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1 Introduction

1.1 Scalar fields and the early universe

Scalar fields play important roles in particle physics and cosmology. They appear in many

theories beyond the Standard Model of particle physics (BSM). For instance, the low-

energy effective description of string theory and other theories involving extra dimensions

generally include numerous scalar fields, called moduli, that parameterize the properties

of the compactified internal dimensions (see e.g. [1, 2] for review). Scalar fields can drive

cosmic inflation (inflaton) [3–6], explain the strong CP-problem (axion) [7], induce phase

transitions [8–11], be Dark Matter candidates [12–15] or Dark Energy [16–19]. The recent

discovery of a Higgs boson [20, 21] confirms that they indeed exist in nature.

In cosmology involving scalar fields, it is crucial to understand their time evolution in

the early universe, where they are exposed to extreme conditions including high tempera-

ture, large energy density and rapid cosmic expansion. Their evolution in a time-dependent

background provided by the primordial plasma and the cosmic expansion is a nonequilib-

rium process. The initial conditions for this process depend on the model with the specific

scalar fields, and the mechanism that set the initial conditions is unknown in almost all

models. Many observational hints point towards cosmic inflation, but alternative models

such as bouncing universe scenarios (see [22, 23] for review) have been also studied, though

there are still controversies [24, 25]. The bouncing models also invoke scalar fields, typ-

ically inspired by string theory, to resolve the cosmic singularity by a bouncing phase in

the very early universe [26, 27]. In general, the field value at initial time is far away from

the potential minimum. If the effective potential is sufficiently steep, the field will relax to

its minimum very quickly. However, there are numerous examples for scalar fields with a

flat potential that evolve slowly compared to the time scale related to the propagation and

interactions of individual particles, including the moduli, inflaton and axions. With the

present work, focusing on the finite-temperature effects in a thermal bath, we aim to make

progress towards a quantitative understanding of the nonequilibrium dynamics of scalar

fields in the nontrivial backgrounds of the early universe.

1.2 Motivations and assumptions

Let us consider a real scalar quantum field φ with a symmetry under φ→ −φ that couples

to other degrees of freedom, which we collectively refer to as Xi. At this stage we do
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not make any assumptions about the spin or interactions of the fields Xi. If we restrict

ourselves to renormalizable operators, then the most general Lagrangian reads

L =
1

2
∂µφ∂

µφ− V (φ)− φ2O[Xi] + LX (1.1)

with

V (φ) =
m2
φ

2
φ2 +

λφ
4!
φ4. (1.2)

Here O[Xi] is a sum of operators that depend on combinations of the fields Xi only and

LX is a Lagrangian that specifies their masses and interactions amongst each other. The

generalization to non-renormalizable operators is straightforward. If we neglect the inter-

actions with Xi for a moment, then the zero mode of φ in a Friedmann-Robertson-Walker

spacetime would classically follow the equation of motion

φ̈+ 3Hφ̇+ ∂φV (φ) = 0, (1.3)

where H is the Hubble constant. The full quantum field φ can be decomposed into

φ = ϕ+ η. (1.4)

Here ϕ is the expectation value of the field φ, while the field η contains quantum fluc-

tuations, such as single particle excitations. If we switch on the interactions with the

background medium and take into account radiative corrections, one could expect ϕ to

follow an equation of motion of the form

ϕ̈+ (3H + Γϕ)ϕ̇+ ∂ϕV(ϕ) = 0. (1.5)

Here V(ϕ) is an effective potential for ϕ that includes radiative and thermal corrections,

while Γϕ is the rate at which energy is dissipated from ϕ to other degrees of freedom.

The equation (1.5) looks physically intuitive, but should be rigorously justified when being

applied. It cannot always be valid because the nonequilibrium dynamics of interacting

quantum fields involves non-Markovian memory kernels. It is the goal of this work to derive

an effective equation of motion of the form (1.5) from first principles, and to determine

V(ϕ) and Γϕ explicitly in an illustrative simple model. Together with the effective kinetic

equation for the η-propagators derived in [28], this allows to understand the dynamics of

the scalar field in terms of Markovian equations. Our derivation of (1.5) uses a somewhat

different method than previous approaches in [29–35], but yields a result that is consistent

with previous works in the limit of small field values, where a comparison can be made.

The explicit expression for Γϕ at large field values, however, is considerably different from

those found in the literature.

In order to obtain a Markovian equation of motion for ϕ, we have to make several

approximations. As usual in the derivation of effective kinetic equations [36], these rely on

a separation of time scales. In closed systems, such a separation is automatically given if

one assumes a sufficiently weak coupling. In this case the rates at which particles scatter

are much smaller than their effective masses. This implies that macroscopic properties of
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the system change much slower than the time scale associated with individual scatterings.

It also ensures that the system can be described as a dilute gas of well-defined quasiparticles

with effective masses Mη, MXi and widths Γη, ΓXi with Γη � Mη, ΓXi � MXi . Here Mη

is the pole mass of the resummed η-propagator (the same for MXi) and in general effective

mass and width both depend on momentum.1

In the early universe, Hubble expansion brings in an additional time scale. In the

present work we make two basic assumptions

1) The effective masses of all particles that couple to ϕ are larger than the rate of Hubble

expansion, i.e. H < Mη,MXi .
2

2) The interactions in the primordial plasma are sufficiently weak to guarantee Γη,Γϕ �
Mη,Mϕ (and analogous for all other fields Xi). Here M2

ϕ is the local curvature of

V(ϕ).

3) The change in the effective masses and widths on microscopic times scales ∼
1/Mη, 1/MXi should be small compared to these quantities themselves, i.e. Ṁη �M2

η ,

Γ̇η � ΓηMη etc.

For practical purposes we make two additional assumptions that are not required for the

derivation of a Markovian equation of motion, but lead to considerable simplifications

4) φ is the only field with a non-zero expectation value, i.e. 〈Xi〉 = 0.

5) The thermodynamical state of the constituents Xi of the primordial plasma can be

characterized by a single parameter, an effective temperature T . This is usually

justified if ΓXi > H.

Assumption 1) allows to use Minkowski-space propagators in loop diagrams. Although H

is absolutely crucial in the kinetic equation for ϕ on macroscopic time scales, it can be

neglected when determining the transport coefficients in this equation from microphysics.

Without this assumption the computation of loops is technically very difficult [39–43].

Physically this assumption can be interpreted in terms of a separation of time scales: the

microphysical time scales in processes described by loop diagrams (which are related to the

inverse of the masses) must be much faster than the macroscopic Hubble expansion, such

that the background metric is approximately constant during the duration of individual

processes. Assumption 2) is simply necessary for any perturbative treatment to be valid. It

also ensures that the effective masses (which include contributions that depend on ϕ and T ,

which evolve with time) are approximately constant on the microscopic time scale that is

1In thermal equilibrium the dispersion relations and widths of quasiparticles can be read off from the

pole structure of the real time propagators [37]. This definition can be generalized to situations far from

equilibrium, see e.g. [28]. The propagators in a medium can in principle have a complicated pole structure

due to the appearance of collective excitations, such as luons [38]. We ignore this subtlety here.
2This assumption is usually not fulfilled during inflation in the most popular models. It can, however,

apply in several other applications that we have in mind, such as the late time behaviour of moduli, warm

inflation scenarios and, more general, the behaviour of an order parameter in a hot plasma that is not in

de Sitter space.

– 3 –



J
H
E
P
0
8
(
2
0
1
5
)
0
5
9

relevant in loop integrals. Assumption 3) is the physical “adiabaticity assmption” that the

properties of (quasi)particles do not change significantly within the duration of individual

microscopic processes. Assumption 4) is for simplicity only, and it is straightforward to

relax it. Assumption 5) implies that Xi have reached some degree of kinetic equilibration.

Though thermalization in general is a complicated problem [44–54], this assumption seems

at least qualitatively justified in the case under investigation here. If φ has a flat effective

potential, then this means that it must have rather weak interactions (weaker than the

interactions of the Xi amongst each other). This implies that the time scales 1/Γϕ, 1/H on

which ϕ evolves are much longer than the time scales 1/ΓXi on which the Xi relax to local

thermal equilibrium. Making the same assumption for η is far less justified. For simplicity,

we will nevertheless assume that the occupation numbers of η modes can be characterized

by the same effective temperature as the rest of the plasma. This assumption, which has

been made in almost all past studies (often without mentioning), allows to use equilibrium

propagators for all fields.

The setup defined by the assumptions 1)-5) is not sufficient for a complete understand-

ing of scalar fields in the early universe. In particular assumptions 1) and 5) considerably

constrain its applicability. Moreover, the properties of the primordial plasma in realistic

models of particle physics is far more complicated than the toy model presented in section 4.

However, the analytic expressions we find are derived more systematically and consistently

than any comparable results in the literature we are aware of. Moreover, in the course of

their derivation we find analytic estimates for various integrals in finite-temperature field

theory that will be very useful for calculations in more realistic models. Finally, in spite

of the comments above, there are at least two cosmological problems in which the assump-

tions 1)-5) are widely believed to be justified: warm inflation [55] and the fate of moduli

at late times [56].

1.3 Overview of this article

This paper is organized as follows. In section 2 we briefly review the elements of nonequilib-

rium quantum field theory to set up the theoretical framework and notations for the follow-

ing sections. In section 3 we derive the approximate effective action and the equation of mo-

tion for the expectation value ϕ in a thermal bath. These results are illustrated in a simple

scalar model in section 4, and we present approximate analytic estimates for effective poten-

tials and dissipation coefficients. In section 5 we summarize the results of this work and dis-

cuss some related issues in comparison with previous studies. Section 6 is devoted to conclu-

sions and outlook. In the appendices we calculate the spectral self-energies from setting-sun

diagrams, which are needed for the computation of the dissipation coefficients in section 4.

2 Elements of nonequilibrium quantum field theory

The standard methods to calculate S-matrix elements in particle physics are not suitable

to describe systems far from equilibrium at large density because there is no well-defined

notion of asymptotic states, the properties of elementary excitations may significantly differ
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from those of particles in vacuum and classical particle number in general is not a suitable

quantity to characterize the system.

However, all observables can be expressed in terms of time-dependent correlation func-

tions of the quantum fields without reference to asymptotic states or free particles. In most

practical applications, all relevant information is contained in the one- and two-point func-

tions. The expectation value ϕ can be identified with the one-point function,

ϕ ≡ 〈φ〉. (2.1)

That is, the average

〈. . .〉 = Tr(% . . .) (2.2)

is taken over quantum as well as statistical fluctuations encoded in the density operator %.

We will in the following always assume that ϕ = 0 in the thermodynamic ground state and

study how the system relaxes to this state if ϕ 6= 0 at initial time. There are two indepen-

dent two-point functions. Common choices for these are the connected Wightman-functions

∆>
η (x1, x2) ≡ 〈φ(x1)φ(x2)〉 − ϕ(x1)ϕ(x2), (2.3)

∆<
η (x1, x2) ≡ 〈φ(x2)φ(x1)〉 − ϕ(x1)ϕ(x2) (2.4)

or their linear combinations

∆−η (x1, x2) ≡ i
(
∆>
η (x1, x2)−∆<

η (x1, x2)
)
, ∆+

η (x1, x2) ≡ 1

2

(
∆>
η (x1, x2) + ∆<

η (x1, x2)
)
.

(2.5)

These have a clear physical interpretation. The Fourier transform

ρη(p;x1 + x2) ≡ −i
∫
d4(x1 − x2) eip(x1−x2)∆−η (x1, x2) (2.6)

of ∆− is the spectral density ρη, the poles of which in p0 determine the spectrum of quasi-

particles in a medium. The Fourier transform of ∆+, on the other hand, characterizes the

occupation numbers of different field modes and can be interpreted as a field theoretical

generalization of the classical particle distribution function, see e.g. discussion in [28]. In

most practical applications, ϕ, ∆+ and ∆− contain all relevant informations.

2.1 The closed-time-path formalism

A convenient framework to obtain equations of motion for ϕ, ∆+ and ∆− is offered by

the Closed-Time-Path (CTP) formalism of nonequilibrium quantum field theory [57–60].

In this formalism, correlation functions are defined with time arguments on the contour

shown in figure 1, which starts from an initial time ti + iε, runs parallel to the real axis to

tf + iε, turns around to tf − iε and returns to ti− iε. We consider the limit tf →∞, ε→ 0

and ti → −∞, where boundary conditions at finite time t0 can be imposed by external

sources localized at t0 [28]. In the following we define the quantities required for the present

analysis. A more detailed introduction to the CTP-formalism can be found in [61, 62].

The standard strategy to calculate correlation functions is to split the field φ on the

contour into φ+ and φ−, which denote the field with time argument on the “forward” and
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Φ−

Φ+

ti = 0
Ret

tf → ∞

Figure 1. The contour C in the complex time plane.

“backward” part of C, see e.g. [62]. One can define a Feynman propagator 〈TC φ(x1)φ(x2)〉,
where TC indicates time ordering along the contour path C. It can be decomposed into the

correlation functions for these fields as

∆++
η (x1, x2) ≡ 〈Tφ+(x1)φ+(x2)〉 − ϕ(x1)ϕ(x2), (2.7)

∆+−
η (x1, x2) ≡ 〈φ−(x2)φ+(x1)〉 − ϕ(x1)ϕ(x2), (2.8)

∆−+
η (x1, x2) ≡ 〈φ−(x1)φ+(x2)〉 − ϕ(x1)ϕ(x2), (2.9)

∆−−η (x1, x2) ≡ 〈T̄φ−(x1)φ−(x2)〉 − ϕ(x1)ϕ(x2), (2.10)

where T is the usual time-ordering and T̄ is anti-time-ordering (because the backwards part

of the contour runs from positive to negative infinity). Considering that time arguments

on the forward branch are always “earlier” along the contour than those on the backward

branch, one can easily identify

∆+−(x1, x2) = ∆<(x1, x2) , ∆−+(x1, x2) = ∆>(x1, x2). (2.11)

The same decomposition can be performed for the self-energies, see appendix of [63]. Then

the combination φc ≡ (φ+ + φ−)/2 is identified with a physical field and φ∆ ≡ φ+ − φ− is

treated as a response field. After integrating out the bath fields Xi and φ∆, one obtains an

effective action for φc, from which one can obtain its equation of motion. It can be expanded

in powers of φc. At lowest non-trivial order one finds the Langevin type equation (3.1),

including higher powers of φc in the effective action leads to nonlinear interactions between

the different field modes (“multiplicative noise”), see e.g. [31, 34]. By taking quantum and

thermal averages over products of φc, one can then calculate all correlation functions for φ.

2.2 Equation of motion for the background field ϕ

In the present context we are, however, mainly interested in the one-point function ϕ.

We can therefore simplify the procedure and directly write down an effective action for ϕ

(instead of φ) on the closed time path C [64–67],

Γ =

∞∑
n=1

∫
C
d4x1 . . . d

4xn
1

n!
Γ (n)(x1, . . . , xn)ϕ(x1) . . . ϕ(xn). (2.12)

Here the label C indicates that the time integral is to be taken along C. The Γ (n)(x1, . . . , xn)

are the amputated vertex functionals. The expansion in (2.12) is around the minimum at

– 6 –
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ϕ = 0, and the coefficients Γ (n) are taken at ϕ = 0 in the sense that they contain the field

η defined in (1.4). However, for a consistent expansion in the small couplings requires the

use of full (resumed) propagators in the loops because the T - and ϕ-dependent corrections

to effective masses bring powers of the couplings into the denominator of the propagators

(similar to the situation of gauge theories at high T [68]). This is done in the 2PI formalism

of non-equilibrium quantum field theory, see e.g. [61]. Hence, the Γ (n) implicitly depend

on ϕ via the effective masses.

With (1.2) in mind, we expand (2.12) up to fourth power. Γ (1) is eliminated by the

stationarity condition for vanishing external sources,

δΓ

δϕ
= 0. (2.13)

Γ (2) is simply the inverse dressed propagator −iΓ (2)(x1, x2) = δC(x1 − x2)
[
∂2
x1

+m2
φ

]
+

ΠC(x1, x2). Γ (3) vanishes due to the symmetry φ↔ −φ in (1.2) and Γ (4) is the amputated

four-point function. Due to energy-momentum conservation we can replace∫
C
d4x1 . . . d

4x4
1

4!
Γ (4)(x1, . . . , x4)ϕ(x1) . . . ϕ(x4)

→
∫
C
d4x1d

4x2
1

4!
ϕ(x1)2[λφ + Π̃C(x1, x2)]ϕ(x2)2, (2.14)

i.e. express the effective action in terms of an effective potential V[ϕ] ≡ −δ(4)(0)Γ [ϕ]. The

function Π̃ is, for example, given by the diagram in figure 5.

We now perform a spatial Fourier transform to the mixed representation with argu-

ments (t,p) and decompose ϕ into modes p, which in general are coupled to each other

by the integrals in (2.12). We are interested in the case, in which only p = 0 mode of ϕ

significantly differs from zero, and we can thus perform the spatial integrals analytically.

Using the stationarity condition (2.13) we can find an equation of motion for ϕ on C,

(∂2
t +m2

φ)ϕ(t) +
λφ
3!
ϕ(t)3 +

∫
C
dt′ΠC(t, t

′)ϕ(t′) +
1

3!
ϕ(t)

∫
C
dt′Π̃C(t, t

′)ϕ(t′)2 = 0. (2.15)

Here we have suppressed the momentum index and all functions are to be evaluated at

p = 0. Note that this equation does not contain a Brownian noise term ξ on the r.h.s. , as

one might have expected. The reason is that this term comes from thermal fluctuations,

and the expectation (2.2) that is taken in the definition (2.1) of ϕ includes an average

over thermal fluctuations. A noise therm ξ does appear in the (Langevin type) equation of

motion (3.1) for φ if one only traces over the bath degrees of freedom [29–34]. While these

fluctuations cancel out in the equation for the one-point function ϕ, they crucially affect

n-point correlation functions of φ with n > 1.

2.3 Equations of motion for the fluctuations η and perturbation theory

In order to calculate the coefficients Π and Π̃ in (2.15) one has to evaluate loop integrals

with η and Xi running in the loop. This requires knowledge of the propagators. Their

– 7 –



J
H
E
P
0
8
(
2
0
1
5
)
0
5
9

equations of motion are the Kadanoff-Baym equations (see [69]), which can be derived in

a similar manner as (2.15), see e.g. [33],

(�1 +m2
η)∆

−
η (x1, x2) = −

∫
d3x′

∫ t1

t2

dt′Π−η (x1, x
′)∆−η (x′, x2) , (2.16)

(�1 +m2
η)∆

+
η (x1, x2) = −

∫
d3x′

∫ t1

ti

dt′Π−η (x1, x
′)∆+

η (x′, x2)

+

∫
d3x′

∫ t2

ti

dt′Π+
η (x1, x

′)∆−η (x′, x2) , (2.17)

where mη is a vacuum mass of η-quanta3 and the self-energies are defined, equivalently

to (2.5), as

Π−η (x1, x2) ≡ Π>
η (x1, x2)−Π<

η (x1, x2) , Π+
η (x1, x2) ≡ − i

2

(
Π>
η (x1, x2) + Π<

η (x1, x2)
)
.

(2.18)

The usual retarded self-energy can be identified with

ΠR
η (x1, x2) = θ(t1 − t2)Π−η (x1, x2). (2.19)

Approximate Markovian equations. Correlation functions and self-energies for the

bath fields Xi can be defined analogously. In general, the coupled second order integro-

differential equations (2.16) and (2.17) are difficult to solve. However, in a weakly cou-

pled theory, and in a background that changes slowly compared to the time scale of

individual particle scatterings, the system can be described as a gas of quasiparticles.

In a homogeneous medium, the spectral density defined in (2.6) only depends on time,

ρη(p;x) = ρη(p; t). Let Ω̂p(t) be a pole of ρη(p; t), with

Ωη(t) ≡ ReΩ̂η(t) and Γη(t) ≡ 2ImΩ̂η(t). (2.20)

Both are in general time-dependent due to the interaction with the medium. In weakly

coupled theories one observes the hierarchy

Γη(t)� Ωη(t). (2.21)

In Minkowski space this is enough to justify a “quasiparticle approximation”, i.e. to under-

stand most properties of the system by picturing it as a gas of weakly coupled quasiparticles.

In a time-dependent background we must make the additional assumption that the above

quantities change adiabatically, leading to a more precise formulation of our assumption 3),

Ω̇η � Ω2
η,ΩXΩη and Γ̇η � ΓηΩη,ΓηΩX (2.22)

Under these assumptions ρη(p; t) at fixed t features peaks of width ∼ Γη(t) at energies

p0 ' ±Ωη(t), which can be interpreted as quasiparticle-resonances, and loop integrals are

3Note that mη is in general different from mφ since it obtains ϕ-dependence due to self-interaction of φ:

for example, m2
η = m2

φ +
λφ
2
ϕ2 for

λφ
4!
φ4 self-interaction.

– 8 –
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typically dominated by the regions near these poles. Here (and in the following) we omit

the spatial momentum index. In this situation, one approximately finds [28]

∆−η (t1, t2) '
sin
(∫ t1

t2
dt′Ωη(t

′)
)
e
− 1

2

∣∣∣∫ t1t2 dt′Γη(t′)
∣∣∣√

Ωη(t1)Ωη(t2)
, (2.23)

∆+
η (t1, t2) '

cos
(∫ t1

t2
dt′Ωη(t

′)
)
e
− 1

2

∣∣∣∫ t1t2 dt′Γη(t′)
∣∣∣√

2Ωη(t1)Ωη(t2)
(1 + 2f(t))

∣∣
t=min(t1,t2)

. (2.24)

Here f(t) is a generalized distribution functions, which follows the Markovian equation of

motion

∂tf(t) = [1 + f(t)]Γ<η (t)− f(t)Γ>η (t) (2.25)

with the “gain” and “loss” terms4

Γ≷η (t) ≡ i
Π≷η (p, t)

2Ωη(t)

∣∣∣
p0=Ωη(t)

, (2.26)

see also [70].

Special case — thermal equilibrium. If the background medium is in thermal equilib-

rium, the functions ∆−η and Π−η are independent of the coordinate x1 + x2 [33]. Moreover,

the Fourier-transforms of the self-energies in the coordinate x1 − x2 are related by the

Kubo-Martin-Schwinger (KMS) relation

Π<
η (p) = e−p0/TΠ>

η (p), (2.27)

or equivalently

Π+
η (p) = −i

(
1

2
+ fB(p0)

)
Π−η (p), (2.28)

where fB(p0) = (ep0/T − 1)−1 is the Bose-Einstein distribution. In this case, ρη reads [33]

ρη(p) =
−2ImΠR

η (p) + 2p0ε

(p2
0 −m2

η − p2 − ReΠR
η (p))2 + (ImΠR

η (p) + p0ε)2
, (2.29)

where ε is an infinitesimal parameter. Note that the self-energies Ωη and Γη all depend on

T . It is clear from (2.29) that, if condition (2.21) is fulfilled, the quasiparticle dispersion

relation (or “mass shell”) Ωη is essentially fixed by ReΠR
η (p) via the condition

p2
0 − p2 −m2

η − ReΠR
η (p) = 0, (2.30)

while ImΠR
η (p) gives the thermal width,

Γη = −Z
ImΠR

η (Ωη)

Ωη
= Z

iΠ−η (Ωη)

2Ωη
= Γ>η − Γ<η , (2.31)

4Here we ignore subtleties about finite initial time in definitions.
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which is just the difference of gain and loss term. ReΠR
η (p) contains a zero temperature

divergence that can be absorbed into the physical mass in the same way as in vacuum [32,

33]. In the following we interpret mφ as the physical mass in vacuum, with ReΠR
η (p) being

finite. The effective mass Mη can be defined as Ωη for vanishing spacial momentum p = 0.

It is very useful to fit a Breit-Wigner function to (2.29) near the pole, which is parametrized

by Γη and Ωη, as

ρBW
η (p) = 2Z p0Γη

(p2
0 − Ω2

η)
2 + (p0Γη)2

+ ρcont
η (p). (2.32)

Here ρcont
η (p) is the continuous part of ρη(p). To obtain the correct residue, we introduced

the parameter

Z =

[
1− 1

2Ωη

∂ReΠR
η (p)

∂p0

]−1

p0=Ωη

. (2.33)

For weak coupling, it is often sufficient to use the “zero width limit”,

ρ0
η(p) = 2πZsign(p0)δ(p2

0 − Ω2
η) + ρcont

η (p). (2.34)

Other useful relations that follow directly from the definitions of the correlators are

Π−η (p) = 2iImΠR
η (p), (2.35)

∆<
η (p) = fB(p0)ρη(p) , ∆>

η (p) = [1 + fB(p0)]ρη(p), (2.36)

and equivalently for the self-energies of other fields. Note that all the above functions

depend on T , which we have not made explicit here to simplify the notation. Correlators

and self-energies for all other fields are defined analogously.

Perturbation theory. The perturbative expansion for correlation functions in a medium

can be performed in terms of Feynman diagrams, analogous to the vacuum case. One

difference is that one has to use the propagators ∆≷ or, often more conveniently, their

transforms in Wigner space [70]. Knowledge of ∆≷ allows to determine all other correlation

functions, in particular

∆++
η (x1, x2) = ∆+

η (x1, x2)− i

2
sign(t1 − t2)∆−η (x1, x2), (2.37)

∆−−η (x1, x2) = ∆+
η (x1, x2) +

i

2
sign(t1 − t2)∆−η (x1, x2), (2.38)

∆−+
η (x1, x2) = ∆+

η (x1, x2)− i

2
∆−η (x1, x2), (2.39)

∆+−
η (x1, x2) = ∆+

η (x1, x2) +
i

2
∆−η (x1, x2). (2.40)

Another difference from the vacuum case is the fact that φ+ and φ− formally have to be

treated as two different fields. There are no vertices that directly connect a φ+ line to a φ−

line, i.e. the vertices are always either of “+” type or “-” type, but the propagators (2.39)

and (2.40) mix the fields and can connect a “-” vertex to a “+” vertex and vice versa, see

e.g. [37] for a detailed discussion.
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3 Effective action and equation of motion for ϕ

The known equations (2.23), (2.24) and (2.37)–(2.40) allow to describe the dynamics of the

field fluctuations in terms of the Markovian equations, which can be physically interpreted

as effective Boltzmann equations for quasiparticles in the plasma. In the following sections

we derive an approximate Markovian equation for the field ϕ, so that the system can be

completely described in terms of Markovian dynamics.

3.1 Small field values: Brownian motion and Langevin dynamics

We consider the case in which all degrees of freedom except ϕ are in thermal equilibrium.

If φ at initial time is very close to its thermodynamic ground state, then the effect that

this deviation has on the thermal bath (“back reaction”) is negligible. This in particular

requires that ϕ be small enough that we can use a quadratic approximation to V(ϕ), and

the effective masses in the plasma are dominated by vacuum and thermal masses (rather

than coupling to the background ϕ). Then the self-energies have the properties (2.28).

In this case the behavior of φ can be understood in the terminology of Brownian motion.

Such systems have been studied by a number of authors [29–34, 71–73], and it was found

that the zero mode in this case follow a Langevin equation [32, 33],(
∂2
t +M2

η

)
φ(t) +

∫ t

0
dt′Π−η (t− t′)φ(t′) = ξ(t). (3.1)

Here we have absorbed the local part of the η-self-energy into a slowly varying M2
η on

the left hand side, which therefore depends on T and ϕ. We have also assumed that

the dependence of Π−η (t, t′) on t + t′ is negligible. The validity of these approximations

is restricted to the regime where the amplitude of ϕ-oscillations is sufficiently small that

the effective masses are not dominated by the ϕ-dependent contributions. Otherwise the

adiabaticity condition (2.22) is violated. This is consistent because we consider small

oscillations near the minimum. Note that we do not need to require Γ̇η/Γη � H or

Ω̇η/Ωη � H because the integral in (3.1) is cut off due to the finite support of Π−η (t, t′).

The size of this support is roughly given by the inverse of the (quasi)particle energies in

the loop, but it is difficult to clearly identify the relevant scale in general [74]. The integral

leads to dissipation, and ξ is a Gaussian noise term with

〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = −Π+
η (t− t′)δ(3)(0). (3.2)

The relations (2.28) and (3.2) ensure that the fluctuation-dissipation theorem holds in (3.1).

Strictly speaking the field in (3.1) is not the original field φ on the contour C, but the

combination φc = (φ+ + φ−)/2, where φ+ and φ− denote the field with time argument on

the “forward” and “backward” part of the contour, as indicated in figure 1. We ignore this

subtlety here, as both notions give the same equation of motion for ϕ.

The Langevin equation (3.1) can be solved analytically by use of a Laplace transfor-

mation [32, 33],

φ(t) = φ(t = 0)∆̇−(t) + φ̇(t = 0)∆−(t) +

∫ t

0
∆−(t− t′)ξ(t′), (3.3)
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where

∆−(t) =

∫
d3x∆−(x) (3.4)

can be analytically obtained by Fourier-transforming (2.29) in the Breit-Wigner approxi-

mation as

∆−(t) ' Z sin(Ωηt)

Ωη
e−Γηt. (3.5)

By taking the expectation value (cf. (2.1)) of φ in (3.3), we find (neglecting the p0-

dependence of ReΠR
η , setting Ωη = Mη for the zero mode and neglecting terms suppressed

by Γη/Ωη)

ϕ(t) =

[
ϕ(t = 0)cos(Mηt) + ϕ̇(t = 0)

sin(Mηt)

Mη

]
e−Γηt. (3.6)

The solution (3.6) describes damped oscillations of ϕ with the plasma frequency Mη near

the potential minimum. In spite of the integral in (3.1), non-Markovian effects do not play

any role for ϕ because Γη and Mη are in good approximation independent of ϕ, and we have

assumed that the temperature remains constant on time scales ∼ 1/Γη. This is realistic if

Γη > H, and if the initial ϕ is sufficiently small that the energy release into the plasma due

to its dissipation is not significant. In this case an equation of the form (1.5) holds, with

V(ϕ) '
M2
η

2
ϕ2, (3.7)

Γϕ ' Γη. (3.8)

That is, V(ϕ) can be approximated by a parabola and is obtained from the free classical

Lagrangian if one simply replaces the mass mφ by the effective mass Mη. The damping

rate of ϕ is given by the thermal quasiparticle width of η; it is obtained by evaluating

ImΠR
η (p) at the quasiparticle pole p0 = Mη. Finally, each mode of φ couples to the bath,

but there are no interactions of the different modes with each other. This approximation

only holds for small deviations from the ground state, i.e. small field values ϕ. In cosmol-

ogy this situation can be realized in the late phase of cosmic reheating after inflation. In

this context, the temperature dependence of the rate Γϕ has been studied in detail in [75],

and it was found in [76] that this temperature dependence can have a drastic effect on the

thermal history of the universe during reheating.

For larger deviations from the ground state, the problem becomes much more involved

because the quadratic approximation of the effective action near ϕ = 0 is not sufficient. If

it is still possible to describe the dynamics in terms of an effective potential V(ϕ) and (1.5),

then V(ϕ) certainly must involve higher powers of ϕ. This leads to “multiplicative noise

terms” in the generalization of (3.1) [31, 34], and the effective masses generally depend on

ϕ. Finally, we do not expect the simple relation (3.8) to hold, though it is frequently used

in the literature without justification. In section 3.2 we show that one can nevertheless find

an equation of motion of the form (1.5) if ϕ changes slowly compared to the microphysical

scales, but the expressions for V(ϕ) and Γϕ are in general more complicated.
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3.2 Large field values: slow rolling

We continue to assume that all degrees of freedom except ϕ are in equilibrium (or their

thermodynamic state can at least effectively be characterized by an effective temperature),

but we allow ϕ to take large values, where the quadratic approximation (3.7) of the effective

potential is expected to break down. If φ has only feeble interactions (which is required if

the effective potential should be flat), then it is justified to assume a separation of scales

H, ϕ̇/ϕ� T, ϕ,Mη. (3.9)

This implies that ϕ changes adiabatically, and we can approximate

ϕ(t′)n ' ϕ(t)n + n(t′ − t)ϕ̇(t)ϕ(t)n−1. (3.10)

The change of the functions ΠC(t, t
′) and Π̃C(t, t

′) with respect to the time coordinate t+ t′

occurs on the same macroscopic time scales as ϕ̇/ϕ and H. Hence (3.9) ensures that (2.22)

is fulfilled and we can expand ΠC(t, t
′) and Π̃C(t, t

′) in this coordinate analogously to the

expansion (3.10). For the present purpose it is sufficient to keep the zeroth term in this

expansion, i.e. to assume that there is no explicit dependence on t + t′, meaning that

ΠC(t, t
′) ' ΠC(t− t′) and Π̃C(t, t

′) ' Π̃C(t− t′). This will be justified later after (3.13).

We can split the contour integral in the equation of motion (2.15) into∫
C
dt′ =

∫ ∞+iε

−∞+iε
dt′ +

∫ −∞−iε
∞−iε

dt′. (3.11)

With (3.10), the only quantities under the integrals that depend on t′ are ΠC(t − t′) and

Π̃C(t− t′). Since we are interested in physical times, t always lies on the “forward” part of

the contour C. If t′ also lies on the forward part (first term in (3.11)), then ΠC(t − t′) is

to be identified with the usual time-ordered self-energy (often referred to as Π++(t− t′) in

thermal field theory). If t′ lies on the backward part (second term in (3.11)), then ΠC(t−t′)
is to be identified with a “Wightman type” self-energy without time ordering Π<(t − t′),
as t′ is then always “later” along the contour than t, see e.g. [37, 62]. Their difference can

be identified with the usual retarded self-energy, i.e. Π++(t− t′)−Π<(t− t′) = ΠR(t− t′).
This allows to combine the two terms in (3.11) into a single integral∫

C
dt′ΠC(t− t′) =

∫ ∞
−∞

dt′ΠR(t− t′) (3.12)

and likewise for Π̃C(t − t′). The r.h.s. of (3.12) is nothing but the Fourier transform of

ΠR(t − t′) evaluated at energy ω = 0. Some care should be taken at this point. The

limit ω → 0 is obtained due to the linear approximation (3.10), which is controlled by

the separation (3.9) between macroscopic and microscopic time scales. It is probably best

to think of ω as a parameter that characterizes this separation, i.e. ω ∼ ϕ̇/ϕ, where ϕ̇/ϕ

should be identified with the macroscopic scales H or Γ. With these considerations we

finally obtain a Markovian approximation to the equation of motion (2.15),[
∂2
t +m2

φ + (1− ω∂ω) ΠR
ϕ (−ω)

]
ω=0

ϕ(t) +
1

3!

[
λφ + (1− ω∂ω) Π̃R

ϕ (−2ω)
]
ω=0

ϕ(t)3
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−iϕ̇(t)

[
∂ωΠR

ϕ (−ω) +
1

3!
ϕ(t)2∂ωΠ̃R

ϕ (−2ω)

]
ω=0

= 0. (3.13)

Here we have given the retarded self-energies ΠR
ϕ and Π̃R

ϕ an index ϕ to distinguish them

for the self-energies for Xi. The parameter ω should be thought of as much smaller than

all microphysical scales and can be set to zero as long as ω < H < Γη < T , which always

holds under the previous assumptions. Since the real part of the retarded self-energy is

always symmetric and the imaginary part antisymmetric, we can easily identify

lim
ω→0

ΠR
ϕ (ω) = lim

ω→0
ReΠR

ϕ (ω), (3.14)

lim
ω→0

∂ωΠR
ϕ (−ω) = −i lim

ω→0

ImΠR
ϕ (ω)

ω
, (3.15)

and likewise for Π̃R
ϕ .5

With this limit and by comparing (3.13) with (1.5), we can express the effective po-

tential and dissipation coefficient in terms of ΠR
ϕ and Π̃R

ϕ . The first line in (3.13) describes

the evolution of ϕ in an effective potential with the quantum corrections to the classical

potential given by ΠR
ϕ and Π̃R

ϕ :

∂ϕV(ϕ) = lim
ω→0

{[
m2
φ + [1− ω∂ω] ΠR

ϕ (−ω)
]
ϕ+

1

3!

[
λφ + [1− ω∂ω] Π̃R

ϕ (−2ω)
]
ϕ3

}
=
[
m2
φ + ΠR

ϕ (ω)|ω=0

]
ϕ+

1

3!

[
λφ + Π̃R

ϕ (ω)|ω=0

]
ϕ3. (3.16)

The second line describes dissipative effects, i.e. the damping of ϕ due to the interactions

with the bath of Xi-particles:

Γϕ = −i lim
ω→0

[
∂ωΠR

ϕ (−ω) +
1

3!
ϕ(t)2∂ωΠ̃R

ϕ (−2ω)

]
= i

[
∂ωΠR

ϕ (ω)|ω=0 +
1

3
ϕ(t)2∂ωΠ̃R

ϕ (ω)|ω=0

]
. (3.17)

These results allow to justify why we could neglect their dependence on t+ t′. The terms

containing derivatives ∂t+t′ acting on ΠR
ϕ and Π̃R

ϕ are suppressed with respect to terms

without derivatives due to the separation of macroscopic and microscopic scales. For

instance, ∂t+t′Π̃
R
ϕ (t, t′) is suppressed by three small parameters, two powers of a coupling

constant and a time derivative. All terms in the first line of (3.13), which give the effective

potential (3.16), contain two or less small parameters, hence ∂t+t′Π̃
R
ϕ (t, t′) can be regarded

as a higher order correction. In spite of this, we have to keep the terms in the second line

in (3.13), which in principle are also suppressed by a time derivative and two powers of

a coupling constant. The reason is that these form the leading order contribution to the

dissipation coefficient (3.17), while in the effective potential (3.16) they would just act as

higher order correction. In this sense, (3.13) is a consistent expansion in gradients and the

small coupling constants.

5From these expressions it is clear that all coefficients of ϕ, ϕ3 and ϕ̇ in (3.13) are real. Therefore the

effective equation of motion (3.13) is manifestly real.
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Figure 2. Self-energy diagrams contributing to mass correction at leading order. Solid line cor-

responds to η and dashed line to χ. Note that the functionals ΠR
ϕ and Π̃R

ϕ should strictly be

represented by amputated diagrams. The external lines are added for representative purposes and

in the effective action they are to be replaced by ϕ.

These results (3.16) and (3.17) should be compared to (3.7) and (3.8). One obvious

(and expected) difference is the appearance of higher powers of ϕ in V(ϕ). Another crucial

difference is that the dissipation coefficient (3.17) is evaluated at ω = 0 and not at ω = Mη,

as in (3.8). This supports the interpretation of ω as the rate at which ϕ changes: during

oscillations around the minimum, this rate is given by the plasma frequency Mη; if the

field slowly rolls down a flat potential, then this rate is much smaller than all other scales

(practically ω ' 0 within loop diagrams).

Indeed, if we drop the terms ∝ ϕ3 in (2.15) and use (3.11) and (3.12), we find

(∂2
t +m2

φ)ϕ(t) +

∫
dt′ΠR

φ (t− t′)ϕ(t′) = 0.

This equation is formally the same as (3.1) with ξ = 0, so we can read off the solution

from (3.3),

ϕ(t) = ϕ(t = 0)∆̇−(t) + ϕ̇(t = 0)∆−(t). (3.18)

Again using the Breit-Wigner approximation for (2.29), we can bring this into the explicit

form (3.6). Hence, we have recovered the behavior of Brownian motion for small ϕ from

the more general expression (2.15).

4 A simple scalar model

In the following we illustrate our results in a simple scalar model, in which the “bath”

consists only of one other real scalar field χ,

L =
1

2
∂µφ∂

µφ−
m2
φ

2
φ2 − λφ

4!
φ4 +

1

2
∂µχ∂

µχ−
m2
χ

2
χ2 − λχ

4!
χ4 − h

4
φ2χ2. (4.1)

In order to obtain explicit expressions for V(ϕ) and Γϕ from (3.16) and (3.17), we have to

evaluate the loop diagrams given in figure 2, 3 and 5.

Here we focus on the case of adiabatically changing large ϕ discussed in section 3.2. For

the case of oscillations near the potential minimum, Γϕ has been calculated in detail in [75].
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Figure 3. Feynman diagrams contributing to ΠR
ϕ . Solid line corresponds to η and dashed line to χ.

4.1 The effective potential V(ϕ)

From (3.14) it is clear that V(ϕ) is obtained from the real part of retarded self-energies.

To establish a consistent perturbation theory, these have to be evaluated with resummed

thermal propagators. For the present purpose it is sufficient to evaluate these in the pole

approximation of (2.34) for η and χ. The potential in (4.1) in terms of η and χ reads

V (η, χ) =
m2
η

2
η2 +

λφ ϕ

3!
η3 +

λφ
4!
η4 +

(m2
χ + hϕ2/2)

2
χ2 +

λχ
4!
χ4 +

hϕ

2
ηχ2 +

h

4
η2χ2 (4.2)

with m2
η = m2

φ +
λφ
2 ϕ

2.

4.1.1 The self-energy ΠR
ϕ

The real part of ΠR
ϕ |ω=0 is dominated by the well-known local diagrams due to the vertices

λφη
4/4! and hη2χ2/4, see figure 2. It reads

ΠR
ϕ =

λφ
2

∫
dp3

(2π)3

1

2Ωη
[1 + 2fB(Ωη)] +

h

2

∫
dp3

(2π)3

1

2Ωχ
[1 + 2fB(Ωχ)]

=
λφ
2

M2
η

(4π)2

[
Nε + T(M2

η , µ
2)
]

+
h

2

M2
χ

(4π)2

[
Nε + T(M2

χ, µ
2)
]

+

∫
dp3

(2π)3

[
λφ

2Ωη
fB(Ωη) +

h

2Ωχ
fB(Ωχ)

]
(4.3)

with

T(M2, µ2) = 1− log
M2

µ2
, Nε =

2

ε
+ log4π − γ, (4.4)

where we have used dimensional regularization. The divergent part (Nε terms) can be

eliminated by renormalisation of mφ and coupling constants at zero temperature, using

MS scheme.6 In the following we assume that this has been done and that vacuum masses

and coupling constants are the renormalized parameters at T = 0. In this work we are

mainly interested in thermal corrections, which are most relevant if the temperature is

6Note that the temperature-dependent divergent terms, which come from the thermal corrections con-

tained in Mη and Mχ multiplying Nε, are sufficiently taken care of by the temperature-independent coun-

terterms from λφ and h in the third line of (4.3), which in fact represents the thermal corrections.
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larger than the effective masses (otherwise the thermal corrections are negligible since

they are Boltzmann suppressed due to the appearance of the distribution functions fB in

the thermal propagators). For Mη,Mχ � T , the finite part (i.e. the T(M2, µ2) terms),

remaining after subtraction of the divergences, can be ignored since it is subdominant

compared to the fB-part (the third line of (4.3)).7 Due to the momentum-independence

there is no need for a finite T wave function renormalisation. For Mη,Mχ � T , one can

perform the integrals analytically, for example,∫
dp3

(2π)3

h

2Ωχ
fB(Ωχ) ' h

24
T 2. (4.5)

The same applies to the diagram with η-loop. We thus obtain for Mη,Mχ � T

ΠR
ϕ '

(h+ λφ)

24
T 2. (4.6)

There are also contributions from the setting sun diagrams in figure 3, but they are of

higher order in h and λφ.

4.1.2 The vertex functional Π̃R
ϕ

We now turn to the vertex functional, which is given by the “fish diagrams” a) in figure 5.

The fB-independent part of these diagrams is again divergent; for vanishing external mo-

mentum it is given by (including the analogous fish diagram with η-loop)

h2

2(4π)2

[
Nε − log

M2
χ

µ2

]
+

λ2
φ

2(4π)2

[
Nε − log

M2
η

µ2

]
. (4.7)

Since we are only interested in the case of vanishing external momentum, we can simply

absorb the Nε terms into the renormalisation of the vacuum couplings h and λφ. The

remaining finite part (log terms) can be ignored for Mη,Mχ � T in comparison with

fB-part given below, in the similar way to the case of ΠR
ϕ .8

The fB-part from the fish diagrams is given by the the standard expression (see e.g.

section 4.2.2 in [37]). Let us focus on the χ-loop with T �Mχ,

Π̃R
ϕ |ω=0 = −h

2

4

4π

(2π)3

∫ ∞
Mχ

dΩχ

√
Ω2
χ −M2

χ

Ω2
χ

fB(Ωχ)−
λ2
φ

4

4π

(2π)3

∫ ∞
Mη

dΩη

√
Ω2
η −M2

η

Ω2
η

fB(Ωη).

(4.8)

7This can be seen as follows. Let’s choose µ to be µ = Mi ≡ Max[Mη,Mχ] evaluated at initial value

of ϕ. Then Mη,Mχ < Mi for all the times. Now we will show that |λφM2
η T(M2

η ,M
2
i )| � λφ T

2

and |hM2
χ T(M2

χ,M
2
i )| � hT 2 when Mη,Mχ � T (so Mi � T ). To this end it suffices to show∣∣∣∣λφM2

η log
M2
η

M2
i

∣∣∣∣ � λφ T
2 and

∣∣∣∣hM2
χ log

M2
χ

M2
i

∣∣∣∣ � hT 2. This is clearly the case since, for example,∣∣∣∣M2
η log

M2
η

M2
i

∣∣∣∣ =

∣∣∣∣M2
i
M2
η

M2
i

log
M2
η

M2
i

∣∣∣∣ < M2
i � T 2 for

M2
η

M2
i
< 1 (note that |ε log ε| ≤ e−1 for 0 < ε ≤ 1).

8Setting again µ = Mi ≡ Max[Mη,Mχ] evaluated at initial value of ϕ, it is straightforward to see that∣∣∣log
Mη
Mi

∣∣∣ =
∣∣∣MiMη

Mη
Mi

log
Mη
Mi

∣∣∣ < Mi
Mη
� T

Mη
, where we used the same tricks as in footnote 7. The same can be

shown for Mχ.
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The above integral can not be done analytically, but it is easy to see that it is strongly

dominated by small Ω when Mη,Mχ � T . Therefore we can approximate fB(Ω) ' T/Ω

by expanding the exponential to get

− h2

4

4π

(2π)3

∫ ∞
Mχ

dΩχ

√
Ω2
χ −M2

χ

Ω2
χ

fB(Ωχ) ' −h
2

4

4π

(2π)3

∫ ∞
Mχ

dΩχ

T
√

Ω2
χ −M2

χ

Ω3
χ

= − h2

32π

T

Mχ
.

(4.9)

The contribution from the η-loop can be obtained from the above expression by replacing

χ→ η and h→ λφ, and altogether we obtain for Mη,Mχ � T

Π̃R
ϕ |ω=0 ' −

h2

32π

T

Mχ
−

λ2
φ

32π

T

Mη
. (4.10)

4.1.3 The full potential

If the temperature is much smaller than the effective masses, then thermal corrections are

negligible. In this case radiative corrections are mainly interesting if some mass squares are

negative, leading to symmetry breaking; otherwise they just lead to small modifications of

the potential. If T is comparable to the effective masses, then the loop integral in general

cannot be solved analytically. For the interesting case Mη,Mχ � T , we can use the above

results in (3.16) and find

∂ϕV(ϕ) =

(
m2
φ +

(h+ λφ)

24
T 2

)
ϕ+

1

3!

(
λφ −

h2

32π

T

Mχ
−

λ2
φ

32π

T

Mη

)
ϕ3. (4.11)

In order to check for which range of field values the assumption Mη,Mχ � T can be

justified, we can estimate the effective masses as

M2
η = m2

φ + (h+ λφ)
T 2

24
+
λφ
2
ϕ2, (4.12)

M2
χ = m2

χ + (h+ λχ)
T 2

24
+
h

2
ϕ2. (4.13)

This leads to the conditions

ϕ2 <
2
[(

1− (h+λφ)
24

)
T 2 −m2

φ

]
λφ

, ϕ2 <
2
[(

1− (h+λχ)
24

)
T 2 −m2

χ

]
h

. (4.14)

These conditions imply that the ϕ-dependence of the effective masses in (4.11) is not

necessarily negligible. Taking this into account, we integrate (4.11) and obtain

V(ϕ) =
M2
η0ϕ

2

2
+
λφϕ

4

4!
+

T

288π

[
4(M3

η +M3
χ −M3

η0 −M3
χ0)− 3ϕ2(λφMη + hMχ)

]
, (4.15)

where

M2
η0 ≡ Mη(ϕ = 0)2 = m2

φ + (h+ λφ)
T 2

24
, (4.16)

M2
χ0 ≡ Mχ(ϕ = 0)2 = m2

χ + (h+ λχ)
T 2

24
. (4.17)

Figure 4 shows the effective potential (4.15) as a function of ϕ for various temperatures.
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Figure 4. The full effective potential V(ϕ) as a function of ϕ for various temperatures, normalized

to m4
φ (figure a)) and to zero temperature value V0(ϕ) ≡ V(ϕ)|T=0 (figure b)). Here we set

mχ = mφ/5, λφ = λχ = 1/5 and h = 1/30. Different values of temperature are indicated by the

color coding with the pure blue line being for the lowest temperature T = 20mφ. When the color

varies from blue towards red, the temperature increases with a step ∆T = 20mφ. The dotted line

is used to denote the regime where the condition Mη,Mχ < T is not satisfied.

4.2 The damping coefficient Γϕ

Damping coefficient (3.17) depends on ϕ through the effective masses and has to be eval-

uated at ω = 0.

4.2.1 Contribution from ΠR
ϕ

Using (3.15), we can determine the coefficient limω→0 ∂ωΠR
ϕ (−ω) by calculating ImΠR(p)

from diagrams given in figure 3 for vanishing p. The leading order contribution comes from

the setting sun diagram b) in figure 3 since diagram a) gives vanishing result for kinematic

reasons.9 The calculation of the loop integral is rather technical and is summarized in

appendix A. For Mχ �Mη � T , the result reads (cf. (A.29))

∂ωΠR
ϕ (ω)|ω=0 ≈ −i

h2 T 2

(4π)3Mη
log

(
Mη

Mχ

)
. (4.18)

4.2.2 Contribution from the vertex Π̃R
ϕ

Let us focus on diagram a) in figure 5, which gives dominant contribution.10 The contri-

bution from the analogous diagram with η-loop can be obtained by proper replacements

of coupling constants and masses. In the zero-width approximation (2.34), the imaginary

part ImΠ̃R
ϕ vanishes for any finite positive ω < 2Mχ and diverges for ω = 0.11 One can

understand this from kinematic reasons when recalling that the imaginary part can be

9There are two kinds of processes contained in cuts through the diagram in figure 3 a) for Γη = 0, decays

φ→ φφφ and scatterings φφ→ φφ (and their inverse). The former are clearly kinematically forbidden. For

vanishing external four-momentum, the latter effectively correspond to φ→ φφ decays and inverse decays,

which are also kinematically forbidden on-shell. Finite width corrections are of higher order in this case.
10See section 4.2.4 for the argument that the vertex diagram b) in figure 5 is subdominant.
11These two facts can be seen from figure 10 b) and c), which depict the supports of the spectral densities

in the expresion (4.19) for ImΠ̃R
ϕ , as discussed in section 5.2.2.
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Figure 5. Feynman diagrams contributing to Π̃R
ϕ with only χ-propagators in loops. Dashed line

corresponds to χ. Note that there are analogous diagrams which involve η-propagators in loops.

interpreted in terms of microphysical processes when applying the optical theorem at finite

T [75], see figure 8. A non-zero ∂ωΠ̃R
ϕ |ω→0 can be obtained by including the finite width of

the χ-propagators in the loop, which parameterizes the effect of scattering processes with

more vertices [63, 75], see figure 9. This aspect has been pointed out in [77, 78].

The loop in the “fish diagram” a) in figure 5 can be expressed as [63]

ImΠ̃R
ϕ (ω) =

1

2i
Π̃−ϕ (ω) =

1

2i
f−1
B (ω)Π̃<

ϕ (ω)

= −h
2

2
f−1
B (ω)

∫
d4p

(2π)4
∆<
χ (p0)∆>

χ (p0 − ω)

= −h
2

2
f−1
B (ω)

∫
d4p

(2π)4
∆<
χ (p0)∆<

χ (ω − p0)

= −h
2

2

∫
d4p

(2π)4
(1 + fB(p0) + fB(ω − p0)) ρχ(p0)ρχ(ω − p0). (4.19)

For notational simplicity we continue to suppress the dependence on spatial momentum;

the external spatial momentum is vanishing, and for all quantities under the integral it is

given by the loop momentum. Here we have first used (2.35) and the KMS relation (2.28)

to express ImΠ̃R
ϕ in terms of Π̃<

ϕ . Using the Feynman rules sketched after equation (2.40),

which are derived in detail in [37], this function can be calculated from an integral over ∆≷χ
alone. With (2.36), this can finally be expressed as an integral over a product of spectral

densities, which is particularly easy to be evaluated in the approximation (2.34). In the

analogous expressions (A.1) and (B.1) for the setting sun diagrams one can indeed use the

approximation (2.34). In (4.19), on the other hand, we cannot neglect the finite width and

have to use the pole approximation to (2.29), see e.g. [75] for a discussion,

ρχ(p0) '
−2ImΠR

χ (p0)

(p0 − Ω̂χ)(p0 + Ω̂χ)(p0 − Ω̂∗χ)(p0 + Ω̂∗χ)
, (4.20)

where Ω̂χ ≡ Ωχ+ i
2Γχ. For ω � Γχ the quasiparticle resonances at p0 ' Ωχ and p0 ' Ωχ−ω

of (4.20) in (4.19) overlap in the entire integration region, and the integral is strongly
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Figure 6. Feynman diagrams for self-energy of χ giving finite width of the χ-propagators in the

loop in figure 5 a). Dashed line corresponds to χ and solid line to η.

dominated by this “pole contribution”. Inserting (4.20), we obtain

ImΠ̃R
ϕ (ω) =

h2

2

∫
d|p|

2(2π)2
p22Re

[
ImΠR

χ (ω − Ωχ) (1 + fB(Ωχ) + fB(ω − Ωχ))

Ω̂χ

((
(ω − Ω̂χ)2 − Ω2

χ

)2
+
(

ImΠR
χ (ω − Ω̂χ)

)2
)

+
ImΠR

χ (ω + Ωχ) (fB(Ωχ)− fB(ω + Ωχ))

Ω̂∗χ

((
(ω + Ω̂∗χ)2 − Ω2

χ

)2
+
(

ImΠR
χ (ω + Ω̂∗χ)

)2
)]. (4.21)

We now take the limit ω → 0: we insert (4.21) into the relation limω→0 ∂ωΠ̃R
ϕ (ω) =

limω→0
iImΠ̃Rϕ (ω)

ω with approximations

ImΠR
χ (ω − Ω̂χ) ' ImΠR

χ (ω − Ωχ) , ImΠR
χ (ω + Ω̂∗χ) ' ImΠR

χ (ω + Ωχ) (4.22)

and then replace ImΠR
χ (ω ± Ωχ)|ω=0 → ∓ΓχΩχ in the denominator to obtain

lim
ω→0

∂ωΠ̃R
ϕ (ω) = lim

ω→0

iImΠ̃R
ϕ (ω)

ω

= −i40h2

π2T

∫
d|p|

p2Ω2
χ(

Γ4
χ + 68Γ2

χΩ2
χ + 256Ω4

χ

)
Γχ (cosh(Ωχ/T )− 1)

≈ −i40h2

π2T

∫
d|p|

p2Ω2
χ

256Ω4
χΓχ (cosh(Ωχ/T )− 1)

. (4.23)

The calculation of the momentum-dependent thermal width Γχ from the two loop diagram

in figure 6 is generally difficult. The full Γχ is sum of contributions from diagram a) and

b) in figure 6, i.e. Γχ = Γ
(a)
χ + Γ

(b)
χ . The calculation of the imaginary part of diagram a)

in figure 6 is presented in detail in appendix B and Γ
(a)
χ can be approximated Mχ � T as

(cf. (B.42))

Γ(a)
χ '

γ
(a)
χ

Ωχ
with γ(a)

χ ≡
λ2
χT

2

256π3
. (4.24)

The main momentum dependence is due to the time dilatation; the factor 1/Ωχ is due to

the extended lifetime of a relativistic χ-particle in the bath rest frame. The contribution

from the diagram b) in figure 6 should have essentially the same behavior as that of a) as
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long as Mχ,Mη � T because the loop is dominated by hard momenta � Mχ,Mη in this

case. Therefore one can obtain the contribution Γ
(b)
χ by replacement λχ → h in (4.24) and

by taking into account a proper symmetry factor of the loop:

Γ(b)
χ '

γ
(b)
χ

Ωχ
with γ(b)

χ ≡
3h2T 2

256π3
. (4.25)

The integral then reads

lim
ω→0

∂ωΠ̃R
ϕ (ω) ≈ −i 40πh2

T 3(λ2
χ + 3h2)

∫
d|p| p2

Ωχ (cosh(Ωχ/T )− 1)
. (4.26)

This integral is strongly dominated by the region Ωχ � T . We expand the integrand in

Ωχ/T up to second order and integrate from Ωχ = Mχ up to Ωχ = T to obtain12

∂ωΠ̃R
ϕ (ω)|ω=0 ≈ −i

80πh2

T (λ2
χ + 3h2)

log

(
T

Mχ

)
. (4.28)

This is for the fish diagram a) in figure 5 with χ-loop. The contribution from the analogous

fish diagram with η-loop can be obtained from above expression by the replacement Mχ →
Mη and h2/(λ2

χ + 3h2)→ λ2
φ/(λ

2
φ + 3h2).

4.2.3 The full damping coefficient

Using above results in (3.17), we obtain the full damping coefficient for Mχ �Mη � T

Γϕ ≈
h2 T 2

(4π)3Mη
log

(
Mη

Mχ

)
+
ϕ2

3

80π

T

[(
h2

λ2
χ + 3h2

)
log

(
T

Mχ

)
+

(
λ2
φ

λ2
φ + 3h2

)
log

(
T

Mη

)]
,

(4.29)

which is plotted in figure 7 as a function of ϕ for various temperatures.

4.2.4 Physical interpretation of the coefficients

The parametric dependence of (4.18) can easily be understood physically; the rate for 2→ 2

scatterings is proportional to h2 and grows∝ T 2 due to the higher density of scattering part-

ners, just as a quasiparticle damping rate would. The coefficient (4.28) shows a more un-

usual behavior: most notably it decreases with temperature and with λχ, both of which may

seem counter-intuitive if one has the scattering interpretation in mind. It should, however,

12It should be pointed out that for 0 < ω < Γχ and with the previous assumptions, the integrand

in (4.21) formally exhibits a sharp peak at Ωχ ≈ γ2/3
χ /(2ω1/3) = Γ2

χ/(8ω). In this region the integrand can

be approximated by the Breit-Wigner curve. In the zero width limit the contribution from this region can

be estimated as

h2

(
2 +

4M2
χ

(γχω)2/3
− γ2/3

ω4/3

)
3072πT

(
cosh

(
γ2/3/ω1/3+ω

2T

)
− 1

) . (4.27)

Though this contribution smoothly vanishes in the limit ω → 0, it is much bigger than (4.28) for most

finite 0 < ω < Γχ even if ω � Γχ. This appears to be at odds with our intuitive argument that the result

of (4.21) should be independent of ω if |ω| � Γχ. The contribution (4.27) is not physical and we artificially

introduced by the approximation (4.22), which is only valid in the region Ωχ � Γ2
χ/ω.
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Figure 7. The damping coefficients as a function of ϕ for various temperatures, normalized to

mφ. In these plots the choice of the parameter values and the color coding of lines for different

temperatures are the same as in figure 4 except that the dotted lines here denote the regime where

the condition Mχ < Mη < T is not satisfied. Figure a) shows the full damping coefficient Γϕ. In

figure b) we plot the ratio Γ1/Γ2 with Γ1 and Γ2 being contributions from ΠR
ϕ (setting-sun diagram)

and Π̃R
ϕ (fish diagram), respectively (i.e. the first and the second term in (4.29)). This plot shows

that Γ1 is dominant only for very small ϕ and otherwise Γ2 is the main contribution to the damping.

Γ1 and Γ2 are separately plotted in figure c) and d).

be pointed out that neither the limit T → 0 nor λχ → 0 can be applied to the approximate

analytic formula (4.28) because it is only valid under the assumptions Mχ < T and ϕ̇/ϕ <

Γχ ∝ λ2
χ, in which case the limit ω → 0 is only justified. In addition, the limit λχ → 0, which

makes Γχ ∝ λ2
χ vanish, is not allowed for following reasons. In the approximation Γχ = 0,

the cut through the diagram in figure 8 at finite T includes various processes, which are ob-

viously kinematically impossible for any finite ω < 2Mχ as explained in the caption. More-

over, for ω = 0 the rate has an unphysical divergence, which can be traced back to the in-

frared divergence of the Bose-Einstein distribution for the quasiparticles.13 The divergence

13If we were dealing with real quasiparticles in the initial and final states (rather than those with vanishing

external four-momentum in the condensate), then this divergence would be regularized by the thermal mass;
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in the limit ω → 0 is regularized by the finite width Γχ 6= 0 of the intermediate χ-particle

in the contributing processes, see figure 9. Therefore Γχ needs to be kept non-vanishing.

Though not infinite, the cross section is resonantly enhanced with finite Γχ as 1/Γχ,

and it becomes larger for smaller Γχ ∝ λ2
χ. This explains the λ2

χ in the denominator

of (4.28). The resonant enhancement of the “self-energy correction” in figure 5 a) is not

present in the “vertex correction” in figure 5 b). This allows us to neglect the vertex

correction, which is of the same loop order as the self-energy correction. Quantitatively

there is not much difference between the rate at finite ω � Γχ and ω = 0, as one can

see from figure 10. The resonant enhancement would be weaker if we were dealing with

fermions with gauge interactions in the loop (instead of χ). The reason is that the damping

Γχ in the scalar model only appears at two-loop order (i.e. from the setting sun diagram

in figure 3), while the mass correction is of order
√
λχ (from the tadpole in figure 2). This

makes Γχ/Ωχ very small for the scalar model.

Finally, in section II of [72] it has been claimed that all dissipative effects vanish if

the light field χ is in a vacuum state. This appears to be confirmed by our result for ΠR
ϕ .

Physically this conclusion seems, however, counter-intuitive. The basic laws of statistical

mechanics imply that the energy in an interacting physical system should relax to a state

of equilibrium, which implies equipartition of the energy amongst all degrees of freedom.

If dissipation were absent for T = 0, then all energy would forever remain trapped in ϕ if

the initial state of the system contains no χ-particles. The reason why we find vanishing

dissipation rates for T → 0 in the present calculation lies in the approximation ω = 0.

Note that ImΠ̃R
ϕ (ω) in (4.21) gives a non-zero contribution for finite ω and T = 0. The

precise determination of the physical damping rate at T = 0 would, however, require some

extra work and a more consistent treatment of renormalization.

5 Discussion

5.1 Main results

Effective equation of motion for the field ϕ. In section 3 we have shown from first

principles that the expectation value ϕ of a scalar field in a medium approximately follows

the Markovian equation of motion (3.13), which is of the type (1.5), if the coupling to

the medium is weak and the properties of the medium change sufficiently slowly. That

is, the system can be characterized by a complex valued effective potential. Its real part

V(ϕ) is the usual finite temperature effective potential, and the imaginary part Γϕ is the

dissipation coefficient. They depends on temperature and the field expectation value ϕ.

The equation of motion (3.13) and the general expressions for V(ϕ) in (3.16) and Γϕ
in (3.17) are amongst the main results of this work. The expression (3.17) extends our

calculation of Γϕ in [75], which is valid near the potential minimum, to the case of large

field values in the slow-roll phase. They appear to be consistent with the equation of motion

there would be no such case as ω = 0 because the self-energies are evaluated at the quasiparticle mass shell.

In a plasma the quasiparticles at rest are massive due to the thermal mass even if their vacuum mass is zero,

such as for photons. In the limit T → 0 the thermal mass disappears and only the vacuum mass remains

(which can be chosen to be zero), but the divergence from the Bose-Einstein distribution also disappears.
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a)

+ inverse

b)

+ inverse

c)

+ inverse

d)

+ inverse

Figure 8. Cut through the fish diagram with zero width for the propagators. Solid lines correspond

to φ and dashed lines to χ. Due to the optical theorem at finite T , the imaginary part of the fish dia-

gram can be interpreted in terms of physical processes in which the external legs and cut propagators

appear as initial and final states [79–83]. The diagrams on the right show those processes in which

initial and final state both contain particles, as only these can contribute in the present calculation.

Note that all χ-particles here are on shell. Diagram a) corresponds to the process φφ → χχ, in

which two φ-quanta out of ϕ-condensate become two χ-quanta. If the total four-momenta of the two

φ-quanta is (ω,0) with ω < 2Mχ, this process is kinematically not allowed for on-shell χ-particles.

Diagram b) represents the scattering χφ→ χφ between a χ-quantum and a single φ-quantum in the

condensate (in both, initial and final state). If the sum of four-momenta of the φ-quanta is (ω,0)

with any ω 6= 0, then it is clear that such process is also forbidden for on-shell χ-particle due to the

energy-momentum conservation. Diagram c) represents a decay process χ→ χφφ. Here the initial

state contains a single χ-quasiparticle with non-vanishing four-momentum. In the final state, there

is also a χ-quasiparticle and two φ-quanta with combined four-momentum (ω,0) have been added to

the ϕ-condensate. This process is kinematically forbidden on-shell for any ω 6= 0, but the cross sec-

tion is divergent for ω = 0. Similarly, in diagram d) an φ-quantum in the ϕ-condensate “decays” into

an φ and two χ-quasiparticles. The resulting total cross section is vanishing for any finite ω < 2Mχ

and diverges at ω = 0. These intuitive interpretations hold at the level of individual quanta: the

ϕ-condensate is a superposition of infinitely many φ-quantum states with different particle num-

bers. However, if one decomposes the condensate into eigenstates of the free Hamiltonian (with

well-defined particle number), then the same argument can be drawn for any multi-particle state.
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Figure 9. Cut through the fish diagram with a finite width (Γχ 6= 0) for the χ-propagator in the

loop. If one evaluates this fish diagram, then it includes contribution from process ηχχ → ηχχ,

which is mediated by an off-shell intermediate χ-quasiparticle. This process is allowed and finite

for ω = 0.

P0

»p»

0MΧ MΧ Ω

aL

P0

»p»

0

bL

P0

»p»

0

cL

Figure 10. Support of the spectral densities ρχ(p0) and ρχ(p0−ω) in p0-|p| plane. The solid blue

and red lines correspond to the mass-shell p20 − |p|2 = M2
χ and (p0 − ω)2 − |p|2 = M2

χ, respectively.

The dotted lines represent the approximate support of the spectral densities if the finite widths Γχ
are included. Figure a), b) and c) correspond to the cases of ω > 2Mχ � Γχ, 2Mχ > ω > Γχ
and 2Mχ � Γχ > ω, respectively. In figure a), the region where two mass-shell curves intersect

gives rise to the non-vanishing contribution from kinematically allowed processes of the on-shell

χ-particles, such as decay and scattering.

P0

ΡΧ
cL

P0

ΡΧ
bL

P0

ΡΧ
aL

Figure 11. Spectral densities ρχ(p0) (blue line) and ρχ(p0 − ω) (red line) as a function of p0 for

fixed |p| (e.g. for |p| = 0). Figure a), b) and c) represent the same cases as in figure 10.
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for the field φ found in the literature (see e.g. [31, 34] and references therein). However,

our derivation is much shorter, as we directly seek an equation of motion for ϕ. Together

with the expressions (2.23) and (2.24) for the propagators, the equation of motion (1.5)

with V(ϕ) in (3.16) and Γϕ in (3.17) allows to describe the nonequilibrium dynamics of a

slow-rolling scalar field entirely in terms of Markovian equations.

For small values of ϕ, and if the medium is composed of a sufficiently large thermal

bath, it is well-known that the field φ is exposed to Brownian motion, while its expectation

value ϕ performs damped oscillations and relaxes to its minimum on a time scale that is

given by the thermal quasiparticle width in the plasma. We have recovered this behavior

as a limiting case in (3.2). Far away from the potential minimum the behavior is very

different.

Effective potential and dissipation coefficient in a scalar theory. In section 4 we

have applied the formulae derived in section 3.2 to a simple scalar model. Analogue results

for the small field case discussed in section 3.1 are given in [75]. The finite temperature

effective potential and damping coefficient are approximately given by the analytic expres-

sions (4.15) (equivalently (4.11)) and (4.29). Our results appear to be in some tension with

the previous literature, which we discuss in section 5.2.

Loop integrals at finite temperature. In the appendices we have provided general

expressions and analytic estimates for nontrivial two-loop integrals for setting-sun diagrams

at finite temperature. This includes the setting-sun diagram at vanishing external four-

momentum (appendix A.2) and thermally on-shell cases (appendix B.2). In appendix C we

have given analytic results for the angle integrals in setting-sun diagrams. These formulae

will be very useful for further calculations in finite-temperature scalar field theory.

5.2 Comparison with previous results

Our results for the damping coefficient Γϕ differ from those obtained in the previous liter-

ature in two ways.

5.2.1 ω = 0 versus ω = Mη

A main difference between the damping coefficient (3.8) during oscillations near the po-

tential minimum and the expression (3.17) for large field values in a slow-roll phase is

that the diagrams in the former are evaluated on the quasiparticle mass shell, while in the

latter they have to be evaluated at vanishing external energy (i.e. at vanishing external four-

momentum, which is off shell). In spite of this, the coefficient (3.8) is frequently used in the

literature in all regimes, which is clearly incorrect. This point has previously been realized

by some authors, see e.g. [31, 77, 84]. In spite of this realization, the authors of [31, 84]

used the on-shell damping rate (3.8) in their calculations, probably for simplicity. The

authors of [77], on the other hand, calculated Γϕ with vanishing external four-momentum.

The fact that the damping coefficient in (3.17) is evaluated at vanishing external four-

momentum raises the questions to which degree our results are sensitive to various known

infrared problems of thermal field theory [85–87], and whether further resummations and
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the inclusion of vertex (and ladder) diagrams are necessary to obtain physically consistent

results. For example, in the calculation of Π̃R
ϕ we neglected the vertex diagram shown in

figure 5 b). This can be justified in the present case because it is not subject to the resonant

enhancement 1/Γχ of the fish diagram in figure 5 a), cf. (4.23). In the calculation of ΠR
ϕ ,

the main argument in favor of our approach is that the thermal masses in (4.12)–(4.13)

already appear at order
√
λχ,

√
λφ and

√
h, while the thermal width is of higher order

in the couplings. This tends to suppress all sorts of finite width and vertex corrections.

However, this handwaving argument is of course not a strict proof, and we postpone the

clarification of these issues to future work.

5.2.2 Evaluation of the fish diagram

The dissipation coefficient Γϕ at leading order is given by the imaginary part of the retarded

self-energy from the fish diagram, ImΠ̃R
ϕ (ω). The fact that it should be evaluated at

vanishing external four-momenta (i.e. ω → 0 in (4.19)) was previously pointed out in [77,

78]. However, the results obtained there at first sight appear to differ from ours. In the

following we try to understand the origin of the difference. Again recalling the optical

theorem, we can identify the region in the integration volume of (4.19) where both spectral

densities are thermally on-shell (i.e. at the intersection of two mass-shell curves in figure 10

a)) as the non-vanishing contribution from kinematically allowed processes (e.g. decay and

scattering) of the on-shell χ-quasiparticles. From the kinematic considerations given in

figure 8, it is clear that such a region exists for ω > 2Mχ. For Γχ � Ωχ it strongly

dominates the integral (4.19), see e.g. [63, 75] for a detailed discussion of this integral.

In this case one can use the zero-width approximation ρχ(p0) ' 2πsign(p0)δ(p2
0 − Ω2

χ) to

evaluate the integral. For Γχ < ω < 2Mχ (see figure 10 b)), the use of this approximation

is not allowed. In this case the integral is dominated by the regions in which one of the

ρχ is on-shell (see figure 11 b)). Within these regions, the part, where the distribution

functions fB have their maxima, gives the biggest contribution. For the case ω � Γχ
under consideration in this work, the pole regions overlap in the entire integration volume,

as depicted in figures 10 c) and figure 11 c). This leads to a strong enhancement, and the

integral is generally dominated by this pole region p0 ' Ωχ. In this case we can use the

expression (4.20) for the spectral densities to obtain the results (4.21) and (4.23).

The setup discussed in [77, 78] is an interesting exception, in which the integral (4.19)

for ω � Γχ is dominated by the off-shell regions in spite of the alignment of the two

quasiparticle peaks illustrated in figures 10 c) and figure 11 c). The reason is that the

contribution from the poles becomes Boltzmann suppressed for Mχ � T . For sufficiently

large Mχ, the integral in (4.19) for ω → 0 is dominated by the p0 ' 0 region. In the model

under consideration here, all thermal corrections to the χ-propagators become suppressed

in this limit, and one essentially recovers the vacuum limit. By adding another fields σ

with effective mass Mσ � T � Mχ and an interaction term χσ2, the authors of [77, 78]

have constructed an interesting scenario in which the loop integral is dominated by off-shell

regions, but thermal corrections are not negligible. If the χ-self-energy is dominated by

the interactions with σ, then its temperature dependence is crucial and affects Γϕ. This is

the origin of the qualitatively different behaviour of the results found in those articles, as
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compared to ours. The different regimes are discussed in more detail in [78]. They appear

to be consistent with our results where the range of applicability overlaps. Practically the

integral (4.19) can be evaluated using the approximation

ρχ → −
2ImΠR

χ

M4
χ

. (5.1)

This approach was referred to as the low-momentum approximation. Unfortunately this

introduces a strong sensitivity to the infrared behaviour of the self-energy, which for a χσ2

coupling is rather complicated and not fully understood [38]. The strongly hierarchical

arrangementMσ � T and T,Mη �Mχ corresponds to a rather specific corner in parameter

space, but is cosmologically very interesting because it has been argued [88] that it provides

a viable “two-stage mechanism” for warm inflation [55].

6 Conclusions and outlook

We have studied the effective action and equation of motion for the expectation value

ϕ of a scalar field φ in a dense medium from first principles of nonequilibrium quantum

field theory. We focused on two cosmologically important processes, damped oscillations

near the ground state and a slow-roll phase in a flat potential. In a series of controlled

approximations, we showed that these processes can be described in terms of Markovian

effective equations of motion for both, the occupation numbers in the plasma and the field

expectation value. This allows to describe the system in terms of a complex valued effective

potential. The real part V(ϕ) is the usual effective potential at finite temperature, which

includes radiative and thermodynamic corrections to the scalar potential. The imaginary

part Γϕ is the dissipation coefficient that leads to damping and particle production.

When applying our results to the damped oscillations near the potential minimum,

we found that our method reproduces the well-known results that have been obtained

by studying the Brownian motion of φ near the ground state. As expected, the effective

potential and damping coefficient for ϕ coincide with the thermal mass and width of quasi-

particles in the plasma. However, far away from the minimum we found a very different

behavior. In particular, during a slow-roll phase, the loop integrals that determine the co-

efficients in the effective action have to be evaluated at vanishing external four-momentum

and in resummed perturbation theory. This shows that the common practice, which uses

the thermal mass and width of quasiparticles as the order-of-magnitude estimates for the

thermal corrections to the effective potential and dissipation coefficient, is clearly incorrect

in this situation.

We illustrated our results in a simple scalar model. In this context, we provided

explicit expressions and analytic estimates for the setting-sun and fish diagrams at finite

temperature. These will be very useful for future computations in scalar field theories at

finite temperature.

Our results mark an important step forward towards a quantitative understanding of

the evolution of scalar fields in the early universe. For instance, they can be applied to

study the fate of moduli, curvatons, axions and other scalars with a flat potential during
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Figure 12. Setting sun diagram for η2χ2 interaction. Solid line is η, while dashed line being χ.

and after reheating. They may also be used to models of warm inflation. Finally, the

scalar field may also represent an order parameter in applications outside the domain

of cosmology. Our analysis is, to the best of our knowledge, the most systematic and

comprehensive one of the subject to date. However, it still relies on several restrictive

assumptions. We have used thermal propagators in Minkowski space to evaluate loop

integrals. This can only be justified if the particles in the loop have reached a local kinetic

equilibrium, and when the thermal masses in the plasma are larger than the rate of Hubble

expansion. Both of these assumptions should be relaxed in future work. Finally, the model

in which we illustrate our results is a simple toy model in which the primordial plasma is

composed only of another real scalar field. In most realistic applications, the scalar field

in question couples directly or indirectly to fermions with non-Abelian gauge interactions.

Some progress towards an inclusion of medium effects on the effective potential has recently

been made e.g. in [34, 35, 52, 53, 71, 72, 75, 89–93], and phenomenological implications have

been discussed in [76, 94–102], but it is still a long way to go to a complete quantitative

understanding of scalar fields in the early universe in realistic models.
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A The self-energy Π−
ϕ from setting-sun diagram

The main goal of this appendix is to evaluate the self-energy in (3.15) from the setting-

sun diagram shown in figure 12, using the zero-width spectral density (2.34) neglecting

ρcont. For earlier discussions of these diagrams, see e.g. [103–107]. We consider the spectral

self-energy Π−ϕ , which is related to the imaginary part of the retarded self-energy.

A.1 General expression

The general expression of Π−ϕp(p0) = 2iImΠR
ϕp(p0) is given by

Π−ϕp(p0) = − ih
2

2

∫
d4q

(2π)4

d4k

(2π)4

d4l

(2π)4
(2π)4δ(4)(p− q − k − l)ρη(q)ρχ(k)ρχ(l)

×
[

(1 + fB(q0)) (1 + fB(k0)) (1 + fB(l0))− fB(q0)fB(k0)fB(l0)
]
, (A.1)

which can be derived analogously to (4.19). After performing an integral over q for η-

propagator, we obtain (suppressing subscript ϕ for Π−)

Π−p (p0) = −i
(
Dp(p0) + Sp1(p0) + Sp2(p0)−Dp(−p0)− Sp1(−p0)− Sp2(−p0)

)
(A.2)

with

Dp(p0) = π
h2

8(2π)5
θ(p0)

∫ p0−Mχ−Mη

Mχ

dΩl

∫ Ω−1

Mχ

dΩk Fd(Ωk,Ωl,−A1) I(a1, b, c), (A.3)

Sp1(p0) = π
h2

8(2π)5

∫ ∞
Mχ

dΩl

∫ ∞
Ω+

1

dΩk Fs1(Ωk,Ωl, A1) I(a1, b, c), (A.4)

Sp2(p0) = 2π
h2

8(2π)5
θ(p0)

∫ ∞
Mχ

dΩl

∫ ∞
Ω2

dΩk Fs2(Ωk,Ωl, A2) I(a2, b, c). (A.5)

Here

Fd(Ωk,Ωl, A) =
(
1 + fB(Ωk)

)(
1 + fB(Ωl)

)(
1 + fB(A)

)
− fB(Ωk)fB(Ωl)fB(A), (A.6)

Fs1(Ωk,Ωl, A) =
(
1 + fB(Ωk)

)(
1 + fB(Ωl)

)
fB(A)− fB(Ωk)fB(Ωl)

(
1 + fB(A)

)
, (A.7)

Fs2(Ωk,Ωl, A) = fB(Ωk)
(
1 + fB(Ωl)

)(
1 + fB(A)

)
−
(
1 + fB(Ωk)

)
fB(Ωl)fB(A), (A.8)

Ω±1 = max
[
p0 − Ωl ±Mη,Mχ

]
, (A.9)

Ω2 = max
[
Ωl − p0 +Mη,Mχ

]
, (A.10)

A1 = Ωk + Ωl − p0, (A.11)

A2 = Ωk − Ωl + p0, (A.12)

I(a, b, c) =

∫ 1

−1
dx

∫ 1

−1
dy

θ (I(x, y, z))√
I(x, y, z)

, (A.13)

z = a+ b y + c x, (A.14)

I(x, y, z) = (1− x2)(1− y2)− (z − xy)2, (A.15)

aj =
A2
j − p2 − k2 − l2 −M2

η

2|k||l| with j = 1, 2 , b =
|p|
|k| , c =

|p|
|l| , (A.16)
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The D terms represent decay and inverse decay η ↔ ηχχ. Note that the integration

limits in (A.3) imply that Dp(p0) vanishes for p0 < 2Mχ + Mη, as expected from energy-

momentum conservation in the processes η ↔ ηχχ that are impossible for on-shell particles.

Sp1(p0) and Sp2(p0) correspond to the damping by scattering processes (“Landau damp-

ing”), ηη ↔ χχ and ηχ↔ ηχ, respectively. The variables x and y are the cosines of the two

nontrivial angles, i.e. x = p·k
|p||k| , y = p·l

|p||l| , so that I(a, b, c) represents integral over angles.

The integrals cannot be performed analytically in general. For the special case p→ 0

under consideration, we can, however, find analytic approximations, see appendix A.2 .

A.2 Analytic approximation for |p| = 0 and ω → 0

Here we derive approximate estimates of Π−0 (ω) for zero spatial momentum and arbitrarily

small energy.

In (A.2), if the energy p0 = ω is smaller than 2Mχ+Mη, then the decay term D doesn’t

contribute as the decay process is not allowed by the energy conservation. Therefore let us

focus on Landau damping terms (A.4) and (A.5). The integral over Ωk does not vanish,

only if there exists an overlap between the integral region of Ωk and the region allowing

a2
j < 1 (with j = 1, 2) due to the step function θ(1− a2

j ) from the angle integral in (C.12)

(now with a = aj).

Let us find the range of Ωk that allows a2
j < 1. Using the definition of aj given in (A.16)

(with p = 0) and introducing dimensionless variables as

t =
Ωk

Mχ
≥ 1, s =

Ωl

Mχ
≥ 1, ω̃ =

ω

Mχ
, u =

M2
η

2M2
χ

, (A.17)

the range of t for a2
j < 1 reads

tj− < t < tj+ (A.18)

with tj± being solutions of a2
j = 1, given (up to the first order in infinitesimal ω̃) by

t1± = (u− 1)s±
√
u(u− 2)(s2 − 1)

+ ω̃

(
1− u+ (2u− 1)s2 ± s

√
u(u− 2)(s2 − 1)

(
2u− 3

u− 2

))
+O(ω̃2), (A.19)

t2± = −(u− 1)s±
√
u(u− 2)(s2 − 1)

+ ω̃

(
−1+u−(2u−1)s2±s

√
u(u−2)(s2−1)

(
2u−3

u−2

))
+O(ω̃2). (A.20)

First of all, in order to have real tj±, it should be that u ≥ 2 (i.e. Mη ≥ 2Mχ). If u < 2

(i.e. Mη < 2Mχ), then it follows that a2
j > 1 and integrals vanish. When u ≥ 2, one can

see that t2± < 0 for arbitrarily small ω̃ since (u− 1)s >
√
u(u− 2)(s2 − 1), so there is no

overlap between the integral range of Ωk and the range allowing a2
2 < 1. S2 thus vanishes

due to the angle integral.14

14This can be physically understood in the following way: S2 terms correspond to Landau damping

ηχ ↔ ηχ, which effectively becomes decay χ ↔ ηχ for ω → 0 and this process is kinematically forbidden

for on-shell particles.
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For S1 corresponding to Landau damping ηη ↔ χχ, which is the only potential non-

vanishing contribution, one can show that Mχt1± > Ω+
1 for arbitrarily small ω̃, so that the

integral over Ωk becomes∫ ∞
Ω+

1

dΩk Fs1(Ωk,Ωl, A1) θ(1− a2
1) =

∫ Mχt1+

Mχt1−

dΩk Fs1(Ωk,Ωl, A1) (A.21)

= T
[
fB(Ωl)− fB(Ωl − ω)

]
log

[
fB(−Mχt1+)fB(−Mχt1− − Ωl + ω)

fB(−Mχt1−)fB(−Mχt1+ − Ωl + ω)

]
(A.22)

ω→0
= ω T

d fB(Ωl)

dΩl
log

[
fB(−Ω1+)fB(−Ω1− − Ωl)

fB(−Ω1−)fB(−Ω1+ − Ωl)

]
. (A.23)

In the second and third equality we have analytically performed the integral and taken

limit ω → 0 to obtain a result up to the first order in ω. Here

Ω1± = Mχt1±(ω = 0) = Mχ

[
(u− 1)s±

√
u(u− 2)(s2 − 1)

]
, (A.24)

which depend on Ωl and Mη through s and u.

Let us now consider the Ωl-integration of (A.23), i.e.

ω T

∫ ∞
Mχ

dΩl
d fB(Ωl)

dΩl
log

[
fB(−Ω1+)fB(−Ω1− − Ωl)

fB(−Ω1−)fB(−Ω1+ − Ωl)

]
. (A.25)

This integral does not seem to allow an exact analytical result, so we try to get an approx-

imate estimate of this integral.

First, when u is close to 2 we use the fact that the integrand has a peak15 around s = 2

(i.e. Ωl = 2Mχ) as shown in figure 13 and fix the logarithm at the peak to pull it out of

the integral. Then we can perform the integral (with lower limit M0 instead of Mχ) to get

− 2ω T log

[
fB(−Ω1+)fB(−Ω1− − Ωl)

fB(−Ω1−)fB(−Ω1+ − Ωl)

]∣∣∣∣
Ωl=M0

fB(M0), (A.26)

where we have put an overall factor 2 to compensate the change of the lower limit of the

integral. Indeed numerical analysis shows that the above expression with M0 = 2Mχ is a

good approximation of the integral for 2 ≤Mη/Mχ ≤ 3.

On the other hand, if u becomes larger, then Ω1+ and Ω1− approach the original

integration boundary (see figure 14). Therefore for sufficiently big u, one can take Ω1+ →∞
and Ω1− → Ω+

1 = max
[
Mη − Ωl,Mχ

]
and then it is possible to analytically perform the

integral giving

ω T

[
log
(

1− e−
Mη
T

)
− 2fB(Mη)

(
Mη − 2Mχ

2T
+ log

f(Mη −Mχ)

f(Mχ)

)
+2fB(Mχ) log

(
1 + fB(Mη −Mχ)

1 + fB(Mη)

)]
. (A.27)

We numerically checked that the above result agrees with the exact integral to a factor of

O(1) for Mη/Mχ > 3.

15To see that the integrand has a peak, note that the logarithm is zero at s = 1, at which Ω1+ = Ω1−,

while
∣∣∣ d fB(Ωl)

dΩl

∣∣∣ falls with s ≥ 1. Furthermore, we numerically verified that the position of peak 1 < s . 2

little changes with temperature T .
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Figure 13. Integrand in (A.25) (multiplied by T ) as a function of s for u = 4 (i.e. Mη ' 3Mχ)

and T = 10Mχ. Note that the function plotted here (the vertical axis) is dimensionless.

Figure 14. Integration region (shaded) in s-t plane restricted by the angle integral (i.e. a21 < 1)

for u = 4 (i.e. Mη ' 3Mχ). The dashed curve is the solution of a21 = 1 consisting of t1±, while the

solid lines correspond to the original boundary of the integral region when not taking into account

the angle integral (see figure 16 with Ωp = Mη).

Altogether we obtain16 an approximation of Π−0 (ω) for infinitesimally small ω (to a

factor of O(1))

lim
ω→0

iΠ−0 (ω)

ω
≈ h2 T

8(2π)3



2 log
[
fB(−Ω1+)fB(−Ω1−−Ωl)
fB(−Ω1−)fB(−Ω1+−Ωl)

]∣∣∣
Ωl'2Mχ

fB(2Mχ) if 2Mχ.Mη.3Mχ,

log
(

1− e−
Mη
T

)
− 2fB(Mη)

(
Mη−2Mχ

2T + log
f(Mη−Mχ)
f(Mχ)

)
+2fB(Mχ) log

(
1+fB(Mη−Mχ)

1+fB(Mη)

)
if 3Mχ .Mη

(A.28)

16So far we have considered only S1(ω) in (A.2) and have to include S1(−ω) to get Π−. Inclusion of this

term gives rise to an overall factor 2 since S1(ω) = −S1(−ω).
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and zero otherwise (i.e. if Mη ≤ 2Mχ). When Mχ � Mη � T , the above expression (i.e.

the second one) can be approximated, to leading order, as

lim
ω→0

iΠ−0 (ω)

ω
≈ h2 T

8(2π)3

(
2T

Mη
log

Mη

Mχ

)
O(1). (A.29)

B The self-energy Π−
χ from setting-sun diagram

In this appendix we calculate the spectral self-energy Π− for the self-interacting scalar

particle χ from the setting-sun diagram shown in figure 15. In particular we find approxi-

mate estimates of Π− for the on-shell case (i.e. when the external momentum is on-shell)

in appendix B.2. This is needed to determine Γχ in (4.23) in section 4.2.2. For p = 0, Π−

has already been calculated in [75] and here we generalize the results to arbitrary p 6= 0.

B.1 General expression

The spectral self-energy Π−χ from the setting-sun diagram in figure 15 has a general ex-

pression

Π−χp(p0) = −
iλ2
χ

6

∫
d4q

(2π)4

d4k

(2π)4

d4l

(2π)4
(2π)4δ(4)(p− q − k − l)ρχ(q)ρχ(k)ρχ(l)

×
[

(1 + fB(q0)) (1 + fB(k0)) (1 + fB(l0))− fB(q0)fB(k0)fB(l0)
]
, (B.1)

which can be derived in the same way as (A.1). After integrations over q and some angles

of momenta k and l, we get

Π−χp(p0) = −i
(
D[χ]

p (p0) + S [χ]
p (p0)−D[χ]

p (−p0)− S [χ]
p (−p0)

)
(B.2)

with

D[χ]
p (p0) = π

λ2
χ

24(2π)5
θ(p0)

∫ p0−2Mχ

Mχ

dΩl

∫ Ω−

Mχ

dΩk Fd(Ωk,Ωl,−A) I(a, b, c) (B.3)

S [χ]
p (p0) = 3π

λ2
χ

24(2π)5
θ(p0)

∫ ∞
Mχ

dΩl

∫ ∞
Ω+

dΩk Fs(Ωk,Ωl, A) I(a, b, c). (B.4)

Here

Fd(Ωk,Ωl, A) =
(
1 + fB(Ωk)

)(
1 + fB(Ωl)

)(
1 + fB(A)

)
− fB(Ωk)fB(Ωl)fB(A), (B.5)

Fs(Ωk,Ωl, A) =
(
1 + fB(Ωk)

)(
1 + fB(Ωl)

)
fB(A)− fB(Ωk)fB(Ωl)

(
1 + fB(A)

)
, (B.6)

Ω± = max
[
p0 − Ωl ±Mχ,Mχ

]
, (B.7)

A = Ωk + Ωl − p0, (B.8)

I(a, b, c) =

∫ 1

−1
dx

∫ 1

−1
dy

θ (I(x, y, z))√
I(x, y, z)

, (B.9)

z = a+ b y + c x, (B.10)

I(x, y, z) = (1− x2)(1− y2)− (z − xy)2, (B.11)
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Figure 15. Setting sun diagram for λχχ
4/4! interaction. Dashed line is χ.

a =
A2 − p2 − k2 − l2 −M2

χ

2|k||l| , b =
|p|
|k| , c =

|p|
|l| . (B.12)

The notations here are the same as in appendix A.1. The integration limits imply that

D[χ]
p (p0) vanishes for p0 < 3Mχ, due to the energy-momentum conservation in the decay

and inverse decay processes χ↔ χχχ, which are not allowed for on-shell particles.

B.2 Approximate estimates for on-shell quasiparticles

Here we derive approximate estimates of the self-energy (B.2) for the on-shell particle with

arbitrary spatial momentum. In the on-shell case (i.e. p0 = Ωp), we have17

Π−χp(Ωp) = −3π
i λ2

χ

24(2π)5

∫ ∞
Mχ

dΩl

∫ ∞
Ω+

dΩk Fs(Ωk,Ωl, A) I(a, b, c). (B.13)

Using the result on the angle integral given in (C.35) in appendix C.2.2, the above integral

becomes

Fs ≡
∫ ∞
Mχ

dΩl

∫ ∞
Ω+

dΩk Fs(Ωk,Ωl, A) I(a, b, c) (B.14)

= 2π

∫ ∞
Ωp

dΩl

∫ ∞
Ωp

dΩk Fs(Ωk,Ωl, A) I

+2

(
2π

|p|

)∫ Ωp

Mχ

dΩl |l|
∫ ∞

Ωp

dΩk Fs(Ωk,Ωl, A) II

+
2π

|p|

∫ Ωp

Mχ

dΩl

∫ Ωp

Mχ+Ωp−Ωl

dΩk

√
A2 −M2

χ Fs(Ωk,Ωl, A). III (B.15)

In the second line, symmetry with respect to Ωk ↔ Ωl has been taken into account,

resulting in overall factor 2. Here I, II and III refer to the corresponding integral regions

in Ωk-Ωl plane as shown in figure 16.

The first line (integral over region I) can be analytically performed, giving

F [I]
s = 2π

∫ ∞
Ωp

dΩl

∫ ∞
Ωp

dΩk Fs(Ωk,Ωl, A) (B.16)

17Note that D terms and S [χ]
p (−p0) vanish for on-shell.
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II

II
III

Wp

Wp

MΧ

MΧ

I

Wl

Wk

Figure 16. Division of the integral region in (B.15).

= 2π T 2

−Li2

(
1

1− e
Ωp
T

)
−

(
log
(

1− e−
Ωp
T

))2

2

 (B.17)

=

{
2π T 2

[
π2/6

]
if

Ωp

T → 0,

0 if
Ωp

T →∞.
(B.18)

When Ωp = Mχ, F [I]
s = Fs and (B.17) corresponds to the result of the entire Fs for

zero mode, so that

Π−χ0(Mχ) = −3π
i λ2

χ (2π T 2)

24(2π)5

−Li2

(
1

1− e
Mχ
T

)
−

(
log
(

1− e−
Mχ
T

))2

2

 . (B.19)

Now let’s turn to integrals over region II and III. Concerning II, at most one integral

can be performed, giving

F [II]
s = 2

(
2π

|p|

)∫ Ωp

Mχ

dΩl |l|
∫ ∞

Ωp

dΩk Fs(Ωk,Ωl, A) (B.20)

=
4π T

|p|

∫ Ωp

Mχ

dΩl |l|
(
fB(Ωl)− fB(Ωl − Ωp)

)
log

[
fB(−Ωl)

fB(−Ωp)

]
. (B.21)

The above integral and the one over region III,

F [III]
s =

2π

|p|

∫ Ωp

Mχ

dΩl

∫ Ωp

Mχ+Ωp−Ωl

dΩk

√
A2 −M2

χ Fs(Ωk,Ωl, A), (B.22)

can not be done analytically. Therefore we try to obtain approximations of the integrals

over II and III by considering cases of Ωp < T and Ωp > T separately, under the assumption

Mχ < T .
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B.2.1 Ωp < T

By expansion of exponential in distribution functions. For Ωp < T one can expand

the exponentials inside fB in (B.21)–(B.22), i.e. fB(Ωl) ≈ T/Ωl , and after some algebra

we get

F [II]
s ≈ 4π T 2 Ωp

|p| G
(
Mχ

Ωp

)
, (B.23)

F [III]
s ≈ 2π T 2 Ωp

|p|

[
G1

(
Mχ

Ωp

)
+

Ωp

T
G2

(
Mχ

Ωp

)]
(B.24)

with

G(x) = −
∫ 1

x
dt

log t

1− t

√
1− x2

t2
, (B.25)

G1(x) =

∫ 1

x
dt

∫ 1

x+1−t
ds

√
(t+ s− 1)2 − x2

t s (t+ s− 1)
, (B.26)

G2(x) =

∫ 1

x
dt

∫ 1

x+1−t
ds

√
(t+ s− 1)2 − x2

t+ s− 1
. (B.27)

Here we have introduced variables t = Ωl/Ωp, s = Ωk/Ωp and x = Mχ/Ωp. From above

expressions for the G functions it follows that

G(0) =
π2

6
, G(1) = 0, (B.28)

G1(0) =
π2

6
, G1(1) = 0, (B.29)

G2(0) =
1

2
, G2(1) = 0. (B.30)

We have numerically checked that for x < 1/2 (i.e. Ωp > 2Mχ) the G functions in (B.25)–

(B.27) change rather slow with x and that for x < 1/3 (i.e. Ωp > 3Mχ) they are little

different from the values at x = 0. Thus for 3Mχ . Ωp < T we can replace the G functions

in (B.23)–(B.24) by their values at zero, giving

F [II]
s ≈ 4π T 2 Ωp

|p|
π2

6
O(1), (B.31)

F [III]
s ≈ 2π T 2 Ωp

|p|

[
π2

6
O(1) +

Ωp

2T
O(1)

]
. (B.32)

Together with (B.17), the entire result for the self-energy (B.13) reads

Π−χp(Ωp) ≈ 3π
i λ2

χ (2π T 2)

24(2π)5

Li2

(
1

1− e
Ωp
T

)
+

(
log
(

1− e−
Ωp
T

))2

2
− Ωp

|p|

(
π2

2
+

Ωp

2T

) .
(B.33)
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Another way. The function Fs(Ωk,Ωl, A), given in (B.6), has a maximum at Ωl = Mχ

and Ωk = Ωp (also at Ωk = Mχ and Ωl = Ωp, by symmetry Ωl ↔ Ωp). Around this point,

Fs is dominated by the term fB(Ωl)
2 for Ωl < T . Then one can use fB(Ωl) ≈ T/Ωl to see

that |l| fB(Ωl)
2 has a peak at |l| ∼Mχ. Therefore the integrand in (B.20) has a maximum

at |l| ∼Mχ and in a similar way one can show that the integrand in (B.22) has a peak when√
A2 −M2

χ ∼ Mχ. Using these facts, we can obtain approximations to (B.20) and (B.22)

by replacement |l| → Mχ in (B.20) and
√
A2 −M2

χ → Mχ in (B.22). Then the integrals

can be analytically performed, giving

F [II]
s = 2

(
2π

|p|

)∫ Ωp

Mχ

dΩl |l|
∫ ∞

Ωp

dΩk Fs(Ωk,Ωl, A)

≈ 2

(
2πMχ

|p|

)∫ Ωp

Mχ

dΩl

∫ ∞
Ωp

dΩk Fs(Ωk,Ωl, A)

=

(
4πMχT

2

|p|

)[
π2

6
+

(
log
(
1− e−Mχ/T

))2
2

−
(
log
(
1− e−Ωp/T

))2
2

+ log

(
1− e−Ωp/T

1− e−Mχ/T

)
log
(
e−Mχ/T − e−Ωp/T

)
− Li2

(
1− e−Mχ/T

1− e−Ωp/T

)]
(B.34)

and

F [III]
s =

2π

|p|

∫ Ωp

Mχ

dΩl

∫ Ωp

Mχ+Ωp−Ωl

dΩk

√
A2 −M2

χ Fs(Ωk,Ωl, A), (B.35)

≈ 2πMχ

|p|

∫ Ωp

Mχ

dΩl

∫ Ωp

Mχ+Ωp−Ωl

dΩk Fs(Ωk,Ωl, A),

=
2πMχT

2

|p|

−π2

6
+

(
log 1−e−Mχ/T

1−e−Ωp/T

)2

2
− (Ωp +Mχ) log

(
1− e−Mχ/T

1− e−Ωp/T

)

+ log

(
1− e−Mχ/T

1− e−Ωp/T

)
log

(
1− e(Mχ−Ωp)/T

1− e(−Mχ−Ωp)/T

)
− Li2

(
e−Mχ/T − e−Ωp/T

e−Mχ/T − 1

)

+Li2

(
1− e−Mχ/T

1−e(−Mχ−Ωp)/T

)
−Li2

(
1− e−Ωp/T

1−e(−Mχ−Ωp)/T

)
+Li2

(
1−e−Mχ/T

1−e−Ωp/T

)]
.

(B.36)

These expressions have more involved forms than (B.31)–(B.32), which can be seen as

approximations to the above expressions.

B.2.2 Ωp & T

In this case the integrands in (B.20) and (B.22) are maximal at |l| ∼ T and
√
A2 −M2

χ ∼ T ,

respectively. Therefore we can obtain approximations by replacing |l| → T in (B.20) and√
A2 −M2

χ → T in (B.22). Then we can analytically perform the integrals to obtain

F [II]
s = 2

(
2π

|p|

)∫ Ωp

Mχ

dΩl |l|
∫ ∞

Ωp

dΩk Fs(Ωk,Ωl, A)
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≈ 2

(
2πT

|p|

)∫ Ωp

M0

dΩl

∫ ∞
Ωp

dΩk Fs(Ωk,Ωl, A)

=

(
4πT 3

|p|

)[
π2

6
+

(
log
(
1− e−M0/T

))2
2

−
(
log
(
1− e−Ωp/T

))2
2

+ log

(
1− e−Ωp/T

1− e−M0/T

)
log
(
e−M0/T − e−Ωp/T

)
− Li2

(
1− e−M0/T

1− e−Ωp/T

)]
(B.37)

and

F [III]
s =

2π

|p|

∫ Ωp

Mχ

dΩl

∫ Ωp

Mχ+Ωp−Ωl

dΩk

√
A2 −M2

χ Fs(Ωk,Ωl, A) (B.38)

≈ 2πT

|p|

∫ Ωp

M0

dΩl

∫ Ωp

M0+Ωp−Ωl

dΩk Fs(Ωk,Ωl, A)

=
2πT 3

|p|

−π2

6
+

(
log 1−e−M0/T

1−e−Ωp/T

)2

2
− (Ωp +M0) log

(
1− e−M0/T

1− e−Ωp/T

)

+ log

(
1− e−M0/T

1− e−Ωp/T

)
log

(
1− e(M0−Ωp)/T

1− e(−M0−Ωp)/T

)
− Li2

(
e−M0/T − e−Ωp/T

e−M0/T − 1

)

+Li2

(
1− e−M0/T

1− e(−M0−Ωp)/T

)
− Li2

(
1− e−Ωp/T

1− e(−M0−Ωp)/T

)
+ Li2

(
1− e−M0/T

1− e−Ωp/T

)]
.

(B.39)

Here we have replaced Mχ in the low limits of the integral by some constant M0, which we

choose M0 ∼ T/2. For Ωp � T , from above we get

F [II]
s + F [III]

s ≈ 2πT 2

(
M0

T
− log(eM0/T − 1)

)
(B.40)

' 2πT 2O(1), (B.41)

and this is the result of the whole Fs since F [I]
s ' 0 for Ωp � T (see (B.18)).

To sum up, when Mχ � T the spectral self-energy for on-shell χ-particle with any

momentum p can be approximated as

Π−χp(Ωp) ≈ −3π
i λ2

χ (2π T 2)

24(2π)5
O(1). (B.42)

C The angle integral in setting-sun diagrams

In this appendix we estimate the angle integrals for setting-sun diagrams I(a, b, c),

see (A.13) and (B.9). The angle integral has a general form

I(a, b, c) =

∫ 1

−1
dx

∫ 1

−1
dy

θ (I(x, y, z))√
I(x, y, z)

, (C.1)
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I(x, y, z) = (1− x2)(1− y2)− (z − xy)2, (C.2)

z = a+ b y + c x, (C.3)

a =
A2 − p2 − k2 − l2 −M2

2|k||l| , b =
|p|
|k| , c =

|p|
|l| . (C.4)

Here A is a function of p0, Ωk and Ωl, see e.g. (B.8). First we consider the cases with zero

external momentum p = 0 (on-shell or off-shell) and then turn to the on-shell cases with

non-zero momentum p 6= 0.

C.1 Zero mode (p = 0)

In this case we have b = 0 = c and z = a, so that

I(x, y, z) = (1− x2)(1− y2)− (a− x y)2. (C.5)

If a2 < 1 and x2 < 1, there exists −1 < y± < 1 that solve I(x, y) = 0, so that one can

write (see figure 17)

I(x, y, z) = −(y − y−)(y − y+) (C.6)

with

y± = a x±
√

(1− x2)(1− a2) (C.7)

One can easily see that |y±| < 1 for a2 < 1 and x2 < 1. Then assuming a2 < 1 the angle

integral can be performed, giving

I =

∫ 1

−1
dx

∫ 1

−1
dy

θ (I(x, y))√
I(x, y)

(C.8)

=

∫ 1

−1
dx

∫ y+

y−

dy
1√

−(y − y−)(y − y+)
(C.9)

=

∫ 1

−1
dxπ (C.10)

= 2π. (C.11)

Note that in the second line the y-integral gives π irrespectivly of x, though y± depends

on x. If a2 > 1, there exists no real y± for x2 < 1. This implies I(x, y) < 0 for x2 < 1 and

y2 < 1, giving vanishing result for the integral due to θ(I(x, y)) in the integrand.

The final result for zero mode is thus

I = 2π θ(1− a2). (C.12)

Note that a depends on p0, |k|, |l| and Mχ by (C.4), so that the step-function θ(1 − a2)

in (C.12) restricts the integral region on Ωk-Ωl plane to the one allowing a2 < 1.

C.2 Non-zero mode (p 6= 0)

Here we generalize the zero-mode result obtained above to the cases of non-zero mode.

First we consider generic cases, which include off-shell as well as on-shell, and then focus

on the latter, which is needed to evaluate Γχ in (4.23) in section (4.2.2).
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y+y- y

IHy L

1-1

Figure 17. I as a function of y when −1 < y−, y+ < 1.

C.2.1 Generic cases

For |p| 6= 0, z is given by z = a+ b y + c x with b 6= 0 6= c and I(x, y, z) can be written as

I(x, y, z) = −(1 + b2 − 2b x)(y − y+)(y − y−), (C.13)

where

y± =
(x− b)(a+ c x)±

√
(1− x2)

(
1 + b2 − 2b x− (a+ c x)2

)
1 + b2 − 2b x

. (C.14)

Let us find the conditions, under which there exists −1 < y± < 1 assuming |x| < 1. The

conditions that y± be real and that it satisfy −1 < y± < 1 require

(a+ c x)2 < (1 + b2 − 2b x), (C.15)

(x− b)2(a+ c x)2 < (1 + b2 − 2b x)2, (C.16)

respectively. The second condition above is obtained18 by requiring −1 < y−+y+

2 < 1.

Since 0 < (x − b)2 < b2 − 2b x + 1 for |x| < 1, the second condition also follows from the

first one with |x| < 1. Thus the condition for −1 < y± < 1 is

(a+ c x)2 < (1 + b2 − 2b x) and |x| < 1. (C.17)

The range of x satisfying this condition is

X ≡ (−1, 1) ∩ (x−, x+) (C.18)

18Since I(y = ±1) ≤ 0, y− and y+ must lie in {y−, y+ < −1} or {−1 < y−, y+ < 1} or {1 < y−, y+},
see figure 17. Among these possibilities, only when −1 < y−, y+ < 1, the integral does not vanish and only

this case fulfills −1 < (y− + y+)/2 < 1.
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where x± are solutions of (a+ c x)2 = (1 + b2 − 2b x),

x± =
−b− ac±

√
b2 + 2abc+ c2 + b2c2

c2
, (C.19)

and they are real when

b2 + 2abc+ c2 + b2c2 > 0. (C.20)

Furthermore it follows from (C.4) that

b2 + 2abc+ c2 + b2c2 =
(A2 −M2)b2c2

|p|2 . (C.21)

The right hand side is positive over the integral region in (B.3) and (B.4) since it has been

chosen in such a way that A2 > M2
χ holds, by using Ω± for the integral limits. Thus x±

are always real on the integral region.

If X = ∅, then the angle integral vanishes. If X 6= ∅, we define x− and x+ as a lower

and upper bound of X, respectively and then the angle integral can be performed as

I(a, b, c) =

∫ 1

−1
dx

∫ 1

−1
dy

θ (I(x, y))√
I(x, y)

(C.22)

=

∫
X

dx√
1 + b2 − 2b x

∫ y+

y−

dy√
−(y − y+)(y − y−)

(C.23)

=

∫ x+

x−

dx√
1 + b2 − 2b x

π (C.24)

=
π
(√

1 + b2 − 2b x− −
√

1 + b2 − 2b x+

)
b

. (C.25)

Here x− = max[−1, x−] and x+ = min[1, x+] provided that X 6= ∅. Since x± are functions

of a, b and c, the condition X 6= ∅ can be reduced in terms of these parameters, which are

functions of energy, momenta and masses of particles through (C.4). In the following we

consider on-shell cases and obtain analytical results for the angle integral.

C.2.2 On-shell cases

As a specific example, we apply the results obtained in the previous subsection to the

diagram given in figure 15, when the external four-momentum is on-shell (i.e. p0 = Ωp =√
p2 +M2

χ). By introducing γ ≡ Mχ

|p| the parameter a can be expressed as (using (C.4)

and (B.8))

a = γ2bc+
√

(1 + γ2b2)(1 + γ2c2)−
√

1 + γ2
(
c
√

1 + γ2b2 + b
√

1 + γ2c2
)
, (C.26)

which has properties

a(b = 1) = −c, a(c = 1) = −b. (C.27)

Using the second property above in (C.19), we get

x±(c = 1) = ±1 (C.28)
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and one can show that

|x±| > 1 if c < 1, (C.29)

|x±| < 1 if c > 1. (C.30)

Therefore

X = (−1, 1) ∩ (x−, x+) = (x−, x+) =

{
(−1, 1) if c ≤ 1,

(x−, x+) if c > 1.
(C.31)

Then in (C.25) we have

√
1 + b2 − 2b x± =

{
|b∓ 1| if c ≤ 1,

|a+ cx±| if c > 1.
(C.32)

In the second line on the right hand side we have used the fact that x± solve 1+b2−2b x =

(a+ c x)2. Noting that a+ cx− < 0 and using properties for c > 1,

a+ cx+


< 0 if b > 1

= 0 if b = 1

> 0 if b < 1,

(C.33)

we obtain the final expression for the angle integral (C.25),

I =
π
(√

1 + b2 − 2b x− −
√

1 + b2 − 2b x+

)
b

=


2π if b ≤ 1 and c ≤ 1

2π b−1 if b > 1 and c ≤ 1

2π c−1 if b ≤ 1 and c > 1

2π

√
A2−M2

χ

|p| if b > 1 and c > 1.

(C.34)

In the last line we have used (C.21) and assumed19 A ≥ Mχ (i.e. Ωk + Ωl > Ωp + Mχ

in (B.4)). In terms of energies and momenta, the result above reads

I =



2π if Ωp ≤ Ωk,Ωl

2π |k||p| if Ωk < Ωp ≤ Ωl

2π |l||p| if Ωl < Ωp ≤ Ωk

2π

√
(Ωk+Ωl−Ωp)2−M2

χ

|p| if Ωk,Ωl < Ωp and Mχ ≤ Ωk + Ωl − Ωp

0 otherwise.

(C.35)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

19As mentioned before, A ≥ Mχ holds over the integral region on Ωk-Ωl plane in (B.4) by imposing the

integral limit Ω+.
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