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1 Introduction

The Standard Model Higgs boson faces a severe naturalness problem since the presence of

heavy states associated to a more fundamental theory would lead to enormous corrections

to its mass, requiring an extreme fine-tuning to explain the observed value. This conun-

drum can be solved if the Higgs boson is not an elementary scalar but a bound state of

some new strong interaction. The lightness of the composite Higgs with respect to the —

as yet unobserved — composite resonances finds a natural explanation if the Higgs is a

pseudo-Nambu-Goldstone boson (pNGB) of an approximate global symmetry of the strong

sector [1, 2]. To avoid the flavour problems of technicolour theories, the mechanism of par-

tial compositeness can be invoked to generate the masses of the SM particles [3]. This

mechanism is closely related to the “geometric” generation of fermion mass hierarchies

from wave function overlaps in models with warped extra dimensions [4–7], and in fact

much of the progress in composite Higgs models in the last decades has been made using

holographic models [8–10]. In these models, the Higgs potential becomes calculable, leading

to additional predictivity. Recently, also four-dimensional models have been constructed

where the Higgs potential is calculable at one-loop level [11–13].1 These models have the

advantage that they are simpler in structure than the 5D theories, but more general, as

1See [14] for an overview of the model landscape and [15] for a comprehensive review of 4D pNGB Higgs

models.
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they need not necessarily be the low-energy limit of a 5D holographic theory. Our aim in

this paper is to study one particular implementation of the 4D pNGB Higgs, taking into

account all relevant experimental constraints.

Direct and indirect constraints on composite pNGB Higgs models have already been

discussed in the literature (for recent analyses see e.g. [16, 17] for electroweak precision

tests, [18–20] for flavour physics, [21–25] for Higgs physics, [23, 26–34] for quark partner

searches, and [27, 35–39] for vector resonance searches). However, a complete and simul-

taneous numerical analysis of all relevant constraints on a particular model is still lacking.

This is due in part to the fact that a mere parameter scan, as is typically done in supersym-

metric extensions of the SM, is not feasible since the parameter space does not “factorize”

into Standard Model (SM) and new physics (NP) parameters; due to partial compositeness,

the masses of SM particles and the angles and phase of the Cabibbo-Kobayashi-Maskawa

(CKM) matrix are non-trivial functions of many model parameters. As a consequence, find-

ing viable parameter points from a random set of model parameters becomes untractable.

This problem becomes even more severe once the Higgs potential is taken into account, as

the Higgs mass and VEV often arise from an interplay between gauge and fermion loops

which again depends on many parameters. For these reasons, numerical analyses of com-

posite Higgs models often have to rely on simplifying assumptions, e.g. only considering

third generation fermions and their partners — which does not allow including flavour con-

straints, for instance. Full numerical studies of indirect constraints have been performed in

warped extra dimensional models (without a pNGB Higgs) by making use of approximate

analytical expressions for the SM parameters [40–45], but this only works for particular

representations of the additional fermions.2 We have overcome these problems by gener-

alising a numerical method first proposed in [46] and with the help of a high-performance

computing cluster. This allows us for the first time to scrutinize one specific model taking

into account all relevant experimental constraints and to identify novel correlations.

In selecting a model to analyze in detail, our focus has been to maximize naturalness

and predictivity, but to be as economic as possible concerning both particle content and

number of parameters. The model should thus fulfill the following requirements.

• The symmetry breaking coset should contain custodial symmetry to avoid exces-

sive contributions to the T parameter, but no extra Higgs states. This singles out

SO(5)/SO(4).

• The ZbLb̄L coupling should be custodially protected from tree-level corrections. This

leaves two possible choices of quark partner representations under the SO(4) sym-

metry [47]. We choose the one where all quark partners can be embedded in two

fundamental representations, as in the MCHM5 [48].

• The Higgs potential should be calculable. This can be achieved by imposing the

Weinberg sum rules [13, 49]. These are automatically fulfilled in deconstructed models

2Namely if the left-handed elementary quark doublet mixes with a single composite SU(2)L doublet,

unlike in the model to be studied below.
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like the 4DCHM [11] or the DCHM [12]. We choose the 4DCHM, because it features

a finite one-loop effective potential already for two sites.3

• The contribution to ∆F = 2 observables, i.e. meson-antimeson mixing, should be

suppressed compared to the naive anarchic expectation to avoid the εK problem [21,

41, 44]. Several mechanisms have been proposed to address this problem (apart from

invoking accidental cancellations). We focus on the assumption that the compos-

ite sector is exactly invariant under a large flavour symmetry which is only broken

minimally (i.e. by the amount required to reproduce CKM mixing) by the composite-

elementary mixings.4 This arguably corresponds to one of the strongest assumptions

one can make on the flavour structure of partial compositeness, which is why we view

it as a natural starting point in the search for a model that passes precision tests,

but is natural in the electroweak sense.

In summary, we focus on the two-site 4DCHM with quark partners in two fundamentals

of SO(5), which we will call M4DCHM5 in the remainder of the paper. For the flavour

structure of this model, we will consider the four different possibilities studied qualitatively

already in [18]: an effective U(3)3 [59–61] or U(2)3 [18, 61] flavour symmetry with flavour-

invariant composite-elementary mixings either for left- or right-handed quarks in both

cases, dubbed left- or right-compositeness, respectively.

We stress that, while we aim to include as many experimental constraints as possible,

our analysis is on a conceptually different level compared to analyses of weakly-coupled

renormalizable extensions of the SM, e.g. the MSSM. This is because the models we are

studying are non-renormalizable with a cutoff in the few-TeV region and contain a sector

with strong couplings. Consequently, the models are not only less ambitious, but also less

predictive since contributions from cutoff-scale operators or strong interaction effects could

potentially spoil the picture obtained from naive computations in the two-site picture.

Nevertheless, for the observables we are considering, the calculable effects often already

lead to stringent experimental constraints and we find it unlikely that cutoff-scale physics

comes to the rescue by cancelling these effects. It should however be kept in mind that

many of the predictions are afflicted with considerable theoretical uncertainties.

2 Model setup

In this section, we briefly review the M4DCHM and its Lagrangian. For details, the reader

is referred to the original publication [11]. The relation to similar models is discussed

in [13].

2.1 Bosonic part

The M4DCHM can be understood as a deconstructed description of an extra-dimensional

Gauge-Higgs-Unification model with a bulk gauge group SO(5) that is broken down by

3In the two-site DCHM, a logarithmic divergence spoils the predictivity for the Higgs VEV, but the

Higgs mass can still be computed [50].
4For alternative mechanisms, see [51–58] .

– 3 –



J
H
E
P
0
1
(
2
0
1
6
)
1
1
9

boundary conditions on the branes to SO(4) and the SM gauge group. To make the model

phenomenologically viable, the symmetries are enlarged to include a bulk colour sector

and an additional U(1)X to match the hypercharge assignments of the SM. So, from a 4D

point of view, there is a strongly interacting composite sector subject to a global symmetry

breaking pattern5 (SU(3)c×SO(5)×U(1)X)/(SU(3)c×SO(4)×U(1)X) and an elementary

SM-like sector with gauge group SU(3)0 × SU(2)0 ×U(1)0.

In the two-site model one considers only one level of heavy resonances, thus the spec-

trum contains resonances ρAµ for the SO(5) as well as heavy gluons and a heavy ρXµ. These

resonances mix with their elementary counterparts such that the diagonal group becomes

the remaining SM gauge group and hypercharge is given as6

Y = T3R +X. (2.1)

The bosonic sector of the theory contains the gauge part as well as the sigma model

describing the global symmetry breaking,

Lbosonic = Lgauge + Lσ. (2.2)

The gauge Lagrangian,

Lgauge = −1

4
tr
[
G0

µνG
0µν
]
− 1

4
tr
[
W 0

µνW
0µν
]
− 1

4
B0

µνB
0µν (elementary)

− 1

4
tr
[
ρGµνρG

µν
]
− 1

4
tr [ρµνρ

µν ]− 1

4
ρXµνρX

µν (composite)

+
f2
G

4

(
g03G

0
µ − gG ρGµ

)2
+
f2
X

4

(
g0
′B0

µ − gXρXµ
)2
, (mixing) (2.3)

contains the usual kinetic terms for the elementary SU(3)0 × SU(2)0 ×U(1)0 gauge fields,

where

W 0
µ = W 0aL

µ TaL , (2.4)

as well as kinetic terms for the gluon-, SO(5)- and U(1)X -resonances. For the ρµ resonances

it will be useful to group them into SU(2)L, SU(2)R and coset components (following [13],

the latter we will call “axial resonances” in the following),

ρµ = ρAµ TA = ρL
aL
µ TaL + ρR

aR
µ TaR + aâµ T

â. (2.5)

We also introduce explicit mixing terms between the SU(3)- and U(1)-resonances with their

elementary counterparts, which are characterized by the scales fG and fX .

The sigma model Lagrangian

Lσ =
f2

1

4
tr
[
(DµΩ1)† (DµΩ1)

]
+
f2

2

2

[
(DµΩ2)t (DµΩ2)

]
55

(2.6)

5The M4DCHM also contains an additional symmetry breaking (SO(5)L×SO(5)R)/SO(5)L+R to account

for the presence of heavy resonances.
6See appendix A for our convention for the SO(5) generators.
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contains covariant derivatives acting on the sigma model fields Ω1 and Ω2, which are

given as

DµΩ1 = ∂µΩ1 − i
(
g0W

0
µ + g0

′B0
µ T

3R
)

Ω1 + i gρ Ω1 ρµ, (2.7)

DµΩ2 = ∂µΩ2 − i gρ ρµ Ω2. (2.8)

Note that the sigma model fields are uncharged under the global U(1)X symmetry (and,

of course, they do not carry colour charges).

We adopt the so-called holographic gauge for the sigma model fields, which is inspired

by a convenient gauge chosen in the corresponding 5D gauge theory,

Ω1(x) = U = exp

[
i

√
2

f1
σâ(x)Tâ

]
, Ω2(x) = 15. (2.9)

There is also the SM gauge freedom that has to be fixed. Here we adopt the SM

unitary gauge, such that σâ(x) = (0, 0, 0, h(x)). In this gauge the Goldstone matrix takes

the form

U := exp

[
i

√
2

f1
σâ(x)Tâ

]
=



1

1

1

cos
(
h(x)
f1

)
sin
(
h(x)
f1

)
− sin

(
h(x)
f1

)
cos
(
h(x)
f1

)


. (2.10)

Writing the Lagrangian as above in holographic gauge leads to a mixing term of

the form
1√
2
gρ f1 aµ4 ∂µh. (2.11)

One can get rid of this term by a field redefinition,

aµ4 → aµ4 −
√

2

gρ

f

f2
2

∂µh , h→ f1

f
h , (2.12)

where f is given by f−2 := f−2
1 +f−2

2 . By this transformation the mixing term vanishes and

the composite Higgs kinetic term is canonically normalized. As a result, all dependencies

on the Higgs field are given via

sh = sin

(
h

f

)
. (2.13)

2.2 Fermionic part

For the fermionic part of the model, we distinguish between the quark and the lepton part,

Lfermionic = Lquark + Llepton. (2.14)
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As in the boson sector, the quark Lagrangian contains elementary, composite and mix-

ing parts,

Lquark = iq̄0
L /Dq0

L + iu0
R /Du0

R + id0
R /Dd0

R (elementary)

+ iΨcomp /DΨcomp + iΨ̃comp /DΨ̃comp (composite)

−mU

(
QuQu + SuSu

)
−m

Ũ

(
Q̃uQ̃u + S̃uS̃u

)
− (mYU + YU )SuLS̃uR −mYUQuLQ̃uR + h.c.

+ ∆uL ξuLU (QuR + SuR) + ∆uR ξuRU
(
Q̃uL + S̃uL

)
+ h.c. (mixing)

+ (u↔ d) (2.15)

Here we have two bidoublets, Q and Q̃, and two singlets, S and S̃, for every flavour. For the

kinetic terms we used an SO(5) notation where we combined the singlets and bidoublets

into SO(5) fundamentals: Ψcomp = (Q,S)u,d, Ψ̃comp = (Q̃, S̃)u,d. For these the covariant

derivatives are then defined as

DµΨcomp = (∂µ − igG ρGµ − igρ ρµ − iqX gX ρXµ) Ψcomp (2.16)

and the same for Ψ̃comp. The U(1)X charges are assigned to match the hypercharge of the

SM. Thus, the fundamentals Ψ
(u)
comp and Ψ

(d)
comp have q

(u)
X = 2

3 and q
(d)
X = −1

3 .

The elementary fields are embedded into (incomplete) SO(5) fundamentals via

ξuL =
1√
2


dL
−idL
uL
iuL
0

 , ξuR =


0

0

0

0

uR

 , (2.17)

ξdL =
1√
2


uL
iuL
−dL
idL
0

 , ξdR =


0

0

0

0

dR

 (2.18)

Since we are mainly interested in the interplay between quark flavour measurements

and the Higgs potential, we do not consider effects of partial lepton compositeness in this

work. Indeed, if the compositeness of the left- and right-handed lepton chiralities are

comparable, they are required to be small due to the leptons’ lightness and their impact

on the observables to be considered below is expected to be small. Moreover, flavour-

changing interactions are strongly constrained by negative searches for charged lepton

flavour violating processes. In practice, we simply consider elementary leptons with direct

bilinear couplings to the Higgs field,

Llepton = ilL /DlL + i`R /D`R −
mSM

v
lL ·

(
0

h

)
`R + h.c., (2.19)
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where, just as for the elementary quarks, the covariant derivatives are understood as cou-

plings to the elementary SU(3)0 × SU(2)0 × U(1)0 gauge fields. We note however that

a significant degree of compositeness for some of the leptons could be motivated experi-

mentally, e.g. to reconcile radiative electroweak symmetry breaking (EWSB) with natu-

ralness in the absence of light top partners [62] or to explain the hints for violation of

lepton flavour non-universality in B decays [63]. These effects are beyond the scope of our

present analysis.

Let us note here that many of the above model parameters are correlated if they

originate from an extradimensional gauge theory, e.g. coupling constants are generated by

overlap integrals of Kaluza-Klein mode functions. In our numerical analysis, we will not

impose such relations but instead try to be as general as possible to explore the viability

of purely 4D pNGB Higgs models, regardless of whether a dual 5D description exists.

2.3 Flavour structure

As noted in the introduction, we assume the strong sector to be invariant under a flavour

symmetry, only to be broken by the composite-elementary mixings. We consider four

possibilities (see [18] for a thorough comparison),

• In U(3)3
LC (LC for left-handed compositeness), the strong sector is invariant under a

U(3) symmetry7 that is broken by the right-handed composite-elementary mixings.

• In U(3)3
RC (RC for right-handed compositeness), the strong sector is invariant under

a U(3)×U(3) which is broken by the left-handed composite-elementary mixings.

• The U(2)3
LC and U(2)3

RC models are analogous, but restricted to a smaller symmetry

only acting on the first two generations of composite quarks.

In the U(3)3 models, the matrices in the composite part of the fermion Lagrangian (the 3rd

and 4th lines in (2.15)) are proportional to the identity, while in the U(2)3 models, they

are of the form diag(a, a, b). The main difference is the form of the composite-elementary

mixings. We give their explicit forms in appendix C.

2.4 Higgs potential

The explicit breaking of the global symmetries by the mixings of the composite resonances

with the elementary sector generates an effective potential for the NGB field (to be iden-

tified with the SM Higgs) at the quantum level, so that it acquires a mass and a VEV,

breaking electroweak symmetry. In general, the effective potential is UV-sensitive and not

necessarily calculable. In the M4DCHM it is finite at one loop, making the model predic-

tive under the assumption that higher loop contributions are subleading with respect to

the (calculable) one-loop contribution. We will rely on this assumption in the following.

At one loop, the effective potential is given in terms of all the n-point correlation

functions of the Higgs and therefore contains a gauge as well as a fermion contribution. It

7The cube in U(3)3 refers to the fact that after the breaking, the SM quark sector is approximately

invariant under a U(3)q ×U(3)u ×U(3)d.
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can be calculated by the Coleman-Weinberg formula [64]

Veff(h) =
∑ ci

64π2

(
2 tr

[
M2
i (h)

]
Λ2 − tr

[(
M2
i (h)

)2]
log
[
Λ2
]

+ tr
[(
M2
i (h)

)2
log
[
M2
i (h)

]])
, (2.20)

where M2
i (h) denote the Higgs-dependent mass-(mixing)-matrices8 which we give in ap-

pendix B and

ci =


3 for neutral gauge bosons

6 for charged gauge bosons

−12 for (coloured) Dirac fermions

.

Here we explicitly showed the dependence on the cutoff of the theory. For a non-

renormalizable effective theory these UV dependent terms spoil the predictivity, such that

one has to demand the following relations for ensuring the calculability of the Higgs po-

tential:

tr
[
M2
i (h)

]
− tr

[
M2
i (h = 0)

]
= 0, (2.21)

tr
[
(M2

i (h))2
]
− tr

[
(M2

i (h = 0))2
]

= 0, (2.22)

where it was taken into account that the constant term of the potential is not physical.

These relations are just a reformulation of the Weinberg sum rules of the fermion and

gauge sector that are usually imposed to guarantee a finite potential [13, 49]. For the

quark sector, these relations represent a generalisation of the Weinberg sum rules to the

three family case.

In deconstructed models the Higgs potential is usually protected by the higher di-

mensional gauge symmetry, such that the Weinberg sum rules are automatically satisfied.

This is the case for the M4DCHM as well [11, 13]. Note that in this case also the scale

dependence cancels from the effective potential. Then the expression for the potential

simplifies to

Veff(h) =
∑

all particles

ci
64π2

m4
i (h) log(m2

i (h)), (2.23)

where mi(h) denote the masses in the mass basis, i.e. the singular values of the mass

matrices.

3 Experimental constraints

In this section, we discuss all the experimental constraints that we impose in our analysis.

Since approximate analytical expressions for most of the observables have already been

provided elsewhere (see in particular [18, 19, 46, 57]), we focus on discussing the numerical

computation and on specifying our treatment of theoretical and experimental uncertainties.

Section 3.1 specifies how we compute the masses and couplings of the SM states, including

among others the Higgs mass and VEV as well as the CKM matrix, section 3.2 discusses

8For fermions these are given by M2(h) = M(h)†M(h).
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fj

�g
(ρ0i )µ

fk
E

= iγµ

(
gLρ0i fjfk

PL + (L→ R)
) fj

�g
Zµ

fk
E

= iγµ

(
gLZfjfkPL + (L→ R)

)

fj

�g
(ρ+i )µ

f ′k

E
= iγµ

(
gL
ρ±i fjf

′
k

PL + (L→ R)
) fj

�g
(W+

i )µ

f ′k

E
= iγµ

(
gLWfjf ′k

PL + (L→ R)
)

fαj

�g
(ρG)aµ

fβk

E
= iγµT

a
αβ

(
gLρGfjfkPL + (L→ R)

)

Figure 1. Notation for Feynman rules used in this work.

indirect constraints, including electroweak precision observables and flavour physics, while

section 3.3 deals with the direct bounds on fermion and vector resonances.

Since the numerical computation of the observables involves masses and couplings in

the mass eigenstate basis (mb), we fix our notation for the couplings by specifying the

Feynman rules in figure 1. In the gauge basis (gb) the Lagrangian contains non-diagonal

mass matrices for vector bosons and fermions as well as interaction terms connecting both

kinds of fields, which are (schematically) given as follows

L ⊃ [Mg]ij Aµ iA
µ
j − [Mψ]ij ΨiΨj + [ggb]ijk ΨiγµΨj A

µ
k . (3.1)

After EWSB one can go to the mass basis by unitary transformations,

Ψ
(gb)
L,R i =

[
V

(L,R)
ψ

]
ij

Ψ
(mb)
L,R i, A

(gb)
µ i = [Vg]ij A

(mb)
µ i , (3.2)

such that the couplings as defined in figure 1 can be calculated as[
g(mb)

]
abc

= [V †ψ ]ai [Vψ]jb [Vg]kc

[
g(gb)

]
ijk
. (3.3)

3.1 Standard model masses and couplings

3.1.1 Higgs VEV and masses of SM states

The tree-level masses for fermions and gauge bosons are obtained by diagonalizing the mass

matrices given in appendix B after EWSB. Since the interaction terms of the Goldstone

bosons generate mixing terms between elementary fields and the composite resonances,

all masses of fields with SM-like quantum numbers will depend on the VEV taken by

the pNGB, i.e. they depend on s∗h = sin(〈h〉 /f). In the model used in this work this

quantity is not a free parameter, but it is calculable as the minimum of the loop-generated

effective potential.
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In practice, we calculate the sh-dependent masses of all particles and use (2.23) to

calculate the effective Higgs potential. Then, the correct value of s∗h is obtained by nu-

merically minimizing the potential. We also explicitly demand that the found minimum is

non-trivial, otherwise we discard the parameter point.

The value of s∗h is fixed in our numerical analysis by imposing the tree-level value of

the Fermi constant in muon decay as a constraint,

Gtree
µ =

1√
2v2

SM

=
1√

2(s∗h)2f2
, (3.4)

which is valid up to negligible vector resonance exchange contributions. Since we only

include the tree-level Gµ, we add a relative theoretical uncertainty of 1%. Loop corrections

to Gµ are effectively included in terms of the T parameter, see section 3.2.1.

Once s∗h is known, the Higgs mass can be calculated as the curvature of the effective

potential at its minimum,

m2
h = ∂2

hVeff(h)
∣∣
h=〈h〉 =

1− s2
h

f2
∂2
sh
Veff(sh)

∣∣
sh=s∗h

. (3.5)

For the W , Z, and top masses, we directly interpret the masses obtained from diago-

nalizing the mass matrices as MS running masses at the scale mt. We add a relative theory

uncertainty of 5% to account for this crude assumption. In principle, we could compute the

one-loop matching corrections to the masses to get a more reliable estimate. In practice,

this is not feasible because the composite-elementary mixing means that the numerical

computation of a large self-energy matrix, e.g. 27× 27 in the case of the top quark, would

be necessary which quickly leads to excessive computing times.

For the light quark masses, we also interpret the tree-level masses as MS running

masses at mt; then we use RunDec [65] to run them to the relevant scales where they can

be compared to the PDG averages [66].

3.1.2 CKM matrix

In the SM, CKM elements are determined from a global fit to weak decays mediated by

tree-level W exchange as well as loop-induced meson-antimeson mixing observables. In the

presence of NP, the latter are susceptible to NP contributions as will be discussed below

in section 3.2.4. But even the tree-level processes receive corrections in a composite Higgs

framework that lead to relevant constraints. The reason is that the 3 × 3 quark mixing

matrix is no longer unitary in the presence of composite-elementary mixing, but becomes

part of a larger (27×27) mixing matrix among quarks and quark partners. Deviations from

CKM unitarity, predicted by the SM, can thus be used to constrain quark compositeness.

To compare to the absolute values of CKM elements measured in experiments, one can

define effective CKM elements from ratios of W couplings,

|Vij | =
|gLWuidj

|
|gLW`ν |

. (3.6)

The |Vij | obtained in this way can be directly compared to the elements extracted in

experiments assuming the SM as long as right-handed W couplings and contributions from
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tree-level heavy resonance exchange can be neglected. We do take these two effects into

account in our numerics, although they turn out to be negligible.

In our numerical analysis, we include five CKM elements that are directly measured

in tree-level processes.

• |Vud| from superallowed nuclear beta decays,

• |Vus| from K → π`ν decays,

• |Vub| from inclusive B → Xu`ν and exclusive B → π`ν decays,

• |Vcb| from inclusive B → Xc`ν and exclusive B → D∗`ν decays,

• |Vtb| from the cross-section of t-channel single top production at LHC.

The measured values and references are given in table 1. In the case of |Vub| and |Vcb|, there

are long standing discrepancies between the determinations from inclusive vs. exclusive B

decays. Since these tensions cannot be resolved in our model, we use the PDG prescrip-

tion [66] to rescale the discrepant measurements. We multiply the uncertainties of |Vub| by

a factor of 1.9 compared to the ones given in table 1, and a factor of 2.9 in the case of |Vcb|.
|Vud| and |Vus| are important because in the SM, they are constrained by the unitarity

condition on the first row of the CKM matrix,

1 = |Vud|2 + |Vus|2 + |Vub|2 ≈ |Vud|2 + |Vus|2 , (3.7)

where |Vub| is numerically negligible. The smallness of |Vub| and |Vcb| is also why, in the

SM, |Vtb| ≈ 1 holds up to a permille level correction. Partial compositeness can lead to a

deviation from both relations (see e.g. [16, 18, 60]).

Finally, we also include the CKM angle γ that is measured via the interference of

b → cūs and b → uc̄s amplitudes in B → DK decays. Again in the case where right-

handed W couplings and direct vector resonance contributions can be neglected, γ can be

computed from the tree-level W couplings as

γ = arg

(
−g

L
Wud g

L∗
Wub

gLWcd g
L∗
Wcb

)
. (3.8)

This expression is independent of phase conventions. For the experimental value in ta-

ble 1, we symmetrize the value obtained by the CKMfitter collaboration from a fit to all

experiments.

3.2 Indirect constraints

3.2.1 S and T parameters

By construction, the T parameter does not receive a contribution at tree level in pNGB

models based on the SO(5)/SO(4) coset. At one loop, the dominant contribution typ-

ically comes from fermion loops involving, in particular, the top partners. In addition,

the modification of the gauge boson couplings to the Higgs and the electroweak would-be
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Rb 0.21629(66) [67] |Vud| 0.97417(21) [68]

Rc 0.1721(30) [67] |Vus| 0.2249(8) [69]

Rh 20.804(50) [67] |Vub|ex (3.72± 0.16)× 10−3 [70]

µggWW 0.86± 0.17 [71, 72] |Vub|in (4.33± 0.28)× 10−3 [73]

µggZZ 1.18± 0.39 [71, 72] |Vcb|ex (3.904± 0.075)× 10−2 [74]

µgggg 1.12± 0.22 [71, 72] |Vcb|in (4.221± 0.078)× 10−2 [75]

µgg
τ+τ− 0.97± 0.39 [71, 72] |Vtb| 0.998± 0.041 [76]

∆MK 3.483(6)× 10−15 GeV [66] |εK | 2.228(11)× 10−3 [66]

∆Md 0.510(3) ps−1 [77] SψKS 0.682(19) [77]

∆Ms 17.761(22) ps−1 [77] φs −0.010± 0.039 [78]

S 0.05± 0.11 [79] γ (72.9± 6.7)◦ [80]

T 0.09± 0.13 [79]

Table 1. Values of the experimental constraints used in the numerical analysis. For details and

the treatment of theoretical uncertainties, see main text.

Goldstone bosons leads to an “infrared-log” contribution [81, 82]. Finally, also loops in-

volving the heavy spin-1 resonances can contribute (see [17] for a recent discussion). For

simplicity, in our analysis we restrict ourselves to the fermion contribution, which is finite

and gauge-independent. It can be computed numerically as

αemT =
ΠT
WW

m2
W

− ΠT
ZZ

m2
Z

(3.9)

where the masses are tree-level masses, and

− 16π2ΠT
V V =

∑
fi,fj

H
(
m2
fi
,m2

fj

)(
|gLV fifj |

2 + |gRV fifj |
2
)

+ 4mfimfjB0

(
m2
fi
,m2

fj

)
Re
(
gL∗V fifjg

R
V fifj

)
(3.10)

is the fermion contribution to the transverse part of the vacuum polarization. The sum runs

over all SM fermions and quark resonances. The Passarino-Veltman function is defined as

in [83] and the function H can be found e.g. in [84].

In contrast to T , the S parameter arises already at tree level, effectively leading to a

lower bound on the mass scale of the spin-1 resonances. In models where T = TSM at tree

level, the NP contribution to S can be obtained numerically as

αemS |T=0 =
1

4

(
s2
W − sin2 θeff

)
, (3.11)

where s2
W = 1 −m2

W /m
2
Z and the effective weak mixing angle is defined via the leptonic

forward-backward asymmetry,

x =
gRZee + gLZee
gRZee − gLZee

, sin2 θeff =
1 + x

4
. (3.12)
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Experimentally, a recent global fit of electroweak precision data finds [79]

S = 0.05± 0.11 , T = 0.09± 0.13 , (3.13)

with a correlation coefficient of +0.9. Since we neglect gauge contributions to T and all

loop contributions to S, in our numerical analysis we further assume uncorrelated theory

uncertainties of 0.05 for S and 0.10 for T , which we combine with the correlated exper-

imental uncertainties. The size of these theory uncertainties is chosen to encompass the

typical size of the neglected “IR-log” contributions to S and T .

3.2.2 Z decays

Due to the large degree of compositeness required for the left-handed top quark (and thus

also b quark), the partial width of the Z into b quarks measured at LEP provides a powerful

constraint on models with partial compositeness. While our model features a custodial

protection of this coupling, the observable is still important to constrain the subleading

composite-elementary mixing of the bL. In the flavour-symmetric models, also the partial

widths into lighter quarks lead to constraints. We include the following observables in

our analysis,

Rb =
Γ(Z → bb̄)

Γ(Z → qq̄)
, Rc =

Γ(Z → cc̄)

Γ(Z → qq̄)
, Rh =

Γ(Z → qq̄)

Γ(Z → `¯̀)
, (3.14)

where Γ(Z → qq̄) implies a sum over all quarks but the top. We compute only the tree-

level corrections at zero momentum to these observables (see [16] for a discussion of effects

beyond this limit). We add the higher-order SM contributions (see [85]) numerically to

reproduce the correct SM predictions in the absence of NP contributions. The experimental

measurements are listed in table 1.

A comment is in order on the loop corrections to Z → b̄LbL, which we have not taken

into account. Although corrections are already generated at tree level in the M4DCHM5,

these are suppressed by the custodial protection mechanism, which however is not active at

loop level. In [81, 86, 87] it was shown that in similar models as the ones we are studying,

there is a correlation between fermionic loop corrections to the T parameter and the loop

correction to Z → b̄LbL. For a heavy new physics scale, this can be understood as being due

to renormalization-group mixing of dimension-6 operators invariant under the SM gauge

symmetries. Considering the operators (in the notation of [88] and in the basis where the

down-type quark mass matrix is diagonal)

Q
(1)
φq = (φ†i

←→
D µφ)(q̄3γ

µq3) , Q
(3)
φq = (φ†i

←→
D a

µφ)(q̄3τ
aγµq3) , (3.15)

the correction to the left-handed Z coupling to bottom quarks δgLZbb satisfies

δgLZbb ∝
(
C

(3)
φq + C

(1)
φq

)
. (3.16)

Custodial protection implies C
(1)
φq ≈ −C

(3)
φq up to subleading mixing effects, implying a

vanishing correction δgLZbb at the matching scale. Since the two Wilson coefficients run
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differently [89–91], a non-zero correction is induced at the electroweak scale which is pro-

portional to the matching scale value of C
(3)
φq .9 The quantum corrections leading to this

running induce at the same time a non-zero T parameter which is also proportional to the

matching scale value of C
(3)
φq and thus correlated to δgLZbb. For a positive contribution to

the T parameter, the sign of this correlation leads to a negative contribution to Rb that

is disfavoured by experiment [81, 86, 87]. Thus, parameter points with a large positive

contribution to the T parameter might be excluded by taking into account the one-loop

corrections to δgLZbb. A challenge of taking this loop contribution into account is that it

involves Passarino-Veltman functions at non-zero external momentum with three propaga-

tors. Due to the large number of states in the M4DCHM5, this would significantly increase

computing time, so we are not able to take this effect into account. It should thus be kept

in mind that our results might be optimistic in the sense that we might keep points that

are possibly excluded. A dedicated analysis of the impact of higher order corrections to

δgLZbb would be worthwhile. We also note that the tension between the constraints on the

T parameter and δgLZbb might be relaxed by including an additional level of resonances [87].

3.2.3 Higgs production and decay

We compute the modification of the Higgs partial widths rX = Γ(h→ X)/Γ(h→ X)SM at

tree level for X = WW , ZZ, bb̄, and τ+τ−, and at one-loop level for X = gg and γγ. We

take into account the loop contributions from all SM and heavy fermions and vector bosons.

The signal strength in a particular final state, assuming pure gluon fusion production, can

then be obtained as

µggX =
rX rgg
rtot

, (3.17)

where rtot = Γh/Γ
SM
h is the modification of the total width.

We use ATLAS and CMS measurements to constrain the signal strength. In the case

of ATLAS, the gluon fusion result is given explicitly. In the case of CMS, we use the “0/1

jet” result for WW , ZZ, and τ+τ−, and the “untagged” result for γγ. We naively combine

the ATLAS and CMS results for each final state, using the PDG prescription to enlarge

the error in the case of poor agreement. The resulting constraints are listed in table 1.

We neglect the correlations between individual measurements. Since the h → bb̄ signal

strength is only measured in the case of vector boson associated production, we do not

include it in our numerical analysis.

3.2.4 Meson-antimeson mixing

The meson-antimeson mixing amplitude for the neutral meson M0 (= K0, Bs, Bd, or D0)

can be written as

MM
12 =

1

2mM
〈M̄0|H∆F=2|M0〉 =

(
MM

12

)
SM

+
∑
a

C
qiqj
a (µl)〈M̄0|Qqiqja (µl)|M0〉 (3.18)

9The Wilson coefficient Cφu associated with the Operator Qφu = (φ†i
←→
D µφ)(ū3γ

µu3) that also enters

the RGE induced contributions to δgLZbb vanishes due to custodial protection.
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with q = u or d. The loop-induced SM contribution is discussed e.g. in [92]. The sum

contains NP contributions due to tree-level vector resonance exchange that are encoded in

the Wilson coefficients of the following ∆F = 2 operators.

Q
qiqj
V LL = (q̄iLγ

µqjL)(q̄iLγ
µqjL) , Q

qiqj
V RR = (q̄iRγ

µqjR)(q̄iRγ
µqjR) , (3.19)

Q
qiqj
V LR = (q̄iLγ

µqjL)(q̄iRγ
µqjR) , Q

qiqj
SLR = (q̄iRq

j
L)(q̄iLq

j
R) , (3.20)

that can be written in terms of the Feynman rules defined in figure 1 as

C
qiqj
V LL = −1

2

∑
k

(
gL
ρ0kqiqj

mρ0k

)2

− 1

6

(
gLρGqiqj
mρG

)2

, (3.21)

C
qiqj
V RR = C

qiqj
V LL

∣∣
L→R , (3.22)

C
qiqj
V LR = −

∑
k

gL
ρ0kqiqj

gR
ρ0kqiqj

m2
ρ0k

+
1

6

gLρGqiqjg
R
ρGqiqj

m2
ρG

, (3.23)

C
qiqj
SLR =

gLρGqiqjg
R
ρGqiqj

m2
ρG

. (3.24)

These expressions are valid at the matching scale of NP and SM, while (3.18) depends on

the values at the hadronic scale µl that is chosen conventionally as mb for Bd,s mixing,

3 GeV for D0 mixing, and 2 GeV for K0 mixing. In principle, the correct matching scale

is set by the mass scale of the heavy resonances. However, in our numerical scan, we

often encounter vastly different scales for the different resonances. Consequently, we have

decided to simply match the tree-level Wilson coefficients to the SM at the scale mt and to

neglect the RG evolution above mt. A more complete treatment, including intermediate

thresholds, is beyond the scope of our present work. We note that the RG evolution

typically makes the NP effects larger at low scales. In that sense, our treatment leads to

more conservative bounds. All relevant anomalous dimensions for the evolution below mt

can be found in [93].

The matrix elements in (3.18) depend on meson decay constants and bag parameters,

both of which can be determined from lattice QCD. They can be written as

〈M̄0|Qqiqja (µl)|M0〉 = mMf
2
MBMa (µl) , (3.25)

where

BMV LL = BMVRR =
1

3
BM

1 (µl) , (3.26)

BMV LR = −1

6

(
mM

mqi +mqj

)2

BM
5 (µl) , BMSLR =

1

4

(
mM

mqi +mqj

)2

BM
4 (µl) . (3.27)

For the lattice predictions of the decay constants as well as the bag parameters Bi for Bd
and Bs mixing, we use ref. [69], for the kaon bag parameters we use ref. [94], and for the

charm bag parameters ref. [95].

We use the following observables sensitive to NP in the meson-antimeson mixing

amplitude.
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• The mass differences in the Bd and Bs systems,

∆Md,s = 2|MBd,s
12 | . (3.28)

For the theoretical uncertainties, which are dominated by lattice uncertainties, we

take 10.2% relative uncertainty for ∆Md and 7.6% for ∆Ms. Note that we do not have

to account for uncertainties due to CKM elements as these are allowed to vary in our

scan. We further take these lattice uncertainties to be correlated with a coefficient of

0.17, since the ratio of the relevant lattice parameters is known more precisely than

for the individual systems.

• The mixing-induced CP asymmetry in Bd → J/ψKS ,

SψKS = sin
(

arg
(
MBd

12

))
, (3.29)

which in the SM measures sin 2β. We add a theory uncertainty of 0.01 to account

for possible penguin pollution [96].

• The sine of the Bs mixing phase as obtained from an average of the mixing-induced

CP asymmetries in Bs → J/ψK+K− and Bs → J/ψ π+π− decays,10

sinφs = sin
(

arg
(
MBs

12

))
. (3.30)

In this case, we add a theory uncertainty due to penguin pollution of 0.017 [96].

• The parameter for indirect CP violation in K0 mixing,

|εK | = κε
Im
(
MK0

12

)
√

2∆MK

(3.31)

where the experimental value for ∆MK can be used. For the (non-CKM) theory

uncertainty on |εK |, we take a relative uncertainty of 11%.

• The mass difference in K0 mixing,

∆MK = 2Re
(
MK0

12

)
. (3.32)

The SM contribution to ∆MK is plagued by large uncertainties due to long-distance

contributions. Although first results are available from lattice calculations [99], these

are still for unphysical kinematics. Thus we conservatively allow the NP contribution

to saturate the experimental central value at 1σ (i.e. at 3σ, we allow points where the

NP contribution is three times the experimental central value, implying a necessary

cancellation with the SM contribution).

We do not impose D0 mixing observables as constraints, as they are expected to receive

small NP contributions in models with minimally broken U(2)3 [61], but we will discuss

predictions for them in section 4 below.

10Here we have used the average performed by the LHCb collaboration. Very recently, a measurement

with comparable precision has been presented by CMS [97]. The observable has also been measured by

ATLAS [98].
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3.2.5 Rare B decays

The b → sγ transition arises first at the one-loop level; approximate analytical results

as well as generic formulae that can be used in a numerical analysis have been presented

in [19]. We include the constraint from the B → Xsγ branching ratio, that agrees well

between SM prediction [100] and experimental world average [77],

BR(B → Xsγ)SM = (3.36± 0.23)× 10−4 , (3.33)

BR(B → Xsγ)WA = (3.43± 0.22)× 10−4 . (3.34)

For the NP contribution, we use the following formula (cf. [101]),

BR(B → Xsγ)

BR(B → Xsγ)SM
=

1(
|Ceff

7 (mb)SM|2 +Nγ

) (|Ceff
7 (mb)|2 + |C ′7(mb)|2 +Nγ)

)
, (3.35)

where Nγ = 3.6× 10−3.

The imaginary part of the Wilson coefficients and the relative size of the left- and

right-handed Wilson coefficients can be constrained by other processes, most notably

B → K∗µ+µ− angular observables. We do not impose these additional observables as

constraints, but will discuss predictions for them in section 4.

NP contributions to semi-leptonic FCNC decays of B and K mesons arise already at

tree level, mediated by the Z boson that can obtain flavour-changing couplings to quarks

at tree level as well as by heavy neutral vector resonances (for a thorough discussion of

these effects in composite Higgs models, see [46]. Similar effects are obtained in models

with a warped extra dimension [42, 44]). Writing the four-fermion operators as

Q
didj``
V AB = (d̄jAγ

µdiA)(¯̀
Bγ

µ`B) , (3.36)

with A,B = L,R, the Wilson coefficients are obtained in analogy with section 3.2.4 as

C
didj``
V AB = −

gAZdjdkg
B
Z``

m2
Z

−
∑
i

gA
ρ0i djdk

gB
ρ0i ``

m2
ρ0i

. (3.37)

Here we have explicitly included the Z contribution as it contributes formally at the same

level in v/f as the heavy resonance exchanges. The smallness of the flavour-changing

coupling (which only arises after EWSB and is of order v2/f2) is compensated by the

absence of the suppression by the heavy resonance mass in the propagator.

One can map the coefficients (3.37) onto the traditional operator basis for di → dj`
+`−

transitions as

C
didj
9 = Λ2

ij

(
C
didj``
V LR + C

didj``
V LL

)
, C

didj
10 = Λ2

ij

(
C
didj``
V LR − C

didj``
V LL

)
, (3.38)

C
′ didj
9 = Λ2

ij

(
C
didj``
V RR + C

didj``
V RL

)
, C

′ didj
10 = Λ2

ij

(
C
didj``
V RR − C

didj``
V RL

)
, (3.39)

where

Λ2
ij =

π√
2GFαemVtiV ∗tj

. (3.40)

– 17 –



J
H
E
P
0
1
(
2
0
1
6
)
1
1
9

The primed coefficients are only generated at a very suppressed level in the flavour-

symmetric models we consider. Since we are assuming leptons to be elementary, all Wilson

coefficients are lepton flavour universal. Relaxing this assumption, the recent hint for lepton

flavour non-universality can potentially be explained as well [63], but we are not considering

this possibility here. Since the lepton-Z couplings are SM-like to an excellent precision in

our setup, the Z-mediated contributions fulfill the well-known relation C9 = (4s2
w − 1)C10,

i.e. they mostly contribute to C10.

Concerning the resonance-mediated contributions, as mentioned above, they formally

contribute at the same order in v/f as the Z contributions. Their couplings to elementary

leptons however only arise through mixing of the composite and elementary vectors, so the

resonance-mediated contributions are expected to be parametrically suppressed compared

to the Z-mediated ones by a factor g2
el/g

2
co, where gel,co are generic elementary and compos-

ite gauge couplings. Still, there are parts of parameter space where these contributions can

be relevant. To understand their impact, it is instructive to work in a basis where instead

of the three electrically neutral electroweak resonances ρ0
L, ρ0

R, and ρ0
X , one works with

three linear combinations that, before EWSB, couple to the same quantum numbers as the

Z, the photon, and one which does not couple to the leptons at all. The first two states

are analogous to the KK Z and the KK photon in Randall-Sundrum models (cf. [43, 102]).

This basis is relevant because the “KK Z” contribution leads to C9 = (4s2
w − 1)C10 just as

the Z-mediated one, while the “KK photon” contribution affects only C9 and not C10. In

addition, the part of the “KK Z” contribution that involves the composite-elementary mix-

ings ∆uL is forbidden by the same custodial protection that protects the ZbLb̄L coupling,

while a similar protection is absent for the “KK photon” contribution. This is particularly

relevant in U(3)3
RC, where the correction involving ∆dL is flavour diagonal in the mass

basis [18], cf. (C.4). As a consequence, the Z-mediated as well as the “KK Z” contribution

to the ∆F = 1 operators vanish, while the “KK photon” contribution can be nonzero.

Recently, a number of tensions between measurements and SM expectations have ap-

peared in several observables in rare b→ s decays. This includes in particular

• A suppression of the angular observable P ′5 in B → K∗µ+µ− [103–105];

• A suppression of the branching ratio of Bs → φµ+µ− [105, 106];

• A suppression of RK , the ratio of branching ratios of B+ → K+µ+µ− and B+ →
K+e+e− [107].

While the first two of these anomalies could be due to unexpected hadronic effects (see

e.g. [108, 109]) and the last one due to a statistical fluctuation, all of them could be ex-

plained consistently by a negative NP contribution to the Wilson coefficient Cbs9 (a positive

contribution to Cbs10 is allowed in addition) with muons only [110–115]. In composite Higgs

models, such lepton flavour non-universal contribution was shown by us to arise if muons

carry a significant degree of compositeness [63].11 In the present setup, since we are consid-

ering elementary leptons only, all effects are lepton flavour universal. Although in this case,

11Another possibility is to introduce composite leptoquarks [116].
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the deviation in RK cannot be explained, the overall agreement with the data could still

be significantly improved compared to the SM if there are (lepton flavour universal) NP

contributions in Cbs9 (and possibly Cbs10), which can resolve the tensions in B → K∗µ+µ−

angular observables and various branching ratios and give a good fit to the data [115]. As

discussed above, such contribution can arise from “KK photon”-like resonance exchanges.

In view of these tensions, we do not impose semi-leptonic b → s transitions as con-

straints in our numerical analysis, but rather consider the predictions for them a posteriori.

We do however include the branching ratio of Bs → µ+µ− as a constraint. This

branching ratio, which has reduced theoretical uncertainties compared to the semi-leptonic

decays, was recently observed by LHCb and CMS [117] in agreement with the SM expec-

tation [118],

BR(Bs → µ+µ−)SM = (3.65± 0.23)× 10−9 , (3.41)

BR(Bs → µ+µ−)exp = (2.8+0.7
−0.6)× 10−9 . (3.42)

In the presence of new physics, the branching ratio is modified as

BR(Bs → µ+µ−)

BR(Bs → µ+µ−)SM
=
|Cbs10 − C ′ bs10 |2
|(Cbs10)SM|2

. (3.43)

Again, the imaginary parts and the chirality structure can be constrained by other observ-

ables in exclusive and inclusive semi-leptonic decays.

3.2.6 Contact interactions

Four-quark contact interactions are constrained by measurements of the dijet angular dis-

tribution at LHC. These constraints become relevant when some of the first-generation

quark fields have a significant degree of compositeness. This is unavoidable in the U(3)3

models, but also occurs in part of the parameter space of the U(2)3 models. The relevant

four-quark operators involve only the first generation quarks as the contribution from the

other generations is PDF-suppressed. The Wilson coefficients are computed analogously

to the ∆F = 2 ones in section 3.2.4. Experimental bounds are usually quoted on opera-

tors in an SU(2) × U(1)Y gauge-invariant basis. Using the notation of [119], their Wilson

coefficients can be related to the ones in the low-energy basis as

c(1)
qq = CuuV LL +

1

6
CudduV LL , c(8)

qq = CuuV LL , (3.44)

c(1)
qu = CuuV LR −

1

6
CuuSLR , c(8)

qu = −1

6
CuuSLR , (3.45)

c
(1)
uudd = CuuddV RR +

1

3
CudduV RR , c

(8)
uudd = 2CudduV RR , (3.46)

c(1)
uu = CuuV RR , c

(1)
dd = CddV RR , (3.47)

and with the appropriate replacement u → d for c
(1,8)
qd . In addition to the operators

in (3.19), (3.20) and the ones with d→ u, we have defined

QudduV LL = (ūLγ
µdL)(d̄Lγ

µuL) , QuuddV LL = (ūLγ
µuL)(d̄Lγ

µdL) , (3.48)

as well as L→ R.
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The Wilson coefficients of the four-quark operators in the low-energy basis can be

computed analogously to the ∆F = 2 Wilson coefficients in section 3.2.4. However, an

important difference is that the measurement of the dijet angular distribution at LHC

involves processes at much higher energies compared to meson decays. The EFT approach

is only valid if the exchanged resonances are much heavier than the typical energy scale

of the process in question. In [120], it has been shown that for resonance masses below

about 5 TeV, the contact interaction bounds become much weaker than a naive application

of the EFT would suggest. To account for this fact in an approximate way, we follow

a prescription advocated in this paper and multiply every individual contribution to the

four-quark operators arising from exchange of a resonance with mass mρi by a correction

factor (1 + C2/m2
ρi)
−2, adopting C = 1.3 TeV as a rough estimate based on a numerical

analysis of the full mass dependence in two benchmark scenarios [120].

ATLAS and CMS have presented constraints on contact interactions using the full run-

1 data set. However, the constraints are only quoted for a single operator (in the case of

ATLAS) or for individual operators, but only allowing one at a time (in the case of CMS).

In our case, multiple operators might be present simultaneously, and the operators with

right-handed quarks typically differ for up- and down-type quarks. The full dependence

of the dijet angular distribution on all operators has been discussed in [119] and simple

formulae for the impact of the operators in specific rapidity bins have been presented there

for the 7 TeV LHC. We use these results, updated to the 8 TeV LHC, to obtain the relative

contributions of individual operators to the differential cross section, while we use the

bound on the Wilson coefficient c
(1)
qq quoted by the experimentalists for the normalization.

Details on the procedure are discussed in appendix D.

3.3 Direct searches

In addition to the indirect searches, i.e. precision constraints from flavour, electroweak,

and Higgs physics, composite Higgs models are also subject to increasingly strong direct

constraints from searches for composite resonances at the LHC. Since we are focusing

on a model with a minimal Higgs sector and we are ignoring partial compositeness of

leptons, in our case the relevant searches are the ones for quark partners, to be discussed

in section 3.3.1, and for spin-1 resonances, to be discussed in section 3.3.2.

3.3.1 Quark partners

Pair production of heavy quarks and subsequent decay to SM quarks and weak bosons has

been searched for at Tevatron and LHC. Recently, also final states involving the Higgs have

been included in the searches. In the simplest case where only decays to third generation

quarks and a W , Z or Higgs are allowed, these channels can be combined to obtain stringent

bounds on the masses of vector-like 3rd generation quark partners. In our numerical

analysis, we aim to be more general since in principle, a quark partner can have several

relevant decay modes involving SM or partner quarks, 3rd or light generation quarks. To

this end, we compute the production cross section times branching ratio of each quark

partner in each experimentally relevant decay mode, and compare it directly to the upper

bounds on this quantity provided in the experimental analysis.
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Decay Experiment
√
s [TeV] Luminosity [fb−1] Analysis

Q→ tW CMS 7 5 B2G-12-004 [121]

Q→ jW
ATLAS 7 1.04 EXOT-2011-28 [122]

CDF 1.96 4.6 [123]

Q→ qW CMS 8 19.7 B2G-12-017 [124]

Q→ jZ CDF 1.96 1.055 [125]

U → tZ
CMS 7 5 B2G-12-004 [121]

CMS 7 1.1 EXO-11-005 [126]

D → bH

ATLAS 8 20.3 CONF-2015-012 [127]

CMS 8 19.8 B2G-12-019 [128]

CMS 8 19.5 B2G-13-003 [129]

CMS 8 19.7 B2G-14-001 [130]

D → bZ

CMS 7 5 EXO-11-066 [131]

CMS 8 19.8 B2G-12-019 [128]

CMS 8 19.5 B2G-13-003 [129]

CMS 8 19.6 B2G-12-021 [132]

D → tW

ATLAS 8 20.3 EXOT-2013-16 [133]

CMS 8 19.8 B2G-12-019 [128]

CMS 8 19.5 B2G-13-003 [129]

CDF 1.96 2.7 [134]

Q→ bW

CMS 7 5 EXO-11-050 [135]

CMS 7 5 EXO-11-099 [136]

ATLAS 7 4.7 EXOT-2012-07 [137]

ATLAS 8 20.3 CONF-2015-012 [127]

CMS 8 19.7 B2G-12-017 [124]

Q5/3 → tW

ATLAS 8 20.3 EXOT-2013-16 [133]

ATLAS 8 20.3 EXOT-2014-17 [138]

CMS 8 19.6 B2G-12-012 [139]

U → tH CMS 8 19.7 B2G-12-004 [140]

Table 2. Experimental analyses included in our numerics for heavy quark partner decay. Q stands

for any quark partner where the decay in question is allowed by electric charges, j stands for a light

quark or b jet, and q for a light quark jet.
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For the pair production cross section, we simply take the model-independent NNLO

QCD production cross section for a heavy quark computed in Hathor [141]. This means

we neglect

• Single production, that is relevant for quarks that have a significant degree of com-

positeness, and in this case dominates at higher masses [26–30, 142];

• Contributions to the pair production cross section from heavy resonance ex-

change [143, 144].

Taking into account these two effects is beyond the scope of our study, as it cannot be

implemented efficiently in a fast parameter scan. The bounds we obtain should thus be

considered conservative.

Since the experimental analyses typically quote bounds on the pair production cross

section assuming a 100% branching ratio to the desired final state, we correct for the

branching ratio BR(Q → f) of the quark partner to final state f by multiplying the

production cross section with

• BR(Q→ f)2 in case the experimental analysis requires both partners to decay to f ;

• (1− (1− BR(Q→ f))2) in case the experimental analysis requires one or both of the

partners to decay to f .

In the M4DCHM5, there are in total 24 heavy charge-2/3 quarks (denoted with U in

the following), 24 charge-(−1/3) quarks (D), as well as 6 exotic charge-5/3 quarks (Q5/3)

and 6 charge-(−4/3) quarks (Q−4/3). The decay modes always involve one SM quark or

quark resonance plus one W , Z, Higgs, or vector resonance. In our numerical analysis, we

can only impose constraints on decays involving SM particles only. This is not a strong

restriction since the lightest quark partners are always required to decay to SM states for

kinematic reasons. In table 2, we list all the experimental searches that we include in our

numerical analysis for the individual decay modes. In this table, Q stands for any quark

partner where the decay in question is allowed by electric charges, j stands for a light

quark or b jet, and q for a light quark jet. Note that there are no dedicated searches for

the Q−4/3, but searches of the type Q→ (bW, jW, qW ) are also sensitive to these states.

An important point concerning the experimental coverage of parameter space is that

the experiments typically employ a hard pT cut to reduce backgrounds. This maximizes

the sensitivity to heavy states, but misses out on the low end of the mass spectrum. In

fact, combining all existing analyses in table 2, we have identified a number of gaps in the

coverage of quark partner masses. This is illustrated by the plots in figure 2. They show

the 95% C.L. upper bound on the branching ratio in the decay modes to W or Z bosons

as a function of the quark partner mass. We make the following observations.

• When kinematically allowed, there is a gap between the LEP bound of 100 GeV and

the lower end of the Tevatron bounds. This should however not be taken seriously as

quark partners with mass comparable to the top quark would very likely have shown

up already.
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Figure 2. Upper bounds on the branching ratios of quark partners decaying to SM states from

individual Tevatron and LHC searches. QCD pair production is assumed. Q stands for any quark

partner where the decay is allowed by the electric charges. q stands for a light quark (excluding

the b).
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• More seriously, there are gaps between the upper end of the Tevatron exclusions and

the lower end of the LHC exclusions. This leaves a window between about 300 and

350–500 GeV not covered by existing searches.12 The only exception is the mode

U → tZ, but quark partners around 300 GeV would have a very small phase space

to decay to tZ, making it plausible that the branching ratio is smaller than in the

other channels.

• Bounds on light quark partners are weak, with no existing LHC search for the decay

mode involving the Z boson. This is problematic since, depending on their quantum

numbers, some of the light generation partners have very small branching ratio into

qW as will be demonstrated in section 4.5.1 below.

Concerning the gaps mentioned in the second item, they could very likely be closed by

a reanalysis of existing run-1 data (this is also indicated by recasting of some existing

new physics searches, see e.g. [145]). We call upon the experimental collaborations to

perform such a reanalysis, given the importance of the partner mass scale for naturalness

and radiative electroweak symmetry breaking in the models at hand. In our numerical

analysis, in order not to be biased by these low-mass regions for quark partners, we have

imposed a hard lower bound of 500 GeV on all quark partner masses, in addition to the

LHC 7 and 8 TeV searches that are sensitive to higher masses (while the Tevatron searches

become irrelevant).

3.3.2 Spin-1 partners

Spin-1 resonances can be pair-produced in a Drell-Yan like process. If narrow enough, they

would show up as a peak in the dilepton, dijet, tt̄, V V , or V h final state, depending on

the branching ratios. In the models considered by us, the spin-1 and spin-1/2 resonances

are strongly coupled to each other. Consequently, if the decay to two fermion resonances

is kinematically allowed, the resonances become very broad and are not captured by the

experimental analyses anymore.13 Still, we expect that they are sufficiently narrow in part

of the parameter space, so we include the experimental constraints.

The hadronic production cross section of a spin-1 resonance can be written as

σ(pp→ ρ+X) =
∑
q1q2

Γ(ρ→ q1q̄2)

smρ

4π2

3
Lq1q̄2cρ , (3.49)

where q1,2 = u or d, cρ is the colour multiplicity of the resonance (cρ = 1 for electroweak

resonances and cρ = 8 for ρG), s is the hadronic center-of-mass energy squared and Li1i2
is the parton-parton luminosity of the relevant initial state defined as

Lq1q̄2(s, ŝ) =

∫ 1

ŝ/s

dx

x
fq1(x, µ)fq̄2

(
ŝ

xs
, µ

)
. (3.50)

For the Tevatron, (3.49) is valid with the appropriate replacements.

12The presence of a gap between Tevatron and LHC 7 TeV searches has already been noticed in [23].
13They would however still constitute a contribution to the pair production cross section of the fermion

resonances, see the comment in section 3.3.1.
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Decay Experiment
√
s [TeV] Lum. [fb−1] Analysis

ρ± → `±ν ATLAS 7 4.7 EXOT-2012-02 [146]

ρ± →W±h
ATLAS 8 20.3 EXOT-2013-23 [147]

CMS 8 19.7 EXO-14-010 [148]

ρ± →W±Z

ATLAS 8 20.3 EXOT-2013-01 [149]

ATLAS 8 20.3 EXOT-2013-07 [150]

ATLAS 8 20.3 EXOT-2013-08 [151]

CMS 8 19.7 EXO-12-024 [152]

ρ± → tb CMS 8 19.5 B2G-12-010 [153]

ρ0 →W+W−
ATLAS 8 20.3 EXOT-2013-01 [149]

CMS 8 19.7 EXO-13-009 [154]

ρ0 → Zh
ATLAS 8 20.3 EXOT-2013-23 [147]

CMS 8 19.7 EXO-13-007 [155]

ρ0 → `+`−
ATLAS 8 20.3 EXOT-2012-23 [156]

CMS 8 20.6 EXO12061 [157]

ρ0/ρG → tt̄
ATLAS 8 20.3 CONF-2015-009 [158]

CMS 8 19.5 B2G-12-008 [159]

Table 3. Experimental analyses included in our numerics for heavy vector resonance decay.

The M4DCHM5 contains 3 charged and 5 neutral electroweak vector resonances, plus

the colour-octet gluon resonance. As in the spin- 1
2 case, we can only impose constraints on

decays to SM states. We include all the analyses listed in table 3. The only relevant final

state that we have not included is the decay to dijets. The reason is that the experimental

bounds on the dijet resonance cross section depend on an acceptance factor that is model

dependent and that is not easy to take into account in a parameter scan.

In our numerical analysis, we employ a cut of 5% on the relative total width Γρ/mρ,

above which all bounds are ignored for an individual resonance. While several of the

analyses are actually sensitive to broader resonances, it is not possible to include this

dependence in a parameter scan. As in the case of fermion resonances, our bounds should

thus be considered as conservative.

3.3.3 LHC excesses

Interestingly, several of the searches for spin-1 resonances we include as constraints contain

an excess of events around 2 TeV. The most significant deviation is in the ATLAS search

for ρ± →WZ, corresponding to a local significance of 3.4σ, but an excess around the same

mass appears also in the corresponding CMS search, and, to a lesser extent, in searches for

WW or Wh final states. This is particularly interesting in the context of composite Higgs
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models as the resonances associated to SU(2)L (denoted ρLµ in the gauge eigenstate basis in

section 2) form a triplet of a charged and a neutral vector that are almost degenerate, have

approximately equal branching ratios to WZ, WW , Wh, and Zh final states, and can have

a production cross section in the right ballpark to explain these excesses [36, 37, 160–164].

4 Numerical analysis and predictions

This section contains the main results of our paper. After describing the numerical analysis

procedure in section 4.1, we will discuss fine-tuning in all models in section 4.2.2, the

numerical results of signals in indirect searches in U(2)3
LC in section 4.3, for indirect searches

in U(2)3
RC and U(3)3

RC in section 4.4, and for direct LHC searches in all models in section 4.5.

4.1 Strategy

4.1.1 Scanning procedure

Our aim is to sample the parameter space of the M4DCHM with four different flavour

structures while satisfying all the experimental constraints discussed in section 3. This

is particularly challenging because partial compositeness implies that all SM masses and

couplings are relatively complicated functions of the model parameters and the additional

requirement of correct radiative EWSB is even harder to control analytically. To cope

with these challenges, we have improved a method first employed in [46]. We construct

a χ2 function depending on all the theoretical predictions for all constraints discussed in

section 3 as well as the corresponding experimental measurements. We then proceed in

four steps.

1. We randomly generate a set of input parameters that only fulfills the most rudi-

mentary consistency conditions (e.g. composite gauge couplings being greater than

1, effective potential possesses a minimum away from zero).

2. We use brute-force numerical minimization (with NLopt [165]) to “burn-in” into a

region of parameter space not too far from viability.

3. We use a Markov Chain Monte Carlo (MCMC, with pypmc [166]) to sample the viable

parameter space.

4. We filter the Markov chains so that only points remain where each individual con-

straint is satisfied at the 3σ level.

After the burn-in phase, the generation of viable parameter points is very efficient, as the

MCMC is adaptive and has an acceptance rate around 23%. The downside of the method is

that adjacent points have high autocorrelation, implying that very long chains are needed

to obtain a reasonable coverage of the parameter space. Furthermore, the parameter space

can contain several disconnected minima. For these reasons, we run a large number of

chains (around 500 for each model) starting at different (random) initial points.

We stress that we do not interpret the outcome of the Markov Chain statistically, in

the sense of a posterior probability distribution for the model parameters. Apart from the

problem of reaching sufficient coverage of the parameter space, this would be problematic

– 26 –



J
H
E
P
0
1
(
2
0
1
6
)
1
1
9

due to dependence on the choice of priors. Instead, we use the MCMC algorithm as

a shortcut to generate a sufficient number of valid points. In our final sample, these

points approximately follow a normal distribution peaked around 30–40, for 48 individual

contributions to the χ2. We also find that model-independently for nearly all points only

≤ 5 individual constraints are violated by more than 2σ at a time. Consequently, the

hard 3σ cut only removes a small fraction of extreme points. The largest deviations are

typically found for mt, BR(B → Xsγ), the inclusive values of Vub and Vcb, and for the

Higgs signal strengths.

4.1.2 Model parameters

Below, we specify the model parameters and any relations we have imposed among them

in our scan.

• f , f1, fX , fG.

We have imposed 1 < f1/f <
√

3, where the lower bound corresponds to a decoupling

of the axial resonances and the upper bound is motivated by the partial unitarization

of Goldstone boson scattering [13]. We have not assumed f1, fX , and fG to be degen-

erate, but we have restricted them to be within a factor of two, i.e. 1
2 ≤ fX,G/f1 ≤ 2,

to prevent the fit from completely decoupling one of the resonances.

• gρ, gX , gG.

We have varied these couplings completely independently, only imposing 1 < gρ,X,G ≤
4π to have a strong but semi-perturbative coupling (in the case of the gluon resonance,

we also imposed gG > gs0). We further imposed f1,X,G gρ,X,G/
√

2 < 4πf , to not have

resonance masses above the (naive) cutoff of the theory.

• g0, g′0, gs0.

These parameters are fixed by the known gauge couplings once the composite gauge

couplings are specified.

• mQ, m
Q̃

, mYQ , mYQ + YQ where Q = U or D, in the case of U(2)3 different for the

first two and the third generation.

In our numerical analysis described above, we have treated the logarithms of these

parameters as scan parameters, in order not to get a bias towards heavier masses.

The only relation (apart from the ones forced by the flavour symmetries) we have

imposed is that all these parameters are < 4πf . Note that this implies that the above

parameters can only take positive values in our scan, but this can always be arranged

by a suitable choice of phases for the fermion fields.

• Quantities parametrizing the composite-elementary mixings, see appendix C for

details.

Again, we have scanned dimensionful parameters logarithmically and require them

to be < 4πf , but otherwise we impose no restrictions (many relations among these

parameters are fixed by the requirement to have the correct quark masses and

CKM mixing).
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With these assumptions, the total number of real parameters or phases is 44 for U(2)3
LC

and U(2)3
RC and 30 for U(3)3

LC and U(3)3
RC. To compare these parameters to the SM,

it should be noted that we do not treat lepton masses as free parameters, have massless

neutrinos and set the QCD θ̄ term to zero, but the Higgs mass and VEV are predictions

rather than inputs.

4.2 General fit results and fine-tuning

4.2.1 Failure of U(3)3LC

In the case of U(3)3
LC, our scans have not been able to find a single viable parameter point,

even for a large number of chains. This is not surprising as already a qualitative analysis

of the relevant constraints on U(3)3
LC [18] has revealed that there are extremely strong

constraints on the model from electroweak precision test and CKM unitarity. It seems to

be impossible to reconcile these constraints with the need for correct radiative EWSB. We

will thus not consider U(3)3
LC any further.

4.2.2 Fine-tuning

Before discussing predictions for physical observables, let us address the degree to which

the viable model points we have found can address the electroweak hierarchy problem. To

this end, we have computed the Barbieri-Giudice fine-tuning measure [167]

∆BG = max
i

∣∣∣∣∂ lnmZ

∂ lnxi

∣∣∣∣ (4.1)

that quantifies the sensitivity of the weak scale to variations in the model parameters

xi. In composite Higgs models, ∆BG can be obtained directly from derivatives of the

potential [168]. Still, given the large parameter space, the computation turns out to be

more time-consuming than for the physical observables, so we have computed ∆BG only

for a subset (2%) of all our points. The results for the three viable models are shown in

figure 3.14 Not surprisingly, the lowest ∆BG is obtained for low f and a sub-percent fine-

tuning is possible in all models as long as f . 1 TeV. This is compatible with earlier analyses

in similar models [168, 169]. The points with the lowest tuning measure, highlighted by

stars in the plot, have

• ∆min
BG = 33 for U(2)3

LC,

• ∆min
BG = 55 for U(2)3

RC,

• ∆min
BG = 73 for U(3)3

RC.

Two comments are in order here. First, we reiterate that we define viability for a point

as fulfilling all individual constraints at 3σ. Since we assume a 5% relative uncertainty on

mt and mh (see section 3.1), the known tendency of the model to have a too heavy Higgs

and a too light top means that the points with lowest tuning typically have the Higgs and

14Note that the individual “speckles” — visible in many of the scatter plots — correspond to different

Markov chains.
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top mass 15% away from their central values. Second, we stress that there are variants of

the model considered by us that have lower fine-tuning since the M4DCHM5 suffers from

a “double tuning” by an accidental enhancement of the Higgs mass due to the structure of

the potential, see [168] for a discussion and alternatives.

To get a better understanding of the tuning in the Higgs potential, we adopted an

expansion of the potential in terms of sh (as also used e.g. in [13]),

Veff ≈ −γ f4 s2
h + β f4 s4

h, (4.2)

where we have explicitly defined the γ and β parameters as dimensionless by factoring out

their typical scale f4 and we have neglected terms of O(s6
h). In this notation, the Goldstone

VEV and the Higgs mass are given as

s∗h =

√
γ

2β
, m2

h = 4γ

(
1− γ

2β

)
f2. (4.3)

The requirement to fulfill EWPT’s (and therefore to have a not too large s∗h) together

with the hierarchy mh � f forces γ to take a rather small value. As already mentioned

in [13, 168], this requires a cancellation between the fermion and gauge contributions to a

large degree.

In our framework, we can extract the γ and β parameters for each contributing field

by simply fitting the numerical values of (2.23) to the parametrization (4.2). We indeed

find that the fit prefers highly correlated gauge and fermion contributions that are large

individually but almost completely compensate each other. We also find large cancella-

tions between the up- and down-quark sector and also between individual contributions in

each sector.

4.3 Left-handed compositeness: indirect searches

As discussed in section 4.2.1, we have not found any viable points for U(3)3
LC. We will thus

restrict ourselves to U(2)3
LC in this section.

4.3.1 Light quark compositeness

Compositeness of the first two generation quarks is mainly constrained by

• First-row CKM unitarity, see section 3.1.2;

• The hadronic Z width, see section 3.2.2;

• The dijet angular distribution at LHC, see section 3.2.6.

The predictions for these quantities are shown in figure 4. The left-hand plot shows the

effective CKM elements |Vus| vs. |Vud| and demonstrates that large deviations from the

SM relation |Vus|2 + |V 2
ud| ≈ 1 (shown as a black line) are possible. The solid gray lines

show the current experimental 2σ bounds. At 3σ, the points stop because of our procedure

described above. On the right, we show the predictions for the hadronic Z width as defined

in (3.14) (the SM central value is shown as a black line) vs. the pp → jj cross section in
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Figure 3. Barbieri-Giudice fine-tuning measure vs. f for the three viable models for a thinned-

out sample of all our viable parameter points. The stars show the points with lowest fine-tuning

measure for each model.
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Figure 4. Observables sensitive to light quark compositeness in U(2)3LC. Left: first-row effective

CKM elements. The black line corresponds to the SM limit of a unitary CKM matrix. Right:

hadronic Z width (normalized to Z → eē) vs. the pp → jj cross section in the rapidity bin

described in appendix D, normalized to the 95% C.L. limit extracted from the ATLAS analysis.

The black line corresponds to the central value of the SM prediction.

the bin described in appendix D, normalized to the 95% C.L. limit extracted from the

ATLAS analysis. This plot shows that sizable effects are possible in these observables as

well, but almost all points lie within the 2σ region for both observables (shown as solid
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gray lines), demonstrating that CKM unitarity is by far the strongest constraint on light

quark compositeness in U(2)3
LC at present.

In these plots (as in almost all the plots of this section), on top of all the viable points in

blue, we show points that have a fine-tuning measure ∆BG < 100 in yellow. The rationale

is to demonstrate in which part of the viable space for the observables in question the

most “natural” parameter points lie. We warn the reader however that these points do not

correspond to all viable points with ∆BG < 100 — as mentioned in section 4.2.2, we have

only computed ∆BG for a subset of the points. One should also keep in mind that, simply

due to their smaller number, these points typically cluster in the region with the highest

point density.

4.3.2 Higgs production and decay

The left-hand plot in figure 5 shows the signal strengths of the Higgs produced in gluon

fusion and decaying to ZZ (which equals the one to WW due to custodial symmetry), γγ,

and bb̄. Most of the points lie on the curves that are expected from analytical considerations

of coupling modifications (see e.g. [170]). This is even true for h→ γγ and gg → h, since in

pNGB Higgs models, the loop contribution of heavy resonances to these processes almost

entirely cancels with the coupling modification of the top quark, leaving the Higgs non-

linearities as the dominant effect [22].

However the plot also shows deviations from these relations. These can be understood

to be caused by light quark compositeness, spoiling the above mentioned cancellation [171].

In this way, the signal strength can be closer to (or further away from) their SM values

than naively expected for small f . Nevertheless, we find this effect to be mild, given the

strong constraints on light quark compositeness discussed in the previous section.15

Concerning the h→ bb̄ signal strength, we note that the figure shows the signal strength

in the case of gluon fusion production, while the experimental bounds are currently based

on the associated production with vector bosons, that we do not include in our analysis.

4.3.3 Oblique parameters

The right-hand plot in figure 5 shows the predictions for the S and T parameters. We

show the region allowed by experiment at 2σ as a gray dashed ellipse, while the gray solid

ellipse takes into account also the additional theory uncertainty discussed in section 3.2.1.

The tree-level contribution to S is strictly positive, while the fermionic loop contribution

to T can have either sign, but is preferred to be positive by experiment for positive val-

ues of S and indeed large positive contributions are possible for our choice of fermion

representations, which is important as it helps to alleviate the bound from S.

4.3.4 Meson-antimeson mixing

Figure 6 shows the predictions for ∆F = 2 observables in U(2)3
LC. In the left-hand column,

we directly show the correlation between observables. In this case, it is important to

15The fact that almost all points lie on the same curve and only a few individual Markov chains have

strayed away from it explains the frayed appearance of the plot.
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Figure 5. Left: Higgs signal strength for gluon fusion production and decay to final states ZZ

(equal to WW by custodial symmetry), γγ, and bb̄ in U(2)3LC. The SM corresponds to µ = 1, shown

as a horizontal line. Right: oblique parameters S and T in U(2)3LC, defined to be 0 in the SM.

notice that the CKM parameters themselves are varied in our fit and are not fixed to

their SM central values (as is often done in parameter scans of, e.g., SUSY models). As

a consequence, any correlations among (tree-level) NP contributions are washed out by

the spread in the allowed values for the CKM parameters. The dashed gray lines in these

plots show the allowed regions with merely the experimental 2σ uncertainties, while the

solid gray contours take into account additionally the (correlated) theory uncertainties at

2σ. As discussed in section 3.2.4, we only need to account for the non-CKM (i.e., lattice)

theory uncertainties, as for a given point, the CKM parameters are predictions.

While these plots are more directly related to the experimental measurements, the

variation of CKM parameters obscures the relation to the NP contributions. This is why in

the right-hand column of figure 6 we show the ratios (or phase differences) of the observables

and the SM W -loop contribution for each parameter point. In this way, the correlations

valid at leading order in the U(2)3 spurion expansion, ∆Md/∆M
SM
d = ∆Ms/∆M

SM
s and

φs − φSM
s = φd − φSM

d (where SψKS = sinφd), shown by solid black lines in the plots,

become apparent. In the bottom right plot, the black line corresponds to the MFV limit of

equal relative modification in the Bd and K0 mixing amplitudes, while no such correlation

is expected in U(2)3. We make the following observations.

• The mass differences in the Bd and Bs systems can receive corrections up to +60%,

but negative NP contributions are disfavoured. This can be understood from the

fact that the tree-level Wilson coefficient of QdibV LL, cf. (3.21), involves the square of

a coupling that carries a small phase.

• The Bs mixing phase can saturate the experimental lower bound, but positive values

for sinφs are only predicted for a small number of points. This is due to the correlation
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Figure 6. ∆F = 2 observables in U(2)3LC.
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with φd and the preference for a negative NP contribution to the latter, that is also

visible in global CKM fits [80, 172, 173].

• Both for the mass differences and for the phases in the Bd and Bs systems, the leading-

order U(2)3 correlations are broken for a significant fraction of the points, seen as a

deviation from the black diagonal lines. This is due to non-negligible contributions

from left-right operators. We have identified two reasons for why these effects are

larger than expected from a general EFT analysis [61].

1. The Wilson coefficients of these operators are RG-enhanced;

2. Due to partial compositeness and the possibility to have a hierarchy even among

the (diagonal) left-handed composite-elementary mixings, the spurion hierar-

chies in the right-handed mixings can be milder than the Yukawa hierarchies,

effectively enhancing subleading terms in the spurion expansion.

A similar effect has already been noted in the context of the MSSM with a U(2)3

symmetry [172] (where it was mostly due to an accidental enhancement of a loop

function) and we find the effect to be even more pronounced in the composite Higgs

case. We stress nevertheless that the majority of parameter points does fulfill the

U(2)3 relations to a good precision, corresponding to a large density of points around

the black lines in the plots.

• The relative modification of εK compared to the SM is always equal16 to or smaller

than the relative modification of ∆Md. This confirms the general expectation for

U(2)3
LC in [18].

So far, we have not discussed D0-D̄0 mixing. On the one hand, the D0 system is

plagued by large theoretical uncertainties due to poorly known long-distance contributions;

on the other, the effects in U(2)3 models are expected to be small on general grounds [61].

To investigate whether this expectation is correct, we have computed the tree-level NP

contribution to the D0 mixing amplitude in U(2)3
LC. Since the SM contribution is expected

to be real to a good accuracy, the most promising NP effect would be a CP violating one.

A global fit to data from the D system [174] allows to directly constrain the absolute value

and the phase of the mixing amplitude. At 2σ, this constrains the imaginary part of the

mixing amplitude to be

− 0.5 ns−1 & ImMD
12 . 1.6 ns−1 . (4.4)

Numerically, we have found that the NP contributions to ImMD
12 are always negative in

U(2)3
LC and can reach at most −0.5 ns−1. We conclude that CP violation in D0 mixing is

currently not a relevant constraint on the model, but future improvements of the bound

by factors of a few would start to cut into its parameter space. We have further found

that the NP contributions to ImMD
12 are strongly anticorrelated with εK : sizable NP

contributions to the former never occur simultaneously with sizable NP contributions to

the latter. However, the NP contributions to both observables can be small simultaneously.

16With a small correction factor stemming from the SM charm contribution.
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4.3.5 Rare B decays

The Wilson coefficient Cbs7 of the electromagnetic dipole operator, cf. section 3.2.5, receives

NP contributions, but only to the extent that is allowed by the strong constraint from the

branching ratio of B → Xsγ. We find these contributions to be aligned in phase with the

SM to a high degree, such that CP violating effects, e.g. in the direct CP asymmetry in

B → K∗γ, are expected to be small. Contributions to the chirality-flipped coefficient C ′bs7

are small by U(2)3 symmetry.

The most interesting effects in rare B decays stem from the tree-level contributions

to the semi-leptonic Wilson coefficients Cbs9 and Cbs10. As discussed in section 3.2.5, there

are Z-mediated and resonance-mediated effects that dominantly contribute to Cbs10, but

also resonance-mediated effects that contribute only to Cbs9 . We remind the reader that in

our numerical analysis, the only observable sensitive to these Wilson coefficients that we

have imposed as a constraint is the branching ratio of Bs → µ+µ−, essentially limiting the

absolute value of Cbs10. All points passing this constraint are shown in the left-hand plot of

figure 7. We observe that large NP effects in Cbs10 — saturating the experimental bound

on Bs → µ+µ− — are possible, but also sizable effects in Cbs9 . Interestingly, the largest

effects allowed in Cbs9 correspond to a negative sign that is preferred by the anomalies in

B → K∗µ+µ− angular observables discussed in section 3.2.5. The gray ellipse in figure 7

left corresponds to the 2σ preferred region in a global fit to b→ sµ+µ− observables [115],

which shows a clear tension with the SM point (0, 0). The figure clearly shows that if

these tensions are due to NP, the M4DCHM5-U(2)3
LC can explain them. This is also

demonstrated by the right-hand plot in figure 7, which shows the predictions for two of

the observables that currently show the biggest tensions with the SM, namely the low-q2

branching ratio of Bs → φµ+µ− and the angular observable P ′5 in B → K∗µ+µ−. In this

plot, the black star shows the central value of the SM predictions (taken from [105, 115]),

the gray dashed line the values allowed at 2σ by experiment, and the gray solid lines the

2σ allowed values taking into account also the theoretical uncertainties.

We have found that all of the points that have Cbs9 . −0.5 — and could thus account

for the tensions in angular observables and branching ratios — correspond to a small value

(between 1 and 2) of the composite coupling gX and a correspondingly small mass (below

1 TeV) of the mass eigenstate that is dominantly the ρX resonance. This can be understood

from the discussion in section 3.2.5: in the limit gX � gρ, the “KK photon”-like state is

dominantly the field ρX . In addition, since gX is not much larger than the elementary gauge

coupling, the parametric suppression of the resonance-mediated contribution is lifted. It is

also important to notice that this linear combination of gauge fields does not contribute to

the S parameter and thus is allowed to be lighter than the other vector resonances. Sizable

contributions to Bs-B̄s mixing are also generated by the exchange of the light resonance,

but we find that the shift in ∆Ms is below 20% relative to the SM. We have also computed

the LHC production cross section and decay branching ratios of the light resonance for the

points with sizable NP effects in C9. For most of the points, the dominant decay mode is

tt̄ and the cross-section is just below the ATLAS and CMS searches for resonances in this

mode that we have imposed as a constraint in our scan (see section 3.3.2). The width of the
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Figure 7. Left: new physics contributions to the Wilson coefficients Cbs
9 and Cbs

10 in U(2)3LC. Right:

predictions for the angular observable P ′5 in B → K∗µ+µ− and the branching ratio of Bs → φµ+µ−,

both in the low-q2 bin from 1 to 6 GeV2. The star corresponds to the central values of the SM

predictions.

resonance is small enough to show up in a “bump hunt”. Prospects for vector resonances

will be discussed in more detail in section 4.5.3 below.

In the left-hand plot of figure 8, we finally show the predictions for the correlation

between the branching ratios of Bs → µ+µ− and Bd → µ+µ−, which is fixed by U(2)3

to be equal relative to the respective SM predictions (but is again slightly washed out by

the variation in CKM elements). The current 3σ upper bound on Bs → µ+µ− can be

saturated, but also a significant suppression can occur. This is in contrast to, e.g., the

Littlest Higgs model with T-parity, where this branching ratio can only be enhanced with

respect to the SM [175].

4.3.6 Top decays

A significant degree of compositeness of the left-handed top quark can lead to a reduction

of the single top production cross section at LHC, corresponding to a reduced value for the

effective CKM element Vtb as discussed in section 3.1.2. In addition, in this case there can

be sizable flavour-changing couplings of the top quark to the Z boson, since the left-handed

couplings are not custodially protected, in contrast to the right-handed ones.

These two effects manifest themselves in a correlation between the deviation of Vtb from

1 and the branching ratio of the FCNC top decay t→ cZ as shown in the right-hand plot

of figure 8. Both effects are quite moderate after imposing all the bounds. The deviation in

Vtb is always within the current 2σ experimental constraint and percent-level experimental

accuracy will be necessary to find a significant deviation. The branching ratio of the FCNC

top decay can reach at most 10−5, which will be challenging to see at the LHC [20, 176].
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Figure 8. Left: predictions for the branching ratios of Bs → µ+µ− and Bd → µ+µ− in U(2)3LC.

Right: predictions for the deviation of the effective CKM element Vtb from 1 vs. the branching ratio

of the FCNC top decay t→ cZ in U(2)3LC.

4.3.7 Other processes

So far, we have not discussed rare K decays. While these processes are important con-

straints on many NP models, we find the effects in U(2)3
LC to be rather small. For instance,

the branching ratios of K+ → π+νν̄ and KL → π0νν̄ are modified by at most ±20% with

respect to the SM (and are perfectly correlated due to U(2)3). The short-distance contri-

bution to the branching ratio of KL → µ+µ− is always below 2× 10−9.

4.4 Right-handed compositeness: indirect searches

In contrast to U(3)3
LC, we do find a viable parameter space for the U(3)3

RC model. Since

U(3)3
RC is a limiting case of the more general U(2)3

RC (the limit in which the composite

sector mass parameters and the right-handed composite-elementary mixings for the first

two and the third generation coincide), it is natural to discuss them together. We will

proceed as in the case of left-handed compositeness in section 4.3.

4.4.1 Light quark compositeness

In the case of right-handed compositeness, it is typically the right-handed light quarks

that can carry a sizable degree of compositeness. Consequently, in contrast to left-handed

compositeness, first-row CKM unitarity does not constitute a relevant constraint and the

main constraint is given by the hadronic Z width and the dijet angular distribution. The

predictions for these quantities are shown in figure 9 that is the analogue of figure 4 right.

We make the following observations.

• In both models, Rh is within the 2σ bounds for almost all the points.
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Figure 9. Hadronic Z width (normalized to Z → eē) vs. the pp→ jj cross section in the rapidity

bin described in the text, normalized to the 95% C.L. limit extracted from the ATLAS analysis.

The black line corresponds to the central value of the SM prediction. Left: U(2)3RC, right: U(3)3RC.

• In both models17, large effects relative to the experimental constraints are obtained

in the dijet angular distribution. This is the strongest bound on light-quark compos-

iteness in the right-handed compositeness models.

• In the case of U(3)3
RC, we see that there is even a lower bound on the modification

of the dijet angular distribution. Improved experimental measurements in the future

could help to disfavour this scenario.

4.4.2 Higgs production and decay

Figure 10 shows the Higgs signal strengths for right-handed compositeness in analogy to

figure 5. As discussed in section 4.3.2, the leading dependence on f is modified by light

quark compositeness, which is more pronounced in U(3)3
RC due to the requirement to have

a large degree of compositeness for all right-handed up-type quarks.

4.4.3 Meson-antimeson mixing

Figure 11 shows the predictions for ∆F = 2 observables in U(2)3
RC, in analogy to figure 6.

We first point out the similar features,

• Sizable enhancements at the level of 60% with respect to the SM are possible in the

Bd and Bs mass differences, but a suppression is strongly disfavoured.

17The alert reader may have noticed that in U(3)3RC, many points saturate the experimental upper bound,

while in U(2)3RC, this does not seem to be the case, even though we have stated that U(3)3RC is a subset of

the U(2)3RC model. The reason is a volume effect in the high-dimensional parameter space: one would need

a huge number of points in the U(2)3RC model to get a reasonable coverage of the subspace corresponding

to U(3)3RC. This effect is visible in many of the plots in this section and justifies the separate analysis of

U(3)3RC.
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Figure 10. Higgs signal strength for gluon fusion production and decay to final states ZZ (equal to

WW by custodial symmetry), γγ, and bb̄ in U(2)3RC (left) and U(3)3RC (right). The SM corresponds

to µ = 1, shown as a horizontal line.

• The leading-order U(2)3 relation between ∆Md and ∆Ms (shown as a black line) is

violated by LR operators.

But there are also important differences between U(2)3
LC and U(2)3

RC.

• There is no new phase in Bd mixing, as was already pointed out in [18].

• In Bs mixing, on the other hand, there can be a new phase roughly at the level of

the current experimental uncertainties. This phase stems from the subleading terms

in the spurion expansion and thus violates the leading order U(2)3 relation (implying

equal phase shifts in Bd and Bs mixing).

• The enhancement of εK relative to the SM is always larger than the one in ∆Md.

This is the opposite of what happened in U(2)3
LC, where the relative enhancement

was always smaller in εK , cf. figure 6 bottom-right. In the future, this could serve as

a way to distinguish the two models based on ∆F = 2 observables alone.

In U(3)3
RC, we only directly show the observables normalized to their SM values in

figure 12. In this case, the MFV relations, shown by black lines, are fulfilled exactly and

there is no new phase, neither in Bd nor in Bs mixing.

Concerning D0-D̄0 mixing, in U(2)3
RC, similarly to U(2)3

LC discussed at the end of

section 4.3.4, the NP effects are quite small and we find that the imaginary part of the

mixing amplitude is always between −0.4 and +0.2 ns−1, which is not relevant at the

current experimental precision, but will become relevant when the experimental bound

improves by an order of magnitude. In U(3)3
RC, there is no new phase and thus no NP

contribution to the imaginary part of the mixing amplitude.
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Figure 11. ∆F = 2 observables in U(2)3RC.
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Figure 12. ∆F = 2 observables in U(3)3RC.
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Figure 13. Left: new physics contributions to the Wilson coefficients Cbs
9 and Cbs

10 in U(2)3RC.

Right: predictions for the branching ratios of Bs → µ+µ− and Bd → µ+µ− in U(2)3RC.

4.4.4 Rare B decays

In U(2)3
RC, similarly to the case of left-handed compositeness discussed in section 4.3.5, the

largest contribution to the Wilson coefficients of the semi-leptonic b→ s`` transition occurs

in the Wilson coefficient Cbs10, but there are also contributions to the Wilson coefficient Cbs9 ,

as shown in figure 13 left. In this case, we only find a small number of points with sizably

negative Cbs9 that populate the region preferred by a global fit to b → s`` data, indicated

by a gray ellipse. These points then predict a significant suppression in absolute value of

the angular observable P ′5 in B → K∗µ+µ− at low q2, see the points around P ′5 ≈ −0.1

in figure 14 left. A distinguishing feature compared to U(2)3
LC is that the contributions to

Cbs10 are almost always positive, implying that the branching ratio of Bs → µ+µ− is almost

always suppressed, as shown in figure 13 right.
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Figure 14. Predictions for the angular observable P ′5 in B → K∗µ+µ− and the branching ratio of

Bs → φµ+µ−, both in the low-q2 bin from 1 to 6 GeV2 in U(2)3RC (left) and U(3)3RC (right). The

star corresponds to the central values of the SM predictions.

In U(3)3
RC, the contributions to Cbs10 are forbidden by an interplay between custodial

protection and the flavour structure as discussed in section 3.2.5. However, the resonance-

mediated contributions to Cbs9 are still present and we find viable points in the range

−1.7 . Cbs9 . 0.9. Consequently, also U(3)3
RC can explain the anomalies in b → s``

angular observables and branching ratios. For the observable P ′5 and the branching ratio

of Bs → φµ+µ−, this is illustrated in figure 14 right. Finally, we remind the reader again

the U(3)3
RC is actually a limiting subset of U(2)3

RC, so the fact that in U(3)3
RC there are

much more points with sizable NP effects in Cbs9 compared to U(2)3
RC is simply a statistical

effect since the U(3)3
RC parameter space is more restricted.

As in U(2)3
LC discussed in section 4.3.5, the solution of the B physics anomalies by

a negative NP contribution to Cbs9 implies the presence of a light, narrow neutral vector

resonance below about 1 TeV. In U(2)3
RC, the dominant decay mode of this resonance is tt̄

or two light quark jets, while in U(3)3
RC the dominant decay mode is always dijets.

4.4.5 Other processes

We have not discussed the oblique parameters as the predictions in both models with right-

handed compositeness are analogous to the effects in U(2)3
LC shown in figure 5 right, so the

same comments as in section 4.3.3 apply.

In rare K decays, the effects both in U(2)3
RC and in U(3)3

RC are even smaller than in

U(2)3
LC discussed in section 4.3.7.

In contrast to left-handed compositeness, the branching ratio of the FCNC top decay

t→ cZ is always below 10−6 in U(2)3
RC and even below 10−8 in U(3)3

RC and thus negligible.

4.5 Direct searches in left- and right-handed compositeness

4.5.1 Prospects for quark partner searches

The direct bounds on quark partner masses discussed in section 3.3.1 are among the most

important constraints in our analysis. It is thus clear that future searches for quark partners
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will be instrumental in probing these models. Since in our numerical analysis, the lightest

vector resonances are always found to be heavier than the lightest quark partners, which is

due to electroweak precision tests and the other indirect bounds discussed in section 3.2, the

lightest quark partners always decay to SM states. To judge which of the search channels

will be most promising at run 2 of the LHC, let us first discuss the dominant decay modes

of the lightest resonances.

Exotic charge quarks. The charge-5/3 and charge-(−4/3) quarks always decay to a W

boson and a SM quark or quark resonance. In U(2)3
LC, we find that there is a significant

number of points where the Q5/3 can decay to both Wt and Wq (q = u, c) with significant

branching ratio, and similarly for the Q−4/3 decaying into final states with bottoms vs.

light quarks. In the right-handed compositeness models, we find in contrast that for any

given exotic quark partner, only the decay to 3rd generation or the one to light quarks is

relevant. This can be understood from the fact that the decay of the exotic charge quarks

always involves right-handed composite-elementary mixings, and these are flavour-diagonal

in right-handed compositeness, but involve flavour mixing in left-handed compositeness. In

figure 15, we show the predictions for the branching ratios as a function of the mass for

the exotic charged quark partners for a subset of all viable points in all three models.

An interesting feature of these plots is that there is a significant number of points with

branching ratios different from zero or one in a given channel. Apart from flavour mixing,

this is due to the competition with decays involving a fermion resonance in the final state.

For heavier masses, the branching ratios into SM-only states decrease, as can be seen from

the plots as well.

Up- and down-type quark partners. When decaying to SM states, these quark part-

ners can decay to a W , Z, or h plus a SM quark. In figures 16 and 17, we show predictions

for the masses and branching ratios in the most important channels for quark partners in

the three viable models.

In summary, the plots show that searches for pair-produced quark partners, both with

exotic and with SM-like charges, are very promising, with masses and branching ratios just

above what LHC has excluded in run 1 being viable in all models.

4.5.2 LHC excesses

As discussed in section 3.3.3, several excesses with significances up to around 3σ have been

observed by ATLAS and CMS in resonance searches in Wh, WZ, and WW final states

around a resonance mass of 2 TeV. To investigate whether the models studied by us could

account for these anomalies, we have computed the production cross sections of charged

and neutral electroweak vector resonances times the branching ratios to the relevant final

states. In figures 18 and 19, we show these predictions in the relevant mass region for

all three viable models, compared to the expected (dashed) and observed (solid) limits in

some of the relevant ATLAS and CMS searches (for a total list of searches included, see

section 3.3.2). In these plots, to be conservative we only show points where the decaying

resonance has a narrow width, namely Γ/m < 0.05, because, as discussed in section 3.3.2,

we have not imposed any LHC constraints on broader resonances. We note however that
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Figure 15. Branching ratios of charge-(−4/3) (first row) and charge-5/3 (second row) quarks to

light (left) and third-generation (right) quarks as function of their mass for all three models. The

coloured regions are the same as in figure 2.

there are a significant number of more points in the same region where the width is slightly

larger than 5%. But even with this strong condition, we do find points in all three models

where there are resonances with mass around 2 TeV and with cross sections of the order

of 5 fb in the case of ρ± → W±h and ρ± → W±Z0, which is the right ballpark to explain

the excesses (see e.g. [160–164]). In the case of ρ0 → W±W∓, the predicted cross section

is roughly a factor of two smaller due to the PDF suppression, but this agrees at least

qualitatively with the less pronounced excess in the CMS analysis, as seen in the upper

plot of figure 19.

Interestingly, a slight excess around 2 TeV has also been observed in a CMS dilepton

resonance search [157]. Our predictions for this channel are shown in the lower plot of fig-

ure 19. Also here, we find a significant number of points with cross section times branching

ratio of the order of 0.1 fb, which could account for this excess. Also in this plot, we are

only showing resonances with a narrow width. This is also why there are few points in

the region of interest for the U(3)3
RC model. In this model, the electroweak resonances are

typically broader than 5% due to the stronger coupling to light quarks compared to the

U(2)3 models.18

Given figures 18 and 19, the question arises whether the points explaining the excesses

in the individual plots are actually the same points, i.e. the question whether the models can

explain all excesses simultaneously. For the final states involving bosons, this is obviously

18This does not mean that this model cannot explain the excesses, but a detailed analysis of the impact

of broad resonances is beyond the scope of our study.
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Figure 16. Branching ratios of up-type quark partners to final states involving light (left) and

third generation (right) quarks as function of their mass for all three models. The coloured regions

are the same as in figure 2.

the case as the branching ratios are sizable only for the composite SU(2)L triplet, for which

the branching ratios into WW , WZ, and Wh final states are expected to be the same (see

section 3.3.3). For the diboson vs. dilepton final states, this is not obvious, so in figure 20,

we compare the cross sections times branching ratios of neutral vector resonances decaying

to dileptons vs. WW in all cases where the mass is between 1.7 and 2.2 TeV and the Γ/m

is at most 5%. We observe that the points with production cross section times branching

ratio into WW of order 1 fb typically lead to a signal in dileptons that is one to three

orders of magnitude smaller. Comparing this to figure 19, we conclude that if the excesses

in diboson final states are due to composite resonances, the excess in dileptons could be

explained as well, but could also be absent.
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Figure 17. Branching ratios of down-type quark partners to final states involving light (left) and

third generation (right) quarks as function of their mass for all three models. The coloured regions

are the same as in figure 2.

4.5.3 Prospects for vector resonance searches

The discussion in the previous section has already shown that the diboson and dilepton

final states are promising channels to look for vector resonances in the models studied by

us. It should however be stressed that the vector resonances are not required to be light

enough to be probed at LHC, even at
√
s = 13 TeV. In all three models, we have found

viable points with moderate fine-tuning where all vector resonances are heavier than 6 TeV.

In the following, we discuss the most promising search channels for the vector resonances

if they are light enough.

Gluon resonance. ρG can only decay to fermion pairs and usually has the largest branch-

ing fraction into quark partners because it couples to them through the strong coupling

gG. In that case, the most promising experimental strategy is to look for the quark partner
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Figure 18. Predictions for the production cross sections times branching ratios of charged elec-

troweak vector resonances decaying to Wh or ZW final states in all three models. Only points with

narrow resonances (Γ/m < 0.05) are shown. The dashed and solid curves show the expected and

observed 95% C.L. experimental limits.

pair decaying to SM particles [143, 144]. If the decay to quark partners is kinematically

disfavoured or forbidden, ρG can also decay to SM quark pairs. In the U(2)3 models, we

find that the decays to tt̄ or bb̄ can be up to 50% and to light quarks up to 30% (summing

over the four light quark flavours). In U(3)3
RC, due to the large degree of compositeness

of light right-handed quarks, the dominant SM decay mode are light quark pairs, with a
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Figure 19. Predictions for the production cross sections times branching ratios of neutral elec-

troweak vector resonances decaying to WW or dilepton final states in all three models. Only points

with narrow resonances (Γ/m < 0.05) are shown. The dashed and solid curves show the expected

and observed 95% C.L. experimental limits.

branching ratio up to 40%, while the tt̄ and bb̄ final states have branching ratios below

10% each. The relative width of ρG is around 10–50% when the decays to SM states are

relevant, with U(3)3
RC closer to the upper end of this range.19

19Note that this means that in our numerical analysis, there are effectively no direct bounds on ρG due

to our requirement of a narrow width in the LHC searches, see section 3.3.2.
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Figure 20. Predictions for the production cross sections times branching ratios of neutral elec-

troweak vector resonances decaying to WW vs. dilepton final states in all three models. Only points

with narrow resonances (Γ/m < 0.05) are shown.

Charged resonances. Among the three charged resonances, the lighter two are always

nearly degenerate, with the lighter one being mostly the ρ±R and the heavier one mostly

the ρ±L , while the third charged resonance can be heavier and is mostly the axial vector

resonance a±. The most important state for collider phenomenology is the second one

since it is the only one with an appreciable Drell-Yan production cross section. Since its

couplings to SM quarks are even weaker compared to the gluon resonance, it typically

decays to quark partners, if kinematically allowed. If not, it decays to WZ and Wh

with roughly equal branching ratios (cf. the discussion in sections 3.3.3 and 4.5.2). The

branching ratio into tb is typically small but can reach 20% in corners of the parameter

space. The branching ratio to `ν is always below a percent. The other two states could be

produced via vector boson fusion that we have neglected in our analysis since it is expected

to be very small at the LHC (see [177] for a recent discussion). We note that the axial

vector resonance typically decays to WZ and Wh with the largest branching ratios and we

find BR(ρ±3 →W±Z) ≈ 3 BR(ρ±3 →W±h).

Neutral electroweak resonances. Among the five neutral uncoloured resonances, the

two heaviest are usually mostly the axial vector resonances that have a small production

cross section in quark-antiquark collisions and (if produced via vector boson fusion) would

decay with the largest branching ratios to WW and Zh with BR(ρ0
4,5 → W±W∓) ≈

3 BR(ρ0
4,5 → Zh). Concerning the other three resonances, which are linear combinations

of the ρ0
L, ρ0

R, and ρ0
X , they again preferably decay to a pair of quark partners. If this is

kinematically disfavoured, they can decay to pairs of SM quarks, leptons, or W bosons, or

to Zh. In the latter two cases, one typically has BR(ρ0
i → W±W∓) ≈ BR(ρ0

i → Zh), as

expected for an SU(2)L triplet (cf. the discussion in sections 3.3.3 and 4.5.2). We find the

branching ratios into electron or muon pairs to always be below 2%, which can however be
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Figure 21. Predictions for the production cross sections times branching ratios of neutral elec-

troweak vector resonances decaying to top quarks in all three models. Only points with narrow

resonances (Γ/m < 0.05) are shown. The dashed and solid curves show the expected and observed

95% C.L. experimental limits.

overcome by the higher experimental sensitivity, cf. figure 19 bottom. The branching ratio

to light jets can be up to 30% in the U(2)3 models and up to 70% in U(3)3
RC, while the one

to bb̄ can be up to 40% in all models. In the U(2)3 models, the decay to tt̄ can come close

to 100% in parts of the parameter space.

In sections 4.3.5 and 4.4.4, we have already discussed that sizable NP contributions to

the rare B decay Wilson coefficient Cbs9 , as is required if one wants to solve the anomalies in

B physics discussed in section 3.2.5 in terms of new physics, requires a light, narrow neutral

vector resonance with a large branching ratio to tt̄. In figure 21, we show the predictions

for the production cross section times branching ratio of the neutral electroweak resonances

decaying to tt̄ at LHC with
√
s = 8 TeV, compared to existing ATLAS and CMS analyses.

As in the previous plots, we only show points with narrow resonances (Γ/m < 0.05). At

masses below 1 TeV, the U(2)3
LC points correspond to the ones generating sizable NP effects

in Cbs9 . The points in right-handed compositeness only start at higher masses because the

relative width is typically larger than 5%. The plot shows that cross sections not far

from what LHC has probed in run 1 are attainable in all models. We conclude that this

channel remains a promising probe at run 2, and discoveries are possible both for low and

high masses.

5 Summary

In this paper, we have performed a comprehensive numerical analysis of a four-dimen-

sional pNGB Higgs model based on the symmetry breaking coset SO(5)/SO(4) with quark
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partners transforming as fundamentals of SO(5). The model features a calculable one-

loop Higgs potential and a custodial protection of the ZbLb̄L coupling. We have included

constraints from electroweak precision tests, flavour physics, Higgs production and decay,

contact interaction searches, as well as direct searches for quark and vector resonances.

We have considered three different flavour symmetries, all of them exact in the composite

sector and broken only by the composite-elementary mixing terms, namely U(2)3 or U(3)3

with left- or right-handed compositeness. Below, we summarize our main findings.

• Model-independently, we have pointed out that there are holes in existing experi-

mental searches for quark partners decaying to W or Z plus a top or bottom quark,

particularly for quark partners around 350 GeV which are not covered by Tevatron

or LHC searches, see figure 2. We call on the experimental collaborations to close

these holes by reanalyzing existing data. Quark partners decaying to a boson and a

light quark are still weakly constrained.

• In our numerical analysis, we have not found a single valid parameter point for the

U(3)3
LC flavour structure. Although not a formal proof, we think this is a strong

indication that this flavour structure is not compatible with electroweak precision

tests and radiative EWSB in the model setup considered by us.

• We have shown that the three other flavour structures can be made compatible with

all relevant constraints with a fine tuning ∆BG . 100, see figure 3.

• We have demonstrated that first-row CKM unitarity is the most sensitive probe of

light-quark compositeness in U(2)3
LC, while in right-handed compositeness the dijet

angular distribution is most sensitive to it, cf. figures 4 and 9.

• Higgs signal strengths are the cleanest observables to constrain the pNGB decay

constant f , with small corrections due to light-quark compositeness, cf. figures 5

and 10.

• In meson-antimeson mixing in the U(2)3 models, the relations between Bd and Bs
mixing that are expected from a leading-order spurion analysis are strongly violated

for some of the valid points by terms that are formally of higher order in the spu-

rion expansion.

• In both U(2)3 models, all observables in B, Bs and K mixing can saturate their

current experimental limits, while in U(3)3, this is true for the mass differences and

εK , while CP violation in the B and Bs systems is SM-like. The best means to

experimentally distinguish the models based on ∆F = 2 observables alone can be

read off figures 6, 11, and 12:

– In U(2)3
LC, the relative NP effect in εK compared to ∆Md is always smaller (or

equal), in U(2)3
RC it is always larger (or equal), while in U(3)3

RC it is always equal.

– In U(2)3
LC, there can be large NP effects in φs which are typically correlated

with an equal effect in φd; in U(2)3
RC NP effects can be only in φs and not in

φd; in U(3)3
RC both phases are free from NP.
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• In the U(2)3 models, CP violation in D0-D̄0 mixing is small compared to the current

experimental sensitivity, but could become relevant if the sensitivity improves by an

order of magnitude.

• The FCNC top decay t → cZ can reach a branching ratio of up to 10−5 in U(2)3
LC

but is negligible in the other models.

• Rare B decays of the type b→ s`+`− can not only receive Z-mediated contributions,

but also resonance-mediated contributions that can affect the Wilson coefficient Cbs9

which is required for a NP explanation of various anomalies in B physics data. These

anomalies can be explained in all three models. In U(3)3
RC, NP affects the Wilson

coefficient Cbs9 but not Cbs10.

• Explaining the B physics anomalies implies the presence of a narrow neutral vec-

tor resonance around 1 TeV with a sizable branching ratio into tt̄ or dijets with a

production cross section just below what has been excluded in LHC run 1.

• Various excesses in diboson events at a mass of roughly 2 TeV observed by ATLAS

and CMS can be explained in all three models as well by the decay of a 2 TeV vector

resonance, see figures 18 and 19. The solution possibly, but not necessarily, predicts

a signal in dilepton events around the same mass as well, see figure 20.

While we have limited ourselves to a single model with four different flavour structures

in this work, there are several ways how our analysis could be generalized, such as studying

non-minimal cosets, non-minimal couplings, different fermion representations, or different

flavour structures, including more radical changes like disposing of partial compositeness

for the first two generation quarks [57, 58]. It would also be interesting to include a more

realistic lepton sector. Finally, a more accurate treatment of the top quark mass, of loop

corrections to the ZbLb̄L coupling, of renormalization group effects on FCNC operators,

and of LHC constraints on singly produced fermion resonances would be very interesting

to further scrutinize composite Higgs models in the future.
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A SO(5) conventions

For concreteness, we will present the conventions for SO(5) generators and embeddings

used by us.
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The group SO(5) can locally be expressed as SO(5) ∼= SU(2)L×SU(2)R×SO(5)/SO(4).

Therefore, its 10 generators can be grouped into “left”, “right” and “coset”:

(TaL)ij = − i
2

(
1

2
εaLbc

(
δbi δ

c
j − δbjδci

)
+
(
δaLi δ4

j − δaLj δ4
i

))
, (A.1)

(TaR)ij = − i
2

(
1

2
εaRbc

(
δbi δ

c
j − δbjδci

)
−
(
δaRi δ4

j − δaRj δ4
i

))
, (A.2)(

Tâ
)
ij

= − i√
2

(
δâi δ

5
j − δâj δ5

i

)
, (A.3)

Then, SO(4) singlets S and bidoublets Qn1,n2 (with SU(2)L × SU(3)R quantum numbers

(n1, n2)) can be embedded into SO(5) fundamentals via
Q1

Q2

Q3

Q4

Q5

 =
1√
2


Q++ +Q−−

iQ++ − iQ−−
Q+− −Q−+

iQ+− + iQ−+
√

2S

 . (A.4)

B Mass matrices

In this appendix we give the expressions for the mass mixing matrices that were obtained

in the M4DCHM5.

B.1 Boson sector

The pNGB structure of the M4DCHM Lagrangian leads to mixings between the elementary

and composite vector bosons of equal charge. In particular, the composite triplets ρµL and

ρµR as well as the axial resonances aµ will have neutral and charged components mixing

with the elementary W 0µ and B0µ gauge bosons. In addition, the neutral components will

also mix with the U(1)X resonance ρµX .

For the neutral and charged vector bosons one finds the following mass matrices given

in table 4.

By the explicit mixing introduced in the Lagrangian one finds the following mass

matrices for the gluon and their composite resonances. By construction this does not spoil

invariance under the SM SU(3)c, which survives as a linear combination of the elementary

and composite SU(3) symmetries as can be seen from the fact that the gluon mass matrices

exhibit a massless eigenvalue.

M2
Boson,Gluon =

 G0
µ ρGµ

G0µ 1
2g0

2
3f

2
G −1

2g03gGf
2
G

ρµG
1
2g

2
ρ3f

2
G


B.2 Fermion sector

After EWSB the elementary quarks mix with all resonances carrying the same elec-

tric charge. By using the embedding (A.4) we express the components of the bidou-
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M
2 B

o
so

n
,n

eu
tr

a
l
=

                

W
0

3 µ
B

0
µ

ρ
L
µ

ρ
R
µ

a
3 µ

ρ
X
µ

a
4 µ

W
0

3
µ

1 2
g 0
f

2 1
0

−
1 2
g 0
g ρ
f

2 1
co

s2
( h 2

f

) −
1 2
g 0
g ρ
f

2 1
si

n
2
( h 2

f

) −
1

2
√

2
g 0
g ρ
f

2 1
si

n
( h f)

0
0

B
0
µ

1 2
g 0
′
2
( f2 1

+
f

2 X

) −1 2
g 0
′ g
ρ
f

2 1
si

n
2
( h 2

f

) −1 2
g 0
′ g
ρ
f

2 1
co

s2
( h 2

f

) 1
2
√

2
g 0
′ g
ρ
f

2 1
si

n
( h f) −

1 2
g 0
′ g
X
f

2 X
0

ρ
µ L

1 2
g

2 ρ
f

2 1
0

0
0

0

ρ
µ R

1 2
g

2 ρ
f

2 1
0

0
0

a
3
µ

1 2
g

2 ρ
f

1
4

f
2 1
−
f
2

0
0

ρ
µ X

1 2
g

2 X
f

2 X
0

a
4
µ

1 2
g

2 ρ
f

1
4

f
2 1
−
f
2

                

M
2 B

o
so

n
,c

h
a
rg

ed
=

        

W
0

+ µ
ρ

+ L
µ

ρ
+ R
µ

a
+ µ

W
0
−
µ

1 2
g 0

2
f

2 1
−

1 2
g 0
g ρ
f

2 1
co

s2
( h 2

f

) −1 2
g 0
g ρ
f

2 1
si

n
2
( h 2

f

) −
1

2
√

2
g 0
g ρ
f

2 1
si

n
( h f)

ρ
−
µ

L
1 2
g

2 ρ
f

2 1
0

0

ρ
−
µ

R
1 2
g

2 ρ
f

2 1
0

a
−
µ

1 2
g

2 ρ
f

1
4

f
2 1
−
f
2

        

Table 4. Mass matrices for the neutral and singly charged bosons in the M4DCHM5.
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blet resonances in such a way that they have definite quantum numbers under the

SO(4) = SU(2)L × SU(2)R custodial symmetry.20

For the up- and down-type quarks we find the mass matrices given in table 5.

For the exotically charged fermion resonances the mass matrices are independent of

the Higgs field. Thus, they do not give a contribution to the Higgs potential, which is clear

since they do not mix with elementary fields.

M
+ 5

3
fermion =

 Q++
uR Q̃++

uR

Q
++
uL mU mYU

Q̃
++

uL 0 m
Ũ

 , M
− 4

3
fermion = s

 Q−−dR Q̃−−dR
Q
−−
dL mD mYD

Q̃
−−
dL 0 m

D̃


Of course, the fields used above still carry flavour indices. As a consequence of this,

all the entries tin the fermionic mass matrices actually are 3× 3 matrices in flavour space,

promoting the up- and down-type mass matrices to 27 × 27 objects. The explicit form of

the entries is model dependent and will be given in appendix C.

Since we took the leptons as purely elementary, their mass matrices are just diagonal

taking the SM values.

C Explicit form of the composite-elementary mixings

In this appendix, we give the explicit flavour structure of the composite-elementary mixings

in the flavour symmetric models. We use bases where all unphysical parameters have

already been rotated away and all phases have been made explicit.

• In U(3)3
LC,

∆uL = ∆Lt 1 , ∆†uR = V †

∆Ru

∆Rc

∆Rt

 , (C.1)

∆dL = ∆Lb 1 , ∆†dR =

∆Rd

∆Rs

∆Rb

 . (C.2)

Here, V is the CKM matrix with 3 angles and 1 phase.

• In U(3)3
RC,

∆uL = V †

∆Lu

∆Lc

∆Lt

 , ∆†uR = ∆Rt 1 , (C.3)

∆dL =

∆Ld

∆Ls

∆Lb

 , ∆†dR = ∆Rb 1 . (C.4)

20For example, the field Q+−
u is part of a composite bidoublet resonance with q

(u)
X = 2

3
and it has

eigenvalues + 1
2

and − 1
2

under T3L and T3R , respectively.
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M
(u

)
fe

rm
io

n
=

                      

u
0
R

Q
+
−

u
R

Q̃
+
−

u
R

Q
−

+
u
R

Q̃
−

+
u
R

Q
+

+
d
R

Q̃
+

+
d
R

S
u
R

S̃
u
R

u
0
L

0
−

∆
u
L

co
s2
( h 2

f

) 0
∆
u
L

si
n

2
( h 2

f

) 0
−

∆
d
L

0
i √
2
∆
u
L

si
n
( h f)

0

Q
+
−

u
L

0
m
U

m
Y
U

0
0

0
0

0
0

Q̃
+
−

u
L
−

i √
2
∆
† u R

si
n
( h f)

0
m
Ũ

0
0

0
0

0
0

Q
−

+
u
L

0
0

0
m
U

m
Y
U

0
0

0
0

Q̃
−

+

u
L
−

i √
2
∆
† u R

si
n
( h f)

0
0

0
m
Ũ

0
0

0
0

Q
+

+
d
L

0
0

0
0

0
m
D

m
Y
D

0
0

Q̃
+

+

d
L

0
0

0
0

0
0

m
D̃

0
0

S
u
L

0
0

0
0

0
0

0
m
U

m
Y
U

+
Y
U

S̃
u
L
−

∆
† u R

co
s
( h f)

0
0

0
0

0
0

0
m
Ũ

                      

M
(d

)
fe

rm
io

n
=

                      

d
0
R

Q
+
−

d
R

Q̃
+
−

d
R

Q
−

+
d
R

Q̃
−

+
d
R

Q
−
−

u
R

Q̃
−
−

u
R

S
d
R

S̃
d
R

d
0
L

0
∆
d
L

si
n

2
( h 2

f

) 0
−

∆
d
L

co
s2
( h 2

f

) 0
−

∆
u
L

0
i √
2
∆
d
L

si
n
( h f)

0

Q
+
−

d
L

0
m
D

m
Y
D

0
0

0
0

0
0

Q̃
+
−

d
L
−

i √
2
∆
† d R

si
n
( h f)

0
m
D̃

0
0

0
0

0
0

Q
−

+
d
L

0
0

0
m
D

m
Y
D

0
0

0
0

Q̃
−

+

d
L
−

i √
2
∆
† d R

si
n
( h f)

0
0

0
m
D̃

0
0

0
0

Q
−
−

u
L

0
0

0
0

0
m
U

m
Y
U

0
0

Q̃
−
−

u
L

0
0

0
0

0
0

m
Ũ

0
0

S
d
L

0
0

0
0

0
0

0
m
D

m
Y
D

+
Y
D

S̃
d
L
−

∆
† d R

co
s
( h f)

0
0

0
0

0
0

0
m
D̃

                      

Table 5. Mass matrices for the up- and down-type fermions in the M4DCHM5.
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• In U(2)3
LC,

∆uL =

∆Lu

∆Lu

∆Lt

 , ∆†uR =

 cu∆Ru −su∆Rce
iαu

su∆Rue
−iαu cu∆Rc εu∆Rte

iφt

∆Rt

 , (C.5)

∆dL =

∆Ld

∆Ld

∆Lb

 , ∆†dR =

 cd∆Rd −sd∆Rse
iαd

sd∆Rde
−iαd cd∆Rs εd∆Rbe

iφb

∆Rb

 .

(C.6)

• In U(2)3
RC,

∆uL =

 cu∆Lu −su∆Lce
iαu

su∆Lue
−iαu cu∆Lc εu∆Lte

iφt

∆Lt

 , ∆†uR =

∆Ru

∆Ru

∆Rt

 , (C.7)

∆dL =

 cd∆Ld −sd∆Lse
iαd

sd∆Lde
−iαd cd∆Ls εd∆Lbe

iφb

∆Lb

 , ∆†dR =

∆Rd

∆Rd

∆Rb

 . (C.8)

D Constraints from the dijet angular distribution

As discussed in section 3.2.6, experimental analyses of contact interactions typically only

quote constraints on a single operator — or for individual operators, but only allowing one

at a time. To correctly treat the case with simultaneous contributions from multiple oper-

ators, we follow the procedure outlined in [119]. In this paper, analytical expressions are

given for the dijet cross section in bins of the dijet mass mjj and the rapidity χ. The most

recent ATLAS and CMS analyses use multivariate techniques rather than considering only

a ratio of bins. In our numerical analysis, we have thus adopted the following procedure:

1. We identify the most sensitive bin in the experimental analysis;

2. We compute the numerical coefficients ~P and ~Q defined as in [119] for the 8 TeV LHC

in the respective bin.

3. We compute the NP contribution of all operators to the cross section in this bin;

4. We multiply our result by an overall factor to exactly reproduce the 95% C.L. bound

on the Wilson coefficient c
(1)
qq quoted in the experimental paper.

In this way, our approximation of computing the cross section analytically and pretending

that only a single bin is relevant is only used for the relative contributions of the individual

operators, while any overall change (such as k-factors) cancels out since we normalize to the

bound obtained for the c
(1)
qq coefficient by the experimentalists. We have checked that the

relative contributions are not very sensitive to changes in the bin chosen in the first step.

– 57 –
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In our numerical analysis, we use the bound from the most recent ATLAS analysis [178].

We assume the most sensitive bin to be the one with χ < 3.32, mjj > 3.2 TeV. We can

then write the new physics contribution to the dijet cross section in this bin,

σχjj =

∫ 3.32

1
dχ

dσ(pp→ jj)

dχ

∣∣∣∣NP

mjj>3.2 TeV

(D.1)

normalized to the 95% C.L. cross section on this quantity extracted by reproducing the

bound on c
(1)
qq quoted in [178], as

σχjj
(σχjj)95% C.L.

= − 1

Λ2
~A · ~P ′ + 1

Λ4
~B · ~Q′ , (D.2)

where ~A and ~B are given in eq. (16) of [119] and ~P ′, ~Q′ are equal up to normalization to
~P, ~Q defined in [119]. Numerically, we find

~P ′ =
(
0.36P ′uu, 0.12P ′uu, 0.36P ′dd, 0.12P ′dd, 0.17P ′ud, 0.74P ′ud

)
, (D.3)

~Q′ =
(
0.013Q′uu, 0.0069Q′uu, 0.013Q′dd, 0.0069Q′dd, 0.0024Q′ud, 0.00097Q′ud

)
, (D.4)

where

P ′uu = (4.93 TeV)2 , P ′dd = (1.46 TeV)2 , P ′ud = (3.82 TeV)2 . (D.5)

Q′uu = (7.93 TeV)4 , Q′dd = (4.28 TeV)4 , Q′ud = (6.95 TeV)4 . (D.6)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[7] C. Csáki, C. Grojean, J. Hubisz, Y. Shirman and J. Terning, Fermions on an interval:

quark and lepton masses without a Higgs, Phys. Rev. D 70 (2004) 015012

[hep-ph/0310355] [INSPIRE].

– 58 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0370-2693(84)91177-8
http://dx.doi.org/10.1016/0370-2693(84)91177-8
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B136,183"
http://dx.doi.org/10.1016/0550-3213(85)90221-4
http://dx.doi.org/10.1016/0550-3213(85)90221-4
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B254,299"
http://dx.doi.org/10.1016/S0550-3213(05)80021-5
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B365,259"
http://dx.doi.org/10.1016/S0370-2693(00)00054-X
http://arxiv.org/abs/hep-ph/9912408
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9912408
http://dx.doi.org/10.1016/S0550-3213(00)00392-8
http://dx.doi.org/10.1016/S0550-3213(00)00392-8
http://arxiv.org/abs/hep-ph/0003129
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0003129
http://dx.doi.org/10.1016/S0370-2693(00)01399-X
http://arxiv.org/abs/hep-ph/0010195
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0010195
http://dx.doi.org/10.1103/PhysRevD.70.015012
http://arxiv.org/abs/hep-ph/0310355
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0310355


J
H
E
P
0
1
(
2
0
1
6
)
1
1
9

[8] R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson,

Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].

[9] K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys.

B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

[10] G. Panico and A. Wulzer, Effective action and holography in 5D gauge theories, JHEP 05

(2007) 060 [hep-th/0703287] [INSPIRE].

[11] S. De Curtis, M. Redi and A. Tesi, The 4D composite Higgs, JHEP 04 (2012) 042

[arXiv:1110.1613] [INSPIRE].

[12] G. Panico and A. Wulzer, The discrete composite Higgs model, JHEP 09 (2011) 135

[arXiv:1106.2719] [INSPIRE].

[13] D. Marzocca, M. Serone and J. Shu, General composite Higgs models, JHEP 08 (2012) 013

[arXiv:1205.0770] [INSPIRE].
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