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1 Introduction

1.1 Motivation

Over the past decades the Standard Model of particle physics (SM) has been established as

a powerful theory explaining almost all phenomena that are observed in particle physics.
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Its full particle content has been discovered eventually, and its predictions to this end pass

all precision tests [1]. Nevertheless, it is clear that the SM cannot be a complete theory

of Nature. Any attempt to explain the observed neutrino flavour oscillations with the

SM field content relies on non-renormalizable interactions mediated by operators of mass

dimension larger than four, which are generally associated with the existence of new heavy

degrees of freedom that have been integrated out. Moreover, the SM fails to explain several

problems in cosmology. These include the origin of the matter-antimatter asymmetry in

the Universe that can be quantified by the baryon-to-photon ratio [2–4]

ηB = 6.1× 10−10 . (1.1)

The addition of ns ≥ 2 right-handed (RH) gauge-singlet (sterile) neutrinos Ni (i =

1 . . . ns) can simultaneously explain the observed light neutrino masses via the seesaw

mechanism [5–10] and the baryon asymmetry of the Universe (BAU) via leptogenesis [11].1

The sterile neutrinos are connected with the SM solely through their Yukawa interactions

Y with the SM lepton doublets `a (a = e, µ, τ ) and the Higgs field φ. The Lagrangian of

this model is given by

L = LSM +
1

2
N̄i(i∂/−M)ijNj − Y ∗ia ¯̀

aεφPRNi − YiaN̄iPLφ
†ε†`a , (1.2)

where LSM is the SM Lagrangian. The spinors Ni observe the Majorana condition N c
i = Ni,

where the superscript c denotes charge conjugation. Besides, ε is the antisymmetric SU(2)-

invariant tensor with ε12 = 1.2 The eigenvalues Mi of M , which in good approximation

equal the physical masses of the Ni particles, introduce new mass scales in nature. The

requirement to explain neutrino oscillation data does not fix the magnitudes of the masses

Mi, as oscillation experiments only constrain the combination

mν = v2Y †M−1Y ∗. (1.3)

An overview of the implications of different choices of Mi for particle physics and cosmology

is e.g. provided by ref. [13]. The relation between the parameters in the Lagrangian (1.2)

and neutrino oscillation data is given in appendix A.

The magnitude of the Mi is often assumed to be much larger than the electroweak

scale. However, values below the electroweak scale are phenomenologically very interesting

because they may allow for an experimental discovery of the Ni particles and to potentially

unveil the mechanism of neutrino mass generation. Various experimental constraints on

this low-scale seesaw scenario are summarised in ref. [14] and references therein. In the

present work, we focus on masses Mi in the GeV range. Apart from some theoretical

arguments [15–18], the study of this mass range is motivated by the possibility to test it

experimentally. Heavy neutrinos with Mi < 5 GeV can be searched for in meson decays

at B and K factories [19–26] or fixed target experiments [27], including NA62 [28], the

SHiP experiment proposed at CERN [29–31] or a similar setup at the DUNE beam at

1The possibility that sterile neutrinos compose dark matter is discussed in detail in the review [12].
2Note that SU(2) group indices remain suppressed throughout this paper.
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FNAL [32, 33]. Larger masses are accessible at the LHC [34–50], either via vector boson

fusion (Mi > 500 GeV), s-channel exchange of W bosons (500GeV > Mi > 80 GeV) or

in real gauge boson decays (Mi < 80 GeV), but the perspectives would be best at a high

energy lepton collider ILC [23, 34, 41, 51, 52], FCC-ee [22, 23, 53, 54] or the CEPC [23, 55].

Since the Ni are gauge singlets, they can interact with ordinary matter only via their

quantum mechanical mixing with left-handed (LH) neutrinos that arises as a result of the

Higgs mechanism and is the reason why the SM neutrinos become massive. This mixing

can be quantified by the elements of the matrix

θ = vY †M−1. (1.4)

Event rates in experiments are proportional to combinations of the parameters

U2
ai = |(θUN )ai|2, (1.5)

which determine the interaction strength of the heavy neutrino Ni with leptons of flavour

a. Here UN is a unitary matrix that diagonalises the heavy neutrino mass matrix. For

convenience, we also introduce the parameter

U2
i =

∑
a

U2
ai (1.6)

that quantifies the total mixing of a given heavy neutrino of flavour i as well as the quantity

U2 =
∑
i

U2
i = tr(θ†θ). (1.7)

It is of interest to determine for which range of values of U2
ai heavy neutrinos can simulta-

neously explain neutrino oscillation data and the BAU. In the present work, we improve

on the network of equations that describes the generation of the BAU from GeV-scale ster-

ile neutrinos and develop analytic approximations to the solutions for phenomenologically

relevant limiting cases.

1.2 Leptogenesis scenarios

Any mechanism that generates a non-zero BAU has to fulfil the three Sakharov condi-

tions [56] of i) baryon number violation, ii) C and CP violation and iii) a deviation from

thermal equilibrium.3 Parity and baryon number are already sufficiently violated in the

SM, the latter by weak sphalerons [57] at temperatures larger than Tws ' 130 GeV [58].

In the Lagrangian (1.2), CP is (in addition to the CP violation in the SM) violated by

complex phases in the Yukawa coupling matrix Y and the mass matrix M . The non-

equilibrium condition can be realised by the heavy neutrinos Ni in different ways. These

can qualitatively be distinguished by the relative magnitude of different time scales, which

3Leptogenesis is based on the idea that a matter-antimatter asymmetry L is generated in the leptonic

sector and partly converted into a baryon asymmetry B by weak sphalerons, which violate B + L and

conserve B−L. This of course in addition requires a violation of B−L, which is provided by the Majorana

mass M .

– 3 –
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we express through the variable z = Tref/T . Here T is the temperature of the primordial

plasma and Tref some arbitrarily chosen reference temperature, which we set to Tref = Tws

for convenience, such that sphalerons freeze out at z = 1. We assume that the radiation

dominated era starts with a vanishing abundance of Ni, which appears reasonable due to

the smallness of their couplings Y [59]. The heavy neutrinos are produced in a flavour

state that corresponds to an eigenvector of Y Y † (interaction basis). Since Y and M are

in general not diagonal in the same flavour basis, they start to undergo flavour oscillations

at z = zosc. Their abundance reaches thermal equilibrium at z = zeq. They decouple

(freeze out) from the plasma and subsequently decay at z = zdec. While this picture qual-

itatively holds for all parameter choices in the Lagrangian, the values of zosc, zeq and zdec

greatly vary.

In the original thermal leptogenesis scenario [11], theNi are superheavy (Mi � Tws). In

this case, their production, freezeout and decay all happen long before sphaleron freezeout

(zosc < zeq < zdec � 1). The final lepton asymmetry is produced in the CP -violating decay

of Ni particles and partly converted into a BAU by the sphalerons. The non-equilibrium

condition is satisfied by the deviation of the Ni distribution functions from their equilib-

rium values at z > zdec. Oscillations amongst the Ni in principle occur, but at z ∼ zdec

they are so rapid that they can be averaged over, so that it is not necessary to track

the non-diagonal correlations of the right-handed neutrinos states. Exceptions from this

behaviour require accidental parametric cancellations that appear unlikely in phenomeno-

logical scenarios [60, 61]. This scenario and various modifications have been studied in the

literature in great detail and are reviewed in refs. [62–64].

For Mi in the GeV range under consideration here, however, the smallness of the

light neutrino masses (1.3) implies that the Yukawa couplings Yia must be very small. In

this case the Ni production proceeds much more slowly, and the non-equilibrium condition

is satisfied by the initial approach of their distribution functions to equilibrium prior to

sphaleron freezeout at z = 1. This scenario is often referred to as leptogenesis from neutrino

oscillations [65] because coherent oscillations of the heavy neutrinos during their production

lead to CP -violating correlations between their mass eigenstates at z ∼ zosc. These are

then transferred into matter-antimatter asymmetries ∆a = B−La/3 in the individual SM

flavours a = e, µ, τ when scatterings convert some of the Ni back into SM leptons. Here La
are flavoured lepton asymmetries, which are kept in equilibrium with the baryon asymmetry

B by sphaleron processes. Since the violation of total lepton number due to the Majorana

masses is suppressed at T > Tws � Mi, the total lepton number remains small initially:

|∆a| � |
∑

a ∆a| ' 0. A total asymmetry
∑

a ∆a 6= 0 is, however, generated because

part of the asymmetries ∆a are converted into helicity asymmetries in the Majorana fields

Ni by washout processes with an efficiency that depends on the different flavours a. If

the washout is completed before sphaleron freezeout, all asymmetries are erased. If the

washout is incomplete at z = 1, then a baryon asymmetry B survives, as B is conserved

for z > 1.

Based on the relation among the time scales zosc and zeq, which is controlled by the

Yukawa couplings of the sterile neutrinos and their Majorana masses, we can distinguish

between two regimes:

– 4 –
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• In the oscillatory regime oscillations occur much earlier than the equilibration (zosc �
zeq) such that the charges ∆a are mainly generated at early times during the first few

oscillations. This requires weak damping rates and hence small Yukawa couplings in

order to prevent the charges from being washed out too early. In turn, this setup

allows for a perturbative analysis in the Yukawa couplings.

• In the overdamped regime the equilibration of at least one heavy neutrino happens

before any full oscillation among the heavy neutrinos can be completed (zosc � zeq).

This requires either some degree of mass degeneracy amongst the Mi because the mass

differences govern the oscillation time or anomalously large Yukawa couplings Y . Yet,

for a successful generation of the BAU, we must have at least one sterile neutrino

that does not fully equilibrate. This setup allows for an analytic approximation in

terms of quasi-static solutions that are driven by the slow approach of one of the

sterile flavour eigenstates toward equilibrium.

A simple power counting argument suggests that the flavoured asymmetries La are of order

O[Y 4], cf. eq. (3.18), while the total L (and hence B) is of order O[Y 6]. This counting

is however, valid only for times z � (O[Y 2]T )−1, and cannot be used in the overdamped

regime defined below (see e.g. eq. (4.35)), or to describe the late time washout.

We shall introduce two theoretical benchmark scenarios that roughly correspond to the

two regimes. The naive seesaw corresponds to a situation in which the Yukawa couplings

are of the order

|Yia|2 ∼
√
m2

atm +m2
lightestMi/v

2, (1.8)

where m2
atm is the larger of the two observed light neutrino mass splittings and mlightest is

the unknown mass of the lightest neutrino. In this scenario, there are no cancellations in

the seesaw relation (1.3). This leads to rather small mixing angles U2
ai and makes it very

difficult to find the heavy neutrinos in experimental searches. Larger mixing angles can be

made consistent with the observed neutrino masses if there are cancellations in the seesaw

relation (1.3). One way to motivate this is to promote B−L, which is accidentally conserved

in the SM, to a fundamental symmetry that is slightly broken. This possibility is usually

referred to as approximate lepton number conservation, as it implies that the violation of the

total L at low energies is suppressed compared to the violation of individual lepton numbers

La. In this limit one finds that heavy neutrinos with Yukawa couplings much larger than

suggested by the relation (1.8) must be organised in pairs of mass eigenstates Ni and Nj

which in the limit of exact B − L conservation form a Dirac-spinor ΨN = (Ni + iNj)/
√

2.

This implies

Mi = Mj , U
2
ai = U2

aj for a = e, µ, τ . (1.9)

Moreover, if the B −L symmetry is slightly broken, the heavy neutrino mass basis (where

M is diagonal) and interaction basis (where Y Y † is diagonal) are maximally misaligned

in the flavours i and j. One of the interaction eigenstates does not couple to the SM at

all, corresponding to a zero eigenvalue in Y Y †, while the other one can have arbitrarily

large Yukawa couplings without generating large neutrino masses or a rate of neutrinoless

– 5 –
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overdamped oscillatory

M = 1 GeV Reω = 3π/4 ∆M2 = 10−6M2 ∆M2 = 2× 10−5M2

δ = 3π/2 α1 = 0 Imω = 4.71 Imω = 2.16

α2 = −2π U2 = 3.6× 10−7 U2 = 2.2× 10−9

Table 1. The parameters used for the examples presented in this work. For the light neutrino

masses, a normal hierarchy is assumed.

double β decay that is in conflict with present observational bounds. Within this work,

we illustrate our analytic and numerical results for both scenarios through two parametric

example points that are specified in table 1.

1.3 Goals of this work

The seesaw Lagrangian (1.2) contains 7ns − 3 new parameters, where ns is the num-

ber of sterile neutrinos. For five of these (two mass splittings and three light neutrino

mixing angles) best fit values can be obtained from neutrino oscillation data [66], see ap-

pendix A. In view of upcoming experimental searches, it is highly desirable to identify the

range of the remaining parameters that allow to explain the BAU via leptogenesis from

neutrino oscillations. This question has been addressed by a number of authors in the

past [17, 20, 65, 67–81].

The viable parameter space in the minimal model with ns = 2 has first been mapped

in refs. [69–71].4 The results of this analysis have been used to examine the physics case for

the SHiP experiment [30] and the discovery potential of a future lepton collider [53]. More

recent studies [76, 77] suggest that the viable parameter region is smaller. In particular,

the maximal values of U2
i that are for given Mi compatible with successful leptogenesis

are smaller than claimed in refs. [70, 71], making an experimental discovery more difficult.

With the present paper, we aim to clarify this question. For this purpose, we derive

approximate analytic solutions for the time evolution of the asymmetries in the oscillatory

and overdamped regimes. This is in contrast to the initial study in refs. [70, 71], which was

entirely numerical. Analytic solutions for the oscillatory regime have previously been found

in refs. [67, 72, 76, 77], but cannot be used to identify the maximal U2
i compatible with

leptogenesis because the Ni oscillations tend to be overdamped when some of the U2
ai are

comparably large. We confirm numerically that our analytic solutions are accurate up to

factors of order one in the regimes where they are applicable. We make use of the analytic

understanding to identify the parameter region that leads to the largest possible U2
ai that

is consistent with successful leptogenesis. Within this region, we search for the maximal

value of U2 numerically. Compared to the previous numerical scan in refs. [70, 71], we

apply the results of improved calculations of the thermal production and washout rates in

4There have to be at least two RH neutrinos for two reasons. First, for every non-zero SM neutrino

mass the type-I seesaw mechanism requires one sterile neutrino (except for models with extended scalar

sectors), and two non-zero mass differences of active neutrinos have been confirmed experimentally. Second,

leptogenesis is only possible with two or more sterile neutrinos, as the CP -violation arises from a quantum

interference involving Ni that couple with different phases.

– 6 –
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the plasma [82–85], include spectator processes, and use an updated result for the value

of Tws.

The parameter space in the model with ns = 3 is considerably larger and has been

studied only partially in the context of leptogenesis from neutrino oscillations to date [20,

72, 74, 75, 77]. In ref. [72] it has been pointed out that in this scenario the generation of

the BAU does not necessarily rely on a mass degeneracy amongst the Mi, which is required

in the case with ns = 2 [67] as well as for resonant leptogenesis from Ni decays [86–90].

This results have been confirmed in refs. [20, 74, 75, 77]. It has also been pointed out

that leptogenesis can be achieved for larger values of U2
i for ns > 2 [20, 77]. A complete

parameter scan for the model with ns = 3 would be highly desirable, but is numerically

challenging. Our analytic understanding in specific corners of the parameter space will be

helpful in this context, as it allows to identify the relevant physical effects and time scales.

This paper is structured as follows: in section 2 we present the evolution equations

for both the sterile neutrinos and the SM asymmetries, and we discuss the qualitative

behaviour of the solutions. In sections 3 and 4 we derive analytic approximations to the

solutions in the oscillatory and the overdamped regimes, respectively. Constraints on the

active-sterile mixing are derived in section 5. We discuss the implications of our results

and conclude in section 6. Technical details can be found in a number of appendices. In

appendix A, we summarise the parametrisation of the masses and couplings in the seesaw

Lagrangian (1.2) that is employed in this paper. We also explain the phenomenological

interesting case of scenarios with an approximate lepton number conservation that can

lead to a large active-sterile mixing. Appendix B contains an extensive derivation of the

kinetic equations for the sterile neutrinos based on first principles of non-equilibrium field

theory, while in appendix C the kinetic equations for the SM particles, that also include

spectator effects, are reviewed more briefly. Finally, appendix D contains some details on

the oscillations of the sterile neutrinos that are omitted in the main text.

2 Evolution equations

We need to describe the real-time evolution of the fields appearing in the seesaw La-

grangian (1.2) as well as of the spectator fields these couple to in the early Universe from

the hot big bang down to T = Tws (or z = 1). Since quantum correlations of the different

mass eigenstates of the heavy neutrinos are of crucial importance, there is an immediate

need to go beyond a formulation in terms of Boltzmann equations for classical distribution

functions. The evolution of sterile neutrinos in the early Universe is often described by

density matrix equations [65, 67–71, 74, 76, 77] that can be motivated in analogy to the

more detailed derivation for systems of SM neutrinos [91].

An alternative way to derive quantum kinetic equations and systematically include

all quantum and thermodynamic effects from first principles is offered by the closed-time-

path (CTP) formalism of non-equilibrium quantum field theory [92–94]. We describe this

approach in appendix A. The main advantage is that it allows to derive effective kinetic

equations that hold at the desired level of accuracy from first principles in a series of

controlled approximations. More specifically, overcounting issues as well as ambiguities re-

– 7 –
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lated to the definition of asymptotic states in a dense plasma can be avoided, and necessary

resummations of infrared enhanced rates at finite temperature are straightforward.

Charge and number densities. We can safely assume that the charged fields are

maintained in kinetic equilibrium by gauge interactions such that we can describe these

by chemical potentials, which are in linear approximation proportional to the comoving

charge densities,

qX =


a2R
3 µX for massless bosons

a2R
6 µX for (massless) chiral fermions

. (2.1)

We use a parametrisation where

aR = mPl

√
45

4π3g?
= T 2/H (2.2)

corresponds to a comoving temperature in an expanding Universe with Hubble parameter

H. Here, mPl = 1.22× 1019 GeV is the Planck mass and g? = 106.75 the effective number

of relativistic degrees of freedom. The physical temperature is given by T = aR/a, where

a is the scale factor.

The main quantity of interest is the baryon asymmetry of the Universe or, more pre-

cisely, the comoving density B of baryon number as a function of time. It is violated by

sphaleron processes that are fast compared to the expansion rate for z < 1 and connect B

to the comoving lepton number density L =
∑

a=e,µ,τ La. The slowly evolving quantities

relevant for leptogenesis are

∆a = B/3− La , (2.3)

which are conserved by all SM interactions (including weak sphalerons). Here

La = gwq`a + qRa , (2.4)

where q`a and qRa are the comoving lepton charge densities of flavour a stored within left

and right chiral SM leptons, respectively, and gw = 2 accounts for the SU(2) doublet mul-

tiplicity.

Among the SM degrees of freedom, only ` and φ directly interact with the sterile

neutrinos. Nonetheless, the remaining degrees of freedom can also carry asymmetries and

participate in chemical equilibration. They are referred to as spectator fields [95–97]. The

main effect of the spectators is to hide a fraction of the asymmetries from the washout,

which only acts on the La. Taking account of these, one arrives at relations

q`a =
∑
b

Aab∆b and qφ =
∑
a

Ca∆a , (2.5)

where the coefficients

A =
1

711

−221 16 16

16 −221 16

16 16 −221

 , C = − 8

79

(
1 1 1

)
(2.6)

are derived in appendix C.2.
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The Majorana fields Ni strictly speaking cannot carry any lepton charges. However,

at temperatures T �Mi, their helicity states effectively act as particles and antiparticles.

We describe the Ni by the deviation δnh of their number density from equilibrium, that is

formally defined in eq. (B.46). Here, h = ± denotes the sign of the helicity ±1
2 , and δnh

is matrix valued. In the flavour basis where M is diagonal, the diagonal elements are the

number densities and the off-diagonal entries correspond to quantum correlations. This

allows to define sterile charges

qNi ≡ 2δnodd
ii , (2.7)

in terms of the helicity-odd deviations of the occupation numbers from their equilibrium

values, which is introduced more precisely in appendix B. The Yukawa interactions Y vio-

late individual lepton flavour numbers La at orderO[Y 2] (e.g. by light neutrino oscillations).

The Majorana mass M also violates the total lepton number

L =
∑
a

La. (2.8)

However, at temperatures T � Mi most particles are relativistic and spin flips are sup-

pressed, such that the quantity

L̃ = L+
∑
i

qNi (2.9)

is approximately conserved (up to terms of order M2
i /T

2). Since the Ni start from initial

conditions that are far from equilibrium, the assumption of kinetic equilibrium is not justi-

fied for them in principle. We briefly discuss the error introduced by the use of momentum

averaged equations in appendix D.2, see also ref. [98].

In terms of these charge densities, we next write down the set of quantum kinetic equa-

tions used in our analysis. A detailed derivation for the evolution of the sterile neutrinos

within the CTP framework is given in appendix B, while a sketch of the derivation for the

equations of SM charges is presented in appendix C.

Evolution of sterile neutrino densities. In terms of the variable z the time evolution

of the number densities and flavour correlations of the sterile neutrinos is governed by the

equation

d

dz
δnh = − i

2
[Hth

N + z2Hvac
N , δnh]− 1

2
{ΓN , δnh}+

∑
a,b=e,µ,τ

Γ̃aN (Aab + Cb/2)∆b . (2.10)

The flavour matrix Hvac
N can be interpreted as an effective Hamiltonian in vacuum, and

Hth
N is the Hermitian part of the finite temperature correction. The contributions involving

the matrix ΓN and the vector Γ̃N are collision terms. Explicit expressions for these are

– 9 –
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derived in appendix B,

Hvac
N =

π2

18ζ(3)

aR

T 3
ref

(
Re[M †M ] + ihIm[M †M ]

)
, (2.11a)

Hth
N = hth

aR

Tref

(
Re[Y ∗Y t]− ihIm[Y ∗Y t]

)
, (2.11b)

ΓN = γav
aR

Tref

(
Re[Y ∗Y t]− ihIm[Y ∗Y t]

)
, (2.11c)

(Γ̃aN )ij =
h

2
γav

aR

Tref

(
Re[Y ∗iaY

t
aj ]− ihIm[Y ∗iaY

t
aj ]
)
, (2.11d)

with γav = 0.012 and hth ≈ 0.23, cf. eqs. (B.48), (B.49) and the discussion of these. As

pointed out in the previous section, we make use of the freedom of choice of the refer-

ence temperature scale Tref to fix it as the temperature Tws of weak sphaleron freezeout.

However, for the sake of generality we keep the notation Tref throughout this paper.

It is worthwhile to emphasise that the above equations only hold in the regime where

the Ni are relativistic. We have essentially neglected their masses everywhere except in

Hvac
N , where they are absolutely crucial because they are responsible for the flavour os-

cillations. The relativistic approximation has two different consequences. One one hand,

the derivation following eq. (B.33) assumes that the right-handed neutrino masses Mi are

kinematically negligible in scatterings and decays. Putting both Ni on the same mass shell

is certainly a reasonable assumption, as |M2
i −M2

j | � M2
i in the entire parameter space

under consideration here. Entirely neglecting the masses leads to errors ∼ M2
i /T

2 to the

rates ΓN and Γ̃aN , which should, however, not have a huge effect on our results.5 This is in

contrast to standard thermal leptogenesis scenarios of out-of-equilibrium decay, where the

dynamics is dependent on the relation between the absolute right-handed neutrino mass

and the Hubble rate. On the other hand, we neglect lepton number violating scatterings,

which are suppressed by M2
i /T

2. This assumption is clearly justified for Mi of a few GeV

and in the oscillatory regime, but is in principle questionable for Mi near the electroweak

scale in the overdamped regime, where the BAU is generated shortly before sphaleron

freezeout. We believe that our equations can still be used in this regime because the rates

for lepton number violating processes are suppressed by the small parameters εi and µi
introduced in eq. (4.1), but this statement should be checked quantitatively in the future

to identify their precise range of validity.

Before explicitly solving eq. (2.10), we discuss the basic properties of the solutions.

For this purpose we neglect the backreaction term with Γ̃N . The qualitative behaviour of

the system is governed by the eigenvalues of Hvac
N and ΓN , which determine the time scales

on which the sterile neutrinos oscillate and come into equilibrium. While Hvac
N is diagonal

in the flavour basis where M is diagonal (mass basis), ΓN is diagonal in the same basis

5If the asymmetry is generated near the electroweak scale, in principle also the masses of the top

quark and gauge bosons and the contribution to the heavy neutrino masses generated by the Higgs

mechanism should be taken into account. On one hand, this affects the particle kinematics. On the

other hand, one should replace (2.11b) by Hth
N = aR

Tref

(
Re[Y ∗Y t][hth + hEV(z)]− ihIm[Y ∗Y t]hth

)
, where

hEV(z) = 2π2

18ζ(3)
v2(z)

T2
ref

z2 and v(z) is the temperature dependent Higgs field expectation value. We neglect

these effects here.
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as Y Y † (interaction basis). The misalignment between the two leads to sterile neutrino

oscillations. That means, particles are produced in the interaction basis and then oscillate

due to the commutator involving Hvac
N . At sufficiently high temperatures the correction

Hth
N due to thermal masses is larger than Hvac

N , but by itself cannot initiate oscillations

because it is diagonal in the same basis as ΓN . For ns flavours of heavy neutrinos, there

are of course ns relaxation times zeq and ns(ns− 1)/2 oscillation times zosc, all of which in

general can be different. For a qualitative classification of the oscillatory and overdamped

regimes it is useful to consider the largest eigenvalues of the matrices Hvac
N and ΓN . We

use the norm || · || of a Hermitian matrix as the modulus of its largest eigenvalue. In case

of Y ∗Y t it is, for instance, associated with the interaction eigenstate with the strongest

coupling to the primordial plasma. The first oscillation involves the sterile neutrino mass

states Ni and Nj with the largest mass splitting and occurs at a time

zosc ≈
(
aR|M2

i −M2
j |
)−1/3

Tref , (2.12)

such that z3
osc||Hvac

N || = O(1). The relaxation time scale at which a sterile neutrino inter-

action state comes into thermal equilibrium is given by

zeq ' Tref/(γavaR||Y ∗Y t||) , (2.13)

such that zeqΓ = O(1) with γav being the averaged relaxation rate (over temperature).

If the slowest oscillation time scale is shorter than the fastest relaxation time scale, then

leptogenesis occurs in the oscillatory regime. In this case the heavy neutrinos undergo a

large number of coherent oscillations before coming into equilibrium, which in terms of the

variable z become increasingly rapid. The baryon asymmetry is most efficiently generated

during the first few oscillations, before the oscillations become fast (compared to the rate

of Hubble expansion), cf. figure 1. There is a clear separation between the time zosc when

the asymmetry gets generated and the time zeq when the Ni come into equilibrium and

the washout becomes efficient. This allows to treat these two processes independently. We

discuss this regime in section 3.

If, on the other hand, at least one heavy neutrino flavour eigenstate comes into equi-

librium before a neutrino that is produced in this state has performed a complete flavour

oscillation, then the oscillations are overdamped, cf. figure 6. As we illustrate in section 4,

this allows for baryogenesis with larger Yukawa couplings and consequently also larger

active-sterile mixing angles U2
ai. In the scenario with ns = 2, the largest possible values of

U2
ai can be realised when the first oscillation happens rather late (zosc ∼ 1), as otherwise

the washout tends to erase all asymmetries before sphaleron freezeout. As a result of the

integration over a long time, the power counting in Y that allows to estimate the magnitude

of the asymmetries in the oscillatory regime may not be applied, and the backreaction term

involving Γ̃N may not be neglected. Eqs. (2.12), (2.13) allow to relate the mass difference

to the Yukawa couplings in order to determine which regime a given parameter choice

corresponds to:

||Y ∗Y t||γava
2/3
R

|M2
i −M2

j |1/3

{
� 1 oscillatory

� 1 overdamped
. (2.14)
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Figure 2 schematically illustrates where the oscillatory and the overdamped regime are

located in the Mi −U2 plane for various mass splittings. We also indicate the points from

table 1 that we use in our examples in order to illustrate the two parametric regimes. For

ns > 2 the situation becomes more complicated because there are more oscillation and

equilibration time scales, which can be ordered in various different ways. Moreover, the

constraints on the relative size of the individual U2
ai from neutrino oscillation data are much

weaker and allow for a flavour asymmetric washout (while for ns = 2 there is not enough

freedom in the unconstrained parameters in eq. (A.1) to realise vastly different values of

individual U2
ai [99, 100]).

Evolution of SM charge densities. The time evolution of the asymmetries ∆a is

governed by the equation6

d∆a

dz
=
γav

gw

aR

Tref

∑
i

YiaY
†
ai

(∑
b

(Aab + Cb/2)∆b − qNi

)
− Sa
Tref

. (2.15)

A sketch of its derivation is presented in appendix C. Note that we neglect the correlations

of the different active charges here, which are deleted by the lepton-flavour violating inter-

actions mediated by the SM Yukawa-interactions, thereby breaking the flavour covariance

of the evolution equations. The first term on the right-hand side is the washout that is

complementary to the damping rate for the sterile charges, while the second term is referred

to as the source term

Sa = 2
γav

gw
aR

∑
i,j

i 6=j

Y ∗iaYja

[
iIm(δneven

ij ) + Re(δnodd
ij )

]
. (2.16)

It describes the generation of SM asymmetries in the presence of off-diagonal correlations

of sterile neutrinos.

Numerical solution. In order to compare our analytic approximations we explicitly

solve the system of differential equations (2.10), (2.15) in the basis where the mass matrix

is diagonal, without any further approximations from z = 0 to the electroweak phase

transition at z = 1. Note that we assume zero initial abundance for the active charges

∆a(z = 0) = 0, as well as zero initial abundance for the right-handed neutrinos, meaning

that their deviation from equilibrium is δnh,i,j(z = 0) = −δi,jneq.

3 Oscillatory regime

We now study the oscillatory regime, where the first oscillations of the off-diagonal correla-

tions of the sterile neutrinos happen much earlier than their relaxation toward equilibrium,

6Let us recall that we work in the heavy neutrino mass basis here, and eq. (2.15), and similarly eq. (3.19),

are not manifestly flavour covariant. One reason for this is that we, following the common convention, do

not include the diagonal charge qNi on the r.h.s. of eq. (3.19) in the definition of the source term Sa. This

implies that the separation into “source” and “backreaction” terms in section 4 is different from the one

presented here, as we again define the source as coming from the off-diagonal correlations alone, and this

definition is not flavour covariant.
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i.e. zosc � zeq. The separation of scales zosc � zeq allows to treat the generation of

flavoured asymmetries from Ni oscillations and their washout (which leads to B 6= 0) inde-

pendently. At early times when z ∼ zosc, we can expand the solution to the coupled system

of eqs. (2.10), (2.15) in the Yukawa couplings |Y ∗Y t|, as we specify within section 3.1 in

detail. At late times, when z ∼ zeq, the off-diagonal correlations have either decayed or

their effect averages out due to the rapidity of their oscillations. Therefore, we can ne-

glect the commutator term in eq. (2.10) as well as the source term in eq. (2.15) (i.e. the

contributions explicitly depending on δnij for i 6= j). This is done in section 3.2. Our

solutions hold for arbitrary ns as long as the slowest oscillation time scale is faster than

the fastest equilibration time scale. Throughout this section, we work in the mass basis

(where M is diagonal). In figure 1, we present a characteristic example for the evolution

of the particular charge densities for ns = 2.

3.1 Early time oscillations

We now identify in more detail the truncations that may be applied to eqs. (2.10) and (2.15)

when z ∼ zosc and solve the problem thus simplified analytically.

Oscillations of sterile neutrinos. First, consider the thermal correction to the oscilla-

tion frequency of the sterile neutrinos due to thermal masses. While in the parametrisation

of eq. (2.10), the oscillation frequency induced by the vacuum term Hvac
N is growing with

z2, the thermal contributions given by hth remain constant. As a result, at very early

times, the thermal effects exceed the contributions from the vacuum masses. However,

because Hth
N is generated by forward scatterings mediated by the Yukawa interactions, it is

diagonal in the same flavour basis as ΓN , i.e. the interaction basis in which heavy neutrinos

are produced. Hth
N therefore commutes with δnh at early times (before Hvac

N becomes size-

able) and does not lead to oscillations.7 For this reason, the thermal masses only lead to

subdominant corrections in the oscillatory regime, and we neglect these in the following. A

more detailed discussion about these time scales is presented in appendix D.1. The relation

zosc � zeq also leaves the backreaction mediated through Γ̃ in eq. (2.10) as a higher order

effect at early times z ∼ zosc, such that it only becomes important later, when the charges

∆a have already been generated by the source term. In summary, for z ∼ zosc, and given

the relation zosc � zeq, eq. (2.10) can be simplified to

d

dz
δnh +

i

2
z2[Hvac

N , δnh] = −1

2
{ΓN , δnh} . (3.1)

In order to compute q`a as well as qNi = 2nodd
ii we have to solve eq. (3.1) both for

helicity-even and helicity-odd distributions. The relation zosc � zeq allows for a perturba-

tive expansion in the coupling term |Y ∗Y t|. Solutions to order O(|Y ∗Y t|0) are obtained

7One may wonder whether the large thermal masses can lead to a big enhancement at z � zosc by

somehow amplifying a small population of the helicity-odd occupation numbers generated during the first

fraction of an oscillation. However, it turns out that the main part of the charges ∆a in the oscillatory

regime is produced well during the first full oscillation. This is confirmed by our numerical solutions, which

take full account of the thermal masses.
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z=Tref /T

Figure 1. The upper panel illustrates the CP -violating oscillations of heavy neutrinos, as char-

acterised by the helicity odd off-diagonal flavour correlations in their mass basis. These act as a

source for the generation of flavoured lepton asymmetries. We cut off the oscillations at the point

when they become too rapid to make a significant contribution to the source term, as indicated in

the plot. The middle panel shows the individual asymmetries generated in the three SM flavours.

It is clearly visible that the total lepton asymmetry is only generated when the washout begins, and

that its modulus remains smaller than that of the asymmetries in individual flavours at all times.

The lowest panel shows the generated baryon asymmetry, where the green band indicates the error

bars of the observed value.
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overdamped
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oscillatory
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|U 2
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M [GeV ]

Figure 2. Parameter regions for the effective mixing angle
∑
a U

2
a [using the estimate (2.14)] in case

of two sterile flavours with corresponding average mass M and a squared-mass splitting ∆M2 =

M2
1 −M2

2 . The regions above/below the blue/red lines correspond to the overdamped/oscillatory

regimes for the mass splittings indicated in the plot. The blue and red dots correspond to the two

example parameter sets specified in table 1. We can see that the blue point lies in the oscillatory

and the red point in the overdamped regime.

when neglecting the right hand side of eq. (3.1), what results in the diagonal terms

δneven
ii = −neq +O(|Y ∗Y t|) , δnodd

ii = 0 +O(|Y ∗Y t|) , (3.2)

with the equilibrium solution (B.45), whereas the off-diagonal entries vanish. Note that

the first term of eq. (3.2) corresponds to vanishing initial abundances of the right-handed

neutrinos. The first non-vanishing contribution to the charges ∆a is O(|Y ∗Y t|2), and it

arises from the off-diagonal components of δnodd. These can be obtained by solving eq. (3.1)

with the replacement

δnhij → −neqδij , (3.3)

on the right hand side, such that we are left with solving

d

dz
nodd
ij + iΩijz

2nodd
ij = −iIm[Y ∗Y t]ijG , (3.4a)

d

dz
neven
ij + iΩijz

2neven
ij = Re[Y ∗Y t]ijG , (3.4b)

with

Ωij =
aR

T 3
ref

π2

36ζ(3)
(M2

ii −M2
jj) , G = γav

aR

Tref
neq . (3.5)

The general solutions to these equations are

nodd
ij = −iIm[Y ∗Y t]ijGFij , neven

ij = Re[Y ∗Y t]ijGFij , (3.6a)

Fij =

[
Cij −

z

3
E2/3

(
− i

3
Ωijz

3

)]
exp

(
− i

3
Ωijz

3

)
, (3.6b)
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where Cij is an integration constant that in case of zero initial charge is determined to be

Cij = lim
z→0

[
z

3
E2/3

(
− i

3
Ωijz

3

)]
=

Γ
(

1
3

)
3

2
3 (−iΩij)

1
3

, (3.7)

and

En(x) =

∞∫
1

dt
e−xt

tn
. (3.8)

Sterile charges. The helicity-odd off-diagonal elements δnodd
ij are crucial for the genera-

tion of flavoured asymmetries q`a. The diagonal elements (in the mass basis), on the other

hand, can be interpreted as sterile charges qN , cf. eq. (2.7). Within the present approxi-

mations, they vanish at zosc, when the flavoured asymmetries are generated. To show this,

we solve eq. (3.1) for diagonal, helicity-odd charge densities,

d

dz
δnodd

ii = −(ΓN )iiδn
odd
ii + Fi(z) , (3.9)

where

(ΓN )ii = γav
aR

Tref
Re[Y∗Yt]ii , (3.10a)

Fi(z) = −γav
aR

Tref

∑
j

j 6=i

(
Re[Y ∗Y t]ijRe[δnodd

ij ] + Im[Y ∗Y t]ijIm[δneven
ij ]

)
. (3.10b)

The solutions (3.6) lead to

Re[δnodd
ji ] = −Im[Y ∗Y t]ijIm[Fji]G , (3.11a)

Im[δneven
ji ] = Re[Y ∗Y t]ijIm[Fji]G , (3.11b)

such that, when using the symmetry properties of the various tensors, Fi(z) vanishes and

consequently so does δnodd
ij since we assume zero sterile charge as an initial condition. In

total this results in

qNi = 2δnodd
ii = 0 , (3.12)

which is valid at O(|Y ∗Y t|2). In appendix D.3 we show that for ns = 2 sterile neutrino

flavours this even holds to all orders. However, in case of ns ≥ 3 flavours, already at

O(|Y ∗Y t|3) there appears a non-vanishing contribution that is however negligible in the

oscillatory regime.

Asymmetries in doublet leptons and sterile neutrinos. Likewise, in order to cal-

culate the charge densities ∆a in the oscillatory regime, we can neglect the washout term in

eq. (2.15) during the initial production process around z ∼ zosc. Since the generalised lep-

ton number
∑

a q`a+
∑

i qNi is conserved when T �Mi and we have previously shown that
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qNi ' 0 at z ∼ zosc in the oscillatory regime, we can conclude that B ' 0 and ∆a ' −q`a
at z ∼ zosc. This immediately leads to the solution

∆a(z) = −
∫ z

0

dz′

Tref
Sa . (3.13)

Now, when neglecting the washout that only becomes important at later times, we can

obtain the flavoured lepton charge densities by substituting the source (2.16) into eq. (3.13).

To evaluate the resulting expression, we make use of the solutions (3.6) and integrate

z∫
0

dz′ Im
[
Fij(z′)

]
=
z2

2
Im 2F2

({
2

3
, 1

}
;

{
4

3
,

5

3

}
;− i

3
|Ωij |z3

)
sign(M2

ii −M2
jj) , (3.14)

with the generalised hypergeometric function

pFq({a1, . . . , ap}; {b1, . . . , bq};w) =

∞∑
k=0

p∏
i=1

Γ(k + ai)

Γ(ai)

q∏
j=1

Γ(bj)

Γ(k + bj)

wk

k!
, (3.15)

for p, q ∈ N0 and w ∈ C, where Γ(x) is the Gamma function. Because soon after the first

few oscillations the charges ∆a saturate close to their maximal values ∆sat
a , cf. also figure 1,

we can use

∆a(z) = −
∫ z

0

dz′

Tref
Sa ≈ −

∫ ∞
0

dz′

Tref
Sa ≡ ∆sat

a , (3.16)

where the approximation holds for z moderately larger than zosc. On the other hand, as

we have shown, the diagonal sterile charges qNi are negligible at early times [cf. eq. (3.12)],

so that the only asymmetries present in the plasma are flavoured asymmetries in the SM

fields. To obtain these, we need the limit z →∞ of eq. (3.14)

∞∫
0

dz Im [Fij(z)] = −
π

1
2 Γ(1

6)

2
2
3 3

4
3 |Ωij |

2
3

sign(M2
ii −M2

jj) . (3.17)

Putting these elements together and dividing by the comoving entropy density s =

2π2g?a
3
R/45, we obtain

∆sat
a

s
=

i

g
5
3
?

3
13
3 5

5
3 Γ(1

6)ζ(3)
5
3

2
8
3π

41
6

∑
i,j,c

i 6=j

Y †aiYicY
†
cjYja

sign(M2
ii −M2

jj)

(
m2

Pl

|M2
ii −M2

jj |

) 2
3 γ2

av

gw

≈ −
∑
i,j,c

i 6=j

Im[Y †aiYicY
†
cjYja]

sign(M2
ii −M2

jj)

(
m2

Pl

|M2
ii −M2

jj |

) 2
3

× 3.4× 10−4 γ
2
av

gw
. (3.18)

In figure 3 we compare the analytic results for δnodd
12 as well as for the late-time

asymmetries (3.18) with the numerical solution. The discrepancies can be attributed to

the fact that backreaction and washout effects are neglected so far. In a similar way as

figure 1, figure 3 also illustrates the validity of the approximation in eq. (3.13), where z is

taken to infinity, because ∆a indeed saturates after the first few oscillations.
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Figure 3. Comparison of the numerical solution (blue, solid), to the approximate analytic result

(red, dashed) for the time evolution of the CP -violating correlation of the sterile neutrinos Re[δnodd
12 ]

(upper panel), as well as the resulting time evolution of the three active charges (blue, solid),

compared to their saturation limit given by eq. (3.13) (red, dashed). The approximation (3.18)

does not include washout effects since the washout time scale is assumed to be much later than the

time scale of the oscillations. Furthermore, backreaction of the produced asymmetries on the Ni
evolution, as well as effects due to thermal masses are neglected. Note that the sum of the three

charges ∆a vanishes since lepton number violation only occurs at order |Y ∗Y t|3 when washout

effects are included.

3.2 Late time washout

At late times, when z ∼ zeq, we can neglect the oscillations of the sterile neutrinos because

they have already decayed or they are so rapid that their effect averages out. In particular,

there is no sizeable source for the flavoured asymmetries any more and also no other effects

from off-diagonal correlations of the sterile neutrinos. This implies that the network of

kinetic equations can be reduced to the following form

d∆a

dz
=
γav

gw

aR

Tref

∑
i

YiaY
†
ai

(∑
b

(Aab + Cb/2)∆b − qNi

)
, (3.19a)
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Figure 4. The numerical solution for the asymmetry B/s in the oscillatory regime, with spectator

and backreaction effects included (blue, solid) compared with the solutions without spectator effects

(green, dot-dashed), without backreaction (red, dashed) and without spectator or backreaction

effects (orange, dotted).

dqNi
dz

= − aR

Tref
γav

∑
a

YiaY
†
ai

(
qNi −

∑
b

(Aab + Cb/2)∆b

)
, (3.19b)

where we use ∆sat
a and qN = 0 as initial conditions. Equation (3.19a) is easily obtained

from eq. (2.15) when dropping the source term. In order arrive at eq. (3.19b), we keep

the decay term ΓN as well as the backreaction term Γ̃N , while dropping the commutator

in eq. (2.10) and solve it for the helicity-odd, diagonal charges. This procedure is justified

since the oscillations of the sterile charges around z = zeq are fast enough for their effect

to average out. Note that the backreaction terms can be identified with the contributions

involving qNi in eq. (3.19a) as well as ∆b and qφ in eq. (3.19b). In figure 4 the effect of

the backreaction and spectator effects is presented where in particular the latter can have

a substantial impact on the final result. The matrix A and the vector C appearing here

specify the way how the spectator processes redistribute charges in the SM. Spectator

processes have been neglected in most studies to date (except [74]), which corresponds

to setting C = 0 and A = −1. The importance of including spectator effects is more

pronounced than for conventional leptogenesis without flavour effects [97] because in the

present scenario, the asymmetries are purely flavoured and the net result is due to an

incomplete cancellation in the relation (C.15) that is rather sensitive to corrections in the

individual terms.

Due to the hierarchy zosc � zeq, we can use the charge densities generated through

sterile oscillations around z ∼ zosc, cf. eqs. (3.18) and (3.12), as initial conditions for

solving the equations governing the washout process. For ns sterile flavours we can reduce

eqs. (3.19) to a linear first-order differential equation for (3 + ns)-dimensional vectors
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V∆N = (∆t, qtN )t,

d

dz
V∆N =

aR

Tref
γavKV∆N , K =

(
K∆∆ K∆N

KN∆ KNN

)
, (3.20)

where the components of the matrices K∆∆,K∆N ,KN∆ and KNN read

K∆∆
ab =

1

gw

ns∑
k=1

Y †akYka

(
Aab +

1

2

)
, K∆N

aj = − 1

gw
Y †ajYja ,

KN∆
ib =

3∑
d=1

YidY
†
di

(
Adb +

1

2
Cb

)
, KNN

ij = −
3∑
d=1

YidY
†
diδij , (3.21)

with i, j = 1, 2, . . . , ns sterile and a, b = 1, 2, 3 active flavours. Here A and C as defined in

eq. (2.6) account for the spectator processes. After diagonalising the Matrix K

Kdiag = T−1KT , (3.22)

where T is a transformation matrix with the eigenvectors of K as column vectors, we are

left with the solution(
∆(z)

qN (z)

)
= T exp

(
aR

Tref
γavK

diag z

)
T−1

(
∆in

qin
N

)
, (3.23)

with ∆in = ∆sat and qin
N = 0 the asymmetries generated during the oscillation process at

early times z ∼ zosc, cf. eqs. (3.18) and (3.12). As the washout processes are suppressed

during the initial creation of the asymmetries and because of relation zosc � zeq, we can

impose these initial conditions at z = 0. The baryon charge B gets frozen in as soon as

the weak sphalerons freeze out. Since we choose the reference temperature Tref such that

this occurs when z = 1, it follows from eq. (C.15)

B =
28

79
[∆1(z) + ∆2(z) + ∆3(z)]z=1 . (3.24)

A comparison of the evolution of the baryon asymmetry in the analytic treatment with the

full numerical solution is shown in figure 5.

4 Overdamped regime

There are phenomenologically interesting parameter choices where the equilibration of one

of the heavy neutrino interaction eigenstates happens before the first oscillation is com-

pleted, leading to an overdamped behaviour of the oscillations. This is particularly im-

portant in the case of mass-degenerate heavy neutrinos, for which the first oscillation can

happen at times as late as sphaleron freezeout, and in scenarios in which the Yia are much

larger than the naive seesaw expectation (1.8). Both of this can e.g. be motivated in sce-

narios with an approximate B−L conservation. In these scenarios one eigenvalue of Y Y † is

always much smaller than the other, see appendix A, so that one interaction eigenstate cou-

ples only very feebly to the plasma. Instead of being produced through direct scatterings,
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Figure 5. Comparison of the analytic treatment of the baryon asymmetry B/s (red, dashed) in

the oscillatory regime to the numerical solution (blues, solid).

the feebly coupled state gets populated through oscillations with a sterile neutrino that

has already equilibrated. Using the same perturbative approximation as in the oscillatory

regime is no longer justified, because the larger decay rate cannot be treated as a small

perturbation to the vacuum oscillation any more. Instead, we use a quasi-static approxima-

tion in a similar manner to applications to resonant leptogenesis from Ni decay [61, 101].

In the following we derive analytic expressions to treat the overdamped regime for ns = 2.

Throughout this computation, we work in the interaction basis of the sterile neutrinos. An

example plot for the generation of net baryon charge in the overdamped regime for two

sterile flavours is shown in figure 6.

4.1 Source of the asymmetry

In the interaction basis, where Y Y † is diagonal, the fact that one interaction state decouples

in the B−L conserving limit implies that we can write the Yukawa couplings and the right-

handed neutrino masses as:

Y † =

Ye εeYµ εµ
Yτ ετ

 , M =

(
µ1 M̄

M̄ µ2

)
, (4.1)

see appendix A. In the interaction basis we have therefore
∑

a |Ya|2 �
∑

b |εb|2, as well as∑
a Y
∗
a εa = 0, as the matrix Y Y † is diagonal. We can treat the smaller Yukawa coupling

|ε2a| as an expansion parameter throughout the following calculation. We will solve the

equations for the positive helicity distribution δn+,ij , while all remaining distributions can

be obtained through complex conjugation of the mass and Yukawa matrices.

The momentum averaged sterile neutrino decay matrix ΓN inherits the flavour struc-

ture of the Yukawa matrices Y Y †. Therefore, in the interaction basis the decay rate ΓN as
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Figure 6. This example plot shows the production of the baryon asymmetry B/s (bottom panel)

in the overdamped regime for two sterile flavours. The top panel shows the helicity-odd part of

the correlation δn12. In comparison to the oscillatory regime, see figure 1, this oscillation happens

rather late and is overdamped. The generation of the SM charges ∆a/s is shown in the middle

panel. The bottom panel show the resulting baryon asymmetry, where the green band indicates

the error bars of the observed value.
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well as the thermal mass matrix Hth
N are both diagonal:

ΓN = γav
aR

Tref

(∑
a |Ya|2 0

0
∑

a |εa|2

)
, (4.2a)

Hth
N = hth

aR

Tref

(∑
a |Ya|2 0

0
∑

a |εa|2

)
, (4.2b)

From now we neglect the smaller eigenvalue, i.e. all terms of O
(
|εa|2

)
. The contribution

to the effective Hamiltonian from the vacuum mass matrix Hvac
N is not necessarily diagonal

in the interaction basis, i.e. it takes the form

Hvac
N =

π2

18ζ(3)

aR

T 3
ref

(
M̄2 + |µ1|2 M̄(µ1 + µ∗2)

M̄(µ∗1 + µ2) M̄2 + |µ2|2

)
. (4.3)

Note that we have not yet expanded in µ1,2 in order to keep equations valid in a more

general case as well. We consider the regime where the equilibration of N1 happens before

the oscillations between the sterile flavours begin, which means that the rate at which δn11

reaches it’s quasi-static value is much faster than the rate of the oscillations,

zeq

zosc
=

3

√
|M2

1 −M2
2 |/a2

R

γav
∑

a |Ya|2
� 1 . (4.4)

We separate the evolution equations into the directly damped equations, contai-

ning [Y Y †]11,

dδn11

dz
= −(ΓN )11δn11 −

i

2
z2 [(Hvac

N )12δn21 − (Hvac
N )∗12δn12] , (4.5a)

dδn12

dz
= −(ΓN )11

2
δn12 − i

(Hth
N )11

2
δn12 −

i

2
z2
∑
k

[(Hvac
N )1kδnk2 − δn1k(H

vac
N )k2] , (4.5b)

and the ones that are damped indirectly, through mixing with other sterile flavours,

dδn22

dz
= − i

2
z2 [(Hvac

N )∗12δn12 − (Hvac
N )12δn21] . (4.6)

At this point we make the quasi-static approximation [61, 101] to the solutions of eqs. (4.5)

by assuming that the interactions of the highly damped neutrino N1 and its flavour cor-

relations instantaneously reach values that are determined by the deviation of the feebly

coupled state N2 from equilibrium, i.e.

dδn11/dz = dδn12/dz = dδn21/dz ≈ 0 , (4.7)

which allows us to express δn11, δn12, and δn21 = δn∗12 in terms of δn22,

δn11 =
z4|(Hvac

N )12|2

(ΓN )2
11 + (Hth

N )2
11 + z22(Hth

N )11

[
(Hvac

N )11 − (Hvac
N )22

]
+ z4(H̃vac

N )2
δn22 , (4.8a)

δn12 = −
z2(Hvac

N )12

{
i(ΓN )11 + (Hth

N )11 + z2 [(Hvac
N )11 − (Hvac

N )22]
}

(ΓN )2
11 + (Hth

N )2
11 + z22(Hth

N )11

[
(Hvac

N )11 − (Hvac
N )22

]
+ z4(H̃vac

N )2
δn22 , (4.8b)
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where we have introduced

(H̃vac
N )2 ≡ |(Hvac

N )12|2 + [(Hvac
N )11 − (Hvac

N )22]2 .

Inserting these results into the equation for the weakly washed-out sterile neutrino N2

yields the differential equation

dδn22

dz
= −

z4|(Hvac
N )12|2(ΓN )11

(ΓN )2
11 + (Hth

N )11 + z22(Hth
N )11

[
(Hvac

N )11 − (Hvac
N )22

]
+ z4(H̃vac

N )2
δn22

= −(ΓN )11
|(Hvac

N )12|2

(H̃vac
N )2

z4

(z2 + z̃2
c )(z2 + z̃∗2c )

δn22 , (4.9)

with the parameter

z̃c =

√√√√(Hth
N )11

H̃vac
N

[
(Hvac

N )11 − (Hvac
N )22

H̃vac
N

+ i

√
|(Hvac

N )12|2

(H̃vac
N )2

+
γ2

av

h2
th

]
. (4.10)

Its absolute value introduces a new time scale

|z̃c| =

√
(Hth

N )11

H̃vac
N

4

√
1 +

γ2
av

h2
th

∼ zosc

√
zosc

zeq

hth

γav
� zosc . (4.11)

The time scale |z̃c| indicates the instance when the vacuum part of the Hamiltonian z2Hvac
N

becomes comparable to the thermal contribution Hth
N . The general solution to eq. (4.9) is

given by

δn22 = δn22(0) exp

−(ΓN )11
|(Hvac

N )12|2

(H̃vac
N )2

z − Im
(
z̃3

c arctan z
z̃c

)
Imz̃2

c

 . (4.12)

For times z � |z̃c|, we can approximate this solution by

δn22 ≈ δn22(0) exp

(
−(ΓN )11

|(Hvac
N )12|2

(H̃vac
N )2

z5

5|z̃c|4

)
, (4.13)

which results in the equilibration time-scale for N2

zeq
N2

= |z̃c| 5
√

5

(ΓN )11|z̃c|
(H̃vac

N )2

|(Hvac
N )12|2

. (4.14)

Therefore, unless |(Hvac
N )12|2 � (H̃vac

N )2, N2 will reach equilibrium before |z̃c|, justifying the

usage of eq. (4.13). Note that this situation naturally occurs in the pseudo-Dirac scenario,

where the flavour and mass bases are maximally misaligned, such that (Hvac
N )11 = (Hvac

N )22.

Furthermore, in the pseudo-Dirac scenario one can also expand in µ1,2 � M̄ , leading to a

simplified expression for the equilibration time-scale:

zeq
N2

=
5

√
405ζ2(3)h2

th

π2γav

T 5
ref

∑
a |Ya|2

aRM̄2µ2
(4.15)

with µ = |µ1 + µ∗2|/2 = |M2
1 −M2

2 |/(4M̄), and M̄2 = (M2
1 +M2

2 )/2.
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Figure 7. Source of the lepton asymmetries for the three SM flavours calculated numerically (solid)

and analytically (dashed).

The source of the lepton asymmetry is caused by the CP -odd correlation

δn+ 12 − δn∗− 12 = −
2z2i(Hvac

N )12(ΓN )11

(H̃vac
N )2(z2 + z̃2

c )(z2 + z̃∗2c )
δn22(z) , (4.16)

which yields the source term

Sa = aR
γav

gw

∑
i,j

i 6=j

Y ∗iaYja
(
δn+ ij − δn∗− ij

)

= 4
γ2

ava
2
R

gwTref

∑
b |Yb|2

(H̃vac
N )2

z2

|z2 + z̃2
c |2

Im [Y ∗a (Hvac
N )12εa] δn22(z) (4.17)

that is non-vanishing only at first order in the smaller Yukawa |εa|. The z dependence of

the source term divided by Tref and the entropy density s is shown in figure 7. Note that

the trace of the source
∑

a Sa vanishes as we have
∑

a Yaε
∗
a = 0 in the interaction basis. In

the limit µ� M̄ , the source term further simplifies to:

Sa
s Tref

≈ − 45
√

5

g
3/2
? gw4π7/2

γ2
av

h2
th

mPlM̄µ

T 3
ref

Im[Y ∗a εa]∑
b |Yb|2

z2 exp

(
− z5

zeq
N2

5

)
(4.18)

= −5.65× 10−7 × mPlM̄µ

T 3
ref

Im[Y ∗a εa]∑
b |Yb|2

z2 exp

(
− z5

zeq
N2

5

)
. (4.19)
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Validity of the approximations. For times (ΓN )−1
11 � z � |z̃c|,8 eq. (4.13) implies

that dδn22/dz is small. Furthermore, we can approximate

δn11 =
|(Hvac

N )12|2

(H̃vac
N )2

z4

|z̃c|4
δn22 , (4.20a)

δn12 = −
(Hvac

N )12

(H̃vac
N )2

z2

|z̃c|4
[
(Hth

N )11 + i(ΓN )11

]
δn22 . (4.20b)

Hence, it is straightforward to see that the assumption made in eq. (4.7) is justified in this

regime, as the derivatives of δn11 and δn12 are much smaller than any of the individual

terms on the right hand sides of eq. (4.5),

dδn11

dz
=

4

z
δn11 +

dδn22

dz

δn11

δn22
� (ΓN )11δn11 , (4.21a)

dδn12

dz
=

2

z
δn12 +

dδn22

dz

δn12

δn22
� (ΓN )11δn12 . (4.21b)

4.2 Time evolution of the SM charges in the overdamped regime

At least one of the damping rates for the charges ∆a is of the same order in |Y1a|2 as the

larger of the sterile neutrino production rates. This implies that the washout of the active

leptons typically happens at the same time as the overdamped oscillation of the sterile

neutrinos. Neglecting the backreaction of the active flavours onto the sterile sector, as

suitable for the oscillatory regime during the initial production of the asymmetries, is no

longer an applicable approximation here. However, as all charges ∆a are of first order in

the smaller Yukawa coupling |Y2a|, see eq. (4.17), the calculation of the sterile charges at

zeroth order in |Y2a| remains unchanged. To correctly describe the evolution of the charge

∆a, one has to solve the whole set of coupled differential equations at first order in |Y2a|.

Suppression due to backreaction. To include effects coming from the backreac-

tion of the active flavours onto the sterile sector, we consider once more the system of

eqs. (2.10), (2.15). Among the CP -odd sterile distributions, the entry δnodd
11 receives the

biggest correction due to backreaction. When neglecting the smaller Yukawa coupling |εa|,
the matrices Γ̃N take the form

Γ̃aN =
1

2
γav

aR

Tref

(
|Ya|2 0

0 0

)
. (4.22)

By applying the quasi-static approximation to the sterile neutrinos as in the previous

section, we obtain the approximate densities of δnodd
11 = 2qN1 ,

δnodd
11 ≈

∑
b,c

|Yb|2

2
∑

d |Yd|2
(Abc + Cc/2)∆c

(
1−
|(Hvac

N )12|2

(H̃vac
N )2

z4

|z2 + z̃2
c |2

)

+
|(Hvac

N )12|2

(H̃vac
N )2

z4

|z2 + z̃2
c |2
δnodd

22 , (4.23)

8Note however, that in presence of another non-vanishing charge that contributes to the size of δn, e.g.

∆a, its derivatives will be proportional to the derivatives of ∆a, which may further extend the validity of the

overdamped approximation, as it is the case for δnodd once we include the backreaction of the active charges.

– 26 –



J
H
E
P
1
2
(
2
0
1
6
)
1
5
0

as well as the off-diagonal correlations δn12. Inserting the quasi-static solutions back into

the evolution equations of the SM leptons and the indirectly damped neutrino δn22 gives

d∆a

dz
= W̃ab∆b−

Sa(z)

Tref
(4.24)

+
aR

Tref

γav

gw
|Ya|2

|(Hvac
N )12|2

(H̃vac
N )2

z4

|z2+z̃2
c |2

2δnodd
22 −

∑
b,c

|Yb|2∑
d |Yd|2

(Abc+Cc/2)∆c


dδnodd

22

dz
= −(ΓN )11

|(Hvac
N )12|2

(H̃vac
N )2

z4

|z2+z̃2
c |2

1

2

2δnodd
22 −

∑
b,c

|Yb|2∑
d |Yd|2

(Abc+Cc/2)∆c

 , (4.25)

with the effective washout matrix

W̃ab =
aR

Tref

γav

gw
|Ya|2

∑
c

(
δac −

|Yc|2∑
d |Yd|2

)
Acb . (4.26)

When we express the δnodd
22 dependence in eq. (4.24) through the derivative dδn22/dz, the

expression simplifies to

d∆a

dz
=
∑
b

W̃ab∆b −
Sa(z)

Tref
− 2

gw

|Ya|2∑
d |Yd|2

dδnodd
22

dz
. (4.27)

To calculate the individual charges ∆a, we can neglect the derivative dδnodd
22 /dz, as it is

small for times z � z̃c. The solution for ∆a(z) can now be computed by integrating

∆a(z) ≈
∑

b,c=1,2

vTabe
wbz

∫ z

0
dz′ e−wbz

′
vbc

Sc(z
′)

Tref
, (4.28)

where w1,2 are the two non-vanishing eigenvalues of the matrix W̃ab, and vbc the set of

the corresponding eigenvectors. As a result of the conservation of the generalised lepton

number (2.9), there is a vanishing eigenvalue. The lepton number L remains conserved

when neglecting the derivatives of both sterile charges dδnii/dz. The sterile charge density

δnodd
22 can formally be obtained by integrating eq. (4.25) with the approximate form for

the SM charges from eq. (4.28). For practical purposes it is sufficient to completely neglect

it for times before the equilibration of N2, z � zeq
N2

, and to replace it by its quasi-static

value for later times. By including corrections to δnodd
11 of order d∆a/dz, and partially

integrating the rate of change of the baryon asymmetry dB/dz, we can obtain the baryon

asymmetry of the Universe

B(z) ≈ 28

79

[∑
ab

∆a(z)(Aab + Cb/2)
|Yb|2

gw
∑

d |Yd|2
+

2

gw
δnodd

22 (z)

]
, (4.29)

up to an O(50%) error for z ≥ zeq
N2

. For the parametric example from table 1, a comparison

between this analytic approximation and the numerical result is shown in figure 8. A

comparison of the numerical and analytic solutions for the source, active lepton charges

and the final baryon asymmetry for the points that lead to the maximal mixing angles for

right-handed neutrino masses of M̄ = 1 GeV are shown on figures 9 and 10.
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Figure 8. Total baryon asymmetry calculated numerically (blue,full) and analytically (red,dashed).

The baryon asymmetry in the case of highly flavour asymmetric washout.

In the special case of a highly flavour asymmetric washout, where the washout rate

of one of the active neutrino flavours is much smaller than the N2 equilibration rate

γav|Ya|2aR/Tref � (zeq
N2

)−1, while the other flavours have a strong washout compared to

it γav|Yb|2aR/Tref � (zeq
N2

)−1, the formal solution of the evolution equations (4.28) can be

further simplified.

Since we assumed that the washouts of the other two flavours are large, they have

reached quasi-static equilibrium early, and the relation between the three charges is ap-

proximately given by ∆b = −∆a/2,9 where the flavour with the smallest washout, ∆a, is

formally given by:

∆a(z)

s
= − exp

(
− γavaR

2gwTref
|Ya|2z

)∫ z

0
dz′

Sa(z
′)

sTref
exp

(
γavaR

2gwTref
|Ya|2z′

)
(4.30)

By neglecting the washout of the flavour ∆a for z � zeq
N2

, the exponential within the integral

can be approximated to be constant, which leads us to the approximate flavour asymmetry:

∆a(z)

s
= −405ζ6/5(3)

601/5 2π5

γ
7/5
av

gwh
4/5
th g

6/5
?

[
m2

Pl

M̄µ(
∑
b |Yb|2)2

]1/5
Im[Y ∗

a εa]

× γ

(
3

5
,
z5

zeqN2

5

)
exp

(
− γavaR

2gwTref
|Ya|2z

)
(4.31)

≈ −4.44×10−6

[
m2

Pl

M̄µ(
∑
b |Yb|2)2

]1/5
Im[Y ∗

a εa]γ

(
3

5
,
z5

zeqN2

5

)
exp

(
− γavaR

2gwTref
|Ya|2z

)
, (4.32)

9This can be found by looking at the eigensystem of the washout matrix W̃ab. There are two approxi-

mately vanishing eigenvalues, corresponding to the conserved generalised lepton number and the negligible

washout in one flavour.
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Figure 9. The comparison between numerical and analytic solutions for the source term, individual

lepton charges and the baryon asymmetry for parameter choices that lead to maximal mixing

angles for right-handed neutrino masses of M̄ = 1 GeV in the case of normal hierarchy. The

analytical approximations are always presented with a dashed line, for the source term they are

indistinguishable from the numerical result. The parameters used for this plot are ∆M2 = 4.002×
10−8M̄2, ω = 5π

4 + 5.26i, α1 = 0, α2 = 0,δ = π/2, and the discrete parameter ξ = 1. The small

CP -violating parameters are µ = 1.001× 10−8M̄ and
∑
a |εa|2 = 3.65× 10−10

∑
a |Ya|2.
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Figure 10. The comparison between numerical and analytic solutions for the source term, individ-

ual lepton charges and the baryon asymmetry for parameter choices that lead to maximal mixing

angles for right-handed neutrino masses of M̄ = 1 GeV in the case of inverted hierarchy. The analyt-

ical approximations are always presented with a dashed line, for the source term they are indistin-

guishable from the numerical result. The parameters used for this plot are ∆M2 = 5.306×10−8M̄2,

ω = π
4 + 5.55i, α1 = 0, α2 = π,δ = π, and the discrete parameter ξ = 1. The small CP -violating

parameters are µ = 1.36× 10−8M̄ and
∑
a |εa|2 = 2.22× 10−10

∑
a |Ya|2.
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where γ(s, x) is the lower incomplete gamma function

γ(s, x) ≡
∫ x

0
ts−1e−tdt . (4.33)

Inserting this expression back into eq. (4.29), and neglecting corrections of O(|Ya|2), gives

us the total baryon asymmetry:

B(z)

s
≈ 28

79

(
∆a(z)

6gws
+

2

gws
δnodd

22 (z)

)
(4.34)

≈ −1.31× 10−7

[
m2

Pl

M̄µ(
∑

b |Yb|2)2

]1/5

Im[Y ∗a εa]

× γ

(
3

5
,
z5

zeq
N2

5

)
exp

(
− γavaR

2gwTref
|Ya|2z

)
[1 + θ(z − zeq

N2
)] , (4.35)

Equation (4.34) can be obtained from (4.29) by setting ∆b = −∆a/2. To obtain (4.35),

we in addition used the fact that the derivative on the l.h.s. of (4.25) can be neglected for

z > zeq
N2

, i.e., we assumed that δnodd
22 reaches quasi-static equilibrium instantaneously at

zeq
N2

, which is reflected by the Heaviside theta function. The increase in B after z = zeq
N2

can

be understood physically: for earlier times, N2 is essentially decoupled from the system.

Due to the approximate conservation of the generalised lepton number L̃ ' 0, the SM

charges L and B are determined by the amount of L̃ that is stored in N1. After N1 reaches

equilibrium, the backreaction also stores a fraction of L̃ in N2, leading to a larger deficit

(and hence larger |L|, |B|) in the SM fields.

5 Limits on the heavy neutrino mixing

With eqs. (3.24) and (4.29), we have found approximate analytic expressions for the BAU

in the limiting cases that the oscillations of the sterile neutrinos occur either deeply in the

oscillatory regime (the slowest oscillation time scale is much faster than the fastest equili-

bration time scale) or in the strongly overdamped regime (equilibration of one interaction

eigenstate occurs long before the onset of the oscillations). From an experimental view-

point it is interesting to identify the maximal values of U2
i for which leptogenesis is possible.

If one ignores constraints from direct searches for heavy neutrinos (see e.g. ref. [14] and

references therein for a recent summary), then these maximal values occur in the over-

damped regime, which is characterised by a strong washout. There are two possibilities

for preserving the baryon asymmetry at the electroweak scale from this washout. Either

there is a strong hierarchy among the Yukawa couplings of heavy neutrinos to the different

SM flavours e, µ, τ , causing one of the charges ∆a to be approximately conserved, or the

asymmetry is produced close to the electroweak scale, such that there is no time for a

complete washout before sphalerons freeze out. In the case of ns = 2, a strong hierarchy

among the doublet Yukawa couplings is not possible while being consistent with neutrino

oscillation data. Therefore we need to resort to a strong mass degeneracy in order to delay

the generation of the asymmetry until z ' 1. Yet, we are interested in maximising the

– 31 –



J
H
E
P
1
2
(
2
0
1
6
)
1
5
0

At the original scale M ∆M2 Imω S(z) B(z = 1)

Rescaled ξM η∆M2 Imω + log(η/ξ3)/6 S(η1/3z)ξη−1/3 B(η1/3)ξη−1/3

Table 2. Rescaling of the asymmetry.

mixing angles while keeping the washout rate of the SM flavours as small as possible, which

constrains the parameters δ and α2. Minimising the washout rate of the active flavours

also introduces a difference between the normal and inverted hierarchies, as the minimal

washout for the inverted hierarchy can be an order of magnitude smaller than the one for

normal hierarchy given the same total mixing angle. Furthermore, maximising the analytic

expression for the source also determines Reω. Therefore it is only necessary to scan over

the remaining three parameters: Imω, M and ∆M .

When solving eq. (2.10) for the helicity-even correlation function, we can use the fact

that a solution with a rescaled time dependence δneven(zζ) corresponds to a solution of

the same equation with the vacuum Hamiltonian replaced by Hvac
N → ζ3Hvac

N , the thermal

mass by Hth
N → ζHth

N , and the rate ΓN → ζΓN . For parameter choices with large mixing

angles, one of the eigenvalues of the decay rate of the sterile neutrinos is typically much

larger than the other, (ΓN )11 � (ΓN )22, and the misalignment between the mass and

flavour eigenstates is maximal, which implies that the only parameters playing a role in

the evolution of the δneven correlation are the average Majorana mass M , the mass splitting

∆M2 = M2
1 −M2

2 , and the imaginary angle in the Casas-Ibarra parametrisation Im ω. Any

change of the mass scales M → ξM , or ∆M2 → η∆M2, can therefore be compensated

by a shift in Imω → Imω + log(η/ξ3)/6, as well as replacing δneven(z) → δneven(η1/3z).

Note that although the oscillation and equilibration time scales change, their ratio remains

the same.

To determine how the helicity-odd charges δnodd and ∆a change under this parameter

transformation, we first need to determine the change in the source term. In contrast to

the decay rate where we can typically neglect the smaller Yukawa coupling |Y2a| in the

interaction basis, it is essential for the source term. By correctly applying the scaling

transformation, the source term and with it the baryon asymmetry are rescaled according

to table 2. As a result, even if we do not achieve the observed BAU for some choice of

parameters, by keeping the ratios ∆M2 : |Y1e|2 : |Y1µ|2 : |Y1τ |2 constant, these transfor-

mation rules tell us how to find the parameters that lead to the desired result for the

BAU just by changing the absolute mass and the mass splitting of the right-handed neu-

trinos. Furthermore, by maximising B(η1/3)/η1/3, we can find the optimal mass splitting

for producing the baryon asymmetry and then find the corresponding mass by determining

ξ = Bobsη
1/3/B(η1/3). For that mass these parameters give the maximal mixing consis-

tent with leptogenesis. By using the scaling of the baryon asymmetry from table 2, we

find the maximal mixing angles consistent with baryogenesis for the mass range between

0.1− 10 GeV as presented in figure 11.

– 32 –



J
H
E
P
1
2
(
2
0
1
6
)
1
5
0

6 Discussion and conclusion

In this work we study the production of lepton and baryon asymmetries from the oscillations

of sterile neutrinos with GeV-scale masses in the minimal seesaw model. The main goal is to

obtain an understanding of the maximal heavy neutrino mixing angles U2
ai consistent with

the requirement to explain the observed BAU, while correctly accounting for backreaction

and spectator effects. This is of crucial importance in order to assess the possibility of an

experimental discovery of heavy neutrinos that may be responsible for the generation of

light neutrino masses via the seesaw mechanism and for the BAU via low-scale leptogenesis.

Baryogenesis via heavy neutrino oscillations can happen in different regimes, which

can qualitatively be understood in terms of three time scales: the oscillation time zeq at

which the first heavy neutrino flavour oscillation occurs, the equilibration time zeq at which

the first heavy neutrino eigenstate comes into thermal equilibrium with the primordial

plasma and the time zws when weak sphalerons freeze out and baryon number becomes a

conserved quantity, i.e., the BAU is frozen in. The generation of a baryon asymmetry can

be understood analytically in the two extreme cases zosc � zeq < zws (oscillatory regime)

and zws > zosc � zeq (overdamped regime). For heavy neutrino parameters that interpolate

between these two regimes, we have to resort to solving the kinetic equations numerically.

In the oscillatory regime asymmetries in the individual lepton flavours are generated

within the first few oscillations of the right-handed neutrinos at z ' zosc. At a much

later time z ' zeq, the flavour asymmetric and lepton number violating washout generates

a non-zero total lepton number from these, which is partly converted into a net baryon

number by weak sphalerons. Once all heavy neutrinos come into equilibrium, all lepton

asymmetries are washed out. However, if the washout is incomplete at z = zws, a non-zero

baryon asymmetry remains. The latter requirement implies that the Yukawa interactions

of the sterile neutrinos must be sufficiently weak, and the analytic treatment is based on a

perturbative expansion in the Yukawa couplings. To this end, our results agree with those

previously found in the literature [67, 72, 76].

In the overdamped regime at least some of the heavy neutrino flavour eigenstates have

Yukawa couplings that are much larger than the naive seesaw relation would suggest in

absence of cancellations in the neutrino mass matrix. This can be made consistent with the

smallness of the light neutrino masses if an approximate conservation of B − L is realised

in Nature. This underlying symmetry implies that each strongly coupled heavy neutrino

flavour eigenstate is accompanied by a feebly coupled eigenstate that completely decouples

in the limit of exact B − L conservation. The two corresponding mass eigenstates form

a Dirac spinor in that limit. We find an approximate analytic description in this regime

by expanding in the tiny Yukawa coupling, and by employing a quasi-static approximation

to the evolution of the strongly coupled flavour eigenstate, which comes into equilibrium

before the flavour oscillations amongst the two can begin. In contrast to the oscillatory

regime, the effect of the thermal masses and the backreaction of the produced lepton

asymmetries on the heavy neutrino evolution cannot be neglected in this regime. Both of

these tend to suppress the generated asymmetry. A complete washout of all asymmetries

due to the large Yukawa couplings can be prevented in two different ways: either one of
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Figure 11. The solid, dark blue lines show the largest and smallest value of U2 we find to be

consistent with neutrino oscillation data and the requirement to explain the observed BAU as

a function of M̄ = (M1 + M2)/2. They are compared to the upper bound from direct search

experiments summarised in ref. [14] (solid black line), the lower bound from neutrino oscillation

data (grey dashed “seesaw” line) and the lower bound from the requirement that the Ni have a

lifetime of less than 0.1s so that their decay does not modify primordial nucleosynthesis (dotted

grey “BBN” line). The upper panel corresponds to normal neutrino mass hierarchy, the lower panel

corresponds to inverted hierarchy.
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the SM leptons couples to heavy neutrinos much more weakly than the two others (leading

to a highly flavour asymmetric washout and a survival of the asymmetry stored in the

weakly coupled SM flavour), or the heavy neutrinos have degenerate masses (in which case

the oscillations and asymmetry generation occur very late at z ∼ zws and there is no time

for a complete washout before sphalerons freeze out). In the scenario with only two heavy

neutrinos, a strong hierarchy amongst the couplings to different SM lepton flavours is ruled

out by neutrino oscillation data, and leptogenesis can only be achieved with degenerate

heavy neutrino masses. If there are more than two heavy neutrinos, then the extended

parameter space allows to make a highly flavour asymmetric washout compatible with

neutrino oscillation data, and baryogenesis is possible without a mass degeneracy [72, 77].

The main new results of the present work are:

• The equations of motion have been derived from first principles of quantum field

theory in the CTP formalism. We have, for the first time, included the effects of

thermal masses, backreaction from the generated asymmetries and spectator fields in

this derivation.

• We have derived analytic approximations to the baryon asymmetry in case of both

the oscillatory and the overdamped regime. While analytic solutions in the oscillatory

regime have previously been found by several authors [67, 72, 76], the solutions in

the overdamped regime are, to the best of our knowledge, presented here for the first

time. Up to O(1) corrections they are consistent with numerical cross-checks.

• Based on these results, we have identified the largest possible heavy neutrino mixings

consistent with leptogenesis in the scenario with two heavy neutrinos. Spectator ef-

fects, which account for the redistribution of SM charges due to fast SM interactions,

and thermal masses have been included in both the analytic and the numerical treat-

ment. While they have been neglected in recent studies so far, we have shown that

they have a non-negligible impact on the final baryon asymmetry. Quantitatively we

find that leptogenesis is possible for larger mixing angles than previously thought,

which increases the chances of an experimental discovery.

In spite of this significant progress, several technical issues remain to be clarified in the fu-

ture:

• Our treatment relies on momentum-averaged kinetic equations. Since the assumption

of kinetic equilibrium is not justified for the heavy neutrinos, this introduces an error

of order one.

• Throughout this paper we have considered all SM Yukawa interaction to be in equi-

librium, which is true for temperatures T . 105 GeV, when the electron has finally

equilibrated. However, the physical interesting regime, i.e. the time of the first oscil-

lation, may already occur at higher temperatures.

• We assume the weak sphalerons to freeze out suddenly, which however is not com-

pletely true when electroweak symmetry is broken in a crossover, as it is the case for
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the SM. This could be phenomenologically important in the strongly overdamped

regime, when the creation of the baryon asymmetry continues throughout the elec-

troweak crossover.

• Our analytic solutions in the oscillatory regime are valid for an arbitrary number

of heavy neutrinos. The treatment of the overdamped regime is, however, focused

on the minimal realistic model, in which only two of these exist. A generalisation

to the case with three or more heavy neutrinos, which includes a larger number of

different oscillation and equilibration time scales, may be very helpful for efficient

phenomenological studies.

To fully explore the discovery potential of present and future experiments, it would

be highly desirable to perform a complete parameter scan of low-scale leptogenesis in the

scenario with three heavy neutrinos. This should consistently include constraints from a

wide range of past experiments that are sensitive to the existence of heavy neutrinos, in

particular direct searches for these particles and indirect searches for lepton number or

flavour violation. The present analytic results, in particular the new description of the

overdamped regime, should also be applicable to assess possibilities of generating the BAU

in extensions of the minimal seesaw model (1.2).

Acknowledgments

This research was supported by the DFG cluster of excellence ‘Origin and Structure of the

Universe’ (http://www.universe-cluster.de).

A Parametrisation of the Seesaw Model and neutrino oscillation data

The extension of the SM by ns sterile neutrinos introduces 7ns−3 new physical parameters,

i.e. 11 or 18 for the cases ns = 2 or ns = 3 considered in this paper. Various experimental

constraints on these parameters are discussed in detail in ref. [14]. The relation between

the parameters in the Lagrangian (1.2) and constraints on the (presently incompletely

determined [102]) light neutrino mixing matrix Uν , light neutrino mass matrix mν can be

expressed in term of the Casas-Ibarra parametrisation [103]

Y † =
1

v
Uν

√
mdiag
ν R

√
Mdiag . (A.1)

The PMNS matrix can be factorised as

Uν = V (23)UδV
(13)U−δV

(12)diag(eiα1/2, 1, eiα2/2) , (A.2)

with U±δ = diag(e∓iδ1/2, 1, e±iδ/2) and where the non-vanishing entries of the matrix

V = V (23)V (13)V (12) are given by:

V
(ij)
ii = V

(ij)
jj = cos θij , (A.3a)

V
(ij)
ij = −V (ij)

ji = sin θij , (A.3b)

V
(ij)
kk = 1 for k 6= i, j . (A.3c)
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The parameters θij are the mixing angles, δ is referred to as the Dirac phase and α1,2 as

Majorana phases.10

The misalignment between sterile mass and interaction eigenstates is given by the

complex orthogonal matrices R that fulfil RRT = 1. In case of three flavours it can be

written as

R = R(23)R(13)R(12) , (A.4)

where the non-vanishing entries read

R(ij)
ii = R(ij)

jj = cosωij , (A.5a)

R(ij)
ij = −R(ij)

ji = sinωij , (A.5b)

R(ij)
kk = 1 for k 6= i, j , (A.5c)

with three complex angles ωij , while for two flavours we have to deal with one complex angle

ω and additionally a distinction between normal hierarchy (NO) and inverted hierarchy

(IO) has to be applied:

RNO =

 0 0

cosω sinω

−ξ sinω ξ cosω

 , RIO =

 cosω sinω

−ξ sinω ξ cosω

0 0

 , (A.6)

where ξ = ±1. In both cases Im(ω) determines the absolute size of the largest eigenvalue

of the combination Y Y †. One can express the overall size of the mass eigenstates N1 and

N2 defined in eq. (1.7) as

U2 =
M2 −M1

2M1M2
(m2 −m3) cos(2Reω) +

M1 +M2

2M1M2
(m2 +m3) cosh(2Imω) (A.7a)

for normal hierarchy,

U2 =
M2 −M1

2M1M2
(m1 −m2) cos(2Reω) +

M1 +M2

2M1M2
(m1 +m2) cosh(2Imω) (A.7b)

for inverted hierarchy.

Finally, we shall make connection to the benchmark scenarios defined in section 1.2.

The naive seesaw is characterised by small values of Imω (or Imωij). In the approximately

lepton number conserving scenario unitary transformations amongst the heavy neutrino

fields can be used to bring Y and M into the form [104, 105]

Y † =

 Ye εe ε′e
Yµ εµ ε′µ
Yτ ετ ε′τ

 , M =

 µ1 M̄ µ3

M̄ µ2 µ4

µ3 µ4 M3

 for ns = 3 (A.8a)

Y † =

 Ye εe
Yµ εµ
Yτ ετ

 , M =

(
µ1 M̄

M̄ µ2

)
for ns = 2 (A.8b)

10In case of two sterile flavours α1,2 are redundant such that we are effectively just left with one Majorana

phase. For normal hierarchy we have m1 = 0 such that Y only depends on α2 but not on α1, while for

inverted hierarchy we have m3 = 0 and it is the difference α1 − α2 on which Y depends.
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Here εa, ε
′
a � Ya and µi � M3, M̄ are lepton number violation (LNV) parameters, which

must vanish if B−L is exactly conserved. M̄ is the common mass of the two heavy neutrino

mass eigenstates N1 and N2 that have comparable large mixing angles, the µi quantify the

mass splitting M1 −M2. The deviation from maximal misalignment between the heavy

neutrino mass basis (where M is diagonal) and interaction basis (where Y Y † is diagonal)

in the flavours is quantified by the εa. It is straightforward to see that U2
a1 = U2

a2 in the

mass basis, i.e., both mass eigenstates couple with the same strength to SM leptons. The

maximal misalignment implies that one interaction eigenstate has couplings of order Ya
while the interactions of the other one are suppressed by the small parameters εa, i.e., Y Y †

has two eigenvalues of very different magnitude ∼ Y 2
a and ∼ ε2a. The analytic solution

in section 4 is effectively obtained in an expansion in εa. In the parametrisation (A.1)

the B − L conserving limit corresponds to large values of |Imω| � 1. A third heavy

neutrino (if it exists) must decouple in the B − L conserving limit, all its interactions are

suppressed by ε′a.

B Derivation of the quantum kinetic equations

In this appendix we provide a brief derivation of the quantum kinetic equation (2.10)based

on first principles of non-equilibrium quantum field theory using the Schwinger-Keldysh

CTP approach. For a pedagogical review of this topic see e.g. refs. [106, 107].

B.1 General considerations and definitions

We start our discussion assuming Minkowski background spacetime and generalise it to the

radiation dominated Friedmann-Robertson-Walter metric in the subsequent subsection.

Correlation functions in a medium. The use of S-matrix elements is not always

suitable to describe non-equilibrium systems because there is no well-defined notion of

asymptotic states, and the properties of quasiparticles in a medium may significantly differ

from those of particles in vacuum. In contrast, observables can always be expressed in terms

of correlation functions of the quantum fields, without reference to asymptotic states or

free particles. There are two linearly independent two-point functions for each field. For a

generic fermion Ψ these can be expressed in terms of the Wightman functions

iS>αβ(x1, x2) = 〈Ψα(x1)Ψ̄β(x2)〉 , iS<αβ(x1, x2) = −〈Ψ̄β(x2)Ψα(x1)〉 . (B.1)

Here α and β are spinor indices, which we suppress in the following; flavour indices can

be included equivalently. The 〈. . .〉 is to be understood in the sense of the usual quantum

statistical average 〈. . .〉 = Tr(% . . .) of a system characterised by a density operator %. In

the present context, we choose

% = %eq
SM ⊗ %

vac
N , (B.2)

where %eq
SM is an equilibrium density operator for all SM fields and %vac

N is the vacuum density

operator for sterile neutrinos. Physically this represents a situation in which the Ni are

absent initially and all SM fields have reached thermal equilibrium before the Ni have been
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produced in significant amounts, which is justified by the smallness of the Yukawa coupling

Y . The expressions (B.1) apply to both, Majorana fields (such as Ni) and Dirac fields (such

as `a). The linear combinations

SA(x1, x2) ≡ i

2

(
S>(x1, x2)− S<(x1, x2)

)
, (B.3a)

S+(x1, x2) ≡ 1

2

(
S>(x1, x2) + S<(x1, x2)

)
, (B.3b)

have intuitive physical interpretations. The spectral function SA encodes the spectrum

of quasiparticles in the plasma. The statistical propagator S+ provides a measure for the

occupation numbers. The correlators fulfil the symmetry relations

iγ0S
≷(x2, x1) =

(
iγ0S

≷(x1, x2)
)†
, (B.4a)

iγ0S
+(x2, x1) =

(
iγ0S

+(x1, x2)
)†
, (B.4b)

γ0S
A(x2, x1) =

(
γ0S

A(x1, x2)
)†
, (B.4c)

γ0S
H(x2, x1) =

(
γ0S

H(x1, x2)
)†
. (B.4d)

If Ψ is a Majorana fermion, then there is an additional symmetry

S≷(x1, x2) = CS≷(x2, x1)tC† , (B.5)

where C is the charge conjugation matrix and the transposition t acts on spinor as well as

flavour indices.

It is often useful to introduce the retarded, advanced and Hermitian propagators,

iSR(x1, x2) = 2θ(t1 − t2)SA(x1, x2) , (B.6a)

iSA(x1, x2) = −2θ(t2 − t1)SA(x1, x2) , (B.6b)

SH(x1, x2) =
1

2

(
SR(x1, x2) + SA(x1, x2)

)
= −i sign(t1 − t2)SA(x1, x2) . (B.6c)

From this it follows that

SA(x1, x2) =
i

2

(
SR(x1, x2)− SA(x1, x2)

)
. (B.7)

The usual Feynman propagator SF can be expressed as SF = SR+S< = SA+S>. Spectral,

statistical, retarded, advanced and Hermitian self-energies /Σ
A

, /Σ
+

, /Σ
R

, /Σ
A

and /Σ
H

are

defined analogously, see e.g. [108, 109] for a list of explicit definitions.

Equations of motion. The correlation functions for quantum fields out of thermal equi-

librium can be obtained from the Schwinger-Dyson equations

(i/∂x1 −M)SA(x1, x2) = 2i

∫ t2

t1

dt′
∫

d3x′ /Σ
A

(x1, x
′)SA(x′, x2) , (B.8a)

(i/∂x1 −M)S+(x1, x2) = 2i

∫ t2

ti

dt′
∫

d3x′ /Σ
+

(x1, x
′)SA(x′, x2)

− 2i

∫ t1

ti

dt′
∫

d3x′ /Σ
A

(x1, x
′)S+(x′, x2) , (B.8b)
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which can be derived from two-particle irreducible effective action [110] in the CTP frame-

work [94]. An explicit derivation is given in ref. [107]. If the initial state at time ti is

Gaussian (i.e. can entirely be specified by the initial conditions of the statistical prop-

agators and one-point functions of all fields), then the above equations of motion are

exact. Strictly speaking this is not true for (B.2) because %eq
SM is not Gaussian [111]. How-

ever, %vac
N is Gaussian, and we are primarily interested in the equation of motion for the

heavy neutrinos.

The equations (B.8a) and (B.8b) can in principle be solved directly in position

space [112–118], but it is often more practical to perform a Fourier transform in the relative

coordinate x1−x2 to Wigner space [119, 120].11 This is the approach we take here. In order

to perform the Wigner transformation, it is convenient to rewrite (B.8a) and (B.8b) with

integration limits ±∞. For this purpose, we send ti → −∞,12 and note that it can be seen

that causality is maintained when substituting the retarded and advanced propagators and

self energies by virtue of the relations (B.6a) and (B.6b). By using eqs. (B.6c) and (B.7)

one finds SA,R = SH ± iSA. Together with the definitions of SA and S+ this allows to

rewrite (B.8a) and (B.8b) as

(i/∂x1 −M)SA(x1, x2)=

∫
d4x′

(
/Σ
H

(x1, x
′)SA(x′, x2) + /Σ

A
(x1, x

′)SH(x′, x2)
)
, (B.9a)

(i/∂x1 −M)S+(x1, x2)=

∫
d4x′

(
/Σ

+
(x1, x

′)SH(x′, x2) + /Σ
H

(x1, x
′)S+(x′, x2)

)
+

1

2

∫
d4x′

(
/Σ
>

(x1, x
′)S<(x′, x2)− /Σ<

(x1, x
′)S>(x′, x2)

)
, (B.9b)

which can easily be transformed to Wigner space by introducing new variables x = (x1 +

x2)/2 and y = x1 − x2 and performing a Fourier transform with respect to y. In Wigner

space, the symmetry relations (B.4) of the propagators S and, accordingly, of the self

energies /Σ read

iγ0G
≷(x; k) =

(
iγ0G

≷(x; k)
)†
, (B.10a)

iγ0G
+(x; k) =

(
iγ0G

+(x; k)
)†
, (B.10b)

γ0G
A(x; k) =

(
γ0G

A(x; k)
)†
, (B.10c)

γ0G
H(x; k) =

(
γ0G

H(x; k)
)†
, (B.10d)

with G being either S or /Σ. Here x denotes the real time and space coordinate and k can

be interpreted as the momentum of a quasiparticle. In the following we mostly drop these

arguments, and all correlation functions are to be understood as Wigner space functions.

Since the early Universe is homogeneous and isotropic, there is no dependence on

the spatial part x of x = (t,x). During leptogenesis, all fields with gauge interactions are

effectively kept in kinetic equilibrium. This means that we can describe the thermodynamic

state of these degrees of freedom by a single temperature T and chemical potentials µ`a (for

leptons) and µφ (for the Higgs). We can neglect the effect of the heavy neutrino production

and decays on T because of the large number of degrees of freedom g? in the primordial

11See also [121–123] for an alternative approach.
12Boundary conditions at finite time can still be imposed by formally introducing singular external

sources [118].
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plasma. Compared to the typical time scale 1/T of microscopic processes, the temperature

changes only slowly due to Hubble expansion, i.e. H '
√

8π3g?/90T 2/mPl � T , where mPl

is the Planck mass. Due to the smallness of the lepton flavour violating Yukawa couplings

Y , also the chemical potentials only change at a small rate ||Y tY ∗||T � T . This separation

of macroscopic and microscopic time scales justifies a gradient expansion in t to leading

order,13 such that in Wigner space, the eqs. (B.9a) and (B.9b) read(
/p+

i

2
γ0∂t −M

)
SA −

(
/Σ
H
SA + /Σ

A
SH
)

= 0 , (B.11a)(
/p+

i

2
γ0∂t −M

)
S+ − /Σ

H
S+ − /Σ

+
SH =

1

2

(
/Σ
>
S< − /Σ

<
S>
)
. (B.11b)

By adding and subtracting the Kadanoff-Baym equation (B.11b) and its Hermitian conju-

gate, we obtain the constraint and kinetic equations

{H,SA} − {G,SH} = 0 , (B.12a)

i∂tSA + [H,SA]− [G,SH ] = 0 , (B.12b)

and

{H,S+} − {N ,SH} =
1

2

(
[G>,S<]− [G<,S>]

)
, (B.13a)

i∂tS+ + [H,S+]− [N ,SH ] =
1

2

(
{G>,S<} − {G<,S>}

)
, (B.13b)

with

S+ ≡ iγ0S+ , SH ≡ iγ0SH , H ≡ (/p− /Σ
H −M)γ0 ,

G> ≡ /Σ
>
γ0 , G< ≡ /Σ

<
γ0, G ≡ i

2
(G> − G<), N ≡ /Σ

+
γ0 . (B.14)

From the kinetic equation (B.13b) it already becomes clear that H is the Hermitian part

of an effective Hamiltonian that leads to oscillations of the sterile neutrinos, and G≷ are

dissipative gain and loss terms. N can be interpreted as a noise term that owes its existence

to the fluctuation-dissipation theorem. It is convenient to express

H = H̄+ δH , G = Ḡ + δG , (B.15)

where H̄ and Ḡ areH and G evaluated in local thermal equilibrium (with vanishing chemical

potentials). The deviations δH and δG arise due to finite chemical potentials of the SM

fields.14 We now define the static solutions S̄+ = (S̄> + S̄<)/2 and S̄A = i(S̄> − S̄<)/2 as

the solutions to the algebraic equations

[H̄, S̄+]− [N̄ , S̄H ] =
1

2

(
{Ḡ>, S̄<} − {Ḡ<, S̄>}

)
, [H̄, S̄A] = [Ḡ,SH ] , (B.16)

13See [117, 119, 120] for a more detailed discussion of this point.
14In principle there are also contributions due to δSN in internal heavy neutrino propagators, but these

are of order O[Y 4].
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and split

S+ = S̄+ + δS . (B.17)

If the self energies /Σ are dominated by interactions with degrees of freedom that are in

good approximation in equilibrium, then

SA = S̄A , SH = S̄H , S≷ = S̄≷ + δS , (B.18)

to leading order in the small couplings and gradients [112, 117]. This yields

∂tδS = −∂tS̄+ + i[H̄, δS] + i[δH, S̄+]− i[δN , S̄H ]− {Ḡ, δS}

− i

2

(
{δG>, S̄<} − {δG<, S̄>}

)
. (B.19)

The term ∂tS̄+ is due to the fact that S̄+ in the early Universe slowly changes due to

Hubble expansion.

B.2 Quantum kinetic equations for heavy neutrinos

We now apply the general kinetic equation (B.19) to the case of heavy neutrinos. The

associated correlators, self energies, effective Hamiltonians and rates will be attached with

the subscript N . It makes sense to split the self energies up into a part Σ̄ computed in

thermal equilibrium and for vanishing chemical potentials and a deviation due to non-zero

chemical potentials Σ̄, such that

/Σ ≡ γµΣµ = γµ
(
Σ̄µ + δΣµ

)
. (B.20)

In absence of chemical potentials, the self energies of the sterile neutrinos /ΣN and of the

SM leptons /Σ` can be factorised into a flavour dependent matrix of couplings and a reduced

self energy Σ̂/,

Σ̄/N = gwΣ̂/
(
Y ∗Y tPR + Y Y †PL

)
. (B.21)

The absence of a superscript A, +, R, A or H indicates that the definition holds for either

of these self energies. Here, gw = 2 accounts for the SU(2) multiplicity due to the SM

doublets running in the loop. For non-zero chemical potentials, the reduced self energy

also depends on the active flavour a. We can decompose

(/ΣN )ij = (/ΣR)ijPR + (/ΣL)ijPL

= gw
∑

a=e,µ,τ

(
Σ̂/RaY

∗
iaY

t
ajPR + Σ̂/LaYiaY

†
ajPL

)
. (B.22)

Since gauge interactions keep all SM degrees of freedom in kinetic equilibrium, the devia-

tions δH, δG≷ and δN can be parametrised in terms of the chemical potentials, and the

self energies thus fulfil the generalised Kubo-Martin-Schwinger (KMS) relations

Σ̂/>L,Ra = −e(k0∓µ`a∓µφ)/T Σ̂/<L,Ra , (B.23)
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where µ`a and µφ are the chemical potentials of the SM leptons and the Higgs. These

chemical potentials are small at all times of interest, and we expand in µ/T to linear order.

This yields a linearised KMS relation

δΣ̂/>L,Ra = −ek
0/T

[
δΣ̂/<L,Ra ∓

µ`a + µφ
T

(
Σ̂/<PL,R + δΣ̂/<L,Ra

)]
≈ −ek

0/T

[
δΣ̂/<L,Ra ∓

µ`a + µφ
T

Σ̂/<PL,R

]
, (B.24)

where in the second step we have suppressed the term that is quadratic in the chemical

potentials. Note that

Σ̄/>N = −ek
0/T Σ̄/<N . (B.25)

From the definition of /Σ
+
N and the KMS relation (B.23) it is clear that δNN is quadratic in

the chemical potentials, and we can neglect it. We also neglect the term δHN . In principle,

it is of the same order as the term with δGN , but it only appears in a commutator, and

δSN is approximately proportional to a unit matrix for T � Mi, Y � 1 (δSN = −S̄N
initially). This allows us to write

∂tδSN = 2
∂tfF

1− 2fF
S̄+
N + i[H̄N , δSN ]− {ḠN , δSN} −

2

1− 2fF

∑
a=e,µ,τ

µ`a + µφ
T

{G̃aN , S̄+
N} ,

(B.26)

with

G̃aN = −gwfF [1− fF ]Σ̂/AN

(
Y ∗iaY

t
ajPR − YiaY †ajPL

)
γ0 . (B.27)

The Fermi-Dirac distribution fF = fF (k0) = 1/(ek
0/T + 1) arises from the KMS rela-

tion (B.25). We used the Leibniz rule for the term ∂tS̄+
N that can be expressed in terms

of the stationary quantity S̄AN and the distribution fF , where the derivative only acts on

the latter one. H̄N and ḠN are the dispersive and dissipative part of an effective Hamilto-

nian. The term G̃N is responsible for the feedback or backreaction of the generated lepton

asymmetry on the heavy neutrino dynamics.

Lorentz decomposition and off-shell kinetic equation. We employ the decomposi-

tion of the non-equilibrium part δSN = iγ0δSN of the heavy neutrino propagator SN in

Wigner space in Lorentz components used in [60, 124],

−iγ0δSN =
∑
h

1

2
Ph
(
g0h + γ0g1h − iγ0γ5g2h − γ5g3h

)
, (B.28)

with the helicity projectors

Ph ≡
1

2

(
1 + hk̂γ0γγγγ5

)
. (B.29)

Note that we are using the Weyl (chiral) representation of the Dirac matrices. In the

situation we consider here, they can all be expressed in terms of the functions g0h, as shown
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explicitly in refs. [60, 124]. The relations can be found by taking traces over the products

of the constraint equation (B.13a) with Ph and different combinations of γ matrices. To

linear order in M/k0 and Y , they read15

g1h =
1

2k0
({ReM, g0h}+ [iImM, g3h]) , (B.30a)

g2h =
1

2ik0
([ReM, g3h] + {iImM, g0h}) , (B.30b)

g3h = hsign(k0)g0h . (B.30c)

which is an approximation applicable in the regime Mi � T , Yia � 1. The equilibrium

function iS̄+
N can be decomposed in analogy to iδSN , where we replace gbh with the functions

ḡbh. In the self energies ΣN of heavy neutrinos and Σ` of SM leptons we consider terms up

to second order in Y . The kinetic equation for δg0h can be obtained by taking the trace of

eq. (B.26) and inserting the relations (B.30a),

∂tg0h = 2
∂tfF

1− 2fF
ḡ0h −

i

2
[HN , g0h]− 1

2
{ΓN , g0h} −

1

2

2

1− 2fF

∑
a=e,µ,τ

µ`a + µφ
T

{Γ̃aN , ḡ0h} ,

(B.31)

with

HN = 2gw

(
Re[Y ∗Y t]

k · Σ̂H
N

k0
− ihsign(k0)Im[Y ∗Y t]

k · Σ̂H
N

k0

)
(B.32a)

+
1

k0

(
Re[M †M ] + ihsign(k0)Im[M †M ]

)
, (B.32b)

ΓN = 2gw

(
Re[Y ∗Y t]

k · Σ̂AN
k0

− ihsign(k0)Im[Y ∗Y t]
k · Σ̂AN
k0

)
, (B.32c)

(Γ̃aN )ij = 2hgwfF (1− fF )

(
sign(k0)Re[Y ∗iaY

t
aj ]
k · Σ̂AN
k0

− ihIm[Y ∗iaY
t
aj ]
k · Σ̂AN
k0

)
. (B.32d)

On-shell kinetic equation in an expanding Universe. The kinetic equation (B.31)

for g0h very much resembles an equation for density matrices commonly used in neutrino

physics [91]. However, it is still an equation of motion for correlation functions (rather

than particle numbers) because all quantities are defined for general k0 that may also be

off shell. The feeble strength of the Yukawa interactions implies that the narrow width

approximation holds for the sterile neutrino-quasiparticles, and all phase space integrals

are strongly dominated by the quasiparticle poles Ωi, which are defined by the poles of

H−1 in the flavour basis where H is diagonal. In that basis we can approximate

ḡ0h(k)ij ≈ −
1− 2fF

2
δij2πδ(k

2
0 − Ω2

i )2k
0sign(k0) . (B.33)

In the ultrarelativistic regime T � Mi, we can further approximate δ(k2
0 − Ω2

i ) ' δ(k2)

in eq. (B.33) because kinematically, the (thermal and vacuum) masses are negligible. We

15It remains to be seen if corrections to these relations of order O[Y 2] have a significant effect on the

kinetic equation at z = zosc when the vacuum masses are extremely degenerate.
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do, however, have to include these as a part of HN in the kinetic equation owing to their

importance for flavour oscillations. In eq. (B.33) we have used that iS̄+
N = S̄AN (1 − 2fF )

and iδSN = −2SANδf . The above relations allow us to express the full equation (B.31) in

terms of the equilibrium quantities ḡbh and the perturbative part δfbh as

gbh = − 2

1− 2fF
ḡbhδfbh . (B.34)

It is convenient to define δf0h(Ωi,k) + fF (Ωi) as the number density for particles and

1− δf0h(−Ωi,k)− fF (−Ωi) as number density for antiparticles. For the heavy neutrinos,

the Majorana condition (B.5) implies

δf0h(−k0) = δf∗0h(k0) , (B.35)

and there is no need to track particle and antiparticle numbers independently. For that

reason we will focus on particles, hence we restrict to the case sign(k0) = 1, and use

eq. (B.35) when needed.

Using ∫
dk0

2π
gbh = δfbh , (B.36)

we eventually obtain an equation for on-shell distribution functions by integrating over k0,

∂tδf0h = −∂tfF −
i

2
[HN , δf0h]− 1

2
{ΓN , δf0h}+

∑
a=e,µ,τ

µ`a + µφ
T

Γ̃aN . (B.37)

Note that we keep the same notation for ΓN , Γ̃N and HN while these quantities are restricted

to on-shell arguments k0 = |k| in above equation.

So far we have carried out our derivations in Minkowski spacetime. During the

radiation-dominated era, the expansion of the Universe can simply be included by using

conformal time η instead of physical time [108],

δf ′0hij +
i

2
[HN , δf0h]ij + (f eq)′ij = −1

2
{ΓN , δf0h}ij +

∑
a=e,µ,τ

µ`a + µφ
T

(Γ̃aN )ij . (B.38)

A prime denotes a derivative with respect to the conformal time η, and we additionally have

made the flavour content explicit. During radiation domination, a = aRη, and when using

the parametrisation introduced in section 2, η = T/Tref . Note also that since aR/a = T

can be interpreted as a comoving temperature, the equilibrium distribution for massless

sterile neutrinos that appears in eq. (B.38) is given by

f eq =
1

e|k|/aR + 1
. (B.39)

This distribution does not depend on conformal time, such that the term f eq′ = 0 in

eq. (B.38).
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The effective Hamiltonian can be decomposed into a vacuum mass and a thermal mass

term such that (HN )ij = (Hvac
N )ij + (Hth

N )ij with

(Hvac
N )ij =

a2

|k|

(
Re[M †M ]ij + ihIm[M †M ]ij

)
, (B.40a)

(Hth
N )ij = 2gw

(
Re[Y ∗Y t]ij − ihIm[Y ∗Y t]ij

) k · Σ̂H
N

|k|
, (B.40b)

where M is the vacuum mass matrix [cf. eq. (1.2)] such that eq. (B.40a) is written in the

most general form allowing for a complex symmetric mass matrix. Σ̂H
N is the Hermitian

part of the reduced self-energy of the sterile neutrino as defined in eq. (B.21) [60]. The

anticommutator terms involve the reduced spectral self-energy Σ̂AN , and they are responsible

for the decay of the deviations δf0h toward equilibrium. Inserting the momentum and

flavour structure one finds [60]

(ΓN )ij = 2gw
(
Re[Y ∗Y t]ij − ihIm[Y ∗Y t]ij

) k · Σ̂AN
|k|

. (B.41)

The oscillations of sterile neutrinos induce flavour asymmetries in the active sector. The

produced SM charges, i.e. those within the doublet leptons `a of flavour a and the Higgs

field φ, then lead to a backreaction effect that is described by the term

µ`a + µφ
T

(Γ̃aN )ij →

2hgw
(
Re[Y ∗iaY

t
aj ]− ihIm[Y ∗iaY

t
aj ]
) k · Σ̂AN
|k|

e|k|/aR

(e|k|/aR + 1)2

(
µ`a
aR

+
µφ
aR

)
. (B.42)

Here, µ`a and µφ are chemical potentials for the doublet leptons and the Higgs boson, where

we assume kinetic equilibrium for these species. We have linearised here in the chemical

potentials, which is a valid approximation when µ`a,φ � T .

It is convenient to define helicity-even and helicity-odd parts of the distribution func-

tions

δf even(k) =
δf0+(k) + δf0−(k)

2
, (B.43a)

δfodd(k) =
δf0+(k)− δf0−(k)

2
. (B.43b)

In this work we assume that all lepton asymmetries remain small at all times. This allows

to perform expansions to linear order in the µ`a and δfodd. We cannot expand in δf even

because the initial state (B.2) implies that

δf even
ij (k) = −f eq(|k|)δij ' −δij (B.44)

at initial time, where the second equality holds on shell and at T �Mi,Mj .
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Rate equations for number densities. Though eq. (B.38) has the same form as a den-

sity matrix equation for (quasi)particle occupation numbers, it is an equation of motion

for the propagator (SN )ij (which can be expressed in terms of the distribution functions

δf0hij). In particular, it is valid for off-shell values of k0 and holds for each momentum

mode k individually. When accounting for backreaction effects, there will also be a cou-

pling among the modes via G̃. This is a considerable complication, and resolving the full

momentum dependence would be a road block toward the goal of finding simple analytic

approximations as well as fast numerical solutions. We therefore follow the common pro-

cedure [65, 67, 71] of reducing the problem to number densities in flavour of distribution

functions by averaging the rates over the momentum. As we discuss below, this leads to

order one uncertainties in the final result that should be resolved in future work. Some

progress in this direction has been made in ref. [98]. The developments that we present

here may be helpful in order to address this issue.

In order to cast eq. (B.38) into a relation for the number densities of the sterile neu-

trinos, we perform an integration over momentum space. We are lead to introduce the

equilibrium number density

neq =

∫
d3k

(2π)3
f eq =

3

4π2
a3

Rζ(3) (B.45)

and the deviations

δnhij =

∫
d3k

(2π)3
δf0hij(k) . (B.46)

The number densities δneven and δnodd are then defined analogously based on the distribu-

tion functions (B.43). We face the usual problem of approximating the momentum integral

over products on the right-hand side of eq. (B.38) by products of momentum integrals. Un-

der the integral, the distribution functions are in general multiplied by different powers of

the momentum. Inspection of the individual terms in eq. (B.38) (that we discuss explicitly

below) reveals that there are factors independent of k as well as factors of 1/|k|. In order

to account for the latter, we replace 1/|k| by its average value〈
1

|k|

〉
≡ 1

neq

∫
d3k

(2π)3

1

|k|
f eq(k) =

π2

18aRζ(3)
. (B.47)

For T �Mi, the spectral self-energy of the sterile neutrinos, that appears in G and G̃, is

dominated by the t-channel exchange of a doublet lepton in association with the radiation

of a gauge boson [75, 83, 125]. We follow ref. [72], where the momentum averaging is

applied through the replacement

k · Σ̂AN
|k|

→ γavaR

2gw
, (B.48)

with the averaged relaxation rate γav ≡ Γav/T . This rate has been computed in different

regimes by various authors [60, 82–85, 124, 126–131, 131–134]. Here we use γav = 0.012,

corresponding to the value from ref. [75] based on refs. [83, 125]. In the backreaction
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term (B.42), it is useful to replace the chemical potentials with charge densities according

to eq. (2.1). In the effective Hamiltonian HN , we substitute the leading hard thermal loop

contribution to the Hermitian self-energy given by k · Σ̂H
N = T 2/8 [135]16 In total, we can

decompose the Hermitian part as follows

k · Σ̂H
N

|k|
=

a2
R

16|k|
→ aR

2gw
hth

where using eq. (B.47), the coefficient hth is given by

hth ≈ 0.23. (B.49)

In summary, when integrating eq. (B.38) over the three momentum k, we obtain the

momentum averaged evolution equation for the sterile number densities

d

dz
δnh = − i

2
[Hth

N + z2Hvac
N , δnh]− 1

2
{ΓN , δnh}+

∑
a=e,µ,τ

Γ̃aN

(
q`a +

1

2
qφ

)
, (B.50)

and the rates given in equations (2.11a)–(2.11d)

Hvac
N =

π2

18ζ(3)

aR

T 3
ref

(
Re[M †M ] + ihIm[M †M ]

)
,

Hth
N = hth

aR

Tref

(
Re[Y ∗Y t]− ihIm[Y ∗Y t]

)
,

ΓN = γav
aR

Tref

(
Re[Y ∗Y t]− ihIm[Y ∗Y t]

)
,

(Γ̃aN )ij =
h

2
γav

aR

Tref

(
Re[Y ∗iaY

t
aj ]− ihIm[Y ∗iaY

t
aj ]
)
.

The result (B.50) immediately leads to eq. (2.10) when including spectator effects. Note

that if all distribution functions appearing under the momentum integral were of the form

f eq(k), the averaging procedure would not incur any inaccuracy. However, this form can-

not be assumed for δf0h(k) and it neither holds for the statistical factor in eq. (B.42).

Nonetheless, since all of these distributions take the form of a Boltzmann tail for |k| � aR,

the error incurred is only of order one. For comparison, along the same lines, we can see

that momentum averaging for leptogenesis from non-relativistic sterile neutrinos does not

lead to a leading order inaccuracy because all distributions are well approximated by the

Maxwell-Boltzmann form.

C Evolution of SM charges

C.1 Kinetic equations

The evolution equations for the charge densities q`a of doublet leptons are

dq`a
dz

= − aR

Tref
Wa

(
q`a +

1

2
qφ − qNii

)
+

1

Tref
Sa , (C.1)

16Note that in our definition, we account for the fact that particles and antiparticles run in the loop

correction to the Majorana propagator while the gauge multiplicity enters through the explicit factors of

gw in eqs. (B.40).
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where Sa is the source for the asymmetry (which is defined as the part of the collision term

that is non-vanishing even if all µ`a = 0) and Wa is the rate for washout (which is defined

as the remainder of the collision terms). Besides, we introduce the sterile charge as the

helicity-odd part of the deviation of the number densities from equilibrium,

qNij = δn+ij − δn−ij = 2nodd
ij . (C.2)

This quantity is useful because in the limit M → 0, qN can be identified with a charge den-

sity contributing to a conserved (modulo weak sphalerons) generalised lepton number along

with the doublet leptons and the charged right-handed leptons. In the present context,

where the sterile neutrinos are relativistic, we can neglect the reactions that violate the

generalised lepton number. This is because for a typical momentum mode the admixture

of opposite chirality to a spinor of given helicity is of order M/T , such that the processes

mediated by the Yukawa couplings Y that violate the generalised lepton number are sup-

pressed by a relative factor of M2/T 2 compared those that conserve the generalised lepton

number and that are accounted for in the present work.17 We also note that there are

contributions from the off-diagonal correlations in the sterile neutrinos that we attribute

implicitly to the source term Sa. In analogy with the terms proportional to Γ̃a in eq. (B.50),

we refer to the contribution involving qNii in eq. (C.1) as a backreaction term.

The washout rate is complementary to the damping rates for sterile neutrinos, cf.

eqs. (2.11), and is given by

Wa =
γav

gw

∑
i

YiaY
†
ai . (C.3)

The off-diagonal correlations of the sterile neutrinos give rise to the source for charge

asymmetries in the doublet leptons,

Sab = −
∑
i,j

i 6=j

Y ∗iaYjb

∫
d4k

(2π)4
tr

[
PRiδSNij(k)2PL /̂Σ

A
N

]
, (C.4)

where in eq. (C.1) we use the shorthand notation Sa ≡ Saa. While in principle, there

can also be off-diagonal correlations in the doublet charges, we set these to zero in the

present context because at the temperatures we consider, processes mediated by the µ and

τ Yukawa couplings erase these by the mechanism described in ref. [109, 136] corresponding

to leptogenesis in the fully flavoured regime [137–139].

Because T ∼ |k| � Mii for the typical momentum scale, we can focus on the limit of

massless (ultrarelativistic) sterile neutrinos, where |k| ≈ sign(k0)k0. Further, it is useful

17In a situation where the eigenvalues of Y Y † are very different in size, this argument might not hold

because the M2/T 2-suppression of lepton number violating processes involving the larger coupling may not

be sufficient to suppress them relative to the lepton number conserving processes mediated by the weaker

Yukawa coupling. This issue, which should be addressed in future work, introduces an uncertainty in the

results found in section 4.
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to decompose sterile propagator in the relativistic regime

iδSN (k) = 2πδ(k2)2k0 δf0+(k) + δf0−(k)

2

(
−1

2
γ0 +

1

2
k̂ · γγγ sign(k0)

)
+ 2πδ(k2)2k0 δf0+(k)− δf0−(k)

2

(
1

2
γ0γ5 sign(k0)− 1

2
k̂ · γγγγ5

)
(C.5)

in terms of helicity odd and even functions (B.43a) and (B.43b),

iδSN (k) = 2πδ(k2)
[
−/kδf even(k) + sign(k0)/kγ5δfodd(k)

]
. (C.6)

Here we have used eqs. (B.28) and (B.30a), where the off-shell correlators g1h and g2h are

suppressed by a factor k0/M and where g3h is related to g0h. Additionally, the on-shell

condition (B.34) has been used in the form of

g0h = 2πδ(k2)sign(k0)2k0δf0h . (C.7)

Substitution into the source term (C.4) yields

Sab =
∑
i,j

i 6=j

Y ∗iaYjb

∫
d3k

(2π)3

1

2|k|
∑
sk=±

4k · Σ̂AN
[
δf even
ij (k) + skδf

odd
ij (k)

]
. (C.8)

This corresponds to the relativistic limit of the more general result derived in ref. [60].

Provided we can neglect the term δf ′0hij compared to the commutator term in eq. (B.38)

and we can also drop the backreaction term as well as the thermal masses, it follows

δf0hij = −igw
4k · Σ̂AN

a2(M2
ii −M2

jj)
f eq
(
Re[Y ∗Y t]ij − ihsign(k0)Im[Y ∗Y t]ij

)
, (C.9)

and we recover the result from ref. [72] for the source term. This gives rise to a first

approximation for the asymmetry in the weak washout regime, which we improve upon in

section 3.

In terms of momentum averaged expressions, the source term can be written as

Sab = 2
γav

gw
aR

∑
i,j

i 6=j

Y ∗iaYjb

[
iIm(δneven

ij ) + Re(δnodd
ij )

]
, (C.10)

such that in total, we obtain the differential equation for the evolution of the SM charges

dq`a
dz

=− γav

gw

aR

Tref

∑
i

YiaY
†
ai

(
q`a +

1

2
qφ − qNi

)
+ 2

γav

gw

aR

Tref

∑
i,j

i 6=j

Y ∗iaYja

[
iIm(δneven

ij ) + Re(δnodd
ij )

]
. (C.11)

Eqs. (B.50) and (C.11) form a coupled system of differential equation for the active and

sterile charges. In order to solve the whole system one can decompose eq. (B.50) into

even and odd parts and seek for numerical solutions. However, we can identify different

parameter regions, such as the oscillatory and overdamped regime, where approximate

analytic solutions can be found, as presented in sections 3 and 4, respectively.
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C.2 Spectator processes

Standard Model processes redistributing charges during leptogenesis are called spectator

effects and affect the final result for the baryon asymmetry [95, 96]. In order to account for

these it is useful to work with the asymmetries ∆a = B/3− La defined in eq. (2.3) which

are conserved by all interactions other than those mediated by the Yukawa couplings Y

between the active and sterile sectors. We then need to relate these asymmetries to the

charge densities that appear on the right hand sides of the evolution equations (B.38). At

temperatures below T . 105 GeV, when the electron as the SM particle with the smallest

Yukawa coupling finally reaches chemical equilibrium (see e.g. ref. [97] for an overview of

the equilibration rates of spectator processes), the SM Yukawa-mediated processes lead to

the constraints

µQi − µui + µφ = 0 , (C.12a)

µQi − µdi − µφ = 0 , (C.12b)

µ`i − µei − µφ = 0 . (C.12c)

Besides, weak and strong sphaleron processes force the relations

gs(µQ1 + µQ2 + µQ3) + µ`1 + µ`2 + µ`3 = 0 , (C.13a)

gw(µQ1 + µQ2 + µQ3)− (µu1 + µu2 + µu3)− (µd1 + µd2 + µd3) = 0 , (C.13b)

where Qi denote left-handed quark doublets of flavour i, ui, di are the corresponding right-

handed electroweak singlets and the factor gs = 3 accounts for the three colour states.

A common chemical potential for the weak doublets and colour triplets implies that the

charge densities associated with the diagonal generators for weak and strong interactions

vanish. Correspondingly a vanishing density of weak hypercharge leads to the condition

gwYφqφ +
∑

a=e,µ,τ

(gwgsYQaqQa + gwY`aq`a + gsYuaqua + gsYdaqda + Yeaqea) = 0 , (C.14)

where we explicitly note the summation over the three active flavour indices. We can now

can solve eqs. (C.12), (C.13), (C.14) in order to obtain the desired relations between the

charge densities of doublet leptons q`1,2,3 ≡ q`e,µ,τ as well as of the Higgs bosons qφ and the

asymmetries ∆1,2,3 ≡ ∆e,µ,τ . These are conveniently expressed as q` = A∆ and qφ = C∆.

This way we obtain the matrices A and C given in equation (2.6) as

A =
1

711

−221 16 16

16 −221 16

16 16 −221

 , C = − 8

79

(
1 1 1

)
and where q` = (q`1, q`2, q`3)t as well as ∆ = (∆1,∆2,∆3)t are understood as column

vectors in lepton flavour space. For completeness, we also define the column vector qN =

(qN1 , qN2 , . . . , qNns)
t for ns sterile neutrinos. Besides, in terms of ∆ we can express the

baryon asymmetry as

B = D∆ , D =
28

79

(
1 1 1

)
. (C.15)

– 51 –



J
H
E
P
1
2
(
2
0
1
6
)
1
5
0

One may also relate the asymmetry in doublet leptons to the baryon asymmetry,

B = Eq` , E = −4

3

(
1 1 1

)
. (C.16)

Note that this calculation is consistent with the well-known relation [140] B = 28
79(B −

L). Because of the crossover nature of the electroweak phase transition in the SM, there

is another O(10%) correction to this relation [141, 142]. In view of the sensitivity of

the asymmetries from GeV-scale leptogenesis to spectator effects, it should be of interest

to include this correction along with the time dependence of the rate of weak sphaleron

transitions prior to their quench. Both corrections will lead to a temperature dependence

in above conversion relations, a detailed study of which we leave to future work.

D Oscillatory regime

D.1 Time scales in the oscillatory regime

For the validity of the approximations used to calculate the initial asymmetry in the oscil-

latory regime, the equilibration time

zeq ≈

(
2gw‖Y ∗Y t‖

k · Σ̂AN
|k|

)−1

Tref ≈
Tref

‖Y ∗Y t‖γavaR
, (D.1)

given here by the inverse of the smallest eigenvalue of the decay matrix (B.41) needs to be

much larger than the time by which the first oscillation is over. This oscillation time scale

is determined by the difference of the squared masses

zosc ≈
(
aR|M2

i −M2
j |
)−1/3

Tref . (D.2)

In the coordinates we have chosen, eq. (B.50) implies that the frequency of the oscillation

ωvac induced by the vacuum term Hvac
N increases with z2, whereas the thermal contribution

Hth
N results in a constant oscillation frequency ωth. For this reason the nonzero thermal

oscillation may be of importance at early times when the vacuum oscillation has not started

yet. However, one can show that ωvac is automatically larger than ωth at the time of the

first oscillation zosc when imposing zeq � zosc:

ωvac = aR|M2
i −M2

j |η2
osc = a

1/3
R |M

2
i −M2

j |1/3 � ‖Y ∗Y t‖hthaR = ωth , (D.3)

with hth = 0.23. This implies that in the oscillatory regime the thermal effects may only

have lead to a small fraction of a full flavour oscillation by the time when the first oscillation

due to the vacuum masses already has been completed. Since the main part of the active

charge is generated during the first oscillation, one can consider the contribution from the

thermal masses as a perturbation.

It is easy to show that the perturbative corrections to δnij arising due to the presence

of Hth
N vanish at order O(hth/γav|Y ∗Y t|) as the leading order term of the out-of-equilibrium

distribution is δnij = −neqδij and hence[
Hth
N , δn

]
= 0 . (D.4)
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The first non-vanishing contribution from the thermal masses is of order O(hth/γav|Y ∗Y t|2),

which can be neglected compared to the contributions coming from the vacuum masses δnij
of order O(|Y ∗Y t|), cf. eqs. (3.6).

D.2 Momentum dependence of the source

In section 3 we have calculated the active charge produced through the off-diagonal oscil-

lations of the sterile neutrinos to order |Y ∗Y t|2 with the simplification of fully momentum

averaged expressions. We can go one step further and consider the momentum dependence

of the vacuum term Hvac
N as in eq. (B.40a) but still keep the replacement (B.48) in order

to able to solve the remaining momentum integral analytically. For this reason we solve

δf ′0hij +
i

2
[Hvac

N , δf0h]ij = −1

2
{ΓN , δf0h}ij , (D.5)

by analogy with eq. (3.1) for the even and odd parts of the off-diagonal distributions δfij
whose solution to order |Y ∗Y t| can be obtained analogously

fodd
ij = −iIm[Y ∗Y t]ijG̃Fij , f even

ij = Re[Y ∗Y t]ijG̃Fij , (D.6a)

Ω̃ij =
a2

R

T 3
ref2k

0
(M2

ii −M2
jj) , G̃ = 2gw

k · Σ̂AN
|k|Tref

f eq(k) . (D.6b)

with Fij from eq. (3.6b) where Ωij is replaced by Ω̃ij . These can be plugged in into eq. (3.13)

with the source term (C.8), where summation over positive and negative k0 yields

exp

(
iπ

3
sign(M2

ii −M2
jj)

)
− exp

(
− iπ

3
sign(M2

ii −M2
jj)

)
= i
√

3 sign(M2
ii −M2

jj) , (D.7)

while the integration over z remains unchanged, so that the active charge is given by

∆̃sat
a

s
=

20igw
g?

3
2
3 Γ(1

6)

π
3
2a

13/3
R

∑
i,j,c

i 6=j

Y †aiYicY
†
cjYjb

sign(M2
ii −M2

jj)

|M2
ii −M2

jj |
2
3

× I (D.8)

with a function that carries all momentum information

I =

∫
d3k

(2π)3
|k|−

4
3

(k · Σ̂AN )2|k0=|k|

e|k|/aR + 1
. (D.9)

Solving this integral exactly is beyond the scope of this paper since k · Σ̂AN has a

non-trivial momentum structure [98]. Nevertheless, we can use the momentum aver-

aged replacement (B.48), which leaves us with a momentum integral that can easily be

solved analytically:∫
d3k

(2π)3
|k|

2
3

1

e|k|/aR + 1
=

1

2π2
a

11
3

R

(
1− 2−

8
3

)
Γ

(
11

3

)
ζ

(
11

3

)
. (D.10)
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Thus, the total active charge produced in the weak washout regime, before the washout

kicks in, is given by

∆̃ sat
a

s
=

i

g
5
3
?

325
5
3 (2− 2−

5
3 )Γ(1

6)Γ(11
3 )ζ(11

3 )

2
10
3 π

11
2

∑
i,j,c

i 6=j

Y †aiYicY
†
cjYjb

sign(M2
ii −M2

jj)

(
m2

Pl

|M2
ii −M2

jj |

) 2
3 γ2

av

gw

≈ −
∑
i,j,c

i 6=j

Im[Y †aiYicY
†
cjYja]

sign(M2
ii −M2

jj)

(
m2

Pl

|M2
ii −M2

jj |

) 2
3

× 4.18284× 10−4 γ
2
av

gw
. (D.11)

Comparing with eq. (3.18), we see that momentum averaging the vacuum oscillation

term yields an error of about 23%:

∆̃ sat
a ≈ 1.23×∆sat

a , (D.12)

whereas we expect the error in eq. (D.9) of to be of order one [98] and hence sufficient

our purposes.

D.3 Sterile charges in the oscillatory regime

In section 3 we have pointed out that up to order |Y ∗Y t|2 no sterile charge qN is generated

by the off-diagonal oscillations. We will show in the following that this is true to all

orders for ns = 2 sterile flavours, whereas this is not true for ns ≥ 3 since a non-vanishing

contribution appears at O(|Y ∗Y t|3). In order to do so, we introduce a function

Tij = Re[Y ∗Y t]ijδn
odd
ji − iIm[Y ∗Y t]ijδn

even
ji , (D.13)

for i 6= j. Its derivative with respect to z reads

d

dz
Tij = Re[Y ∗Y t]ij

d

dz
δnodd

ji − iIm[Y ∗Y t]ij
d

dz
δneven

ji . (D.14)

The deviations δneven
ji and δnodd

ji are determined by solving eq. (3.1) for non-diagonal com-

ponents (i 6= j). In case of ns = 2 flavours, one can express the anticommutators as

{Re[Y ∗Y t], δn}ij = (Re[Y ∗Y t]ii + Re[Y ∗Y t]jj)δnij + Re[Y ∗Y t]ij(δnii + δnjj) , (D.15a)

{Im[Y ∗Y t], δn}ij = Im[Y ∗Y t]ij(δnii + δnjj) , (D.15b)

since the diagonal entries of Y ∗Y t are purely real due to its Hermitian property. After

some calculation we are left with

d

dz
Tij = −iAjiz

2Tij − γav
aR

2Tref
(Re[Y ∗Y t]ii + Re[Y ∗Y t]jj)Tij (D.16)

− γav
aR

2Tref
(δnodd

ii + δnodd
jj )

(
Re[Y ∗Y t]ijRe[Y ∗Y t]ji − Im[Y ∗Y t]ijIm[Y ∗Y t]ji

)
.
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It is easy to see that eq. (3.9) can be expressed in terms of Re[Tij ]

d

dz
nodd
ii = −γinodd

ii − γav
aR

Tref

∑
j

j 6=i

Re[Tij ] . (D.17)

In order to require zero sterile charge, δnodd
ij , δnodd

ii as well as δneven
ij have to vanish for

z → 0 and so does Tij . Thus, eqs. (D.16) and (D.17) can be solved to

Tij(z) = δnodd
ii (z) = 0 , (D.18)

which is true for all z. Additionally, this even results in a condition between neven and nodd:

Re[Y ∗Y t]ijRe[δnodd
ij ] = Im[Y ∗Y t]ijIm[δneven

ij ] , (D.19a)

Re[Y ∗Y t]ijIm[δnodd
ij ] = −Im[Y ∗Y t]ijRe[δneven

ij ] . (D.19b)

Whereas this holds for ns = 2 sterile flavours one can show that for ns ≥ 3, already at

O(|Y ∗Y t|3), there appears a non-vanishing contribution to Fi. For that, we solve eq. (3.1)

for off-diagonal δnij recursively to O(|Y ∗Y t|2) by using solutions for δn at O(|Y ∗Y t|). This

result can be used as an input for Fi in eq. (3.9), such that for ns = 3, we have:

Fi(z)=
γ3

ava
2
R

2T 3
ref

∑
j

|εijk|YijkIm[F̃jik(z)]+O(|Y ∗Y t|4), (D.20a)

Yijk=Re[Y ∗Y t]ijIm
[
(Y ∗Y t)jk(Y

∗Y t)ki
]
+Im[Y ∗Y t]ijRe

[
(Y ∗Y t)jk(Y

∗Y t)ki
]
, (D.20b)

F̃ijk(z)=exp

(
− i

3
Ωijz

3

)
×

z∫
0

dt exp

(
i

3
Ωijt

3

)[
Fkj(t)+Fik(t)

]
, (D.20c)

with |εijk| as the absolute value of the Levi-Civita-Symbol in order to account for (i 6=
j, k 6= i, k 6= j). Thus, as a perturbative expansion in the Yukawa coupling Y , it is justified

to assume zero initial sterile charge qNii after the first oscillations in the oscillatory regime.
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