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Moments of the φ meson spectral function in vacuum and in nuclear matter are analyzed, combining 
a model based on chiral SU(3) effective field theory (with kaonic degrees of freedom) and finite-energy 
QCD sum rules. For the vacuum we show that the spectral density is strongly constrained by a recent 
accurate measurement of the e+e− → K + K − cross section. In nuclear matter the φ spectrum is modified 
by interactions of the decay kaons with the surrounding nuclear medium, leading to a significant 
broadening and an asymmetric deformation of the φ meson peak. We demonstrate that both in vacuum 
and nuclear matter, the first two moments of the spectral function are compatible with finite-energy 
QCD sum rules. A brief discussion of the next-higher spectral moment involving strange four-quark 
condensates is also presented.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The study of vector mesons (ρ , ω and φ) in nuclear matter 
has attracted much interest during the last two decades [1,2]. In 
recent years, the φ meson has particularly come into focus, with 
dedicated experiments investigating its in-medium properties con-
ducted for instance at KEK [3] and at COSY-ANKE [4]. More detailed 
measurements are being planned for the future in the E16 ex-
periment at J-PARC [5,6]. Interpreting the experimental findings 
requires a thorough theoretical understanding of the modification 
of the φ meson spectral function at finite density.

One important issue that needs to be understood is whether 
and how the modifications of the φ meson spectral density in nu-
clear matter reflect changes of the non-perturbative QCD vacuum 
at finite densities. This question has been investigated previously 
in the context of QCD sum rules at finite density [7–10]. Using 
updated input we argue in the present work that the two lowest 
(zeroth and first) moments are especially suitable for a detailed 
study of the spectral function with respect to low-dimensional 
QCD condensates. These lowest moments involve only operators up 
to dimension 4 which are relatively well understood. Condensates 
of dimension 6 and higher (such as the four-quark condensates) do 
not yet enter at that stage. Furthermore, the ratio of the first over 
the zeroth moment provides a well defined quantity representing 
a squared mass averaged over the φ resonance plus low-energy 
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continuum. This ratio does not depend on details of the spectral 
function and can in principle be accessed by experimental mea-
surements [11].

This article presents a systematic analysis of the lowest two 
moments of the φ meson spectral function, using finite-energy 
QCD sum rules (FESR). To describe the spectral function in vacuum 
we employ a generalized and improved vector dominance model 
[12,13] and constrain its parameters by recent e+e− → K +K −
cross section data [14]. The changes of this spectrum in nuclear 
matter are expressed using updated kaon–nucleon forward scatter-
ing amplitudes, with interactions derived from chiral SU(3) effec-
tive field theory and coupled channels [15]. The resulting spectral 
functions are then tested for their consistency with FESR. Also in-
cluded is a short digression on higher moments and the strange 
four-quark condensate. A summary and conclusions follow in the 
final section.

2. Spectral moment analysis in vacuum

2.1. The vacuum spectral function

The starting point is the correlator of the strange quark current, 
jμ(x) = 1

3 s(x)γμs(x), which couples to the physical φ meson state:

�μν(q) = i

∫
d4x eiqx〈T[ jμ(x) jν(0)]〉ρ. (1)

〈 〉ρ stands for the expectation value with respect to the ground 
state of nuclear matter at temperature T = 0 and with density ρ . 
The vacuum case is realized in the limit ρ = 0. For a φ meson at 
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rest it suffices to study the (dimensionless) contracted correlator, 
�(q2) = 1

3q2 �
μ
μ(q). Using an improved vector dominance model 

[12], Im�(q2) can be written as

Im�(q2) = Im �φ(q2)

q2 g2
φ

∣∣∣∣∣
(1 − aφ)q2 − m̊2

φ

q2 − m̊2
φ − �φ(q2)

∣∣∣∣∣
2

. (2)

The self-energy �φ(q2) (of dimension mass2) is governed by the 
coupling of the φ to K K loops and their propagation [12], either 
in vacuum or in the nuclear medium. The bare mass m̊φ and the 
coupling constant gφ are determined to agree with experimental 
observations. The coupling strength is expected to be of the or-
der of the value determined by SU(3) symmetry, gφ � −3g/

√
2, 

with g = 6.5. Furthermore, the constant aφ represents the ratio 
between the φK K and φγ couplings and should be close to unity 
[8,12]. Here we assume aφ = 1 which gives a very good fit to the 
experimental e+e− → K +K − data as will be shown below. The 
φ self-energy includes the contributions from charged and neutral 
kaon loops:

�φ(q2) = �φ→K + K −(q2) + �φ→K 0
L K 0

S
(q2). (3)

For specific expressions of the corresponding loop integrals, see 
[12,13].

The actual values of m̊φ and gφ are determined by fitting Eq. (2)
to the recent precise measurement of the e+e− → K +K − cross 
section provided by the BaBar Collaboration [14]. As in this re-
action only the charged kaons are detected, only the correspond-
ing φ → K +K − term of Im�φ(q2) appearing in the numerator of 
Eq. (2) should be kept while intermediate charge exchange pro-
cesses, K +K − ↔ K 0 K 0, are included in the resummation of the 
K K loops. In order to describe the data at energies in the contin-
uum above the φ meson peak where the simple model of Eq. (2)
cannot be expected to work, we add a second order polynomial in 
c(q2) =

√
q2/q2

th − 1, for 
√

q2 >

√
q2

th = 1040 MeV:

Im�cont.(q2) = A c(q2) + B c2(q2), (4)

with coefficients A and B fitted to the data. This form of the 
K +K − continuum will be kept both in vacuum and nuclear matter. 
The result of this fit gives gφ = 0.74 × (−3g/

√
2) � −10.2, m̊φ =

797 MeV, A = −5.94 × 10−3 and B = 3.61 × 10−3. The respective 
curve is shown in Fig. 1 together with the experimental data. As 
demonstrated in this figure, the parameterizations (2), (4) give an 
accurate description of the data up to about 

√
q2 = ω � 1.6 GeV, 

above which the experimental points are seen to drop rapidly. This 
drop is parametrized by a simple linear curve fitted to the data 
points in this region.

Additional channels beyond e+e− → K +K − , such as K 0 K 0

and K K + nπ final states, are less well established by empirical 
data. We include them schematically in the thin solid line shown 
in Fig. 1.

2.2. Finite-energy sum rules

In the deep-Euclidean limit (Q 2 = −q2 → ∞) the correlator (1)
can be expressed with the help of the operator product expansion 
(OPE). The following expansion holds in the vacuum:

9�(q2 = −Q 2) = −c0 log
( Q 2

μ2

)
+ c2

Q 2
+ c4

Q 4
+ c6

Q 6
+ . . . . (5)

For the coefficients ci one finds1

1 The λa in c6 denote Gell-Mann SU(3) color matrices.
Fig. 1. The fitted spectral function −12π Im�(ω2) in vacuum, compared to the ex-
perimental data for σ(e+e− → K + K −)/σ (e+e− → μ+μ−), adapted from [14]. The 
dashed [solid] curve shows the result when only Eq. (2) [both Eqs. (2) and (4)] are 
used for the fit. The dotted horizontal line stands for the perturbative QCD limit 
while the thin gray line represents the full spectral function of Eq. (12), including 
K 0 K 0 and K K + nπ channels.

c0 = 1

4π2

(
1 + αs

π

)
, c2 = −3m2

s

2π2
, (6)

c4 = 1

12

〈αs

π
G2

〉
+ 2ms〈ss〉, (7)

c6 = −2παs

[
〈(s γμγ5 λa s)2〉 + 2

9
〈(s γμ λa s)

∑
q=u,d,s

(q γμ λa q)〉
]

+ m2
s

3

[1

3

〈αs

π
G2

〉
− 8ms〈ss〉

]
. (8)

Higher order terms in αs and ms have also been computed [10]. 
Here we keep only the most important contributions, sufficient for 
the purposes of the present work.

Using the once subtracted dispersion relation

�(q2) = �(0) + q2

π

∞∫

0

ds
Im�(s)

s(s − q2 − iε)
, (9)

and applying the Borel transformation, one derives the sum rule:

1

M2

∞∫

0

ds R(s) e−s/M2 = c0 + c2

M2
+ c4

M4
+ c6

2M6
+ . . . (10)

with the spectral function

R(s) = − 9

π
Im �(s). (11)

At large s this spectral function approaches its perturbative QCD 
limit, so the following ansatz is introduced:

R(s) = Rφ(s)
(s0 − s) + Rc(s)
(s − s0), (12)

with Rc(s) = c0, and s0 represents a scale that delineates the low-
energy and high-energy parts of the spectrum. Substituting this 
into Eq. (10) and expanding the left-hand side in inverse powers 
of M2, one derives the finite-energy sum rules:

s0∫

0

ds Rφ(s) = c0 s0 + c2, (13)

s0∫
ds s Rφ(s) = c0

2
s2

0 − c4, (14)
0
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Fig. 2. The left-hand and right-hand sides of Eqs. (13) and (14) as functions of √s0. The error bands (printed in gray) are extracted from the uncertainties of the parameters 
given in Table 1.
Table 1
Parameter values and their uncertainties used for the 
vacuum QCD sum rule analysis.

αs(2 GeV) 0.31 ± 0.01 [17]
ms (2 GeV) 95 ± 5 MeV [17]
〈ss〉 (2 GeV) (−290 ± 15 MeV)3 [18]〈 αs
π G2

〉
0.012 ± 0.004 GeV4 [19]

s0∫

0

ds s2 Rφ(s) = c0

3
s3

0 + c6. (15)

In the following we focus on the first two moments (13), (14) for 
which the respective Wilson coefficients are determined with suf-
ficient accuracy.

2.3. Matching spectral function and sum rules

In the next step the moments of the spectral function (2) are 
analyzed using the sum rules (13), (14) and following Refs. [11,16]. 
To do this we substitute Eq. (2) into the left-hand sides of Eqs. (13)
and (14) and solve them individually for s0.

In Fig. 2 we compare the left- and right-hand sides of Eqs. (13)
and (14). The parameters entering the right-hand sides are listed 
in Table 1. We find 

√
s0 = 1.55 ± 0.02 GeV from the zeroth and √

s0 = 1.55 ± 0.01 GeV from the first moment. One thus observes 
a remarkable degree of consistency between these two moments 
concerning the delineation scale s0 at which perturbative QCD 
takes over.

A characteristic quantity that reflects the φ mass together with 
some of the emerging continuum above the resonance can be pre-
pared by taking the ratio of the first and zeroth moments, inte-
grated up to a suitably chosen scale s with m2

φ < s < s0. This ratio 
represents a squared mass averaged over the spectrum Rφ(s ≤ s). 
Choosing 

√
s = 1.2 GeV turns out to be convenient for this pur-

pose because the vacuum and in-medium spectral functions Rφ(s)
become identical (and constant) above that scale as will be shown. 
With this s = (1.2 GeV)2 one finds

mφ =
√√√√

∫ s
0 ds s Rφ(s)∫ s
0 ds Rφ(s)

� 1038 MeV. (16)

The presence of the continuum above the φ meson resonance in 
Fig. 1 implies that mφ is slightly larger than the physical φ mass, 
mφ = 1019 MeV.
3. Moment analysis in nuclear matter

Next we extend the FESR analysis to the φ meson in nuclear 
matter. Working at linear order in the density ρ , the in-medium φ
meson self-energy can be written:

�φ(ω2) = �vac
φ (ω2) − ρTφN (ω), (17)

where TφN(ω) is the free forward φ-nucleon scattering amplitude 
which in turn depends on the interaction between kaon (antikaon) 
and nucleon [13]. Studies beyond linear order in the density ρ
have been performed in Refs. [20–22]. In the present work we 
stay at leading order in ρ for reasons of consistency with the 
sum rule analysis which is also restricted to in-medium quark 
and gluon condensates linear in the density. In Eq. (17) the im-
plicit assumption is made that the form, Eq. (2), of the vacuum 
self-energy remain unchanged in the medium: a possible addi-
tional density dependence of the strange vector-current coupling 
to the φ meson channel is neglected. We have examined the va-
lidity of this assumption by introducing an extra factor, 1 − aρ/ρ0, 
in Eq. (2). Demanding that the zeroth and first moment sum rules 
give consistently the same scale s0 within errors, we find that this 
additional factor, at normal nuclear matter density, can differ from 
unity by at most about 2%. Furthermore, we find only a single 
unique solution for which the two s0 values are exactly equal, with 
the mentioned overall factor lying within a 1% range around unity. 
The above results hold both for only S-wave and for S + P-wave 
K N interactions. This demonstrates that the sum rules in fact de-
mand that the density dependence of the vector current-φ meson 
coupling has to be small and that the leading density dependence 
in Eq. (17) is indeed well represented by the ρTφN term.

Consider first S-wave K N and K N interactions in TφN (ω). For 
the K N system we employ the amplitude derived from SU(3) chi-
ral effective field theory [15], including K N ↔ π� coupled chan-
nels and the dynamical generation of the �(1405). This strongly 
energy-dependent amplitude reproduces all presently available 
scattering data together with accurate kaonic hydrogen measure-
ments. For the K N channel we follow Ref. [13] and approximate 
the corresponding (weakly energy-dependent) amplitude by its 
real part (see also [23,24]).

P-wave K N and K N interactions are incorporated using the 
spectral function provided in [13]. This spectral function includes 
the relevant baryon octet and decuplet intermediate states at one-
loop level. It describes the region around the φ meson peak up 
to ω � 1.1 GeV and is then smoothly connected to the continuum 
at higher energies. The φ spectrum involving pure S-wave K N and 
K N couplings starts at the K K threshold, located at twice the kaon 
mass in vacuum and shifted downward in the medium primarily 
by the attractive K N interaction. The inclusion of P-wave interac-
tions couples the φ to the Y K continuum with correspondingly 
lower thresholds, where Y stands for �, � and �∗ .
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Fig. 3. The spectral function −12π Im�(ω2) in vacuum (solid curve) and at normal 
nuclear matter density, ρ = ρ0 = 0.17 fm−3 (only S-waves: dashed curve, S- and 
P-waves: dash-dotted curve).

The resulting spectral functions are shown as solid (vacuum), 
dashed (only S-wave) and dash-dotted (S- and P-wave) curves in 
Fig. 3.

The OPE input for the sum rules is also modified by finite-
density effects. The vacuum condensates receive the following cor-
rections at leading order in ρ:

〈ss〉ρ � 〈ss〉 + 〈N|ss|N〉ρ = 〈ss〉 + σsN

ms
ρ, (18)

〈αs

π
G2

〉
ρ

�
〈αs

π
G2

〉
+

〈
N

∣∣∣αs

π
G2

∣∣∣N
〉
ρ

=
〈αs

π
G2

〉
− 8

9

(
MN − σπ N − σsN

)
ρ. (19)

Here MN is the physical nucleon mass, σπ N = 2mq〈N|qq|N〉 is the 
π N sigma term and σsN = ms〈N|ss|N〉 the strangeness sigma term 
of the nucleon. In addition, there is a correction coming from a 
twist-2 operator given as

S T 〈N|s̄ γ μDν s|N〉 = −i

2MN
As

2

(
pμpν − 1

4
M2

N gμν
)
. (20)

The symbols S T stand for the operation of making the matrix 
symmetric and traceless with respect to the Lorentz indices, and 
pμ is the four-momentum of the nucleon (p2 = M2

N ). As
2 is the 

first moment of the parton distributions of strange quarks in the 
nucleon2

As
2 = 2

1∫

0

dx x
[
s(x) + s(x)

]
. (21)

Altogether, one finds the following in-medium correction to the 
coefficient c4 of Eq. (7):

δc4 =
(
− 2

27
MN + 56

27
σsN + 2

27
σπ N + As

2 MN

)
ρ. (22)

The various parameters appearing in this expression are chosen as 
listed in Table 2. For the strangeness sigma term, σsN , no generally 
accepted value is available at present and we hence take a rather 
broad range that encompasses almost all recent studies [25–41], 
including direct lattice QCD computations and chiral extrapolations 
of available lattice data.

With these inputs, the analysis of in-medium spectral moments 
is now carried out in the same way as in the previous section. 

2 An additional term related to the first moment of the gluon parton distribution 
[10] is ignored here for simplicity.
Table 2
Parameter values and ranges used for the QCD sum 
rule analysis in nuclear matter. The moment As

2 of the 
strange quark parton distribution is given at a renormal-
ization scale μ = 1 GeV. (The 25% error in As

2 covers 
possible uncertainties related to an evolution towards 
μ = 2 GeV, the renormalization scale at which the pa-
rameters in Table 1 are determined.)

MN 940 MeV
σsN 35 ± 35 MeV [25–41]
σπ N 45 ± 7 MeV [42]a

As
2 0.044 ± 0.011 [10,45]

a According to recent analysis [43,44], σπ N may in-
crease to a larger value, which however does not affect 
the conclusions of this work.

As a first step, consider only S-wave kaon- and antikaon–nucleon 
interactions, using the dashed curve in Fig. 3 as input for the 
analysis. We solve again Eqs. (13) and (14) for the in-medium 
delineation scale between low-energy and perturbative QCD re-
gions, now denoted s∗

0 in order to distinguish it from the vacuum 
value s0. The left- and right-hand sides of the equations are shown 
in Fig. 4 as functions of 

√
s∗

0. At normal nuclear matter density, 
ρ = ρ0 = 0.17 fm−3, one finds 

√
s∗

0 = 1.55 ±0.02 GeV from the ze-
roth moment, and 

√
s∗

0 = 1.55 ± 0.01 GeV from the first moment. 
At this point both in-medium scales are again consistent with each 
other and show no change in comparison with the corresponding 
vacuum values.

Setting once again s = (1.2 GeV)2 as in the vacuum case, the 
ratio of first to zeroth moment is then evaluated as

m∗
φ(ρ = ρ0) =

√√√√
∫ s

0 ds s Rφ(s)∫ s
0 ds Rφ(s)

� 1035 MeV. (23)

Comparing this result with Eq. (16) it is seen that the averaged 
mass m∗

φ at ρ = ρ0 does not deviate from the vacuum value apart 
from a marginal downward shift. In contrast, the resonant φ me-
son peak experiences a significant broadening, with a width of 
�φ � 24 MeV at normal nuclear matter density. The width is de-
termined by the imaginary part of the self-energy at the resonance 
maximum.

Effects of P-wave antikaon–nucleon interactions are studied 
employing the dash-dotted curve of Fig. 3. The numerical anal-
ysis is performed as in the previous paragraphs and with the 
same OPE input. For the scale parameter s∗

0 at ρ = ρ0, we ex-
tract 

√
s∗

0 = 1.52 ± 0.02 GeV from the zeroth moment, and 
√

s∗
0 =

1.52 ± 0.01 GeV from the first moment. The behavior of the left-
and right-hand sides of Eqs. (13) and (14) is similar to the S-wave 
case and we do not show it here.

Finally, setting s = (1.2 GeV)2 as before, the ratio of first to ze-
roth moments at ρ = ρ0 including both S- and P-wave interactions 
is computed as:

m∗
φ(ρ = ρ0) =

√√√√
∫ s

0 ds s Rφ(s)∫ s
0 ds Rφ(s)

� 1022 MeV. (24)

Comparing this result with the vacuum value mφ of Eq. (16), the 
averaged mass now experiences a modest downward shift by about 
16 MeV, more than for the pure S-wave case. This difference is 
explained by both a small shift of the φ resonance peak and 
the pronounced low-energy continuum in the spectral function, 
caused by the opening of kaon–hyperon channels in the pres-
ence of P-wave interactions (see Fig. 3). The broadening of the 
in-medium φ resonance is further increased significantly, reach-
ing �φ(ρ = ρ0) � 45 MeV, an order of magnitude larger than the 
vacuum width (�φ(0) = 4.3 MeV).
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Fig. 4. The left- and right-hand sides of the nuclear matter versions of Eqs. (13) and (14) as functions of
√

s∗
0 at normal nuclear matter density, ρ = ρ0 = 0.17 fm−3.
4. Strange four-quark condensates in vacuum and nuclear matter

So far our FESR analysis has been restricted to the lowest two 
moments of Rφ(s), Eqs. (13), (14). Let us now briefly turn to the 
next-higher moment and the respective sum rule, Eq. (15), and 
study its implications for the vacuum and in-medium four-quark 
condensates. First, we introduce the commonly used parametriza-
tion based on the factorization hypothesis:

〈(s γμγ5, λ
a s)2〉 + 2

9
〈(s γμ λa s)

∑
q=u,d,s

(q γμ λa q)〉

= 112

81
κ0 〈ss〉2. (25)

Exact vacuum saturation corresponds to κ0 = 1. Any deviation 
from this value signals the degree of violation of the factorization 
assumption.

At finite density, the right-hand side of Eq. (25) is changed to

112

81
κN(ρ)

(
〈ss〉2 + 2

σsN

ms
〈ss〉ρ

)
, (26)

where κN (ρ) can now in general depend on the density ρ and the 
in-medium strange quark condensate has been expanded to lead-
ing order in ρ . Let us furthermore note that as long as κ0 or κN

take values of order 1 and larger, the four-quark condensate term 
in Eq. (8) dominates over the other two terms of higher order in 
ms . These terms can thus be safely neglected for the purposes of 
this discussion. Further terms that could show up at dimension 6 
include the mixed condensate (ms〈sgσ Gs〉) and the gluon conden-
sate involving three gluon fields (〈g3G3〉). For the vector correlator, 
the Wilson coefficients of both these condensates are known to 
vanish at leading order in αs and are therefore suppressed.

Next, we combine our spectral function and the threshold pa-
rameters obtained from the zeroth and first moments with the 
FESR of Eq. (15) in order to examine possible constraints for κ0
and κN . For the vacuum case the result of this investigation is 
summarized in Fig. 5. The large uncertainties in κ0 can be under-
stood from the fact that, compared to the leading order perturba-
tive QCD term proportional to s3

0, the c6 in Eq. (15) gives only a 
small correction to the sum rule. The strange four-quark conden-
sate is therefore not so well constrained. A strong dependence of 
κ0 on the scale parameter 

√
s0 is observed. For a typical value, √

s0 = 1.55 GeV, one finds

κ0 ∼ 7 ± 2. (27)

Despite such large uncertainties, it can be concluded at least quali-
tatively that factorization (κ0 = 1) is not expected to be a good ap-
proximation. Repeating this analysis for the in-medium case with 
S- and P-wave kaon– and antikaon–nuclear interactions shows a 
Fig. 5. The factorization parameter κ0 of the four-quark condensate defined in 
Eq. (25), extracted from the second moment sum rule (15), as a function of the 
scale √s0 delineating low-energy and PQCD regions. The vertical dashed lines show 
the bounds of √s0 = 1.55 ± 0.02, as obtained from the zeroth moment sum rule. 
The horizontal short-dashed line indicates κ0 = 1, corresponding to the exact fac-
torization hypothesis.

similar tendency for κN (ρ), indicating that the factorization hy-
pothesis appears to be strongly violated in nuclear matter. At finite 
density, a full analysis including additional, potentially large twist-
2 and twist-4 terms will however be needed to reach a definitive 
conclusion (see [46] for a discussion of some of these terms). This 
issues deserve a more detailed investigation that we plan to pur-
sue in a forthcoming publication.

5. Summary and conclusions

This work has been focused on the φ meson spectral functions 
in vacuum and in nuclear matter using new and updated input 
for the computation of φ ↔ K K loops and their interactions with 
nucleons in the surrounding medium. A test of these spectral func-
tions has been performed in comparison with QCD finite-energy 
sum rules (FESR). The detailed investigation of FESRs for the zeroth 
and first moments of these spectral functions demonstrates con-
sistency with well established QCD operators and condensates in-
volving strange quarks and gluons up to dimension four. This non-
trivial conclusion holds both in the vacuum and for in-medium 
quantities at leading order in the density. Less well determined 
operators of higher dimension, such as four-quark condensates, ap-
pear in conjunction with the second spectral moment and have 
also been briefly examined and discussed. While the FESR results 
for this next-higher moment are subject to relatively large un-
certainties, a qualitative conclusion can already be drawn, namely 
that the frequently used factorization (i.e. ground state saturation) 
hypothesis is not likely to work, either in the vacuum or in the 
nuclear medium.

The φ spectral function in vacuum is constructed combin-
ing an improved vector dominance approach with a background 
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parametrization that fits the recent high-quality e+e− → K +K −
data provided by the BaBar Collaboration. The resulting zeroth 
and first spectral moments are in perfect agreement with the 
FESR analysis. In the nuclear medium the φ resonance experiences 
strong broadening, mainly from the in-medium interactions that 
couple the φ → K K loop to K K N → K -hyperon continuum chan-
nels. Induced by such mechanisms the φ width increases to about 
45 MeV at normal nuclear matter density ρ0, a factor of ten larger 
than the vacuum decay width. The in-medium (downward) mass 
shift of the φ turns out to be small. At ρ = ρ0 it amounts to less 
than 2% of its vacuum mass. This confirms findings of earlier stud-
ies based on chiral SU(3) models [13,21].

In this work, we have restricted ourselves to the case of a φ
meson at rest with respect to the nuclear medium. Some caution 
is therefore needed when comparing our results to experiments, 
in which the measured spectrum always involves finite momen-
tum contributions [3]. Effects of non-zero momenta have so far 
only been investigated in the sum rule approach of [47]. More 
detailed systematic studies are required to fully understand the 
finite-momentum effects, especially in view of the E-16 experi-
ment at J-PARC, where φ meson spectra at a sequence of different 
momenta are planned to be measured [5,6].

Further quantitative improvements of the present analysis will 
include, for instance, implementing a more realistic treatment of 
the onset of the continuum. In the present work the delineation 
between the low-energy hadronic region and the QCD contin-
uum has been introduced by a simple step-function at a scale 
s = s0 which turned out to emerge consistently at 

√
s0 � 1.5 GeV. 

A softer transition represented by a ramp function [11] should 
make sure that conclusions do not depend on details of this ramp-
ing into the continuum. An extended publication, including a full 
discussion of such refinements, is in preparation.

Finally let us point out implications of the present study for 
future measurements of the in-medium φ meson spectral func-
tion, in particular with reference to the E16 experiment planned to 
be performed at J-PARC. A characteristic feature of the in-medium 
spectra shown in Fig. 3 is their non-symmetric behavior around 
the φ meson peak, with an enhancement of strength in the low-
energy sub-resonance region caused by strong broadening and the 
opening of new decay channels. Such behavior should be taken 
into account when analyzing the experimental spectra. In addition 
we once more emphasize the usefulness of the two lowest spec-
tral moments as they provide a direct link to the most relevant 
low-dimensional QCD condensates and their respective changes in 
nuclear matter. Precise measurements of these moments with nu-
clear targets would make it possible to constrain the behavior of 
the gluon and strange quark condensates at finite baryon density.
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