional generators.

Retailers, offering ’green power’ to their customers, usually buy certificates of ori-

gin to guarantee that their customer’s demand has actually been generated from ’green

sources’. Prices for these certificates are likely to vary inversely to uncertain supply. Ser-

vice providers, such as direct marketers, typically have volume-dependent service fees and

a high share of fixed costs. Hence, volatility in generation volume is a big risk for their

business model. Moreover, banks, financing renewable energy generation investments,

are likely to incorporate a quantification of medium-term risks in their credit ratings. In-

surance companies, offering policies to reduce volume risk, also need that quantification.
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1.1. ONE OVERARCHING RESEARCH QUESTION

On the other hand, the macroeconomic perspective is assumed by a social planner,

who maximizes the welfare the power system generates. In order to do that, she ad-

justs all capacities in the system to ensure security of supply, sustainability and effi-

ciency. Medium-term uncertainty about renewable generation volumes combines with

uncertainty of demand patterns. Hence, it is not certain for which conditions the system

should be laid out. A lack in understanding of medium-term uncertainty, for instance an

overestimation of PV or wind power’s availability, can lead to reduced welfare. Either

the system is potentially insecure, not as sustainable as planned, or inefficient. Planning

procedures obviously need to prevent this by incorporating all possible realizations of

uncertain variable generation.

Although medium-term uncertainty is highly relevant, it is the least researched time

frame of uncertainty in renewable generation volumes. Instead, the focus has so far been

on the long- and the short-term. In comparison though, medium-term uncertainty is the

one that will largely remain inherent to PV and wind power generation, while long- and

short-term uncertainty are more easily dealt with. This results from two aspects.

On the one hand, the inherent randomness of variable generation volumes is very

large for short time periods; such as the next 15 min or the next hour. As the time period

becomes longer, uncertainty obviously decreases. Hence, wind and solar power generation

over the long-term, or the typical investment horizon, is not as volatile, because yearly

meteorological variations even out. In this respect, variable generation differs structurally

from typical behavior of stock prices or the like.

On the other hand, variable generation is, like the weather, strongly path-dependent.

Consequently, short-term forecast models can explain a substantially larger share of in-

herent randomness than long-term models.

Variable generation over the medium-term time frame is ’stuck in the middle’. While

it is still highly random, forecast models largely fail to accurately predict it. Hence, chal-
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lenges from medium-term uncertainty will have to be met by dealing with the uncertainty

itself and this dissertation examines three ways to do that. To my knowledge, there is

currently no research that puts medium-term uncertainty at the core of its questions.

Hence, I consider it a novel field of research and hope this dissertation contributes to its

development.

Research on long-term uncertainty has mostly addressed the needs of renewable en-

ergy investors that needed to understand the distribution of generation volumes over

their investment horizon. Forecasts are site-specific and the availability of site-specific

meteorological data greatly improves the forecast quality. Thereby, long-term forecasts

have reached average percentage errors of 3% (Weekes et al., 2015).

Research on short-term uncertainty, first, aims to improve the variable generation

forecasts made one week to several minutes ahead of realization. Second, it develops

solutions for short-term balancing of these forecast errors. Both approaches are required

to ensure system stability efficiently and keep it that way when PV and wind power is

increasingly built out. System stability has originally been the sole responsibility of the

system operator. In some markets, such as in Germany, the responsibility for balancing

renewables has increasingly moved to the individual plant operators. With a subsidy

scheme such as direct marketing, the renewable power generator itself promises a feed-in

schedule one day ahead of delivery and has to balance out potential deviations on the

intraday market or pay respective penalties for them. Ongoing research efforts and the

increased interest by investors themselves in better short-term forecasts for uncertain

generation have substantially improved their quality (Foley et al., 2012).

I define a simple two-dimensional framework to sort the various incarnations of my

research question. Based on our previous question ’Who needs to deal with uncertainty?’,

I call the first dimension the perspective and differentiate, as before, between the micro-

and the macroeconomic perspective. Furthermore I choose the renewables investor as an

6
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Microeconomic 

Macroeconomic 

Physical 

Essay I 

Essay III 

Financial 

Essay II 

Approach 

Perspective 

Figure 1.1: Location of the three essays in this dissertation along two proposed dimensions of dealing

with wind and solar power’s medium-term uncertainty: the perspective and the approach.

example for the micro- and the system planner as an example for the macroeconomic

perspective.

The second dimension classifies research by the approach applied to deal with un-

certainty. As medium-term uncertainty will naturally remain inherent to PV and wind

power generation respectively, its risks can only be reduced through the combination with

a balancing mechanism. The investor with the microeconomic perspective can choose a

physical or a financial balancing mechanism. The system planner on the other hand can

only use a physical mechanism as he has to ensure security of supply at all times.

Figure 1 combines perspectives and approaches and locates the three essays in this

dissertation accordingly. Essays I and II assume the microeconomic perspective and

respectively treat a physical and a financial approach. Essay III assumes the perspective

of a system planner and analyzes her possibilities to reduce risk with different physical

system components. The three essays’ research questions are as follows.

• Essay I: To what extent can pooling of different technologies and different locations

in the portfolio of a virtual power plant reduce its aggregate risk?

• Essay II: How can wind power futures be priced and what are the mechanics behind

their potential risk premia?

• Essay III: What is the effect of stochastic and dynamic residual load modeling on

the optimal technology mix in a renewables-based power system?
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Stochastic 

modeling 

application 

Intermittent wind and PV generation 

Essay I Essay II Essay III 

Power demand 

Day-ahead and intraday prices 

Figure 1.2: Application of stochastic models throughout the three essays in this dissertation.

All three questions are novel and cover different aspects of how to deal with the

medium-term uncertainty of PV and wind power generation. Hence, all essays aim to

contribute to this dissertation’s overarching research question.

1.2 One methodological foundation

Next to a shared overarching question there is also a methodological thread that links the

three essays in this thesis together. Answers to their research questions require a stochas-

tic modeling of medium-term uncertainty. It does not only need to provide reasonable

forecasts for the risk factors, but also needs to be able to mimic their distributional prop-

erties. The chosen models, fulfilling this requirement, are developed and explained in

Essay I. They are all non-parametric, consider yearly and daily seasonality, have hourly

resolution and simulate a set of scenarios for each risk factor.

In order to give an overview of the stochastic models developed for this research, Fig-

ure 1.2 shows which ones are used in which of the three essays. The stochastic simulation

of PV and wind power generation is obviously a common building block in all of them. It

is complemented with models for short-term PV and wind power forecasts and resulting

forecast errors. But to fully incorporate the existing medium-term risks, other factors

need to be modeled as well. A full simulation of power demand is necessary for Essays II

and III. The simulation of power prices, inter alia based on a simulation of temperatures

8
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and natural gas prices, is used in Essays I and II that assume the investor perspective.

The diverse applications of the developed stochastic models demonstrate their rele-

vance in a renewables-based power system, for risk management in particular and for

decision making in general. Hence, they are a contribution in their own right and can be

applied, as documented here, to other decisions and research questions.
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Chapter 2

Risk-Optimized Pooling of Variable

Renewable Energy Sources

written in collaboration with Prof. Dr. David Wozabal

Many photovoltaic and wind generation capacity owners gain access to power markets

by signing up with virtual power plants. Power generation from these renewable sources

of electricity is inherently uncertain and, consequently, revenue is random, which induces

a risk for the owner. In this study, we investigate to what extent pooling different

technologies and locations in the portfolio of a virtual power plant can reduce aggregate

risk. To this end, we develop stochastic models for factors driving the assets’ underlying

market and volume risks on which we base a model for risk-optimized pooling. Using

the German market as an example, we demonstrate that optimal portfolios have a clearly

better risk/return profile than the market portfolio. This finding holds in the case without

subsidies as well as the case with feed-in tariffs.
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2.1 Introduction

Driven by declining capacity prices and generous subsidy schemes, the number of pho-

tovoltaic (PV) and wind power plants around the world has been growing rapidly over

the last 10 years. This trend is likely to continue due to the urgent need to decarbonize

the world’s energy generation and thereby reduce greenhouse gas emissions and minimize

global warming. However, PV and wind power plants have an important characteristic:

their generation is uncertain, that is, the generation cannot be controlled and depends

on fluctuating weather conditions, which makes it difficult to accurately forecast output.

To facilitate an efficient power system, PV and wind power plants need to be inte-

grated into the power market to send and receive useful coordination signals. Due to

the distributed nature of PV and wind power, their integration is complicated by the

prohibitively high entrance barriers of power markets, set up for professional traders re-

quiring 24x7 operations along with forecasting and real-time balancing, thus incurring

significant transaction costs.

We consider the problem of a service provider acting as an intermediary between

distributed energy sources and the wholesale power market. We call such entities virtual

power plants (VPPs) (Pudjianto et al., 2007). The main share of power market volume

in future renewables-based energy systems is likely to come from PV and wind power

plants (Fraunhofer IWES, 2015a). Since owners of these plants usually do not have their

own trading infrastructure, VPPs are a means to facilitate their market integration.

Sharing transaction costs associated with market entry is currently seen as the main

reason for pooling distributed energy sources in a VPP (economies of scale). In this paper,

we discuss the potential risk reduction for the owners of variable renewable energy sources

(economies of scope), which is another, albeit less obvious, advantage of pooling. We

investigate how much a VPP can improve the risk/return profile, thus creating additional

value with its service by contracting a carefully chosen mix of renewable capacities. For

this paper, we limit our analysis to variable renewable energy sources from PV and wind
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power, which comprise the majority of renewable capacity installations. Hereafter, we

refer to these capacities as renewable energy sources or as renewables.

There is a growing body of literature on VPPs. Ilic et al. (2007) indicate the im-

portance of VPPs when transforming from a central to a distributed power system by

enabling near-optimal dispatch and investment decisions, otherwise impossible. Pudjianto

et al. (2007) describe VPPs as the primary vehicle to deliver cost-efficient integration of

renewable energy sources and differentiate between a technical and a commercial VPP

(TVPP and CVPP, respectively). A TVPP manages a local network zone or control

area and ensures network stability in the face of variable generation. A CVPP develops

flexibility options, combines them with renewable sources, and integrates them into the

existing power markets. In the present paper, we adopt the perspective of a CVPP.

The literature on VPP decision making under uncertainty can be grouped in three

streams. The first stream focuses on investment sizing for distributed energy sources,

minimizing total system costs. Many studies concentrate on local pools, which combine

different technologies. Ekren and Ekren (2009), for instance, optimize a setup with PV

and wind generation combined with battery storage.

The second stream of studies aims to minimize the short-term generation cost by

optimizing the dispatch decision for existing pools of distributed energy sources. Usually

studies examine island systems without access to power markets. Therefore, the need

to fulfill power demand in the respective time period constrains the dispatch decision

(Handschin et al., 2006; Molderink et al., 2010).

A third literature stream has developed around optimizing the short-term dispatch

decision to maximize the revenue from trading on power markets; we use this setup in our

analysis. These papers can be classified according to the different markets they include

in their analysis. Pandžić et al. (2013) included forward markets and day-ahead trading

in their model and combine renewable and conventional generation with a storage system

where uncertainty is included in the form of renewable generation and market prices.
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Vasirani et al. (2013) modeled a continuous dispatch re-optimization of a virtual power

plant consisting of wind power plants and electric vehicles. They included day-ahead and

intraday markets and a payment scheme for the electric vehicle owners.

All abovementioned papers solve the problem of the VPP in order to maximize ex-

pected profit, that is, assuming a risk-neutral decision maker. We contribute to the extant

literature by investigating a risk-averse VPP. In particular, we frame the decision of the

VPP as a medium-term portfolio selection problem, that is, the decision on how much

of which type of generation resource to include in the portfolio. To this end, we apply a

mean risk approach using Conditional Value-at-Risk (CVaR) as a risk measure.

We contribute to the literature in three ways. First, we expand the literature on

the market value of PV and wind power by incorporating their risk patterns and in-

terdependencies into the valuation. Although risk management is one of the central

topics in energy finance (Eydeland and Wolyniec, 2003; Pilipović, 2007) and the impor-

tance of portfolio optimization in commodity markets is well established in the literature

(D’Ecclesia, 2008; Elton and Gruber, 1997), research on the risk-optimal combination of

variable renewable energy sources in a virtual power plant is limited. The connection

between ideas of portfolio optimization and risk management on the one hand and the

problem of marketing renewables on the other is the primary conceptual contribution of

this paper.

Second, we suggest several methodologies for improving VPP operations and decision

making in the form of non-parametric stochastic models for renewable generation and

power prices, that is, the factors driving market and volume risk. These models offer

accurate descriptions of the random dynamics of the involved risk factors and have further

applications in energy finance beyond this paper.

Third, we enhance the conceptual understanding of the VPP’s intermediary role in

the power system by describing an additional set of benefits it offers not only to owners

but also the system as a whole. In particular, we demonstrate that a VPP can create
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substantial value by diversifying risk for the owners of individual renewable generation

capacity through efficient portfolios, dominating the German market portfolio in the

sense of second-order stochastic dominance (SSD). This implies that the risk-optimized

portfolios are better than the market portfolios independent of the risk preferences of the

decision maker. The relevance of this aspect will increase as the industry matures and

consolidates while subsidy schemes are reduced and renewables start to compete with

other generation sources in the power market. Hence, diversification in a VPP offers an

opportunity to substantially increase the attractiveness of renewable power generation

for owners and operators; offsetting some of the inherent disadvantages of uncertainty.

We provide two extensions of our model to demonstrate its wide applicability in dif-

ferent setups. First, we assume the perspective of a VPP operator guaranteeing prices

to the owners of pooled renewables, much like feed-in schemes guarantee fixed tariffs.

In this case, the VPP operator is exposed to the full market risk and, correspondingly,

the effect of risk diversification is much higher than for our base case, as the VPP car-

ries a higher risk compared with the expected return. Second, we set up a model for

renewable asset owners without any access to power markets, who receive feed-in tariffs

for their generation, that is, a model without any market risk. Risk-optimized pooling

also offers advantages in this setting, allowing us to conclude that value can be captured

independent of compensation setup.

The results for the different model variants additionally inform the debate on re-

newable subsidy policies and resulting risk distribution. In particular, our main model

quantifies the distribution of price and volume risks between regulator and investor in the

case of a subsidy scheme with market price premiums. Our model variant II quantifies the

risk distribution in a situation with feed-in tariffs. Our results show that the investor’s

overall risk is substantial in both subsidy schemes.

In our models, we use the German market as an example because of its high share

of renewable generation, whose growth, in the past, was mainly driven by high feed-in
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tariffs. In this sense, the German situation can be seen as a model for expected future

situations in many countries. Also in most other respects the German electricity market

resembles that of many other European countries as well as parts of the US – at least

when it comes to market rules relevant for medium-term planning, which is the focus of

our paper. Additionally, risk and correlation structures driven by weather patterns are

similar in most markets1. Hence, we are confident that the main findings of our paper

are applicable to most countries with a large share of variable generation.

Furthermore, the German market is an appropriate example because the regulator

encourages renewable capacity owners to sell their generation directly in the wholesale

electricity market; introducing a demand for VPP services. Since 2012, the total VPP

capacity in Germany has increased considerably: 39.9 GW (52%) of variable renewable

capacity was marketed by VPPs by the end of 2014. This development was driven

by a regulatory push to support direct marketing (DM). DM describes the process of

selling generation subsidized by the Renewable Energies Act directly on the wholesale

power market. By doing so, asset owners receive a premium over and above the market

revenues. Since January 1, 2016, all newly installed assets with a capacity greater than

a 100 kW capacity must obligatorily participate in DM. Integrating renewables into the

wholesale power market aligns the producers’ incentives with market signals, which makes

it profitable for them to invest in efficient operation (e.g., accurate weather forecasts and

good locations).

Overall this regulatory push has established a strong position of VPPs. By the end

of 2014, 88% of German on-shore wind, 90% of off-shore wind and 17% of PV capacity

were directly marketed (Bundesnetzagentur, 2015). Several new market participants had

sprung up that manage around 2.5–3.5 GW of renewable generation each. The largest

provider, Statkraft, sold generation from around 9 GW of capacity while the largest 10

1 In particular, the correlation of wind power and PV generation as well as the correlation of power

prices with renewable generation are likely to carry over to most other markets.
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VPPs sold around 75% of the variable renewables’ market volume. Hence, the introduc-

tion of DM has brought forward significant pooling of renewable assets into larger VPP

portfolios (Köpke, 2015).

The rest of the paper is structured as follows. In Section 2.2, we discuss our assump-

tions, setup and the optimization model. Section 2.3, describes the stochastic models

used to simulate our underlying risk factors. The results for the German market are dis-

cussed in Section 2.4. We provide conclusion and outlook on further research questions

in Section 2.5.

2.2 Model and assumptions

In this section, we first discuss the setup and assumptions of our study in Section 2.2.1.

Then, we describe the two-stage stochastic optimization model used to calculate risk-

optimized VPP portfolios in Section 2.2.2.

2.2.1 Setup and assumptions

In our main model, we adopt the perspective of a VPP deciding on its portfolio of

renewables while optimizing the risk/return profile of the joint portfolio revenues. In

general, a VPP receives revenues from selling power, generated by its clients, in the spot

market for electricity. The VPP’s risk is driven by portfolios’ uncertain generation volume

(volume risk) and uncertain future spot market prices (market risk).

The effect that electricity price fluctuations have on VPP revenue depends on the

subsidy scheme. We analyze two cases: first, the case without any subsidies wherin the

portfolio is subject to full market and volume risk (main model) and second, the case

wherin the VPP gets fixed feed-in tariffs, which remove the market risk entirely (model

variant II). In current regulatory practice, several combinations of these models exist in

which asset owners share a part of the market risk.
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We assume that VPPs act risk-averse, that is, care about risks and not only about

the expected rewards of their operation. Since energy trading companies routinely use

the theoretical and institutional foundations developed for risk management in banks and

report the riskiness of their positions in their financial statements, this appears to be a

reasonably innocuous assumption.

Considering that renewable generation investments typically rely on a high level of

debt financing, requiring at least yearly servicing, active management of revenue risk

is essential (Fraunhofer IWES, 2015b). Clearly, combining different kinds of variable

renewable energy sources potentially reduces the VPP’s revenue risk and in turn the

risk for the participating capacity owners. This study aims to quantify this effect by

considering the problem of optimally combining renewables in a VPP, that is, a portfolio of

generation assets. This problem takes a form that very much resembles classical portfolio

theory, where the aim is to (risk-)optimally combine different financial assets. As in

portfolio theory, the non-trivial correlation structure between different assets allows for

improvements of the the risk/return profile. An example of this is the negative correlation

between cumulative yearly output of PV and wind capacities, which seems to exist in

Germany.

We assume the VPP sells power in the EPEX power exchange, which comprises two

market segments: day-ahead and intraday. The day-ahead market works in the form of

an auction resulting in a uniform clearing price for power delivery in each hour of the

following day. Trading on the intraday market for 15-min slots of the respective day

starts after the auction results are published and takes place continuously until 30 min

before fulfillment.

The VPP in our model sells the forecast amount of renewable generation from its

portfolio on the day-ahead market and balances forecast errors on the intraday market.

The reason for trading on the day-ahead market instead of selling the entire generation

on the intraday market is illustrated in Figure 2.1, indicating that the liquidity of EPEX
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Figure 2.1: Distribution of trading volumes in GW per fulfillment hour on the German-Austrian EPEX

day-ahead [panel (a)] and on the EPEX intraday market [panel (b)] in 2014.

intraday market is not sufficient to absorb the entire generation from a typical VPP. As

several German VPPs manage more than 3 GW, their full load would have exceeded the

intraday market volume in more than 75% of all hours in 2014. Although the intraday

market has gained in importance, on average it still accounts for only 8% of the day-ahead

market’s volume.

Further, we assume that forecasting errors, which occur during the last 30 min before

fulfillment (after the intraday market closes), are sufficiently small to be disregarded and

that the intraday market is, at all times, liquid enough to absorb the VPP forecasting

errors. Hence, we do not include additional balancing penalties resulting from very short-

term forecasting errors. This is in line with increasingly short lead times in the intraday

market and with progress in short-term weather forecasting. Furthermore, the VPP in our

model does not participate in the futures market because the flat profile of futures delivery

requires constant volume delivery over longer periods of time, which is incompatible with

the fluctuating pattern of PV and wind generation.

Note that the asset owners join the VPP solely to optimize their revenues. They

cannot expect any diversification benefits from pooling their costs, because costs are

largely independent for different assets. This is certainly the case for capital expenditures,
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comprising the majority share of total renewable costs: they are sunk at the time the

asset owner is signing up with a VPP. Further, we assume the different assets’ operational

expenditures to be largely independent. Consequently, we do not consider any costs in

our approach, which is in line with the situation in practice. Asset owners carry their

own costs and try to minimize them to the best of their abilities. They use the VPP

solely to optimize their revenues. Moreover, since we are interested in the benefits of

diversification and not in the obvious positive effects a VPP can generate from exploiting

economies of scale, first, we are careful not to model any fixed transaction costs to avoid

effects of cost degression with increasing size, and second, restrict the portfolio to a fixed

size.

Lastly, in this paper, we focus on the value that can be generated by pooling, but

we do not investigate the question how the revenues should be distributed optimally

between the asset owners and the VPP operator. We assume that VPP operators and

asset owners will find a set of transfer prices allowing them to capture additional value

from risk diversification and benefiting all parties.

2.2.2 Portfolio optimization models

In this section, we discuss the optimization model used to decide on the relative weights

w1, . . . , wM of the M different assets represented by different renewable technologies in

different locations. We use the Conditional Value-at-Risk (CVaR) to model the risk

preferences of the aggregator. The CVaR was proposed by Artzner et al. (1999) and

enjoys favorable theoretical properties as well as a close connection to the Value-at-Risk

which is an industry standard in the banking and insurance industry and to which it is

clearly preferable (Mulvey and Erkan, 2006; Szegö, 2002). Furthermore, for the reasons

mentioned above, using the CVaR to express risk preferences is fairly standard in energy

trading and investment applications (Conejo et al., 2016).

We assume that the VPP does not contract the renewable energy sources for their
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whole life span. Instead, the individual plants sign up for a VPP for a limited amount of

time so as to have the possibility to switch VPPs when market conditions change. In our

study, the period under consideration is one year. Due to the yearly seasonality in PV

and wind in-feed and the transaction costs related to changing the VPP, this seems to be

a reasonable minimum time for a commitment. As we learned from our discussions with

market participants, this corresponds to the typical contract durations offered by VPPs

in Germany. The VPP takes a portfolio decision for the year 2015 based on scenarios

for the stochastic inputs discussed in Section 2.3, which are based on data from the years

2011–14. We select a portfolio with an expected output of 1 MWh per year and impose

the following budget constraint on our portfolio weights

M∑
m=1

wm = 1, (2.1)

where wm is the expected generation of the portfolio asset m. To translate the weights into

asset capacities, we use capacity factors cm, which indicate how much installed capacity

of asset m is required to produce an average of 1 MWh output per year. We estimate

c1, . . . , cM based on our simulations for our out-of-sample year 2015 as is discussed below.

To avoid integer decisions and keep the model tractable, the decisions are represented

by continuous asset weights. This simplifying assumption is standard in portfolio theory

and can be justified by the size of the VPPs, which manage a large number of renewable

energy sources.

We model the portfolio selection problem as a two-stage stochastic optimization. The

here-and-now decisions are the portfolio weights, while the second stage consists of one

year of trading on the day-ahead as well as the intraday market. All decisions taken in

the second stage are wait-and-see decisions, that is, allowed to depend on the realization

of the random risk factors in our models. The fact that we trade exactly the forecast

volumes on the day-ahead market and clear imbalances at the intraday market avoids

problems with anticipative bidding strategies that result in arbitrage between the two

markets.
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We represent randomness by a finite number of scenarios S. For the purpose of the

model description, we denote the scenarios for the generation forecasts in MWh for one

MW of capacity by x̂s1, . . . , x̂sT , s = 1, . . . , S, where x̂st = (x̂st1, . . . , x̂stM) is a vector

holding the forecasts for all the M assets in scenario s at time t. Similarly, we define

the scenarios for the actual generation in MWh for one MW of capacity by xs1, . . . , xsT ,

s = 1, . . . , S, while the scenarios for the intraday and day-ahead price scenarios are

denoted by pIs1, . . . , p
I
sT and pDs1, . . . , p

D
sT , s = 1, . . . , S, respectively. We estimate the

capacity factors c1, . . . , cM mentioned above as

cm = (ST )−1

S∑
s=1

T∑
t=1

xstm, (2.2)

that is, cm is the average amount of hourly production in MWh from one MW of capacity

of type m.

In our main model, we define

πsm = c−1
m

T∑
t=1

x̂stmp
D
st + (xstm − x̂stm)pIst, ∀s = 1, . . . , S (2.3)

to be the revenue in scenario s for asset m generating 1 MWh of power with πs =

(πs1, . . . , πsM)>. Then, putting it all together and using the linear programming for-

mulation of the CVaR proposed in Rockafellar and Uryasev (2000, 2002), we can write

our stochastic optimization problem as

max a− 1
αS

∑S
s=1 zs

s.t. S−1
∑S

s=1〈πs, w〉 ≥ l

zs ≥ 0, zs ≥ a− 〈πs, w〉, ∀s = 1, . . . , S

w ≥ 0, (2.1), (2.3)

(2.4)

where the decision variable a is the Value-at-Risk (VaR) at level α, zs is the shortfall

below the VaR in scenario s, and 〈·, ·〉 is the inner product in RM . Note that the lower

bound on the expectation in the constraints in (2.4) defines the risk preferences of the

investor: the higher l the lower the optimal CVaR and the riskier the portfolio decision.
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For our two model variants, only the revenue function πsm needs to be adjusted. In

our first variant, the VPP operator’s revenue in (2.3) is reduced by a transfer payment to

the asset owners based on a set of asset-specific transfer prices

pTm = S−1

S∑
s=1

πsm − f. (2.5)

The pTm are calculated such that the expected service fee is f EUR/MWh for every asset.

Consequently, the revenues are defined as

πOperatorsm = πsm − c−1
m pTm

T∑
t=1

xstm, ∀s = 1, . . . , S. (2.6)

For our second variant, the revenue for the VPP without market access receiving feed-in

tariffs pFiTm for each generated MWh in scenario s for asset m is defined as

πFiTsm = c−1
m pFiTm

T∑
t=1

xstm ∀s = 1, . . . , S. (2.7)

2.2.3 Estimation of marginal asset values

By calculating the marginal benefit of our respective assets in the portfolio, we better

understand the price that the VPP would be willing to pay for them; we will call this

benefit the portfolio value of a specific asset hereafter. Additionally to analyzing its

absolute size, we examine how it differs from an asset’s expected value. We call this

difference either a premium or a discount of a specific asset at a given level of the VPP’s

risk aversion. This analysis reveals another dimension of PV and wind asset valuation,

which arises because of the asset’s risk characteristics and the corresponding value that

a risk-averse VPP would assign to it.

Let π be random revenues and

λE(π) + CVaR(π) (2.8)

be the utility function of the VPP, with the parameter λ as the dual variable of the

expectation constraint in (2.4). We determine how much the VPP would be willing to
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pay for an increase in its position in asset m by determining the marginal utility from an

increase in the respective asset’s weight wm transformed into a monetary value. To this

end, we calculate the partial derivative ∂
∂wm

u(w∗) of the utility function at the optimal

solution w∗ that solves (2.4)2.

We define the portfolio value of asset m as the deterministic monetary value, which

the VPP is willing to pay for an extra unit of the respective asset, calculated based on

utility function (2.8) and the translation invariance of the CVaR as

(1 + λ)−1 ∂

∂wm
u(w∗). (2.9)

Furthermore, we define market premiums/discounts for individual assets m as

(1 + λ)−1 ∂

∂wm
u(w∗)− S−1

S∑
s=1

πsm, (2.10)

that is, the difference between the portfolio value and the expected revenue of asset m.

If the above value is larger than zero, then the VPP would pay a premium on top of

the asset’s expected revenue, whereas a negative value signifies that the VPP would only

accept an additional unit of asset m if it were offered at a discount from its expected

revenue.

2.3 Modeling of stochastic inputs

In this section, we discuss the stochastic modeling of the risk factors that influence the

VPP’s revenue and are required to build the scenarios used in Section 2.2. We can broadly

categorize the risk factors as variables influencing revenue by their impact on power

2 Note that

∂

∂wm
u(w∗) =

∂

∂wm
(λE(〈w∗, πs〉) + CVaR(〈w∗, πs〉)) =

λ

S

S∑
s=1

πsm +
1

αS

∑
s∈I

πsm

given that αS is an integer and I = {s : 〈w∗, πs〉 ≤ a∗} with a∗ the Value-at-Risk of the optimal

portfolio, which is the optimal value for a in (2.4).
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Figure 2.2: Simulated risk factors and their interdependencies.

prices and those impacting the generated power volume. Variables with direct impact on

generation volume also may impact power prices.

To be able to quantify the portfolio risk and decide the portfolio composition, we

require stochastic models for all the uncertain parameters in our model. An overview of

the modeled variables and their connections is provided in Figure 2.2.

1. As a central building block, we describe random generation volumes from the re-

newable energy sources. We model PV and wind generation separately for each

network zone in Germany, capturing geographically varying generation patterns.

We model forecast outputs as well as actual outputs3.

2. As additional input for our electricity price models, we model the average daily

temperature, which influences the demand for electricity and captures seasonality

within the year.

3. We use the natural gas price as a proxy for prices of primary energy carriers in

our electricity price models and use a mean reverting process, with a non-constant

mean reversion level, to represent its random evolution.

4. We model random day-ahead as well as intraday prices. The day-ahead price models

3 The network zones in Germany are Tennet, 50Hertz, Amprion and TransnetBW
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are regression models with temperature, gas price, and forecasts for renewable in-

feed as explanatory variables. The intraday price depends on the same factors as

the day-ahead price but additionally takes the day-ahead price and the forecast

error in renewable generation into account.

To be able to capture the impact of risk on the portfolio decision, we build models

that not only provide reasonable forecasts for the risk factors but also can mimic the

distributional properties of the real processes when simulated over longer periods of time.

In this respect, our approach differs from the large majority of existing literature, which

is either focused on short-term forecasts for operation and trading purposes or on long-

term forecasts for investment decisions. We choose a fully non-parametric approach to

modeling the stochastic input factors (Xt)
T
t=1. All the models consist of a trend (Yt)

T
t=1

which may depend on other stochastic factors and a random deviation (εt)
T
t=1 from the

trend. All models are estimated using four years of data from 2011 to 2014. We denote

the in-sample time (in hourly time steps) as t = 1, . . . , T .

We choose a unified modeling approach for PV and wind power forecasts, temperatures

and gas prices. The trend (Yt)
T
t=1 is deterministic, dependent only on time, and estimated

using locally constant kernel regression

YF (t) =

∑T
k=1 Kh (F (t)− F (k))Xk∑T
k=1Kh (F (t)− F (k))

(2.11)

where Kh(x) = h−1φ(xh−1) with φ the density of the standard normal distribution and F

is a time transformation taking into account the specific seasonality patterns for the risk

factor to be modeled. The bandwidth h is chosen by increasing the optimal bandwidth

found by leave-one-out cross validation until there are no more than a pre-specified num-

ber of local extrema in Yt per year. For PV and wind forecasts as well as temperature,

the extrema limit is set to four per year. The models for the individual risk factors differ

in the choice of the functions F (t), the exact way the errors are simulated, and whether

the models yield hourly or daily time granularity. We use blockwise bootstrapping of the

model residuals to generate simulations from our models.
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We report an overview of the quality of the in-sample fit of the forecasts (Yt)
T
t=1 in

Table 2.1. The quality of the forecasts from the models is measured by the R2 as a relative

measure of fit and the in-sample mean absolute deviation (MAD) as an absolute measure

of model error, which is complemented by the mean absolute percentage error (MAPE)

as another relative measure of error. In the following, we discuss the specific stochastic

models in detail.

Control Zone Frequency R2 MAD (MAPE) Data Source

PV forecast Tennet hourly 88% 361 MW (27%) tennettso.de

50Hertz hourly 81% 215 MW (37%) 50hertz.com

Amprion hourly 83% 244 MW (33%) amprion.net

Transnet hourly 83% 169 MW (34%) transnetbw.com

Wind forecast Tennet hourly 17% 1,455 MW (61%) tennettso.de

50Hertz hourly 13% 1,464 MW (65%) 50hertz.com

Amprion hourly 20% 524 MW (61%) amprion.net

Transnet hourly 8% 46 MW (87%) transnetbw.com

Temperature all daily 78% 2.66◦ C (26%) Mathematica

Gas price all daily 95% 0.37 EUR (1.6%) NCG settlement prices

PV generation Tennet hourly 96% 196 MW (15%) tennettso.de

50Hertz hourly 94% 106 MW (18%) 50hertz.com

Amprion hourly 92% 158 MW (21%) amprion.net

Transnet hourly 92% 102 MW (20%) transnetbw.com

Wind generation Tennet hourly 93% 367 MW (15%) tennettso.de

50Hertz hourly 91% 428 MW (19%) 50hertz.com

Amprion hourly 83% 227 MW (26%) amprion.net

Transnet hourly 82% 18 MW (34%) transnetbw.com

Day-Ahead price all hourly 68% 6.74 EUR (16%) EPEX day-ahead auction

Intraday price all hourly 85% 4.70 EUR (11%) EPEX intraday average

Table 2.1: In-sample fit for the different models: comparing historic data (Xt)
T
t=1 and estima-

tion/seasonal trends (Yt)
T
t=1. MAD abbreviates mean average deviation and MAPE mean average per-

centage error.
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Figure 2.3: (a) Boxplots comparing the hourly PV in-feeds of the real data and a simulation in the

Tennet control zone (circles means, bars medians). (b) Partial auto-correlation functions of the Tennet

simulations and the original data till lag 48 h.

2.3.1 Day-ahead PV forecast

The amount of PV generation influences the volume the VPP can sell on the power

market and, therefore, is a central variable in its business model. It is also an important

factor influencing prices on the day-ahead market. However, since the actual generated

volumes are not known at the time when the day-ahead market closes, the VPP sells

the amount from the latest generation forecast X̂t. Therefore we model the day-ahead

electricity prices to be dependent on these forecasts and base our models for actual PV

generation on the generation forecast. We model PV forecasts separately for the four

German network control zones based on the publicly available day-ahead PV forecasts

published on the homepages of the four German grid operators. Data are available in

15-min time intervals, which we aggregate to an hourly time series.

Within the in-sample period, a significant amount of new PV capacities were installed.

We account for this fact by transforming absolute generation into relative generation per

MW capacity by dividing generation by installed PV capacity, which is available in daily

time granularity for each of the four German control zones (Deutsche Gesellschaft für
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Sonnenenergie, 2015). Modeling the output per installed capacity allows us to extrapolate

into the future based on assumptions of future installed capacities. Since capacity data

are incomplete between August 1, 2014 and December 31, 2014, we reconstruct the values

in this time period by linear interpolation.

The series of PV in-feeds exhibits superimposing daily and yearly seasonality. To

account for daily seasonality, we split the model into 24 hourly models, one for each

hour of the day. To be consistent across season, we remove daylight savings from

the data, by analyzing all data in winter time. For each hour h, we account for yearly

seasonality by smoothing the data to a yearly pattern, that is, we estimate a season-

dependent forecast YF (t),h as described below. The function F (t) is defined as the number

of minutes between sunrise and sunset on day t, which rests on the assumption that the

number of light minutes is a good explanatory variable for PV generation. We combine

the 24 estimates for seasonality to one single estimate for a smooth yearly trend Ŷt. Our

seasonal component in the exemplary Tennet zone has an R2 of 88% and a MAD of

361 MW (27%).

To model the deviations from the trend, we consider a logarithmic error term

εt = log

(
X̂t + c

Ŷt + c

)
to account for the heteroskedasticity in the data. Given the above, we can write

X̂t = (Ŷt + c)eεt − c

where c > 0 is a constant that is used to avoid −∞ in the logarithm for night hours

without any power generation.

To generate samples from the model, we use blockwise bootstrapping with a block-

size equal to one week by randomly drawing a block of 168 hourly residuals εt from our

data (one residual from each model for each specific day in a week) and then use these

resampled errors to simulate the process. To account for yearly variations within the

errors, we separate the year in three periods and draw the respective error εt from past
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errors in that same period. As periods, we use winter (November–February), summer

(May–August) and a transition period comprising March, April, September, and Octo-

ber. Blockwise bootstrapping ensures that the intraday serial correlation in the errors

is preserved. Furthermore, it provides a non-parametric representation of the error term

εt, which is clearly non-normal and also does not seem to conform to any other standard

parametric distributional model.

To check whether the simulated PV forecasts exhibit the same distributional prop-

erties as the actual sequence, we compare simulations for the year 2014 with the actual

empirical data. Figure 2.3 shows a comparison of monthly boxplots for hourly PV in-

feed in the exemplary Tennet control zone, which is the zone with the most installed

PV capacity4. The plot reveals that the distributions are close, in particular the means,

medians, and quartiles are closely matched for most months. While most features of the

distributions appear to coincide, the simulated data contain more extreme observations

and therefore slightly more outliers. As this effect is only marginal, we do not expect it

to distort our analysis. Figure 2.3 compares the empirical partial auto-correlation func-

tion (PACF) of a simulated trajectory for the year 2014 to the PACF of the actual data.

Evidently, the two functions are very similar and agree in all their important character-

istics. We conclude that the model captures the inter-temporal dynamics of PV in-feed

reasonably well.

2.3.2 Day-ahead wind power forecast

Similar to the forecast of PV generation, the aggregator uses the previous day forecast

of wind power generation to determine its bids on the day-ahead market. Hence, its

fluctuations represents a substantial risk in the VPP’s business model. Wind power

forecasts are used as inputs for the power price models and the models for actual wind

generation. We obtain the data from the same sources as the data on PV forecasts and

4 Results for the other network zones look similar and are available on request.
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Figure 2.4: (a) Boxplots comparing the hourly wind in-feeds of the real data with a simulation in the

Tennet control zone (circles means, bars medians). (b) Partial auto-correlation functions of the Tennet

simulations and the original data till lag 48 h.

apply the same modeling approach, the only difference being that the function F is not

the number of minutes from sunrise to sunset but the function

F (t) =


dt/24e−b

183
b ≤ t/24 ≤ b+ 183

1− dt/24e−b
183

, otherwise

(2.12)

where the parameter b, that is, the minimum of the function, is found by testing all

values from 1 to 365 and selecting the value that leads to the best fit of the kernel

regression estimate in terms of the highest correlation coefficient between historic data

X̂t and seasonal trend Yt. This yields similar, but slightly different parameters b for the

four zones. While Tennet has an optimal b of 362, that is, a function F with minimum

value on December 28, 50Hertz has an optimal b of 360 or a minimum on December 26.

Amprion and Transnet share the same optimal b at 359.

We find a significant yearly seasonality in wind energy forecasts. Our trend component

for wind generation in July is 40%–50% below the corresponding value for January. As

shown in Table 2.1, our seasonal component has an overall R2 of 17% and a MAD of

1455 MW (61%) in the exemplary Tennet zone, which we selected as an example again
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because it has the largest installed wind capacity of the four German zones5. These

measures show that the seasonality in wind generation is not as pronounced as in PV

generation, which happens due to the relatively weak daily seasonality.

As with PV forecasts, the simulations of the wind generation forecast are created by

blockwise bootstrapping from the seasonal residuals of the real data using weekly block

intervals to preserve serial correlation. The errors are thereby added in the same sequence

as for the PV generation forecasts to preserve correlation between the different generation

assets. Figure 2.4 shows a good fit of our model to the 2014 data of the Tennet control

zone.

2.3.3 Actual PV and wind power generation

We model actual PV and wind power generation based on their day-ahead forecasts.

While the forecasts are important for the day-ahead power price models, the actual

generation enters the intraday price models and is used to calculate the VPP’s generation

and intraday balancing volumes. As for the forecasts, we use publicly available data

provided by the four transmission system operators for our analysis.

We regress actual generation Xt against the respective forecasts X̂t, that is, estimate

the following linear regression models

Xt = β1 + β2X̂t + εt. (2.13)

To simulate actual generation in the out-of-sample period, we calculate the generation

estimates from the above regression using the simulated PV or wind power forecast for

that particular network zone as generated from the models in Sections 2.3.1 and 2.3.2.

We bootstrap the error terms by randomly selecting residuals of the regression. In doing

so, we do not differentiate between different periods of the year as we assume that the

size of forecasting errors does not depend on the time of year.

5 The results from the other zones look similar and are available on request.
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Figure 2.5: (a) Seasonal profile from kernel regression and the actual temperature time series over our

regression period from 2011 to 2014. (b) Boxplots comparing real daily temperatures and their simulation

in Germany (circles means, bars medians).

As shown in Table 2.1, the resulting R2 for PV and wind power generation in the

Tennet zone are equal to 96% and 93%, respectively. The mean absolute deviation is

around 196 MW (15%) for PV and 367 MW (15%) for wind power generation.

2.3.4 Average daily temperatures

We model daily average temperatures as an input factor for the simulation of power prices.

To construct a proxy for average daily temperatures in the EPEX market zone, we use a

population weighted mean of all the Austrian and German cities with more than 10,000

inhabitants. The index is constructed using the Mathematica 7.0 functions CityData and

WeatherData (Graf and Wozabal, 2013). As Figure 2.5 shows the temperatures follow a

clear seasonal pattern with a minimum in the first month of each new year. We apply the

same non-parametric modeling framework as to PV and wind energy forecasts, except

that we model only average daily temperatures. We apply the same function F as in

the case of wind forecasts and find b = 22, that is, a minimum of F (t) on January 22 as

optimal.
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Figure 2.6: Actual EEX natural gas prices 2011–14 in EUR (blue line) and the gas futures prices in

EUR for 2015 (red line) as traded on December 30, 2014. The black line shows the fitted means from

kernel regression as input into our time-dependent mean reversion model.

To simulate the error we use blockwise bootstrapping from the set of seasonal residuals

in the same sequence as in the PV and wind models. We use blocks of 7 days to preserve

serial correlation from the same period of the year (summer, winter, or transition period).

The resulting seasonal component is shown in Figure 2.5 panel (a) together with the actual

temperatures. It has an R2 of 78% and a mean average deviation MAD of 2.66◦C. As

in the case of PV and wind forecasts, simulation is conducted for the year 2014; the box

plot in Figure 2.5 shows a good fit.

2.3.5 Natural gas price

The natural gas price enters our model as a covariate in the power price regression models.

We use EEX’s daily settlement prices for Germany’s largest gas market zone NetConnect

Germany (NCG). Prices are determined every day for the respective following day as

average of all natural gas day-ahead contracts, which are in the order book during the

daily settlement period.

The gas price simulation is based on a mean reversion process for logarithmic prices,

which is a common choice for commodity markets, since it can be observed that in the

long-run, commodity prices tend to be drawn back to their marginal production cost

(Schwartz, 1997). We employ a mean reversion model which is a non-parametric discrete
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Figure 2.7: (a) Boxplots comparing the real daily gas price and one of its simulations (circles means,

bars medians). (b) Partial auto-correlation functions of the gas price simulations and the original data

till lag 30 d.

time version of the model in Tseng and Barz (2002), who use a time-dependent mean.

They describe the dynamics of the price process Gt in continuous time by the following

stochastic differential equation

d lnGt = −µ(lnGt −mt)dt+ σdBt, (2.14)

where Bt is a Wiener process and mt is the time-dependent mean. Tseng and Barz (2002)

first deseasonalize the logarithmic prices by estimating mt and then obtain the rest of

the parameters by maximum likelihood estimation.

In line with the models for other risk factors, we use kernel regression to estimate the

time dependent mean mt. However, unlike the models treated so far, mt does not follow

a stable seasonal pattern over time. Therefore, we use a simple linear function F (t) = t

for the kernel regression. The lack of seasonal pattern also makes forecasts more difficult.

Hence, instead of trying to forecast the corresponding Yt for the year 2015 as we did in the

other models, we use the observed futures prices on December 30, 2014 as the expected

mean reversion levels for 2015. To generate a smooth transition between our in-sample

period and the out-of-sample simulation period, we combine observed gas prices from
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2011 to 2014 with futures prices and use the resulting 5-year time series to estimate mt.

We choose the minimal bandwidth h, which reduces the number of local extrema to 15

over all five years. The resulting gas price means are shown in Figure 2.6 as a black line.

mt captures the medium-term price patterns without short-term fluctuations and shocks.

Additionally, Figure 2.6 illustrates the expected prices observed in the futures market and

the corresponding futures means found by the kernel regression.

To estimate the parameter µ of the mean reverting model, we define yt = lnGt−lnGt−1

and rewrite (2.14) in discrete time as

yt = −µ(lnGt −mt) + εt (2.15)

which can be estimated via ordinary least squares regression. The mean reversion proves

to be a very good fit: the R2 is 95% and the MAD is at 0.37 EUR (1.6%).

The estimated residuals from the ordinary least squares model (2.15) are clearly non-

normal. Following the ideas already applied to the other models, we capture the distribu-

tional characteristics of εt by bootstrapping the residuals of the regression model (2.15).

Unlike the models for PV and wind power forecasts, we do not differentiate between

seasons while bootstrapping. To assess the distributional properties of our model, we use

the estimated means mt to simulate prices for the year 2014 and compare them with the

actual prices. Figure 2.7 illustrates the fit of this modeling approach. It also indicates

that there is no auto-correlation to be captured, so we do not use block bootstrapping

for this model.

2.3.6 Power prices

The simulation of day-ahead power prices is based on linear regression models using

forecasts for renewable generation, daily temperatures, and natural gas prices. To model

seasonal effects, we use the number of minutes between sunrise and sunset as an additional

deterministic regressor. To capture daily seasonality, we estimate one model per hour and
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Figure 2.8: Number of times that each regressor was on average selected in each of our 48 day-ahead

[panel (a)] and 48 intraday [panel (b)] power price models. The blue box quantifies average inclusions as

linear factor, the green box as quadratic factor, and the yellow box as quadratic interaction with one of

the other regressors. Theoretically, each regressor could be selected six times in each day-ahead model

and nine times in each intraday model.

further differentiate between weekdays (Monday–Friday) on the one hand and weekends

on the other. Therefore, finally we estimate 48 separate regression models describing the

dynamics of the power price.

The intraday price is modeled similarly, except it uses actual wind power and PV

generation (instead of forecasts) and forecast errors as additional regressors. The reason

for this is that actual wind power and PV generation only become known during the time

of intraday trading and we assume forecast errors to be a price driver on the intraday

market, where renewable generators have to balance their position in the short term.

Additionally the day-ahead price is included as a regressor in the intraday models.

We include all interactions of the regressors up to the second order. To ensure par-

simony of the model, we performed stepwise combined forward-backward elimination as

described in Draper and Smith (1998), Section 15.2, and used the Bayesian information

criterion for model selection.

Hourly power price data were obtained from EPEX SPOT day-ahead and intraday
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markets for the German-Austrian price zone. The combination of selected regression

models achieves an R2 of 68% for day-ahead prices and 85% for intraday prices. Their

MAD equals 6.74 EUR/MWh (16%) for day-ahead and 4.70 EUR/MWh (11%) for intra-

day prices. Keles et al. (2016) recently published a paper with specific focus on forecasts

of German day-ahead power prices benchmarking an artificial neural network with more

than 20 input variables (MAD of 4.67 EUR/MWh) against an ARIMA model (MAD of

8.84 EUR/MWh). Therefore, we conclude that the step-wise regression chosen for this

research is well suited to model power prices in our context.

Each day-ahead model consists on average of 17.6 regressors and each intraday model

of 31.3 regressors using 1,460 data points each. Figure 2.8 demonstrates how often certain

regressors have been selected on average in our regression models. The relative importance

of the factors is similar in day-ahead and intraday models. For day-ahead models, the

most important regressors are gas prices and deterministic lighted minutes, which can be

considered a proxy for yearly seasonality. For intraday models, the day-ahead price is the

most important regressor by far. It is followed by wind generation in the respective hour,

the gas price, and temperatures. Interestingly PV forecast errors or actual generation

are selected significantly less. This could originate from PV’s superior predictability

and, therefore, lower intraday volume in comparison to wind generation, as well as its

correlation with light minutes (see Section 2.3).

We simulate electricity prices using the above regression models to forecast the elec-

tricity price using the simulated values for the regressors as input. To simulate the errors,

we bootstrap the in-sample residuals from the regression models using blockwise boot-

strapping with block size of 24 h to preserve serial correlation. To assess the fit of our

model’s distributional properties, we use simulated prices for the year 2014 based on

simulated regressors for 2014 and compare them with the actual prices. Figure 2.9 shows

that the distributional characteristics are captured well by our models.
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Figure 2.9: (a) Boxplots comparing the real hourly day-ahead power prices and one of its simulations

(circles means, bars medians). (b) Partial auto-correlation functions of the power price simulations and

the original data till lag 48 h.

2.4 Results

In the following, we apply our portfolio optimization algorithm to 5,000 scenarios with

8,760 h each, which we generate from our stochastic models described in Section 2.3. We

thereby make the assumption that the PV and wind forecasts and generation in the four

German network zones are representative for groups of assets that an actual VPP can

potentially hold in its portfolio. The CVaR parameter α is set to 1%6.

We analyze the characteristics of our individual assets’ and portfolios’ yearly revenues

π based on the simulations for the year 2015. For the simulation of prices, we require

a simulation of the overall PV and wind power generation. We therefore scale up the

forecasts by the projected overall capacity. To do so, we assume a continuation of the

capacity growth trend for PV and wind generation. More specifically, we use the estimates

provided in the review of the Renewable Energy Sources Act from August 1, 2014. The

bill states a growth target of 2.5 GW per year both for PV and wind. We further assume

6 Optimizations with α at 3%, 5%, and 10% showed similar results and conclusions. They are available

on request.
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the same relative growth rate over all German control zones. This leads to an expected

capacity increase in our exemplary Tennet control zone of 0.99 GW (6.5%) in PV and

1.01 GW (6.7%) in wind capacity.

Throughout this section, revenues are denoted in EUR per expected MWh of gener-

ation as discussed in Section 2.2. This unit price allows for a good comparison between

different assets or portfolios. Variations in revenue for a single scenario, therefore, can be

either due to generation volumes that differ from the forecast or due to price variations.

We estimate expected revenue E(π) as well as its standard deviation σπ and calculate

Sharpe ratios as a relative risk measure. Additionally, we calculate the CVaR of the

individual assets and portfolios.

First, we analyze the characteristics of the eight individual PV and wind assets,

including their interdependencies. Then, we present the portfolio optimization results for

our main model with full volume and market risk and for the two model variants discussed

above. Wherever applicable, we discuss three example portfolios with different levels of

risk aversion: the minimum-risk, medium-risk/return, and high-return portfolio7. In each

section, we also derive implications for VPPs and their participants. Using second-order

stochastic dominance, we find that every risk-averse decision maker would prefer our

exemplary medium-risk/return portfolio to an unmanaged market portfolio, regardless of

the actual risk preferences.

2.4.1 Individual asset performance

We find that yearly revenues differ considerably in their distributional characteristics:

first, between the wind and the PV group of assets and, second, between the different

assets in each of those two groups. Results are reported in Table 2.2. The average

7 Note that we do not assume any of these three levels of risk aversion to be indicative of the risk

aversion of a real VPP. Consequently, we exclusively use these portfolios to discuss the range in

which profits and risks vary with varying levels of risk aversion.
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E(π) σπ Sharpe CVaR

Individual Tennet 30.67 0.88 35.02 28.23

PV assets 50Hertz 31.50 1.19 26.56 28.38

Amprion 31.86 1.08 29.48 29.06

Transnet 31.70 1.12 28.31 28.71

Individual Tennet 33.42 1.72 19.48 29.04

wind assets 50Hertz 32.42 1.93 16.78 27.51

Amprion 34.25 1.98 17.30 29.24

Transnet 35.23 3.87 9.10 26.13

VPP with Average German 32.98 2.27 14.51 29.13

volume and Minimum risk 32.61 0.63 51.95 30.99

market risk Medium risk/return 33.92 1.60 21.17 30.04

High return 35.23 3.87 9.10 26.13

Table 2.2: The expected yearly revenue E(π), its standard deviation σπ, and the resulting Sharpe ratio

as well as its Conditional Value-at-Risk (CVaR) for the base case model. All (except the Sharpe ratio)

are noted in EUR per ex ante expected MWh per year.

wind assets’ expected revenue is 2.4 EUR/MWh higher than for PV assets (33.8 vs.

31.4 EUR/MWh). This 7.6% revenue difference is surprisingly high considering both

energy sources are producing the same commodity for the same market, only at different

times. The lowest wind asset’s revenues (50Hertz Wind) are still higher than the highest

revenues for a PV asset (Amprion PV). This difference is particularly interesting, because

PV’s expected revenue has historically been higher than the one for wind. This was the

case as PV’s generation is strongly positively correlated with the power demand and,

therefore, with historical prices. The difference decreased greatly over the recent past.

While it was on average 18.6% in 2011, it decreased to 3.1% in 2014. Our forecast shows
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that in 2015 the revenue for PV is expected to fall below that for wind. The reason for

this development is the stronger temporal concentration of PV power generation within

a few hours of the day. This leads to lower wholesale prices in these hours, when the

market share is rising. This effect outweighs the correlation with power demand and has

been predicted in the literature (Hirth, 2013).

Additionally, we find that expected revenues between different assets within the PV

and within the wind group vary significantly. For example Transnet wind is around

8.7% more valuable than 50Hertz Wind. One of the reasons is the difference in installed

capacity: by the end of 2014 Transnet had the least wind capacity with 0.65 GW while

50Hertz had 15.1 GW. Generation from a specific control zone is temporally concentrated;

thus, a higher generation volume from a particular zone has a negative effect on price

level. This is the same relationship that leads to an overall decrease in the price levels

for PV and wind assets.

The difference in expected revenue between PV assets is not as pronounced as between

wind assets. The most valuable PV asset (Amprion PV) earns only 3.9% more than the

least valuable one (Tennet PV). Hence, on the one hand, we observe that a higher market

share has a more pronounced negative effect on PV’s than on wind’s expected revenue.

On the other hand, it leads to a smaller divergence of PV revenues across network zones

compared to that of wind revenues.

Important conclusions for the VPP business model can be drawn from the relative

revenues. The differences imply that some assets are significantly more attractive in a

portfolio than others, even without considering risk. DM service providers, therefore,

have good reasons to apply location- and technology-dependent pricing schemes, which

are still uncommon in the industry.

Higher risks are associated with higher expected revenue from wind assets. Its average

standard deviation is more than twice higher than for PV (2.4 vs. 1.1 EUR/MWh).

Overall, PV assets’ revenues show significantly higher Sharpe ratios. The Tennet PV
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asset has the highest Sharpe ratio of 35, although it has the lowest expected revenue.

One reason for this might be the large geographic size of the Tennet control zone, which

offers a natural diversification effect. The other PV zones are relatively homogeneous,

with ratios between 26 and 29. Wind assets, on the contrary, show Sharpe ratios between

9 and 19. The lowest value represents the high-risk/high-return outlier Transnet wind. It

has the highest expected revenue of all assets, but also a disproportionally higher standard

deviation. A possible reason for these uncommon distributional characteristics can be

that the zone has by far the least installed wind capacity of all and therefore provides

higher obtained prices as discussed above as well as a lower natural diversification effect.

The other three wind assets are relatively homogeneous, with Sharpe ratios between 17

and 19.

Interestingly, the individual assets’ CVaRs are more homogeneous than their expected

revenues. They vary between 26.1 EUR/MWh (Transnet Wind) and 29.2 EUR/MWh

(Amprion Wind). Moreover, PV and wind assets do not significantly differ as wind

assets’ higher risk apparently compensates its higher expected revenue. On average, the

CVaR is 17.3% below the expected revenues for wind and 9.0% for PV assets. A stylized

calculation example helps to illustrate the effect of these levels on a fixed cost business

model: we compare the asset owner’s expected annualized results with results for the 1%

CVaR case. When assuming 80% debt financing, capital costs for equity twice as high

as for debt and an operational expenditure cost share of 29% (Fraunhofer IWES, 2015b),

debt service makes up 47% of expected revenues. In this setup, a revenue reduction of

17.3% (as in the 1% CVaR case) translates into a profit reduction of 73% for the equity

owner in a particular year. Considering that typical asset owners in this industry are

rather risk-averse (e.g., yield cos, pension funds, private individuals), any potential to

reduce this risk by diversification is relevant.

For a potential diversification effect, the correlation between the individual assets’

yearly revenue is of particular interest. We find a negative correlation of every wind with
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Figure 2.10: (a) Individual assets’ expected revenue (x-axis) and their respective CVaR (y-axis) with

squares and circles in EUR/MWh, as well as the efficient line of portfolio combinations, including the

three portfolios selected for further analysis with diamonds. Additionally, the cross marks the average

German direct marketing portfolio at the end of 2014. (b) The respective asset weights of the portfolios

on the efficient line.

every PV asset. On average, the correlation coefficient between the two technologies’

revenues is -0.31. Hence, a good wind year is likely to be a poor sun year and vice

versa. This obviously has a positive effect on diversification potential between these

assets. Within each generation technology, the correlation between revenues is positive.

The average correlation coefficient is 0.58 among PV assets and 0.72 among wind assets.

2.4.2 Portfolio diversification in a VPP

There is substantial opportunity for risk diversification, and a superior risk/return com-

bination can be achieved by efficient portfolios of renewables. Portfolios on the efficient

frontier clearly dominate the individual assets’ risk/return profile. The efficient frontier

as well as portfolio compositions are depicted in Figure 2.10.

We discuss three distinct portfolios on the efficient line whose risk/return characteris-

tics are given in Table 2.2. The highest return portfolio is achieved by simply building a

portfolio solely from the asset with the highest expected revenue, which in our case is the
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Figure 2.11: Premia/discounts or the difference between respective asset’s market and portfolio value

in EUR/MWh for different levels of risk aversion λ (on the x-axis).

wind generation asset in the Transnet control zone. It is very profitable, but also highly

risky. The minimum-risk portfolio dominates all individual PV assets as it has a higher

expected revenue and higher CVaR. It consists of three PV and three wind assets though

PV provides 60% and wind 40% of the expected power generation. The portfolio’s CVaR

is higher than that of any individual asset by a wide margin of 1.8 EUR/MWh and its

CVaR is only 5% below its expected revenue (compared with more than 25% for the

highest return portfolio).

The medium-risk/return portfolio is defined as having the expected revenue exactly

between the high-return and the minimum-risk portfolios. It offers higher revenues than

all individual assets, except the two most profitable ones, while its CVaR is still higher

than that of any individual asset. Compared with the two more profitable wind assets, its

CVaR is 15% and 3% higher. These two wind assets provide almost 80% of the portfolio’s

expected generation. However, the addition of 20% PV generation ensures a significantly

less risky position. As a result, the portfolio CVaR is only 11.4% below its expected

value, which is a substantially better ratio than that for the high-return portfolio or for

any other wind asset.

The willingness to pay for additional capacity to be included into the portfolio, or

an asset’s portfolio value, was defined in Section 2.2.3. Our results show that it varies

significantly from the asset’s expected revenue and also between different levels of risk
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aversion. Figure 2.11 shows the different assets’ premia and discounts depending on the

level of risk aversion λ. The four PV assets receive a premium, whereas the four wind

assets are discounted. This discount is particularly high for the most risky wind asset

Transnet Wind. As expected, a higher level of risk aversion, that is, a smaller value for

λ, corresponds to higher absolute values of premia and discounts.

To illustrate the potential value of our results, we benchmark the medium-risk/return

portfolio to the average German direct marketing portfolio. As illustrated in Table 2.2,

the medium-risk/return portfolio has a 2.9% higher expected revenue and a 3.1% higher

CVaR. Furthermore, we tested our medium-risk/return portfolio for second-order stochas-

tic dominance (De Giorgi, 2005; Koppa and Chovanec, 2008) and found that it indeed

dominates the average German DM portfolio consisting of a mix of all eight assets in

proportion to their DM participation in reality. This result establishes that the optimal

portfolio is preferable to the market portfolio regardless of the VPP’s risk preferences.

A typical German VPP with an average asset mix selling 5 TWh of power per year,

would thereby have 4.7 million EUR lower expected revenue per year and 4.6 million EUR

lower CVaR. Hence, it is valuable for asset owners to actively and carefully select VPP

partners to optimally diversify their risks.

2.4.3 Model variant I: portfolio diversification from the opera-

tor’s perspective

So far, we have considered the perspective of the VPP as a whole. Now we consider the

perspective of a VPP operator who optimizes the composition of renewables in his direct

marketing portfolio. He guarantees prices to the capacity owners based on Equation (2.5)

while setting his service fee f equal to 1 EUR/MWh, which is roughly the average in the

German VPP market in 2015 (Edwardes-Evans, 2015). In this setup, the operator carries

not only the entire market risk but also part of the volume risk. With resulting gross

margins, the operator needs to cover his remaining fixed costs for trading operations,
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E(π) σπ Sharpe CVaR

VPP operator Average German 1.00 0.80 1.25 -1.87

perspective Minimum risk 1.00 0.73 1.37 -0.98

VPP with fixed Average German 30.00 3.07 9.75 25.60

feed-in tariffs Minimum risk 30.00 0.74 40.48 28.14

Table 2.3: Portfolio outcomes for our two variations of the base case model in Sections 2.4.3 and 2.4.4:

First, from the zoomed-in VPP operator perspective and, second, with the VPP receiving fixed feed-in

tariffs. The reported data points have the same definition as in Table 2.2.

asset owner-oriented sales force and administration.

The operator’s expected revenue is fixed at 1 EUR/MWh. Its standard deviation is

similar among the different assets but very large compared with the operator’s expecta-

tion, leading to Sharpe ratios around 1. The assets’ CVaRs show a significant possible

loss between -1.5 and -2.4 EUR/MWh. Average 1% CVaR is at -1.6 EUR/MWh for PV

and at -2.3 EUR/MWh for wind assets. We can conclude that for the VPP operator,

risk is much more severe than for the VPP as a whole. Quoting a fixed unit price and,

thereby, carrying full market risk can induce actual losses, not just reduced interest on

equity. Therefore, the analysis of diversification potential is even more important for the

VPP operator than for the individual asset owner.

Table 2.3 shows two distinct portfolios from the operator’s perspective: the average

German direct marketing portfolio as discussed above and the portfolio with minimum

risk for the VPP operator. The results show that the operator’s CVaR in absolute terms

can be increased by 0.89 EUR/MWh – almost by as much as his expected gross margin.

Relatively, his negative CVaR can be reduced by 48% compared with the average DM

portfolio and by 60% compared with the riskiest individual asset. The optimal portfolio

consists of two PV (50Hertz, Transnet) and one wind asset (Amprion).

Hence, differentiating the pricing between asset owners is highly important to the
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VPP operator (as described in Section 2.4.1). However, it is not sufficient to do so based

only on the assets’ different expected revenues but also based on their risk patterns.

Otherwise the VPP is likely to end up in a significantly inferior risk/return position.

2.4.4 Model variant II: portfolio diversification without market

access

Around the world, large numbers of renewable assets are either not required or not able

to participate in wholesale markets. The most common sources of revenue for these

assets are feed-in-tariff subsidy schemes or power purchase agreements (PPAs). In these

schemes the asset owner is eligible to receive a fixed price per generated unit of power. In

that case, the owner does not carry any market risk. His remaining source of uncertainty

is, therefore, the overall power volume his asset will generate. Next, we model possible

portfolios consisting of these fixed price assets.

We assume a uniform feed-in tariff of 30 EUR/MWh for all assets. We picked this

amount to make our analysis comparable with Section 2.4.2. In our setup the owner

receives the guaranteed tariff for his actual generation and does not have to worry about

forecasting and resulting balancing penalties. Therefore, we calculate the VPP revenues

as the product of actual generation and tariff (see Equation (2.7)).

As in the model settings with market risk, we find a substantial risk diversification

effect for assets that are receiving feed-in tariffs; the results are reported in Table 2.3.

While for the average German portfolio, the CVaR falls 14.7% below its expected revenue,

this difference is only at 6.2% in the case of minimum risk. This means that the minimum-

risk portfolio dominates all individual assets or other portfolio combinations because

there are no differences in expected revenues. Therefore, risk minimization maximizes

overall utility. The benefits of the minimum-risk portfolio become even more obvious

while analyzing the standard deviation of the two different portfolios, which is four times

higher in the average German portfolio than in the minimum-risk portfolio. The optimal
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portfolio consists of six assets: all four PV assets and two wind assets (Tennet and

Amprion). Roughly three-quarters of the portfolio generation is expected to come from

PV and only one-quarter from wind.

Our results clearly show that optimal pooling of renewables is relevant for all asset

owners and is not dependent on the option or the requirement to sell directly in the

wholesale market. Even in cases where pooling is not necessary to enable direct marketing

by providing economies of scale through shared transaction costs, there is a rationale to

build larger, renewable portfolios.

2.5 Conclusion

Efficient risk mitigation strategies that address the inherent price and volume risks that

owners of renewable generation capacities face on liberalized electricity markets are es-

sential for the successful global roll-out of PV and wind power generation. This paper

investigates the new question, to what extent pooling different technologies as well as

different locations in the portfolio of a virtual power plant can reduce aggregate risk.

We confirm our hypothesis that there exists a substantial risk diversification potential.

Therefore, VPPs should choose their portfolio not only based on the characteristics of

individual technologies and locations but also by paying close attention to the interde-

pendencies of these assets. Doing this allows the same level of expected return at a

significantly improved risk profile or vice versa. This result holds true for assets, which

are pooled already to sell their generation on the power market through a VPP, as well as

for assets, which receive a fixed compensation per unit and, therefore, are not necessarily

pooled yet.

For existing VPPs, our results imply that they need to carefully consider their pool

composition in order to capture the potential for an improved risk/return profile. This

requires an in-depth analysis of assets’ expected revenues and risks as well as their in-

terdependencies. For the average German VPP, this should result in an increased share
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of PV assets, which are, for the most part, not yet included in direct marketing schemes

due to their small average size.

One approach to affect pool composition is developing appropriate risk/return sharing

mechanisms among different VPP participants. This process will likely be moderated by

the VPP operator. Today every participant carries its volume and market risk itself even

after entering a direct marketing portfolio. Therefore the value from diversification is not

captured, although an institutional collaboration already exists. Sharing of volume risk

among VPP participants is only possible, if their revenue depends on installed capacity,

not on generated volume. How respective transfer price and risk sharing mechanisms can

be designed in detail is a question for further research.

By developing a technology- and location-specific pricing scheme, VPPs would fully

assume their intermediary role as a transmission mechanism between asset owners and the

central market. This would put increased value on renewable generation that is located at

sights with less cyclical generation patterns and will reduce medium-term volume risk in

the system. Thereby VPPs could render an, often called for, location-based differentiation

of subsidy schemes unnecessary.

We find substantial risk diversification potential for assets, which receive a fixed feed-

in tariff per unit. We see two ways in which these assets can capture the additional

value. First, our results shed light on optimal firm or portfolio size. They provide a clear

indication that there is a benefit in larger and diversified portfolios in contrast to holding

individual assets. The most obvious form of such diversification is likely to be integrated

ownership and operations of a large and carefully chosen portfolio of assets. Of course,

this also provides additional economies of scale effecting operations and maintenance

costs.

Second, there are also other more organizationally loose approaches for risk diversifi-

cation of renewable assets. For instance, one can imagine a simple insurance contract for

asset owners without additional features such as joint trading. An insurance provider,
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who builds a portfolio using the results in this paper, should be able to cover the owner’s

revenue risk for a significantly lower premium than it would be required for the isolated

individual revenue risk.

Furthermore, it becomes clear that owners of renewables have an additional incentive

to pool their generation rather than just fulfilling regulatory requirements or cashing in

on extra feed-in tariffs. The diversification effect, which the asset owners can receive

from a VPP, mitigates their transaction costs from operations on the power market. If

this value is captured, then the need for additional compensation or incentives for the

owners will be reduced. This stronger alignment of the regulator’s and owner’s objectives

needs to be taken into account in policy discussions regarding the market premium model.

Consequently, the additional premium for DM participants could potentially be lowered

as risk diversification incentivizes them to join anyways.

Next to more detailed work on transfer pricing mechanisms, we see three other research

areas that would expand our work: (1) more markets, (2) more geographies, and (3) more

technologies. First, our model setup could be expanded to include operations on the

balancing market, which results in additional costs as well as additional revenues. On the

one hand, VPPs have to pay penalties for the deviation between their actual generation

and their last forecast (30 min before the intraday market closes). On the other hand, in

the future they also are likely to sell capacity on the balancing market.

Second, renewable revenues could be pooled across national or even continental bor-

ders. The potential of this broader geographic diversification can be analyzed with our

model setup and a suitable data set.

Third, it is an open question, which other future asset classes VPPs should include

in their portfolios. Possible candidates are different flexibility options, such as combined

heat and power plants, demand-side management, and storage capacities. These other

assets provide different risk patterns than PV and wind assets and could provide the VPP

with a chance to enhance its overall risk/return position even further.
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Chapter 3

An Equilibrium Pricing Model for

Wind Power Futures

written in collaboration with Prof. Dr. David Wozabal

Generation from wind power plants is uncertain and affects profits of wind power

generators and conventional generators alike. Currently, generators have limited options

for transferring the resulting wind-related volume risks. The European Energy Exchange

(EEX) recently introduced exchange-traded wind power futures to address this market

imperfection. We propose a stylized equilibrium pricing model featuring two representa-

tive agents and analyze equilibrium prices as well as the mechanics behind risk premia

for wind power futures. We calibrate and simulate stochastic models for wind power

generation, power prices, electricity demand, as well as other relevant sources of uncer-

tainty and use the resulting scenarios to conduct a case study for the German market,

analyzing prices, hedging effectiveness, and risk premia. Our main result suggests that

wind generators are willing to pay an insurance premium to conventional generators to

reduce their risks.
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Figure 3.1: German monthly wind capacity factors 2011–14 in percent for four example months January,

April, July and October. Generation data in 15-min intervals were obtained from the four German trans-

mission system operators 50Hertz, Amprion, Tennet, Transnet, and daily capacity data from Deutsche

Gesellschaft für Sonnenenergie (2015).

3.1 Introduction

The energy industry has historically been one of the most weather-sensitive sectors in the

economy as temperatures throughout the year drive the demand for power and natural

gas. This situation has been greatly exacerbated by heavy investment into weather depen-

dent renewable energy generation in the recent years, which is instrumental in reducing

future greenhouse gas emissions. Variable power generation technologies such as wind

power and photovoltaic constitute the major share of current renewable installations,

and projections indicate their continued growth in the future (IEA, 2014).

In some countries, such as Germany or Denmark, the share of wind power has already

reached considerable levels. This development has introduced substantial weather risks to

the supply side of the energy industry resulting from stochastic wind speed, which defines

wind power generation volume in any particular period. Figure 3.1 displays capacity

factors, defined as ratio of average generation volume over installed capacity, illustrating

that wind generation in Germany is highly volatile even for longer observation periods

such as months and years.
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The resulting volume risk faced by owners of wind power plants is currently not

tradable via standardized products on energy exchanges. Consequently, wind power

producers cannot sell their volume risk to other market participants who might be more

ready to take it, inducing inefficiencies and ultimately welfare losses. For this reason, wind

power futures have recently been proposed by the European Energy Exchange (EEX).

The underlying of these futures are capacity factors for the average German wind power

plant, that is, the risk-neutral prices for a contract are naturally bounded between 0 and

100. The holder of the futures receives a payment that is equal to the actual observed

utilization in a given month, quarter, or year. Consequently, the planned futures can act

as an instrument to hedge risks emanating from volatile wind generation volume.

In this paper, we investigate the determinants of the price of these futures contracts

and the structure of potential risk premia in the market. The answer to this question is

highly relevant to wind power and conventional generators, as well as every other agent

with an interest to trade wind futures. In our analysis, we seek to estimate expected

payoffs accurately and try to understand potential risk premia.

There essentially exist three distinct streams of literature concerned with pricing fu-

tures contracts: applications of the rational expectation hypothesis (REH), no-arbitrage

pricing, and equilibrium models. The REH states that the price of a futures contract is

equal to the discounted expected spot price, or in the case of wind power futures, the ex-

pected capacity factors in Germany (see Burger et al., 2004; Fleten and Lemming, 2003,

for examples of models for power futures). The REH assumes risk-averse decision makers

and therefore precludes risk premia whose existence in power markets is well established

(Huisman and Kilic, 2012; Kolos and Ronn, 2008; Longstaff and Wang, 2004; Redl and

Bunn, 2013; Weron, 2008).

No arbitrage pricing approaches on the other hand, identify a risk-neutral probability

measure and an associated market price of risk. Hence, they do consider risk premia but

cannot explain their mechanics and interaction with the position holders’ business model.
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Furthermore, the underlying of wind power futures is not tradable until maturity. Hence,

no arbitrage pricing approaches based on replication arguments are not directly applica-

ble (see Eydeland and Geman, 1999; Pirrong and Jermakyan, 1999, for the structurally

similar case of power futures).

A detailed analysis of risk premia’s size, structure, and drivers is possible with equi-

librium models. Equilibrium models capture the fundamental economic rationale of risk-

averse market participants, which allows to explain their trading behaviour and the re-

sulting premia (Allaz, 1992; Allaz and Vila, 1993; Bessembinder and Lemmon, 2002;

Bushnell, 2007; Bushnell et al., 2008).

Consequently, as this model class is best suited for our analysis, we develop an equi-

librium model for wind futures valuation to understand prices and risk premia. More

specifically, we adapt the model by Bessembinder and Lemmon (2002), who analyze the

equilibrium between two representative agents on the power market. To the best of our

knowledge, the present paper is the first application of an equilibrium model to the val-

uation of a weather derivative. Thereby, this paper links two disjoint bodies of literature

and contributes to the overall understanding of pricing derivatives without a tradable

underlying. In our case, the two representative agents are defined as the owner of a wind

power plant and a conventional generator. In the resulting mean-variance expected util-

ity framework we can define utility-maximizing futures positions in dependence on the

futures price. These optimal supply curves allow us to derive a closed form solution for

the futures’ equilibrium price and quantity.

As the proposed wind power futures will be introduced in Germany, we use the Ger-

man market in our simulation-based case study. However, the proposed methods and

fundamental results are of a general nature and carry over to other countries as well.

We use our model to determine the sign of the wind futures’ risk premia as well

as the determinants of these premia in a thorough sensitivity analyses. We find that

wind power futures are likely to be traded at a discount for a broad range of input
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assumptions, that is, the wind power producer is ready to sell the contracts at a price

below the expected capacity factor, leaving the conventional producer with an expected

profit from the transaction.

We conduct an extensive sensitivity analysis to explore the range of prices and dis-

counts that might arise in the market for wind futures. Additional contributions are the

examination of the hedging effectiveness for exemplary wind generators and a detailed

analysis and simulation of wind capacity factors as the underlying risk factor.

The paper at hand is structured in six sections. Section 3.2 describes the role of wind-

related risks in the energy industry and the proposed wind futures. Section 3.3 discusses

the chosen equilibrium model including the agents’ profit functions. Section 3.4 gives

details on the underlying simulation models and data assumptions for our case study.

Section 3.5 reports model results regarding equilibrium prices, premia and quantities as

well as sensitivity analyses. Section 3.6 concludes the paper.

3.2 Wind-related risks and the new wind power fu-

tures

3.2.1 Players, their risks, and the need for wind power futures

This paper focuses on two groups of firms that are strongly affected by volatile wind

generation: wind power generators and conventional generators. The former profits from

more wind power generation while the latter profits from less wind power generation as

will be argued in the following.

For wind power generators, uncertainty in wind generation volume manifests in three

distinct forms of risk. First, pre-investment forecasts of long-term wind speeds could be

wrong resulting in volumes consistently below the expected level over the whole lifetime

of the investment. Secondly, risk is induced by medium-term volatility of wind power
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generator’s volume from period to period. Lastly, wind power producers active on power

exchanges face the short-term risk of committing wrong quantities on the day-ahead

market resulting in balancing costs. In this paper, we focus on the second type of medium-

term risk that is concerned with revenues for several weeks to a maximum of three years.

With 75% of wind power plant costs being upfront capital expenditures and usually a

high level of debt, stable revenues are essential for generators. Additionally, most of the

investors are looking for a low risk profile (yield cos, pension funds, cooperatives etc.).

As most generators worldwide do not (only) participate in wholesale markets, but receive

a fixed compensation per generated unit of electricity, such as a feed-in tariff, volume

risk is more important than price risk. The same is true for subsidy schemes with a

floating market price premium. Correspondingly, in a recent survey of renewable energy

companies, 45% of respondents state that weather-related volume risk has materialised

in their business (Watts, 2011). Hence, it is plausible that wind power generators would

be natural sellers of wind power futures.

Conventional generators are the second group of firms who are affected by volatile

wind power generation. In a power system with limited export potential the conventional

generator’s profit is negatively correlated with wind generation volume for two reasons.

First, the more power is generated from wind power plants, the less power is generated

conventionally as marginal costs of coal or gas power plants are higher than of wind

power plants. Second, wind generation volume has a negative correlation with power

prices. Hence, in the case of high wind power generation, the conventional generator

not only produces less volume overall, but also receives a lower price on his remaining

generation volume. Consequently, conventional producers would be natural buyers for

wind power futures.

Why firms generally hedge risks is still a question of scientific debate. Possible reasons

include optimization of a convex tax schedule, non-diversifiable shareholders, or costs of

debt during financial distress (Golden et al., 2007). Regarding weather risk, there is
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recent evidence that hedging has a positive impact on firm value (Perez-Gonzalez and

Yun, 2013). In the case presented here, in which conventional generators and wind power

generators profits are negatively correlated, it seems obvious to transfer some of this risk

between the two, and thereby, lower the risk exposure of both (Golden et al., 2007).

Currently, however, most wind power generators do not hedge their risk from volatile

wind power generation. In fact, weather-related risk is the least transferred risk for

renewable energy companies. Insurance contracts are chosen by 9% of companies, special

purpose vehicles by 7% and financial derivatives by 1%. A lack of awareness of weather

markets and the lack of affordable solutions for smaller plants is stated as the number

one barrier to more active risk management (Watts, 2011).

Summarizing, an accessible liquid market for wind derivatives does currently not exist

although wind power and conventional generators have an increasing need to transfer wind

risks.

3.2.2 Wind power futures as new hedging instrument

The EEX will launch a new exchange-traded wind power futures in 2016 (EEX, 2016).

Nasdaq OMX, otherwise mainly active in the Nordic and UK market, has also included

a German wind power futures in their contract portfolio (Nasdaq OMX, 2015). Both

companies started this product category in Germany as it has a power market with

large installed wind capacities of more than 40 GW as of 2015 (Reuters, 2016). Our

discussions with EEX have revealed that there is substantial interest in this new product

category from a broad set of market participants including wind and conventional power

generators, but also direct marketing providers and reinsurance companies1.

The proposed wind futures fall into the category of weather derivatives. Such deriva-

tives also exist for temperature, humidity, rainfall, snowfall, and stream flow. The above-

mentioned initiatives are not the first attempts to establish a market for wind deriva-

1 Personal conversation with Dr. Maximilian Rinck of EEX on September 15, 2016
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tives. In 2007 the US Futures Exchange announced its launch of wind futures in seven

U.S. regions, but trading never picked up. Alexandridis and Zapranis (2013) state that

difficulties in accurately modeling wind generation and valuing wind derivatives were the

main reason for slow growth in this segment. This emphasizes the importance of a good

understanding of the markets as a prerequisite for the success of any financial product.

The payoff function for the holder of wind power futures at maturity T is given as

F̃ T =
100

H

H∑
h=1

W̃h, (3.1)

where W̃h represents the wind capacity factor in hour h and H the total number of hours

within the measurement period, which might be a month, a quarter, or a year. Note

that W̃h, and therefore also F̃ T , are uncertain at time of trading (t = 0).2 The capacity

factors Wh are measured for the whole German market zone, that is, represent the average

utilization of wind power stations across Germany.

The proposed wind futures provide the opportunity to hedge pure volume risk in wind

power generation. They do not include a price component such as classic power futures.

Contracts, are settled financially and do not entail the purchase of green power as they

are not linked with a guarantee of origin certificate or the like.

To illustrate how wind futures work, we discuss a typical trading and settlement

process: A wind power generator sells wind futures for the current market price. He

locks in this value before the measurement period begins. After the measurement period,

the futures realization is calculated based on the wind index published by EEX. If the

actual capacity factor is higher than the locked in price, the wind power generator has

to pay his futures position’s excess realization. But at the same time he also receives

more revenue for his higher wind power plant’s generation volume. If the actual capacity

factor is lower, his generation revenues are also lower, but he receives an excess payment

for his futures position. Hence, variability of profits, and therefore risk, reduces. The

2 As a convention, we use a tilde to denote random quantities.
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conventional generator is a likely buyer of wind futures. Hence, all her cash flows are

opposite to the wind power generator’s and she as well is able to lower her wind-related

profit risks by engaging in the transaction.

The described transaction between wind power and conventional generator could also

be performed directly over the counter (OTC) but standardization via an exchange offers

higher transparency and lower transaction costs as well as a decreased credit risk.

The central disadvantage of exchange-traded contracts is the typically higher basis

risk for the individual hedger. This is the case if the underlying wind index and the

generation from the hedger’s portfolio are not perfectly correlated (Golden et al., 2007)

as we will demonstrate in Section 3.5.1. Overall, the combination of wind risk’s increasing

relevance in the energy industry and the introduction of wind futures by EEX and Nasdaq

OMX could create a first liquid market for exchange-traded wind derivatives.

3.3 Market model

This section gives a detailed definition of our equilibrium model. For reason of complete-

ness, we review Bessembinder and Lemmon (2002), which forms the basis of our model, in

Section 3.3.1. We discuss the agents’ utility and abstract profit function, optimal futures

position, and conditions for an equilibrium. The adaptation of the model to wind power

futures is explained in Section 3.3.2. In Section 3.3.3, the definition of the agents’ specific

profit functions are detailed.

3.3.1 An equilibrium model for power futures

The model of Bessembinder and Lemmon (2002) is based on three assumptions.

1. The market participants are homogeneous enough to be aggregated into two rep-

resentative agents – one with a natural short position and one with a natural long

position.
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2. The agents’ expected utility is linearly dependent on their expected profit and its

variance. This assumption holds true if the utility function is quadratic or if the

returns are distributed according to an elliptic distribution (Chamberlain, 1983).

Even if these conditions are not fulfilled, the mean-variance approach seems to be

a fairly good approximation of expected utility (Markowitz, 2014).

3. Both agents possess the same information including the distribution of wind capac-

ity factors in the futures’ measurement period.

According to assumption 2 above, both agents’ expected utility in dependence on

their profit π̃ is expressed as

E(U(π̃)) = E(π̃)− λ

2
Var(π̃). (3.2)

The parameter λ defines the agents’ attitude towards risk – if λ is zero, the agent is

risk-neutral, while λ > 0 implies risk aversion.

The agents’ profits π̃ are defined as sum of two parts: the profits from their general

business operation ρ̃ called but-for-hedging profits and the profits from potentially holding

a futures position ρ

π̃W,C = ρ̃W,C +QW,C(F 0 − F̃ T ). (3.3)

where Q is the futures position, decided upon in t = 0, and the superscripts indicate the

agent (wind power producer W or conventional producer C). If Q is positive, the agent

sells a futures contract at t = 0 and receives Q times the market price F 0. At maturity

she pays Q times the realization F̃ T to her counterpart. If Q is negative, the agent buys

a futures contract and all signs are reversed.

The optimal quantities for the two agents can easily be derived from the first order

conditions of the utility maximization problem as

QW,C =
F 0 − E(F̃ T )

λW,C Var(F̃ T )
+

Cov(ρ̃W,C , F̃ T )

Var(F̃ T )
, (3.4)
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where the first term is called speculative position and the second term is called the hedging

position.

The speculative position is the same for both agents. It represents the quantity of

futures they are willing to sell or buy when the current futures price F 0 deviates from their

expected futures realization E(F̃ T ). If the futures price exceeds the expected realization,

they would sell futures and vice versa. The smaller the agent’s individual risk aversion

or the variance of the futures price, the greater the speculative position. Building on our

assumption that there is no information asymmetry on futures realization, both agents’

speculative position have the same sign, that is, from the speculative positions alone,

there would be no trades in the market.

This situation is resolved by a non-zero hedging position in (3.4). The term is different

from zero if there is a correlation between the agent’s but-for-hedging profits ρ̃ and the

futures realization F̃ T . In that case, a futures position can reduce the agents’ risk. Note

that the hedging position is affected by the variance in the futures realization, but it does

not depend on the agent’s risk aversion.

We introduce the following market clearing condition

QW +QC = 0, (3.5)

which implies that there exists an equilibrium, if the agents take the exact opposite

position of each other.

3.3.2 Model adaptation to wind power futures

Combining equations (3.1), (3.4) and (3.5), it is easy to see that the unique equilibrium

price F 0∗ in EUR/H is equal to

F 0∗ = 100 E(W̃ )− ξ
(

Cov(ρ̃W , W̃ ) + Cov(ρ̃C , W̃ )
)
, with ξ = 100

λWλC

λW + λC
, (3.6)

where

W̃ = H−1

H∑
h=1

W̃h

61



3.3. MARKET MODEL

represents the average wind capacity factor over the futures’ measurement period.

The formula for the equilibrium futures price consists of two terms. The first equals

the risk-neutral value of the futures contract E(F̃ T ). Therefore, the second term of

Equation (3.6) defines the risk premium that depends on ξ and the covariance of both

agents’ but-for hedging profits ρ̃W,C with the average wind capacity factor W̃ . In line with

the qualitative description in Section 3.2, we hypothesize that the wind power generator’s

covariance is positive and the conventional generator’s covariance is negative making the

wind power producer a net seller of futures and the conventional producer a net buyer.

We will empirically test this in Section 3.5.

If neither of the agents is risk-neutral and the covariances of ρ̃ with Q̃ do not cancel

out, that is, Cov(ρ̃W , W̃ ) 6= −Cov(ρ̃C , W̃ ), then there exists a nonzero premium on the

wind futures market. Its sign depends on the two covariance terms. Intuitively, the

agent whose payoffs exhibit a higher absolute covariance with the wind generation has

a higher hedging demand and is willing to pay a premium or accept a discount on the

expected price. In our model, if the wind power generator’s absolute covariance is higher,

the futures sells at a discount and if the conventional generator’s absolute covariance is

higher, the futures sells at a (positive) premium.

3.3.3 ”But-for-hedging” profit functions of representative agents

In this section the agents’ but-for-hedging profits are defined and described. Note that for

our purpose it suffices to model the components of the agents’ profits that are correlated

with the wind capacity factor W̃ , since other components – particularly fixed costs – do

not affect the price of the wind futures.

Let PW be the deterministic compensation that the wind power generator receives

per unit of generated power in the measurement period. The assumption of deterministic

compensation is in line with subsidy schemes for wind generation around the world, which

are mostly guaranteed fixed feed-in tariffs for a certain time span (KPMG, 2015). Define
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the wind power generator’s total but-for-hedging profits in the measurement period as

ρ̃W = PW

H∑
h=1

KhW̃h, (3.7)

where Kh represents the total wind generation capacity in the asset owner’s portfolio,

which in our case equals the whole system-wide wind generation capacity. Hence, KhW̃h

yields the system-wide wind power generation in hour h.

Because of near zero marginal production costs of renewables, the second representa-

tive agent in our model – the conventional generator – has to cover the system load D̃h

net of wind production and photovoltaic (PV) generation G̃PV
h ,

R̃h = D̃h −KhW̃h − G̃PV
h , (3.8)

called residual load. Note that PV generation is negatively correlated with wind power

generation and therefore mitigates some of the volume risk for the conventional generator,

which has a direct impact on his demand curve for wind futures.

To calculate the but-for-hedging profits of the conventional generator, we assume

that he can neither transfer produced energy in time, that is, store it, nor geographically

to sell it on another market. Hence, all the energy produced at time t has to be sold

instantaneously. This assumption is realistic for our case study market Germany as

interconnector capacities are fully utilized for most hours of the year.

We assume that for some bh the generators cost function in hour h equals (Bühler and

Müller-Merbach, 2007)

Costh = bh
R̃o
h

E(R̃h)o−1
(3.9)

with the parameter o ≥ 2 controlling the convexity of the function. The parameter bh

allows us to fit the cost function to historic spot price data with its time-dependency

allowing for seasonal variation. The estimation of bh and assumptions on the order o are

detailed in Section 3.4.2.
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R2 MAD (MAPE) Source

Wind Generation 16% 3,361 MW (62%) Transmission system operators

PV Generation 87% 872 MW (28%) As for wind generation

Power Demand 55% 5,613 MW (10%) ENTSO-E (2016)

Day-Ahead Power Price 74% 6.29 EUR (15%) EPEX day-ahead auction

Table 3.1: In-sample fit of trend components in the different simulation models – comparing real and

forecasted values. MAD abbreviates mean absolute deviation and MAPE mean absolute percentage

error. Data for renewable generation is sourced from transmission system operators 50Hertz, Amprion,

TenneT, Transnet.

The agent generates revenues by selling the residual load to power retailers on the

power exchange receiving a randomly fluctuating, hour-specific spot market price P̃C
h .

Based on the above, we model the conventional generator’s but-for-hedging profits ρ̃C in

the measurement period as

ρ̃C =
H∑
h=1

P̃C
h R̃h − bh

R̃o
h

E(R̃h)o−1
. (3.10)

3.4 Econometric model and case study

3.4.1 Simulation of underlying random variables

The proposed market model is based on four random variables. The wind capacity

factor W̃h enters directly into the pricing Equation (3.6) and both profit functions. PV

generation G̃PV
h , system-wide power demand D̃h, and spot power price P̃C

h enter solely

in the conventional generator’s profits (3.10). All four variables have hourly granularity

denoted with subscript h.

The random dynamics are simulated in S scenarios with H hourly intervals over the

measurement period of the respective futures contract. Hourly granularity is necessary to

capture distributional characteristics of the agents’ profit functions correctly. Individual
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scenarios are denoted with subscript s, replacing the tilde used so far to indicate the

random nature of a quantity. The number of scenarios S is set to 5, 000 throughout.

The stochastic models are fully non-parametric and taken from Gersema and Wozabal

(2016). Therefore, we only give a brief overview of the models and refer to Gersema and

Wozabal (2016) for more details. The focus of the models is not only to provide forecasts

for the random variables, but to capture their distributional properties over longer periods

of time. Hence, our models differ from the usual short-term forecasting models that have

been developed for power markets. All models are estimated using data from 2011–14.

The modeling and simulation process roughly consists of the following two steps:

1. A seasonal trend component is estimated using locally constant kernel regression.

By forecasting capacity factors of wind power and PV generation, the trend can be

extrapolated into the futures by incorporating expected capacity additions during

the time frame in question. One daily trend times series is estimated for wind power

generation and 24 distinct hourly time series for PV generation and power demand

to capture their daily seasonality.

2. Hourly realizations are simulated by blockwise bootstrapping hourly deviations

from the deterministic trend and adding the generated samples to the forecast

levels. Random selection of the residuals is done in blocks of one week to preserve

serial correlation and from one of three seasons (summer, winter, transition) to

account for yearly variations in the errors.

We report the in-sample fit of our models in Table 3.1. The seasonal trend for PV

generation and power demand has substantially higher predictive power than the one for

wind generation. This is in line with our previous results on the high level of uncertainty

in wind generation. Although the predictive power of the trend component is relatively

weak for wind power, Figure 3.2 illustrates that its distributional properties are captured

well.
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Day-ahead power prices P̃C
h are simulated based on a linear regression model with six

distinct input variables. These include the three random variables incorporated directly in

the equilibrium model plus the following three, which are also simulated each individually

as described in the following.

1. Daily temperature has a strong influence on energy prices and is incorporated as

population-weighted mean of all the Austrian and German cities with more than

10,000 inhabitants. It is modeled and simulated with the same approach as renew-

able generation and demand in daily resolution.

2. Daily prices for natural gas are used as a proxy for prices of primary energy carriers.

Their behavior is modeled with a mean-reverting process with non-constant mean

reversion level, see Gersema and Wozabal (2016) for details.

3. The deterministic number of minutes between sunrise and sunset is used as a proxy

for yearly seasonality in the power price regression model.

In all we estimate a total of 48 power price models, one for each hour and differentiated

between weekend and work days. The regressors are determined using forward-backward

model selection from a set consisting of the six variables described above, an intercept,

as well as all quadratic interaction terms, to account for non-linear dependencies. The

combination of the 48 regression models achieves a reasonably good fit, as reported in

Table 3.1. It is used to forecast prices using the simulated values for the various regressors

as input. Based on this forecasts price scenarios are simulated by blockwise bootstrapping

from the regression models’ in-sample residuals with a block size of 24 h to preserve serial

correlation and adding these to the predicted price levels.

3.4.2 Data and assumptions

EEX and Nasdaq OMX introduce wind futures for yearly, quarterly, monthly, and weekly

measurement periods. We select the monthly futures for our analysis for the following
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Figure 3.2: (a) Boxplots comparing the actual hourly wind in-feeds with the simulated distributions

(circles means, bars medians). (b) Partial autocorrelation functions of the simulations and the original

data up to a lag of 48 h.

three reasons:

1. The yearly and quarterly futures are cascaded automatically into monthly futures.

They do not cascade further into weekly futures, but are settled after the monthly

measurement period is over. This makes it likely that monthly futures will be the

product with the highest liquidity.

2. The network operators pay the renewable subsidy down-payments to wind power

generators in monthly frequency. The same frequency is typical for debt service.

One month is therefore also a reasonable time frame for hedging purposes. This

likely also supports liquidity in monthly futures.

3. The monthly period allows to analyze seasonal variations in equilibrium prices and

premia.

More specifically, we select wind futures for the months of January, April, July and

October as representative of the four quarters of 2015 for further analysis. The year 2015

is chosen in order to ensure continuity with our in-sample data spanning from 2011 to

2014. Therefore, the trading date (t = 0) is set to December 31, 2014.
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The fixed feed-in tariff PW per unit of wind power generation factors into the but-for

hedging profits ρ̃W . It is set to the average unit compensation in Germany, which was

at 109.5 EUR/MWh in 2014. This compensation includes pure feed-in tariffs, but also

market premia and direct marketing revenues. In Germany the fixed feed-in tariff has –

since 2012 – been gradually replaced by a floating market premium that is paid on top of

spot prices, matching revenues with the average feed-in tariff paid in the German market

zone. Consequently, this does expose individual assets to price risk, the average German

asset, however, still receives a fixed compensation at the same level as the former feed-in

tariff.

The installed German wind capacities Kh for all hours h during the measurement

period are required for the wind generator’s profit function. The installed wind capacity

in Germany on December 31, 2014 equals 37.3 GW. For 2015, we assume a continuation

of the capacity growth trend using the estimates provided in the review of the German

Renewable Energy Sources Act from August 1, 2014. The bill states a growth target of

2.5 GW per year and we assume that this additional capacity is added linearly throughout

2015 (Bundesministerium für Wirtschaft und Energie, 2014).

The conventional generation cost function is fit to historic data for the German market

by estimating the time dependent parameter bh in (3.9) using the approach proposed in

Bühler and Müller-Merbach (2007). In particular, the parameter bh is set so that the

marginal costs of generating the expected residual load E(R̃h) in a specific hour h are

equal to the expected spot price E(P̃C
h ) in this particular hour, that is,

∂ Costh
∂Rh

∣∣∣
Rh=E(R̃h)

= obh
E(R̃h)

o−1

E(R̃h)o−1

!
= E(P̃C

h ) (3.11)

Hence, setting the cost parameter bh = E(P̃C
h )/o specifies the model correctly. As pro-

posed by Bühler and Müller-Merbach (2009), we apply a cost function of fourth order

(o = 4) in our base case. In the subsequent sensitivity analysis the order is varied, testing

for changes in the shape of the merit order curve.

Our model framework would allow us to estimate the agents’ risk aversion parameters
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λW,C from observed futures prices. However, since historical prices are not available, we

have to assume risk aversion parameters for our simulation. For portfolio optimization

with relative returns, typical risk aversion parameters are chosen between 2 and 4 (Fabozzi

et al., 2007). To translate this ratio to our agent’s monthly profit levels, we set λW,C =

10−8 as a base case assumption. This assumption is based on the findings in Table 3.3,

which identifies the wind power generator’s expected profit E(πW ) in a range between

760 million EUR in January to 373 million EUR in July. For the same months his profit

risk measured in standard deviation σ(πW ) varies from 194 to 73 million EUR. At the

assumed base case risk aversion level of λW = 10−8, each EUR of variance in the agent’s

typical monthly profit is therefore weighted roughly two to seven times as high as a EUR

of expected profit. Hence, his risk aversion is in a similar range as it is typically used for

relative returns (Fabozzi et al., 2007).

Please note that the base case assumption is only a starting point for the analysis. It

allows us to reliably analyze the sign and structure of risk premia, but not their absolute

size. Hence, to enhance our understanding of the effect of different risk parameters λW,C ,

we vary their level in the sensitivity analysis.

3.5 Results and discussion

The following section discusses numerical results on the hypothetical wind futures market

in 2015. We start by investigating the issue of hedging effectiveness in Section 3.5.1

and then turn to discussing simulation results obtained by applying our model to the

German market using data and assumptions from Section 3.4. The distributions of wind

capacity factors and the agents’ but-for-hedging profits are discussed in Section 3.5.2 and

Section 3.5.3, respectively, while the results on equilibrium prices, premia and quantities

for our base case are reported and interpreted in Section 3.5.4. Subsequently, we conduct

various sensitivity analyses with regard to changes in the three central determinants of

risk premia: the agents’ risk aversion and the two agents’ but-for-hedging profit functions.
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Figure 3.3: (a) Simulated distributions of average wind capacity factors in the four example months. (b)

Clustered (by k-means) but-for-hedging profits ρW,C of the two representative agents in million EUR,

which result from these average wind capacity factors. Both panels are based on a simulation of 5,000

scenarios.

3.5.1 Hedging effectiveness

Wind power futures allow wind producers to hedge their volume risks. However, since the

payoff is based on the capacity factors for the whole of Germany, the hedging effectiveness

varies with the correlation of the producers capacity factors with the overall utilization

of wind power plants.

More formally, writing the relationship between the random capacity factor W̃i of a

single wind power producer i and the whole market zones capacity factor W̃ as a linear

relation, we get

W̃i = α + βW̃ + ε.

The coefficient β specifies the linear relationship between the two random quantities and

can be estimated by OLS regression as

β =
Cov(W̃i, W̃ )

Var(W̃ )
.

Analyzing the above formula, we see that in the case, when W̃i and W̃ have exactly

the same utilization patterns, that is, Cov(W̃i, W̃ ) = Var(W̃ ), β = 1, implying that the
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two quantities exhibit exactly the same changes on average. Hence, in this case, the

futures contract represents a good hedge for the wind power producers volume risk on

average. We can go one step further by analysing the variance of error term, that is,

Var(ε) = Var(W̃i − βW̃ ) = Var(W̃i) + β2 Var(W̃ )− 2β Cov(W̃i, W̃ )

= Var(W̃i)−
Cov(W̃i, W̃ )2

Var(W̃ )

Clearly, in the case outlined above, Var(ε) = 0, that is, the hedge works perfectly almost

surely. As the correlation gets weaker and β gets smaller, the uncertainty about the

relation between W̃i and W̃ increases, which is signified by a growing Var(ε).

Correspondingly, an owner of a diversified German wind portfolio with β = 1 can

fully hedge his position against weather-related volume risks. If the portfolio’s wind

power generation is not perfectly correlated with the German average, β deviates from 1

and the wind future does not offer the opportunity to fully hedge against weather-related

volume risks, which will also result in relatively smaller positions of the futures contract.

The yearly β of the entire wind production in the Amprion control zone, for instance,

is equal to 0.79. The Tennet and 50Hertz control zone portfolios, which make up the

majority share of German wind power capacity, have βs of 0.97 and 1.00, respectively.

β for the Transnet portfolio in the Southwest of Germany is at 0.58. Hence, it is not

optimal to hedge Transnet risk exposure with EEX’s wind futures.

The above demonstrates that while wind futures are a valuable addition to the market,

making volume risk tradable for wind power producers, the effectiveness of this instru-

ment heavily depends on the correlation of the output with the overall German wind

power output. Hence, for portfolios with a very small correlation with the wind power

production in the German market zone, it might be preferable to buy tailor-made hedging

contracts on the OTC market.
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Mean/Exp. Median Std.Dev. CV

January 24.9 24.4 6.4 26%

April 14.3 14.1 2.8 20%

July 11.8 11.7 2.3 20%

October 18.1 17.9 3.7 20%

Table 3.2: Characteristics of the simulated distribution of average wind capacity factors over all hours

of the four selected example months in percentage points. They are equivalent to monthly futures

realizations F̃T in EUR/H (see Equation (3.1)).

3.5.2 Distribution of wind capacity factors

The simulation of hourly wind generation allows us to analyze the distribution of monthly

wind capacity factors in detail. They are equivalent to futures realizations in EUR/H

and the two terms are used synonymously in the following. Some characteristics of their

distributions are reported in Table 3.2 for the selected example months3.

The expected wind capacity factors exhibit a strong seasonal trend throughout the

four example months. While the winter month January has the highest expected wind

utilization with 24.9%, the summer month July only has an expected utilization of 11.8%;

roughly 47% lower. Wind capacity factors in April and October are expected to fall

between the two extremes.

The seasonal differences in expected wind yield are reflected in its standard deviation

as well. It is highest in winter and lowest in summer. However, the effect is dispropor-

tionate as the coefficients of variation (CV) reveal. They indicate that not just absolute

but also relative risk is higher in winter than in summer.

Figure 3.3 panel (a) shows simulation results for the four monthly wind capacity fac-

tors built from 5, 000 simulated scenarios. It confirms that the summer distribution is

substantially more concentrated around its expectation, while the winter distribution is

3 Results for other months are available on request.
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Mean/Exp. Median Std.Dev. CV Corr.Coeff.

Wind asset owner January 760 744 194 26% 1.00

April 429 424 85 20% 1.00

July 373 369 73 20% 1.00

October 581 572 117 20% 1.00

Conventional generator January 1,007 1,008 102 10% -0.63

April 725 725 46 6% -0.57

July 747 748 39 5% -0.60

October 947 948 51 5% -0.71

Table 3.3: Characteristics of the simulated distribution of total but-for-hedging profits in million EUR

over the four selected example months.

spread out over more than 30 percentage points. The distributions for April and October

are in between the two, but clearly distinct from each other. The fact that the capac-

ity factor’s median is smaller than its mean indicates that its distribution is positively

skewed.

3.5.3 Agent’s but-for-hedging profits

In this section, we analyze interdependencies between the agents’ but-for-hedging profits

and wind capacity factors, which drive risk premia. The wind power and the conventional

generator’s but-for-hedging profit ρWs and ρCs for each scenario s are shown in Figure 3.3,

(b) and Table 3.3 for the four example months.

Per definition, the wind power generator’s but-for hedging profits are perfectly pos-

itively correlated with wind capacity factors. The higher the wind capacity factor, the

more power and revenue the asset owner generates. The slope changes slightly between

the different months due to increases in expected installed wind capacity throughout

2015.

The conventional generator’s but-for-hedging profits are negatively correlated with
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wind capacity factors. The greater wind power generation, the lower conventional power

generation and the lower are conventional profits. Higher wind generation also coincides

with lower power prices, having an additional negative effect. Figure 3.3 graphically

confirms this negative relationship between wind generation and conventional profits and

Table 3.3 reports correlation coefficients between -0.57 for April and -0.71 for October.

There are two reasons why simulated conventional profits are not a linear function of wind

load as for wind power generators. First, the other three random variables add additional

uncertainty. Second, the conventional generator has a non-linear (convex) cost function,

implying that average capacity factors cannot be translated directly into average costs.

Table 3.3 also reports more details on the distribution of but-for-hedging profits them-

selves. The resulting coefficients of variation are substantially lower than for the wind

power generator, indicating that on a monthly level the wind induced risk is less for the

conventional generator than for the wind power producer.

3.5.4 Expected futures price, premium and quantity

In this section the results on equilibrium prices, premia and quantities are reported for

the set of base case assumptions. These results are our best estimator for future market

outcomes once trading is opened. Figure 3.4 displays both agents’ optimal futures position

and their intersection for example month January.4

Both curves are linearly dependent on price. The wind power generator’s supply of

wind futures increases with higher prices and the conventional generator’s demand for

them decreases with higher price. In the case of the January futures 2015, the equilibrium

price is at 20.76 EUR/H with a quantity of 27 thousand contracts being traded. Panel

(a) of Figure 3.4 also displays the expected wind capacity factor during January 2015 as

a vertical line, marking the risk-neutral valuation of the wind futures at 24.91 EUR/H.

4 Note that we change the sign of the conventional generator’s supply function, making it into a

demand function to facilitate the illustration.
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Figure 3.4: (a) Supply curve (wind power generator) and demand curve (conventional generator) of

wind futures for January 2015 depending on current futures price F 0 (x-axis). Quantity is denoted in

thousands on the y-axis. The intersection marks the equilibrium price and quantity. Furthermore the

black vertical line represents the expected futures realization E(FT ). (b) Discounts (F 0 − E(FT )) for

the wind futures of January, April, July and October 2015.

The difference to the obtained equilibrium price is the risk premium, which in this

case is negative. The wind power generator is willing to accept a lower payment than he

is expected to pay back to the conventional generator at maturity. Panel (b) illustrates

risk premia for the four example months, revealing that the wind power generator is

selling his generation volume at a discount to the conventional generator in all example

months. Based on correlation coefficients reported in Table 3.3, these results are expected,

as the wind power generator’s but-for-hedging profits are stronger correlated with the

wind capacity factor than the conventional generator’s, indicating that the risk reduction

effect for the wind power generator is greater. Hence, he is willing to pay more than

the conventional generator, which leads to the negative risk premium. Additionally, the

equilibrium premia show a pronounced seasonality over the four example months. The

wind power generator is willing to accept a discount for January roughly eight times

greater than the discount he is willing to accept for July. This is again in line with the

fact that the wind power generator has more value at stake in winters.
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Figure 3.5: Risk premia on wind futures obtained from the equilibrium model for variations in the input

parameters. (a) Premium sensitivity with regard to uniform changes in the both agents’ risk parameters

λW and λC (denoted as base-10 logarithms). (b) Premium sensitivity based on a variation of both

parameters against each other. The x-axis is denoted in λW /λC .

Interestingly the traded equilibrium quantities are very similar across all four example

months. They vary from 27 thousand in January and April to 28 thousand in July and

October. The monetary market volume varies between 420 million EUR in January and

235 million EUR in July.

3.5.5 Sensitivity analysis for the agents’ risk aversion

It is important to note that the two agents’ risk aversion parameters only influence the

absolute size not the sign of risk premia, as ξ is always positive for risk-averse agents.

Figure 3.5, (a) shows that risk premia are highly sensitive to changes in risk parameter

λ. The same result holds true when varying the two agents’ risk parameters against each

other as illustrated in Figure 3.5, (b). A smaller λW (relative to λC) leads to a smaller

discount and a greater λW leads to a larger discount.

The risk premia approach zero, if one or both agent’s risk aversion approaches zero,

since if one of the agents approaches risk-neutrality his speculative position grows until

the futures price is equal to its risk-neutral value – independent of his but-for-hedging
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Figure 3.6: Risk premia on wind futures obtained from the equilibrium model for variations in the

wind power generator’s profit function. (a) Premium sensitivity with regard to wind feed-in tariff PW

in EUR/MWh. (b) Premium sensitivity based on a variation of total wind capacity K in the system.

The x-axis is denoted relative to actually installed capacity in 2015.

profits.

3.5.6 Sensitivity analysis for wind power generation profits

The wind power generator’s but-for-hedging profits are expected to be mainly influenced

by two factors in the future: decreasing wind compensation PW and increasing wind

capacity. Figure 3.6 illustrates that the two trends have an opposing effect on risk premia

of wind futures.

Panel (a) shows that obtained discounts are highly sensitive to average wind com-

pensation. The lower the tariff, the lower the discount. If the overall wind power profit

decreases, the need to hedge and the supply for wind futures also decreases; increasing

the futures price. The sensitivity is most pronounced for the January futures with the

highest wind generation, and the lowest for July, when wind generation is smallest. The

discount becomes a premium at an average compensation around 40 EUR/MWh, hence,

way below its current and anticipated future levels. With a compensation lower than this

threshold, conventional generators would pay an insurance premium to the wind power
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Figure 3.7: Risk premia on wind futures obtained from the equilibrium model for variations in the

conventional generator’s cost function. (a) Premium sensitivity with regard to the cost function’s order

o. (b) Premium sensitivity based on variation of overall power demand D̃. Its x-axis is denoted relative

to actually simulated demand for 2015.

generators to lower their risk.

The effect of total wind capacity on risk premia can be analyzed under the assumption

that there is no fundamental shift in wholesale price patterns due to the increase in wind

capacity. This is only a reasonable assumption for incremental changes in wind capacity.

Therefore, we limit the capacity growth in our sensitivity analysis to 10 GW or roughly

25%, which is the expected increase over the next four years, based on the objectives in

Germany’s Renewable Energies Act. Panel (b) of Figure 3.6 illustrates that the higher

the total wind capacity in the system the larger the discount on the futures price. This is

in line with the above analysis of the correlation of ρ with wind in-feed implying a higher

hedging potential for wind power producers.

3.5.7 Sensitivity analysis for conventional generation profits

The conventional generator’s but-for-hedging profits are mainly affected by two trends as

well. First, the changes in the power markets may lead to changes in the shape (degree

of convexity) of the supply function. Second, the overall power demand is potentially
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subject to change. It is affected by two developments: On the one hand, energy efficiency

measures lower overall power demand. On the other hand, the partial electrification of

the heat and mobility sector increases overall power demand. Figure 3.7 illustrates the

effects of these changes on risk premia of wind futures.

Figure 3.7, (a) illustrates the premium’s sensitivity with regard to the convexity of the

system-wide cost function. The higher the function’s order the higher are the discounts

on wind futures, since a more convex cost function works like a buffer against wind

volume risk for the conventional generator. High wind generation volume is generally

disadvantageous for the conventional generator, but if its cost function is more convex,

the effect is counteracted by disproportionally lower average generation costs. Hence,

the conventional generator’s but-for-hedging profits are the less correlated with the wind

capacity factor, the higher the order of the cost function, which lowers the conventional

generator’s demand for wind futures, leading to higher discounts. However, the changes

are limited close to our base case.

Figure 3.7, (b) displays the sensitivity of discounts with respect to changes in overall

power demand. The greater the demand, the lower the discount. This is intuitive as

overall demand is proportionate to the conventional generation volume and profit. The

higher the conventional generator’s profit, the higher also his willingness to pay for wind

futures to hedge these profits. Note, that in the setup of this sensitivity analysis, an

increase in overall demand does not affect the simulated power prices. An incorporation

of this effect would supposedly amplify the sensitivity of risk premia to changes in demand,

as higher demand leads to higher prices; resulting in higher conventional profits and again

a higher willingness to pay for wind futures on the side of the conventional generator. For

the reasonable range of changes in the conventional generator’s but-for-hedging profits,

the sign of risk premia do not change.
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3.6 Conclusion

This paper presents an equilibrium model for the valuation of wind futures. It is based

on the wind-related risk exposure of two central market participants that have a natural

interest to take a position in these futures. Wind power generators are prone to take a

short and conventional generators to take a long position to reduce their respective risks

as is illustrated by our results.

To the best of our knowledge, this paper is the first that proposes an equilibrium

model for the valuation of weather derivatives. Hence, the paper contributes to the

understanding of pricing derivatives without a tradable underlying.

The equilibrium model builds on a comprehensive set of non-parametric models for

random variables that determine the two agents’ profit functions. The developed meth-

ods allows to estimate equilibrium futures prices, premia and traded quantities for wind

futures. The central result that emerged from our investigation is that premia are ex-

pected to be negative, that is, wind power generators sell their expected wind generation

at a discount to lower their risk. This result is stable for a very large range of changes

in input assumptions – also when taking into account current trends such as renewable

build-up and cost degression.

The discount acts as a potential source of compensation for conventional generators,

who supply dispatchable generation capacity to the system, that is, a payment for pro-

viding system flexibility.

The absolute size of discounts is still unclear as market participant’s risk aversion is

unknown and could also be affected by speculators entering the market. These speculators

could play an important role as long as the market is illiquid and the EEX asks large

trading houses to assume the role of market makers.

Therefore, further research is required to test the developed equilibrium model once

real futures prices are available: first, to estimate the risk parameters λW and λC ; second,

to empirically test the validity of the model.
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A potential extension of the developed approach is to incorporate a full model of the

conventional power plant park including its dispatch with intertemporal constraints and

full cost coverage. This extension would have an effect on power prices and (marginal)

costs. It would allow an in-depth analysis of the role of power plant flexibility for con-

ventional generation profits and the resulting willingness to hedge.

To conclude, the analysis in this paper shows that wind as well as conventional power

generators benefit from taking a position in wind power futures. This suggests that wind

power futures may become a relevant asset class and help power generators to cope with

weather-related uncertainties.
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Chapter 4

On the Effect of Stochastic and

Dynamic Residual Load Modeling in

a Renewables-Based Power System

The technology mix in a renewables-based power system can be optimized by investment

and dispatch models minimizing cost. These models’ outcomes are strongly driven by

their representation of residual load, which is the difference between power demand and

renewable generation. Models usually either focus on a high temporal resolution or on

a stochastic model. Available research suggests that both of these aspects make the

model output substantially more accurate (e.g., Haller et al., 2012; Haydt et al., 2011),

but their combination strongly increases computational requirements. Hence, I develop

a parsimonious investment and dispatch model that allows to be based on residual load

with high temporal resolution and a stochastic simulation. An application of the model

to the German power system demonstrates the value of stochastic modeling. The same

model with deterministic residual load underestimates the required wind and solar power,

as well as storage capacities. Consequentially, it also underestimates the overall system

costs.
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4.1 Introduction

The decarbonization of our power generation has started in most regions around the

world. It is part of the so-called ’energy transition’ that has the objective to mitigate

anthropogenic climate change. Two emission-free power generation technologies have

emerged as the winners of the technology race: photovoltaic (PV) and wind power. They

are widely expected to become the cheapest and by far the fastest growing power sources

in the 2020s (Giannakopoulou and Henbest, 2016).

PV and wind power have three central characteristics differentiating them from con-

ventional power sources: They are intermittent, uncertain and decentral (Hirth et al.,

2015). As a consequence of these characteristics, PV and wind power cannot directly

substitute conventional generation from coal- and gas-fired or nuclear power plants in a

’plug-and-play’ fashion, but a transformation of the entire power system is required. The

resulting ’renewables-based power system’ is defined here as a power system in which

the majority of power volume is generated from variable sources. Complementary tech-

nologies that might become widely used in this system are flexible conventional power

plants, batteries, power-to-gas storage or demand response. The use of these comple-

mentary technologies creates integration costs additionally to PV and wind power’s pure

generation costs.

How the sum of generation and integration costs can be minimized is one of the

most researched questions in the field of numerical model-based energy economics (Hirth,

2015). The focus on this question intensifies as PV and wind power’s pure generation

costs are becoming cost-competitive to conventional sources of generation. Hence, the

central challenge is to integrate them into the overall power system. This aspect now

determines the pace of the renewables build-out (Vahlenkamp et al., 2016).

The optimal technology mix in a renewables-based power system can be found by min-

imizing total system costs with investment and dispatch optimization models (Kondziella

and Bruckner, 2016). Their outcomes are strongly driven by their representation of resid-
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ual load, which is naturally always a simplification. Residual load models usually either

focus on a high temporal resolution or on a depiction of stochasticity1. The first focus

mainly covers PV and wind power’s characteristic intermittency, while the second as-

pect covers its uncertainty. Available research suggests that both of these aspects make

the model output substantially more accurate, but their combination strongly increases

computational requirements (Haller et al., 2012; Haydt et al., 2011).

Models with a full temporal resolution of 8,760 h throughout the year typically assume

perfect foresight and hence rely on a deterministic depiction of PV and wind power

generation as well as demand patterns. But in reality the patterns are clearly stochastic

and can vary strongly from one year to the next. Yearly wind capacity factors for instance

varied between 14% and 22% from 2011 to 2014. Hence, picking a single historic base

year for a model is likely to lead to significantly biased results. This hypothesis motivates

my paper’s research question:

What is the effect of stochastic and dynamic residual load modeling on the optimal

technology mix in a renewables-based power system?

Thereby, the technology mix consists of PV and wind power capacities on the one

hand, and of dispatchable system elements such as conventional power plants, load man-

agement and storage on the other. The answer also sheds light on the extensively re-

searched question of what the cost-minimal technology mix is in general and what its

sensitivities are regarding specific cost and technological developments. These aspects

are naturally touched upon in this paper, but its focus remains on the benefit of stochas-

tic versus deterministic dynamic modeling of residual load.

To this effect, I set up a greenfield investment and dispatch optimization model min-

imizing total system costs and incorporating an hourly scenario simulation of stochastic

residual load. The model is specified for the German power system in a parsimonious

fashion with regards to its techno-economic operational details, keeping it computation-

1 See literature review in Section 4.2.2 for a detailed definition and comparison.
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ally feasible. I generate two sets of optimized outputs: a first one based on a stochastic

and a second one based on a deterministic dynamic representation of residual load.

This paper’s main contribution is the comparison of these two sets of results, showing

that the deterministic model underestimates the required PV and wind power, as well

as necessary storage capacities substantially. Consequentially, the deterministic model

also underestimates the overall system costs of the renewables-based power system. The

error of the deterministic model increases with higher shares of variable generation. The

combination of hourly temporal granularity and a full stochastic scenario simulation as

well as its comparison to a deterministic representation is – to my knowledge – unique in

this body of literature.

The second contribution of this paper is the formulation of an investment and dis-

patch model that is capable of incorporating an hourly resolution of stochastic residual

load scenarios over an entire year. The optimization model itself is a two-stage linear

programming model with the single objective of cost minimization and as such it is sim-

ilar to existing work in this field. The similarity makes the results directly comparable

to existing research results.

Third, this paper contributes to the literature on the optimal configuration of renewables-

based power systems. It confirms pre-existing findings that a transition to variable gener-

ation sources is technically feasible, that storage is needed at a relatively late stage of 80%

wind and share and that substantial curtailment of wind and PV power is economically

optimal.

The detailed temporal and stochastic depiction of residual load patterns comes at the

cost of an otherwise parsimonious model specification to keep computation feasible. One

limitation of the model at hand is that it is based on a simplified depiction of the power

system’s techno-economic operational details. It includes one conventional generation,
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load management and storage technology respectively; all modeled in a stylized manner

(see Sections 4.3 and 4.4.1 for details and discussion). These modeling choices are sup-

ported by a recent paper from Poncelet et al. (2016), who compared the gains in output

quality between a more granular residual load representation and more techno-economic

operational detail. Their results show that for high shares of variable renewables an

improvement of residual load dynamics is clearly preferable.

Another limitation of the model is that it disregards elements of the renewables’

characteristics uncertainty and decentrality. It omits renewables’ short-term uncertainty

by not including any balancing requirements, which are caused by a deviation between

PV and wind power’s short-term forecast and actual generation volume. While the model

generally incorporates uncertainty with a set stochastic scenarios for residual load, these

scenarios are entirely known to the decision maker. The reason for this modeling choice is

that incorporating short-term balancing needs requires a separate simulation of wind and

PV forecasts next to their actual generation, which would double the number of dispatch

decision variables. Hence, omitting this aspect makes the problem substantially simpler,

while the expected error is relatively small as future balancing costs are expected to be

between 2–4 EUR/MWh (Hirth et al., 2015).

The model’s limitation with regard to renewables’ decentrality is that the power sys-

tem is modeled as a single ’copper plate’ without any grid restrictions. Moreover, the

model does not include any imports and exports to neighboring network zones. A full op-

timization of more network nodes would require a full set of the model’s decision variables

for each node plus additional ones for the interconnector capacities. Hence, the model

results do obviously not include an optimized network layout for our German example

system. Nevertheless I consider the copper plate assumption as reasonable, because it is

in line with the objective of the German government to keep one market zone and build

out networks accordingly. Additionally, grid-related integration costs are expected to be

smaller than the ones caused by intermittency. Evidence on grid-related integration costs
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is thin, but studies provide a consistent picture, which is that costs stay in the single-digit

EUR/MWh range (Hirth et al., 2015).

4.2 Literature review

There exists an extensive body of literature on the optimal technology mix in a renewables-

based power systems. A recent literature review by Allan et al. (2015) carves out that

the optimal portfolio of technologies in fact needs to be a central scope of future research,

as the economics of individual technologies are covered well.

Naturally there are several ways to classify and present existing literature and due

to the vastness of the research area I devote Section 4.2.1 entirely to its segmentation.

Thereby, I also locate this paper’s research accordingly. In the following review of research

results I mainly focus on methodological differences (Section 4.2.2). But in Section 4.2.3

I also give a brief overview of model outputs regarding the optimal technology mix.

4.2.1 Segmentation of investment and dispatch models

I choose three classification dimensions and discuss them in this section. First, Kondziella

and Bruckner (2016) define four perspectives from which the potential of individual tech-

nologies in a power system configuration can be evaluated. Each perspective builds on

top of the previous one.

1. Theoretical potential is the starting point and it describes all available physical

energy content of a resource.

2. Technical potential takes technological and system constraints into account and

describes how much of the theoretical potential can possibly be exploited through

the use of technologies.
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3. Economic potential additionally considers costs and benefits of competing individ-

ual technologies and represents an economic optimum.

4. Market potential furthermore incorporates the effects of (possibly imperfect) mar-

kets on a system’s technology mix. It is equivalent to a market forecast.

Within these four categories, this paper’s research question aims at the economic

potential of different technologies. Hence, it incorporates technical constraints and indi-

vidual technology costs as well as system interactions, but not the effects of market design.

Hirth et al. (2015) differentiate models, inter alia, based on whether they consider

the overall share of PV and wind generation in the system as an exogenous model input

or an endogenous output – our second classification dimension. An exogenous PV and

wind share is usually sourced from policy objectives existent in Germany and many other

countries. Hence, the model optimizes the system in order to match these objectives. In

the endogenous case, there typically exists an externality assumption in the model – for

instance a specific cost of carbon emissions.

In this paper the share of variable power generation is defined as exogenous. The

respective literature stream, and therefore also this paper, is focused on the optimal

capacity splits within the variable and the dispatchable group of technologies, but not

between the two groups. Hence, this literature does not develop any direct recommenda-

tions on the reasonableness or pace of the energy transition, but on the evolving system

configuration along a predefined pace of PV and wind generation build-out.

So my chosen approach is located in the research area, which aims to quantify eco-

nomic potential of technologies based on an exogenous share of PV and wind power

generation. Third, I classify the existing research in this area by the way it represents

the dynamics of residual load, which is the most important source of uncertainty in the

power system and it is the major driver of flexibility requirements and overall system
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configuration. Hence, a detailed understanding of different methodologies is highly rele-

vant.

Methodologies can be classified with regards to three central aspects of residual load

representation: its spatial resolution, its temporal resolution and its depiction of uncer-

tainty. Spatial resolution is disregarded in the following literature review, in line with

our model’s underlying copper plate assumption (see discussion in Introduction). Hence,

the following classification is based on the other two dimensions.

Temporal resolution of residual load can be captured in integral, semi-dynamic and

fully dynamic form based on Haydt et al. (2011). In integral form, residual load is modeled

by integrating slices of its duration curve. Dispatchable technologies are then optimized

based on their mix of fixed and variable costs and required capacity factors. Integral form

does not consider any real-time dynamics and is applied very rarely in current research.

Hence, it is disregarded in the following. For semi-dynamic resolution, a set of typical

days or hours of the year is selected for which the system is optimized. Fully dynamic

models optimize the system for all 8,760 h of an example year.

Existing uncertainty of residual load may or may not be incorporated into the model,

differentiating stochastic and deterministic models. Stochastic models are based on the

entire distribution of residual load and deterministic models are based on one historic or

expected realization of it.

Semi-dynamic models are in recent papers usually set up with a stochastic represen-

tation of residual load. Typical days for each season are selected in a way that they

represent different realizations of PV and wind power feed-in. Hence, three categories

of residual load representation are commonly used in current research: stochastic semi-

dynamic, deterministic fully dynamic and stochastic fully dynamic. Selected research

papers are referenced along these three categories.
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4.2.2 Review on methodology: residual load dynamics

Stochastic semi-dynamic residual load

Stochastic semi-dynamic models focus on the stochastic representation of residual load,

but choose a substantially less granular temporal resolution. Stochasticity is thereby

incorporated by selecting a set of time slices that is representative of the entire distri-

bution of potential realizations. Selection methodologies vary, but a separate stream of

literature has evolved around the optimizing these selection procedures (Merrick, 2016;

Nahmmacher et al., 2016). In return for their lower temporal resolution, models in this

area often have a broader scope or finer resolution with regards to their geographic area.

Haller et al. (2012) present results from the LIMES model developed by the Potsdam

Institute for Climate Impact Research. It covers Europe and the MENA region and in-

cludes endogenous transmission capacities. It is based on 49 characteristic time slices

of 6 h each and the authors conclude that a higher temporal resolution needs to be the

focus of future work. Bertsch et al. (2016) also publish a Europe-wide study using the

model DIMENSION of the Institute of Energy Economics at the University of Cologne.

The investment optimization is based on typical days for variable generation and power

demand, but the applied selection procedure is not specified. The model covers 47 Eu-

ropean sub-regions and the paper suggests that the main source of flexibility in 2050 is

likely to be gas-fired generation; the only conventional generation technology included.

The investment and dispatch optimization model E2M2s by Spiecker and Weber (2014)

is based on 56 time slices made up of eight typical days (four yearly seasons with a week

and a weekend day each) with seven typical hours each. They apply a recombining tree

approach for PV and wind in-feed building scenarios for the 56 time slices. Their model

includes 100 different conventional power plant classes, but no chemical storage such as

lithium batteries for instance.

Some researchers have also explicitly analyzed the different model outcomes based on

a stochastic and a deterministic semi-dynamic representation of residual load. Hart and
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Jacobson (2011) compare a deterministic and a stochastic representation of renewable

feed-in, power demand and outages on 28 typical days. They show that the deterministic

approach overestimates carbon reduction potential by 33%. Storage is only considered

in the form of solar thermal plants in their model and natural gas is the only fossil fuel

based generation technology. Nagl et al. (2013) find that deterministic models have a bias

towards greater RES capacity compared with dispatchable power generation (particularly

for wind). They also underestimate total system costs. 2000 scenarios for 30 typical days

are randomly picked in three-day blocks from two season intervals. From these 2000

scenarios, 10 representative ones are selected based on indicating values for PV and wind

power generation at important sights. Hart and Jacobson (2011) and Nagl et al. (2013)

show that a stochastic representation of residual load improves the accuracy of model

results and is hence preferable in comparison to a deterministic approach.

Deterministic fully dynamic residual load

Deterministic fully dynamic models focus on a granular temporal resolution of residual

load with all 8,760 h of the year, but disregard its stochastic nature. They are often

applied in research focused on storage requirements and hence needing an accurate de-

piction of daily and yearly seasonality. They are also more common for greenfield models

covering only one exemplary year and not the entire transition path.

A recent example of a greenfield model with a fully dynamic representation of residual

load was published by Zerrahn and Schill (2015a). They present a greenfield investment

and dispatch model with several sensitivity analyses and detailed representation of load

management potential. The underlying residual load representation is deterministic, as

2013 is selected as the single base year for renewable generation and respective capacity

factors. An integrated model for capacity planning and operational optimization based on

a fully dynamic representation of residual load is also presented by Kuhn (2013). He sim-

ulates multiple scenarios for a fully dynamic representation of wind generation and finds
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strong differences from one year to the next. He then bases his analysis on a deterministic

representation by picking the scenario closest to the expected yearly capacity factor. He

thus incorporates a full temporal resolution, but only in a deterministic fashion.

Haydt et al. (2011) compare the benefit of such a full temporal resolution with a

semi-dynamic approach. They find that semi-dynamic methods strongly overestimate

the ability of renewables to fulfill demand and hence on the one hand underestimate the

required PV and wind capacity as well as their costs and on the other hand overestimate

their environmental benefits. Their semi-dynamic approach uses 288 typical time periods,

while their fully dynamic approach is based on 8,760 h. They show that a full temporal

resolution is preferable in comparison to a semi-dynamic approach. Other researchers

have confirmed this finding on the value of a high temporal resolution (Ludig et al., 2011;

Poncelet et al., 2016; Welsch et al., 2014).

Stochastic fully dynamic residual load

Stochastic fully dynamic models combine a granular temporal resolution and a stochastic

representation of residual load. The research by Hart and Jacobson (2011) and Nagl et al.

(2013) shows that a stochastic representation of residual leads to more accurate results,

while the work by Haydt et al. (2011) indicates that a fully dynamic representation of

residual load leads to more accurate results. But published research based on stochas-

tic and fully dynamic residual load is very rare. The reason for this is computational

feasibility as both dimensions drive the optimization problem’s complexity.

One example of such an approach was published by Nicolosi et al. (2010). They

compare stochastic fully dynamic to stochastic semi-dynamic representation by applying

three different approaches with temporal resolutions of 8,760 h, 288 h and 16 time slices.

Their simple stochastic representation consists of several historic generation years for

PV and wind power and not on a full simulation. A case study for the ERCOT market

in Texas illustrates that simplification of residual load dynamics by clustering has sub-
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stantial effects on optimal capacity and dispatch results. They conclude that simplifying

assumptions such as a semi-dynamic temporal resolution of residual load are not valid

anymore in a renewables-based power system.

To my knowledge, there is no research on the comparison of stochastic vs. determin-

istic fully dynamic representations of residual load. This literature gap motivates this

paper’s research question.

4.2.3 Review on results: optimal system configuration

On a very general level, most of the presented literature agrees on a few central findings

regarding the energy transition and the optimal configuration of a renewables-based power

system; summarized as follows:

1. Transitioning the majority of power generation from conventional to variable sources

such as PV and wind power is technically feasible, but it likely increases overall

system costs (see, e.g., Henning and Palzer, 2015).

2. Storage is required only in the late stages of the energy transition process. Variable

generation shares between 60% and 80% can be obtained by employing cheaper

flexibility sources such as conventional generation and load management (see, e.g.

Zerrahn and Schill, 2015b).

3. Curtailment of a part of surplus generation from PV and wind power is economically

optimal, because negative residual load increases strongly in the late stages of the

energy transition and it becomes very costly to build capacities, which could absorb

the surplus (see, e.g., Schill, 2014).

But results on optimal variable and dispatchable capacities for the German power

system vary in the details as Kirchner et al. (2016) illustrate in a meta-analysis of 25 recent

studies from scientific and gray literature. The lack of coherence is moreover shown

by Doetsch et al. (2014), who also publish a comprehensive meta-analysis and suggest
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that, particularly, results on required storage are not fully coherent because there is no

consensus on appropriate models and correct scenario assumptions.

4.3 A parsimonious investment and dispatch model

I set up a greenfield investment and dispatch optimization model for the German power

system. The model is kept parsimonious to enable a stochastic and fully dynamic rep-

resentation of residual load and keep computation feasible. The formulation includes

four technology categories: variable (variable and superscript V ) and dispatchable (D)

generation plants, storage (S) and demand response (L for load (management)). The

number of individual technologies within each group remains undefined and unlimited

in the general model, which is a two-stage stochastic optimization problem. First-stage

decision variables are capacities K of individual technologies – the investment. Second-

stage decision variables are the capacities’ dispatch G throughout one example year with

8,760 h – the operation. Capacities K are always quantified in power (GW) and dispatch

G is quantified in hourly power supply or consumption (GWh)2.

To capture uncertainty in the example year, I base the optimization model on a

simulation of stochastic demand as well as PV and wind power generation in N scenarios.

Scenario-dependent variables are denoted by the subscript n. Details of the simulation

approach are explained in Section 4.4.2. The dispatch optimization for a specific scenario

is based on full knowledge of its realization throughout the year.

The model’s objective is to maximize the power system’s societal benefit, assuming

the perspective of a social planner. The societal objectives for a power system are of-

ten summarized in the ’energy triangle’ with its three competing dimensions: efficiency,

security of supply and sustainability (CDU / CSU / SPD, 2013). I use these three di-

mensions to describe the model in detail and to validate that the chosen approach covers

2 Storage level S represents the third group of decision variables and it is directly dependent on

storage dispatch GS .
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all relevant aspects. Efficiency – the first dimension – is implemented as the objective

function, while the other two are incorporated into the model as a set of constraints.

The power system’s efficiency is maximized by minimizing its cost. To increase famil-

iarity and comparability of results, costs are operationalized as expectation of system-wide

levelized cost of electricity LCOESystem in the example year.

minimize
K,G,S

E
[
LCOESystem

]
= E

[
CV + CD + CS + CL∑T

t=1 L̃t

]
(4.1)

LCOESystem is calculated by dividing the sum of costs Cx in the four different tech-

nology categories x by the yearly sum of hourly power demand L̃t. Different technologies

in each of the four categories are denoted by the subscript j and Cx is the sum of their

costs consisting of two components.

E
[
Cx
]

=
Jx∑
j=1

(
Kx
j C

x,fix
j +

1

N

N∑
n=1

T∑
t=1

Gx+
j,t,nC

x,var
j

)
∀ x ⊂

{
V,D, S, L

}
(4.2)

First, there are annualized fixed costs Cx,fix
j for each technology’s capacity Kx

j . Second,

there are variable costs Cx,var
j for each unit of power supply Gx+

j,t,n from technology j in

hour t of scenario n. Expectation of costs Cx is calculated as the average cost over all N

scenarios.

There are two stochastic components of the system model: demand L̃ and variable

generation Ṽj
3 from JI different PV and wind power technologies. Their difference is

defined as the stochastic residual load R̃ in every hour t of each scenario n.

R̃t,n = L̃t,n −
JI∑
j=1

Ṽj,t,n (4.3)

The residual load has to be matched in every hour t of each scenario n through a

dispatch of all available system technologies. The respective energy balance constraint

ensures security of supply as the second goal dimension in the ’energy triangle’.

3 Denoted as GV+ in Equation (4.2)
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R̃t,n = −GV−
t,n +

JD∑
j=1

(
GD
j,t,n

)
+

JS∑
j=1

(
GS+
j,t,n −GS−

j,t,n

)
+

JL∑
j=1

(
GL+
j,t,n −GL−

j,t,n

)
∀ t = 1, . . . , T, ∀ n = 1, . . . , N

(4.4)

Dispatch decision variables are separated between positive and negative power supply,

signified by Gx+ and Gx−. In the case of storage and demand response both decision

variables are necessary for calculation of variable costs and – in the case of storage – also

to track storage level, as well as for various additional analyses of results. GV−
j,t,n represents

negative power supply from overall curtailment of PV and wind generation.

So far no element in the optimization model supports the energy triangle’s third goal

dimension: sustainability of which I assume for our case that it is equivalent to a reduction

in CO2 emissions. The German government has the objective to achieve a reduction of

CO2 emissions in the power sector by continually replacing fossil fuel fired generation

volume by generation from PV and wind power. These two technologies are widely seen

as the winners of the technology race, offering low generation cost and a sufficiently high

capacity potential in Germany (Bundesministerium für Wirtschaft und Energie, 2015).

Hence, sustainability is enforced in the model by an exogenous minimum share of PV

and wind power generation – named φV . To analyze optimal greenfield system configu-

rations throughout the transition, φV is increased over several optimization rounds. I do

not link the minimum share to actual dates in the future, as the pace of transformation is

politically determined and highly uncertain. To account for curtailment more simply, the

constraint is formulated as the maximum share of demand provided from dispatchable

generation (1− φV ) over all scenarios.

T∑
t=1

GD
t,n ≤ (1− φV )

T∑
t=1

Lt,n ∀ n = 1, . . . , N (4.5)

Besides the three competing goal dimensions of the energy triangle there additionally

are several necessary technical bounds to ensure the feasibility of our results. First, all
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additional supply of power to the system has to be larger than zero and smaller than the

supplying technology’s installed capacity.

0 ≤ Gx+
j,t,n ≤ Kx

j ∀ x ⊂
{
V,D, S, L

}
, ∀ t = 1, . . . , T, ∀ n = 1, . . . , N (4.6)

Second, additional consumption of power by storage and load management also has

to remain lower than installed power capacity.

0 ≤ Gx−
t,n ≤ Kx ∀ x ⊂

{
S, L

}
, ∀ t = 1, . . . , T, ∀ n = 1, . . . , N (4.7)

For simplification, I thereby assume that available load management capacity is only

indirectly dependent on level of power demand4. Moreover, the reduction of available

power through curtailment has to be lesser than all available variable generation in the

respective hour t.

0 ≤ GV−
t,n ≤

JI∑
j=1

Ṽj,t,n ∀ t = 1, . . . , T, ∀ n = 1, . . . , N (4.8)

Third, storage level Sj,t,n is an additional decision variable. It needs to remain within

the storage’s installed energy capacity calculated by multiplying its power capacity KS
j

with its predefined energy-to-power ratio αj.

0 ≤ Sj,t,n ≤ αKS
j ∀ j = 1, . . . , JS, ∀ t = 1, . . . , T, ∀ n = 1, . . . , N (4.9)

The definition of storage level S incorporates the efficiency of the respective storage

technology. Half of inefficiency is assumed to occur with input GS− and the other half

with output GS+. The initial storage level Sj,0,n is set to half of its energy capacity.

Sj,t,n = Sj,t−1,n +
(1 + η)

2
GS−
j,t,n −

2

(1 + η)
GS+
j,t,n ∀ t ≥ 1

with Sj,0,n =
αKS

j

2

∀ j = 1, . . . , JS, ∀ t = 1, . . . , T, ∀ n = 1, . . . , N

(4.10)

4 The assumption is motivated by the fact that the range of hourly German power demand throughout

the year is relatively small compared with renewable generation (Frontier Economics, 2014).
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Fourth, the proposed model includes only the potential for load shifting, not for load

curtailment, as curtailment’s marginal costs are mostly too high to be relevant in our

context. Therefore, all supply and consumption from load shifting have to even out every

day (Frontier Economics, 2014).

i∑
t=i−23

(
GL+
j,t,n +GL−

j,t,n

)
= 0 ∀ i = 24, 48, . . . , T, ∀ j = 1, . . . , JN , ∀ n = 1, . . . , N

(4.11)

Finally, the technical potential for PV and wind generation capacity as well as load

shifting is limited in Germany.

Kx
j ≤ Kx,max

j ∀ x ⊂
{
V, L

}
, ∀ j = 1, . . . , Jx (4.12)

The described optimization model is implemented in MATLAB and solved using the

Gurobi solver through the YALMIP software package.

4.4 Data and assumptions for the German case

The proposed optimization model is applied to the German power system. It requires

two groups of inputs: (1) assumptions for cost and technical parameters and (2) scenario

simulations for stochastic residual load including power demand and variable generation.

Details on both are given in the following two sections. The proposed general model is

specified in a way that keeps the computational requirements to a minimum to allow for

a representative number of scenarios and a set of sensitivity analyses.

4.4.1 Cost and technical input parameters

Assumptions for cost and technical model parameters are sourced from forecast studies,

which include a detailed analysis of technological development potential. I define 2025 as

the base year for all parameters, as it is the year when the German government expects

to be roughly halfway through the energy transition (from 2000 to 2050). Either the
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selected studies provide a direct forecast for 2025 or the assumptions are interpolated

from current data and forecasts for 2030 or 2050.

Please note that the model is specified as an isolated German power system. Obviously

this does not fully match reality, where Germany is part of the evolving single European

power market, which is a natural source of flexibility through geographic diversification of

PV and wind power. Hence, the results presented here can be perceived as conservative

estimates for future power system requirements.

The full set of base case assumptions and their sources are given in Table 4.1 and only

some of them are commented on in the following sections.

Annualization of fixed costs for all technologies

The optimization model is built on variable and annualized fixed costs as the two direct

cost inputs. Annualized fixed costs Cx,fix for all technologies are calculated by annualizing

CAPEX (Cx,exp
j ) and summing them up with fixed yearly OPEX (Cx,fixOpex

j ).

Cx,fix = Cx,exp
j

i(1 + i)τ

(1 + i)τ − 1
+ Cx,fixOpex

j ∀ x ⊂
{
V,D, S, L

}
(4.13)

Annualization of CAPEX also requires data for capital costs i and for the technologies’

lifetimes τ . As a simplification, capital costs are assumed to be homogeneous across all

technologies. They are sourced from a large survey for the European Commission among

renewable energy investors resulting in 4% as the current average capital costs used as

discount factor for German onshore wind investments (DiaCore, 2015). Lifetimes τ are

sourced from the same sources as the respective cost parameters.

CAPEX are the biggest driver of annualized fixed costs for all technologies and they

are also more familiar to most readers. Hence, to enhance transparency, Table 4.1 includes

the underlying CAPEX assumptions. Additionally, sensitivity analyses are based on a

variation of CAPEX, not on a variation of annualized fixed costs.
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Technical parameters CAPEX for ... capacity OPEX Annualized Source

Life Eff. Max cap. E/P ratio Power Energy Fixed p.a. Variable fixed costs

τ η Kmax α Cexp,power Cexp,energy CfixOpex Cvar Cfix

Technology years % GW kWh/kW EUR/kW EUR/kWh EUR/kW EURcts/kWh EUR/kW

Variable gen.

Photovoltaic 27 24 300 – 830 – 17 0 68 Fraunhofer ISE (2015); Henning and Palzer (2015)

Wind Onshore 20 19 189 – 1,077 – 53 0 132 Henning and Palzer (2015); IRENA (2016)

Wind Offshore 20 13 45 – 3,145 – 62 0 293 Henning and Palzer (2015); IRENA (2016)

Gas-fired plants 30 61 – – 1,019 – 31 5.1 90 International Energy Agency (2014)

Storage

Batteries 11 91 – 1.9 98 375 10 0.1 103 Frontier Economics (2014); IWES et al. (2014)

Power-to-Gas 22.5 34 – ∞ 1,850 0 10 0.1 136 Frontier Economics (2014); IWES et al. (2014)

Load mgmt. 25 100 7.7 – 835 – 0 0.1 53 Frontier Economics (2014); IWES et al. (2014)

Table 4.1: Base case assumptions for all available technologies. Efficiency mostly stands for energy conversion efficiency, but for variable

generation technologies it represents the relative increase in capacity factors 2014–25, which can be applied directly to historic generation data

2011–14 for the different network zones. Annualized fixed costs are calculated from CAPEX, energy-to-power ratio, lifetime and fixed yearly

OPEX, as well as the discount rate. Variable and annualized fixed costs factor directly into the optimization model.

100



4.4. DATA AND ASSUMPTIONS FOR THE GERMAN CASE

Variable generation

The applied model includes JV = 9 sources of variable generation: PV and wind power

in each of the four German network zones respectively plus offshore wind generation in

the North Sea.

In combination these nine sources have to supply a minimum share φV to the yearly

power consumption. For the base case analysis, φV is varied in intervals from 20% to

80%. The starting level of 20% is the 2015 share of power consumption from PV and wind

power. Please note that Germany’s 2050 target is actually to generate 80% of its power

from renewable sources including non-variable ones such as hydro and biomass. These

non-variable renewable sources contributed a total of 13% to German power consump-

tion in 2015, but their future growth potential is limited. Hence, PV and wind power

need to contribute roughly 60-70% of German power consumption to reach the target of

80% renewables (AG Energiebilanzen e.V., 2015; Bundesministerium für Wirtschaft und

Energie, 2015). I still consider a maximum share of 80% in this analysis and also base

all sensitivity analyses on 80% variable generation to cover the transition process beyond

the 2050 target.

Table 4.1 indicates that annualized fixed costs vary strongly between different variable

generation technologies. In a rough description, they almost double from PV to wind

onshore and double again to wind offshore. On the one hand these differences are mirrored

by the technologies’ expected full load hours per year, which are around 3–4 times higher

for offshore wind than for PV. On the other hand Table 4.1 shows that PV is expected

to have the highest efficiency increases, drawing the different technologies’ output closer

together. Variable costs are insignificant for all three energy sources, and are therefore,

included in the stated fixed OPEX assumptions.

Table 4.1 also gives the technical maximum potential KV,max for German PV, wind

on- and offshore capacity. Studies vary heavily in these limits. The assumptions chosen

here are on the conservative side. The maximum potential for PV and wind onshore is
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distributed across the four network zones proportionally to installed capacity at the end

of 2014.

Gas-fired power plants

Combined-cycle gas turbines (CCGTs) are defined as the only dispatchable generation

technology (JD = 1). This is a simplification that again helps to keep the model com-

putationally feasible. Gas-fired power plants are chosen, because they are an effective

complement to variable generation as they are highly flexible and have low CO2 emis-

sions (Bundesministerium für Wirtschaft und Energie, 2015).

Please note that CCGTs are modeled without any ramping or other inter-temporal

constraints, which helps to keep the model parsimonious, but is also a simplification.

Recent research supports this simplification by showing that conventional power plants

have become increasingly flexible and that the effect of increasing variable generation

shares on start-up costs is expected to be moderate (around 1% of variable generation

cost) due to expected shifts in the power plant park to more CCGTs (Lambertz et al.,

2012; Schill et al., 2016).

Nevertheless, due to this simplification the fully dynamic approach is not expected

to yield a more realistic modeling of conventional power plants than a semi-dynamic

approach. The value of the fully dynamic modeling is instead concentrated in the other

technology groups, by incorporating the full seasonality of renewable generation and the

dispatch of storage and load management.

Gas-fired power plants are the only technology in the modeled power system with

variable costs of relevant size. They are calculated based on 2025 IEA forecasts for

the natural gas price of 31.5 EUR/MWh and a CCGT efficiency of 61% (International

Energy Agency, 2014). Disregarding costs for emission certificates, these assumptions

yield variable costs for CCGT power generation CD,var of 5.1 EURcts/kWh.
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Storage

CAPEX for power storage has two drivers: Its energy capacity defines the amount of

power that can be stored and its power capacity defines the speed at which it can be

charged or discharged. Both capacities have distinct cost assumptions that are trans-

formed into one unique CAPEX assumption per power capacity based on a pre-defined

energy-to-power ratio α:

CS,exp
j = CS,exp,power

j + αjC
S,exp,energy
j (4.14)

Lithium batteries are included as the only storage technology (JD = 1). This also

helps to keep the model parsimonious, as every storage technology introduces a large

number of inter-temporally dependent decision variables into the optimization problem.

Power-to-gas would be an obvious choice for a second technology, because it provides

longer-term energy storage – signified by its higher energy-to-power ratio α. But existing

research has shown that long-term storage is not necessary or optimal for a variable

generation share of 80% (see Section 4.2.3 or Zerrahn and Schill, 2015a). Running our

model with both storage technologies and the assumptions given in Table 4.1 based on

a low number of scenarios confirms this result. Central drivers for power-to-gas’s lower

attractiveness are its low efficiency and high power capacity CAPEX. These disadvantages

are not compensated by its lower energy capacity CAPEX – even if they are assumed to

be zero as in our case. Hence, power-to-gas is disregarded in the following analyses.

Load management

I specify load management as one aggregated technology (JL = 1). It includes all load

shifting potential available for an insignificantly small variable cost. According to a

study by Frontier Economics (2014) for the German government, this includes mainly the

potential in craft, commerce and services as well as in households. Total potential from

these sectors is estimated to be around 7.7 GW in Germany (model constraint KL,max).
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4.4.2 Simulation of stochastic residual load

The work at hand is aimed at understanding the effect of a full simulation of stochastic

residual load compared with using a single historic time series. Hence, all optimization

results in this paper are reported for both residual load representations, while the applied

optimization model is always the one presented in Section 4.3.

For the deterministic representation, the number of scenarios is reduced to N = 1.

The stochastic representation includes a number of N = 25 simulated scenarios for the

base case results and N = 10 simulated scenarios for the sensitivity analyses. Comparing

results between these different numbers of scenarios reveals only small changes. Hence, I

deem the smaller number of scenarios for the sensitivity analysis as acceptable.

Overall I include hourly time series for ten different system elements in the optimiza-

tion model: German power demand; PV and onshore wind generation in each of the

four German network zones and offshore wind generation in the North Sea. Power de-

mand is included in GW and variable generation in hourly capacity factors. According

to the model definition in Section 4.3, capacity factors are then multiplied by the decision

variables KV
j representing installed capacity in GW, resulting in variable generation in

GW.

Historic time series for 2014 are used for the deterministic representation. Demand

data are thereby sourced from ENTSO-E (2016). Capacity factors are calculated as ra-

tio of two time series: Variable generation data are published by the network operators

(50Hertz, 2015; Amprion, 2015; TenneT, 2015; TransnetBW, 2015) and PV and wind

power capacity data are sourced from Deutsche Gesellschaft für Sonnenenergie (2015).

Resulting capacity factors are scaled up with the forecasted efficiency gains until 2025

given in Table 4.1 to account for technological improvements in PV and wind power gen-

eration. I assume a constant yearly sum of power demand from today to 2025. Forecasts

on power demand are highly controversial, because two trends counteract each other.

Higher energy efficiency reduces demand, while electrification in the heat and mobility
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sector increases demand. Some studies expect a strong increase, others a strong decrease

in power demand (Müller, 2015). Using a constant power demand from today to 2025 is

obviously a simplification and it entails the implicit assumption that both trends balance

each other out.

For stochastic representation, the dynamics of all ten time series are estimated and

then simulated. Their dynamics are each modeled individually and then simulated in N

scenarios with T hourly intervals. This granularity is necessary to capture distributional

characteristics of residual load throughout the year, including yearly and daily seasonality.

The applied stochastic models are identical to the fully non-parametric ones in Gersema

and Wozabal (2016). Hence, they are only summarized briefly in this paper. Time series

for PV and wind power’s capacity factors as well as power demand are simulated with

the same basic approach. The focus is thereby to not only provide a forecast for the

random variables, but to capture their distributional properties over longer periods of

time. Three steps are necessary to build these simulations.

1. The seasonal trend component is estimated using locally constant kernel regression.

One seasonal trend times series is estimated for onshore wind power generation in

each of the four network zones as well as for off-shore generation in the North Sea

respectively. 24 distinct hourly time series are estimated for PV generation as well

as power demand respectively to capture their daily seasonality.

2. Possible realization paths are simulated around the trend by blockwise bootstrap-

ping from the in-sample trend model residuals. Random selection of these hourly

residuals is done in blocks of one week to preserve serial correlation and from one

of three yearly periods to account for yearly variations in errors.

3. The resulting simulation paths for wind and PV generation are then scaled up – like

the historic time series – by the expected efficiency improvements given in Table 4.1.
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(a) (b)

Figure 4.1: Hourly residual loads in GW (x-axis) over the example year – sorted from the hour with

highest to the one with lowest residual load (y-axis). Lines represent the average residual load curve over

all N = 25 scenarios. They are displayed in different colors for increasing shares of variable generation.

The grey areas represent their 95% confidence intervals. (a) Residual load without any interventions in

wind and PV generation or demand. (b) Residual load after optimal curtailment GV−.

4.5 Results and discussion

Results are discussed in four steps. First, stochastic residual load – as central driver of

future system operation – is analyzed. Second, I present base case results on optimal

capacities along the energy transition process from the stochastic modeling approach.

Third, these results are compared with the outcomes of the deterministic approach and

the value of the stochastic solution is discussed. Finally, the results undergo an extensive

sensitivity analysis by varying several input parameters.

4.5.1 Residual load analysis

All stochastic variables in the modeled system culminate in residual load. It needs to be

matched by all dispatchable elements of the power system (here: gas-fired power plants,

batteries and load shifting) during every hour of the year. Hence, residual load patterns

drive optimal system configuration and require an in-depth analysis.

The following illustration of stochastic residual load patterns is based on optimal PV
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Figure 4.2: Yearly sum of wind and PV generation (in TWh), as well as positive and negative residual

load (in TWh) for increasing shares of variable generation. The sum of these three components is equal

to yearly power demand. The sum of positive and negative residual load is equal to the integral under

and above the residual load curves in Figure 4.1. Results without curtailment [panel (a)] and after

curtailment [panel (b)].

and wind power capacities KV and optimal curtailment of their generated output GV−

from the specified optimization model.

Figure 4.1 displays how residual load patterns change with increasing shares of variable

generation φV . It illustrates that there are five effects that I discuss in the following

section: (1) negligibly smaller peak load, (2) steeper curve, (3) substantial overproduction,

(4) existence and growth of yearly variations, as well as (5) the curtailment effect.

1. Yearly residual peak load decreases only slightly from 82 GW for 20 % variable

generation to 75 GW for 80 %. There remain some hours during the year with a

’dark doldrums’ situation, when there is almost no generation from PV and wind.

During these hours the large majority of power demand needs to be satisfied from

other power sources and their capacity needs to be held available throughout the

entire year.

2. The middle section of the residual load curve (without the 500 most extreme hours

on each end) becomes steeper. This means that there are less hours during the year
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with similar residual load. From a conventional generation and system perspective,

an optimal load curve was as flat as possible, because that allowed for steady

and hence cost-minimal generation from nuclear and coal-fired power plants. The

elements of the renewables-based power system need to adapt to a less steady

generation pattern.

3. With 80% variable generation, there are on average 4,061 h or 46% of the year

with overproduction from PV and wind power. During these hours there is not

enough demand to consume the generated power volume – residual load is negative.

This effect is illustrated in panel (a) of Figure 4.2, displaying the integrals under

the residual load curves as well as variable generation volume. Together these

components match yearly power demand. Expected negative residual load increases

strongly from 0.8 TWh for 20% variability to 135 TWh or 26% of demand for 80%.

The figure also illustrates the development of positive residual load, which naturally

becomes smaller, when the share of PV and wind power generation increases. Its

expected sum over the example year changes from 409 TWh for 20% variability to

106 TWh for 80%.

4. Additionally, there is a substantial amount of variation in residual load curves from

year to year. The grey areas in Figure 4.1 indicate the 95% confidence interval.

Their calculation is possible based on the underlying stochastic simulations. Their

size shows that – even when disregarding the most extreme 5% of the years – the

requirements put on the dispatchable elements of the power system vary from year

to year. Confidence intervals also become wider with higher shares of PV and wind

power. In the case of 80% variability, the yearly sum of residual load varies from

5 TWh to -59 TWh. The range of 64 TWh is equal to 12% of yearly demand.

Hence, a selection of one possible scenario – in the form of one historic year – can

underestimate the required system capacities substantially.
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Figure 4.3: Optimal capacities of different technologies (in GW on x-axis) for increasing shares of

variable generation – starting from 20% to 80% of demand (y-axis). For each variable generation share

there are two stacked bars. The left one results out of the deterministic, the right one out of the

stochastic modeling approach (see Section 4.4.2). (a) Capacities of variable generation technologies. (b)

Capacities of dispatchable technologies. Numbers in the bottom line are the LCOESystem minimized by

the optimization model.

5. Panel (b) in both figures illustrate the effect of curtailment GV− as it results out

of the optimization model. Curtailment reduces the range of hourly residual loads

drastically – especially by capping off negative residual loads as panel (b) of Fig-

ure 4.1 illustrates. The average curtailment volume grows from 0.2% of PV and

wind power generation in the 20% case to 21% in the 80% case. Figure 4.2 reveals

that curtailment reduces the yearly volume of negative residual load by 85% in the

case of 80% variability.

4.5.2 Optimal capacity mix – the base case

Optimal capacities for our set of base case assumptions are displayed in Figure 4.3. Results

are reported separately for deterministic and stochastic modeling, as well as for variable

and dispatchable technologies. In this section I will discuss general outcomes based on

stochastic modeling to build a basis for the discussion of differences to the deterministic
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modeling approach following in Section 4.5.3.

As expected, panel (a) of Figure 4.3 illustrates that the sum of solar and wind gen-

eration capacities increases with their share of generated power. For the major part of

the energy transition (up to 70% variability) their capacity increases at a disproportion-

ately lower pace than their generation share. This is due to the fact that the increasing

share of wind power (especially offshore) has a higher capacity factor than PV. For 80%

generation share the required PV and wind power capacity jumps up. From this point

on their generation occurs increasingly at times when demand is already fully satisfied

(see Section 4.5.1 – especially Figure 4.2). Hence, not all output from additional capacity

installations can be used and part of it is curtailed. Disproportionately more capacity is

necessary to reach 80% variability.

PV is the cost-minimal technology of choice for the early stages of the energy transition

with 20-30% of variable generation. In that phase it makes up more than 80% of PV

plus wind capacity – based on our 2025 cost assumptions. PV reaches around 100 GW

at 30% and then remains roughly stable until 70%. At that level of capacity it becomes

less economic to install additional PV capacity as some of its generation volume has to

be curtailed. Onshore wind power is built out steadily in the early phase and remains

at 75 GW of capacity during the transition from 50% to 70% of variable generation. In

that phase offshore wind power is gradually added until it reaches its maximum technical

potential of 45 GW.

To reach 80% variable generation, additional PV and onshore wind capacities are

necessary and they are also installed in some of the network zones with less favorable

weather conditions, such as the Amprion zone. Overall the capacity split for the 80%

stage is 147 GW PV (47% of variable generation capacity), 124 GW onshore wind (39%),

and 45 GW offshore wind (14%); adding up to a total of 316 GW of variable generation

capacity. The mix of PV (with more generation in summer) and wind power (with more

generation in winter) apparently lowers the yearly residual load seasonality. A less sea-
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sonal pattern then allows for a cost minimal deployment of dispatchable technologies to

balance out the variable ones.

The changes between capacities of different dispatchable technologies are moderate

compared with the PV and wind build-out. Based on our cost assumptions, load manage-

ment is used up to its maximum technical potential KL,max = 7.7 GW from the beginning

of the transition and for all stages going forward.

Other dispatchable capacity decreases only slightly in return for greater PV and wind

capacity. It falls from 74 GW for 20% variable generation to 68 GW for 60%. The 6 GW

reduction is entirely driven by the retirement of 8 GW gas-fired power plants, which

are only partly replaced by 2 GW of battery storage. From 60% variability onwards,

the dispatchable capacity increases again. While gas-fired power plants are continuously

retired to a level of 56 GW for 80% variability, battery capacity increases disproportion-

ately higher to 16 GW. Its power capacity is equivalent to an energy storage capacity of

30 GWh. Overall dispatchable capacity for 80% variability is at 80 GW, which is 2 GW

higher than in the initial 20% stage.

During the transition period, cost in the form of LCOESystem increases significantly

from 67 to 99 EUR/MWh (48%). Thereby, the cost increase between the different tran-

sition stages accelerates. While one percentage point PV and wind power share leads to

0.18 EUR/MWh additional LCOESystem between 20% and 30%, it increases by 0.69 and

1.32 EUR/MWh in the last two stage steps between 60% and 80%.

The reported LCOESystem does also not fully illustrate the cost burden on the power

consumer. It does not include any network (expansion) costs and the costs for renewable

subsidies and networks are typically not split between end consumers proportionately to

their power consumption – creating an even higher cost increase for household consumers.

Please note here that this analysis does not consider cost reductions during the tran-
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sition as all stage results are based on the same greenfield model assumptions. Hence,

it is misleading to set the stages equal to actual dates during the transition. The model

simply uses the cheapest technology options first and moves on to more expensive ones

once they are required to satisfy higher shares of demand from PV and wind power.

4.5.3 Stochastic vs. deterministic modeling

Capacity results based on a deterministic residual load representation differ in three

central aspects from the stochastic modeling results.

1. Less renewable capacity throughout all stages

2. Fewer gas-fired power plants for all earlier stages ≤ 70% variability

3. Lower storage requirements for all later stages ≥ 40% variability

The deterministic model reports less PV and wind capacity for all stages of the tran-

sition. Panel (a) of Figure 4.3 additionally shows that the gap widens increasingly fast

in the late stages of the energy transition. While capacity is 5 GW or 6% smaller for

20% variability, it widens to 41 GW or 13% for 80%. The reason for these differences

is that the output of installed PV and wind capacity varies between scenarios as it also

varies from one year to the next. The minimum share of variable generation φV has to

be reached for all N scenarios. That is most likely less constraining for the generation

pattern of one historic year (N = 1) than for a set of N = 25 scenarios.

Besides a lower total capacity, the deterministic approach also yields a different opti-

mal split between the available technologies. Throughout the entire transition it yields

lower wind generation capacities. For 20% variable generation, there are already 9 GW

less onshore wind capacity and the gap increases to 22 GW for 80% or 18% less than from

the stochastic model. The same effect results for offshore wind capacities during the late

stages of the transition. Resulting PV capacities on the other hand are higher during the
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first phase of the transition, but also smaller during the later stages. For the final stage

they are 19 GW or 13% lower.

Deterministic results also vary highly for required capacities in gas-fired generation

and battery storage. In total there are 4–9 GW less dispatchable capacity than from the

stochastic model. For all stages up to 70% variable generation, 1–5 GW or 2–7% less gas-

fired power plants are required by the deterministic model. Up to that point the required

battery capacities are relatively small for both models and do not differ substantially.

But for 80% PV and wind power generation the deterministic model underestimates the

required storage capacity massively. While its optimal battery power capacity remains

around 2 GW, the stochastic model requires an additional 16 GW of batteries. With this

configuration the model ensures the high share of solar and wind power generation for all

N = 25 scenarios.

The differences between the modeling approaches also result in different expected sys-

tem costs (LCOESystem). For most part of the transition – up to 70% variablity – they

differ by modest 0.8–3.9 EUR/MWh or 1–4%. But cost results from the stochastic model

jump at 80% – driven by the substantially higher PV, wind and storage capacity. At that

point the deterministic model underestimates the system costs by 6.6 EUR/MWh or 7%.

Analyzing the value of the stochastic solution is helpful to substantiate the results.

Hence, I compare the performance of the stochastic with the performance of the deter-

ministic solution throughout our 25 scenarios. A first optimization run demonstrates that

simply re-dispatching the deterministic solution throughout the stochastic scenarios – by

re-optimizing all decision variables Gx and keeping original solutions for Kx – is infea-

sible. This finding is intuitively comprehensible, as the stochastic scenarios most likely

cover a broader range of residual load realizations than the historic time series. So a

classic analysis of stochastic value is not possible in our case.

Instead I additionally re-optimize the dispatchable capacity (KD) and loosen the
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constraint on the maximum generation volume from gas-fired power plants. While several

strategies are possible to approach the value of the stochastic solution, this one allows

us to compare both solutions with regards to their sustainability impact, that is, their

CO2 emissions. Thereby, major parts of the optimization model remain identical to the

original model presented in Section 4.3. Only the two following adaptations are necessary.

• Renewables (KV ), storage (KS) and load management (KL) capacities are no de-

cision variables anymore. Instead they assume their values from the previous de-

terministic solution for a variable generation share of 80%.

• Constraint (4.5), which enforces the minimum share of PV and wind power gener-

ation volume φV , is taken out of the optimization model. Hence, more generation

volume can be generated from gas power plants than only the remaining 20%. As

this type of generation has the highest variable costs, our cost-minimizing objective

function ensures that gas-fired generation is still at its minimum.

Moreover, allowing for more gas-fired generation would also be a realistic outcome in

Germany, if the system was misconfigured based on our deterministic solution. The Ger-

man regulator BNetzA currently forecasts the grid stability and considers all capacities

projected to be installed. If there were doubts, they would contract existing fossil fuel

fired plants as part of the capacity reserve, which would otherwise go offline.

The results of our re-optimization demonstrates that the updated deterministic solu-

tion is clearly less sustainable, but also cheaper than the stochastic solution. First, an

additional 10 GW of gas power plants are added to the deterministic solution to enable

a feasible dispatch that fulfills residual load in every hour of every scenario. This is an

increase of 16%.

Second, the newly calibrated system misses the sustainability objectives of 80% re-

newable generation by a considerable margin. Over all scenarios only 78.6% of generation

is renewable and in the worst case scenario it is only 74.5%. Consequently, the determin-
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istic solution results on average in additional 3 Mt and in the worst case in 10 Mt of CO2

equivalent emissions5.

Third, and on the plus side, the updated deterministic solution is cheaper than the

stochastic one. Its LCOE is 6.8 EUR/MWh lower. This is also intuitively comprehensible

as gas-fired generation is cheaper than the combination of renewables plus storage. Over-

all the analysis of the value of the stochastic solution clearly substantiates and illustrates

the benefits of stochastic residual load modeling.

To summarize, the comparison between both modeling approaches shows clearly that

the deterministic approach underestimates the required PV, wind and storage capacities

in the renewables-based power system. This also results in significant underestimation

of system costs. The shortcomings of the deterministic model become more severe, the

higher the share of variable generation. Running the deterministic solution’s system

configuration throughout our set of stochastic scenarios demonstrates that it is infeasible

to ensure security of supply.

4.5.4 Sensitivity analyses on cost assumptions

A set of sensitivity analyses provides a robustness check of our base case results for an

80%. share of PV and wind power generation For each analysis I vary one central cost

input parameter and analyze the effect on optimal capacities. Results suggest two central

sensitivities or trade-offs: first, between the CAPEX of PV and onshore wind power,

and second, between the CAPEX of gas-fired generation and battery storage. They are

analyzed in the next two sections. The sensitivities of optimal capacities towards other

cost input assumptions are described in the last section, but it shows that they are

relatively small.

5 Asssuming an emission factor of gas-fired generation of 369 t/GWh (Umweltbundesamt, 2016)
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Figure 4.4: Optimal PV and wind power capacities (in GW on x-axis) for changing CAPEX assumptions

(y-axis). For each CAPEX input there are two stacked bars. The left one results out of the deterministic,

the right one out of the stochastic modeling approach (see Section 4.4.2). (a) Effects of decreasing

PV CAPEX from 900 EUR/kW to 480 EUR/kW. (b) Effects of decreasing wind power CAPEX from

1,137 EUR/kW to 777 EUR/kW. Numbers in the bottom line are the LCOESystem minimized by the

optimization model.

PV vs. wind power CAPEX

The results for optimal PV and wind capacities prove to be relatively robust – even

for strong changes in their respective CAPEX assumptions. This sensitivity analysis is

particularly important, because renewable CAPEX have proven to be very dynamic in

the past. Especially the price of PV modules has decreased with a very high learning rate

of 19-23% for each doubling of cumulative installations and the growth of installations

was underestimated by nearly all forecasts (Fraunhofer ISE, 2015). Hence, there is a high

degree of uncertainty around PV and wind power CAPEX assumptions – particularly a

risk to underestimate CAPEX reductions. I focus on varying CAPEX of PV and onshore

wind power, because offshore wind capacities already reach their maximum technical

potential of KV,max
9 = 45 GW in the base case results for 80% variability.

CAPEX assumptions are varied in seven steps as illustrated in Figure 4.4 with a

focus on reductions, not increases. The second bar from the left hence shows the base
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case results. The most extreme low cost assumption is more than 40% below the base

case. The effect of these strong changes is surprisingly small. For the extreme low cost

assumption of 480 EUR CAPEX per kW PV system (not just module), the optimal PV

capacity is 23% or 34 GW higher and optimal wind capacity is 13% of 16 GW lower. The

sensitivity is proportional to the cost reductions, which means there is not one particular

threshold that causes a step change in optimal capacity.

The effect of lower wind power CAPEX is similar, but naturally the changes in wind

capacity are smaller than the ones in PV capacity due to PV’s lower capacity factor. For

a reduction of onshore wind CAPEX to 777 EUR/kW, optimal wind capacity is 9% or

11 GW higher and optimal PV capacity is 12% or 18 GW lower.

An important reason for the small sensitivity towards both cost reductions is likely the

complementary nature of PV and wind power generation. Their generation at a specific

time is negatively correlated. Hence, they cannot directly substitute each other if their

relative costs change.

The effect of changes in PV CAPEX on optimal dispatchable capacities is entirely

negligible. For the extreme reduction in wind CAPEX, 1 GW of battery storage is re-

placed by 1 GW of gas-fired generation. For PV the effect is exactly the other way around.

Load management remains at its maximum technical potential in all cases. Total sys-

tem costs naturally decrease with lower CAPEX. The effects are very similar for changes

in PV and in wind CAPEX. In the most extreme cases the LCOESystem is reduced by

6–7 EUR/MWh.

The relative differences between stochastic and deterministic modeling remain nearly

identical. So the result that deterministic modeling substantially underestimates the

required PV and wind power built-out is robust as well.

To conclude, the sensitivity analyses for PV and wind power CAPEX demonstrate

the strong robustness of my results. For stochastic modeling the minimum PV capacity is

130 GW, the minimum onshore wind power capacity is 108 GW and the minimum offshore

117



4.5. RESULTS AND DISCUSSION

448 427 406 384 363 342 321
0

20

40

60

80

93 93 93 93 93 93 9299 99 99 99 99 99 98LCOE:

Gas-fired plant
Batteries
Load mgmt.

(a)

1219 1019 819 619 419 219 19
0

10

20

30

40

50

60

70

94 93 91 90 88 87 86101 99 98 97 96 94 93LCOE:

Gas-fired plant
Batteries
Load mgmt.

(b)

Figure 4.5: Optimal dispatchable capacities (in GW on x-axis) for changing CAPEX assumptions (y-

axis). For each CAPEX input there are two stacked bars. The left one results out of the deterministic,

the right one out of the stochastic modeling approach (see Section 4.4.2). (a) Effects of decreasing

battery storage CAPEX from 448 EUR/kWh to 321 EUR/kWh energy capacity. (b) Effects of decreasing

CAPEX of gas-fired power plants from 1,219 EUR/kW to 19 EUR/kW. Numbers in the bottom line are

the LCOESystem minimized by the optimization model.

wind power capacity is 45 GW. Current German capacities are all at least less than half of

these minimum optimal capacities. Hence, it appears to be a ’no regret move’ to expand

capacities in all technology groups and decide on the ’fine-tuning’ at a later stage.

Gas-fired power plant vs. battery storage CAPEX

Next to the insensitive optimal load management capacity, gas-fired power plants and

batteries make up the dispatchable elements of the modeled power system. Batteries

substitute relatively small shares of gas-fired generation capacity in the base case. Ad-

ditionally, the substitution occurs for the most part in the late stages of the transition

process. Hence, it is interesting to analyze how substitution is affected by CAPEX changes

in these two technologies.

Battery CAPEX are changing very quickly at the moment. So far learning rates have

proven suitable to model their cost development and for every doubling of cumulative
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production volumes costs have decreased by 6-9% (Nykvist and Nilsson, 2015). Increase

of future production volume is highly uncertain, but other use cases than wholesale power

market trading – such as electric vehicles and household storage – can potentially drive

volumes up and hence costs down faster than anticipated in our assumptions.

I pick a range of assumptions for battery CAPEX comprising a reduction of 25%; from

427 EUR/kWh energy capacity to 321 EUR/kWh. Battery capacity increases substan-

tially with lower CAPEX, but it barely substitutes any gas-fired power plants. The most

extreme low cost assumption yields 12 GW or 77% more power capacity in batteries, but

only 1 GW or 2% less in gas-fired power plants. This is equivalent to a 23 GWh increase in

batteries’ energy capacity. Interestingly the resulting reduction of system costs is almost

negligible. In the most extreme case it is reduced by 0.9 EUR/MWh. The obvious reason

for this is that additional battery storage only substitutes gas-fired generation dispropor-

tionately. Conventional power plants are still needed to cover the longer ’dark doldrums’

periods. The deterministic approach generally yields a similar effect, but continues to

substantially underestimate the optimal battery power capacity, while overestimating the

optimal capacity in gas-fired power plants.

Our base case CAPEX for gas-fired power plants – or for conventional power genera-

tion more broadly – are also potentially inaccurate assumptions. For the base case model

I consider full CAPEX for newly built power plants. But in fact there already exists more

conventional power plant capacity in Germany today than our model’s optimal results

suggest necessary. Owners and operators of these plants do not base their operating

and divestment decisions on full costs of newly built capacities, but on marginal costs

of existing ones. Hence, I analyze the effect of massively lower CAPEX in conventional

generation on the optimal capacity mix, accounting for the situation that a large share

of conventional generation costs in existing German plants are sunk.

CAPEX for gas-fired power plants are varied from 1,219 EUR/kW to only 19 EUR/kW,
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which represents the hypothetical situation that all power plant CAPEX are fully sunk.

In that case, gas-fired capacity is increased by 2% or 1 GW, while battery capacity is

reduced by 18% or 3 GW. Reduced CAPEX of gas-fired power plants have a stronger

effect on system costs than reduced battery CAPEX. For the most extreme case they

are 6 EUR/MWh below the base case. Interestingly, the results of the deterministic

approach are largely insensitive to these changes. In fact the output of deterministic

approach grows more similar with low power plant CAPEX, because it yields lower stor-

age capacity and higher gas-fired generation in the base case already. For low power

plant CAPEX, the deterministic model even underestimates required capacity in both

dispatchable technologies.

Optimal PV and wind power capacities are much less affected by both CAPEX

changes. In the case of lower battery CAPEX, the required onshore wind capacity de-

creases by 10 GW, while PV capacity increases by 5 GW. The reason for this is PV’s

lower LCOE that can now – in combination with more battery capacity – replace wind

power. In the case of lower gas-fired generation CAPEX, wind power capacity increases

by 2 GW. Required PV capacity on the other hand remains largely unchanged. Offshore

wind power is always built out to its maximum technical potential.

Based on the public debate in Germany on the future market design, the German

government has passed the Electricity Market Act in 2016. It is supposed to assure that

the cost-minimal combination of flexibility sources will be found as a market outcome.

Based on the findings in this paper, it is advisable that the German government stays true

to this plan. The presented sensitivity analyses suggest that several potential capacity

combinations technically allow an 80% share of variable generation. Finding the exact

future capacity combination through a cost competition between conventional generation

and storage instead of regulatory predetermination is more likely to yield an efficient

outcome.

120



4.6. CONCLUSION

Variations in other input parameters

Our model results indicate low levels of sensitivity for changes in other input parameters.

Load management capacity is fully build out for all shares of variable generation in the

base case. Hence, a reduction in its CAPEX does not yield an effect.

Changes in variable costs of gas-fired generation yield almost no changes in optimal

capacities. In the case of higher generation costs up to 150 EUR/MWh, PV or wind power

are not a direct substitute for gas power plants, because they would require storage to

be available during the hours that are currently covered by gas-fired generation. In the

case of lower variable costs, even if they approached 0 EUR/MWh, additional gas-fired

generation would still break the minimum constraint of 80% variable generation. Hence,

lower variable costs reduce system costs, but do not change optimal capacities.

4.6 Conclusion

An optimization of the future technology mix in the renewables-based power system,

which is based on a deterministic representation of residual load, underestimates the

required PV, wind power and storage capacities. This also results in a significant un-

derestimation of system costs. The shortcomings of the deterministic modeling approach

become more severe, the higher the share of variable generation.

Power demand and fuel prices used to be the predominant sources of a power system’s

uncertainty. With the transition to PV and wind power, uncertainty has increased and

their variable generation has become its central source. But the depiction of PV and

wind power generation in investment and dispatch models is still rather simple. They

are either based on a low temporal resolution with a few typical days of the year or on a

deterministic time series often in the form of one historic realization. The work at hand

demonstrates the consequences of this second approach and should motivate to choose

more sophisticated simulation approaches for residual load patterns.
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This paper’s detailed simulation of these patterns comes at the cost of an otherwise

parsimonious model specification that includes only one conventional generation, storage

and load management technology respectively. Future research could focus on developing

and testing approaches, which combine the detailed simulation of variable generation

patterns with a more sophisticated specification of dispatchable system elements.

In addition to analyzing the effects of stochastic vs. deterministic residual load, this

paper also confirms some of the previous findings in this research area.

1. Optimal renewable power generation is split between PV and wind power to har-

ness the benefits of their complementary nature with on- and offshore wind power

combined having a somewhat higher capacity than PV.

2. Load management is a highly attractive source of flexibility, built out to its maxi-

mum potential under all sets of assumptions.

3. From a social planner’s system perspective, storage becomes relevant at a late stage

of the energy transition. PV and wind power generation patterns are spread out

evenly enough over time to supply 70% of demand without being stored first. But

to reach a share of 80% variable generation, some of the PV and wind generation

needs to be stored and hence transferred to a period with unsatisfied demand.

Overall the results of this paper support an optimistic view on the feasibility of the en-

ergy transition. The technologies necessary to supply a large share of power demand from

renewable sources are readily available. But for an efficient and well-planned transforma-

tion, an adequate depiction of fluctuating wind and solar power generation is necessary.
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Chapter 5

Conclusion

5.1 Results and contribution

With my dissertation, I raise three novel questions around dealing with the medium-term

uncertainty of wind and solar power. Uncertainty is one of three central characteristics

of variable renewables and research on dealing with it has so far mostly been focused

on either the long- or the short-term time horizon. While the long- and the short-term

might have seemed more pressing for necessary investment and daily operating decisions,

medium-term uncertainty induces substantial ongoing risks for several institutions in the

energy sector. Hence, finding approaches to deal with it is highly relevant for the future

roll-out of wind and solar power.

Institutions with a microeconomic perspective are, first and foremost, renewable en-

ergy investors with volatility in their cash flows. The first two essays present potential

solutions for reducing their risks. But the examined approaches are also relevant for

service providers in renewable energies, such as direct marketing providers. Moreover,

financial institutions such as banks that provide funding for renewable projects and in-

surance companies that secure risks are directly faced with challenges from medium-term

uncertainty. Lastly, conventional generators indirectly carry risks from medium-term un-
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certainty in renewable generation volume, which is negatively correlated to their own

generation volume and power prices. All of these institutions are potential target groups

for the research results in this dissertation’s first two essays.

Essay I develops a portfolio optimization model for investors, who integrate their

variable generation assets into a virtual power plant. Its application enables owners and

operators of wind and solar power plants to substantially lower their portfolio risk as

demonstrated with a case study for the German market. It is of particular importance to

them to adjust their portfolio for the right mix between PV on the one hand and wind

power on the other to reach an optimal risk/return profile.

An equilibrium pricing model for the newly introduced wind power futures is laid out

in Essay II. It allows wind power investors to analyze the mechanics behind potential

risk premia in futures prices. Based on a simulation we expect that these risk premia

are always negative. Hence, the wind power generators are expected to pay an insurance

premium to the conventional generators, while both are able to reduce their risk from

fluctuating wind power volumes. The premium can also be interpreted as a compensation

for the externality of a stable power system provided by the conventional generator.

Furthermore, my dissertation also addresses institutions with a macroeconomic per-

spective. Medium-term uncertainty in renewable generation makes system planning sub-

stantially more challenging, because it is uncertain for which conditions the system should

be configured. To this end, Essay III assumes the perspective of a system planner and

presents a parsimonious investment and dispatch model based on stochastic and dy-

namic residual load. The approach helps to create more realistic designs of the future

renewables-based power system. In fact, a case study for the German system demon-

strates that an alternative deterministic approach substantially underestimates the re-

quired PV and wind power capacity, as well as the required storage capacity. Conse-

quentially, expected system costs are underestimated as well. A realistic representation

of uncertain residual load is of such great importance, because a misconfigured system is
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either insecure, less sustainable than planned, or inefficient. All of these outcomes could

impair the future prospects of the energy transition.

One overarching finding throughout my three essays is that the presented approaches

to deal with medium-term uncertainty are currently not in use. The diversification and

hedging approaches for investors, treated in the first two essays, show a lot of promise, but

are only used to a very limited extent. Moreover, system planners do not consequently

account for the medium-term uncertainty of residual load when optimizing the future

power system design. Hence, I hope to contribute to a wider adoption of the presented

approaches.

Additionally, to their individual contributions for dealing with uncertainty, all three

papers demonstrate the relevance of medium-term stochastic modeling of variable power

generation and other uncertainty drivers in the power system. To my knowledge, no

directly comparable models have yet been published in peer-reviewed literature. Hence,

the stochastic modeling approaches, developed in Essay I, are a contribution in their own

right.

5.2 Outlook and questions for further research

All three essays show promise for further research in their area. The methodology in

Essay I for risk-optimized pooling can be applied or adapted to include more technologies,

more geographies, or more markets. Additional technologies could be combined heat and

power plants, load management, or storage applications. Geographically the scope could

be widened across Europe or even considering other continents to include more assets

with very weak correlations among each other. A participation of the modeled virtual

power plant in the balancing market could create value for dispatchable technologies

in the portfolio, as they help to avoid balancing penalties from wind and solar power’s

uncertain generation.

Wind power futures, as analyzed in Essay II, are an entirely new field of research.
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Hence, they offer a lot of potential to develop and test adequate pricing models once price

data for wind power futures become available. Also, tests of the developed equilibrium

model are still necessary to validate it. The first two essays both analyze approaches to

reduce the investor’s risk from variable power generation. Hence, a comparison of risk

reduction benefits and costs for both approaches, including their potential combinations,

shows promise for future research.

The results of my third essay naturally raise the question how a dynamic and stochas-

tic representation of residual load can be incorporated in a less parsimonious investment

and dispatch model. Potential enhancements could, foremost, include a more accurate

depiction of dispatchable technologies’ techno-economic operational details. Another ob-

jective could be to enlarge the set of included dispatchable technologies, with inclusion

of long-term storage, such as power-to-gas, being an obvious choice.

All mentioned ideas for further research can help to deal with the medium-term un-

certainty of PV and wind power and pave the way for them to become our primary energy

sources. Their costs have already leveled with conventional generation in several regions

around the world. During the time until 2040, their investment volume is projected to

be twice as high as for fossil fuel fired and nuclear power generation combined (Gian-

nakopoulou and Henbest, 2016). But the pace of the renewables build-out and thereby

the pace of the energy transition will now be determined by our capability to deal with

PV and wind power’s unique characteristics. Hence, dealing effectively with their un-

certainty, as an investor or as a system planner, is crucial for a successful mitigation of

climate change.
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