
1

Multi-Schedule Synthesis for Variant Management
in Automotive Time-Triggered Systems

Florian Sagstetter, Peter Waszecki, Sebastian Steinhorst,
Martin Lukasiewycz, Samarjit Chakraborty

Abstract—Car manufacturers provide a growing variety of
models and configuration options for customers. In the highly
competitive and cost-driven automotive industry, managing these
variants and increasing the reuse of functionality in different
variants has therefore become one of the key challenges. This
paper addresses the problem of generating variant schedules
for time-triggered Electrical/Electronic (E/E)-architectures. We
propose a multi-schedule synthesis approach that determines the
common parts of multiple variants and generates a schedule that
exploits this commonality. Hence, a multi-schedule defines individ-
ual variant schedules with an identical schedule for applications
common to different variants. This makes these applications
variant-independent, thus, reduces the testing and integration
efforts as it only has to be done once. Multi-schedule synthesis
involves several challenges, viz., identification of commonality
between different variants, schedule synthesis for common parts,
and the integration of uncommon parts. Consequently, the
schedule synthesis approach presented here is very different
from conventional approaches. Finally, to address the increased
complexity, we also propose a divide-and-conquer approach to
partition the problem, improving the scalability.

Index Terms—Distributed systems, schedule synthesis, variant
management, automotive

I. INTRODUCTION

Today, variant management is one of the key challenges
that car manufacturers face. In the automotive industry, all
mass production manufacturers provide their customers with
various car models and a large variety of customization options.
For instance, AUDI currently offers 49 different car models
and this number will increase to 60 by 2020, each offering
hundreds of configuration options [1]. Handling all these
variants is a significant challenge both during design and
manufacturing. Efficient variant management not only reduces
development cost, it also allows to manufacture different models
at one assembly line and is therefore a significant economical
and competitive factor. While concepts like the Modular
Transverse Matrix of Volkswagen Group exist in industry [2],
techniques for variant management of Electrical/Electronic
(E/E)-architectures have not been systematically studied so far.

This paper addresses the problem of a variant-aware schedule
synthesis. We assume an architecture executing safety critical
applications according to a time-triggered execution scheme to
provide predictability, while remaining resources might be used
by less critical applications according to an event-triggered
execution scheme. In the work at hand, we focus on time-
triggered schedule synthesis for variant-management of safety-

This publication is made possible by the Singapore National Research
Foundation under its Campus for Research Excellence And Technological
Enterprise (CREATE) programme.

Florian Sagstetter, Peter Waszecki, Sebastian Steinhorst and Martin
Lukasiewycz are with TUM CREATE, Singapore (firstname.lastname@tum-
create.edu.sg).

Samarjit Chakraborty is with TU Munich, Germany (samarjit@tum.de).

N1 N2

N3 N4

bus

Architecture 1

N2

N3 N4

bus

Architecture 2

N2

N3

bus

Architecture 3

Fig. 1: Hardware architectures of three different variants, each consisting of a
different number of Electronic Control Units (ECUs) connected over a bus.

critical applications. Fig. 1 illustrates the architectures of three
vehicle variants, e.g., versions for a petrol, a diesel and a battery
electric vehicle. All three variants share common applications,
e.g., Anti-lock Braking System (ABS), but also have exclusive
applications such as Adaptive Cruise Control, Lane Assist or
the motor control for different engine types. To generate system
configurations for these variants, the manufacturer has three
options. (1) Determining an independent configuration and
schedule for each variant, (2) defining a single global schedule
for all variants, and (3) multi-schedule synthesis, as proposed
here. Option (1) suffers from a significantly increased testing
and integration effort as common applications are not variant-
independent and have to be tested individually for each variant.
As opposed to this, options (2) and (3) allow to test application
configurations independently of the variant they are deployed in
and common applications have to be tested only once. However,
option (2) leads to a significant overestimation of resource
requirements as exclusive applications, like the motor control
for a petrol and a diesel engine, considered in the global
schedule, will not be deployed in the same variant and reserved
resources remain unused. By contrast, option (3) generates an
individual schedule for each variant but contains an identical
schedule for tasks and messages common to multiple variants.
This leads to an efficient usage of available resources, while
the testing and integration efforts are reduced. For instance,
the configuration of a diagnosis tool might be reused for all
variants, or the integration of Electronic Control Units (ECUs)
is facilitated as the configuration has to be done only once [3].

The significance of a variant-aware schedule synthesis
becomes apparent when looking at the design process of
automotive architectures. The basic system schedule is defined
at an early design stage and the applications are then developed
independently. Here, our multi-schedule synthesis can partic-
ularly reduce the impact of a cost-intensive and error-prone
integration testing, which verifies the function, performance
and reliability of the entire system [4], as each application
is variant-independent and can be tested individually. During
the integration, the time-triggered multi-schedule then ensures
that applications do not interfere in different variants. As a
result, the testing and integration effort is reduced, leading to
a reduction of the overall design time of the vehicle.

Copyright c© 2015 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from
the IEEE by sending an email to pubs-permissions@ieee.org. This article is published in IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems with DOI 10.1109/TCAD.2015.2488480.

2

d1 d2 d3

t1

a1

t2

t3

t4

a2

t5

m1

m2

m3

t′1

a1

t2

t3

t4

a2

t5

m1

m2

m3

t′1

a1

t2

t′3

m1

N1 N2

N3 N4

bus

N1 N2

N3 N4

bus

N1 N2

N3 N4

bus

(a) Task graphs including a task to resource mapping for three variants

N1

N2

bus

N3

N4

COMMON
PROCESS

START-TIMES

t1

t2

t3

m1 m2

t4

t5

m3

t′1

t2

t3

m1 m2

t4

t5

m3

t′1

t2 t′3

m1

(b) Corresponding multi-schedule for the three variants d1,d2,d3

Fig. 2: (a) Variant specification d1 describes the task graph of the full system using 4 ECUs, while d2 and d3 are variants utilizing three and two ECUs,
respectively. For instance, d3 only supports application a1, but not a2. (b) A multi-schedule defines the same schedule for tasks and messages shared in
multiple variants.

Methodology. Fig. 2a illustrates the task graphs of the three
vehicle variants from Fig. 1, sharing common tasks and
messages but differing in the underlying architecture. We
use a direct acyclic task graph model where each vertex
represents a task or message, and the edges represent their
data-dependencies. We propose a schedule synthesis approach
generating a time-triggered multi-schedule that defines release-
times for periodic tasks and messages, as illustrated in Fig.
2b. Our framework determines common parts in multiple
variants and defines an identical schedule for this commonality.
For instance, for m1 and t2, common to all variants, the
same schedule is assigned. As the commonality between all
variant specifications might be low, we propose an incremental
approach which also considers commonality in a subset of
variants, e.g., t4, m3, and t5 shared by variants d1 and d2.
Related work. The problem of defining multiple configurations
for a system has been addressed in the area of multi-mode
scheduling, however, with a different objective. While multi-
mode approaches focus on optimizing the switching of the
system configuration of a single system, often with the
goal of minimizing the transmission delays between modes,
e.g., [5][6], we address the problem of determining variant
schedules with minimal differences for multiple architectures.
Furthermore, several approaches have been proposed for
concurrent scheduling of multiple graph-based applications,
e.g., [7][8]. While these approaches address a similar problem
of merging different applications into a single task graph,
the goal is to generate a single schedule instead of multiple
variant schedules. Furthermore, despite various tools being
available to assist in the variant management in the automotive
domain [9][10][11], the problem of a comprehensive and
holistic variant management still remains open. Despite its
importance for the industry, variant management has gained
only little attention in the scientific community. For instance,
in [12] a graph-based representation to enable the use of graph
theoretic analysis tools is presented, while [13] proposes a
multi-variant based Design Space Exploration (DSE). Finally,
a variant-aware schedule synthesis was first addressed in [3].
The authors propose an approach specific to message scheduling

for the FlexRay bus. By contrast, the work at hand proposes a
holistic approach, taking both tasks and messages into account
during schedule synthesis. A detailed survey of existing work
is given in Section V.
Contributions of the paper. This paper proposes a frame-
work for multi-schedule synthesis for variant management.
Multi-schedule synthesis involves several challenges, viz., the
determination of common parts in a set of variant schedules,
the generation of a common schedule for these parts, and the
integration of uncommon parts. In addition, the complexity of
the schedule synthesis is clearly increased, as multiple variant
schedules have to be scheduled concurrently. We therefore
propose an incremental approach which first determines a multi-
schedule for common parts in all variants, before addressing
commonality in variant subsets, extending the multi-schedule. A
graph-based approach determines common parts in variants and
a Satisfiability Modulo Theories (SMT) approach is applied for
schedule synthesis. To improve the scalability, we also propose
a partitioning heuristic using graph-based metrics to divide
the schedule synthesis problem into smaller problems. This
approach is in accordance with the organization of automotive
architectures in domains, i.e., partitions, corresponding to
the functionality such as chassis or safety applications. The
focus here lies on non-preemptive time-triggered scheduling
as we exploit the temporal composability of time-triggered
architectures [14][15] for the incremental extension and the
partitioning. Variant-aware event-triggered scheduling requires
a significantly different approach, and is part of future work.
In addition, the automotive industry is moving towards time-
triggered scheduling for predictability of safety-critical hard
real-time functions. The focus here is not to obtain globally
optimal schedules, but rather to determine variant schedules
with minimal differences, satisfying predefined maximal end-to-
end delays. Multi-schedule synthesis minimizes the differences
between different variants and therefore reduces the testing
and integration efforts, as it only has to be done once, while
using available resources efficiently.

In summary, our contributions are, (1) an incremental multi-
schedule approach generating time-triggered variant schedules

3

that consider commonality, and (2) a heuristic partitioning of
the schedule synthesis problem which enables a divide-and-
conquer approach to significantly reduce the runtime.
Paper outline. The paper is organized as follows. Section II
introduces our framework. Section III presents implementation
details of our multi-schedule synthesis. Section IV evaluates our
framework with three case studies and an automotive lab setup.
Finally, Section V discusses related work, before Section VI
concludes the paper.

II. FRAMEWORK

In the following, we first introduce the multi-scheduling
problem formally, before presenting our multi-schedule frame-
work.

A. Problem description
Automotive architectures implement distributed applications

running on a number of networked resources. Rather than
defining deadlines for each single task, strict maximum end-
to-end delays are defined for distributed applications [16].
Classical scheduling strategies such as Earliest Deadline
First (EDF) or Rate-Monotonic (RM) are designed for single
processor applications, and are therefore unsuitable candidates
for scheduling applications with a high degree of distribution.
Instead, we assume an architecture which provides predictabil-
ity for safety-critical applications, while remaining resources
might be used by less critical applications following an event-
triggered execution scheme. Here, we focus on time-triggered
scheduling for safety-critical tasks, defining release-times for
periodic tasks. We consider a direct acyclic graph model where
each vertex represents a task or message and the edges represent
the dependencies between them.
Time-triggered scheduling. For time-triggered scheduling, at
runtime all tasks and messages are executed by a predefined
schedule that is triggered by a global time. Automotive
buses like FlexRay [17] or Automotive Ethernet based on
the Time Sensitive Networking (TSN) standards [18] support
time synchronization of ECUs, providing a global clock. A
time-triggered schedule partitions the time and assigns the
start-times for these partitions to periodic tasks and messages.
For the sake of simplicity, in the following we refer to both
task and message as process p. Each process is defined by its
period hp and execution time ep. For a given start-time sp, a
process is executed during the time interval t given by:

sp + n · hp ≤ t ≤ sp + ep + n · hp, ∀t ∈ R, n ∈ N0

We define an application as a set of processes connected by data-
dependencies, e.g., variants d1 and d2 in Fig. 2a each define
two applications a1 and a2. An application a is represented
by a task graph Ga = (Pa, Ea) consisting of the processes
Pa with their data-dependencies Ea, as well as the maximal
allowed end-to-end delay from source to sink tasks. While
the periods of applications might differ, all processes of one
application have the same period, due to data-dependencies. At
design time, schedule synthesis defines a start-time sp for each
process while taking constraints like the maximum end-to-end
delay of each application into account.
Multi-schedule synthesis problem. Here, we address multi-
schedule synthesis for time-triggered systems which determines
individual schedules for a set of variants. Fig. 2b illustrates a

multi-schedule, defining an identical schedule for shared tasks
and messages, e.g., for m1 and t2 common to all variants.
Furthermore, it considers commonality within a subset of
variants, e.g., t′1 shared by variants d2 and d3 or t4, m3, and
t5 shared by d1 and d2. The objective of the multi-schedule
synthesis is not to determine an optimal schedule, but rather to
minimize the differences between variant schedules, satisfying
all maximum end-to-end delays. To determine variants of a
single application, we assume that the application designer
has already selected a suitable level of granularity, such that
common functionality is implemented in a common task rather
than being included in different tasks. Due to the distributed
nature of automotive E/E-architectures, this is generally the
case.

B. Multi-Schedule Synthesis Framework
Our framework is based on an incremental schedule synthesis.

(1) Common tasks and messages are determined. (2) A com-
prehensive task graph is generated, representing an extended
task graph containing the processes of all variants with data-
dependencies to the common processes. (3) A multi-schedule
is determined. These steps are repeated for all variant subsets,
extending the multi-schedule.

Fig. 3 illustrates the first two iterations of the multi-schedule
synthesis for the three variants in Fig. 2a. We first determine
shared processes for all variants as illustrated in Fig. 3a. Based
on this common subset, we define a comprehensive task graph.
A comprehensive task graph contains all processes and their
data-dependencies of applications that share processes, e.g.,
the comprehensive task graph in Fig. 3b not only contains the
shared processes m1 and t2, but also the exclusive processes t1
and t′1, as well as t3 and t′3. Hence, a comprehensive task graph
represents a set of variants in a single task graph. Based on this
representation, we determine a time-triggered multi-schedule
as illustrated in Fig. 3c. In the second iteration, we extend this
multi-schedule with applications shared by d1 and d2. We first
determine common parts as illustrated in Fig. 3d, only taking
processes into account which have not been scheduled yet.
After a comprehensive task graph was created (Fig. 3e), we
extend our multi-schedule as illustrated in Fig. 3f. The process
scheduling determined in the previous iteration, illustrated as
a grayed out schedule, is taken into account in the form of
additional constraints. This iterative process is continued until
all processes have been scheduled. Finally, the obtained multi-
schedule is converted into individual variant schedules.
Partitioning. Automotive networks are organized in domains,
e.g., body, chassis, and safety, allocating applications within
one domain to common ECUs. Hence, applications of different
domains only share few resources. To exploit this property,
we propose a partitioning-based method to overcome the
high complexity and limited scalability of time-triggered
scheduling [19][20]. Partitioning a task graph and solving the
scheduling problem for each generated subgraph is possible as
re-integrating the individual solutions to a multi-schedule can
be done efficiently [21][22]. We therefore extend these sched-
ule integration approaches, integrating separately generated
partition schedules into a system schedule, with a partitioning
approach for multi-schedule synthesis. Note that for small
subsystems no partitioning might be necessary and the entire
system is considered as a single partition.
Framework. The framework iteratively schedules subsets of

4

ITERATION I ITERATION II

D1 D2

D3

m1

t2

(a)

D1 D2

D3

t2

t1 t′1

t3 t′3

m1

m2

(b) (c)

D1 D2

t4

t5

m3

(d)

D1 D2

t4

t5

m3

(e) (f)

t1

t2

t3

m1 m2

t′1

t2

t3

m1 m2

t′1

t2 t′3

m1

t4

t5

m3

t4

t5

m3

Fig. 3: First two iterations of a multi-schedule synthesis for variants from Fig. 2a. Each iteration (1) determines shared processes (a,d), (2) extends these to
comprehensive task graphs (b,e), (3) generates a multi-schedule for the comprehensive task graph (c,f). Grayed out elements represent parts which have already
been handled in a previous iteration. For schedule synthesis these elements are taken into account when the schedule is generated.

(Section III-A)

requirements

iterate sub-
sets D̃

determine comprehensive task
graph Gβ (Section III-B)

partition comprehensive task graph
Gβ in subgraphs Gβ̃ (Section III-C)

generate partition multi-
schedule γ̃ (Section III-D)

determine conflicts
(Section III-E)

variant
schedules

problem
infeasible

D

D̃ ⊆ D

Gβ

∀Gβ̃ γ̃, G
β̃′

UNSAT

γ̃, Gβ̃ ,G
β̃′

update(Gβ̃ ,G
β̃′)

SAT

γ̃, G
β̃′

γ

DONE

γ

Fig. 4: Flow chart of multi-schedule synthesis framework. Individual schedules
are iteratively determined for a set of variants. The framework first determines
a multi-schedule for shared processes and extends this schedule iteratively
with remaining processes. A conflict refinement resolves infeasibilities with
schedules from previous iterations.

variants with common parts. For each iteration, it first deter-
mines a comprehensive task graph before calculating a multi-
schedule. We apply a partitioning heuristic, which splits the
comprehensive task graph into suitable subgraphs. The schedule
synthesis is then applied to each subgraph independently. It
calculates a start-time for each process, extending the multi-
schedule of previous iterations. As iterative scheduling might
lead to conflicts, we also present a conflict refinement. It
determines already scheduled applications, causing a conflict,
and adds these applications to the currently processed subgraph
to adjust the initial schedule, thus, resolving the conflict. After
all subgraphs have been scheduled, a schedule integration
combines the subschedules in each iteration. Once all processes
have been scheduled, the multi-schedule is converted into
individual variant schedules. Fig. 4 illustrates the flow chart of
our framework. For implementation details and a description
of the notation, refer to the indicated sections.
Trade-offs. The goal of multi-schedule synthesis is to minimize
the differences between variants, consequently reducing costs
through a reduced testing and integration effort. However,

while generating individual schedules allows to optimize
the application performance for each variant, multi-schedule
synthesis might lead to suboptimal performance due to addi-
tional constraints for the commonality between variants. Our
framework ensures that all end-to-end requirements are fulfilled,
thus guarantees the correct functionality of applications while
not guaranteeing optimal performance. This is in accordance
with the design approach in the automotive industry where
a minimal cost implementation fulfilling all requirements is
generally the goal. However, in some cases, obtaining a multi-
schedule might not be feasible while a solution for generating
each variant schedule individually is possible. In this case,
our framework provides detailed information about conflicting
parameters to the system designer on how to adapt the system
specification, e.g., through adjusting the number of variants.
Note that a single global schedule deployed in all variants not
only includes all common parts in the schedule but also the
uncommon parts of all variants. Consequently, if a single global
schedule exists, also multi-schedule synthesis is applicable but
not vice versa.

III. MULTI-SCHEDULE SYNTHESIS

This section describes the multi-schedule framework, as
illustrated in Fig. 4. We first introduce the outer-loop of
our framework which incrementally iterates over the subsets.
Second, we present an algorithm to determine comprehensive
task graphs, as introduced in Section II-B. Third, we propose
a partitioning approach to improve the scalability of our
framework. Finally, an SMT-based scheduling approach is
presented, followed by our conflict refinement approach. Note
that multi-schedule synthesis is strongly constrained and
backtracking is required. As heuristic approaches struggle with
these late decisions we have selected an SMT-based approach
that allows to efficiently solve the scheduling problem.

A. Methodology

The algorithm iteratively constructs a multi-schedule, starting
with scheduling applications sharing processes for all variants.
It then iterates over all subsets of variants from larger to
smaller subsets, scheduling applications which have not been
considered in previous iterations. This leads to a quickly

5

Algorithm 1: Outer-loop of multi-schedule synthesis
Input: set of variant specifications d ∈ D
Output: multi-schedule γ
// initialize multi-schedule γ and comprehensive

task graph for scheduled applications Gβ′:

1 γ = ∅
2 Gβ′ = (∅, ∅)
// iterate through all variant subsets D̃:

3 for k ∈ {|D|, .., 1} do
4 for each D̃ ⊆ D and |D̃| = k do

// only consider processes which have not

been scheduled yet and calculate

current comprehensive task graph Gβ:

5 D̃ = {d̃ := Gd̃ = (Pd \ Pβ′ , Ed \ Eβ′)|d ∈ D̃}
6 Gβ(Pβ , Eβ) =

getComprehensiveTaskGraph(D̃)
7 if Pβ 6= ∅ then

// determine multi-schedule γ and

update Gβ′:

8 γ = generateMultiSchedule(β, β′, γ)
9 Gβ′ = (Pβ′ ∪ Pβ , Eβ′ ∪ Eβ)

10 end
11 end
12 end

increasing number of iterations with the number of variants.
However, the complexity of the algorithm is dominated by
the SMT-based schedule synthesis which is only applied for
processes that have not been scheduled yet. While the schedule
synthesis might become intractable, efficient solvers such as
Z3 [23] generally allow to solve moderate size problems in a
reasonable amount of time. Hence, the reduction of the problem
size for the scheduling algorithm through this iterative approach
clearly out-weights any runtime increase. Our algorithm is
based on the following parameters:
• d ∈ D - variant specification describing a task graph
Gd = (Pd, Ed), representing the processes as vertices Pd
and their data-dependencies as edges Ed. D denotes a set
of all variant specifications.

• Gβ - a comprehensive task graph Gβ = (Pβ , Eβ),
describing the relations of different variants to shared
tasks, as illustrated in Fig. 3b.

• γ(p) : P → R - multi-schedule defining the start-times of
processes. It returns the process start-time sp for a process
p ∈ P , see Fig. 3c.

Algorithm 1 outlines the outer-loop for our multi-schedule syn-
thesis. The algorithm first initializes an empty comprehensive
task graph Gβ′ and an empty schedule γ (line 1-2), which are
iteratively filled with processes that have been scheduled, and
their assigned start-times, respectively. The algorithm iterates
through all subsets D̃ ⊆ D, starting from the complete set
with |D| elements down to each single variant (line 3-4).
Processes which have already been scheduled are removed from
D̃ (line 5), before a comprehensive task graph is generated
(line 6). The comprehensive task graph Gβ abstracts the set
of variants, containing all applications with shared processes.
If a comprehensive task graph exists (line 7), a multi-schedule
is generated, and γ and Gβ′ are updated (lines 8-9). Fig. 3
illustrates two iterations of this algorithm.

Algorithm 2: Determine comprehensive task graphs

1 Function getComprehensiveTaskGraph((D̃))
Input: subset of variant specifications D̃ ⊆ D
Output: comprehensive task graph Gβ
// determine processes P̃ common to all

variants in D̃:

2 P̃ =
⋂̃
d∈D̃

Pd̃

3 if P̃ 6= ∅ then
// initialize comprehensive task graph Gβ:

4 Gβ = (∅, ∅)
// iterate through all applications a of

each variant d̃:

5 for d̃ ∈ D̃ do
6 for a ∈ Ad̃ do

// if a contains a process common to

all variants in D̃, add a to Gβ:

7 if Pa ∩ P̃ 6= ∅ then
8 Gβ = (Pβ ∪ Pa, Eβ ∪ Ea)
9 end

10 end
11 end
12 return Gβ
13 else
14 return (∅, ∅)
15 end
16 end

The functions getComprehensiveTaskGraph(D̃),
determining a comprehensive task graph, and
generateMultiSchedule(β, β′, γ), determining a multi-
schedule, are described in detail in Sections III-B and III-C
till III-E, respectively. Note that if none of the variants shares
any commonality with another variant, an individual schedule
is created for each variant.

B. Determine comprehensive task graph
This section proposes an algorithm to determine a compre-

hensive task graph. We define a comprehensive task graph as
a task graph containing all vertices and edges of applications
sharing a subgraph. Our algorithm uses the following additional
parameter:
• a ∈ Ad - defines an application with its task graph Ga =

(Pa, Ea). An application represents a weakly connected
component of the task graph Gd of specification d (Pa ⊆
Pd, Ea ⊆ Ed), hence all processes p ∈ Pa are connected
through a path in the task graph.

To determine common subgraphs, usually the maximum
common subgraph-isomorphism problem has to be solved
which is known to be NP-hard [24]. However, as our system
model defines tasks and messages using very specific properties
including task and message ids, we apply a significantly more
efficient approach using sets.

Algorithm 2 determines the comprehensive task graphs for
a set of variants. The algorithm first determines a common
subset P̃ of processes shared by all variants in the subset
D̃ (line 2) (see Fig. 3a). If a common induced subgraph
exists (line 3), we initialize an empty task graph Gβ (line 4)
which is iteratively extended to the comprehensive task graph.

6

The algorithm iterates through all variants (line 5), and their
applications (line 6), determining if the application contains
processes of the common subset P̃ (line 7). If the application
shares processes in P̃ , it is added to the comprehensive task
graph Gβ (line 8). Finally, the algorithm returns Gβ (line 12),
or, if no common subset exists, it returns an empty task graph
(line 14). Fig. 3b shows the comprehensive task graph Gβ
for the three variants presented earlier. As the comprehensive
task graph might contain parts that are not common to all
variants in the current subset, the algorithm also maintains a
set specifying the variants each process is part of.

C. Partitioning

Before applying our variant-aware schedule synthesis, we
apply a graph partitioning heuristic. It allows to apply a divide-
and-conquer approach, scheduling each partition individually
before re-integrating the generated schedules using schedule
integration. Fig. 5a illustrates two domains domain1 and
domain2 of an automotive E/E-architecture, consisting of
applications which are mainly executed on different resources,
but share ECU N4. Hence, the problem might be partitioned
following this domain-based architecture. Partitioning of the
problem to reduce the search space has proven beneficial
to clearly improve the runtime of solving time-triggered
scheduling problems [21][22].

To determine suitable partitions for the comprehensive task
graph, we first introduce a graph-based representation to
indicate application relations with regard to shared resources.
We convert the comprehensive task graph Gβ = (Pβ , Eβ) to
a representation GCβ = (ACβ , ECβ) with applications ACβ
as vertices and their resource dependencies as edges. Fig. 5b
illustrates such a graph for the applications illustrated in Fig. 5a.
For instance, application a2 and a3 execute one task each on
ECU N4 and are therefore connected by one edge. Similarly,
a1 and a2 share three resources, N2, N3 and bus2, resulting
in three edges. For this example, a partitioning might be done
by removing the edge between a2 and a3, generating two
subgraphs. Schedules are then determined for each of the
partitions c1 = {a1, a2} and c2 = {a3, a4} separately, and the
partition schedules are integrated in a second step.
The partitioning is defined as:

B = partition(β)

β̃ ∈ B, Gβ̃ = (Pβ̃ , Eβ̃) : Pβ̃ ⊆ Pβ , Eβ̃ ⊆ Eβ

Additionally we introduce the following parameter.
• c ∈ Cβ - cluster representing a subset of applications of

variant specification Gβ as Graph Gc = (Ac, Ec).

Metrics. The partitioning metric presented in the following is
not only limited to domains, but also determines subclusters
within a domain. Our partitioning algorithm applies two metrics,
a cost function evaluating the number of cuts required per
application in a partition, and a balancing of the number
of applications between the partitions. Balancing has proven
beneficial in reducing partitions with single applications and
leads to a similar processing time for each partition due to
equal numbers of applications. Consequently, we define the
balancing metric as:

N4

N
2

N
3

b
u
s
2

b
u
s
3

N
6

domain1 domain2

CONVERSION

N3

N2

N1

N4

N5

N6

N7

N8

bus1

bus2 bus3

a2 a3

a1 a4

a1:
a2:
a3:
a4:

(a) Domain based architecture (b) Application relations

Fig. 5: (a) Automotive Architectures are organized in domains, i.e. partitions,
which only share few resources. (b) To partition the scheduling problem
we convert the task graphs into a graph-based representation where each
application a represents a vertex, and for each shared resource an edge is
introduced between two applications.

mimbalance(Cβ) =
1

|Cβ |
·
∑
c∈Cβ︸ ︷︷ ︸

average over
all clusters

√√√√√(|Ac|
|ACβ |
|Cβ |︸ ︷︷ ︸

deviation of |Ac|
from average node
number per cluster

−1

)2

(1)

With this metric we want to determine how much the number of
nodes per cluster deviates from a perfectly balanced partitioning
where each c would obtain the same |Ac|. Consequently, we
first calculate the deviation of the number of vertices in each
cluster compared to the average. Note that we subtract 1 in
order to obtain the result of 0 if no imbalance exists and take
the absolute value in case the imbalance calculation would
result in a negative value. Finally, we calculate the average of
the imbalance per cluster for the whole partitioning.

A partition that contains a high number of interlacing edges
e = (a, ã) between the subgraphs cannot be re-integrated
efficiently. Therefore, we want to evaluate the number of
crossing edges between partitions. Hence, we first define
the function maxcross determining the maximum number of
crossing edges between the subgraph and its adjacent subgraphs.

maxcross(c) =

argmax
|e|

{
|e|
∣∣∣ ai ∈ Ac ∧ aj ∈ Ac̃} for all c̃ ∈ Cβ \ c (2)

Here, we identify the maximum number of edges where vertices
of a cluster are connected to vertices that are not in this
particular cluster. Such edges are considered as crossing edges.
Based on these considerations, we can determine a metric
representing the average number of maximum crossing edges
for all partitions in the graph.

mavgcross(Cβ) =
1

|Cβ |
∑
c∈Cβ

maxcross(c) (3)

Partitioning heuristic. Now that we can evaluate the quality
of a graph partition, the actual algorithm that performs the
partitioning, controlled by the two quality metrics, has to
be defined. The graph shall be split such that a minimal

7

imbalance mimbalance(Cβ) is achieved while the subgraphs
have an acceptable number of interlacing edges mavgcross(Cβ):

minimize mimbalance(Cβ) s.t. mavgcross(Cβ) < εcross (4)

For this purpose, we apply the efficient polynomial time
Girvan-Newman algorithm [25] which determines subgraphs
as communities with a higher number of connections between
the vertices by iteratively removing edges from the graph until
subgraphs are formed. Here, the number of removed edges per
vertex is the parameter influencing if the initial graph is split
at all, and how many subgraphs are created.

We start with the edge-removal parameter set to 1 and
increase the number of removed edges per vertex by 1 in
each iteration. For each iteration we calculate mimbalance(Cβ)
and mavgcross(Cβ) and decide whether the result of the graph
partitioning is suitable according to our metrics. Consequently,
we only start to evaluate mimbalance(Cβ) once the first splitting
in the graph has occurred, as an unpartitioned graph is
inherently balanced. We only accept a partition if mavgcross(Cβ)
is below a threshold of εcross. As mavgcross(Cβ) is either the
same or increases between two iterations, this metric can result
in suggesting that the graph should be processed as a whole.

As we monitor mimbalance(Cβ) while iterating the number
of removed edges, we compare its value to the result from the
previous step. The algorithm is designed to achieve a certain
balance after some iterations, before mimbalance(Cβ) again
increases. Hence, we use the last splitting result before the
imbalance in the graph increases.
Preprocessing. So far the proposed partitioning heuristic
assumes that domains are also mapped to separate hardware
domains, and hence, that most applications in different domains
do not share resources. However, if multiple domains share
the same communication bus, this is not given anymore and
all applications share a common edge, forming a clique. To
partition such graphs, we apply a preprocessing and remove
the edges of a shared communication bus before applying our
partitioning heuristic.
Schedule integration. After partitioning the comprehensive
task graph to subgraphs, we apply the schedule synthesis
described in Section III-D for each subgraph individually. To
re-integrate the individual partition schedules into a global
schedule, we apply a schedule integration approach. During
schedule integration a temporal offset oβ is defined for each
partition schedule. This offset maintains the general structure
of the partition schedule and does not affect the subsystem
behavior, as the start times of all processes within the partition
are adapted concurrently and the partition schedule is executed
periodically. To determine whether p utilizes a resource for a
specific point in time t, we define the following function:

η(p, t) =

{
1 ∀t : sp + n · hp ≤ t ≤ sp + n · hp + ep, n ∈ N0

0 otherwise
(5)

Here, sp is the start-time, ep the execution time, and hp the
period of process p. The two partitions β and β̃ can then be
integrated in a global multi-schedule, if the following equation
holds:
∀p ∈ Pβ ,∀p̃ ∈ Pβ̃ , r(p) = r(p̃), t ∈ R+ :

η(p, t− oβ) + η(p̃, t− oβ̃) ≤ 1 (6)

N1

N2

bus

N3

N4

ht1

et3
end-to-end delay

w(m3,t5)

st1

ft1

t4

t5

m3

t1

t2

t3

m1 m2

t1

t2

t3

m1 m2

t3

t5

Fig. 6: Time-triggered schedule for variant specification d1. The schedule
defines a start-time sp for each periodically executed task or message. Instead
of considering task deadlines, we define a maximum end-to-end-delay for the
application.

Here, the function r(p) returns the resource a process is mapped
to. Hence, oβ and oβ̃ must be selected such that no two
processes p ∈ Pβ , p̃ ∈ Pβ̃ intersect when scheduled on the
same resource. The partition schedule is executed with the
period hβ = lcm

p∈Pβ
(hp), defining the least common multiple of

all process periods in partition β. The offset oβ might therefore
have any value between 0 and hβ . To determine offsets for each
partition, we use a two step approach. (1) Feasible intervals
for the relative offset of each partition pair β, β̃ ∈ B are
computed. The relative offset is defined as oβ − oβ̃ , hence
it defines the relation between the two offsets. (2) The final
offsets for the whole set are determined with an SMT solver.
Based on Equation (6), the intervals defining all feasible offsets
are computed as follows:

∆(β,β̃) = {x|x = oβ − oβ̃ ,oβ ∈ [0, hβ],oβ̃ ∈ [0, hβ̃],

p ∈ Pβ , p̃ ∈ Pβ̃ , r(p) = r(p̃),

∃t : η(p, t− oβ) + η(p̃, t− oβ̃) ≤ 1}
(7)

For each process pair p and p̃ being part of different partitions,
but being mapped to the same resource, the feasible relative
offsets are determined. ∆(β,β̃) represents the intersection of
these offsets for all process pairs, containing all feasible
intervals δ(β,β̃) = [δ(β,β̃), δ(β,β̃)] for the relative partition offset
for β, β̃. Based on these intervals, we apply the following SMT
formulation to determine the partition offsets oβ :
∀β ∈ B :

0 ≤ oβ < hβ (8)

∀β, β̃ ∈ B, β 6= β̃:⊕
∀δ(β,β̃)∈∆(β,β̃)

δ(β,β̃) ≤ oβ − oβ̃ ≤ δ(β,β̃) (9)

Here, the symbol ⊕ represents an exclusive or (XOR) operation.
Constraint (8) defines the boundaries for oβ , while Constraint
(9) ensures that all determined oβ lie in the previously
determined intervals. Updating the process start-times for each
partition with the obtained offsets leads to the global multi-
schedule.

D. Schedule Synthesis
In the following, we present an SMT-based multi-schedule

synthesis. Applied to the generated comprehensive task graph,

8

it schedules applications of multiple variant specifications in
parallel, generating a multi-schedule as depicted in Fig. 3f.
The multi-schedule represents all individual variant schedules.
For instance, Fig. 6 shows the respective schedule for variant
specification d1.

We assume a bus that allows to freely allocate time slots,
such as for the upcoming Automotive Ethernet based on TSN.
This allows to define a schedule with flexible message release-
times rather than packing messages into predefined slots as it is
done for other time-triggered buses like FlexRay. Consequently,
we define a message by its transmission time and treat both
messages and tasks as processes. The schedule synthesis is
based on the following additional parameters:
• p - process, referring to both tasks and messages.
• hp - process period, time after which p is repeated.
• ep - execution time of a task or transmission time for a

message.
• r(p) : P → R - returns the predefined process mapping

to a resource. The set of resources R consists of both
ECUs and communication buses.

• δ(p) : P → D - returns all variant specifications
containing a process p.

• H(p, p̃) = lcm(hp, hp̃) : P → R - returns hyper period
of p and p̃ where lcm defines the least common multiple.
Defines period after which schedule for p and p̃ repeats.

• e = (p, p̃) ∈ E - data-dependency of p̃ from p, defining
the process precedence.

• θa ∈ R - deadline of application a. Defines maximum
end-to-end delay from all source to all sink processes.

• φ - path or subgraph from a source to a sink task, e.g., φ =
{p1, p2, .., pn}. The processes must be pairwise connected
with an edge e.

• Φ(Ea) - returns all paths φ of application a. Applies a
Depth-first search algorithm to determine paths [26].

Based on these parameters our algorithm determines a
schedule using the following variables.
• sp ∈ R - variable for start time of p.
• fp ∈ R - variable for finish time of p.
• w(p,p̃) ∈ R - variable for waiting time between two data-

dependent processes p, p̃, defined as the delay between
the finish time of p and start time of p̃.

• oa ∈ R - variable for application offset, applied to
applications scheduled in a previous iteration.

The following constraints determine a schedule for the
comprehensive task graph Gβ .
∀p ∈ Pβ :

0 ≤ sp < hp (10)

∀p, p̃ ∈ Pβ , p 6= p̃, δ(p) ∩ δ(p̃) 6= ∅, r(p) = r(p̃),

i = {0, .., 2·H(p,p̃)
hp

− 1}, j = {0, .., 2·H(p,p̃)
hp̃

− 1} :

i · hp + sp + ep ≤ j · hp̃ + sp̃

⊕ j · hp̃ + sp̃ + ep̃ ≤ i · hp + sp
(11)

∀a ∈ Aβ , e ∈ Ea, (p, p̃) ∈ e :

fp = (sp + ep)%hp (12)

w(p,p̃) = (sp̃ − fp)%hp (13)

∀a ∈ Aβ , φ ∈ Φ(Ea) :

θa ≥
∑
p∈φ

ep +
∑

(p,p̃)∈φ

w(p,p̃) (14)

Constraint (10) defines the boundaries for the start time. As
processes are periodically executed, their start-time cannot
exceed their process period hp. Constraint (11) ensures that two
processes in the same variant specification are not executed at
the same point in time if both are mapped to the same resource,
and therefore finish execution before another process is started
for any of their periods. Constraint (12) calculates the finish
time fp. Constraint (13) determines the waiting time between
two data-dependent processes p, p̃. Finally, Constraint (14)
ensures that the maximum delay, based on the execution and
waiting times of an application for each respective path, does
not exceed the application deadline. The modulo operation %
in Constraints (12) and (13) is defined as a function in our
SMT formulation with the following properties:

0 ≤ a%m < m (15)

Hence, for a < 0 it returns a positive value, e.g., for
−m < a < 0 : a+m.
Schedules of previous iterations. Our multi-schedule ap-
proach iteratively generates an individual schedule for each
variant, scheduling common parts first, before extending each
variant schedule with variant specific parts in a consecutive
iteration. To take parts of the schedule created in a previous
iteration into account, additional constraints are required. The
processes Pβ′ scheduled in previous iterations are considered
as temporal intervals where processes of the current comprehen-
sive task graph Pβ cannot be scheduled if they are part of the
same variant and are mapped to the same resource, see grayed
out parts in Fig. 3f. To allow modifications to applications
scheduled in a previous iteration, we introduce an application
offset oa, defining a common offset for all processes p ∈ Pa.
As all task and message start-times are adjusted concurrently
through this offset, the general structure of the application
schedule is not altered and therefore all previously defined
constraints are not affected. Corresponding to Constraint (11),
we define the following constraints:
∀a ∈ Aβ′ :

0 ≤ oa < ha (16)

∀p ∈ Pβ ,∀a ∈ Aβ′ , p̃ ∈ Pa, δ(p) ∩ δ(p̃) 6= ∅, r(p) = r(p̃),

i = {0, .., 2·H(p,p̃)
hp

− 1}, j = {0, .., 2·H(p,p̃)
hp̃

− 1} :

i · hp + sp + ep ≤ j · hp̃ + sp̃ + oa

⊕ j · hp̃ + sp̃ + oa + ep̃ ≤ i · hp + sp
(17)

∀a, ã ∈ Aβ′ , p ∈ Pa, p̃ ∈ Pã, δ(p) ∩ δ(p̃) 6= ∅, r(p) = r(p̃),

i = {0, .., 2·H(p,p̃)
hp

− 1}, j = {0, .., 2·H(p,p̃)
hp̃

− 1} :

i · hp + sp + oa + ep ≤ j · hp̃ + sp̃ + oã

⊕ j · hp̃ + sp̃ + oã + ep̃ ≤ i · hp + sp + oa
(18)

Constraint (16) defines the boundaries for the application offset.
Constraint (17) ensures that a currently scheduled process does
not intersect with already scheduled processes. The application
offsets oa hereby allow to alter the structure of parts which
have already been scheduled in a previous iteration. Finally,
Constraint (18) ensures that altering the application offsets
does not lead to intersections between previously scheduled
applications.

9

p ep hp r(p) sp

t1 1ms 5ms N1 0ms
t2 1ms 5ms N1 2.5ms
t3 2ms 10ms N1 !

p ep hp r(p) sp

t1 1ms 5ms N1 0ms
t2 1ms 5ms N1 2ms
t3 2ms 10ms N1 3ms

N1

N2

bus

t1 t2 t1

! !

ht1
= 5ms

(a) Conflicting schedule

N1

N2

bus

t1 t2 t1

t3

(b) Resolved conflict

1.5ms 1.5ms 2ms1ms

ht1
= 5ms

Fig. 7: Exemplary illustration of a conflicting schedule and conflict refinement
for non-preemptive scheduling. (a) Application a1, containing t1 and t2, was
scheduled in a previous iteration. However, the created schedule which is
illustrated by the grayed out areas, conflicts with the execution time of t3,
part of the currently scheduled application a2. (b) During conflict refinement
the start-time of t2 is adapted to support both applications. For the sake of
simplicity, all other tasks and task dependencies are omitted for this example.

E. Conflict Refinement
Iterative schedule synthesis might lead to conflicts which

manifest in the currently scheduled applications not being
combinable with a schedule generated in a previous iteration.
We therefore propose a conflict refinement which determines
conflicting parts and resolves the conflict through adapting
the schedules. Fig. 7 gives an example of how a conflict
might be resolved. Our conflict refinement approach first
determines conflicting application schedules and updates the
comprehensive task graph Gβ and the comprehensive task
graph of previously scheduled processes Gβ′ to resolve the
conflicts, as illustrated in Fig. 4.

To determine conflicting application schedules in Gβ and
Gβ′ , we determine an Irreducible Inconsistent Set (IIS). An IIS
represents a smallest set of conflicting constraints which might
be resolved by removing any of these conflicting constraints.
While modern SMT solvers already allow to determine an IIS,
domain knowledge is not taken into account. Therefore, we
apply a group-based approach determining IISs for groups of
constraints, each group representing an application. We use a
common deletion filter which iteratively removes the constraints
of one application from the schedule synthesis problem until it
is solvable. The last removed application is then returned to the
set and the process is continued until the remaining problem
is unfeasible and removing any of the conflicting applications
would resolve the conflict. However, as the schedule synthesis
for Gβ might contain multiple IISs, we apply the deletion filter
multiple times until all IISs have been determined. For more
details please refer to [27].

To resolve the conflicts determined with the IISs, we extend
Gβ with the conflicting applications, Gβ = (Pβ ∪ PIIS , Eβ ∪
EIIS), and remove these applications from Gβ′ for each IIS,
Gβ′ = (Pβ′ \ PIIS , Eβ′ \ EIIS). The schedule synthesis is
then applied to the updated Gβ and Gβ′ .

IV. EXPERIMENTAL RESULTS

To evaluate our proposed multi-schedule framework, we
first compare the resource requirements of a global schedule,
i.e., one single schedule for all variants, to our multi-schedule
approach. Second, we analyze the deviation of variant schedules
created by a variant-unaware Integer Linear Programming (ILP)
approach, i.e., generating an individual schedule for each variant

1 4 8 12 16
0

3

5

10

better

number of variants

nu
m

be
r

of
ap

pl
ic

at
io

ns

Global schedule
Multi-Schedule Framework

Fig. 8: Comparison of application number supported by a single global schedule
for all variants, and a multi-schedule generating an individual schedule for
each variant. A higher number of applications for a set of variants indicates
a more efficient resource utilization. To improve legibility, the test cases are
grouped by their variant number and the average value is displayed.

ignoring commonality, compared to our framework. Third, a
scalability analysis evaluates our framework in comparison to
a variant-aware ILP. Finally, we present a case study using an
experimental prototype of an automotive architecture which
allows to adapt the architecture and switch the system schedule.
The schedule synthesis has been carried out on an Intel Xeon
3.2 GHz Quad Core with 12GB RAM. We use Microsoft’s Z3
version 4.3.0 as SMT solver for multi-schedule synthesis [23].
Note that the schedule is obtained at design time such that
runtimes of several minutes are still acceptable.

A. Resource Utilization
To generate time-triggered schedules for different variants,

car manufacturers commonly generate a single global schedule,
including the tasks and messages of all variants, to reduce
testing and integration efforts. This leads to the allocation
of resources for tasks which are not executed in each variant.
Therefore, the number of applications which might be deployed
in a variant is limited through the worst case resource utilization
assumption of the global schedule, while the actual resource
utilization is low. For instance, if we consider a system with
two variants, sharing one common application, such as ABS,
and having variant specific applications, like the motor control
for a diesel and a petrol engine, then the global schedule needs
to accommodate three applications in a single schedule, i.e.,
the ABS application and both the diesel as well as the petrol
application. By contrast, the multi-schedule distributes these
three applications as two applications in each variant schedule.
In the following, we analyze the number of applications
supported by a set of variants if scheduled by a global schedule
and our framework. To generate a global schedule we apply
a non-variant-aware ILP approach which adds both common
as well as individual tasks and messages to a single schedule.
We use CPLEX in version 12.6 as ILP solver [28].

We have created a set of synthetic applications of which
60% are common, hence, these applications are added to
all variant schedules. The remaining applications are variant
specific and are only part of a single variant. For a given small
subsystem, we randomly select applications from this set and

10

iteratively add them to the subsystem, until no feasible solution
can be found within a timeout of 5 minutes. For the global
schedule, both common and individual applications are added
to the scheduling problem. For our multi-schedule synthesis
only common applications are added to all variant schedules
while individual applications are only added to one variant
schedule. The metric applied for this analysis is the number of
applications supported by the schedule synthesis approaches.

Fig. 8 shows the average results for 3200 synthetic test
cases. The results clearly show the benefits of multi-schedules
compared to a global schedule. The global schedule only
supports a limited number of approx. 3.5 applications on
average which is independent of the number of variants.
By contrast, a multi-schedule uses the available resources
significantly more efficiently, and the number of supported
applications increases with the number of variants1. These
results indicate to which extent the worst case resource
utilization assumption of the global schedule overestimates
the actual resource requirements, leading to a poor resource
utilization. By contrast, the generation of multi-schedules leads
to a clearly improved resource utilization and in consequence
allows to deploy the same applications on an architecture with
less ECUs.

B. Analysis of Variant-Awareness
To ensure an efficient resource utilization, for each variant

a schedule could be created independently. However, as
each variant schedule is created individually, the schedules
strongly differ. This leads to significantly increased testing and
integration efforts as common applications have to be tested for
each variant individually. To evaluate the differences between
independently created variant schedules, in the following, we
compare the results of a non-variant-aware ILP with our
framework. The single-stage ILP is applied to each variant
independently. Hence, in contrast to our framework, the
resulting variant schedules do not have the same start-times
assigned to shared tasks.

To evaluate the approaches, we use 250 synthetic test cases
with hardware architectures consisting of up to 20 ECUs
connected by an Ethernet bus. A test case consists of 40
to 446 tasks and messages which are distributed in 4 to 16
variants. The number of processes common to the variants range
from 10% to 100% of all tasks and messages. For the graph
partitioning, we have determined a threshold of εcross = 1.3
for our average crossing metric (see Section III-C) as beneficial
through an experimental analysis. In the following, we first
analyze the differences in variant schedules determined by
the non-variant-aware ILP compared to our framework, before
presenting a runtime analysis of both approaches.
Variant-awareness. Fig. 9 illustrates the number of shared
tasks with identical schedules for different variants. The results
for the ILP show that for more than 65% of the test-cases
the start-times for all tasks differ more than 0.1ms. A detailed
analysis has shown that the average difference for common
parts lies between 2ms and 33ms for the ILP, indicating a clear
difference between common parts of variant schedules. With an
increasing commonality between different variants, the number
of identical schedules for common tasks might increase slightly,

1As common and individual applications are selected randomly, for this case
study the resulting average application number supported by a multi-schedule
might be lower than the number of variants.

25% 50% 75% 100%

0%
2%

5%

10%

15%

100%

commonality between different Variants

co
m

m
on

ta
sk

s
w

ith
id

en
tic

al
st

ar
t-

tim
e

ILP approach
Multi-Schedule Framework

optimum

Fig. 9: Analysis of differences in schedules created by a non-variant-aware
ILP approach and our variant-aware framework, depending on the ratio of
common tasks to all tasks including variant specific tasks. We consider tasks
to share the same schedule if their start-times differ less than 0.1ms.

but stays below 10% for most cases. These results do not come
as a surprise, as each variant schedule is generated individually
and common start-times are by chance and not intentional.
Our framework instead assigns an identical schedule to all
shared tasks. These results show the necessity of a variant-
aware approach to reduce testing and integration efforts.
Runtime evaluation. Evaluating the runtimes for this case
study shows that for 80% of the test cases our framework
is faster in creating a multi-schedule than the non-variant-
aware ILP in generating all variant schedules individually. On
average, the ILP calculation takes 7 times longer than the
multi-schedule synthesis to determine a schedule for each
variant. This result shows the efficiency of our framework to
deal with the increased complexity of variant-aware scheduling
in comparison to conventional non-variant-aware approaches.
Note that this runtime only accounts for the time required for
the schedule synthesis but does not quantify the time savings
achievable through reduced testing and integration efforts.
End-to-end delay analysis. To evaluate the drawbacks of
multi-schedule synthesis, we compare the overall end-to-end
delay of the applications in all variants for 120 of the test cases
for which both approaches find a solution. Both approaches
ensure that the maximum end-to-end delays defined for each
application are satisfied. However, generating an individual
schedule for each variant leads to a lower end-to-end delay
for 72% of the test cases. On average, the determined multi-
schedules have an end-to-end delay which equals 94.0% of
the maximum end-to-end delays, while generating each variant
schedule individually leds to 85.5%. These results indicate
that the additional constraints imposed by the concurrent
schedule synthesis might lead to an increased application end-
to-end delay and consequently to a reduced control function
performance. However, if this reduction in system performance
is acceptable, variant-aware schedule synthesis helps to reduce
development costs as testing and integration efforts are reduced.
This is generally the case for automotive applications which are
robust and perform well with an increased end-to-end delay, as

11

x < yx < y
10

x < y
100

timeout

10−1 100 101 102 103
10−1

100

101

102

runtime multi-schedule framework (x) [s]

ru
nt

im
e

va
r.-

aw
.I

L
P

ap
pr

oa
ch

(y
)

[s
]

Fig. 10: Runtime comparison of our framework generating a multi-schedule
with a variant-aware ILP approach generating all variant schedules concurrently.

long as their maximum end-to-end delay is not exceeded. These
results are obtained without applying an objective function.

C. Runtime analysis
The previous two case studies have evaluated the benefits

of the proposed multi-schedule synthesis compared to a single
global schedule and a non-variant-aware approach. As these
approaches are not completely comparable with multi-schedule
synthesis, in the following, we compare our framework with a
variant-aware ILP approach to evaluate the efficiency. The ILP
approach generates all variant schedules in a single iteration,
taking commonality into account. We evaluate the approaches
using the same 250 synthetic test cases introduced in the
previous section.

Figure 10 shows the result of the runtime analysis. We
have defined a timeout of 15 minutes and consider test cases
which cannot be solved within this time frame as infeasible.
The results show that our multi-schedule framework performs
well compared to the variant-aware ILP. While for some test
cases our framework might introduce an overhead, in particular
for difficult test cases it outperforms the ILP. On average,
our framework is 14 times faster, showing the benefits of our
iterative approach in combination with the problem partitioning.
For various test cases the ILP is unable to find a solution within
15 minutes while our framework finds a solution. For the multi-
schedule synthesis, the framework requires 4 iterations on
average to determine all variant schedules for one test case, but
not more than 11. About 74% of all test cases require a conflict
refinement. The problem partitioning proposed in Section III-C
accounts for a runtime reduction of 21.4% for all test cases
and 72.6% for test cases with a runtime of over 120 seconds
without partitioning. This indicates that, in particular for large
and difficult test cases, the partitioning clearly improves the
scalability of our approach.

D. Automotive Case Study
To illustrate the importance of a variant-aware schedule

synthesis, in the following, we apply multi-schedule synthesis

for the lab setup of a time-triggered automotive architecture.
The system is able to adapt the hardware architecture and
switch between predefined schedules at runtime. This allows
to evaluate multiple variant schedules on the platform. To
minimize the changes of the system configuration induced
when switching schedules, shared tasks require an identical
schedule for different variants. As multi-schedule synthesis
fulfills this property, this experimental prototype provides an
ideal testbed to evaluate our framework.

In the area of multi-mode systems various work has been
done on switching between system configurations. In this
context, we address the problem of minimizing the differences
between modes, i.e., variant schedules. However, the objective
of this case study is not to obtain minimal switching delays,
but rather to evaluate multi-schedule synthesis. A more detailed
discussion of related work is given in Section V.

We have defined 9 variants for our experimental prototype,
of which 3 are shown in Fig. 2a. The lab setup allows to turn
off single ECUs, thus, changing the underlying architecture.
Each ECU runs an online diagnosis detecting deactivated ECUs.
We use this mechanism to switch the current system schedule
and to evaluate our framework. In the following, we present
the results obtained with our multi-schedule synthesis and the
non-variant-aware ILP from the variant-awareness analysis in
Section IV-B. Note that this case study gives an example where
determining a single global schedule is not feasible, as it is
unable to accommodate the applications of all 9 variants.
Scheduling results. The 9 variant schedules have been gen-
erated with both our framework and the variant-unaware ILP
introduced in the previous section. To generate all variant
schedules, our framework takes 50ms while the ILP takes
90ms. Here, the incremental approach and scheduling multiple
variants concurrently reduce the runtime compared to the
ILP approach. As we have predefined the start-times of the
system tasks PTP and FD, the schedule synthesis was applied
only for the applications STR and IMG. Fig. 11 illustrates
the schedules generated by both methods for the variants
illustrated previously in Fig. 2a. While the variant schedules
generated with our framework (Fig. 11a) take the commonality
of multiple variants into account, the schedules generated by
the ILP (Fig. 11b), clearly differ in the start-times for common
parts. For instance, while our framework has assigned the
same start-times for the shared tasks tSTRPROC and m1, their
start-times differ for all schedules generated by the ILP, e.g.,
tSTRPROC is scheduled with sSTRPROC = 1.2ms, sSTRPROC = 3.0ms,
and sSTRPROC = 0.6ms, in Fig. 11b1-3, respectively. Fig. 11b
shows the differences between schedules generated individually,
requiring individual testing and integration of all variant
schedules. By contrast, our framework generates homogeneous
variant schedules, as illustrated in Fig. 11a, clearly reducing
the testing and integration efforts as schedules for common
applications only need to be tested once, and only distinctive
applications require individual testing.
Trade-offs. These results also indicate limitations of our
approach. For instance, while we have not defined a minimal
end-to-end delay as an objective for the schedule synthesis,
for the variant schedules illustrated in Fig. 11b, generating
each schedule individually has led to a reduced end-to-end
delay for the application STR compared to the results obtained
by a multi-schedule in Fig. 11a. This can, in particular,
be seen in Fig. 11a3 where a delay is introduced between

12

𝑠𝑆𝑇𝑅𝑃𝑅𝑂𝐶

𝑠𝑆𝑇𝑅𝑃𝑅𝑂𝐶

𝑠𝑆𝑇𝑅𝑃𝑅𝑂𝐶

(1)

(2)

(3)

(a) Schedules for three variants created by our framework

𝑠𝑆𝑇𝑅𝑃𝑅𝑂𝐶

𝑠𝑆𝑇𝑅𝑃𝑅𝑂𝐶

𝑠𝑆𝑇𝑅𝑃𝑅𝑂𝐶

(1)

(2)

(3)

(b) Schedules for three variants created by variant-unaware ILP

Fig. 11: (a) Variant schedules created by our framework. (b) Same variants determined by an ILP approach, generating variant-unaware schedules. The variant
task graphs are defined in Fig. 2a. Note that we follow a periodic execution model. Hence, actuator tasks (e.g. tIMGPROC) might appear to be executed before
sensor tasks (e.g. tIMGSEND), however, in this case data generated in the previous period is processed.

tSTRPROC and tSTRWHEEL for m1 scheduled in the other variants.
Hence, variant-aware scheduling might lead to an increased
end-to-end delay, and consequently to a reduced control
function performance. However, as our approach ensures that
all defined maximum end-to-end delays are not violated, the
control performance might be slightly reduced but the correct
functionality is guaranteed while the testing and integration
efforts are significantly reduced.

V. RELATED WORK

Variant management for automotive E/E-architectures is
highly important for the industry, being reflected in the
increasing number of industrial tools. The growing product
complexity and model diversity give variant management a
prominent position within the software development process
where features describe the commonalities and variabilities
of a product line [9][10] and complex calibration processes
are structured [11]. Although, currently, these commercial
tools do not address the schedule synthesis problem of time-
triggered schedules, our techniques could be incorporated
into such tools in the future. In [12] the authors propose to
transfer variants from the multiple-domain matrix representation
into a graph representation in order to apply graph theoretic
analysis tools to variant management. In the context of E/E-
architectures, our framework follows this approach by using
graph-based specification models to generate variant schedules.
One recently published approach proposes a multi-variant
based DSE [13]. Based on a 0-1 ILP, the authors develop
architectures for all defined variants as well as the overall
architecture selection, called Baukasten, but do not address the
schedule synthesis problem itself. Our approach, on the other

hand, assumes that the architectures are given and applies the
multi-schedule synthesis on them. Nevertheless, the system
models of functional variants might be used as input for our
multi-schedule framework in order to generate suitable variant
schedules.

Several approaches have been proposed to improve the
extensibility of E/E-architectures, hence, minimizing changes
necessary to add additional functionality or update the current
software. For instance, [30] presents a task allocation and
priority assignment approach for event-triggered scheduling
which optimizes the system based on potential changes, i.e.,
the increase of task execution times. Similarly, [31] presents a
task allocation approach which minimizes the changes required
in the future, e.g., changing a task priority, based on potential
change scenarios. An upgrading algorithm allows to extend
the initial system configuration with a minimal number of
changes. While defining different variants as scenarios would
theoretically make these approaches applicable for variant-
management, the approaches aim at optimizing a single system
instead of finding an optimal solution for multiple system
variants. Consequently, approaches optimizing the extensibility
of a single system suffer from an inferior resource utilization
compared to a variant-aware approach optimizing multiple
variants concurrently.

In the area of hierarchical scheduling for component-based
systems, various research has been carried out on modular
systems [32][33]. It addresses the problem of integrating
independent local schedulers into a global scheduling through
assigning runtime budgets. This allows to apply different
scheduling strategies such as EDF or RM for individual
schedulers. While component-based scheduling is often limited

13

to single resources, approaches like [34] circumvent this issue
by splitting the global end-to-end delay into local deadlines
which allows to assign a runtime budget to each single
task. An extension of this approach would make component-
based scheduling theoretically applicable for generating variant
schedules with common properties. However, with a rising
number of variants, the time-partitioning of end-to-end delays
in local deadlines would strongly constrain the obtainable
variant schedules, limiting the applicability of this approach.

In the area of multi-mode scheduling the problem of
generating multiple configurations for a system has been
addressed. Here, the focus generally lies on optimizing the
switching of the system configuration, often with the goal of
reducing the mode change transition latency, i.e., the settling
time during the switching from one application mode to
another, and the corresponding timing constraint guarantees.
For instance, an algorithm to determine an upper bound for
mode change transition latencies for communication-based
applications is presented in [5], targeting a static preemptive
priority-based scheduling and asynchronous mode change
protocols. By contrast, the authors in [6] use Time Division
Multiple Access (TDMA) for state-based scheduling. More
precisely, a workflow for generating communication schedules
with optimized average mode-change delays is presented.
However, the paper addresses the problem of minimizing
transition times, while our approach aims at the minimization
of differences between variant schedules addressing a very
different problem.

Besides this, there exist several approaches dealing with the
concurrent scheduling of multiple graph-based applications
in a heterogeneous distributed system. In [7] the authors
present four methods to merge different Directed Acyclic
Graphs (DAGs) into one composite DAG in order to enable
the use of any conventional single-graph scheduling algorithm.
Thereby, the objective is to minimize the overall makespan
(i.e., the total length of the schedule) and achieve fairness
in terms of an equal delay for all DAGs due to a shared
utilization of resources. In contrast to this, in [8] a dynamic
DAG scheduling framework for multiple applications in a
distributed environment is presented. Here, the scheduling is
done in a decentralized manner, with each application making
its own scheduling decisions based on the estimated network
loads. Although, these approaches might perform well for the
actual scheduling of multiple graph-based applications they
do not consider possible shared processes among the different
DAGs. To the best of our knowledge, our approach is the first
one to merge common tasks and messages of different DAGs
with the objective to generate individual variant schedules with
minimal differences between them.

Finally, various work has been done in the area of time-
triggered scheduling. For instance, in [38] an SMT-based
approach to generate time-triggered schedules for TTEthernet is
presented. Two ILP-based approaches for concurrent task and
message scheduling are proposed for the automotive FlexRay
bus in [19][20]. While [19] addresses the problem on job-level,
[20] applies the schedule optimization on task-level. Finally,
two approaches for schedule integration have been presented
in [21] and [22]. Here, these approaches have been adapted for
multi-schedule synthesis and extended by a partitioning. All
these approaches address the problem of generating a single
schedule for a system. Our framework can therefore be seen as

an extension of these approaches, generating individual variant
schedules using a multi-schedule.

A first approach for a variant-aware schedule synthesis was
presented in [3]. The paper addresses the problem of multi-
schedule synthesis for time-triggered communication on the
FlexRay bus. The focus lies on the message transmission,
while in the work at hand we apply a holistic approach for
concurrent task and message scheduling. A holistic approach
introduces various additional challenges, e.g., task and message
relations and an increased problem complexity. Consequently,
we have selected a very different technique than [3], relying on
a graph-based representation and an iterative SMT approach.

VI. CONCLUDING REMARKS

This paper addresses the problem of generating multi-
schedules for variant management in time-triggered architec-
tures. A multi-schedule defines an individual schedule for
each variant which shares the same schedule for common
parts of different variants. We propose a framework for
multi-schedule synthesis which determines commonality in
multiple variants and calculates an identical schedule for these
common parts. We apply an incremental approach which also
considers commonality in variant subsets. To improve the
scalability of our approach, we also present a partitioning
heuristic, generating subproblems which might be solved
independently and are re-integrated using schedule integration.
The experimental results, consisting of an extended analysis of
resource requirements, the deviation between variants, and
scalability as well as an automotive lab setup, show the
benefits of our approach. The resource requirements are clearly
improved compared to a single global schedule, used in all
variants, while the deviation between variants is clearly reduced
compared to a variant-unaware approach, generating individual
schedules without taking commonality into account. At the
same time, testing and integration efforts are reduced compared
to a variant-unaware approach, as they only have to be done
once for common applications.

In future work, we will extend our framework to take
additional design objectives such as the control performance
of applications into account. The framework might then
decide to define individual schedules to common parts in
favor of an increased system performance. A multi-objective
optimization will then allow to determine variant schedules
for optimized system performance while the development cost
is minimized due to variant-awareness. Finally, an important
line of future work is also to investigate variant-aware event-
triggered scheduling.

REFERENCES

[1] J. Capparella, “Audi adding 11 models to expand lineup by 2020,”
Automobile Magazine, Dec. 2013.

[2] M. Lupa, “7 questions on MQB.” Volkswagen Das Auto. Magazine, Nov.
2012.

[3] J. Dvorak and Z. Hanzalek, “Multi-variant time constrained FlexRay
static segment scheduling,” in Proc. of WFCS, May 2014, pp. 1–8.

[4] J. Sobotka and J. Novak, “Automation of automotive integration testing
process,” in Proc. of IDAACS, Sep. 2013, pp. 349–352.

[5] M. Negrean, M. Neukirchner, S. Stein, S. Schliecker, and R. Ernst,
“Bounding mode change transition latencies for multi-mode real-time
distributed applications,” in Proc. of ETFA, Sep. 2011, pp. 1–10.

[6] A. Azim, G. Carvajal, R. Pellizzoni, and S. Fischmeister, “Generation
of communication schedules for multi-mode distributed real-time appli-
cations,” in Proc. of DATE, Mar. 2014, pp. 1–6.

[7] H. Zhao and R. Sakellariou, “Scheduling multiple DAGs onto heteroge-
neous systems,” in Proc. of IPDPS, Apr. 2006.

14

[8] M. Iverson and F. Ozguner, “Dynamic, competitive scheduling of multiple
DAGs in a distributed heterogeneous environment,” in Proc. of HCW 98,
Mar. 1998, pp. 70–78.

[9] pure-systems GmbH, “Variant management with pure::variants,” Techni-
cal Article, 2006.

[10] Mentor Graphics, “Top-down design of distributed embedded systems in
light of timing considerations,” Technical Article, 2010.

[11] Vector, “From pilot studies to production development,” Technical Article,
May 2008.

[12] T. Braun and F. Deubzer, “New variant management using multiple-
domain mapping,” in Proc. of DSM, Oct. 2007, pp. 363–372.

[13] S. Graf, M. Glaß, J. Teich, and C. Lauer, “Multi-variant-based design
space exploration for automotive embedded systems,” in Proc. of DATE,
Mar. 2014, pp. 1–6.

[14] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proc. of the
IEEE, vol. 91, no. 1, pp. 112–126, Jan. 2003.

[15] E. Armengaud, A. Tengg, M. Driussi, M. Karner, C. Steger, and R. Weiss,
“Automotive software architecture: Migration challenges from an event-
triggered to a time-triggered communication scheme,” in Proc. of WISES,
Jun. 2009, pp. 95–103.

[16] S. Schliecker, J. Rox, M. Negrean, K. Richter, M. Jersak, and R. Ernst,
“System level performance analysis for real-time automotive multicore
and network architectures,” IEEE Trans. on Comput.-Aided Design Integr.
Circuits Syst., vol. 28, no. 7, pp. 979–992, Jul. 2009.

[17] B. Tanasa, U. Bordoloi, P. Eles, and Z. Peng, “Scheduling for fault-
tolerant communication on the static segment of FlexRay,” in Proc. of
RTSS, Nov. 2010, pp. 385–394.

[18] IEEE, “Time-Sensitive Networking Task Group,” 2015,
http://www.ieee802.org/1/pages/tsn.html.

[19] H. Zeng, W. Zheng, M. Di Natale, A. Ghosal, P. Giusto, and
A. Sangiovanni-Vincentelli, “Scheduling the FlexRay bus using opti-
mization techniques,” in Proc. of DAC, Jul. 2009, pp. 874–877.

[20] M. Lukasiewycz, R. Schneider, D. Goswami, and S. Chakraborty, “Mod-
ular scheduling of distributed heterogeneous time-triggered automotive
systems,” in Proc. of ASP-DAC, Jan. 2012, pp. 665–670.

[21] F. Sagstetter, M. Lukasiewycz, and S. Chakraborty, “Schedule integration
for time-triggered systems,” in Proc. of ASP-DAC, Jan. 2013, pp. 52–58.

[22] F. Sagstetter, S. Andalam, P. Waszecki, M. Lukasiewycz, H. Staehle,
S. Chakraborty, and A. Knoll, “Schedule integration framework for
time-triggered automotive architectures,” in Proc. of DAC, Jun. 2014.

[23] L. Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and
Algorithms for the Construction and Analysis of Systems. Springer
Berlin Heidelberg, 2008, vol. 4963, pp. 337–340.

[24] G. Levi, “A note on the derivation of maximal common subgraphs of two
directed or undirected graphs,” CALCOLO, vol. 9, no. 4, pp. 341–352,
1973.

[25] M. Girvan and M. E. Newman, “Community structure in social and
biological networks,” Proc. of the National Academy of Sciences, vol. 99,
no. 12, pp. 7821–7826, Apr. 2002.

[26] S. Even, Graph algorithms. Cambridge University Press, 2011.
[27] J. W. Chinneck, Feasibility and Infeasibility in Optimization:: Algorithms

and Computational Methods. Springer, 2007, vol. 118.
[28] ILOG, “CPLEX,” http://www.ilog.com/products/cplex/.
[29] M. Dalkilic and V. Pitchumani, “A multi-schedule approach to high-level

synthesis,” in Proc. of ICCD, Oct. 1994, pp. 572–575.
[30] Q. Zhu, Y. Yang, M. Di Natale, E. Scholte, and A. Sangiovanni-

Vincentelli, “Optimizing the software architecture for extensibility in
hard real-time distributed systems,” IEEE Trans. on Ind. Informat., vol. 6,
no. 4, pp. 621–636, Nov. 2010.

[31] P. Emberson and I. Bate, “Stressing search with scenarios for flexible
solutions to real-time task allocation problems,” IEEE Trans. on Softw.
Eng., vol. 36, no. 5, pp. 704–718, Sep. 2010.

[32] I. Shin and I. Lee, “Compositional real-time scheduling framework with
periodic model,” ACM Trans. in Embedded Computing Systems, vol. 7,
no. 3, pp. 30:1–30:39, Apr. 2008.

[33] R. Davis and A. Burns, “Hierarchical fixed priority pre-emptive schedul-
ing,” in Proc. of RTSS, Dec. 2005, pp. 389–398.

[34] J. Kim, K. We, C.-G. Lee, K.-J. Lin, and Y. S. Lee, “HW resource
componentizing for smooth migration from single-function ecu to multi-
function ecu,” in Proc. of SAC, Mar. 2012, pp. 1821–1828.

[35] N. Stoimenov, S. Perathoner, and L. Thiele, “Reliable mode changes in
real-time systems with fixed priority or EDF scheduling,” in Proc. of
DATE, Mar. 2009, pp. 99–104.

[36] V. Nelis, J. Goossens, and B. Andersson, “Two protocols for scheduling
multi-mode real-time systems upon identical multiprocessor platforms,”
in Proc. of ECRTS, Jul. 2009, pp. 151–160.

[37] R. Obermaisser, C. El-Salloum, B. Huber, and H. Kopetz, “From a
federated to an integrated automotive architecture,” IEEE Trans. on
Comput.-Aided Design Integr. Circuits Syst, vol. 28, no. 7, pp. 956–965,
Jul. 2009.

[38] W. Steiner, “An evaluation of SMT-based schedule synthesis for time-
triggered multi-hop networks,” in Proc. of RTSS, Dec. 2010, pp. 375–384.

Florian Sagstetter (M’13) received the Dipl.-Ing.
degree in electrical engineering from Technical Uni-
versity of Munich, Germany, in 2010 where he is
currently working towards the Ph.D. degree.

He is currently a Research Associate at the
Technical University of Munich (TUM) Campus for
Research Excellence and Technological Enterprise
(CREATE) Centre for Electromobility in Singapore.
He is working in the field of embedded systems in
the automotive domain with a focus on time-triggered
systems and schedule synthesis.

Peter Waszecki (M’13) received the Dipl.-Ing. de-
gree in electrical engineering from Technical Uni-
versity of Munich, Germany, in 2010 where he is
currently working towards the Ph.D. degree.

He is currently a Research Associate at TUM
CREATE in Singapore and works in the area of
embedded systems. His main research interests lie
in automotive E/E architectures as well as reliable
systems for electric vehicles. In particular, he is
working on diagnosis methods for distributed safety-
critical systems.

Sebastian Steinhorst (M’11) received the Ph.D.
degree in computer science from Goethe-University
Frankfurt/Main, Germany in 2011.

He is a senior researcher with TUM CREATE in
Singapore. His research focuses on architectures and
design automation for networked embedded systems
with emphasis on electric vehicles. He is also leading
a research team on embedded battery management.
Before joining TUM CREATE in 2011, Sebastian
was with the Electronic Design Methodology Group
of Goethe-University Frankfurt/Main, Germany.

Martin Lukasiewycz (M’11) received the Ph.D.
degree in computer science from the University of
Erlangen-Nuremberg, Germany, in 2010.

He is currently a Principal Investigator at TUM
CREATE in Singapore. Since 2014 he is Adjunct
Assistant Professor at Nanyang Technological Uni-
versity in Singapore. Before, he worked at AUDI
AG in Germany in the E/E architecture and FlexRay
division, the chair Hardware/Software Co-Design at
the University of Erlangen-Nuremberg in Germany,
and the Institute for Real-Time Computer Systems

at the Technical University of Munich.

Samarjit Chakraborty (SM’15) received the Ph.D.
degree from ETH Zürich, Switzerland, in 2003.

He is a professor of electrical engineering at
Technical University of Munich, where he holds
the chair for Real-Time Computer Systems. Prior
to joining Technical University of Munich, he was
an assistant professor of computer science at the
National University of Singapore from 2003 to 2008.
He works on various aspects of system level design
and analysis of embedded systems and has more than
150 publications in this area.

