
Software Deployment Analysis for
Mixed Reliability Automotive Systems

KLAUS BECKER

Institut für Informatik
der Technischen Universität München

Software Deployment Analysis for
Mixed Reliability Automotive Systems

Klaus Becker

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Georg Carle

Prüfer der Dissertation:

1. Prof. Dr. Dr. h.c. Manfred Broy

2. Prof. Dr.-Ing. Jürgen Teich,

Universität Erlangen-Nürnberg

Die Dissertation wurde am 16.02.2017 bei der Technischen Universität München eingereicht und
durch die Fakultät für Informatik am 02.06.2017 angenommen.

Abstract

Safety critical fault-tolerant embedded systems have to react properly on failures of internal system
elements to avoid failure propagation and finally an external failure at the entire system boundary, being
harmful to other systems, material or human beings in the environment. To inhibit failure propagation
and ensure harm avoidance, failing system elements have to be isolated from the remaining system. As
isolated elements become unavailable, the amount of available resources, like execution units or input data,
decreases. This may cause that the system resources become insufficient to provide the entire initial set of
functional features. However, it is often not allowed that the system stops its operation completely in such
situations. Instead, the set of provided functional features of the system should be degraded gracefully
to keep available at least a subset of the intended features. In this context, a system shall keep available
those features as long as possible, that have the highest requirements according to safety, reliability and
availability. For instance, features having a fail-operational requirement must be kept available, while
other features may be allowed to get deactivated, resulting in a degradation of the available set of features.

In this thesis, we introduce an approach to formally analyze whether the design of a system adheres to
all fail-operational requirements of functional features. We consider this in different scenarios of failing
system elements, like failing execution units and failing software components. We address mixed criticality
and mixed reliability automotive systems, comprising functional features having varying requirements to
be fail-operational. Beside pure fail-operational features, we also consider degradable functional features,
called fail-degraded features. As prerequisite for the analysis, we set up a formal model of the system,
containing the functional features, possible feature degradations, the relationship of functional features
to the software components that realize the features, the communication dependencies between software
components, the hardware execution units, as well as the deployment of software components to execution
units. For assumed failure scenarios, we provide a structural analysis of the necessary level of degradation
in these scenarios by analyzing which subset of functional features can be kept available. As part of
our analysis, we automatically synthesize valid deployments of software components to execution units,
fulfilling the fail-operational requirements of all functional features in all failure scenarios, and minimizing
the required level of degradation. We incorporate an adequate level of redundancy into the deployment, to
enable failover mechanisms from an isolated software component to a redundant backup of that component,
if this is necessary due to a fail-operational requirement. We set up formal constraints which describe
valid redundant deployments of software components to execution units, as well as valid degradation
scenarios and valid failover scenarios by describing valid reconfigurations of deployments. This means,
we determine an initial deployment and analyze the changes of this deployment that may become required
in different failure scenarios. The formal model, constraints and optimization objectives are described by
linear arithmetic and logical operators. We use an SMT solver to get solutions for this model, serving
as basis for our analysis. We show the applicability of our approach based on three examples from the
automotive domain.

Acknowledgements

First of all, I want to express my deep gratitude for Prof. Manfred Broy for his outstanding supervision of
this thesis, supporting me with so many discussions and constructive review comments. It was always a
pleasure to experience his style of open-minded research and guidance. I also thank Prof. Jürgen Teich for
co-supervising my thesis.

I express a particular thank you to Michael Armbruster of Siemens AG, for inspiring many of the
requirements that are analyzed in this thesis, for raising my interest in redundancy and fault-tolerance
concepts, and responding fruitful feedback to the very early ideas about this work. Great thanks also
goes to Bernhard Schätz and Sebastian Voss of fortiss Institute, supporting me in a lot of discussions and
providing feedback to contents of this thesis.

I also would like to thank all the colleagues who worked together with me in the RACE project, for
the very intensively cooperative work during the project and also discussing early ideas about this work,
particularly again Michael Armbruster, Christian Buckl, Jelena Frtunikj, Cornel Klein, Ludger Fiege and
Meik Felser, who were with Siemens AG or fortiss Institute during that time.

I also would like to thank my other colleagues of TU Munich and fortiss Institute, in particular
Andreas Vogelsang, Maximilian Junker, Mario Gleirscher, Stefan Kugele, Denis Bytschkow and Vincent
Aravantinos, for their interest, discussions and feedback around the work in this thesis.

A thank you also goes to Nikolaj Bjørner of Microsoft Research for his support by quickly fixing some
issues in the Z3 SMT solver, revealed during the implementation of the introduced model and analysis
approach.

The time as PhD candidate is not only about writing the thesis, but furthermore obtaining experiences
in several other research topics and projects, which turn the time into a very enjoyable and beneficial time!
I would like to thank Ernst Denert, Gero Scholz, Alois Zoitl and all the other people with which I worked
together during my time as researcher at fortiss Institute, for sharing a lot of experiences and knowledge in
many different areas.

Last but not least, the most important people who supported me so much during this time and missed
me so often or tried to do not disturb me while writing, my wife Sandra and - at the end - our little cheerful
son Jonas, I love you two.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement and Motivation . 1
1.3 Research Questions and Contribution . 3
1.4 Outline . 5

2 Fundamentals 7
2.1 Terms and Definitions . 7

2.1.1 Dependability . 9
2.1.2 Dependability Threats . 10
2.1.3 Dependability Attributes . 12
2.1.4 Dependability Means . 13
2.1.5 Other Definitions related to Dependability . 15
2.1.6 Redundancy and Replication Mechanisms . 18

2.2 Foundations in Safety Engineering . 23
2.3 Foundations in Software and System Quality Assurance 24
2.4 Automotive Architectures and Standards . 25

2.4.1 Classical Automotive E/E Architectures . 25
2.4.2 AUTOSAR . 25
2.4.3 ISO 26262 . 29

2.5 The RACE Approach . 30
2.5.1 Software and System Architecture . 30
2.5.2 Safety and Fault-Tolerance Concept . 33
2.5.3 Application Development and RTE Configuration 36
2.5.4 Demonstrator Vehicles . 37

2.6 Avionic Architectures and Standards . 37
2.7 Foundations in Satisfiability Solving and Optimization 38

3 Related Work 41
3.1 Approaches to Design and Analyze Fault-Tolerant Systems 41

3.1.1 Design and Analysis of Graceful Degradation 42
3.1.2 Design and Analysis of Reliability and Robustness 48
3.1.3 Design and Analysis of Availability . 51
3.1.4 Fault-Tolerant Scheduling for Mixed Criticality Systems 51
3.1.5 Design of Structural and Behavioral Reconfiguration 52
3.1.6 Self-x Approaches . 53

3.2 Constraint Based Synthesis of Design Decisions . 58

4 Analyzing Fail-Operational and Fail-Degrading Systems 65
4.1 Introduction to the Formal System Model . 66

4.1.1 Viewpoints . 66
4.1.2 Meta-Model of Considered System Structure 67
4.1.3 Motivation and Benefits of the Formal System Model 69

v

CONTENTS

4.2 Formal System Model . 70
4.2.1 Functional Features . 72
4.2.2 Software Architecture . 73
4.2.3 Feature Realization . 78
4.2.4 Hardware Architecture . 78
4.2.5 System Configuration . 79
4.2.6 System Model . 80
4.2.7 Example for the Formal Definitions . 80
4.2.8 Summary Overview of Formal Model Symbols 82

4.3 Concept Overview . 83
4.4 Properties of System Model Elements . 84

4.4.1 Overview of Properties of Formal System Model 85
4.4.2 Input Model Properties . 86
4.4.3 Solution Model Properties for Initial Deployment 88
4.4.4 Solution Model Properties for Failure Scenarios 92
4.4.5 States of ASWC Instances . 93

4.5 Synthesis of Valid Redundant Deployments . 95
4.5.1 Formal Constraints for Valid Redundant Deployments 95
4.5.2 Examples . 98

4.6 Analysis of Failure Effects . 98
4.6.1 Scenarios . 99
4.6.2 The Scenario Graph . 99
4.6.3 Extensions of Model Properties to Cover the Scenarios 101
4.6.4 Procedure to Analyze the Scenario Graph . 102
4.6.5 Formal Constraints for Valid Failovers and Degradations 103
4.6.6 Formal Constraints to Analyze Feature Availability 105
4.6.7 Relaxation of Constraints to Localize Problems 106
4.6.8 Example A – Basic Example . 108
4.6.9 Example B – Communication Channels . 113
4.6.10 Size of the Scenario Graph . 119

4.7 Supporting Degradations of Single Functional Features 122
4.7.1 Assumed Design Principles for Feature Degradations 122
4.7.2 Extension of the Formal System Model . 123
4.7.3 Extended Overview of Properties . 127
4.7.4 Formal Constraints for Feature Degradations 128
4.7.5 Example C – Feature Degradation . 129

4.8 Formalization of Optimization Objectives . 140
4.9 Assumptions and Aspects that are out of Scope . 142

4.9.1 Out of scope . 142
4.9.2 Assumed properties of the system under analysis 142

4.10 Explanations and Discussions about the Formal System Model 144
4.10.1 Functional Features . 144
4.10.2 Software Architecture . 145
4.10.3 Feature Realization . 150
4.10.4 Hardware Architecture . 150
4.10.5 System Configuration . 150

vi

CONTENTS

5 Evaluation 153
5.1 Discussion of Research Questions . 153
5.2 Limitations of the presented approach . 155
5.3 Threats to Validity . 157

6 Conclusions and Future Work 159
6.1 Summary and Conclusions . 159
6.2 Out of Scope . 161
6.3 Future Work . 161

6.3.1 Expand the set of considered design aspects . 162
6.3.2 Possible Future Work Extensions of our Approach 162
6.3.3 Evaluation of alternative solving and optimization strategies 163

A Appendix 165
A.1 Input Files of Examples . 165

List of Figures 175

List of Tables 177

Bibliography 178

vii

CHAPTER 1 Introduction

Contents
1.1 Context . 1
1.2 Problem Statement and Motivation . 1
1.3 Research Questions and Contribution . 3
1.4 Outline . 5

1.1 Context

Complex systems, like automobiles, airplanes or industrial automation systems, are nowadays realized by
a huge amount of software, rather than using purely mechanical, electrical or hydraulical components like
half a century ago. We call such systems to be software-intensive embedded systems, in which software
based subsystems interact with the physical world using sensors and actuators to fulfill their intended
service. An example is an anti-lock braking system (ABS) of a vehicle, which senses the wheel rotations
and software decides about how to act on the brakes to keep wheels rotating and avoid slipping wheels.
More and more of such software-based functional features become integrated into vehicles, like advanced
driver assistance systems (ADAS) and automated/autonomous driving capabilities [115]. This means that
the amount of software in such systems is growing and increasingly interconnected, leading to increasing
complexity [216].

Many embedded systems operate in safety-critical environments, like in the automotive domain,
avionics domain or industrial automation domain. Those systems have critical properties in a sense
that unhandled malfunctions of system parts may lead to unacceptable harms to the system itself, to the
physical system environment and even to the safety of human beings. Hence, it is very important that those
malfunctions are detected and handled in a safe manner to avoid any form of harm. This thesis provides an
approach to analyze such safety critical systems with respect to the set of functional features, that a system
can still provide when it becomes affected by malfunctions.

1.2 Problem Statement and Motivation

Safety critical systems need to contain mechanisms to detect malfunctions of system parts and to react on
these malfunctions properly such that no harm can occur with impact to material or life. In case software
or hardware elements of a system fail, these elements have to be isolated from the residual system in order
to avoid a failure propagation through the residual system, which potentially leads to a total system loss
and harm.

In order to develop vehicles with automated or fully autonomous driving capabilities, such systems
are becoming highly integrated and interconnected. The functionalities get more and more based on
X-by-Wire control using electronics and software, rather than mechanical or hydraulic control components
[47]. Examples are Fly-by-Wire in aircraft (e. g., in [360]) or Drive-by-Wire in vehicles (e. g., in [46]).
As a disappearance of active assistance or autonomous driving features during their operation would be
very dangerous causing harm, these features must be kept alive even in the presence of a malfunction of
some system element [56] [331] [143]. Due to these safety reasons, fully autonomous X-by-Wire systems

1

1.2. PROBLEM STATEMENT AND MOTIVATION

must behave fail-operational, as fail-safe behavior would cause the loss of autonomy features, which
may be harmful if the driver is not able to take over the control fast enough. Hence, X-by-Wire systems
require a fail-operational implementation, fail-safe is not sufficient [203]. To ensure fail-operationality,
such systems have to be established with redundant backup elements that can take over functionality, if
another element fails [189]. Redundancy helps to establish error avoidance [276] and by this, to provide
fail-operational systems. If a X-by-Wire system is desired to have no mechanical fallback backups of
software enabled features, software based backups by redundancy mechanisms are important to ensure
fail-operationality of that features. Beside software redundancy, also redundancy of execution hardware as
well as sensors and actuators is required to handle electronic hardware failures [322]. But any form of
redundancy is limited and costly. Hence, graceful degradation and fail-safe mechanisms have also to be
taken into account simultaneously.

Furthermore, a trend is towards mixed-criticality systems [73], meaning that components with different
levels of criticality are executed by the same hardware device in modern systems. It has to be guaranteed
that errors of low critical components can never have negative impact on highly critical components.

But what should happen after a failure of a system element has been detected? Invalidating faulty
data and going into a fail-safe state may cause the loss of functional features. This is not acceptable for
critical features that require fail-operational behavior, meaning that those features must be kept alive even
in the presence of failures of system elements, like hardware or software components. If a fail-operational
feature gets affected by such a failure, the systems must be able to resume the feature without any service
interruption. For instance, if a hardware failure of an execution unit has been detected, followed by an
isolation of this execution unit from the remaining system, another execution unit has to be able to provide
at least a subset of those features that were provided by the failed execution unit. However, if system
resources get lost due to isolations, the remaining system resources may become insufficient to provide the
full set of functional features. Hence, the remaining resources should be used efficiently to keep available
the most important features. The importance often corresponds to requirements about safety, reliability
and availability. In these scenarios, keeping available some features requires to explicitly deactivate some
other features, resulting in a degradation of the system.

The motivation of this thesis is to provide an approach to formally analyze a system with respect to
needed degradations in failure scenarios, while ensuring the fulfillment of fail-operational requirements.
In order to perform such an analysis, an initial deployment of software components to hardware execution
units has to be determined, which fulfills a set of redundancy constraints. We aim in supporting the
designer by automatically synthesizing such a valid initial deployment, as well as valid reconfigurations of
the deployment for all failure scenarios. We want to analyze if deployments can be synthesized that enable
the fulfillment of all fail-operational requirements of features by the current system design. We also want
to analyze which subset of functional features has to be deactivated in certain failure scenarios, and which
subset of featues can be kept available, even if these features do not have fail-operational requirements.
As the failure combinations and the reactions to failures can become quite complex, a manual analysis
without technical support would be very time intensive, error-prone and inappropriate. An automated
analysis during design time would give the system designer an early feedback about problems, helping
to reduce costs by early design corrections, and providing evidence towards the fulfillment of different
fail-operational requirements of the functional features of the mixed-reliability system.

We assume a given system safety concept that specifies redundancy mechanisms to be applied in the
deployment, and specifies isolation and failover mechanisms to be used as reaction to detected failures.
We aim at providing an automated analysis of the degradation scenarios, resulting from synthesizing a
deployment with a minimal level of redundancy needed to ensure all fail-operational requirements.

Apart from analyzing the reaction to failing hardware or software components, another use-case of
our approach is to analyze intended degradation scenarios, which are applied in order to save energy in a
vehicular network. Such a planned deactivation of resources due to energy saving reasons leads as well to
decreasing amount of available resources. Hence, degradations of system functionality should be taken into

2

1.3. RESEARCH QUESTIONS AND CONTRIBUTION

account. For instance, AUTOSAR [21] mentions the requirement that AUTOSAR shall support different
standardized methods to degrade the functionality of an AUTOSAR system.1 This is mainly motivated to
save energy as energy efficiency is a major concern in vehicles [250]. Two main degradation strategies are
specified in AUTOSAR: 1) Partial Networking and 2) ECU degradation in conjunction with Pretended
Networking [225].

Although fault-detection, fault-handling, and energy-saving degradation have to be done at runtime
of the system, it is desireable to be able to statically analyze at design time the current system design
according to degradation scenarios that may happen at runtime. Particularly the mixed criticality and
mixed reliability of the system requires to ensure runtime robustness and to provide static verification at
design time for certification [29]. Providing such a static analysis approach to support the verification with
focus on degradation and failover scenarios is the major motivation of this thesis.

1.3 Research Questions and Contribution

In this thesis, we tackle the following research questions and present respective contributions to address
the questions.

RQ1: How to automatically calculate valid deployments of software to hardware, supporting the
fulfillment of fail-operational requirements? The first research question of this thesis is how valid
deployments of mixed critical software components onto hardware execution units can be automatically
calculated, incorporating a given redundancy concept and applying an adequate level of redundancy. The
redundancy is required to fulfill fail-operational requirements of functional features. Different levels of
fail-operationality may be required. Hence, different levels of redundancy of software components are
adequate. This results in a fault-tolerant system, whose functional features have mixed reliability. The
question is how this can be modeled adequately and how appropriate deployments can be synthesized
automatically?
Our approach and focus: We do not estimate predefined deployments, but instead we synthesize valid
redundant deployments. In order to calculate a valid deployment, we setup a formal system model
with formal deployment constraints, expressed with linear arithmetic and logical formulas, enabling an
automated calculation of valid deployments that fulfill the constraints. Beside calculating deployments,
we also calculate communication channels between the software components, based on component port
specifications, opening a set of possible channels from which only a subset of channels is necessary to
satisfy the specified subscription ports. This enlarges and influences the design space for the deployments.
Novelty of contribution: Calculating deployments by setting up a Constraint Satisfaction Problem (CSP)
is itself nothing new, but so far not addressed in other work for the introduced kind of systems with
mixed critical and mixed reliable functional features, having different required levels of fail-operationality,
allowing to efficiently apply different levels of redundancy of software components, considering constraints
for valid types of redundancy. In addition, we use the open design space of deployment and channel
selection to optimize the synthesized architecture, for instance by preferring local communication channels
during the deployment synthesis, reducing the network traffic between the execution units.

RQ2: How to formally analyze the ability to keep functional features available in scenarios of failing
system elements, and decide about necessary degradations of the available feature set, incorporat-
ing necessary failovers to ensure fail-operational requirements? Our major research question is how
a given system design, including its feature set and software architecture, can be formally analyzed with
respect to the degradation of the set of functional features that can be kept available in scenarios of failing

1See specification document "AUTOSAR RS Features" in "Auxiliary Material" at
http://www.autosar.org/specifications/release-41/main

3

http://www.autosar.org/specifications/release-41/main

1.3. RESEARCH QUESTIONS AND CONTRIBUTION

system elements, and how functional features with fail-operational requirements can be kept available by
applying failover mechanisms in such failure scenarios, using redundant backups of software components?
This analysis shall be done in combination with the first research question, such that an initial deployment
is synthesized that leads to applicable failover scenarios and a minimum level of degradation of available
features. One sub research question is how to decide which software components are allowed to be
explicitly deactivated, in case the available system resources become insufficient to execute all software
components?
Our approach and focus: We consider failures of hardware execution units and failures of software com-
ponents. To be able to analyze the effect of failing hardware or software to the set of available functional
features, we formally describe the relationship between functional features and the software components,
which realize these features. To decide about explicit deactivations, we establish a quantitative metric
to estimate the intrinsic value of software components in order to decide about the sequence in which
components (and thereby features) should be disabled when the system is not able to provide the full set
of functional features anymore. We focus on an analysis on structural architecture level, without doing a
behavior analysis.
Novelty of contribution: No existing approach considered a similar form of mixed criticality and mixed
reliability fault-tolerant systems. There are existing approaches, providing quantitative metrics about the
degree of graceful degradation of fault-tolerant systems (e. g., [314]), but the approach shown in this thesis
has a novel combination of mixed criticality and mixed reliability (by different fail-operational requirements
of functional features) and a system concept using global redundancy and failover mechanisms.

RQ3: How to formalize a given system design concept and the requirements related to the safety
and fault-tolerance concept of that system to be able to apply the formal analysis to this type of
system? In order to tackle the first two research questions, one prerequisite is the design of a formal
system model that represents the hardware and software architecture of the system, as well as the relevant
properties of the system elements. Applying a given safety and fault-tolerance concept with informal
natural language descriptions of valid types of redundancy, valid failover mechanisms and valid degradation
scenarios, the question is how to formally express these descriptions in form of formal constraints over the
formal system model? The aim is to synthesize valid respectively optimal solutions in a mathematical fash-
ion. This means, informal requirements have to be transformed into formal constraints over the elaborated
formal model, expressing valid types of architectures and reconfigurations of it, to be applied in scenarios
of failing system elements. To formally synthesize valid deployments and analyze failure scenarios for a
system under analysis, this requires to formalize parts of the applied safety and fault-tolerance concept.
The research question is how this can be done.
Our approach and focus: As example safety and fault-tolerance concept for embedded systems, specify-
ing informal requirements for redundancy and failover mechanisms, we use the concept that was developed
in the research project RACE. 2 For an introduction into the RACE platform concepts, see section 2.5.1.
We formalize relevant aspects of the safety and fault-tolerance concept by formal constraints over the
introduced system model. The constraints ensure that the solutions, calculated by an employed solver,
represent failover and degradation scenarios that are valid according to the given informal requirements.
Novelty of contribution: No existing work has been found that provides a combined formalization of
architecture concepts and requirements for valid redundancy, failover and degradation mechanisms to
enable fault-tolerance in the above described manner.

2The Project RACE (Robust and Reliant Automotive Computing Environment for Future eCars) was funded by the German
Federal Ministry for Economic Affairs and Energy (BMWi) under grant no. 01ME12009 from 2012 to 2015, http://www.projekt-
race.de/en

4

http://www.projekt-race.de/en
http://www.projekt-race.de/en

1.4. OUTLINE

Further motivation for the presented approach: Beside the three major research questions, motivating
the approach introduced in this thesis, there are some sub-motivations that influence the introduced
approach:

• Static analysis at design time: We tackle how dynamic failover scenarios that may happen at runtime
can be encoded into a formal model to be able to analyze these scenarios statically at design time.
Our work contributes to provide such an analysis, applicable during design time of a system. It is
not in focus to apply our approach during runtime of the system executed by the system itself, as this
changes the requirements with respect to the performance of calculating solutions and the workflow.

• Optimization objectives: Another question is how optimization objectives can be expressed based on
the formal system model, and be solved reusing existing technologies like for instance Satisfiability
Modulo Theories (SMT) or Mixed Integer Linear Programming (MILP) solvers? If necessary, also
partially contradicting optimization objectives should be expressible and solvable.

In this thesis, we express the tackled problem as a formal system model, using arithmetic and logical
formulas, and use the model as input for an SMT solver, which calculates valid values of solution variables
satisfying formalized constraints, serving as basis for our analysis, while optimizing some considered
design objectives. We use an SMT solver with optimization facilities to do this.

1.4 Outline

The residual part of this thesis is structured as follows. Chapter 2 introduces the fundamental terminology
which is present in the context of this thesis, as well as an overview over foundations in safety engineering
and related architectures and standards of the automotive domain. Chapter 3 discusses the related work
of this thesis. Chapter 4 contains the presentation of the contribution of this thesis, including our formal
system model and the analysis approach for failure scenarios, which is evaluated in chapter 5. The
conclusion and future work is shown in chapter 6. Additional material is contained in appendix chapter A.

5

1.4. OUTLINE

Previously Published Material

Parts of the contributions presented in this thesis have been published in the following papers directly
related to this thesis: [39], [35], [38], [37], [40], [41].

[39] Klaus Becker and Sebastian Voss. Towards Dynamic Deployment Calculation for Extensible Systems using SMT-Solvers. In
First Open EIT ICT Labs Workshop on Cyber-Physical Systems Engineering (EIT CPSE), Trento, Italy, May 2013.

[35] Klaus Becker, Michael Armbruster, Bernhard Schätz, and Christian Buckl. Deployment calculation and analysis for
a fail-operational automotive platform. In 1st Workshop on Engineering Dependable Systems of Systems (EDSoS).
arXiv:1404.7763, 2014.

[38] Klaus Becker, Bernhard Schätz, Michael Armbruster, and Christian Buckl. A formal model for constraint-based deployment
calculation and analysis for fault-tolerant systems. In 12th Int. Conference on Software Engineering and Formal Methods
(SEFM), volume 8702, pages 205–219. Springer Lecture Notes in Computer Science (LNCS), 2014.

[37] Klaus Becker and Bernhard Schätz. Deployment calculation and analysis for a fault-tolerant system platform. In 11th
Dagstuhl-Workshop on Model-Based Development of Embedded Systems (MBEES), 2015.

[40] Klaus Becker and Sebastian Voss. Analyzing graceful degradation for mixed critical fault-tolerant real-time systems. In 18th
International Symposium on Real-Time Distributed Computing (ISORC), pages 110–118. IEEE, 2015.

[41] Klaus Becker and Sebastian Voss. A formal model and analysis of feature degradation in fault-tolerant systems. In
4th Int. Workshop on Formal Techniques for Safety-Critical Systems (FTSCS), volume 596, pages 139–154. Springer
Communications in Computer and Information Science (CCIS), 2015.

In addition, the author of this thesis authored or co-authored the following publications, which are indirectly
related to this thesis in the form of project papers about the RACE project: [36], [318], [72].

6

CHAPTER 2 Fundamentals

The following section 2.1 introduces definitions of the terminology that we use in this thesis. Section
2.2 shows a basic overview of safety engineering principles and how our approach is resided within
these principles. Section 2.3 shows how the approach introduced in this thesis is placed in the field of
software and system quality assurance techniques. Section 2.4 provides an overview over architectures and
standards in the automotive domain, containing electrical/electronic bordnet architectures and software
architectures, like AUTOSAR. Afterwards, section 2.5 gives an introduction about a novel fault-tolerant
hardware and software architecture for vehicles, developed in the RACE project. Some properties of
the RACE architecture are assumed in this thesis as basic properties of a system, which is aimed to
be analyzable with the approach introduced in this thesis. Section 2.6 shows a very brief introduction
to architectures and standards in the Avionic domain, like Aircrafts, and briefly discusses degradation
concepts in this domain. Finally, section 2.7 gives a brief introduction into different problem solving
technologies, like SMT solvers or linear programming (LP) algorithms.

Contents
2.1 Terms and Definitions . 7

2.2 Foundations in Safety Engineering . 23

2.3 Foundations in Software and System Quality Assurance 24

2.4 Automotive Architectures and Standards . 25

2.5 The RACE Approach . 30

2.6 Avionic Architectures and Standards . 37

2.7 Foundations in Satisfiability Solving and Optimization 38

2.1 Terms and Definitions

In this section, we introduce the main terms and definitions which are related to the topic of this thesis as
prerequisite to grasp the domain of this thesis. We focus on an overview over the definitions in the area of
dependable embedded systems.

System: A system is a technical product, which is in most cases composed of various parts. Often the
parts a grouped to subsystems, which can be designed, constructed and tested standalone. Subsystems can
be hierarchically composed of further (sub-)subsystems of various types, such as mechanical, hydraulic,
electric (analog) or electronic (digital). An example of a subsystem is a combustion engine block of
a vehicle, composed of mechanical parts like piston, crankshaft, camshaft, valves, but also electrical
and electronic parts like power lines and electronic control units (ECUs), containing software for fuel
injection control, ignition control, and so on. The composition is done by interactions between the
subsystems. The interactions are performed through interfaces. Each system or subsystem has a boundary,
at which interfaces exist to interact with other systems or subsystems, or with human users. The electronic
subsystems which are not directly recognized by human users are called embedded systems. In this thesis,
we focus on systems which are composed in a large part of electric and electronic subsystems, like vehicles.

7

2.1. TERMS AND DEFINITIONS

Interface: At the boundary of a system or a subsystem, there exist interfaces, over which nowadays
mostly digital data is exchanged. We call the interfaces at the entire system boundary external interfaces
of the system. We call the interfaces between the subsystems internal interfaces. In many embedded
systems, physical sensors and actuators establish interfaces to interact with the physical environment of
the system. Physical sensors are input interfaces, such as steering wheels or brake pedals, which transform
physical information (movements, pressure, temperature, etc.) into digital data. Physical actuators do it
vice versa, transforming digital data into physical actions at the output interfaces, such as force feedback
at the steering wheel, servo of the steering rack, or hydraulic pump forcing brake piston movements. Also
graphical user interfaces (GUIs) exist to interact with human users over displays. In this thesis, we define
the system boundary (external interface) to be the sensors and actuators of the system, as well as the digital
communication interfaces of the system, allowing to exchange data with other systems (e. g., car-to-x), or
also with infrastructure in the Internet (cloud services). All interfaces, regardless of whether mechanical,
hydraulic or digital (software), have to be well defined and matching to the interfaces of other systems or
subsystems to which interactions are performed.

Behavior: The behavior of a system or subsystem is the transformation of inputs at its input interfaces
to outputs at its output interfaces. When the internal transformation procedure is not considered, this is
called the black-box behavior or I/O behavior [69]. For the user, the behavior of a system is recognized at
the system boundary (external interface). If the system behavior is incorrect (deviation from the specified
behavior) at the external interface, then bad things could occur like accidents, or at least not-amused
users. If subsystem behavior becomes incorrect at internal interfaces, the question is if and how the entire
system behavior is influenced by this at the external interfaces. A system should be able to detect incorrect
behavior at internal interfaces and react in such a way that the behavior at the external interface remains
correct, even if only in a reduced amount or reduced quality of service (see later introduced terms of
fault-tolerance and graceful degradation in section 2.1.4, as well as fail-x in section 2.1.5).

Functional Feature: The behavior at the external interface of a system is grouped to functional features.
A functional feature is a behavior of a system, which can be used by a human being or another system.
Each functional feature realizes at least one of the functional requirements, for which the system is
designed for. A functional feature is realized by components of the system, either hardware components
like hydraulic, mechanical or electrical elements, or software components that interact with the system
environment by sensor/actuator interfaces. In this thesis, we focus on functional features that are realized
by software components. Closely related terms to functional feature are the terms of application, service
or just function, which could be also seen as synonyms somehow. For instance, [23] defines that a service
delivered by a system is its behavior perceived by users at the system boundary (external interface).

Another kind of features are non-functional features, which are features that realize non-functional
requirements of the system. Non-functional features ensure so called non-functional properties, which do
not directly address things that users explicitly expect from the system, but however increase the quality of
the system. Some of them are implicitly anticipated by users, like fault-tolerance, others are mostly not
perceived by users, like maintainability [178].

Deployment: In this thesis, we use the term deployment as the decision about which software components
become executed on which hardware execution units (such as micro-controllers, electronic control units
(ECUs), etc.). Hence, this decision defines which hardware unit will execute which software components
later when the system is put into operation. Beside this software to hardware deployment, there exist
also hardware to hardware deployment, like the decision about which sensors or actuators have to be
attached to which distributed input/output units in a production plant [211]. A further kind of deployment
is the physical deployment of hardware units to a physical location within the system, where the hardware

8

2.1. TERMS AND DEFINITIONS

units have to be placed. Synonyms of the term deployment are the terms allocation (e. g., used in [156]),
assignment (e. g., used in [187]), mapping (e. g., used in [302]), binding (e. g., used in [228]), distribution
(e. g., used in [155]) and placement (e. g., sometimes used in [246]).

However, sometimes the term deployment is not understood as introduced above, but instead as the post-
production activity [95] of installing software binaries into a system to make them available for use, like
continuous redeployment techniques [16] to deploy software updates into a system. Automatic deployment
plans as sequence of actions to create/delete components and channels in a system are researched in [219].
We do not use the term deployment in this manner in this thesis.

2.1.1 Dependability
Dependability: In [217], dependability is defined as that property of a computer system such that
reliance can justifiably be placed on the service it delivers. In this context, the service that a system delivers
is its behavior as it is perceptible by its human or physical users. In [23], the dependability of a system
is defined as the ability to avoid service failures that are more frequent and more severe than acceptable.
Dependability encompasses attributes, threats and means, as shown in Fig. 2.1.

Figure 2.1: Dependability and its tree of attributes, threats and means [23]

The topic of this thesis is related to the mentioned threats; the attributes of availability, reliability and
safety; as well as the means of fault tolerance.

Beside the shown dependability tree, other dependability trees are introduced, like the one in [108].
However, we apply the taxonomy of [23] in this thesis.

Security: Dependability and Security are strongly related, as weak security offers possibilities to attack
the system and badly influence the dependability. Hence, some of the attributes are also related to security.
Security will become more and more important, when vehicles become more and more interconnected
[230]. However, we do not further consider security issues in this thesis.

9

2.1. TERMS AND DEFINITIONS

2.1.2 Dependability Threats
Certain threats exist to any system, which may lead to unintended malfunctions and harm. The threats are:

Failure: In [175], failures are defined as termination of the ability of a system element to perform a
function as required. Hence, a failure is a transition from correct to incorrect service of a system element or
the entire system. Failures are classified in [175] into common cause failures, cascading failures, dependent
failures, independent failures or single/dual/multiple-point failures. Furthermore, systematic failures and
random hardware failures are distinguished in [175]. Systematic failures are related in a deterministic way
to a certain cause, that can only be eliminated by a change of the design, manufacturing process, or other
relevant factors. Random hardware failures are defined as failures that can occur unpredictably during
the lifetime of a hardware element and that follow a probability distribution. In [23], service failures
and dependability failures are distinguished. A service failure is an event that occurs when the delivered
service deviates from correct service. A dependability failure occurs when the given system suffers service
failures more frequently or more severely than acceptable.

Beside the above classification, in this thesis we distinguish the following kinds of failures:

1. External Failure: a failure of the entire system, recognizable at the systems external interface in
form of a behavior that violates the specification.

2. Internal Failure: a failure of an element (subsystem) of a system, which does not affect the systems
external interface directly. An internal subsystem failure must be handled, such that it does not
propagate to the systems external interface and by this becomes an external failure. Hence, we treat
an internal subsystem failure as an error (defined below) from the perspective of the whole system,
which may lead to a failure of the whole system, if not handled appropriately.

Error: An error is a discrepancy between a computed, observed or measured value or condition, and the
true, specified or theoretically correct value or condition [175]. An error is the part of the total state of the
system that may lead to its subsequent service failure [23]. In [245], it is defined that an error remains an
error as long as it is tolerable and until it becomes intolerable (a failure) or it vanishes.

Fault: A fault is the cause of an error and finally potentially of a failure. In [175], faults are defined
as abnormal conditions that can cause an element or an item to fail. A fault cannot be directly detected
at runtime by a system, only after the fault caused an error, which can be detected. Hence, a faulty state
does not yet violate safety [245] and can be seen as tolerable, unless it causes an error. Different types of
faults are defined in [23], which can be grouped to be development faults, physical faults or interaction
faults. Moreover, there is a distinction between transient faults (appearing once for a short period of time),
intermittent faults (aperiodically reappearing for short times) and permanent faults [321].

In this thesis, we focus not directly on faults, but on errors and failures that may either be caused by
physical faults, which include all fault classes that affect hardware, or caused by systematic development
faults of software components. We consider errors caused by intermittent or permanent faults being
permanently handled by applying an isolation of the faulty system element from the residual system. The
system may handle transient faults either also permanently by isolation, or by masking the once appearing
erroneous value for instance by using a valid last good known value for a short period of time. We focus
on the cases in which system elements become isolated permanently.

10

2.1. TERMS AND DEFINITIONS

Figure 2.2: Chains of threats, from Fig. 11 in [23]

Fig. 2.2 shows how the introduced terms of faults, errors and failures are related to each other [23]. A
fault is the cause of an error and an error may lead to a subsequent failure. However, the perspective onto
the considered system element is important. As described above, an internal failure of a sub-element of a
system is not equal to an external failure of the entire system. But a sub-element failure can be seen as
entire system fault leading to an entire system error, which shall be detected and handled therewith the
local sub-element failure does not propagate through other parts of the system, leading to an entire system
failure.

In this thesis, we consider situations in which execution units of a system have random hardware
failures, which got detected by an appropriate mechanism, followed by an isolation of the failed execution
unit. Hence, an execution unit failure is an internal failure. It shall not lead to an external failure, but
may lead to a reduction of the functionality recognizable at the external interface. This reduction of
functionality is called degradation, respectively graceful degradation, introduced below in section 2.1.4.

With more focus on purely software based products, the above terminology is extended in [351] and
[350] with the terms of

• Mistake: A mistake is a human action that produces a fault.

• Defect: Defects are the superset of faults and failures.

Related to the above terms are the following terms, all introduced in [175].

• Harm: Physical injury or damage to the health of persons.

• Hazard: Potential source of harm caused by malfunctioning behavior of an item. An item is a
(sub-)system or array of (sub-)systems to implement a function at the entire vehicle level.

• Severity: Estimate of the extent of harm to one or more individuals that can occur in a potentially
hazardous situation.

• Risk: Combination of the probability of occurrence of harm and the severity of that harm. In other
words, risk is characterized by the two properties of frequency of hazardous events and the severity
of hazardous events.

• Malfunctioning behavior: Failure or unintended behavior of a system or subsystem with respect
to its design intent. This means, a functional feature of the system deviates from its specification.
Hence, the behavior is wrong at the external system boundary.

• Failure Mode: Manner in which the hardware or software of a system or subsystem fails. In [264]
defined as the manner by which a failure is observed, generally describing the way the failure occurs
and its impact on equipment operation.

• Failure Effect: consequence(s) that a failure mode has on the operation, function, or status of a
system or subsystem [264].

11

2.1. TERMS AND DEFINITIONS

2.1.3 Dependability Attributes
We focus on the attributes, which are related to the topic of this thesis.

Safety: Safety denotes the ability of a software system to avoid failures that will result in loss of life,
injury, significant damage of property, or destruction of property [330]. In [23], safety is defined similarly
as absence of catastrophic consequences on the users and the environment. The ISO 26262 defines
functional safety as the absence of unreasonable risk due to hazards caused by malfunctioning behavior of
electric/electronic systems [175]. In context of autonomous driving, [54] introduces operational safety as
property or ability of a vehicle to be in a suitable operating condition or meeting acceptable standards for
safe driving and transport. They define operational safety (also called roadworthiness) as a composition of
the dependability attributes of safety, availability, reliability and maintainability.

Reliability: The reliability of a system or subsystem is defined as its continuity of correct service [23],
or as measure of the ability to work completely failure-free for a certain length of time, or mission [207].
In [88], reliability is defined as the ability of a system to operate correctly according to its specification for
a given time interval. [330] defines a software systems reliability as the probability that the system will
perform its intended functionality under specific design limits, without failure, over a given time period.

In this thesis, we associate reliability to the required level of fail-operationality of functional features (see
also definition of fail-operational in section 2.1.5). The higher the required fail-operational level is, the
higher is the required reliability of a feature. As different features might have different fail-operational
levels, we obtain a mixed reliability system.

Availability: A software systems availability is the probability that the system is operational at a
particular time [330]. It is also defined as readiness for correct service [23]. An overview over more
definitions of availability, as well as an approach to specify and analyze the availability of software
intensive systems, is given in [186], mentioning that availability is defined as the ability of a system to
operate without failure most of the time.

To obtain a quantitative metric for the availability, often the following definitions are used

• Mean time to failure (MTTF): average time from startup to a failure of a system. Typically used for
systems, which cannot be repaired.

• Mean time between failures (MTBF): average time between two consecutive failures of a system.
Typically used for systems, which can be repaired.

• Mean time to repair (MTTR): average time required to repair a failed system.

The availability A is defined as

A =
MT T F

(MT T F +MT T R)
[145]

or

A =
MT BF

(MT BF +MT T R)
[212][144]

In the latter definition of [212] [144], it is assumed that MTBF contains only the time in which a system
is available (average uptime), but does not contain the repair time MTTR. Other approaches consider
MT BF = MT T F +MT T R [117], what leads availability to become

12

2.1. TERMS AND DEFINITIONS

A =
(MT BF−MT T R)

MT BF
[117]

To handle this clash between two different definitions of MTBF, a mean time between down event (MTBDE)
has been introduced for repairable systems as sum of the average uptime (MTBF) and the average downtime
(MTTR), MT BDE = MT BF +MT T R.1

However, in this thesis we only consider a boolean {0,1} availability metric of functional features for
certain points in time. As the formal model that we are going to introduce has no notion of time intervals,
we do not consider the availability over a time interval, like the above mentioned availability metrics do
it. Instead we allow to analyze a given situation like a degradation scenario, with respect to if a specific
functional feature of a system can be kept available or if it has to be deactivated.

2.1.4 Dependability Means
Fault-tolerance: Fault-tolerance is the ability of a controlled system to maintain control objectives,
despite the occurrence of a fault [53]. According to [330], a software system is fault-tolerant, if it is able
to respond gracefully to failures.

In [245], masking and non-masking fault-tolerance are distinguished. While masking fault-tolerant
systems mask the effects of faults (namely errors and failures) such that the effects are hidden from users,
non-masking fault-tolerant systems do not hide the effects of faults from users and for instance reduced
availability may be recognized. This is also related to static and dynamic redundancy, what we introduce
later in section 2.1.6.

In [285], fault-tolerant systems are defined to be able to keep the system running at 100% of its
designed functionality even in case of failures, while self-healing systems (cf. section 3.1.6) may operate
with less than 100% functionality after a healing procedure. However, contradicting to this definition
of [285], in [53] it is defined that degradation of control performance may be accepted for fault-tolerant
systems. In this thesis, we define fault-tolerant systems to be able to apply graceful degradation, meaning
that a reduced level of provided functional features can be acceptable in failure scenarios, but this has to
follow certain constraints that we discuss later in chapter 4.

Graceful Degradation: In [300], graceful degradation is defined as a smooth change of some distinct
system feature to a lower state as a response to an event that prevents the system from exhibiting that
feature in its full state, often used to allow systems to survive errors or internal failures by removing their
damaged parts. Graceful degradation is classified in the dependability means (cf. Fig. 2.1) as an error
mitigation mechanism for error correction to establish fault tolerance [300], see Fig. 2.3.

Dependability Means

Fault Avoidance (Prevention)

Fault Tolerance

Fault Removal

Error detection

Error correction
Error mitigation

Error recovery

Fault Containment

Graceful Degradation

Figure 2.3: Graceful Degradation classification into dependability means [300]

The degradation can be applied for instance in case of an internal failure of a system element. This
means, graceful degradation is a concept to tolerate failures by reducing the functionality or the perfor-
mance, rather than shutting down the system completely [313]. Performance degradation means to keep

1http://www.weibull.com/hotwire/issue94/relbasics94.htm, last access April 5th, 2016

13

http://www.weibull.com/hotwire/issue94/relbasics94.htm

2.1. TERMS AND DEFINITIONS

alive the same functionality, but with reduced performance. Functional degradation denotes a degradation
of a system in such a manner that it continues to operate, but provides a reduced level of functionality
rather than failing completely [280] [287]. In this thesis, we focus on functional degradation on a structural
level.

Furthermore, beside the preferred initial behavior, gracefully degrading systems permit additional
weakly consistent behaviors which are undesired, but tolerated and sufficiently close to the preferred
behavior [163]. However, in this thesis we do not consider such behavior degradation, as the formal model
that we are going to introduce has no notion of behavior of functional features or software components.

In [287], graceful degradation in timeliness and graceful degradation in quality is distinguished.
Timeliness is the ability of a service to perform its required functions and provide its required responses
within specified time limits. A degradation of timeliness is similar to performance degradation. Quality
degradation is a degradation of a services correctness and/or how usable a service is [287], what is similar
to functional degradation, to which we focus on.

Another definition is that graceful degradation is a resilient system’s ability to survive disruptions
originating from within or without while still carrying out its missions [91]. The ISO 26262 defines
degradation as strategy for providing safety by design after the occurrence of failures [175] and that
graceful degradation at the software level refers to prioritizing functions to minimize the adverse effects of
potential failures on functional safety [176].

In [300], three patterns are introduced about how to smootly reach a lower system state. They distinguish
an 1) optimistic, 2) a pessimistic and 3) a causal degradation pattern.

1) optimistic degradation pattern: remove only the failed system element
2) pessimistic degradation pattern: remove all system elements that are anyhow related to the failed

element
3) causal degradation pattern: remove all system elements that strongly depend on the failed element

With respect to the patterns introduced in [300], in this thesis we consider degradations in form of a
mixture of pessimistic and causal degradations, as we distinguish optional and mandatory communica-
tion channels between software components. If optional input data becomes unavailable, the receiving
component can continue to operate. If mandatory input data becomes unavailable, the receiving com-
ponent becomes deactivated (causal). However, we have no internal whitebox data-flow consideration
of components, leading to the deactivation of the whole component if one single mandatory input data
item is missing, although the residual input data might be sufficient to fulfill a subset of the specification
(pessimistic).

In this thesis, we define graceful degradation as follows:

A degradation is graceful, if no fail-operational requirements are violated by a degradation,
and if mixed-criticality functional features become deactivated sequentially by starting with
the deactivation of the feature with the lowest criticality.

We focus on degradations that become necessary due to assumed failures of execution units or software
components, forcing loss of non redundant components, or requiring deactivations of components due to
insufficiency of input data or insufficiency of execution resources.

However, because we do not model the functional behavior of components by means of Input/Output
data stream relations at component interfaces, as introduced for instance in [69], our approach does not
include a notion of a Quality of Service (QoS) of functional behavior. This means, we do not analyze to
which sense users do experience how the system behavior is influenced by degradations, and to which
sense this is accepted by users as graceful or not.

14

2.1. TERMS AND DEFINITIONS

2.1.5 Other Definitions related to Dependability
Beside the above three dependability attributes, which are listed in [23], there exist certain more terms in
the field of dependable systems, listed below.

Safety Case: Argument that the safety requirements for an item are complete and satisfied by evidence
compiled from work products of the safety activities during development [175].

Resilience: Resilience is the ability of a system to provide and maintain an acceptable level of service
in the face of various faults and challenges to normal operation.2 Resilience can be considered as the
flip side of vulnerability [86]. In [98], dynamic resilience is introduced as a system’s capacity to respond
dynamically by adaptation in order to maintain an acceptable level of service in the presence of impairments.
They introduce predictable dynamic resilience as the capacity of a system to deliver dynamic resilience
within bounds that can be predicted at design time. In this thesis, we contribute to analyze the predictable
dynamic resilience of the system under analysis at design time.

Survivability: Survivability is a software systems ability to resist, recognize, recover from, and adapt to
mission-compromising threats [330]. In other words, it is the capability of a system to fulfill its mission,
in a timely manner, in the presence of attacks, failures, or accidents [112]. Survivability is very often
seen in connection to graceful degradation. In [202], survivability is defined as how systems will degrade
functionality in the presence of failures, as it is the degree to which essential functions are still available
even though some part of the system is down [96].

Fault tolerance is often seen as a subset of survivability3, and survivability is often seen as a subset of
resilience.4

Robustness: A software system is robust, if it is able to respond adequately to unanticipated run time
conditions [330]. Robustness is usually associated with reliability and resilience [153].

Fail-x: There exist several ways on how to react to a failure at runtime. Below follows an introduction to
the main concepts and terms, related to this thesis.

• Fail-Silent: A fail-silent node is a self-checking node that either functions correctly or stops
functioning after an internal failure is detected [64]. Important here is the internal failure, which
means that the node itself has not yet fail behavior at the external node interface, but a failure of an
internal sub-element of the node is detected. An example is a micro-controller node that detects
a data distortion failure of its internal random-access memory. A fail-silent node avoids that the
internal failure becomes an external failure of that node, propagating to other nodes of the system.
Instead, a fail-silent node stops sending actual data to other nodes or actuators in the occurrence of
an internal failure. This avoids propagation of faulty data to the rest of the system. Also in [182],
it is defined that after one (or several) failure(s), a fail-silent component exhibits quiet behavior
externally (i.e., stays passive by switching off) and therefore does not wrongly influence other
components. However, the state of the system at that moment in which it goes into fail-silent mode
may be not safe. For instance, if the last outgoing data was forcing an actuator to accelerate, the
actuator receives no data telling him that it shall stop to accelerate.

2https://wiki.ittc.ku.edu/resilinets/Definitions#Resilience
3https://wiki.ittc.ku.edu/resilinets/Definitions#Fault_Tolerance
4https://wiki.ittc.ku.edu/resilinets/Definitions#Survivability

15

https://wiki.ittc.ku.edu/resilinets/Definitions#Resilience
https://wiki.ittc.ku.edu/resilinets/Definitions#Fault_Tolerance
https://wiki.ittc.ku.edu/resilinets/Definitions#Survivability

2.1. TERMS AND DEFINITIONS

• Fail-Safe: In case of an internal failure, a fail-safe system switches to a state that is considered safe
in the particular context. No harm is caused in case of a failure. In [182], it is defined that after one
(or several) failure(s), a fail-safe component directly reaches a safe state (passive fail-safe, without
external power) or is brought to a safe state by a special action (active fail-safe, with external power).
In the example of the acceleration actuator, this means that a fail-safe system ensures that a safe state
is entered, meaning the actuator to stop the acceleration and most probably to stop the movement
completely (but this depends on the system properties).

• Fail-Operational: In [53], a system is defined to be fail-operational, if it is able to operate with no
change in objectives or performance despite of any single failure. This means, the system has to be
able to tolerate at least one failure of a sub-component (internal failure) and stay operational without
going into a fail-safe state and without suffer an external failure. For instance, fail-operational is
required if no safe state exists immediately after a system component fails [182].

In this thesis, we consider fail-operationality not dedicated to an entire system, but to the single
functional features of the system. Hence, some functional features may be fail-operational, others
not. Furthermore, we distinguish different levels of fail-operationality. A functional feature with
a fail-operational level of x is required to continue operation after the first x failures of hardware
or software components in the system. Afterwards, the feature is allowed to become disabled. In
this thesis, we consider random hardware failures of execution units and systematic failures of
software components as occurring failure types that have to be handled by the system to enable
fail-operational features.

• Fail-Degraded: In this thesis, we consider systems in which only a subset of the functional features
is required to behave fail-operational. However, the other features are allowed to be deactivated in
case of failures of subsystems. This means that not the entire system is fail-operational, as some
features might become deactivated, resulting in a degradation of the system. Such systems are called
fail-degraded systems, like in [34].

Certain more terms exist in context to the above terms, like fail-passive, fail-secure, fail-fast, fail-halt,
fail-stop, which we do not further introduce here.

In the context of Steer-by-Wire systems, a study of the Daimler AG [122] has shown that by fail-silent
designed Steer-by-Wire systems, no functionalities with customer benefit can be realized, as already small
changes in the steering ratio respectively small steering angle faults cannot be handled by the drivers
and result in problems. A mechanical backup guarantees in that context no transition to the safe state.
The conclusion of Daimler investigations is that an appropriate Steer-by-Wire system has to be designed
fail-tolerant to make sure that the steering system will change directly to the safe state when failures occur
(fail-safe). Thus Steer-by-Wire makes noticeable higher demands to the system concept as known driving
dynamic systems (like anti-lock braking system (ABS) or electronic stability program (ESP)) and even
Brake-by-Wire.

Real-Time Scheduling: A real-time computer system is a computer system, in which the correctness of
the system behavior depends not only on the logical results of the computation, but also on the physical
time when these results are produced [209]. This means, the timing has a huge impact on the dependability
of a system. Real-time systems are categorized to be hard or soft, static or dynamic, preemptive or
non-preemptive [209]. The latest time at which a task has to be finished is called the deadline. In hard
real-time systems, a task which misses its deadline may cause a catastrophic failure. Think about an airbag
which opens too late. However, hard real-time systems are not defined to be fast or performant, but instead
they are defined to be predictable [74].

16

2.1. TERMS AND DEFINITIONS

In this thesis, we assume a real-time system to use logical execution times (LETs), which abstracts
from the actual execution time of a program on a physical implementation platform [200]. We assume a
LET based model of computation, in which software components are scheduled in execution cycles of
fixed cycle length. Input data for all components is captured at the beginning of the execution cycle and
not modified anymore during the cycle, output data of all components is collected at the end of each cycle,
not before. See section 2.5.1 for more details about this.

Criticality Levels: For the automotive domain, the ISO 26262 [174] defines different Automotive Safety
Integrity Levels (ASIL) from QM (Quality Management) over ASIL A, ASIL B, ASIL C to ASIL D, where
ASIL D denotes the highest criticality (see also section 2.4.3). In the Avionic domain, the DO-178B/DO-
178C [288] defines Design Assurance Levels (DAL) from DAL E (no safety effect) over DAL D (minor),
DAL C (major), DAL B (hazardous) to DAL A (catastrophic). Hence, without looking into details, the
ISO 26262 level QM is comparable with DO-178C DAL E, and ASIL D is comparable with DAL A.

A system or subsystem is called to be mission critical, if a failure might prevent an operation or
task from being performed, possibly preventing successful completion of the operation as a whole [284].
Mission criticality corresponds typically to the lower levels of the standards, like DAL D or DAL C (minor
or major) for the avionic domain [284]. Typical examples of mission critical features are navigation/display
or mission command and control subsystems.

A system or subsystem is called to be safety critical, if a failure could result in danger, injury or loss
of human life [284]. Safety criticality corresponds typically to the higher levels of the standards, like DAL
B or DAL A (hazardous or catastrophic) for the avionic domain [284], like flight and engine controls.

Mixed Criticality: A mixed criticality system has multiple distinct criticality levels [73], like the levels
introduced above. This means, such a system provides functional features – and contains associated
subsystems – that have different criticality levels. Those subsystems that have different criticality levels
have to be separated from each other to avoid negative influence from less critical subsystems to high
critical subsystems. One approach to handle different criticalities is to avoid interference by physical
separation into multiple physical devices with clearly separated network connections.

However, if mixed criticality software components are executed by a single control unit, we talk about
mixed criticality controllers. Mixed-criticality embedded controllers are gaining attention for instance
in the automotive and avionics domain due to savings in cost, space, weight, heat and power [73] [261].
Also in [131] it is stated that future automotive E/E-architectures will consist of highly integrated domain-
controllers, providing very high functional integration. This requires the support of the execution of
application components with mixed criticality levels on the same controller [70]. Separation of the mixed
criticality software on mixed criticality controllers is required, as introduced below.

Separation by Partitioning on Mixed Criticality Controllers: Having mixed criticality controllers,
the mixed critical software components have to be separated from each other to avoid undesired influences
between the different components. For this, mechanisms for spatial and temporal partitioning are required
[292] (also called time and space-partitioning [261]), as offered by so called separation kernel operating
systems [294], such as PikeOS5 [190] or EB tresos Safety6. This ensures that 1) spatial influence by
memory access to other components is avoided, as well as 2) temporal influence by deferring the execution
of other components in the schedule is avoided.

Fault Containment Regions and their Isolation: Isolation is the mechanism to detach a system element
that has an error or a failure from the residual system in order to avoid an entire system failure. To be

5https://www.sysgo.com/products/pikeos-hypervisor
6https://www.elektrobit.com/products/ecu/eb-tresos/functional-safety

17

https://www.sysgo.com/products/pikeos-hypervisor
https://www.elektrobit.com/products/ecu/eb-tresos/functional-safety

2.1. TERMS AND DEFINITIONS

able to isolate system elements in a spatial and temporal manner, systems are often partitioned into
independent so called fault containment regions (FCR) (e.g., [171]). Errors that appear within an FCR
must be detected and isolated by error-detection mechanisms at the boundaries of the FCR such that the
errors cannot damage the computational state in any other FCR. Hence, a containment region defines the
border where fault propagation must stop [283]. The aim is that no single faulty FCR can knock out the
whole safety-critical system [208]. Hence, isolations deal to achieve fault containment, as required for
safety assurance [148].

As errors or failures have to be detected before they can be isolated, the procedure is also called fault
detection and isolation (FDI) [168], although it should be called error- or failure-detection according to
our terminology.

Recovery: Recovery is one form to ensure reliability [233]. Distinguished can be error recovery, enabled
by recovery actions performed after an error has been detected [172], and failure recovery to recover
from already occurred failures. A recovery action is performed to remove an error or a failure, or at
least isolate the respective entity to avoid further propagation. In [102], proactive recovery is defined as
periodically initialize replicas with a correct application state all non-faulty replicas have agreed on. This
is useful to handle byzantine-faulty replicas by recovering replicas periodically independent of any failure
detection mechanism [76]. We do not consider proactive recovery in this thesis. Instead, we consider
reactive recovery, applied in fault-tolerant systems to handle detected errors. We refer to [265] for a further
discussion about proactive and reactive recovery. One form of a reactive recovery action is a failover, see
below.

Failover: A failover is a switch from an until now active but failed system element to a backup element
that takes over the functionality. Without the failover mechanism, the functionality provided by the failed
element would be either gone (if fail-safe or fail-silent), or even worse the system would run out of control.
Hence, the failover mechanism is important to establish fail-operational behavior. A failover is performed
automatically by the system, which is the difference to a switchover requiring manual user-interaction. In
this thesis, we consider failovers between redundant identical or diverse software components in case of
scenarios of failed hardware or software.

2.1.6 Redundancy and Replication Mechanisms

Redundancy and Replication: To increase certain properties of the system, like fault-tolerance, relia-
bility, availability or accessibility, the mechanisms of redundancy and replication have been introduced.

• Redundancy is the duplication of (mostly critical) components or functions of a system, usually in
form of backup components. It is about providing multiple (often identical) instances of the same
system element and switching to one of the remaining instances in case of a failure (failover).7

This means, only one copy is in operation and provides the intended service. The backups are
not in operation, until one of them becomes required. Hence, redundancy permits a product to
operate even though certain parts and interconnections have failed, thus increasing its reliability
and availability [320]. There exists a tradeoff between redundancy and cost [267] [268] and also
between redundancy and reliability [325].

• Replication is about providing multiple (often identical) instances of the same system or subsystem,
directing tasks or requests to all of them in parallel, and choosing the correct result on the basis of a
quorum.7

7https://en.wikipedia.org/wiki/Fault_tolerance#Replication, accessed at 13th August 2015

18

https://en.wikipedia.org/wiki/Fault_tolerance#Replication

2.1. TERMS AND DEFINITIONS

Different types of replication are distinguished, like

• Active Replication: all replicas are active and calculate results simultaneously [28]. A voter selects
the predominant output and ignores faulty replicas.

• Passive Replication: a passive replica does not contribute to provide any functional feature [28].
The state and result of the active replica is synchronized to the passive replicas at certain points
in time. In case the active replica becomes faulty, it shuts down in a fail-silent manner and one
passive replica becomes active. One example for passive replication is the so called Primary-Backup
Replication [221].

• Leader/Follower Replication: one active leader exists, as well as multiple active follower replicas
[28]. In case the leader replica fails, one follower becomes the new leader. No voting is required.

An example of a system using active and passive replicas is shown in [102].

There exist different implementations of redundancy, like information redundancy, time/temporal redun-
dancy, software component or hardware component redundancy. An additional distinction is done between
functional and physical redundancy [91].

Popular examples of hardware component redundancy are:

• Dual-Modular Redundancy (DMR): DMR is a form of active replication. One example of DMR
is a lockstep system that runs the same set of operations at the same time in parallel, e.g. lockstep
processors with two cores working totally bit-identical. For DMR, a two-way comparison subsequent
logic is needed to detect discrepancies in the outputs, followed by shutting down or isolating the
DMR system (fail-silent). E.g., if a hardware failure occurs in one core of a lockstep processor,
the output of the two cores become different, what is detected by the comparison mechanism and
handled by switching off the whole lockstep processor (as it cannot be determined which core failed).
Synonyms for DMR are Loosely-Synchronized Dual Processor Architecture [25] and Self-Checking
Pair [154].

• Triple-Modular Redundancy (TMR): Also TMR is a form of active replication. It involves the use of
three subcomponents (or "modules") of identical design, and majority voting circuits which check
the module outputs for exact equality. It is thus designed to mask the failure of any single module,
by accepting any output that at least two of the modules agree on [280]. TMR is also called fixed
replication with voting in [280]. While the structure is fixed (fixed replication, static redundancy,
see Fig. 2.5 below), the replicas are executed and active (active replication). Another synonym for
TMR is 2-out-of-3 (2oo3) Architecture [57] [203].

For TMR, a three-way voting subsequent logic is needed for selecting the output result that should
finally be given to the receivers. It has to be determined, which of the redundantly calculated values
should be taken (in case 1 of the 3 components fails) (fail-operational). As the voting is also a
critical task, the voting logic has to be redundant, too.

An extended form of TMR, using two hierarchical levels of TMR (called triple-triple redundancy),
is for instance applied in Boing 777 airplane [358].

• Duo-Duplex Redundancy (DDR): A duo-duplex architecture consists of two dual-modular redun-
dancy (DMR) subsystems in parallel. Hence, overall four components exist, two in each DMR
subsystem. One DMR subsystem is active and the other one is passive [17]. Both DMR subsystems
check themself for correctness by internally comparing data of the two contained controllers [286].

19

2.1. TERMS AND DEFINITIONS

When a failure is detected in the active DMR subsystem, a failover is performed. The failed DMR
subsystem becomes isolated (fail-silent) and the passive DMR subsystem becomes active. DDR is a
form of passive replication, as the second DMR subsystem only becomes active when the first DMR
subsystem fails.

In total, a fail-operational behavior is reached. Like in TMR, only one fault can be tolerated [182].
After the failover, either the full functionality can be kept alive (fully fail-operational), or a degraded
version of the functionality (fail-degraded, often called limp-home backup [203]). Synonyms for
DDR are Dual Lock-Step Architecture [25], 2-out-of-2 Diagnosis-Fail-Safe (DFS) Architecture [203]
and Dual Self-Checking Pair [154].

Fig. 2.4 shows illustrations for the three mentioned hardware component redundancy types.

hardware output enable that will positively
disengage a malfunctioning computer from the
system. These Built-In-Test (BIT) features increase
the likelihood that the computer will fail passive
rather than fail active.

disengage computer
Inputs I

(Actuators1 Computer w/ BIT

Figure 5. Simplex, Disengagement Features

impossible to design BIT that can detect all types of
computer failures and very difficult to accurately
estimate BIT effectiveness. MIL-STD-2 165 [4]
defines fault coverage as the ratio of failures
detected (by BIT) to the total failure population
expressed as a percentage. Although determining
actual fault coverage by either test or analysis is
difficult and inexact, typical estimates for well-
designed systems, supported by maintenance
experience, are about 95%. This means that for this
type of system, BIT will correctly detect that the
system has failed approximately 19 times for every
20 failures and disengage the outputs to achieve a
fail passive condition. But 1 in 20 failures will be
undetected and the system may fail to a potentially
hazardous fail active condition.

For many applications, occasional loss of

But it is important to realize that it is

function failure and the potential for a hazardous
malfunction are unacceptable. To prevent loss of
function, redundancy can be introduced in the form
of a dual standby system as shown in Figure 6. For
a typical dual standby system, one of the redundant
computers is designated the primary and the other
the backup. If the primary channel should fail, the
secondary can be engaged to take its place. The
backup can be powered continuously (a hot backup)
or may be powered up when needed (a cold spare).
A cold spare takes longer to engage and will not
have any stored state data. Engagement can be
either manual, by a crew monitoring the system, or
automatic by the system itself. A typical means of
mechanizing automatic switchover is by using BIT
in the primary channel to detect failure. Should the
primary channel BIT determine that it is faulty, it
will relinquish control and the backup is engaged.
A dual standby system reduces the probability of

loss of function by engaging the backup following
detected failures in the primary, but does nothing to
reduce the potential for malfinction compared with
a simplex with BIT system. A dual standby system
can malfunction following an undetected first
failure in the primary channel. For many systems,
dual standby systems can provide an acceptable loss
of function failure rate, but the potential for a
malfunction cannot be tolerated. To prevent
malfunction, dual redundancy can alternately be
applied in the form of a self-checkingpair as shown
in Figure 7.

I

14 Computer W/BIT

Figure 6. Dual Standby FT Architecture

. .

Figure 7. Self-checking Pair

A self-checking pair system requires that two
independent computer channels produce the same
output before this output will be sent to actuators.
The fundamental concept is that with a complex
computer, it is very difficult to tell if it is producing
the correct outputs. And as previously noted, it is
impossible to provide BIT that has 100% effective
fault coverage. But if you have two computers
operating side-by-side, processing the same inputs,
you can easily detect even subtle failures by
comparing their outputs. This method can provide
100% effective fault detection coverage. The
output comparison can require either exact
agreement (computers must produce identical
outputs) or approximate agreement (computers
must agree within some predefined error boundary).
Exact agreement is needed to provide 100% fault
coverage, but requires that each computer execute
the same software, use identical inputs and be
tightly synchronized in time. It is also necessary to
keep historical state information consistent between
the two computers. A dual self-checking pair can
detect and prevent any computer malfunction, but is

1.C.5-4

(a) DMR (Self-Checking Pair)

actually twice as likely to experience a loss of
function failure when compared with a simplex
system. This is because both computers must
operate without failure to produce an output. A
modification to the approach can allow the system
to continue operating using only one computer, but
provides no protection from maljhction in this
operating condition. This modified approach,
called self-checking pair with simplex fault down is
shown in Figure 8. This approach modifies the
output comparison logic to allow the output of one
computer to pass through should BIT fail in the
other. By modifying the system to allow it to
operate in simplex after one channel fails BIT, the
probability of loss of function is reduced.

I BIT fail
I I ,

W' f a i t

Figure 8. Self-Checking Pair With Simplex
Fault Down

But once the system faults down to simplex,
protection against a malfunction of the remaining
computer is lost. A self-checking pair with simplex
fault down has application if the system can be
supervised carefully after the fault down and/or the
system will only be operated for a short time in this
condition, minimizing exposure to a second failure
and possible malfunction. If the consequences of
malfunction are catastrophic, this approach is
probably not acceptable.

Achieving both a low probability of
malfunction and loss of function requires adding
additional redundancy.

The self-checking pair can be extended to add
additional self-checking pairs to serve as backup to
the first self-checking pair. A dual self-checking
pair approach is shown in Figure 9. Even more
additional pairs can be used to provide the ability to
operate following more than one computer pair
failure, i.e., N self-checking pairs where N is the
number of processor pairs. The approach is
appealing for its simplicity and very effective fault

coverage, but requires two computers for each
failure to be tolerated. So a system that can tolerate
two failures requires six processors that add weight
and consume power. As advances in electronics
have reduced processor size and weight, this
penalty has been reduced. But there are also
difficulties in eliminating single points of failure in
the mechanism used to engage a specific processor
pair and to deliver the output to the actuators, and in
maintaining consistent stored state information
within the different processor pairs.

Y A c t u a t o r s J

agreement

Figure 9. Dual Self-checking Pair

Another widely used approach for achieving
both a low probability of malfunction and loss of
function is Triple Modular Redundancy (TMR) as
illustrated in Figure 10.

Middle
Value

Selection
or 213 [-] Computer MqG-q majority

*-)

Figure 10. Triple Modular Redundancy

A TMR system can protect against loss of
function following any single failure and, if
configured to fault down to simplex, following any
two failure conditions. TMR can also dependably
prevent maljiunction failures after any single failure,
and if configured to fault down to a self-checking
pair, after a second failure. Again, the fundamental
underlying concept is that two computers
comparing outputs provides better fault coverage
than self-test for detecting computer failures. But
unlike a self-checking pair, TMR compares outputs
from three computers allowing isolation to a single
computer rather than to a pair of computers. Two
possible mechanisms are typically used to compare

1.C.5-5

(b) TMR

actually twice as likely to experience a loss of
function failure when compared with a simplex
system. This is because both computers must
operate without failure to produce an output. A
modification to the approach can allow the system
to continue operating using only one computer, but
provides no protection from maljhction in this
operating condition. This modified approach,
called self-checking pair with simplex fault down is
shown in Figure 8. This approach modifies the
output comparison logic to allow the output of one
computer to pass through should BIT fail in the
other. By modifying the system to allow it to
operate in simplex after one channel fails BIT, the
probability of loss of function is reduced.

I BIT fail
I I ,

W' f a i t

Figure 8. Self-Checking Pair With Simplex
Fault Down

But once the system faults down to simplex,
protection against a malfunction of the remaining
computer is lost. A self-checking pair with simplex
fault down has application if the system can be
supervised carefully after the fault down and/or the
system will only be operated for a short time in this
condition, minimizing exposure to a second failure
and possible malfunction. If the consequences of
malfunction are catastrophic, this approach is
probably not acceptable.

Achieving both a low probability of
malfunction and loss of function requires adding
additional redundancy.

The self-checking pair can be extended to add
additional self-checking pairs to serve as backup to
the first self-checking pair. A dual self-checking
pair approach is shown in Figure 9. Even more
additional pairs can be used to provide the ability to
operate following more than one computer pair
failure, i.e., N self-checking pairs where N is the
number of processor pairs. The approach is
appealing for its simplicity and very effective fault

coverage, but requires two computers for each
failure to be tolerated. So a system that can tolerate
two failures requires six processors that add weight
and consume power. As advances in electronics
have reduced processor size and weight, this
penalty has been reduced. But there are also
difficulties in eliminating single points of failure in
the mechanism used to engage a specific processor
pair and to deliver the output to the actuators, and in
maintaining consistent stored state information
within the different processor pairs.

Y A c t u a t o r s J

agreement

Figure 9. Dual Self-checking Pair

Another widely used approach for achieving
both a low probability of malfunction and loss of
function is Triple Modular Redundancy (TMR) as
illustrated in Figure 10.

Middle
Value

Selection
or 213 [-] Computer MqG-q majority

*-)

Figure 10. Triple Modular Redundancy

A TMR system can protect against loss of
function following any single failure and, if
configured to fault down to simplex, following any
two failure conditions. TMR can also dependably
prevent maljiunction failures after any single failure,
and if configured to fault down to a self-checking
pair, after a second failure. Again, the fundamental
underlying concept is that two computers
comparing outputs provides better fault coverage
than self-test for detecting computer failures. But
unlike a self-checking pair, TMR compares outputs
from three computers allowing isolation to a single
computer rather than to a pair of computers. Two
possible mechanisms are typically used to compare

1.C.5-5

(c) DDR (Dual Self-Checking Pair)

Figure 2.4: Illustrations for DMR, TMR and DDR from [154]

Also other combinations beside classical DMR, TMR or DDR exist. For instance, a patent for a
system of two lanes, each lane having a primary and a redundant processor, and subsequent three different
monitors plus one selection logic is given in [157].

In [275], a roll-forward checkpointing mechanism is introduced, comprising a primary DMR subsystem
and a secondary spare DMR subsystem, latter instantiated only on-demand if an inconsistency is detected
between the two lanes of the primary DMR. The spare DMR re-executes the inconsistent command
sequence to identify which of the two primary DMR lanes was erroneous. Due to this, the meanwhile
continuing primary DMR subsystem can be corrected by state transfer, without requiring a rollback
recovery to the last valid checkpoint. This is helpful to ensure predictable execution times in real-time
systems. Recovery by checkpointing is also considered in [143].

As it might be already noticed, the terms of redundancy and replication are closely related to each other
and cannot be clearly separated. One example for using the terms in relation is that an example of active
replication is triple modular redundancy (TMR) [130], or that redundancy typically refers to replicated
hardware and/or software within systems [91].

Fig. 2.5 shows an overview about additional characterizations of redundancy. Some areas in the figure are
relevant in the context of this thesis.

20

2.1. TERMS AND DEFINITIONS

Figure 2.5: Redundancy characterization from [321] (Fig. 5.5)

First, Fig. 2.5 shows in the upper left part the redundancy categories of static (masking) and dynamic
(reconfiguration) redundancy, as well as hybrids of it.

• Static redundancy is to use redundancy to mask or hide the effects of faults in a component [280]. It
is also called masking redundancy (in [280]) or passive redundancy.8 No active action is required
by the system, like activations of backup components. Examples of static redundancy are active
replication with voting, like TMR, but also N-version programming [80].

• Dynamic redundancy is to use active recovery techniques like reconfiguration or self-healing. It is
also called active redundancy.8 Examples are systems using standby spares replacing failed units
[280]. More about standby spares is introduced below.

Please notice that with both static (masking) and dynamic redundancy, masking fault-tolerance can be
achieved (cf. definition of fault-tolerance in section 2.1.4).

Second, in the lower left part of Fig. 2.5, physical module redundancy types are listed. These are (plus
additional warm spare):

• All active: This refers to active replication, as defined above. For instance, in a TMR system, all
three copies are active.

• Hot spare: A hot spare is active, but does not produce output signals. Hence, it does not contribute
to provide any functional feature. The internal state of a hot spare is updated to the states of the
active replicas continuously. This allows a very low MTTR by a very fast failover, to let the hot
spare become active. In [105], a hot spare is defined as an element whose degradation and failure
behavior - while it is a spare - is the same as while it is active. This is because the only difference
between an active replica and a hot spare replica is that the latter does not produce outputs. A hot
spare concept for hardware is for instance applied in aircrafts [358].

• Cold spare: A cold spare is a passive replica. The replica is normally not executed in schedule, but
the binary is just ready to be started. Hence, the internal state is not updated to the state of the active
replicas during normal operation. When the cold spare has to become active (failover), it starts with
its initial state, which may be different to the last state of the failing replica, and potentially required
resources have to be acquired during startup. This means, the failover is slow and the MTTR is high.
But as the replica is passive, less resources are required during normal operation, compared with

8http://www2.cs.uidaho.edu/~krings/CS449/Notes.S13/449-13-03.pdf, see slide 8

21

http://www2.cs.uidaho.edu/~krings/CS449/Notes.S13/449-13-03.pdf

2.1. TERMS AND DEFINITIONS

using a hot spare. In [105], a cold spare is defined as an element that neither degrades nor fails while
it is a spare. Cols spares require dynamic redundancy and can also be implemented with diversity,
like used in the concept of recovery blocks [172].

• Warm spare: In addition, there exist the term of warm spares, being replicas which are already
started and then passivated (like cold spares), but in some points in time they get information about
the current internal state of the active replicas (like done for hot spares). This is similar to rollback to
a checkpoint [367] [274]. The MTTR is medium, between the MTTR of cold spare and hot spare.9

In [105], a warm spare is defined as an element whose degradation and failure behavior lies between
a cold spare and a hot spare.

SWC
(Master)

SWC
(Hot Spare)

SWC
(Master)

SWC
(Cold Spare)

SWC
(Master)

SWC
(Warm Spare)

sync

Figure 2.6: Active I/Os of hot, warm and cold spares

Fig. 2.6 shows the activity of input and output channels for hot-, warm and cold spares of software
components (SWCs), as we use it in this thesis combined with a primary master instance. We consider spare
components not only for physical hardware components, but particularly also for software components. A
hot spare gets inputs, but its outputs are ignored. A warm spare becomes synced with the master at certain
checkpoints in time. A cold spare is not executed in schedule and hence, it gets no inputs.

A synonym for a spare component is a standby, slave or backup component. One system using cold, warm
and hot standbys is the QNX Neutrino operating system.9 Another example of a system using hot spares is
a hybrid quad redundant scheme comprising four controllers, in which three of the four controllers are
active replicas, running as a TMR subsystem, and the fourth controller is a hot spare which only becomes
active in case one of the other three controllers fails, in order to substitute it (see [321], Fig. 7.13, page
7-16). If then afterwards one further controller fails, a DMR subsystem is left.

Diversity: Third, Fig. 2.5 shows software diversity, which is another important concept in the context of
redundancy and replication.

• Diversity: Diversity is to provide different implementations of the same specification. The different
implementations are then replicated, to cope with systematic errors in a single implementation.
This avoids systematic errors in all replicas, like bugs encoded in software. Diversity can be given
at software or hardware level. Examples of concepts providing software diversity are N-version
(Multiversion) programming [80] and recovery blocks [172]. Examples of diverse redundancy on
hardware level are different sensors for the same value, like temperature sensors with negative and
positive temperature coefficients, attached to the same physical location. A survey about more
different kinds of software diversity is given in [32].

9http://www.qnx.com/developers/docs/660/topic/com.qnx.doc.neutrino.cookbook/topic/s1_ha_Standby.
html

22

http://www.qnx.com/developers/docs/660/topic/com.qnx.doc.neutrino.cookbook/topic/s1_ha_Standby.html
http://www.qnx.com/developers/docs/660/topic/com.qnx.doc.neutrino.cookbook/topic/s1_ha_Standby.html

2.2. FOUNDATIONS IN SAFETY ENGINEERING

• Dissimilarity: A term closely related to diversity is dissimilarity. In context of a TMR system
in the avionic domain, it is for instance stated that dissimilarity needs to be judiciously used for
the program risk reduction and will not be an alternate to the rigorous verification and validation
analysis/testing activities [358].

Hence, homogeneous redundancy (without diversity) and heterogeneous redundancy (with diversity)
is distinguished [104]. Redundancy respectively replication mechanisms and patterns are also used or
introduced for instance in [109], [251], [160], [185], [274] and [352]. For more information about the
residual terms in Fig. 2.5, we refer to [321].

2.2 Foundations in Safety Engineering

The overall goal of safety engineering is to ensure freedom of unacceptable risk [336]. The basic steps in
proving the safety of a system are shown in Fig. 2.7. The terms are commonly used in the automotive
domain.

Figure 2.7: Safety engineering lifecycle from [336]

The safety analysis approaches aim to analyze the possible effects of faults in a system. The most relevant
approaches are:

Fault Tree Analysis (FTA): FTA provides a logical method for graphically presenting the chain of
events leading to a system failure, determining system safety and reliability from the event probabilities
[218]. FTA is a deductive top-down method [60] considering combinations of events in the cause-path
to analyze their effects on a system and by this to understand how a system can fail. FTA is for instance
applied in [344] and [242]. Specialized versions of FTA exist, like State Event FTA [188] or Dynamic FTA
[105]. The latter supports redundant spare backup components like cold-, warm- and hot-spares, as we
introduced them in section 2.1.

Failure Mode and Effects Analysis (FMEA): FMEA is a systematic way of identifying failure modes
of a system, item or function, and evaluating the effects of the failure modes on the higher level [264].
FMEA is an inductive bottom-up analysis [60] of the effects of single element failures onto subsystems and
systems. A failure mode is defined as a particular way in which an item fails, independent of the reason for
failure [249]. Also approaches for probabilistic FMEA exist [147] [10], based on applying Markov chains.

23

2.3. FOUNDATIONS IN SOFTWARE AND SYSTEM QUALITY ASSURANCE

System-Theoretic Process Analysis (STPA): STPA is a modern hazard and safety analysis technique,
based on the accident causation model System-Theoretic Accident Model and Process (STAMP) [223],
applicable early in the design process of a system to achieve an acceptable risk level [3]. The aim is
to identify the potential hazardous causes in complex safety-critical systems at different architecture
abstraction levels [1]. To support software-intensive systems, the STPA SwISs approach exists to combine
safety analysis and software test case generation [1] [216]. An automotive case study of applying STPA
SwISs is shown in [2]. With A-STPA respectively its successor XSTAMPP [4], an open-source tool
platform exists for the STAMP/STPA approach.

This thesis: The approach introduced in this thesis aims to support FMEA approaches with arguments
towards reliability by guaranteeing the achievement of fail-operational requirements. For mixed-reliability
systems, we also analyze necessary degradations in failure scenarios due to insufficient resources, caused
by failures. We do not distinguish different failure modes (ways in which a system element can fail), but
we assume the presence of a mechanism to detect any kind of failure mode of certain system elements,
and to isolate the failed elements from the residual system to avoid propagation. Our approach provides a
formal structural effect analysis of the decreasing resources due to such isolations. We combine this with
the synthesis of valid redundant deployments and incorporated failover scenarios to ensure the fulfillment
of all fail-operational requirements of functional features of the system under analysis, if feasible. If
required due to insufficient resources in failure scenarios, we synthesize a valid system degradation by
partially deactivating features having no fail-operational requirement. As example for a redundancy and
failover mechanism, we assume a present safety and fault-tolerance concept that has been developed in
context of the RACE project (see section 2.5.2). With respect to the fault-tolerance concept, we verify that
all fail-operational requirements can be met in all considered failure scenarios. This supports to establish
further evidence for required reliability of functional features of the system under analysis.

2.3 Foundations in Software and System Quality Assurance

Many approaches were proposed to tackle quality assurance in order to obtain high quality software and
systems. These approaches can be categorized into constructive approaches and analytic approaches
[350], as well as process based approaches [193]. Constructive approaches are for instance the use
of well approved architecture or design patterns or architectural styles. Process based approaches are
the development according to standards or models like ISO 9000 or Automotive SPICE. The analytic
approaches are distinguished into dynamic analysis and static analysis. Dynamic analysis requires to
execute parts of the implemented system, like unit-testing or runtime fault-injection and monitoring. Static
analysis does not require to execute an implemented system. This includes for instance human code
reviews or walkthroughs, as well as formal methods like static program analysis based on theorem proving
(e. g., [90]), data-flow analysis or symbolic execution (e. g., [198]).

The approach which is introduced in this thesis is a static system analysis, applying a formal verification,
based on using an SMT solver. The input to our approach is a model of the systems hardware and software
architecture enriched with relevant properties, like requirements to behave fail-operational. As the
development of automotive embedded systems and software is increasingly realized using model-based
design [68], these models can be partially used as basis for our input models.

24

2.4. AUTOMOTIVE ARCHITECTURES AND STANDARDS

2.4 Automotive Architectures and Standards

2.4.1 Classical Automotive E/E Architectures

In this thesis, we briefly introduce how electric/electronic (E/E) architectures and software architectures of
vehicles look like typically nowadays.

A lot of change happened in the automotive industry, since Carl Benz drove the first vehicle in 1886
[45]. In a classical high-end vehicle available nowadays, there exist more than 70 electronic control units
(ECUs), connected by more than 5 different network communication systems [155] [67] [131] (such as
Controller Area Network (CAN) [179], Local Interconnect Network (LIN) [180], FlexRay [159], Media
Oriented Systems Transport (MOST) [241], Peripheral Sensor Interface (PSI5), Distributed Systems
Interface (DSI), Automotive Ethernet) with different transport protocols and different wiring topologies
(point-to-point, line-bus (e.g. CAN, LIN), star (e.g. FlexRay) or ring (MOST)) [366]. The single
communication subsystems are most often connected by a central gateway. A lot of effort is spent in the
verification of correct end-to-end timing behavior of data that flows through such networks [337].

The hardware of the ECUs is mostly very heterogeneous and tailored to the specific needs of the
functional feature that shall be provided by the ECU. At the time of 2005–2010, already more than
two-thousand individual functions existed in some types of vehicles [67], performed by software on the
ECUs. At the same time, up to 40% of the development and production costs of a car are determined by
electronics and software [67] [131] [78]. Round about 90% of all innovations are driven by electronics and
software [131] [155], while 50-70% of the development costs for an ECU are related to software [131].
The amount of software in a car has further increased meanwhile.

One approach to make application development independent from the heterogeneous hardware is
to introduce a hardware abstraction layer and a runtime environment (RTE), like it is specified by the
AUTomotive Open System ARchitecture (AUTOSAR) standardization consortium (see section 2.4.2).

However, still the number and heterogeneity of the ECUs, buses and software functions denote a huge
complexity, which is still increasing [11] and therefore becomes more and more difficult to handle. Several
proposals have been presented suggesting how future E/E architectures should look like to reduce the
complexity back to an adequate level. Related challenges are listed for instance in [67] and [78].

One approach to reduce the complexity is the RACE approach [19] [318] [36], which is based on a study
done with 240 interviews of world-wide experts from original equipment manufacturers (OEMs), suppliers,
as well as political and consumer organizations [47]. The concepts of this approach are introduced in more
detail in section 2.5, as it offers some basic properties of system which can be analyzed with the approach
introduced in this thesis. These properties are the presence of appropriate error detection mechanisms, as
well as redundancy and failover mechanisms.

Other approaches exist which tackle to better handle the existing complexity, like [6] [5], which is
based on organic computing (OC) techniques. We do not follow OC approaches in this thesis, but give a
brief overview and a discussion why we do not use them in section 3.1.6.

2.4.2 AUTOSAR

The AUTOSAR standard is developed by a consortium of nearly all automotive car manufacturers,
equipment suppliers, tool suppliers and other companies and institutes associated to the automotive
domain.10 It is the successor of the OSEK/VDX consortium.11

The main intention of AUTOSAR is to standardize a common basis in how automotive software
and system architectures should be designed and developed, to avoid that the concepts of the different

10http://www.autosar.org/partners/current-partners
11http://www.osek-vdx.org

25

http://www.autosar.org/partners/current-partners
http://www.osek-vdx.org

2.4. AUTOMOTIVE ARCHITECTURES AND STANDARDS

car manufacturers diverge too much from each other and suppliers cannot anymore efficiently develop
equipments for different manufacturers.

AUTOSAR is also used to integrate a high amount of functionality on one electronic control unit (ECU)
in a controlled way. If mixed critical functionality is present, there are often still dedicated microcontrollers
for safety-related applications [131]. However, AUTOSAR serves to reduce the number of ECUs. For
instance, four non AUTOSAR ECUs are replaced by two AUTOSAR ECUs in a scenario at BMW [131].
The migration to AUTOSAR in series production is done step-by-step and also changes the working and
business models, as suppliers can develop software which is applicable to multiple OEMs and the OEMs
theirself concentrate on the own development of key-functions. In nowadays vehicles, normally only a
subset of the electronic control units (ECUs) is developed according to AUTOSAR, but not yet all ECUs.

AUTOSAR uses a three layer concept to make application development independent from the hardware
(Fig. 2.8). The lowest layer is the basic software (BSW) layer, containing hardware specific parts like
drivers or also a standardized operating system. The middle layer is the runtime environment (RTE). The
upper layer contains the AUTOSAR application software components, realizing the functional features
used by the costumers, as well as software components to handle attached sensors and actuators. This
application layer becomes hardware independent through the RTE and the BSW layer.

Figure 2.8: AUTOSAR layered software architecture(Fig. 3.12 in AUTOSAR_EXP_VFB.pdf [22])

The RTE provides a so called virtual function bus (VFB) to abstract from the real physical communica-
tion technology (Fig. 2.9).

In classic AUTOSAR, the RTE code is fixedly generated according to the set of application components
and their interfaces, that are deployed to a certain ECU. No changes are applied at runtime to the RTE
configuration. However, mechanisms exist to switch between different modes, or to stop and start (a priori
known) software components. However, the standardization of a future adaptive AUTOSAR is on its way
[132], planed to be released in 2017 and relaxing the fixed RTE rigidity by allowing adaptations at runtime.

26

2.4. AUTOMOTIVE ARCHITECTURES AND STANDARDS

Figure 2.9: AUTOSAR Virtual Function Bus and SW deployment tool
(Fig. 2 in AUTOSAR_TechnicalOverview.pdf [20])

Fig. 2.9 also sketches the deployment of the SWCs at the application layer to the different ECUs,
which then execute the SWCs. In current versions of the AUTOSAR standard [22], Fig. 2.9 is updated
and more generally mentions a "Tool supporting development of SW components"12, rather than a "Tool
supporting deployment of SW components", as the definition of the deployment of SW to HW is just one
activity during the software and system development.

12see AUTOSAR R4.2 [22], http://www.autosar.org/fileadmin/files/releases/4-2/main/auxiliary/AUTOSAR_
EXP_VFB.pdf, page 10, Fig. 2.2

27

http://www.autosar.org/fileadmin/files/releases/4-2/main/auxiliary/AUTOSAR_EXP_VFB.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/main/auxiliary/AUTOSAR_EXP_VFB.pdf

2.4. AUTOMOTIVE ARCHITECTURES AND STANDARDS

In this thesis, we focus on analyzing possible degradations of vehicles. Below, we show the main
requirements of AUTOSAR with respect to degradation.

Requirements of AUTOSAR w.r.t. degradation of systems: The AUTOSAR standard [22] mentions
the following requirements with respect to degradation:

• AUTOSAR shall support different standardized methods to degrade the functionality of an AUTOSAR
system.13 Depending on specific states of an ECU or of a complete system, either the full functional-
ity cannot be available any more (example: hardware problem) or need not be available any more
(example: parked car). AUTOSAR must support system and ECU degradation to properly react to
such states. The main reason is to save energy. The use cases are the AUTOSAR features of Partial
Networking and ECU Degradation in conjunction with Pretended Networking [225].

• AUTOSAR diagnostic shall allow runtime degradation of faulty functionality to maintain minimum
ECU/vehicle operability.14 The rationale is to maintain minimum ECU/vehicle operability in case
of defect sensor values that inhibit normal performance characteristics but still allows for backup
operation. An example use case is a limp home mode of the vehicle, in which only rudimentary
driving is supported to reach home or next service station.

Mode Management in AUTOSAR AUTOSAR has a concept for mode management on software
component level, ECU level and system level. In relation to this, AUTOSAR distinguishes BSW Modes
(basic software, ECU level), Application Modes (on software component level) and Vehicle Modes (on
system level). All these three kinds of modes can influence each other.

With respect to the analysis of degradation scenarios introduced in this thesis, the AUTOSAR mode
management is one use case for applying degradation, as AUTOSAR mentions Degradation of application
functionality in certain power modes as the use case for the requirement that AUTOSAR shall standardize
methods to organize mode management on SWC, ECU and system level.15

Many other concepts beside AUTOSAR exist to support systems with multiple system operating modes,
meaning that the system may have different defined structures and/or behaviors for different situations. In
order to specify when the mode of a system has to be changed, mode transitions are defined depending on
the current system context or user interaction. This requires that the system is context sensitive, meaning
that it has knowledge about the environment and overall situation, in which it is used.

Concepts to design modes in embedded systems are also supported in MARTE [255] and AADL [295]
[48], [58], [184]. Furthermore, mode based automotive systems are also tackled in [335], [334] and [240],
as well as with focus on requirements engineering in [343], [342] and [340].

13[RS_BRF_01184] in AUTOSAR_RS_Features.pdf [22], section 4.1.1, page 26
14[RS_BRF_02216] in AUTOSAR_RS_Features.pdf [22], section 4.13.10, page 78
15[RS_Main_00460] in AUTOSAR_RS_Main.pdf [22], section 4.2.7, page 13

28

2.4. AUTOMOTIVE ARCHITECTURES AND STANDARDS

2.4.3 ISO 26262
The ISO 26262 [174] provides a standard to ensure functional safety in automotive E/E systems. System
safety is achieved through a number of safety measures, which are implemented in a variety of technologies
and applied at the various levels of the development process.

As already sketched in section 2.1.5, the ISO 26262 [174] defines different Automotive Safety Integrity
Levels (ASIL) from QM (Quality Management) over ASIL A, ASIL B, ASIL C to ASIL D, where ASIL D
denotes the highest criticality. The ASIL is determined for each hazardous event that may occur. This is
done based on the severity, the exposure and the controllability of the considered hazardous event [174].
Finally, also the hardware and software components that are related to this hazardous event get assigned the
ASIL. The higher the ASIL, the more effort has to be put into the development of hardware and software
components to ensure that the components to not contain any faults that may cause failures leading to the
considered hazardous event. The level QM is for non-critical components.

In the context of this thesis, we focus on the specifications of ISO 26262 with respect to graceful
degradation. We introduced the definitions of graceful degradation in section 2.1.4. ISO 26262 lists
graceful degradation as one of four mechanisms for error handling at the software architectural level,
beside static recovery mechanisms, independent parallel redundancy and correcting codes for data. These
four mechanisms are evaluated w.r.t. to functions with different ASIL and recommendations are given about
which mechanisms should be used for which ASIL. The usage of graceful degradation is recommended
(+) for ASIL A and B and highly recommended (++) for ASIL C and D, which is the overall highest
recommendation of all four mechanisms (see Fig. 2.10).

Figure 2.10: Graceful degradation and other mechanisms for error handling at the software architectural
level, from [176] (Table 5)

The second mechanism, beside graceful degradation, which is shown in Fig. 2.10 and which we
consider in this thesis, is independent parallel redundancy. This means not only to provide redundant
backups of a software component, but to establish diversity by providing a second implementation of
the same software component, which is dissimilar. We consider a special form of this, namely diversity
combined with degradation, in context of our analysis approach in section 4.7.

29

2.5. THE RACE APPROACH

2.5 The RACE Approach

In the Project RACE 16, a new fault-tolerant software and system architecture for future electric vehicles
and comparable systems was investigated and implemented in two demonstrator cars.

The motivation is to reduce the complexity of the electric/electronic (E/E) architecture of vehicles in
order to enable a more cost efficient and safe development of innovative vehicle features, like autonomous
driving, that are partially required to behave fail-operational. Another motivation is also to tackle de-
velopment goals that address three global megatrends: 1) zero emissions to address climate change, 2)
intelligent mobility to address urbanization, and 3) zero accidents to address demographic change [118].

The main idea is to use a centralized computation approach, as proposed in [47], to overcome the very
complex highly distributed and highly heterogeneous state of the art E/E architectures as described in
section 2.4.1. A runtime environment (RTE) is introduced that offers generic fault-tolerance mechanisms
[36] and incorporates failover and degradation strategies.

As introduced in section 2.4.1, the electric/electronic (E/E) architectures of nowadays state of the art
vehicles has been historically grown over the last four decades and are heterogeneous mixtures of round
about 70 electronic control units (ECUs) and 5 different bus systems [131]. Also the functional software
complexity has been grown drastically by introducing more and more software based functional features,
which are more and more interacting. This complexity requires high effort and cost to integrate additional
features and to ensure high quality by testing or other quality assurance methods.

The AUTOSAR approach already tackles a lot of these problems by introducing a Runtime Environment
Layer (RTE) to abstract from the lower hardware layer and providing a so called Virtual Function Bus
(VFB) to abstract the physical communication paths from the application layer, which is executed on top
of the RTE. However, AUTOSAR does not tackle the reduction of the systems E/E hardware complexity
directly. It tries to mitigate the negative effects of current E/E architectures to the application software.

The RACE platform architecture extends the idea of AUTOSAR with a blueprint system architecture
and generic mechanisms to enable functional features with fail-operational behavior. Instead of tailoring
the RTE code for the set of application software components running on a certain ECU - like it is done
in AUTOSAR - the RACE RTE is fully configurable. The configurability supports changes of the set of
deployed application software components. This introduces a certain runtime overhead, but is a key for
changing the system in field, like towards Plug&Play extensions of vehicles with new software-based
functional features and new physical sensors and actuators.

The main concepts of the RACE platform are introduced subsequently in the following sections,
providing basic knowledge for the fault-tolerance concepts and assumed system properties being considered
later when introducing our analysis approach in section 4.

2.5.1 Software and System Architecture
Platform Layout: The RACE platform consists of a scalable set of centralized computation units, called
the Central Platform Computer (CPC). Attached to the CPC is a set of so called Smart Aggregates for
physical sensing and actuation. The smart aggregates are highly integrated and execute local control loop
algorithms, while the CPC executes higher level control strategy applications. The physical communication
is established by a redundant reliable network, based on switched Ethernet [19]. A sketch of such a platform
architecture is shown in Fig. 2.11.

The middle box of Fig. 2.11 shows an exemplary CPC with four so called Duplex Control Computers
(DCCs) as central computing units. A DCC builds a Dual-Modular Redundancy (DMR) control unit,
where each operation is calculated on two parallel execution lanes L1 and L2 and the outputs are compared

16Robust and Reliant Automotive Computing Environment for Future eCars; funded by the German Federal Ministry for Economic
Affairs and Energy (BMWi) under grant no. 01ME12009, carried out from early 2012 until early 2015, http://www.projekt-
race.de/en

30

http://www.projekt-race.de/en
http://www.projekt-race.de/en

2.5. THE RACE APPROACH

DCC
1

A3 A2 A1 A4 A5

A6 A7 A8
A9

Central Platform
Computer (CPC)

DCC
3

DCC
2

DCC
4

Blue
Power

Red
Power

DCC

La
ne

 1

La
ne

 2

Network
Links

Peripheral Smart
Sensor/Actuator
Aggregates

Figure 2.11: Example instance of the RACE hardware architecture [35]

for bit-identicality. Software components that realize fail-operational features are deployed to at least two
DCCs, building a Duo-Duplex Redundancy (DDR). See section 2.1.6 for the definitions of DMR and DDR,
as well as section 2.5.2 for a deeper introduction into the RACE redundancy concept.

Attached to this CPC are in this example nine smart aggregates, five of them in a ring topology (right)
and the other four divided on two further communication branches (left). Each aggregate can be accessed
from each DCC over the reliable switched ethernet.

Runtime Environment (RTE): The RACE Runtime Environment (RTE) is a modular middleware layer
between the operating system of the execution units and the application software components (ASWCs),
see Fig. 2.12. It is for instance responsible for enabling data communication between the different entities
of the system, like application software components and sensor/actuator aggregates. To enable this, it is
executed on all hardware execution units (DCCs and smart aggregates).

The RTE is designed in a data-centric manner, ensuring that from each DCC all sensor data can be
accessed and all actuators can be controlled [318]. This enables that application software components
(ASWCs) can deliver their service on all DCCs. This means that it is irrelevant which ASWC is located
on which DCC, offering flexibility in the decision about the deployment of ASWCs to the DCCs. Such
flexibility is a major goal in software design for vehicles [230].

Also data-fusion and data-distribution features are offered by software components of the RTE. For
instance, data-fusion mechanisms allow to receive data from sensor aggregates, which are present with
different levels of redundancy [36]. The redundantly sensed data is merged by the RTE to a single sensor
value, which is then delivered to the ASWCs that need this sensor value. More about redundancy in RACE
will be presented in section 2.5.2.

The definition of data communication dependencies is realized using the publish/subscribe commu-
nication paradigm [116]. Each ASWC and each aggregate defines the amount of required input data by
subscriptions, and the amount of provided output data by publications. More about this will be introduced
later in section 2.5.3.

31

2.5. THE RACE APPROACH

RTE

Application Software Components (ASWCs)

RTE

Basic Software and
Operating System

Basic Software and
Operating System

DCC 1 DCC 2

Network

ASWC2 ASWC3

communication channel

ASWC1

local - remote -

Figure 2.12: RACE layered Architecture with RTE

To provide fault-tolerance, the RACE RTE contains inherent mechanisms for error-detection, con-
solidation and error-handling [129]. Detection is done by monitoring all communicated values w.r.t.
plausibility of values, like minimum/maximum range of valid values or maximum delta change between
two consecutive values. Also the timing of communication is monitored, like network frames that are
received too late. Mechanisms exist to isolate faulty hardware and software components from the remaining
system to avoid harm. For this, different fault-containment regions (FCRs) are defined. Also a failover
mechanism is provided to support fail-operational features. More about this is introduced in section 2.5.2.
A more detailed introduction into the principles of the RACE RTE and an overview over the different RTE
components is published in [318], [129] and [36].

Scheduling: The RACE platform operates in fixed time-triggered real-time execution cycles, using the
concept of Logical Execution Time (LET) [200]. This abstracts from the physical execution time on a
particular device and thereby abstracts from both the underlying execution hardware and the communication
topology. The LET forms a basis for component-oriented development of real-time systems. Languages
such as Giotto [161] harness LET abstractions.

RTE RTEASWC1 ASWC2

0ms 10ms
cycle 1

RTE RTEASWC1 ASWC2

20ms
cycle 2

Time window to execute
application components

Figure 2.13: Cyclic execution of RTE and ASWCs

The RACE RTE executes the application software components (ASWCs) in fixed execution cycles.
An example is shown in Fig. 2.13, in which two ASWCs are executed within an execution cycle of 10ms.

32

2.5. THE RACE APPROACH

Also the different RTE components (e.g., for network data transmission, data validity check, data fusion,
error handling, etc.) are executed within the same cycle. Hence, only a subset of the cycle time is available
for executing ASWCs. The RTE transfers the communicated data at each cycle border. The input data
for all ASWCs is read in from the network at the beginning of each cycle, and the output data of the
ASWCs is collected and distributed to the subscribers locally and over the network at the end of each
cycle. This means that any change of input data taking place during a cycle only affects the next cycle,
not the current cycle. Hence, precedence relations between ASWCs have not to be considered in the
schedule of the ASWCs, as the input data that is given to an ASWC is always the data that is produced
in the previous cycle, not in the current cycle. The system guarantees that data that is sent in cycle x is
available at each execution unit (DCCs and smart aggregates) at cycle x+1. Of course, an appropriate
network communication mechanism is required for this, introduced briefly below.

Networking: The RACE platform uses an Ethernet based network communication topology. A scalable
ring-based full-duplex switched Ethernet architecture is used, where an inner ring connects the DCCs
of the CPC (cf. Fig 2.11), and additional outer rings or branches connect the aggregates to the CPC.
Logical communication channels are automatically established by the RTE, based on the publish/subscribe
descriptions of provided and required data items of ASWCs. Based on these logical communication
channels, the contents of the physical network frames are configured, that have to be transmitted between
the DCCs and aggregates. In each execution cycle, a DCC receives network frames from other DCCs and
aggregates, executes the deployed ASWCs and transmits the output data to other DCCs or aggregates. The
network distinguishes between critical frames, containing critical data, and non-critical frames, containing
non-critical data. The network guarantees that critical network frames, which are sent in cycle x, are
available at all other execution units at cycle x+1, before the time at which network frames are read in
during cycle x+1. To be able to guarantee this, the maximum size of critical network frames is limited
and frame preemption on network transmission level is used to reduce the network transport delay for
critical frames by allowing them to preempt the transmission of non-critical frames [36]. This mechanism
is currently being standardized in IEEE802.1Qbu (Time-Sensitive Networking, TSN) [173]. Automotive
BroadR-Reach single-pair cabling is applied. Further details about the RACE network communication are
provided in [19] and [318].

2.5.2 Safety and Fault-Tolerance Concept
In this section, we will briefly introduce those concepts of the RACE approach for ensuring safety and
fault-tolerance, that build the basis to understand the requirements for the formal system model and formal
constraints, introduced later in this thesis in chapter 4.

ASWC-Clusters: ASWCs with identical criticalities (e.g. in form of identical ASIL and fail-operational
requirements) are grouped into so called ASWC-Clusters. The motivation for these clusters is to reduce
the complexity of mechanisms for the separation of mixed critical components and of mechanisms for
runtime error handling. Hence, the clusters are just a management unit. However, ASWCs with identical
criticalities can also be grouped into different ASWC-Clusters, if desired. But each ASWC is mapped to
exactly one cluster.

Separation: ASWCs with different criticalities have to be separated to avoid bad influence from low
critical to high critical ASWCs. This separation has to be established in form of spatial and temporal
separation of mixed critical ASWCs. In RACE, this is reached by running the RTE on top of the PikeOS17

operating system and using partitioning mechanisms of PikeOS.

17http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept, last access at 30 November 2015

33

http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept

2.5. THE RACE APPROACH

Fault-Containment-Regions (FCR): Different fault-containment regions (FCR) exist in different gran-
ularity [128]. The FCRs deal as isolation units in order to avoid propagation of errors between FCRs.
Beside others, examples for FCRs are DCCs, aggregates and ASWCs.

Runtime Error Detection and Error Handling: The RACE RTE offers error detection and error
handling mechanisms for mixed critical components. All input data is checked for validity, before it is
forwarded to the ASWCs. If a value is detected as invalid, the RTE substitutes it with the last valid value
or a default value, together with an attribute which informs the ASWC about this. The choice of the kind
of substitution depends also on how long a value is already invalid. Also the timing of network frames and
the execution of ASWCs in their worst case execution time (WCET) boundary is checked.

At runtime, an algorithm obtains the so called performance levels of all DCCs, aggregates, ASWCs
and ASWC-Clusters and triggers isolations, failovers or degradations, if necessary [18]. In case a DCC
becomes isolated, some of the ASWC-Clusters that were used to be executed on this isolated DCC may
have to be resumed on other intact DCCs. These are those ASWC-Clusters that contain ASWCs with
fail-operational requirements. The RTE manages this failover switching at runtime. The failover switching
after isolations of DCCs is done on cluster level, while the isolation of single failed ASWCs is handled on
ASWC level. Hence, if an ASWC inside a cluster fails and becomes isolated, the other ASWCs within this
cluster can continue their operation and because ASWCs are fault-containment regions (FCRs), the other
ASWCs will not be negatively affected. Further information about the detection and handling of errors of
input data in RACE are provided in [128], [126] and [36]. Additional approaches for error detection and
diagnosis are for instance described in [181].

Non-intrusive fault-injection tests: The RACE approach supports non-intrusive data monitoring and
non-intrusive fault-injection [124] [36] [125], offering the manipulation of data or state information within
the system during runtime and by this, allowing to test if the systems fault-tolerance mechanisms work
properly as specified.

Redundancy Concept: RACE uses a variety of redundancy mechanisms to enable fail-operational
features. On hardware level, there are redundant sensors, redundant actuators, redundant physical commu-
nication links, as well as redundant aggregates and redundant central execution units (DCCs). Different
degrees of redundancy exist on sensor/actuator level, on aggregate level and on communication link level.
For instance, the Steering-Wheel in the Steer-By-Wire demonstrator vehicle is sensed by two redundant
aggregates, each having three redundant sensors [36]. Hence, overall six sensor-values are captured. Each
aggregate sends the sensed values over two redundant communication links towards the CPC. Hence,
overall twelve values are received at the DCC, distributed on four network packages, each containing three
values. The RTE at the receiving DCC checks these values for plausibility and integrity and finally fuses
the values to one single value that is given to the ASWCs that subscribe this value. However, this form of
sensor and actuator redundancy is not further handled in the context of this thesis.

Each central DCC has a Dual-Modular Redundancy (DMR), as they comprise two computation lanes,
executing the same instructions in parallel. A pair of two DCCs builds a Duo-Duplex Redundancy (DDR).
More generic, multiple DCCs build a N-Duplex Redundancy. Due to this, a fail-operational feature can be
kept active during at least N−1 hardware failures of DCCs, if the ASWCs that realize this feature are
redundantly deployed onto N DCCs.

The RACE runtime environment (RTE) checks that the both execution lanes of a DCC provide bit-
identical results. In case of a hardware failure in one execution lane, the results may become unequal, what
is detected by the RTE and results in an isolation of the DCC. These DCC isolations are the major scenario
considered in this thesis.

On software level, redundancy is applied in form of a dynamic redundancy mechanism. For each
ASWC, one active master instance is deployed. Additional hot- or cold-standby slaves (also called hot/cold

34

2.5. THE RACE APPROACH

spares) are deployed redundantly for those ASWCs that realize features which are required to behave
fail-operational. A fail-operational ASWC that was used to be executed on an isolated DCC is resumed on
another DCC by enabling a hot- or cold-standby slave to become the new master. A hot-standby slave
is a passive replica, as its outputs are ignored, but its internal state is updated and kept synchronous to
the state of the active master. The cold-standby slaves are not executed, but just exist in the memory of
DCCs, ready to be started if required. However, they start from their initial state. Also combinations of
hot- and cold-standby slaves exist if an ASWC is required to survive more than one DCC isolation. For
instance, if an ASWC is required to survive three DCC isolations (we call it to have a fail-operational level
of three), three slaves are required in addition to the master. One of these three slaves will potentially be a
hot-standby slave, but the other two slaves will initially be cold-standby slaves. In case the master is lost
and the hot-standby slave becomes the new master, then one of the both cold-standby slaves becomes the
new hot-standby slave.

Minimum fault-tolerance time (minFTT): Each application has multiple safety goals, while each
safety goal has an assigned fault-tolerance time (FTT), defining how long an interruption of the provision
of that application can be tolerated without risk. The smallest of these FTTs is the minimum fault-tolerance
time (minFTT) of an application. The minFTT is also specified for the application software components
(ASWCs), which implement an application [35]. In this thesis, we use the term functional feature instead
of the RACE term of application.

Fault recovery time (FRT): The RACE system ensures a maximum time to perform a failover. This
means, in case a master ASWC instance is lost due to an isolation of a DCC or a failure of the master
ASWC itself, the time that is required to activate a corresponding cold-standby slave instance of that
ASWC to let it become the new master. This failover time is called the fault recovery time (FRT) of the
system. The FRT can be defined as a constant for the whole system, as it can be shown that a maximum
FRT can be proven for the RACE concept (not part of this thesis). During the project, the FRT was aimed
to be at most 50ms [35].

As a standby slave is required for a fail-operational ASWC to provide redundancy, not always a
hot-standby slave is required. Sometimes, a cold-standby slave is sufficient. The decision, if a hot-standby
slave is required or if a cold-standby slave is sufficient, depends on the minFTT of the considered ASWC
compared to the fault-recovery time (FRT) of the system. If the minFTT of the ASWC is smaller than the
system FRT or equal to it, then a hot-standby slave has to be established, otherwise a cold-standby slave is
enough. This means, if the failover mechanism to activate a cold-standby slave is quick enough to beat the
minFTT of this ASWC, then a cold-standby slave is sufficient to resume the ASWC in time. Otherwise, if
the failover mechanism to activate a cold-standby slave is not quick enough, we need a hot-standby slave,
as this can become a master much faster.

Normal-Law and Direct-Law Components: The RACE concept offers to use so called Normal-Law
(NL) and Direct-Law (DL) software components, providing basically a functionality of similar kind, but
with different functional quality. The intention behind this is that the NL component provides the normal
full-fledged feature and the DL component provides a degraded backup with basic functionality. If the
NL component cannot be provided anymore, for instance due to a faulty required sensor value or due to
insufficient other resources, then the simpler DL component can be activated, assuming that this requires
less resources, which are available sufficiently. The availability of the DL component mitigates the loss
of the NL component. As ASWCs realize functional features, this denotes a degradation mechanism on
feature level. A simple example is assisted driving in NL and basic manual driving without assistance
in DL. In this thesis in section 4.7, we introduce and discuss some assumed design principles about the
realization of features with NL and DL ASWCs, and enable our analysis approach to analyze architectures
that follow those assumptions.

35

2.5. THE RACE APPROACH

Further details about the RACE safety and fault-tolerance concept are published in [128], [127], [129],
and [291]. The concepts are partially based on ideas that have been introduced in [17] and [281] in context
of the research project SPARC (Secure Propulsion using Advanced Redundant Control).18

2.5.3 Application Development and RTE Configuration

Designing RACE Applications: RACE application software components (ASWCs) as well as physical
aggregates are delivered with self-describing information contained in so called manifests [318]. A
manifest contains all data that is required to integrate a software component or an aggregate into a vehicle
design [36]. For instance, manifests contain component interfaces in form of publications and subscriptions
of topics and attached attributes, as well as the Worst Case Execution Time (WCET) of the cyclic executable
function and safety relevant information such as the components requirement to behave fail-operational.
The set of possible topics and attributes in one system is predefined in a so called dictionary [71]. Topics
may be for instance physical properties (temperature, pressure, etc.) or system data (e.g. recognized
objects in front of the vehicle, a trajectory to drive, etc.). Attributes describe the instances of a topic, such
as the location and meaning of a temperature and the unit of measurement. The dictionary concept enables
data compatibility between applications of different suppliers, as they build their applications on top of
this common topic dictionary.

A RACE specific extension of the CHROMOSOME Modeling Tool (XMT) [71] is used to describe
the manifests and the dictionary. The XMT tool also offers to analyze virtual compositions of manifests in
integrated product models. During the analysis, for instance the logical data-flow between the software
components and aggregates is checked for completeness and unambiguity [308].

Finally, manifest files are generated together with code wrappers of the software components. In the
wrappers, all read/write operations for the modeled publish/subscribe interfaces are already present, as well
as an initialization function and a function which is executed by the RTE in each cycle. Into this template,
the developer can integrate the application behavior, for instance code generated from Matlab/Simulink.

Due to the inherent safety mechanisms provided by the RTE, application development is facilitated as
developers can focus on implementing the functional features and have not to check plausibility of input
data themselves. Instead, the plausibility of values is checked by the RTE.

RTE Configuration The RTE configuration is based on the set of given manifests. The configuration
may happen at system design time, or at system start-up, or later during a Plug&Play scenario. A
configuration component of the RTE collects all the information from the given manifests and executes
plausibility checks to decide about the composability of the manifest set [36].

For instance, this includes checking that the sum of the WCETs of the actively deployed ASWCs
does not exceed the given time-budget in the execution cycle on each execution unit (cf. scheduling in
section 2.5.1). Additionally, a graph is calculated containing the logical data-flow between the ASWCs and
the aggregates, based on the publications and subscriptions that are defined in the manifests [71]. Based
on this graph, the data-flow is checked for ambiguity and completeness, as well as where data-fusion is
required with which properties. If for instance multiple publishers send data to the same subscriber in a
scenario where data-fusion is not intended, this is detected as a problem. Also safety relevant properties are
checked, like the level of redundancy that certain ASWCs require. In case of conflicts or other problems,
the configuration process is aborted and the integration is rejected. After a successful analysis, finally the
configuration data structures for the RTE components are created and the RTE is put into operation.

18Funded by EU FP6, 2004-2007, http://www.transport-research.info/project/secure-propulsion-using-
advanced-redundant-control, last access at 30 November 2015

36

http://www.transport-research.info/project/secure-propulsion-using-advanced-redundant-control
http://www.transport-research.info/project/secure-propulsion-using-advanced-redundant-control

2.6. AVIONIC ARCHITECTURES AND STANDARDS

2.5.4 Demonstrator Vehicles
Two demonstrator vehicles were developed within the RACE project. The first car shows an evolutionary
migration path from current E/E architectures towards the RACE architecture, by replacing some parts
of the former E/E architecture by RACE technology. 19 The second car was a revolutionary new
car completely based on the RACE technology [72]. This revolutionary car contained a steer-by-wire
application, which is highly safety critical and therefore realized with redundant steering wheel and
steering rack aggregates [36].

2.6 Avionic Architectures and Standards

Beside the Automotive domain, the Avionic domain might be a second domain in which the approach
presented in this thesis can be applicable.

Foundations in Avionic Architectures and Standards: In the avionic domain, a fault-tolerant modular
software and system platform architecture has been standardized with Integrated Modular Avionics (IMA)
[353] [260], defined in DO-297. 20 A standardized software interface for IMA is given by ARINC 653
[260] [277]. 21 The avionic specific standard DO-178C 22 describes how to develop software for avionic
systems safely. Supplement specifications exist, describing for instance how to apply formal methods
(DO-33323) or how to apply model-based development and verification (DO-33124).

To separate mixed critical system elements, spatial and temporal partitioning mechanisms have been
developed, like introduced in [292] and [356] and specified in ARINC 653 [260] [277].

Many parts of avionic systems have high demands to behave fail-operational [157]. Hence, redundancy
is applied where necessary. For instance, the fly-by-wire subsystem is designed redundantly [338], in fact
in the Boing 777 in a triple-triple modular redundant manner including dissimilarity [358] [359].

Degradation Concepts in the Avionics Domain: In the avionic domain, control law concepts have
been developed, including degradation concepts. For instance, Airbus airplanes have multiple so called
Flight Control Laws, present for different flight operating modes, like Ground Mode or Flight Mode,
applied in different flight situations. The control laws are Normal law, Alternate law, Direct law, and
Mechanical law. 25, 26

In the Normal law, a lot of protection mechanisms are active, like Attitude Protection. These software
based protection mechanisms prevent a lot of dangerous flight situations. In case of failures of system
entities, the airplane can switch into different levels of the Alternate law. In these Alternate laws, some
of the protection mechanisms are lost, but the plane is still under control. If even more or worse failures
appear, the airplane can be switched into Direct law, providing a direct relationship between sidestick and
control surface, without any protection mechanisms. For the very worst case scenario, after a complete loss

19http://www.projekt-race.de/en/news/archive/siemens-to-equip-streetscooter-electric-vehicle-with-
innovative-electronics-and-software.php, last access at 30 November 2015

20http://www.rtca.org/store_product.asp?prodid=617, DO-297 Integrated Modular Avionics (IMA) Development Guid-
ance and Certification Considerations, 2005

21http://store.aviation-ia.com/cf/store/catalog_detail.cfm?item_id=496, http://store.aviation-ia.com/
cf/store/catalog_detail.cfm?item_id=2495, ARINC Specification 653: Avionics Application Software Standard Interface

22http://www.rtca.org/store_product.asp?prodid=803, DO-178C Software Considerations in Airborne Systems and
Equipment Certification

23http://www.rtca.org/store_product.asp?prodid=859, DO-333 Formal Methods Supplement to DO-178C and DO-278A
24http://www.rtca.org/store_product.asp?prodid=815, DO-331 Model-Based Development and Verification Supplement

to DO-178C and DO-278A
25https://en.wikipedia.org/wiki/Flight_control_modes, accessed 22th Sept. 2015
26http://www.airbusdriver.net/airbus_fltlaws.htm, accessed 22th Sept. 2015

37

http://www.projekt-race.de/en/news/archive/siemens-to-equip-streetscooter-electric-vehicle-with-innovative-electronics-and-software.php
http://www.projekt-race.de/en/news/archive/siemens-to-equip-streetscooter-electric-vehicle-with-innovative-electronics-and-software.php
http://www.rtca.org/store_product.asp?prodid=617
http://store.aviation-ia.com/cf/store/catalog_detail.cfm?item_id=496
http://store.aviation-ia.com/cf/store/catalog_detail.cfm?item_id=2495
http://store.aviation-ia.com/cf/store/catalog_detail.cfm?item_id=2495
http://www.rtca.org/store_product.asp?prodid=803
http://www.rtca.org/store_product.asp?prodid=859
http://www.rtca.org/store_product.asp?prodid=815
https://en.wikipedia.org/wiki/Flight_control_modes
http://www.airbusdriver.net/airbus_fltlaws.htm

2.7. FOUNDATIONS IN SATISFIABILITY SOLVING AND OPTIMIZATION

of electrical flight control signals, even a Mechanical law is present, providing pure mechanical back-up
control possibilities for pitch and lateral control, supported by hydraulic power.

2.7 Foundations in Satisfiability Solving and Optimization

Fundamentally, many combinatorial satisfiability and optimization problems can be formulated as a
Constraint Satisfaction Problem (CSP) [214]. In a CSP, hard constraints can be expressed that must be
satisfied, as well as soft constraints that should be satisfied, but may be violated. A weight is added is
added according to the degree of preference for each soft constraint, the problem becomes an optimization
problem [62]. The problem is to find a variable assignment to all variables that satisfies all hard constraints
and at the same time optimizes a global cost function for the soft constraints. Such an optimization
problems is sometimes also called Constraint optimization problem (COP) [266]. For instance, CSP is
applied to solve an allocation problem in [167].

Below we give a brief overview over different technologies in problem satisfiability solving and
problem optimization. They can be seen as forms of CSP respectively COP.

Linear Programming: Coming from classical Operations Research (OR) domain, creating quantitative
models to support decisions for advanced optimization problems.

• LP (linear programming) (e. g., solved by Simplex [151]). Special cases exist, like stochastic linear
programming [191]

• ILP (integer LP) (e. g., Branch and Bound, applied in [262])

• MILP (mixed ILP) (e. g., Gurobi 27)

• MO PB-ILP (multi-objective pseudo-boolean ILP), the ILP problem has binary variables and
multiple conflicting objectives [228]

Metaheuristic Search Algorithms: A Metaheuristic is to automatically determine an appropriate heuris-
tic to find a non optimal, but sufficiently good solution for a given search problem, also usable to
heuristically solve an optimization problem. The benefit prior to an exact optimal algorithm is that the
computational complexity is reduced, such the search can be performed more efficient in less time. This
is especially relevant for NP-hard problems. The following bullet points lists just some metaheuristic
approaches:

• Simulated Annealing (SA) [199] [329] is a probabilistic technique to approximate a global optimum
in large search spaces. Inspired by the technique of annealing in metallurgy (applying slow cooling),
SA algorithms slowly decrease the probability of accepting worse solutions, while exploring the
solution space. Local optima can be forsaken in order to find other better optima.

• Tabu Search (TS) [137] [253] guides a local heuristic neighborhood search procedure to explore
solutions beyond a local optimum, by using a so called tabu list. Hence, TS is able to cross
boundaries of feasibility or local optimality. There are also TS approaches addressing the CSP [253].

• Evolutionary Algorithms (EA) [24], also used for multiobjective optimization [121], for instance
implemented in the Multi Objective Evolutionary Algorithms (MOEA) Framework. 28

27http://www.gurobi.com
28http://moeaframework.org

38

http://www.gurobi.com
http://moeaframework.org

2.7. FOUNDATIONS IN SATISFIABILITY SOLVING AND OPTIMIZATION

• Genetic Algorithms (GA) [170] (e. g., used in [9], [254], [204], [329]). Genetic algorithms belong
to the larger class of evolutionary algorithms (EA).

• Swarm intelligence approaches, like

– Particle Swarm Optimization (PSO): a concept for the optimization of continuous nonlinear
functions, introduced in [194], having ties to both genetic algorithms (GA) and evolutionary
programming (EP).

– Ant Colony Optimization (ACO): introduced in [103]

In [228], a classification is done into approaches applying 1) Continuous Encoding (e. g., Particle
Swarm Optimization), 2) Discrete Encoding (e. g., Simulated Annealing), and 3) Mixed Encoding (e. g.,
Evolutionary Algorithms).

The Metaheuristic search algorithms can be further distinguished into algorithms applying 1) local
(neighborhood) search strategies (e. g., Tabu Search) and 2) global search strategies (e. g., Genetic Algo-
rithms and Particle Swarm Optimization). The Simulated Annealing approach mediates between local and
global search.

Other Generic Decision Making Approaches:

• Answer set programming (ASP) describes a problem as a logic program, a set of axioms29 and a
goal statement, under the answer set (stable model) semantics of logic programming [135] in such a
way that the models of the program (answer sets) correspond to the solutions of the problem [87].

• Satisfiability (SAT) solvers for boolean formulas, checking if there exist values for the boolean
variables, such that the formula evaluates to True.

• Satisfiability modulo theories (SMT) solvers. Satisfiability Modulo (the) Theory T — SMT(T) —
is the problem of deciding the satisfiability of Boolean combinations of propositional atoms and
theory atoms [83]. Examples of useful theories are equality and uninterpreted functions, difference
logic and linear arithmetic (either over the reals or the integers), the theory of arrays and bit vectors,
as well as combinations of those theories. Implementations are, for instance, Yices 30, MathSAT 31,
Z3 [93] [50] and CVC4. 32

• SMT optimizers. SMT solvers with optimization facilities. One implementation is the new version
of Z3 33, also called Z3Opt or νZ [51] [52]

• EF-SMT: Exists/Forall-SMT solvers extend SMT from top-level quantified forall problems to exists-
forall problems [82] [106]. EF-SMT solvers use an ordinary SMT solver and iteratively perform
guessing of instantiations for the Exists variables and querying the SMT solver with the resulting
Forall formula. If this fails, the result (i.e., counterexample) of the Forall query is used to find the
next (better) instantiation of the Exists variables, until is succeeds [293].

A more detailed introduction into many of the mentioned and some additional solving and optimization
technologies is presented in [227].

In this thesis, we do not aim in developing a new efficient solving and multi-objective optimization
technology tailored to the discussed problem. Instead, we use a generic off-the-shelf framework to get

29An axiom is a statement that is valid for any assigned values of the domain, like the commutative addition axiom "a+b = b+a".
30http://yices.csl.sri.com
31http://mathsat.fbk.eu
32http://cvc4.cs.nyu.edu/web
33https://github.com/Z3Prover/z3

39

http://yices.csl.sri.com
http://mathsat.fbk.eu
http://cvc4.cs.nyu.edu/web
https://github.com/Z3Prover/z3

2.7. FOUNDATIONS IN SATISFIABILITY SOLVING AND OPTIMIZATION

solutions to the problems that arise in this thesis. We apply the Z3 SMT solver as problem solving and
optimization technology. The reason for this choice is that it is very well documented, well supported, used
in commercial context [138] but freely available under MIT license 34, has an API to various programming
languages like C, Python and Java, is relatively efficient for a lot of logics compared to other SMT solvers
35 and since [52] it also supports the definition of multiple objective functions, whose optimization conflicts
can be resolved in different ways. Time efficiency (performance) in calculating these solutions is not in
focus of this thesis.

34https://github.com/Z3Prover/z3/blob/master/LICENSE.txt
35http://smtcomp.sourceforge.net/2015/results-summary.shtml

40

https://github.com/Z3Prover/z3/blob/master/LICENSE.txt
http://smtcomp.sourceforge.net/2015/results-summary.shtml

CHAPTER 3 Related Work

In this chapter, we discuss existing related work. On the one hand, in section 3.1 we focus on related
design and analysis approaches for fault-tolerant systems, particularly on analyzing graceful degradation.
On the other hand, in section 3.2 we discuss synthesis approaches for optimized system design decisions,
particularly for the deployment of software components to hardware execution units.

Contents
3.1 Approaches to Design and Analyze Fault-Tolerant Systems 41

3.1.1 Design and Analysis of Graceful Degradation 42
3.1.2 Design and Analysis of Reliability and Robustness 48
3.1.3 Design and Analysis of Availability . 51
3.1.4 Fault-Tolerant Scheduling for Mixed Criticality Systems 51
3.1.5 Design of Structural and Behavioral Reconfiguration 52
3.1.6 Self-x Approaches . 53

3.2 Constraint Based Synthesis of Design Decisions . 58

3.1 Approaches to Design and Analyze Fault-Tolerant Systems

Examples of fault-tolerant safety critical systems: A lot of research has been performed in the area of
designing safety critical systems in a fault-tolerant manner. Particularly, huge effort has been spent in the
avionics domain, for instance, to design dependable Fly-by-Wire aircraft [339], or to design partitioning
mechanisms to ensure fault containment and avoid fault propagation between functions that share resources
in the scope of Integrated Modular Avionics (IMA) [292]. Also in the automotive domain, system safety
is very important [174], and system reliability by fail-operational fault-tolerance becomes increasingly
important [317] [203], especially in the context of automated and autonomous driving features [355] [72].
Efforts to design fault-tolerant vehicles have been spent for instance in the projects DySCAS1 [14] [79],
RACE2 [318] [36], SafeAdapt3 [289] [263] and SAFER4 [196]. RACE focused particularly on enabling
fail-operational driving features, see also section 2.5.2. Another domain in which safety and fault-tolerance
are important are cyber-physical systems (CPS). CPS are introduced in [66] to be open adaptive globally
connected cooperative self-organizing software-intensive embedded systems of systems (aggregation of
CPS attributes mentioned in [66]). For instance, a safety roadmap for CPS has been presented in [336],
mentioning that the openness (dynamic connections to other systems) and adaptivity (adapt to changing
environmental contexts) of CPS requires enhanced assurance methods to ensure safety and reliability, to
cover the runtime dynamism of the overall CPS architecture.

In this thesis, we focus on the automotive domain. We now highlight and discuss work related to this thesis
in different categories.

1Dynamically Self-Configuring Automotive Systems
2Robust and Reliant Automotive Computing Environment for Future eCars / Reliable Automation and Control Environment,

http://www.projekt-race.de
3Safe Adaptive Software for Fully Electric Vehicles, http://www.safeadapt.eu
4System-level Architecture for Failure Evasion in Real-time Applications

41

http://www.projekt-race.de
http://www.safeadapt.eu

3.1. APPROACHES TO DESIGN AND ANALYZE FAULT-TOLERANT SYSTEMS

3.1.1 Design and Analysis of Graceful Degradation

W. Nace, P. Koopman (RoSES Project, CMU Pittsburgh, 1999-2001): In [247] [248] [246], the
authors present an approach to design gracefully degrading distributed embedded systems. The presented
framework is separated into three steps. 1) First, they model a feature model containing the superset of all
features that may be offered by the products of a product family. When designing a product out of the
product family, those features are selected that provide the desired functionality of the product. A feature
selection algorithm optimizes which features get picked to provide which functionality. 2) In the second
step, software components are selected that fulfill the requirements of the features that were selected in
the first step. The selection is done out of a library of components.5 3) In the third step, they calculate a
feasible allocation (alias deployment) of the selected software components to the microcontrollers of the
system. This deployment is calculated by using a bin-packing algorithm, but they write that this choice
was quite arbitrary and many other algorithms (like integer programming) could have been chosen as well.
They apply functional redundancy as fault-tolerance technique.

Beside the calculation of deployments with redundancy in step three, the most related part to the
work presented in this thesis is a model about sequences of hardware failures and an analysis of graceful
degradation in these sequences. They model hardware failure sequences as a lattice. Each vertex of the
lattice represents a set of intact available hardware components (microcontrollers). It is a lattice as multiple
top level vertexes exist, each representing a different product of the product family. Fig. 3.1 shows the
lattice concept.

Figure 3.1: Example Lattice from [246]

5They call these components adapters and the library the adapter repository. The word adapter is motivated by the software
existing in smart sensors converting raw sensor data to logical values required by the residual system, and software present in smart
actuators converting logical control values to raw control signals that drive physical processes to affect the environment.

42

3.1. APPROACHES TO DESIGN AND ANALYZE FAULT-TOLERANT SYSTEMS

The more to the bottom of the lattice a vertex is placed, the less hardware components are intact, and
quite probably the higher is the level of degradation of the system. The level of degradation is quantified by
a so called utility value. The utility is a numeric value that represents the desirability of particular features.
In order to minimize the level of degradation, the design objective is to maximize the utility of the system
in the failure sequences, represented by the lattice vertexes. However, the work in [246] offers no guidance
to the designer in generating these numeric utility values.

Compared to the work presented in this thesis, the lattice concept is similar to our notion of scenario
graph, introduced in section 4.6.2. In the scenario graph, each transition represents the isolation of an
execution unit or the isolation of a software component, due to assumed failures of these. Our notion of
priority points of software components is similar to the utility values of features. However, we derive
the priority points automatically from the ASIL criticality level and the fail-operational requirement of
the functional features that are realized by the considered software component. Both the sum of priority
points and the total system utility have to be maximized in order to minimize the level of degradation. We
more focus on mixed criticality issues, on the expression of deployment constraints for valid redundancy
schemes, on different types of redundancy by hot and cold standby slaves, as well as on required explicit
deactivations of components to take care that fail-operational requirements of other components can be
met by applying failovers. We also synthesize the configuration of communication channels between the
software components, based on publish/subscribe port definitions. This enables to select those channels
that lead to minimal network traffic. Moreover, we focus on a formal model and the expression of formal
constraints and formal optimization objectives about all this. We apply an SMT solver with optimization
capabilities to calculate solutions as basis for our analysis.

C.P. Shelton, P. Koopman (RoSES Project, CMU Pittsburgh, 2002 - 2004): In [312] [313] [314],
the authors introduce an approach to analyze the graceful degradation of component based systems.6

Some concepts are shared with the preliminary work from [246].7 The intention is to build implicit
graceful degradation into systems, without specifying failure scenarios a priori. They distinguish two
criticality levels of components (critical and non-critical), two states of components (working and failed),
and two significancies of functional features (primary and auxiliary). In contrast, we consider the ASIL
classification for components (five levels), other component states due to redundancy (five states, Fig. 4.16),
and we distinguish the functional features by their ASIL and required level of fail-operationality. We also
calculate valid redundant deployments as part of our approach. When considering the relationship between
software components and the functional features that are realized by the components, they distinguish the
three types of strong, weak and optional dependency. In this thesis, we consider only strong realization
relationships between software components and functional features, meaning that a functional feature
cannot be provided at all, if any one of its realizing software components is lost.

Regarding communication dependencies between software components, they distinguish required
and optional inputs. They treat optional inputs as advice to improve functionality when those inputs are
available. We also distinguish mandatory and optional inputs, but we do not distinguish different levels of
Quality of Service (QoS) of components depending on the availability of optional inputs.

They provide a quantitative metric of the systems ability to gracefully degrade, based on the notion of
utility of system elements. The utility of the whole system and its sub-systems is calculated as non-linear
utility function based on a boolean 0/1 utility of atomic components. If an atomic component has a failure,
its utility is 0, else its utility is 1. The utility of the composed system elements is calculated based on the
utility of the composition sub-elements, according to the utility function. The overall system utility is
examined by considering the top-level feature subsets that provide outputs to the system actuators. The
overall system utility is positive if and only if all of its critical feature subsets have positive utility. The

6http://users.ece.cmu.edu/~koopman/projects.html#graceful
7Both works were partially done as part of the project RoSES (Robust Self-configuring Embedded Systems), https://users.

ece.cmu.edu/~koopman/roses

43

http://users.ece.cmu.edu/~koopman/projects.html#graceful
https://users.ece.cmu.edu/~koopman/roses
https://users.ece.cmu.edu/~koopman/roses

3.1. APPROACHES TO DESIGN AND ANALYZE FAULT-TOLERANT SYSTEMS

result is a quantitative metric for the graceful degradation of the overall system. The utility function is
comparable to the sum of priority points that we introduce, but we apply a linear addition of the single
priority points and consider redundantly active instances of software components in the sum.

To reduce the complexity of the consideration of the utility of different atomic components, they con-
sider the system and software architecture and group components into subsystems based on the component
interfaces. Then the subsystems are analyzed separately and the overall system utility is composed by the
subsystem utilities. We group components by their ASIL and fail-operational requirements, enabling the
separation of mixed critical components.

During the analysis, they use a discrete event simulator to inject faults to evaluate the reaction of the
system to these faults and how the system gracefully degrades. We use a formal model with an integrated
set of degradation scenarios to be analyzed, and harness an SMT solver with optimization capabilities to
obtain solutions as basis for our analysis. They consider a fixed hardware configuration. We consider a
hardware architecture whose provided resources decrease due to isolations of execution units. Like us,
they do not consider fault detection mechanisms.

In contrast to them, we focus more explicitly on deployment constraints that ensure fail-operational
behavior. We automatically obtain a valid redundant deployment of software to hardware, which fulfills the
given fail-operational requirements, because the initial deployment and the degraded deployments are part
of the result of a single combined problem. When analyzing the degradation scenarios, we apply failover
mechanisms and explicit deactivations of components to keep alive fail-operational features. Furthermore,
we support to model and analyze degradations on feature level, combined with diversity based degradations
of software components.

P. Emberson, I. Bate (University of York, 2008-2009): In [114] [113], an approach for task allocation
supporting graceful degradation in distributed embedded real-time systems is introduced. They reuse the
utility function of [314] and integrate it into an optimization search function based on heuristic simulated
annealing approach. The aim is to analyze how many hot replicas are required to ensure a certain utility
function value in a fault scenario. In contrast, we assume a fixed amount of desired redundant instances in
the deployment, depending on the required levels of fail-operationality of features. We distinguish hot
and cold standby slaves. Instead of using a heuristic simulated annealing optimization, we use an SMT
solver with optimization capabilities. They focus more on hard real-time schedulability analysis than we
do, due to differences in the assumed system platform. We assume logical execution times and a RTE
which handles master/slave failover switching, they consider bare-metal software and a scheduling model
that requires to consider precedence relations. They do not consider optional communication channels and
degradation chains on feature level with possible diversity of software components, but we do. Finally,
based on the utility function, they provide a quantitative quality metric for fault-tolerance in different fault
scenarios. We derive the level of degradation by the available(f ,σ) properties of functional features f ∈ F
in the degradation scenarios σ ∈ Σ.

M. Trapp et al. (Fraunhofer IESE, since 2003): In [334], a framework for fault-tolerance in safety-
critical automotive systems is introduced, applying dynamic adaption as error handling technique. 8

Instead of using explicit predefined built-in redundancy, what produces additional cost, they make use of
already present implicit redundancy in vehicle designs. They mention that for instance in typical vehicle
designs, the yaw rate of a vehicle can be calculated in ten different ways without requiring any additional
sensor. However, the differently calculated yaw rates may have different qualities! This means, if one
sensor fails that delivers the yaw rate currently used by a specific function, another source of yaw rate can
be used, but the function that uses the yaw rate then receives a less qualitative input value. Due to this,

8The work has been partially performed as part of the MARS project (Methodologies and Architectures for Runtime adaptive
embedded Systems).

44

3.1. APPROACHES TO DESIGN AND ANALYZE FAULT-TOLERANT SYSTEMS

they design that each communicated signal is transmitted inclusive a quality information about the data
that is encoded in the signal (e. g., the quality of the yaw rate). To handle this, the authors model functions
with different degradation levels. As functions contain software components, also the components have
different degradation levels (also called different configurations). With the information about quality of
input data, the transitions between degradation levels of functions and components can be specified. If
an error appears leading the quality of input data to decrease below a threshold, the functions degrade
that require the input data in a quality above the threshold in their current configuration, such that the
new degraded configuration is able to work with the less qualitative input. Non critical functions can be
completely switched off in case of errors.

Compared to their contribution, in this thesis we introduce a more detailed formal model than the
relatively abstract formal model introduced in [334]. We distinguish mixed-criticality levels (by ASIL)
and mixed reliability requirements in form of different required levels of fail-operationality. Based on
our formal model, we are able to statically analyze degradation scenarios simultaneously and synthesize
deployments that lead to optimal analysis results. Our model also supports the definition of degradation
levels of functional features and software components. We also consider deactivations of features with
no or low enough fail-operational requirements. However, we focus on explicit redundancy of software
components. We calculate optimal levels of redundancy during our deployment synthesis, achieving that
cost by redundancy does not become higher than necessary. We do not focus on implicit redundancy by
multiple sources for a piece of data like done in [334], but by modeling an input model with multiple
publications with identical data-ID (see section 4.4.2). By adding a quality information for each data item,
we could formally model something very similar and then statically analyze the considered failure scenarios.
Although our formal model currently does not contain a quality information about communicated pieces of
data, this could be added easily. However, for this the communication matrices, introduced in section 4.2.2
Def. 6, would need to be extended to be matrices over the union set of ports, not over the set of software
components, as the quality property would be required on port level to distinguish different qualities of
different subscribed data of a component.

M. Glass, J. Teich (University of Erlangen-Nuremberg, 2009): In [136], the authors also tackle the
design of gracefully degrading mixed critical systems. They focus on a degradation-aware reliability
analysis, also considering redundant deployments. The objective is to maximize the systems reliability in
different degradation modes, in which different levels of functionality are provided based on the residual
sets of intact resources. Instead of optimizing the reliability in the degradation modes separately in a
multi-objective manner, they offer a single objective approach in which the designer can assign weights
to the different degradation modes to control how much the modes influence the objective. Reliability
is measured by the metric of Mean Time To Failure (MTTF) as an integral over the time. They consider
applications that consist of multiple tasks, what is in principle similar to our functional features that are
realized by software components. During design time, the degradation modes are predefined and stored
into Binary Decision Diagrams (BDDs). Critical tasks may be deployed to multiple execution units.
In the model, for each degradation mode they mark which resources are defect in the mode, which is
similar to our isolated(e) property of execution units e ∈ E. During runtime, a dedicated reliable observer
component is able to detect failures and uses the BDD data to decide which task instances have to be
activated or deactivated in which execution unit in case of a resource failure. The idea behind this is similar
to our objective, namely being able to deactivate low critical tasks to provide opportunities to keep alive
high critical fail-operational tasks. Like in our work, they do not focus on how to detect failures, as it is
not explained how the observer component does this.

M.P. Herlihy, J.M. Wing (Cambridge Research Laboratory and CMU Pittsburgh, 1987-1991): In
[162] and [163], the authors introduce an approach to specify the desired preferred behavior of programs,
as well as relaxed degraded behaviors that may become necessitated in case of environmental changes at

45

3.1. APPROACHES TO DESIGN AND ANALYZE FAULT-TOLERANT SYSTEMS

runtime, like faults, timing anomalies, synchronization conflicts or security violations. The introduced
method is called relaxation lattice. Each node in the lattice describes a set of constraints. In the root node,
all constraints are fulfilled and the preferred behavior is provided. In case of environmental changes, it
may be the case that some constraints cannot be fulfilled anymore, leading to a transition to a another node
in the lattice and a degraded behavior of the program. Each constraint has an associated cost. The higher
the sum of the cost of fulfilled constraints, the closer the actual behavior is to the preferred behavior. The
aim is to describe the resulting relaxed behaviors by using axiomatic specifications. The system model
encapsulates sequential threads of control (processes) that concurrently access data objects. Data objects
are defined by a type and primitive manipulation operations. The system computation is modeled as a
history sequence of interleaved operations on objects. An example is given for instance by describing
degraded behaviors of a replicated priority queue, based on two constraints and a resulting constraint-lattice
of 22 = 4 nodes. In difference to their approach, we focus on a structural analysis of degraded architectures,
not on describing degraded program behaviors. We focus more on mixed-criticality systems and determine
required failovers to redundant backup software components, as well as required explicit deactivations of
software components, to ensure that fail-operational features can be kept available. On technical level, the
relaxation of constraints is similar to the soft-constraints that we apply in this thesis (see section 4.6.7).
However, they use relaxed constraints to describe degraded relaxed behavior, while we use soft-constraints
to identify parts of the constraint set that cannot be fulfilled by the current architecture, giving a hint about
parts of the architecture that have to be changed in order to fulfill all constraints.

SafeAdapt Project (Fraunhofer ESK et al., 2013-2016): In [263], the authors introduce a meta-
modeling approach to describe architectural patterns for fail-operational, gracefully degrading systems.9

Different redundancy patterns and graceful degradation patterns are listed from literature. A so called
fail-operational graceful degradation (FOGD) pattern is introduced and incorporated into the pattern meta-
model library. The FOGD pattern is inspired by an existing state decrement pattern [300]. Decrementing a
state supposes that system features have different admissible states beside their full-fledged state. This is
comparable to our approach to model degradations on feature level, just that we do not call a degraded
feature a state. Our description of a feature degradation in section 4.7 corresponds to the state transitions.
In addition, they support to describe entry and exit actions for states, like notification of the driver in case
of a degradation. The applicability is demonstrated based on two examples, an automotive brake-by-wire
example incorporating redundancy with hot-standby slaves, and a speed control example showing one
graceful degradation scenario based on the FOGD pattern. However, they do not apply a metric to measure
the degree of degradation that the systems experiences in different failure scenarios. Nevertheless, the work
might be usable to create software architectures as input model for our approach, enabling our approach
to analyze degradation scenarios of architectures incorporating espoused redundancy and degradation
patterns, like redundancy by master and hot/cold-standby slaves. Deployment (allocation) of software to
hardware is not considered and mentioned as possible future extension.

In [290], a so called generic adaption mechanism (GAM) is introduced as functional safety concept
to enable fail-operational behavior in automotive systems. Hot-standby and cold-standby instances of
application components are Degradations of applications are considered in case of failures of system
elements. For instance, a steer-by-wire application exist in a full-functional primary version, as well as
in a more basic degraded version. Initially, the primary is active and the degraded version is present as
hot-standby slave on another execution unit. After a failure, the primary version may become lost and
the degraded version may be used. Our formal model of feature degradations presented in section 4.7 can
be used to describe these degradations of applications. Afterwards, our approach can be used to formally
analyze the different degradation scenarios after assumed failures of system elements. However, our
approach enriches this by an automated synthesis of optimal redundant deployments with cold- and hot-

9The work has been performed as part of the SafeAdapt Project, http://www.safeadapt.eu

46

http://www.safeadapt.eu

3.1. APPROACHES TO DESIGN AND ANALYZE FAULT-TOLERANT SYSTEMS

standby slaves, incorporating the analysis of required failovers in failure scenarios to hold fail-operational
requirements, as well as an analysis about the required level of graceful degradation of non fail-operational
features due to insufficient resources in failure scenarios due to isolations of failing system resources.
Finally, the work from [290] and the work presented in this thesis might be used complementing each
other to design fault-tolerant, gracefully degrading mixed-criticality systems.

SAFER Approach (CMU Pittsburgh and General Motors, 2012-2013): In [197], a system architec-
ture for dependable autonomous vehicles is introduced, also supporting graceful degradation in failure
scenarios. 10 The considered SAFER architecture [196] supports fault-tolerance by using redundancy
mechanisms based on cold standby slaves, hot standby slaves and task re-executions. They also consider
graceful degradation of the system, for instance in case of failures of processor boards. They consider that
the graceful degradation of vehicles should be appropriately adjusted depending on different situations. For
instance, if a vision algorithm for pedestrian detection fails for instance due to a failure of a microcontroller,
the reaction should be different when driving on a highway, compared with driving in an urban area, as
pedestrian are more likely to be present in the latter case. We do not consider such environment dependent
(or context aware) degradation strategies in this thesis, but for instance based on the system mode concept
sketched in future work section 6.3, or based on another kind of extension, our formal model and analysis
approach could be geared up to support such scenarios. As type of degradation they consider the reduction
of the utilization (the ratio of WCET and period) of tasks on a processor by prolonging the execution
period of tasks. By this, tasks are executed less often, resulting in a degradation of the quality of service -
for instance of image recognition algorithms or closed loop control algorithms. They call this adaptive
resource management. We do not consider such degradations of execution periods (alias cycles) in this
thesis, as we assume a single rate scheduling for simplicity. However, the presented SAFER architecture
[196] can be seen as a platform that is to a huge amount compatible to the analysis approach introduced in
this thesis. After introducing the sketched extensions to our formal model and adjusting the deployment
constraints to SAFER specific requirements, our approach could be used to synthesize valid redundant
deployments for SAFER based systems, as well as analyze degradation and failover scenarios. We assume
a system having appropriate runtime failure detection and failure isolation mechanisms, which is fulfilled
for instance by the RACE approach (see section 2.5), but is claimed also by the SAFER approach.

Other work on Design and/or Analysis of Graceful Degradation: In [59], the Architecture Analysis
and Design Language (AADL) [295] is used to model a systems nominal and faulty behavior. AADL
supports to model different operating modes for model entities (like devices), as well as related mode
transitions. They use AADL to model degraded modes of operations and specify mode transitions by
mode transition guards and mode transition effects. One focus of their work lies on a detailed specification
of the operational behavior of components, particularly covering hybrid systems with continuous and
discrete values. The authors introduce a dependability analysis approach for AADL models comprising
degraded modes. They also analyze the modeled system w.r.t. performance requirements by applying
probabilistic model checking techniques. In contrast to their work, in this thesis we do not model the
operational behavior of components, and we do not apply probabilistic or stochastic methods to describe
the characteristic of fault appearance. Instead, we focus on synthesizing optimal redundant deployments of
mixed-criticality software to hardware for different scenarios that may appear during system run-time. We
ensure the validity of the deployments by formalized constraints. The scenarios cover isolations of failed
execution units and software components, as well as failover mechanisms ensuring that fail-operational
requirements are hold. Our approach allows to analyze which functional features the system will be able

10The work has been performed as part of the SAFER project (System-level Architecture for Failure Evasion in Real-time
Applications) at CMU Pittsburgh

47

3.1. APPROACHES TO DESIGN AND ANALYZE FAULT-TOLERANT SYSTEMS

to provide in which scenarios, returning also the level of degradation that the available system features will
undergo. We apply an SMT solver to generate solutions for the formalized problems.

In [56], a degradable safety controller for a steer-by-wire application is presented, using an on-chip
redundancy by using multiple cores. For instance, based on a quad-core CPU, a 1-out-of-4 (1oo4)
redundancy is introduced. If one core fails, this is degraded to a 1oo3 redundancy, etc. This increases the
availability of the steer-by-wire application that is executed on the chip. However, it remains unclear if
also the quality-of-service (QoS) of the steer-by-wire application is degraded in case of a failure of one
of the chips. This seems not to be the case. They do not tackle the problem of how to deploy software
mixed redundantly to these cores and how to deactivate software parts to keep available those software
parts having fail-operational requirements.

In [149] and [150], graceful degradation is tackled for the smart energy domain, to express degradations
of powered electrical devices in smart buildings, in case of power outages leading to a battery driven
operation mode of a building. The intention is to decrease the set of powered electrical devices to make
efficient use of the battery capacity. The approach is also constraint based and uses the Z3 SMT solver.

More work towards graceful-degradation had been done for instance in [44] (addressing fault tolerant
computing with graceful-degradation, but not considering separation of mixed-criticality components and
not considering deployments), as well as in [140] and [315].

3.1.2 Design and Analysis of Reliability and Robustness

In this section, we discuss related work in the area of designing and analyzing reliable and robust systems.

In [153], an iterative design space exploration (DSE) approach is introduced with focus on system
robustness and performance. The approach is explicitly designed to support the design space exploration
of a big system in form of independently optimizing parts of the system developed by different design
teams, and iteratively combine the results and obtain a design of the whole system. The motivation behind
this is that often no single design entity has all information to design and optimize the whole system at
once. They focus on the optimization of the robustness of embedded systems with respect to variations of
system properties. It is mentioned that this is a meta problem that does not directly arise from the expected
and specified functional system behavior. Considered robustness metrics are the static design robustness
(SDR) metric, the dynamic design robustness (DDR) metric, as well as the robustness gain. The SDR
and DDR metrics are distinguished for properties with and without performance dependencies. In case of
dependent properties, modifications of one property influence the flexibility of other dependent properties.
To tackle the computationally expensive multi-dimensional analysis for interdependencies, they introduce
a scalable stochastic analysis method, approximating system robustness in a multi-criterion optimization
problem. With the robustness gain metric, the benefit of designing reconfigurable system components
is explicitly measurable. Redundancy or replication mechanisms re not taken into account. In contrast
to [153], in this thesis we treat robustness in the classical form of robustness against permanent faults,
assuming an isolation mechanism for faulty system elements. We calculate redundant deployments and
failover strategies to provide fault-tolerance in different scenarios, while ensuring that functional features
with fail-operational requirements are kept available. We measure the level of degradation of the system
in the scenarios by identifying the functional features that cannot be kept available, for instance due to
insufficient resources. They utilize a multi-objective evolutionary algorithm. We apply an off-the-shelf
SMT solver to perform our analysis, conducting a multi-objective optimization to calculate the synthesized
deployments. We do not apply approximation or heuristics to trade-off efficiency and optimality.

Reliability-driven deployment optimization for embedded systems has also been presented in [237]
[238]. The aim of [238] is to bridge the gap between deployment-targeting approaches and reliability
models, resulting in a reliability-driven approach to the system deployment problem. The reliability is
taken into account by including hardware-level reliability approaches, and formalizing the propagation of

48

3.1. APPROACHES TO DESIGN AND ANALYZE FAULT-TOLERANT SYSTEMS

hardware-level reliabilities to the reliabilities of software-level services. A DSE is done using evolutionary
algorithms. In [237], the problem of uncertain design time parameters, leading to sub-optimal design
decisions, is tackled. They introduce an optimization approach that deals with parameter uncertainties at
design time and finds solutions that restrict the impact of parameter uncertainties to provide better decision
support.

In [146], architecture trade-off analysis for conflicting quality requirements is tackled by using an
evolutionary algorithm and multi-objective optimization strategies, based on architecture refactorings.
The approach aims to reduce development cost and improve the quality of the system design. As case-
study, they use a satellite system with robustness requirements and with redundancy and fault detection
mechanisms, but analyze only a simplified architecture without any redundancy. The benefit of using an
evolutionary algorithm is the scalability to be able to handle large scale problems. In contrast, in this thesis
we focus on synthesizing redundant deployments and analyze degradation scenarios after assumed failures
on a structural level, without setting scalability of problem solving into foreground.

The work in [239] introduces an environment for a flexible and tailorable specification, manipulation,
visualization, and (re)estimation of deployment architectures for large-scale distributed systems. They
tackle the problem of deploying (alias allocating or mapping) interacting software components to hosts.
The objective is to find a deployment that maximizes the system’s availability. They define availability
as the ratio of the number of successfully completed inter-component interactions to the total number of
attempted interactions over a period of time. They investigate six algorithms tor increase availability by
calculating new deployments, named 1) exact, 2) unbiased stochastic, 3) biased stochastic, 4) greedy, 5)
clustering, 6) decentralized algorithm. Redundancy or replication is not considered by their approach.
Therefore, they cannot analyze failover scenarios, what is one of the key research questions of this thesis.
Another contrast is that we consider availability of functional features only at a certain point in time, what
is for sure an unusual definition, but could be extended to the usual ratio based definition of availability by
introducing a notion of time to our model, what is out of scope of this thesis. We also consider interactions
between components by communication channels.

Reliability and Robustness of Systems with Redundancy: In [224], the trade-off between mission
reliability, mission cost and mission time is tackled. The design objectives are to maximize mission
reliability, while minimizing mission time and cost. They solve this multi-objective DSE problem by
applying a genetic algorithm (GA). They also consider backup procedures and their influence on mission
time and mission reliability in case of failures, using cold standby computing systems with periodic
backups.

In [84], a redundancy allocation problem for cold-standby redundancy is tackled for non-repairable
systems. Their objective is to select from available components and to determine an optimal design config-
uration to maximize system reliability. They consider component time-to-failure distributed according
to an Erlang distribution. Optimal solutions are determined based on an equivalent problem formulation
and integer programming. In [85], the work from [84] is extended by determining optimal solutions to the
redundancy allocation problem, when either active or cold-standby redundancy can be used. The objective
is the selection of components and redundancy levels to maximize system reliability. No predetermined
redundancy strategy is given, instead the choice of redundancy strategy becomes an additional decision
variable. Optimal solutions to the problem are found by an equivalent problem formulation and integer
programming. Further related work had been performed in [89], considering a combination of cold standby
redundancy and active redundancy.

In [109], a concept to enable the efficient use of remote redundancy for safety-critical systems is
presented to create fault-tolerant or fail-safe applications. They introduce a signature-protected commu-
nication to integrate redundant peripheral into a system. They propose to connect redundant peripheral
to the most proximate control computer of the network, reducing wiring harness without compromising
fault-tolerance. As their work enables the decoupling of function and location, remote redundancy can

49

3.1. APPROACHES TO DESIGN AND ANALYZE FAULT-TOLERANT SYSTEMS

be shared between different subsystems. They claim that communication delays can be neglected, when
using a sufficiently fast communication system. As result, they show that remote redundancy allows for a
significant cost reduction for redundant hardware without compromising fault tolerance characteristics.
Compared to their approach, in this thesis we consider a similar system design, also with decoupling of
function and location, enabling a flexible deployment with a flexible degree of redundancy. We assume a
system architecture similar to the one proposed in the RACE project (see section 2.5). In contrast to the
work shown in [109], we incorporate the synthesis of deployments of mixed-criticality components with
an optimal degree of redundancy (with hot or cold standby slaves), to fulfill mixed reliability requirements
of functional features in form of different fail-operational requirements. We express mixed-criticality
separation requirements by a notion of clusters and related deployment constraints. Finally, we analyze the
synthesized deployments for different failure scenarios with respect to the degree of functional degradation
that the system undergoes. The degradations become necessary due to insufficient resources to keep the
full set of features available, caused by assumed failures and subsequent isolations of execution units.
We perform our analysis based on a formal system model, formal constraints, and formal optimization
objectives. In [109], the creation of a formal model about their work is mentioned as a future work.

In [183], the authors consider two fault-tolerance techniques: 1) re-execution of processes (time-
redundancy), and 2) active replication (space-redundancy). They show how re-execution and active
replication can be combined in an optimized implementation that leads to a schedulable fault-tolerant
application without increasing the amount of used resources.

A design framework for reliable high quality execution of closed-loop control systems is presented
in [298]. In case of failures of computation nodes (alias execution units), the aim is to adapt the system
to achieve fault-tolerance and keep alive the control tasks. They model sequences of node failures as
Hasse diagram, like we do it in this thesis to model our scenario graph (section 4.6.2 and 4.6.10). To
achieve the fault-tolerance, they consider trade-offs between replication of tasks to multiple processors, and
dynamic task migrations between processors in case of failures. They determine configurations comprising
mappings (alias deployments) of tasks to processors, as well as schedules of the processors. However, as
the configuration space due to computation node failures is exponential, they suppose that it is sufficient to
synthesize only a small amount of base configurations to achieve fault-tolerance with an inherent minimum
level of control quality. To improve the control quality, they propose an algorithm for a priority-based
search of configurations. In this thesis, we do not consider dynamic task-migrations, but we synthesize
appropriate levels of redundancy (by deploying cold- and hot standby slaves) to achieve fail-operational
requirements in mixed-critical, mixed-reliable systems. We formally analyze degradation and failover
scenarios for failures of execution units and software components, while synthesizing deployments for each
scenario ensuring that fail-operational requirements are met and that the level of degradation is minimized.

The work presented in [349] tackles the problem of achieving reliability for service composition
problems, being the problem of flexible integration of service functionalities with achievement of sufficient
reliability. The considered design task is to adapt workflows to the non-functional requirements of the
user, what becomes a complex problem with increasing number of services in a workflow, such that
previous approaches fail to achieve a sufficient reliability. To enable reliability in case of service failures,
they integrate backup services. Their approach includes the computation of a quality of service (QoS)
optimized selection of service clusters that includes a sufficient number of distributed backup services
for each service, to prevent loss of service instances - for instance due to a network failure. In addition,
they explicitly consider the costs of planning and replanning the workflows. They setup a multi-objective
problem that considers the possible repair costs directly in the initial service composition. The resulting
QoS of the workflow and the location of the services is visualized to the designer to enable him to select
compositions with risk preferences. In contrast to their approach, in this thesis we do not consider the
problem of designing workflows of services. We consider the deployment of mixed-criticality software
components to embedded execution units of a system, incorporating an optimal level of redundancy by
usage of hot or cold standby components. We focus on the analysis of failure scenarios, enabling the

50

3.1. APPROACHES TO DESIGN AND ANALYZE FAULT-TOLERANT SYSTEMS

synthesis of deployments taking care that fail-operational requirements of functional features can be met
by keeping these those components alive that realize these features. Simultaneously, we minimize the
degree of functional degradation appearing due to required deactivations of functional features without
fail-operational requirements due to insufficient execution resources in failure scenarios.

3.1.3 Design and Analysis of Availability

An approach to specify and analyze the availability of software intensive embedded systems is introduced
in [186]. The author introduces an artifact model to express availability requirements. The behavior of the
system is modeled based on the FOCUS theory [69], enriched with availability metrics. Also a modeling
guideline is introduced about how to create the availability specific model artifacts. The analysis is based
on using the probabilistic model checker PRISM. In contrast, in this thesis we treat availability of functional
features only at certain points in time, not over an interval in time. We do not model the functional behavior
of software components, but instead provide a structural analysis about which functional features can be
kept available in which failure scenarios, by analyzing insufficiency of system resources to execute realizing
software components. We combine this with the synthesis of optimal deployments of mixed-criticality
software components to hardware execution units and the synthesis of communication channels between
the components, based on publish/subscribe definitions of communication ports. This combination of
synthesis and analysis enables to find an deployment architecture that is optimal in terms of allowing
to fulfill all fail-operational requirements of functional features, while keeping the degree of functional
degradation in failure scenarios as low as possible, and not integrating more redundancy than required to
fulfill the fail-operational requirements. Instead of applying an probabilistic model checker, we apply a
SMT solver to calculate solutions for the modeled problems.

3.1.4 Fault-Tolerant Scheduling for Mixed Criticality Systems

In [299], fault-tolerance for mixed criticality multiprocessor systems is enabled by dynamic task migrations
between processors in case of permanent processor faults. Mixed safety criticality is considered by
distinguishing tasks that have requirements to survive transient processor faults, permanent processor faults,
or tasks that have to fault-tolerance requirements. Also mixed time criticality is considered, distinguishing
soft and hard real-time deadlines and by using Earliest Deadline First (EDF) scheduling for hard real-
time tasks, and Constant Bandwidth Server (CBS) scheduling for soft real-time tasks. CBS enforces
temporal isolation between hard and soft real-time tasks. The migration decision is done dynamically at
runtime in case of a detected permanent processor fault, using a greedy-based online heuristic. In case of
decreasing resources due to permanent processor faults, performance degradation of soft real-time tasks
may appear. The objective is to maximize the quality of service (QoS) (the performance) of soft real-time
tasks by maximizing the probability that soft deadlines are met. Transient processor faults are handled
using checkpointing and rollback recovery. In this thesis, we focus on an static design time analysis and
synthesis approach for fault-tolerance in mixed-criticality systems. Instead of calculating and performing
task migrations at runtime in failure scenarios, we pre-calculate adequate levels of redundancy to match
fail-operational requirements in combination with a failover mechanism. Even although redundancy
always introduces a certain level of overhead and cost, our approach supports to construct a system with
a predefined range of dynamism without requiring task migrations, that can be analyzed at design time,
supporting to certify a safety critical fault-tolerant system at its design time. We do not consider soft
real-time tasks or the analysis of their deadline exceedances. Instead of using a heuristic optimization
approach at runtime, being a trade-off between exactness and calculation time, we use an exact optimization
approach at design time, based on an off-the-shelf SMT solver.

The work in [332] tackles fault-tolerant fixed priority scheduling of mixed criticality task-sets, having
hard and soft deadlines. The fault-tolerance of critical tasks is ensured by re-executions of faulty critical

51

3.1. APPROACHES TO DESIGN AND ANALYZE FAULT-TOLERANT SYSTEMS

tasks by replicated alternate tasks on different processing nodes, within the deadline of the original faulty
task. They provide hard real-time fault-tolerance guarantees for critical tasks offline (at design time),
and ensure flexibility for non-critical tasks online (at runtime) by maximizing the resource utilization for
non-critical tasks. They calculate the allocation (alias deployment) of tasks to processing nodes (alias
execution units), and derive so called feasibility windows as well as scheduling attributes, like priorities of
tasks. They apply integer linear programming (ILP) to derive the scheduling attributes. One objective is to
maximize the resource usage by splitting tasks into so called artifact tasks, while minimizing the amount of
such task splits. In this thesis, we focus on the calculation of an optimal level of master-slave redundancy
in the deployment of mixed-criticality software components to execution units, to ensure fail-operationality
of functional features in certain failure scenarios. We analyze the level of required degradations of the set
of available functional features in the failure scenarios, and also support to model and analyze degradations
on feature level, to substitute a full-fledged functional feature by a degraded version of that feature, if the
full-fledged feature cannot be kept available anymore, for instance due to insufficient resources after a
failure. We do not consider priority based scheduling and do not distinguish hard and soft deadlines. As
problem solving technology, we use an SMT solver with optimization facility.

3.1.5 Design of Structural and Behavioral Reconfiguration
In [75], a formal design approach supporting structural reconfiguration and behavioral adaptation in fault-
tolerant systems is introduced. They present a formal model of system configuration and reconfiguration
contracts, based on a Labeled Transition System (LTS). For instance, this allows at predefined states to
reconfigure a component by another one that implements a different behavioral interface. However, they
do not consider mixed-criticality systems and do not tackle the deployment/allocation problem of software
to hardware. Redundancy or replication mechanisms to ensure fail-operational architectures are also not in
their scope.

In [33], the authors introduce an approach for architectural online reconfiguration in AUTOSAR
based automotive systems, to tackle robustness and flexibility in case of failures of system elements (like
sensors). Reconfiguration models are added to typically fixed AUTOSAR models, to describe for instance
alternatives for connectors between software components. This is used in an example to model alternative
connectors in case of failing sensors, to model an interpolation of the value of the failed sensor based on
the values of the intact sensors. To manage the connector reconfigurations at runtime in a fixed AUTOSAR
architecture, a software component named "Reconfiguration" is added to the architecture and the modeled
alternatives are transformed back into a merged architecture. The Reconfiguration component has all
alternative connectors as input and internally routes the signals appropriately to the outputs. However,
addition or removal of software components is not possible. Furthermore, they do not tackle mixed-
criticality systems, redundant deployments of software components, or failover mechanisms to ensure
fail-operational requirements. They manually model the deployment of software to hardware and do not
apply an automatic synthesis of valid deployments with appropriate redundancy to meet fail-operational
requirements in different failure scenarios. All of this is tackled in this thesis.

Dynamic Architecture Description Languages (dynamic ADLs): On the level of software architec-
ture, there had been a lot of research about dynamic software architectures and corresponding dynamic
software architecture description languages (dynamic ADLs) in the late 90s. The idea was to describe
possible architectural evolutions in the design phase, like addition or removal of components, ports or
communication channels, that are allowed to appear during runtime. Surveys and classifications over the
different approaches are given in [256], [236], [61] and [257].

In this thesis, we analyze dynamic aspects of software architectures with respect to the question about
which instances of redundantly deployed components can be kept active in which failure scenarios, which

52

3.1. APPROACHES TO DESIGN AND ANALYZE FAULT-TOLERANT SYSTEMS

instances have to be deactivated due to insufficient resources, and which redundant backups have to be
activated to perform a failover to ensure fail-operational requirements. However, this does not mean to
describe evolutions of the software architecture. The set of components in the software architecture itself
is fixed, but it is dynamic which instances of the components are active on which execution units. We also
synthesize the established communication channels during our analysis, connecting the active component
instances. If an active instance fails or is lost due to an isolation of an execution unit, another redundant
instance becomes activated on another execution unit, if required. We assume an underlying RTE that
ensures a correct routing of the communication channels, and therefore a correct transmission of data
between the active software component instances. The set of communication channels itself is fixed. Only
changes of the data routing may appear in failure scenarios, if a failover is performed. No new channels
are added between components during the failure scenarios. Hence, we do not describe explicitly the
addition and removal of communication channels, like it is done in many dynamic ADLs (e. g., see Table 3
in [61], channels are called connectors there). Differently from being done in dynamic ADLs, we also do
not explicitly describe possible evolutions of the deployment of software to hardware, but we synthesize
possible valid deployment evolutions during our analysis. A dynamic ADL may be usable to encode
allowed runtime deployment reconfigurations for the system under analysis, containing reconfigurations
that are valid according to the result of our analysis, but this is out of scope of this thesis.

Dynamic Software Product Lines: Another approach to describe architectural runtime reconfigurations
are dynamic software product lines (dynamic SPLs) [152]. Software product lines describe a set of product
variants that can be created from a common product line, based on reuse of components and specifying
which components differ between product variants instantiated from a product line. The functional features
of a product line, as well as the possible reconfigurations of the feature set when switching between product
variants, can be designed for instance in a dynamic feature model [101] . Orthogonal Variability Models
(OVM) [316] and the Variability Modeling Language (VML) [226] are other notations to model product
line variability. In classical static SPLs, the variant decision is done at design time and the corresponding
software architecture is fixed and does not change at runtime. In dynamic SPLs, switches between
product variants are possible at runtime, performed by reconfigurations of the software architecture, like
replacements, additions or removals of software components and connectors. Architectural adaptation
mechanisms for dynamic SPLs are discussed in [77]. However, as the same for dynamic ADLs, there is no
built-in focus on synthesizing valid deployments of software to hardware, on ensuring fault-tolerance and
fail-operational requirements by using appropriate redundancy and failover scenarios, or on analyzing the
degree of degradation that may be necessary in failure scenarios. Finally, dynamic SPL approaches may
be usable to encode degradations of the functional feature set that are identified as necessary by using the
analysis approach introduced in this thesis.

3.1.6 Self-x Approaches
After the investigation of dynamic ADLs in the late 1990s and early 2000s (see section 3.1.5), a new
research field opened towards dynamic systems with self-x (alias self-*) properties. A lot of approaches
exist to apply self-x techniques to create dependable embedded systems, partially incorporating graceful
degradation of the system in case of internal failures of system elements. In this section, we provide a
brief overview over fundamental terminology, concepts and some applications.

Terminology: We now give a brief overview about the major self-x properties that are often used to
create fault-tolerant or gracefully degrading systems. We focus here on self-adaptation, self-organization,
self-configuration and self-healing. Many more self-x properties got defined, which are either synonyms or
similar (like self-repairing alias self-healing), or related properties (like self-managing or self-optimizing),
being either sub-properties or super-properties of the above mentioned properties. The works in [296],

53

3.1. APPROACHES TO DESIGN AND ANALYZE FAULT-TOLERANT SYSTEMS

[285], [195], and [244] provide good starting points to get an overview over all the already defined self-x
properties and their relationships, which we do not completely list here.

Self-Adaptation is defined in many, but similar, fashions. To name just a few:

• A self-adaptive software system is one that can modify itself at run-time due to changes in the
system, its requirements, or the environment in which it is deployed [12].

• A self-adaptive system evaluates its own behavior and changes behavior (or performance) when the
evaluation indicates that it is not accomplishing what the software is intended to do, or when better
functionality or performance is possible [297].

• Self-adaptivity is the capability of a system to adjust its behavior in response to the environment
[231].

• Self-adaptive systems work in a top-down manner. They evaluate their own global behavior and
change it when the evaluation indicates that they are not accomplishing what they were intended to
do [310].

Respective the question about what becomes adapted (or reconfigured), the work in [7] distinguishes 1)
parameter adaptation, 2) structural adaptation and 3) behavior adaptation. The work in [123] distinguishes
the adaptation of 1) structure, 2) functionality, 3) parameter, 4) content and 5) resources. In this thesis, we
focus mainly on resource adaptation. Resource adaptation means the dynamic allocation of resources,
in our case the changes of the deployment state (active, passive) of software to hardware in the analyzed
failure scenarios. The re-allocated resource is the computing capacity of the processor of the execution unit,
as well as the network data transmission capacity due to possible changes in network traffic. Structural
adaptation means for instance the dynamic replication of objects or the addition of new software modules
during run-time. These structural adaptation mechanisms are not in focus of this thesis.

Self-Organization is defined in [97] as bottom-up spontaneously creation of a new organization of system
entities in case of environmental changes without external control. Self-organization is motivated by
swarm intelligence in nature (ants, termites, honey bees, etc.) [97]. In [244] it is defined that a system is
self-organizing if and only if it is self-managing, structure-adaptive, and employs decentralized control.
Self-organization exists with and without emergence of higher level properties based on decentralized
lower level decisions [94] [97]. Strong and weak self-organization are distinguished in [97]. Strong
self-organizing systems work without any explicit central control from internal or external. Weak self-
organizing work with some internal central control or planning.

The bottom-up aspect of self-organizing systems is the major difference to self-adaptive systems, which
are top-down approaches [81]. However, also combinations of top-down and bottom-up approaches exist
[310] [326].

Self-Configuration establishes an automated configuration of components and systems following high-
level policies. The rest of the system adjusts automatically and seamlessly [195]. One approach to enable
self-configuration is for instance presented in [323]. The deployment synthesis that we introduce in
this thesis is also a kind of automated configuration. However, the major use case that we consider is
the application at design time. The analysis results can be stored and used to construct pre-configured
dynamism, or to analyze the decision space of decision mechanisms implemented in the system itself.
We do not focus on self-configuration at runtime by the system itself, but when using a more efficient
heuristic calculation of solutions, our analysis could also be performed at runtime, contributing to establish
self-configuration.

54

3.1. APPROACHES TO DESIGN AND ANALYZE FAULT-TOLERANT SYSTEMS

Self-Healing is defined as the ability of a system to monitor and heal itself from the inside, which
requires the ability of this system to decide about and perform recovery actions to return itself to a
behavior conforming to its initial specification, especially without external interference [285]. Other
nearly synonymous terms for self-healing are self-repairing, self-regeneration and self-immunity [285]. To
be self-healing, systems need reflective capabilities to perform introspection by monitoring the running
state and identify anomalous behaviors. When any failure is detected, some repair actions have to be
performed to recover form the failure [311]. Koopman defines in [206] that self-healing systems might not
restore complete functionality after a fault, allowing degradation, and that the degree of degraded operation
provided by a self-healing system is its resilience to damage that exceeds built-in redundancy. Sometimes
this is seen as the difference to fault-tolerance, e. g., [285] defined that fault-tolerance aims at keeping the
system running at 100% of its designed functionality, while self-healing can mean that after the healing
the system operates at less than 100%, meaning that the system degrades. In contrast, the work in [23]
states that self-healing and fault-tolerance are synonyms, and that further synonyms of fault-tolerance are
self-repair and resilience. In this thesis, we follow the view of [23] and allow fault-tolerant systems to
degrade, as long as no fail-operational requirements are violated.

Research roadmaps with respect to self-adaptive systems are given in [296], [81], [92] [231] and [243].

Autonomic and Organic Computing: Autonomic Computing (AC) and Organic Computing (OC) are
approaches to create self-organizing and self-healing systems.

• Autonomic Computing (AC) was introduced in [195], together with the MAPE-K loop pattern
(Monitor, Analyze, Plan and Execute - based on Knowledge) of autonomous systems (Fig. 3.2(a)).
AC is fully autonomous and AC systems can manage themselves given high-level objectives
from administrators. In [195] this is called self-management, composed by the abilities of self-
configuration, self-healing (error detection, diagnostic, repair), self-optimization (of parameters)
and self-protection (against attacks). AC systems are context-adaptive systems [201] with awareness
about the system environment.

• Organic Computing (OC) was introduced in [306], allowing external user influence to perform a
controlled self-organization [307]. A observer/controller paradigm (Fig. 3.2(b)) is described to
establish self-organization of a system under observation and control (SuOC), being applicable in a
centralized, distributed or hierarchical multi-level manner [63].

(a) AC MAPE-K architecture [195] (b) OC observer/controller paradigm [63]

Figure 3.2: AC and OC self-organization loops

55

3.1. APPROACHES TO DESIGN AND ANALYZE FAULT-TOLERANT SYSTEMS

Twelve design patterns for dynamically adaptive systems are presented and discussed in [279], tackling
monitoring, decision making and reconfiguration. Examples for reconfiguration patterns are component
insertion, component removal, reconfiguration of continuously available servers, as well as decentralized
reconfiguration.

Applications of self-x techniques to construct dependable systems: Both top-down self-adaptive
approaches, as well as bottom-up self-organization approaches (AC or OC), can be used to create reliable
fault-tolerant (respectively self-healing) systems. As mentioned above in the terminology part, often self-
healing and fault-tolerance are distinguished by the view that self-healing allows degradation of systems
after failures of system elements, and fault-tolerant systems do not allow degradation. However, in this
thesis we do not follow this view and allow fault-tolerant systems to degrade, as long as no fail-operational
requirements are violated.

In context of the project DySCAS 11, the work in [120] considered dependencies between tasks and the
determination of executable tasks based on available input data. If input data is missing for a task, the
task is deactivated. The procedure is repeated iteratively until no more tasks have to be deactivated. They
present a distributed algorithm without requiring central knowledge. The considered system uses Rate
Monotonic (RM) scheduling. Tackled use cases are system startup, attaching devices during runtime and
the reaction to hardware errors. The deployment of tasks to execution nodes is assumed to be already
determined. Redundancy in deployment is not considered. Instead, online task migrations are assumed.
Task sets with mixed priorities are considered and the most important schedulable subset is identified.
However, explicit degradation based on mixed safety criticalities is not tackled.

In [100] [99], the deployment problem of dependent components to a heterogeneous automotive network
is modeled as Constraint Satisfaction Problem (CSP) and solved with a Backtracking or a local Iterative
Repair algorithm. They aim for a centralized self-management with focus on self-configuration and
self-healing. As use cases, updating, installing and removing of applications are mentioned, as well as
attaching and detaching platform devices. Application updates are checked by fetching XML encoded
software update information from an Internet server. The Web Ontology Language (OWL) is used to
describe platform devices and components with information, required for the self-configuration. The
self-descriptions encoded in OWL are provided as knowledge for the MAPE-K loop.12 A tackled self-
configuration problem is the deployment of applications (resp. their components) to heterogeneous
hardware. The Self-Configuration is performed by using constraint satisfaction problems (CSP). Two self-
configuration algorithms are presented and compared by simulation, namely backtracking (worst-fit) and
Iterative repair (min-conflict). The former algorithm is slower but better usable for building configurations
from scratch, while the latter algorithm is faster, independent of the number of components and better
usable if a configuration for the previous system state is given. The approach supports publish/subscribe
and request/response communication. Graceful Degradation is mentioned in [99] as one aim of self-healing,
ensuring that the most important functionality has to run with priority, but beyond that graceful degradation
is not in key focus of their work. Also redundancy or replication mechanisms are not in their scope, instead
they apply on-line task migrations as self-healing actions.

In [362], the authors present a self-adaptive framework to handle failures during runtime. As reaction
to a failure, they determine a new valid deployment (allocation) of tasks to heterogeneous Electronic
Control Units (ECUs). They consider algorithms that are aimed to be applied at runtime by the system

11Dynamically Self-Configuring Automotive Systems (DySCAS) [13], funded under FP6 from 2006–2008, http://www.2020-
horizon.com/DYSCAS-Dynamically-self-configuring-automotive-systems(DYSCAS)-s14987.html

12MAPE-K: Monitor, Analyze, Plan, Execute with central self-knowledge [195]

56

http://www.2020-horizon.com/DYSCAS-Dynamically-self-configuring-automotive-systems(DYSCAS)-s14987.html
http://www.2020-horizon.com/DYSCAS-Dynamically-self-configuring-automotive-systems(DYSCAS)-s14987.html

3.1. APPROACHES TO DESIGN AND ANALYZE FAULT-TOLERANT SYSTEMS

itself. As a new valid deployment has to be found in a very short time to re-establish a valid system
quickly after a failure, they focus on performance and scalability and look for a heuristic solution. In
contrast to this, we focus on analyzing degradation scenarios of a system at its design time. If desired,
our analysis results could be used to derive preconfigured runtime reconfigurations, avoiding to perform
time-intensive recovery calculations at runtime, but limit the variation space of recovery actions. To support
fault-tolerance for fail-operational features, we use redundancy mechanisms. Of course, this requires
additional resources and is limited to failures caused by faults that can be anticipated at design time. They
compare three heuristic optimization algorithms, Simulated Annealing, an Evolutionary Algorithm and
Tabu Search, all based on Opt4J. Constraint solving by a SAT solver is also considered, based on SAT4J.
The evaluation result was that SAT solving scales best. We use an SMT solver, which comprises SAT
solving. They reach scalability with linear complexity for instance by considering Earliest Deadline
First (EDF) scheduling instead of Fixed Priority Preemptive scheduling, what would force exponential
complexity. They also tackle end-to-end timing analysis over the buses. We consider Logical Execution
Time (LET) based cyclic scheduling, while the communication backbone ensures that each data item is
available for all distributed subscribers in the next cycle. We both consider communication dependencies
between software components resp. between tasks. We both do not focus on the detection of failures, but
on how to handle detected failures. However, we treat degradations by explicitly deactivating components
and also consider the effects on other components that depend on data items published by deactivated
components. Furthermore, we handle mixed critical components and their separation into different clusters.
Finally, we support degradations on feature level, combined with diversity. All three points are not
considered by their approach.

One approach for dynamic reconfiguration in dependable systems is presented in [139], based on an
architecture-level model and a runtime-level model. The intention is that dynamic reconfiguration in such
systems needs to be causally connected at runtime to a corresponding high-level software architecture
specification. Mixed criticality and fail-operational requirements are not considered. Graceful degradation
is also not considered, instead they consider rollback mechanisms in case of failures.

Applications of AC or OC techniques to establish reliable fault-tolerant (respectively self-healing) embed-
ded systems have been for instance introduced in [309], [5], [325], [65], [252], [324] and [134]. These
approaches are intended to be applied at runtime by the system itself. The analysis introduced in this thesis
is intended to be applied at design-time.

57

3.2. CONSTRAINT BASED SYNTHESIS OF DESIGN DECISIONS

3.2 Constraint Based Synthesis of Design Decisions

In this section, we give an overview over problem solving approaches and frameworks, usable to synthesize
optimized design decisions, most often as part of design space exploration (DSE) frameworks. We also
show some applications, for instance to the deployment problem, which is also considered in this thesis.

The work in [62] states that constraint satisfaction problems (CSP, for instance scheduling or timetabling
problems) that are looking for a feasible (any valid) solution are NP-complete, and that optimization
problems looking for an optimal solution are NP-hard.

Example: Assembly Problem of Components: For instance, the assembly problem for component
based systems is tackled in [235], by declaratively describing requirements, properties, interfaces, con-
straints (for replication, timing, separation) and objectives. This is a quite similar technique to our formal
system model and our constraints and objectives. Merely, they solve the problem using a SAT solver,
we use an SMT solver with optimization facility. We focus on a relatively problem specific synthesis
and analysis approach for a specific class of system, while they consider a more generic view on the
assembly problem of components, based in their interface descriptions, and propose a generic framework
called CoBaSA (Component Based System Assembly). However, fail-operational features, failovers and
degradations in failure scenarios are not tackled in their work.

Multi-Objective Design Space Exploration (MO-DSE): If an arbitrary valid solution for a problem is
not sufficient, but a solution that is optimal in some sense is desired, then optimization objectives have
to be expressed for the problem. If multiple competing objectives exist for an optimal solution, a design
space is opened with pareto optimal solutions defining optimal trade-offs between the single objectives.
The exploration of this design space is called design space exploration (DSE). Optimization problems with
multiple conflicting objectives are called multi-objective design space exploration (MO-DSE) problems.
Often appearing design questions are scheduling problems (task execution order) and deployment problems
(task assignment to processors). These optimization problems are shown to have NP-hard complexity [333].
Certain multiple optimization objectives may exist, such as load balancing of the execution of tasks on
execution units (processors) [329] [8], minimization of the number of required execution units (processors)
for a given task set [254], minimization of missed real-time deadlines of tasks [254], or minimizing the
maximum normalized response time of tasks [262]. Some of such objectives are conflicting, requiring to
perform a trade-off analysis at the Pareto front of optimal combinations of solutions.

In [301], a generic DSE framework is introduced. They introduce an Abstract Design Space Exploration
Language (ADSEL) as generic modeling framework for DSE problems, separating domain-specific from
domain-independent DSE concepts. The abstract (domain-independent) language contains classes to
model the a) design space, b) constraints, and c) objectives. The work includes a categorization of DSE
problems into 1) resource allocation problems, 2) selection problems, 3) placement problems, 4) routing
problems, 5) scheduling problems and 6) configuration problems.

1. Resource allocation problems: Mapping problem of resources to components, expressed in re-
lational (many-to-many) or functional (one-to-one) manner. E. g., the problem of redundantly
deploying software components to hardware resources, considered in this thesis, is a resource
allocation problem. Due to the redundancy, we use a relational representation.

2. Selection Problems: Problem of finding a subset of a set, such that constraints are satisfied and an
objective is optimized. E. g., in software product line engineering, the problem of selecting features
to satisfy the constraints of a specific product in an optimal manner.

3. Placement Problems: Arranging objects according to geometric constraints, such that all objects
lie within a given boundary and do not overlap.

58

3.2. CONSTRAINT BASED SYNTHESIS OF DESIGN DECISIONS

4. Routing Problems: Find routes between nodes in a graph. E. g., in digital circuit design, wiring the
pins of modules in a routing grid, while minimizing the length of wires.

5. Scheduling Problems: Calculate an activation order of tasks inclusive activation times for a
schedule, such that temporal and resource constraints are satisfied.

6. Configuration Problems: Involves creation of a relationship between decision variables and their
domain values subject to additional constraints.

In this thesis, we do not use a DSE language like ADSEL, but instead we use the API of an SMT solver
to specify the model, the design space, the constraints and the objectives. We model the input problem in
an XML file of a specific format, parse the XML file into our framework and convert the input problem
model into an SMT model by using the API functions. In contrast to [301], focusing on a generic DSE
framework, we focus on a specific DSE problem to support synthesis of optimal redundant deployments
and analysis of degradation scenarios for a specific design type of fault-tolerant systems.

The work in [31] [30] introduces a model-driven multi-objective DSE (called Octopus tool set) of a
low level micro-controller design, considering scheduling priorities and resource allocation alternatives
(memory and page caching), and identifying optimal trade-offs between the required memory buffer size
and the throughput of a microcontroller design. A so called DSE Intermediate Representation (DSEIR) is
introduced to provide four views: application, platform, mapping, and experiment view. An analysis of
timed automata is done using the Uppaal model checker.13

Other DSE applications are for instance the DSE of a generic hardware platform for software based products
with objectives to minimize for instance the cost and the area of the hardware platform [229], a multi variant
DSE for automotive E/E architecture hardware component platforms with robustness objectives supporting
uncertain objectives and using Monte-Carlo Simulation [141] [142], an incremental semi-automatic DSE
based on constraints defined as model transformation rules defined as Prolog predicates (applied to an
automotive deployment example) [303], as well as the approaches shown in [363], [258], [215] and [282].

The work in [158] introduces a DSE approach incorporating guidance for the selection criteria and cut-off
criteria. The aim of the cut-off criteria is to reduce the design-space by cutting off unpromising exploration
states, while not cutting off an optimal solution. The result is a more efficient exploration.

Deployment of Software to Hardware: A lot of DSE approaches exist that focus on or support the
problem of the deployment (alias allocation or mapping) of software to hardware. All of these have to be
able to formulate constraints for valid deployments, as well as optimization objectives if an arbitrary valid
deployment is not sufficient.

It is already mentioned for instance in [333] that the deployment optimization problem is a problem
with NP-hard complexity. Hence, many approaches use heuristic approaches (see also section 2.7), not
finding exact optimal solutions, but finding solutions close to an optimum in a relatively efficient time.

With focus on the domain of embedded real-time systems, the deployment (alias allocation or mapping)
problem is for instance tackled by the following approaches:

• [167] tackles the allocation problem based on a constraint satisfaction problem (CSP). Deployment
constraints are specified, for instance to take care that replications of components are distributed to
multiple processors and not deployed to the same processor (due to fault-tolerance reasons). Also
timing constraints for scheduling are defined. All constraints are weighted to make the cost of each
one uniform in the objective function. They split the problem into a master problem handling the

13Uppaal: http://www.uppaal.com

59

http://www.uppaal.com

3.2. CONSTRAINT BASED SYNTHESIS OF DESIGN DECISIONS

deployment and resource constraints, and a subproblem for the timing problems. How the solver
finds a solution is not in their focus.

• in [268], the authors introduce a design methodology for safety-critical systems, called SCRAPE
(Safety-Critical Real-Time APlications Exploration), as well as the fault-tolerant data flow (FTDF)
model of computation. They treat the efficient exploration of tradeoffs between redundancy and
cost, considering time and space redundancy. The SCRAPE design flow has 6 main steps. Our
work presented in this thesis is mainly related to steps 4 and 5, namely the specification of Fault
Behavior and Mapping Constraints as well as the calculation of a Fault-Tolerant Embedded Software
Deployment, including space redundancy. SCRAPE supports fail-silent execution platforms, what
is similar to our assumption that failed execution units become isolated by appropriate platform
mechanisms. However, we focus more explicitly on analyzing the fail-operationality of functional
features during different degradation scenarios. Furthermore, we support to model and analyze
degradations of single functional features (see section 4.7).

• in [55], fault-tolerant deployments with focus on the trade-off between performance and reliability
are optimized using a Mixed Integer Linear Programming (MILP) solver. They also take replication
of components into account. However, the approach does not consider mixed criticalities explicitly
and only a single node failure model is supported. Degradation scenarios are not analyzed.

• in [26], task allocation in fault-tolerant distributed systems is tackled, using an approximation
algorithm supporting the replication of tasks to processors. They consider several types of allocation
(alias deployment) constraints, like separation constraints for replications, capacity constraints
for processor memory, scheduling constraints for periodic real-time tasks, and load balancing
constraints to improve reliability. The degree of approximation of an optimal allocation can be
quantified depending on the amount of processors and the amount of required replicas per task.
However, they do neither consider degradation scenarios in case of internal failures of system entities,
nor they treat mixed-criticality (e. g., mixed DAL/SIL/ASIL, see section 2.1.5) or mixed-reliability
(mixed fail-operational) requirements.

• in [364] a framework is introduced to optimize design of distributed embedded systems, particularly
in the automotive domain. They consider software architectures consisting of tasks and messages,
and priority based scheduling. They aim to optimize 1) the allocation (alias deployment) of tasks to
electronic control units (ECUs), 2) the mapping of signals to messages, as well as 3) the assignment
of priorities to tasks and messages in order to meet end-to-end deadline constraints and to minimize
latencies of task finishing times and signal arrivals. To perform their optimization, they use a
mixed integer linear programming (MILP) framework. To reduce the complexity, they divide
their optimization into an approximating two-step synthesis. Step one is about synthesizing task
allocations based on a heuristic about task and signal priorities. Step two is about synthesizing the
mapping of signals to messages, as well as the final priorities of tasks and messages. However,
opposed to the approach introduced in this thesis, they do not consider redundancies or replications in
allocations (alias deployments) to ensure mixed fail-operational requirements, improving reliability.
They also do not consider degradation scenarios resulting from internal failures of system entities.
Moreover, in this thesis we not only synthesize deployments for various scenarios incorporating
an adequate level of redundancy to meet fail-operational requirements, but we also synthesize the
communication channels between software components out of a set of channel candidates, appearing
from publish/subscribe definitions of communication ports of components, enabling us to synthesize
deployments that cause minimal network traffic.

• in [365], the authors introduce the two metrics cohesion and coupling to measure the quantitative
quality of a safety relevant deployment. The cohesion metric describes the increase of cost to develop

60

3.2. CONSTRAINT BASED SYNTHESIS OF DESIGN DECISIONS

a software component with a higher Safety Integrity Level (SIL) than normally required, because
this component is desired to run in the same partition as another component with a higher SIL. The
coupling metric describes the costs introduced by the safety critical communication mechanisms.
These metrics enable the description of optimal deployments with respect to safety-related costs. As
further constraints that can be used to limit the solution space, the authors mention target platform
type and dissimilarity of ASWCs allowing to define that the target types of a set of ASWCs have
to be disjoint. The authors propose a Genetic Algorithm (GA) to solve the deployment problem.
However, the authors mention that there was no special reason for using a GA, but only because the
work was embedded into an infrastructure where a GA was already used. The authors claim that
also other techniques, like Linear Programming (LP), might be used. SAT or SMT solvers are not
mentioned.

• Multi-objective optimization of the deployment of components to automotive networks is shown
[156]. Redundancy is not tackled, but mentioned as necessary future work. Graceful degradation is
also not considered.

• in [210], optimal designs of automotive architectures are tackled by introducing a generic multi-
objective evolutionary optimization framework. A Domain Specific Language (DSL) named Auto-
motive Architecture Optimization Language (AAOL) is introduced allowing to express constraints,
objectives and orders, for instance for deployment and scheduling problems. The orders are used to
create ranks for the multi-criteria optimization. The approach does not explicitly focus on redun-
dancy mechanisms, failure scenarios, fail-operational requirements, failovers and degradations, like
we do in this thesis. However, the DSL may be usable or extensible to express the model, constraints,
objectives and optimization orders introduced in this thesis, whereupon one of the different solving
and optimization strategies could be used to create solutions as basis for our analysis. However,
in this thesis we just apply an SMT solver and use its API to create instances of our formal model
containing the input model of the system under analysis. We parse the output of the SMT solver to
obtain its solutions and extract those parts that represent the result of our analysis.

In [211], the above approach is more generalized to a DSL named System Architecture Optimization
Language (SAOL) and applied to an example from the avionics domain. Earliest-Deadline-First
(EDF) is considered as scheduling policy. Different problem solving and optimization strategies
are incorporated and can be used to solve the problem formulated in SOAL, like MOEA, SMT and
ILP-based approaches. Also a guided improvement algorithm is supported.

• [228] [227] provides modeling, analysis, and optimization of automotive networks, focusing on
efficient symbolic multi-objective design space exploration. They mention that multi-objective
evolutionary algorithms (MOEA) are good in many DSE problems, but might fail in design spaces
that contain only a few feasible solutions. Contrary to MOEA, they propose a multi-objective 0-1
ILP solving approach, incorporating a heuristic based on pseudo-boolean (PB) solvers, as well as
a backtracking algorithm to tackle multi-objective problems. During their DSE, they assume two
models as input, namely 1) a hardware resource architecture including processors and buses, as well
as 2) a software application architecture including tasks and directed data-dependencies between
the tasks. Based on this, they treat three design spaces during the DSE: 1) decision about which
resources shall be used in the final system (called allocation), 2) decision about which task becomes
executed on which processor resource (called binding), 3) decision about the routing of messages on
the bus resources (only in [227]). The binding is that what we consider as deployment in this thesis.
Other than we do it in this thesis, they do not explicitly consider constraints for valid redundancy
or replication mechanisms, mixed fail-operational requirements, as well as the analysis of failure
scenarios and resulting failover and degradation scenarios. We apply an SMT solver, as our focus is
not on providing a most efficient solving technology.

61

3.2. CONSTRAINT BASED SYNTHESIS OF DESIGN DECISIONS

• in [361], a comparison is shown about deployment calculation by a SAT solver and by the simulated
annealing algorithm. The result was that SAT solving scales better and is more efficient for larger sets
of equations. The use case of the work is to find a new valid software allocation (alias deployment)
in case of a component failure. This means, the allocation calculation has to be performed as fast as
possible to ensure a quick healing of the system.

• [354] introduces an iterative DSE approach to enable the user to influence the prioritization of
contradicting multi-objectives. As example, they consider the trade-off between 1) cost (in e), 2)
weight (in g) and 3) the amount of electronic control units (ECUs) for an automotive lane-keeping
support system. The objective is to minimize all three criteria. They express timing constraints
by using the Timed Augmented Description Language v2 (TADL2)14, supporting for instance the
specification of end-to-end deadlines, for instance for the event chain from video sensing to electric
power steering (EPS). They also consider the deployment (alias allocation) of tasks to clusters
(partitions) of execution units and buses. Their DSE cannot optimize multiple objectives at a time,
hence they obtain optimized results for each optimization objective independently. Additional DSE
runs are performed subsequently incorporating user prioritization for the objectives.

• a DSE for deployment and scheduling synthesis for mixed-criticality shared memory multicore
architectures is presented in [347], based on using the YICES SMT solver [107]. The DSE is
integrated [345] within the model-based AUTOFOCUS3 (AF3) software and systems engineering
tool [205] [341] [15].15 Also a DSE of deployments towards the PikeOS separation kernel operating
system [190] has been introduced in [305] to address separation of concerns for mixed-criticality
applications in an ISO26262 [174] context. The AF3 DSE framework is usable quite flexibly, for
instance to ensure ASIL-conformant deployments for safety critical automotive systems [348] [368].
Multi-Objective DSE in AF3 is based on the Z3 SMT solver [93], using the integrated optimization
facilities of Z3 [52] to provide Pareto efficient solutions. Currently, also a domain specific modeling
language to specify constraints and objectives is under development [110].

• in [271], the definition of a heterogeneous hardware platform is addressed by introducing different
viewpoints for the stakeholders. Mixed critical hierarchical software components get deployed to
the described hardware platform in a Software Allocation Planning View. Existing deployment
algorithms are reused. The described deployment constraints only contain limitations of software
components to get deployed to a specified subset of the hardware nodes. Redundant deployments,
failure scenarios and degradation scenarios are not considered. In [270], the Object Constraint
Language (OCL) 16 is used to define deployment constraints and multiple objectives. Afterwards,
a transformation is done from OCL into a boolean 0-1-ILP problem, and a LP-Solver is used to
calculate the solution.

• a DSE approach for UML/MARTE models [255] is introduced in [164]. The DSE is based on
simulations and is performed in iterative loops. They distinguish so called DSE rules and DSE
constraints, both modeled as UML comments decorated with MARTE stereotypes and additional
stereotypes of the introduced COMPLEX toolkit. The DSE rules are compliant with what we call
constraints in this thesis, for instance constraints for valid allocations of software to hardware,
reducing the exploration space during their simulations. The DSE constraints that they introduce
refer to performance constraints. However, these DSE constraints to not prevent the evaluation of
any points in the design space during their simulation. The topics at which we focus on in this thesis,
namely adequate redundancy in deployments, analysis of failure scenarios and resulting degradation
and failover scenarios, are not tackled in their work.

14TADL2 was developed in the TIMMO-2-USE project, https://itea3.org/project/timmo-2-use.html
15http://af3.fortiss.org
16http://www.omg.org/spec/OCL

62

https://itea3.org/project/timmo-2-use.html
http://af3.fortiss.org
http://www.omg.org/spec/OCL

3.2. CONSTRAINT BASED SYNTHESIS OF DESIGN DECISIONS

• [357] uses a Genetic Algorithm (GA) to solve the optimization problems for UML/MARTE 17 and
EAST-ADL2 18 models for AUTOSAR systems. The provided framework is called Architecture
Framework for Modeling Analysis and Optimization (AFfMAO). As the MARTE meta-model does
not include sufficient support to specify optimization objectives, they introduce a so called Generic
Optimization Modeling (GOM) profile to model objectives. The aim of the work is computer aided
configuration, for instance for the deployment of software components to ECUs, as well as the
mapping of AUTOSAR runnables to AUTOSAR tasks. To reduce the runtime of the GA, they
propose a heuristic two-step deployment approach, combining a divide-and-conquer strategy with
an iterative improvement. The divide-and-conquer strategy divides the deployment problem into
two sub-problems. They distinguish different types of optimization strategies for time-driven and
data-driven task activation models of AUTOSAR. However, in contrast to this thesis, redundancy,
fail-operational requirements and degradations of system functionality in failure scenarios are not
considered in their work.

• [153] introduces an iterative design space exploration (DSE) approach with focus on system robust-
ness and performance, based on a multi-objective evolutionary algorithm (MOEA). As the DSE
focuses on robustness, we discussed this work already in section 3.1.2.

• a DSE approach for reliability-driven optimization of deployments in embedded systems is presented
in [238] [237], performing the DSE based on evolutionary algorithms. We discussed this work
already in section 3.1.2.

• [272] [273] considers software deployment for distributed embedded real-time systems of automotive
applications, focusing on the configuration of the communication infrastructure and how to handle
design constraints.

• in [213], hierarchical communicating components are deployed using a Hierarchical Genetic
Algorithm (HGA). The subcomponents get instantiated with different levels of redundancy, in
order to maximize the system reliability. However, graceful degradation in failure scenarios is not
considered.

• in [165], the authors show a graph-based approach to deploy communicating software components
to a distributed system. The objectives are to minimize the cost and to maximize the reliability of a
deployment. The cost is either measured in the number of deployed components, or in the number
of required target hosts. Reliability is considered with respect to network failures. To increase
reliability, the deployment is optimized to maximize local communication and minimize remote
communication. This also increases performance. However, redundancy and degradation of system
functionality in failure scenarios are not considered.

The deployment problem is tackled in many more approaches: [232] uses a multi-objective genetic
algorithm (MO-GA) to solve the problem of mapping a set of task graphs onto a heterogeneous multipro-
cessor platform, also considering the scheduling problem; [333] uses simulated annealing (SA) to allocate
hard real-time tasks to processors. Further work considering the deployment problem is for instance
introduced in [234], [16], [327], and [9].

17Modeling and Analysis of Real-Time Embedded Systems, http://www.omg.org/omgmarte
18Electronics Architecture and Software Technology-ADL, http://www.east-adl.info

63

http://www.omg.org/omgmarte
http://www.east-adl.info

3.2. CONSTRAINT BASED SYNTHESIS OF DESIGN DECISIONS

Scheduling: The synthesis of optimized real-time schedules (task execution orders on processors, and/or
message transmission over network) is tackled for instance in [111] and [347]. The latter approach
performs a MO-DSE, combined with the optimization of deployments of software components to hardware
execution units. A DSE for schedule synthesis of multi-period (multi-rate) software components is
presented in [346]. However, none of these approaches consider explicitly failure scenarios and resulting
degradations of the set of system features.

64

CHAPTER 4 Analyzing Fail-Operational and
Fail-Degrading Systems

In this chapter, we introduce the contribution of this thesis. As described in section 1.2, the motivation of
this thesis is to introduce an approach to formally analyze failure scenarios and to ensure the fulfillment of
fail-operational requirements in mixed criticality and mixed reliability embedded systems, after isolations
of assumed failing software or hardware components. We consider the deployment of software to hardware
as an open design space, and synthesize valid deployments for each failure scenario, ensuring the fulfillment
of all fail-operational requirements by incorporating needed degradations and failovers, if feasible.

Contents
4.1 Introduction to the Formal System Model . 66
4.2 Formal System Model . 70
4.3 Concept Overview . 83
4.4 Properties of System Model Elements . 84
4.5 Synthesis of Valid Redundant Deployments . 95
4.6 Analysis of Failure Effects . 98
4.7 Supporting Degradations of Single Functional Features 122
4.8 Formalization of Optimization Objectives . 140
4.9 Assumptions and Aspects that are out of Scope . 142
4.10 Explanations and Discussions about the Formal System Model 144

Outline: In section 4.1, we provide an informal introduction about the problem domain, representing
the kind of systems that we aim to describe and analyze with the introduced approach. In section 4.2, we
introduce the formal model that we use to describe the system under analysis and its relevant properties as
basis for the analysis that we introduce. Section 4.3 gives an introduction into the analysis procedure, used
model artifacts and used tools. The specified input problem properties and variable solution properties are
introduced in section 4.4. Section 4.5 shows how we synthesize valid redundant deployments based on
formalizations of constraints for valid deployments. An initial consideration of failure effect analysis, based
on the introduced formal model and formal failover and degradation constraints, is presented in section 4.6.
In section 4.7, the presented approach is extended by the analysis of degradations on functional feature
level, which is an important ability especially for systems requiring diversity and functional degradation.
A formalization of optimization objectives is presented in section 4.8. Assumptions for our approach are
discussed in section 4.9, as well as design and analysis aspects that are out of scope of this thesis. Three
examples are embedded into the sections illustrating to which kinds of input problems our approach is
applicable and which kind of degradation and failover scenarios can be analyzed. We conclude this chapter
with explanations about the design decisions for the formal model, as well as discussion of alternatives, in
section 4.10.

65

4.1. INTRODUCTION TO THE FORMAL SYSTEM MODEL

4.1 Introduction to the Formal System Model

In order to tackle our research questions, the formal system model has to be designed in a way that allows
to express properties of system elements, as well as constraints with respect to valid deployments of
software to hardware and valid failover and degradation scenarios. We start to introduce the formal model
by first introducing a common concept of viewpoints in system design, based on which we introduce the
formal model later on.

4.1.1 Viewpoints

When designing and modeling a system, different viewpoints have to be considered. For instance, in the
project SPES XT 1 four viewpoints are used, called 1) Requirements Viewpoint, 2) Functional Viewpoint, 3)
Logical Viewpoint and 4) Technical Viewpoint [269]. The four viewpoints are introduced and distinguished
in [269] as follows:

Requirements Viewpoint

Requirements

Functional Viewpoint

Functional Features

Logical Viewpoint

Logical Component
Architecture

Technical Viewpoint

Software Architecture

Hardware Architecture

Figure 4.1: SPES Viewpoints

Requirements Viewpoint: eliciting, documenting, negotiat-
ing, and validating requirements for the system under devel-
opment. Different types of requirements, like assumptions,
constraints, goals, behavioral or technical requirements are
distinguished in four types of models.

Functional Viewpoint: development of a functional system
specification for the system under development. Functional
requirements become traced to user functions, and user
functions become specified by system functions. Func-
tional dependencies and feature interactions can be ana-
lyzed [342].

Logical Viewpoint: solution design for the system under de-
velopment. Functions become realized by communicating
logical components, structured with respect to an archi-
tectural design. In this design, aspects like dependability,
maintainability or reusability are important.

Technical Viewpoint: technical implementation of the sys-
tem under development. The logical components become
refined to technical software components (SWCs), which
become deployed and executed on a hardware execution
platform, comprising hardware execution units, operating
systems, etc.

One focus of the work in [269] lies on seamless integration of the different viewpoints. Each view-
point can be considered in different abstraction layers. However, in this thesis we do not distinguish

1Software Platform Embedded Systems (SPES) XT, http://spes2020.informatik.tu-muenchen.de/spes_xt-home.html

66

http://spes2020.informatik.tu-muenchen.de/spes_xt-home.html

4.1. INTRODUCTION TO THE FORMAL SYSTEM MODEL

different layers of abstraction. The introduced formal system model shall be used to represent the system
under analysis with an adequate level of abstraction containing all pieces of information needed to perform
the introduced analysis.

Adherence of formal system model to the SPES viewpoints: The formal system model, which we
introduce below in section 4.2, is spread over the functional viewpoint and in the technical viewpoint, and
allows to trace between these.

We do not focus on the requirements viewpoint, as we do not model the functional requirements
that led to the creation of the elements of the functional viewpoint. Instead, we treat the elements of the
functional viewpoint as given for the system under analysis. The formal system model allows to describe a
non-hierarchical set of functional features, representing the functional viewpoint.

However, we express informal requirements for valid deployments, valid failover mechanisms and
valid degradations by formal constraints and formal optimization objectives, expressed over the elements
of the technical viewpoint.

For the sake of simplicity, we do not model the logical viewpoint. In [269], the logical components of
the logical component architecture (modeled in the logical viewpoint) become mapped in a n:m manner to
software components of the software architecture, modeled in the technical viewpoint. However, in this
thesis we assume an 1:1 mapping between logical components and technical software components. Due
to this, we do not incorporate the logical viewpoint into our formal system model. Instead, we model a
direct tracing between functional features (of functional viewpoint) and technical software components (of
technical viewpoint). The technical software components become deployed to the execution units of the
hardware architecture. This deployment is part of the technical viewpoint.

Summarized, we consider as part of the formal system model:

• Functional Viewpoint:

– A set of functional features that the system under analysis shall provide to fulfill its functional
requirements.

• Technical Viewpoint:

– Software Architecture comprising software components (SWCs), realizing functional features
by software. Software components may have communication ports and are connected by
communication channels to be able to interact.

– Hardware Architecture comprising physical hardware execution units

We enrich our model elements with formal properties, partially representing requirements, like fail-
operational requirements for functional features. These requirement properties are part of the input model
for our analysis, representing the system under analysis. We model formal constraints cross over the
viewpoints as representation of requirements for valid system design, like for instance for valid initial
redundant deployments and valid reconfigurations of the deployments in failure scenarios.

4.1.2 Meta-Model of Considered System Structure
Fig. 4.2 introduces a meta-model in Unified Modeling Language (UML) class diagram notation about the
problem domain that we consider. The meta-model describes the structure of the system under analysis that
we support with the introduced approach. However, it is not completely equivalent to the formal system
model that we introduce later, but the formal system model represents certain parts of the meta-model in a
refined mathematical fashion. We show the meta-model here as introduction to the problem domain of the
supported types of systems.

67

4.1. INTRODUCTION TO THE FORMAL SYSTEM MODEL

Hardware Architecture
(Technical Viewpoint)

Software Architecture
(Technical Viewpoint)

Functional Features
(Functional Viewpoint)

Functional
Feature

Feature
Relationship

Optional
Channel

Mandatory
Channel

actively
deployed to

passively
deployed to

realized by realizes

mapped to
 1

0..*
contains

ASWCASWC-
Cluster

Execution Unit

Communication
Port

from

0..*

Subscription
Port

Publication
Port

to

Link
from 1

to 1

Communcation
Channel

1 from

1 to

Optional
Subscription

Port

Mandatory
Subscription

Port

1..*

1..*

0..*0..2

11

0..*0..1

Figure 4.2: UML meta-model of the considered problem domain for the system under analysis

The meta-model contains functional features and application software components (ASWCs) that
realize (implement) these features. A functional feature is realized by one or more ASWCs, while an
ASWC can contribute to realize one or more features, resulting in a n:m relationship.

The ASWCs become deployed onto execution units, like electronic control units (ECUs) in the
automotive domain. We distinguish active and passive deployments. Passively deployed ASWCs are
stored in memory, but not executed. The deployment can be done in a limited redundant manner. In case
of a redundant deployment, multiple instances of an ASWC exist, deployed to different execution units. At
most two active instances may exist at the same time (one master and one hot-standby slave). However, in
degradation scenarios, it may happen that no active instance exists anymore. This means that the realized
functional feature cannot be provided anymore and becomes unavailable.

We also treat communication channels between ASWCs. We model communication dependencies
between ASWCs with the publish/subscribe paradigm and distinguish mandatory and optional communi-
cation by mandatory and optionally subscribed data. An ASWC can operate with missing optional input
data, but cannot operate with missing mandatory input data.

68

4.1. INTRODUCTION TO THE FORMAL SYSTEM MODEL

Finally, during the analysis, certain execution units and/or software components are assumed to have
failures and to get isolated from the residual system by appropriate RTE fault-tolerance mechanisms. We
describe a formal approach to analyze how the system has to be degraded in order to meet the reliability
requirements of all functional features in such failure scenarios.

The model supports a grouping mechanism of application software components into so called ASWC-
Clusters. The consideration of clusters is inspired by the clustering concept investigated in the RACE
project, see section 2.5.2. The clusters contain ASWCs with identical safety and reliability requirements.

We need the formal model as basis to be able to formally express constraints for valid deployments, valid
degradations and valid failover mechanisms. Some of the constraints can be expressed in an arithmetic
manner, using for instance sums over the values of properties of system elements and comparison operators
like "the sum of the required memory of the software components deployed to an execution unit must
not exceed the provided memory of that execution unit". Other constraints can be expressed in a logical
manner, using for instance implications like "if a software component X is lost, then functional feature
Y cannot be provided anymore". Often, both kinds of expressions have to be combined to formalize a
constraint. Finally, the formal model deals as input for an out of the box problem solving and optimization
technology, which calculates solutions of variable properties in the valid constrained solution space of the
formal model. We set up the model and the variable properties of model elements such that it becomes
possible to analyze degradation scenarios and failover scenarios based on the calculated solution.

4.1.3 Motivation and Benefits of the Formal System Model
In the next section 4.2, we define the formal system model that we use as basis for the synthesis and
analysis approach which we introduce in this thesis. We define the formal model to establish a foundation
on which we can setup several steps that are required for the aimed analysis of degradation and failover
scenarios in case of failures of system elements. The formal model, which we are going to introduce in the
subsequent part of this chapter, is designed to enable to express the following pieces of information and to
be usable as input for an SMT solver.

The major motivation and design objectives for the construction of the formal system model are to formally
express:

• constraints for
- valid (partially redundant) deployments of software to hardware,
- valid failover scenarios of redundant instances of software components,
- valid degradation scenarios of the set of available functional features.
We model all constraints in form of combinations of arithmetic and logical expressions (e. g.,
conjunctions, disjunctions, implications). We do not use any uninterpreted functions or quantifiers
in the implementation of the formal constraints. Instead of quantifiers, we roll out all constraints in
a for-loop over the model elements.

• a solution space for the synthesis of a valid initial deployment, as well as deployments for degradation
and failover scenarios caused by assumed failures of hardware execution units and/or software
components

• optimization objectives for initial and degraded deployments, in form of arithmetic maximization or
minimization expressions over the model

69

4.2. FORMAL SYSTEM MODEL

Further secondary design objectives for the formal model are to formally express:

• requirements of functional features, like fail-operational requirements

• properties of software components, like worst case execution times

• interface ports of software components, as well as communication channels between these ports

• properties of hardware execution units, like provided time budget to execute software components

• tracing between functional features and the software components that realize the features

4.2 Formal System Model

In this section, we describe a formal system model that we constructed with the aim to allow to express
formal constraints for valid deployments, degradation-scenarios and failover-scenarios over this model and
to create instances of this model, representing the system under analysis as input for the analysis approach
introduced in this thesis.

Overview of the major elements of the formal system model: In Section 4.1, Fig. 4.2, we introduced
an UML meta-model representation of the problem domain that we tackle in this thesis. The formal system
model - that we use as basis for the analysis approach introduced in this thesis - is partially equivalent with
the problem domain meta-model, but however some information is represented in a different way and some
information is omitted because it is not required to perform the analysis. Fig. 4.3 shows a class-diagram
representation of the formal system model. In contrast to the meta-model of the problem domain (Fig.
4.2), all inheritance and all abstract classes (like Communication Port) are removed, because the formal
system model does not employ inheritance or abstract classes.

Furthermore, we model communication channels, deployment relationships and mappings of applica-
tion software components (ASWCs) to ASWC-Clusters as properties of a System Configuration element.
The System Configuration contains system wide information, as well as derived information and design
decisions that we synthesize as part of the presented approach. The design decisions are conducted during
our analysis in order to determine a valid system design that fulfills the requirements of functional features,
in particular requirements to be fail-operational. For instance, the System Configuration contains matrices
storing the selected communication channels between ASWCs (CM and CO), the determined mappings of
ASWCs to ASWC-Clusters (map), as well as the calculated valid deployment of ASWCs to execution
units (deploy).

We omit the Feature Relationships in the formal system model, because we do not need to model
them to perform our analysis. Instead, we analyze their representation in the software architecture in
form of communication channels between ASWCs. Despite communication channels are usually seen
as part of the software architecture, we model the channel matrices CM and CO as part of the System
Configuration, as the selection of channels is part of our synthesis approach. Realizations of functional
features by ASWCs are represented by χ and χ−1, introduced in more detail later in section 4.2.3.

We introduce the different shown elements of Fig. 4.3 subsequently in the below sections and refine
them by adding additional properties to the elements, required to express pieces of information needed to
perform our analysis.

70

4.2. FORMAL SYSTEM MODEL

Functional Features
(Functional Viewpoint)

Software Architecture
(Technical Viewpoint)

Hardware Architecture
(Technical Viewpoint)

Functional Feature

ASWC
ASWC-Cluster

Execution Unit

Publication Port

Subscription Port

isOptional

System Configuration

CM[][]
CO[][]
map[][]
deploy[][]

χ

1..∗χ−1
1..∗

0..∗

0..∗

Figure 4.3: Class diagram representation of the formal system model

Relationship between formal system model elements and entities of the really existing or designed
system: The introduced formal system model contains abstract identifiers of entities of the real system
under analysis.

Particularly, as shown in Fig. 4.4, the model contains:

• a set F of identifiers of functional features that are provided by the system under analysis
• a set S of identifiers of application software components, designed and implemented for the system

under analysis
• a set E of identifiers of hardware execution units, incorporated in the system under analysis

When we talk later on for instance about functional features of set F, we always implicitly mean the
identifiers which are the elements of set F. During the presented analysis, we assign properties to the
elements of the sets. We also obtain analysis results, which we assign as properties to the elements of
the sets. Although the properties are assigned to the set elements being identifiers, we can deduce that
these properties hold for the corresponding system entities, as there is a direct bijective mapping between

71

4.2. FORMAL SYSTEM MODEL

Formal System ModelReal System

Set of Functional Features

(usable through the system,
e.g., ABS, ACC, ESP, ...)

Set F

(Identifiers of Functional
Features)

Set of Application
Software Components

(embedded in the system)

Set S

(Identifiers of Application
Software Components)

Set of Hardware
Execution Units

(embedded in the system)

Set E

(Identifiers of Hardware
Execution Units)

abstraction

concretization

Figure 4.4: Bijective mapping between sets of entities of real system and sets of identifiers of formal
system model

real world system entities and their identifiers in the formal system model. If a certain analysis result is
attached in the formal model for instance to an identifier of a functional feature in form of a property value,
we deduce that this property value holds for the unambiguously related real world functional feature.

Formal notations: In sections 4.2.1 - 4.2.6, we formally define all the system elements that are sketched
in Fig. 4.3. In the formal definitions, we denote the power set over a set X by P (X), which is the set
of all subsets of set X , inclusive the empty set /0 and X itself. We write P+(X) for the power set of set
X without the empty set, meaning that P+(X) = P (X)\ /0. In addition, we use the cartesian product of
sets A×B = {(a,b) | a ∈ A,b ∈ B} to define a matrix over the elements of sets A and B. As usual, we
use N0 for the infinite set of natural numbers inclusive zero (equal to the non-negative integers). We use
N+ = N0 \{0} for positive natural numbers without zero.

We are now going to introduce the elements of the formal system model.

4.2.1 Functional Features
We now introduce those elements of our formal system model, which represent the functional viewpoint.

Definition 1 – Functional Features: We define F as a finite set of identifiers of functional features, and
f ∈ F as a single identifier of a functional feature.

This means, the finite set F = { f1, ..., fm}, with m ∈ N+, contains identifiers of the functional features
that the system under analysis shall provide. We assign additional properties to the functional features,
introduced later in section 4.4.

We do not consider compositional feature hierarchies in this thesis. We discuss the relation between feature
set F and feature hierarchies in section 4.10.1. We do not model the behavior of functional features, as
the aim of our analysis is to check on structural level if a feature can be provided at all in an analyzed
degradation scenario, not if the behavior of that feature is correct or incorrect.

72

4.2. FORMAL SYSTEM MODEL

4.2.2 Software Architecture

Software architectures are typically based on a software component model, being a specification of
component types, allowed patterns of interactions among instances of these components types, and
between components and a component runtime environment [166]. Different component models are for
instance discussed in [220]. In our formal model, we assume a single type of component, and we describe
the interfaces of software components by the use of communication ports. A port is a logical point of
interaction between a software component and its environment [319]. We assume a component model
distinguishing two types of ports: publication ports and subscription ports. A publication port is a port that
provides and asynchronously sends data. A subscription port is a port that requests and asynchronously
receives data. We assume that the components of the assumed component model are executed in a layered
architecture as part of an application layer, being on top of a runtime environment (RTE) layer, as it is the
case for instance in AUTOSAR (see section 2.4.2) and RACE (see section 2.5.1).

We now introduce a formal model of the elements of the assumed component model.

Definition 2 – Publication ports: We define PP as a finite set of identifiers of publication ports, and
pp ∈ PP as a single identifier of a publication port.

Definition 3 – Subscription ports: We define PS as a finite set of identifiers of subscription ports, and
ps ∈ PS as a single identifier of a subscription port.

For all publication ports and subscription ports, we specify the sent or received data by an identifier for
communicated data, named data-ID. We model the data-ID as a property of the ports, introduced in section
4.4.2. To be able to connect a publication port with a subscription port, the data-IDs of the both ports must
be identical. The data-IDs can also be used to encode publish/subscribe communication design based on
topics, like for instance applied in DDS [259] and ROS [278], or to abstract from the combination of topics
and attributes applied in XME [71]. We do not consider subtyping of data in this thesis for simplicity.

Software Components

Application Layer

Runtime Environ-
ment Layer

Basic Software
Layer

ASWCASWCASWC

Figure 4.5: ASWCs in a lay-
ered software architecture

We use the introduced publication and subscription ports to specify inter-
faces of software components. A software component (SWC) is a self-
contained piece of software with dedicated interfaces, which can individ-
ually be deployed to and executed on a piece of hardware execution unit
[328].

To distinguish software components located at different layers of a layered
architecture like AUTOSAR or RACE, in this thesis we use the term ap-
plication software component (ASWC) to address software components
located at the application layer of the software architecture of a system.
ASWCs realize (alias implement) the functional features F of a system.

Definition 4 – Application Software Components (ASWCs): We define
S as a finite set of identifiers of application software components (ASWCs),

and s ∈ S as a single identifier of an ASWC.

73

4.2. FORMAL SYSTEM MODEL

Hence, the finite set S = {s1, ...,sn}, with n ∈ N+, contains identifiers of the application software compo-
nents (ASWCs) that are designed for the system under analysis.

Each ASWC is composed of a finite set of publication ports and a finite set of subscription ports.

Definition 5 – Ports of ASWCs: To each ASWC si ∈ S, with i ∈ N+ being an index to distinguish
different ASWCs, we associate

- a finite set PPi = {ppi,1, ..., ppi,y} of publication ports and

- a finite set PSi = {psi,1, ..., psi,z} of subscription ports.

Both sets can be empty. Hence, we declare y,z ∈ N0. To address the union of all publication and
subscription ports of si, we introduce the set Pi = PPi∪PSi .

We write ppi,k ∈ PPi to address the kth publication port of ASWC si and psi,k ∈ PSi to address the kth

subscription port of ASWC si, with k ∈ N+. We use PPi as a short notation for PP(si), and PSi as a short
notation for PS(si).

Software Component Example: Fig. 4.6 shows an example for an ASWC s1 ∈ S, having three sub-
scription ports PS1 = {ps1,1, ps1,2, ps1,3} and two publication ports PP1 = {pp1,1, pp1,2} .

s1

pp1,1

pp1,2

ps1,1

ps1,2

ps1,3

Figure 4.6: Example ASWC with 3 subscription ports and 2 publication ports

Communication Channels

Based on the ports of ASWCs, directed data-flow communication channels are established between the
ports, transferring data messages from publication ports towards one or multiple subscription ports. In case
of the used publish/subscribe paradigm, the communication between ports is performed asynchronously
[116] by the RTE of the system under analysis, coordinated for instance by a Broker in the RTE [71].

Furthermore, we distinguish mandatory and optional subscription ports, under the assumption that
ASWCs have some input data which is mandatory to provide their intended service, and that ASWCs have
other input data which is only optional to provide their intended service. We distinguish the two kinds of
subscription ports by a property isOptional : PSi→{0,1}, being introduced in more detail in section 4.4.2.

However, the amount of ports might become quite huge and hence, also the space of possible commu-
nication channels. To reduce the size of the formal system model, we do not directly incorporate channels
between ports of ASWCs. Instead, we only model the aggregated information about channels between
ASWCs, because this is sufficient for the analysis that is introduced in this thesis. We use two matrices for
storing optional and mandatory communication channels between the ASWCs, as defined below.

74

4.2. FORMAL SYSTEM MODEL

Definition 6 – Matrices of Directed Communication Channels: We define CM : S×S→ N0 to be
a matrix representing mandatory directed data-flow communication channels between ASWCs. We
define CO : S×S→ N0 to be a matrix representing optional directed data-flow communication channels
between ASWCs.

For a publisher ASWC si ∈ S and a subscriber ASWC sk ∈ S, matrix cell CM(si,sk) stores information
about the directed communication channels from the publication ports PPi of si towards the mandatory
subscription ports {psk,l ∈ PSk | isOptional(psk,l) = 0} of sk. Each matrix cell CO(si,sk) does the same
for channels towards optional subscription ports {psk,l ∈ PSk | isOptional(psk,l) = 1} of sk.

If the software architecture of the system under analysis contains multiple channels from publication
ports PPi to subscription ports PSk of the two ASWCs si,sk ∈ S, we aggregate these channels in our model
to a single mandatory and a single optional channel between the respective ASWCs. This is sufficient
for the aims of our analysis and reduces the size of the model, allowing more efficient calculations of
solutions and hence, more efficient analysis. Although we consider channels between ASWCs, we define
ports of ASWCs in the input problem model to describe possible communication channel candidates
between ASWCs. However, based on the given ASWC-Ports from the input problem model, we select used
channels out of these candidates as part of our analysis, enabling the synthesis of software architectures
and deployments that engender a low network traffic. We discuss this in more detail in section 4.10.2.

Channel Example: Fig. 4.7 shows an example of the channel matrices CM and CO between three
ASWCs. Publication ports of ASWCs are drawn as circles, subscription ports are drawn as squares.
The values of the channel matrix cells are left blank with dots initially here. We introduce the values
subsequently.

Channel Matrices:

ASWC s1 ASWC s2 ASWC s3
opt

Legend:

Publication Subscription

pp3,1

ps3,1pp2,1

ps2,1

ps2,2

pp1,1

pp1,2

ps1,1

. . .

. . .

. . .

CM

CO

s1
s2
s3

s1
s2
s3

s1 s2 s3

s1 s2 s3
. . .
. . .
. . .

Figure 4.7: Example of channels between ASWCs

In the example shown in Fig. 4.7, ASWC s1 has two publication ports pp1,1 and pp1,2, ASWC s2 has
one publication port pp2,1 and s3 has one publication port pp3,1. Similarly, the subscription ports psk,l
can be seen in the figure, as well as the channels that are synthesized to connect the ports. Notice that the
publication and subscription port indexes are numbered independently from each other, as a port can never
be publisher and subscriber simultaneously. There exist three mandatory subscription ports ps1,1, ps2,1
and ps2,2, as well as one optional subscription port ps3,1 (labeled with ’opt’). Mandatory and optional
subscription ports share their index space. However, in this example no ASWC has both mandatory and
optional subscriptions.

75

4.2. FORMAL SYSTEM MODEL

Weights of Channels: The value of an entry of a channel matrix denotes the aggregated weight ω of all
directed channels that exist from publication ports PPi of si ∈ S towards mandatory respectively optional
subscription ports PSk of sk ∈ S. A weight ω represents the amount of data that is transfered over a channel
in a period of time, e. g., per execution cycle. Publication ports have a weight ω : PPi→ N+ denoting
the amount of published data. The value of a matrix cell CM(si,sk) resp. CO(si,sk) for si,sk ∈ S are the
aggregated weights ω of the subset of publication ports of si that are connected to subscription ports of sk.
We use the weights during the deployment synthesis to prefer local communication, and by this to reduce
network traffic. We select channels out of a set of channel candidates and aggregate them to the introduced
channel matrices.

We introduce the weights of ports in more detail in section 4.4.2. The values of the elements of the
channel matrices we introduce in more detail in section 4.4.3, Eq. 4.2. We describe the channel selection
mechanism in more detail in section 4.4.3, Fig. 4.15.

Fig. 4.8 enriches Fig. 4.7 with weights ω(ppi, j) of publication ports ppi, j ∈ PPi of si ∈ S. Based on these
weights, the channel matrices are filled with values.

ω(pp1,1) = 2

ω(pp1,2) = 1

ω(pp2,1) = 4

ω(pp3,1) = 7

Channel Matrices:

ASWC s1 ASWC s2 ASWC s3
opt

pp3,1

ps3,1pp2,1

ps2,1

ps2,2

pp1,1

pp1,2

ps1,1

CM CO

s1
s2
s3

s1
s2
s3

s1 s2 s3 s1 s2 s3
0 3 0
0 0 0
7 0 0

0 0 0
0 0 4
0 0 0

Publication
Subscription

Pu
b
lic

at
io

ns

Subscriptions

Pu
b
lic

at
io

ns

Subscriptions

Figure 4.8: Example of channels between ASWCs inclusive weights

The weights of the publications ports in the example are: ω(pp1,1) = 2, ω(pp1,2) = 1, ω(pp2,1) = 4
and ω(pp3,1) = 7. The bottom part of Fig. 4.8 shows the aggregated channel matrices CM and CO. The
upper left corner of CM denotes the entry CM(s1,s1), the lower right corner the entry CM(s3,s3). Same
for CO. The channel creation is based on data-IDs that are assigned to the ports (introduced in section
4.4.2). We assume in this example that the shown channels are valid. There exist two mandatory channels
from s1 to s2 with weights ω(pp1,1) = 2 and ω(pp1,2) = 1. In CM, the weights of these both channels
are aggregated to CM(s1,s2) = 3. There exist one optional channel in the example from s2 to s3, causing
CO(s2,s3) = 4.

Clusters of ASWCs

The analysis approach introduced in this thesis supports the consideration of groups of ASWCs. We call
these groups ASWC-Clusters, as introduced below.

76

4.2. FORMAL SYSTEM MODEL

Definition 7 – ASWC-Cluster: We define C as finite set of identifiers of ASWC-Clusters, and c ∈C
as a single identifier of an ASWC-Cluster.

The finite set C = {c1, ...,cq}, with q ∈ N+, contains ASWC-Clusters, which are groups of ASWCs.
The ASWC-Clusters are structure building elements.

We use the clusters as motivated in section 2.5.2 to group ASWCs with identical requirements for safety
(ASIL) and reliability (fail-operational by redundancy), preparing the separation of mixed critical and
mixed reliable ASWCs from each other, as different clusters can be separated using spatial and temporal
partitioning mechanisms [292].

Each ASWC s ∈ S shall be mapped to exactly one ASWC-Cluster c ∈ C. We model this mapping as
defined below.

Definition 8 – ASWC-Cluster Mapping: We define map : S×C→{0,1} to be a matrix that represents
the mapping of ASWCs S to ASWC-Clusters C. We define the elements of map as:

map(s,c) =

{
1 : s ∈ S is mapped to c ∈C
0 : otherwise

(4.1)

We synthesize a valid mapping as part of our approach and ensure the validity of the obtained mapping
by formal constraints about the introduced formal system model. We introduce in section 4.5.1 how we
express formal constraints. As we assume that the mapping is not predefined in the input model, but we
obtain a valid mapping as part of our analysis, we store the mapping as part of the system configuration Φ,
see section 4.2.5.

The mapping of ASWCs to the ASWC-Clusters is a total function, but not necessarily injective or
surjective, as multiple ASWCs can be mapped to the same cluster and clusters might be empty in the
formal model.

Cluster Example: Fig. 4.9 shows an example for a mapping map of three ASWCs onto two ASWC-
Clusters.

Cluster c1 Cluster c2

ASWC s1 ASWC s2 ASWC s3

map

s1 1 0
s2 1 0
s3 0 1

c1 c2

Figure 4.9: Example of a mapping of ASWCs to ASWC-Clusters

The application software components are composed and connected by the communication channels in order
to realize the feature set F of the system. The result of this composition is a software architecture. In a valid
software architecture, each mandatory subscription port has to be connected to a publication port, to be
able to execute the ASWC to which the subscription port belongs to. We ensure this by formal constraints.
If a mandatory subscription port has no valid matching publication port, the analysis is canceled. In such a
case, either the solver returns that the model is unsatisfiable, or by using the soft-constraints introduced
later in section 4.6.7 the solver returns a satisfiable model including an information that the corresponding
constraint cannot be satisfied.

77

4.2. FORMAL SYSTEM MODEL

4.2.3 Feature Realization
When constructing the application software components of a system, it is decided in which way the
functional features of set F become realized by software components of set S.

We introduce a feature realization relationship between a certain functional feature and the subset of
ASWCs that realize this feature. Each feature is realized by one or more ASWCs, while each ASWC
contributes to realize one or more features. We formally model this relationship between functional
features and ASWCs as follows.

Definition 9 – Feature Realization: Let χ denote a feature realization mapping. We define χ and its
inverse χ−1 as:
χ : F → P+(S) with χ(f) = {s ∈ S | s contributes to realize f ∈ F}

χ−1 : S→ P+(F) with χ−1(s) = { f ∈ F | f is partially or completely realized by s ∈ S}

Hence, χ associates a functional feature f ∈ F to those ASWCs that realize f by software. We neglect
in this thesis the physical sensors and actuators and further mechanical, hydraulical or electrical hardware
components, which may also be required to realize a functional feature (like inverter of electric motor
or brake piston). We focus on the software component part of the feature realizations. The software
components interact with the physical world by sensor and actuator interfaces.

The feature realization mapping χ is given as part of the input model for our analysis. We model this given
mapping as formal constraint using implications, and use it to express constrains like "if s ∈ χ(f) is lost or
has to be explicitly deactivated due to insufficient resources, then f cannot be kept available".

Feature Realization Example: Fig. 4.10 shows an example for Def. 9. Two features F = { f1, f2} exist.
Feature f1 is realized by three ASWCs s1,s2 and s3, hence χ(f1) = {s1,s2,s3}. Feature f2 is realized only
by s3, hence χ(f2) = {s3}. ASWC s3 contributes to realize both features, hence χ−1(s3) = { f1, f2}.

ASWC s1 ASWC s2 ASWC s3

Feature-Realization χ

Feature f1 Feature f2

χ(f2) = {s3}

χ(f1) = {s1, s2, s3}

Figure 4.10: Example of realization relationship between features and ASWCs

4.2.4 Hardware Architecture

Definition 10 – Execution Units: We define E as a finite set of identifiers of hardware execution units,
and e ∈ E as a single identifier of an execution unit.

78

4.2. FORMAL SYSTEM MODEL

The execution units are also called Electronic Control Units (ECUs) in the automotive domain, or
Duplex Control Computers (DCCs) in the RACE approach. We assume that the execution units are
interconnected by a reliable physical communication topology, ensuring a reliable communication between
all units. Hence, we do not consider the physical communication topology furthermore in this thesis.

4.2.5 System Configuration
The system configuration contains certain information that is derived during our analysis from the input
model, as well as design decisions that are conducted as part of the synthesis during our analysis. In
particular, this concerns the mapping of ASWCs to ASWC-Clusters, the communication channels between
ASWCs, as well as the deployment of ASWCs to execution units. We synthesize this configuration as part
of our analysis and do not assume a predefined configuration as part of the input model, as the freedom on
these design decisions denotes a huge added value for our analysis. Instead of just rejecting an invalid
predefined configuration that violates for instance fail-operational requirements of some functional features
or violates constraints for valid redundant deployments, we can synthesize a valid configuration that fulfills
the requirements, if there exists such a valid configuration.

As major part of the system configuration, we determine a valid deployment of software components
to execution units, incorporating adequate redundancy to meet the fail-operational requirements of the
associated realized functional features. We store the result in the deployment matrix defined below.

Definition 11 – Deployment: We define deploy : S×E→{0,P,M,HS} to be a matrix representing the
deployment of ASWCs S to execution units E. For s ∈ S and e ∈ E, we define the elements deploy(s,e) as:

deploy(s,e) =


0 : s ∈ S is not deployed to e ∈ E
P : s ∈ S is deployed to e ∈ E passively (cold-standby slave)
M : s ∈ S is deployed to e ∈ E actively as master
HS : s ∈ S is deployed to e ∈ E actively as hot-standby slave

We choose this encoding as we need to distinguish the three types of deployment to cover the different
types of considered redundancy, introduced in section 2.5.2. We distinguish passive deployments and two
types of active deployments. In a passive deployment, the binaries of ASWCs are in memory of execution
units, but not executed in schedule. In an active deployment, the ASWC binaries are instantiated and
executed in schedule. Active master instances provide the functionality that realizes the functional features.
The redundant hot-standby slave instances are actively in schedule, but the published data items are ignored
by the RTE of the system. Hence, hot-standby slaves do not contribute to realize functional features, but in
case the master instance is lost due to a failure, the hot-standby slave can be transformed to become the
new master. This transformation is called a failover. The benefit of having a hot-standby slave, compared
to having only a passive backup (cold-standby slave), is that the internal state of the hot-standby slave
is kept synchronous with the master state and hence, in case of a failover the behavior can be continued
without any intermediate cold startup behavior from initial state. See also Fig. 2.6 in section 2.1.6 for
distinction between hot- and cold-standby slaves. See section 4.10.5 for further discussions about matrix
deploy. When implementing the formal model as arithmetic input model for the SMT solver, we use the
following encoding for the symbolic values: P=1, M=2, HS=3.

Deployment Example: Fig. 4.11 shows an example for a deployment of ASWCs to execution units.
The ASWCs s1 and s2 are deployed as master without redundancy to execution unit e1. As s1 and s2 are in
the same cluster c1, they are always deployed to the same execution unit. The third ASWC s3 is deployed
redundantly to both execution units, once actively as master to e2 and once passively (as cold-standby
slave) to e1. In this example, no hot-standby slaves exist. Hence, matrix deploy shown in Fig. 4.11 does
not contain any entry with value HS.

79

4.2. FORMAL SYSTEM MODEL

Deployment

Cluster c2Cluster c1

ASWC s1 ASWC s2 ASWC s3

Network

Execution Unit e1
s1 (Active Master)
s2 (Active Master)

s3 (Passive)

Execution Unit e2
s3 (Active Master)

deploy

s1 M 0
s2 M 0
s3 P M

e1 e2

M M MP

Figure 4.11: Example of a deployment of ASWCs to execution units

Finally, a system configuration Φ contains all properties that are conducted as design decisions as part of
our synthesis and analysis. In particular, these are those parts of the solution of our analysis that cannot be
attached to a single instance of a model element, but correlate to relationships between multiple model
elements.

Definition 12 – System Configuration: Let Φ denote a system configuration. We compose the system
configuration of Φ = {CM,CO,map,deploy} .

The system configuration contains the solution properties that store the synthesis of a valid configuration
of communication channels CM and CO, the mapping map of ASWCs to ASWC-Clusters, as well as the
deployment deploy of ASWCs to execution units (see also Fig. 4.3).

4.2.6 System Model
Finally, we aggregate all introduced formal model elements to compose a formal system model.

Definition 13 – System Model: Let S denote a formal system model. We compose the formal system
model of S= {F,S,C,E,Φ,χ} .

4.2.7 Example for the Formal Definitions
Fig. 4.12 shows an integrated example for the definitions of the formal system model. A feature set
F = { f1, f2} is realized by ASWC set S = {s1,s2,s3}, as specified by feature realization χ. The ASWCs
are deployed to two execution units E = {e1,e2}. ASWCs s1 and s2 are mapped to the same cluster c1 ∈C
and are deployed without redundancy to execution unit e1. The third ASWC s3 is mapped to another
cluster c2 ∈C and is deployed redundantly to both execution units, once actively as master to e2 and once
passively to e1.

80

4.2. FORMAL SYSTEM MODEL

Deployment

Feature-Realization χ

Execution Unit e1
s1 (Active Master)
s2 (Active Master)

s3 (Passive)

Execution Unit e2
s3 (Active Master)

Feature f1 Feature f2

χ(f2) = {s3}

χ(f1) = {s1, s2, s3}

Network

c2c1

ASWC s1 ASWC s2 ASWC s3

ω = 7

ω = 2
ω = 4

ω = 1
opt

map

s1 1 0
s2 1 0
s3 0 1

c1 c2

0 0 0
0 0 4
0 0 0

CO

s1
s2
s3

s1 s2 s3

0 3 0
0 0 0
7 0 0

CM

s1
s2
s3

s1 s2 s3

Publication
Subscription

deploy

s1 M 0
s2 M 0
s3 P M

e1 e2

M M MP

F = {f1, f2}

S = {s1, s2, s3}

E = {e1, e2}

C = {c1, c2}

Figure 4.12: Example for the formal system model

The example contains publication ports and subscription ports of ASWCs and the resulting communi-
cation channels. Communication channels with a total wight of 11 units flow over the physical network
between the two shown execution units e1 and e2, as ASWC s3 is active as master on e2 and receives
data from s2 and sends data to s1, while s1 and s2 are active as master on e1. Hence, CO(s2,s3) = 4 and
CM(s3,s1) = 7 have to be transmitted over network. CM(s1,s2) = 3 is a local communication inside e1.

However, in failure scenarios the amount of data transmitted over the network might change. For
instance, in case of a failure of execution unit e2, a failover has to be performed to let s3 on e1 become the
new master. The remote communication becomes a local communication.

Furthermore, we assume here that the three ASWCs cannot be executed on the same execution unit
due to insufficient resources. This means, in the above sketched failover scenario, we assume that s2 has to
be deactivated on e1 to be able to activate the passive backup of s3 on e1. As s3 has only an optional input
from s2, this is valid. If s1 would be deactivated, also s2 has to be deactivated as s2 receives mandatory
data from s1, and s1 has no redundancy. However, because s2 has to be deactivated to activate s3 on e1,
the feature f1 cannot be kept available anymore. Our analysis approach would reveal this as part of the
analysis of degradation scenarios for different cases of failures of execution units or ASWCs. If feature f1
would have a requirement to be fail-operational after one failure of an execution unit, the analysis reveals
that this requirement cannot be fulfilled with the shown system design.

81

4.2. FORMAL SYSTEM MODEL

4.2.8 Summary Overview of Formal Model Symbols
In table 4.1, we give a summary of the so far introduced symbols representing elements of our formal
system model.

Table 4.1: List of Formal Model Symbols

Symbol Explanation

F Set of Functional Features

f One Functional Feature

S Set of Application Software Components (ASWCs)

s One Application Software Component (ASWC)

χ Subset of ASWCs that contribute to realize a given functional
feature f ∈ F

χ−1 Subset of functional features to whose realization a given ASWC
s ∈ S contributes to

PSi Set of Subscription Ports of ASWC si

psi, j jth subscription port of ASWC si

PPi Set of Publication Ports of ASWC si

ppi, j jth publication port of ASWC si

ω(ppi, j) weight of port ppi, j, describing the amount of published data

CM Matrix of communication channels from publication ports of
one source ASWC towards mandatory subscription ports of one
destination ASWC

CO Matrix of communication channels from publication ports of
one source ASWC towards optional subscription ports of one
destination ASWC

C Set of ASWC Clusters

c One ASWC Cluster

E Set of Execution Units

e One Execution Unit

Φ System Configuration

S Aggregated System Model

82

4.3. CONCEPT OVERVIEW

4.3 Concept Overview

Before going into further details about additional input properties and solution properties of the elements of
the introduced formal model, in Fig. 4.13 we show a brief view onto the tooling architecture and procedure
of the introduced analysis, to provide a better understanding about the purpose of the properties and how
we use them.

The input model, describing the system under analysis, is described in a XML file (A) and parsed
(B) into the input part of the formal model (C) by adding constraints to set the input properties to fixed
specific values, given in the XML file. The input model includes the set of functional features F , the set of
software components S, the ports PPi and PSi of a component si ∈ S, the realization relationships χ, the
set of execution units E, as well as fixed input model properties of these elements (being introduced in
section 4.4.2). During parsing the input XML file into the formal model, additional constraints are added
(D), for instance to represent the relationship χ(f) between a functional feature f ∈ F and the ASWCs
which realize f .

In addition to these input problem specific properties and constraints, we also add generic solution
properties, constraints and objectives. The set of solution properties represents the open decision variables
of the solver (E). These solution properties are introduced in sections 4.4.3 and 4.4.4 and contain the
results of our analysis. We add generic constraints which model valid initial redundant deployments, valid
degradation and failover scenarios, and other constraints required to perform the analysis (F). We introduce
these constraints subsequently in sections 4.5.1, 4.6.5, 4.6.6 and 4.7.4. Optimization objectives specify in
which way the solver shall calculate the values of the solution properties (G). The objectives are discussed
in section 4.8.

We implemented our framework in Python, using the Python API of the Z3 SMT solver to interact
with it.

Z3
Python

API

Problem
Definition File

(XML)

Problem
Definition File

(XML)

Input Problem
Definition Files

(XML)

Deployment, Failover
and Degradation

Constraints

Problem specific
Constraints

(e.g., expressing
realization of features
by ASWCs, matching

publications, etc.) Z3 SMT
Solver

Optimization
Objectives

Input Model Properties
(fixed constant values)

XML Parser

Solution Model
(fixed decision

variables)

Solution Parser
(Python)

Feedback to User
(Graphviz DOT)

Solution Properties
(unfixed decision

variables)

Independent from
Input Model

(A)

(B)
(C)

(D)

(E)

(F)

(G)

(H)

(J)

(I)

Figure 4.13: Brief visualization of the tooling and the procedure how we use the introduced formal model

83

4.4. PROPERTIES OF SYSTEM MODEL ELEMENTS

After all properties, constraints and objectives have been added to the solver model, the solver function
to calculate the solution model is executed and an optimized solution model is returned, if existing (H).
We parse the solution (I) and represent the analysis result to the user in form of a visualization of the
deployments and the availability of features in the different degradation/failover scenarios, rendered using
the Graphviz DOT language (J). 2

It is also possible to execute the solver multiple times, obtaining multiple points on the pareto frontier,
representing pareto efficient solutions for a multi-objective problem with contradicting objectives, requiring
trade-offs. Alternatively to the implementation in Python, the framework can be also implemented in
C/C++ or Java, as Z3 offers also APIs to these languages.

The introduced analysis approach enables the user to formally analyze a system design with respect
to its fulfillment of fail-operational requirements on a structural level, as well as to analyze the level of
degradation that is needed in different failure scenarios. This is combined with the synthesis of valid
deployments of software components to execution units, automatically incorporating an adequate level of
redundancy and failovers to meet the fail-operational requirements.

4.4 Properties of System Model Elements

In this section, we introduce the elements of our formal system model in more detail. We enrich the
elements of the formal system model with properties that describe the elements. We use the term property
here similarly to the definition of a component property in [166]:

Component Property: Something that is known and detectable about a component [166]

In [166] they use a dot notation component.property to represent properties of components, and use the
types of string, float, integer and boolean to specify the possible values of a property. However, we do not
apply the dot notation in this thesis. Based on the so far introduced formal system model, we model the
properties as follows.

Definition 14 – Property: We define a property to be an identifier for a function f oo : domain→
codomain, having a domain of one of the introduced formal system elements, and a defined codomain.

For instance, if we would like to assign a property named prop to the ASWCs of the set S, assigning to
each s ∈ S a natural number N, we would define the property as prop : S→ N.

In the next section 4.4.1, we provide an overview over all the properties that we are going to introduce
in more detail subsequently in sections 4.4.2, 4.4.3 and 4.4.4. We need these properties to represent the
system under analysis adequately, to be able to perform the calculation of valid deployments and the
degradation and failover analysis in failure scenarios. The properties represent both the input model of
the system under analysis (see section 4.4.2), as well as the results of our analysis (see sections 4.4.3 and
4.4.4).

2www.graphviz.org/content/dot-language

84

www.graphviz.org/content/dot-language

4.4. PROPERTIES OF SYSTEM MODEL ELEMENTS

4.4.1 Overview of Properties of Formal System Model

Functional Feature

asil : [0..4]
failOp : N0
priority : N+

minFTT : N+

available : {0,1}

ASWC

wcet : N+

flash : N+

reqExecUnitHwPlatform : N0
minFTT : N+

domain : N0
isolated : {0,1}
asil : [0..4]
redncy : N0
hotStandbySlaveReq : {0,1}
hotStandbySlaveActive : {0,1}
masterActive : {0,1}
prioPoints : N0
prioPointsMaster : N+

prioPointsHotSlave : N+

ASWC-Cluster

asil : [0..4]
redncy : N0

Execution Unit

providedTimeBudget : N+

providedFlash : N+

powerSupply : {0,1}
hwPlatform : N0
isolated : {0,1}
usedTimeBudget : N0
usedFlash : N0

Publication Port

d : N
portId : N+

ω : N+

Subscription Port

d : N
isOptional : {0,1}
chosenMatchingPortId : N

System Configuration (Φ)

faultRecoveryTime : N+

maxNetworkTraffic : N0
networkTraffic : N0
prioSumAllASWCs : N0
prioSumActiveASWCs : N0
amountOfIsolatedExecUnits : N0
amountOfIsolatedSWCs : N0
activeBlueExecUnits : N0
activeRedExecUnits : N0
CM[S][S] : N0
CO[S][S] : N0
map[S][C] : {0,1}
deploy[S][E] : {0,P,M,HS}

χ
1..∗χ−11..∗

0..∗

0..∗

Figure 4.14: Class-diagram representation of the formal model, incl. properties as class attributes

85

4.4. PROPERTIES OF SYSTEM MODEL ELEMENTS

Fig. 4.14 shows an extended version of the class diagram representation of the formal system model
that was shown in Fig. 4.3. The figure is enriched by all the properties of model elements, which become
introduced in sections 4.4.2, 4.4.3 and 4.4.4. The properties that are drawn in italic font are the input
problem properties, fixed to a certain value and describing the system that is desired to be analyzed (the
system under analysis). The properties drawn in bold font are the solution properties, representing the
decision variables of the solver and finally containing the result of the analysis. The underlined properties
are neither input nor solution properties, but properties that are variated during our analysis to different
values to represent the different failure scenarios.

For instance, the asil property is only given on feature level in the input model. The asil property of
ASWCs and ASWC-Clusters is then derived in the solution model from the related features according to
χ−1 and the map property. The isolated flags of ASWCs and execution units are the properties controlling
the failure scenarios, being analyzed for necessary degradations or failovers to fulfill all fail-operational
requirements of functional features.

System Configuration properties: We enrich the system configuration Φ by additional properties,
representing pieces of information on system level. System level information can be:

1. System level requirements or predefined system level design decisions: We model system level
requirements as properties inside the input model for our analysis, having a fixed value (e. g.,
maxNetworkTraffic). The same holds for predefined system level design decisions. The requirements
and predefined decisions are used in constraints over the formal model, influencing the validity of
deployment solutions and the validity of degradation and failover scenarios.

2. System level properties representing design decisions conducted by our synthesis approach, or
properties deriving from these synthesized design decisions: Those system level properties that
represent or derive from the synthesized valid deployment and degradation/failover scenarios are
modeled as variable properties (shown in bold in Fig. 4.14, e. g., networkTraffic), belonging to the
solution part of the formal model.

4.4.2 Input Model Properties
In this section, we describe those properties of the formal model, which represent the input problem for
the deployment calculation and failure effect analysis. Failure effects may be required degradations, or
failovers needed to ensure fail-operational requirements. The input properties are fixed a priori to certain
values, describing the feature set, the set of software components with their ports, the set of hardware
execution units, as well as some system wide configuration properties of the system under analysis.

System Configuration Φ: We assume that there is only exactly one system configuration. We define
a property faultRecoveryTime : N+ , which is the fault-recovery time (FRT) of the system (in ms). The
fault-recovery time is a predefined system property, stating how quick the system, particularly the systems
RTE, is able to detect an error or a failure of a system element, isolate this element from the residual
system, and perform a failover to a redundant spare element to recover from the causing fault. This means,
the RTE guarantees that the service or data that is provided by the failing system element is unavailable at
most for the fault-recovery time, if the corresponding functional feature is required to be fail-operational.
For instance, the RACE RTE is designed to guarantee this (c.f. section 2.5.2). The fault-recovery time
property influences the type of redundancy (cold- vs. hot-spares) that has to be used in the deployment.

In addition, property maxNetworkTraffic : N0 defines a required restriction for the maximum amount
of network traffic, arising from communication channels between ASWC instances that are deployed to
different execution units.

86

4.4. PROPERTIES OF SYSTEM MODEL ELEMENTS

Functional Features F: Property asil : F →{0..4} defines the Automotive Safety Integrity Level
(ASIL) of a feature [0: Quality-Management (QM), 1: ASIL A, 2: ASIL B, 3: ASIL C, 4: ASIL D].
Property failOp : F → N0 defines in which sense the feature is required to be fail-operational. If
failOp(f) > 0, feature f ∈ F must be kept available after the first failOp(f) failures of any one exe-
cution unit or software component. In addition, features have a priority : F → N+ that can be used to
specify user preference about which features are desired to be kept available longer than others. The higher
the value of priority(f), the higher is the intended priority of feature f ∈ F and the longer this feature
will be kept available. However, the priority is only used as tie-breaker between features with identical
fail-operational level. Hence, property priority can not be used to specify that a non-fail-operational feature
should be kept available, while a fail-operational feature becomes unavailable. Finally, each functional
feature has a property minFTT : F → N+ , which denotes the minimum fault-tolerance time (in ms) of
that feature for its different safety goals (see section 2.5.2). The minFTT describes how long a failure of a
functional feature can be tolerated temporarily and hence, how quickly associated realizing slave software
components have to be enabled to become new masters to recover the feature.

Application Software Components S: Property wcet : S→ N+ defines the Worst-Case Execution

Time of a unique cyclic executable operation of each ASWC (in µs). Property flash : S→ N+ de-
fines the required amount of flash memory to store the binary of an ASWC (in kilobyte). Property
reqExecUnitHwPlatform : S→ N0 defines the hardware platform of the execution units, to which in-

stances of an ASWC are allowed to be deployed to, in case ASWCs are not hardware independent
(see also property hwPlatform of execution units, introduced below in this section). The property
minFTT : S→ N+ denotes the minimum of the fault-tolerance times of an ASWC for its different

safety goals (see also section 2.5.2). The minFTT defines how quickly (in ms) a loss of an ASWC has to
be recovered by enabling a slave instance of the ASWC to become the new master instance, such that a
temporarily loss of the ASWC has no negative effect onto the availability of the realized functional features.
The minFTT property is used to decide if a hot-standby slave has to be established, or if a cold-standby
slave is sufficient, in case redncy(s)> 0. The minFTT of ASWCs could also be removed from the input
model and instead derived from the minFTT of the realized features. Property domain : S→ N0 defines
the functional domain of the ASWC. With this property, it can be controlled that ASWCs are put into
different domain specific ASWC-Clusters, like powertrain or chassis domain of a vehicle, although the
ASWCs may have identical ASIL and redundancy (fail-operational) requirements. If the domain property
is not useful for a system under analysis, it can be set to an identical value for all ASWCs.

We assume that all ASWCs have a single entry-point operation, which becomes executed by a scheduler
periodically in fixed execution cycles, and that all ASWCs are executed with the same rate in a common
execution cycle (single rate scheduling). See sections 4.9 and 4.10.2 for a discussion about this.

Ports of ASWCs: Each port of an ASWC si ∈ S has an assigned data-ID property d : PPi→ N+

respectively d : PSi→ N+ , defining the output data published by a port, respectively the input data
subscribed by a port. Hence, d(ppi,k) is the data-ID of the kth publication port of si ∈ S, and d(psi,k) is the
data-ID of the kth subscription port of si ∈ S. A publication port can only be connected to a subscription
port by a communication channel, if the assigned data-IDs are identical, meaning d(ppi,k) = d(ps j,l), with
i, j,k, l ∈ N+. We call an instance of a data-ID a data item.

For each data-ID, we define how much memory space is required to allocate for data items of the
data-ID. We call this amount of memory the weight ω and attach it as property to publication ports
ω : PPi→ N+ , denoting the amount of data that is published by a port per execution cycle. Because the

data-ID (and thereby the weight) of a publication port and a subscription port being connected by a channel

87

4.4. PROPERTIES OF SYSTEM MODEL ELEMENTS

is identical, it is sufficient to model the weight only for the publication ports. We assume a static amount
of data communicated over a channel in each execution cycle, and therefore model a static weight for each
publication port. If the amount is not static during runtime, the weight ω contains the maximum data size.
We write ω(ppi,k) for the weight of the kth publication port of ASWC si. This also denotes the weight of
the communication channels that leave a publication port towards connected subscription ports.

In addition, we assign each publication port an identifier portId : PPi→ N+ . We assign the value
portId(ppi,k) = 1000∗ i+ k to each port ppi,k ∈ PPi of ASWC si ∈ S, modeled as constraint over the
model elements. Within the union set

⋃
si∈S PPi of all publication ports of all ASWCs, the port-identifiers are

unique under the assumption that each ASWC si has at most 999 publication ports. To distinguish optional
and mandatory subscriptions, each subscription port has a property named isOptional : PSi→{0,1} ,
which is 1 if it is optional that the subscription port is connected to a publication port, otherwise 0.

Execution Units E: We assume that all execution units have identical synchronous execution cycles (see
section 2.5.1). Further we assume that all ASWCs have the same execution rate and hence are executed in
every cycle. The property providedTimeBudget : E→ N+ defines the budget of time that an execution unit
provides in each periodic cycle to execute the cyclic callable operation of deployed instances of ASWCs (in
µs). The property providedFlash : E→ N+ defines the amount of flash memory that is provided to store
binary images of ASWCs (in kilobyte). We do not model other types of memory, like RAM or NVRAM.
These can be handled in a similar manner as the time budget and flash. Property hwPlatform : E→ N0
defines the hardware platform of an execution unit, usable to distinguish heterogeneous execution units
having for instance different microcontrollers. Property powerSupply : E→{0,1} defines the power
supply to which an execution unit is connected to [0: Blue power supply, 1: Red power supply]. The
reason is that for instance the RACE concept envisages two power supplies to ensure that not the complete
set of execution units switches off if a single power-supply fails, enabling fail-operational features even in
case of power-supply failures.

4.4.3 Solution Model Properties for Initial Deployment
The solution part of the model are the properties that contain the decision variables of the model, which are
determined by the solver during calculation of the solution, following the given constraints. For instance,
these are the mapping of ASWCs to ASWC-Clusters, the deployment of ASWCs to execution units, the
degradation scenarios resulting from isolations of system elements after assumed failures of these system
elements, but also other variables like the sum of the WCETs of all ASWCs that a actively deployed to a
certain execution unit.

System Configuration Φ: To the already introduced solution properties CM, CO, deploy and map of
the system configuration, we add the property networkTraffic : N0 , containing the amount of data which
is communicated between ASWCs that are actively deployed to different execution units. Hence, the
communication is performed remotely over the network that interconnects the execution units. The amount
of remotely communicated data depends on the deployment of ASWCs to execution units (see deploy), the
selected communication channels between the ASWCs (see CM and CO), as well as the channel weights
ω. We show in section 4.5.1, how the calculation of the network traffic is encoded as a constraint.

Application Software Components S: Each ASWC has a solution property asil : S→{0..4} , defining
its Automotive Safety Integrity Level (ASIL). The values denote [0: Quality Management (QM), 1: ASIL A,
2: ASIL B, 3: ASIL C, 4: ASIL D]. We derive the ASIL of ASWCs by the maximum of the ASILs of those
features, to which an ASWC s∈ S contributes to realize, expressed by constraint asil(s)=max(asil(f) | f ∈

88

4.4. PROPERTIES OF SYSTEM MODEL ELEMENTS

χ−1(s)). We do not consider ASIL decompositions [177]. Property redncy : S→ N0 defines the level
of redundancy, with which an ASWC has to be (at least passively) deployed to the execution units
[redncy(s) = n denotes that s ∈ S has to be deployed n+1 times (passively or actively)]. We derive the
redundancy redncy(s) of an ASWC s ∈ S based on the fail-operational requirements failOp(f) of those
functional features f being in the subset χ−1(s) of functional features to whose realization ASWC s
contributes to. However, in addition we limit the redundancy to be at most |E| − 1, meaning that the
maximum number of redundant instances equals the number of execution units. Hence, we calculate
the derived redundancy level by redncy(s) = min

(
|E|−1,max

(
failOp(f) | f ∈ χ−1(s)

))
, for s ∈ S. See

section 4.10.2 for a discussion about why we limit the redundancy by the amount of execution units.
In case redncy(s)> 0, it has to be decided if a passive cold-standby slave is sufficient or if a hot-standby

slave is required. The benefit of a hot-standby slave is that its internal state and variables are in sync
with the master. A cold-standby slave is started from its initial state and values, leading potentially to a
temporary deviation from users expected behavior. A hot-standby slave is active in the schedule, but its
output data is ignored by the RTE of the system under analysis. Contrary to this, a cold-standby slave is
only passively deployed and not in the schedule. The decision, if a hot-standby slave is required or if a cold-
standby is sufficient, is based on the f aultRecoveryTime of the system and the minimum fault-tolerance
time minFTT(S) of the ASWCs for their different safety goals [35], both given as properties of the input
problem model. The result is captured in the solution property hotStandbySlaveReq : S→{0,1} .

ASWC-Clusters C: The following properties of ASWC-Clusters c ∈C depend on the subset of ASWCs
that are mapped to the cluster. The property asil : C→{0..4} defines the ASIL of a cluster. We ensure
by a constraint that all ASWCs within a cluster do have an identical ASIL, and that the ASIL of the
cluster is derived by the ASIL of the ASWCs mapped to this cluster. Property redncy : C→ N0 defines
the redundancy level of a cluster. We ensure by a constraint that all ASWCs within a cluster do have an
identical redundancy level, and that the redundancy level of the cluster is derived by the redundancy level
of the ASWCs mapped to this cluster. Furthermore, it is ensured by constraints that all ASWCs within a
cluster have an identical requirement regarding if a hot-standby slave has to be established, or if a passive
cold-standby slave is sufficient (see hotStandbySlaveReq(s)).

Communication Channels between ASWCs: More than one matching publication port may exist for a
subscription port in a software architecture. In the input problem model, each subscription port is specified
by a list of matching publication ports, to which it may be connected. We assume in this thesis that
each subscription port shall be connected to at most one publication port. Exactly one communication
channel is established that ends at a mandatory subscription port. At most one communication channel is
established that ends at an optional subscription port. Constraints ensure that in the solution model, exactly
one matching publication port is chosen and a channel is established from the chosen publication port
to the concerned subscription port. We now introduce the resulting solution properties of ASWC ports,
required to encode the above selection mechanism in the formal model.

Ports of ASWCs: Let si ∈ S be an ASWC that sends data via a set of publication ports PPi. Let sk ∈ S
be an ASWC that receives data via a set of subscription ports PSk, with i,k ∈ N+. Each subscription port
psk,l ∈ PSk, with l ∈ N+, has a solution property called chosenMatchingPortId : PSk→ N , which finally
contains the portId of the publication port to which psk,l becomes connected during our synthesis. The
design space for the selection of chosenMatchingPortId(psk,l) is the set of the portIds of publication ports
that have an identical data-ID than psk,l . Formally, this can be expressed as:

chosenMatchingPortId(psk,l) ∈
⋃
si∈S

⋃
ppi, j∈PPi | d(ppi, j)=d(psk,l)

{
portId(ppi, j)

}

89

4.4. PROPERTIES OF SYSTEM MODEL ELEMENTS

When modeling this as a formal constraint for the employed Z3 SMT solver, we use an OR-clause
provided by the Z3 Python API. For each subscription port psk,l ∈ PSk, we setup the following constraint:∨

si∈S

∨
ppi, j∈PPi | d(ppi, j)=d(psk,l)

chosenMatchingPortId(psk,l) = portId(ppi, j)

For instance, for two matching publications ppi, j ∈ PPi and ppm,n ∈ PPm of two publisher software
components si,sm ∈ S with identical data-IDs d(ppi, j) = d(ppm,n) = d(psk,l), it holds that

(
chosenMatchingPortId(psk,l) = portId(ppi, j)

)
∨
(

chosenMatchingPortId(psk,l) = portId(ppm,n)
)

By using the API of the Z3 SMT solver, this can be encoded as

Or
(

chosenMatchingPortId(psk,l) = portId(ppi, j), chosenMatchingPortId(psk,l) = portId(ppm,n)
)

We assume that the determination of matching ports with identical data-IDs is already done before
and encoded as part of the input model. Hence, the OR-clause constraints defining valid values of
chosenMatchingPortId can be created during parsing the input model, based on the possible port matches
encoded in the input model. However, the resulting communication channels between the matching ports
are part of the solution model.

Example for a channel selection: Fig. 4.15 shows an example for a channel selection. The colors of
the ports indicate the data-ID of the publication and subscription ports. Ports with the same color have
matching data-IDs and can be connected by a communication channel.

s1

s2

s3

s4

pp1,1

pp1,2

pp2,1

pp2,2

pp2,3

ps3,1 1001 or 2001

ps3,2 1002 or 2002

ps4,1 2003

d(pp1,1) = 1
portId(pp1,1) = 1001

d(pp1,2) = 2
portId(pp1,2) = 1002

d(pp2,1) = 1
portId(pp2,1) = 2001

d(pp2,2) = 2
portId(pp2,2) = 2002

d(pp2,3) = 3
portId(pp2,3) = 2003

d(ps3,1) = 1

d(ps3,2) = 2

d(ps4,1) = 3

Or
(
chosenMatchingPortId(ps3,1) = 1001, chosenMatchingPortId(ps3,1) = 2001

)
Or
(
chosenMatchingPortId(ps3,2) = 1002, chosenMatchingPortId(ps3,2) = 2002

)
Or
(
chosenMatchingPortId(ps4,1) = 2003

)

possible
channels

Figure 4.15: Example of four ASWCs with some publications and mandatory subscriptions and possible
communication channel candidates

90

4.4. PROPERTIES OF SYSTEM MODEL ELEMENTS

It is shown in the port labels in Fig. 4.15 that pp1,1 and pp2,1 publish data items of the same data-ID
d(pp1,1) = d(pp2,1) = 1 (blue port color). As port ps3,1 subscribes data items of data-ID d(ps3,1) = 1, both
of these publication ports could be connected to ps3,1. As portId(pp1,1) = 1001 and portId(pp2,1) = 2001,
this choice is encoded by

Or
(
chosenMatchingPortId(ps3,1) = 1001,chosenMatchingPortId(ps3,1) = 2001)

)
Also port ps3,2 has two matching publisher candidates. Port ps4,1 has only one matching publication

port pp2,3, whose port identifier is portId(pp2,3) = 2003. The possible channels of subscription ports
ps3,1 and ps3,2 are dashed, as for each of them only one of both possible channels is chosen. For the given
example, four valid channel selections exist, two for ps3,1 times two for ps3,2. All subscription ports are
assumed to be mandatory in this example. Hence, four valid mandatory channel matrices CM exist. One
of them is selected in combination with the calculation of the deployment.

We discuss the channel selection and alternatives for it in more detail in section 4.10.2. Notice that in
the example that was shown in Fig. 4.8 and Fig. 4.12, no such options were contained for choices for the
selection of one out of multiple matching publishers.

If more than one matching publication port matches to a subscription, our approach chooses the most
suitable publication based on optimization objective definitions. With this, a design space is opened for
chosen communication channels and an optimal communication configuration can be configured, choosing
local publishers instead of remote publishers to prefer local communication and to minimize network
traffic. We introduce the used set of optimization objectives in section 4.8. As the optimality of the channel
selection depends on the deployment of ASWCs to execution units, the channel selection and deployment
decision are done in unison.

Finally our approach checks if all mandatory subscriptions can be serviced by publications. If not,
there is no valid solution to the deployment problem. Even if matching publications are present, it might
happen that the deployment constraints in connection with constraint networkTraffic≤maxNetworkTraffic
prohibit a valid solution.

Channel Matrices CM and CO: Both channel matrices CM : S×S→ N0 and CO : S×S→ N0 contain
in their cells CM(si,sk) resp. CO(si,sk) the aggregated weights ω : PPi→ N+ of the subset of publication
ports of si ∈ S that are connected to mandatory resp. optional subscription ports PSk of sk ∈ S, formally
expressed by following equation 4.2.

CM(si,sk) = ∑
psk,l∈PSk | isOptional(psk,l)=0

∑
ppi, j∈PPi |~

ω(ppi, j)

~ ≡ chosenMatchingPortId(psk,l) = portId(ppi,j) (4.2)

For CO(si,sk) the equation is similar, but going over the optional subscription ports having property
value isOptional(psk,l) = 1. We express equation 4.2 by a formal constraint as shown in constraint C4.1 in
section 4.5.1.

Execution Units E: For execution units e ∈ E, the amount of used execution time is defined by property
usedTimeBudget : E→ N0 (in µs). For e ∈ E, a constraint ensures that usedTimeBudget(e) becomes the

sum of the WCETs wcet(s) of those ASWCs s ∈ S that are actively deployed onto e. Another constraint
ensures that ∀e∈ E : usedTimeBudget(e)≤ providedTimeBudget(e). Property usedFlash : E→ N0 is the
amount of flash memory which is occupied by the binaries of the ASWCs that are deployed to execution
unit e ∈ E actively or passively (in kilobyte). A constraint ensures that usedFlash(e) becomes the sum of
the required flash memory flash(s) of those ASWCs s ∈ S that are actively or passively deployed onto e.

91

4.4. PROPERTIES OF SYSTEM MODEL ELEMENTS

4.4.4 Solution Model Properties for Failure Scenarios
In this section, we extend the initial solution properties shown in section 4.4.3 with additional properties
with respect to the consideration of degradations and failovers necessary after isolations of failing system
elements.

Our objective is to maximize the value of the active ASWCs in a sense that the ASWCs with the highest
requirements according to safety (asil(S)) and fail-operationality (redncy(S)) will be kept active as long as
possible. ASWCs with low requirements according to these properties are deactivated first if the system
resources become insufficient, for instance after isolations of execution units. To fulfill the mentioned
objective, we introduce so called priority-points that define the importance of a deployed ASWC instance.

Application Software Components S: In order to analyze degradation scenarios that may appear after
failures of ASWCs, property isolated : S→{0,1} defines if an ASWC s ∈ S is assumed to be isolated
in a considered degradation scenario. It is not a typical solution property, but is set during our analysis
depending on the degradation scenario that is analyzed. We introduce in section 4.6 in more detail how we
model and analyze degradation scenarios.

To cover degradation scenarios that might be required after isolations of execution units or ASWC
instances, each s ∈ S has the following properties:

• hotStandbySlaveReq : S→{0,1} indicates if a redundant hot-standby slave is required (already
introduced in section 4.4.3).

• hotStandbySlaveActive : S→{0,1} indicates if a required hot-standby slave can be kept active.
In degradation scenarios, it can be valid that a hot-standby slave is deactivated due to insufficient
resources, depending on the failOp(f) properties of the features f ∈ χ−1(s) for f ∈ F and s ∈ S.

• masterActive : S→{0,1} indicates if one master instance can be kept active in a considered
degradation scenario. In the initial fault-free scenario, all ASWCs have an active master instance. In
degradation scenarios, it is only allowed that no active master instance exists, if the requirements
with respect to fail-operational behavior of the realized functional features f j ∈ χ−1(s) are not
violated.

In order to decide about the order in which ASWC instances should be deactivated in case of insufficient
resources, we assign priority properties to the active ASWC instances. We define a base priority named
prioPoints for each ASWC. We derive this priority depending on the ASIL and the desired redundancy
of an ASWC. The importance of a master and a hot-standby slave is distinguished by introducing two
additional instance specific properties prioPointsMaster and prioPointsHotSlave.

• prioPoints : S→ N0 is a property storing the priority of an ASWC. We derive the priority based
on asil(S) and redncy(S). The reason for taking the ASIL into account is that as higher the safety
integrity level is, the more reliable an ASWC should be, and hence the longer an ASWC should
be kept active. The reason for taking the redundancy into account is that it is derived from the
fail-operational requirements of those functional features that are realized by the considered ASWC.
Hence, we calculate the valuation of prioPoints(s) by ∀s ∈ S : prioPoints(s) = asil(s)+ redncy(s) .
See section 4.10.2 for a discussion about why we calculate prioPoints(s) like this.

• prioPointsHotSlave : S→ N+ is the priority of the hot-standby slave instance of an ASWC. A con-

straint ensures that the value becomes prioPointsHotSlave(s) = prioPoints(s)+1 , but only if a hot-
standby slave is required (hotStandbySlaveReq(s) = 1), otherwise we set prioPointsHotSlave(s) = 0.

92

4.4. PROPERTIES OF SYSTEM MODEL ELEMENTS

• prioPointsMaster : S→ N+ is the priority of the master instance of an ASWC. The master in-
stances are more important than hot-standby slave instances. Hence, we define a constraint ensuring
that ∀s ∈ S : prioPointsMaster(s) = prioPoints(s)+2 .

Execution Units E: The property isolated : E→{0,1} defines if an execution unit e ∈ E is assumed
to be faulty and isolated in a considered degradation scenario. At system runtime, the isolations will be
performed in case a failure of that execution unit has been detected. We introduce in section 4.6 in more
detail how we model and analyze degradation scenarios.

Functional Features F: Each functional feature has a solution property available : F →{0,1} , defin-
ing if a feature f ∈ F is still available in a considered degradation scenario.

System Level Properties in System Configuration Φ: On system configuration level, the property
prioSumAllASWCs : N0 is defined as the sum of the priorities of the actively deployed ASWCs in the

initial deployment without any isolation. Property prioSumActiveASWCs : N0 is the sum of the priority-
points of all ASWC instances that are actively deployed in the current system degradation scenario,
either as master (using prioPointsMaster(s) in the sum) or as hot-standby slave (prioPointsHotSlave(s)).
In degradation scenarios, some ASWC instances may be deactivated, forcing prioSumActiveASWCs to
become smaller than prioSumAllASWCs. The more ASWC instances become deactivated, the smaller
prioSumActiveASWCs becomes, and potentially also the more functional features become unavailable, lead-
ing to a higher system degradation. During the analysis, one objective is to maximize prioSumActiveASWCs
in all degradation scenarios. Hence, features with no fail-operational requirement and a low ASIL will
become unavailable first, as the realizing ASWCs will be deactivated first.

Auxiliary System Level Properties: Furthermore, we add the following auxiliary properties to the
model. We use these properties in the formal constraints to avoid repeated recalculations of the values in
different constraints.

• amountOfIsolatedExecUnits : N0 — amount of isolated execution units, being the amount of those
e ∈ E having property isolated(e) = 1.

• amountOfIsolatedSWCs : N0 — amount of ASWCs which are in state isolated (see section 4.4.5),
being the amount of those s ∈ S having property isolated(s) = 1.

• activeBlueExecUnits : N0 — amount of active execution units, attached to the blue power supply.
This is the amount of those e ∈ E having properties isolated(e) = 0∧powerSupply(e) = 0.

• activeRedExecUnits : N0 — amount of active execution units, attached to the red power supply.
This is the amount of those e ∈ E having properties isolated(e) = 0∧powerSupply(e) = 1.

4.4.5 States of ASWC Instances
Fig. 4.16 shows the different states that ASWC instances might have during runtime, as well as possible
transitions between these states. The cardinalities in the states denote the number of instances of an ASWC
that might have this state simultaneously. For instance, at any time at most one master and at most one
hot-standby slave exists, but several cold-standby slaves may exist.

Notice that in the deployment solution property deploy(s,e) we do not distinguish the passive states.
This means that for all the passive states (’cold-standby slave’, ’deactivated/inactive’ and ’isolated’) it holds

93

4.4. PROPERTIES OF SYSTEM MODEL ELEMENTS

that deploy(s,e) = P. This is sufficient to analyze the system degradation in failure scenarios, and reduces
the complexity. However, the both active states (’master’ and ’hot-standby slave’) are distinguished in
deploy(s,e), as this is necessary to analyze the systems degradation scenarios. In the figures, like in the
examples in sections 4.6.8, 4.6.9 and 4.7.5, we always color the masters in green and the hot-standby
slaves in yellow, to make it easier to distinguish the different component states.

Passive

Active

cold-standby
slave
[0..n]

hot-standby
slave
[0..1]

master
[0..1]

deactivated /
inactive

[0..n]

isolated
[0..n]

12

5

67

4 3

8

Figure 4.16: Software component states

The state transitions in Fig. 4.16 are as follows:

1. A master becomes isolated, if a failure of the master ASWC instance has been detected, to avoid a
propagation of this failure.

2. A master becomes explicitly deactivated, if either not enough resources are left to execute it on the
execution unit to which the master was deployed to, or if mandatory input data items are missing
due to the deactivation or isolation of some other ASWC instance.

3. A hot-standby slave becomes isolated, if a failure of this slave ASWC instance has been detected.
Although the outputs of a hot-standby slave are ignored by the RTE and not forwarded to any
receiver, these outputs can be monitored by the RTE to detect failures.

4. A hot-standby slave becomes explicitly deactivated, if either not enough resources are left to execute
it on the execution unit to which it was deployed to, or if mandatory input data items are missing
due to the deactivation or isolation of some other ASWC instance.

5. A hot-standby slave can become a master, if the former master became isolated or deactivated or
was lost due to the isolation of the execution unit which accommodated it.

94

4.5. SYNTHESIS OF VALID REDUNDANT DEPLOYMENTS

6. A cold-standby slave can become a master, if the former master became isolated or deactivated or
was lost due to the isolation of the execution unit which accommodated it. This is only valid, if
hotStandbySlaveReq(s) = 0, otherwise always the hot-standby slave has to become the new master.

7. A cold-standby slave can become a hot-standby slave, if the former hot-standby slave became a
master or isolated or deactivated.

8. A cold-standby slave becomes explicitly deactivated, if mandatory input data items are missing such
that the cold-standby slave can never be activated anymore due to these missing inputs.

During the transitions shown in Fig. 4.16, we assume that failures (and isolations) are permanent and
hence, e. g., missing data items do not reappear.

A ’cold-standby slave’ and a ’deactivated/inactive’ ASWC will never be explicitly isolated, as no
failure can occur within them because they are not executed and only exist in memory as binary. However,
if the execution unit, onto which an ASWC instance is passively or actively deployed, has a hardware
failure and has to be isolated, then also these ASWC instances are gone. This holds for every of the shown
states. Hence, we do not model the ’gone’ state explicitly, instead we say that the ASWCs that were used
to be deployed onto an isolated execution unit have no state, as the whole execution unit is isolated.

4.5 Synthesis of Valid Redundant Deployments

Depending on the chosen safety and redundancy concept, there might exist a huge set of requirements
with respect to the validity of deployments of ASWCs to execution units, and with respect to the validity
of failover and degradation scenarios. We formalize such requirements by formal constraints, ensuring the
validity of the calculated solutions during our analysis.

Below we introduce how we model formal constraints that formally express informal requirements for
valid redundant deployments. All these constraints must be fulfilled by a valid deployment. We assume the
requirements given from the safety and redundancy concept introduced in section 2.5.2. The redundancy is
built into the deployments to be prepared for possible failure scenarios, which become introduced next in
section 4.6, to ensure fail-operational requirements of functional features.

Syntax used in the formal constraints: The Constraints are shown in a notation close to the API of
the Z3 SMT solver, but somehow shortened for space reasons. To define the constraints, we use two
conditional functions. The first function If(I,T,E) is an if-then-else definition. Parameter I describes an
if-clause. If I is true, then parameter T is used in the constraint, else parameter E. The second function that
we use is the implication Implies(I,T), which is like an If without the else part E. The implication is
true for (¬I∨T). In addition, we use a sum operation, calculating the sum over the listed elements. For
instance, sume∈E(usedTimeBudget(e)) is the sum over the used time budgets of all execution units. We use
sum instead of sign ∑ to avoid confusions with the set of scenarios Σ (see Section 4.6) in the constraints.
Often, we build the sum over conditional statements, using the If(I,T,E) operation within the sum. All
functions are provided by the used SMT-Solver.

4.5.1 Formal Constraints for Valid Redundant Deployments

In this section, we provide some examples showing how informal requirements for the redundant deploy-
ments can be ensured by formal constraints over the formal system model, which we introduced in section
4.2. We write Rx to reference Requirement x, and Cy to reference Constraint y. Comments are annotated
with ’|’ in the listings that show the formal constraints.

95

4.5. SYNTHESIS OF VALID REDUNDANT DEPLOYMENTS

Notice that for completeness, in the following constraints we already use the Failure Scenario parameter
σ ∈ Σ, which we are going to introduce subsequently in Section 4.6 (Def. 15).

Requirement R1 contains information about redundant deployments. It contains sub-requirements that are
ensured separately by constraints C1.1, C1.2 and C1.3.

Requirement 1 ASWCs with a required redundancy level of n have to be deployed n+1 times. From
these redundant instances, at most 2 instances are active, 1 as master, and if required 1 as hot-standby
slave. All other redundant instances are passive initially and may be activated in degradation scenarios.

Constraint C1.1 ensures the correct number of allocations of ASWCs to execution units. The sum is
calculated over a conditional statement. For every passive or active instance of an ASWC s ∈ S on an
execution unit e ∈ E, expressed by deploy(s,e,σ) 6= 0, a one is added to the sum, else a zero. ASWCs with
redncy(s) = n have to be allocated n+1 times (passively or actively).

Constraint 1.1 (R1):
1 ∀s ∈ S : ∀σ ∈ Σ :

2 sume∈E

(
I f
(

de p l oy (s,e,σ) 6= 0,1,0
))

= r ed nc y (s)+1 | degree of redundancy

Constraint C1.2 controls the amount of master instances of each ASWC. If a master instance is present,
it is ensured that it exists exactly once. To deactivate a master, property masterActive(s,σ) has to become
0. Analyzing the value of masterActive(s,σ) enables to give feedback to the user that ASWC s cannot be
executed in the currently considered degradation scenario σ. The hot-standby slaves are handled similarly
in constraint C1.3.

Constraint 1.2 (R1):
1 ∀s ∈ S : ∀σ ∈ Σ :
2 I m p l i e s (m a s t e r A c t i v e (s,σ) = 1 , | if a master is active

3 sume∈E

(
I f (de p l oy (s,e,σ) = M,1,0)

)
= 1 | then exactly 1 master

4)

Constraint 1.3 (R1):
1 ∀s ∈ S : ∀σ ∈ Σ :
2 I m p l i e s (h o t S t a n d b y S l a v e A c t i v e (s,σ) = 1 , | if a hot slave is active

3 sume∈E

(
I f (de p l oy (s,e,σ) = HS,1,0)

)
= 1 | then exactly 1 hot slave

4)

Furthermore, we use the value of masterActive(s,σ) together with the realization relationship χ−1(s) to
determine which functional features can be kept available, see constraint C7.1 in section 4.6.6 below. This
enables to give feedback to the users about the availability of features in the degradation scenarios.

Requirement 2 The master and the hot-standby slave of an ASWC must not be deployed onto two
execution units that are attached to the same power supply. This is required to avoid that master and
hot-standby slave disappear simultaneously in case one of the two power supplies of the assumed system
breaks down. However, in degradation scenarios, not in the initial deployment, there exist exceptions. If
already one power supply failed, or if every single execution unit attached to one power supply failed, then
the master and the hot-standby slave of an ASWC can be deployed onto two execution units attached to
the same power supply.

96

4.5. SYNTHESIS OF VALID REDUNDANT DEPLOYMENTS

Constraint 2.1 (R2):

1 ∀s ∈ S : ∀σ ∈ Σ :
2 I m p l i e s (| if all the following is true:
3 And (h o t S t a n d b y S l a v e R e q (s) = 1 , | hot-slave is required
4 h o t S t a n d b y S l a v e A c t i v e (s,σ) = 1 , | hot-slave is active
5 m a s t e r A c t i v e (s,σ) = 1 , | master is active
6 a c t i v e B l u e E x e c U n i t s (σ) > 0 , | at least 1 blue exec-unit is alive
7 a c t i v e R e d E x e c U n i t s (σ) > 0 | at least 1 red exec-unit is alive
8) , | then:

9 And (sume∈E

(
I f
(
And (powerSupply(e) = 0 , d ep lo y (s,e,σ) ∈ {M,HS}),1,0

))
= 1 ,

10 sume∈E

(
I f
(
And (powerSupply(e) = 1 , d ep lo y (s,e,σ) ∈ {M,HS}),1,0

))
= 1

11)
12)

Constraint C2.1 ensures the one aspect of valid initial deployments, described in R2. With deploy(s,e,σ)∈
{M,HS} we express an active deployment, either as master (M) or as hot-standby slave (HS). Furthermore,
C2.1 contains the described exception. The exception is handled by the two auxiliary properties ’activeBlue-
ExecUnits’ and ’activeRedExecUnits’, which were introduced in section 4.4.4. These properties count the
amount of active execution units, attached to the blue respectively the red power supply. Hence, constraint
C2.1 must only hold if at least one blue and one red execution unit is active. The situation, if either all red
or all blue execution units are isolated, is handled by an additional constraint, not shown here.

Requirement 3 The amount of remote communication data, communicated over the network, must not
exceed a given threshold per execution cycle. Hence, deployments should be determined that prefer local
communication.

Constraint C3.1 calculates the amount of network traffic for each scenario, arising from remote commu-
nication channels between active ASWCs deployed to different execution units. Notice that the published
output data of hot-standby slaves is assumed to be not sent to the subscribers, but only the published output
data of masters (see line 5). But the subscribed input data must be provided for both hot-standby slaves
and masters (line 6-7). If the communication between a master of a publisher and the hot-standby slave
or the master of a subscriber is remote, then the weight of the corresponding mandatory and optional
communication channels has to be added to the network traffic (line 10). Constraint C3.2 ensures that the
network traffic never exceeds a given threshold.

Constraint 3.1 (R3):

1 ∀σ ∈ Σ :
2 n e t w o r k T r a f f i c (σ) = sumsi ,sk∈S sumex ,ey∈E (
3 I f (| if the following is true:
4 And (ex 6= ey , | two different execution units
5 de p l oy (si,ex,σ) = M, | si is master on ex
6 Or (d ep l oy (sk,ey,σ) = M, | sk is master on ey
7 de p l oy (sk,ey,σ) = HS | or sk is hot-slave on ey
8)
9) ,

10 CM(si,sk)+CO(si,sk) , | then: channels from si to sk use network
11 0 | else: channels from si to sk are local
12)
13)

97

4.6. ANALYSIS OF FAILURE EFFECTS

Constraint 3.2 (R3):

1 ∀σ ∈ Σ :
2 n e t w o r k T r a f f i c (σ) ≤ maxNetworkTra f f i c

Another constraint ensures that optional channels are only removed if the publisher ASWC has to be
deactivated due to a failure or insufficient resources, but not removed just to decrease network traffic.

Notice that in the example shown in section 4.6.9, the solution was calculated without the above
objective to minimize the remote network communication. When we activate the minimize objective for
the network traffic, we can analyze how the degradation behavior changes.

Requirement R4 defines the values of the cells in the mandatory channel matrix. The requirement for the
optional channel matrix is omitted here, as it is very similar.

Requirement 4 The mandatory channel matrix CM : S×S→ N0 shall contain in its cells CM(si,sk) the
aggregated weights ω : PPi→ N+ of the subset of publication ports PPi of si ∈ S that are connected to
mandatory subscription ports of PSk of sk ∈ S.

Constraint C4.1 ensures that the solution model adheres to requirement R4. The constraint is equivalent
to equation 4.2, introduced in section 4.4.3.

Constraint 4.1 (R4):

1 ∀si,sk ∈ S :
2 CM(si,sk) = sumppi, j∈PPi sumpsk,l∈PSk (
3 I f (| if the following is true:
4 And (
5 chosenMatchingPortId(psk,l) = portId(ppi,j) , | ppi, j connected to psk,l
6 isOptional(psk,l) = 0 | psk,l is mandatory
7) ,
8 ω(ppi, j) , | then: add weight ω(ppi, j)
9 0 | else: add nothing

10)
11)

4.5.2 Examples

We show later in sections 4.6.8, 4.6.9 and 4.7.5 three examples. For each example we show synthesized
valid redundant deployments, each both for an initial failure free situation, as well as several follow-up
deployments for assumed failure scenarios.

4.6 Analysis of Failure Effects

In this section, we introduce our basic concept of failure effect analysis. We assume permanent failures
of execution units and software components. We assume that these failures are detected by the RTE of
the system under analysis, and that the RTE provides a mechanism to isolate the failed elements from the
residual system (see also section 4.9.2). We consider different failure scenarios and analyze the resulting
level of degradation, the fulfillment of all fail-operational requirements of functional features, and needed
failovers between redundantly deployed software components.

98

4.6. ANALYSIS OF FAILURE EFFECTS

4.6.1 Scenarios
We extend the formal model by so called scenarios, representing different situations that may appear in the
system runtime. We use the scenarios to express different situations of failing system elements. The failing
system elements become isolated by the RTE of the system. If the failure scenario leads to a degradation
of the available set of functional features of the system, we also call it degradation scenario. If a failover
has to be performed in a scenario to keep available a fail-operational functional feature, we also call it
failover scenario. Combined, we also call it degradation/failover scenario.

Definition 15 – Scenarios: We define Σ as a finite set of identifiers of scenarios, and σ ∈ Σ as a single
identifier of a scenario.

This means, the finite set Σ = {σ0,σ1, ...,σm} , with m ∈ N, contains the scenarios that we consider
during our analysis. Element σ0 ∈ Σ represents the initial scenario without any assumed failure and hence,
without any isolation. The σi ∈ Σ with i ∈N+ represent the scenarios in which some execution units and/or
software components are assumed to fail and become isolated, forcing consequently degradations and/or
failovers to may be necessary. We define Σ+ = Σ\{σ0} to be the set of potential degradation/failover
scenarios. However, notice that due to the analysis result, it may be the case that for some σ ∈ Σ+ no
degradation or failover is necessary, depending on the assumed failure in a scenario and the synthesized
deployment of software components to execution units.

4.6.2 The Scenario Graph
Based on the finite set Σ of scenarios, we construct possible transitions between the scenarios.

Definition 16 – Transitions between Scenarios: We define T : Σ×Σ+→{0,1} as a transition relation
between two scenarios.

A scenario transition T (σi, σk) represents a transition from a scenario σi ∈ Σ towards a successor
scenario σk ∈ Σ+, with i ∈ N0 and k ∈ N+. If T (σi, σk) = 1, there exists a transition from σi to σk,
otherwise not.

As we do not considerer healing of already isolated system elements, the transitions build a directed acyclic
graph. We call this the scenario graph, as introduced below.

Definition 17 – Scenario-Graph (SG): Let the finite set Σ represent the nodes (alias vertexes) of a
graph. Let the scenario transitions T represent the edges between the nodes of a graph. We introduce a
Scenario-Graph (SG) as a directed acyclic graph SG = (Σ, T) .

For the scenario nodes Σ, we introduce a property label : Σ→{P (E ∪S)} . The label values are
constructed as follows. Let EF ⊂ E be the set of isolated failed execution units in a specific hardware
failure scenario σ ∈ Σ. Let SF ⊂ S be the set of isolated failed software components in a specific software
failure scenario σ ∈ Σ. This means that EF = {e ∈ E | isolated(e) = 1} and SF = {s ∈ S | isolated(s) = 1}.
The label property represents for each graph node the union set of non-isolated execution units EA= E \EF
and non-isolated software components SA = S\SF.

The edges T describe transitions between scenario nodes. A transition in SG happens due to an
isolation of a failed execution unit, or due to an isolation of a failed software component, meaning that an
e∈ E moves from EA to EF, respectively a s∈ S moves from SA to SF. Also the scenario transitions have a
label property label : T →{E ∪S} , representing the execution unit respectively the software component,
that is assumed to fail at this transition.

99

4.6. ANALYSIS OF FAILURE EFFECTS

Example: Isolation Scenarios of Execution Units: Let us consider a set of scenarios of failing execu-
tion units. We ignore failures of software component in this example. Fig. 4.17(a) shows an example
hardware architecture with four execution units 3, which are by example attached to two different power-
supplies (red and blue). When considering only one subsequently isolation, we obtain a set of five scenario
nodes Σ = {σ0,σ1,σ2,σ3,σ4}. The scenario graph SG looks like shown in Fig. 4.17(b). The nodes are
labeled with the set of alive execution units EA⊆ E. The edges are labeled with that execution unit e ∈ E,
which has recently been failed and isolated. The red color in the text in the node labels denote those
execution units which are attached to the red power-supply.

e1

e4

e2

e3

Blue
Power Supply

Red
Power Supply

B R

Ethernet

(a) An example Central Platform Computer
(CPC) with 4 execution units

e1,e2,e3,e4

e2, e3, e4 e1, e3, e4 e1, e2, e4 e1, e2, e3

- e1 - e2 - e3 - e4

σ0

σ1 σ2 σ3 σ4

T(σ0, σi)

(b) Example scenario graph SG with isolations of any
single one execution unit

Figure 4.17: Example Scenario-Graph (SG)

We consider the scenario in which a power-supply (R,B) breaks down, leading to the simultaneous
disappearance of the entire subset of execution units attached to this power-supply, as a common-cause
failure of all of these execution units. This means, we set the isolated(ei) flag to true for all execution
units that are attached to the power-supply which is assumed to fail. Based on this, the failure effect
analysis is performed. Hence, we consider a breakdown of a power-supply as multiple isolations of
all attached execution units. Otherwise, our definition of levels of fail-operationality cannot be applied,
which says that if failOp(f)> 0, then feature f ∈ F must be kept available with full-fledged functionality
during the first failOp(f) failures of any one execution unit or ASWC (see section 4.4.2). If we would
consider a power-supply breakdown as a single failure during our analysis, this definition would not hold,
as potentially multiple redundant spare components disappear simultaneously in case of a power-supply
breakdown.

During the failure effect analysis, we calculate the deployment matrix deploy for different scenarios of
isolations of execution units or ASWCs. In case of a required degradation due to insufficient execution
resources or mandatory input data, master instances of ASWCs are deactivated, meaning that entries of
matrix deploy with value deploy(s,e) = M disappear. By analyzing the values of the matrix deploy and the
realization relationships χ−1 between ASWCs and functional features in the nodes of the scenario graph,
the consequential level of system degradation for each scenario can be determined by analyzing which
features can be kept available.

During our analysis, we define the members of Σ usually as all scenarios up to a certain amount of
isolations, but Σ could also be defined as part of the input model.

3This hardware architecture conforms to a Central Platform Computer (CPC) according to the system architecture concept
developed in the RACE project (see section 2.5)

100

4.6. ANALYSIS OF FAILURE EFFECTS

Example: Degradation after an isolation of an execution unit: For a second example, lets assume
a set of only two execution units E = {e1,e2}. When considering only failures of execution units and
ignoring failures of ASWCs in this example, we obtain a set of three scenarios Σ = {σ0,σ1,σ2} and two
scenario transitions T (σ0,σ1) and T (σ0,σ2). In scenario σ1, execution unit e1 is assumed to fail and to
become isolated. In σ2, this is assumed for e2.

Fig. 4.18 shows how an initial deployment in scenario σ0 may alter in case of a scenario transition
T (σ0,σ2). During the transition, a failover is applied to keep a fail-operational feature available, and a
degradation is applied due to a necessary deactivation of another feature because of insufficient resources.
In the successor scenario σ2, execution unit e2 becomes isolated, due to an assumed detected hardware
failure of that unit. Two functional features F = { f1, f2} exist, realized by three ASWCs S = {s1,s2,s3}
(as also the case in the example in Fig. 4.10 and Fig. 4.11). Feature f2 has a fail-operational requirement
failOp(f2) = 1, feature f1 has no fail-operational requirement.

In σ2, the passive cold-standby slave of ASWC s3 on e1 has to be activated, because the former master
on e2 is lost. Assuming that s1, s2 and s3 cannot run simultaneously on e1 due to resource constraints, s1
and s2 become passivated to free resources to execute s3. This is allowed as s1 and s2 realize features that
have no requirement to be available after a failure (χ−1(s1) = { f1}, χ−1(s2) = { f1} and failOp(f1) = 0).
As s1 and s2 become passivated, feature f1 cannot be provided anymore and becomes unavailable.

We mark the lost system elements with a red cross. The system element, which was initially isolated due
to a detected failure, is marked with a black flash symbol, like e2 in Fig. 4.18.

Notice that all requirements concerning fail-operationality are met in this example. It is ensured by
formal constraints in our model, that no ASWC instance is active anymore on an isolated execution unit.

4.6.3 Extensions of Model Properties to Cover the Scenarios

In order to analyze the different scenarios σ ∈ Σ, we add the parameter Σ to all solution properties that
vary in the different scenarios, see listing 4.1.

F u n c t i o n a l F e a t u r e s :
a v a i l a b l e : F×Σ→{0,1}

ASWCs:
h o t S t a n d b y S l a v e A c t i v e : S×Σ→{0,1}
m a s t e r A c t i v e : S×Σ→{0,1}
i s o l a t e d : S×Σ→{0,1}

E x e c u t i o n U n i t s :
usedTimeBudget : E×Σ→ N0
i s o l a t e d : E×Σ→{0,1}

System C o n f i g u r a t i o n :
de p l oy : S×E×Σ→{0,P,M,HS}
prioSumActiveASWCs : Σ→ N0
n e t w o r k T r a f f i c : Σ→ N0
a m o u n t O f I s o l a t e d E x e c U n i t s : Σ→ N0
amountOfIsola tedSWCs : Σ→ N0
a c t i v e B l u e E x e c U n i t s : Σ→ N0
a c t i v e R e d E x e c U n i t s : Σ→ N0

101

4.6. ANALYSIS OF FAILURE EFFECTS

c2c1

e1
s1 (Active Master)
s2 (Active Master)
s3 (Passive Cold-
Standby Slave)

e2
s3 (Active Master)

s1
redncy=0

s2
redncy=0

s3
redncy=1

Passive
Cold-Slave

Active
Master

Active
Master

f1
failOp=0

f2
failOp=1

Active
Master

Isolated
DeactivatedActive

Master

c2c1

e1
s1 (Deactivated)
s2 (Deactivated)

s3 (Active Master)

e2
 s3

s1
redncy=0

s2
redncy=0

s3
redncy=1

f1
failOp=0

f2
failOp=1

Deactivated

deploy

s1 M 0
s2 M 0
s3 P M

e1 e2

deploy

s1 P 0
s2 P 0
s3 M P

e1 e2

Scenario Transition T(σ0, σ2)
Failover of s3 in case of isolation of e2

Scenario σ0 Scenario σ2

Figure 4.18: Example of a system degradation after an execution unit isolation

Listing 4.1: Solution properties that get extended by scenario identifier Σ

This means, the respective properties introduced in sections 4.4.3 and 4.4.4 become extended with the
scenario parameter, as their value may become different in different scenarios.

4.6.4 Procedure to Analyze the Scenario Graph
Each node in the scenario graph SG represents a degradation scenario, or a failover scenario, or a
combination of both. We talk about degradation/failover scenarios. When analyzing these scenarios, we
have two options.

1. We could solve each scenario separately by calculating one solution for each node of the graph by
the SMT solver. When doing this, we have to save some solution properties of the initial deployment

102

4.6. ANALYSIS OF FAILURE EFFECTS

and fix them for the solutions of the degraded follow-up deployments. This is necessary to avoid
undesired effects at the transitions between the graph nodes, like undesired migrations of ASWCs
between execution units. The benefit is that we can obtain valid solutions for all nodes where this is
possible, and maybe no result for nodes where the solver identifies the input problem as unsatisfiable.
However, the drawback is that solving and analyzing each graph node separately offers a quite bad
total performance. The reason is that we need to add an algorithm that traverses all graph nodes,
setup the constraints for the actual node in the SMT input model, solve the model, parse the solution,
store those solution properties that have to be taken over to the next graph node, traversing to the
next graph node, setup a new SMT input model, and so on and so forth. Even though the Z3 SMT
solver provides push() and pop() operations for models, therewith a common base model can be
kept and not always the entire model has to be constructed from scratch, this is quite inefficient.

2. We can calculate the whole scenario graph at once. To do this, we have to avoid undesired changes
at the transitions by defining appropriate additional constraints. Those solution properties which
vary in different scenarios, like the deployment of ASWCs and the availability of functional features,
have to be extended by a scenario identifier to distinguish the different solutions for the different
scenarios. We showed in previous section 4.6.3 which properties are concerned by this. The benefit
is that the solutions can be calculated more efficient. The drawback is that as soon one node in the
graph becomes unsatisfiable, the whole graph problem becomes unsatisfiable, as long as we do not
introduce so called soft constraints that relax some constraints such still a solution for the whole
graph problem can be found, but indicating that for some nodes not all constraints could be hold
strongly. We show in section 4.6.7, how soft constraints can be modeled.

4.6.5 Formal Constraints for Valid Failovers and Degradations

In section 4.5.1, we introduced the basic formal constraints that ensure the calculation of valid redundant
deployments. In this section, we introduce additional constraints for valid degradation and failover
scenarios.

The formal model is solved for the initial situation σ0 and also for the degradation scenarios σ j with
j ∈ N+. For each scenario transition σi→ σk, with i ∈ N0 and k ∈ N+, some solution properties of the
previous scenario σi are used as fixed properties for the follow-up scenario σk, in order to avoid undesired
changes in the solution, like migrations of ASWCs between execution units. This is ensured by constraints.

Before we start, we introduce how we calculate the auxiliary properties for the degradation scenarios,
which were introduced in section 4.4.4. The values of these properties are be calculated as follows.

1 ∀σ ∈ Σ :
2 a m o u n t O f I s o l a t e d E x e c U n i t s (σ) = sume∈E

(
i s o l a t e d (e,σ)

)
3

4 amountOfIsola tedSWCs (σ) = sums∈S
(

i s o l a t e d (s,σ)
)

5

6 a c t i v e B l u e E x e c U n i t s (σ) =

7 sume∈E

(
I f
(
And (powerSupply(e) = 0, i s o l a t e d (e,σ) = 0),1,0

))
8

9 a c t i v e R e d E x e c U n i t s (σ) =

10 sume∈E

(
I f
(
And (powerSupply(e) = 1, i s o l a t e d (e,σ) = 0),1,0

))
We now discuss some requirements for valid degradations, as well as how we ensure them by formal

constraints over the introduced system model.

103

4.6. ANALYSIS OF FAILURE EFFECTS

Requirement 5 If the execution unit, to which the master instance of an ASWC is deployed to, becomes
isolated due to a failure, and if a hot-standby slave was active on another execution unit before, then the
hot-standby slave becomes the new master. No other inactive cold-standby slave should become the new
master in this case.

Constraint C5.1 ensures requirement R5. The constraint describes the transition T (σi,σk) from a
scenario σi ∈ Σ to a successor scenario σk ∈ Σ+.

Constraint 5.1 (R5):

1 ∀s ∈ S :
2 ∀ex,ey ∈ E :
3 ∀σi,σk ∈ Σ wi th T (σi,σk) = 1 :
4 I m p l i e s (| if all the following is true:
5 And (de p l oy (s,ex,σi) = M, | s is master on ex in scenario σi
6 de p l oy (s,ey,σi) = HS , | s is hot slave on ey in scenario σi
7 i s o l a t e d (ex,σk) = 1 , | ex becomes isolated in scenario σk
8 i s o l a t e d (ey,σk) = 0 , | ey is still operating in scenario σk
9 m a s t e r A c t i v e (s,σk) = 1 | master of s is still active in scenario σk

10) , | then:
11 de p l oy (s,ey,σk) = M | s on ey becomes new master in σk
12)

Similar requirements and formal constraints exist for the activation of a new hot-standby slave, and for
the switch of a cold-standby slave to become the new master, in case no hot-standby slave is required. We
do not show them here, as C5.1 shows the principle how this can be encoded in formal constraints.

Other constraint exist, e. g., to ensure that the master instance of an ASWC does not migrate to another
execution unit in a follow-up deployment during a scenario transition, if the execution unit to which the
master was initially deployed is still alive. Also the definition of the degradation scenarios, meaning which
execution unit and which software component is set to isolated(e,σ) = 1 respectively isolated(s,σ) = 1
in which scenario σ ∈ Σ, is done by a constraint. Furthermore, additional constraints might be desired to
be added to optimize the degradation scenarios. For instance, if an ASWC si is active, but all features
f j ∈ χ−1(si) are already unavailable because some other ASWCs sk ∈ χ(f j) became deactivated, and if
no other required ASWC depends mandatorily on data published by si, then also si can be deactivated in
order to make efficient use of resources. Another optimization to make efficient usage of resources in
degradation scenarios is to deactivate the hot-standby slave of a fail-operational feature, if the feature is
allowed to become unavailable after the next failure of a system element. The hot-standby slave is no more
mandatorily in this case.

In addition to this, we formalize certain constraints to calculate helper properties, required to perform our
analysis. One of these is the property prioSumActiveASWCs, as described below.

Requirement 6 As a helper requirement for our analysis approach, we require for each considered failure
scenario the calculation of a sum of the priority points of those application software components which are
actively deployed in that scenario, either as master or as hot-standby slave.

Constraint C6.1 ensures the calculation of a property named prioSumActiveASWCs for each failure
scenario σ ∈ Σ, which represents requirement R6.

Constraint 6.1 (R6):

1 ∀σ ∈ Σ :
2 prioSumActiveASWCs (σ) = sums∈S sume∈E

(
104

4.6. ANALYSIS OF FAILURE EFFECTS

3 I f (d ep lo y (s,e,σ) = M, | if s is master on e in scenario σ

4 p r i o P o i n t s M a s t e r (s) , | then add prioPointsMaster(s)
5 I f (dep lo y (s,e,σ) = HS , | else if s is hot-slave on e in scenario σ

6 p r i o P o i n t s H o t S l a v e (s) , | then add prioPointsHotSlave(s)
7 0 | else add 0
8)
9)

10
)

4.6.6 Formal Constraints to Analyze Feature Availability
Below we describe how we trace between ASWCs and functional features in the constraints, allowing to
analyze the effects of isolations or deactivations of ASWCs onto the availability of the realized functional
features in each degradation scenario.

Requirement 7 If at least one of the ASWCs s ∈ χ(f), which realize a feature f ∈ F , has no active
master instance anymore in the current degradation scenario σ ∈ Σ, then the feature f has to be marked as
non-available in σ.

Constraint 7.1 (R7):

1 ∀ f ∈ F : ∀s ∈ χ(f) : ∀σ ∈ Σ :
2 I m p l i e s (m a s t e r A c t i v e (s,σ) = 0, a v a i l a b l e (f ,σ) = 0)

Analyzing the value of available(f ,σ) enables to give feedback to the user about the availability of
functional feature f in scenario σ, and thereby to determine the level of required degradation of the set of
available functional features in scenario σ. Another constraint ensures that features are only allowed to
become non-available, if their fail-operational requirement does not become violated due to this.

In addition, we model an optimization objective, defining that the sum of available features has
to be maximized in each scenario. Hence, during calculating the solutions, the solver only sets those
available(f ,σ) to 0, for which it is necessary due to constraint C7.1. See section 4.8 for the definitions of
the optimization objectives.

Requirement 8 A feature f ∈ F is only allowed to become non-available in a degradation scenario, if
the number of already appeared failures of system elements (execution units and/or ASWCs) is higher
than the fail-operational level failOp(f) of the feature. This means, only after at least x+1 isolations of
execution units and/or ASWCs, a functional feature f having failOp(f) = x is allowed to become inactive.
Here, isolations of ASWCs due to detected failures at their interface-behavior are meant, not explicit
deactivations of ASWCs due to insufficient resources. However, one exception are degraded features as
introduced in section 4.7. A degraded feature f ′ is always non-available as long as the related feature
f = degf−1(f ′) is available.

Constraint C8.1 handles the availability of full-fledged features, and constraint C8.2 handles the avail-
ability of degraded features. Both take care to adhere to the fail-operational requirements.

Constraint 8.1 (R8):

1 ∀ f ∈ F : ∀s ∈ χ(f) : ∀σ ∈ Σ :
2 I m p l i e s (| if all the following is true:
3 And (degf−1(f) =−1, | f is not a degraded feature
4 f a i l O p (f) ≥ (a m o u n t O f I s o l a t e d E x e c U n i t s (σ)

105

4.6. ANALYSIS OF FAILURE EFFECTS

5 + amountOfIsola tedSWCs(σ))
6) , | then:
7 a v a i l a b l e (f ,σ) = 1 | f must be available in σ

8)

As the solver has to assign a value to each property, we use the value −1 to represent the ⊥ of the
codomain degf−1 : F → F ∪{⊥}, as no functional feature has the identifier −1.

Constraint 8.2 (R8):

1 ∀ f , f ′ ∈ F : ∀σ ∈ Σ :
2 I m p l i e s (| if all the following is true:
3 And (degf(f) = f ′, | f ′ is the degraded version of f
4 degf−1(f ′) = f , | f is the full-fledged version of f ′

5 a v a i l a b l e (f ,σ) = 0, | f is no more available in σ

6 f a i l O p (f ′) ≥ (a m o u n t O f I s o l a t e d E x e c U n i t s (σ)
7 + amountOfIsola tedSWCs(σ))
8) , | then:
9 a v a i l a b l e (f ′,σ) = 1 | f ′ must be available in σ

10)

The above shown informal requirements and related formal constraints show only a subset of the constraints
necessary to perform our failure effect analysis approach.

The motivation is to illustrate how formal constraints can be expressed based on our formal model.
Depending on the requirements for redundant deployments, failover mechanisms, valid degradation
scenarios, etc, the constraints can be adapted to the needs of the requirements of the system under analysis.

4.6.7 Relaxation of Constraints to Localize Problems
In case the input problem has an incorrect design that does not enable to fulfill all fail-operational
requirements in all degradation scenarios, it is beneficial to obtain an indication about which parts of the
input model, like which functional features or which ASWC instances on which execution units, are the
reason for the problem.

If the whole set of constraints are hard constraints, meaning that they must be fulfilled in order to
obtain any valid solution from the solver, then the solver would return an unsat for the problem, denoting
that the problem was unsatisfiable. This gives no clue about the reason for why no solution was found.

Hence, we classify some constraints as soft constraints to allow the solver to ignore these constraints, if
this is necessary to find any valid solution. However, if this happens, we need an information about which
constraints cannot be satisfied, in order to identify the set of related system elements and give feedback
about parts of the architecture that might be required to become improved.

Traditional SMT solvers without optimization support are able to return a so called unsatisfiable core
(unsat core), if not all constraints can be satisfied [83]. The unsatisfiable core contains the constraints that
hinder the solver to find a valid solution. To be helpful, the unsatisfiable cores are aimed to be as small as
possible.

However, the recent version of the Z3 SMT solver with support of optimization objectives [52] does
not support unsatisfiable cores anymore, as there would not be any way to satisfy objectives when the
hard constraints are unsatisfiable. Hence, we model a subset of the constraints as soft constraints, using
implications from boolean variables onto constraints.

106

4.6. ANALYSIS OF FAILURE EFFECTS

We define a boolean constraint tracking property softConstraintTracker : N×Σ→{0,1} , where the first
parameter i ∈ N is an unique natural number identifier of a soft constraint (without ∀ quantifiers), and the
second parameter denotes the considered degradation scenario.

Implies
(

softConstraintTracker(i,σ) = 1︸ ︷︷ ︸
antecedent

, <Constraint>︸ ︷︷ ︸
consequent

)
The following requirement and soft constraint gives a simple example.

Requirement 9 If an ASWC is required to be deployed redundantly and if a hot-standby slave is required
for this ASWC, then the hot-standby slave should be active as long as the amount of isolated execution
units is smaller than the required level of redundancy.

If the amount of isolated execution units equals the redundancy level of the ASWC (redncy(s) =
amountOfIsolatedExecUnits(σ)), then it may be the case that only one single instance of the ASWC is
left (as master or deactivated). However, due to insufficient resources, it may happen that the hot-standby
slave becomes deactivated earlier, in order to keep active master instances of other ASWCs. This should
be recognizable by the analysis approach.

Given an ASWC s ∈ S, a degradation scenario σ ∈ Σ, and a natural number i ∈ N that is unique in
the scope of scenario σ, we define the soft constraint C9.1 for requirement R9. As the constraint naturally
contains an implication, we embed the tracking property into the antecedent of the implication using an
and operator. We could have also modeled a new implication around the present implication.

Constraint 9.1 (R9):
1 I m p l i e s (
2 And (s o f t C o n s t r a i n t T r a c k e r (i,σ) = 1,
3 r ed nc y (s) > (a m o u n t O f I s o l a t e d E x e c U n i t s (σ)
4) ,
5 h o t S t a n d b y S l a v e A c t i v e (s,σ) = h o t S t a n d b y S l a v e R e q (s)
6)

Hence, if the original constraint without the tracker cannot be satisfied in a scenario, then the solver
can set the tracker to become 0, with the effect that the constraint is satisfied. Due to this, the solver is
able to return a valid solution, in which the tracker is set to 0. The set of boolean tracker properties being
equal to 0 enables to identify the soft constraints that could not be satisfied in the solution, and via this to
identify the architecture elements (e. g., the software components) that are involved in the constraints. The
set of unsatisfied soft constraints is also called the correction set [51] [49].

In order to avoid that trackers of soft constraints are set to 0 by the solver without the explicit
justification that the problem would be unsatisfiable otherwise, we define an objective to minimize the
amount of soft constraint trackers having value 0. In other words, we maximize the amount of trackers
having value 1.

1 ∀σ ∈ Σ :

2 maximize
(

sumi∈N
(

I f (s o f t C o n s t r a i n t T r a c k e r (i,σ) = 1,1,0)
))

However, there exist also other optimization objectives as part of our analysis approach. When defining
multiple optimization objectives for a problem, a trade-off between these objectives has to be accepted.
We show in section 4.8 how we handle the multiple objectives. The above mentioned maximization for the
softConstraintTracker is represented by objective O6 in section 4.8.

107

4.6. ANALYSIS OF FAILURE EFFECTS

4.6.8 Example A – Basic Example
In this section we show the applicability of our approach on a first simplified example, applied to an
automotive context. The example was also more briefly discussed in [38].

Input Problem Properties for the Example: Table 4.2 shows a set of functional features, as well as a
set of ASWCs realizing these features, inclusive certain input model properties.

Table 4.2: Example set of functional features and the realizing ASWCS
with some of the predefined properties

Feature fi as
il(

f i)

fa
ilO

p(
f i)

ASWCs si of χ(fi) as
il(

s i
)

re
dn

cy
(s

i)

w
ce

t(
s i

)i
n

m
s

f1 : Infotainment QM 0 s1 : Infotainment QM 0 2.0
f2 : Energy-
Management

A 0 s2 : RemainingRangeCalc
s3 : EnergyEfficiencyAssist

A
A

0
0

0.7
0.3

f3 : ADAS-A C 0 s4 : AdasSwc1
s5 : AdasSwc2

C
D

0
1

1.7
1.0

f4 : ADAS-B D 1 s5 : AdasSwc2 D 1 1.0
f5 : Manual-
Driving

D 3 s6 : ManualAcceleration
s7 : ManuelBraking
s8 : ManualSteering

D
D
D

3
3
3

1.0
1.0
0.5

The realization relationship χ(fi) between functional features and ASWCs is visualized in Fig. 4.19.
Notice that s5 contributes to realize two features f3 and f4. Due to this, the ASIL of s5 is derived as the
maximum ASIL of these two features, which is ASIL D. Furthermore, as failOp(f4) = 1, the redundancy
is redncy(s5) = 1.

Features
f1 f2 f3 f4 f5

χ(fi)

ASWCs
s1 s2 s3 s4 s5 s6 s7 s8

Figure 4.19: Realization relationship χ(fi) between functional features and ASWCs for the example of
Table 4.2

The features f3 and f4 are placeholders for some Advanced Driver Assistance Systems (ADAS), like
an ACC or automatic parking. Feature f4 is required to be kept available after one failure (failOp(f4) = 1),
but f3 is not required to be kept available after one failure (failOp(f3) = 0). As ASWC s5 contributes
to realize both f3 and f4, it has redncy(s5) = 1 to provide enough redundancy required to ensure the
fail-operational behavior of f4. As ASWC s4 only realizes f3, it is sufficient that redncy(s4) = 0.

108

4.6. ANALYSIS OF FAILURE EFFECTS

In this example, five ASWC-Clusters {c1, ...,c5} are established. The cluster mapping matrix map is
shown below. Empty cells represent a zero. Notice that s5 is only in one cluster, although it contributes to
two features.

Table 4.3: Cluster mapping matrix map(si,c j)

c1 c2 c3 c4 c5

s1 1
s2 1
s3 1
s4 1
s5 1
s6 1
s7 1
s8 1

We consider a hardware architecture with four execution units, like shown in Fig. 4.17(a). As provided
execution time per cycle of the execution units ei ∈ E, we assume totalTimeBudget(ei) = 4ms. We assume
in this example that minFTT(si)≤ faultRecoveryTime for all ASWCs si ∈ S. Hence, if redundant instances
of an ASWC are required, there has to exist a hot-standby slave (hotStandbySlaveReq(si) = 1).

Calculated Initial Deployment (Scenario σ0): In the initial deployment (scenario σ0), all master
instances and all required hot-standby slave instances can be deployed, see Fig. 4.20. The colors (red/blue)
of the execution units denote their attached power-supply. The colors (blue/yellow/white) of the ASWC
instances denote their state (cf. Fig. 4.16 in section 4.4.5). The labels of the ASWCs si contain their
WCET in milliseconds ms. The labels of the ASWC-Clusters ci contain the ASIL (middle value, e. g., QM
or D) and the redundancy level (bottom value, e. g., 0 or 1) of the ASWCs of that cluster.

Notice that ∀ei ∈ E : usedTimeBudget(ei,σ0)≤ totalTimeBudget(ei) = 4ms.

109

4.6. ANALYSIS OF FAILURE EFFECTS

e1

usedTimeBudget:
3.5 ms

e2

usedTimeBudget:
3 ms

e3

usedTimeBudget:
1.7 ms

e4

usedTimeBudget:
3.5 ms

prioSumAllASWCs: 77
prioSumActiveASWCs(σ0): 77

Deactivated required hot-standby Slaves: --

Deactivated Features: --
Deactivated Masters: --

c4
 D
 1

c5
 D
 3

s8 (HotSlave)
0.5 ms

s7 (HotSlave)
1 ms

s6 (HotSlave)
1 ms

c1
 QM
 0

s1 (Master)
2 ms

c4
 D
 1

s5 (HotSlave)
1 ms

c5
 D
 3

s8 (ColdSlave)
0.5 ms

s7 (ColdSlave)
1 ms

s6 (ColdSlave)
1 ms

c5
 D
 3

s8 (ColdSlave)
0.5 ms

s7 (ColdSlave)
1 ms

s6 (ColdSlave)
1 ms

c5
 D
 3

s8 (Master)
0.5 ms

s7 (Master)
1 ms

s6 (Master)
1 ms

c3
 C
 0

s4 (Master)
1.7 ms

c2
 A
 0

s2 (Master)
0.7 ms

s3 (Master)
0.3 ms

ASIL
Cluster

FailOp

s5 (Master)
1 ms

Figure 4.20: Initial deployment for the example of Tab. 4.2 in scenario σ0

The sum of priority points in the initial solution is 77. This value is composed by single values as shown
in Table 4.4. For instance, prioPointsHotSlave(s6) = 4+3+1 = 8 because it is an ASIL D component
(+4), has a redundancy level of 3, and is a hot-standby slave (+1).

Table 4.4: Calculation of prioSumActiveASWCs(σ0)

si prioPointsMaster(si) prioPointsHotSlave(si)
s1 2 —
s2 3 —
s3 3 —
s4 5 —
s5 7 6
s6 9 8
s7 9 8
s8 9 8

∑ 47 ∑ 30
∑ 77

110

4.6. ANALYSIS OF FAILURE EFFECTS

Calculated Degraded Deployment (Scenario σ1): If for instance the first execution unit e1 fails and
has to be isolated (scenario σ1), the deployment has to be changed, see Fig. 4.21. After the isolation of
e1, the master of s5 gets lost and its hot-standby slave on e2 becomes the new master. As redncy(s5) = 1,
no new slave is created as the redundancy levels describe the required levels of redundancy in the initial
failure-free case. A disappearance of s5 would have had effect on the functional features f3 and f4, as
χ−1(s5) = { f3, f4}. Because failOp(f3) = 0 and failOp(f4) = 1, this disappearance would have been
invalid, as the requirements of feature f4 would be violated. But as a slave existed and became a new
master, it is okay. No new slave is required, because it is okay that f4 is lost after the second isolation of
an execution unit. Due to this, it is not required that s5 is still present after the next isolation. Furthermore,
cluster c5 on e1 is lost and with it, all three contained hot-standby slaves of ASWCs. It is required that new
hot-standby slaves of these ASWCs are created. As redncy(s6,7,8) = 3, an inactive instance of s6,7,8 must
be activated to serve as new hot-standby slave to prepare for the next isolation. The new slaves of s6,7,8 can
only be activated on e3 and not on e2, because master and hot-standby slave must not depend on the same
power-supply. This is to avoid that both the master and the hot-standby slave are lost simultaneously, if the
power-supply breaks down. However, to be able to execute s6,7,8 on execution unit e3, ASWC s4 has to be
deactivated as the sum of the WCETs of s4 and s6,7,8 is 4.2ms, which would exceed the time-budget of
4ms of e3. The deactivation of ASWC s4 forces the deactivation of feature f3, as s4 ∈ χ(f3). This means,
if execution unit e1 has to be isolated, feature f3 cannot be provided anymore and becomes unavailable,
using the given initial deployment that was shown in Fig. 4.20. Notice that a valid initial deployment
is calculated automatically by our approach, but it can also be changed manually in order to analyze
degradation scenarios depending on different initial deployments.

The loss of the master of s4 and the hot-standby slave of s5 forces a loss of 11 priority points, because
prioPointsMaster(s4) = 5 and prioPointsHotSlave(s5) = 6. Hence, when execution unit e1 is isolated,
only 66 priority points can be provided by the system (see Fig. 4.21 and Table 4.5).

Table 4.5: Calculation of prioSumActiveASWCs(σ1) after isolation of e1

si prioPointsMaster(si) prioPointsHotSlave(si)
s1 2 —
s2 3 —
s3 3 —
s4 — —
s5 7 —
s6 9 8
s7 9 8
s8 9 8

∑ 42 ∑ 24
∑ 66

If more execution units are isolated in arbitrary order in the shown example, cluster c5 always remains
to have a master instance for all contained ASWCs {s6,s7,s8}, even if only one execution unit is left. This
is important as failOp(f5) = 3 and χ(f5) = {s6,s7,s8}.

111

4.6. ANALYSIS OF FAILURE EFFECTS

e1

ISOLATED

e2

usedTimeBudget:
3 ms

e3

usedTimeBudget:
2.5 ms

e4

usedTimeBudget:
3.5 ms

c4
 D
 1

 s5

c5
 D
 3

 s8

 s7

 s6

c1
 QM
 0

s1 (Master)
2 ms

c4
 D
 1

s5 (Master)
1 ms

c5
 D
 3

s8 (ColdSlave)
0.5 ms

s7 (ColdSlave)
1 ms

s6 (ColdSlave)
1 ms

c5
 D
 3

s8 (Master)
0.5 ms

s7 (Master)
1 ms

s6 (Master)
1 ms

c3
 C
 0

s4 (Deactivated)
1.7 ms

c2
 A
 0

s2 (Master)
0.7 ms

s3 (Master)
0.3 ms

Deactivated required hot-standby Slaves: s5

Deactivated Features: f3

Deactivated Masters: s4
prioSumAllASWCs: 77
prioSumActiveASWCs(σ1): 66

c5
 D
 3

s8 (HotSlave)
0.5 ms

s7 (HotSlave)
1 ms

s6 (HotSlave)
1 ms

Figure 4.21: Deployment after isolation of execution unit e1 in scenario σ1

The deployment matrices deploy(S,E,σ0) and deploy(S,E,σ1) for the both shown scenarios are shown
in Fig. 4.22. The changes of values are marked in bold.

deploy(S,E,σ0)

0 M
0 0
0 0

e1 e2 e3 e4

0 0
M HS

HS P

HS P
HS P

s1
s2
s3

s4
s5
s6
s7
s8

0
0
0

M
0
P

P
P

0
M
M

0
0
M

M
M

0 M
0 0
0 0

e1 e2 e3 e4

0 0
P M
P P

P P
P P

s1
s2
s3

s4
s5
s6
s7
s8

0
0
0

P
0
HS

HS
HS

0
M
M

0
0
M

M
M

deploy(S,E,σ1)

Figure 4.22: Deployment matrices for scenarios σ0 and σ1 for the example shown in Tab. 4.2

112

4.6. ANALYSIS OF FAILURE EFFECTS

Table 4.6 shows the content of the property available : F × Σ→ {0,1} for the two shown scenarios
σ0 and σ1. The functional feature f3 is not available anymore in σ1 (see also Fig. 4.21). This is
okay as failOp(f3) = 0. Important is that available(f4,σ1) = 1 and available(f5,σ1) = 1, due to the
fail-operational requirements of these two features: failOp(f4) = 1 and failOp(f5) = 3.

Table 4.6: Availability of functional features in the two shown scenarios for the example shown in Tab. 4.2

fi available(fi,σ0) available(fi,σ1)
f1 1 1
f2 1 1
f3 1 0
f4 1 1
f5 1 1

4.6.9 Example B – Communication Channels

We now present another example. The system under analysis has 8 ASWCs and the ASWC properties as
shown in Fig. 4.23. In this example, we add communication channels and the resulting channel matrices
CM and CO into consideration. The example was also discussed in a briefer manner in [40].

For simplicity, in this example we assign each ASWC its own ASWC-Cluster. Hence, α(ci) = {si}.
Also for simplicity, we assume here that each ASWC realizes a separate functional feature. This means,
there are 8 functional features and it holds that χ(fi) = {si}.

Fig. 4.23 shows the set of ASWCs and their properties, inclusive published and subscribed data items.
The functional features are not shown.

s1
s2
s3

ASWC asil(si)
wcet(si)
in ms

redncy(si)
Hot/Cold

standby Slave

1
1
0

hot
cold

-

1.5
2.5
2

D
D
B

Published
data items

Mandatorily
Subscribed
data items

d1, d2

d3

-

Optionally
Subscribed
data items

-
-

d1
-

-
-

s5 0 - 2QM - d2, d8 d4

s4 0 - 2A d4 - -

s6 0 - 1QM d5, d6 d3 -
s7 0 - 1QM d7 d4 d3
s8 0 - 1QM d8 d7 d6

data item
weights
ω(ppi,k)

1, 2

3
-

-
4

5, 6
7
8

α(si)

c1
c2
c3

c5

c4

c6
c7
c8

Figure 4.23: Example set of ASWCs with published and subscribed data items di

The example contains two ASWCs s1 and s2 which have requirements to be deployed with redundancy
and hence, to behave fail-operational. The redundancy of ASWCs is derived from the assumed fail-
operational requirement of the realized functional features, meaning that failOp(f1) = 1 and failOp(f2) = 1.

113

4.6. ANALYSIS OF FAILURE EFFECTS

For all other f j with j ≥ 3, failOp(f j) = 0. Let a hot-standby slave be required for s1 (see hot in column
5) and a cold-standby slave be sufficient for s2 (see cold in column 5).

Fig. 4.24 shows the component architecture for the example inclusive the published data items (circles)
an subscribed data items (squares). The optional subscription ports are dashed and marked with label ’opt’.
Notice that published data item d5 is not subscribed by any component. It is indicated in the labels of s1
and s2, that these components will be deployed with redundancy, s1 with a master and a hot-standby slave
(M+HS), and s2 with a master and a cold-standby (alias passive) slave (M+P).

s1(M+HS)
d2d1

s2(M+P)

d1

s4
d4

s5

d2 d4
opt

d8

s3
d3

s6

d3

d6d5

s7

d3d4
opt

d7

s8
d6

d8

d7
opt

Figure 4.24: Component architecture with communication channels

Based on the given publication ports PPi of a si ∈ S and subscription ports PSk of a sk ∈ S, as well as the
weights ω(ppi, j) of published data items of ppi, j ∈ PPi, the matrix CM(si,sk) of mandatory data-flow
communication channels is calculated as shown in Table 4.7.

Table 4.7: Matrix of mandatory channels CM(si,sk) for the example
si�sk s1 s2 s3 s4 s5 s6 s7 s8

s1 0 1 0 0 2 0 0 0
s2 0 0 0 0 0 0 0 0
s3 0 0 0 0 0 3 0 0
s4 0 0 0 0 0 0 4 0
s5 0 0 0 0 0 0 0 0
s6 0 0 0 0 0 0 0 0
s7 0 0 0 0 0 0 0 7
s8 0 0 0 0 8 0 0 0

Those entries of CM(si,sk) equal to 0 are bold, which are unequal to 0 in CO(si,sk).

114

4.6. ANALYSIS OF FAILURE EFFECTS

Table 4.8 shows the matrix CO(si,sk) of optional channels.

Table 4.8: Matrix of optional channels CO(si,sk) for the example
si�sk s1 s2 s3 s4 s5 s6 s7 s8

s1 0 0 0 0 0 0 0 0
s2 0 0 0 0 0 0 0 0
s3 0 0 0 0 0 0 3 0
s4 0 0 0 0 4 0 0 0
s5 0 0 0 0 0 0 0 0
s6 0 0 0 0 0 0 0 6
s7 0 0 0 0 0 0 0 0
s8 0 0 0 0 0 0 0 0

Calculated Initial Deployment (Scenario σ0): A valid initial deployment of the ASWCs onto four
execution units {e1, ...,e4} is shown in Fig. 4.25. In this example, each unit has totalTimeBudget(ei) = 4ms.
In this figure, the ASWC-Clusters are not shown, only the ASWCs. Notice that s1 is deployed twice, once
as a master on e1 and once as a hot-standby slave on e2. The hot-standby slave is executed, hence its
wcet(s1) is part of the usedTimeBudget(e2,σ0). However, the sent data items of the hot-standby slave are
ignored by the RTE and not sent over the network. Due to this, the channels that leave the hot-standby
slave of s1 are dashed. ASWC s2 is also deployed twice, but has a cold-standby slave on e4, which is not
executed.

e1

usedTimeBudget: 4 ms
totalTimeBudget: 4 ms

e2

usedTimeBudget: 3.5 ms
totalTimeBudget: 4 ms

e3

usedTimeBudget: 4 ms
totalTimeBudget: 4 ms

e4

usedTimeBudget: 3 ms
totalTimeBudget: 4 ms

s1
(Master)

d2d1

s2
(Master)

d1

s1
(HotSlave)

d2d1

s4
d4

s2
(ColdSlave)

d1

s5

d2 d4
opt

d8

s3
d3

s7

d3d4
opt

d7

s6

d3

d6d5

s8

d6

d8

d7
opt

s1 s2 s3ASWC s5s4 s6 s7 s8
wcet(si) in ms 1.5 2.5 2 22 1 1 1

Figure 4.25: Initial deployment for the example of Fig. 4.23 in scenario σ0

115

4.6. ANALYSIS OF FAILURE EFFECTS

The calculation of prioSumActiveASWCs(σ0) is shown in Table 4.9, for the example shown in Fig.
4.23 in the initial scenario σ0.

Table 4.9: Calculation of prioSumActiveASWCs(σ0)

si prioPointsMaster(si) prioPointsHotSlave(si)
s1 7 6
s2 7 —
s3 4 —
s4 3 —
s5 2 —
s6 2 —
s7 2 —
s8 2 —

∑ 29 ∑ 6
∑ 35

Calculated Degraded Deployment (Scenario σ1): Fig. 4.26 shows how the deployment from Fig. 4.25
is reconfigured in case that execution unit e1 has been isolated after the detection of a hardware failure
(scenario σ1). As the master instance of s1 on e1 disappears, the hot-standby slave instance of s1 on e2
has to become the new master. Notice that now the communication channels leaving s1 on e2 are no
more ignored. In addition, the master instance of s2 on e1 disappears. As redncy(s2) = 1, s2 can still be
provided after this isolation, as a new master of s2 can be activated. In this example, s2 has only a passive
cold-standby slave on e4. This has to be activated. However, in order to be able to activate s2 on e4, one of
the other components which are active on e4 has to be deactivated, as otherwise usedTimeBudget(e4,σ1)
would be bigger than totalTimeBudget(e4). This forces the deactivation of s3. Now, another fact has to
be considered concerning the established communication channels. As the data item d3 can no more
be published by s3, all components that mandatorily subscribe this data item cannot fulfill their service
anymore. In the example, this is the case for s6. Hence, the data items d5 and d6 can as well no more
be published and s6 can be deactivated to save resources. In the example, this has no effect, as d5 is not
subscribed at all and d6 is only once subscribed optionally. As a result, Fig. 4.26 shows the subset of
components and their communication channels that can still be provided after the isolation of e1. Notice
that all requirements concerning fail-operationality are met in this example, as s1 and s2 are still active and
hence, features f1 and f2 can be kept available.

As before, we mark lost system elements with a red cross. The system element which was isolated due
to an assumed detected failure is marked with a black flash symbol (see e1).

116

4.6. ANALYSIS OF FAILURE EFFECTS

e1

ISOLATED

e2

usedTimeBudget: 3.5 ms
totalTimeBudget: 4 ms

e3

usedTimeBudget: 3 ms
totalTimeBudget: 4 ms

e4

usedTimeBudget: 3.5 ms
totalTimeBudget: 4 ms

s1

d2d1

s2

d1

s1
(Master)

d2d1

s4
d4

s2
(Master)

d1

s5

d2 d4
opt

d8

s3
(Deactivated)

d3

s7

d3d4
opt

d7

s6
(Deactivated)

d3

d6d5

s8

d6

d8

d7
opt

s1 s2 s3ASWC s5s4 s6 s7 s8
wcet(si) in ms 1.5 2.5 2 22 1 1 1

Figure 4.26: Deployment after isolation of execution unit e1 in scenario σ1

Table 4.10 shows the calculation of prioSumActiveASWCs(σ1), in the scenario σ1 considering the
isolation of e1.

Table 4.10: Calculation of prioSumActiveASWCs(σ1) after isolation of e1

si prioPointsMaster(si) prioPointsHotSlave(si)
s1 7 —
s2 7 —
s3 — —
s4 3 —
s5 2 —
s6 — —
s7 2 —
s8 2 —

∑ 23 ∑ 0
∑ 23

As in the degraded scenario σ1 it holds that masterPresent(s3) = 0 and masterPresent(s6) = 0, the
user gets direct feedback about which ASWCs can no more be actively deployed in this degradation
scenario. This supports to analyze the degradation of the availability of functional features in the different
scenarios. In this example, this means that features f3 and f6 become unavailable in scenario σ1.

Furthermore, it can be seen that s1 and s2 are still active but it cannot be guaranteed anymore that s1 or
s2 survive the next isolation of an execution unit. This is okay, as s1 and s2 were required to survive only

117

4.6. ANALYSIS OF FAILURE EFFECTS

one isolation (redncy(s1) = redncy(s2) = 1). If for instance redncy(s1) would have been bigger than 1,
additional passive instances would have been deployed for s1, from which one would have been selected
as new hot-standby slave, allowing s1 to survive more than 1 isolations of execution units.

The deployment matrices deploy(S,E,σ0) and deploy(S,E,σ1) for the both shown scenarios are shown in
Fig. 4.27. The changes of values are marked in bold.

deploy(S,E,σ0)

M HS
M 0
0 0

e1 e2 e3 e4

0 0
0 M
0 0

0 0
0 0

s1
s2
s3

s4
s5
s6
s7
s8

0
0
0

M
0
M

0
M

0
P
M

0
0
0

M
0

P M
P 0
0 0

e1 e2 e3 e4

0 0
0 M
0 0

0 0
0 0

s1
s2
s3

s4
s5
s6
s7
s8

0
0
0

M
0
P

0
M

0
M
P

0
0
0

M
0

deploy(S,E,σ1)

Figure 4.27: Deployment matrices for scenarios σ0 and σ1 for the example shown in Fig. 4.23

Table 4.11 shows the content of the property available : F×Σ→{0,1} for the two shown scenarios σ0
and σ1. The functional features f3 and f6 become unavailable in σ1 (see also Fig. 4.26). This is okay as
failOp(f3) = 0 and failOp(f6) = 0. Important is that available(f1,σ1) = 1 and available(f2,σ1) = 1, due
to the fail-operational requirements failOp(f1) = 1 and failOp(f2) = 1.

Table 4.11: Availability of functional features in the two shown scenarios for the example shown in Fig.
4.23

fi available(fi,σ0) available(fi,σ1)
f1 1 1
f2 1 1
f3 1 0
f4 1 1
f5 1 1
f6 1 0
f7 1 1
f8 1 1

118

4.6. ANALYSIS OF FAILURE EFFECTS

4.6.10 Size of the Scenario Graph

If we only consider isolations of one single failing system element (one execution unit or one software
component), the amount of degradation/failover scenarios in the scenario graph SG is |Σ+|= |E|+ |S|.

However, when considering a second subsequent isolation of another element due to a second failure,
and when also distinguishing the chronological order of the two isolations, the amount of possible different
degradation/failover scenarios becomes |Σ+|= (|E|+ |S|)+((|E|+ |S|)∗ (|E|+ |S|−1)).

In order to determine |Σ+| for chains of more than two subsequent isolations, we first consider
sequences of isolations of only execution units at a first glance. Later, we add the consideration of
isolations of software components.

Multiple isolations of execution units: Fig. 4.28 shows an example scenario graph SG considering
sequences of isolations of executions units e ∈ E, based on an initial set of 4 execution units (|E| = 4). The
labels of the nodes of the SG show here only the indexes i of the alive execution units ei ∈ EA⊆ E. For
instance, instead of writing e1,e2,e3,e4, we write 1,2,3,4 due to limited space.

1,2,3,4

2,3,4 1,2,4 1,2,3

1,32,4

-1 -2 -3 -4

3,4

-2 -3

2,3

-1

1,4

-3 -4 -1 -2

1,2

-4

34 1

-2 -3

2

-2 -3

-1

1,3,4

-4

-4 -1-3 -3-4 -4-1-2 -2-1

2,43,4 2,3 1,31,4 1,2

34 342 21 134

-3 -4 -2 -4

4 2

-4-1

4 1 2

-3-2

3 1

-3-1

3

-2-1

2 1

Figure 4.28: Example SG considering n ≤ 3 isolations of 4 execution units, while considering the
consecutive order of isolations

With 4 execution units, scenarios have to be considered containing 1, 2 or 3 subsequent isolations of
execution units. It does not make sense to analyze a situation in which all execution units are isolated, as
the result is obvious, because no single ASWC can be executed anymore and hence, no single software
based functional feature can be kept available anymore. Hence, the maximum isolation sequence length of
a degradation scenario is |E|−1.

But also scenarios with less than |E|−1 isolations have to be analyzed. Hence, with 4 execution units,
overall there exist |Σ+|= |E|+(|E|∗(|E|−1))+(|E|∗(|E|−1)∗(|E|−2)) = 4+(4∗3)+(4∗3∗2) = 40
different degradation scenarios. Together with the root node in which all execution units are active, we
obtain a number of |Σ|= 41 nodes in the graph shown in Fig. 4.28. Each node, except from the root node,
represents a degradation scenario. During this approach, we distinguish different consecutive sequences of
isolations, leading to identical sets of isolated and active execution units.

If we have a set of 5 execution units instead of 4 execution units, the result would be |Σ+|= |E|+(|E|∗
(|E| − 1))+ (|E| ∗ (|E| − 1) ∗ (|E| − 2))+ (|E| ∗ (|E| − 1) ∗ (|E| − 2) ∗ (|E| − 3)) = 5+(5 ∗ 4)+ (5 ∗ 4 ∗
3)+(5∗4∗3∗2) = 5+20+60+120 = 205 different scenarios of consecutive sequences of one or more
isolations due to failing execution units. Together with the initial node, the scenario graph would have
|Σ|= 206 nodes. With 6 execution units, there are |Σ+|= 1236 different degradation/failover scenarios,
and with 7 execution units, there are |Σ+|= 8659 different degradation/failover scenarios. The number of
scenarios grows progressively with the number of execution units.

119

4.6. ANALYSIS OF FAILURE EFFECTS

However, if we neglect the consecutive sequence in which the failures respectively the isolations appear,
but instead analyze the sets of isolated and active execution units, the amount of scenarios drastically
decreases. The SG nodes can be merged that contain identical sets of active execution units. In Fig. 4.28,
all SG nodes with two active execution units exist twice, and all SG nodes with one active execution unit
exist six times.

Fig. 4.29 shows the scenario graph in which duplicated nodes are merged to a single node. The
structure of the scenario graph is known as Hasse diagram in mathematics, in this case structuring the
partition of a given set (of all execution units) in at most two partitions. The first partition contains the
intact execution units, the second partition contains the isolated failed execution units. The scenario graph
contains only those vertexes representing a partition of intact execution units. If we analyze this graph
based on all possible paths from the top root node (σ0) to all other nodes, we obtain the same result as
shown in Fig. 4.28, namely 4+4∗3+4∗3∗2 = 40 different paths, meaning 40 degradation scenarios.

1,2,3,4

2,3,4 1,2,4 1,2,3

1,32,4

-1 -2 -3 -4

3,4

-2

-3

2,3

-1

1,4

-3 -4
-1

-2

1,2

-4

34 1

-2
-3

2

-2 -3

-1

1,3,4

-4

-4
-1

-3

-3
-4

-4

-1

-2
-2

-1

Figure 4.29: Example SG considering n ≤ 3 isolations of 4 execution units, without considering the
consecutive order of isolations

If we analyze the graph in Fig. 4.29 according to the nodes only, we analyze the sets of isolated
and active execution units, neglecting the consecutive sequence of the isolations. In this way, we obtain
|Σ+|= 4+6+4 = 14 degradation scenarios. Inclusive the initial root node, the graph has |Σ|= 15 nodes.

For each set E of execution units, the amount of nodes of such a scenario graph is 2|E|−1. In case
of 5 execution units, the graph has |Σ|= 2|E|−1 = 31 nodes. In case of 6 execution units, the graph has
|Σ|= 2|E|−1 = 63 nodes.

This amount of nodes can be as well calculated by considering the amount of different combinations of
active execution units, using the binomial coefficient

(n
k

)
= n! / (k! · (n− k)!). For each set E of execution

units, the amount of nodes is |Σ|=∑
|E|
k=1

(|E|
k

)
. Please notice here the difference between the set of scenarios

Σ and the sum symbol ∑.

120

4.6. ANALYSIS OF FAILURE EFFECTS

For 5 execution units, there are |Σ| =
(5

5

)
+
(5

4

)
+
(5

3

)
+
(5

2

)
+
(5

1

)
= 1+5+10+10+5 = 31 nodes,

see Fig. 4.30. For 6 execution units, there are |Σ|=
(6

6

)
+
(6

5

)
+
(6

4

)
+
(6

3

)
+
(6

2

)
+
(6

1

)
= 1+6+15+20+

15+6 = 63 nodes. Always, all but one nodes represent different degradation scenarios. The initial root
node represents no degradation scenario, but the initial situation with full-fledged system functionality.

Notice that for each example with |E| execution units, the number of nodes is equal to the sum of the
elements of the |E|th level of the pascal’s triangle minus 1, because we do not consider the scenario in
which all execution units are isolated.

12345

2345 1345 1245 1235 1234

123124125134135145234235245345

12131415232425343545

12345

Figure 4.30: Example SG considering n < 5 isolations of 5 execution units, without considering the
consecutive order of isolations

Multiple isolations of execution units and software components: If we add the consideration of
isolations of application software components (ASWCs) to the scenario graph SG shown in Fig. 4.28
or 4.29, we obtain of course a much higher amount of nodes in SG. The nodes represent both the set of
alive execution units and also the set of active software components. When considering both isolations of
execution units and isolations of software components, the scenarios have a maximum sequence length of
|S|+ |E|−1, assuming that finally all software components are isolated and all but one execution units are
isolated. If we neglect the consecutive sequence of isolations, the graph has ∑

|E|+|S|
k=1

(|E|+|S|
k

)
nodes.

If desired, the analysis can be configured to the effect that only a subset of SG is analyzed automatically,
and the residual graph is partially analyzed interactively, to reduce the runtime of the analysis. For instance,
it may be configured that all single failure scenarios become automatically analyzed, meaning all scenarios
in which exactly one execution unit or exactly one ASWC becomes isolated. All further combinations can
be analyzed interactively, by specifying the subset of assumed isolated failed execution units and ASWCs.

121

4.7. SUPPORTING DEGRADATIONS OF SINGLE FUNCTIONAL FEATURES

4.7 Supporting Degradations of Single Functional Features

In this section we show how the formal model can be extended to support the description and analysis
of degradations on feature level. A degradation on feature level is the substitution of a primary full-
fledged functional feature by a secondary degraded functional feature, which fulfills only a subset of the
functional requirements of the full-fledged feature, or potentially provides less quality of service (QoS).
An example of a degradation on feature level is given by a full-fledged functional feature that provides
a steer-by-wire application of a vehicle inclusive some active assistance functions (like lane-keeping or
collision-avoidance), and a degraded corresponding feature that supports only rudimentary manual steering
without active assistance functions. Hence, there is a difference between full fail-operational behavior (the
same functional feature is kept alive after a failure), and degraded fail-operational behavior (a degraded
version of the functional feature is provided after a failure).

On the software architecture level, we also consider degradations of application software components
(ASWCs) by substituting a full-fledged ASWC by a degraded version of that ASWC, implementing another
degraded specification. A faulty ASWC can be substituted by a degraded ASWC, contributing to realize a
degraded feature version of the feature that the faulty ASWCs was realizing. One intention behind the
substitutions is to establish diversity. Diversity is useful to handle systematic faults, either by providing
two different realizations of the same functional feature, or by providing two realizations of a full-fledged
and a degraded functional feature. In this thesis we address the latter case. To ensure diversity, a degraded
ASWC may got implemented by another team or supplier than the full-fledged ASWC. The full-fledged
and the degraded functional feature have different sets of realizing ASWCs, but the sets could intersect,
meaning that some ASWCs may be reused.

A degradation of a functional feature may be required for instance because the system resources
become insufficient to provide the full-fledged feature, or because an ASWC of the full-fledged feature has
to be isolated due to a systematic fault leading to a fail behavior deviating from its specification. Assuming
that a degraded feature requires less resources than the full-fledged feature, a feature degradation can be
an adequate reaction in failure scenarios to deal with the decreasingly available resources. At runtime,
a failover mechanism has to perform the substitution of the full-fledged feature by the degraded feature,
while ensuring that no total service interruption of this feature combination occurs which is longer than
acceptable. The runtime failover mechanism is out of scope of this thesis.

4.7.1 Assumed Design Principles for Feature Degradations
Certain design principles should be considered to limit the space of possible realization combinations
in feature degradation scenarios. This mirrors in the possible degradation scenarios of the software
architecture and its application software components (ASWCs). In this thesis, we suggest the following
design principles and assume a compliant feature degradation design and software architecture design.

• Each functional feature is substitutable by at most one degraded functional feature, not by a set of
multiple degraded functional features.

• Multiple functional features do not share the same degraded functional feature. Hence, a degraded
functional feature relates to exactly one higher functional feature (partial injective degradation
relationship).

• Each ASWC is substitutable by at most one degraded ASWC, not by a set of multiple degraded
ASWCs.

• Multiple normal ASWCs do not share the same degraded ASWC. Hence, a degraded ASWC relates
to exactly one normal ASWC (partial injective degradation relationship).

122

4.7. SUPPORTING DEGRADATIONS OF SINGLE FUNCTIONAL FEATURES

• A degraded functional feature can be further degraded, building a chain of multiple degradations.

• A degraded ASWC can be further degraded, building a chain of multiple degradations.

• Original normal and alternative degraded ASWCs might have different subscription ports, as the set
of required input data might be different.

• Original normal and alternative degraded ASWCs might have different publication ports.

• If a normal ASWC contributes to realize multiple full-fledged functional features, then it has the
same degraded ASWC for all of these functional features. This means, if one of the full-fledged
functional features is switched to its degraded version, denoting that the normal ASWC is substituted
by its degraded ASWC, then the deactivation of the normal ASWC has effect to all other full-fledged
features that the normal ASWC realized. Also all these related full-fledged features have to be
switched to their degraded versions, meaning that potentially more other normal ASWCs have to be
substituted by their degraded ASWC version to establish the right set of active ASWCs.

• If a full-fledged functional feature is realized by multiple normal ASWCs, then the degraded
functional feature may be realized with the help of a subset of the same normal ASWCs, plus some
degraded ASWCs that substitute some normal ASWCs. Some additional normal ASWCs may be
deactivated without substituting them with degraded ASWCs.

• The required resources (WCET, memory) of a degraded ASWC are less or equal than the required
resources of the corresponding normal ASWC.

4.7.2 Extension of the Formal System Model
For some functional features f ∈ F , there may exist a degraded version of that feature. A degraded
functional feature is a feature fulfilling a subset of the functional requirements of the original full-fledged
feature, potentially with a worse quality of service.

Definition 18 Let f ∈ F be an identifier of a full-fledged functional feature. Let f ′ ∈ F be an identifier
of a degraded version of f . We define degf : F → F ∪{⊥} as the degradation relationship between the
original full-fledged feature f ∈ F and the degraded version f ′ ∈ F of that feature, with ⊥/∈ F . With

degf−1 : F → F ∪{⊥} we define the inverse of degf.

degf(f) =

{
f ′ ∈ F if f ′ is the degraded version of feature f
⊥ if feature f has no degraded version

degf−1(f ′) =

 f ∈ F if f ′ is the degraded version of feature f
⊥ if f ′ is not a degradation of another feature, but a full-

fledged feature

As listed in previous section 4.7.1, we assume that two features never share a degraded feature, meaning
that degf : F → F ∪{⊥} is an injective partial mathematical function (but not surjective, because not
each element of F is a degraded feature). Because degf is injective but not surjective, also degf−1 is a
mathematical partial function (as well injective, but not surjective).

Also chains of degradations can be expressed by this. We call the first degradation of a full-fledged
feature a degradation of first order (written as f ′). A further degradation of the first order degraded feature
we call a degradation of second order (written as f ′′), etc.

123

4.7. SUPPORTING DEGRADATIONS OF SINGLE FUNCTIONAL FEATURES

Let Fo ⊆ F be the subset of non-degraded full-fledged features, let F ′ ⊂ F be the subset of features
that are degraded features of first order, and let F ′′ ⊂ F be the subset of features that are degraded features
of second order (degradations of a degraded feature of first order) with F ′∩F ′′ = /0, Fo = F \ (F ′∪F ′′),
then degf : Fo→ F ′∪{⊥} and degf : F ′→ F ′′∪{⊥} are partial injective and surjective functions, but still
not total functions (see Fig. 4.31).

f1

f2

f3

f4

f ′1

f ′2

f ′′1
degf(f1) = f ′1 degf(f ′1) = f ′′1

degf(f2) = f ′2

degf(f3) =⊥

degf(f4) =⊥

degf(f ′2) =⊥

Fo F ′ F ′′

Figure 4.31: Example degradation relationships between full-fledged and degraded functional features

For some ASWCs s ∈ S, there may exist a degraded version s′ ∈ S of that ASWC. We define a
degradation relationship between ASWCs as follows.

Definition 19 Let s ∈ S be a normal ASWC, realizing a full-fledged functional feature. Let s′ ∈ S be a
degraded version of s. We define degs : S→ S∪{⊥} as the relationship between a normal ASWC s ∈ S

and its degraded version s′ ∈ S, with ⊥/∈ S. With degs−1 : S→ S∪{⊥} we define the inverse of degs.

degs(s) =

{
s′ ∈ S if s′ is the degraded version of ASWC s
⊥ if ASWC s has no degraded version

degs−1(s′) =

{
s ∈ S if s′ is the degraded version of ASWC s
⊥ if s′ is not a degraded version of any other ASWC

Fig. 4.32 shows an example of an ASWC degradation and its relation to a feature degradation. Fig. 4.33
shows another view on the same example.

Features
f1 f ′1

χ(f1) = {s1,s2,s3} χ(f ′1) = {s1,s′2}

ASWCs
s1 s2 s3 s′2

degf(f1) = f ′1

degs(s2) = s′2

Figure 4.32: Example relation between normal and degraded ASWCs, realizing a full-fledged feature f1
and the corresponding degraded feature f ′1

Also chains of degradations can be expressed for ASWCs, like it is the case for feature degradations.

124

4.7. SUPPORTING DEGRADATIONS OF SINGLE FUNCTIONAL FEATURES

s1

s2

s3

s′2

degf(f1) = f ′1ASWCs realizing
full-fledged feature

f1, χ(f1) = {s1,s2,s3}

ASWCs realizing
degraded feature

f ′1, χ(f ′1) = {s1,s′2}

degs(s2) = s′2
degs−1(s′2) = s2

Figure 4.33: Another view on the example from Fig. 4.32, relation between normal and degraded ASWCs,
realizing a full-fledged feature f1 (green ellipse) and the corresponding degraded feature f ′1 (orange ellipse)

Fig. 4.34 shows Def. 18 and 19 in context, reusing the example which was shown in Fig. 4.32, plus
showing also the mapping of ASWCs to ASWC-Clusters. Also some of the predefined properties of the
features and ASWCs are shown.

Cluster c1 Cluster c3Cluster c1Cluster c2

Deployment

Feature-Realization χ

ASWC s1
redncy = 1

ASWC s2
redncy = 0

ASWC s3
redncy = 0

Feature f1
failOp = 0

Feature f1'
failOp = 1

ASWC s1
redncy = 1

ASWC s2'

redncy = 1

degs(s2) = s2'

degf(f1) = f1'

χ(f1) = {s1, s2, s3} χ(f1') = {s1, s2'}

Execution Unit e1
s1 (Active Master)

s2 (Active Master)

s3 (Active Master)

Execution Unit e2
s1 (Passive)

Execution Unit e1
s1 (Active Master)

s2' (Active Master)

Execution Unit e2
s1 (Passive)

s2' (Passive)

M M MP

map

s1 1 0
s2 0 1
s3 0 1

c1 c2
0
0
0

c3

s2' 0 0 1

M M PP

Figure 4.34: Example for the definitions w.r.t. feature degradation

The full-fledged feature f1 in Fig. 4.34 is realized by overall three ASWCs s1,s2 and s3. The three
ASWCs are mapped to two different ASWC-Clusters c1 and c2. The three ASWCs s1,s2 and s3 get
deployed to the execution units e1 and e2, partially redundantly. Feature f1 has a degraded version f ′1,
which is realized by overall two ASWCs s1 and s′2. The ASWC s1 is reused from the realization of feature

125

4.7. SUPPORTING DEGRADATIONS OF SINGLE FUNCTIONAL FEATURES

f1, and the ASWC s′2 is a degraded version of ASWC s2, which was realizing parts of f1. The degradations
are indicated by the horizontal red dashed arrows, labeled with degf(f1) = f ′1 respectively degs(s2) = s′2.

ASWCs s1 and s′2 have a redundancy level of 1 and become deployed to both execution units. We
assume here redundancy by cold-standby slaves. Hence, only one redundant instance is active, the other
instance is passive (not executed in schedule).

Full vs. Degraded Fail-Operationality of Functional Features: As already introduced in section
4.4.2, each functional feature f ∈ F has a property failOp(f), defining in which sense it is required to
be fail-operational. With introducing full-fledged and degraded functional features, we now distinguish
between the requirement to be full fail-operational or degraded fail-operational. We express this distinction
by assigning property failOp : F→N0 to both f ∈ F and f ′ ∈ F with degf(f) = f ′. If failOp(f)> 0, then
feature f ∈ F must be kept available with full-fledged functionality during the first failOp(f) hardware or
software failures, and is not allowed to be degraded meanwhile. More generally, it is allowed that feature
f becomes degraded after failOp(f)+1 hardware or software failures, and it is allowed that f becomes
deactivated completely after failOp(f ′)+1 failures, in case degf(f ′) =⊥. For instance, this means that if
failOp(f) = 1 and failOp(f ′) = 3, then the full-fledged feature f has to survive the first failure and can be
degraded to f ′ after a second failure. The degraded feature f ′ itself has to survive the third failure and can
be deactivated after a fourth failure (see Fig. 4.35).

f
f'
⊥

failOp(f) = 1
failOp(f') = 3

degf(f) = f'
degf(f') = ⊥

failures

time

available
features

Figure 4.35: Example of a feature degradation over time

126

4.7. SUPPORTING DEGRADATIONS OF SINGLE FUNCTIONAL FEATURES

4.7.3 Extended Overview of Properties

Functional Feature (F)

degf : F ∪{⊥}
degf−1 : F ∪{⊥}
asil : [0..4]
failOp : N0
priority : N+

minFTT : N+

available[Σ] : {0,1}

ASWC (S)

degs : S∪{⊥}
degs−1 : S∪{⊥}
wcet : N+

flash : N+

reqExecUnitHwPlatform : N0
minFTT : N+

domain : N0
isolated[Σ] : {0,1}
asil : [0..4]
redncy : N0
hotStandbySlaveReq : {0,1}
hotStandbySlaveActive[Σ] : {0,1}
masterActive[Σ] : {0,1}
prioPoints : N0
prioPointsMaster : N+

prioPointsHotSlave : N+

ASWC-Cluster (C)

asil : [0..4]
redncy : N0

Execution Unit (E)

providedTimeBudget : N+

providedFlash : N+

powerSupply : {0,1}
hwPlatform : N0
isolated[Σ] : {0,1}
usedTimeBudget[Σ] : N0
usedFlash : N0

Publication Port

d : N
portId : N+

ω : N+

Subscription Port

d : N
isOptional : {0,1}
chosenMatchingPortId : N

System Configuration (Φ)

faultRecoveryTime : N+

maxNetworkTraffic : N0
networkTraffic[Σ] : N0
prioSumAllASWCs : N0
prioSumActiveASWCs[Σ] : N0
amountOfIsolatedExecUnits[Σ] : N0
amountOfIsolatedSWCs[Σ] : N0
activeBlueExecUnits[Σ] : N0
activeRedExecUnits[Σ] : N0
CM[S][S] : N0
CO[S][S] : N0
map[S][C] : {0,1}
deploy[S][E][Σ] : {0,P,M,HS}

χ
1..∗χ−11..∗

0..∗

0..∗

Figure 4.36: Class-diagram representation of the formal model, incl. degradations

Fig. 4.36 shows an extended version of Fig. 4.14 (shown in section 4.4.1), enriched with the degradation
properties introduced in Def. 18 and Def. 19. Again, bold properties are solution properties (decision
variables), underlined properties are variated to represent the scenarios Σ. Those properties that we

127

4.7. SUPPORTING DEGRADATIONS OF SINGLE FUNCTIONAL FEATURES

extended with the scenario parameter Σ in section 4.6.3 are shown in the class-diagram representation in
Fig. 4.36 with having an array dimension [Σ], as |Σ| different solution values exist, one for each analyzed
scenario σ ∈ Σ.

4.7.4 Formal Constraints for Feature Degradations
Requirement 10 If an ASWC s has a degraded version s′ = degs(s) and the related degraded feature
f ′ ∈ χ−1(s′) has a small minFTT(f ′), such that s′ needs a hot-standby slave, there is a special requirement
exception for the deployments. For the degraded ASWC s′, a hot-standby slave may be active, while no
master is active, as long as the full-fledged ASWC s has an active master and the full-fledged feature
f = degf−1(f ′) is available.

Fig. 4.37 shows an example to illustrate requirement R10.

Features
f f ′

χ(f) = {s} χ(f ′) = {s′}

ASWCs
s s′

degf(f) = f ′

degs(s) = s′

Figure 4.37: Example for requirement R10

Let the features have the properties failOp(f) = 0 and failOp(f ′) = 1, meaning that after a failure,
f is allowed to become unavailable, but f ′ must be available and can therewith substitute feature f in a
degraded manner. The necessary redundancy levels of the ASWCs are redncy(s) = 0 and redncy(s′) = 1.
If minFTT(f ′)≤ faultRecoveryTime, a hot-standby slave is required for s′. In the initial deployment with
available(f) = 1, there is now a special situation in which s′ has a hot-standby slave, but no master, as f ′

should not be available as long as f is available. The reason for keeping the hot-standby slave of s′ active
is to enable a fast enough failover time from s to s′ while switching from feature f to f ′. This situation is
expressed by constraint C10.1.

Constraint 10.1 (R10):
1 ∀s,s′ ∈ S : ∀σ ∈ Σ :
2 I m p l i e s (| if all the following is true:
3 And (degs(s) = s′ , | s’ is degraded version of s
4 degs−1(s′) = s , | and vice versa
5 Or (m a s t e r A c t i v e (s,σ) = 1 , | master of s is active, or
6 h o t S t a n d b y S l a v e A c t i v e (s,σ) = 1 | hot-slave of s is active
7)
8) , | then:
9 And (m a s t e r A c t i v e (s′,σ) = 0 , | master of s’ should be inactive

10 I f (h o t S t a n d b y S l a v e R e q (s′) = 1 , | if hot-slave of s’ is required
11 h o t S t a n d b y S l a v e A c t i v e (s′,σ) = 1 , | then hot-slave should be active
12 h o t S t a n d b y S l a v e A c t i v e (s′,σ) = 0 | else not
13)
14)
15)

Further requirements and corresponding formal constraints exist, like a constraint describing the
failover from a failing full-fledged ASWC to its degraded version. However, we do not list the full set of
constraints here, as the principles in expressing the other constraints are similar.

128

4.7. SUPPORTING DEGRADATIONS OF SINGLE FUNCTIONAL FEATURES

4.7.5 Example C – Feature Degradation
In this section, we show an example of a feature set containing a feature degradation, as well as the
corresponding ASWCs that realize these features. We show how this example can be degraded when
execution units or ASWCs have to be isolated.

Table 4.12: Example set of functional features and realizing software components

Feature fi as
il(

f i)

fa
ilO

p(
f i)

A
SW

C
ss

i
∈

χ
(

f i)

as
il(

s i
)

re
dn

cy
(s

i)

fla
sh

(s
i)

in
kB

w
ce

t(
s i

)i
n

m
s

Full-fledged Features:
f1 : Steer-By-Wire
(with assistance)

D 0 s1
s2
s3

D
D
D

1 (hot-slave)
0
0

10
10
10

1.5
1
1

f2 : Parking
Assistance (active)

C 0 s3
s4

D
C

0
1 (cold-slave)

—
10

—
0.5

f3 : Drive-By-Wire D 1 s5 D 1 (cold-slave) 10 1.3
f4 : Infotainment QM 0 s6 QM 0 17 0.5
Degraded Features:
f ′1 : Steer-By-Wire
(without assistance)

C 1 s1
s′2

D
C

1 (hot-slave)
1 (hot-slave)

—
5

—
0.5

f ′2 : Parking
Assistance (passive)

C 1 s′3
s4

C
C

1 (cold-slave)
1 (cold-slave)

3
—

0.1
—

f ′′1 : Steer-By-Wire
(limp home)

C ∞ s′′2 C 1 (hot-slave) 2 0.1

Table 4.12 shows the properties of the example. The first three columns show four full-fledged features
{ f1, f2, f3, f4} and two degraded features (f ′1, f ′2) with degf(f1) = f ′1 and degf(f2) = f ′2. The right five
columns show the ASWCs that realize the features. The property values, like the ASIL levels, are fictional
and not related to a real case-study. Some of the ASWCs contribute to realize multiple features, like s3
which contributes to realize features f1 and f2, meaning that χ−1(s3) = { f1, f2}. Due to this, s3 is shown
in two rows. In rows where ASWCs are repeated, properties are printed in shade of gray, the wcet and
flash are written as ’—’.

129

4.7. SUPPORTING DEGRADATIONS OF SINGLE FUNCTIONAL FEATURES

Fig. 4.38 shows the realization relationship χ(fi) between features fi ∈ F and ASWCs si ∈ S.

Features
f1 f ′1 f ′′1 f2 f ′2 f3 f4

χ(fi)

ASWCs
s1 s2 s′2 s′′2

s3 s′3
s4 s5 s6

Figure 4.38: Realization relationship χ(fi) between functional features and ASWCs for the example of
Table 4.12

Fig. 4.39 shows the feature degradations of the example from a different perspective. As mentioned,
ASWC s3 contributes to realize both full-fledged functional features f1 and f2. Furthermore, ASWC s1 is
used to realize both the full-fledged feature f1 (upper green ellipse) and the related degraded feature f ′1
(upper orange ellipse). Hence, χ−1(s1) = { f1, f ′1}. The same holds for s4 and features f2 and f ′2. It can
be seen in the figure that the example contains also ASWC degradations, namely degs(s2) = s′2 (applied
during the feature degradation degf(f1) = f ′1) and degs(s3) = s′3 (applied during the feature degradation
degf(f2) = f ′2). Features f3 and f4 from the example are not shown in Fig. 4.39, as these have no degraded
versions.

s1

s2

s3

s4

s′2

s′3

degf(f1) = f ′1

degf(f2) = f ′2

f1 realizing ASWCs:
χ(f1) = {s1,s2,s3}

f2 realizing ASWCs:
χ(f2) = {s3,s4}

f ′1 f ′1 realizing ASWCs:
χ(f ′1) = {s1,s′2}

f ′2 f ′2 realizing ASWCs:
χ(f ′2) = {s′3,s4}

degs(s2) = s′2

degs(s3) = s′3

Figure 4.39: Realization of full-fledged features f1 and f2, as well as corresponding degraded features f ′1
and f ′2 by partially shared ASWCs (f ′′1 not shown)

Communication channels: Fig. 4.40 lists the communication ports of the ASWCs in the example.
The resulting directed communication channels between the ASWCs are shown in Fig. 4.41, as well as
how the mapping of ASWCs to ASWC-Clusters is done. The clusters separate ASWCs with different
ASIL, different redundancy and different hot-standby slave requirements. For instance, cluster c1 contains
contains all ASWCs which have asil(si) = 4 (ASIL D), redncy(si) = 1 and hotStandbySlaveReq(si) = 1.
The ASWCs which are active as master in the initial failure-free deployment are green, the ASWCs which
are active only as hot-standby slave but with no master in the initial deployment are yellow, and the ASWCs

130

4.7. SUPPORTING DEGRADATIONS OF SINGLE FUNCTIONAL FEATURES

which are inactive in the initial deployment are white. The latter two cases hold only for degraded ASWCs
(s′2,s

′
3 and s′′2), because their full-fledged ASWCs are active as master.

s1
s2
s3

ASWC Published
data items

Mandatorily
Subscribed
data items

d1

d2, d3

-

Optionally
Subscribed
data items

-
-

d1, d2
-

-
-

s5 - - -

s4 - - d3

s6 - - -
s2' - d1 -
s3' - - -

data item
weights
ω(si, pj)

1

2, 4
-

-
-

-
-
-

s2'' - - --

Figure 4.40: Publication and subscription ports of ASWCs in the example

c1 (D/1 hot)

c6 (C/1 hot)

s1 d1

c2 (D/0)

s2 d2d1

c3 (C/1 cold)

s3'

c4 (D/1 cold)

s5

c5 (QM/0)

s6 s2''s2'd1

s3d2

d3

s4

d3
opt

Figure 4.41: ASWC-Clusters and communication channels between ASWCs

131

4.7. SUPPORTING DEGRADATIONS OF SINGLE FUNCTIONAL FEATURES

Initial deployment solution for the example: The shown example set of ASWCs should now be
deployed on two execution units e1,e2 ∈ E, each having a provided time budget of 4ms to execute
ASWCs in each execution cycle, providedTimeBudget(ei) = 4ms. Furthermore, both execution units have
providedFlash(ei) = 64kB in this example.

We now consider five different failure scenarios. In scenario 1 the first execution unit e1 has a failure
and has to be isolated, with the result that no ASWCs can be executed anymore on e1. In scenario 2
the second execution unit e2 has to be isolated. In scenario 3 the master instance of ASWC s1 has to be
isolated, in scenario 4 the ASWC s2 has to be isolated and in scenario 5 the ASWC s3 has to be isolated.

We use the introduced formal model to calculate deployment solutions for these scenarios, using
the Z3 SMT solver to calculate the results. Several formal constraints ensure the validity of follow-up
deployments after isolations of execution units or ASWCs. We present some of these constraints in section
4.6.5. We parse the solution model returned by the SMT solver to obtain all required data needed to give
feedback to the user about the analysis results.

e1

usedFlash: 60 kB, providedFlash: 64 kB
usedTimeBudget: 4 ms, providedTimeBudget: 4 ms

e2

usedFlash: 57 kB, providedFlash: 64 kB
usedTimeBudget: 3.9 ms, providedTimeBudget: 4 ms

c3c4

c1

 c3c4

c5

c2

e2 s1 s5

0ms 2ms 4ms

e1 s1 s2

0ms 2ms 4ms

s3 s4 s6

c1

s5
(Master)

s6
(Master)

s5
(ColdSlave)

s1
(Master)

d1
s2

(Master)
d2d1

s1
(HotSlave)

d1

s4
(Master)

d3
opt

s4
(ColdSlave)

d3 opt

s3
(Master)

d2

d3

s3'
(ColdSlave)

s3'
(ColdSlave)

c6

s2''
(ColdSlave)

s2'
(ColdSlave)

d1

c6

s2''
(HotSlave)

s2'
(HotSlave)

d1

s2'

s1 s2 s3ASWC s5s4 s6 s'2
wcet(si) 1.5 1 1 1.30.5 0.5 0.5

s'3
0.1

s''2
0.1

s2''

Figure 4.42: An initial deployment solution for the example

Fig. 4.42 shows the initial valid deployment solution for the example. Also exemplary schedules of the
execution units are shown. In the schedule, it can be seen that for instance s′2 is not executed in the initial
solution, as it is a passive cold-standby slave which only becomes active if s2 gets lost. Also the redundant
cold-standby slave of s5 on e1 is not executed initially, as it only is a backup for the case that the master of

132

4.7. SUPPORTING DEGRADATIONS OF SINGLE FUNCTIONAL FEATURES

s5 on e2 gets lost. However, the components which are not executed in the schedule need flash memory
space. On execution unit e1, 55kB of flash memory are used in this example (10+10+10+10+5+10).

Also the ASWC-Clusters are shown. Five clusters are created for the given set of ASWCs. Those
ASWCs are mapped to the same cluster, which have the same properties of asil(si) and redncy(si).

In Fig. 4.42, there are also shown some communication channels between the ASWCs. ASWC s2
receives data from both s1 and s3. ASWC s4 receives data from s3 optionally, meaning that s4 can also
work without the input from s3.

Tab. 4.14 shows how the solution property prioSumAllASWCs is calculated. The total sum of priority
points is prioSumAllASWCs = 68. This value is composed of the following single values.

Table 4.14: Calculation of prioSumAllASWCs

si prioPointsMaster(si) prioPointsHotSlave(si)
s1 7 6
s2 6 —
s3 6 —
s4 6 —
s5 7 —
s6 2 —
s′2 6 5
s′3 6 —
s′′2 6 5

∑ 52 ∑ 16
∑ 68

For instance, prioPointsHotSlave(s1) = 4+1+1 = 6 because it is an ASIL D component (+4), has a
redundancy level of 1, and is a hot-standby slave (+1).

As the degraded ASWCs s′2, s′3 and s′′2 are not active as master in the initial solution, but only as
hot-standby slave (if required), prioSumActiveASWCs(σ0) has a smaller value in the initial root scenario
σ0, as shown in Tab. 4.15.

Table 4.15: Calculation of prioSumActiveASWCs(σ0)

si prioPointsMaster(si) prioPointsHotSlave(si)
s1 7 6
s2 6 —
s3 6 —
s4 6 —
s5 7 —
s6 2 —
s′2 — 5
s′3 — —
s′′2 — 5

∑ 34 ∑ 16
∑ 50

133

4.7. SUPPORTING DEGRADATIONS OF SINGLE FUNCTIONAL FEATURES

The set of available functional features in the initial root scenario σ0, meaning the set of features
having solution property available(f1) = 1, is { f1, f2, f3, f4}. As all full-fledged features are available, no
one of the degraded features f ′1, f ′2 and f ′′1 has to be available.

Analysis of degradations for the example: Figures 4.44, 4.45, 4.46, 4.47 and 4.48 show the follow-up
deployments for the mentioned considered failure scenarios σ1 to σ5.

In each of these scenarios, exactly one system element fails, hence all functional features with a
fail-operational level bigger or equal than 1 have still to be available, unless they are a degraded version of
a full-fledged feature which is still available. In the example, the features having property failOp(fi)> 0
are f3, f ′1, f ′2 and f ′′1 . Fig. 4.43 shows the features with their failOp requirements, as well as the realization
relationships χ between features and ASWCs.

failOp(fi) =

Features
f1 f ′1 f ′′1 f2 f ′2 f3 f4

χ(fi)

ASWCs
s1 s2 s′2 s′′2

s3 s′3
s4 s5 s6

0 1 ∞ 0 1 1 0

Figure 4.43: Features with fail-operational requirements (example from Table 4.12)

Due to χ(fi), the following ASWCs are required to be active as master in all situations in which a
single system element fails to keep available the features with failOp(fi) = 1.

s1,s′2,s
′
3,s4,s5

However, s′2 and s′3 are only required to be active as master, if their full-fledged versions, s2 and s3, are
isolated or deactivated. If s2 resp. s3 are still active as master (meaning that features f1 resp. f2 are still
available), then s′2 resp. s′3 are not activated as master (because f ′1 resp. f ′2 are not required to be available).
Hence, either s2 or s′2 and either s3 or s′3 are active as master.

s2∨ s′2 s3∨ s′3
The double degraded feature f ′′1 , which is a degraded version of f ′1, has only to be available if f ′1 is not

available. This is not allowed in scenarios of single failures! Hence, f ′′1 is not required to be available in
scenarios in which only one system element fails, but later if multiple system elements fail simultaneously.
This requires that s′′2 is active as hot-standby slave in all situations in which a single system element fails,
to prepare for later usage as master.

s′′2
This means, only the following ASWCs are allowed to be deactivated in single failure scenarios, as

they purely realize features which have no fail-operational requirement (failOp(fi) = 0):

s2,s3,s6

134

4.7. SUPPORTING DEGRADATIONS OF SINGLE FUNCTIONAL FEATURES

Scenario σ1: The scenario σ1 represents the situation in which execution unit e1 has to be isolated, see
Fig. 4.44. In σ1, beside others, the instances of s2 and s3 on e1 are lost. As s2 and s3 are not deployed
redundantly, features f1 and f2 cannot be provided anymore. Hence, it is necessary to activate the degraded
features f ′1 and f ′2, to fulfill their required level of fail-operationality. To be able to activate f ′1 and f ′2, the
instances of s1, s′2, s′3 and s4 on e2 have to become an active master. However, in order to activate the
cold-standby slaves of s′3 and s4 on e2 to become a master, s6 has to be deactivated on e2, as otherwise the
providedTimeBudget(e2) would be exceeded. This means, feature f4 is lost in scenario σ1 as well, what is
okay as failOp(f4) = 0. Hence, the set of available functional features in scenario σ1 is { f ′1, f ′2, f3}.

e1

0ms 2ms 4ms

e1 (Isolated)

c3c4

c2c1

s5

s1 d1 s2 d2d1

s4

d3
opt

s3d2

d3

s3'

c6

s2''s2'd1

e2

usedFlash: 57 kB, providedFlash: 64 kB
usedTimeBudget: 4 ms, providedTimeBudget: 4 ms

c1

 c3c4

c5

e2 s1 s5

0ms 2ms 4ms

s5
(Master)

s6
(Inactive)

s1
(Master)

d1

s4
(ColdSlave)

d3 opt

s3'
(ColdSlave)

c6

s2''
(HotSlave)

s2'
(Master)

d1

s2's4
s3'
s2''

Figure 4.44: Deployment in scenario σ1 after isolation of execution unit e1

Tab. 4.16 shows how the value of prioSumActiveASWCs(σ1) is calculated.

Table 4.16: Calculation of prioSumActiveASWCs(σ1)

si prioPointsMaster(si) prioPointsHotSlave(si)
s1 7 —
s4 6 —
s5 7 —
s′2 6 —
s′3 6 —
s′′2 — 5

∑ 32 ∑ 5
∑ 37

135

4.7. SUPPORTING DEGRADATIONS OF SINGLE FUNCTIONAL FEATURES

Scenario σ2: When the execution unit e2 has to be isolated (Fig. 4.45), the cold standby-slave of s5 on e1
has to be activated, because s5 realizes feature f3 which is required to behave fully fail-operational. In order
to be able to activate s5 on e1, some other ASWCs have to be deactivated on e1. However, deactivating s1
would cause the loss of f1 and f ′1. Deactivating s4 would cause the loss of f2 and f ′2. Hence, this is not
allowed. Thus, s2 and s3 have to be deactivated to free enough space in the schedule to be able to activate
s5. Hence, s′2 has also to be activated on e1 in order to be able to provide feature f ′1. Feature f1 cannot be
provided anymore in this scenario. Also f2 cannot be provided anymore as s3 is inactive, but f ′2 can be
provided because s4 can operate standalone without the optional input.

e1

usedFlash: 60 kB, providedFlash: 64 kB
usedTimeBudget: 4 ms, providedTimeBudget: 4 ms

e2 (Isolated)

c3c4

c1

 c3c4

c5

c2

e2

0ms 2ms 4ms

e1 s1

0ms 2ms 4ms

s4

c1

s5

s6

s5
(Master)

s1
(Master)

d1
s2

(Inactive)
d2d1 s1 d1

s4
(Master)

d3
opt

s4

d3 opt

s3
(Inactive)

d2

d3

s3's3'
(Master)

c6

s2''
(HotSlave)

s2'
(Master)

d1

c6

s2''s2'd1

s5 s2''
s3's2'

Figure 4.45: Deployment in scenario σ2 after isolation of execution unit e2

Scenario σ2 is very similar to scenario σ1. The set of active ASWC instances in σ2 and σ1 are
identical, and also the set of available features are identical in both scenarios. The sum of priority points
is prioSumActiveASWCs(σ2) = 37, as well. The set of available functional features in scenario σ2 is
{ f ′1, f ′2, f3}.

The solution property usedTimeBudget(ei,σ j) changes in the degradation scenarios, as the sets of active
ASWC instances change, an thereby also the schedules of the execution units. However, the solution
property usedFlash(ei) keeps unchanged, as the binary of deactivated or isolated ASWCs is assumed to be
kept stored in the flash memory.

136

4.7. SUPPORTING DEGRADATIONS OF SINGLE FUNCTIONAL FEATURES

Scenario σ3: In case a failure is detected in the master instance of ASWC s1 on execution unit e1, there
are three options.

1. The master instance can be just restarted. This might be appropriate under the assumption that very
unlikely environment conditions lead to transient unconsidered inputs to s1 causing the detected error,
assuming that these environment conditions will not occur again after the restart. But a cold-restart
from the initial state of s1 is not appropriate, as a hot-restart is required for this component to ensure
its minFTT(s1). An alternative would be to use a checkpoint mechanism [274] to be able to provide
a warm-restart based on the last valid saved state of s1. We do not further consider this, as no
deployment changes are necessary for this. Also a hardware problem might have caused an internal
miscalculation of s1, based on correct inputs. But as described before, such a hardware problem
can be detected by using dual-modular redundant (DMR) execution units with bitwise comparison
between the two lanes, assuming that never the identical hardware problem will arise in both lanes,
leading to exactly the same miscalculation of s1 on both lanes.

2. The master instance of s1 can be isolated and the hot-standby slave of s1 on e2 becomes the new
master (see Fig. 4.46). This is only appropriate under the assumption that the detected error is not
caused by a systematic fault in the code of s1 (like a typical bug), which would also be present in the
hot-standby slave instance, based on the identical code. Instead, the detected error should be caused
by some external reason, that makes it preferable to not just restart s1 on the same execution unit.

3. Assuming a systematic fault in the code of s1, both the master and the hot-standby slave instance
should be isolated, because also the hot-standby slave would be erroneous. However, for the given
example this results in an unsatisfied constraint representing the fail-operational requirements,
because feature f1 and also its degraded version f ′1 would become unavailable, as s1 contributes to
both feature versions. Hence, this solution is invalid for the given example, as failOp(f ′1) = 1 is
violated. To resolve this problem, a dissimilar alternative implementation of s1 should be introduced
into the architecture. This may be done either by adding a component s1b implementing the same
specification as s1 and hence realizing also functional feature f1, or otherwise by providing a
degraded version s′1 of s1, which is able to realize the degraded version f ′1 of f1. In the latter case,
the software architecture of the example has to be changed such that s1 /∈ χ(f ′1), but χ(f ′1) = {s′1,s′2}.
Like s′2, also s′1 has to have the property redncy(s′1) = 1. Furthermore, when s1 is isolated, also s2 is
lost due to the mandatory subscription of data item d1. As also s′2 subscribes d1 mandatorily, the
additional degraded ASWC s′1 has to publish d1 to obtain a valid solution. All this can be checked
with our approach.

Fig. 4.46 shows the result for scenario σ3 under the assumption that the 2nd option is preferred, namely
a failover in form of switching the hot-standby slave of s1 on e2 to become the new master. We encoded the
formal constraints, which represent valid degradation scenarios, such that this option is chosen. However,
the constraints can be modified such that one of the other options can be analyzed. The set of available
functional features in scenario σ3 is { f1, f2, f3, f4}.

Scenario σ4: When s2 has to be isolated (Fig. 4.47), then feature f1 cannot be provided anymore. ASWC
s′2 has to be activated to provide the degraded f ′1. ASWC s3 is kept active to continue providing feature f2.
The set of available functional features in scenario σ4 is { f ′1, f2, f3, f4}.

Scenario σ5: When s3 has to be isolated (Fig. 4.48), also s2 has to be deactivated as s2 needs mandatory
data from s3. Hence, features f1 and f2 cannot be provided anymore. But the degraded features f ′1 and
f ′2 can be provided, as s1, s′2 and s4 are active. The set of available functional features in scenario σ5 is
{ f ′1, f ′2, f3, f4}.

137

4.7. SUPPORTING DEGRADATIONS OF SINGLE FUNCTIONAL FEATURES

e1

usedFlash: 60 kB, providedFlash: 64 kB
usedTimeBudget: 2.5 ms, providedTimeBudget: 4 ms

e2

usedFlash: 57 kB, providedFlash: 64 kB
usedTimeBudget: 3.9 ms, providedTimeBudget: 4 ms

c3c4

c1

 c3c4

c5

c2

e2 s1 s5

0ms 2ms 4ms

e1 s2

0ms 2ms 4ms

s3 s4 s6

c1

s5
(Master)

s6
(Master)

s5
(ColdSlave)

s1
(Isolated)

d1
s2

(Master)
d2d1

s1
(Master)

d1

s4
(Master)

d3
opt

s4
(ColdSlave)

d3 opt

s3
(Master)

d2

d3

s3'
(ColdSlave)

s3'
(ColdSlave)

c6

s2''
(ColdSlave)

s2'
(ColdSlave)

d1

c6

s2''
(HotSlave)

s2'
(HotSlave)

d1

s2'

s1 s2 s3ASWC s5s4 s6 s'2
wcet(si) 1.5 1 1 1.30.5 0.5 0.5

s'3
0.1

s''2
0.1

s2''

Figure 4.46: Deployment in σ3 after isolation of master of s1 and failover to its hot-standby slave

Hence, all requirements w.r.t. to full and degraded fail-operational behavior can be fulfilled in the scenarios
σ1, σ2, σ4 and σ5. In scenario σ3, it depends on whether a failover from the master to a hot-standby
slave makes sense in the considered fault model. If yes, also σ3 is valid. If not, a degraded version s′1 of
s1 should be added to the software architecture, which publishes data item d1 and is able to realize the
degraded functional feature f ′1 in cooperation with s′2.

138

4.7. SUPPORTING DEGRADATIONS OF SINGLE FUNCTIONAL FEATURES

e1

usedFlash: 60 kB, providedFlash: 64 kB
usedTimeBudget: 3.5 ms, providedTimeBudget: 4 ms

e2

usedFlash: 57 kB, providedFlash: 64 kB
usedTimeBudget: 3.9 ms, providedTimeBudget: 4 ms

c3c4

c1

 c3c4

c5

c2

e2 s1 s5

0ms 2ms 4ms

e1 s1

0ms 2ms 4ms

s3 s4 s6

c1

s5
(Master)

s6
(Master)

s5
(ColdSlave)

s1
(Master)

d1
s2

(Isolated)
d2d1

s1
(HotSlave)

d1

s4
(Master)

d3
opt

s4
(ColdSlave)

d3 opt

s3
(Master)

d2

d3

s3'
(ColdSlave)

s3'
(ColdSlave)

c6

s2''
(ColdSlave)

s2'
(HotSlave)

d1

c6

s2''
(HotSlave)

s2'
(Master)

d1

s2' s2''s2'

Figure 4.47: Deployment in scenario σ4 after isolation of s2

e1

usedFlash: 60 kB, providedFlash: 64 kB
usedTimeBudget: 2.5 ms, providedTimeBudget: 4 ms

e2

usedFlash: 57 kB, providedFlash: 64 kB
usedTimeBudget: 3.9 ms, providedTimeBudget: 4 ms

c3c4

c1

 c3c4

c5

c2

e2 s1 s5

0ms 2ms 4ms

e1 s1

0ms 2ms 4ms

s4 s6

c1

s5
(Master)

s6
(Master)

s5
(ColdSlave)

s1
(Master)

d1
s2

(Inactive)
d2d1

s1
(HotSlave)

d1

s4
(Master)

d3
opt

s4
(ColdSlave)

d3 opt

s3
(Isolated)

d2

d3

s3'
(ColdSlave)

s3'
(ColdSlave)

c6

s2''
(ColdSlave)

s2'
(HotSlave)

d1

c6

s2''
(HotSlave)

s2'
(Master)

d1

s2' s2''s2'

Figure 4.48: Deployment in scenario σ5 after isolation of s3

139

4.8. FORMALIZATION OF OPTIMIZATION OBJECTIVES

4.8 Formalization of Optimization Objectives

In order to obtain the desired analysis results for failover and degradation scenarios, we define a number
of optimization objectives for the Z3 SMT solver. These objectives ensure, for instance, that the level of
degradation in the scenarios does not become higher than necessary, resulting in a graceful degradation.
The objectives also ensure that the correct system elements are set to be isolated in the scenarios, and
that some aspects of the conducted deployment synthesis are optimized. This opens a multi-objective
optimization problem design space.

Before introducing the constraints in more detail, we need to take care about how conflicting constraints
shall be resolved. As we define multiple objectives that are partially contradicting, we need to define how
the solver shall handle the conflicts. The Z3 SMT solver offers three alternatives:

1. lexicographic prioritization, considering the objectives with decreasing importance in the order in
which the objectives are added to the model

2. pareto, returning subsequently multiple pareto efficient points on the pareto frontier of the problem
for each call of the check() function of the solver

3. box, returning the optimal value for each objective independently from the other objectives.

For our analysis, we need to establish a fixed prioritization of the objectives. This can be reached by
resolving conflicting objectives with the lexicographic order, configurable in Z3 Python API by command

1 s = Opt imize ()
2 s . s e t (p r i o r i t y = ’ lex ’)

That means that the objectives are prioritized in order of their appearance, with decreasing priorities.
This equals to the following code in SMT-LIB 2.x format [27], according to the documentation of the
optimization facility of the Z3 SMT solver. 4

1 (s e t−o p t i o n : o p t . p r i o r i t y l e x)

We now introduce the set of optimization objectives that we use during our analysis to obtain a solution
that is optimal with respect to the addressed characteristics.

• Objective O1: minimize the amount of isolated execution units and ASWCs, to avoid undesired
additional isolations in the solution. The objective prohibits the solver to set more elements to
be isolated than desired. So, only those elements are isolated, for which the isolation property is
explicitly set to 1 in the constraint that controls the setup of degradation scenarios.

• Objective O2: maximize the amount of available full-fledged features that have degraded versions,
to avoid undesired switches to degraded features. For instance, if a degraded feature is realized by
more ASWCs than the full-fledged feature, having a higher sum of priority points, without O2 the
following objective O3 would potentially cause an undesired switch from the full-fledged feature to
the degraded feature.

• Objective O3: maximize value of property prioSumActiveASWCs in each degradation scenario. By
this, it is reached that in case of insufficient execution resources, low critical ASWCs are deactivated
first, reaching that low critical functional features become non available first.

4http://rise4fun.com/Z3Opt/tutorial/guide, last access May 23th 2016

140

http://rise4fun.com/Z3Opt/tutorial/guide

4.8. FORMALIZATION OF OPTIMIZATION OBJECTIVES

• Objective O4 is an addition to O3. On the component level (O3) there might be the choice that
one of two components with ASIL=QM can be deactivated. Objective O4 now ensures that the
component is deactivated that realizes less functional features. Hence, O4 defines that in general, as
many features shall be kept available as possible.

• Objective O5: minimize the network traffic. This minimization can be reached by deploying the
master instances of communicating ASWCs to the same execution unit to use local communication.

• Objective O6: maximize the amount of hold soft constraints, as introduced in section 4.6.7.

Objective 1 :

1 ∀σ ∈ Σ :

2 minimize
(

amountOfIsolatedExecUnits(σ)
)

3 minimize
(

amountOfIsolatedSWCs(σ)
)

Objective 2 :

1 ∀σ ∈ Σ :
2 maximize (
3 sum f∈F (
4 I f (And (| if all the following is true:
5 available(f ,σ) = 1 , | f is available
6 degf−1(f) =⊥ , | f is not a degraded feature itself
7 degf(f) 6=⊥ | f has a degraded version
8) ,
9 1 , | then add 1 to the sum

10 0 | else add 0 to the sum
11)
12)
13)

Objective 3 :

1 ∀σ ∈ Σ :

2 maximize
(

prioSumActiveASWCs(σ)
)

Objective 4 :

1 ∀σ ∈ Σ :

2 maximize
(

sum f∈F
(
available(f ,σ)

))

Objective 5 :

1 ∀σ ∈ Σ :

2 minimize
(

networkTraffic(σ)
)

Objective 6 :

1 ∀σ ∈ Σ :

2 maximize
(

sumi∈N
(

I f (s o f t C o n s t r a i n t T r a c k e r (i,σ) = 1,1,0)
))

141

4.9. ASSUMPTIONS AND ASPECTS THAT ARE OUT OF SCOPE

If we would remove the objectives, we would still obtain valid degradation scenarios that do not violate
fail-operational requirements, as these are ensured separately by hard constraints, like C8.1 and C8.2. But
the results would be potentially inefficient, having a higher degree of degradation than necessary.

A subset of the objectives ensures to optimize the conducted deployment synthesis. From the shown
objectives, this is the case for O5. This subset of objectives might be changed, exchanged or extended, if
the user has other priorities with respect to the conducted deployment synthesis. However, the location
in the sequence of objectives must be carefully chosen. For instance, another comparable objective to
O5 would be to minimize the amount of required execution units (not shown). This objective would
be required to be defined between O2 and O3, such that the added minimize amount of execution units
objective is more important than the contradicting constraint to maximize the amount of priority points of
active ASWCs (O3).

4.9 Assumptions and Aspects that are out of Scope

4.9.1 Out of scope
The presented approach tackles a structural analysis of software architectures in certain situations that may
appear after failures in the system have been detected.

However, there are certain aspects of analysis which we do not tackle in the presented approach and
which we want to clarify here. Our approach has:

• no notion of time stream and time intervals

• no notion of when in time failures appear or how probable failures are

• no notion of behavior and states of features and SWCs

Hence, when we determine the availability of functional features in different degradation scenarios, we
express in a boolean {0,1} form if a functional feature can be kept available in that scenario. Classical
availability metrics consider a period in time and give a statement about the percentage of time in this
time period, for which a feature is available (see section 2.1.3). Similarly, classical reliability metrics use
a mean-time-between-failure (MTBF) metric to calculate the probability that a system will fail after a
certain period of time, under an assumed error rate, without considering healing by repair times as done
for availability metrics.

Furthermore, we do not consider error detection mechanisms, separation mechanisms, isolation mecha-
nisms for erroneous system elements, and concrete runtime failover mechanisms to activate redundant
backups of lost software components. We assume that the systems runtime environment (RTE) (resp.
middleware) offers appropriate techniques to do this. For instance, the RTE shall be able to perform
failovers without service interruption of an affected functional feature, or if allowed with an acceptable
degree of interruption.

4.9.2 Assumed properties of the system under analysis
Our approach rests upon assumptions for the system under analysis. We assume the presence of a runtime
environment (RTE), comprising the ensuing concepts.

We assume that the execution units of the system are either partially homogeneous, or that the RTE
of the system offers an abstraction such that software components can be deployed to execution units of
different types. We assume that all sensor data and other data can be accessed from all execution units and
that actuators can be controlled from all execution units. All this allows flexibility in the deployment of
software components to execution units.

142

4.9. ASSUMPTIONS AND ASPECTS THAT ARE OUT OF SCOPE

As scheduling policy, we assume the concept of logical execution times (LET), meaning that the
software components are executed within fixed cycles, see Fig. 2.13. Each execution unit provides a
budget of time per cycle that can be used to execute application software components (ASWCs). At start
of each cycle, an image of all input data should be created, then the application software components are
executed based on the input image and write output data to an output image. After all application software
components finished, the output image should be transfered to the receivers, like actuators. This allows
flexibility in the sequence of execution of software components and about local and remote communication.
Hence, precedence relations between ASWCs have not to be considered in the schedule of the ASWCs.
For simplicity, we assume that all software components are executed in every execution cycle (single-rate
scheduling). Also for simplicity, we assume that ASWCs have a single operation executed by the scheduler
(single task/runnable/entry-point per component). We assume that the worst-case execution time (WCET)
of the scheduled ASWC-operation is identical on all execution units. Our model could be extended
to support multiple runnables per component, which may have different execution periods (multi-rate
scheduling), like occurring in AUTOSAR, but this is out of scope of this thesis.

To establish the communication, we assume that the execution units, sensors and actuators, are
connected to each other by a reliable network topology. Hence, we do not consider failures within the
network communication. As communication delay, we assume that all data between the connected devices
can be transfered over the network from one cycle to the next cycle, such that all data sent in cycle x is
available on all other devices at cycle x+1. This supports flexibility in the deployment, without having to
analyze effects of the deployment to the end-to-end latencies of communicated data.

The Runtime-Environment (RTE) (or the Middleware) of the system under analysis has to have the
following capabilities. It detects runtime failures of certain system elements, like sensors, actuators,
execution units, communication buses, or software components. It isolates failing system elements from
the residual system to avoid failure propagation and harm. Mixed criticality software components are
separated in a temporal and spatial manner. Failover mechanisms allow to activate redundant backup
components, if required. No dynamic migrations of code or binaries of software components between
execution units are performed at system runtime. Degradation mechanisms handle insufficient resources
after isolations. Functional features can be deactivated to become unavailable in an appropriate safe way.
All this is required to establish fault-tolerance and to support fail-operational features in connection with
needed degradations or deactivations of other non fail-operational features. This empowers the RTE to
compensate the loss of isolated failed system elements. In this thesis, we consider isolations of execution
units and software components. With the help of our approach introduced in this thesis, degradation
scenarios for the described type of systems can be formally analyzed at their design time.

The principles of a system platform and corresponding RTE that conforms to our assumptions are
outlined in section 2.5 and introduced in [19] [318] [36].

143

4.10. EXPLANATIONS AND DISCUSSIONS ABOUT THE FORMAL SYSTEM MODEL

4.10 Explanations and Discussions about the Formal System Model

In this section we provide some additional insights and discussions about the design of our formal system
model, as well as alternatives about parts of it.

4.10.1 Functional Features

Relation of feature set F and feature hierarchies, modeled as a tree: The functional features of a
system are often modeled as a feature tree (also called function hierarchy [340]), expressing hierarchical
compositions of features by sub-features. Fig. 4.49 shows an example feature tree on the left side. The
example root feature froot is composed of two sub-features, which are again composed by sub-sub-features.
The leaf features are atomic and not further composed. In that context, functional features are often called
functions [340].

We consider the feature set F , which we defined in Def. 1, as a subset of the features of such a
feature tree, constructed by a horizontal slice through the feature tree. Hence, we do not consider feature
compositions in the set F (see right side of Fig. 4.49).

froot

f1

f2 f3

F

Feature Tree

f1 f2 f3

F = {f1, f2, f3}

Set F

Figure 4.49: A hierarchical feature tree (left) and a set of functional features F (right) that is created based
on the feature tree

In the formal analysis approach introduced in this thesis, we only consider the features of set F .
Sub-features of a feature f ∈ F are out of scope (for instance the sub-features of f1 in Fig. 4.49). With
our approach, it is possible to analyze in which situations f1 has to be deactivated, but more fine-grained
deactivations of the sub-features of f1 are not considered. Due to this, the set F may contain most probably
all leaf-features of a feature tree. But we do not restrict this here. The decision is open to the user of our
approach.

Notice that we do not consider feature models, which describe the variability of software product lines
(SPLs), introduced in Feature-Oriented Domain Analysis (FODA) [192] and also treated for instance in
[222] [43] [42] [101]. Instead, we consider a feature tree as a specific product variant instance of a SPL
feature model, and create our feature set by doing a slice through this feature tree. When extending our
approach towards the consideration of feature models with variability, the feature part of our formal model
(see Def. 1) has to be extended, as well as new constraints (see section 4.5.1) are required that express
the feature model and valid feature configurations. Finally, multiple feature sets as concrete products of
a feature model could be analyzed in one single analysis, together with analyzing the adequacy of the
different associated realizing software architectures (see section 4.2.3). This is out of scope of this thesis.

144

4.10. EXPLANATIONS AND DISCUSSIONS ABOUT THE FORMAL SYSTEM MODEL

Feature Dependencies: Interactions or dependencies between functional features denote how single
functional features influence each other when composing the entire system behavior. In our formal model,
we do not incorporate explicitly dependencies or interactions between functional features. The reason is
that we do not need to describe these dependencies explicitly on feature level to perform the failure effect
analysis introduced in this thesis. Instead, we perform the analysis on software architecture level. In the
software architecture, the feature dependencies can be realized mainly in two ways:

1. Communication channels between software components that realize different features. In this thesis,
we distinguish optional and mandatory communication channels between software components,
representing optional or mandatory feature dependencies. A mandatory feature dependency is
typically given if a feature fi is based on another feature f j such that fi needs f j to fulfill its own
service. An optional feature dependency is given if a feature fi is influenced somehow by another
feature f j, but fi can also provide its service standalone.

2. Software components that contribute to realize multiple features. Depending on the implementation
of the shared ASWCs, desired or undesired feature dependencies can be realized, both either in one
direction, or also bidirectional. It may also be the case that a shared ASWC does not result in a
feature dependency at all. We do not go deeper into detail about how such a shared usage of an
ASWC results in different types of feature dependencies in this thesis for the sake of simplicity.
Such dependencies are for instance further considered in [342] [340].

4.10.2 Software Architecture
Consideration of software components: Usually, when constructing a software architecture, different
application software component types are modeled, and these application software component types are
reused and instantiated multiple times when composing the application software architecture of the system.
In this thesis, we assume that if a software component type is reused in multiple places in the software
architecture, we treat these as multiple different ASWCs si,s j ∈ S in our formal input model. For simplicity,
we assume that all s ∈ S have the same component type.

However, ASWCs s ∈ S might become deployed redundantly to multiple execution units. We call this
the deployed instances of an ASWC. Only one of these redundant instances is acting as the so called active
master instance, which provides the functionality of that component to the architecture.

Beside the introduced ASWCs, which are located at the application layer, other software components
might exist in a system design, like SWCs located at the runtime environment (RTE) layer or at the basic
software (BSW) layer. However, in this thesis, we consider only ASWCs.

Compositions of software components: In the presented formal model, we treat software components
as black boxes, without considering internal structure, states or behavior. This also implies that we do not
model hierarchical compositions of software components. If the real software architecture of the system
under analysis applies compositions, what is usually the case for many systems, anyhow the real software
architecture design should have some information about which components build a deployable unit. These
deployable components shall be used as input set for our analysis. If no such information exists, the user
of our approach has to select a set of software components adequately.

145

4.10. EXPLANATIONS AND DISCUSSIONS ABOUT THE FORMAL SYSTEM MODEL

Selection of channels between ASWCs: In section 4.2.2 (Def. 6) we introduced that we model ports
of ASWCs, but treat channels not between these ports, but aggregate the channels to be between ASWCs.
Furthermore, in section 4.4.3 (see property chosenMatchingPortId) we introduced that we synthesize the
set of used channels out of a set of channel candidates. Why do we do this?

Although we consider channels between ASWCs, we define ports of ASWCs in the input problem
model to describe possible communication channel candidates between ASWCs. The benefit of selecting
used channels from a bigger set of channel candidates during the analysis is that we can synthesize an
optimal architecture, for instance minimizing the network traffic, if multiple candidates for channels exist,
e. g., because two or more matching publications exist for one subscription. This means, we do not assume
that the channels are predefined in the input problem model, but this can be supported easily, disabling the
above mentioned benefit.

There are different options to control the decision about which publication port is chosen out of a set
of possible matching ports to get connected to a considered subscription port. One possibility is to choose
one of those whose ASWC is deployed to the same execution unit than the ASWC of the subscription port.
This reduces the network traffic due to preferring local communication. The channel selection introduced
in this thesis is done once for the whole analysis. This means, the channel selection is fixed and does not
change in case of a transition from the initial deployment to a degraded deployment. If a selected publisher
ASWC of a channel has to be deactivated in a degradation scenario, no reconfiguration is done to select
another matching publisher ASWC out of the remaining set of matching publisher ports to establish a new
channel to substitute the lost channel. If such a behavior is desired for a system under analysis, the formal
constraint model can be adapted as future work to cover such scenarios.

Establishment of channels at runtime: We assume that the system under analysis has a runtime
environment (RTE) with a module (e. g., a Broker) that technically establishes the communication channels
between the ports of ASWCs. To follow the result of the analysis provided by our approach, this should be
done according to the synthesized channel selection. Fig. 4.50 shows such a situation, where the ports
of two software components s1 and s2 are interconnected by a Broker of the RTE. Such a Broker is for
instance present in the XME RTE [71]. Fig. 4.50 also shows a possible white-box view into the internal
structure of s1 and s2, showing how they might be composed by internally connected subcomponents. As
mentioned, we do not consider such internal compositions in our formal system model.

ps1,1

ps1,2

ps2,1

ps2,2

RTE Broker

s1 s2

pp1,1

pp1,2

pp2,1

Figure 4.50: RTE Broker that connects ports by channels

146

4.10. EXPLANATIONS AND DISCUSSIONS ABOUT THE FORMAL SYSTEM MODEL

Causality Relations: For the sake of simplicity, we assume in our model that each subscription of a
component s ∈ S influences each publication of s. This could be refined by specifying in detail which
subscriptions influence which publication, like for instance considered as causality-relations in [308] or
inner port dependency traces in [169], allowing a more fine grained analysis about failure propagations
inside components and hereby which subset of publications could potentially still be provided after a subset
of the subscriptions become unavailable or have insufficient quality. However, in the model introduced in
this thesis, we assume that no publication can be provided at all if one mandatory subscription becomes
unavailable, and all publications can be provided if some optional subscriptions become unavailable.

No service degradation in case of missing optional input data: We assume that ASWCs can provide
their full service, even if optional input data is missing. Hence, no service degradation happens when
optional input data is missing. A support of service degradations in case of missing optional input would
be an extension point to our approach. An operating mode model would be required for ASWCs to capture
different degraded operating modes of ASWCs in case of decreasing optional inputs. This could be also
extended to capture missing mandatory inputs. To be able to analyze in detail which missing input has
which degradation effect in the operating mode model, the channel matrices have to be redefined to be over
the number of ports, not over the number of ASWCs. This is out of scope of this thesis and future work.

In section 4.7, we introduce ASWC degradations in case of missing mandatory input data by switching
to a degraded version of an ASWC, which does not mandatorily rely on the missing input. This is done by
deactivating the ASWC that misses mandatory input data and activating a degraded version of that ASWC
which does not require this input mandatorily. The benefit is that this supports diversity of ASWCs.

ASWCs with different operating modes: In this thesis, we do not consider different operating modes
of ASWCs, which might also be used to establish graceful degradation. If the ASWCs of the system
under analysis would have different operating modes, the introduced analysis approach would not consider
them. If a failed mode-based ASWC becomes isolated from the residual system, none of its operating
modes can be provided anymore. Hence, in this situations, deactivations of operating modes should be
considered instead of deactivations of complete ASWCs. However, this is out of scope of the thesis. As we
focus on structural analysis and not on behavioral analysis, we do not model operating modes of ASWCs,
but instead we model substitutions of an ASWC by a degraded version of that ASWC, as introduced in
section 4.7. This allows to model degradations by switching between two ASWCs that have a degradation
relationship and allows to incorporate diversity, as the two ASWCs could be provided by two different
development teams.

Single Rate Scheduling with single entry-point: We assume in this thesis that all ASWCs are executed
with the same rate in every execution cycle (single rate scheduling). We define software components to
have a single entry-point operation (alias function) 5, which becomes executed by a scheduler periodically
in fixed execution cycles. This means, in AUTOSAR terminology [22], each ASWC has exactly one
Runnable 6 and all Runnables have the same execution rate (time-triggered period). We do not consider
ASWCs with multiple executable operations in the formal model for simplicity, but the introduced formal
model could be extended in this direction. With such an extension, also software components with
multiple executable operations (each having an own WCET) could be supported, which are executed in
periodic cycles with homogeneous or heterogeneous rates in a time-triggered manner, or even triggered
by aperiodic events. Such an extension would be required to support AUTOSAR models [22], having
multiple Runnables of ASWCs with different execution periods.

5see "Entry Point" on page 37 of AUTOSAR_TR_Glossary.pdf [22]
6see "Runnable Entity" on page 73 of AUTOSAR_TR_Glossary.pdf [22]

147

4.10. EXPLANATIONS AND DISCUSSIONS ABOUT THE FORMAL SYSTEM MODEL

Why do we limit the redundancy by the amount of execution units? In section 4.4.3, we intro-
duced the redncy(s) property and that we define this to be redncy(s) = min

(
|E|−1,max

(
failOp(f) | f ∈

χ−1(s)
))

, for s ∈ S. We would like to explain here, why we limit the redundancy by the amount of
execution units. During our proposed analysis, we consider failures of execution units and ASWCs. We
interpret the fail-operational requirement of a functional feature as the amount of failures (and subsequent
isolations) of execution units and ASWCs that the feature has to survive. Hence, if we would derive the
redundancy for instance by redncy(s) = max

(
failOp(f) | f ∈ χ−1(s)

)
, we wound obtain a problem. If we

would have for instance 4 execution units and 10 ASWCs and have a feature f ∈ F with failOp(f) = 6,
the required redundancy of an s ∈ χ(f) would be redncy(s) = 6, meaning that s has to be deployed 7 times.
If we restrict the deployment that at most one instance of an ASWC can be deployed to each execution
unit, then this redundancy level is not possible, as there are only 4 deployment targets. The question is,
does it make sense to relax this restriction and allow multiple instances of the same ASWC on the same
execution unit?

In case of failures of execution units, all instances get lost that are deployed to an isolated unit. In
this case there is no benefit of multiple deployments onto the same unit. In case of a failure of the
considered ASWC, detectable by an interface behavior violating the specified behavior, we need a closer
look onto the fault that caused the failure. If an ASWC master instance failed due to a permanent software
fault (like a software bug), then also the other redundant instances of that ASWC would have the same
bug. Hence, starting a cold-standby slave would be identical to just restarting the master from its initial
state, independently from where the cold-slave is deployed to. A failover to a hot-standby slave is not
possible, as the hot-slaves behavior would have also failed. Hence, in case of a software bug, multiple
local instances have no benefit. Restarting the master may be an option, if the situation leading to the
occurrence of the bug is very unlikely. Otherwise, we highly recommend to introduce diversity and switch
to an alternative implementation of that ASWC. In section 4.7, we consider such diversity, but combined
with degraded behavior of the diverse ASWC. If the deviation from the specified behavior occurred due to
a electromagnetic event leading to a bit flip in the memory of the ASWC on the execution unit (not to a
bug in the ASWC), then also restarting the ASWC from its initial state would have the same effect than
starting a second cold-standby slave instance of that ASWC on the same execution unit. However, in this
case it may make sense to start a redundant instance of that ASWC on another execution unit, assuming
that the electromagnetic event is less likely there. If the ASWC has a required hot-standby slave, then the
hot-slave would anyway be always on another execution unit than the master, to avoid that master and
hot-slave disappear simultaneously in case of an isolation of one execution unit.

However, in a very degraded state, in which only one single execution unit is left, it makes sense that
master and hot-slave are active on the same execution unit, but only if the fault is not a permanent software
bug. In case of a bug in the ASWC, both the master and the hot-slave would violate their specified behavior.
In case of a electromagnetic caused failure of the master, a failover to the local hot-slave makes sense,
assuming that the data of the slave was not affected. The benefit is, that the internal state of the hot-slave
is already identical to the specified valid state of the master. If we would just restart the master, the
drawback would be that the ASWC is restarted to its initial state. This may result in a dangerous behavior
on functional feature level. Hence, only in the last sketched scenario it would make sense to deploy at most
two instances of an ASWC (master and hot-standby slave) to the same execution unit. However, instead
of isolating the master and failover to the local hot-slave, the same situation could be closely resolved
by a roll-back of the master to its last valid state, under the drawback that the calculation done in the
faulty execution cycle is lost and a state transfer might be deferred by one cycle. Also this can result in
a dangerous behavior on feature level. But if the execution units are lockstep units with dual-modular
redundant execution lanes, such an electromagnetic caused ASWC failure would probably appear only
in one lane. Hence, the failed ASWC instance could be repaired by copying the correct memory image
from the other lane. Such a mechanism is called roll-forward recovery [275] [206]. Due to these recovery

148

4.10. EXPLANATIONS AND DISCUSSIONS ABOUT THE FORMAL SYSTEM MODEL

options, we do not model deployments of multiple instances of an ASWC to the same execution unit and
limit the redundancy of ASWCs to redncy(s)≤ |E|.

Calculation of the property prioPoints of ASWCs: There is a fact to notice about the shown calcu-
lation of the property prioPoints : S→ N0, which builds the basis for the sum elements leading to the
value of property prioSumActiveASWCs, both introduced in section 4.4.4. We assume that only ASIL C or
ASIL D features can have a fail-operational requirement. The reason is that lower critical features can be
deactivated with little danger for severe harm. However, if we have two features, one ASIL C feature f1
with failOp(f1) = 1, and one ASIL D feature f2 with failOp(f2) = 0, the question is which feature has to
be available longer? Regardless of whether this makes sense from the perspective of safety and reliability
argumentation, we want our approach to be able to analyze this.

We consider the fail-operational requirement as more important than the ASIL. Hence, if a feature has
to be disabled, f2 has to be disabled first, such that f1 satisfies its fail-operational requirement. Anyhow,
a formal constraint over our model ensures that the fail-operational requirement of features must not
be violated, avoiding a too early deactivation of f1. However, in order to be able to analyze incorrect
architectures with respect to which architecture elements cannot be guaranteed to hold their requirements,
the constraint is a soft constraint, meaning that it can be violated in the solution. The violated constraint
allows to trace back to the related ASWC and/or functional feature, allowing to give feedback to the user.

The soft constraint avoids that the SMT solver simply returns unsat, denoting that no valid solution
for the problem can be found. Such an unsat gives no clue about the reason that forces the model to be
unsatisfied. We introduce the soft constraints in more detail in section 4.6.7.

Hence, also the maximization of prioSumActiveASWCs has to take care that f2 is disabled first.
If now s1 = χ(f1) and s2 = χ(f2), it is important that s2 becomes deactivated first before s1, as oth-
erwise f1 would become unavailable first, violating its fail-operational requirement. Hence, it must
hold that prioPoints(s1)≥ prioPoints(s2). The introduced valuation adheres to this, as prioPoints(s1) =
prioPoints(s2) = 4. As the values are equal, the solver has a choice. In order to maximize property
prioSumActiveASWCs, the solver decides based on another constraint or objective about which ASWC to
deactivate first. There is another optimization objective defining that the amount of violated soft constraints
has to be minimized. Hence, the solver decides to deactivate s2 first, as otherwise to fail-operational
constraint of f1 would be violated.

Alternative functional representation of map: Alternatively to the relational matrix representation
map, which we introduced in section 4.2.2 and use in our formal system model, the mapping could also be
described in a functional representation that maps each ASWC s ∈ S to exactly one cluster c ∈C.

α : S→C with ∀s ∈ S : α(s) = c ∈C iff. map(s,c) = 1 (4.3)

The inverse mapping, giving the subset of ASWCs that are mapped to a given cluster, can be defined as

α
−1 : C→ P (S) with ∀c ∈C : α

−1(c) = {s ∈ S | α(s) = c} (4.4)

Notice that although α−1 maps an element of the domain C to potentially multiple elements of S, α−1

is still a mathematical function as the codomain is a set of sets, namely the power-set P (S) of S, and α−1

maps an element of the domain C to exactly one element of the codomain P (S). For ci 6= c j, it holds that
(α−1(ci)∩α−1(c j) = /0) and

⋃
c∈C α−1(c) = S.

The functional representation allows to slenderly express constraints like ∀s∈α−1(c) : asil(c)= asil(s),
defining that all ASWCs within an ASWC-Cluster have to have an identical ASIL and that the ASIL of
the cluster is derived by the ASIL of the ASWCs mapped to this cluster. However, instead of using the
functional representation α and α−1, we use the relational matrix representation map in the formal system

149

4.10. EXPLANATIONS AND DISCUSSIONS ABOUT THE FORMAL SYSTEM MODEL

model to express the mapping of ASWCs to ASWC-Clusters, as the matrix representation is well suited to
express all formal constraints over the elements.

4.10.3 Feature Realization
Either atomic leaf features, or also non-leaf features of a feature-tree (see Fig. 4.49) may be considered
to get realized by software components of set S. This expresses the decision on which granularity level
features of the feature tree are realized by a set of software components. The slice through the feature tree
might be done in different ways. If a non-leaf feature is contained in F , like the left most feature f1 of set
F in Fig. 4.49, we assume that the set χ(f1) of ASWCs realizing this non-leaf feature is the sum of the
ASWCs which realize the sub-features of f1.

4.10.4 Hardware Architecture
We assume that all execution units are connected to each other by a reliable network topology. A reliable
Ethernet ring based network topology for future electric vehicles has for instance been introduced in [19].

4.10.5 System Configuration
Single instances of ASWCs per execution unit: To be able to model the deployment by the matrix
deploy : S×E → {0,P,M,HS}, we restrict the deployment such that at most one instance of an ASWC
becomes deployed to each execution unit. Hence, there are never multiple redundant instances of an ASWC
on the same execution unit. If a consideration of deployments of multiple redundant instances of ASWCs
to the same execution unit would be required, the deployment matrix can be extended to a deployment
cube deploy : S×E×m→{0,P,M,HS}, with m ∈ N+ being the maximum amount of redundant ASWC
instances per execution unit.

No deployments of ASWC-Clusters: In this thesis, we consider the deployment of ASWCs onto
execution units, not the deployment of ASWC-Clusters onto execution units (like it was introduced in
[38] and [40]). We consider the deployment of ASWCs, because the activity of the ASWCs within a
cluster may become different when single ASWCs within a cluster fail and have to be isolated. Hence,
some ASWCs within a cluster may become isolated due to detected failures of that ASWCs, or they may
become passivated due to insufficient resources, while other ASWCs within the same cluster are still
active. Isolating the whole cluster in case of a failure of a single ASWC of that cluster is not appropriate,
as potentially many other intact ASWCs would get lost and due to this, and also the realized functional
features. Hence, the ASWCs within a cluster might have different activity, meaning that in one cluster
instance on an execution unit, some of the contained ASWCs may be passive, while others may be active
masters or hot-standby slaves. Thus, the deployment is described on ASWC level, not on cluster level.

Alternative functional representation of deploy : Alternatively to the relational matrix representation
deploy, which we introduced in section 4.2.5 and use in our formal system model, the deployment could
also be described in a functional representation that deploys each ASWC to a subset of the execution units.

δP : S→ P (E) with ∀s ∈ S : δP(s) = {e ∈ E | deploy(s,e) = P} (4.5)

δM : S→ P (E) with ∀s ∈ S : δM(s) = {e ∈ E | deploy(s,e) = M} (4.6)

δS : S→ P (E) with ∀s ∈ S : δS(s) = {e ∈ E | deploy(s,e) = HS} (4.7)

150

4.10. EXPLANATIONS AND DISCUSSIONS ABOUT THE FORMAL SYSTEM MODEL

The co-domain of δM and δS is a power set instead of a single value, as the sets might become empty
for instance in degradation scenarios and not every ASWC requires a redundant hot-standby slave.

We further introduce δA(s) = δM(s)∪δS(s) to express the subset of execution units to which s ∈ S is
deployed actively, either as master or hot-standby slave.

δA : S→ P (E) with ∀s ∈ S : δA(s) = {e ∈ E | deploy(s,e) ∈ {M,HS}} (4.8)

Finally, we introduce δ(s) = δP(s)∪δM(s)∪δS(s) to express the subset of execution units to which s ∈ S
is deployed either passively (only in memory) or actively (in memory and in schedule).

δ : S→ P (E) with ∀s ∈ S : δ(s) = {e ∈ E | deploy(s,e) ∈ {P,M,HS}} (4.9)

However, instead of using the functional representations δP, δM , δS, δA and δ, we use the relational
matrix representation deploy in the formal system model to express the different kinds of deployments of
ASWCs to execution units. We use the relational representation because it is well suited to express the
formal constraints over the elements. In the formal constraints, it is for instance required to count to how
many execution units an ASWC is deployed in one of the above introduced deployment types (passively,
actively as master, etc.). The relational matrix representation is well suited to offer this summations by
calculating conditional sums over rows or columns of the matrix, as presented in the formal constraints
listed in section 4.5.1.

Minimization of level of degradation in the considered failure scenarios: We obtain a minimiza-
tion of required degradations in the analyzed scenarios by creating a concept of priorities of software
components. These priorities are automatically derived by the ASIL and fail-operational levels. We
calculate a sum of these priorities and formalize an objective to maximize the sum in order to minimize
degradation. See property prioSumActiveASWCs in sections 4.4.4, 4.6.5 and 4.8. However, even if this
sum would make no sense, for instance if the software architecture would contain an ASIL A component
with fail-operational requirement, as well as an ASIL D component without fail-operational requirement,
resulting in a fail-operational component having a lower priority than a non-fail-operational component,
the resulting deployments will never become invalid. Fail-operational requirements never become violated,
because their fulfillment is enforced by hard constraints. Hence, even in this case the ASIL D component
would be deactivated first, even if it has a higher priority value.

151

CHAPTER 5 Evaluation

In this chapter, we evaluate the contributions of the approach being introduced in chapter 4. To evaluate
the introduced approach, we already discussed three self constructed examples in sections 4.6.8, 4.6.9 and
4.7.5, showing the type of systems and scenarios that can be analyzed with our approach. Supplementary,
in section 5.1 we discuss to what extent our research questions, presented in section 1.3, are resolved by
the presented analysis approach. Further assumptions and limitations regarding our analysis are discussed
in section 5.2. In section 5.3 we discuss the threats to the validity of the presented approach.

Contents
5.1 Discussion of Research Questions . 153
5.2 Limitations of the presented approach . 155
5.3 Threats to Validity . 157

5.1 Discussion of Research Questions

In section 1.3 we introduced the following research questions (RQs) as motivation for this thesis.

RQ1: How to automatically calculate valid deployments of software to hardware, supporting the
fulfillment of fail-operational requirements?

RQ2: How to formally analyze the ability to keep functional features available in scenarios of fail-
ing system elements, and decide about necessary degradations of the available feature set,
incorporating necessary failovers to ensure fail-operational requirements?

RQ3: How to formalize a given system design concept and the requirements related to the safety and
fault-tolerance concept of that system to be able to apply the formal analysis to this type of
system?

We now discuss which parts of this thesis contribute to which research questions and to which extend
we resolved these research questions.

RQ1: How to automatically calculate valid deployments of software to hardware, supporting the
fulfillment of fail-operational requirements?

In sections 4.2 and 4.4, we described a formal model of deployments of software components onto
hardware execution units, supporting mixed levels of redundancy and different states of redundantly de-
ployed component instances. This allows to express constraints for the validity of synthesized deployments,
as introduced in section 4.5.1. To be able to express and ensure fail-operational requirements, the formal
model also contains a notion of functional features attached with required levels of fail-operationality, as
well as relationships about which functional features become realized by which software components.
Based on this information, we ensure that an appropriate level of redundancy of software components is
built into the synthesized deployments to take care that the fail-operational requirements of the related
functional features can be fulfilled by means of using redundant backup software components to replace
lost primary components if necessary. We also support mixed-criticality by treating different criticality

153

5.1. DISCUSSION OF RESEARCH QUESTIONS

levels (e. g., ASIL, but also DAL could be used). Furthermore, by means of mapping components with
identical criticality to so called clusters, we synthesize deployments preparing to separate the different
clusters by using a separation kernel. Combined with RQ2, we ensure that we synthesize an initial
deployment that is an appropriate starting condition to fulfill all fail-operational requirements in all failure
scenarios considered in RQ2, if such a deployment exists. In sections 4.6.8 and 4.6.9, we have shown the
applicability of the presented approach based on two examples.

RQ2: How to formally analyze the ability to keep functional features available in scenarios of failing
system elements, and decide about necessary degradations of the available feature set, incorporat-
ing necessary failovers to ensure fail-operational requirements?

To analyze the effect of internal failures of system elements and subsequent isolations of those ele-
ments, potentially leading to insufficient system resources to provide the full set of functional features, we
synthesize strategies to deactivate low critical functional features in order to be able to keep high critical
features with fail-operational requirements available.

However, we not only model a boolean fail-operational requirement, but we support to model different
levels of fail-operationality, meaning how many subsequent failures of different internal system elements
shall be survived. This is taken into account when setting up the constraints for the required levels of
redundancies of software components for the deployment synthesis.

Based on assigning so called priority points to software components, calculated automatically based
on the required safety integrity level and required level of fail-operationality, we model an objective that if
software components are needed to be deactivated due to insufficient resources, then those components
become deactivated which result in deactivation of functional features with as low safety integrity level as
possible. Hence, in the automotive domain, those functional features with QM level are deactivated first,
then ASIL A features, and so on, while always taking care that fail-operational requirements are fulfilled.

We introduced the basic concept in section 4.6 and applied it to two examples in sections 4.6.8 and
4.6.9. Furthermore, in section 4.7 we extended our model and analysis to incorporate also degradations of
single functional features, empowered by supporting to model degraded versions of software components,
also allowing to incorporate diversity. We applied this extension onto a third example in section 4.7.5.

To structure the analysis, we modeled a scenario graph and a formal model that allows to analyze the
whole graph at once with one single execution of the employed SMT solver. Alternatively, also partial
graphs can be analyzed. As described in section 4.6.4 and published in [38], it would be also possible
to analyze each graph node separately and put an algorithm on top to adapt certain constraints during
traversing through the graph to take previous results into account, like predecessor deployments. However,
the one-big-solution approach facilitates to model constraints for the graph transitions as part of the formal
model, making an additional algorithm superfluous.

The research result is that the introduced approach resolves RQ2, based on the given assumptions
discussed in section 4.9. The approach can be extended in future work to remove some of the assumptions.

RQ3: How to formalize a given system design concept and the requirements related to the safety
and fault-tolerance concept of that system to be able to apply the formal analysis to this type of
system?

In sections 4.5.1 and 4.6.5, we introduced formalized constraints that represent informal requirements
about the considered safety and fault-tolerance concept shown in section 2.5.2, including redundancy and
failover mechanisms. We have shown certain informal requirements and their formal representations in
form of formal constraints over the introduced system model. The research result is that the introduced
formal model allows to represent all considered requirements and even more, as we have not shown

154

5.2. LIMITATIONS OF THE PRESENTED APPROACH

all implemented requirements. In section 4.8, we introduced formalized optimization objectives for the
synthesized deployments and channel selections within the considered failure scenarios.

5.2 Limitations of the presented approach

Subsequently, we discuss limitations of the approach that we introduced in chapter 4. Some of these
limitations can be hurdled by extensions of our formal model, constraints and objectives as future work.
Other limitations are more fundamental due to the assumed properties of the system under analysis and its
assumed safety and redundancy concept, which hampers a transfer to certain other types of systems.

Behavior: We do not model the behavior of software components and the resulting behavior of functional
features of the system. Instead, we focus on an analysis on structural level. The structural level allows
to analyze which components can be executed in which scenarios, enabling to analyze which functional
features can be kept available in these scenarios. However, this does not enable an analysis about the
quality of service, in which a functional feature can be provided.

Quality of Communicated Data: We do not model different quality levels of communicated data. Such
quality attributes of data might be used in connection with quality thresholds at subscription ports to
specify degradation triggers of component behaviors. We also do not model different operating modes of
software components, which may be used to represent different (potentially degraded) behaviors. However,
in case a system under analysis contains software components with different operating modes related to
different levels of quality of input data, such an extension of our model is a potential future work.

Black Box Software Components: We consider software components as black boxes, supporting no
white box view into software components to identify causalities between subscription ports and publication
ports of a software component. This restricts the introduced analysis to consider deactivations of entire
components, as soon as one mandatory subscribed data item becomes unavailable. With an extension
towards an internal causality model between subscription ports and publication ports of one component,
meaning to model which subscription ports internally influence which publication ports, more fine grained
deactivation and degradation strategies could be modeled and analyzed. Such an extension is future work.
A concept for modeling and analyzing white-box causality relations of software components is presented
for instance in [308].

Time: As discussed in section 4.9, our model does not incorporate a notion of time, for instance to
model when in time a failure occurs. We also do not incorporate soft or hard real-time requirements for
processor task scheduling, for network data transmissions, or for end-to-end timing constraints of data
causality effects. Thus, we do not express temporal real-time requirements or linear temporal logic (LTL)
formulas within the shown constraints. However, an extension of our approach towards the expression of
temporal requirements by the introduced formal constraints would be possible as future work. For instance,
it is already shown in [347] that temporal constraints for systems with a global discrete time base can
be expressed as input for SMT solvers. We assume a logical execution time based system platform with
homogeneous execution cycles, as well as a reliable real-time capable communication network, being able
to distribute each communicated value to each receiver within a fixed amount of execution cycles. Due to
the missing notion of time and time intervals, we do not calculate the availability of functional features as
ratio between uptime and overall time, but instead we provide a boolean notion of availability in certain
scenarios that may appear in some point in time.

155

5.2. LIMITATIONS OF THE PRESENTED APPROACH

Considered Failures: We focus on assumed internal failures of execution units and software components,
as well as on structural reactions required due to isolations of these failed internal elements. The isolations
are necessary to avoid failure propagation leading to an external failure at the system boundary. Although
during runtime some failures may be transient, we only consider permanent failures. The error respectively
failure detection and handling mechanism of the systems runtime environment may mask transient errors or
failures, for instance by using last good known values for a limited amount of time. This is not considered
in this thesis. We also do not consider healing of a system when a failed hardware or software component
comes back to operation. However, this can be seen as a transition back to some predecessor scenario
in the scenario graph (SG), being a potential future extension of the introduced analysis. However, in a
complex system, there may exist more other failure modes which may be mandatory to be captured and
analyzed, making our approach eventually insufficient or even inapplicable for these systems, if the model
could not be extended to capture these additional failure modes.

Probabilistic Models: In most safety engineering approaches, like FTA and FMEA (see section 2.2),
probabilistic models are used to describe the appearance of faults and the causality to errors and failures in
order to analyze the system safety. However, in this thesis we do not support probabilistic modeling of the
considered failures of system elements. Instead, we consider certain situations in which we assume certain
failures to be occurred, without a notion of probability.

Scalability, Performance: The problem of finding optimal deployments is a NP-Hard problem [333].
Furthermore, as shown in section 4.6.10, the scenario graph can become very large, with an amount of
scenario nodes progressively growing with the number of execution units and software components.

In this thesis, we set only a minor focus on reducing the complexity of the introduced formal model
to allow efficient solving of the problem model. For instance, we merged the communication channels
between ports of software components to communication channels between software components, in order
to keep the communication matrices of the formal model smaller and thereby to improve the efficiency of
finding solutions. We set no further focus on an efficient solving of the input problem model to improve
scalability of our approach, as we used an out of the box SMT solver. Hence, in order to analyze large
scale software and system architectures, alternative search and optimization technologies might be of
interest, instead of the employed SMT solver. As future work, other more efficient problem solving
and meta-heuristic optimization search strategies should be also employed and evaluated with respect to
scalability for bigger models of the system under analysis. In section 2.7, we outlined alternative heuristic
optimization strategies, providing non optimal but near optimal solutions in a more efficient amount of
time. This is also relevant as other future work extensions of our model, as discussed above in this section
or also below in section 6.3, would furthermore increase the size of the model.

Another future work to improve scalability would be to investigate if and how our analysis approach
can be separated into multiple sub analyses, which can be solved independently and iteratively. This might
potentially lead to a more efficient calculation of the analysis results, however potentially providing only
approximative near optimal solutions, for instance for the required levels of degradation in the considered
failure scenarios. Such separation of problems into iterative design space exploration has been for instance
investigated in [153].

Assumed properties of system under analysis: In section 4.9.2, we discussed certain properties that
we assume for the system under analysis. The presented analysis approach is tailored to system platforms
that are similar to the platform that had been developed in the RACE project (see section 2.5.1), particularly
in terms of scheduling, E/E architecture and communication topology, remote sensor/actuator access, and
the presence of general purpose execution units.

156

5.3. THREATS TO VALIDITY

This means, the presented formal model and analysis approach is not tailored for usual state-of-the-art
distributed heterogeneous federated E/E architectures (see section 2.4.1), consisting of a communica-
tion topology with multiple heterogeneous bus systems, connected by a central gateway, as well as
heterogeneous electronic control units, tailored for a special purpose.

Instead, our approach is tailored for future centralized automotive E/E architectures, comprising
a centralized computing platform with a scalable amount of execution units. Such centralized E/E
architectures are seen by many independent sources as future architectures to handle the challenges of
autonomous driving, for instance in [133]. However, by using the hwPlatform property, we also support to
synthesize deployments to heterogeneous execution units and also to peripheral execution units outside the
central computing platform. In this way, our approach can also be extended to incorporate the analysis of
effects of failures of sensors, which are attached to peripheral execution units respectively gateways.

Applicability to different types of systems: The applicability of the introduced formal model and
analysis approach depends conceptually on the architectural style of the system under analysis, the used
component model, model of execution, etc. The system under analysis has to match the above mentioned
assumptions, therewith the model is able to adequately expresses all relevant system information. We
assume for instance that the system under analysis applies an asynchronous publish/subscribe communica-
tion. Another limitation may be that the modeled set of functional features may be not precise enough to
sufficiently analyze systems in which feature hierarchies (or function hierarchies) occupy a major role, like
for instance discussed in [340]. In section 4.10.1, we discussed how we consider the relationship between
feature sets and feature hierarchies. The same holds for hierarchical compositions of software components,
what we also do not express in our formal model. The presented analysis approach is only applicable and
valid for systems fulfilling the assumptions presented in section 4.9.2, and for systems whose software
architecture uses a component model that is compatible with our formal model. Different component
models are for instance discussed in [220].

5.3 Threats to Validity

Finally, the question arises whether the introduced formal model itself, and particularly the specified
constraints, are valid with respect to correctly representing the system under analysis, and if the analysis
results are correct as desired? Therefore, two questions arise when evaluating possible threats to validity to
the introduced approach:

1. Is the introduced formal model valid? Does the approach really model that what is intended to be
modeled? Is the model consistent and is it able to express the considered properties adequately and
correctly?

2. Are the calculated solutions valid? If the solutions would be wrong, the analysis results would be
wrong, as the solutions are the basis for our analysis.

Validity of the formal system model: The formal system model captures all that we intended to model
as described in the research questions. We enriched the formal model by properties to express all system
information needed to perform the introduced analysis, and we evaluated the models by the three shown
examples, as well as by several smaller test models. If additional information would be of interest to
analyze aspects in further examples, the model can be easily enriched by additional properties. The
so far captured system information encompasses mixed-reliability by different levels of fail-operational
requirements, mixed-criticality by different ASIL values, realization relationships between functional
features and software components, communication channels between ports of software components,
deployments of software components to hardware execution units incorporating a notion of redundancy,

157

5.3. THREATS TO VALIDITY

and many more deployment relevant properties like WCETs and flash memory. The major motivation
for the formal system model is to enable the expression of a set of formal constraints, describing valid
deployments and valid reconfiguration scenarios and by this, allowing to analyze the system properties in
which we are interested in, according to the discussed research questions.

Validity of the analysis solution: We do not develop an own algorithm to calculate solutions for our
analysis results, but instead we employ an out of the box SMT solver to calculate solutions based on
modeled formal constraints, which describe valid solutions. With respect to the correctness of the calculated
solutions, we have to assume that the SMT solver itself is correct! The applied Z3 SMT solver developed
at Microsoft Research is state of the art, applied at Microsoft in many areas (e. g., [138]), and therefore
trusted to be well designed and well tested. Hence, finally the question arises if the modeled constraints
describe valid solutions correctly?

Validity of the formal constraints: When considering the constraints for valid deployments, failovers
and degradations, wrongly or incompletely modeled constraints may lead to invalid analysis results.
Like in any other engineering approach, first of all the list of informal requirements, which lead to the
creation of the formal constraints, may be incomplete, ambiguous, imprecise, inconsistent or simply
wrong, what would result into formal constraints that do not reflect the correct complete and consistent
requirements. The presented approach focuses on formalizing and formally analyzing a given set of
informal requirements. The consistency between the informal requirements and their representation as
formal constrains depends on the one hand on the quality of the informal requirements itself, and on
the other hand on the quality and expressiveness of the underlying formal base model, which is used to
express the formal constraints. We have shown three application example models in this thesis and have
used a higher amount of heterogeneous small test models, with which we evaluated the correctness of the
analysis results of our approach manually. During the evolution of the implementation of the model and
the constraints, we used the set of test models and manually examine the analysis results to detect results
that we rated as invalid. If such a situation appears, what was obviously most often the case when adding
completely new constraints, or when changing the base model, we fixed the constraints to obtain valid
analysis results for all test models. The same holds for the presented optimization objectives. We also
applied a Python Unit-Test framework to automate these validity checks of the analysis results. However,
of course the set of test models is finite, additional more complex test models may reveal further evaluation.
But we can preclude major problems here due to the applied test and evaluation models.

Inconsistent requirements as well as inconsistent formalizations of requirements by formal constraints
are partially detectable by obtaining an unsatisfiable returned by the SMT solver. But an unsatisfiable may
also cause from an application software architecture that requires more resources than provided by the
hardware architecture. With the help of the introduced relaxed soft constraints, some of the latter situations
are detectable, because instead of an unsatisfiable, the solver returns a satisfied model in which some soft
constraints are marked as unfulfilled. We leave it open to the user, which constraints he likes to relax in
this way.

Finally, a formal verification of the refinement and consistency between informal requirements and
their representation as formal constrains would be required. Refinement and consistency checks of models
have been for instance tackled in [304]. Also techniques to analyze the quality of the informal requirements
itself may be applied, like the approach to analyze informal natural language requirements introduced in
[119].

158

CHAPTER 6 Conclusions and Future Work

This chapter summarizes the focus and contribution of this thesis and provides an outlook about future
work that may be performed to improve and extend the approach introduced in this thesis.

Contents
6.1 Summary and Conclusions . 159
6.2 Out of Scope . 161
6.3 Future Work . 161

6.1 Summary and Conclusions

In this thesis, we introduced a formal approach to analyze the fault-tolerance of embedded systems in the
automotive domain. The main objective is to formally analyze if a software and system design is able to
fulfill given heterogeneous fail-operational requirements in certain failure scenarios, and to determine
necessary reactions to failures to ensure this. Fail-operational requirements increasingly arise when
engineering autonomous X-by-Wire systems. Fully autonomous systems should consider as less human
interaction as possible, as handover between autonomous and manual operation is difficult, particularly
as humans are not always available. Think about a fully autonomous car, driving empty to pick you up
at some place. X-by-Wire systems should not depend on mechanical fallbacks, as these fallbacks cause
additional costs and need for physical space. Hence, we assume that human and mechanical fallbacks are
no more involvable in fully autonomous X-by-Wire systems, which we aim to analyze.

We do not just analyze a given predefined software and system design, but support the construction
of an appropriate design by automatically synthesizing certain design decisions in an open design space,
leading to a successful analysis, if feasible. A feasible design denotes the fulfillment of all fail-operational
requirements of functional features of the system under analysis, as well as the fulfillment of certain design
and resource constraints.

Summarized, our contributions are:

– A formal system model including sets of functional features, software components and hardware
execution units of a system, as well as additional attributes of these system elements and relationships
between the elements, required to perform a failure effect analysis in different scenarios of failing
execution units and failing software components.

– Encoding of formal constrains describing valid deployments of software components to hardware ex-
ecution units, including constraints for valid redundancy mechanisms, valid failover and degradation
scenarios, and other design aspects.

– Support of systems with mixed-criticality (by different ASIL) and mixed-reliability (by heteroge-
neous fail-operational requirements of functional features). The level of required fail-operationality
denotes the amount of single system element failures that a functional feature shall survive.

– Synthesis of valid initial deployments of software to hardware, incorporating adequate minimal
levels of redundancy needed to ensure the fulfillment of different fail-operational requirements of

159

6.1. SUMMARY AND CONCLUSIONS

functional features in different scenarios of failing system elements. We employ redundancy in form
of a master/slave concept of software components, distinguishing hot and cold-standby slaves.

– Synthesis of valid reconfigurations of the deployments in failure scenarios to establish valid failovers
between redundant software components, to ensure fail-operational requirements of those functional
features that are realized by software components which become directly or indirectly affected by
failures. For failover, we synthesize needed activations of redundantly deployed slave instances of
software components.

– Synthesis of valid system degradations in case the system resources become insufficient in failure
scenarios to provide the entire initial set of functional features. In this case, we determine a subset
of software components that can be deactivated in order to release resources and thus to be able
to keep the fail-operational features available with the remaining resources. During this, we aim
in deactivating those components first which have the lowest requirements with respect to safety
and reliability. Minimizing the loss of safety and reliability relevant components is our major
optimization objective during the synthesis.

– Static structural analysis of the degree of necessary degradations in all considered failure scenarios.
By construction, due to the formalized constraints, the synthesized architectural design properties
ensure the fulfillment of all fail-operational requirements in all considered failure scenarios.

– Apart from degradations on system level (performed by deactivating functional features), we also
support degradations on functional feature level. To model this, we distinguish between full fail-
operational and degraded fail-operational functional features. The degraded fail-operationality is
incorporated into our model by a mechanism to describe and apply degradations on feature level in
form of substituting a full-fledged functional feature by a degraded version of that feature. We also
model and apply degradations on software component level. This also enables to integrate diversity
of components into the software architecture and switch between diverse components in case of
failures.

– Apart from the synthesized deployments, we also synthesize communication channels between
software components based on publish/subscribe definitions of ports of software components. If
more channels are possible than required to serve all subscriptions with published data, we select
a subset of communication channels that serves all subscriptions once. Hence, not all possible
channels are used. We synthesize a selection of those channels which construct a communication
structure between the software components that minimizes the required network traffic between
execution units as a subordinate optimization objective. The synthesized channel selection as well
as the deployments both influence the network traffic, as the deployment synthesis can prefer to
establish local communication, not causing network traffic.

The validity of all synthesized design decisions is ensured by formal constraints over the introduced
formal system model. For the deployments, degradations, and chosen communication channels, we
optimize the synthesized design decisions by expressing optimization objectives.

To analyze effects of assumed failures of system elements onto the fulfillment of fail-operational
requirements and onto the needed level of degradation to ensure this, we introduce a scenario graph into
the formal model, in order to describe and analyze scenarios of assumed failures and subsequent isolations
of execution units and/or software components. Valid transitions between scenarios are also expressed by
formal constraints. For each failure scenario, we analyze the effect of lost software component instances to
the availability of the functional features, and synthesize required failovers and explicit deactivations of
software components to ensure that functional features with fail-operational requirements stay available.
We apply a boolean availability statement for each functional feature in each scenario. The feature

160

6.2. OUT OF SCOPE

availability is obtained by a tracing from software components to the functional features that are realized
by a component. We perform the analysis on a structural level, without describing the behavior of software
components or functional features. Summarized, our approach offers a static analysis of effects of failure
scenarios on a structural architectural level. At design time of the system, this enables the identification of
possible failure handling means.

The formal model and the constraints are expressed using arithmetic and logical expressions. We apply
an out of the box SMT solver with optimization capabilities to obtain optimal solutions for the problem
model, satisfying all constraints, if feasible. The hole scenario graph is incorporated into a single model,
such that the applied SMT solver calculates a single solution model, which inherently ensures that the
initial deployment allows valid degradation scenarios.

Conclusion: No existing work has been found that provides a similar combined formalization of archi-
tecture concepts and requirements for valid redundancy, failover and degradation mechanisms to enable
fault-tolerance in the described manner.

We illustrate and evaluate the concepts and resulting scenarios of feature degradations and component
failovers based on three self constructed examples. We assume some properties for the system under
analysis. The applicability of our approach is limited to systems that hold the discussed assumptions.

By using the introduced approach for failure effect analysis, complex side-effects can be analyzed, like
that software components might be required to become deactivated to be able to activate a passive backup
of another redundant software component. This might result in the situation that a software component has
to be deactivated, which was not deployed at all to a failed execution unit. But this deactivation might be
necessary to ensure the fail-operational requirement of the functional feature that is realized by the other
redundant software component. Hence, due to the needed deactivation, a functional feature might become
unavailable which was not related at all to the failed execution unit. However, if we want to efficiently
use resources and not integrate higher redundancy than necessary, such scenarios can appear, like shown
in our examples. A manually performed analysis of such scenarios would be error prone, or even hardly
achievable in case of large systems.

6.2 Out of Scope

What is not contained in our approach, is a description of functional behavior of software components
or functional features. We also do not incorporate a notion of time and time intervals, or a notion of
when in time failures appear or how probable failures are. Due to this, we calculate the availability of
functional features in each failure scenario as a boolean availability metric for a certain point in time, not
over a time interval like it is usually done as availability metric. We also do not consider concrete failure
detection, isolation and failover mechanisms, which have to be applied at system runtime. In section 4.9,
we discussed in more detail our assumptions and aspects that are out of scope.

6.3 Future Work

Several future work is possible related to the approach introduced in this thesis. We already discussed
future work to diminish certain limitations of our approach in section 5.2. In this section we repeat this
briefly, categorize the work, and extend it partially. We divide the future work into the following categories:

1. reducing the set of design aspects that are out of scope

2. extending the analysis approach by new capabilities

3. evaluation of alternative solving, optimization and design space exploration strategies

161

6.3. FUTURE WORK

6.3.1 Expand the set of considered design aspects

As future work, several assumptions and out of scope design aspects may be mitigated, which we applied
for the sake of simplicity in this thesis. This would let the analysis approach become more precise, and
enables additional analysis features. We discussed the set of design aspects being out of scope in section
4.9.1 and 6.2. Extensions of the formal model would also mitigate limitations of our approach that we
discussed in section 5.2. In that section, we also mentioned some future work to diminish these limitations.
To expand the scope, our formal model needs to be extended to be able to express additional more detailed
system aspects. For instance, this includes:

1. introduction of a notion of time and of probabilities of failures

2. introduction of a notion of behavior of functional features and software components, incorporating
different qualities of behavior and exchanged data

3. introduction of different operation modes of functional features and software components, enriched
by degradation relationships between different operation modes

4. modeling of the internal data-flow causality of software components, to support a more fine grained
model about which missing input data affects which published output data. Based on this, instead of
deactivating the whole component in case of a single missing mandatory subscribed input – as done
in this thesis – the component might be switched into a different operating mode in which it can
work with the reduced or degraded inputs, but produces only a subset of its outputs, potentially with
less quality

5. support of multi-rate scheduling in addition to the so far supported single-rate scheduling

6.3.2 Possible Future Work Extensions of our Approach

The following extensions of our formal model may be done as future work to enlarge the capabilities of
the introduced synthesis and analysis approach.

System Modes: One potential future work is the extension of our approach to support different system
modes, each having different sets of required functional features and hence, also different sets of active
software components. Our approach may be extended to determine optimized deployments with respect to
efficient system mode transitions.

To enable this, the introduced formal system model may be extended with additional System Modes. For
this, the introduced system model S could be extended by a set of system modes SM. Let SM= {m1, ...,mr}
denote a finite set of identifiers for different system modes. Each contained system mode mi ∈ SM might
have specified a subset Fmi ⊆ F of functional features that should be active in this system mode. This
means, functional features are only required in a subset of the system modes. This could be expressed as
relationship by µ : SM→ P (F) with µ(m) = { f ∈ F | f should be active in system mode m ∈ SM} and
µ−1 : F → P (SM) with µ−1(f) = {m ∈ SM | f ∈ F should be active in system mode m}.

By using the relation χ(f) about which ASWCs realize a given functional feature f ∈ F , we obtain
also the ASWCs that are required in a certain system mode m ∈ SM, if f ∈ µ(m). We assume here that
a functional feature is realized by the same ASWCs in all system modes. Hence, χ(f) does not change
in different system modes. With the help of a system mode transition τ(mo,mn), constraints for the
transition from an old system mode mo to a new system mode mn could be expressed. System modes in
the automotive domain may be for instance manual driving (m1) and autonomous driving (m2). A precise
elaboration of the system mode concept is out of scope of this thesis and left open as future work.

162

6.3. FUTURE WORK

Analyze Plug-and-play scenarios at system runtime: As mentioned, the shown approach in this
thesis is aimed to be applied at design time or during after-sale maintenance stops. As future work, the
applicability of the approach at runtime by the system itself during plug-and-play scenarios might be
considered and required changes identified. This would establish a basis to analyze fault-tolerance at
runtime in order to make it "possible to upgrade a system during its lifetime and extend it with new
features" [276]. However, to apply the analysis at runtime, more focus has to be spent on efficiency, see
next future work section.

Our approach could also be extended to be used to prepare the deployment to be best suitable to cover
future integrations of additional features, without having to change the existing deployment. This might be
tackled by adding constraints which ensure that the utilization of execution time and memory space of the
hardware execution units is preferably uniformly distributed, to obtain freedom for choices where to deploy
new software components. However, if a redeployment (dynamic migration) of existing components is
desired, this can also be done.

6.3.3 Evaluation of alternative solving and optimization strategies
Each of the discussed extensions may result in a higher complexity of the formal model, leading to
decreased analysis efficiency. Hence, also heuristic problem solving approaches may be considered in
future work, to obtain near optimal synthesis solutions, but exact analysis results, more efficient in less
amount of time. Based on the list of satisfiability solving and optimization approaches presented in section
2.7, and also based on existing related approaches discussed in section 3.2, more efficient alternatives
compared to the applied SMT solver should be evaluated as future work, while not forfeiting expressiveness
in modeling the formal constraints.

163

CHAPTER A Appendix

A.1 Input Files of Examples

In sections 4.6.8, 4.6.9 and 4.7.5 we have shown three examples showing the applicability of the analysis
approach introduced in this thesis.

Below, we show the problem definition files of these three examples as XML format, used as input for
our analysis as shown in section 4.3 Fig. 4.13. Listing A.1 shows the XML file of example A (section
4.6.8), listing A.2 shows the XML file of example B (section 4.6.9), and listing A.3 shows the XML file
of example C (section 4.7.5). The XML tags <FEATURE> describe the functional features f ∈ F , the tags
<SWC> describe the application software components s ∈ S, and the tags <HWC> describe the execution units
e ∈ E. The tag <SYS> contains the input model properties of the system configuration Φ. The property
maxNetworkTraffic is not contained, because we made it dynamically configurable in the analysis tool,
independently from the input model XML.

Listing A.1: XML file of Example A shown in section 4.6.8
1 < da ta >
2 <SYS name=" Example A">
3 < f a u l t R e c o v e r y T i m e >50000 </ f a u l t R e c o v e r y T i m e >
4 </SYS>
5

6 <FEATURE name=" N a v i g a t i o n S y s t e m / I n f o t a i n m e n t " i d ="0" >
7 < a s i l >0 </ a s i l >
8 < f a i l O p >0 </ f a i l O p >
9 < p r i o r i t y >1 </ p r i o r i t y >

10 <realizedBySWC i d ="0" / >
11 </FEATURE>
12

13 <FEATURE name=" Energymanagement " i d ="1" >
14 < a s i l >1 </ a s i l >
15 < f a i l O p >0 </ f a i l O p >
16 < p r i o r i t y >1 </ p r i o r i t y >
17 <realizedBySWC i d ="1" / >
18 <realizedBySWC i d ="2" / >
19 </FEATURE>
20

21 <FEATURE name="ADAS−A" i d ="2" >
22 < a s i l >3 </ a s i l >
23 < f a i l O p >0 </ f a i l O p >
24 < p r i o r i t y >1 </ p r i o r i t y >
25 <realizedBySWC i d ="3" / >
26 <realizedBySWC i d ="4" / >
27 </FEATURE>
28

29 <FEATURE name="ADAS−B" i d ="3" >
30 < a s i l >4 </ a s i l >
31 < f a i l O p >1 </ f a i l O p >
32 < p r i o r i t y >1 </ p r i o r i t y >
33 <realizedBySWC i d ="4" / >
34 </FEATURE>
35

165

A.1. INPUT FILES OF EXAMPLES

36 <FEATURE name=" Manua lDr iv ing " i d ="4" >
37 < a s i l >4 </ a s i l >
38 < f a i l O p >3 </ f a i l O p >
39 < p r i o r i t y >1 </ p r i o r i t y >
40 <realizedBySWC i d ="5" / >
41 <realizedBySWC i d ="6" / >
42 <realizedBySWC i d ="7" / >
43 </FEATURE>
44

45 <!−− ASWCs −−>
46

47 <SWC name=" I n f o t a i n m e n t " i d ="0" >
48 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
49 <minimalFTT >99999 </ minimalFTT >
50 <domain >1 </ domain >
51 <wcet >2000 </ wcet >
52 <requiredROM >1 </ requiredROM >
53 <requiredRAM >1 </ requiredRAM >
54 </SWC>
55

56 <SWC name=" RemainingRangeCalc " i d ="1" >
57 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
58 <minimalFTT >99999 </ minimalFTT >
59 <domain >1 </ domain >
60 <wcet >700 </ wcet >
61 <requiredROM >1 </ requiredROM >
62 <requiredRAM >1 </ requiredRAM >
63 </SWC>
64

65 <SWC name=" E n e r g y E f f i c i e n c y A s s i s t " i d ="2" >
66 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
67 <minimalFTT >99999 </ minimalFTT >
68 <domain >1 </ domain >
69 <wcet >300 </ wcet >
70 <requiredROM >1 </ requiredROM >
71 <requiredRAM >1 </ requiredRAM >
72 </SWC>
73

74 <SWC name=" AdasSwc1 " i d ="3" >
75 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
76 <minimalFTT >99999 </ minimalFTT >
77 <domain >1 </ domain >
78 <wcet >1700 </ wcet >
79 <requiredROM >1 </ requiredROM >
80 <requiredRAM >1 </ requiredRAM >
81 </SWC>
82

83 <SWC name=" AdasSwc2 " i d ="4" >
84 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
85 <minimalFTT >30000 </ minimalFTT >
86 <domain >1 </ domain >
87 <wcet >1000 </ wcet >
88 <requiredROM >1 </ requiredROM >
89 <requiredRAM >1 </ requiredRAM >
90 </SWC>
91

92 <SWC name=" M a n u a l A c c e l e r a t i o n " i d ="5" >
93 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
94 <minimalFTT >30000 </ minimalFTT >
95 <domain >1 </ domain >
96 <wcet >1000 </ wcet >
97 <requiredROM >1 </ requiredROM >

166

A.1. INPUT FILES OF EXAMPLES

98 <requiredRAM >1 </ requiredRAM >
99 </SWC>

100

101 <SWC name=" ManuelBraking " i d ="6" >
102 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
103 <minimalFTT >30000 </ minimalFTT >
104 <domain >1 </ domain >
105 <wcet >1000 </ wcet >
106 <requiredROM >1 </ requiredROM >
107 <requiredRAM >1 </ requiredRAM >
108 </SWC>
109

110 <SWC name=" M a n u a l S t e e r i n g " i d ="7" >
111 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
112 <minimalFTT >30000 </ minimalFTT >
113 <domain >1 </ domain >
114 <wcet >500 </ wcet >
115 <requiredROM >1 </ requiredROM >
116 <requiredRAM >1 </ requiredRAM >
117 </SWC>
118

119 <!−− E x e c u t i o n U n i t s −−>
120

121 <HWC name="DCC 1" >
122 <hwPlat form >0 </ hwPlat form >
123 <powerSupply >0 </ powerSupply >
124 <providedTimeBudget >4000 </ providedTimeBudget >
125 <providedFlashROM >64 </ providedFlashROM >
126 </HWC>
127

128 <HWC name="DCC 2" >
129 <hwPlat form >0 </ hwPlat form >
130 <powerSupply >1 </ powerSupply >
131 <providedTimeBudget >4000 </ providedTimeBudget >
132 <providedFlashROM >64 </ providedFlashROM >
133 </HWC>
134

135 <HWC name="DCC 3" >
136 <hwPlat form >0 </ hwPlat form >
137 <powerSupply >0 </ powerSupply >
138 <providedTimeBudget >4000 </ providedTimeBudget >
139 <providedFlashROM >64 </ providedFlashROM >
140 </HWC>
141

142 <HWC name="DCC 4" >
143 <hwPlat form >0 </ hwPlat form >
144 <powerSupply >1 </ powerSupply >
145 <providedTimeBudget >4000 </ providedTimeBudget >
146 <providedFlashROM >64 </ providedFlashROM >
147 </HWC>
148 </ da t a >

167

A.1. INPUT FILES OF EXAMPLES

Listing A.2: XML file of Example B shown in section 4.6.9

1 < da ta >
2 <SYS name=" Example B">
3 < f a u l t R e c o v e r y T i m e >50000 </ f a u l t R e c o v e r y T i m e >
4 </SYS>
5

6

7 <FEATURE name=" F e a t u r e 1 " i d ="0" >
8 < a s i l >4 </ a s i l >
9 < f a i l O p >1 </ f a i l O p >

10 < p r i o r i t y >1 </ p r i o r i t y >
11 <realizedBySWC i d ="0" / >
12 <realizedBySWC i d ="1" / >
13 </FEATURE>
14

15 <FEATURE name=" F e a t u r e 2 " i d ="1" >
16 < a s i l >2 </ a s i l >
17 < f a i l O p >0 </ f a i l O p >
18 < p r i o r i t y >1 </ p r i o r i t y >
19 <realizedBySWC i d ="2" / >
20 </FEATURE>
21

22 <FEATURE name=" F e a t u r e 3 " i d ="2" >
23 < a s i l >1 </ a s i l >
24 < f a i l O p >0 </ f a i l O p >
25 < p r i o r i t y >1 </ p r i o r i t y >
26 <realizedBySWC i d ="3" / >
27 </FEATURE>
28

29 <FEATURE name=" F e a t u r e 4 " i d ="3" >
30 < a s i l >0 </ a s i l >
31 < f a i l O p >0 </ f a i l O p >
32 < p r i o r i t y >1 </ p r i o r i t y >
33 <realizedBySWC i d ="4" / >
34 </FEATURE>
35

36 <FEATURE name=" F e a t u r e 5 " i d ="4" >
37 < a s i l >0 </ a s i l >
38 < f a i l O p >0 </ f a i l O p >
39 < p r i o r i t y >1 </ p r i o r i t y >
40 <realizedBySWC i d ="5" / >
41 </FEATURE>
42

43 <FEATURE name=" F e a t u r e 6 " i d ="5" >
44 < a s i l >0 </ a s i l >
45 < f a i l O p >0 </ f a i l O p >
46 < p r i o r i t y >1 </ p r i o r i t y >
47 <realizedBySWC i d ="6" / >
48 </FEATURE>
49

50 <FEATURE name=" F e a t u r e 7 " i d ="6" >
51 < a s i l >0 </ a s i l >
52 < f a i l O p >0 </ f a i l O p >
53 < p r i o r i t y >1 </ p r i o r i t y >
54 <realizedBySWC i d ="7" / >
55 </FEATURE>
56

57 <!−− ASWCs −−>
58

59 <SWC name=" s1 " i d ="0" >
60 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >

168

A.1. INPUT FILES OF EXAMPLES

61 <minimalFTT >30000 </ minimalFTT > <!−− HOT−SLAVE −−>
62 <domain >0 </ domain >
63 <wcet >1500 </ wcet >
64 <requiredROM >1 </ requiredROM >
65 <requiredRAM >1 </ requiredRAM >
66 < p u b l i c a t i o n p u b l P o r t I D ="0" name=" s1 . pub1 " d a t a S i z e ="1" / >
67 < p u b l i c a t i o n p u b l P o r t I D ="1" name=" s1 . pub2 " d a t a S i z e ="2" / >
68 </SWC>
69

70 <SWC name=" s2 " i d ="1" >
71 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
72 <minimalFTT >60000 </ minimalFTT > <!−− COLD−SLAVE −−>
73 <domain >1 </ domain >
74 <wcet >2500 </ wcet >
75 <requiredROM >1 </ requiredROM >
76 <requiredRAM >1 </ requiredRAM >
77 < s u b s c r i p t i o n s u b P o r t I D ="0" >
78 <!−− from s1 . pub1 −−>
79 < s u b s c r i p t i o n M a t c h publComponentID ="0" p u b l P o r t I D ="0" / >
80 </ s u b s c r i p t i o n >
81 </SWC>
82

83 <SWC name=" s3 " i d ="2" >
84 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
85 <minimalFTT >99999 </ minimalFTT >
86 <domain >2 </ domain >
87 <wcet >2000 </ wcet >
88 <requiredROM >1 </ requiredROM >
89 <requiredRAM >1 </ requiredRAM >
90 < p u b l i c a t i o n p u b l P o r t I D ="0" name=" s3 . pub1 " d a t a S i z e ="3" / >
91 </SWC>
92

93 <SWC name=" s4 " i d ="3" >
94 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
95 <minimalFTT >99999 </ minimalFTT >
96 <domain >3 </ domain >
97 <wcet >2000 </ wcet >
98 <requiredROM >1 </ requiredROM >
99 <requiredRAM >1 </ requiredRAM >

100 < p u b l i c a t i o n p u b l P o r t I D ="0" name=" s4 . pub1 " d a t a S i z e ="4" / >
101 </SWC>
102

103 <SWC name=" s5 " i d ="4" >
104 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
105 <minimalFTT >99999 </ minimalFTT >
106 <domain >4 </ domain >
107 <wcet >2000 </ wcet >
108 <requiredROM >1 </ requiredROM >
109 <requiredRAM >1 </ requiredRAM >
110 < s u b s c r i p t i o n s u b P o r t I D ="0" >
111 <!−− from s1 . pub2 −−>
112 < s u b s c r i p t i o n M a t c h publComponentID ="0" p u b l P o r t I D ="1" / >
113 </ s u b s c r i p t i o n >
114 < s u b s c r i p t i o n s u b P o r t I D ="1" i s O p t i o n a l ="1" >
115 <!−− from s4 . pub1 (OPTIONAL) −−>
116 < s u b s c r i p t i o n M a t c h publComponentID ="3" p u b l P o r t I D ="0" / >
117 </ s u b s c r i p t i o n >
118 < s u b s c r i p t i o n s u b P o r t I D ="2" >
119 <!−− from s8 . pub1 −−>
120 < s u b s c r i p t i o n M a t c h publComponentID ="7" p u b l P o r t I D ="0" / >
121 </ s u b s c r i p t i o n >
122 </SWC>

169

A.1. INPUT FILES OF EXAMPLES

123

124 <SWC name=" s6 " i d ="5" >
125 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
126 <minimalFTT >99999 </ minimalFTT >
127 <domain >5 </ domain >
128 <wcet >1000 </ wcet >
129 <requiredROM >1 </ requiredROM >
130 <requiredRAM >1 </ requiredRAM >
131 < p u b l i c a t i o n p u b l P o r t I D ="0" name=" s6 . pub1 " d a t a S i z e ="5" / >
132 < p u b l i c a t i o n p u b l P o r t I D ="1" name=" s6 . pub2 " d a t a S i z e ="6" / >
133 < s u b s c r i p t i o n s u b P o r t I D ="0" >
134 <!−− from s3 . pub1 −−>
135 < s u b s c r i p t i o n M a t c h publComponentID ="2" p u b l P o r t I D ="0" / >
136 </ s u b s c r i p t i o n >
137 </SWC>
138

139 <SWC name=" s7 " i d ="6" >
140 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
141 <minimalFTT >99999 </ minimalFTT >
142 <domain >6 </ domain >
143 <wcet >1000 </ wcet >
144 <requiredROM >1 </ requiredROM >
145 <requiredRAM >1 </ requiredRAM >
146 < p u b l i c a t i o n p u b l P o r t I D ="0" name=" s7 . pub1 " d a t a S i z e ="7" / >
147 < s u b s c r i p t i o n s u b P o r t I D ="0" i s O p t i o n a l ="1" >
148 < s u b s c r i p t i o n M a t c h publComponentID ="2" p u b l P o r t I D ="0" / >
149 </ s u b s c r i p t i o n >
150 < s u b s c r i p t i o n s u b P o r t I D ="1" >
151 < s u b s c r i p t i o n M a t c h publComponentID ="3" p u b l P o r t I D ="0" / >
152 </ s u b s c r i p t i o n >
153 </SWC>
154

155 <SWC name=" s8 " i d ="7" >
156 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
157 <minimalFTT >99999 </ minimalFTT >
158 <domain >7 </ domain >
159 <wcet >1000 </ wcet >
160 <requiredROM >1 </ requiredROM >
161 <requiredRAM >1 </ requiredRAM >
162 < p u b l i c a t i o n p u b l P o r t I D ="0" name=" s8 . pub1 " d a t a S i z e ="8" / >
163 < s u b s c r i p t i o n s u b P o r t I D ="0" i s O p t i o n a l ="1" >
164 < s u b s c r i p t i o n M a t c h publComponentID ="5" p u b l P o r t I D ="1" / >
165 </ s u b s c r i p t i o n >
166 < s u b s c r i p t i o n s u b P o r t I D ="1" >
167 < s u b s c r i p t i o n M a t c h publComponentID ="6" p u b l P o r t I D ="0" / >
168 </ s u b s c r i p t i o n >
169 </SWC>
170

171 <!−− E x e c u t i o n U n i t s −−>
172

173 <HWC name="DCC 1" >
174 <hwPlat form >0 </ hwPlat form >
175 <powerSupply >0 </ powerSupply >
176 <providedTimeBudget >4000 </ prov idedTimeBudget >
177 <providedFlashROM >64 </ providedFlashROM >
178 </HWC>
179

180 <HWC name="DCC 2" >
181 <hwPlat form >0 </ hwPlat form >
182 <powerSupply >1 </ powerSupply >
183 <providedTimeBudget >4000 </ providedTimeBudget >
184 <providedFlashROM >64 </ providedFlashROM >

170

A.1. INPUT FILES OF EXAMPLES

185 </HWC>
186

187 <HWC name="DCC 3" >
188 <hwPlat form >0 </ hwPlat form >
189 <powerSupply >0 </ powerSupply >
190 <providedTimeBudget >4000 </ providedTimeBudget >
191 <providedFlashROM >64 </ providedFlashROM >
192 </HWC>
193

194 <HWC name="DCC 4" >
195 <hwPlat form >0 </ hwPlat form >
196 <powerSupply >1 </ powerSupply >
197 <providedTimeBudget >4000 </ providedTimeBudget >
198 <providedFlashROM >64 </ providedFlashROM >
199 </HWC>
200 </ da t a >

171

A.1. INPUT FILES OF EXAMPLES

Listing A.3: XML file of Example C shown in section 4.7.5

1 < da ta >
2 <SYS name=" Example C">
3 < f a u l t R e c o v e r y T i m e >50000 </ f a u l t R e c o v e r y T i m e >
4 </SYS>
5

6 <FEATURE name=" S t e e r−By−Wire " i d ="0" >
7 < a s i l >4 </ a s i l >
8 < f a i l O p >0 </ f a i l O p >
9 < p r i o r i t y >1 </ p r i o r i t y >

10 <degradedVersion >4 </ degradedVersion >
11 <realizedBySWC i d ="0" / >
12 <realizedBySWC i d ="1" / >
13 <realizedBySWC i d ="2" / >
14 </FEATURE>
15

16 <FEATURE name=" P a r k i n g A s s i s t a n c e (a c t i v e) " i d ="1" >
17 < a s i l >3 </ a s i l >
18 < f a i l O p >0 </ f a i l O p >
19 < p r i o r i t y >1 </ p r i o r i t y >
20 <degradedVersion >5 </ degradedVersion >
21 <realizedBySWC i d ="2" / >
22 <realizedBySWC i d ="3" / >
23 </FEATURE>
24

25 <FEATURE name=" Drive−By−Wire " i d ="2" >
26 < a s i l >4 </ a s i l >
27 < f a i l O p >1 </ f a i l O p >
28 < p r i o r i t y >1 </ p r i o r i t y >
29 <realizedBySWC i d ="4" / >
30 </FEATURE>
31

32 <FEATURE name=" I n f o t a i n m e n t " i d ="3" >
33 < a s i l >0 </ a s i l >
34 < f a i l O p >0 </ f a i l O p >
35 < p r i o r i t y >1 </ p r i o r i t y >
36 <realizedBySWC i d ="5" / >
37 </FEATURE>
38

39 <!−− Degraded V e r s i o n s o f F e a t u r e s −−>
40

41 <FEATURE name=" S t e e r−By−Wire (w i t h o u t a s s i s t a n c e) " i d ="4" >
42 < a s i l >3 </ a s i l >
43 < f a i l O p >1 </ f a i l O p >
44 < p r i o r i t y >1 </ p r i o r i t y >
45 <degradedVersion >6 </ degradedVersion >
46 <realizedBySWC i d ="0" / >
47 <realizedBySWC i d ="6" / >
48 </FEATURE>
49

50 <FEATURE name=" P a r k i n g A s s i s t a n c e (p a s s i v e) " i d ="5" >
51 < a s i l >3 </ a s i l >
52 < f a i l O p >1 </ f a i l O p >
53 < p r i o r i t y >1 </ p r i o r i t y >
54 <realizedBySWC i d ="3" / >
55 <realizedBySWC i d ="7" / >
56 </FEATURE>
57

58 <FEATURE name=" S t e e r−By−Wire (l imp home) " i d ="6" >
59 < a s i l >3 </ a s i l >
60 < f a i l O p >99 </ f a i l O p >

172

A.1. INPUT FILES OF EXAMPLES

61 < p r i o r i t y >1 </ p r i o r i t y >
62 <realizedBySWC i d ="8" / >
63 </FEATURE>
64

65 <!−− ASWCs −−>
66

67 <SWC name=" s1 " i d ="0" >
68 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
69 <minimalFTT >33333 </ minimalFTT >
70 <domain >1 </ domain >
71 <wcet >1500 </ wcet >
72 <requiredROM >10 </ requiredROM >
73 <requiredRAM >1 </ requiredRAM >
74 < p u b l i c a t i o n name=" Pub0 . 0 (1) " p u b l P o r t I D ="0" d a t a S i z e ="1" / >
75 </SWC>
76

77 <SWC name=" s2 " i d ="1" >
78 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
79 <minimalFTT >99999 </ minimalFTT >
80 <domain >1 </ domain >
81 <wcet >1000 </ wcet >
82 <requiredROM >10 </ requiredROM >
83 <requiredRAM >1 </ requiredRAM >
84 <degradedVersion >6 </ degradedVersion >
85 < s u b s c r i p t i o n s u b P o r t I D ="0" >
86 < s u b s c r i p t i o n M a t c h publComponentID ="0" p u b l P o r t I D ="0" / >
87 </ s u b s c r i p t i o n >
88 < s u b s c r i p t i o n s u b P o r t I D ="1" >
89 < s u b s c r i p t i o n M a t c h publComponentID ="2" p u b l P o r t I D ="0" / >
90 </ s u b s c r i p t i o n >
91 </SWC>
92

93 <SWC name=" s3 " i d ="2" >
94 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
95 <minimalFTT >99999 </ minimalFTT >
96 <domain >1 </ domain >
97 <wcet >1000 </ wcet >
98 <requiredROM >10 </ requiredROM >
99 <requiredRAM >1 </ requiredRAM >

100 <degradedVersion >7 </ degradedVersion >
101 < p u b l i c a t i o n name=" Pub2 . 0 (2) " p u b l P o r t I D ="0" d a t a S i z e ="2" / >
102 < p u b l i c a t i o n name=" Pub2 . 1 (3) " p u b l P o r t I D ="1" d a t a S i z e ="4" / >
103 </SWC>
104

105 <SWC name=" s4 " i d ="3" >
106 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
107 <minimalFTT >77777 </ minimalFTT >
108 <domain >1 </ domain >
109 <wcet >500 </ wcet >
110 <requiredROM >10 </ requiredROM >
111 <requiredRAM >1 </ requiredRAM >
112 < s u b s c r i p t i o n s u b P o r t I D ="0" i s O p t i o n a l ="1" >
113 < s u b s c r i p t i o n M a t c h publComponentID ="2" p u b l P o r t I D ="1" / >
114 </ s u b s c r i p t i o n >
115 </SWC>
116

117 <SWC name=" s5 " i d ="4" >
118 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
119 <minimalFTT >77777 </ minimalFTT >
120 <domain >1 </ domain >
121 <wcet >1300 </ wcet >
122 <requiredROM >10 </ requiredROM >

173

A.1. INPUT FILES OF EXAMPLES

123 <requiredRAM >1 </ requiredRAM >
124 </SWC>
125

126 <SWC name=" s6 " i d ="5" >
127 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
128 <minimalFTT >99999 </ minimalFTT >
129 <domain >1 </ domain >
130 <wcet >500 </ wcet >
131 <requiredROM >17 </ requiredROM >
132 <requiredRAM >1 </ requiredRAM >
133 </SWC>
134

135 <!−− Degraded V e r s i o n s o f ASWCs −−>
136

137 <SWC name=" s2−d e g r a d e d " i d ="6" >
138 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
139 <minimalFTT >33333 </ minimalFTT >
140 <domain >1 </ domain >
141 <wcet >500 </ wcet >
142 <requiredROM >5 </ requiredROM >
143 <requiredRAM >1 </ requiredRAM >
144 <degradedVersion >8 </ degradedVersion >
145 < s u b s c r i p t i o n s u b P o r t I D ="0" >
146 < s u b s c r i p t i o n M a t c h publComponentID ="0" p u b l P o r t I D ="0" / >
147 </ s u b s c r i p t i o n >
148 </SWC>
149

150 <SWC name=" s3−d e g r a d e d " i d ="7" >
151 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
152 <minimalFTT >77777 </ minimalFTT >
153 <domain >1 </ domain >
154 <wcet >100 </ wcet >
155 <requiredROM >3 </ requiredROM >
156 <requiredRAM >1 </ requiredRAM >
157 </SWC>
158

159 <SWC name=" s2−double−d e g r a d e d " i d ="8" >
160 <reqExecUni tHwPla t form >0 </ reqExecUni tHwPla t form >
161 <minimalFTT >33333 </ minimalFTT >
162 <domain >1 </ domain >
163 <wcet >100 </ wcet >
164 <requiredROM >2 </ requiredROM >
165 <requiredRAM >1 </ requiredRAM >
166 </SWC>
167

168 <!−− E x e c u t i o n U n i t s −−>
169

170 <HWC name="DCC 1" >
171 <hwPlat form >0 </ hwPlat form >
172 <powerSupply >0 </ powerSupply >
173 <providedTimeBudget >4000 </ providedTimeBudget >
174 <providedFlashROM >64 </ providedFlashROM >
175 </HWC>
176

177 <HWC name="DCC 2" >
178 <hwPlat form >0 </ hwPlat form >
179 <powerSupply >1 </ powerSupply >
180 <providedTimeBudget >4000 </ prov idedTimeBudget >
181 <providedFlashROM >64 </ providedFlashROM >
182 </HWC>
183 </ da t a >

174

List of Figures

2.1 Dependability and its tree of attributes, threats and means [23] 9
2.2 Chains of threats, from Fig. 11 in [23] . 11
2.3 Graceful Degradation classification into dependability means [300] 13
2.4 Illustrations for DMR, TMR and DDR from [154] . 20
2.5 Redundancy characterization from [321] (Fig. 5.5) . 21
2.6 Active I/Os of hot, warm and cold spares . 22
2.7 Safety engineering lifecycle from [336] . 23
2.8 AUTOSAR layered software architecture

(Fig. 3.12 in AUTOSAR_EXP_VFB.pdf [22]) . 26
2.9 AUTOSAR Virtual Function Bus and SW deployment tool

(Fig. 2 in AUTOSAR_TechnicalOverview.pdf [20]) 27
2.10 Graceful degradation and other mechanisms for error handling at the software architectural

level, from [176] (Table 5) . 29
2.11 Example instance of the RACE hardware architecture [35] 31
2.12 RACE layered Architecture with RTE . 32
2.13 Cyclic execution of RTE and ASWCs . 32

3.1 Example Lattice from [246] . 42
3.2 AC and OC self-organization loops . 55

4.1 SPES Viewpoints . 66
4.2 UML meta-model of the considered problem domain for the system under analysis . . . 68
4.3 Class diagram representation of the formal system model 71
4.4 Bijective mapping between sets of entities of real system and sets of identifiers of formal

system model . 72
4.5 ASWCs in a layered software architecture . 73
4.6 Example ASWC with 3 subscription ports and 2 publication ports 74
4.7 Example of channels between ASWCs . 75
4.8 Example of channels between ASWCs inclusive weights 76
4.9 Example of a mapping of ASWCs to ASWC-Clusters 77
4.10 Example of realization relationship between features and ASWCs 78
4.11 Example of a deployment of ASWCs to execution units 80
4.12 Example for the formal system model . 81
4.13 Brief visualization of the tooling and the procedure how we use the introduced formal model 83
4.14 Class-diagram representation of the formal model, incl. properties as class attributes . . 85
4.15 Example of four ASWCs with some publications and mandatory subscriptions and possible

communication channel candidates . 90
4.16 Software component states . 94
4.17 Example Scenario-Graph (SG) . 100
4.18 Example of a system degradation after an execution unit isolation 102
4.19 Realization relationship χ(fi) between functional features and ASWCs for the example of

Table 4.2 . 108

175

LIST OF FIGURES

4.20 Initial deployment for the example of Tab. 4.2 in scenario σ0 110
4.21 Deployment after isolation of execution unit e1 in scenario σ1 112
4.22 Deployment matrices for scenarios σ0 and σ1 for the example shown in Tab. 4.2 112
4.23 Example set of ASWCs with published and subscribed data items di 113
4.24 Component architecture with communication channels 114
4.25 Initial deployment for the example of Fig. 4.23 in scenario σ0 115
4.26 Deployment after isolation of execution unit e1 in scenario σ1 117
4.27 Deployment matrices for scenarios σ0 and σ1 for the example shown in Fig. 4.23 118
4.28 Example SG considering n ≤ 3 isolations of 4 execution units, while considering the

consecutive order of isolations . 119
4.29 Example SG considering n ≤ 3 isolations of 4 execution units, without considering the

consecutive order of isolations . 120
4.30 Example SG considering n < 5 isolations of 5 execution units, without considering the

consecutive order of isolations . 121
4.31 Example degradation relationships between full-fledged and degraded functional features 124
4.32 Example relation between normal and degraded ASWCs, realizing a full-fledged feature

f1 and the corresponding degraded feature f ′1 . 124
4.33 Another view on the example from Fig. 4.32, relation between normal and degraded

ASWCs, realizing a full-fledged feature f1 (green ellipse) and the corresponding degraded
feature f ′1 (orange ellipse) . 125

4.34 Example for the definitions w.r.t. feature degradation 125
4.35 Example of a feature degradation over time . 126
4.36 Class-diagram representation of the formal model, incl. degradations 127
4.37 Example for requirement R10 . 128
4.38 Realization relationship χ(fi) between functional features and ASWCs for the example of

Table 4.12 . 130
4.39 Realization of full-fledged features f1 and f2, as well as corresponding degraded features

f ′1 and f ′2 by partially shared ASWCs (f ′′1 not shown) 130
4.40 Publication and subscription ports of ASWCs in the example 131
4.41 ASWC-Clusters and communication channels between ASWCs 131
4.42 An initial deployment solution for the example . 132
4.43 Features with fail-operational requirements (example from Table 4.12) 134
4.44 Deployment in scenario σ1 after isolation of execution unit e1 135
4.45 Deployment in scenario σ2 after isolation of execution unit e2 136
4.46 Deployment in σ3 after isolation of master of s1 and failover to its hot-standby slave . . . 138
4.47 Deployment in scenario σ4 after isolation of s2 . 139
4.48 Deployment in scenario σ5 after isolation of s3 . 139
4.49 A hierarchical feature tree (left) and a set of functional features F (right) that is created

based on the feature tree . 144
4.50 RTE Broker that connects ports by channels . 146

176

List of Tables

4.1 List of Formal Model Symbols . 82
4.2 Example set of functional features and the realizing ASWCS with some of the predefined

properties . 108
4.3 Cluster mapping matrix map(si,c j) . 109
4.4 Calculation of prioSumActiveASWCs(σ0) . 110
4.5 Calculation of prioSumActiveASWCs(σ1) after isolation of e1 111
4.6 Availability of functional features in the two shown scenarios for the example shown in

Tab. 4.2 . 113
4.7 Matrix of mandatory channels CM(si,sk) for the example 114
4.8 Matrix of optional channels CO(si,sk) for the example 115
4.9 Calculation of prioSumActiveASWCs(σ0) . 116
4.10 Calculation of prioSumActiveASWCs(σ1) after isolation of e1 117
4.11 Availability of functional features in the two shown scenarios for the example shown in

Fig. 4.23 . 118
4.12 Example set of functional features and realizing software components 129
4.14 Calculation of prioSumAllASWCs . 133
4.15 Calculation of prioSumActiveASWCs(σ0) . 133
4.16 Calculation of prioSumActiveASWCs(σ1) . 135

177

Bibliography

[1] Asim Abdulkhaleq and Daniel Lammering. A Systematic Approach Based on STPA for Developing
a Dependable Architecture for Fully Automated Driving. In 4th European STAMP Workshop 2016,
2016.

[2] Asim Abdulkhaleq, Sebastian Vöst, Stefan Wagner, and John Thomas. An industrial case study on
the evaluation of a safety engineering approach for software-intensive systems in the automotive
domain. Preprint Version, 2016.

[3] Asim Abdulkhaleq and Stefan Wagner. Experiences with applying stpa to software-intensive
systems in the automotive domain. In 2nd STAMP Workshop at MIT, Boston, USA, 2013.

[4] Asim Abdulkhaleq and Stefan Wagner. Xstampp: an extensible stamp platform as tool support for
safety engineering. In 4th STAMP Workshop at MIT, Boston, USA, 2015.

[5] Daniel Adam, Joachim Fröschl, Uwe Baumgarten, Andreas Herkersdorf, and Hans-Georg Herzog.
Cyber organic system-model - new approach for automotives system design. In 7th Int. Conf. on
Adaptive and Self-Adaptive Systems and Applications (ADAPTIVE), 2015.

[6] Daniel Adam, Thomas Gehrsitz, and Uwe Baumgarten. Cyber organic systems network - a new
network architecture for future vehicles. In Internet of Things (WF-IoT), 2015 IEEE 2nd World
Forum on, pages 6–11. IEEE, 2015.

[7] P. Adelt, J. Donoth, J. Gausemeier, J. Geisler, S. Henkler, S. Kahl, B. Klöpper, A. Krupp, E. Münch,
S. Oberthür, et al. Selbstoptimierende Systeme des Maschinenbaus - Definitionen, Anwendungen,
Konzepte. Heinz-Nixdorf-Institute, University of Paderborn, 2008.

[8] Jose Aguilar and Erol Gelenbe. Task assignment and transaction clustering heuristics for distributed
systems. Information Sciences, 97(1):199–219, 1997.

[9] Aldeida Aleti. Designing automotive embedded systems with adaptive genetic algorithms. Auto-
mated Software Engineering, 22(2):199–240, 2014.

[10] Husain Aljazzar, Manuel Fischer, Lars Grunske, Matthias Kuntz, Florian Leitner-Fischer, and
Stefan Leue. Safety analysis of an airbag system using probabilistic FMEA and probabilistic
counterexamples. In Quantitative Evaluation of Systems, 2009. QEST’09. Sixth International
Conference on the, pages 299–308. IEEE, 2009.

[11] Christian Allmann, Manfred Broy, Mirko Conrad, Werner Damm, et al. Automotive Roadmap
Embedded Systems, Eingebettete Systeme in der Automobilindustrie, Roadmap 2015-2030. GI,
SafeTRANS, VDA, 2015.

[12] J. Andersson, R. De Lemos, S. Malek, and D. Weyns. Modeling dimensions of self-adaptive
software systems. Software Engineering for Self-Adaptive Systems, pages 27–47, 2009.

[13] R. Anthony, A. Leonhardi, C. Ekelin, S. Burton, O. Redell, A. Weber, and V. Vollmer. A future
dynamically reconfigurable automotive software system. Moderne Elektronik im Kraftfahrzeug:
Innovationen, Neuentwicklungen, Anwendungen, Praxisberichte, 67:101, 2006.

179

BIBLIOGRAPHY

[14] Richard Anthony, Achim Rettberg, Dejiu J. Chen, Isabell Jahnich, Gerrit de Boer, and Cecilia
Ekelin. A dynamically reconfigurable automotive control system architecture. Proceedings of the
17th International Federation of Automatic Control (IFAC) World Congress, pages 9308–9313,
2008.

[15] Vincent Aravantinos, Sebastian Voss, Sabine Teufl, Florian Hölzl, and Bernhard Schätz. AutoFO-
CUS 3: Tooling concepts for seamless, model-based development of embedded systems. Joint
proceedings of ACES-MB, page 19, 2015.

[16] Jean-Paul Arcangeli, Raja Boujbel, and Sébastien Leriche. Automatic deployment of distributed
software systems: Definitions and state of the art. Journal of Systems and Software (JSS), 2015.

[17] Michael Armbruster. Eine fahrzeugübergreifende X-by-Wire Plattform zur Ausführung umfassender
Fahr-und Assistenzfunktionen. PhD thesis, Institute for Avionics Systems (Institut für Luftfahrtsys-
teme, ILS), University of Stuttgart, 2009.

[18] Michael Armbruster. Graceful degradation and fail-operational-support in the context of plug’n’play.
Safety@Siemens (Siemens internal), 2014.

[19] Michael Armbruster, Ludger Fiege, Gunter Freitag, Thomas Schmid, Gernot Spiegelberg, and
Andreas Zirkler. Ethernet-Based and Function-Independent Vehicle Control-Platform: Motivation,
Idea and Technical Concept Fulfilling Quantitative Safety-Requirements from ISO 26262. Adv.
Microsystems for Automotive Applications (AMAA), pages 91–107, 2012.

[20] AUTOSAR. AUTomotive Open System ARchitecture (v3.2 Rev1). http://www.autosar.org/
specifications/release-32.

[21] AUTOSAR. AUTomotive Open System ARchitecture (v4.1 Rev2). http://www.autosar.org/
specifications/release-41.

[22] AUTOSAR. AUTomotive Open System ARchitecture (v4.2.2). http://www.autosar.org/
specifications/release-42, 2015.

[23] A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy of dependable
and secure computing. Dependable and Secure Computing, IEEE Transactions on, 1(1):11–33,
2004.

[24] Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary algorithms for parameter
optimization. Evolutionary computation, 1(1):1–23, 1993.

[25] Massimo Baleani, Alberto Ferrari, Leonardo Mangeruca, Alberto Sangiovanni-Vincentelli, Maurizio
Peri, and Saverio Pezzini. Fault-tolerant platforms for automotive safety-critical applications. In
Proceedings of the 2003 international conference on Compilers, architecture and synthesis for
embedded systems, pages 170–177. ACM, 2003.

[26] Joseph A Bannister and Kishor S Trivedi. Task allocation in fault-tolerant distributed systems. Acta
Informatica, 20(3):261–281, 1983.

[27] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard Version 2.0, 2010.

[28] Peter A Barrett and Neil A Speirs. Towards an integrated approach to fault tolerance in delta-4.
Distributed Systems Engineering, 1(2):59, 1993.

[29] Sanjoy K Baruah, Alan Burns, and Robert I Davis. Response-time analysis for mixed criticality
systems. In IEEE 32nd Real-Time Systems Symposium (RTSS), pages 34–43. IEEE, 2011.

180

http://www.autosar.org/specifications/release-32
http://www.autosar.org/specifications/release-32
http://www.autosar.org/specifications/release-41
http://www.autosar.org/specifications/release-41
http://www.autosar.org/specifications/release-42
http://www.autosar.org/specifications/release-42

BIBLIOGRAPHY

[30] Twan Basten, Martijn Hendriks, Nikola Trčka, Lou Somers, Marc Geilen, Yang Yang, Georgeta Igna,
Sebastian de Smet, Marc Voorhoeve, Wil van der Aalst, et al. Model-driven design-space exploration
for software-intensive embedded systems. In Model-Based Design of Adaptive Embedded Systems,
pages 189–244. Springer, 2013.

[31] Twan Basten, Emiel Van Benthum, Marc Geilen, Martijn Hendriks, Fred Houben, Georgeta Igna,
Frans Reckers, Sebastian De Smet, Lou Somers, Egbert Teeselink, et al. Model-driven design-space
exploration for embedded systems: the octopus toolset. In International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation, pages 90–105. Springer, 2010.

[32] Benoit Baudry and Martin Monperrus. The multiple facets of software diversity: Recent develop-
ments in year 2000 and beyond. ACM Computing Surveys (CSUR), 48(1):16, 2015.

[33] Basil Becker, Holger Giese, Stefan Neumann, Martin Schenck, and Arian Treffer. Model-based
extension of AUTOSAR for architectural online reconfiguration. In Models in Software Engineering,
ACES-MB Workshop, pages 83–97. Springer LNCS 6002, 2009.

[34] Jan Becker and Michael Helmle. Architecture and system safety requirements for automated driving.
In Road Vehicle Automation 2, pages 37–48. Springer, 2015.

[35] Klaus Becker, Michael Armbruster, Bernhard Schätz, and Christian Buckl. Deployment calculation
and analysis for a fail-operational automotive platform. In 1st Workshop on Engineering Dependable
Systems of Systems (EDSoS). arXiv:1404.7763, 2014.

[36] Klaus Becker, Jelena Frtunikj, Meik Felser, Ludger Fiege, Christian Buckl, Stefan Rothbauer,
Licong Zhang, and Cornel Klein. RACE RTE: A Runtime Environment for Robust Fault-Tolerant
Vehicle Functions. In 3rd Workshop on Critical Automotive Applications : Robustness & Safety
(CARS). HAL archives ouvertes, 2015.

[37] Klaus Becker and Bernhard Schätz. Deployment calculation and analysis for a fault-tolerant
system platform. In 11th Dagstuhl-Workshop on Model-Based Development of Embedded Systems
(MBEES), 2015.

[38] Klaus Becker, Bernhard Schätz, Michael Armbruster, and Christian Buckl. A formal model
for constraint-based deployment calculation and analysis for fault-tolerant systems. In 12th Int.
Conference on Software Engineering and Formal Methods (SEFM), volume 8702, pages 205–219.
Springer Lecture Notes in Computer Science (LNCS), 2014.

[39] Klaus Becker and Sebastian Voss. Towards Dynamic Deployment Calculation for Extensible
Systems using SMT-Solvers. In First Open EIT ICT Labs Workshop on Cyber-Physical Systems
Engineering (EIT CPSE), Trento, Italy, May 2013.

[40] Klaus Becker and Sebastian Voss. Analyzing graceful degradation for mixed critical fault-tolerant
real-time systems. In 18th International Symposium on Real-Time Distributed Computing (ISORC),
pages 110–118. IEEE, 2015.

[41] Klaus Becker and Sebastian Voss. A formal model and analysis of feature degradation in fault-
tolerant systems. In 4th Int. Workshop on Formal Techniques for Safety-Critical Systems (FTSCS),
volume 596, pages 139–154. Springer Communications in Computer and Information Science
(CCIS), 2015.

[42] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature models 20 years later:
A literature review. Information Systems, 35(6):615–636, 2010.

181

BIBLIOGRAPHY

[43] David Benavides, Antonio Ruiz-Cortes, Pablo Trinidad, and Sergio Segura. A survey on the
automated analyses of feature models. In Jornadas de Ingenieria del Software y Bases de Datos
JISBD 2006, 2006.

[44] Andrew L Benjamin and Jaynarayan H Lala. Advanced fault tolerant computing for future manned
space missions. In Digital Avionics Systems Conference, 1997. 16th DASC., AIAA/IEEE, volume 2,
pages 8–5. IEEE, 1997.

[45] Benz & Co. Fahrzeug mit Gasmotorantrieb. Kaiserliches Patentamt, Patentschrift DRP Nr. 37435,
1886.

[46] Peter Bergmiller. Design and safety analysis of a drive-by-wire vehicle. In Automotive Systems
Engineering, pages 147–202. Springer, 2013.

[47] Bernhard, M., Buckl, C., Döricht, V., Fehling, M., Fiege, L., von Grolman, H., Ivandic, N., Janelle,
C., Klein, C., Kuhn, K.-J., Patzlaff, C., Riedl, B., Schätz, B., Stanek, C. The Software Car:
Information and Communication Technology (ICT) as an Engine for the Electromobility of the
Future. fortiss GmbH, 2011. Summary of results of the "eCar ICT System Architecture for
Electromobility" research project sponsored by the German Federal Ministry of Economics and
Technology (BMWi).

[48] D. Bertrand, A.M. Déplanche, S. Faucou, and O.H. Roux. A study of the aadl mode change protocol.
In Engineering of Complex Computer Systems, 2008. ICECCS 2008. 13th IEEE International
Conference on, pages 288–293. IEEE, 2008.

[49] Nikolaj Bjørner. Satisfiability: From quality to quantities (invited talk). In 20th Int. Conf on Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR), volume 9450. Springer Lecture
Notes in Computer Science (LNCS), 2015.

[50] Nikolaj Bjørner and Leonardo de Moura. Applications of smt solvers to program verification.
Rough notes for SSFT 2014, 2014.

[51] Nikolaj Bjørner and Anh-Dung Phan. νZ - Maximal Satisfaction with Z3. In 6th Int. Symposium on
Symbolic Computation in Software Science (SCSS), volume 30, pages 1–9. EasyChair Proceedings
in Computing (EPiC), 2014.

[52] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. νZ - An Optimizing SMT Solver. 21st Int.
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), 2015.

[53] Mogens Blanke, Marcel Staroswiecki, and N Eva Wu. Concepts and methods in fault-tolerant
control. In Proceedings of the American Control Conference, volume 4, pages 2606–2620. IEEE,
2001.

[54] Hagen Böhmert and Pierre Blüher. Nachweis der funktionalen Integrität für automatisierte Fahrfunk-
tionen. HANSER automotive, Continental AG - Division Automotive, 10:24 – 26, 2016.

[55] Bas Boone, Filip De Turck, and Bart Dhoedt. Automated deployment of distributed software com-
ponents with fault tolerance guarantees. In 6th International Conference on Software Engineering
Research, Management and Applications (SERA), pages 21–27. IEEE, 2008.

[56] J Börcsök, M Schwarz, E Ugljesa, P Holub, and A Hayek. High-availability controller concept for
steering systems: the degradable safety controller. In in WSEAS conference, Tenerife, Spain, 2011.

[57] Josef Börcsök. Electronic safety systems, hardware concepts, models, and calculations, huthig
gmbh & co. KG Heidelberg, Germany, 2004.

182

BIBLIOGRAPHY

[58] Etienne Borde, Grégory Haïk, and Laurent Pautet. Mode-based reconfiguration of critical software
component architectures. In Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1160–1165. IEEE, 2009.

[59] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen Nguyen, Thomas Noll, and
Marco Roveri. Safety, dependability and performance analysis of extended aadl models. The
Computer Journal, 2010.

[60] Marco Bozzano and Adolfo Villafiorita. Design and safety assessment of critical systems. CRC
press, 2010.

[61] J.S. Bradbury, J.R. Cordy, J. Dingel, and M. Wermelinger. A survey of self-management in
dynamic software architecture specifications. In Proceedings of the 1st ACM SIGSOFT workshop
on Self-managed systems, pages 28–33. ACM, 2004.

[62] Sally C Brailsford, Chris N Potts, and Barbara M Smith. Constraint satisfaction problems: Algo-
rithms and applications. European Journal of Operational Research, 119(3):557–581, 1999.

[63] Jürgen Branke, Moez Mnif, Christian Müller-Schloer, Holger Prothmann, Urban Richter, Fabian
Rochner, and Hartmut Schmeck. Organic computing–addressing complexity by controlled self-
organization. In Leveraging Applications of Formal Methods, Verification and Validation, 2006.
ISoLA 2006. Second International Symposium on, pages 185–191. IEEE, 2006.

[64] Francisco V Brasileiro, Paul Devadoss Ezhilchelvan, Santosh K Shrivastava, Neil Speirs, Sha Tao,
et al. Implementing fail-silent nodes for distributed systems. Computers, IEEE Transactions on,
45(11):1226–1238, 1996.

[65] U. Brinkschulte, M. Pacher, and A. Renteln. An artificial hormone system for self-organizing
real-time task allocation in organic middleware. Organic Computing, pages 261–283, 2008.

[66] M Broy, E Geisberger, MV Cengarle, P Keil, J Niehaus, C Thiel, and HJ Thönnißen-Fries. Cyber-
physical systems: Innovationsmotor für mobilität, gesundheit, energie und produktion. acatech
bezieht position, vol. 8, 2011.

[67] Manfred Broy. Challenges in automotive software engineering. In Proceedings of the 28th
International Conference on Software Engineering (ICSE), pages 33–42. ACM, 2006.

[68] Manfred Broy, Sascha Kirstan, Helmut Krcmar, Bernhard Schätz, and Jens Zimmermann. What
is the benefit of a model-based design of embedded software systems in the car industry? Soft-
ware Design and Development: Concepts, Methodologies, Tools, and Applications: Concepts,
Methodologies, Tools, and Applications, page 310, 2013.

[69] Manfred Broy and Ketil Stølen. Specification and development of interactive systems. Monographs
in Computer Science, Springer-Verlag, 2001.

[70] C. Buckl, A. Camek, G. Kainz, C. Simon, L. Mercep, H. Stahle, and A. Knoll. The software car:
Building ICT architectures for future electric vehicles. In Electric Vehicle Conference (IEVC), 2012
IEEE International, pages 1–8. IEEE, 2012.

[71] Christian Buckl, Michael Geisinger, Dhiraj Gulati, Franz Ruiz-Bertol, and Alois Knoll. Chromo-
some - a run-time environment for plug & play-capable embedded real-time systems. In Workshop
on Adaptive and Reconfigurable Embedded Systems (APRES), 2014.

183

BIBLIOGRAPHY

[72] Martin Buechel, Jelena Frtunikj, Klaus Becker, Stephan Sommer, Christian Buckl, Michael Arm-
bruster, Cornel Klein, Andre Marek, Andreas Zirkler, and Alois Knoll. An automated electric
vehicle prototype showing new trends in automotive architectures. In IEEE 18th International
Conference on Intelligent Transportation Systems (ITSC), 2015.

[73] Alan Burns and Robert Davis. Mixed Criticality Systems – A Review. Technical report, Department
of Computer Science, University of York, 7th edition, 2016.

[74] Giorgio C Buttazzo. Hard Real-Time Computing Systems: predictable scheduling algorithms and
applications. Springer Science & Business Media, 3rd edition, 2011.

[75] Antonio Cansado, Carlos Canal, Gwen Salaun, and Javier Cubo. A formal framework for structural
reconfiguration of components under behavioural adaptation. Electronic Notes in Theoretical
Computer Science, 263:95–110, 2010.

[76] Miguel Castro and Barbara Liskov. Proactive recovery in a byzantine-fault-tolerant system. In
Proceedings of the 4th conference on Symposium on Operating System Design & Implementation-
Volume 4, pages 19–19. USENIX Association, 2000.

[77] C. Cetina, V. Pelechano, P. Trinidad, and A. Cortes. An architectural discussion on dspl. In
Proceedings of the 12th International Software Product Line Conference (SPLC 2008), pages 59–68,
2008.

[78] Samarjit Chakraborty, Martin Lukasiewycz, Christian Buckl, Suhaib Fahmy, Naehyuck Chang,
Sangyoung Park, Younghyun Kim, Patrick Leteinturier, and Hans Adlkofer. Embedded systems and
software challenges in electric vehicles. In Proceedings of the Conference on Design, Automation
and Test in Europe, pages 424–429. EDA Consortium, 2012.

[79] D. Chen, R. Anthony, M. Persson, S. Scholle, V. Friesen, G. de Boer, A. Rettberg, and C. Ekelin.
An architectural approach to autonomics and self-management of automotive embedded electronic
systems. Proceedings of the 4th European Congress ERTS (EMBEDDED REAL TIME SOFTWARE),
2008.

[80] Liming Chen and Algirdas Avizienis. N-version programming: A fault-tolerance approach to
reliability of software operation. In Digest of Papers FTCS-8: Eighth Annual International
Conference on Fault Tolerant Computing, pages 3–9, 1978.

[81] B. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker, N. Bencomo,
Y. Brun, B. Cukic, et al. Software engineering for self-adaptive systems: A research roadmap.
Software Engineering for Self-Adaptive Systems. Dagstuhl Seminar Proceedings., pages 1–26, 2009.

[82] Chih-Hong Cheng, Saddek Bensalem, Harald Ruess, Natarajan Shankar, and Ashish Tiwari. EFSMT:
A Logical Framework for the Design of Cyber-Physical Systems. In Cyber-Physical System
Architectures and Design Methodologies (CPSArch), 2014.

[83] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Computing small unsatisfiable cores
in satisfiability modulo theories. Journal of Artificial Intelligence Research, pages 701–728, 2011.

[84] David W Coit. Cold-standby redundancy optimization for nonrepairable systems. Iie Transactions,
33(6):471–478, 2001.

[85] David W Coit. Maximization of system reliability with a choice of redundancy strategies. IIE
transactions, 35(6):535–543, 2003.

184

BIBLIOGRAPHY

[86] Louise K Comfort, Arjen Boin, and Chris C Demchak. Designing resilience: Preparing for extreme
events. University of Pittsburgh Pre, 2010.

[87] Thomas Crick. Superoptimisation: provably optimal code generation using answer set programming.
PhD thesis, University of Bath, 2009.

[88] Ivica Crnkovic and Lars Grunske. Evaluating dependability attributes of component-based spec-
ifications. In Companion to the proceedings of the 29th International Conference on Software
Engineering, pages 157–158. IEEE Computer Society, 2007.

[89] Vanderlei da Costa Bueno and Iran Martins do Carmo. Active redundancy allocation for a k-out-of-n:
F system of dependent components. European Journal of Operational Research, 176(2):1041–1051,
2007.

[90] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving.
Communications of the ACM, 5(7):394–397, 1962.

[91] John C Day, Michel D Ingham, Richard M Murray, Leonard J Reder, and Brian C Williams.
Engineering resilient space systems. INSIGHT, 18(1):23–25, 2015.

[92] R. De Lemos, H. Giese, H.A. Muller, M. Shaw, J. Andersson, L. Baresi, B. Becker, N. Bencomo,
Y. Brun, B. Cukic, et al. Software engineering for self-adaptive systems: A second research roadmap.
Software Engineering for Self-Adaptive Systems. Dagstuhl Seminar Proceedings., pages 1–16, 2011.

[93] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), pages 337–340, 2008.

[94] Tom De Wolf and Tom Holvoet. Emergence and self-organisation: a statement of similarities and
differences. Engineering Self-Organising Systems, 3464:1–15, 2004.

[95] A. Dearle. Software deployment, past, present and future. In Future of Software Engineering
(FOSE), pages 269–284. IEEE Computer Society, 2007.

[96] Michael S Deutsch and Ronald R Willis. Software quality engineering: a total technical and
management approach. Prentice Hall Englewood Cliffs, NJ, 1988.

[97] G. Di Marzo Serugendo, M.P. Gleizes, and A. Karageorgos. Self-organisation and emergence in
mas: An overview. Informatica, 30(1):45–54, 2006.

[98] Giovanna Di Marzo Serugendo, John Fitzgerald, Alexander Romanovsky, and Nicolas Guelfi. A
metadata-based architectural model for dynamically resilient systems. In Proceedings of the 2007
ACM symposium on Applied computing, pages 566–572. ACM, 2007.

[99] Michael Dinkel. A Novel IT-Architecture for Self-Management in Distributed Embedded Systems.
PhD thesis, Technical University of Munich, 2008.

[100] Michael Dinkel and Uwe Baumgarten. Self-configuration of vehicle systems-algorithms and
simulation. In Proceedings of the 4th International Workshop on Intelligent Transportation (WIT),
pages 85–91, 2007.

[101] T. Dinkelaker, R. Mitschke, K. Fetzer, and M. Mezini. A dynamic software product line approach
using aspect models at runtime. In Proceedings of the 9th IEEE International Conference on
Computer and Information Technology, pages 11–18, 2010.

185

BIBLIOGRAPHY

[102] Tobias Distler, Ivan Popov, Wolfgang Schröder-Preikschat, Hans P Reiser, and Rüdiger Kapitza.
Spare: Replicas on hold. In NDSS, 2011.

[103] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system: optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
26(1):29–41, 1996.

[104] Bruce Powel Douglass. Real-time design patterns: robust scalable architecture for real-time
systems, volume 1. Addison-Wesley Professional, 2003.

[105] Joanne Bechta Dugan, Salvatore J Bavuso, Mark Boyd, et al. Dynamic fault-tree models for
fault-tolerant computer systems. Reliability, IEEE Transactions on, 41(3):363–377, 1992.

[106] Bruno Dutertre. Solving Exists/Forall Problems With Yices. In Workshop on Satisfiability Modulo
Theories, 2015.

[107] Bruno Dutertre and Leonardo De Moura. The Yices SMT solver. Technical report, SRI International,
2006.

[108] Klaus Echtle. Fehlertoleranzverfahren. Springer, 1990.

[109] Klaus Echtle and Thorsten Kimmeskamp. Fault-tolerant and fail-safe control systems-using remote
redundancy. In Architecture of Computing Systems (ARCS), 2009 22nd International Conference
on, pages 1–6. VDE, 2009.

[110] Johannes Eder. Usable Design Space Exploration in AutoFOCUS3. In Workshop on Open Source
Software for Model-Driven Engineering (OSS4MDE), in conjunction with MODELS conference,
2016.

[111] Cecilia Ekelin. An optimization framework for scheduling of embedded real-time systems. Chalmers
University of Technology„ 2004.

[112] Robert J Ellison, David A Fisher, Richard C Linger, Howard F Lipson, and Thomas Longstaff.
Survivable network systems: An emerging discipline. Technical report, DTIC Document, 1997.

[113] Paul Emberson. Searching for flexible solutions to task allocation problems. PhD thesis, University
of York, 2009.

[114] Paul Emberson and Iain Bate. Extending a task allocation algorithm for graceful degradation of
real-time distributed embedded systems. In Real-Time Systems Symposium (RTSS), pages 270–279.
IEEE, 2008.

[115] Stephan Esch and Bardo Lang. Elektronik-und Vernetzungsarchitektur mit gesteigerter Leistungs-
fähigkeit. ATZextra, 2(13):194–199, 2008.

[116] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The many
faces of publish/subscribe. ACM Computing Surveys (CSUR), 35(2):114–131, 2003.

[117] Stefan Faulstich, Berthold Hahn, and Peter J Tavner. Wind turbine downtime and its importance for
offshore deployment. Wind Energy, 14(3):327–337, 2011.

[118] Marcus Fehling and Michael Armbruster. Major characteristics of a new ict system architecture for
electric vehicles: Technology leadership brief. Technical report, SAE Technical Paper, 2012.

[119] Henning Femmer, Daniel Méndez Fernández, Stefan Wagner, and Sebastian Eder. Rapid quality
assurance with requirements smells. Journal of Systems and Software, 123:190—213, 2017.

186

BIBLIOGRAPHY

[120] L. Feng, D.J. Chen, and M. Torngren. Self configuration of dependent tasks for dynamically
reconfigurable automotive embedded systems. In Decision and Control, 2008. CDC 2008. 47th
IEEE Conference on, pages 3737–3742. IEEE, 2008.

[121] Carlos M Fonseca and Peter J Fleming. An overview of evolutionary algorithms in multiobjective
optimization. Evolutionary computation, 3(1):1–16, 1995.

[122] R Freitag, M Moser, M Hartl, J Koepernik, and L Eckstein. Anforderungen an das Sicherheit-
skonzept von Lenksystemen mit Steer-by-Wire Funktionalität / Safety concept requirements of
steering systems with steer-by-wire functionality. VDI-Berichte, 2001.

[123] S. Fritsch, A. Senart, D.C. Schmidt, and S. Clarke. Time-bounded adaptation for automotive system
software. In Proceedings of the 30th international conference on Software engineering, pages
571–580. ACM, 2008.

[124] Joachim Froehlich and Reiner Schmid. Architecture for a Hard-Real-Time System Enabling
Non-intrusive Tests. In 2014 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), pages 24–24, 2014.

[125] Joachim Fröhlich, Jelena Frtunikj, Stefan Rothbauer, and Christoph Stückjürgen. Testing safety
properties of cyber-physical systems with non-intrusive fault injection – an industrial case study. In
Workshop on Dependable Embedded and Cyber-physical Systems and Systems-of-Systems (DECSoS)
at International Conference on Computer Safety, Reliability, and Security (SAFECOMP), volume
9923, pages 105–117. Springer, 2016.

[126] Jelena Frtunikj. Safety framework and platform for functions of future automotive e/e systems.
Automotive and Engine Technology, pages 1–13, 2016.

[127] Jelena Frtunikj, Michael Armbruster, and Alois Knoll. Run-time adaptive error and state manage-
ment for open automotive systems. International Symposium on Software Reliability Engineering
Workshops (ISSREW), 2014.

[128] Jelena Frtunikj, Vladimir Rupanov, Michael Armbruster, and Alois Knoll. Adaptive error and
sensor management for autonomous vehicles: Model-based approach and run-time system. In
Model-Based Safety and Assessment, pages 166–180. Springer, 2014.

[129] Jelena Frtunikj, Vladimir Rupanov, Alexander Camek, Christian Buckl, and Alois Knoll. A safety
aware run-time environment for adaptive automotive control systems. In Embedded Real-Time
Software and Systems (ERTS2), 2014.

[130] Christopher P Fuhrman, Sailesh Chutani, and Henri J Nussbaumer. A fault-tolerant implementation
using multiple-task triple modular redundancy. In Factory Communication Systems, 1995. WFCS’95,
Proceedings., 1995 IEEE International Workshop on, pages 75–80. IEEE, 1995.

[131] Simon Fürst. Challenges in the design of automotive software. In Proceedings of the Conference on
Design, Automation and Test in Europe (DATE), pages 256–258. European Design and Automation
Association, 2010.

[132] Simon Fürst. Autosar the next generation – the adaptive platform. In 3rd Workshop on Critical
Automotive Applications : Robustness & Safety (CARS). Keynote, 2015.

[133] Roland Galbas and Andreas Lock. Trends in E/E-Architectures. In 21st SafeTRANS Industrial Day.
Robert Bosch GmbH, 2016.

187

BIBLIOGRAPHY

[134] Jürgen Gausemeier, Franz Josef Rammig, Wilhelm Schäfer, and Walter Sextro. Dependability of
self-optimizing mechatronic systems. Springer, 2014.

[135] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. In
ICLP/SLP, volume 88, pages 1070–1080, 1988.

[136] Michael Glaß, Martin Lukasiewycz, Christian Haubelt, and Jürgen Teich. Incorporating graceful
degradation into embedded system design. In Proceedings of the Conference on Design, Automation
and Test in Europe (DATE), pages 320–323. IEEE, 2009.

[137] Fred Glover. Future paths for integer programming and links to artificial intelligence. Computers &
operations research, 13(5):533–549, 1986.

[138] Patrice Godefroid. 500 Machine-Years of Software Model Checking and SMT Solving. 12th Int.
Conference on Software Engineering and Formal Methods (SEFM), 2014.

[139] A. Gomes, T. Batista, A. Joolia, and G. Coulson. Architecting dynamic reconfiguration in de-
pendable systems. In Architecting dependable systems IV, pages 237–261. Springer LNCS 4615,
2007.

[140] O. González, H. Shrikumar, J.A. Stankovic, and K. Ramamritham. Adaptive fault tolerance and
graceful degradation under dynamic hard real-time scheduling. In Real-Time Systems Symposium,
1997. Proceedings., The 18th IEEE, pages 79–89. IEEE, 1997.

[141] Sebastian Graf, Michael Glaß, Jürgen Teich, and Christoph Lauer. Design space exploration for
automotive e/e architecture component platforms. In Digital System Design (DSD), 2014 17th
Euromicro Conference on, pages 651–654. IEEE, 2014.

[142] Sebastian Graf, Sebastian Reinart, Michael Glaß, Jürgen Teich, and Daniel Platte. Robust design of
e/e architecture component platforms. In Design Automation Conference (DAC), 2015.

[143] Rudolf Grave and Alexander Much. Auf alles vorbereitet sein - Architekturen und Degrada-
tionsmechanismen für verlässliches Verhalten im Fehlerfall. http://www.elektroniknet.de/
automotive/assistenzsysteme/artikel/121101, 2015.

[144] Jim Gray. Why do computers stop and what can be done about it? In Symposium on reliability in
distributed software and database systems, pages 3–12. Los Angeles, CA, USA, 1985.

[145] Jim Gray and Daniel P Siewiorek. High-availability computer systems. Computer, 24(9):39–48,
1991.

[146] Lars Grunske. Identifying good architectural design alternatives with multi-objective optimization
strategies. In Proceedings of the 28th international conference on Software engineering, pages
849–852. ACM, 2006.

[147] Lars Grunske, Robert Colvin, and Kirsten Winter. Probabilistic model-checking support for fmea.
In Quantitative Evaluation of Systems, 2007. QEST 2007. Fourth International Conference on the,
pages 119–128. IEEE, 2007.

[148] Xiaozhe Gu, Arvind Easwaran, Kieu My Phan, and Insik Shin. Resource efficient isolation
mechanisms in mixed-criticality scheduling. In 27th Euromicro Conference on Real-Time Systems
(ECRTS), 2015.

188

http://www.elektroniknet.de/automotive/assistenzsysteme/artikel/121101
http://www.elektroniknet.de/automotive/assistenzsysteme/artikel/121101

BIBLIOGRAPHY

[149] Pragya Kirti Gupta, Klaus Becker, Markus Duchon, and Bernhard Schätz. Formalizing performance
degradation strategies as an enabler for self-healing smart energy systems. In 11th Dagstuhl-
Workshop on Model-Based Development of Embedded Systems (MBEES), 2015.

[150] Pragya Kirti Gupta and Bernhard Schätz. Constraint-based graceful degradation in smart grids. In
2nd Int. Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS), 2016.

[151] Julian Hall and Qi Huangfu. A high performance dual revised simplex solver. In Parallel Processing
and Applied Mathematics, pages 143–151. Springer, 2011.

[152] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid. Dynamic software product lines. Computer,
41(4):93–95, 2008.

[153] Arne Hamann. Iterative design space exploration and robustness optimization for embedded systems.
PhD thesis, TU Braunschweig, 2008.

[154] Robert Hammett. Design by extrapolation: an evaluation of fault-tolerant avionics. In Digital
Avionics Systems, 2001. DASC. 20th Conference, volume 1, pages 1C5–1. IEEE, 2001.

[155] B. Hardung, T. Kölzow, and A. Krüger. Reuse of software in distributed embedded automotive
systems. In Proceedings of the 4th ACM international conference on Embedded software, pages
203–210. ACM, 2004.

[156] Bernd Hardung. Optimisation of the allocation of functions in vehicle networks. PhD thesis,
University of Erlangen-Nuremberg, 2006.

[157] Rick H Hay, Clarence S Smith, Robert D Girts, and Larry J Yount. Fail-operational fault tolerant
flight critical computer architecture and monitoring method, 1996. US Patent 5,550,736.

[158] Ábel Hegedüs, Ákos Horváth, and Dániel Varró. A model-driven framework for guided design
space exploration. Automated Software Engineering, 22(3):399–436, 2015.

[159] Harald Heinecke, Anton Schedl, Josef Berwanger, Martin Peller, Volker Nieten, R Belschner, Bernd
Hedenetz, Peter Lohrmann, and Claas Bracklo. FlexRay – ein Kommunikationssystem für das
Automobil der Zukunft. Elektronik Automotive, 9, 2002.

[160] Abdelsalam A Helal, Abdelsalam A Heddaya, and Bharat K Bhargava. Replication techniques in
distributed systems, volume 4. Springer, 1996.

[161] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: A time-triggered language for embedded
programming. In Embedded Software, pages 166–184. Springer, 2001.

[162] Maurice P Herlihy and Jeannette M Wing. Specifying graceful degradation in distributed systems.
In Proceedings of the sixth annual ACM Symposium on Principles of distributed computing, pages
167–177. ACM, 1987.

[163] Maurice P Herlihy and Jeannette M Wing. Specifying graceful degradation. Parallel and Distributed
Systems, IEEE Transactions on, 2(1):93–104, 1991.

[164] Fernando Herrera, Héctor Posadas, Pablo Penil, Eugenio Villar, Francisco Ferrero, Raúl Valencia,
and Gianluca Palermo. The complex methodology for uml/marte modeling and design space
exploration of embedded systems. Journal of Systems Architecture (JSA), 60(1):55–78, 2014.

[165] Abbas Heydarnoori and Walter Binder. A graph-based approach for deploying component-based
applications into channel-based distributed environments. Journal of Software, 6(8):1381–1394,
2011.

189

BIBLIOGRAPHY

[166] Scott A Hissam, Gabriel A Moreno, Judith A Stafford, and Kurt C Wallnau. Packaging predictable
assembly. In International Working Conference on Component Deployment, pages 108–124.
Springer, 2002.

[167] Pierre-Emmanuel Hladik, Hadrien Cambazard, Anne-Marie Déplanche, and Narendra Jussien.
Solving a real-time allocation problem with constraint programming. Journal of Systems and
Software (JSS), 81(1):132–149, 2008.

[168] Lok Man Ho and Daniel Ossmann. Fault detection and isolation of vehicle dynamics sensors and
actuators for an overactuated x-by-wire vehicle. In 53rd IEEE Conference on Decision and Control,
2014.

[169] Kai Höfig, Marc Zeller, and Konstantin Schorp. Automated failure propagation using inner port
dependency traces. In Proceedings of the 11th International ACM SIGSOFT Conference on Quality
of Software Architectures (QoSA), pages 123–128. ACM, 2015.

[170] JH Holland and DE Goldberg. Genetic algorithms in search, optimization and machine learning,
1989.

[171] Albert L Hopkins Jr, T Smith III, and Jaynarayan H Lala. FTMP—A highly reliable fault-tolerant
multiprocessor for aircraft. Proceedings of the IEEE, 66(10):1221–1239, 1978.

[172] James J Horning, Hugh C Lauer, Peter M Melliar-Smith, and Brian Randell. A program structure
for error detection and recovery. Springer, 1974.

[173] IEEE 802.1 Time-Sensitive Networking Task Group. Time-Sensitive Networks (TSN). http:
//www.ieee802.org/1/pages/tsn.html.

[174] International Organization for Standardization (ISO). ISO 26262 - Road vehicles - Functional
safety. Technical report, Technical Committee 22 (ISO/TC 22), Geneva, Switzerland, 2011.

[175] International Organization for Standardization (ISO). ISO 26262-1 - Road vehicles - Functional
safety, Part 1: Glossary. Technical report, Technical Committee 22 (ISO/TC 22), 2011.

[176] International Organization for Standardization (ISO). ISO 26262-6 - Road vehicles - Functional
safety, Part 6: Product development at the software level. Technical report, Technical Committee 22
(ISO/TC 22), 2011.

[177] International Organization for Standardization (ISO). ISO 26262-9 - Road vehicles - Functional
safety, Part 9: ASIL oriented and safety-oriented analyses. Technical report, Technical Committee
22 (ISO/TC 22), 2011.

[178] International Organization for Standardization (ISO) JTC 1/SC 7. ISO/IEC 25010 - Systems and
software engineering – Systems and software Quality Requirements and Evaluation (SQuaRE)
– System and software quality models. http://www.iso.org/iso/catalogue_detail.htm?
csnumber=35733, 2011.

[179] International Organization for Standardization (ISO), TC 22/SC 31. ISO 11898 - Road vehi-
cles – Controller area network (CAN). http://www.iso.org/iso/catalogue_detail.htm?
csnumber=63648, 2015.

[180] International Organization for Standardization (ISO), TC 22/SC 31. ISO/DIS 17987 - Road
vehicles – Local Interconnect Network (LIN). http://www.iso.org/iso/catalogue_detail.
htm?csnumber=61222, 2015.

190

http://www.ieee802.org/1/pages/tsn.html
http://www.ieee802.org/1/pages/tsn.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733
http://www.iso.org/iso/catalogue_detail.htm?csnumber=63648
http://www.iso.org/iso/catalogue_detail.htm?csnumber=63648
http://www.iso.org/iso/catalogue_detail.htm?csnumber=61222
http://www.iso.org/iso/catalogue_detail.htm?csnumber=61222

BIBLIOGRAPHY

[181] Rolf Isermann. Model-based fault-detection and diagnosis – status and applications. Annual Reviews
in control, 29(1):71–85, 2005.

[182] Rolf Isermann, Ralf Schwarz, and Stefan Stolzl. Fault-tolerant drive-by-wire systems. Control
Systems, IEEE, 22(5):64–81, 2002.

[183] Viacheslav Izosimov, Paul Pop, Petru Eles, and Zebo Peng. Design optimization of time-and
cost-constrained fault-tolerant distributed embedded systems. In Design, Automation and Test in
Europe (DATE), pages 864–869. IEEE Computer Society, 2005.

[184] V. Januzaj, S. Kugele, F. Biechele, and R. Mauersberger. A Configuration Approach for IMA
Systems. In 10th International Conference on Software Engineering and Formal Methods (SEFM),
2012.

[185] Weijia Jia and Wanlei Zhou. Reliability and replication techniques. Distributed Network Systems:
From Concepts to Implementations, pages 213–254, 2005.

[186] Maximilian Junker. Specification and Analysis of Availability for Software-Intensive Systems. PhD
thesis, Technical University of Munich, 2016.

[187] Muhammad Kafil and Ishfaq Ahmad. Optimal task assignment in heterogeneous distributed
computing systems. Concurrency, IEEE, 6(3):42–50, 1998.

[188] Bernhard Kaiser and Catharina Gramlich. State-event-fault-trees–a safety analysis model for
software controlled systems. In Computer Safety, Reliability, and Security, pages 195–209. Springer,
2004.

[189] Oliver S. Kaiser, Heinz Eickenbusch, Vera Grimm, and Axel Zweck. Zukunft des Autos. VDI
Technologiezentrum - Zukünftige Technologien Consulting, 75, 2008.

[190] Robert Kaiser and Stephan Wagner. Evolution of the PikeOS microkernel. In Proceedings of the 1st
International Workshop on Microkernels for Embedded Systems, pages 50–57, 2007.

[191] Peter Kali and Stein W Wallace. Stochastic programming. Springer, 1994.

[192] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Peterson. Feature-
oriented domain analysis (FODA) feasibility study. Technical report, DTIC Document, 1990.

[193] Zádor Dániel Kelemen, Jos JM Trienekens, Rob J Kusters, and Katalin Balla. A process based
unification of process-oriented software quality approaches. In ICGSE, pages 285–288, 2009.

[194] James Kennedy and Russell Eberhart. Particle swarm optimization. In International Conference on
Neural Networks, volume 4, pages 1942–1948. IEEE, 1995.

[195] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer, 36(1):41–50, 2003.

[196] Junsung Kim, Gaurav Bhatia, Ragunathan Raj Rajkumar, and Markus Jochim. Safer: System-level
architecture for failure evasion in real-time applications. In Real-Time Systems Symposium (RTSS),
2012 IEEE 33rd, pages 227–236. IEEE, 2012.

[197] Junsung Kim, Ragunathan Raj Rajkumar, and Markus Jochim. Towards dependable autonomous
driving vehicles: a system-level approach. ACM SIGBED Review, 10(1):29–32, 2013.

[198] James C King. Symbolic execution and program testing. Communications of the ACM, 19(7):385–
394, 1976.

191

BIBLIOGRAPHY

[199] Scott Kirkpatrick. Optimization by simulated annealing: Quantitative studies. Journal of statistical
physics, 34(5-6):975–986, 1984.

[200] Christoph M Kirsch and Ana Sokolova. The logical execution time paradigm. In Advances in
Real-Time Systems, pages 103–120. Springer, 2012.

[201] C. Klein, R. Schmid, C. Leuxner, W. Sitou, and B. Spanfelner. A survey of context adaptation
in autonomic computing. In Autonomic and Autonomous Systems, 2008. ICAS 2008. Fourth
International Conference on, pages 106–111. IEEE, 2008.

[202] John C Knight and Kevin J Sullivan. On the definition of survivability. University of Virginia,
Department of Computer Science, Technical Report CS-TR-33-00, 2000.

[203] Andre Kohn, Michael Kasmeyer, Rolf Schneider, Andre Roger, Claus Stellwag, and Andreas
Herkersdorf. Fail-operational in safety-related automotive multi-core systems. In Industrial
Embedded Systems (SIES), 2015 10th IEEE International Symposium on, pages 1–4. IEEE, 2015.

[204] Abdullah Konak, David W Coit, and Alice E Smith. Multi-objective optimization using genetic
algorithms: A tutorial. Reliability Engineering & System Safety, 91(9):992–1007, 2006.

[205] Antoaneta Kondeva, Daniel Ratiu, Bernhard Schätz, and Sebastian Voss. Seamless model-based
development of embedded systems with af3 phoenix. In ECBS, page 212, 2013.

[206] Philip Koopman. Elements of the self-healing system problem space. In Workshop on Software
Architectures for Dependable Systems (WADS) at ICSE, 2003.

[207] Philip Koopman. Better Embedded System Software. Carnegie Mellon University, 2010.

[208] Hermann Kopetz. Fault containment and error detection in the time-triggered architecture. In
Autonomous Decentralized Systems, 2003. ISADS 2003. The Sixth International Symposium on,
pages 139–146. IEEE, 2003.

[209] Hermann Kopetz. Real-time systems: design principles for distributed embedded applications.
Springer Science & Business Media, 2011.

[210] Stefan Kugele and Gheorghe Pucea. Model-based optimization of automotive E/E-architectures. In
6th Int. Workshop on Constraints in Software Testing, Verification, and Analysis (CSTVA), pages
18–29. Association for Computing Machinery (ACM), 2014.

[211] Stefan Kugele, Gheorghe Pucea, Ramona Popa, Laurent Dieudonne, and Horst Eckardt. On the
deployment problem of embedded systems. 13th ACM-IEEE International Conference on Formal
Methods and Models for System Design, 2015.

[212] Per A Kullstam. Availability, mtbf and mttr for repairable m out of n system. Reliability, IEEE
Transactions on, 30(4):393–394, 1981.

[213] Ranjan Kumar, Kazuhiro Izui, Yoshimura Masataka, and Shinji Nishiwaki. Multilevel redundancy
allocation optimization using hierarchical genetic algorithm. Reliability, IEEE Transactions on,
57(4):650–661, 2008.

[214] Vipin Kumar. Algorithms for constraint-satisfaction problems: A survey. AI magazine, 13(1):32,
1992.

[215] Simon Kunzli. Efficient design space exploration for embedded systems. PhD thesis, Swiss Federal
Institute of Technology Zurich, Switzerland, 2006.

192

BIBLIOGRAPHY

[216] Daniel Lammering, Norbert Balbierer, and Asim Abdulkhaleq. Automatisiertes Fahren: Keimzelle
neuer Architekturkonzepte. HANSER automotive, Continental AG - Division Automotive, 11-12:34
– 37, 2016.

[217] Jean-Claude Laprie. Dependable computing: Concepts, limits, challenges. In FTCS-25, the 25th
IEEE International Symposium on Fault-Tolerant Computing-Special Issue, pages 42–54, 1995.

[218] Waldemar F Larsen. Fault tree analysis. Technical report, DTIC Document, 1974.

[219] Tudor A Lascu, Jacopo Mauro, and Gianluigi Zavattaro. Automatic deployment of component-
based applications. Science of Computer Programming (SCP), Special Issue on Formal Aspects of
Component Software (FACS 2013), 113:261–284, 2015.

[220] Kung-Kiu Lau and Zheng Wang. Software component models. IEEE Transactions on software
engineering, 33(10):709–724, 2007.

[221] Michael Lauer, Matthieu Amy, William Excoffon, Matthieu Roy, and Miruna Stoicescu. Towards
Adaptive Fault Tolerance: From a Component-Based Approach to ROS. In 3rd Workshop on
Critical Automotive Applications - Robustness & Safety (CARS), 2015.

[222] J. Lee and D. Muthig. Feature-oriented variability management in product line engineering.
Communications of the ACM, 49(12):55–59, 2006.

[223] Nancy Leveson, Mirna Daouk, Nicolas Dulac, and Karen Marais. A systems theoretic approach
to safety engineering. Dept. of Aeronautics and Astronautics, Massachusetts Inst. of Technology,
Cambridge, 2003.

[224] Gregory Levitin, Liudong Xing, Barry Johnson, and Yuanshun Dai. Mission reliability, cost and time
for cold standby computing systems with periodic backup. The IEEE Transactions on Computers
(TC), 64(4):1043 – 1057, 2015.

[225] Thomas Liebetrau, Ursula Kelling, Tobias Otter, and Magnus Hell. White Paper - Energy Saving in
Automotive E/E Architectures. Technical report, Infineon Technologies AG, 2012.

[226] N. Loughran, P. Sánchez, A. Garcia, and L. Fuentes. Language support for managing variability in
architectural models. In Software Composition, pages 36–51. Springer, 2008.

[227] Martin Lukasiewycz. Modeling, analysis, and optimization of automotive networks. PhD thesis, In-
golstadt Institute of Friedrich-Alexander-University Erlangen-Nuremberg and AUDI AG (INI.FAU),
2010.

[228] Martin Lukasiewycz, Michael Glaß, Christian Haubelt, and Jürgen Teich. Efficient symbolic multi-
objective design space exploration. In 13th Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 691–696. IEEE Computer Society Press, 2008.

[229] Martin Lukasiewycz, Florian Sagstetter, and Sebastian Steinhorst. Efficient design space exploration
of embedded platforms. In Proceedings of the 52nd Design Automation Conference (DAC), 2015.

[230] Martin Lukasiewycz, Sebastian Steinhorst, Sidharta Andalam, Florian Sagstetter, Peter Waszecki,
Wanli Chang, Matthias Kauer, Philipp Mundhenk, Shreejith Shanker, Suhaib A Fahmy, et al. System
architecture and software design for electric vehicles. In Proceedings of the 50th Annual Design
Automation Conference, page 95. ACM, 2013.

193

BIBLIOGRAPHY

[231] Frank D Macías-Escrivá, Rodolfo Haber, Raul del Toro, and Vicente Hernandez. Self-adaptive
systems: A survey of current approaches, research challenges and applications. Expert Systems with
Applications, 40(18):7267–7279, 2013.

[232] Jan Madsen, Thomas K Stidsen, Peter Kjærulf, and Shankar Mahadevan. Multi-objective design
space exploration of embedded system platforms. In From Model-Driven Design to Resource
Management for Distributed Embedded Systems, pages 185–194. Springer, 2006.

[233] Edward Mahinda and Brian Whitworth. Evaluating flexibility and reliability in emergency response
information systems. In Proceedings of ISCRAM2004, pages 93–98, 2004.

[234] S. Malek, N. Medvidovic, and M. Mikic-Rakic. An extensible framework for improving a distributed
software system’s deployment architecture. Software Engineering, IEEE Transactions on, 38(1):73–
100, 2012.

[235] Panagiotis Manolios, Daron Vroon, and Gayatri Subramanian. Automating component-based
system assembly. In Proceedings of the 2007 international symposium on Software testing and
analysis (ISSTA), pages 61–72. ACM, 2007.

[236] N. Medvidovic and R.N. Taylor. A classification and comparison framework for software architec-
ture description languages. Software Engineering, IEEE Transactions on, 26(1):70–93, 2000.

[237] I. Meedeniya, A. Aleti, and L. Grunske. Architecture-driven reliability optimization with uncertain
model parameters. Journal of Systems and Software, 2012.

[238] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske. Reliability-driven deployment optimization
for embedded systems. Journal of Systems and Software, 84(5):835–846, 2011.

[239] Marija Mikic-Rakic, Sam Malek, Nels Beckman, and Nenad Medvidovic. A tailorable environment
for assessing the quality of deployment architectures in highly distributed settings. In Component
Deployment, pages 1–17. Springer, 2004.

[240] Martin Mitzlaff, Rüdiger Kapitza, and Wolfgang Schröder-Preikschat. Enabling mode changes
in a distributed automotive system. In Proceedings of the 1st Workshop on Critical Automotive
applications: Robustness & Safety, pages 75–78. ACM, 2010.

[241] MOST Cooperation. MOST Media Oriented Systems Transport — multimedia and control net-
working technology. http://www.mostcooperation.com, 1998.

[242] Adrien Mouaffo, Davide Taibi, and Kavyashree Jamboti. Controlled experiments comparing fault-
tree-based safety analysis techniques. In Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering, page 46. ACM, 2014.

[243] Henry Muccini, Mohammad Sharaf, and Danny Weyns. Self-adaptation for cyber-physical systems:
A systematic literature review. In 11th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), 2016.

[244] G. Mühl, M. Werner, M.A. Jaeger, K. Herrmann, and H. Parzyjegla. On the definitions of self-
managing and self-organizing systems. In Communication in Distributed Systems (KiVS), 2007
ITG-GI Conference, pages 1–11. VDE, 2007.

[245] Nils Müllner. Unmasking fault tolerance: Quantifying deterministic recovery dynamics in proba-
bilistic environments. PhD thesis, University of Oldenburg, 2014.

194

http://www.mostcooperation.com

BIBLIOGRAPHY

[246] William Nace. Automatic Graceful Degradation for Distributed Embedded Systems. PhD thesis,
Carnegie Mellon University (CMU), 2002.

[247] William Nace and Philip Koopman. A product family approach to graceful degradation. In
International IFIP WG 10.3 / WG 10.4 / WG 10.5 Workshop on Distributed and Parallel Embedded
Systems (DIPES), 2000.

[248] William Nace and Philip Koopman. A graceful degradation framework for distributed embedded
systems. In Workshop on Reliability in Embedded Systems, 2001.

[249] NASA Goddard Space Flight Center (GSFC). Flight assurance procedure: Performing a failure
mode and effects analysis. 431-REF-000370, Number P-302-720, 1996.

[250] Nicolas Navet and Françoise Simonot-Lion. In-vehicle communication networks-a historical
perspective and review. Industrial Communication Technology Handbook, Second Edition, 2013.

[251] Victor P. Nelson. Fault-tolerant computing: Fundamental concepts. Computer, 23(7):19–25, 1990.

[252] Moritz Neukirchner, Steffen Stein, Harald Schrom, and Rolf Ernst. Self-configuration in hard
realtime systems. Demonstration at International Conference on Autonomic Computing (ICAC),
2011.

[253] Koji Nonobe and Toshihide Ibaraki. A tabu search approach to the constraint satisfaction problem
as a general problem solver. European Journal of Operational Research, 106(2):599–623, 1998.

[254] Jaewon Oh, Hyokyung Bahn, Chisu Wu, and Kern Koh. Pareto-based soft real-time task scheduling
in multiprocessor systems. In Software Engineering Conference, 2000. APSEC 2000. Proceedings.
Seventh Asia-Pacific, pages 24–28. IEEE, 2000.

[255] OMG. Modeling and analysis of real-time embedded systems, uml profile for marte v1.1. http:
//www.omg.org/spec/MARTE.

[256] P. Oreizy, N. Medvidovic, and R.N. Taylor. Architecture-based runtime software evolution. In
Proceedings of the 20th international conference on Software engineering, pages 177–186. IEEE
Computer Society, 1998.

[257] P. Oreizy, N. Medvidovic, and R.N. Taylor. Runtime software adaptation: framework, approaches,
and styles. In Companion of the 30th international conference on Software engineering, pages
899–910. ACM, 2008.

[258] Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. Multi-objective design space exploration
of embedded systems. Journal of Embedded Computing, 1(3):305–316, 2005.

[259] G. Pardo-Castellote, B. Farabaugh, and R. Warren. An introduction to dds and data-centric
communications, 2005.

[260] Paul Parkinson and Larry Kinnan. Safety-critical software development for integrated modular
avionics. Embedded System Engineering, 11(7):40–41, 2003.

[261] Michael Paulitsch. Mixed-criticality systems - a journey "embedded" in time and space. In 27th
Euromicro Conference on Real-Time Systems (ECRTS), Keynote, 2015.

[262] Dar-Tzen Peng, Kang G Shin, and Tarek F Abdelzaher. Assignment and scheduling communicating
periodic tasks in distributed real-time systems. Software Engineering, IEEE Transactions on,
23(12):745–758, 1997.

195

http://www.omg.org/spec/MARTE
http://www.omg.org/spec/MARTE

BIBLIOGRAPHY

[263] Dulcineia Penha, Gereon Weiß, and Alexander Stante. Pattern-based approach for designing fail-
operational safety-critical embedded systems. In Int. Conference on Embedded and Ubiquitous
Computing (EUC), pages 52–59. IEEE, 2015.

[264] Haapanen Pentti and Helminen Atte. Failure mode and effects analysis of software-based automation
systems. VTT Industrial Systems, STUK-YTO-TR 190, 2002.

[265] Soila Pertet and Priya Narasimhan. Proactive recovery in distributed corba applications. In
Dependable Systems and Networks, 2004 International Conference on, pages 357–366. IEEE, 2004.

[266] Adrian Petcu and Boi Faltings. A scalable method for multiagent constraint optimization. Technical
report, École Polytechnique Fédérale de Lausanne (EPFL), 2005.

[267] Claudio Pinello, Luca P Carloni, and Alberto L Sangiovanni-Vincentelli. Fault-tolerant deployment
of embedded software for cost-sensitive real-time feedback-control applications. In Proceedings of
the conference on Design, automation and test in Europe (DATE) - Volume 2, page 21164. IEEE
Computer Society, 2004.

[268] Claudio Pinello, Luca P Carloni, and Alberto L Sangiovanni-Vincentelli. Fault-tolerant distributed
deployment of embedded control software. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 27(5):906–919, 2008.

[269] Klaus Pohl, Manfred Broy, Heinrich Daembkes, and Harald Hönninger. Advanced Model-Based
Engineering of Embedded Systems: Extensions of the SPES 2020 Methodology. Springer, 2016.

[270] Uwe Pohlmann and Marcus Hüwe. Model-driven allocation engineering. 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), 2015.

[271] Uwe Pohlmann, Matthias Meyer, Andreas Dann, and Christopher Brink. Viewpoints and views
in hardware platform modeling for safe deployment. In Proceedings of the 2nd Workshop on
View-Based, Aspect-Oriented and Orthographic Software Modelling (VAO), page 23. ACM, 2014.

[272] Florian Pölzlbauer. Kommunikationszentrierte Softwareverteilung zum Entwurf und Erweitern von
verteilten echtzeitfähigen eingebetteten Systemen. PhD thesis, TU Graz, 2014.

[273] Florian Pölzlbauer, Iain Bate, and Eugen Brenner. Software deployment for distributed embedded
real-time systems of automotive applications. In Embedded and Real Time System Development: A
Software Engineering Perspective, pages 305–328. Springer, 2014.

[274] Paul Pop, Viacheslav Izosimov, Petru Eles, and Zebo Peng. Design optimization of time-and
cost-constrained fault-tolerant embedded systems with checkpointing and replication. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 17(3):389–402, 2009.

[275] Dhiraj K Pradhan and Nitin H Vaidya. Roll-forward checkpointing scheme: A novel fault-tolerant
architecture. Computers, IEEE Transactions on, 43(10):1163–1174, 1994.

[276] Alexander Pretschner, Manfred Broy, Ingolf H. Kruger, and Thomas Stauner. Software engineering
for automotive systems: A roadmap. In Future of Software Engineering (FOSE), FOSE ’07, pages
55–71, Washington, DC, USA, 2007. IEEE Computer Society.

[277] Paul J Prisaznuk. Arinc 653 role in integrated modular avionics (ima). In Digital Avionics Systems
Conference, 2008. DASC 2008. IEEE/AIAA 27th, pages 1–E. IEEE, 2008.

196

BIBLIOGRAPHY

[278] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler,
and Andrew Y Ng. Ros: an open-source robot operating system. In ICRA workshop on open source
software, volume 3, page 5. Kobe, 2009.

[279] Andres J Ramirez and Betty HC Cheng. Design patterns for developing dynamically adaptive
systems. In ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), pages 49–58. ACM, 2010.

[280] Brian Randell, Pete Lee, and Philip C. Treleaven. Reliability issues in computing system design.
ACM Computing Surveys (CSUR), 10(2):123–165, 1978.

[281] Reinhard Reichel and Michael Armbruster. X-by-Wire Plattform-Konzept und Auslegung. at-
Automatisierungstechnik, 59(9):583–597, 2011.

[282] Felix Reimann, Michael Glaß, Christian Haubelt, Michael Eberl, and Jürgen Teich. Improving
platform-based system synthesis by satisfiability modulo theories solving. In Proceedings of
the eighth IEEE/ACM/IFIP international conference on Hardware/software codesign and system
synthesis, pages 135–144. ACM, 2010.

[283] Leanna Rierson. Developing safety-critical software: A practical guide for aviation software and
DO-178C compliance. CRC Press, 2013.

[284] Bill Ripley. Military COTS-based systems - Not necessarily right off the shelf. In CompactPCI
Systems, 2004.

[285] G.D. Rodosek, K. Geihs, H. Schmeck, S. Burkhard, A. Andrzejak, K. Geihs, O. Shehory, and
J. Wilkes. Self-healing systems: Foundations and challenges. In Self-Healing and Self-Adaptive
Systems, Germany. Dagstuhl Seminar Proceedings, volume 09201. Dagstuhl 09201, Leibniz-
Zentrum fuer Informatik, Germany, 2009.

[286] Oliver Rooks, Michael Armbruster, Armin Sulzmann, Gernot Spiegelberg, and Uwe Kiencke. Duo
duplex drive-by-wire computer system. Reliability Engineering & System Safety, 89(1):71–80,
2005.

[287] Judith E. Y. Rossebeø, Mass Soldal Lund, Knut Eilif Husa, and Atle Refsdal. A conceptual model
for service availability. In Quality of Protection, pages 107–118. Springer, 2006.

[288] RTCA. DO-178C, software considerations in airborne systems and equipment certification, 2011.

[289] Alejandra Ruiz, Garazi Juez, Philipp Schleiß, and Gereon Weiß. A safe generic adaptation mecha-
nism for smart cars. In IEEE 26th International Symposium on Software Reliability Engineering
(ISSRE), 2015.

[290] Alejandra Ruiz, Garazi Juez, Philipp Schleiss, and Gereon Weiss. A safe generic adaptation mecha-
nism for smart cars. In Software Reliability Engineering (ISSRE), 2015 IEEE 26th International
Symposium on, pages 161–171. IEEE, 2015.

[291] V. Rupanov, C. Buckl, L. Fiege, M. Armbruster, A. Knoll, and G. Spiegelberg. Early safety
evaluation of design decisions in e/e architecture according to iso 26262. In Proceedings of the 3rd
international ACM SIGSOFT symposium on Architecting Critical Systems, pages 1–10. ACM, 2012.

[292] John Rushby. Partitioning in avionics architectures: Requirements, mechanisms, and assurance.
Technical report, NASA Contractor Report CR-1999-209347; DOT/FAA/AR-99/58, 1999.

197

BIBLIOGRAPHY

[293] John Rushby. Trustworthy self-integrating systems. In International Conference on Distributed
Computing and Internet Technology, pages 19–29. Springer, 2016.

[294] John M Rushby. Design and verification of secure systems. 8th ACM Symposium on Operating
System Principles, 15(5):12–21, 1981.

[295] SAE. Architecture analysis and design language. http://www.aadl.info.

[296] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and research challenges. ACM
Transactions on Autonomous and Adaptive Systems (TAAS), 4(2):14, 2009.

[297] Mazeiar Salehie and Ladan Tahvildari. Towards a goal-driven approach to action selection in
self-adaptive software. Software: Practice and Experience, 42(2):211–233, 2012.

[298] Soheil Samii, Unmesh D Bordoloi, Petru Eles, Zebo Peng, and Anton Cervin. Control-quality
optimization for distributed embedded systems with adaptive fault tolerance. In Real-Time Systems
(ECRTS), 2012 24th Euromicro Conference on, pages 68–77. IEEE, 2012.

[299] Prabhat Kumar Saraswat, Paul Pop, and Jan Madsen. Task migration for fault-tolerance in mixed-
criticality embedded systems. In 2nd International Workshop on Adaptive and Reconfigurable
Embedded Systems (APRES), 2009.

[300] Titos Saridakis. Design patterns for graceful degradation. In Transactions on Pattern Languages of
Programming I (TPLOP), pages 67–93. Springer, 2009.

[301] Tripti Saxena. A generic framework for design space exploration. PhD thesis, Vanderbilt University,
2012.

[302] M. Norazizi Sham Mohd Sayuti and Leandro Soares Indrusiak. A function for hard real-time system
search-based task mapping optimisation. In IEEE 18th International Symposium on Real-Time
Distributed Computing (ISORC), 2015.

[303] Bernhard Schaetz, Florian Holzl, and Torbjörn Lundkvist. Design-space exploration through
constraint-based model-transformation. In Engineering of Computer Based Systems (ECBS), 2010
17th IEEE International Conference and Workshops on, pages 173–182. IEEE, 2010.

[304] Bernhard Schätz. Model-based development of software systems. Habilitation Thesis, Technical
University Munich, 2009.

[305] Bernhard Schätz, Sebastian Voss, and Sergey Zverlov. Automating Design-Space Exploration: Op-
timal Deployment of Automotive SW-Components in an ISO26262 Context. In Design Automation
Conference (DAC), 2015.

[306] Hartmut Schmeck. Organic computing – a new vision for distributed embedded systems. In
Object-Oriented Real-Time Distributed Computing, 2005. ISORC 2005. Eighth IEEE International
Symposium on, pages 201–203. IEEE, 2005.

[307] Hartmut Schmeck, Christian Müller-Schloer, Emre Cakar, Moez Mnif, and Urban Richter. Adaptiv-
ity and self-organisation in organic computing systems. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 5(3):10:1–10:32, September 2010.

[308] Konstantin Schorp and Stephan Sommer. Component-Based Modeling and Integration of Automo-
tive Application Architectures. In IEEE International Electric Vehicle Conference (IEVC), pages
1–7. IEEE, 2014.

198

http://www.aadl.info

BIBLIOGRAPHY

[309] H. Seebach, F. Nafz, J. Holtmann, J. Meyer, M. Tichy, W. Reif, and W. Schäfer. Designing
self-healing in automotive systems. Autonomic and Trusted Computing, pages 47–61, 2010.

[310] G.D.M. Serugendo, J. Fitzgerald, A. Romanovsky, and N. Guelfi. Metaself-a framework for
designing and controlling self-adaptive and self-organising systems. School Comput. Sci. Inf. Syst.,
Birkbeck College, London, UK, Tech. Rep. BBKCS-08-08, 2008.

[311] O. Shehory, J. Martinez, A. Andrzejak, C. Cappiello, W. Funika, D. Kondo, L. Mariani, B. Satzger,
and M. Schmid. Self-healing and recovery methods and their classification. In Self-Healing and
Self-Adaptive Systems, Germany. Dagstuhl Seminar Proceedings, volume 09201. Dagstuhl 09201,
Leibniz-Zentrum fuer Informatik, Germany, 2009.

[312] Charles P Shelton and Philip Koopman. Using architectural properties to model and measure
graceful degradation. In Architecting dependable systems, pages 267–289. Springer, 2003.

[313] Charles P Shelton, Philip Koopman, and William Nace. A framework for scalable analysis and
design of system-wide graceful degradation in distributed embedded systems. In Proceedings of the
8th Int. Workshop on Object-Oriented Real-Time Dependable Systems (WORDS), pages 156–163.
IEEE, 2003.

[314] Charles Preston Shelton. Scalable graceful degradation for distributed embedded systems. PhD
thesis, Carnegie Mellon University, 2003.

[315] Kang G Shin and Charles L Meissner. Adaptation and graceful degradation of control system
performance by task reallocation and period adjustment. In Real-Time Systems, 1999. Proceedings
of the 11th Euromicro Conference on, pages 29–36. IEEE, 1999.

[316] Jocelyn Simmonds and María Cecilia Bastarrica. Modeling variability in software process lines.
Departamento de Ciencias de la Computación. Universidad de Chile, 2011.

[317] P. Sinha. Architectural design and reliability analysis of a fail-operational brake-by-wire system
from iso 26262 perspectives. Reliability Engineering & System Safety, 2011.

[318] Stephan Sommer, Alexander Camek, Klaus Becker, Christian Buckl, Alois Knoll, Andreas Zirkler,
Ludger Fiege, Michael Armbruster, and Gernot Spiegelberg. RACE: A Centralized Platform Com-
puter Based Architecture for Automotive Applications. In IEEE Vehicular Electronics Conference /
Int. Electric Vehicle Conference (VEC-IEVC), pages 1–6. IEEE, 2013.

[319] Ioana Sora, Pierre Verbaeten, and Yolande Berbers. A description language for composable
components. In International Conference on Fundamental Approaches to Software Engineering,
pages 22–36. Springer, 2003.

[320] Cary R. Spitzer. The Avionics Handbook. CRC Press, 1st edition, 2001.

[321] Cary R. Spitzer, Uma Ferrell, and Thomas Ferrell. Digital Avionics Handbook, Chapter 5, Fault-
Tolerant Avionics (by Ellis F. Hitt). CRC Press, 3rd edition, 2014.

[322] Hauke Stahle, Ljubo Mercep, Alois Knoll, and Gernot Spiegelberg. Towards the deployment of a
centralized ICT architecture in the automotive domain. In Embedded Computing (MECO), 2013
2nd Mediterranean Conference on, pages 66–69. IEEE, 2013.

[323] S. Stein, M. Neukirchner, and R. Ernst. Admission control and self-configuration in the epoc
framework. In Embedded Computer Systems (SAMOS), 2011 International Conference on, pages
364–371. IEEE, 2011.

199

BIBLIOGRAPHY

[324] Steffen Stein. Allowing Flexibility in Critical Systems: The EPOC Framework. PhD thesis, TU
Braunschweig, Germany, 2012.

[325] T. Streichert, C. Haubelt, D. Koch, and J. Teich. Concepts for self-adaptive and self-healing
networked embedded systems. Organic Computing, pages 241–260, 2008.

[326] J. Sudeikat, J.P. Steghöfer, H. Seebach, W. Reif, W. Renz, T. Preisler, and P. Salchow. On the
combination of top-down and bottom-up methodologies for the design of coordination mechanisms
in self-organising systems. Information and Software Technology, 54(6):593–607, 2012.

[327] Ivan Švogor, Ivica Crnkovic, and Neven Vrcek. An extended model for multi-criteria software
component allocation on a heterogeneous embedded platform. CIT. Journal of Computing and
Information Technology, 21(4):211–222, 2014.

[328] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component software: beyond object-
oriented programming. Addison-Wesley, ACM Press New York, 2 edition, 2002.

[329] E-G Talbi and Traian Muntean. Hill-climbing, simulated annealing and genetic algorithms: a
comparative study and application to the mapping problem. In System Sciences, 1993, Proceeding
of the Twenty-Sixth Hawaii International Conference on, volume 2, pages 565–573. IEEE, 1993.

[330] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. Software architecture: foundations,
theory, and practice. Wiley, 2009.

[331] Christopher Temple and Antonio Vilela. Safety Automotive - Fehlertolerante Systeme im
Fahrzeug – von "fail-safe" zu "fail-operational". http://www.elektroniknet.de/automotive/
assistenzsysteme/artikel/110612, 2014.

[332] Abhilash Thekkilakattil, Radu Dobrin, and Sasikumar Punnekkat. Mixed criticality scheduling
in fault-tolerant distributed real-time systems. In Embedded Systems (ICES), 2014 International
Conference on, pages 92–97. IEEE, 2014.

[333] Ken W Tindell, Alan Burns, and Andy J. Wellings. Allocating hard real-time tasks: an np-hard
problem made easy. Real-Time Systems, 4(2):145–165, 1992.

[334] M. Trapp, R. Adler, M. Förster, and J. Junger. Runtime adaptation in safety-critical automotive
systems. In Proceedings of the 25th conference on IASTED International Multi-Conference:
Software Engineering, pages 308–315. ACTA Press, 2007.

[335] Mario Trapp. Modeling the adaptation behavior of adaptive embedded systems. PhD thesis, TU
Kaiserslautern, 2005.

[336] Mario Trapp, Daniel Schneider, and Peter Liggesmeyer. A safety roadmap to cyber-physical systems.
In Perspectives on the Future of Software Engineering, pages 81–94. Springer, 2013.

[337] Matthias Traub. Durchgängige Timing-Bewertung von Vernetzungsarchitekturen und Gateway-
Systemen im Kraftfahrzeug. KIT Scientific Publishing, 2010.

[338] Pascal Traverse, Christine Bezard, Jean-Michel Camus, Isabelle Lacaze, Hervé Leberre, Patrick
Ringeard, and Jean Souyris. Dependable avionics architectures: example of a fly-by-wire system.
Safety of Computer Architectures, pages 199–232, 2013.

[339] Pascal Traverse, Isabelle Lacaze, and Jean Souyris. A process toward total dependability-airbus
fly-by-wire paradigm. In EDCC, page 1. Springer, 2005.

200

http://www.elektroniknet.de/automotive/assistenzsysteme/artikel/110612
http://www.elektroniknet.de/automotive/assistenzsysteme/artikel/110612

BIBLIOGRAPHY

[340] Andreas Vogelsang. Model-based Requirements Engineering for Multifunctional Systems. PhD
thesis, Technical University of Munich, 2015.

[341] Andreas Vogelsang, Sebastian Eder, Georg Hackenberg, Maximilian Junker, and Sabine Teufl.
Supporting concurrent development of requirements and architecture: A model-based approach. In
2nd Int. Conf. on Model-Driven Engineering and Software Development (MODELSWARD), pages
587–595. IEEE, 2014.

[342] Andreas Vogelsang and Steffen Fuhrmann. Why feature dependencies challenge the requirements
engineering of automotive systems: An empirical study. In 21st IEEE Int. Requirements Engineering
Conference (RE), pages 267–272. IEEE, 2013.

[343] Andreas Vogelsang, Stefan Teuchert, and Jean-François Girard. Extent and characteristics of
dependencies between vehicle functions in automotive software systems. In Proceedings of the 4th
International Workshop on Modeling in Software Engineering, pages 8–14. IEEE Press, 2012.

[344] Andrija Volkanovski, Marko Čepin, and Borut Mavko. Application of the fault tree analysis for
assessment of power system reliability. Reliability Engineering & System Safety, 94(6):1116–1127,
2009.

[345] Sebastian Voss, Johannes Eder, and Florian Hölzl. Design space exploration and its visualization in
autofocus3. In Software Engineering Workshops 2014, GI, Kiel, pages 57–66, 2014.

[346] Sebastian Voss, Johannes Eder, and Bernhard Schätz. Schedule synthesis for multi-period sw
components. In SAE World Congress, 2016.

[347] Sebastian Voss and Bernhard Schätz. Deployment and scheduling synthesis for mixed-critical
shared memory applications. In Engineering of Computer Based Systems (ECBS), 2013.

[348] Sebastian Voss and Bernhard Schätz. Asil-conformant deployment and schedule synthesis using
multi-objective design space exploration. In Keynote at Workshop on TIming Performance in Safety
Engineering (TIPS) at International Conference on Computer Safety, Reliability, and Security
(SAFECOMP), volume 9923, page 393. Springer, 2016.

[349] Florian Wagner, Fuyuki Ishikawa, and Shinichi Honiden. Robust service compositions with
functional and location diversity. IEEE Transactions on Services Computing, 9(2):277 – 290, 2016.

[350] Stefan Wagner. Software product quality control. Springer, 2013.

[351] Stefan Wagner et al. Cost optimisation of analytical software quality assurance. PhD thesis,
Technical University Munich, 2007.

[352] Peng Wang, Kaiyuan Zhang, Rong Chen, Haibo Chen, and Haibing Guan. Replication-based
fault-tolerance for large-scale graph processing. In Dependable Systems and Networks (DSN), 2014
44th Annual IEEE/IFIP International Conference on, pages 562–573. IEEE, 2014.

[353] Christopher B Watkins and Randy Walter. Transitioning from federated avionics architectures to
integrated modular avionics. In Digital Avionics Systems Conference, 2007. DASC’07. IEEE/AIAA
26th, pages 2–A. IEEE, 2007.

[354] Raphael Weber, Stefan Henkler, and Achim Rettberg. Multi–objective design space exploration
for cyber–physical systems satisfying hard real–time and reliability constraints. In Proceedings of
IDEAL’14 Workshop, IFIP Springer Series. CPSWeek 2014 – IDEAL’14 Workshop, Springer, 2014.

201

BIBLIOGRAPHY

[355] Junqing Wei, Jarrod M Snider, Junsung Kim, John M Dolan, Raj Rajkumar, and Bakhtiar Litkouhi.
Towards a viable autonomous driving research platform. In Intelligent Vehicles Symposium (IV),
2013 IEEE, pages 763–770. IEEE, 2013.

[356] James Windsor and Kjeld Hjortnaes. Time and space partitioning in spacecraft avionics. In Space
Mission Challenges for Information Technology, 2009. SMC-IT 2009. Third IEEE International
Conference on, pages 13–20. IEEE, 2009.

[357] Ernest Woźniak. Model-based Synthesis of Distributed Real-time Automotive Architectures. PhD
thesis, Université Paris Sud XI, 2014.

[358] YC Bob Yeh. Triple-triple redundant 777 primary flight computer. In Aerospace Applications
Conference, 1996. Proceedings., 1996 IEEE, volume 1, pages 293–307. IEEE, 1996.

[359] YC Bob Yeh. Safety critical avionics for the 777 primary flight controls system. In Digital Avionics
Systems, 2001. DASC. 20th Conference, volume 1, pages 1C2–1. IEEE, 2001.

[360] Ying C Yeh. Design considerations in boeing 777 fly-by-wire computers. In High-Assurance
Systems Engineering Symposium, 1998. Proceedings. Third IEEE International, pages 64–72. IEEE,
1998.

[361] M. Zeller, C. Prehofer, G. Weiss, D. Eilers, and R. Knorr. Towards self-adaptation in real-time,
networked systems: Efficient solving of system constraints for automotive embedded systems. In
5th IEEE Int. Conference on Self-Adaptive and Self-Organizing Systems (SASO), pages 79–88.
IEEE, 2011.

[362] Marc Zeller and Christian Prehofer. Modeling and efficient solving of extra-functional properties
for adaptation in networked embedded real-time systems. Journal of Systems Architecture (JSA),
59(10):1067–1082, 2013.

[363] Haibo Zeng, Abhijit Davare, Alberto Sangiovanni-Vincentelli, Sampada Sonalkar, Sri Kanajan, and
Claudio Pinello. Design space exploration of automotive platforms in metropolis. Technical report,
SAE Technical Paper, 2006.

[364] Qi Zhu, Haibo Zeng, Wei Zheng, Marco DI Natale, and Alberto Sangiovanni-Vincentelli. Opti-
mization of task allocation and priority assignment in hard real-time distributed systems. ACM
Transactions on Embedded Computing Systems (TECS), 11(4):85, 2012.

[365] Bastian Zimmer, Susanne Bürklen, Jens Höfflinger, Mario Trapp, and Peter Liggesmeyer. Safety-
focused deployment optimization in open integrated architectures. In Computer Safety, Reliability,
and Security, pages 328–339. Springer, 2012.

[366] Werner Zimmermann and Ralf Schmidgall. Bussysteme in der Fahrzeugtechnik. Springer, 5th
edition, 2014.

[367] Glenn Zorpette. Computers that are ’never’ down: Fault-tolerant systems based on multiple
microprocessors trade off throughput for enhanced reliability. Spectrum, IEEE, 22(4):46–54, 1985.

[368] Sergey Zverlov, Maged Khalil, and Mayank Chaudhary. Pareto-efficient deployment synthesis for
safety-critical applications in seamless model-based development. In Embedded Real-Time Software
and Systems (ERTS2), 2016.

202

	Introduction
	Context
	Problem Statement and Motivation
	Research Questions and Contribution
	Outline

	Fundamentals
	Terms and Definitions
	Dependability
	Dependability Threats
	Dependability Attributes
	Dependability Means
	Other Definitions related to Dependability
	Redundancy and Replication Mechanisms

	Foundations in Safety Engineering
	Foundations in Software and System Quality Assurance
	Automotive Architectures and Standards
	Classical Automotive E/E Architectures
	AUTOSAR
	ISO 26262

	The RACE Approach
	Software and System Architecture
	Safety and Fault-Tolerance Concept
	Application Development and RTE Configuration
	Demonstrator Vehicles

	Avionic Architectures and Standards
	Foundations in Satisfiability Solving and Optimization

	Related Work
	Approaches to Design and Analyze Fault-Tolerant Systems
	Design and Analysis of Graceful Degradation
	Design and Analysis of Reliability and Robustness
	Design and Analysis of Availability
	Fault-Tolerant Scheduling for Mixed Criticality Systems
	Design of Structural and Behavioral Reconfiguration
	Self-x Approaches

	Constraint Based Synthesis of Design Decisions

	Analyzing Fail-Operational and Fail-Degrading Systems
	Introduction to the Formal System Model
	Viewpoints
	Meta-Model of Considered System Structure
	Motivation and Benefits of the Formal System Model

	Formal System Model
	Functional Features
	Software Architecture
	Feature Realization
	Hardware Architecture
	System Configuration
	System Model
	Example for the Formal Definitions
	Summary Overview of Formal Model Symbols

	Concept Overview
	Properties of System Model Elements
	Overview of Properties of Formal System Model
	Input Model Properties
	Solution Model Properties for Initial Deployment
	Solution Model Properties for Failure Scenarios
	States of ASWC Instances

	Synthesis of Valid Redundant Deployments
	Formal Constraints for Valid Redundant Deployments
	Examples

	Analysis of Failure Effects
	Scenarios
	The Scenario Graph
	Extensions of Model Properties to Cover the Scenarios
	Procedure to Analyze the Scenario Graph
	Formal Constraints for Valid Failovers and Degradations
	Formal Constraints to Analyze Feature Availability
	Relaxation of Constraints to Localize Problems
	Example A – Basic Example
	Example B – Communication Channels
	Size of the Scenario Graph

	Supporting Degradations of Single Functional Features
	Assumed Design Principles for Feature Degradations
	Extension of the Formal System Model
	Extended Overview of Properties
	Formal Constraints for Feature Degradations
	Example C – Feature Degradation

	Formalization of Optimization Objectives
	Assumptions and Aspects that are out of Scope
	Out of scope
	Assumed properties of the system under analysis

	Explanations and Discussions about the Formal System Model
	Functional Features
	Software Architecture
	Feature Realization
	Hardware Architecture
	System Configuration

	Evaluation
	Discussion of Research Questions
	Limitations of the presented approach
	Threats to Validity

	Conclusions and Future Work
	Summary and Conclusions
	Out of Scope
	Future Work
	Expand the set of considered design aspects
	Possible Future Work Extensions of our Approach
	Evaluation of alternative solving and optimization strategies

	Appendix
	Input Files of Examples

	List of Figures
	List of Tables
	Bibliography

