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Abstract—In human-robot interaction, it is essential to ensure that the
robot poses no threat to the human. Especially in applications which
require close or physical interaction, e.g. collaborative manufacturing or
rehabilitation, the danger emanating from the robot has to be minimized.
Control schemes introducing virtual constraints have proven valuable in
this context since they allow to define a safe zone to move in without
endangering the human. Combining the different requirements on the
control scheme such as real-time capability, stability, and reliability in the
presence of external disturbances and dynamic limits, however, turns out
to be challenging. In this article, we present a novel control scheme for
human-robot interaction, which enforces dynamic constraints even in the
presence of external forces. Based on an analytic constraint description
and a feedback linearization of the system dynamics, a safe set of states
is determined which is then rendered controlled positively invariant thus
keeping the system in a safe configuration. The controlled system is
analyzed with respect to invariance and boundedness with the results
being illustrated in a full-scale experiment.

Index Terms—Invariance control, human-robot interaction, collision
avoidance, safety, real-time systems, motion control, nonlinear dynamical
systems, time-varying systems, lyapunov methods.

I. INTRODUCTION

Capabilities of robotic systems have considerably improved over
the past years and the development of dexterous grippers, omni-
directional platforms and strong manipulators has opened up many
fields of application. These new systems are potential assistants in
health care and rehabilitation, possibly even as wearable devices.
Exoskeletons help patients with motor disorders [1] and mobile robots
take over tasks in domestic and industrial environments [2], [3]. This
expansion of application domains introduces new challenges to the
control of the robotic systems especially with respect to meeting
fundamental safety requirements as stated in [4], [S].

Depending on the field of application, the robot has to carry out
a specific task. This is achieved by an approach with explicit goal
description such as PD (proportional-derivative) tracking control [6]
and impedance control [7] or with implicit goal description such as
reinforcement learning strategies [8], [9]. Since damage to the robot
and its surroundings must be avoided, constraints imposed by the
environment as well as joint and velocity limits have to be enforced.
Especially for tasks, which involve close or even physical interaction
with humans, the most important issue is to keep any humans in
the vicinity of the robot safe at all times. As humans move and
everyday environments often change dynamically, the constraints vary
over time, which requires the applied constraint enforcing control
scheme to deal with such time-dependency. An appropriate control
action has to be determined in real-time to guarantee constraint
adherence. However, even in the presence of constraints, the robot
should be able to use as much of the unconstrained state space as
possible for achieving the task objective. This means that the control
scheme, which is responsible for enforcing the constraints, should
not restrict the manipulator more than absolutely necessary. This is
especially important in narrow and cluttered environments, where
it is essential to use as much of the available space as possible.
Additionally, physical interaction with humans causes interaction
forces to act on the robot. These forces need to be accounted for in
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the control scheme and must not lead to a violation of a constraint.
To summarize, a control scheme, which may be used for applications
including close and physical human-robot interaction, has to reliably
provide constraint enforcing control in real-time. The system should
follow the control goal using the available space while guaranteeing
adherence to dynamic constraints even in the presence of external
disturbances.

Currently available control schemes strongly enforce some of these
requirements but are challenged when it comes to others. Since it
is important to address all the introduced aspects, this generates the
necessity for a control scheme, which reliably meets all the challenges
of safety in close and physical human-robot interaction.

A. Contribution

In this work, we introduce a novel control scheme for robotic
systems, which is able to guarantee state and output constraint enfor-
cement. The proposed invariance control scheme has the advantage
of being implemented in addition to an existing control law, which
is designed according to performance specifications and the control
goal of the system. As a result, invariance control is applicable in
many scenarios and applications, where constraints have to be added
to an existing control structure. In order to keep the system constraint
admissible, a method is provided to determine an admissible subset in
state space based on the given constraints and the system dynamics.
Invariance control is able to deal with a variety of constraints,
including joint, velocity and workspace constraints and even dynamic
constraints, e.g. to account for moving humans in the vicinity. We
formally show that the designed control scheme keeps the system
within the admissible subset for all times while keeping the tracking
error with respect to the original desired trajectory bounded. This is
also true in the presence of external (input) disturbances. To illustrate
the fact that the control scheme presents a solution for scenarios
including physical contact of robots and humans, we conduct an
experimental evaluation on a real robotic platform.

B. Related Work

Naturally, there are various other well-known control schemes
addressing the issue of enforcing constraints. One approach is model-
predictive control (MPC) [10]. The optimization-based approach
allows for input, output and state constraints. For high-dimensional
and nonlinear systems and a high number of constraints, the computa-
tional cost may, however, prevent the execution in real-time. Another
optimization-based approach is the reference governor [11], which
is the base for many approaches such as command governors [12]
or fast reference governors [13]. Allowing for system disturbances,
these approaches are designed for discrete-time systems and, similar
to MPC, real-time requirements may not be met due to the required
numerical simulation. Control based on barrier certificates [14] and
functions [15], [16] on the other hand does not require extensive
optimization and allows for the definition of soft and hard constraints
on the system while combining them with control objectives. It
does, however, not provide solutions in case of constraint violation,
which may lead to instability and undesired behavior. Methods,
which provide a trade-off between reaching the control objective
and keeping the system safe, are also found in shared control [17].
The result is, however, a system which does not use the safe space
to all extent. Finally, there are the widely used collision avoidance
approaches for robotic systems such as potential fields [18], the
dynamic window approach [19], virtual wall rendering [20] and
virtual fixtures [21], which do not explicitly take the system dynamics
into account. As the system dynamics are not negligible especially



for high inertias or high accelerations, these approaches are unable
to guarantee the adherence to the constraints.

The concept of invariance control is introduced in [22] for
nonlinear, control affine single-input single-output (SISO) systems.
Implementation in addition to a nominal control law is introduced
in [23] and an extension to multi-input multi-output (MIMO) systems
is provided in [24]. The issue of chattering, which is a result of a
sampled data implementation, is addressed in [25]. Invariance control
is successfully applied to control legged robots [26] and to enforce
6D workspace constraints [27]. In preliminary work of the authors, an
invariance control scheme for the use with time-varying constraints is
developed [28] and evaluated experimentally on an anthropomorphic
manipulator [29]. The influence of constraint violation and external
disturbances on the control performance is, however, not discussed.
Additionally, conclusive proof of invariance and boundedness of an
invariance controlled robotic system is missing to date.

C. Notation

By convention, vectors are denoted by bold small characters,
matrices by bold capital characters. The Euclidean vector norm (2-
norm) of a vector & € R™ is written as ||x||2 = v/aTz. The
expression &1 =< 2 indicates the element-wise inequality of two
vectors x1, 2 € R™. Stacking scalars or vectors to receive a vector
or a matrix, respectively, is denoted by square brackets

al by
A=lal]=| : [eR"", b=[b]= e R**! .
al b
Low order time derivatives are indicated by dots © = %, higher
order time derivatives by superscripts «®) = ‘:lz—,f The first order

Lie derivative, i.e. the directional derivative in direction f of a scalar
function h(x), is given by

oh

Lie derivatives of higher order L%h(x), i > 1 are determined recur-
sively. The set of k& times continuously differentiable functions h :
R™ — R™ is denoted by C¥(R™, R™). The system parts are identified
by corresponding subscripts. The subscript ‘des’ refers to the desired
system action, ‘no’ to nominal control, ‘c’ to the control input of
the torque controlled robot, ‘ext’ to external disturbances, ‘m’ to the
torque controller, ‘g’ to joint space and ‘p’ indicates the task space.

II. CONSTRAINED ROBOTIC SYSTEM

Safe human-robot interaction requires compliance with safety
relevant constraints, thus causing the need for a control scheme,
which is able to guarantee compliance with these limits. This section
introduces the general dynamic model of the robotic system and the
requirements imposed upon the constraint description and a nominal
control scheme for unconstrained task execution such that a constraint
enforcing control scheme may be designed.

A. Robotic system equations

For the robotic system, we consider the general dynamics

My(q)§ +Cq(q,4)q +gq(q) =T (D

where q(t) € R™ are generalized coordinates, Mq(q) € R"¢*™4 is
the mass matrix, Cq(q, ¢)g € R™ are the Coriolis and centripetal
forces, gq(g) € R™ the gravitational torques and 7 € R™ is the
input torque of the system. The dynamics represent the reaction of
a robotic system to the applied actuator torques 7, which consist of
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Fig. 1: Structure of the control loop of a torque-controlled robotic
system under nominal control.

the control torques 7 € R™?, the external input disturbances Tex €
R™ and torques 7. € R™? resulting from measurement errors and
unmodeled dynamics

T=Tm+ Text +Te . (2)

The external disturbances are a result of the physical interaction
with the human and the environment. Any physical contact with
a human or the environment generates contact forces and torques,
which translate into disturbance joint torques. These external forces
may be either desired and included in a nominal control scheme or
undesired, for example as a result from an unexpected collision.

In the following, for notational convenience, the explicit depen-
dency on q and ¢ of the matrices Mg(q) and Cq(q, q) as well as of
the vector gq(q) will be omitted. The states q and ¢ are concatenated
in the vector ™ = [¢7 ¢"]".

B. Robot control

The control scheme for torque-controlled robotic manipulators
consists of two control loops as depicted in Fig. 1. The outer
control loop with the nominal control law is designed to generate
a control torque Tn, € R™, which enforces the desired behavior of
the manipulator. The inner control loop with the torque controller
ensures that the robot behaves according to the desired torques
and compensates the effects of disturbance torques 7o € R™¢
and 7. € R™9.

Remark 1. In the following, the control approach is introduced for
torque-controlled robotic systems. However, by adapting the control
law accordingly, it is readily applicable to position-controlled robots
as well. In that case, the influence of disturbances and modeling
errors need to be expressed in terms of the position error.

The design of the torque control law in the inner loop is often
based on the concept of passivity, leading to a PD control law [30].
The torque error

€r =T — T 3)

serves as the control input. In order to achieve 7 = 7n, € R™ we
make the following assumption on the torque control law.

Assumption 1. The torque control loop is input-to-state stable with
respect to bounded inputs T ., and T., i.e.

Text(8)

Te(8)

with a class KL function o and a class KC function [ holds for any
initial error e (to) and all t > to.

sup
to<s<t

lex ()]l < alllex (to) ]t — to) + 8 (

The control goal of the outer loop is given by the interaction task
and is defined in task coordinates p € R"?, which are determined as
a function fp : R™" — R"» of the generalized coordinates

p=Jfola) . 4



The Jacobian J(q) = g—fl’ € R™ XM determines the relation
between task space and joint velocities as well as between task space

forces/torques f € R™? and joint torques

p=J(g)q (&)
T=J(@)'f . (©)

A well-known control law in physical human-robot interaction
with torque-controlled manipulators is impedance control [7]. It
imitates spring damper behavior with respect to a desired trajectory
in reaction to measured or estimated external forces and torques.
As a result, the robot carries out a desired motion, which may be
actively changed by the human applying forces, since the robot reacts
compliantly. Both the implementation in task coordinates [7] and in
joint coordinates [31] are commonly used. For impedance control in
task space, the control torque 75, is given by

Tno = J(q)T(fcxt + Mpiidcs + DP(I.)dcs - 15) + Kp(pdcs - p))
+ Cq(g,4)4 +94(q) @)

with a sufficiently smooth desired trajectory p,., and the positive
definite Cartesian mass M, € R"*™_ stiffness K, € R™*™»
and damping D, € R"™”*™ matrices. External forces f, € R™
are connected to the external torque Tex by (6). The stiffness and
damping parameters may be adapted, sometimes even on-line, to
account for task requirements [32].

In order to guarantee safe and predictable cooperation, the control
law has to be designed carefully to comply with the desired task
specification and performance goal.

Assumption 2. In the absence of external forces, ie. f,, = O,
the continuous nominal control law globally stabilizes the tracking
error € = ®ae(t) — x in the sense of Lyapunov for a sufficiently
smooth desired state trajectory Xges(t).

This assumption ensures the tracking performance. It is generally
fulfilled for control schemes with explicit goal descriptions, as here
stability is the most basic design goal. For control schemes with
implicit goal descriptions such as learning approaches, the stability
assumption is not immediately clear. However, if the set of control
laws, over which the learning is conducted, solely consists of stabi-
lizing control laws, stable tracking is achieved.

Remark 2. Assumption 2 is necessary to investigate boundedness
in the following sections. In the presence of external forces or if
boundedness is a subordinate control goal, the assumption may be
disregarded as it does not influence the guarantees for constraint
adherence. This means that other stability notions may be used, which
is, however, not discussed further as the nominal control design is
not within the scope of this work.

In the following, constraint-enforcing measures are introduced,
which avoid a violation of the constraints even in the presence of
external forces. Note that as torque control uses the torque error as
a control input, it is no restriction to assume that it is available for
use in invariance control.

C. Constraints

For human-robot interaction, an accurate definition of the safety
constraints, such as position and velocity constraints, is crucial
to ensure operation consistent with the standards in [4], [S]. The
constraints may be given by joint or velocity limits inherent in
the robotic structure and a violation might lead to unexpected and
unsafe motion. Additionally, obstacles and interacting humans impose
workspace constraints. The shape of the constraint is determined by
the geometrical properties of the obstacles. Upper or lower limits

are usually best described by linear functions, whereas humans or
more complex objects may be encased in multiple spherical con-
straints [33]. While the structural constraints will mostly be static, the
environment may vary over time, since humans and obstacles might
be moving. Therefore, similar to other model-based approaches such
as MPC, a prediction-based representation of the constraints, which
accounts for their dynamic nature, is required. This may be achieved
by exploiting prior knowledge about the underlying dynamics, e.g.
the minimum jerk properties of human motion [34], or by using a
learning approach as e.g. in [2].

We model each constraint ¢ by an analytic function h;(x,n(t)),
which depends on the system states @ and a set of dynamic para-
meters 7(t). Naturally, the parameters 7)(¢) may be set at a constant
value to model static constraints. The function provides a measure
for the distance of the system from the constraint. It is equal to
zero on the constraint, negative for admissible states and positive
for inadmissible states. The set of [ time-varying constraints is then
specified by a vector of constraint functions

hi(z, m(t))
h(z,n(1)) = : ; ®)
hu(, n(t))

which depends on the system states z(t) = [q7,4"]T € R*" and
the parameters 7)(¢) € R™". They are considered an (artificial) output

y = h(z,n()) )

of the robotic system, which is used in the derivation of a control
scheme. Additionally, (8) defines the time-varying admissible set

(10)

In order to guarantee safe interaction, a corrective control law should
guarantee compliance with the constraints, thus keeping the states
of (1) within the admissible set for all times.

H(t) = {x € R™ | hi(z(t),n(t)) <0 V1<i<I}.

Assumption 3. For all instants of time t and a sufficiently large
constant r; each constraint in the output (9) and the corresponding
admissible set fulfill the following conditions:

(i) Each element n;(t), 1 < j < n,, is measurable and generated
by possibly unknown stable underlying dynamics such that the
parameter function is a C™ function with respect to time,

(ii) each n;(t), 1 < j < ny and its r; derivatives are bounded,

(iii) each output function (9) is a C"# function with respect to time,

(iv) H(t) is connected and H(t) # 0.

Note that constraint dynamics, given by human motion, typically
fulfill condition (i), as human motion is found to be jerk con-
trolled [34]. Otherwise it may be achieved by approximating the
parameters by a sufficiently smooth signal. If the parameters 7; (t)
are not measurable, they need to be estimated, e.g. by using an ob-
server. Condition (iii) is ensured by designing the constraint function
accordingly. It allows the robotic system to follow the dynamics of
the constraint if necessary. Condition (iv) is a natural assumption,
since it is only possible for the controlled system to remain constraint
admissible if such states exist.

Note that the notion of the admissible set may be extended to
multiple disjoint admissible sets H(t) = Hi(¢t) U ... U Hn(¢),
each H;(t) defined by a set of constraints, cf. (10). In this case,
constraint adherence may only be achieved if the set H;(¢) containing
the initial system state fulfills Assumption 3. In the following,
a computationally efficient control scheme, which combines task
execution with a guaranteed constraint adherence is introduced.
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Fig. 2: Structure of the control loop of a robotic system controlled
by a nominal controller combined with invariance control for safety.

III. INVARIANCE CONTROL

Invariance control is a control scheme, which may be implemented
as an add-on to any existing nominal control. It ensures that the
system performs according to the desired behavior generated by
nominal control within the admissible, i.e. safe, set. At the same time,
it monitors the system motion towards the constraints and provides
corrective control action, when it is necessary to avoid the violation
of a constraint.

The structure of an invariance controlled robotic system is shown
in Fig. 2. The states x of the robotic system (1) and the information
about the desired system behavior p, are used to determine the
nominal control input 7,,. Invariance control combines (9) with 7y,
and calculates a corrective control input 7., which is as close as
possible to 7, and avoids any violation of the constraints.

In the following, we will give a thorough introduction and analysis
of invariance control with dynamic constraints in robotic applications.
Invariance control usually assumes an ideal torque controlled robot,
i.e. e = 0. External forces, however, lead at least temporarily to
a torque error e, different from zero. Therefore, we will explicitly
include the effects of a torque error in the control scheme. Invariance
control is introduced for MIMO systems but application to systems
with single input and/or single output is straightforward.

Invariance control is applicable to nonlinear, control affine MIMO
systems [24]. The torque-controlled robotic system as shown in Fig. 1
has the input 7. and the states = [q7,¢"]T € R®*". The system
equations of the torque controlled robot

g o -
- e d

@ f(=)

(1D

G(@)=[g;(@)..9,, (@)]

are derived using (1) and (3) and show that the torque-controlled
robotic system is, in fact, control affine with respect to the input 7.
Based on these system equations, we will determine a corrective
control input, which achieves adherence to the constraints in the
presence of external forces/torques Tex and torques caused by model
and measurement uncertainties 7.. With a proper design of the
underlying torque control scheme, which is not part of this work, the
resulting torque error e, is bounded if the disturbance signals are
bounded as well, which is usually the case for occurring disturbance
torques Text, Te in a properly modeled robotic system.

Assumption 4. The torque error is measurable and absolutely
bounded, ||e+||2 <de. .

This assumption is required to be able to include the torque error
in the control derivation.

Remark 3. Since the torque error is the input to torque control, it
is no restriction to assume its availability for invariance control.

In the following, invariance control is introduced for constraints,
which have relative degree one or two with respect to the system (11)
as these are the most relevant in robotic applications. Nevertheless,
invariance control is able to enforce constraints with a higher relative
degree by adjusting the invariance function and the conditions. For
more information, the interested reader is referred to [23].

A. Input-output-linearization

A violation of the constraints may only be avoided, if the influence
of the control input on the motion towards a constraint is clear. Input-
output (I/O)-linearization is a useful tool to determine the influence
of the system input 7. on the output functions (9). It transforms
the original system into an integrator chain with the same output
and a new pseudo input, which is determined by the linearizing
transformation. In the following, we show how the resulting linear
system allows the definition of the instant of time, when a corrective
action for constraint adherence is required and how the inverse
transformation yields the required corrective control input. These
derivations would become much harder, if not impossible, to solve
without the use of the linearizing transformation.

In general, the I/O-linearization with respect to y; = h;(x, n(t))
transforms the system (11) with 2n, states into an integrator chain
and internal dynamics. The relation between the input 7. and the
so-called pseudo input z; of the integrator chain is determined by

z=y" = al (@ nt)re + b, n(t),...,n" (1), (12)
with the relative degree 7,
al(@,n(t) = [Lo L} v Lo, £F 'ui] £07
[5915}_1% o Ly, L;_lyi] =o0"
bi(x,m(t),..., 0" (1) = Ly .

and the Lie operator including the dynamic parameters

Vr<ur,

Fr 9\ 9 r "
FYi = (&(')77 ot m(')ﬂ( J 5f> yi - (13)

Time-varying I/O-linearization yields a well-defined relative degree r;
of ys, if a] (,n(t)) # 0 holds [35].

Assumption 5. The vector a](x,n(t)) has at least one non-zero
element for all instants of time, i.e. a] (x,n(t)) # 0Vt > 0.

In view of the application, the constraints have to be designed
such that the admissible set does not include any singularities as
these lead to a loss of manipulability and unsafe behavior. Without
any singularities in the admissible set, controllability is achieved and
Assumption 5 holds. Intuitively, this means that it is possible to apply
input torques which result in a motion away from the constraint.

As the constraints may introduce limits on all states of the robotic
system, the corresponding output function h;(x,n(t)) may depend
solely on the joints g, solely on ¢ or on all states. Since the form of
the output function determines the relative degree, we now examine
the I/O-linearization with respect to two types of output functions: full
state output functions y; = h;(a,n(t)) depending on joint positions
and velocities, and partial state output functions y; = h;(q,n(t))
depending only on the joint positions.

Full state output function: These output functions y; = h;(x, n(t))
represent, for example, constraints on the velocity of the manipulator
or combinations of joint velocity and position limits. If the velocity
constraint is on joint level, the output function only depends on the
joint velocities g, whereas if the constraint is on task space level, the
output function may depend on the joint velocities ¢ as well as on



the joints g due to the transformation (5). Differentiation with respect
to time and using the system equation (11) yields
O O Ohi
Yi = aq q aq q on n
ahl Mq_l‘rc - %
9q 9q
+ % 3y + % )
dq 4 on n
Based on the derivative, the pseudo input z; of the linearized system
is determined by (12) with

Oh,;

Mq_l (Cqg +gq +er)

al(z,n(t) = —M, * 14
HEX/0)) ag Ma (14)
” Oh; _ .

bi(z,n(t),....,n" (1) = - 9 Ma "(Cqg+gq+er)
ah,- . (9]” .
EQ*’ %77 (15)

The system input 7. appears already in the first time-derivative of
the output and therefore r; = 1 holds. For the relative degree to be
well-defined, Assumption 5 has to hold. Similarly, the pseudo input
corresponding to partial state output functions is derived.

Partial state output function: Output functions y; = hi(q,n(t))
may represent, for example, static joint limits or obstacles/bounds
in task space. As task space limits may be transformed into joint
space using (4), the functions depend solely on the joints g and
differentiation with respect to time yields

Ol Db
Yi = g q an n,
L Wi 0¥ 0¥, | OUi.
yz—aqq 8qq 6n’7+ 51’["
Oh; _ Oh; - .
= EMQ 17'0 - Jq M, ! (Cqg +gq +er)

+£ % ‘+2i % ]
9g \aq )4 n aqd) "

LD (Ohi N L O

Again, the pseudo input z; of the linearized system is determined
by (12), in this case with

Oh; _
af(@,n(t) = 5-Mq ™", (16)
r Oh; _ .
bi(z, n(t),..., 0" (1) = ~5g Ma ' (Cqg+gq+er)
n i Oh; .\ . n Oh; .. n i 28}11' - oh; .\ . 17)
oq aqq a 81717 on 8qq 61]17 m-

The relative degree r; = 2 is well-defined due to Assumption 5.

Although the output functions are defined in the generalized coor-
dinates q, task space constraints are also enforced. Using the forward
kinematics (4) of the robotic system and the corresponding velocity
transformation (5), it is possible to express task space constraints in
the generalized coordinates and the I/O-linearization and the relative
degree are determined by either (14)—(15) or (16)—(17).

B. Invariance functions and invariant set

The necessity of a switch to a corrective control input is determined
by the so-called invariance function. This invariance function depends
on the output function as well as the dynamics of the system and the
relative degree. Neglecting the internal dynamics, the 1/O-linearized
system is represented by a time-invariant integrator chain [36].
Since z;(t) is the input of the integrator chain, it determines the
behavior of the output h;(x, n(¢)). The goal of the control scheme

is to keep the system within the admissible set (10), i.e. to keep
the value of the output function at a non-positive value. For a
negative input z;(¢) < O of the integrator chain, a reduction of
the output is eventually achieved. This motivates the invariance
control approach. The pseudo input is set to a constant, non-positive
value z;(t) = v < 0 at time ¢ when the value z;(t) = ~; just
suffices to keep the system within the admissible set. In order to
find that instant of time, the dynamics of the integrator chain are
investigated. In the following, we assume, that at time ¢, the system
is within the admissible set, i.e. h;(x,n(t)) < 0.

First, we consider a state output function, i.e. a system with r; = 1.
The integrator chain has only one state and the value of the output
function at the future time ¢; depending on the input 2;(¢) = ; and
the current function value h;(x, n(t)) is given by

ty
e (t) = hiten(®) + [ w0
t
= hi(z,m(t) + (ty — )y -
Adherence to the limits is achieved, if h;(x,n(tf)) < 0 holds for
all ¢y > t. By deriving the function with respect to the future times

%va(tm _ %(hi(m,n(t)) + (b = D7) =7 s

it may be observed that the function is constant for v; = 0 and
decreasing for 7; < 0. As a result, the current value h;(x,n(t))
is the maximum value the function will ever take for v; < 0 and
applying ~; = 0 at the instant of time, when h;(x,n(t)) = 0 holds,
avoids a violation of the constraint.

For a partial state output function, the integrator chain has two
states and the future function values are determined by

(@n(es) =l n(0) + [ t"'(iu(w,n(t)) +f i«i(o«zc) a9

: 1
= hi(z,n(t)) + (¢ = Dhi(z,m(1) + 5t — )i -
The derivation with respect to ¢

dhi(z,m(ts))
dty

(18)

= ha(z,n(t)) + (ty — )7 (19)
shows that h; (z, 17(¢;)) is decreasing for h;(z,17(t)) < 0and; < 0
and (herefore, the current value is the maximum of all future values.
For h;(a,n(t)) > 0, however, the function takes its maximum at

f oy )
Vi
which is obtained by setting (19) equal to zero and solving it for ¢;.

As a result, the maximum value of the output function is given by

i (12N o, o) 21

(20)

Yi
If 2;(t) = v; < 0 is applied at the instant of time, when the maximum
value is equal to zero, no violation of the constraint occurs.

Based on these results, we now introduce the invariance function
with an expression corresponding to [23], [24]. The invariance
function determines the instant of time ¢, when corrective action,
i.e. z; = -y, has to be applied. It depends on the relative degree
and the current state values of the integrator chain. The invariance

function ®;(x,n,7n,v:) is given by
ri=1: ®i(w7n77i) =Y (22)
1,
Yi — 27 Yi
Yi ¥ <0

. y; >0
ri =21 Bi(x,m,0,v) = ' (23)



with y; = hi(z,1(t)) and ¢ = hs(x, (L), 7(t)). Intuitively, the
invariance function represents the maximum value the output y; will
ever take in the future, if a constant corrective pseudo input v; < 0
is applied to the linearized system at time ¢. For r; = 1, this means
that at the instant ¢, 1; becomes negative. This constantly decreases
the value of y;, i.e. the current value is the maximum output, thus
motivating (22). For r; = 2, if g, is already negative, the negative
input will further decrease v;, which in turn decreases y;. This, again,
means that the current value is the maximum output, motivating the
second case of (23). For ¢; > 0, y; increases in value until the
negative input ~; reduces 7J; to a non-positive value. The second case
of (23) defines the value of y; at the instant when g; reverses its sign.
If the invariance function of an output function takes a positive value,
the corresponding constraint will be violated in the future. Based on
the invariance functions, the invariant set

gt,y) ={z e R*™ | Di(z,m,M,7) <0 V1I<i<lIl}, (24)

describes the set of states, for which no constraint is violated,
i.e. hi(e,m(t)) < 0 for all 1 < 4 < [, and no constraint will be
violated in the future for the pseudo input z; = ;. That means that
the invariant set (24) is a subset of the admissible set (10). Note that
for a constraint with relative degree one, both sets (24) and (10) are
equal as the invariance function is equal to the output function. For
constraints with a higher relative degree, e.g. position constraints on
torque-controlled manipulators, consider the following example.

Example 1. Let the system be a double integrator § = u with
the states y, 1y and the input u, which is constrained to y < 0.
1/O-linearization yields a relative degree v = 2 and the input
transformation v = z. Fig. 3 depicts the constraint (blue dashed line)
and the corresponding admissible output values (light blue bars).
First, we consider y > 0, i.e. the right half-plane. Here, the constraint
is violated due to the positive value of the output and corrective
action is required, which is illustrated by the the states being within
the inadmissible set (red). For y < 0 and y < 0, i.e. the bottom left
quadrant, the negative value of iy causes the output y to decrease. This
means that while the states remain within the bottom lefi quadrant,
no violation of the constraint occurs, independently from the input.
No corrective action is necessary and the entire quadrant belongs to
the admissible set (10) as well as the invariant set (24). For 1y > 0
and y < 0, consider the example y > 0 and y = O, for which
the positive derivative will increase the output value 1y independently
from the input, thus causing an immediate violation. Similarly, there
are more values of y, 1, for which no corrective action exists which
keeps the state within the admissible set. This is illustrated by the
fact that part of the upper left quadrant is not within the invariant
set, whereas the remainder is. The invariance function (red dotted
line) from (23) divides the two parts. These are the state values, for
which the negative corrective pseudo input -y just suffices to reduce y
to zero when the output reaches y = 0.

The example and Fig. 3 illustrate, that for = 2 the invariant set
is a proper subset of the admissible set. Similar relations hold for
higher relative degrees.

In order to avoid any violation of the constraints, the goal should
be to keep the system states in the invariant set and to initiate
corrective action as soon as ®;(a,n,1),~;) reaches a value of zero.
In consequence, ®;(x,n,n),7v:) = 0 determines the instant of time,
when a corrective action is required such that a violation of the
constraint is avoided.

C. Corrective control

The goal of corrective control is to render the system (11) control-
led positive invariant with respect to (24), i.e. once the invariant set

constraint
y=0

..... =0

admissible set
Y y<O0

invariant set
<0

Fig. 3: Illustration of admissible and invariant set for r = 2.

is entered, it will not be left anytime in the future.

Based on the previous considerations, we are now able to design
a corrective pseudo input of the integrator chain. The input should
enforce nominal behavior represented by

Zno,i(m, 7)7 ”77 ﬁ) = a;_l'(m, n)TﬂO + bz(a:7 71» ”7 ﬁ) (25)

in the I/O-linearized system (12), whenever possible. Additionally,
it should enforce the required invariance with respect to (24). As
determined in the previous section, corrective action is necessary
for ®;(x, n,1,v;) > 0. The corrective pseudo input is given by

Yi ift e Nm,i(%‘)
ri=1:2.:(t) =40 if t € Nup,i(vi) (26)
Zno,i(t)  else.
Vi if t € (Naa,i(vi) UNap,i(7i))
=2 :Zc,z‘(t) =40 if t € (NZc,z('Yi) UNQd,i('Y'L)) (27)
Zno,i(t)  else.
with the sets
Niai(vi) = {t|® (z(t), m(t),vi) > 0} (28)
Ni,i(vi) = {t|®s(x(t), n(t),v:) = 0} 29)
Noa,i(yi) = {t®i((t), n(1), 9(1),7:) > O Ag(t) >0} (30)
Novi (i) = {t]®i(x(t), n(t),1(t),7:) = 0Ag:(t) >0} (31)
Noci(7i) = {t|®i(x(t), n(t),n(t),v:) =0A%:(t) =0} (32)
Noa,i(vi) = {t|®i (2(t), n(t), 0(t), ) > 0 A gi(t) <0} . (33)

With v; < 0, these pseudo control inputs achieve a system motion
towards the invariant set for ®;(x,n,n,~v;) > 0.

Remark 4. The magnitude of y; may be chosen arbitrarily. A large
magnitude of ~y; reduces the time, during which corrective control
is applied, since it is able to change the output value faster. As
a result, it increases the size of the invariant set for for r; = 2
defined by (23) and the magnitude of the required corrective control
input. Equivalently, a small magnitude of -y; increases the duration
of corrective control use and decreases the size of the invariant set
and the magnitude of the control input.

Remark 5. Due to the switching pseudo input, invariance controlled
systems are prone to chattering in a sampled data implementation.
This issue is addressed in [25].

To control the robotic system, the pseudo input has to be transfor-
med into a torque 7. For this purpose, the set of active constraints

Kt,v) ={ie{1,2,...,1} [ ®:i(x,m,m,7) >0} (34)

is introduced, which determines the constraints requiring corrective
action [24]. For the constraints, which are not in the active set, the
application of nominal control suffices.
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Fig. 4: Illustration of Assumption 6: In (a), an evasive motion & may
be derived as a linear combination of a1, a2, whereas in (b) this is
not possible. In (c¢) an evasive motion is only defined if the constraint
corresponding to az moves towards the state, otherwise the situation
is similar to (b).

With the considerations on invariance in the previous section and
the I/O-linearization (12), we receive an element-wise condition

zx = Ax(®,n(t))7e + bz, n(t), (1), (1)) < 2 -

with b (@, n(t), (1), 7)) = [b; (@, n(1), (1), A, 2x = [2]
and zc = [z,j], the matrix Ax(z,n) = [a](z,n(l))] and j € K.
The entries of bx(x, n(t), n(t), (t)) are calculated using the torque
error e,, cf. (15) and (17), which is available from the underlying
torque control loop. In order to improve readability, the explicit
dependency on x, n(t), ©(t) and #(t) is omitted for the ma-
trix A(z,n(t)), the vectors a] (z,n(t)) and b(z, n(t),n(t),H(t))
and their respective elements in the following.
Solving the constrained minimization problem

(33)

argmin||Te — Tnol|3
e (36)
s.t. (35)
yields corrective control. Due to the minimization, it is as close as
possible to the nominal control input in the sense of the Euclidean
distance. Using ||7||3 = 77T shows that (36) is equivalent to

argmin f(7¢, Tho)
e (37)
s.t. (35)

with f(7c, Tho) = TITc— 27 Tno + T3 Tho. The function f(7¢, Tho)
is strictly convex in 7., since its Hessian is the identity matrix I,
which is positive definite. Each of the inequality constraints (35) is
linear and therefore convex. The set, over which the minimization is
carried out is given by the intersection of the single constraints.

M= {Tc|AICTc + bx — ZK,e = 0} (38)

If no constraints are active, the set M contains all possible values
of 7.. A solution to the minimization problem only exists, if the
set (38) is non-empty, therefore, we make the following assumption.

Assumption 6. The set M, defined by the active constraints, is non-

empty, M # (.

Figure 4 illustrates the meaning of Assumption 6. This assumption
may seem a little restrictive, since obviously in Fig. 4b and 4c there
exist admissible state trajectories. However, cases like in Fig. 4b
and 4c rarely occur in reality. This would require an exact positioning
of the limits with respect to the state such that the determined actions
for the evasion two or more constraints exactly oppose one another.

By analyzing the characteristics of M more closely, it is possible
to determine an analytic solution to the minimization (37). As the
intersection of convex sets is, again, a convex set, M is convex.
Therefore, the minimization problem (36) is strictly convex and any
local minimum is the unique global minimum [37]. As a result, if 75,

is contained within the set, it is the only solution to the minimization.
Otherwise, the minimum lies on the boundary of M, i.e. some of
the active constraints hold with equality

Seq={i€Kla]Tc +bi = zc,i} 39)
and some with strict inequality
Sn={ieKla]rc+bi < zicci} =K\ Sq - (40)

The equality constraints in Sq define a sub-manifold of the torque
vector space. Not all of these constraints are necessarily required to
define the sub-manifold. Instead, there exists a maximum subset of
linearly independent constraints, which span the sub-manifold (39).

In the following, this maximum subset will be used to examine and
illustrate the characteristics of the corrective control input determined
by the solution of (36). Therefore, let the subset

T ={i€ Sy | rank(Az) = |Z| Arank(Az) = rank(As,)} (41)

with Az = [a]], i € T and As,, = [a]], i € S, describe
such a maximum subset of the constraints in Seq with linearly
independent a]. It is in general not uniquely defined, but any such
set spans the sub-manifold Seq. The remaining constraints Seq \ Z
are determined by a linear combination of the constraints in Z. As
the constraints in Z span a subspace in the space of control torques
and 7. € R", |Z| < ng holds. If 7 is empty, this means that
either no constraints are active or all constraints hold with strict
inequality, i.e. the nominal control signal is the minimum solution
of (36). Assuming a set Z has been determined, the solution to the
minimization problem (36) is given by

ifZ=10

P Tno (42)
T Af(zze—br) + (I — Af Az)Ty clse

with the Moore-Penrose pseudo inverse A} = AT(AzAT) . The
matrix and vectors are determined by Az = [a]], bz = [b]
and zz. = [z, with ¢ € Z. It remains to show whether the
corrective control laws (36) and (42) actually render the robotic
system (1) with input disturbances and time-varying boundary pa-
rameters invariant with respect to the invariant set (24).

IV. CONTROL PROPERTIES

Although the theorems in the following are introduced for con-
straints of relative degree r; = {1,2}, they may be extended to
higher relative degrees. Proofs are provided in the appendix.

A. Invariance

The goal of introducing invariance control is to guarantee adhe-
rence to constraints. As derived in the previous section, the invariant
set (24) is a subset of the admissible set (10), which is determined
by the constraints. Therefore, if the corrective input 7. from (36)
and (42) renders the system controlled positively invariant with
respect to the invariant set, adherence to the constraints is guaranteed.

First, the invariance of the linearized system is investigated,
i.e. the invariance of the integrator chains resulting from the 1/O-
linearization (12), which are controlled by the corrective pseudo
inputs (26) and (27).

Lemma 1. The integrator chain with r; states, r; € {1,2},
resulting from the I/O-linearization with respect to y; (12) is rendered
positively invariant with respect to the set (24) by any input z; < zc;
with z.; being the corresponding input from (26) and (27).

Lemma 1 shows that the states of the linearized system remain
within the invariant set. As control is applied to the nonlinear robotic



system (1), it is necessary to investigate whether the control torque,
which is deduced from the linear analysis, provides the required
invariance.

Theorem 1. Let the robotic system be given by (1) and the outputs
describing the constraints by (9). Let the linearizing input be determi-
ned by (12) and the elements of the corrective pseudo input by (26)—
(27), depending on the relative degree. Let Assumptions 1, 3, 5
and 6 hold. Then, if the system states are within the invariant set
at some time t = to, i.e. (to) € G(to,~), the corrective torque
input determined by (36) will render the system controlled positively
invariant with respect to the invariant set (24) for all t > to.

Once the robotic system enters the invariant set, Theorem 1
guarantees that it stays within this set for all future times and therefore
renders the system controlled positive invariant. Since the invariant
set is a subset of the admissible set, the invariance control scheme
ensures the adherence to the constraints. Note that the control law (42)
achieves the same result, since it is the analytic solution of (36). As
the system does not necessarily start in the invariant set, it remains
to show that the system will eventually enter the invariant set.

Theorem 2. Let the robotic system be given by (1) and the outputs
describing the constraints by (9). Let the linearizing input be determi-
ned by (12) and the elements of the corrective pseudo input by (26)—
(27), depending on the relative degree. Let Assumptions 1, 3, 5 and 6
hold. Then, if the system states lie outside of the invariant set at some
instant of time t = to, i.e. ®(to) & G(to,~), the corrective torque
input determined by (36) guarantees that there exists a finite time
interval T such that the system state enters and stays within the
invariant set (24) for all t > to + 1.

Theorem 2 shows that for invariance control, the initial state is
not required to lie within the admissible set. Instead the control is
such that after a finite time interval, the state becomes (and remains)
admissible. By extension, this applies if additional constraints have
to be included during runtime, e.g. when new obstacles appear.

Remark 6. The results on the invariance of the controlled system
are independent from nominal control. This means that whichever
nominal control scheme is chosen, whether it is learned or explicitly
defined, stable or unstable, the use in combination with invariance
control results in adherence to the constraints.

B. Boundedness

Naturally, good task performance of a robotic system under invari-
ance control is only possible if constraint enforcement does not result
in unboundedness of the tracking error. This is ensured by adding an
additional constraint in the calculation of the corrective control input.

Theorem 3. Let the robotic system be given by (11) and the
outputs representing the constraints by (9). Let a sufficiently smooth
and bounded desired motion be given by Tus(t) and the initial
state values within the invariant set x(to) € G(to,~). Let further
Assumptions 1-6 hold and let V (e) be a Lyapunov function showing
the global stability of the nominally controlled system. Then, if

{ Ax(z,m(t))
X=<x

Jt>t
2> to oV (e) G(x)
is bounded, there exist constants o, Vmax > 0 for which

: rank

:| =rank(Ax(x,n(t))) }
de

. 2
argmin||T. — Tol|2

Tc

s.t. Ax(z,n(t))7e + bic(z, n(t), (L), N(t)) X 2K,

2 (s # @) — Gla)r) < By

(43)

with BV = max((x(Vmax — V(e)), Vz(y(e7 ém})) 5
Vna(ey éna) - %‘(—f)(ides_f(w)_(;(m)‘rﬂo)

yields a uniquely defined corrective control input T., which renders
the tracking error e = T4es — x at least bounded.

In the following, we give a more intuitive understanding of
Theorem 3, which provides an extended corrective control to bound
the tracking error within the isoline V(e) = max(Vmax, V (e(t0))).

Remark 7. The goal of invariance control is to guarantee constraint
enforcement also in cases when the desired trajectory leaves the ad-
missible set, which is only possible if the tracking error is allowed to
increase for such cases. Therefore it is natural that only boundedness
of the tracking error is achieved.

Remark 8. Even if the initial state is not within the invariant
set, the error is eventually bounded within max(Vinax, V(e(tim))),
where tin is the instant of time when the state enters the admissible
set, with ti < co by Theorem 2.

Remark 9. In general, it is not trivial to determine whether the set X
is bounded. If, however, the set of states itself only takes values from
a bounded set X, C R™, ie. x € X, the set X is also bounded
as X C Xy holds. Since robotic systems are usually subject to joint
and velocity limits, there the set of states is bounded thus fulfilling
the requirement of Theorem 3.

Bounding the tracking error while adhering to all constraints is
only possible if the interior of V(e) = Viax contains constraint
admissible states for all instances of the desired trajectory and
the constraint parameters. In order to determine such a Vinax, the
behavior of the state on active constraints is examined. If there
are active constraints, the derivative of the tracking error may be
divided into a tangential and normal component with respect to these
constraints. While the normal component is dictated by the constraint
avoidance and possibly increases V/, the tangential component may
be chosen freely to achieve V < 0. If however, the state is in
a local minimum of the Lyapunov function on the constraints,
i.e. V(e) = Vinin = min(V(e)|n,_,), further reduction of V' via the
tangential component is no longer possible. In that case the system
needs to be able to follow the constraint motion for adherence by
allowing a positive V, which is achieved by choosing Viax such
that Vinax > min(V(€)|ny_,) is fulfilled for all these minima and all
possible combinations of active constraints and bounded parameters.
The parameter «v is then determined by the maximum increase in the
Lyapunov function that is required for adherence in the local minima.

(X(Vmax — Vmin)) > HlaX(V|h;c:0,V(e):Vmi“) YV Viin
Remark 10. If Viwax and « are chosen too small, the optimization
determining corrective control may be rendered infeasible. In view
of the application, this issue is solved by increasing the values until
a solution exists. However, on changing these values one needs to
keep in mind that while o« may be increased arbitrarily without
deteriorating the task performance, an increase of Vmax far beyond
the minimally required value may lead to an increase in the bound
on the tracking error.

The following examples illustrate the implications of Theorem 3.

Example 2. Consider the system of decoupled integrators © = u
with € = [x1, x2|", x(to) = [11, —85]|T, u = [u1, u2|T and
the nominal control law w = [—0.1z1, z1 — 0.1x2|". The control
law globally asymptotically stabilizes the system in the origin, which



is validated using the Lyapunov function V(x) = a' Px with the
positive definite matrix

The system is constrained by the output function h(x,t) = 9+n—x1
with the bounded parameter 1 = cos(2wt). Derivation yields 1 = 1
and z =1+ [—1, Olu. As the Lyapunov function

Vi) = 5127 + 102122 + 72

and the constraint are convex, there exists exactly one minimum on
the constraint, which takes its maximum value for x1 = 9+ max(n).

Vinin = min(V)|h:O = V(ZB)|%:0 = 26.’17%
max(Vimin) = min(V)|r=0,z, =10 = 2600

By choosing Vmax > 2600, it is assured that the isoline V(x) =
Vinax always contains admissible states. If the state is in a minimum
of the Lyapunov function on the constraint Vmin, the derivative

V= [102961 + 10z2 1021 + 2172] {ul}
u2
maximally increases with the rate
V-0V = [5221 0] [ﬂ = 52211 < 52- 10 - 27 ~ 3268
2

If Vinax and « are then chosen to fulfill
V|h:O,Vmi,, <3268 < a(‘/max - max(‘/min)) y

e.g Vmax = 2700 and o = 35, the optimization from Theorem 3
is feasible and the solution renders the system bounded. Fig. Sa
depicts the state trajectories of the unconstrained system behavior
in comparison to the constrained system controlled with corrective
control from (36) and Theorem 3. It is observed that while the
unconstrained system approaches the origin asymptotically, both
constrained trajectories remain at state values with x1 > 8 due to
the added constraint and the achieved invariance. The oscillation in
the trajectories is due to the dynamic constraint. However, the state
trajectory of the system controlled by (36) exhibits a growth in xo,
while the trajectory with control from Theorem 3 eventually ends up
in a bounded limit cycle close to V(x) = Vinax.

Example 3. Consider the same system and constraint as in the
previous example but with nominal control uw = [—0.1z1, —0.122]T.
The nominally controlled system is again globally asymptotically
stable, which is shown by the Lyapunov function V (x) = @ x. The
same values of Vimax and o as in the previous example are used.
Fig. 5b depicts the state trajectories of the unconstrained system
behavior in comparison to the constrained system controlled with
corrective control from (36) and Theorem 3. Consistent with the
previous example, the unconstrained system approaches the origin
asymptotically but both constrained trajectories remain at state
values with x1 > 8. Here however, the state trajectories of both
constrained systems are equivalent and are both bounded. This is
due to the fact that in this case, the projection of nominal control
onto the constraint results in a behavior that does not increase
the Lyapunov function thus automatically fulfilling the additional
condition of Theorem 3.

V. EXPERIMENTAL EVALUATION

In order to illustrate the capabilities of invariance control, an
experiment is designed and conducted. The end effector of an
anthropomorphic manipulator with 7 degrees of freedom (ny = 7)

&
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:
/
/

(b)

Fig. 5: State trajectories of (a) Example 2 and (b) Example 3 for

sole application of nominal control, «---- corrective control
from (36) and - - - corrective control according to Theorem 3. The
constraint moves within the shaded area and — are the isolines
of the Lyapunov function, where === represents V() = Viax.

is in direct contact with a human. One human exerts forces in order
to achieve a desired behavior of the end effector. The manipulator
reacts compliantly to those forces. A second human is moving in
the vicinity of the robot. In order to keep this human safe, the robot
should keep a safe distance at all times.

Especially the application of the previously unknown, external
disturbance forces illustrates the advantage of invariance control over
collision avoidance approaches such as potential fields [18]. Even
without knowledge of the magnitude or the direction of the applied
force, invariance control is able to guarantee adherence to constraints,
whereas potential functions are only able to give such a guarantee
if they are designed to absorb all energy from the dynamics and the
external forces, which would require prior knowledge.

A. Nominal control

The nominal control scheme is impedance control, which achieves
the desired compliant behavior of the manipulator. Using task space
impedance control (7) enables the design of the robot compliance in
task space. A sensible choice of the parameters achieves the desired
behavior in reaction to forces exerted by the human partner. The
impedance control scheme does, however, not enforce the constraints.

B. Constraints

Constraints as in (9) are conveniently defined in Cartesian space,
thus limiting the translational motion of the end effector. In the
task at hand, the task space is the translational Cartesian space
with the task coordinates p(t) € R®. The forward kinematics (4)
and the Jacobian (5)—(6) are determined by the structure of the
manipulator [38]. Typical shapes, which are used to model obstacles,
are box or spherical constraints. Here, we choose one exemplary
constraint to keep the human hand safe. Naturally, more constraints
may be added to account for the entire human body.



We choose a spherical constraint with a fixed radius. In order to
account for the moving human, the center position of the sphere
varies over time. The output function is given by

c"'l t
v=h(p0. 2O ) == lp0 - entile- @
with the dynamic center position cm(t) € R® and the constant
radius ¢, € R. The parameters have to be chosen such that the
human (or object) that has to be kept safe is contained entirely. Note

that the radius and shape of the constraint may even be chosen to
account for uncertainties in the motion.

C. Corrective Control

Based on the chosen constraint, corrective control is derived
according to Sec. III. In the following, the explicit dependencies of
the quantities are omitted for notational convenience, e.g. p(q) =
p, a"(p,q,cm) = a'. The I/O-linearization is determined by
differentiating (44) with respect to time

_P—cenm)T(P — ém)

y:

lp— cmll2
j=— (P—cm)T(B—&m)+[B—mll3 n (P—cm)T(P—ém)”
[P—cml2 [p—emll

Using (5), differentiation yields
p=Jq+J4=Jq+IM; (e~ (Cad+gq ter)) . (45)

Assuming that ‘2=¢m)T 7 A7 =1 is non-singular for all times, the

lP—cmll2

relative degree is r = 2 and the pseudo input (25) is given by

z=j=a"T.+b (46)
a’ = (P — Cm) JMq—l
lp — emll
bh— _ (p— Cm)T('jq. —JM, ' (Cu +gq +er) = ém)
[P — cmll2
D= émll3 (P —em)T(®—ém))®
[P — cmll2 P~ eml3 '

The value of ¢, and its time derivatives up to the second order are
derived from the data collected using the motion tracking system.
The torque error e, is assumed to equal zero, which is validated by
the positive experimental results. Since only one constraint is defined,
determining the set Z (41) is trivial and (42) may be used to determine
corrective control. Note that the additional condition for boundedness
from Theorem 3 does not need to be enforced in the experimental
evaluation. Similar to Example 3, the combination of the constraint
with nominal stiffness control yields a naturally bounded system.

D. Setup

Figure 6 depicts the actual experimental setup and Fig. 7 gives a
more detailed schematic view. In general, the goal of introducing a
safety control scheme is to keep humans in the vicinity safe. This
requires tracking of the human body parts, e.g. by a vision-based
perception system. Here, for the sake of demonstration, we employ
our Qualisys Motion Tracking System to track and avoid any collision
with a human hand. Note that since the control law only depends
on the motion measurements but not on any model of the human
movements, the results for different human subjects resemble one
another apart from different humans choosing different trajectories.
Therefore, we only show the results generated with one human. The
hand is marked with a rigid body, the centroid of which defines the
center position ¢m (t) of the spherical constraint (44). The constant

Fig. 6: The motion tracking system detects the markers on the hand.
The centroid of the marker body defines the constraint center [29].

marker
output »
function I?ang pc(:gtlon
h(p.m) <0 c%.j)?‘:'m

radius "y
Cr

end effecfor position
p(t)

spherical constraint

Fig. 7: The hand position determines the center cm (¢) of the spherical
constraint with the constant radius ¢,. The output function h(p,n)
is a measure for the distance to the end effector [29].

radius ¢, of the spherical constraint is then chosen such that the
sphere encloses the human’s hand.

The controlled robotic system is an anthropomorphic manipulator
with seven degrees of freedom [38]. The joint position encoders
measure the joint angles. Based on this measurement and the for-
ward kinematics, the Cartesian position p(¢) of the end effector is
determined. The previously derived invariance control law, combining
the nominal impedance control with the constraint, is implemented in
the Real-Time Workshop of Matlab/Simulink, which uses a discrete-
time Euler solver. The sampling frequency is 1 kHz. The external
force fo = J(q)TText, applied to the end effector by the interacting
human, is measured by a JR3 sensor, which senses forces and torques
with 6 degrees of freedom.

The experiment is executed in two steps. During the entire time, the
end effector tries to hold a desired nominal end effector position py,
but reacts compliantly to exerted forces due to the nominal impedance
control law. In a first trial, there is no physical contact between
human and robot, i.e. no external forces, and the robot holds the
desired position. The marked hand then approaches the end effector
until an evading motion is carried out by the robot. In a second
trial, a physical coupling between a human and the end effector
is introduced, meaning that a second human firmly grasps the end
effector and exerts forces to move the end effector in arbitrary
directions. The nominal control and boundary parameters used in
the experiment as well as the desired position of the end effector in
robot base coordinates are provided in Table 1.

E. Experimental evaluation

The experimental data is evaluated with respect to constraint
adherence, i.e. invariance, and boundedness of the tracking error.
The results obtained in the first step without external forces are



TABLE I: Experimental parameters

Cartesian stiffness K, 600N/m - I3
Cartesian damping D, 80Ns/m- I3
Control parameter ¥ —18m/s?
Desired trajectory Des [0.635,0.133 , —0.441]T m
Constraint radius [ 0.4m
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Fig. 8: Evaluation of the invariance function and the deviation from
the desired position p,., without external forces

illustrated in Fig. 8. The figure shows the value of the invariance
function as well as the deviation of the end effector position from
the desired position pg. It may be observed that a bounded deviation
from the desired position occurs when the invariance function is
reduced to zero. Since the invariance function takes zero value when
the system approaches the constraint, it is clear that a deviation has
to occur in order to avoid a violation of the constraint. Apart from
a slight chattering effect at zero, which results from the sampled
time implementation of the continuous control scheme, the invariance
function is never positive, which illustrates the invariance of the
controlled system. A removal of the constraint, i.e. a motion of the
human away from the end effector, allows the end effector to move
back to the desired position.

Then, the physical contact with a human is established. Fig. 9a
shows the fraction of the applied force, which is directed towards the
constraint. The bounded deviation of the end effector from p,,, as
shown in Fig. 9b is caused by the applied forces as well as by the
approaching human hand. During the first 10s, the distance between
the end effector (red line) and the constraint (green dash-dotted line)

8]
o

o

External force [N]

20 ‘
0 5 10 15 20 25 30
Time [s]
(a)
g TN e
g — Deviation [|pyes — Pl
’é Relative constraint position
< --- Invariance function ®
0 5 10 15 20 25 30
Time [s]
(b)

Fig. 9: Influence of (a) the magnitude of the applied external forces in
direction of the constraint (positive for application in direction of the
constraint) on (b) the deviation from the desired trajectory, the relative
position of the constraint with respect to the end effector ||py.—p||2+
y and the value of the invariance function

is large and the invariance function ¢ is negative, i.e. the deviation
is solely caused by the force. Naturally, the forces affect the value
of ®, since the output function (44) and ¢ depend on the end effector
position p(t). The figure shows that ® only takes non-positive values,
meaning that even in the presence of external forces, the robotic
system is kept invariant by the control scheme and the constraint
is not violated. For & = 0, the system is at the boundary of the
invariant set and the constraint is directly at the end effector, which
is illustrated by the fact that the red and green lines coincide. The
system reacts on the one hand compliantly to forces directed away
from the constraint as for example at ¢ = 255, which decrease the
value of & and move the end effector away from the constraint. On
the other hand, forces directed towards the constraint do not lead to a
violation of the constraint or a positive value of ®. Instead, the system
is stiff and ® keeps its value of zero as for example at ¢ = 15s. This
emphasizes the fact, that invariance control renders a robotic system
invariant and avoids constraint violation. Since the applied forces and
the constraint motion are bounded, the deviation of the end effector
from the desired position is also bounded throughout the experiment.

These results from the experiment encourage the application of
invariance control to robotic systems in scenarios involving humans
and physical interaction with humans.

VI. CONCLUSION

This article introduces a novel control scheme for robotic systems,
which enables constraint admissible manipulation in dynamic envi-
ronments as well as in close and physical interaction with humans.
The derived control law is implemented in addition to a stabilizing
nominal control law and only interferes with nominal behavior, to
avoid the violation of a constraint, which allows the application in a
variety of scenarios. Invariance control provides a method for defining
an admissible set and determining a corrective control law, which
keeps the system states in an invariant subset of the admissible set
even in the presence of external forces and input disturbances. It
renders the system positively invariant with respect to this set, thus
guaranteeing constraint adherence. At the same time, the tracking
error remains bounded. The provided experimental results illustrate
the capabilities of the control scheme.

ACKNOWLEDGMENT

This work was supported by the EU Seventh Framework Pro-
gramme FP7/2007-2013 within the ERC Starting Grant Control based
on Human Models (con-humo), grant agreement no. 337654. The
authors would like to thank the committed reviewers for their valuable
comments.

APPENDIX A
PROOFS

Proof of Lemma 1. The system is rendered invariant, if the invari-
ance function describing the invariant set is not increasing at the
boundary of the invariant set (24), where ®; (@, n,1,~;) = 0 holds.
We consider both relative degrees separately.

For r; = 1, 45 = 2z; < z,; holds and the invariance function is
given by (22). For ®;(x,n,~vi) = 0, 2z.; = 0 is applied and

(e, m,vi) =9 =2 < 2,; =0,
dk
dt*
hold. The invariance function is not increasing on the boundary of
the invariant set and the input renders the system invariant.

For r; = 2, 4j; = 2z; < Zz,; holds and the invariance function is
given by (23). Again, ®;(x,n,1),v:;) = 0 holds on the boundary of

Di(x,n,vi)=0 ifz;=2,=0Vk>1



the invariant set, but now there are three cases to consider. For 35, > 0,
the pseudo input is given by z; < zc; = v; < 0. For this input, the
time derivative of the invariance function

q)z(%??ﬂl»%‘) = (1 - ?yl) Ui < (]— + ‘:Z_z|> 7 =0

is negative for z; < z.; = 7 < 0 and equal to zero for z; =
Zei = 7. For zi = =, the higher order time derivatives are also
equal to zero, since the constant factor carries through. Therefore, the
invariance function is not increasing. For y; < 0, the time derivative
of the invariance function is given by ®;(x,n,,v) = ¢ < O.
This means that the invariance function is decreasing independently
from the control input. Finally, for ; = 0, the pseudo input is given
by z; < zc,; = 0. The time derivatives of the invariance function

bi(a,n,1,7) =9 =0

(I)l(mv n, 7.’7 ’71) =i = 2i < 20 = 0
dk
dtk
show that the invariance function is not increasing. As a result, the
control inputs (26) and (27) render an integrator chain with one and
two states, respectively, invariant with respect to the set (24). O

@i(m,n,ﬁ,fyi) =0 ifzi=2,=0Vk>2

Proof of Theorem 1. Corrective control is determined by the con-
strained minimization problem (36). The constraint, which has to
be fulfilled by the control torque 7, is given by (35). As a result
from (12), the left side of the inequation is the pseudo input of the
active constraints, generated by the control torque.

zKk = AxTe + bi (47)

Therefore, the input of the integrator chain resulting from the 1/O-
linearization fulfills the element-wise condition

ZK < 2K - (48)

Aninput z; < z; for all active constraints renders an integrator chain
invariant with respect to the invariant set, cf. Lemma 1. Additionally,
the remaining inactive constraints are not in danger of violating a
constraint and stay within the invariant set for any control action.
Therefore, the solution of the constrained minimization problem pro-
vides a corrective control input, which renders the system controlled
positive invariant with respect to the invariant set. O

Proof of Theorem 2. The system is outside of the invariant set, if
at least one invariance function has a value larger than zero and
it will enter the invariant set, if the control signal is such that
the invariance functions result in non-positive values. Therefore, the
system is guaranteed to enter the invariant set, if the control signal
is such that any state trajectory starting outside of the invariant set
is guaranteed to enter the set eventually.

For constraints with relative degree r; = 1, the invariance function
is given by (22). As the constraint is active, i.e. initially y;0 =
yi(to) > 0, the input z; of the linearized integrator chain fulfills z; =
Ze,i < v <0, cf. (26)—(36). As i = z; holds for r; = 1, 9 < v <
0 holds as long as the constraint is active, i.e. as long as y; has a
positive value. This means, that y; and therefore also the value of the
invariance function is decreasing until y; = 0 is reached, when the
system enters the invariant set of the constraint. Since ¥; is strictly
less than zero, this will happen in a finite time interval 7' < %

For constraints with relative degree r; = 2, the integrator chain
of the linearized system has two states y; and y;. The invariance
function is given by (23). The areas of the linearized state space, for
which the invariance function has a positive value, are given by

A) {@,mly: <OAG > 0 Ay > 757}

®B) {z,nly; > 0Ny >0}

(©) {a,nly: > 0 A5 <0} .

We now show that, starting from any arbitrary point in sets (A), (B)
or (C), the system will eventually enter the invariant set.

First, assume the initial configuration lies within set (A). The
constraint is active and §j; = z; < 2z¢,; = 7; < 0 holds, cf. (27)—(36).
Since §j; is strictly less than zero, ¢; decreases and reaches zero after
a finite time interval 77 . During that time, the output y; increases its
value since y; > 0 holds and may even become positive. If, after the
time interval 77, y; < 0 holds, the system is within the invariant set,
since ¢; = 0 holds. Otherwise, y; = 0 and g; > 0 holds after a time
interval 7" < 7', meaning that the system enters the set (B).

Now assume, the initial configuration lies within (B). The con-
straint is active and §; = z; < 2z.; = v < 0 holds, cf. (27)—(36).
Similar to the previous case, 1j; decreases and will reach a value of
zero after a finite time interval 75. During that time, the output y;
will further increase its value since ¢; > 0 holds. After the time
interval 1%, y; > 0 and y; = 0 holds, while the input is still strictly
negative, meaning that the system enters set (C).

Finally, assume the initial configuration lies within (C). The
constraint is active and §j; = z; < 2,3 = 0, cf. (27)~(36). The
value of y; decreases, since ; < 0 within set (C). With ¢; < 0, ¥;
either remains constant at its strictly negative value or decreases
further. Therefore, after a finite time interval 75, y; = O is reached,
while 9; < 0 holds, meaning that the system enters the invariant set.

Therefore, for constraints with r; = 2, starting from arbitrary states
outside of the invariant set, the state trajectory evolves such that the
invariant set is entered within a finite time interval Ty < T7+T>+1T5.
The trajectory may either evolve from set (A) or (C) directly into the
invariant set, from set (A) over sets (B) and (C) or from set (B) over
set (C) into the invariant set. O

Proof of Theorem 3. This proof is conducted in two steps: First the
existence of parameters Vmax and « is shown, for which the optimi-
zation has a unique solution and second the resulting boundedness
of the tracking error is proved.

In order to show that the minimization has a solution, it suffices to
determine one input 7. which fulfills both conditions: the invariance
condition, which ensures constraint adherence, and the convergence
condition, which guarantees boundedness. By Assumption 6, there
exists a solution to (36), i.e. the minimization problem with solely the
invariance condition. This solution is given by (42). The convergence
condition on the other hand defines an upper bound on

oV (e)
de

V(e,é) =

(Faes — f(2) — G(2)Te) -

For Z = 0 with Z from (41), the invariance condition has no influence
on the solution and is fulfilled by 7. = 7. In addition, 7. = T
also fulfills the convergence condition since then

Ve, &) =V(e, éw) < By

with the bound By, as defined in Theorem 3 holds for any value
of Vimax and a.

ForZ #0, 7. = At (21 — bz) + (I — A} Az)Ty from (42)
solves the minimization (36) with only the invariance condition, i.e.

AxTze+ b < zice
holds. If by adding the convergence condition,
Ax
ov
7]

M) Gia)

rank

] > rank(Ax)



is fulfilled, then 3 Cx € ker(Ax), Cx ¢ ker (%@‘”G(m))
The input 7. = 77, + CxTk ker fulfills the invariance condition
independently from T ker Since

AT+ b = A (11,0 + CkTK ker) + bk
= AxTrc+ AcCrTr ker + b = ATz + bic .
——

=0
As %QG(J:)C;C = 0, there exists a 7T ker, such that

oV (e)
de

(:Bdeb f(w)_G(w)(TI,c +CICT}C,ker)) < a(‘/max_v(e))
(A

Tc

is fulfilled for any choice of Viax and «, i.e. the convergence

condition holds with V (e, &) < a(Vinax — V(e)) < By. On the
other hand, if
Ax
rank | OV (e = rank(Ax)
( ) VL) ()
holds, the input 7. = 7z fulfills the invariance condition as
discussed above, whereas the left hand side
oV .
o (b0 #(2) - e
= ‘-/no(e, éno) - (e) G( )A (ch bI - AITno)
N—
<0
ZT,no
> (e) G( )AI (AITno + bz — 27, c) .

=L S(®,@ges,1.7,71)

and the right hand side of the convergence condition

BV > (Y(Vmax - V(e))

:=RHS(e)

are bounded by functions LHS(x, Tds,n,7,7) and RHS(e). The
output functions and derivatives are continuous by Assumption 3,
including A, A,JE and bx. Nominal control is continuous by
Assumption 2 and G(x) and the Lyapunov function are continuous
as well. Since z7 o is an additive and multiplicative concatenation
of continuous functions, it is continuous. As the parameters 1 and
their derivatives are bounded by Assumption 3 and the desired
trajectory @g4es is also assumed to be bounded, zz., and as a
result zz,c from (26), (27) and the functions LHS(x, @acs, 1, 1), 7])
and RH S(e) are bounded on any bounded set of states x. Therefore,
if

it

is bounded, the input 7. = 77, is only applied on this bounded set
of states o and there exist bounds

Ax(z, (1))

dt > to:rank av(e)G( )

:| =rank(Ax(x,n(t))) }

BLHS = sup (LHS(% Ldes; 7, ":]7 ﬁ))
X
Brus = 11}f(RHS(€)) = (Jé(Vmax - Sllp(V(e))) .
X

By choosing the parameters Vinax and « such that they fulfill

sup (LHS(@, Zaes, 1,1, 77)) < (Vinax — sup(V (e))) ,
x X

the convergence condition for 7. = 77 is met as well since

aV (e)
de f((l!) - G(m)TI,c)

< LHS(:D7 Ldes T, ”:]7 7)) < sup (LHS({D, Ldes, 1, ”:)7 h))
X

Ve, é) =

(mdeb

< a(Vinax — sg}p(V(e))) < a(Vinax — V(e)) < By,

holds for all * € X. Hence in all cases, there exists at least
one T, which solves the minimization problem but which is not
necessarily the optimal solution. Since, however the optimization is
strictly convex, there exists a unique solution to the problem.

With the existence of a corrective control input established, we
turn to the tracking error. The solution of the minimization fulfills

V(e, &) < max(a(Vimax — V (€)), Vno(e, €no)) -

Additionally for V(e) > Vmax, the right hand side is non-positive,
as a(Vimax — V(€)) < 0 holds and Vi, (e, €n0) < 0 by Assumption 2.
Therefore, V(e,é) < 0 holds, which means that the Lyapunov
function is bounded with V' (e) < max(Vinax, V(e(t0))). As V(e) is
a Lyapunov function showing global stability of the tracking error, it
is continuous and radially unbounded, meaning that if the norm of e
goes to infinity, so will V'(e). Therefore by the converse argument,
if V(e) is bounded, so is e. O
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