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Abstract

he framework of this thesis consists of the three gravity field missions CHAMP, GRACE and GOCE

in LEO orbit, the launch of the first Galileo satellites and the Space-Time Explorer mission (STE-

QUEST) in the ESA Cosmic Vision Programme, jointly proposed by the timing community involved
in the ACES mission on the International Space Station. The satellite missions CHAMP, GRACE and GOCE
equipped with geodetic GPS receivers in the LEO orbit, have initiated a new era of space geodesy and accurate
static and temporal gravity field observations from space based on precise orbit determination (POD) using
GPS. The Space-Time Explorer mission covers space geodesy and relativistic geodesy as science objectives and
aims to combine the terrestrial and celestial reference frame determination and to unify the reference frames
for positioning, time and gravity. This thesis presents major results and achievements obtained with these
space geodesy missions over the last 15 years. The major part of this thesis covers work done with Prof. M.
Rothacher at TU Miinchen and ETH Ziirich in the context of the LEO Working Group on Precise Orbit
Determination of TAG and IGS, ESA mission GOCE, ESA Topical Team on ACES Geodesy and several
Working Groups of the IGS. All developments in the Bernese GNSS Software were used for the orbit deter-
mination of the GOCE mission (PI Prof. R. Rummel) and the Formosat-3/COSMIC mission.

In all these space geodesy missions, precise orbit determination of satellites and determination of terres-
trial reference frame parameters of the Earth represent the fundamental framework of all space geodesy
activities. In this thesis, pioneering work has been done on the estimation of purely geometrical (i.e. kinematic)
orbits of LEO satellites that has triggered the worldwide development of new approaches in gravity field
determination, opened up new fields of application and significantly changed the way we think about the
gravity field of the Earth from the point of view of satellite dynamics. This thesis not only presents pioneering
work on the high-precision kinematic and reduced-dynamic orbit determination of LEO and GNSS satellites,
and the sub-millimeter relative positioning between the two GRACE satellites flying in formation in LEO
orbit, but also demonstrates the use of GPS measurements from LEO satellites in the determination of terres-
trial reference frame parameters, and provides fundamental studies on the geometrical approach for other
space geodesy techniques, such as the sub-millimeter double-difference SLR, Lunar Laser Ranging and their
combination with the global GNSS solutions. The use of stable clocks on board Galileo satellites offered an
extension of the kinematic POD approach from LEO to GNSS satellites by using Galileo clocks to map kine-
matically radial orbit errors. This has led to the development of new approaches in the modeling of solar
radiation pressure and satellite thermal re-radiation. Several linear combinations were developed for the pro-
cessing of multi-GNSS data and the integer nature of the ionosphere-free ambiguities is shown by means of
the integer ambiguity algebra for the resolution of carrier-phase ambiguities. Several different strategies for
the ambiguity resolution are presented including the track-to-track ambiguity resolution demonstrated with
GPS data from the GRACE mission in LEO orbit. By introducing so-called ”absolute” code biases, a consistent
definition of carrier-phase ambiguities has been developed with satellite clock parameters and differential code
biases that are estimated without ionosphere information. In the field of satellite orbit dynamics, it was
demonstrated that the concept of geometrical rotations of spherical harmonics can be applied to the gravity
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field modeling and subsequently to the orbit representation. In addition, geometrical rotations offer a direct
representation of the spherical harmonics and their calculation to ultra-high degree and order, considering that
a rotation about the polar axis is equivalent to the geometrical rotation of spherical harmonics about an
equatorial axis. In this thesis, fundamental work on frequency transfer using GPS has been performed and a
new approach consisting of the estimation of so-called phase-clock parameters for GNSS was introduced and
tested. This demonstrated the feasibility of one-way frequency transfer between ground and space to support
the geodetic applications of optical clocks that now provide relative frequency stability at the level of 10718,
At the end of the thesis, the focus is on relativistic geodesy, related to ACES and STE-QUEST missions,
covered by the work done on this thesis over several years. This new field of space geodesy is described, as it
is a new field opened up by the capabilities of the new generation of optical atomic clocks.

As part of this thesis, three major developments in the Bernese GNSS Software were performed, including
the implementation of kinematic and reduced-dynamic orbit determination of LEO satellites using zero- and
double-difference GPS and SLR measurements and the combination with the GPS constellation in the deter-
mination of terrestrial reference frame parameters. This work also includes the processing of the GPS baseline
with ambiguity resolution between the two GRACE satellites and the combination with GRACE K-band
measurements. The second major development is related to the multi-GNSS data processing, in particular the
implementation of Galileo and Beidou data processing and the combination with all other GNSS systems. The
third major development is the double-difference SLR approach for GNSS with double-differences over time
(free of SLR range biases) and the implementation of lunar laser ranging data processing in the barycentric
and geocentric frame, including the estimation of the lunar orbit and all reference frame parameters (for

GNSS).

As part of this work on the Ph.D. thesis, several conference sessions were organized, including the organ-
ization of an ESA conference with more than 100 participants at TU Miinchen, in the context of the ESA
Topical Team on Geodesy, that triggered several activities described in this thesis. This work in the field of
space geodesy was supported by the ESA GOCE mission, several developments of the Bernese GNSS Software
and the ESA Topical Team on Geodesy of the ACES mission. This contributed to several ESA missions and
mission proposals such as STE-QUEST (reference frames of the Earth), ACES, ASTROD-1, GPS reflectome-
try/altimetry on the International Space Station — three of them were selected.



Zusammenfassung

en Rahmen dieser Arbeit bilden die drei Gravitationsfeldmissionen CHAMP, GRACE und GOCE als

tieffliegende Satelliten (LEO), der Start der ersten Galileo-Satelliten und die Space-Time Explorer-

Mission (STE-QUEST) im ESA Cosmic Vision Program, die gemeinsam mit der Timing-Community,
die auch an der ACES-Mission auf der Internationalen Raumstation beteiligt ist, vorgeschlagen wurde. Die
Satellitenmissionen CHAMP, GRACE und GOCE, die mit geoddtischen GPS-Empfingern ausgestattet sind,
haben eine neue Ara der Satellitengeodisie und der genauen Vermessung des statischen und zeitvariablen
Gravitationsfeldes aus dem Weltraum auf der Basis préziser Bahnbestimmung (POD) mit GPS initiiert. Die
Space-Time Explorer-Mission deckt die Satellitengeodésie und die relativistische Geodésie als wissenschaftliche
Ziele ab und zielt darauf ab, die Bestimmung des terrestrischen und zélestischen Referenzrahmens zu kombi-
nieren und die Referenzrahmen fiir Positionierung, Zeit und Schwerkraft zu vereinheitlichen. Diese Arbeit
prasentiert die Ergebnisse, die im Rahmen dieser Doktorarbeit mit den Satellitenmissionen in den letzten 15
Jahren erzielt wurden. Der Grofiteil dieser Arbeit beschéftigt sich mit der Arbeit an der TU Miinchen und der
ETH Ziirich mit Prof. M. Rothacher im Rahmen der LEO-POD-Arbeitsgruppe der TAG und IGS, der GOCE
Mission, des ESA Topical Teams fiir ACES Geodésie und mehreren Arbeitsgruppen des IGS. Alle Entwick-
lungen in der Berner GNSS Software wurden fiir die Bahnbestimmung der GOCE-Mission (PI Prof. R.
Rummel) und der Formosat-3/COSMIC-Mission eingesetzt.

In alle diesen Satellitenmissionen stellt die prazise Bahnbestimmung von Satelliten und die Bestimmung
von Parametern des terrestrischen Referenzrahmens der Erde das Fundament aller geodatischen Aktivitdten
dar. In dieser Arbeit wurde Pionierarbeit bei der Schétzung von rein geometrischen (d.h. kinematischen)
Bahnen von LEO-Satelliten geleistet, die eine weltweite Entwicklung neuer Ansétze in der Gravitationsfeldbes-
timmung ausgelost, neue Anwendungsfelder erschlossen und die Art und Weise deutlich verdndert haben, wie
wir das Gravitationsfeld der Erde aus der Sicht der Satellitendynamik betrachten. Diese Doktorarbeit ist nicht
nur eine Arbeit zur hochpréizisen kinematischen und reduziert-dynamischen Bahnbestimmung von LEO- und
GNSS-Satelliten und der Sub-Millimeter-Relativpositionierung zwischen den beiden GRACE-Satelliten, die in
einer Formation in einer LEO-Umlaufbahn fliegen, sondern zeigt auch die Verwendung von GPS-Messungen
von LEO-Satelliten fiir die Bestimmung von Parametern des terrestrischen Referenzrahmens auf und liefert
grundlegende Untersuchungen zu geometrischen Ansétzen im anderen geoddtischen Raumverfahren wie dem
Bilden von Submillimeter-Doppeldifferenzen bei SLR und beim Lunar Laser Ranging und deren Kombination
mit den globalen GNSS-Loésungen. Die Verwendung von stabilen Uhren an Bord der Galileo-Satelliten bot eine
Erweiterung des kinematischen POD-Ansatzes fiir LEO mit GNSS-Satelliten an, welche die Galileo-Uhren
nutzt, um radiale Fehler der kinematischen Bahnen zu kartieren, was wiederum zur Entwicklung neuer Anséitze
bei der Modellierung des solaren Strahldrucks und der thermischen Riickstrahlung fithrte. Fiir die Verarbeitung
von Multi-GNSS-Daten wurden mehrere Linearkombinationen entwickelt, und die ganzzahlige Natur der ion-
osphérenfreien Mehrdeutigkeiten wird mit der ganzzahligen Mehrdeutigkeitsalgebra zur Auflésung von
Triagerphasen-Mehrdeutigkeiten aufgezeigt. Mehrere verschiedene Strategien fiir die Mehrdeutigkeitsauflosung
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werden vorgestellt, einschliellich der Mehrdeutigkeitslésung zwischen aufeinanderfolgenden Satelliten-
durchgingen, die mit GPS-Daten von der GRACE-Mission in der LEO-Umlaufbahn demonstriert wird. Durch
die Einfithrung sogenannter ”absoluter” Code-Biases wurde eine konsistente Definition von Trégerphasen-
Mehrdeutigkeiten mit Satelliten-Uhrparametern und Differential-Codebiases entwickelt, die ohne Tonosphéren-
information geschétzt werden. Auf dem Gebiet der Satelliten-Bahndynamik wurde gezeigt, dass das Konzept
der geometrischen Rotationen der sphérisch-harmonischen Flachenfunktionen auf die Gravitationsfeldmodel-
lierung und anschlieend auf die Bahndarstellung angewendet werden kann. Dariiber hinaus bieten
geometrische Rotationen eine direkte Darstellung der sphérischen Oberschwingungen und deren Berechnung
bis zu héchsten Entwicklungsgraden und -ordnungen, wenn man bedenkt, dass eine Rotation um die Polachse
der geometrischen Rotation der sphirischen Harmonischen um eine Aquatorachse entspricht. In dieser Arbeit
wurde eine grundlegende Studie zur Frequenziibertragung mit GPS durchgefiithrt und ein neuer Ansatz, der
in der Schétzung der sogenannten Phasenuhrparameter fiir GNSS besteht, wurde eingefiihrt und getestet, was
die Machbarkeit eines Einweg-Frequenztransfers zwischen Boden und Weltraum zur Unterstiitzung ge-
odétischer Anwendungen von optischen Uhren demonstriert, mit einer relativen Frequenzstabilitéit im Bereich
von 1078, Der letzte Teil der Arbeit konzentriert sich auf die relativistische Geodésie, die durch diese Arbeit
iiber mehrere Jahre hinweg wesentlich mitgestaltet wurde, und das neue Anwendungsfeld der Satelliten-
geodésie entstanden ist das durch die neue Generation optischer Atomuhren wird beschrieben.

Im Rahmen dieser Arbeit wurden drei wesentliche Entwicklungen in der Bernese GNSS Software durch-
gefiihrt, darunter die Implementierung der kinematischen und reduziert-dynamischen Bahnbestimmung von
LEO-Satelliten mittels Null- und Doppeldifferenz-GPS und SLR-Messungen sowie die Kombination mit der
GPS-Konstellation fiir die Bestimmung von terrestrischen Referenzsystemparametern. Diese Arbeit beinhaltet
auch die Verarbeitung der GPS-Basislinie zwischen den beiden GRACE-Satelliten inclusive Mehrdeu-
tigkeitsauflésung und die Kombination mit GRACE K-Band-Messungen. Die zweite groe Entwicklung bezieht
sich auf die Multi-GNSS-Datenverarbeitung, insbesondere die Implementierung der Galileo- und Beidou-
Datenverarbeitung und die Kombination mit allen anderen GNSS-Systemen. Die dritte wesentliche Entwick-
lung betrifft den Doppeldifferenz-SLR-Ansatz und die Implementierung der Lunar-Laser-Datenverarbeitung
im barizentrischen und geozentrischen Bezugsrahmen einschliefllich der Schétzung der Mondbahn und aller
Parameter des Referenzrahmens.

Als Teil dieser Arbeit wurden mehrere Konferenzsession organisiert, darunter die Organisation einer ESA-
Konferenz mit mehr als 100 Teilnehmern an der TU Miinchen im Rahmen des ESA Topical Team on Geodesy,
das mehrere in dieser Arbeit beschriebene Aktivitaten ausloste. Diese Arbeit auf dem Gebiet der Weltraumge-
odésie wurde von der ESA GOCE Mission, dem ESA Topical Team fiir Geodésie mit der ACES Mission und
mehreren Entwicklungen der Bernese GNSS Software unterstiitzt. Dies trug zu mehreren ESA-Missionen und
Missionsvorschligen wie STE-QUEST  (Bezugsrahmen der Erde), ACES, ASTROD-1, GPS-
Reflektometry/Altimetrie auf der Internationalen Raumstation bei - drei davon wurden ausgewéhlt.
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1.The First Geometric POD of LEQO Satellites — a
Piece of History

he very first precise geometric (i.e., kinematic) orbit determination of a LEO satellite was presented

in (Svehla and Rothacher 2002), where for the first time double-difference ambiguity resolution was

demonstrated using the CHAMP satellite in LEO orbit and the ground IGS network. In (Svehla and
Rothacher 2003a), (Svehla and Rothacher 2003b) and later in (Svehla and Rothacher 2005a) and (Svehla and
Rothacher 2005b) geometric precise orbit determination (POD) was demonstrated to cm-level accuracy and
presented as an established technique and as very attractive for gravity field determination. Here we give a
chronological overview of the development of the method.

1.1 Introduction

In (Svehla and Rothacher 2005a) and (Svehla and Rothacher 2005b), kinematic (or geometric) precise orbit
determination of Low Earth Orbiting (LEO) satellites was introduced as a new method of precise orbit deter-
mination of LEO satellites where the main application is in gravity field determination. The first geometric
orbits of the CHAMP satellite were presented in (Svehla and Rothacher 2002). Later, in (Svehla and Rothacher
2004a) kinematic and reduced-dynamic POD were shown for a period of two years using CHAMP data.
Kinematic or geometric POD can be considered as the third fundamental POD approach, along with dynamic
and reduced-dynamic POD:

e Dynamic POD: (Kaula 1966), (Beutler 1977)
¢ Reduced-Dynamic POD: (Colombo 1986), (Yunck et al. 1994)
e Geometric POD: (Svehla and Rothacher 2003b)

An intermediate, or fourth basic approach to POD, is the reduced-kinematic POD, where the orbit kinematics
(geometry) is reduced to a dynamic orbit by estimating normal kinematic points along an a priori dynamic
orbit and making use of relative constraints between kinematic positions (Svehla and Rothacher 2003b). How-
ever, we applied the reduced-kinematic POD approach only for GPS and Galileo satellites. In the reduced-
dynamic POD approach, the orbit dynamics is reduced by making use of geometrical information, i.e., esti-
mating velocity pulses along a dynamic orbit (Yunck et al. 1993) or estimating empirical accelerations
(Colombo 1986). The dynamic POD approach is based on numerical integration of the equation of motion,
see e.g., (Beutler 1977). This numerical integration can be avoided in certain applications, and in the case of
analytical POD the equation of motion is modeled as an analytical representation, see e.g., (Kaula 1966).

A considerable number of groups have been using our CHAMP kinematic positions to estimate Earth
gravity field coefficients and to validate dynamic orbits and orbit models. Using the CHAMP kinematic posi-
tions together with the corresponding variance—covariance information, gravity field coefficients can be
estimated geometrically by making use of the energy balance approach or the boundary value method rather
than the classical numerical integration schemes, see e.g., (Gerlach et al. 2003a, 2003b), (Wermuth et al. 2004),

1
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(Foldvéry et al. 2005) at TU Miinchen, (Mayer-Giur et al. 2005) at TU Bonn now at TU Graz, (Reubelt et
al. 2006), (Sneeuw et al. 2003, 2005) at TU Stuttgart and (Ditmar et al. 2006) at TU Delft, and (Fengler et
al. 2004) from Prof. Freeden’s Group at TU Kaiserslautern and (Schmidt et al. 2005) from DGFI (Deutsches
Geodatisches Forschungsinstitut). With the GRACE and GOCE missions, kinematic orbits continued to be
used world-wide and a number of groups have been reporting gravity field recovery based on GRACE and
GOCE kinematic orbits, e.g., (Mayer-Giirr et al. 2010), (Jéggi et al. 2011), (Pail et al. 2010), (Pail et al. 2011),
(Baur and Grafarend 2006), (Rummel et al. 2011). The validation of gravity field models computed in such
a way showed that LEO kinematic positions contain high-resolution gravity field information. In combination
with gravity gradients from the GOCE gradiometer in very low Earth orbit (255 km altitude), kinematic
orbits allow mapping of the gravity field of the Earth from space with the highest resolution reported so far.
Kinematic positions with the corresponding variance—covariance information are a very attractive interface
between the raw GPS data and gravity field models or other valuable information that can be derived from
satellite orbits, e.g., air densities, thermospheric winds or orbit force model improvements. In this way, the
groups that use kinematic positions do not have to undertake the laborious tasks of processing and analyzing
the GPS observations and determining the reference frame.

In regard to kinematic POD for ESA mission GOCE we refer to (Bock et al. 2011), (Visser et al. 2007,
2009) (Bock et al. 2014). Several other groups reported calculation of kinematic orbits for gravity field deter-
mination e.g., (Zehentner and Mayer-Giirr 2015) for the GRACE mission and (Hwang et al. 2009, 2010),
(Tseng et al 2012) using similar approach for the Formosat-3/COSMIC mission. (Zehentner and Mayer-Giirr
2015) demonstrated an approach that avoids ionosphere-free linear combination by estimating an additional
bias per GPS satellite every epoch in order to remove remaining systematic effects in carrier-phase measure-
ments. Among the aforementioned geometric gravity models, (Baur et al. 2013) identifies and compares 5
fundamental approaches in gravity field determination based on kinematic orbits:

e Short-Arc Approach: TU Graz

e  Celestial Mechanics Approach: AIUB/University of Bern

e Averaged Acceleration Approach: DEOS/TU Delft

e Point-wise Acceleration Approach: University of Stuttgart/Austrian Acad. of Sciences
e Energy Balance Approach: TU Miinchen, TU Graz.

Time-variable gravity field determination using a CHAMP kinematic orbit was recently demonstrated in (Baur
2013), showing that the ice mass loss over Greenland is in line with the findings from GRACE data and the
trend estimates differ by only 10%. This opens up the possibility of using kinematic orbits to bridge the gap
between GRACE and the GRACE follow-on mission, making use of the GPS receivers on the 3 satellites of
the ESA mission Swarm for mapping the time-variable gravity field of the Earth.

1.2 Geometric and Dynamic Equation of Motion

The theory of relativity is the frame of reference for satellite orbit determination and includes corrections to
the Newtonian equations of motion, so-called post-Newtonian approximation of general relativity, often de-
noted as Parameterized Post-Newtonian Formalism or PPN-formalism. For the near-Earth orbiting satellites,
the geocentric reference frame is used, whereas for planetary missions in the Solar System, a barycentric
reference frame is more appropriate. A geocentric reference frame is more suitable for the orbit determination
of Earth-orbiting satellites because the gravitational effects of the Moon, the Sun and other planets can be
described solely as tidal forces, while the relativistic acceleration corrections to the equations of motion are
very small. For satellites in Earth orbit, in the post-Newtonian approximation of general relativity, the main
general relativistic effects are caused by the gravity field of the Earth and its rotation. The flat three-dimen-
sional Euclidian space is used to model geometry and to dynamically integrate the satellite orbit. A geocentric
terrestrial reference frame is created using space geodesy techniques such as GNSS, SLR, VLBI and DORIS.



1.3 LEO GPS Observation Equation

The latest versions of this reference frame, e.g., ITRF2005 or ITRF2008 use terrestrial time defined on the
geoid as the reference.
The geometric equation of kinematic motion of a satellite can be defined as

7 satellite .__ 7 frame 7 satellite

T3 =Ty + ArpLe (1.1)
where Fégmme defines the reference frame (coordinate system defined by station coordinates, GNSS satellite

= satellite = satellite

orbits and clock parameters, etc.) and A is the relative geometric vector of the satellite 7; w.r.t.

rf’rume b
to that reference frame, i.e., the vector between a GNSS and a LEO satellite, or a vector between a GNSS
satellite and a ground station. Since the geometric equation of motion (1.1) does not include the dynamics of
the satellite, it is kinematic in its nature. This is why geometric orbits of satellites are also often called
kinematic orbits.

The dynamic equation of motion can be written as
+7

Ssatellite _ satellite | = 5
e =V V@ + Ttemp + non—gravitational

relativity ( 1. 2)

where VVzgeellite i the gravitational acceleration, what one could call the dynamic reference frame, Themp

denotes temporal variations of the gravitational field (tides, etc.) and ,;_ﬂ;relativity represents relativistic correc-

tions, what one could call the relativistic frame. The last term in (1.2) denotes non-gravitational contributions
to the equation of motion, such as solar radiation, Earth albedo, aerodynamic drag, etc.

1.3 LEO GPS Observation Equation

The observation equation for LEO zero-difference POD using carrier-phase measurements for the frequency
i between a LEO receiver and a GPS satellite s can be written as follows (in units of length)
Lipoi = Pipo + c(Otppo + 0ty ) — c(6t° + 6t%5") +
+6pion,i + §p7‘el + §pmul,i + 6ppco,i + 6ppcv,i + (1'3)
+A - Nigo,; + &

Ligo, LEO zero-difference phase measurement,
PLEO geometric distance,
¢ speed of light in vacuum ¢ = 299792458 m/s ,

Otrpo,ot? LEO and GPS satellite clock corrections,

5tsysﬂi,5t51’/5”‘ LEO and GPS satellite system delays (cable, electronics, etc.),
0Pion,i ionospheric delay,

0P el periodic relativistic correction and Shapiro correction,

6prrLul,i multipath, scattering, bending effects,

6ppco77; LEO phase center offset,

6ppw7i LEO phase center variations,

A; wavelength of the GPS signal (L; or L, ),

Nigoi zero-difference phase ambiguity,

g; phase noise (L; or Ly )
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For more on this subject see (Svehla and Rothacher 2005a). One can immediately recognize the well-known
observation equation for a ground station, with one exception: in the LEO case there is no tropospheric delay

to be taken into account. In order to eliminate ionospheric delays, the ionosphere-free Lg linear combination
(LC) can be formed between the LEO phase measurements L‘EEO’1 and L} EO2 On carrier frequencies f; and
fy, respectively

f 3

S
— 5 Ligo1 —

=15

Lipos (1.4)
-1 '

LbLEO,S =

In this case the LEO zero-difference observation equation can be written as follows

_ clk,3
LSLEO,S - pEEO tc: &LEO,clkﬁ —c- 6t 4 6prel + 6pmul,3 + 6ppcoﬁ3 + §p[)c17,3 +
+Bipos t €3

(1.5)

where 6t;pp .3 denotes the ionosphere-free LEO clock parameter consisting of the real LEO clock value

Ot po and the system delays (5tsy571 and 6t8y8‘2 on both frequencies:

2 2
—f2f1 f2 Ot gyen —f2f2 7 Bt gy (1.6)
1 /2 1 J2

6t po.cks = Otrpo +
In the same way the ionosphere-free GPS clock parameter can be defined as

2 2
5ts,CLK‘3 = 6t5 + 2f1 . 6tsys,1 _ 2f2 ; 5tsys,2 (1'7)
=5 =5

6pmul’3, 6ppw’3 and 6pp 3 denote multipath effects, phase center offset and phase center variations for the

ionosphere-free linear combination, respectively. The zero-difference ionosphere-free ambiguity (phase bias) is

denoted by Bjpq g, for more details we refer to (Svehla and Rothacher 2005a).

The ionosphere-free observation equation for the LEO zero-difference code measurements can be written

in the same way except that the LEO phase ambiguity parameter Bjpg 3 is not included and the first order

ionosphere effect has an opposite sign. GPS satellite and LEO system delays are different for P, and P, code

measurements. By convention, the ionosphere-free LC is said to have no Differential Code Bias (DCB), i.e.,
system delays are included in the GPS satellite and the receiver clocks, respectively, see (Schaer 1999).

The observation equation for POD based on double differences can be written by forming double-differ-
ences between the LEO and a ground station and between GPS satellites & and s:

s,k « F
Largos = (Lipos = Lyaz) = (Ligos — Lias) (1.8)

In this way we can form baselines between all ground IGS stations and the LEO satellite. It is very important
to note that, by using double-differences between LEO and ground station, the absolute tropospheric delay
for the ground station can be estimated and isolated.

As soon as we involve the GPS ground network (e.g., the IGS network), the troposphere zenith delays
and station coordinates have to be considered. In our POD approach, weekly IGS solutions for station coor-
dinates, computed at the CODE Analysis Center, and corresponding troposphere zenith delays and
troposphere gradients are introduced and kept fixed. (For more about IGS products see (Dow et al. 2005).)
For the CODE IGS products we refer to the ftp site ftp://ftp.unibe.ch/aiub/. In order to have full consistency
between IGS products and the software used, we used GPS satellite orbits, ground station coordinates and
troposphere parameters from the IGS Reprocessing Project (Steigenberger et al. 2006) run at TU Miinchen.
With regard to the IGS and the quality of the IGS products, we refer to (Hugentobler 2012) and to the GGOS
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Coventions to (Hugentobler et al. 2012). For more information on the GGOS Project of IAG (Global Geodetic
Observing System) and the combination of space geodesy techniques in the generation of the terrestrial refer-
ence frame of the Earth, we refer to (Rothacher et al. 2002), (Rothacher et al. 2004) and (Rummel et al. 2000).
For the latest generations of the international terrestrial reference frame we refer to e.g., (Altamimi et al.
2011).

1.4 Zero-, Double- and Triple-Difference POD Approaches

In the field of kinematic POD with spaceborne GPS receivers, three main approaches can be distinguished
from the point of view of differencing: zero-difference (ZD), double-difference (DD) and triple-difference (TD),
(see Figure 1.1), for more on this subject see (Svehla and Rothacher 2002), (Svehla and Rothacher 2005a).

The ZD approach, in contrast to the DD and TD approaches, only relies on the GPS observations of the
LEO and avoids the use of the ground IGS network. This is, at the same time the weakness of this solution,
because high-rate satellite GPS clocks are a prerequisite for this method of determining the position of the
spaceborne GPS receiver. One has to use the data from the IGS network to estimate a very high number of
GPS clock parameters first, and then use these to compute a kinematic orbit, which means that errors in the
GPS satellite clocks propagate directly into the LEO orbit positions. A high level of correlation exists between
clock parameters, zero-difference ambiguities and epoch-wise satellite positions. Thus we can say that the
quality of ZD kinematic orbit determination greatly depends on the accuracy of GPS orbit data, which is itself
strongly correlated to that of the GPS satellite clocks.

A very efficient alternative zero-difference approach, followed at the Astronomical Institute, University
of Berne, avoids setting up zero-difference ambiguity parameters by forming differences between phase obser-
vations of consecutive epochs, (see (Bock et al. 2003)).

By forming double-differences, i.e., baselines between the stations of the IGS network and the LEO, all
GPS/LEO satellite clock parameters can be eliminated. The present accuracy of the GPS orbits provided by
the IGS, which is in the range of 1—2 cm, is sufficient, according to the rule of thumb given by (Bauersima

1983), for there to be no significant impact on the double-difference solutions. The great advantage of the DD
approach is the possibility of fixing ambiguities to integer values and thus of improving the accuracy of LEO
POD.

By forming triple differences (differences of DD in time), ambiguities are eliminated, thus allowing very
efficient processing algorithms to be employed. The drawback of this approach is the increase of the observa-
tion noise and the need for efficient methods to correctly account for the correlations between epochs.

All three aforementioned approaches make direct or indirect use of the IGS network. In the ZD case a
global solution is needed to supply GPS satellite orbit and clock information for the subsequent kinematic
POD using ZD. Similarly, in the DD and TD cases a global solution can be used to obtain highly accurate
IGS site coordinates, the corresponding troposphere zenith delays and GPS satellite orbits. All of these pa-
rameters can be held fixed in both DD and TD POD. From the point of view of accuracy, IGS thus plays a
major role in providing the framework for LEO POD by GPS.

In all three cases the effect of the ionosphere can be eliminated by forming the ionosphere-free linear
combination. The remaining effect of multipath can be reduced to a great extent by elevation-dependent
weighting of the GPS observations of the ground network as well as the spaceborne GPS receiver. Last but
not least, the LEO antenna phase center position (offset and phase center variations) has to be exactly known
in the satellite-fixed system and we need an accurate model of the attitude of the spacecraft (e.g., from
quaternions provided by star trackers - with or without combining them with onboard accelerometer data).
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Figure 1.1 Zero- and double- difference approach in kinematic POD, (Svehla and Rothacher 2002).

1.5 Zero-Difference Approach

In the zero-difference kinematic POD for each epoch three LEO coordinates have to be estimated together
with one LEO clock parameter. Zero-difference ambiguities are the only parameters in the adjustment proce-
dure that are not epoch-specific. Figure 1.2 shows the normal equation matrix for zero-difference kinematic
POD over eleven epochs. On the main diagonal we can easily recognize 3 x 3 blocks of epoch-wise kinematic
LEO coordinates, 11 epoch-wise LEO clock parameters and, in the lower right corner, 6 zero-difference iono-
sphere-free ambiguities. We easily see the correlations between zero-difference ambiguities and epoch-wise
parameters. All zero-difference approaches rely on the availability of highly accurate GPS satellite orbits and

Figure 1.2 Normal equation matrix for zero-difference kinematic POD (11 epochs only). On the main diagonal:
3 by 3 blocks of epoch-wise kinematic coordinates, 11 epoch-wise LEO clock parameters, and in the lower right
corner, 6 zero-difference ambiguity parameters, (gvehla and Rothacher 2005a).



1.5 Zero-Difference Approach

clocks. They should be provided with the same sampling as used for the LEO kinematic POD. For the highest
accuracy, GPS satellite clocks can be linearly interpolated only for sampling below 30 s. Linear interpolation
of 5min GPS satellite clocks is not recommended for high-precision applications. It is very important that
GPS satellite orbits and clocks are consistent with each other because of the high correlations. If highly
accurate GPS satellite orbits and clocks are available, this method is very simple and reliable because it does
not involve the immense task of processing the ground IGS network. More about the zero-difference approach
can be found in e.g., (Svehla and Rothacher 2002) or (Svehla and Rothacher 2005a). An alternative zero-
difference approach based on forming differences between phase observations of consecutive epochs and avoid-
ing zero-difference ambiguity parameters, may be found in (Bock et al. 2003).
The normal equations in the least-squares adjustment can be written in the form

AlPAz = A'P (1.9)

with the design matrix A, containing in our case partial derivatives of the observation equation (1.5), the
weight matrix P of the observations, the vector of the unknown parameters x and the vector [ containing
the so-called observed-minus-computed values. If we denote in (1.9) the normal equation matrix as N = A'PA

and b= A'Pl, the normal equations (1.9) can be written as
Nz =b (1.10)

The normal equation matrix for the kinematic POD can be considered as a block diagonal, see also Figure 1.3,

thus we can separate ambiguities z; from epoch-wise parameters z,

Ny Nygljo| _|by (1.11)
Ny Nygl|zy by
where ambiguities are estimated first
(Nu _N12N2_21N21)“71 = b — NyyNoy'b (1.12)

and epoch-wise parameters are determined by a re-substitution of the estimated ambiguity parameters
Ty = Nyt (by — Ny |7 (1.13)
2 22 \%2 2141 :

In order to derive the variance-covariance matrix @, of the estimated epoch-wise parameters we start with

Figure 1.3 An elegant algorithm to calculate variance-covariances between several epochs.
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QN =1 (1.14)
and obtain the variance-covariance matrix for the single epoch

(Qy = Ny + Nyy'Noy Qy NypNgy! (1.15)
(4x4) (4x4) (nxn)
Considering (1.14) and making use of the Shur-Frobenius relations for block-matrices, we derive the variance-

covariance matrix of epoch-wise kinematic parameters @)y, over several epochs n
(4xn)

Quy = =@ 1N 1o N5y (1.16)

Qg = —Niy' NjyNy' (1.17)
(4xn) (4x4)

Figure 1.3 graphically shows the matrix Q21(4Xn> containing variance-covariance information of n kinematic

epochs as used for the GOCE mission, where the Q21( ) matrix is provided as an official product of the

4xn
GOCE mission, accompanying the GOCE kinematic orbit positions. Figure 1.4 shows the first kinematic orbits
of the CHAMP and GRACE satellites with a sampling of 30 s over one day against the reduced-dynamic
orbit. One can see that the kinematic positions in the radial direction are more affected by noise than those
in the along-track and cross-track directions, and the along-track differences show a clear once-per-rev. pattern.
The variations of the kinematic positions are in the order of 1 —2 cm .

Figure 1.5 shows typical correlations of LEO kinematic positions, with correlation length ~ 22min and

Figure 1.6 shows the first continuous CHAMP kinematic orbit with cm-level accuracy. The reduced-dynamic
orbit model used in our approach for LEO satellites is based on the dynamic model originally developed at
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Figure 1.4. First kinematic orbit of CHAMP, day 200/2002 (left) and GRACE-A, day 200/2003 (right)
against the reduced-dynamic orbit.
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Figure 1.5. Typical correlations of CHAMP kinematic positions indicating significant white noise of the epoch-
wise kinematic positions. Correlation length of approx. 22 min is similar in size to the typical observation time

of carrier-phase ambiguities.

the CODE IGS Analysis Center for GPS satellites and here subsequently adapted for use in LEO satellite
POD (Svehla and Rothacher 2002). The adaptation of this software involved, among other things, the devel-
opment of an independent orbit modeling chain in the Bernese software including kinematic and reduced-
dynamic orbit parameterization, and pre-processing of the data. First results with GPS measurements from
the CHAMP satellite showed that frequent estimation of pseudo-stochastic pulses (small velocity changes) is
a very efficient approach to modeling the orbit dynamics of a satellite at low orbit altitude. For the orbits of
the CHAMP, GRACE and GOCE satellites, pseudo-stochastic pulses are set-up every 6 min in the numerical

integration. Later (Jaggi et al. 2006) introduced the estimation of pseudo-stochastic accelerations estimated
as constant parameters. However, comparing the accuracy of kinematic and reduced-dynamic orbits for GOCE
(Bock et al. 2007, 2011), (Visser et al. 2007, 2009) with the CHAMP and GRACE results in Figure 1.4, one
can see that over the last 10 years the LEO orbit accuracy has not been significantly improved. Figure 1.7
shows the daily RMS of GRACE kinematic orbits estimated for the first 4 months of GPS data provided to
the GRACE Science Team.
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Figure 1.7. Daily RMS of kinematic orbits of the GRACE-A and GRACE-B satellite vs. the reduced-dy-
namic orbit for the first 4 months (days 182-303/2003) of GPS data provided to the GRACE Science Team.

1.5.1 GPS Receiver Clock and Kinematic POD

In the case of the CHAMP satellite, the estimated clock corrections of the internal GPS receiver clock used to
time-tag carrier-phase and code measurements w.r.t. GPS time are in the order of 0.1 us. In the case of the
GRACE mission, GPS measurements can be synchronized to GPS time very accurately in post-processing due
to the onboard K-band ranging system and this synchronization is carried out at the level of the accuracy of
the P-code measurements. In the case of the CHAMP or GRACE missions, the estimated GPS receiver clock
corrections are very small and do not create any problems concerning the interpolation of GPS clocks and the
computation of the correct distance between GPS and LEO satellites. If we consider the LEO orbit velocity
to be below 10 km/s, including the perigee velocity of a satellite in a highly elliptic orbit, a synchronization
error of GPS measurements in the order of 0.1 us will lead to an error of 1 mm. Therefore, any double-

differences between a LEO satellite and the ground network can easily be formed and this synchronization
error can easily be taken into account when forming zero- or double-differences. However, if the onboard
navigation solution is not used for the steering of the GPS receiver clock, as is the case with the GOCE
mission, the internal GPS receiver clock will slowly drift w.r.t. GPS time and the GPS measurements will be
taken anywhere in the integer second interval, since the sampling interval of GOCE GPS measurements is
1s. In this case, the orbit changes significantly from the nominal integer second position and this needs to be
properly accounted for. If GPS measurements are taken anywhere between the integer seconds of receiver
time, it is very difficult to form double- or triple-differences with the ground IGS network, since clock steering
is used for all GNSS receivers in the IGS network. For more, see (Svehla and Rothacher 2002) and (Svehla
and Rothacher 2003a). The BlackJack GPS receiver and derivatives of this device onboard several LEO mis-
sions use the calculated clock offset from the navigation solution to adjust the onboard GPS receiver clock to

10



1.5 Zero-Difference Approach

GPS time. The BlackJack receiver clock is based on a voltage-controlled quartz oscillator and the frequency
of oscillation is controlled, so that the drift is nearly zero. Navigation time solutions are used for clock steering
only when at least 5 satellites are being tracked and a valid navigation solution can be calculated. Therefore,
the GPS receiver clock drifts away from GPS time only during epochs without a valid navigation solution.
The receiver also generates a 0.1 PPS timing pulse on both timing ports. This timing pulse is coincident with
the receiver clock 10 second epoch and is used to provide a time source for the spacecraft and scientific
instruments. Note that the BlackJack GPS receiver operates without knowledge of the Anti-Spoofing (AS)
encryption code. More about the ICESat BlackJack receiver can be found in, e.g., (Williams et al. 2002).

1.5.2 Validation of Kinematic Positions with SLR

That we are not just talking about orbit consistency, but also orbit accuracy, can be seen in Figure 1.8, where
SLR residuals are shown for the same kinematic and reduced-dynamic orbits as displayed in Figure 1.6. SLR
residuals were calculated as the difference between the SLR measurements (corrected for signal propagation
effects) minus the distance between the SLR station and the GPS-derived orbit position. For the validation
of dynamic orbits, LEO positions were calculated directly from the dynamic orbit represented by the high
order polynomial in the integration step. The offset between CHAMP center of mass and SLR retro-reflector
was applied using the attitude provided in the form of quaternions. In the case of kinematic orbits, the only
difference is that kinematic positions are given with a sampling of 30 s and an interpolation procedure is

required in order to obtain positions at the epochs of the SLR normal points. A linear interpolation was used
to obtain kinematic positions along an a priori dynamic orbit. We noticed that the SLR validation of kinematic
orbits is more difficult and the necessary interpolation may easily increase the RMS. Another alternative would
be to form SLR normal points exactly at the epochs where kinematic positions are defined, but in this case

raw SLR data would have to be processed, and these are not readily available from all SLR stations.
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Figure 1.8 SLR residuals for CHAMP kinematic (top) and reduced-dynamic orbits (bottom) for GPS week
1175/2002 (days 195-201/2002). All SLR residuals were used in the analysis; elevation cut-off 10°.
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Tropospheric delays for SLR measurements were modeled using the Marini-Murray model and standard cor-
rections like ocean loading (GOT00.2), Shapiro relativistic effect and station velocities were applied. All SLR
stations and SLR measurements were used in this validation (elevation cut-off 10°). The RMS of the CHAMP
kinematic and reduced-dynamic orbits is about 2.5 cm (days 195-201/2002). It is interesting to note that the
SLR residuals show a similar pattern for both kinematic and reduced-dynamic orbits and that no significant
bias can be identified in the SLR residuals. Table 4.3 summarizes the daily RMS of the SLR residuals for our
CHAMP orbits based on four different POD approaches, namely kinematic and reduced-dynamic orbits based
on zero- and double-differences. One can see that CHAMP orbits are of similar quality for both a purely
kinematic and a reduced-dynamic approach. This also holds for CHAMP orbits calculated using either zero-
or double-differences. Slightly better orbit quality, i.e., 2.56 cm is obtained with kinematic orbits based on

double-differences.

Day Zero-diff. Zero-diff. Double-diff. Double-diff.
Dynamic Kinematic Dynamic Kinematic
195 4.02 4.17 3.22 2.66
196 2.90 2.93 3.19 3.03
197 3.40 3.11 3.29 2.90
198 2.07 2.07 1.99 1.34
199 1.94 1.66 1.91 1.70
200 1.43 1.45 1.69 1.83
201 3.59 4.65 4.32 5.00
202 2.03 2.08 1.93 2.05
Mean 2.67 2.77 2.69 2.56

Table 1.1 Daily RMS of SLR residuals in cm for CHAMP kinematic and reduced-dynamic orbits based on
zero- and double-differences (days 195-202/2002).

1.6 Double-Difference Approach

In comparison to the zero-difference kinematic POD approach, the double-difference approach requires simul-
taneous processing of the GPS ground network and the LEO GPS measurements. All possible baselines
between the LEO and the ground IGS network are formed and processed together. For each epoch three
kinematic LEO coordinates are estimated, together with the double-difference ambiguity parameters. By form-
ing double-differences, all GPS satellite clocks are eliminated and there is thus no need for highly accurate
GPS satellite clocks calculated from the ground GPS network, see (Svehla and Rothacher 2002).

The disadvantage of the double-difference kinematic approach is the very large number of observations
and ambiguity parameters originating from the IGS network. The noise of the double-difference observable is
twice as high as that of the zero-difference observable, but all clock parameters are eliminated and, what is
most important, ambiguity resolution can be performed using double-differences. This advantage of ambiguity
resolution, together with different ambiguity resolution strategies, will be discussed later in this thesis.

1.7 Triple-Difference Approach

By forming triple-differences (differences of double-differences in time), ambiguities are eliminated, which
allows very efficient processing algorithms to be employed. The drawback of this approach is the increase of
the observation noise and efficient methods are needed to correctly account for the correlations between epochs.
More about the triple-difference approach can be found in (Ijssel et al. 2003) and in (Byun, 2003].
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1.8 Parameter Space in Geometric and Dynamic POD

Table 1.2 shows the parameter statistics for zero- and double-difference kinematic and dynamic POD with
real LEO GPS data over one day. We immediately notice the very large number of phase observations stem-
ming from the approx. 100 IGS ground stations selected. This, together with the rapidly changing geometry,
is also the reason why a great number of double-difference ambiguities are involved. Compared to dynamic
parameterization, kinematic POD has many more epoch-wise parameters. Table 1.3 shows the treatment of
parameters while forming the normal equation system. In order to speed up computation, epoch-wise param-
eters (LEO clocks and kinematic positions) are always pre-eliminated epoch-by-epoch. At the end, only the
normal equation matrix consisting of parameters that are not epoch-specific remains. This is then inverted,
and by back substitution, epoch-wise parameters are obtained epoch-by-epoch, see (1.13). In the double-dif-
ference kinematic case, if more than 100 ground IGS stations are used it is more efficient to pre-eliminate
double-difference ambiguities using (1.12) and invert the normal equation with kinematic parameters first.

Solution Zero-diff. Zero-diff. Double-diff. Double-diff.
Dynamic Kinematic Dynamic Kinematic
Ambiguities 450 450 13200 13200
Orbit Parameters 300 - 300 -
Kinematic Coordinates - 8640 - 8640
LEO Clocks 2880 2880 - -
Total Number 3630 11700 13500 21840
Number of Observations 18400 18400 340000 340000

Table 1.2 Parameter and observation statistics for zero- and double-difference kinematic and dynamic POD.

Orbit Parameters
Kinematic Coordinates
LEO Clocks

estimated

pre-eliminated

pre-eliminated
pre-eliminated

estimated

Solution Zero-diff. Zero-diff. Double-diff. Double-diff.
Dynamic Kinematic Dynamic Kinematic
Ambiguities pre-eliminated estimated pre-eliminated pre-eliminated

estimated

Table 1.3 NEQ parameters in the zero- and double-difference kinematic and dynamic POD.

1.9 Ambiguity Resolution

The potential to resolve phase ambiguities and thus to achieve higher levels of LEO orbit accuracy is one of
the main advantages of the double-difference technique. Ambiguity resolution is certainly the most challenging
aspect of double-difference POD. Here we consider two major approaches to ambiguity resolution. The first is
based on phase observations only, without making use of P code measurements, and is known as the QIF
strategy (Quasi-Ionosphere-Free). The second strategy (wide-lane/narrow-lane) is based on wide-lane ambigu-
ity resolution using the Melbourne-Wiibbena linear combination and subsequent resolution of the narrow-lane
ambiguities using the ionosphere-free linear combination of the phase observables. More about LEO ambiguity
resolution can be found in (Svehla and Rothacher 2002) and (Svehla and Rothacher 2003a).

QIF Ambiguity Resolution was developed at the CODE Analysis Center for large-area permanent net-
works. The QIF strategy enables L, and L, ambiguities to be resolved in one step, in which the phase

observations on L; and L, are processed together and epoch- and satellite-specific ionospheric parameters
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1 The First Geometric POD of LEO Satellites — a Piece of History

are set up. These stochastic ionospheric parameters are slightly constrained and pre-eliminated epoch-wise.
The QIF strategy can cope with larger ionospheric errors than the phase-based wide-lane method, i.e., with
errors up to approximately two wide-lane cycles. In order to increase the percentage of ambiguities fixed by
QIF, global ionosphere maps may be used. For LEO satellites, orbiting the Earth within the ionosphere, the
total electron content (TEC) has to be reduced to account for only the free electrons above the LEO orbit.
This can, e.g., be performed by an appropriate integration of the alpha-Chapman layer. We found that the
fast-changing ionosphere (due to the high LEO velocity) and the difficulty in computing the vertical TEC
(e.g., given by IGS ionosphere maps based on a single layer model) for the altitude of the LEO, are the reasons
why the QIF approach is still problematic when used for LEO ambiguity resolution, and, therefore, it will not
be discussed further. For more on this subject we refer to (Svehla and Rothacher 2005a, 2005b).

1.9.1 Melbourne-Wiibbena Ambiguity Resolution

In order to completely avoid ionosphere effects in ambiguity resolution, the Melbourne-Wiibbena (MW) linear
combination of phase and code observations is used to first resolve the wide-lane ambiguities. At the double-
difference level the observation equation of the MW linear combination may be written as

LK f 1 kl f 2 Kkl

1| f [
Kl 1 gk 2 : . pi . p
LEO2 — 7 5 Litpor — 7 LiLro2

' i+ h=5h"

iLEO5 — iLEO1 — 7 5
)\5 fl - f2 fl - f2

(1.18)

where N leEO,s) denotes the wide-lane double-difference ambiguity, with wavelength Ay ~ 86 cm , of the base-

line from station 7 to the LEO satellite with the GPS satellites & and [; LlflLEo,j and Pz‘]EIEO,j are the phase

and P code double difference observations on both frequencies. Observation equation (1.18) is free of geometry,
clock parameters, ionosphere and troposphere delays and contains only the wide-lane ambiguity and possible
effects of multipath. It is, therefore, independent of the baseline length involved and ambiguity resolution may
be performed baseline by baseline. To resolve the wide-lane ambiguities an iterative approach (bootstrapping)
is used, where, after a first float solution, ambiguities are sorted according to best RMS and iteratively resolved
starting with the best determined ambiguities. In order to ensure that ambiguities are correctly resolved, a
double-difference ambiguity is only set to an integer value if exactly one integer lies within the three RMS
confidence interval of the real-valued ambiguity estimate. For practical reasons, two additional criteria are
used to define the pull-in region of the integer bootstrapping: (1) if the RMS of a float ambiguity is smaller
than a user-specified minimum value, this minimum value will be used to define the confidence interval. This
is necessary, because often the formal RMS of an ambiguity is too small and obviously resolvable ambiguities
will remain unresolved; (2) if the RMS of a float ambiguity is larger than a user-specified maximum value, the

ambiguity will not be resolved.
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Figure 1.9 Percentage of resolved wide-lane ambiguities using the Melbourne-Wiibbena linear combination.
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Discussions on integer bootstrapping can also be found in (Teunissen 2001), where the decorrelation of
ambiguities by Z-transformations is recommended in order to improve the success rate of the bootstrapping
method. For more on this subject see (Svehla and Rothacher 2003a), (Svehla and Rothacher 2005a).

For the sake of completeness, Figure 1.9 shows the percentage of resolved wide-lane ambiguities using
the Melbourne-Wiibbena linear combination over 11 days (140-150/2001). However, not all GNSS receivers

provide P code measurements on both the L; and L, frequencies. According to (Ray 2002), there are three
main classes of GPS receivers within the IGS network, namely: 1) cross-correlators that observe C| and
P; =C, + (P,—P) (e.g., Rogue SNR-x, AOA ICS-4000Z, Trimble 4000, and Trimble 4700); 2) Y-codeless,
non-cross-correlators that observe P, and P, (e.g., Ashtech Z-XII3, AOA SNR-12 ACT, and AOA Bench-
mark ACT); 3) €y, Y-codeless, non-cross-correlators that apparently function in a similar way to other
modern Y-codeless receivers, but report C) (instead of P ) and P, (Trimble 5700, Leica CRS1000, and Leica
SR9600). For those receivers that do not provide P code on both frequencies, the use of differential code
biases P, —C| for the GPS satellites, available from the CODE IGS AC, considerably improves wide-lane

ambiguity resolution.

1.9.2 Narrow-lane Ambiguity Resolution

If wide-lane ambiguities have successfully been resolved, the ionosphere-free linear combination of the L; and
L, phase observations can be used to resolve the corresponding narrow-lane ambiguities. The ionosphere-free

linear combination may be written in the form
kl _ Akl Kkl
Litros = Pirros + Bitros (1.19)

where the first term denotes double-difference geometrical distance and the second term the ionosphere-free
ambiguity bias. Note that other terms such as tropospheric refraction delay, multipath and noise are not
explicitly shown and higher-order ionospheric terms have been ignored. The ionosphere-free bias can be written
as

£ K 13

W i
Biipos = = 5 MNitro1 — > M Nirpoe (1.20)

=5 =1

where A; (j =1,2) denote the wavelength of L; and L, and N ;kLI po,; the corresponding double-difference am-

biguity. By introducing the known wide-lane ambiguity

Nl pos = Nitgos — Niiros (1.21)
into (1.20) we obtain
BH _ % NH € NH
iLEO3 = S5 5 ViLEos + iLEO,1 (1.22)
=5 L+ 5

where the first term contains the resolved wide-lane ambiguity and the second term is known as narrow-lane

ambiguity. In this way the ionosphere refraction has been eliminated and using only phase observations the
remaining ambiguity N ZkLl go1 can be resolved with the same algorithms as used for wide-lane ambiguities. In
comparison to wide-lane ambiguities, all baselines have to be processed simultaneously to obtain the best
possible kinematic orbit by accounting for the correct correlations between the baselines and thus obtaining

the best possible bootstrapping results. Due to the short wavelength (11.6 ¢cm ) of the narrow-lane ambiguities,
all biases stemming from the orbits of the GPS satellites and tropospheric refraction have to be modeled very
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carefully. Tropospheric biases can be corrected for by using tropospheric zenith delays (and gradients). The
impact of errors in the IGS Final Orbits for GPS satellites on double-differences with LEO satellites, given
their current level of accuracy, is negligible. The station coordinates of the ground network should be consistent
with the GPS satellite orbits. For more on this subject we refer to (Svehla and Rothacher 2005a, 2005b).

1.9.3 The Impact of Narrow-Lane Ambiguity Resolution and Tracking Geometry on
Ground GPS Double-Differences with LEO Satellites

GPS phase observations for the CHAMP satellite were simulated with a white noise of 1 mm using the same
physical and mathematical models as those used in the processing of real data. The white noise applied to the
carrier-phase of IGS stations was 1 mm and no other error sources were simulated (no systematic effects).
Simulation was carried out with a higher cut-off angle of 15°, with the maximum number of tracked GPS
satellites set to 8, and with 105 stations of the IGS ground network. Figure 1.10 shows the kinematic orbit
positions obtained with an ambiguity float/fixed solution against the true orbit used in the simulation. It is
interesting to note the systematic excursions of up to a few centimeters in the float solution caused only by
the observation noise, low number of tracked GPS satellites and probably also by the high correlation between
ambiguities and kinematic coordinates. The large deviations at about 0.75 and 2.45 hours are the result of a
small number of satellites tracked around these epochs. Figure 1.10 (right) shows the kinematic orbit with
fixed ambiguities after narrow-lane bootstrapping with 98% of the narrow-lane ambiguities resolved. A sys-
tematic once-per-rev. pattern in the kinematic orbit with float ambiguities is clearly visible in Figure 1.10
(left) and is completely eliminated after ambiguity resolution in Figure 1.10 (right), producing kinematic orbit
determination to an accuracy of less than one centimeter. This analysis shows that, if the kinematic orbit is
estimated using double-differences from the IGS network, ambiguity resolution needs to be performed due to
the very large number of ambiguities introduced by that network.
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Figure 1.10 Kinematic orbit with float (left) and fixed ambiguities after narrow-lane bootstrapping (right)
based on simulated data with high cut-off angle of 15° and max. number of tracked GPS satellites set to 8.
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Comparing the two sets of results in Figure 1.10, we may expect orbit changes in the order of a few centimeters
when fixing the double-difference ambiguities in kinematic POD based on double-differences. It is interesting
to note that, analogous to the height component for ground stations, the radial kinematic component is less
accurately determined by a factor of about 2-3.

We would like to point out that for POD of the present geodetic missions such as CHAMP, JASON and
GRACE, GPS measurements over all elevations 0°—90° are used. In the early days of CHAMP, GPS meas-
urements were collected even below the antenna horizon (down to -15°) throughout the satellite constellation,
but, due to their poor quality, all measurements below 0° elevation were rejected in the pre-processing stage
and were not used in POD. Later on, the CHAMP BlackJack software was upgraded and GPS satellites below
the antenna horizon were no longer tracked. The main part of the LEO GPS data is at elevations of 5°— 20°
and, therefore, an elevation cut-off angle of 0° is strongly recommended for any satellite mission that requires
orbits with high accuracy. The usage of a cut-off angle above 0° e.g., above 15° is very disadvantageous and
may lead to gaps in kinematic POD as shown in Figure 1.10 . It is important to note that weighting of the
phase measurements as a function of elevation is not necessary in the POD of CHAMP and GRACE, which
means that the phase measurements over the entire elevation range from 0° to 90° are of similar quality.
Elevation-dependent weighting is still required for ground GPS applications due to multipath and troposphere
effects. For more on this subject see (Svehla and Rothacher 2003a), (Svehla and Rothacher 2005a).

1.9.4 Narrow-lane Kinematic and Reduced-Dynamic Bootstrapping

Using the ionosphere-free linear combination of the carrier-phase measurements and the resolved wide-lane
ambiguities, an iterative resolution of the narrow-lane ambiguities (bootstrapping) can be performed. Two
main methods were studied to perform the narrow-lane ambiguity resolution with LEO data. In the kinematic
bootstrapping epoch-wise coordinates are pre-eliminated in order to reduce the size of the normal-equation
matrix. The first solution is a float solution where the ambiguities are real numbers. Then the best estimated
ambiguities are set to integer numbers, the normal equation system is updated and re-inverted and the whole
procedure is repeated. More about this type of bootstrapping and the criteria applied for ambiguity fixing can
be found in (Svehla and Rothacher 2002). The same procedure can also be used when estimating dynamic
orbit parameters. We then speak of dynamic bootstrapping, see (Svehla and Rothacher 2005a, 2005b).

The reduced-dynamic orbit model used in our approach is based on the dynamic model originally devel-
oped at the CODE Analysis Center for GPS orbits and here subsequently used for LEO satellites (Svehla and
Rothacher 2002) making use of the estimation of pseudo-stochastic pulses (small velocity changes). For the
CHAMP and GRACE orbits, stochastic pulses are set-up every 6 minutes. Bootstrapping with this reduced-
dynamic parameterization can be used as an independent check for the ambiguity resolution based on kine-
matic bootstrapping. When comparing the double-difference ambiguities obtained from the kinematic and the
reduced-dynamic bootstrapping no discrepancies were found.

Baseline-wise ambiguity resolution could, in principle, be applied for kinematic as well as for dynamic
orbits, but highly accurate a priori orbits have to be available in that case. The orbits are then fixed in the
baseline by baseline ambiguity resolution. The drawback of this method is that the criteria to fix the ambigu-
ities have to be very restrictive in order to ensure that ambiguities are correctly resolved. In principle, baseline-
wise ambiguity resolution can be performed iteratively: after the first baseline-wise ambiguity resolution step
a new orbit is computed making use of the fixed ambiguities and a new iteration of the baseline-wise ambiguity
resolution is performed with the updated orbits. Our experience with baseline-wise ambiguity resolution shows
that highly accurate dynamic orbit models are a prerequisite for this method. More details about Melbourne-
Wiibbena wide-laning with narrow-lane bootstrapping may be found in (Svehla and Rothacher 2002).

Ambiguity resolution was performed in the double-difference case for GPS week 1175/2002. Using the
Melbourne-Wiibbena linear combination, about 59% of the wide-lane ambiguities could be resolved. These
wide-lane ambiguities were introduced in the next step to resolve the narrow-lane ambiguities. Epoch-wise
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coordinates were pre-eliminated from the NEQ system in kinematic, and orbital parameters in reduced-dy-
namic POD, leaving ambiguities as remaining parameters for bootstrapping. The overall percentage of resolved
narrow-lane ambiguities was 27% of all ambiguities or 59% of the ambiguities for which the wide-lane ambi-
guities were successfully resolved with the Melbourne-Wiibbena approach. Comparing kinematic and reduced-
dynamic bootstrapping, no discrepancies were found in the fixed ambiguities. Due to the large number of
ambiguity parameters (5000 per day), bootstrapping is very time-consuming and requires about 100 inversions
of the 1-day NEQ for both approaches.

Figure 1.11 shows the impact of ambiguity resolution on reduced-dynamic orbits based on double-differ-
ences. Ambiguity resolution changes the determined orbit by 1—2 cm .
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Figure 1.11 Impact of ambiguity resolution: difference between reduced-dynamic orbit with float and fixed
ambiguities, day 200/2002.

1.10 Differential Code Biases and Kinematic POD

The term differential code biases (DCB) denotes biases in the tracking of different code observables, e.g.,
between P, and P, or C/A and P, code that can be individually assigned to each GPS satellite, as well as,
to each GPS receiver. When estimating the GPS satellite clock corrections from the global IGS network using
the ionosphere-free linear combination, the differential code biases are included in the clock correction. Phase
“iono-free” GPS clocks are then consistent with the corresponding GPS orbits. Unfortunately, this is not the
case for the inter-channel biases, and therefore this effect has to be correctly and very accurately calibrated.
When performing ambiguity resolution based on the Melbourne-Wiibbena linear combination, the quality of
P code measurements has to be very high and GPS satellite differential code biases should be taken into
account. In the case of the DCBs of a GPS receiver, they should be constant over time, and as small and as
independent of the environment (e.g., temperature) as possible. DCBs play a role in kinematic POD only if
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ambiguity resolution based on the Melbourne-Wiibbena linear combination is performed, or if ionospheric
delays are estimated.
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2.Reference Frame From the Combination of a LEO
Satellite with GPS Constellation and Ground
Network of GPS Stations

n this section we demonstrate the combination of a LEO satellite with the satellites of the GPS constel-

lation and the ground networks of space geodesy techniques (GPS, SLR, DORIS) in the generation of

reference frame parameters. We show clear improvements in terrestrial reference frame parameters after
the combination of the GPS constellation in MEO with spaceborne GPS, DORIS and SLR measurements from
the Jason-2 satellite in LEO orbit, including station coordinates, tropospheric zenith delays, Earth rotation
parameters, geocenter coordinates and GPS satellite orbit and high-rate clock parameters. We analyze the
impact of the LEO data on the terrestrial reference frame parameters and possible improvements they could
bring. (See also (Svehla et al. 2010b).) This is a continuation of the work performed with the GPS data from
the Jason-1 satellite, where the strong impact of the LEO data on the global parameters has already been
demonstrated by means of simulated GPS measurements and variance-covariance analysis (Svehla and Roth-
acher 2006a).

Terrestrial reference frames are usually defined by a set of station coordinates that are estimated over a
long period of time using a combination of different space geodesy techniques. However, in the case of Precise
Point Positioning (PPP) of a GPS receiver on the ground or kinematic or dynamic POD of LEO satellites
using GPS, reference stations on the ground are not directly used to estimate the orbit of a LEO satellite or
coordinates of a GPS receiver on the ground. The PPP of a ground station or POD of LEO satellites is based
on an intermediate reference frame defined by the GPS satellite orbits and epoch-wise estimates of GPS
satellite clocks. Any error in the GPS satellite orbits and clocks, or in this intermediate space-based reference
frame (that is highly temporal in nature), will map directly into the LEO kinematic/dynamic orbit and gravity
field determination (CHAMP, GRACE, GOCE), altimetry results (Jason-2, Sentinel-3, etc.) or coordinates of
a ground station. Therefore, an instantaneous terrestrial reference frame can be defined as a frame created by
the epoch-wise solution of GNSS orbit and clock parameters supported by other space geodesy techniques such
as SLR, DORIS and VLBI. In the next section we introduce the concept of phase clocks in order to consistently
bridge the gap between ground-based and space-based terrestrial frames and show how a terrestrial frame can
be transferred to the LEO orbit avoiding biases associated with the code GPS measurements.

At the end we give an insight into the generation of an instantaneous reference frame from different GPS
frame solutions (e.g., provided by IGS ACs) by means of least-squares collocation using a so-called intermedi-
ate reference sphere in LEO or GNSS orbit. The use of a simple weighted average, which is often used in the
combination of GNSS solutions from different IGS ACs without taking into account correlations in time (and
space) of each individual solution, will always introduce systematic effects that are not equally distributed
over an imaginary sphere at the GNSS orbit height.
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2 Reference Frame From the Combination of a LEO Satellite with GPS Constellation and Ground Network of
GPS Stations

2.1 General Remarks on the Combination of a LEO Satellite with the
GPS Constellation for Reference Frame Determination

In (Svehla and Rothacher 2006a) and in various publications before we demonstrated the strong impact of
LEO data (from GRACE-A&B and Jason-1 satellites) on reference frame parameters, indicating that altimetry
satellites are the best candidates for such a combination. However, due to the onboard multipath and the
performance of the Jason-1 GPS receiver, those results were not based on real GPS measurements, but rather
on simulations. In the case of GRACE-A&B satellites in a lower LEO orbit, we noticed a strong impact of the
gravity field used in the LEO POD on the combined reference frame solution.

The quality of the instantaneous reference frame defined by the GPS satellites will more strongly affect
LEO satellites in very low orbit (such as GOCE) than satellites in a high LEO orbit (such as Jason-2). This
is because the orbit of the Jason-2 satellite requires a rather modest number of orbital parameters comparable
to the parameterization of the GPS satellite orbits. Furthermore, in terms of non-gravitational forces, satellites
in a high LEO orbit are mainly affected by solar radiation pressure, whereas satellites in a very low LEO orbit
are, besides solar radiation, mainly affected by air-drag. Satellites in higher LEO orbits are very good candi-
dates for the combination of space geodesy techniques. With the Jason-2 satellite, all GPS satellites in the
GPS constellation can be connected in only a 1.5 hours, and all ground SLR and DORIS stations within the
same timeframe. One can imagine the Jason-2 satellite as a station with well-defined ties between different
space geodesy techniques collocated on the same satellite, flying below the constellation of GPS satellites and
above the ground networks of the different space geodesy techniques (GPS, SLR, DORIS, VLBI).

Thus we can draw the conclusion that altimetry satellites in higher LEO orbits with an onboard GPS,
DORIS and SLR are very good candidates for the combination of space geodesy techniques, since the orbit
parameterization is very similar to GPS satellites and the orbit is also mainly affected by solar radiation

pressure.

2.2 Terrestrial Frame Parameters from the Combination of a LEO
Satellite with the GPS Constellation

Here we used GPS, SLR and DORIS measurements from the Jason-2 satellite during the CONT’08 Campaign
(10.8.-31.8.2008) and combined them with GPS measurements from about 150 stations of the global IGS
ground network and estimated typical reference frame parameters, such as GPS orbits and clocks, station
coordinates, Earth rotation parameters, troposphere zenith delays and geocenter coordinates. In essence, we
generated typical IGS-type daily solutions and added DORIS and SLR measurements from the Jason-2 satellite
on the observational level. As a priori datum definition we used the station coordinates of GPS, DORIS and
SLR stations in ITRF2005 and a no-net-rotation condition for GPS and DORIS stations. The scale was mainly
defined by SLR measurements to Jason-2 and the coordinates of ground ILRS stations (high constraints).
Absolute phase center variations from the robot calibration (Montenbruck et al. 2009) were used for the GPS
antenna on board the Jason-2 satellite. In order to prevent the remaining systematic effects of the Jasson-2
antenna phase center offset propagating into the geocenter zcoordinate, we estimated the phase center offset
for the Jason-2 GPS antenna in the up direction. Figure 2.1 shows the impact of GPS, DORIS and SLR
measurements on Jason-2 POD as well as on the orbit determination of all satellites in the GPS constellation.
This solution was based on ambiguity resolution for GPS measurements from the ground IGS network. For
the orbits of GPS satellites, the effect is in the order of 12 —16 mm RMS. This is a significant effect,

considering that the current accuracy of GPS satellite orbit determination is at a similar level. For LEO orbit,
the main effect is in the along-track direction (three times higher than for the radial direction). However, the

radial orbit component is changed by an RMS of about 5 mm.

22



2.2 Terrestrial Frame Parameters from the Combination of a LEO Satellite with the GPS Constellation

30 T T T T T T 60 : .
T [~ Wemmws=22mm]| [ [ vemauera0mm]
£ 20 1 E 1, R o . .
£ 200 P SR T s, et § .
< /\/§ prprddcijprrbeb iy i tigg
s 0
2 L T ]l o
§ 10 \/W 2.
< < 4
o . . . . . . .
) = Py = 5 Py oS P oa I . I . .
i0 iz i4 i6 i8 20 22 24 26 -60 s 10 15 20 25 0 35
30 T T T T 60 T T T
= [ Weanrus=rimm]| o - [ vemmieizomm]
£ 20t 4 E . P <.
£ € 20 | N . il :
< SO it b e ey
3 1oL A\—, ‘2
<} \\/\ M o 201
© T © 40
o . . . . . \ .
-60 L
10 12 14 16 18 20 22 24 26 5 10 15 20 25 30 35
30 ; ; ; : 60 . ; — - -
= Mean RMS=4.6 mm ! .
E TOr o : | i
=20 1 € 20 vy FE B L T il
< T ol AR R N R A R R R R RN RN RN
s s
g 10+ B §-207
4 WMA/\/ c(_40
0 . . . . . . . © | . | ‘ . ‘
10 12 14 ® 18 20 22 24 26 o s 10 15 2 2 m 3
Time in Days 08/2008 GPS PRN Number

Figure 2.1 Impact of the combined GPS, DORIS and SLR measurements on the Jason-2 orbit (left) and the
orbits of the GPS constellation (right). Ambiguity resolution was performed for GPS measurements from the
ground network. For LEO, the main effect is in the along-track direction, for GPS all components are affected
by 12—-16 mm RMS. Notice that for the LEO, the RMS in the radial component is in the order of 5 mm

(significant for altimetry satellites that typically have an accuracy of the radial orbit component at that level).
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Figure 2.2 Impact of the ambiguity resolution carried out for GPS measurements from the ground IGS network
on the combined Jason-2 orbit (with GPS, DORIS and SLR data from Jason-2) (left) and on the determined
orbits of the GPS constellation (right). Blue/red dots show orbit solution with/without Jason-2 data in the
combination respectively, vs. ambiguity-fixed solution. For both the LEO and GPS satellites, the main im-
provement is in the along-track direction. Notice that for LEO, ambiguity resolution improves the along-track
orbit component by a factor of two compared to other components. Inclusion of GPS data from just one LEO
in the combination has a similar effect to ambiguity resolution for the entire IGS network in the GPS-only

case.
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This is a significant effect for all altimetry satellites as the typical consistency of the radial orbit component
between different solutions (e.g., JPL. CNES, ESOC, GFZ) is about 5— 8 mm, see e.g., (Flohrer et al. 2011).

Figure 2.2 shows the impact of ambiguity resolution carried out for the ground IGS network when GPS,
DORIS and SLR measurements from the Jason-2 satellite are combined with measurements from the GPS
constellation for the POD of Jason-2 and GPS satellites. One can see that ambiguity resolution improves the
along-track orbit component of the Jason-2 satellite by a factor of 2 or even 3 compared with the radial orbit
component. For the orbits of the GPS satellites, the effect of ambiguity resolution is surprisingly less visible.
However, this is what is to be expected, since inclusion of GPS measurements from the Jason-2 satellite
decorrelates all GPS orbit parameters, i.e., the LEO satellite connects all GPS satellites during just one orbit
revolution of typically about 1.5 hours. Figure 2.2 (right) shows that inclusion of GPS measurements from
just one satellite in higher LEO orbit has a similar effect to carrier-phase ambiguity resolution of the GPS
measurements for the entire IGS network (the ambiguity-fixed solution was used as a reference).

More and more altimetry satellites are now carrying GPS receivers as well as DORIS and SLR. It is
expected that, in future, GNSS receivers will track all GNSS systems as well as receive DORIS signals. With
Jason-2 we clearly demonstrated that LEO data can be included in the generation of reference frame param-
eters and that there is a good reason to do so.

2.2.1 Geocenter Estimates from the Combination of a LEO Satellite with GPS
Constellation

Table 2.1 shows the Helmert transformation of weekly station coordinates (after stacking of daily normal
equations) against the ITRF2005. One can immediately notice a very large systematic translation of the
geocenter by about —5.8 cm in the Z-direction that is very much uniform for all three weeks of the CONT’08
Campaign and also very uniform in the daily solutions. The other six parameters of the Helmert transformation
are significantly smaller. The reason for such a large effect is most likely the SLR frame, since the orbits of
the Jason-2 satellite do not indicate that there is any bias introduced by GPS data processing (e.g., phase
center definition). It is also interesting that weekly geocenter estimates drift slightly over the three weeks at
arate of about 2 mm/yr to 5 mm/yr. This is consistent with the variation of the SLR origin values as given
in (Pavlis 2012). However, Table 2.1 shows very smooth SLR origin variations estimated using only one LEO
satellite, as depicted in Figure 2.3. Unfortunately, the data set of the CONT’08 campaign is limited to just
three weeks to reliably extrapolate those values over a longer time span. Our combination of space geodesy
techniques from a LEO satellite, GPS constellations and ground GPS/SLR/DORIS networks clearly demon-
strates improvements of the combined solutions and the presence of biases in the ITRF2005 reference frame.

Weekly Geocenter Estimates (CONT’08 Campaign)

Week 1 Week 2 Week 3
dx = -0.83 mm dx = -1.78 mm dx = -1.72 mm
dy = -0.94 mm dy = -1.67 mm dy = -1.22 mm
dz = -5.90 mm dz = -5.75 mm dz = -5.60 mm
rx = 0.021 mas rx = 0.067 mas rx = 0.059 mas
ry = 0.052 mas ry = 0.055 mas ry = -0.011 mas
rz= -0.051 mas rz = -0.077 mas rz= -0.051 mas

scale = 0.13 ppb scale = 0.14 ppb scale = 0.16 ppb

Table 2.1 Helmert transformation of weekly coordinates solution (after stacking daily NEQs) from the com-
bined GPS/Jason-2 constellation (GPS, DORIS, SLR) — CONT’08 Campaign. Notice a large systematic
translation of about —5.8 mm in the geocenter zcoordinate that is very much uniform for all three weeks.
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Figure 2.3 Geometrical representation of geocenter estimation from the combination of a Jason-2 satel-
lite with the GPS constellation.

2.2.2 SLR Network Effect

Figure 2.3 and Figure 2.4 show a possible explanation for the Z-offset in the estimated geocenter — the fact
that the majority of SLR stations are located in the northern hemisphere. Any common range bias and typi-
cally the high weight of SLR measurements will bias the determined orbit of the Jason-2 satellite towards the
Northern hemisphere. Any frame translation in a west-east direction will average out. However, due to the
uneven distribution of SLR stations this is not the case with the Z-direction.

Let us now see if there is any similar offset in the GPS satellite orbits after combination. Figure 2.5 shows
the translation and scale of the GPS constellation after the combination with Jason-2 data (GPS, DORIS,
SLR). One can immediately see a large offset of —5.4 mm in the geocenter zcoordinate that is very similar

to the Z-offset of —5.8 mm in Table 2.1. Thus, both Jason-2 and GPS orbits are shifted by the same amount

in the Z-direction. In addition, very interestingly, Figure 2.5 (right) shows that the combination of GPS
measurements from a ground network observing the GPS constellation and GPS data from a LEO satellite

SLR Frame
Translations

Figure 2.4 Possible explanation for the Z-offset in the geocenter — the fact that the majority of SLR stations
are in the Northern hemisphere. Any frame translation in a west-east direction will average out.
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Figure 2.5 Translation (left) and scale (right) of the orbits of the GPS constellation after combination with
Jason-2 data (GPS, DORIS, SLR). Notice a large systematic translation of —5.4 mm in the zcoordinate that
is very similar to the geocenter Z-offset of —5.8 mm in Table 2.1. The scale difference after combination
indicates that the Jason-2 data reduces the SLR bias in GPS orbits (GPS scale) by 5 mm (0.2 ppb).

reduces the SLR bias in GPS orbits by 5 mm. From this, we can conclude that there must be some residual
SLR bias in GPS satellite orbits in the order of about —5 mm . This effect is mapped into LEO orbits (mainly
in along-track and radial) and due to the typically high weight of SLR measurements and the majority of SLR
stations being in the Northern hemisphere, this then shifts the entire GPS/LEO frame in the Z-direction.
Thus, there is a bias between SLR and GPS frames that could be removed to a great extent by estimating
LEO antenna phase center offset.

2.2.3 Earth Rotation Parameters from the Combination of a LEO Satellite with GPS
Constellation

Figure 2.6 shows the effect on X-Pole and Y-Pole coordinates of a combination of GPS, DORIS and SLR data
from the Jason-2 satellite in high LEO orbit with the satellites of GPS constellation and ground IGS/IDS/ILRS
networks. One can see a bias of the order of 0.4 mas in both X-Pole and Y-Pole and the effect is within
0.15 mas peak-to-peak over a period of three weeks of the CONT’08 Campaign. This bias of 0.4 mas gives
about 1.2 mm at the Earth’s surface or about 5.1 mm at GPS orbit altitude. However, those are daily solu-
tions, without any stacking of normal equations over a longer period of time. Figure 2.7 shows corresponding
length-of-day estimated for the same period.

Since combining LEO space geodesy measurements (GPS, DORIS, SLR) with the GPS constellation gives
the main orbit effect in the along-track direction (for both LEO and GPS satellites, see Figure 2.3), it is
expected that about 16 LEO orbit revolutions per day could “see” the sub-daily parameters in Earth rotation.
However for this, it is expected that the ambiguity resolution for LEO GPS measurements would need to be
performed. Later in this thesis, we introduce the concept of track-to-track ambiguities, where, by connecting
16 LEO ambiguity parameters per GPS satellite over one day, one could obtain only one ambiguity per GPS
satellite. Thus, by reducing the number of ambiguity parameters, it is expected that the LEO GPS data will
significantly contribute to the estimation of daily and sub-daily Earth rotation parameters.
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Figure 2.6 Impact of the combination of Jason-2 data (GPS, DORIS, SLR) with GPS constellation and ground
IGS/ILRS/IDS networks on pole coordinates (left) and rates in pole coordinates (right). CONT’08 Campaign.
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Figure 2.7 Impact of combination of Jason-2 data (GPS, DORIS, SLR) with GPS constellation on length-of-
day (LOD). CONT’08 Campaign.
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2.3 An Instantaneous Reference Sphere — A Proposal for the GNSS Orbit
Combination and Terrestrial Frame Realization by Means of Least-
Squares Collocation

An instantaneous terrestrial reference frame can be defined as a frame realized by the epoch-wise solution of
GNSS orbit and clock parameters supported by other space geodesy techniques such as SLR, DORIS and
VLBI. It is typically formed by 7-8 GPS satellites in the field of view of a ground station or LEO satellite. In
the case of orbit determination of LEO satellites or Precise Point Positioning (PPP) of a ground GPS receiver,
we use an intermediate space-based terrestrial reference frame given by GNSS orbit and clock parameters and
not by station coordinates on the ground. Terrestrial reference frames are usually defined by a set of station
coordinates that are estimated over a long period of time using a combination of different space geodesy
techniques such as GNSS, SLR, DORIS and VLBI. This intermediate instantaneous space-based reference
frame is temporal in nature and any error in, e.g., GNSS satellite clock parameters will map directly into the
LEO kinematic/dynamic orbit, gravity field determination (CHAMP, GRACE, GOCE), altimetry results (Ja-
son-2, Sentinel-3, etc.) or PPP coordinates of a ground GPS receiver. In the next section, we introduce the
concept of phase clocks (carrier-phase estimation of GNSS clock parameters) in order to consistently bridge
the gap between ground-based and space-based terrestrial frames and thus develop a bias-free means of trans-
ferring a terrestrial frame to LEO orbit considering typical systematic effects and biases associated with the
GPS code measurements. One could assume that GNSS orbit solutions provided by different IGS ACs or IGS
Final GNSS orbits themselves are a significantly better tool for generating phase clocks for GNSS satellites
and defining this intermediate space-based terrestrial frame. By definition, IGS Final GNSS orbits are the best
in terms of RMS compared to any other solution. However, colored noise introduced by a combination of
different orbit solutions directly maps into the LEO kinematic/dynamic orbits, gravity field determination
and altimetry results. The same is true of high-rate IGS clock parameters for GNSS satellites that are combined
as a weighted average of different solutions, however without taking into account any correlation in time
between the subsequent epochs of the individual solution. Compared to precise point positioning, for a series
of applications in geosciences, IGS Final Orbits/Clocks are not always the best option.

Therefore, from the point of view of least-squares, least-squares collocation is an alternative and promising
approach for the combination of different IGS orbit solutions and for the realization of the intermediate
instantaneous space-based reference frame. Rather than using a weighted average between different GNSS
solutions every epoch (as is done now), one could have a different covariance function for each individual
solution that would correctly model noise and correlations between epochs over time. As a result, least-squares
collocation would provide an unbiased estimate (zero-mean). Typically, in least-squares collocation one splits
the noise from the signal associated with the homogeneous and isotropic covariance function to obtain the
best estimate of parameters for a given set of observables. In this way, one could filter out and smooth spatial
and temporal systematic effects in each individual solution.

Following (Moritz 1980) the observation equation in least-squares collocation can be written as

l=Az+s+n (2.1)

where z is the vector of estimated parameters, A is sensitivity or design matrix and [ is the vector of obser-
vations, often denoted as “observed-minus-computed” (—I ). In the case of least-squares collocation, the vector
of errors is split into two parts: in addition to the measuring errors n ("noise”) we have the “signal” s. The
noise n is a random (stochastic) quantity with a probability distribution with the mathematical expectation
denoted here by FE . The signal s is not a stochastic quantity in the same sense as noise, i.e., repeated obser-
vation of the same quantity give different noise values, but the values for signal s remain the same. Thus,
expectation E{s} =s and E{n} = 0. If we now introduce an operator M that denotes a homogeneous and
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2.3 An Instantaneous Reference Sphere — A Proposal for the GNSS Orbit Combination and Terrestrial Frame
Realization by Means of Least-Squares Collocation

isotropic average over the sphere, rather than an expectation in a probabilistic sense, we may write M{s} =0

and M{n} = n. This leads us to the following condition of the least-squares collocation

slCts +nlCy n = min (2.2)

nn

with the estimated unknown parameter vector
z=(ATC1A)TATCY (2.3)
and estimated values of the signal (predicted and/or filtered)
§=0.,C'(1-Ax2) (2.4)
where
C=0C,+C,, (2.5)

where C,, is the noise covariance matrix, C', the signal covariance matrix and C, contains covariances

between a new and the given signal points. (For more about least-squares collocation and determination of
empirical covariance functions we refer to (Moritz 1980)). The reason why least-squares collocation can offer
realization of an instantaneous reference frame that will provide homogeneous and isotropic positioning, is
that the empirical covariance function of the signal is determined only as a function of distance (or time), i.e.,
an angle between two points on the reference sphere. Therefore, collocation can map the remaining residual
signal in the combination of space geodesy techniques or in the generation of an instantaneous reference frame
in a theoretically correct way. The use of a simple weighted average between different solutions that is often
used in the combination of GNSS solutions from different IGS ACs without taking into account the correlations
in time (and space) of each individual solution, will always introduce systematic effects that are not equally
distributed over a reference sphere at the GNSS orbit altitude. Figure 2.8 shows an instantaneous reference
sphere at the GNSS or LEO orbit altitude that one could use to model residual systematic effects in each
individual GNSS solution.

T "*'«1 GNSS satellites (GPS)

Instantaneouss

Reference Sphere

Figure 2.8 Reference frame realization by least-squares collocation on the reference sphere placed at the alti-
tude of the LEO/GNSS orbit, offering optimal combination and variance-covariance properties.
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2 Reference Frame From the Combination of a LEO Satellite with GPS Constellation and Ground Network of
GPS Stations

In addition, for a given reference sphere at LEO orbit, one could construct a global grid of epoch-wise posi-
tioning solutions (epoch by epoch), and by generating temporal maps on that reference sphere one could
monitor geographically correlated errors of the instantaneous reference frame realization based on GNSS orbits
and clock parameters provided by different IGS Analysis Centers. This would be analogous to temporal gravity
field maps modeled by spherical harmonics.

In the next step, the orbits of different LEO satellites could be mapped onto that reference sphere in
LEO orbit and a combined instantaneous terrestrial reference frame based on a GNSS constellation (and LEO
data) could be generated using least-squares collocation with parameters. This would be the spatial approach
to the generation of the terrestrial frame using GNSS (and LEO) data. Another, straightforward, classical
approach is to combine the LEO with a GNSS constellation and ground IGS/ILRS/IDS networks at the
conventional normal equation or observation level. The advantage of the spatial combination strategy is the
possibility of obtaining a reference frame that will give homogeneous and isotropic positioning results over the
entire reference sphere at the LEO orbit altitude, irrespective of the location and direction (azimuth) on the
sphere. Here, homogeneous positioning is defined as positioning that provides the same consistency or spatial
correlation anywhere on the reference sphere and isotropic means over all azimuths, for any given point on
the reference sphere. By definition, correlation functions of the instantaneous reference sphere include all
information already contained in the normal equations of the individual IGS solutions or frame solutions of
the space geodesy techniques, the difference is only that a spatial dimension is introduced in the combination
or generation of the terrestrial reference frame by least-squares.

Least-squares collocation is thus a very good candidate for providing an alternative to conventional ap-
proaches in the combination of individual reference frame solutions (e.g., by IGS) or in the generation of
terrestrial reference frames (e.g., by IERS) in order to provide globally homogeneous and isotropic positioning
results.
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3.Geometrical Model of the Earth’s Geocenter
Based on Temporal Gravity Field Maps

n this section we derive the rate in geocenter zcoordinate from the secular rate of low-degree odd

coefficients (“pear-shaped”) over the last 10 years (GRACE RLO05) and compare it with results from the

global GPS and SLR solutions, tide-gauge records over the last 100 years and the limited data set of
geocenter zcoordinates estimated from the combined orbit determination for the Jason-2 satellite and the
GPS constellation. This confirms the initial assumption that the asymmetrical mean sea lever rise between
the Northern and the Southern hemispheres is reflected in the rate of asymmetric surface spherical harmonics
("pear-shaped”). Following (Cazenave and Llovel 2010), satellite altimetry observations suggest that the mean
sea level has been rising faster over the Southern than over the Northern Hemisphere, whereas recently (Wop-
pelmann et al. 2014) using selected tide-gauges measurements corrected with the glacial isostatic adjustment
(GIA) and GPS velocities report the opposite sign, i.e., the mean sea level rise of 2.0 £ 0.2 mm/yr for the
Northern hemisphere and 1.1 + 0.2 mm/yr for the Southern hemisphere. Based on the 10 years of GRACE
gravity field models (GRACE RLO05), we can draw the conclusion that difference in the mean sea level rise
between the Northern and the Southern hemispheres is reflected in the rate of the z-coordinate of the geocenter
confirming the assertion (sign) of (Cazenave and Llovel 2010), i.e., that the mean sea level has been rising
faster over the Southern than over the Northern hemisphere.

3.1 Interhemispheric Temperature Asymmetry and Ocean Mass Flux
Between the Northern and Southern Hemispheres

The very first reaction when presenting the weekly z-coordinates of the geocenter in Table 2.1 arising from a
combined orbit determination of Jason-2 and the GPS constellation of satellites (Svehla et al. 2010b), was
that the source of the constant geocenter offset was in the inhomogeneous distribution of the SLR network
between Northern and Southern hemispheres, (Pavlis, priv. com.). However, a closer look at Table 2.1 reveals
a rate that is very much constant from week to week and, when extrapolated to the entire year, gives a rate
of about 2 mm/yr to 4 mm/yr. However, this extrapolation is based on the very limited data set of the
CONT’08 Campaign (about one month only). We should bear in mind that the relative dynamics of a LEO
satellite and the GPS constellation is a new, unique tool, since in this case the orbit of the Jason-2 satellite is
tied to the GPS constellation of satellites and not directly to the reference frame realized by the ground
network, as is the case with DORIS satellites. From this point of view, the sensitivity of relative dynamics
between a LEO satellite and GPS constellation is a completely new tool in the research of the system Earth
and the estimation of the annual amplitude in the z-coordinate of the geocenter and secular rates. Any secular
rate in the zcoordinate of the geocenter would indicate a secular rate in the mean sea lever rise between the
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3 Geometrical Model of the Earth’s Geocenter Based on Temporal Gravity Field Maps

Northern and the Southern hemispheres. This analysis leads us to another idea, namely that rate in the z
coordinate of the geocenter could also be derived from the gravity maps provided by the GRACE mission.

(Cazenave and Llovel 2010) quantify the role of the thermal expansion of the oceans, land ice mass loss,
and land water—storage change in the global sea-level rise measured by radar altimetry. Thermal expansion of
the oceans and melting of the polar ice-sheets are the two main contributors to sea-level rise in general.
Approximately one-third of the sea-level rise has been attributed to thermal expansion and two-thirds to the
melting of the polar ice-sheets and mountain glaciers, (Cazenave and Llovel 2010). However, since 2003 accel-
eration in glacier melting and ice mass loss from the ice sheets has increased this to 80% (Cazenave and Llovel
2010), see also (Cazenave et al. 2009). The sea level variations due to anomalies in temperature and salinity,
or so-called steric variations, are associated with the density or the volume of the water column.

Recently, (Friedman et al. 2013) showed that global warming is faster in the Northern hemisphere than
in the Southern hemisphere, with some of the most rapid warming rates located in the Arctic regions of the
Earth, where sea and land ice is rapidly thinning and shrinking faster than in Antarctica. (Friedman et al.
2013) introduce the so-called interhemispheric temperature asymmetry (ITA) as an emerging indicator of
global climate change and report that the observed annual mean ITA (Northern minus Southern) has varied
within an 0.8°C range over the last 100 years and has featured a significant positive trend since 1980. (Fried-
man et al. 2013) attribute this increase to the uneven spatial impacts of greenhouse forcing, which result in
amplified warming in the Arctic and northern landmasses. This is largely because the Northern hemisphere
has less ocean and more land than the Southern hemisphere, and oceans warm relatively slowly, (Friedman et
al. 2013). Another consequence of the Northern hemisphere becoming warmer is the tendency tropical rainfall
to extend northward. This means a northward extension of the wet season in sub-Saharan Africa and South
America (Amazon) and an increase in extremes in the monsoon weather systems in Asia, see (Friedman et al.
2013). At the same time, (Luderer et al. 2013) point to global ocean currents as another factor confirming
asymmetrical warming between Northern and Southern hemisphere. Global currents, such as the Gulf Stream,
transport heat from the Southern hemisphere and into the Northern hemisphere, primarily to the North Pacific
and North Atlantic.

All this implies that any asymmetric mass flux between the Northern and Southern hemispheres should
be reflected in the zcoordinate of the geocenter. Following (Cazenave and Llovel 2010) satellite altimetry
observations suggest that the mean sea level has been rising faster over the Southern than over the Northern
Hemisphere. On the other hand, most altimetry satellites are placed at an inclination of approx. 66°, thus
mainly mapping sea level rise in the mid-latitudes and equatorial waters. Although the altimetry orbits are
symmetrical w.r.t. the equator, this is not the case for the amount water in the oceans, i.e., the Northern
hemisphere has less ocean than the Southern hemisphere. Therefore, altimetry satellites measure sea level rise
mainly in the southern waters and not globally.

Thus we can draw the conclusion that symmetries in the mass flux between the Northern and Southern
hemisphere should be reflected in the gravity field maps from the GRACE mission and potentially also in the
geocenter zcoordinates derived from the combined orbit determination of altimetry and GPS satellites.

3.2 The Geocenter Rate from Pear-Shaped Zonal Spherical Harmonics

Following (Heiskanen and Moritz 1967), degree one gravity field coefficients C,,, C}; and S); are directly

related to the center of mass coordinates (z,y,2) as the origin of the coordinate system by

z x Yy
Cyp= R Gy = R Sy = R (3.1)
® ® ®
Therefore, the rate in the translation of the geocenter z-coordinate could be related to the first degree gravity
field coefficient C,, by
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3.2 The Geocenter Rate from Pear-Shaped Zonal Spherical Harmonics

dz R dCy,

“ _R 3.2
dt D gt (32)

with Ry being the Earth’s semi-major axis. Unfortunately, gravity field maps from the GRACE mission
delivered on a routine basis by JPL, CSR and GFZ do not provide degree one harmonics of the spherical

harmonic expansion of the Earth’s gravity field. This would be a direct measure of this effect. However, any
mass flux between the Northern and the Southern hemisphere should be reflected in the asymmetrical surface
spherical harmonics (that are not symmetrical with the equator), such as odd zonal degree harmonics that
depend only on geographical latitude. They are of odd degree and are asymmetric w.r.t. the equator, so-called
“pear-shaped”.

Let us now write Earth’s gravitational potential V in the form of a spherical harmonic expansion as a
function of the geocentric coordinates (r,0,\)

> I RY

V(r,0,\) = o Z Z —:’an(cos 0) (C’nm cosmA+ S, sin m)\) (3.3)

n=0m=0 T

with the un-normalized spherical harmonic coefficients C,,, and S, and the P, (cosf) denoting the un-

normalized associated Legendre polynomials of degree n and order m . Let us now write surface spherical

harmonic Y, (6,)) in (3.3) in the complex form
Y, (0,\) = P, (cos@)e™ (3.4)

that gives three forms of spherical harmonics: zonal, tesseral and sectorial harmonics

zonal (m =0) tesseral (m = n) sectorial (m = n)
cos(mA)P,, (cosf) cos(nA)P,, (cosb) (3.5)
sin(mA)P,_(cos6) sin(nA)P,, (cosd)

nm

P,.(cos0)

Considering that temporal variation of a spherical harmonic should be equivalent to the temporal variation of
spherical harmonic coefficient itself, one can write the following relation for the translation along the z-direction
for zonal harmonic with m =0

— -1
dY, (cosf) dY,,(cosb)dz dC, dz ——dC,y|dY,o(cosb,,.0n)
di & dt dt I TR R B d (3.6)

since for the vertically oriented zonal surface spherical harmonic we have dY,(cosf)/dt = dC,/dt. This can
also be seen if we scale surface spherical harmonic Y, (6,A) in (3.4) by spherical harmonic coefficients written

in the complex form K, =C,  +S,,.1¢

K, Y,,0,)\)=C, P (cos@)cosmA+S,, P, (cos@)sinmA (3.7)
that for m =0 gives
K,,Y,0(0)=C, P, (cosd)cosOA (3.8)
The y2n+1 in (3.6) stands for the normalization factor. The mean derivative dY,(cos#,,.,,)/dz can be
calculated from the mean value theorem for integrals in the following way
dYnO (COS emean) _ 1 fR*T" dYTLO(COS 9) dz (39)
7RG dZ

dz 2R,
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3 Geometrical Model of the Earth’s Geocenter Based on Temporal Gravity Field Maps
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Figure 3.1 Normalized odd zonal degree coefficients (“pear-shaped”) from GRACE monthly gravity fields,
RLO05. One can clearly see an annual period and a very strong rate in all odd zonal degree coefficients up to

degree 57 o - For higher degrees this rate is smaller and lost in noise. This consistent rate in the first odd zonal

coefficients and the 10 times higher amplitude of 530 (compared to other odd coefficients) confirms the initial

assumption that ocean mass flux between the Northern and the Southern hemispheres should be reflected in
the asymmetric surface spherical harmonics and the observed rate of the z-coordinate of the geocenter from
our combined reference frame solution with Jason-2 and GPS satellites.

Since cosf = z/ R, for the first three odd spherical harmonics ("pear-shaped”) we can derive

3
Yy, (cos @) = Py, (cos @) cosOX = 22 32
2R} 2R,

632° 702 15 2

8 R2 8 R} B8R,

7 5 3
Y, (cos @) = Py (cos @) cosOX = 49z 09327 (31527 35 2z
16 RZ 16 RS 16 R} 16 R,

Yy, (cos @) = Pyy(cos ) cosOA =

(3.10)

In the next step we approximate annual periodic variations of odd zonal degree coefficients from monthly
gravity field maps in Figure 3.1 with amplitudes A, and A, taking into account secular rates én() and ‘§n0
relative to nominal epoch #, = 2003.0 . Therefore, the adjusted model of temporal gravity field coefficients for

C,ot) and S ,(t) as a function of time is finally

o) =Co(ty) + Cogt + A, cos(wt + Ay, )
n0 (t) = §n0 (tO) + gnOt + As COS(Wt + AOS)

I QI

(3.11)

n

with
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3.2 The Geocenter Rate from Pear-Shaped Zonal Spherical Harmonics

Cyy = (0.78 £0.03)- 10710 cos(wt)
Csy = (1.04 +0.01)- 10710 cos(wt) (3.12)
Cqo = (0.29£0.01)- 10710 cos(wt)

where time ¢ is measured in days and w denotes annual frequency w = 27 /365.25.

%(530) = R@)\/? % (0.78-10710) cos(wt) = 1.3 mm x cos(wt)  +0.05 mm

%(550) = Ro\11 x(1.04-10710) cos(wt) = 2.2 mm x cos(wt)  +0.03 mm (3.13)
%(570) = R_\15 % (0.20-10710) cos(wt) = 0.7 mm x cos(wt)  +0.03 mm

Considering that the pear-shaped term 530 is 10 times larger than other low-order odd coefficients, for the
period of the CONT’08 Campaign (August 2008) we obtain dz/dt(Cy,) = —0.1 mm/2 weeks , whereas for the
geocenter rate from LEO/GPS combination we obtain dz/dt = —0.15 mm/2 weeks . Note that the data set of
the CONT’08 Campaign (August 2008) is limited to three weeks only. Our annual amplitude of 2.4 mm is
consistent with the ~ 4 mm annual amplitude of SLR zorigin values as given for the same period in (Pavlis

2012) using 30-day boxcar smoothing of SLR geocenter values (but significantly noisier). This value is also
consistent with the annual amplitude of the mean see level variations of about 2.5 mm due to geocenter
variations as reported in (Pavlis 2012).

Let us now look at the secular rate of the odd zonal degree coefficients in Figure 3.1 based on GRACE
monthly gravity fields. For

(—0.60 £0.07)-1071°/10 yr
(—0.62£0.03)-1071°/10 yr (3.14)
(=0.3140.03)-10719/10 yr

Ty
s
Cro

we obtain the following geocenter translation rate

d % (Cyy) = RoNT X (=0.60-10710) /10 yr = —1.0 mm/10 yr  +0.13 mm/10 yr

& 050 R, J11%(~0.62-10719) /10 yr = —1.3 mm/10 yr £ 0.07 mm/10 yr (3.15)
d Cm Ro15 % (~0.31-1071) /10 yr = —0.8 mm/10 yr  +0.07 mm/10 yr

In all three cases we see a rate of the geocenter zcoordinate of —2.4 mm/10 yr , consistent with the rate of
0.232 mm/ yr in the mean sea level due to the SLR geocenter rate in ITRF2005, as reported in (Pavlis 2012).
Therefore, we can draw the conclusion that the sea level rise of about 3.1 mm/yr can be explained by the
asymmetric water mass flux in the oceans between Northern and Southern hemispheres giving a rate of
—2.4mm/10 yr for the zcoordinate of geocenter.

It is very interesting that geocenter translation rates derived from temporal gravity field maps are very
close to the secular reference frame translation rates derived from the tide-gauge records, and from GPS and
SLR solutions. During the review of this thesis, (Santamaria-Gémez et al. 2014) reported a secular rate in the
zcoordinate of the geocenter of 0.29 mm/yr as derived from GPS and 0.18 mm/yr from SLR data over the
last 20 years against the ITRF2008 frame. As expected, the tide gauge records over the last 100 years gave a
higher value of 0.9 mm/yr (corrected for GIA, see (Santamaria-Gémez et al. 2014)). This smaller value is in
line with the anticipated hemispherical pattern of sea level rise over the last several decades, indicating an
increased rate of rise in the mean sea level compared to the longer 100 year period (by 50%).
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3 Geometrical Model of the Earth’s Geocenter Based on Temporal Gravity Field Maps

GPS SL i CRACE
Origin rate in 2 R Tide-gauges Gravity Maps
. last 20 years | last 20 years last 100
axis last 10 years
years
(Santamaria- 0.29 mm/yr | 0.18 mm/yr | 0.90 mm/yr -
Gémez et al
2014)
) ) ) —1.0 mm/10yr £ 0.13 mm
This work, 2013
GRACE

Annual Ampli- SLR Gravity Maps

tude in z-axis last 20 years last 10 years

(Pavlis 2012) 2.5 mm -

This work, 2013 - 1.3 mm #£ 0.05 mm

Table 3.1 Reported rate in the zcoordinate of the geocenter from the global GPS and SLR solutions for the
period of the last 20 years compared to tide-gauges records (GIA corrected) over the last 100 years.

Here, for the first time, we have derived a similar reference frame rate from the analysis of the GRACE gravity
field maps. The tide-gauge records over the last 100 years gave, as expected, a higher value compared to the
values derived from the orbit determination of GPS and SLR satellites and GRACE gravity field models. The
reference frame rate obtained from GRACE gravity field maps is very similar to that from GPS and SLR
solutions with, however, an opposite sign. Bottom part of the table shows annual amplitude in the zcoordinate
of the geocenter as derived from the GRACE gravity models over the last 10 years and shows a very good
agreement with the amplitude derived from the SLR reference frame solution.

3.3 Rate in the Even-Degree Zonal Spherical Harmonics as a Measure of
Sea Level Rise and Intrinsic Scale of the Reference Frame

The central term of the gravity field 500 of the spherical harmonic expansion defines the mean gravitational

potential of the Earth. In the case of homogeneous sea level rise over all oceans it is expected that only zonal
surface spherical harmonics will be affected since they are symmetrical w.r.t. the equator. The mean gravita-
tional potential as well as the shape of the oblate ellipsoid will not be changed under this assumption. Thus,
one could expect a scale type effect that will be reflected in a change of the mean sphere in the expansion of

the Earth’s gravity field in terms of spherical harmonics. The derivative of the radius R, of the mean sphere

of the spherical harmonic expansion can be calculated from the mean value theorem for integrals in the

following way

dY,0(€08 Onean) _ 2 LR*MW (3.16)

dR,, R, dR.,
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3.4 Is There a Secular Rate in the Gravitational Constant?

Since for the first odd zonal spherical harmonics

322 1
Yyq(cos8) = Pyy(cosf)cosON = =— — =
2R2 2
4
Y, (cos @) = Fy,(cosf)cosOA = 3527 30 27 2 + 3 (3.17)

8 Ré 8 Rf@ 8
231 20 315 2% 105 22 5

Y. (cosf cosf)cosO N\ =——— —— —— — —
60( ) = Py ) 16 Ré 16 R% 16

we obtain the rate in the scale of the geometrical frame that defines expansion of Earth’s gravitational field
in terms of spherical harmonics

dR
(020) 5x(—1.7-10719) /10 yr = —2.4 mm/10 yr

dR
— (Cyo) = RaV9 % (—1.0-10719) /10 yr = —1.9 mm/10 yr (3.18)

dR,
e (Ceo) = Ry \/73>< —0.9-10719) /10 yr = —1.7 mm/10 yr

or the relative rate in the scale of —0.5 ppb/10 yr. The scale of the conventional terrestrial frame is defined
by the scale of the station coordinates of the ground networks of space geodesy techniques fixed to the conti-
nental FEarth’s crust. Here we show that spherical harmonics also contain an intrinsic scale and one can use
temporal gravity field maps to monitor its variations over time. This scale does not influence the mean grav-
itational potential nor the shape of the oblate ellipsoid, but rather defines the scale of the background
geometrical reference frame that defines the expansion of spherical harmonics. Eq. (3.18) shows that this
geometrical scale can be monitored by temporal gravity field maps. Since the radius of the mean sphere
approximates the global mean see level, a constant rise of the mean sea level will be reflected in the rate of
the estimated even degree zonal gravity field coefficients or equivalently in the radius of the mean sphere used
in the expansion of spherical harmonics.

3.4 Is There a Secular Rate in the Gravitational Constant?

Is there any secular rate in the gravitational constant? Can we see it from the GRACE gravity field maps?
Over the last 10 years, there have been many discussions arguing that the gravitational constant, as well as
other constants of the Standard Model used in physics do experience variations over time, most likely in terms
of secular rates. Since the gravitational constant is not estimated as a parameter of the GRACE mission it
will be reflected in the estimated low-order gravity field coefficients, i.e., the rate in the gravitational constant
G is equivalent to the rate of the first few low-degree harmonics. Therefore, we may establish the following
relation

ﬁ anO dSnO

(3.19)
dt dt dt
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Figure 3.2 Normalized even zonal degree coefficients from GRACE monthly gravity fields, RL0O5. One can

clearly see an annual period and a very strong rate in all even zonal degree coefficients up to degree 56 o of

the order of déno/dt =—-0.5-10"19/10 yr . For 5270 the secular rate is higher by about one order of magnitude.

Figure 3.1 shows a very uniform rate in the first few low-degree odd coefficients of the Earth’s gravitational
field as provided by the GRACE missions over the last 10 years. One can see this uniform rate especially for

the pear-shaped coefficients 530 and 550, c.f. d530/dt ~ d550/dt ~ —1-10719/10 yr. Figure 3.2 confirms a
similar rate also for the first gravity field coefficients of the even-degree in the order of

déno/dt =—-0.5-10"19/10 yr. For 5270 , the secular rate is larger by about one order of magnitude. Recently,

Kasevich’s Group at Stanford has reported the measurement of the gravitational constant using a gravity
gradiometer based on atomic interferometry, see (Fixler et al. 2007). The gradiometer measures the differential
acceleration of two samples of laser-cooled Cs atoms. They reported a standard error of the estimated gravi-
tational constant of £0.027 x10 ! m3kg~'s~2 and a systematic error of +0.021x10!! m3kg~'s2. The
standard deviation of this measurement is about two to three orders of magnitude lower than that of the rates
of low-degree gravity field coefficients one can see in Figure 3.1 and Figure 3.2.

On the other hand, we do have a possible geophysical explanation for the temporal rates in the low degree

coefficients, especially for 52 o and the “pear-shaped” term 53_0 that are also visible in the reference frame

parameters. Therefore, we may draw the conclusion that a secular rate in the gravitational constant is not yet
visible in the GRACE gravity field maps and, if it exists, is most likely hidden in the geophysical signal and
aliasing effects. One should also bear in mind that the gravitational force is extremely weak when compared
to other fundamental forces, i.e., 39 orders of magnitude weaker than the electromagnetic force. This can easily
be shown by using the mass of the proton and the electron and Newton’s universal law of gravitation to
calculate the gravitational force and then comparing that with the electromagnetic force calculated between
the same two particles. Here we did not consider any changes in the total mass of the Earth M and the
exchange of material between the Earth’s atmosphere and outer space.
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4.First Phase Clocks and Frequency Transfer

n (Svehla and Rothacher 2004a), (Svehla and Rothacher 2004b), (Svehla and Rothacher 2005a), and in
(Svehla and Rothacher 2006b) it was demonstrated for the first time that clock parameters for GPS
satellites and ground stations can be estimated solely from the carrier-phase GPS measurements. These

also allow frequency transfer with a very high level of accuracy of a few parts in 10716 (~ 25 ps/day in terms

of linear time rate). The main motivation for the development of the phase clock approach is to avoid the
colored systematic noise that is introduced by using code, or smoothed code GPS measurements and other
possible biases in the official GNSS clock parameters provided by IGS. On the other hand, phase clocks
completely absorb the GPS radial orbit error and are fully consistent with the LEO carrier-phase measure-
ments when determining kinematic or reduced-dynamic LEO orbits, since in both cases carrier-phase
ambiguities are estimated. Phase measurements from a GPS ground network of about 40-50 stations tracking
about 30 GPS satellites in MEO orbit form a closed, internally connected system, in which the phase infor-
mation of one clock can be related to that of any other GPS satellite or a ground station clock in the network,
even on the antipodal side of the world. This opens up the possibility of high-precision positioning and
especially intercontinental non-common view frequency transfer of utmost accuracy. We may say, phase clocks
are the optimal way to compare phase information between ground station clocks and/or LEO/GNSS satellites.
Later on in this thesis, we introduce the concept of track-to-track ambiguities to optimally fix carrier-phase
ambiguities to their integer values.

Later, phase clocks were also studied in (Dach et al. 2005), (Bauch et al. 2006), (Dach et al. 2006) and
in (Matsakis et al. 2006) over longer periods of time and have been compared to other time/frequency com-
parison techniques. Ambiguity resolution with phase clocks was demonstrated for the first time in (Svehla and
Rothacher 2006a) and later on in (Mercier and Laurichesse 2007), (Delporte et al. 2007), (Delporte et al.
2008). Starting with GPS Week 1449, JPL started providing additional information on clock time bias and
drift relative to the reference clock in the IGS network in their IGS reports, see (Desai 2007). In their IGS
reports, as a reference clock JPL uses exclusively IGS station USN3 (US Naval Observatory), or in some cases
AMC2 (Colorado Springs). Besides CNES, all IGS Analysis Centers provide satellite clock parameters calcu-
lated using carrier-phase and pseudo-range measurements in order to support both time and frequency transfer
at the same time. Thus, IGS clock parameters are more applicable to PPP (Precise Point Positioning) than
to frequency transfer. This section describes the estimation of phase clocks and their application in frequency
transfer and precise point positioning.

4.1 The Concept of Phase Clocks

Phase clocks are biased clock parameters preserving the highly accurate relative epoch-to-epoch information
of carrier-phase measurements. When carrier-phase is connected over all ground stations and all GPS satellites,
any time bias and drift in the selected reference clock biases all other clocks in the network by exactly the
same amount. Ground stations do not have to be connected to a stable frequency standard such as H-maser
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4 First Phase Clocks and Frequency Transfer

or a clock assembly in a timing lab. There is a minimum number of about 40 ground stations needed to form
a connected system with continuous carrier-phase information between all GPS satellites and ground stations,
see Figure 4.1. We demonstrated for the first time that the frequency transfer between the best timing labs in
the IGS network is possible with a precision of below 25 ps/day (few parts in 1071% /day ) (Svehla and Roth-
acher 2004a), (Svehla and Rothacher 2004b), (Svehla and Rothacher 2005a), and in (Svehla and Rothacher
2006b). Using carrier-phase data only, the impact of the pseudorange noise and accompanying systematic
effects can be avoided. Code measurements are needed only to pre-synchronize all receiver clocks at the level
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Figure 4.1 The concept of phase clocks. Phase information is connected and transferred between all ground
stations and all GPS satellites.
of about 1 ps . Due to the low accuracy of code measurements, phase clocks can be aligned in an absolute time

frame to about 1 ns. Increasing the number of ground stations increases the overall number of stations that

contribute to the clock parameters of one GPS satellite at a given time. In this way, local effects such as
multipath and other station-specific environmental errors are averaged out over a number of ground stations
providing extremely precise and consistent phase information for the GPS satellites. GPS satellites are placed
at high altitude in the MEO orbit and any radial orbit error can be fully represented by the estimated satellite
clock parameters. This is the reason why GPS orbit errors do not propagate into frequency transfer between
ground stations or LEO satellites, and allow for extremely accurate precise point positioning and orbit deter-
mination of LEO satellites. We may say, phase clocks are the optimal way to compare clock information
between ground GPS stations and/or LEO satellites. Usually, one well-performing H-maser in the IGS network
or timing lab is selected as the reference clock in the system, and any epoch-specific bias in the ensemble of
such ground/space phase clocks will be removed when differences between different stations are formed. All
common errors between ground stations will be removed as well, such as common troposphere and tidal errors.
This opens up the possibility of extracting extremely accurate frequency information on two ground clocks a
great distance apart or to study the frequency stability of clocks on board GPS or LEO satellites However, in
the case of the clock parameters of GPS (and LEO) satellites, orbit errors will propagate into the estimated
clock parameters, but due to the nature of satellite orbits, these orbit errors will average out over one or
several orbit revolutions. Thus very accurate frequency offsets (time rate) can be calculated between ground-
to-space or ground-to-ground despite the orbit determination errors of GPS (and LEO) satellites. This is

especially true for the orbit errors of GNSS satellites that typically have once-per-revolution pattern.

4.2 Estimation of Phase Clocks

Figure 4.2 shows the ground network of IGS stations used for the calculation of phase clocks. It is a network
of about 40-50 ground stations uniformly distributed over the globe. All stations are part of the IGS network
used in the IGS Reprocessing Project running at TU Miinchen. In order to maintain consistency with the
software, station coordinates, GPS satellite orbits and Earth rotation parameters were kindly provided by the
IGS Reprocessing Project (Steigenberger et al. 2006). The disadvantage of these products is that many timing
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4.2 Estimation of Phase Clocks

Figure 4.2 Ground GPS stations used for determination of phase GPS satellite clocks.

labs within the IGS network are not included in the IGS Reprocessing Project, mainly due to poor station
monumentation or simply a lack of continuous tracking over many years. Figure 4.3 shows the procedure used
to estimate phase clocks for GPS satellites and ground stations. In the first step, broadcast GPS satellite clock
information is used to align the selected ground reference clock to GPS time. As the reference clock, the most
stable H-maser is selected, such as the one available from the timing lab US Naval Observatory (USNO) or a
geodetic IGS station connected to a local H-maser, e.g., Wettzell in Germany. In this alignment step time bias
and drift are estimated for the reference H-maser using smoothed ionosphere-free pseudorange measurements.
In this calculation, all broadcast GPS satellite clock parameters are held fixed. For all other ground GPS
stations, an a priori clock synchronization to broadcast GPS time is performed by estimating one clock pa-
rameter every epoch using ionosphere-free code measurements. This step is required since GPS measurements
are given in the GPS receiver time, which could differ from GPS time by up to a millisecond. Screening of
code and phase measurements is based on the Melbourne-Wiibbena linear combination. In the next step, the
parameters of the aligned reference clock from the previous step are held fixed and all other GPS satellite/sta-
tion clock parameters are estimated with a resolution of 5 minutes using smoothed-code ionosphere-free
measurements. Once the first solution for GPS satellite clocks is available, it is used to pre-process carrier-
phase measurements, i.e., to detect cycle-slips and outliers. Once the phase data have been screened, the clock
estimation is repeated for all GPS satellites and ground stations without using any pseudorange measurements.
The clock solution in this step is calculated with a resolution of 30 s. This procedure is repeated in order to

further screen the phase data. For a 1-day arc, GPS satellite/ground station clocks can be estimated with a
sampling of 30 s using the full normal equation system consisting of phase ambiguities and GPS satellite/re-
ceiver clocks as parameters only. With 45 ground stations we may easily expect up to 5000 ambiguities and
this can easily be handled on a standard Linux PC system. The NEQ matrix contains only phase ambiguities
(up to 5000) since all GPS satellite and ground clock parameters are pre-eliminated every epoch. Once the
normal equation system is inverted, phase ambiguities are back-substituted and a normal equation matrix is
set-up and inverted every epoch containing only clock parameters for about 30 GPS satellites and 40-50 ground
stations.

By calculating high-rate GPS satellite phase clocks and CHAMP kinematic and reduced-dynamic orbits
for a period of 2 years (Svchla and Rothacher 2004a), we demonstrated that such an approach can easily be
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Estimation of the 5-min and the 30-s phase GPS clocks
using 40 IGS stations

Selection of the reference clock (BRUS, USNO or WTZR)

~

Alignment of the reference clock to the broadcast GPS clocks
(daily bias and drift estimation)

iz

Pre-processing of the phase/code data
based on Melboume-Wibbena LC

S

Estimation of the 5-min GPS clocks only to clean data
using code and phase measurements

Pre-processing of the phase data
using the 5-min GPS clocks

Estimation of the 30-s GPS clocks
using phase measurements and code measurements (only reference station)
- normal equation matrix with up to 5000 phase ambiguities

Figure 4.3 Overview of phase clocks calculation.

performed on a standard PC with 1 GB of RAM. The high-rate 30 s phase clock solution was based on about

40-50 ground IGS stations and one ground hydrogen maser as a fixed clock reference.

4.3 Frequency Transfer Based on Phase Clocks

In (Svehla and Rothacher 2004a), (Svehla and Rothacher 2004b), (Svehla and Rothacher 2005a), and in
(Svehla and Rothacher 2006b) it was demonstrated for the first time that clock parameters estimated for
ground stations allow frequency transfer with few parts in 10716 (~ 25 ps/day in terms of linear time rate).
Later on those results were repeated by (Dach et al. 2005), (Bauch et al. 2006), (Dach et al. 2006) and
(Matsakis et al. 2006). Figure 4.4 shows the differences in phase clocks between AMC2 and USNO for a period
of one day. After removing a linear time drift (top figure) we obtained a residual clock noise with a standard
deviation of = 25 ps over one day (bottom figure) with results below 10 ps for the best days.
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Figure 4.4 First high-precision frequency transfer using GPS with STD = 25 ps, day 196/2003.
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4.3 Frequency Transfer Based on Phase Clocks
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Figure 4.5 Power spectral density of phase clock differences between AMC2 and USNO, 196/2003.

Considering the short-term stability of H-masers in the IGS network, the residual systematic pattern in
Figure 4.4 (bottom) is most likely mainly due to the modeling of troposphere delay, i.e., estimation of the
troposphere zenith delays that, in this case, were estimated every hour as a piece-wise constant function.
Figure 4.5 shows the power spectral density of the residual phase clock parameters between AMC2 and USNO
given in Figure 4.4 (bottom). Comparing Figure 4.4 (bottom) and Figure 4.5, one can see that phase clocks
show white noise up to 200 s, whereas flicker noise from 200 s - 24 h . It should be noted that the residual
clock parameters in Figure 4.4 (bottom) include noise of the H-maser at both AMC2 and USNO as well as
effects from the GPS data, including residual troposphere effects, signal multipath, station coordinates (resid-
ual atmospheric effects and tides), antenna phase center variations, antenna cable delays, in addition to GPS
receiver effects (e.g., front-end). Here, the role of GPS orbit errors is significantly reduced since any radial
orbit error is compensated for by the GPS satellite clock parameters being averaged over many ground stations.
Thus the difference between the phase clocks of two separate timing labs is free of any common biases (to a
great extent), including an overall common time offset. This is true for all estimated phase clocks, which only
give relative time information between all clocks in the network.

GPS satellite clock parameters are not as smooth as ground receiver clock parameters derived from
an external frequency such as a H-maser. Figure 4.6 shows the phase clocks of the GPS satellite PRN24.
Compared to AMC2 or USNO, the noise level is about 120 ps after removing a low-order polynomial (quad-

ratic term). The remaining clock residuals show a periodic pattern with a period of about 6 h (see Figure
4.6.) that can be explained by the periodic relativistic correction due to the J, gravity field coefficient and a

variable semi-major axis, following the model presented in (Kouba 2004). The green line in Figure 4.6 shows
the remaining periodic relativistic correction (Kouba 2004), and the black line represents a periodic signal with
a period of 6 hours fitted to the phase clock parameters. One can see very good agreement between the model
and the phase clocks of GPS PRN24. It should be noted that in GPS data processing only relativistic satellite
clock correction due to the eccentricity of the GPS satellite orbit has been applied.

T
0.6 ——phase clocks estimated

—6h signal

0.4 } ——6 h periodic correct

ns

Figure 4.6 Phase clock parameters of GPS PRN 24 over a period of 24 h. The green line shows remaining
periodic relativistic correction from (Kouba 2004), and the black line represents a periodic signal with a period
of 6 hours fitted to the phase clock parameters.
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4 First Phase Clocks and Frequency Transfer

4.4 Inter-Frequency and Inter-Channel Biases

Inter-frequency biases can be considered as a delay on the L, frequency measurements with respect to the
measurements on the L; frequency. They are caused by hardware delays in the L; and L, signal paths and

are mostly temperature-dependent. Inter-channel biases are differences in the signal path between the different
receiver channels that track the GPS satellites. This effect is very difficult to estimate as it is receiver-specific
and has not yet been estimated in global IGS processing. Inter-channel biases can be determined by calibration
procedures and, when correctly applied, should not present a problem in the processing of GPS data. Inter-
frequency biases can be eliminated when one clock parameter is estimated every epoch. This is not the case
for inter-channel biases, whose constant parts can be eliminated by estimating phase ambiguities. Calibration
for inter-channel biases can in fact be performed in the GPS receiver on the ground or in space, tracking the
same GPS satellite on all channels.

4 Septentrio GPS GPS GPS GPS
GPS receivers | receiver receiver receiver receiver
Cs-Clock

Figure 4.7 Test set-up with four Septentrio PolaRx2 GPS receivers.

In order to assess potential GPS receiver errors, we connected four Septentrio PolaRx2 GPS receivers to the
same GPS antenna and external frequency, see Figure 4.7. This experiment was carried out in cooperation
with the Institute of Navigation and Communication at DLR (Svehla et al. 2006a). Figure 4.8 shows very
large variations on L, carrier-phase for those four 4 receivers denoted as UTC1, UTC2, GRX1 and GRX2.
When forming single-differences between those four GPS receivers, w.r.t. the receiver denoted as UTCI, all
signal propagation and receiver-specific effects should be removed, and phase noise is then the remaining effect.
It is interesting that L; carrier-phase is not affected by the apparent clock variation that one can clearly see
on L, data. Although all four GPS receivers are identical, residual multipath mitigation effects between the
same receivers could also play a role. Following (Petit, priv. com.), such an effect could also be caused by the
antenna cable splitters. A similar effect can be seen in Figure 4.9, comparing the carrier-phase from GPS
PRN5 against PRN30 tracked by two GPS receivers, UTC1 and UTC2. Figure 4.9 indicates that the carrier-
phase on L, shows some form of inter-channel or inter-satellite phase variations. Following (Simsky, priv.
com.) these effects are most likely caused by the GPS receiver front-end.

Figure 4.10 shows code and carrier-phase measurements from four Septentrio GPS receivers connected to
the same GPS antenna and the same external frequency standard over 10 days, (day 160-170/2006). For the
code measurements, one can clearly see antenna cable delays of up to 10 m between different receivers and
for the carrier-phase measurements a dominant periodic effect, most likely caused by the residual multipath
effect (between receivers of the same type) or receiver front-ends, especially on the second GPS frequency
(Simsky, priv. com.).
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Figure 4.8 L, and L, carrier-phase of the GPS satellite PRN30 from four Septentrio receivers connected to

the same antenna and an external frequency, (day 160/2006). Large variations on the L, carrier-phase are

most likely due to delays in the receiver front-end (Simsky, priv. com.).
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Figure 4.9 L, carrier-phase variations between two GPS satellites (PRN30 and PRN5) tracked by two iden-

tical GPS receivers connected to the same antenna and the same external frequency, (day 160/2006).
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Figure 4.10 P, and P, code (left) and carrier-phase L; and L, (right) from 4 Septentrio GPS receivers con-

nected to the same antenna and an external frequency standard over 10 days, (day 160-170/2006). One can
clearly see antenna cable delays in code measurements between different receivers and periodic effects in
carrier-phase (GPS satellite PRN30).
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5.First Geometric POD of GPS and Galileo
Satellites

e have already estimated purely geometric orbits of several LEO satellites, and now one may ask
how accurately a GPS satellite orbit can be estimated purely geometrically, i.e., kinematically.
The main problem is that GNSS satellites are high above the Earth and positioning geometry is
not as good as for satellites in LEO orbit. This section deals with the first estimation of one GPS satellite fully
geometrically. New Galileo satellites are equipped with H-masers and in this case the satellite clock can be
modeled very efficiently using a linear model over one day. We present here the first Galileo orbits estimated
geometrically using a linear model for the H-maser on board the GIOVE-B satellite. The current accuracy of
geometric GPS orbits is approximately 15 cm , whereas this improves to several centimeters in the case of

Galileo. On the other hand, with Galileo, ambiguity resolution on the zero-difference level will be significantly
improved, thus once the phase ambiguities are fixed, it is assumed that it will be feasible to estimate GNSS
orbits fully geometrically with an accuracy comparable to dynamic orbits. For more on geometric POD of
GNSS satellites see (Svehla and Rothacher 2005a).

5.1 The First Geometric Positioning of a GPS Satellite

The basic idea is to fix the coordinates of the IGS GPS points on the ground and to estimate three coordinates
of the center-of-mass of the GPS satellite every epoch using zero- or double-difference phase measurements.
The main difference to kinematic positioning of a ground station or a LEO satellite is that, due to the very
high altitude, the GPS satellites “see” all ground stations within a very small range of nadir angles. A GPS
antenna placed on a LEO satellite or located on the ground can receive signals from the GPS satellites at
elevations ranging from 0° to 90°. In contrast, the maximum nadir angle of a signal transmitted from a GPS
satellite to a LEO satellite or ground station is about 14° —15°, see Figure 5.1. This angle is six times smaller
than the maximum zenith angle of a LEO or ground GPS antenna and thus, the position of the ground stations
in the local orbital system of the GPS satellite varies very little with time.

In the case of a LEO or a ground GPS station the kinematic positions are computed at the measurement
epoch, which is the same for all GPS satellites tracked. This is not the case for the kinematic positioning of
GPS satellites where, due to the GPS receiver clock correction and the light-travel time correction, different
ground GPS stations “see” the GPS satellite at different places along its orbit for nominally the same obser-
vation epoch.

Due to the instability of the GPS receiver clock, the GPS measurements are not taken exactly at the
integer second in GPS time. Steering of the GPS receiver clock on the ground or on the LEO satellite can be
performed using the receiver’s navigation solution based solely on the code measurements and broadcast GPS
orbits and clocks. In the case of the Blackjack GPS receiver onboard the CHAMP satellite, the clock steering
is performed to a precision of 0.1 us . Nevertheless, for some ground GPS receivers (IGS network) the clock
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Figure 5.1 Geometry for LEO and GPS satellites and GPS station on the ground.

correction w.r.t. GPS time may vary by up to 1 ms. In order to correct for this GPS receiver effect, aiming
at an accuracy for the GPS orbit of Az =1 cm and assuming a GPS receiver clock correction of At =1 ms

the velocity of the GPS satellite has to be known with only a very low level of accuracy, about
Av=Az/At =10 m/s. The velocity of the GPS satellite is required to a higher level of accuracy, however,
to correctly apply light-travel time and periodic relativistic corrections. For the GPS satellites, the light-travel

time correction A pp and the periodic relativistic correction App, see (Ashby 2003), are given as

- —

nyv

Aprr = *dOTS (5-1)
TgU

Appe =2 SCS ; (5-2)

where d and 7, denote distance and unit vector between GPS satellite and ground stations, respectively, 7y
and ¥g are the geocentric position and velocity vector of the GPS satellite, and ¢ is the speed of light in

vacuum. One can easily see that the periodic relativistic correction is satellite-specific and, therefore, is can-
celed out when forming double-differences or can be absorbed by the GPS satellite clock parameters when
using zero-differences. Following (5.1), to compute the light-travel time to an accuracy of 1 cm (in terms of
length), the velocity of the GPS satellite should be known to an accuracy of Av = 0.12 m/s. Since the re-

quirements imposed on the velocity in the computation of the light-travel time correction are not so
demanding, the orbits of the GPS satellites can indeed be determined geometrically. Nevertheless, an approx-
imate GPS orbit has to be available, and in principle could be computed solely based on smoothed code
measurements. Figure 5.2 shows differences between a kinematic and dynamic orbit (assumed to be more
accurate) for the GPS satellite PRN 20 and Figure 5.3 the corresponding a posteriori RMS values of the
kinematic positions. Both types of orbit were determined using the same IGS stations, troposphere parameters,
station coordinates and Earth rotation parameters and the only difference is in the estimated orbital parame-
ters. Dynamic GPS orbits were modeled by six Keplerian elements, nine solar radiation pressure parameters
and one pseudo-stochastic pulse for the one day arc, whereas three kinematic coordinates were estimated for
PRN 20 (the parameters of the other satellites were held fixed) every epoch (i.e., every 30 s ). In both cases,

the ambiguities were held fixed at their integer values. One can easily see that the accuracy of the estimated
kinematic positions is in the order of 10 —20 cm . Replacing the kinematic parameterization by polynomials

over a few 10min intervals would considerably improve the “kinematic” GPS orbits. We should bear in mind
that the dynamic GPS orbit is usually represented by a polynomial of degree 12 for each step of 1 h in the
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Figure 5.2 Differences between the kinematic and dynamic orbit for GPS satellite PRN 20, day 200,/2002.

numerical integration method in the Bernese GPS Software. The rather large variations between kinematic
and dynamic GPS positions in Figure 5.2 and the periodic behavior in the corresponding formal precision
displayed in Figure 5.3 are certainly due to the weak and slowly changing geometry of ground stations as seen

from the GPS satellite.
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Figure 5.3 A posteriori RMS of the kinematic orbit for GPS satellite PRN 20, day 200/2002.
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Figure 5.4 Kinematic orbit of the GIOVE-B satellite estimated using a linear model for the onboard H-
maser against the SLR normal points (blue).

Figure 5.4 shows the kinematic orbit of the GIOVE-B satellite based on a linear clock model of the onboard
passive H-maser. Normal points of the kinematic positions of the GIOVE-B satellite were estimated every 30

min over a period of six days using two-frequency carrier-phase measurements with a sampling of 30 s and

without performing any ambiguity resolution at the zero-difference level. GPS orbits and satellite clocks, as

well as station coordinates and troposphere parameters were held fixed in the estimation. Blue dots show SLR

residuals of the estimated kinematic orbit giving an agreement of about 1-2 cm RMS with the kinematic

positions. One can see that the SLR validation closely matches the shape of the estimated kinematic positions

against the dynamic orbit for the entire period of time. Compared to Figure 5.2, the kinematic orbit of the

GIOVE-B satellite based on a linear clock model is smooth and considerably more stable than the kinematic

orbit of the GPS satellite.
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6.Kinematics of IGS Stations

or comparison with the kinematic POD of LEO and GPS satellites, a ground GPS baseline from
Greenbelt (GODE, US) to Algonquin Park (ALGO, Canada) with a length of 777 km was processed
kinematically for a period of one day. The coordinates of one station of the baseline were kept fixed

(GODE) and a set of three coordinates was estimated every 30 s for the second station ALGO using carrier-

phase data only.

6.1 Ground Double-Difference GPS Baseline in IGS Network

Figure 6.1 shows the kinematic positions of the station ALGO against the "true” static coordinates estimated
in the global IGS network solution. Ambiguities were resolved using the Melbourne-Wiibbena linear combina-
tion and narrow-lane bootstrapping. One can see that an accuracy of 0.5 —1cm in horizontal position
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Figure 6.1 Kinematic estimation of the ground IGS point ALGO with respect to the fixed IGS station
GODE. Ambiguity-resolved baseline with a length of 777 km, day 200 in the year 2002.
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6 Kinematics of IGS Stations

and 2 cm in height can easily be achieved. Similar results can be obtained, if troposphere parameters are taken
from the global IGS solution or estimated every 1 h. Other GPS baselines in the IGS network with lengths of
up to 1000 km show similar results. Using the rule of thumb given by (Bauersima 1983),

l

[=—A 6.1
20000 km P (6.1

with the GPS orbit error of, e.g., Ap =1cm RMS and with a baseline length of | = 1000 km , one can expect
an effect in the station coordinates in the order of Al = 0.5 mm RMS. For a baseline length of 10000 km
(LEO) one can expect about 5 mm RMS. Therefore, for the ground GPS applications, a GPS orbit accuracy
of 1 cm allows the cm-kinematic positioning for double-difference baselines up to 5000 — 10000 km . From this

analysis it follows that station multipath along with the troposphere delay errors (wet part), are probably the
main sources of error in ground GPS positioning based on double-differences.
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7.Reduced-Kinematic POD

ere we present the results of reduced-kinematic POD, as introduced and published in (Svehla and

Rothacher 2005a). Reduced-kinematic POD can be defined as the fourth fundamental approach in

precise orbit determination, along with kinematic, reduced-dynamic and dynamic POD. The main
difference between reduced-kinematic and reduced-dynamic orbit determination is that in the reduced-kine-
matic POD the constrained normal equations are set up for the epoch-wise kinematic positions (with epoch-
wise clock parameters), whereas in the reduced-dynamic approach, dynamic parameters (such as initial Kep-
lerian state vector, aerodynamic drag coefficients, empirical accelerations, etc.) and/or some pseudo-stochastic
parameters are determined. Thus, in the case of reduced-kinematic POD, degrees of freedom are reduced
towards a dynamic orbit, whereas in the reduced-dynamic orbit, the dynamics of the orbit is reduced towards
a kinematic orbit. Due to the relative or absolute constraints that are used in the reduced-kinematic POD, we
did not use nor develop this approach further for LEO satellites. We merely present typical results for the

sake of completeness.

7.1 Reduced-Kinematic POD of LEO Satellites

Compared to dynamic orbits, the main disadvantage of kinematic orbits is the presence of “jumps” between
consecutive positions that occur when, e.g., small numbers of GPS satellites are tracked or when phase breaks
occur. Although these "jumps” from epoch to epoch are fully reflected in the variance—covariance information,
they can be clearly seen in Figure 7.1, where CHAMP kinematic positions are plotted against the dynamic
orbit. Typical spikes in kinematic positions, and accordingly in the variance—covariances, can be seen around
1.1, 1.3, 2.5 and 4.1 h and phase breaks can be identified for the isolated arc from 4.1 to 4.6 h .

Compared to kinematic orbits, dynamic orbits are very smooth, i.e., high frequency noise is not visible
from epoch to epoch due to the integration of the equation of motion. In order to reduce the size of the small
jumps in kinematic position, constraints can be applied from epoch to epoch to the kinematic position differ-
ences w.r.t. corresponding differences in the a priori dynamic orbit. In this case, we may speak of "reduced-
kinematic” orbit determination, where the kinematic degrees of freedom are reduced by constraints to the
dynamic orbit. It can be shown that the a priori dynamic LEO orbit used for constraining can be of very low
accuracy, e.g., defined by only 15 orbital parameters per day and estimated by means of code measurements
only. The size of the relative constraints applied in the computation of reduced-kinematic orbits in Figure 7.1
was b mm between 30 s consecutive epochs. Using the reduced-kinematic approach, one can obtain very
smooth kinematic orbits where spikes in the kinematic positions are removed or considerably reduced. This is
illustrated in Figure 7.1, where kinematic and reduced-kinematic orbits are shown w.r.t. the best reduced-
dynamic orbit. Although the stochastic process achieved by relative constraints is a random walk, the trajec-
tory does not drift away from the a priori dynamic orbit. Depending on the strength of the constraints between
consecutive epochs, the estimated reduced-kinematic orbit will be closer either to the dynamic or the kinematic
orbit.
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Figure 7.1 Kinematic (blue) and reduced-kinematic orbit (red) for the CHAMP satellite using relative con-
straints, day 200,/2003.
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Figure 7.2 Reduced-kinematic orbit of the CHAMP satellite based on simulated phase measurements. Noise

of simulated phase observables is o(L;) = o(L,) = 5 mm , data rate is 30 s.
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7.1 Reduced-Kinematic POD of LEO Satellites
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Figure 7.3 Reduced-kinematic orbit for the CHAMP satellite based on simulated phase measurements. Noise

of simulated phase observables is o(L;) = o(L,) = 5 mm , data rate is 10 s.

The main difference between reduced-kinematic and reduced-dynamic orbit determination is that in the re-
duced-kinematic POD the constrained normal equations are set up for the epoch-wise kinematic positions
(with epoch-wise clocks), whereas in the reduced-dynamic approach dynamic parameters (such as initial Kep-
lerian state vector, air-drag coefficients, empirical accelerations, etc.) and/or some pseudo-stochastic
parameters are determined. The reduced-kinematic method improves the overall characteristics of the purely
kinematic POD by a considerable reduction of spikes and jumps. Therefore, reduced-kinematic POD can be
used for LEO applications that require a very smooth trajectory such as radio-occultation. Since the a priori
dynamic orbit used in reduced-kinematic POD does not have to be of high accuracy and can be very easily
computed, the reduced-kinematic positions will not rely significantly on an a priori gravity field, but will allow,
e.g., better velocity computation for the energy balance approach of gravity field determination. However,
there will still be a residual dependency on the a priori information. Figure 7.2 and Figure 7.3 show the
reduced-kinematic orbit of the CHAMP satellite based on simulated phase measurements with a noise of
5 mm and data rates of 10 s and 30 s, respectively. Computation is performed based on the inversion of the

Kinematic coordinates

Clock parameters Ambiguities

Figure 7.4 Normal equation matrix for kinematic (left) and block tridiagonal normal equation matrix for
reduced-kinematic POD (right).
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7 Reduced-Kinematic POD

full normal equation matrix for a period of 3 hours. In the case of the GOCE mission, GPS measurements
are provided every second and therefore kinematic and reduced-kinematic orbits have to be provided with a
sampling interval of 1s.

When relative constraints are set up between epochs, as depicted in Figure 7.4 (right), the normal equa-
tion matrix of the kinematic positions is no longer block diagonal, but rather tridiagonal. In kinematic POD,
a very efficient parameter pre-elimination scheme is used, where in the first step kinematic positions and clock
parameters are pre-eliminated to ambiguities. In the second step, after inversion of the reduced normal equa-
tion system (ambiguities only), ambiguities are back-substituted and epoch-wise 4 x4 blocks are inverted
providing kinematic positions every epoch. Ambiguities can be pre-eliminated to the epoch-wise parameters,
but the block tridiagonal/diagonal property of the normal equation matrix is lost in that case, since the
normal-equation matrix becomes fully populated.

In order to improve numerical stability and reduce execution time, we studied several algorithms to invert

tridiagonal matrices with very large numbers of parameters (about 350000 per day) as well as various algo-

rithms for inverting sparse matrices. If such an algorithm is to be integrated into the official software, it has
to be compatible with all other processing and parameter estimation methods. In particular, it should be
compatible with the existing bookkeeping of ambiguity parameters and epoch-wise clock parameters.

After reviewing the software and algorithm design, the conclusion was drawn that reduced-kinematic
POD requires a re-design. The main arguments for this decision were the amount of time required to perform
the computations and, even more importantly, the significant biases introduced into the reduced-kinematic
orbit by the relative constraints applied over a long orbit arc. Small, but significant biases in the cross-track
components can be seen in Figure 7.1, Figure 7.2, Figure 7.3.

In the present design, all epochs are constrained, and therefore, relative constraints between the first
epoch pair affect the solution of the last epoch pair within the same run. This is similar to applying a small
absolute constraint to all epochs. In order to overcome this problem, the current strategy for the reduced-
kinematic orbit was changed from relative constraining over the entire arc to a band-limited form of relative
constraints preserving the local properties of the orbit. Another solution would be to represent the reduced-
kinematic orbit by normal points, estimated every, e.g., few epochs. Computing a normal point over several
kinematic positions would have a similar effect to setting up relative constraints between epochs. However, in
the case of normal point estimation, the original sampling of the kinematic orbit is lost.

N\ N A

Figure 7.5 Successive use of relative constraints (3 x 3 red blocks) in the NEQ between coordinates of the
consecutive epochs set-up over the three epochs (left, middle, right figure). In the first sub-matrix on the main
diagonal (upper left), one can see the ambiguity parameters (1x1 black blocks) and in the second sub-matrix
on the main diagonal (lower-right) the 4 x4 black blocks (three coordinates and a receiver clock) of parame-
ters set-up every epoch. The yellow color shows the empty fields in the NEQ.



7.1 Reduced-Kinematic POD of LEO Satellites

In order to preserve the local properties of the orbit and avoid long-periodic biases introduced by setting up
relative constraints over the entire orbital arc, we do not make use of the fully populated cofactor matrix, but
rather select elements only over the specified band of epochs, see Figure 7.5. In fact, the same window over a

selected number of epochs used to calculate the cofactor matrix ¢, for the kinematic positions can be used

to determine the reduced-kinematic orbit. Therefore, kinematic and reduced-kinematic orbit can be determined
in the same processing run. However, we never calculated reduced-kinematic orbits for LEO satellite missions,
merely tested the algorithm.

Since the reduced-kinematic orbits can be obtained by a parameter transformation of the kinematic orbit
(linear combination), the computation of the matrix C with constraints can be extended using dynamic infor-
mation over a short interval of time. In this way standard numerical integration could, in fact, be avoided,
since the local properties of the orbit are preserved over a very short period of time. In this way one can talk
of reduced-dynamic POD with local properties. Figure 7.6 (left) was calculated by setting up relative con-
straints over different bands of consecutive epochs (smoothing window over a number of epochs) and by
varying the size of relative constraints. Figure 7.6 (right) shows the equivalence between the reduced-kinematic
orbit (smoothing window of 30 s with 1s sampling) and the highly-reduced-dynamic orbit with a significant
number of empirical parameters estimated. Both orbits exhibit a similar power spectrum density (PSD).

To summarize, we have shown that the reduced-kinematic orbit is a very simple representation of the
kinematic orbit preserving the local properties of the orbit and reducing the high-frequency noise in kinematic
positions between consecutive epochs. However, since only kinematic orbits are used for gravity field determi-
nation for the GOCE, GRACE and CHAMP missions, the reduced-kinematic orbit determination strategy has
not been developed further.
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Figure 7.6 PSD of the radial reduced-kinematic positions (denoted as RK) by varying the smoothing window
over a number of epochs and the size of the relative constraints (number of epochs/relative constraint). The
figure to the right shows the equivalence between the reduced-kinematic orbit (sampling 1, constraints over

30s) and the highly-reduced-dynamic orbit (H-Reduced-Dynamic) with a significant number of estimated

empirical parameters. Both orbits show similar PSD.
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7 Reduced-Kinematic POD

7.2 Constraints in the Reduced-Kinematic POD

Although we did not use constraints in the kinematic POD, here we provide more information how constraining
could be performed for the coordinates of a ground station or the reduced kinematic orbit in the case of a LEO
satellite.

Let us write the normal equation system, with the normal equation matrix N and the vector of unknown
kinematic positions z estimated along an a priori orbit in the geocentric Cartesian coordinates

Nz =n (7.1)

constructed from the observation equation associated with the design matrix A and the vector of the reduced
observations —[ , typically termed “observed minus computed”

v=Az -1 (7.2)

where the vector of errors is denoted with v and associated with the weight matrix P . The normal equation
matrix is then

N = AT PA, n=ATP] (7.3)

Typically, the vector of unknowns z is given in geocentric Cartesian coordinates. If we require unknowns in
the local station coordinate system (north, east, up) or in the local orbital frame (along, cross, radial), we need

to transform our geocentric unknowns = = [z, 6y, 6z], first to the geographic coordinates z = [64,07 6)\,6h} and

then to apply any additional rotation necessary to achieve a local station coordinate system (north, east, up)
or a local orbital LEO coordinate system (along, cross, radial)

dx dy
r = Rz dy|=R-z=R-|d\ (7.4)
dz dh

with matrix R (partial derivatives) and the constraint (weight) matrix C

ma 0
2
m
—sinpcos A —cospsin A coscosA 0() 9
R =|—sinpsin A cospcosA cospsin C= 77;0 (7.5)
cos¢ 0 sin m5(\)
0 g
2(h
mg (h)

with mg(p), mg(A) and m (h) denoting the noise level or the constraints of the estimated parameters where

my =+vIPv/(n—u) with the number of measurements n and number of unknowns u . After substitution
of (7.5) into (7.1) we derive

(RTNR+C)-z=R"n=n (7.6)

where 7 = RTATPl. The absolute constraints could be represented by using the vector of unknowns as the
pseudo-observations in the least squares adjustment with an identity matrix as the design matrix A .

If the relative constraints are set up between consecutive epochs, the approach is similar to that for
absolute constraints, with the difference that the design matrix is no longer an identity matrix for the esti-

mated coordinates of the consecutive epochs z,_; and z;,
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7.2 Constraints in the Reduced-Kinematic POD

A= (7.7)

By introducing the matrix C containing the relative constraints between consecutive epochs z; ; and z;

(see (7.5)), we obtain

(C+N)Z=n
Nz +z=N"1n
NI Cz+T =12
(N"'/C+ DT == (7.8)

with @M =(Q,,C +I)~!. As shown in (7.8), the reduced-kinematic orbit Z can be obtained by a parameter

transformation of the original kinematic orbit z (linear combination). As an alternative to (7.8), reduced-
kinematic positions can be obtained by calculating a “small correction” to the existing kinematic orbit, e.g.,

(7.9)
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8.First GPS Baseline in Space — the GRACE
Mission

n (Svehla and Rothacher 2004c) it was reported for the first time that the orbit vector between the two

GRACE satellites equipped with GPS in the LEO orbit can be estimated with mm-level accuracy. This

level of accuracy was achieved after performing ambiguity resolution for the GPS double-difference base-
line and independently confirmed by the K-band measurements between the two GRACE satellites. Here we
present the results of this GPS baseline in space.

8.1 Formation Flying Using GPS

Distributed space systems employ two or more spacecraft which act in a coordinated way to achieve the
common mission objective. The architecture of such distributed systems can be based on rendezvous and
docking scenarios with two spacecraft in close vicinity, formation flying with two or more spacecraft with a
separation of a few tens of meters to a few 100 kilometers, constellations with several spacecraft distributed
on a global scale or swarms with a multitude of spacecraft, each with limited functionality (Gill 2006). Fol-
lowing this very precise definition, the GRACE mission is a typical example of formation flying and the
US/Taiwanese COSMIC mission a constellation of six satellites in LEO orbit, whereas the ESA Swarm mission
is the first swarm in LEO orbit.

Let us now see what accuracy might be achievable for the inter-satellite baseline between the two GRACE
satellites using a kinematic approach. In order to do this, phase zero-difference measurements were simulated
for both GRACE satellites, assuming the noise level and the number of GPS satellites tracked to be similar
to CHAMP (only a noise of 1.1 mm was considered, with multipath included in this noise). A typical noise
value for the a posteriori RMS of the phase zero-differences in CHAMP kinematic POD is about 1.5 —2.0 mm
or 1.2—-1.4 mm when using double-differences. Whereas zero-differences are mainly affected by the GPS sat-
ellite orbit/clock errors, double-differences primarily reflect ground station specific errors such as troposphere,
multipath, etc. Therefore, the noise level of 1.1 mm adopted for the GRACE simulation might be considered

rather pessimistic, bearing in mind that for the short GRACE baseline (about 220 km ) the effect of GPS

orbit errors should only be about 0.2 mm , tropospheric refraction is non-existent and multipath is expected
to be very small. Figure 8.1 shows the GRACE kinematic baseline results with float, Figure 8.2 those with
fixed ambiguities. In both cases, the GRACE-B positions were held fixed to the a priori orbit and GRACE-A
positions were estimated kinematically. Comparing these two figures, one can clearly see that ambiguity res-
olution de-correlates kinematic coordinates and ambiguities and changes the colored noise present in the
kinematic positions of the float solution into white noise. A decrease of the a posteriori RMS from 5 to 3 mm
for the along-track component can also be noticed. Ambiguity resolution was performed as explained in section
1.9 (Melbourne-Wiibbena wide-laning, narrow-lane bootstrapping) and all ambiguities were correctly resolved.

GRACE GPS
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Figure 8.1 Kinematic positions of GRACE-A w.r.t.
GRACE-B from simulated data with float ambigu-
ities compared to the true baseline. Note the
colored noise, reflecting correlations between posi-
tions and ambiguities.
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Figure 8.2 Kinematic positions of GRACE-A w.r.t.
GRACE-B from simulated data with resolved am-
biguities compared to the true baseline. Note the
white noise in the kinematic positions and the re-
duction of the a posteriori RMS from 5 to 3 mm .

data are a very nice playground to study, for the first time, an inter-satellite baseline with the unique possi-
bility to validate the results with the much more accurate measurements of the K-band link.

8.2 GRACE GPS Baseline

The orbits of both the GRACE A and GRACE B satellites can be determined independently of each other
using either zero-difference point positioning or double-difference baselines formed from IGS GPS stations to
the GRACE satellites. In both cases, the GRACE satellites are treated as two independent satellites similar
to CHAMP and their orbits are estimated independently. An alternative approach consists of a combined
zero- and double-difference POD, where one LEO satellite is determined absolutely using zero-differences, and
the other satellite is determined relatively to the reference satellite by forming a very accurate inter-satellite
GPS baseline. In order to validate such a spaceborne double-difference GPS baseline, KBR measurements were
used. The KBR observable is the biased distance between the two GRACE satellites measured to an accuracy
of a few micrometers. Figure 8.4 shows the KBR residuals for the GRACE GPS baseline with fixed ambiguities
and Figure 8.3 shows the KBR residuals for the reduced-dynamic orbits of the two GRACE satellites estimated
separately using zero-differences. The KBR and accelerometer data were not used in the orbit determination.
These two figures show that for LEO satellites flying in formation (e.g., the two GRACE satellites) the
optimum POD strategy is to estimate the orbit or position of one satellite absolutely and those of the other
satellites in the formation relatively by forming GPS baselines in space to the reference satellite.
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8.2 GRACE GPS Baseline

40

[mm]

Figure 8.3 KBR residuals of the reduced-dynamic
orbits (over 4 hours) of GRACE-A and GRACE-B
satellites estimated independently of each other us-
ing zero-difference carrier-phase measurements,
RMS =12.6 mm . A clear once-per-orbit pattern
can be recognized. GPS Day 200/2003.

Figure 8.4 KBR residuals of the orbits of the
GRACE-A and GRACE-B satellites (over 4 hours)
estimated using the GRACE GPS baseline with
fixed ambiguities, RMS = 2.8 mm . Peaks in the
KBR residuals show the epochs where pseudo-sto-
chastic pulses were introduced. GPS Day 200/2003.

In this case, the relative orbit information between the LEO satellites can be estimated to a level of 1—3 mm

(see Figure 8.4) compared to the 10 —15 mm in the case where all satellites are estimated independently from

each other, e.g., using zero-difference GPS measurements, as in Figure 8.3. More about LEO formation flying
and the GRACE GPS baseline can be found in (Svehla and Rothacher 2004c). Figure 8.5 shows the number
of double-difference ambiguities and the percentage of resolved wide-lane ambiguities using the Melbourne-
Wiibbena linear combination for the two GRACE satellites for a period of four months, days 182-303/2003.
Figure 8.6 shows the percentage of the resolved narrow-lane ambiguities using bootstrapping of the normal

equation matrix (NEQ) with dynamic orbit parameters (left) and kinematic positions (right).
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Figure 8.5 Left: Total number of ambiguities per day, mean= 416/day. GPS days 182-303/2003.
Right: Resolved wide-lane ambiguities (Melbourne-Wiibbena), mean= 98.4%.
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Figure 8.6 Resolved narrow-lane ambiguities using dynamic NEQ bootstrapping (left), mean= 92.8%.
and kinematic NEQ bootstrapping (right), mean= 93.6%. GRACE data set 182-303/2003.
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Figure 8.7 Kinematic and reduced-dynamic GPS baselines between the two GRACE satellites, estimated using
double-differences with float ambiguities (left) and double-differences with fixed ambiguities (right) compared
to KBR measurements, day 200/2003.

The impact of the ambiguity resolution on the kinematic and reduced-dynamic GPS baseline is shown in
Figure 8.7. One can see that ambiguity resolution improves the relative orbit accuracy by about one order of
magnitude in the case of a reduced-dynamic orbit, whereas in the case of a kinematic parameterization this
improvement is about a factor of two. A clear, once-per-orbit pattern can be recognized in both the reduced-
dynamic and the kinematic double-difference baselines with float ambiguities that is removed after performing
the ambiguity resolution. A closer look at the reduced-dynamic baseline with fixed ambiguities in Figure 8.7.
b), and especially in Figure 8.4, reveals a very strong systematic pattern in the KBR residuals, indicating
epochs where pseudo-stochastic pulses were set up in the reduced-dynamic orbit parameterization (every
6 min in this case).
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Figure 8.8 Daily RMS of the differences between the kinematic and reduced-dynamic baseline results, days

182-303/2003. After ambiguity resolution, kinematic and reduced-dynamic baseline results agree to within
1 cm . Compared to zero-difference GRACE orbits this is an improvement in accuracy by a factor of two.
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8.3 Along-Track Sub-mm Kinematic Orbit Determination with GRACE — Combination of GPS and K-Band

Measurements

8.3 Along-Track Sub-mm Kinematic Orbit Determination with GRACE -
Combination of GPS and K-Band Measurements

Let us now see what happens when GPS measurements from the two GRACE satellites are combined with
inter-satellite K-band measurements in kinematic and reduced-dynamic POD. For this, we first estimated the
orbit of the GRACE-B satellite using zero-differences and in the second step we estimated the position of the
GRACE-A satellite kinematically from the orbit of the GRACE-B satellite.

In this relative orbit determination, K-band measurements are combined with GPS measurements with
fixed narrow-lane ambiguities. Figure 8.9. shows the differences between kinematic and reduced-dynamic orbits
after fixing double-difference ambiguities and combining GPS with GRACE K-band measurements of pm -
precision. One can see that differences are in the order of a few millimeters in the along-track and cross-track
directions and up to one centimeter in the radial direction. Interestingly, the difference in the along-track orbit
direction is not zero. This is what one would expect in kinematic POD, when combining GPS double-difference
measurements with K-band measurements of very high weight. The most likely explanation for this fact is
that the combined GPS/K-band reduced-dynamic baseline is limited by the level of accuracy of the dynamic
orbit models used, as shown in Figure 8.9 in the along-track direction. The reasons for this lie, most likely, in
the accuracy of the dynamic orbit modeling, in the orbit parameterization and the numerical integration
(gravity field used). Thus, the accuracy of the reduced-dynamic baseline between two GRACE satellites can,

in our case, be determined with an RMS of the order of 0.7 mm .

RMS=0.7 mm

Cross-track in m

Radial in m

Time in hours

Figure 8.9 Kinematic GPS baseline in space with fixed ambiguities combined with the K-band measurements
(sub-mm accuracy only in along-track orbit direction) between two GRACE satellites separated in the same
orbital plane by about 200 km , day 300/2003.
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9. Geometrical Modeling of the lonosphere and the
Troposphere with LEO Orbit

n this section, we first briefly describe the mathematical and physical background of the first and second

order ionosphere effects on LEO GPS measurements and then give a geometrical interpretation of the

second order ionosphere effect for one-way and two-way LEO tracking observables. We discuss systematic
effects resulting from higher order ionosphere effects on LEO orbit determination and then on gravity field
and altimetry results. We show that, when the IGS TEC maps are compared to the TEC observed along the
CHAMP orbit (merely by applying a constant bias) during the solar maximum, the agreement is excellent
and is at the level of about 1 TECU or below. We show how to calculate the fractional TEC below or above
the LEO orbit, taking into account the Sun’s position w.r.t. LEO orbit. We show that the fractional TEC for
LEO orbit can be calculated exactly from the Chapman function, by transforming the Chapman function into
the “error function” erf(z), encountered when integrating the normal distribution in statistics. This allows a
direct combination of LEO and ground IGS TEC maps. After that, we present a novel remove-restore approach
in the combination of LEO and ground-based TEC measurements by means of least-squares collocation. The
same approach could be applied to augment final and real-time IGS TEC maps. It is proposed to model the
ionospheric TEC (by combining LEO and ground GNSS measurements) as a spherically-layered electron den-
sity distribution in three main Chapman layers, i.e., E; F1 and F2 with an additional layer for the
plasmaspheric density above the ionosphere, using GOCE (above the E-layer), GRACE (above the F1 layer)
and Jason-2 (above the F2-layer and below the plasmasphere). In the second part, we discuss tropospheric
effects on the propagation of microwave and optical measurements and show the influence of tropospheric
effects on the kinematic and reduced-dynamic POD of LEO satellites. We show that there is an effect of the
tropospheric modeling on the estimated low-degree zonal gravity field coefficients based on LEO orbits. At
the end, we propose a way forward in modeling ground-specific high-resolution tropospheric delays for all space
geodesy techniques, making use of the high-performing clocks on board the new GNSS satellites and the more
than 35 GNSS satellites in the field of view of a ground station, given that all four GNSS constellations will
be deployed in a few years from now. For that, ground-specific tropospheric and ionospheric delays could be
modeled making use of the rotation of spherical harmonics in order to account for temporal variations w.r.t.
a fixed frame. Rotations of spherical harmonic coefficients provide continuous TEC information.

9.1 lonospheric Refraction and LEO

The ionosphere is a dispersive and anisotropic medium for radio waves. The first-order ionospheric group delay
(or phase advance) for microwave signals is in the order of 1—50 m. For the GPS carrier phase and code

observables, the observation equation with higher-order ionosphere effects can be derived as
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Li=p+ N\ ————F——— — (9.1)

—p+ 2198 38 4%
Pi—erf2+2f3+3f4 75

(9.2)

where the index i refers to the GPS frequency f;, P, and L; are the code and carrier phase measurements

respectively, .

; is the corresponding wavelength, and N, is the integer ambiguity. The geometry part, de-

noted by p, includes the geometrical distance and the clock corrections, as well as other effects, including the
phase wind-up, and the Shapiro and light-travel time corrections. From (9.1) and (9.2) the first-order iono-
sphere correction (it appears with factor 1/f for the carrier-phase in cycles) causes a group delay (code
measurements) and phase advance (carrier phase measurements). The ¢,, ¢5, ¢, and ¢; are the coefficients
of the first-, second-, third- and fourth-order ionosphere effects respectively. They approximate the phase

refractive index Ty,

C Cc C Cc
nph:l+f_22+f_:;+f_i+f2+“. (9.3)
i i i i

Making use of the Rayleigh equation, the group refractive index n g Can easily be derived from the phase

refractive index n

ph
dn
— ph
Ny =mn,, +f if (9.4)
and up to the fourth-order, for the group refractive index we can derive
c c cs
nqrzl—%—2—§—3—i—4—‘;+... (9.5)
‘ T
Since the velocity of carrier waves v, and the group velocity v, is given by
c c
Vppy =— Vg = —— (9.6)
nph nqr

making use of the approximation (1+¢&)~! =1—¢ for (9.3) and (9.5) in (9.6), we can derive higher order
ionosphere effects in (9.1) and (9.2).

The coefficient c, of the first order ionosphere effect is typically given as ¢, = —40.3-TEC and measured
in [Hz?] , where TEC stands for the total electron content along the line of sight . The first order ionosphere
free effect can be eliminated by forming the so-called ionosphere-free linear combination, denoted in some cases
by L, . For the ionosphere-free linear combination of the carrier-phase this is given by

R Sy
37 pa 27l o 49
=5 fF=F5

Ly. (9.7)

This very nice formula can easily be derived by multiplying the original carrier phase measurements given in
cycles with a; and «,, and introducing the condition that the first-order ionosphere effect is eliminated by

forming the linear combination

Fa,—2 =0 (9.8)

o =
c-fy

2
c-fi
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Setting a; =1, we obtain

k.
h

The second-order ionosphere effect is caused by the Faraday rotation effect induced by the Earth’s mag-

ay =— (9.9)

netic field and depends on the direction of signal propagation, (see, e.g., (Kedar et al. 2003)).
The second-order ionosphere correction in (9.1) and (9.2) can be calculated by means of

s= [ 1,42 cos0pdL = 7527 - ¢ [ NB; cos0dL (9.10)

as originally given in (Kedar et al. 2003), where f, is gyro frequency (~ 0.59 MHz ) and f, is the plasma
frequency integrated along the line of sight and ¢ is the speed of light in vacuum. For more details see (Kedar
et al. 2003). (9.10) is related to the coefficient of the second-order ionosphere effect in (9.1) and (9.2) by
s = 2¢4 . The integral part of (9.10) includes the integration of the total electron content TEC

TEC = [ NdL (9.11)

along the line of sight, multiplied by the strength B, of the magnetic field vector éo projected in the direction

of signal propagation k. Considering the definition of the scalar product of two vectors spanning the angle

05, (9.10) can further be written as
s = 7527 - [ (Byf)NdL (9.12)

as originally given in (Kedar et al. 2003). A simple magnetic dipole model of the Earth’s magnetic field was
recommended in (Kedar et al. 2003), along with a single layer model for the ionosphere. For a ground station

with magnetic latitude A, colatitude 6,, and a satellite with elevation E, and azimuth A, (measured

m
clockwise from the magnetic pole), the magnetic colatitude 9;,1 of the sub-ionospheric point, where the signal

propagation direction intersects the ionosphere layer is to the first order (Kedar et al. 2003)

(9m = Hm — mCOS Am COS Em (913)

Ry denotes the Earth’s radius (R = 6370 km ) and H is the reference height of the ionosphere single layer
model (H =400 km ). The scalar product of the magnetic field vector éo and the signal propagation unit
vector k reads as

3

Ry (sin 0,, cosE, cosA, —2cosf, sinE,, ) (9.14)

T’NL

Byk = B,

with radius 7, = Rp + H and the amplitude of the equatorial magnetic field at the Earth’s surface B,

(~3.12-107° T). Finally, (Kedar et al. 2003) defines the second-order ionospheric group delay Alg; in me-
ters for the GPS signal wavelength A, as

3
R . ,
Alg; = 2.61-107 1873 | =L (sin 6, cosE,  cosA, —2cosf,, sin Em) -TEC [m] (9.15)

m

From (9.1), the phase delay Alp, (advance) is then
1
Alp; = =7 Aly; (9.16)
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In fact, different TEC values should be used for the first- and the second-order ionosphere correction, as the

Faraday rotation effect is due to electrons below 2000 km , but the effect would be very small. For more details

see (Davies 1990). There are other higher order ionosphere effects that also include the additional bending of
the signal, but they will not be discussed here.

9.2 Geometric Interpretation of the Second Order lonosphere Effect for
One-Way LEO and Two-Way LEO Observables

When the signal direction vector ks parallel to the magnetic field vector EO, the phase signal is delayed.

The opposite is true as well, when the vector k is anti-parallel to E’O. In both cases, the true position is

shifted accordingly. By considering the geometry of the Earth’s magnetic field lines, (see

Figure 9.1) and the inclination of GPS satellite orbits, one can draw the conclusion that the second-order
ionosphere effect mainly occurs at lower elevations (mid-latitudes). This means that the effect is close to zero
towards the zenith, when the satellite signal from the zenith direction is orthogonal to the lines of the Earth’s
magnetic field. The effect is also highly dependent on the azimuth angle. As a rule of thumb, the apparent
distance from GPS stations in the Northern hemisphere is shortened compared to that from stations in the
Southern hemisphere. Therefore, stations appear further north than they really are, especially at higher lati-
tudes. The same happens with the determination of a polar LEO orbit in the along-track orbit component,
(see

Figure 9.1), i.e., the determined orbit is translated within the geocentric frame.

The second order ionosphere effect changes the scale of the observables and therefore the scale of the
corresponding GPS solutions, reference frame parameters, GPS baseline, ground network or a determined LEO
orbit. Looking at

Figure 9.1, one can see that the effect is strongly geographically correlated following the Earth’s magnetic
field profile. Therefore, in the case of a polar LEO orbit, this could lead to significant long-periodic errors in
the determined orbit and shifts in the geocenter of that orbit. In the case of all POD approaches, we may
expect the orbit to be systematically translated in the reference frame along the lines of the Earth’s magnetic
field, see

Figure 9.1. This is significant for a very low GOCE orbit with the entire ionosphere above that orbit, c.f.
Figure 9.2. On the other hand, altimetry satellites are typically aligned away from a polar inclination, and
hence from a magnetic field axis, and will thus experience a different systematic distortion and offset of the
orbit. Nevertheless, altimetry satellites are typically placed above the Chapman layer and therefore above the
main part of the ionosphere, thus the overall effect will be significantly smaller than for a low LEO orbit.
However, there is still an ionosphere effect stemming from the plasmasphere above the 1000 km orbit altitude
that affects GNSS measurements from altimetry missions above that altitude.

Compared to classical one way measurements, the advantage of using two-way measurements for, e.g.,
frequency transfer lies in the possibility of removing all geometrical and signal propagation effects. In this way,
a frequency between two ground clocks can be compared directly without parameter estimation. However, the
only propagation effect that is not eliminated in two-way measurements is the second-order ionosphere effect.
The reason for that is that Faraday rotation depends on the signal propagation direction. In the case of
receiving and sending a signal from the same ground station to LEO, HEO or an interplanetary orbit, the
second-order ionosphere effect is compounded, i.e., doubled. Therefore, the only way forward in designing a
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Figure 9.1 Profile of the Earth’s magnetic field along the polar orbit. Arrows show direction and strength of
the field and the corresponding distortion and offset of the orbit (e.g., along-track).

high-performance metrology ground-to-space link is to go towards higher X-band or Ka-frequencies where
first- and higher-order ionosphere effects decrease rapidly with frequency.

GNSS frequencies are in the 1.2 —1.5 GHz range, compared to S-band at ~ 2.248 GHz (microwave link
for the ACES mission). The second order ionosphere effect for S-band is smaller by a factor of ~ 3 —4 than
that for the L, GPS frequency. In the zenith direction, there can easily be an effect of 1 cm ~ 30 ps, whereas
close to the horizon, the effect is multiplied by a factor of ~ 10 . During the solar maximum, the ionospheric
TEC value can reach up to 200 TECU. TEC maps are provided by the IGS for the zenith direction, thus
towards the horizon the effect is increased by 1/cos (zenith angle), or one can use a multiplication factor of

6 —12 for elevation angles in the range of 5°—10°. Of all space geodesy techniques, only SLR is free from
ionosphere effects.

9.3 lonosphere Effect at LEO Altitude

Here we look at the possibility of using global TEC maps provided on a regular basis by the IGS to calculate
the fractional TEC above or below a LEO orbit. First, a few words about ionospheric modeling using the
single layer model we have referred to. The IGS provides Global Tonosphere Maps (GIM) on a daily basis with
a time resolution of two hours, (see e.g., (Dow et al. 2005)). These maps are generated using estimates from
the ground IGS network and contain the total electron content between the Earth’s surface and the GPS orbit
height.

Figure 9.2 shows the vertical profile of electron density often called the Chapman layer. The Chapman
function provides a simple model of the ion production rate as a function of altitude A and the zenith angle
X with respect to the Sun (Davies 1990)

g(h, x) = goe 2o xe ) (9.17)
The scaled altitude for the altitude & and the reference height A (when the Sun is at its zenith, x = 0) reads

as

h—h
z= 0 (9.18)
Ah

with Ah denoting the scale height (typically h, = 450 km, Ah =100 km ). h, is the reference height of max-

imum ion production when the Sun is at its zenith.
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Figure 9.2 LEO orbit altitude and vertical electron density distribution.
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For all other zenith angles the height of maximum ion production is given by

he = hy+ Ahln—— (9.19)
cos Y
The ion production rate g, is given by
$(0) 1
= 9.20
qo Ah-o ( )

where ¢(o0) denotes the solar flux density outside the atmosphere (photons per square meter), 7 is the num-
ber of ion pairs produced per photon and “e ” is the base of natural logarithms. The electron density

distribution corresponding to the Chapman function in (9.17) is called the Chapman layer and is given by

1

Nc (Zv X) = Nc Oez<1_z_Sec Xeﬁ)

(9.21)

with a denoting the mean recombination coefficient for molecular ions and N, is the electron density at

z=0
Ny =4~ (9.22)

and the maximum electron density is given by

Ne,max (x) = NeA,[) COSX - (9.23)

Figure 9.3 shows the ionosphere profile from CHAMP GPS measurements given in terms of the first-order
ionosphere delay for P, code in the zenith direction along the CHAMP orbit during the last “normal” solar
maximum. We see that the effect of the ionosphere is significantly reduced for LEO orbits above 400 km . On
the other hand, if ionosphere maps provided by IGS are corrected for the LEO altitude (applying a constant
bias), we see that the agreement with observed TEC values from CHAMP is excellent and is at the level of
about 1 TECU or below. Larger deviations can only be expected when a satellite is passing the equatorial
anomaly.

In (Montenbruck and Gill 2002), the following model is given to calculate the fractional TEC above a
LEO orbit. The coefficient « is given as a scaling factor and reads as
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CHAMP Zenith lonosphere Delay in P1 Measurements, day 200/2002
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Figure 9.3 Ionosphere profile estimated using CHAMP P, and P, code measurements during solar maximum
as a delay on P, in the zenith direction along the CHAMP orbit (red), in comparison with the global iono-

maps estimated by IGS and corrected for the LEO altitude applying a constant bias (blue). Agreement with
the IGS TEC maps is at the level of 1 TECU or below. Larger variations are due to the equatorial anomaly.

leIp
e-e
Oéfe_el_m (924)
Figure 9.4 shows the ionosphere profile along the GRACE orbit in terms of the geometry-free linear combina-
tion P, with and without applying the fractional TEC model (9.24) from (Montenbruck and Gill 2002). One
can see that agreement is not as good as in Figure 9.3. Therefore, it is proposed to refine this fractional TEC
model including the zenith angle x with respect to the Sun f (Sun position) , €.g., including cosx

_e*IP
e_el e

a=—— f(Sun position) (9.25)
e-e”

A closer look at the Chapman function (9.21) that describes the shape of the Chapman layer (vertical
TEC profile of ionosphere), shows that correct calculation of the fractional TEC above or below the LEO orbit
altitude involves solution of the following integral

A 1 -z
[ et g, (9.26)
ZLEO
We can show that (9.26) can be reduced to the “error function” erf(z) well known in statistics

z

o0
11_,_g -z
f ea(l7seexe )dz:«/ewcosx-erf ¢ = Jemcos x - erf(x) (9.27)
ycos x

The “error function” in integrating the normal distribution is given as, e.g., (Bronstein and Semendjajew 1996)

2LEO

2 ey 2 s @0 )2 &) e
erf(m)—\/;{e dt—\/;[x 3 +10 }—\/;g k!(2k+l) (9.28)

We see that the fractional TEC along the LEO orbit can be calculated exactly from the Chapman function.
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Figure 9.4 Tonosphere profile (GRACE-B) estimated using P, and P, code in terms of the geometry-free

linear combination P, with and without applying the fractional TEC model (9.24) (agreement is not as good

as in Figure 9.3).

9.4 Proposal for A Novel Remove-Restore Approach for
lonosphere/Plasmasphere Modelling with LEO Satellites Based on
Least-Squares Collocation and Four Chapman Layers

Global ionosphere TEC maps provided by IGS have considerable spatial and temporal deficiencies due to the
irregular distribution of the ground IGS stations (e.g., low density over oceans, polar caps and in the Southern
hemisphere in general). This is especially true for the IGS real-time network, considering the recent attempts
by IGS to provide ionosphere maps in real-time. In the combination of LEO and ground TEC measurements
for the generation of final IGS TEC maps or the augmentation of real-time TEC maps, one could use the
remove-restore approach. This would be similar to the remove-restore approach used in geoid determination
by least-squares collocation. For both the final and real-time IGS maps, observed TEC obtained from ground
IGS receivers and/or along the LEO orbit (for the final IGS maps only) is “removed” or reduced by employing
a background ionosphere model, such as IRI2010 or NeQuick-2. In the second step, the derived LEO and
ground-based TEC residuals are then modeled and properly combined using least-squares collocation. In the
third step, the ionosphere model is “restored” to the reduced and combined TEC measurements. This proposed
remove-restore method would augment the real-time IGS TEC maps with the background ionosphere model
and combine LEO and ground IGS measurements for the final TEC maps. Such a remove-restore approach
could especially improve spatial and temporal resolution of TEC maps in the regions where ground based or
space based TEC observations are insufficient, e.g., oceans, polar caps or the Southern hemisphere in general.
Compared to ground TEC measurements, a LEO orbit is typically placed within the ionosphere, thus the main
challenge in the combination of LEO and ground TEC measurements is how to correctly account for the
fractional TEC of the ionosphere below the orbit altitude, (see Figure 9.2). However, homogeneous and iso-
tropic covariance functions used in least-squares collocation are designed to clearly distinguish between signal
and noise in the data combination and filter out geographically correlated errors allowing the consistent com-
bination of LEO and ground TEC measurements over the entire sphere. Here homogeneous means that
statistical properties of the combination are preserved uniquely over the entire sphere and isotropic means
over all azimuths. This is typically achieved by the design of the covariance function. For more on least-
squares collocation we refer to (Moritz 1980).
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Compared to all other LEO satellites equipped with a GPS receiver, GOCE with an altitude of 240 km
is placed in a very low LEO orbit below the Chapman height (about 450 km altitude) and thus is a good

candidate for studying improvements in the IGS global ionosphere maps, combining total electron content
derived from the GOCE orbit and the ground TEC measurements. The GOCE satellite performs 16 revolutions
per day around the Earth and thus it is expected that the future ionosphere products provided by IGS will be
based on a combination of ground- and space-based LEO GNSS measurements including in addition about
100 GNSS satellites of the GPS, GLONASS, Galileo and Beidou constellations.

Inclusion of GOCE, GRACE and Jason-2 data can considerably improve modeling of the layered structure
of the ionosphere, considering that GOCE TEC measurements at 240 km altitude represent almost the com-

plete effect of the ionosphere, whereas TEC measurements taken by Jason-2 above the 1300 km altitude are

mainly driven by the plasmasphere. Therefore, we propose to model the ionosphere as a spherically-layered
electron density distribution in three main Chapman layers, i.e., E, F1 and F2 and an additional layer for the
plasmasphere density above the ionosphere. The GOCE orbit is located above the E layer and below the F1
and F2 layers, the GRACE orbit is above the F1 layer and below the F2 layer, whereas Jason-2 is above the
E, F1 and F2 layers, just above the ionosphere, where the plasmasphere starts. Therefore, there is great
potential in combining these three missions with ground IGS measurements in constructing a layered model
of the ionosphere.

At the moment, GPS measurements provided by the GOCE GPS receiver are solely used for kinematic
and reduced-dynamic precise orbit determination. Here we are proposing applications of the GOCE GPS data
in other scientific disciplines. In particular, applications to enhance IGS products and to study potential
application of the LEO GPS measurements for the Space Weather segment section of ESA’s Space Situational
Awareness (SSA) Programme. The SSA Programme is based on the following three areas: 1) Space Surveillance
and Tracking; 2) Near Earth Objects; 3) Space Weather. Ionosphere monitoring is one of the components of
the Space Weather section of ESA’s SSA Programme and GOCE GPS data could help to answer the question
of how GPS measurements from the LEO satellites could improve the temporal and spatial resolution of the
global ionosphere models. The GOCE satellite is an excellent candidate for such a study, since the error in
TEC reduction from the very low GOCE orbit to the location of the ground TEC measurements is not as
significant as that in TEC reduction from other LEO missions.

Typically, TEC maps provided by the CODE IGS AC are calculated in terms of a single-layer model
represented by a spherical harmonic expansion in a frame defined by the axis of the geomagnetic pole and the
geomagnetic equator w.r.t. the position of the Sun, (see (Schaer 1999)). Thus, instead of using geographic
latitude, geomagnetic latitude is used, calculated for the intersection point of the line of sight with the single
layer (ionospheric pierce point). Instead of geographic longitude, the Sun-fixed longitude of the ionospheric
pierce point is used w.r.t. the longitude of the Sun. This rotation from an Earth-system, where TEC measure-
ments and coordinates of ground stations are given, to the Sun-fixed geomagnetic coordinate system can be
performed at the level of spherical harmonic coefficients by a rotation about the polar axis by an angle «

S « S C
S (a S C,.
mm( ) — mm | cosmeor + mm | gin ma (9'29)
Cmm (a) Cmm _Smm
C Q C =S
nn]i]xm ) nmaxnl nmaXm

where the coordinates of the Geomagnetic Pole (acmp(t)7ymp(t)) are related to the transformed coefficients as
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In this case, global TEC mapping could be performed with station coordinates in an Earth-fixed terrestrial
frame. For more on rotation of spherical harmonic coefficients, see Section 25. In the same way, rotations of
spherical harmonic coefficients could be directly introduced as parameters of TEC maps. Therefore, instead of
calculating a set of spherical harmonic coefficients every, e.g., 2 hours, one could calculate a set of rotations
a = a(t) for initial spherical harmonic coefficients given for a period of one day. In that case, one could
produce a continuous transition of temporal ionosphere maps over one day or longer. That is not the case
now, where every TEC map is calculated separately and there is no smooth transition between those maps.
To our knowledge, only CODE Analysis Center uses constraints between the TEC maps, but one still needs
to use an interpolation method to obtain the TEC value between the two TEC maps.

9.5 Tropospheric Refraction and Low-Order Zonal Gravity Field
Coefficients from LEO Orbits. Is There a Connection?

A LEO orbit is located high above the troposphere and therefore only ionospheric effects are relevant in
determining a given LEO orbit. However, since GPS satellite orbits, and especially GPS satellite clock param-
eters, are estimated by means of the ground GPS network, the troposphere has an indirect impact on LEO
orbit determination and subsequently on the estimated gravity field and altimetry results. We have noticed
that with the kinematic orbits of CHAMP and the low-order zonal gravity field coefficients. It was reported
for the first time by (Mayer-Giirr et al. 2006) that some of the solutions of CHAMP kinematic orbits show

very significant differences in low-order zonal gravity field coefficients, namely J,, J, and J;. The error was

above the error-bars one would expect and was significant compared to the first GRACE gravity models. Over
several years we were very puzzled as to what the root cause was and the background effect. Looking at the
affected low order zonal gravity field coefficients, they define the shape of the Earth’s gravity field, i.e., the
flattening of the rotational ellipsoid and zonal effects along the parallels (e.g., at mid latitudes). The only
effect that is similar is that of troposphere gradients, where a strong north-south component follows the shape
of the troposphere (flattening at the poles). As with the Earth’s gravity field, the troposphere also flattens at
the poles, having a typical maximum height of 18 —20 km above the equator and 8 —9 km above the poles.
In the calculation of phase clocks for GPS satellites we did not take into account tropospheric gradients,
although they have a strong effect on GPS signals at 10° elevation and below. It was assumed that processing
GPS measurements from the IGS network above 10° elevation and estimating tropospheric zenith delays as
piece-wise linear functions every hour, would be sufficient to properly model the effect of the troposphere on
ground GPS measurements. However, we did not take into account any data below 10° elevation or tropo-
spheric gradients, which basically model the troposphere mapping function as a function of azimuth. This un-
isotropical effect caused by this chosen model of tropospheric refraction affected GPS satellite clock parameters
and subsequently LEO kinematic POD. In the case of reduced-dynamic orbits or gravity field modeling based
on dynamic orbits, the effect is coupled with the once-per-rev. empirical accelerations that are typically esti-
mated in dynamic POD (and could partially remove it), but not in kinematic POD.

9.6 An Overview of Tropospheric Effects on Microwave and Optical
Measurements

This overview is fully based on the existing literature, see e.g., IERS Conventions (Petit and Luzum 2010)
and given here for the sake of completeness, thus readers familiar with the topic may wish to forego this
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summary. The atmosphere is a layer of gases surrounding the Earth that is held in place by the Earth’s gravity
field. The Earth’s atmosphere has several layers that differ in properties such as temperature, pressure and
composition that extend from the troposphere (the lowest layer up to some 10 km), to the stratosphere,
mesosphere, thermosphere, up to the exosphere that includes ionosphere and plasmasphere.

Atmospheric refraction is the main accuracy-limiting factor in all microwave space-based geodetic tech-
niques such as GPS, DORIS, VLBI and satellite altimetry. This is also true, to a great extent, for optical
space-based geodetic techniques, such as SLR, that are also influenced by range biases. Moreover, for kinematic
POD, tropospheric refraction and ground station multipath are the main sources of error in determining GPS
satellite clock parameters and consequently LEO kinematic orbit. Therefore, we decided to give here an over-
view of the state of the art in the modeling of tropospheric refraction and to propose improvements.

The troposphere is non-dispersive for radio signals with frequencies up to 40 GHz. Due to the refractive

index and its variation within the troposphere, microwave signals are delayed. The same is true for a laser
pulse transmitted and received by a SLR telescope. Typically, the total delay of the radio signal is divided
into “hydrostatic” and “wet” components. The hydrostatic delay is caused by the refractivity of the dry gases
in the troposphere and by the non-dipole component of water vapor refractivity. The main part, (about 90%)
of the total delay, is caused by the hydrostatic component and can be very accurately predicted using surface
pressure data. The dipole component of water vapor refractivity is responsible for the wet delay and amounts
to about 10% of the total delay. This corresponds to 5 —40 cm (max.) for very humid conditions. A mapping
function is used to transform the zenith tropospheric delay to the elevation of each observation. In recent
years, the so-called Niell Mapping Function (NMF) has become the standard for the processing of microwave
measurements. It is based on one year of radiosonde profiles, primarily from the Northern hemisphere (Niell
1996). In order to improve accuracy, it was recommended that troposphere mapping functions based on data
from numerical weather models (NWM), such as ECMWEF (European Centre for Medium-Range Weather
Forecasts) be used. They provide the spatial distribution of refractivity throughout the troposphere with high
temporal resolution. Today, these mapping functions (e.g., Vienna Mapping Function - VMF1 (Boehm et al.
2006b) or IMF (Niell 2001)) are available as time series of coefficients with a resolution of six hours ((Boehm
et al. 2006a)). As an alternative, if NWM-based mapping functions are not available for a particular station
or period of time, the global mapping function (GMF) can be used without introducing systematic biases (in
the coordinate time series), see (Boehm et al. 2006a). The GMF is a compatible empirical representation of
the more complex NWM-based mapping functions, the differences being mainly in short-term precision. The
GMF provides better precision than the NMF and smaller height biases with respect to VMF1 (Boehm et al.
2006a). VMF1 is currently the mapping function providing globally the most accurate and reliable geodetic
results. However, systematic station height changes of up to 10 mm occur when changing from NMF to VMF1
(Boehm et al. 2006a.).

Traditionally, the correction of the tropospheric delay at optical wavelengths has been performed using
the formulation of (Marini and Murray 1973), a model developed for the 0.6943 ym wavelength (McCarthy
and Petit 2004). The model formulated in (Hulley and Pavlis 2007) is now the standard zenith delay model,
the so-called M-P model, for modeling the refraction of SLR measurements and is valid for a wide spectrum
of wavelengths ( 355 —1064 nm ) with sub-mm accuracies. The accompanying mapping functions (FCULa
and FCULD) published in (Mendes et al. 2002) showed a 2-year average RMS (model minus ray tracing
through radiosonde data) of approximately 7 mm at 10° elevation (Hulley and Pavlis, 2007). However, these
are models based on an unrealistic spherically symmetric atmosphere neglecting contributions from horizontal
refractivity gradients around the SLR tracking sites. (Hulley and Pavlis, 2007] addressed the contribution of
horizontal refractivity gradients to the computation of the total tropospheric delay for SLR measurements by
direct ray tracing through three-dimensional atmospheric fields generated using AIRS and NCEP data. AIRS
stands for the Atmospheric Infra-Red Sounder instrument on NASA’s AQUA Earth Observing System (EOS)
platform. They calculated horizontal gradient delays at any selected azimuth and elevation angle for 10 of the
most prolific, globally distributed ILRS stations during 2004 and 2005. They showed that AIRS North-South
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(NS) and East-West (EW) gradients have annual means of between 1 and 4 mm in absolute magnitude at
10° elevation. The NS component had larger standard deviations ranging from 6 to 12 mm , while the standard

deviations of the EW component were between 5 and 9 mm at all the stations analyzed. Maximum NS gra-
dient delays of up to 50 mm were found at Yarragadee (Australia) and Herstmonceux (UK) at 10° elevation.

They found that the largest variations occur as a result of seasonal and diurnal changes. Stations situated in
mountainous regions, such as McDonald and Monument Peak, had larger horizontal pressure gradients, while
stations in close proximity to large bodies of water (for example, Yarragadee) had larger horizontal tempera-
ture gradients. No significant non-hydrostatic (wet) gradients were found, with maximum wet delays only
reaching a few tenths of a millimeter during the summer at Greenbelt. They found that the gradient delays
decreased by a factor of 3 from 10° to 20° elevation and were at sub-mm levels at higher elevation angles. The
NS and EW gradients varied primarily by station location and time of year. Gradient variations in the NS
and EW directions increased from winter to summer at Yarragadee and Monument Peak and from summer
to winter at Herstmonceux and Zimmerwald. By using uncertainties in the most recent AIRS validation
results, they were able to estimate error variations in the gradient delay results. They found monthly RMS
differences (original minus simulated data) of less than 5 mm for an elevation angle of 10° at Herstmonceux

and Yarragadee. Actual day-to-day variations in the gradients were larger and ranged from 7 to 14 mm . The

effects of replacing the M-P delay model by ray-tracing results in order to calculate the total tropospheric
correction (including gradients) resulted in a reduction in the variance of the SLR observation residuals for
LAGEOS 1 and 2 of 25-43% for NCEP and 10-30% for AIRS during 2004 and 2005. They concluded that
NCEP had much larger biases than AIRS at most stations, and an optimum solution would need to be
developed (e.g., using ECMWF) in order to extract the best results for future corrections, see (Hulley and
Pavlis, 2007).

Compared to data relying on microwave technology, the two main advantages of SLR measurements are,
firstly, that they are free from first- and higher-order ionospheric effects, and, secondly, that water vapor
delays can easily be modeled. The signal delay due to refraction by the water vapor in the atmosphere is
significantly different in the optical and in the microwave band. The ratio is about 67:1, meaning that a typical
“wet component” in the zenith direction of about 5—40 cm for the microwave band (GPS) corresponds to a

delay of about 1—6 mm for SLR observations. Since the effect is relatively small, about 80% of the delay can

be modeled by using surface pressure, temperature and humidity measured at the station.

Atmospheric water vapor is the dominant greenhouse gas in the Earth’s atmosphere, and quantifying the
feedback of water vapor in global warming is therefore of paramount importance, (Bengtsson et al. 2003). The
lack of detailed knowledge of the hydrological cycle is thus a major factor limiting a better understanding of
the Earth’s climate system. The inaccuracy is substantial and concerns practically all aspects of the hydrolog-
ical cycle (Bengtsson et al. 2003). Recently, GNSS-based measurements have offered new and promising
possibilities. The global IGS network and dense regional GNSS networks have been developed around the
world, and these provide highly temporal and spatial information (e.g., up to 20 km) about the integrated
atmospheric water vapor; vertical profiling using the GPS radio-occultation technique is similarly taking place,
using satellites in LEO orbit. Tropospheric zenith delays are estimated on a regular basis using regional GPS
networks and the global IGS ground network. These are then used to assimilate and constrain numerical
weather models, (see e.g., (Guerova et al. 2006)). However, GPS networks provide total zenith delay, and the

water vapor information is extracted using models.
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9.7 The Way Forward in High-Resolution Modeling of Tropospheric
Delays for all Space Geodesy Techniques

From the overview of tropospheric modeling approaches given above, a number of possible improvements
spring to mind. Use of water vapor radiometers is the way forward, although these instruments have not yet
found operational application in space geodesy. This is due to their inability to consistently deliver tropospheric
delays in all directions in the field of view and especially in all weather conditions (e.g., rain). On the other
hand, the use of numerical weather models can improve spatial and temporal resolution of the background
troposphere model (e.g., for troposphere mapping or ray-tracing). However, the state-of-the art numerical
weather models still have a temporal resolution of several hours and cannot represent the effect of the tropo-
sphere to a spatial resolution of below some 20 km. We know that the water vapor content can change

significantly within about 30 min and over several kilometers in terms of spatial resolution.

From Section 15.2 we will learn that in just a few years from now one can expect the operation of four
complete GNSS constellations (GPS, GLONASS, Galileo, and Beidou) providing more than 35 GNSS satellites
in the field of view 10° above the horizon. This opens up the possibility of modeling station-specific tropospheric
delays in terms of temporal spherical harmonics or spherical grids. In this way, fine structures in the station
troposphere and multipath could be mapped at the same time on the reference sphere placed around the
ground station. This will be very similar to estimating a PCV map for the specific location of a ground station.
Such an approach will be feasible, since more and more GNSS satellites are equipped with high-performing
satellite clocks that allow modeling of GNSS clock parameters with a simple linear model over a one-day
period, (see (Svehla 2010a) or Section 20). The same trend can be seen in the inclusion of H-masers in the
ground IGS network. Therefore, it is to be expected that Galileo will require modeling of tropospheric delays
to a significantly higher resolution in order to fully benefit from the short- and long-term stability of the on-
board H-maser. To understand why, one just has to consider that at each epoch about 8 different ground
stations contribute to the estimation of a single GNSS clock parameter. Thus, the residual tropospheric effect
is averaged over those 8 different stations every epoch and the noise is much higher than carrier-phase noise
or noise from the “instability” of the Galileo H-maser, (see, e.g., Section 18). In addition, the tracking geometry
changes slightly from epoch to epoch and new ground stations enter this averaging process typically at very
low elevations. For validation of the H-maser on board GIOVE-B using SLR measurements see (Svehla 2010a)
and for the first Galileo FOC satellites Section 20. However, one should always consider correlations of any
additional parameters with the station coordinates, if they are estimated in the same processing run, especially
the station height.

Once, high-resolution troposphere maps are being provided by ground GNSS stations, other space geodesy
techniques, such as SLR, VLBI and DORIS could use those maps to accurately account for very small changes
in tropospheric delays. In almost all cases, GNSS receivers are co-located with all other space geodesy sensors
in very close proximity, so such an approach is already feasible. Combination with space geodesy techniques
could also bring an added value. On the other hand, rotation of spherical harmonics can very efficiently
account for any temporal variations in modeling of station-specific tropospheric delays. In the scope of this
thesis we have developed a new technique for the rotation of spherical harmonics that can be used for the
modeling of temporal variations represented by spherical harmonics (e.g., gravity field, ionosphere maps, trop-
osphere maps).
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10. Aerodynamics in Low LEO: A Novel Approach
to Modeling Air Density Based on IGS TEC Maps

ere we present some theoretical aspects of the modeling of aerodynamic acceleration in the precise

orbit determination of a LEO satellite. We have included this section because of the great importance

of the role that aerodynamic drag plays in all gravity field missions, as they are typically placed in a
very low LEO orbit. Thus, here we look at the geometrical properties of this effect. We show that the accuracy
of the velocity in the calculation of the aerodynamic drag for a LEO satellite, in particular the velocity of
thermospheric horizontal winds, is as important as the atmospheric density. We then give a geographical
representation of the models used to calculate atmospheric density and thermospheric horizontal winds, with
an emphasis on the GOCE (Sun-synchronous) orbit, and compare this with the orbits of altimetry satellites
in high LEO. In addition, we present the prospects of investigating atmospheric density and thermospheric
winds using the GOCE mission at 220 — 250 km altitude. Models of neutral horizontal winds show that ther-
mospheric winds mainly occur around the geomagnetic poles where they are driven by the perturbations in
the geomagnetic field. The highest thermospheric wind velocities may be expected along the dawn-dusk re-
gions, and from that point of view, the GOCE orbit is the perfect candidate to provide unique information on
the neutral horizontal winds in the lower thermosphere. Section 10.3 of this thesis triggered an ESA study
that demonstrated the retrieval of thermospheric wind parameters from GOCE data. At the end of this section,
we demonstrate a novel approach to calculating and predicting air density in the thermosphere based on the
global TEC maps provided by IGS. This approach could be used to predict solar activity in an alternative
way, independent of the number of Sun spots or the solar flux index at a wavelength of 10.7 cm (Fyg7). We
also show that information on the ionization of the thermospheric part of the ionosphere, as provided in IGS
TEC maps, can be used to calculate the LEO mission duration (as was done for GOCE). This opens up new
applications for the global IGS TEC maps in monitoring air density in the thermosphere, including spatial
and temporal variations. In addition, we show that variations in air density driven by variations in solar
activity (heating) are empirically proportional to the ionization of the ionosphere. Thermospheric density and
TEC can be related by an empirical linear model as shown here.

10.1 Aerodynamic Drag

Aerodynamic drag is the most significant non-gravitational force acting on a satellite in low LEO orbit. At-
mospheric density decreases exponentially with increasing orbit altitude and, as a result, aerodynamic drag
becomes negligible at the outer boundary of the thermosphere (a 1000 km ). Due to the energy dissipation
caused by air resistance, natural orbital motion below 120 km orbit altitude cannot be sustained in the Earth’s
atmosphere and so is followed by orbital re-entry. The ESA mission GOCE, in Sun-synchronous orbit, uses a
dedicated electric ion propulsion system to counteract aerodynamic drag and to maintain the satellite orbit at
220 — 250 km altitude. Thus, the duration of the GOCE mission is limited by the capacity of the 40-kg tank
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of xenon on board, as xenon is used for propulsion. Neutral xenon atoms are converted into fast-moving ions
by an electric discharge generated by the satellite’s photo-voltaic panels. The ions are then ejected aft of the
satellite giving a very smooth thrust of 1 —20 mN , depending on the measured drag in the along-track direc-
tion. On the orbit determination of the International Space Station, see (Shum et al. 2008, 2009).

The aerodynamic acceleration of the satellite due to air drag reads as, e.g., (Montenbruck and Gill 2000)

3 1 A L
T'=——=cp—prT, (10.1)
2 " m

TTr

with p denoting the air density, ¢, the empirical drag coefficient, A/m is the so-called form factor or the
aerodynamic reference cross-section with satellite mass m and satellite velocity i;'r relative to the atmosphere

(assuming that the atmosphere co-rotates with the Earth). Air drag acceleration can easily be derived by
considering the linear momentum of a small mass element of a column of the atmosphere that hits the satellite’s
cross-sectional area. (For more details see, e.g., (Montenbruck and Gill 2000)). This is the reason why the
acceleration of the satellite due to air drag is directly proportional to the square of the relative velocity. The

relative velocity or free-stream flow velocity, as a function of the satellite velocity 7 , 18

P o=@ X — T 10.2
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with &, denoting the Earth’s angular velocity vector and 7, is the satellite position in the Earth-fixed frame.
In (10.2), we have included, in addition, the thermospheric horizontal wind velocity denoted as ?HW . The

second term in (10.2) assumes that the entire atmosphere co-rotates with the Earth and the third term models
more closely the real dynamics of the atmosphere, making use of the model for horizontal neutral winds in the
upper thermosphere.

In the case of a more refined model, the satellite surface can be considered as an array of finite elements,

where the surface element A; has a corresponding drag coefficient C'(k). By introducing the normal vector

for each surface element A',W with the length set to the actual surface element area, we can derive the refined

model for the aerodynamic acceleration of the satellite due to aerodynamic drag, giving

P = _lﬁach(k);lk?}- (10.3)

2m 7
Accuracy of the satellite velocity relative to the atmosphere is limited by the complex atmosphere dynamics
modeled by the horizontal wind models, see Figure 10.2 and Figure 10.3. Estimation of the absolute velocity
of the atmosphere is at least five orders of magnitude less accurate than determination of the actual satellite
velocity (~ 0.01 mm/s). Aerodynamic drag modeling is mainly limited by the accuracy of the models for

atmospheric density and neutral thermospheric wind velocity as well as by the drag coefficients that describe
the interaction of the atmosphere’s constituents with the satellite surface. These limitations can be reduced
by empirical orbit modeling, i.e., by estimating frequent air drag coefficients and other empirical parameters.

Comparing the kinematic and reduced-dynamic orbits of the CHAMP satellite it was demonstrated that
aerodynamic-drag could only have a smooth effect on POD with very long periodicity. It can therefore easily
be removed by estimating empirical parameters (pseudo-stochastic pulses) allowing cm- level orbit accuracy
to be achieved (Svehla and Rothacher 2002). However, in comparison with the kinematic CHAMP orbit, the
remaining systematic errors in the along-track of the reduced-dynamic orbit can easily be identified in the
polar regions (Svehla and Rothacher 2002), (Svehla and Rothacher 2005b). These are regions where the dy-
namics of the atmosphere is very complex and larger errors in the thermosphere wind/density models can be
expected. (Bruinsma et al. 2003) compared methods to model acceleration for the CHAMP satellite and showed
that the level of geomagnetic activity is highly correlated with the atmospheric drag model error, and that the
largest errors occur around the geomagnetic Poles.
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The size of the drag coefficient depends, firstly, on the flow conditions which are characterized by the
Mach, Reynolds and Knudsen numbers, and, secondly, on the scattering mechanisms taking place at the
satellite surface, such as specular, elastic and diffuse reflections. For LEO orbits, the satellite is in the free
molecular flow regime, which means that the incident flow is undisturbed by the satellite moving through it,
i.e., particles re-emitted from the surface of the satellite do not interfere with the incident flow. A typical drag
coefficient for LEO free molecular flow that one can find in the relevant literature, is in the order of 2 —2.3.
As the orbit altitude decreases, air density increases exponentially and the satellite moves from a free molecular
flow regime into intermolecular collision flow and finally into continuum flow. A typical value for the aerody-
namic drag coefficient in this transitional flow regime (below 200 km ) is about 1.0, however, and the increased
air density causes orbital re-entry of the satellite.

10.2 Geographical Representation of Atmosphere Density and
Thermospheric Horizontal Wind Models

Thermospheric density models play an important role in POD, orbit predictions, orbital station keeping ma-
neuvers, ground-track maintenance, collision risk analysis and orbit reentry predictions. In order to model
aerodynamic drag, we employed the NRLMSIS-00 atmosphere density model (Picone et al. 2002) along with
the thermospheric horizontal wind model HWM93 (Hedin et al., 1996). NRLMSIS-00 is the recent major
upgrade of the MSISE-90 model of the thermosphere (Picone et al. 2002). The MSISE-90 model is a revision
of the MSIS-86 empirical model (Hedin, 1987) of the lower thermosphere extended into the mesosphere and
lower atmosphere taking into account data derived from space shuttle flights and from incoherent scatter
radar (Hedin, 1991). Compared to MSISE-90, the NRLMSIS-00 model is based on the following data: (1) total
mass density from satellite accelerometers and from orbit determination (including the Jacchia and Barlier
data sets), (2) temperature from incoherent scatter radar covering the years 1981-1997, and (3) molecular
oxygen number density, from solar ultraviolet occultation aboard the Solar Maximum Mission (Picone et al.
2002). A new component, “anomalous oxygen”, allows for appreciable O" and hot atomic oxygen contributions
to the total mass density at high altitudes and applies primarily to drag estimation above 500 km (Picone et

al. 2002). The same paper reports a large O contribution to the total mass density when there is a combination
of summer, low solar activity, high latitude, and high altitude. Under these conditions, except when there is
very little solar activity, the Jacchia-70 model shows a significantly higher total mass density than does MSISE-
90. However, under the corresponding winter conditions, the MSIS-class models represent a noticeable im-
provement relative to Jacchia-70 over a wide range of solar fluxes. Considering the two regimes together,
NRLMSISE-00 achieves an improvement over both, MSISE-90 and Jacchia-70, by incorporating advantages
from both (Picone et al. 2002).

Figure 10.1 shows the air density for a sphere placed at 250, 500, 700 and 1000 km above the Equator at
12 UT. The solar flux F10.7 was set to 150 and the Ap indices to 4 as approx. values for day 200/2003. The
maximum density at 250 km altitude occurs two hours after the local noon around the geomagnetic equator,
whereas for higher altitudes this maximum is shifted to the south-east. From Figure 10.1 one can draw the
conclusion that the air density at 250 km is about one order of magnitude higher than that at an altitude of
400 km, three orders of magnitude higher than that at 700 km and about four orders of magnitude higher
than that at 1000 km. In a Sun-synchronous orbit the satellite is not exposed to maximum atmospheric density.
For the GOCE satellite placed in a Sun-synchronous orbit at an orbit altitude of 240 km, the main density
perturbation is avoided. However, residual perturbations can be expected around the geomagnetic poles.

The thermospheric horizontal wind model HWM93 (Hedin et al., 1996) is a revision of the previous
HWMO90 model (Hedin et al., 1991) for the lower thermosphere and extended into the mesosphere, stratosphere
and lower atmosphere to provide a single analytic model for calculating zonal and meridional wind profiles
representative of the climatological average for various geophysical conditions (Hedin et al., 1996). Gradient
winds from CIRA-86, plus rocket soundings, incoherent scatter radar, MF radar, and meteor radar provided
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Figure 10.1 Air density in kg/m? based on the NRLMSISE-00 model for a sphere placed at 250, 500, 700
and 1000 km above the equator at 12 UT (F10.7 solar index was set to 150 (during last solar maximum) and
Ap index to 4, day 200/2003). Comparing top and bottom figures, one can see that the density of the atmos-
phere is much higher below an altitude of 400 km and that for these altitudes, air density shows a

geographical distribution similar to global TEC maps provided by the IGS.

the data base and were supplemented by previous models. Low-order vector spherical harmonics and Fourier
series were used to describe the major variations in the atmosphere including factors such as latitude, annual,
semiannual and local time (tides), and longitude, with a cubic spline interpolation in altitude (Hedin et al.,
1996). The MSIS models are based on the so-called Bates-Walker temperature profile -- a function of geopo-
tential height for the upper thermosphere and an inverse polynomial in geopotential height for the lower
thermosphere. Exospheric temperature and other atmospheric quantities are expressed as functions of geo-
graphical and solar/magnetic parameters. The temperature profiles allow for exact integration of the
hydrostatic equation for a constant mass to determine the density profile based on a density specified at
120 km as a function of geographic and solar/magnetic parameters (Hedin et al., 1996).

Although the agreement between various data sources was reported to be good, systematic differences
were reported, particularly near the mesopause. RMS differences between data and the model values are of
the order of 15m/s in the mesosphere and 10 m/s in the stratosphere for zonal winds, and 10 m/s and

5 m/s, respectively, for meridional winds. (For more detail see (Hedin et al., 1996)) The output of the model
are zonal and meridional wind components for altitudes from 0 km to 2000 km . Velocities of up to 1km/s
can be reached across the poles at altitudes of 300 km . In the vertical direction, the mean wind velocity is
generally less than 1 cm/s and can be neglected for all applications.

Figure 10.2 shows the total horizontal thermospheric wind velocity in m/s based on the HWM93 model

at 250, 500, 700 and 1000 km altitude at 12 UT. The same solar and geomagnetic parameters were used as in
the computation of atmospheric density. The neutral horizontal wind model shows that thermospheric winds
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Figure 10.2 Total horizontal air velocity in m/s based on the HWM93 model at 250, 500, 700 and 1000 km
altitude at 12 UT (Fyp7 index set to 150 and Ap indices to 4, approx. values for day 200/2003).

mainly occur around the geomagnetic poles, where they are caused by the perturbations in the geomagnetic
field. The highest wind velocities may be expected along the dawn-dusk regions. At low latitudes, more stable
(accurate) and moderate velocities are to be found and unlike with atmospheric density and the ionosphere,
no correlation with the sub-solar point can be observed (as is the case with IGS TEC maps).

The thermosphere is the "LEO layer” of the Earth's atmosphere above the mesosphere and below the
exosphere, where ultraviolet radiation causes ionization and the creation of the ionosphere. The exosphere is
the uppermost layer of the atmosphere (roughly above 1000 km ) and is sometimes used synonymously with
outer space, since there is no clear boundary between the two. In the exosphere, a molecule can escape into
space or can be pulled back to Earth by gravity with almost no probability of colliding with another molecule.

Figure 10.3 shows the neutral atmospheric density and horizontal velocity at 1300 km altitude (altimetry
satellites such as T/P, JASON-1/2). One can see that atmospheric density is lower by a factor of 5 compared
to an altitude of 1000 km, but horizontal winds show a very similar behavior to those in the lower thermosphere
at altitudes of 250 or 400 km. Figure 10.3 confirms again that atmospheric winds are driven mainly by per-
turbations in the magnetic field and that atmospheric density is driven by the solar flux at a wavelength of
10.7 cm (Fi7). Maximum air density occurs about 2 hours after the local noon and is placed close to the
South Magnetic Pole. Both models for thermospheric density and models for thermospheric winds, are mainly
driven by the solar flux index Fiy; as an input and the mean solar flux over the previous three 27-day rotations
of the Sun. Due to the interaction between the solar wind and the Earth’s magnetic field, the geomagnetic
field is perturbed and related variations in atmospheric density can be expected. Variations in the Earth’s
magnetic field are globally represented by the so-called (three-hourly) planetary geomagnetic index and its
daily mean, often denoted as Ap.
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Figure 10.3 Total horizontal atmosphere velocity in m/s and air density in kg/m? based on the HWM93
model at 1300 km altitude at 12 UT (Fip7 index set to 150 and Ap indices to 4, approx. for 200/2003).

Figure 10.4 shows the mean observed solar radio flux at a wavelength of 10.7 cm over more than 60 years.
One can clearly recognize the 11-year solar cycle. The same periods may be identified in the ionosphere maps
provided by IGS and in the atmospheric density models that use the solar flux index as an input. The Sun
emits radio energy that is driven by the layers high in the Sun's chromosphere and low in its corona, and the
rate at which that energy is emitted changes in unison with the number of spot groups on the disk. By looking
at the number of Sun spot groups on the Sun’s disk we can identify the 27-day Sun rotation period. This
rotation period can also be seen in the variations of the solar flux as reflected in the Total Electron Content
shown on the IGS ionosphere maps or in the atmospheric density.

The solar flux density at 2.8 GHz corresponds to a wavelength of 10.7 cm and has been recorded rou-

tinely by radio telescopes. Figure 10.4 shows observed monthly means of the solar flux recorded since 1947 by
the radio telescope near Ottawa and starting with June 1991, from Penticton, in Canada. The observed time
series contain fluctuations that arise from the variations in the Sun-Earth distance over one year. Absolute
solar fluxes are corrected and referred to the mean Sun-Earth distance. In addition, they are multiplied by

0.90 to compensate for uncertainties in the antenna gain and in waves reflected from the ground (NOAA
2009).
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Figure 10.4 Observed and absolute (corrected to the mean Sun-Earth distance) solar flux at 10.7 cm wave-
length (data source NRCAN).
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10.3 Probing the Thermospheric Density and Thermospheric Horizontal
Winds Using the GOCE Mission

During the writing of this thesis, this section triggered a dedicated ESA Study that demonstrated the use of
GOCE data in examining of thermospheric horizontal winds.

The common mode of the GOCE accelerometers contains the signal of the non-gravitational forces acting
on the satellite. However, acceleration in the along-track direction is counteracted by the electric ion-propul-
sion system. This, in turn, is controlled by the measurements from the accelerometers. Hence, they measure
the near-zero drag acceleration in a closed loop. Therefore, thermospheric density can be derived mainly from
the force that is applied by the ion-propulsion system on the satellite. Since the drag-free system is acting only
in the along-track direction, GOCE accelerometers should be able to provide information on the horizontal
crosswind velocity (in cross-track direction) since the ion-propulsion system does not counteract the effect of
these on the satellite.

High-quality accelerometer measurements from the CHAMP and the two GRACE satellites in LEO orbit
have shown that existing state-of-the-art thermospheric density and horizontal wind models such as JB2006
(Bowman et al. 2008), JB2008 (Bowman et al. 2008a), NRLMSIS-00 (Picone et al. 2002) and HWM93 (Hedin
et al. 1996) contain systematic errors and their use in precise orbit determination has to be heavily supported
by the estimation of empirical orbital parameters (pseudo-stochastic pulses, i.e., empirical velocities), see e.g.,
(Svehla and Rothacher 2005a). However, at the same time, air density provided by those models can easily be
calibrated against the accelerometer measurements, providing very good predicted variations of the air density
along the orbit. Thermospheric density models and solar radiation pressure at higher LEO altitudes are the
main source of error in the precise determination and prediction of the orbits of LEO satellites, considering
the high spatial and temporal resolution of the Earth’s gravity field models available after the GOCE and
GRACE mission.

Due to its Sun-synchronous, very low LEO orbit (only 220 — 250 km altitude), GOCE could provide a

new insight into non-gravitational forces acting on LEO satellites at altitudes of 220 — 250 km . This is par-

ticularly true for forces related to air-density and horizontal winds in the lower thermosphere, but is also the
case for those connected with other effects such as solar radiation and albedo. For instance, GOCE is the first
LEO mission with highly sensitive accelerometers in a dawn-dusk Sun-synchronous orbit and could provide
for the first time, a spectral characterization of solar radiation pressure, which, in the case of GOCE, acts
approximately orthogonally to the aerodynamic drag.

Before the satellite gravity missions such as CHAMP, GRACE and GOCE equipped with highly sensitive
accelerometers, launched over the last 10 years, there was very little high quality data available on thermo-
spheric density and thermospheric winds. However, at times of low solar activity, and especially at the higher
altitude of the GRACE and forthcoming Swarm satellites, the determination of thermospheric cross-winds is
likely to remain much more challenging. Firstly, because of the reduced aerodynamic effect under those con-
ditions and errors in the data calibration, and secondly, due to solar radiation pressure that is a more dominant
effect at those altitudes.

On the other hand, GOCE could offer unprecedented information on air density and neutral horizontal
winds in the thermosphere at very low LEO altitudes never investigated before. This region of the thermo-
sphere is of special interest for research involving the orbital re-entry analysis of space objects as well as
calibration of the air density models to be used at higher LEO altitudes in the upper thermosphere. For the
GOCE satellite in a Sun-synchronous orbit, and for dawn-dusk orbits in general, the local mean solar time of
passage for equatorial longitudes is around sunrise or sunset, so that the satellite rides the terminator between
day and night. In that position the aerodynamic drag along the GOCE orbit is not significantly perturbed by
the Sun, as is the case for a Sun-synchronous orbit placed at the noon-midnight position. This could help in
calibrating thermospheric air density models at 220 — 250 km altitude, which could then be used as reference

for higher altitudes, where density is considerably lower. Such a strategy is also used in the e.g., MSIS-type
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models, where temperature profiles allow for the exact integration of the hydrostatic equation for a constant
mass to determine the density profile based on a density specified at 120 km as a function of geographic and

solar /magnetic parameters.

On the other hand, neutral horizontal wind models show that thermospheric horizontal winds mainly
occur around the geomagnetic poles, where they are driven by the perturbations in the geomagnetic field. The
highest thermospheric wind velocities may be expected in the dawn-dusk regions, and from that point of view,
the GOCE orbit is a perfect candidate for providing, for the first time, information on neutral horizontal winds
in the lower thermosphere.

For more on the dedicated ESA study triggered by this section that demonstrated for the first time the
use of GOCE data on thermospheric winds, see (Doornbos et al. 2012) and (Peterseim et al. 2011).

10.4 A Novel Approach to Modeling Thermospheric Air Density Using
lonosphere TEC Maps

Can we make use of the global TEC maps, regularly provided by the IGS, to improve the thermospheric
density models used in the orbit determination of LEO satellites? Can we use IGS TEC maps to predict solar
activity and from that the duration of a LEO mission? The current solar cycle (Solar Cycle 24) is extremely
mild, and thus the GOCE mission in very low LEO orbit has now two additional mission phases. This clearly
indicates that the atmospheric density in the thermosphere is lower than predicted. A similar effect can be
seen in the TEC maps provided by the IGS, i.e., due to a lower level of solar activity, there are fewer free
electrons in the ionosphere, as measured by GNSS receivers in the global IGS network.

Figure 10.5 shows the daily Sun spot number over the last 150 years using data from the National
Geophysical Data Center (NOAA). Both this set of data and the solar flux index F10.7, clearly show that
Solar Cycle 24 is the mildest for the last 150 years and up to 50% milder than the other solar cycles.

The same can be seen in Figure 10.6, showing global mean TEC values calculated using the IGS TEC
maps (CODE AC) over the last two solar cycles. Since CODE IGS AC uses a spherical harmonic expansion
to generate the global TEC maps, we plotted the central term Cy, of the spherical harmonic expansion that
shows that Solar Cycle 24 (with the maximum in 2012-2013) is the mildest for the last 150 years and up to
50% milder than other cycles.

Daily Sun Spot Number 1874 - 30.6.2013 (=mid of Cycle 24)
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Figure 10.5 Daily Sun Spot Number (in red) from the year 1874 to 30.6.2013 (=mid Cycle 24) against the
monthly mean of the Solar flux index F10.7 (in blue) scaled by a factor of 20. Both sets of data represent the
mean over the entire sphere placed at the Chapman height of 450 km .
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Global Mean TEC vs. Scalled Global Mean Density
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Figure 10.6 Daily global mean TEC based on IGS TEC maps (CODE AC) against daily global mean density
in [kg/m?] at 250 km altitude calculated using the NRLMSISE-00 model (for a 5°x5° grid every 6 hours)
based on the linear model (10.5) over the last 20 years. The agreement between the two different physical
quantities is excellent and the relation can be modeled by a simple linear model with an accuracy of a few
TECU over two solar cycles. One can clearly see the annual and the 27-day Sun rotation period in both time
series as well as the maxima of Solar Cycle 23 and Solar Cycle 24 around the years 2002 and 2013 respectively.

The question one can now ask is, “Can we see the same effect in atmospheric density?”. To answer this
we calculated daily global mean density using the NRLMSISEOO model for a global grid 5°x5° at 250 km
3]

altitude every 6 hours. Figure 10.6 shows the daily global mean density in [kg/m®] scaled by a constant

factor over the last 20 years. The agreement between the two different physical quantities is astonishing. A
linear model was fitted by least-squares for a period of 20 years, covering the last two solar cycles. As one can
see from Figure 10.6, the relation between TEC and thermospheric density can be modeled by a simple linear
model with an accuracy of a few TECU over two solar cycles. One can clearly see the annual and the 27-day
Sun rotation period in both time series, as well as the maxima of Solar Cycle 23 and Solar Cycle 24 around
the years 2002 and 2013, respectively.

Over shorter time scales, e.g., half a solar cycle as shown in Figure 10.7, we see that the agreement
between the global mean TEC and the mean thermospheric density is even better, at a level of 1—2 TECU
over the last 7 years. The NRLMSISE-00 model was used with the solar index Fio7 and the geomagnetic Ap
index from the National Geophysical Data Center (NOAA). The calculation using the NRLMSISE-00 model
is very sensitive to the solar index Fi7, whereas the 3-hourly Ap indices provide only short-term sub-daily
data. Looking at those time series, given for the last 20 years, one could also ask the question, “"How stable
are the differential code biases (DCBs) over those 20 years?”. DCBs define the absolute datum for IGS TEC
maps, and the estimation of global ionosphere maps is used as the reference to determine them.

To calculate the mean daily TEC based on the mean thermospheric density at 250 km altitude for the

period of the two solar cycles displayed in Figure 10.6, we used the following linear model
TEC=axp+b (10.4)

with coefficients ¢ and b, and the mean density p. After least-squares adjustment (fit to IGS TEC maps)

we obtained

TEC=5.0-10" X pys 1y — 7-4 (10.5)
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Global Mean TEC vs. Scalled Global Mean Density
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Figure 10.7 Daily global mean TEC based on IGS TEC maps against daily global mean density in [kg/m?]
at 250 km altitude (NRLMSISE-00 model, 5°x 5° grid every 6 hours) based on the linear model (10.5) over

the last 20 years. Agreement between the two different physical quantities is to a level of 1—2 TECU over
the last 7 years. One can clearly see the annual and the 27-day Sun rotation period in both time series.

where TEC stands for daily global mean of the TEC in [TECU], pysqy,, is the mean air density given in

[kg/m?] calculated using the NRLMSISE-00 model for a 5°x 5° grid every 6 hours at 250 km altitude. Fig-
ure 10.6 was calculated using Ap =4, since the use of the 3-hourly Ap indices increases only the high-
frequency part.

From (10.5) it follows that ionization in the ionosphere is directly proportional to air density, i.e., a
greater density of the thermosphere due to a higher level of solar activity (heating) is accompanied by propor-
tionally more free electrons in the ionosphere. The linear model of fractional thermospheric density at 250 km
altitude is similar to the fractional TEC at LEO altitude, both fractional quantities can be modeled using a
simple linear model (10.5). In Section 9.3, we showed with GPS measurements from the CHAMP satellite that
integration of the Chapman function, i.e., fractional TEC above LEO orbit altitude, can be calculated using
a bias applied to ground TEC values.

Making use of the liner model (10.5), we can combine ground TEC or fractional LEO TEC measurements
with thermospheric density at a given altitude. This could be used to indirectly predict solar activity in order
to calculate LEO mission duration (as was done for the GOCE mission) and opens up new applications of the
global IGS TEC maps in monitoring air density in the thermosphere.

A similar linear model for thermospheric density was derived for an altitude of 500 km

TEC=252.0-10" X p50 1 + 8-6 (10.6)

(see also Figure 10.8). Although, compared to (10.5), the orbit altitude was increased by a factor of 2, the
scaling factor in (10.6) increased by a factor of 50. Figure 10.9 (left) shows a geographical map of air density
at 400 km altitude scaled to the TEC values by a linear model (scale and offset) at 12 UT, while the figure

on the right shows TEC values as provided by IGS (CODE IGS AC). One can see that the overall agreement
is very good and in both cases the maximum value occurs at about 14 h local time, two hours after the Sun

has passed the meridian of that geographical location.
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Global Mean TEC vs. Scalled Global Mean Density at 500 km
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Figure 10.8 Daily global mean TEC based on IGS TEC maps against daily global mean density in [kg/m?]

at 500 km altitude calculated using NRLMSISE-00 model (for a 5°x5° grid every 6 hours) scaled by a con-
stant factor over the last 20 years. Agreement between the two different quantities is to a level of 1 —2 TECU

over the last 7 years. One can clearly see the annual and the 27-day Sun rotation period in both time series.

What is the mechanism that relates density of the thermosphere to ionization in the ionosphere? When
the Sun is more active it emits more high-energy radiation, i.e., X-ray and extreme UV radiation (XUV) that
is almost completely absorbed in the thermosphere. This radiation creates ionospheric layers and increases the
temperature at those altitudes. Due to this high-energy radiation, the thermosphere becomes hotter and so
expands. Expansion of the thermosphere moves lower levels of the thermosphere with higher density to higher
altitudes. This, in turn, increases the aerodynamic drag on satellites at those altitudes. In the auroral regions
additional heating of the thermosphere can be caused by the solar wind interacting with the magnetosphere.
At the same time, this high-energy radiation from the Sun in the form of high-energy photons tears electrons
away from gas molecules creating ions at the same thermospheric altitudes (ionosphere). This is described by
the Chapman function (9.17) that gives the ion production rate as a function of height for the entire iono-
sphere. Thus we have two mechanisms that work in parallel at similar altitudes, i.e., ionization of the

ionosphere and heating of the electrically neutral thermosphere.
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Figure 10.9 Air density at 400 km altitude scaled to TEC map (left) vs. global TEC (right) in [TECU] during

the current solar maximum (day 55/2013, 12 UT). Air density was calculated using the NRLMSISE-00 model
(for a 5°x5° grid) and scaled to the TEC values by a linear model (scale and offset). One can see that in

both cases maximum values occurs at about 14 h local time.
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Analogous to the Chapman function (9.17) that defines the vertical profile of the ionosphere, thermo-
spheric temperature is given by the so-called Bates profile, (Bates 1959)

T= T, (T, —T,) e =) (10.7)

o0

with reference temperature T, = 355 K given at z, =120 km . The exospheric temperature T, is directly

related to solar activity as a function of the solar index Fio7 by the following empirical formula

T, =500+ 3.4F, (10.8)

with the Covington index Fj, having a typical range of 70 —250 over one complete solar cycle. The shape of

the Bates profile is given by the empirical parameter s that typically decreases with T, . Once the tempera-
ture profile of the thermosphere (10.7) is given, one can calculate the corresponding pressure profile and from
that the thermospheric density profile. Taking into account the ideal gas law and integration of the hydrostatic
equation, the simplest form of the density profile as a function of temperature T and altitude h reads as

p= pUe’h/H“ (10.9)
with
Hy =27 (10.10)
Hg

with R denoting the universal gas constant, g is the gravity at altitude h, p represents the molecular

weight of the atmospheric constituents and p,, in (10.9) is the atmospheric density at the reference height.

10.5 The Remove-Restore Approach to Modeling the Density of the
Thermosphere

The previous subsection clearly shows that there is a high correlation between the density of the thermosphere
and the total electron content in the ionosphere and that there is a similar physical mechanism governing
both. The next step would be to improve the temporal and spatial resolution and accuracy of the thermospheric
models. One possible approach is to look at the existing information on the geomagnetic indices and solar
radio flux measurements that drive input parameters for the thermospheric models. Is there an alternative?
Here we propose studying the empirical coupling between thermospheric density and ionospheric total
electron content. We intend to use data provided with a high degree of spatial and temporal resolution by the
IGS. The idea is to study temporal and spatial correlations between global TEC maps and air density. It is
known that both effects are highly correlated with, and driven by the solar radio flux index Fio7. Monitoring
of the ionosphere is performed by IGS providing global maps of the vertical TEC every 2 hours. Our proposed
approach could be based on the temporal and spatial correlations between variations in the TEC at the GOCE
altitude, against the air density provided by the models and the air densities derived from the GOCE accel-
erometer. One way to carry out such an approach is to use a standard remove-restore technique with the
thermospheric model as a background model. It can be shown that ionosphere models such as ITRI2007 or
NeQuick can be used as background models in the very sparse real-time IGS network to improve spatial and
temporal resolution of the real-time/predicted TEC maps. In a similar way, coupling and correlation between
ionospheric charging and thermospheric heating could be studied, where the TEC information is used as a
precursor for density variation. The GOCE in-situ density measurements could be used as a reference in this
modeling. The quality of orbit prediction would be the first criterion in assessing the performance of such
empirically derived density models. External validation can be carried out by independent comparison with
density estimates from other missions, e.g., the TIMED mission (NASA) with an orbit inclination of 74°.
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10.6 Sustainable Mapping of the Earth’s Gravity Field at Very Low LEO
Altitudes of 195-205 km and Below

It is expected that GOCE follow-on missions will be single satellite missions to monitor both, the static and
temporal gravity field of the Earth, based on atomic interferometry. These missions will need to fly at very
low orbit altitude in order to map the static and temporal gravity field of the Earth with very high degree
and order in terms of spherical harmonic expansion, most likely in the range of 195 — 205 km orbit altitude
with drag levels at 15 mN and above. At the GOCE orbit altitude of 192 km in a Sun-synchronous orbit,
the reported measured atmospheric drag level of GOCE accelerometers was 24 mN on average, with peaks
up to 35 mN and an average natural orbit decay of 4 km/day. At the GOCE orbit altitude of about 224 km
(last mission phase) the drag level is nearly halved in size and is at the level of 8 mN compared to the orbit
altitude of 205 km . Since the GOCE mission demonstrated for the first time that ion propulsion is a viable
technique for maintaining a satellite at low LEO orbit for a period of nearly 5 years, new generations of gravity
missions will push the borders of ion propulsion even further, in terms both of duration and of lower orbit
altitude. However, maintenance of an extremely low LEO orbit is always limited by the onboard fuel capacity
and depends on the air density at those altitudes, i.e., solar activity. It is expected that future propulsion
systems will need to be able to maintain the orbit altitude for about 10 years (depending on solar activity),
at orbit altitudes 195 — 205 km with a natural orbit decay of 2 —3 km/day at those altitudes. This appears
even more attractive if the very low level of solar activity in the current solar cycles continues into the future
solar cycles (as highly expected). At the GOCE orbit altitude of 190 km , orbit decay was already 4 km/day
and doubled at the orbit altitude of 170 km to 8 km/day. At the 160 km orbit altitude, GOCE orbit decay
was 13 km/day with an average air-drag of around 90 mN. At an orbit altitude of 147 km , less than 18
hours before re-entry, GOCE was dropping at a rate of more than 1 km/hour with an average drag level of
about 165 mN . Interestingly, the temperatures of payloads and GOCE subsystems close to the front of the
satellite increased by only about 13°C from those of the altitude of about 160 km the day before, as reported
by the GOCE mission operations team in ESA/ESOC. For the sake of completeness, at the orbit altitude of
122 km the orbit decay was about 2.7 km/hour .

Going to lower orbit altitudes, an additional lift force could be gained by the increased density levels and
optimizing the angle of attack. In the case of drag, the surface force is parallel to the air flow direction, whereas
the lift force is the component of the total aerodynamic force perpendicular to the oncoming flow direction.
When the angle of attack « (typically in the order of several degrees) is optimized for the platform area A

one can obtain a lift coefficient C'(a) that will give maximum lift acceleration a;(«r) for a given angle of
attack
2 Op(@)-A

m

a(a) = épv (10.11)

From (10.11) we see that lift acceleration is proportional to air density p and to the square of the relative
velocity v . Similar to the cross-section ratio for air drag, the ratio A/m could be called platform ratio. Thus,
for future gravity field missions flying at 200 km orbit altitude and below it is expected that significant lift
could be generated by increasing the platform ratio and optimizing the angle of attack to gain the maximum
lift coefficient C(c) . Air planes typically maintain an optimized angle of attack by using the onboard com-

puter to ensure that air flow generates maximum lift at all times. A similar optimization could be performed
in astronautics for satellites in low LEO orbit. At the Karman line, the LEO orbit cannot be sustained any
longer and the lift force is equal to gravitation g
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1 c -A
a(a) = 5/)1)2 & = g(h) h ~100 km, Karman line (10.12)
m
GOCE was the first satellite that re-entered the Earth’s atmosphere with a drag-free system active prior to
orbit re-entry, and was the first uncontrolled ESA re-entry in 25 years. Although the onboard fuel was spent,
the net effect was that the re-entry of the GOCE satellite took place at very low angle of attack w.r.t. the
Earth’s atmosphere, i.e., the so-called Karman line at ~ 100 km altitude. This is due to the drag-free mode

that was active at very low orbit altitudes, much below the nominal orbit altitude when the mission was
planned some 15 years ago. For ATV and the Shuttle missions, an orbit maneuver is usually needed to achieve
the correct angle of attack for safe orbit re-entry or in order to burn up the satellite in the atmosphere (ATV).
However, for a drag-free satellite with an uncontrolled re-entry, the angle of attack is close to zero with lower
relative velocity, thus the re-entry will take longer and there is a high probability that many parts of the
satellite will survive thermal effects. For the GOCE mission, it was estimated that the proof mass could survive
the satellite re-entry. However, after maintaining the GOCE satellite at a significantly lower orbit altitude
than that planned some 15 years ago, it is expected that more parts of the satellite survived re-entry and
impacted on landing. Typically for all satellite missions, parts with high melting temperatures, such as fuel
tanks made of stainless steel or titanium could survive orbit re-entry. As showed in (Hansen 1987), the heat
load experienced by a satellite re-entering the atmosphere is inversely proportional to the air-drag coefficient,
i.e., the greater the air-drag, the lower the heat load. Higher air-drag or cross-section area acts in a similar
way to an air-bag by keeping hot gases away from direct contact with the satellite, the heat energy moves
around the satellite and dissipates in the atmosphere. Thus, with a low angle of re-entry the air drag will be
maximal and with relatively lower velocity (entering slowly), there is a high probability that such a satellite
could re-enter the Earth’s atmosphere and impact on landing with many parts. The GOCE gradiometer itself
is protected by a carbon-carbon structure that has a very high melting point. This poses the question of
whether, with some additional thermal protection on the port side of the satellite (GOCE shadow side) and
flying a high-drag altitude profile, one could land the main part of the satellite on the ground. Some early
predictions from 15 years ago claimed that 25% of the GOCE satellite (250 kg) will survive re-entry. Thanks
to its aerodynamic shape, it is expected that the GOCE spacecraft could maintain the nominal attitude by
the atmospheric drag forces alone, flying like a “needle” in the Earth’s atmosphere.

New generation mini shuttle missions and other re-entry space vehicles or sub-orbital flights capabilities
show that it will be possible to land the payload after the mission is over and to re-launch the same system.
This could be a sustainable option for the core satellite missions that require decades of continuous Earth
monitoring with a significant number of satellites at extremely low LEO orbits equipped with propulsion
systems. The ion propulsion could be supported by the new generation of combustion engines such as the
rotational detonation engine that could both maintain a satellite orbit at very low altitude for a very long

time.
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11. GPS Single-Frequency: From First cm-POD to
Single Frequency GNSS-RO/R

n this section we introduce what we call "Positive Code-Phase” linear combination or the LP linear

combination (phase and code added) to eliminate the first-order ionosphere effect and estimate LEO orbits

using single-frequency GPS measurements, (see (Svehla and Rothacher 2003a), (Svehla and Rothacher
2005b)). We do not smooth code measurements with the linear model as proposed by the GRAPHIC (Group
and Phase Ionospheric Calibration) linear combination in (Yunck 1993; Gold et al. 1994; Muellerschoen et al.
2004). We show that in the case of the GRACE-B satellite it is possible to estimate LEO orbits to an accuracy
of 2—3 cm RMS (1.3 cm radial) using single-frequency GPS measurements only, (see also (Svehla et al.
2010a)). This is similar to the orbit accuracy of 1—2 cm one can typically achieve with dual-frequency carrier-
phase measurements. This is possible due to the very low noise level of the code measurements from the
GRACE-B satellite and recent gravity field models from the GRACE and GOCE missions that provide very
accurate gravity field coefficients up to degree and order 120 allowing an orbit parameterization with a very
modest number of empirical parameters. In addition, thanks to the excellent precision of the real-time GPS
satellite clock parameters provided by the IGS, we show that this cm-orbit accuracy can be achieved even in
real-time. Subsequently, we introduce an estimation of the group delay pattern of GNSS satellite antennae
based on the LP linear combination. We show that the LP linear combination can be used to estimate single-
code group delay variations (GDV) for GNSS satellite antennae at the single-frequency level and present the
first GDV pattern based on GPS measurements from the GRACE-B satellite. The GDV pattern based on LP
linear combination is related to a single code observable and not to an ionosphere-free linear combination, a
strong advantage in the presence of multi-GNSS data. After that, we present the concept of using single-
frequency GPS radio-occultations (RO) as a very promising alternative to standard GPS-RO based on dual-
frequency measurements. The advantage of this approach is that carrier and code measurements on the same
GPS frequency follow the same path in the ionosphere. This is not the case for the bended carrier-phase GPS-
RO measurements on different GPS frequencies that can reach a vertical separation of up to 500 m in some
cases. Since the antenna used for GPS-RO is typically a high-gain antenna, the noise level of the code meas-
urements is very low and, with an additional smoothing, this approach could be used for GPS-RO with SBAS
satellites in GEO. The same approach could also be applied to GNSS reflectometry (GNSS-R).

11.1Positive Code-Phase Linear Combination

Following (gvehla and Rothacher 2003b), a simplified version of the observation equation for the phase L} EO.i

and code Pjj; observations (GPS frequency i, distance between LEO satellite and GPS satellite s ) is given

as
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Ligpoi = Piro + MilNigo: +1ipo; + cdtppo — cot® +e(L;) (11.1)

Pipoi = Piro —1Ijpo; + cotppo —cot® + ()

where pjpo denotes the geometry term of the distance between the LEO and the GPS satellite s, Njg,, is
the zero-difference phase ambiguity with wavelength A, I7p,; is the first order ionospheric correction,

8t;po and 6t° are the LEO and GPS satellite clock values and e(L;) and e(P;) denote carrier-phase and

code noise, respectively. The LP linear combination (“Positive Code-Phase”) of phase and code measurements
is then defined as (Svehla and Rothacher 2003a), (Svehla and Rothacher 2005b)

1
LPipo; = E(P Lo + LsLEO,i) (11.2)

Since the first-order ionosphere effect has opposite signs for phase and code observables, it can be eliminated
by adding code and carrier-phase measurements together and the ionosphere-free linear combination is then

1
LPipo; = Pigo + EAiNZEO,z’ + bty — ot +e(LF) (11.3)

Any bias in the GPS satellite clocks or bias in the code measurements is absorbed by the estimated carrier-
phase ambiguities. The wavelength of the LP linear combination is half that of the original wavelength A;
and the noise e(LP;) is half that of the original code.

Figure 11.1 shows the first reduced-dynamic orbit of the CHAMP satellite based on the LP linear com-

bination of the L, and P, measurements, day 200/2002. The accuracy level is about 10 cm , when compared

against the best reduced-dynamic orbit estimated using dual-frequency carrier-phase measurements. However,

RMS=11.8 cm

o

-0.2

Along-track in m

-0.4 L 1 L I L L L
0

RMS=4.5cm

o
o =

Cross—track in m
1
I

-0.2
0

Radial in m

!
o

9 12 15 18 21 24
Time in hours

|
o
o

Figure 11.1 The first CHAMP reduced-dynamic orbit estimated using the LP linear combination of the I,
and P, measurements, day 200/2002 (Svehla and Rothacher 2005b) based on the EIGEN-1 gravity field model

and IGS orbit/clock quality in 2002. In comparison, the GRACE-B orbit can be estimated with an accuracy
of 2—3 cmm RMS using single-frequency fata and gravity models from the GRACE mission, (see Figure 11.2).
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it should be noted that this accuracy level is mainly driven by the GPS satellite orbit and clock quality
available from IGS in 2002 and the very first CHAMP gravity models, such as EIGEN-1. In order to compen-
sate for orbit modeling deficiencies, empirical parameters need to be estimated. The orbit results in Figure
11.1 are based on the frequent estimation of so-called pseudo-stochastic parameters (empirical velocity pulses)
that, in this particular case, were estimated every 6 minutes. One can expect that this is correlated with the
carrier-phase ambiguities that are estimated per tracking pass (15— 20 min ), and due to the noise level of the
LP linear combination the resulting orbit is not better than about 10 cm RMS. We will see in the next
subsection that, when the duration of the empirical parameterization is increased to about 1—2 hours, and
when making use of the GRACE gravity field models and the IGS orbit/high-rate clock parameters, the orbit
quality improves to about 2 —3 cm RMS.

Apparently, in comparison to the LP linear combination in (11.2), a similar linear combination was
introduced by (Yunck 1993), (Gold et al. 1994) and (Bertiger and Wu 1996) for C'/A code measurements,
where it was called GRAPHIC (Group and Phase Ionospheric Calibration) linear combination. Although
developed independently, the GRAPHIC linear combination was re-discovered in 2002 and used for the first
CHAMP data using more accurate P code measurements, as presented at the CHAMP Workshop in Potsdam
in 2003 (Svehla and Rothacher 2005b). However, the GRAPHIC linear combination is based on the smoothed

code measurements, see (Muellerschoen et al. 2004), where a linear or quadratic smoothing operator <> is

employed on the difference between the code and the carrier phase measurements

. 1/, ,
LPiyo, = Lo +5(Pisoi — Liroy) (11.4)

For more on GRAPHIC see (Muellerschoen et al. 2004), where a linear fit was used to smooth code measure-
ment in (11.4).

11.2The 1-cm Single-Frequency Orbit in a Radial Direction Based on
Real-Time GPS Satellite Clocks

The LP linear combination not only reduces the noise level of code measurements by about 50%, in addition,
the noise level is also averaged over the tracking pass (typically 15—20 min) and over all tracked GPS
satellites every epoch by estimating one phase ambiguity per tracking pass and receiver clock parameters every
epoch. Since the precision of the CHAMP ionosphere-free observables based on C/A and P code measure-
ments is about 48 cm (from the kinematic POD), we expect the precision of the code measurements to be
about 15 —16 cm . This leads to a noise level of the LP, observable of about 5—8 cm for CHAMP, whereas
for GRACE-B the noise level is halved
e(LP;)~—¢(P)~5—8cm CHAMP
(11.5)

e(LP)~=¢(P;)~2—4cm GRACE-B

NN N

Galileo and future GNSS will introduce wide-band signals that will enable a low code noise in the cm-range
to be achieved. The Galileo E5 wide-band signal (nominal bandwidth of 51.15 MHz) and AltBOC modulation
will offer a code noise at the cm-level. However, this is not the case for its subcarriers E5a and E5b.

Figure 11.2. shows SLR residuals of the GRACE-B reduced-dynamic orbit estimated using the LP linear
combination, while Figure 11.3 shows daily RMS errors in the along-track, cross-track and radial directions
against the JPL orbit estimated by means of dual-frequency carrier-phase. One can see that the radial orbit
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11 GPS Single-Frequency: From First cm-POD to Single Frequency GNSS-RO/R

component can be determined down to 14 mm RMS using the LP linear combination. Typical RMS of the
single orbit component is 26 mm and is similar to the 25.5 mm RMS of the SLR residuals, (see Figure 11.2).

It should be noted that the GRACE orbits are based on the GRACE gravity field models (Tapley et al.
2005) and the IGS orbit/high-rate clock parameters. The GRACE gravity field models allow the orbit to be
modelled dynamically with a relatively modest number of empirical parameters, e.g., velocity pulses every
1—2 hours. Thus there is a weaker correlation with the frequent carrier-phase ambiguities that are estimated
per tracking pass (typically 15—20 min in duration). At this point, it is interesting to note the noise in the
estimated carrier-phase ambiguities (see Figure 11.4). The noise level of the LP residuals is in the order of
2 cm compared to the wavelength that is of the order of 10 cm .
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Figure 11.2 SLR residuals of the GRACE-B orbit based on the “Positive Code-Phase” or the LP linear
combination using Final IGS orbit and clock products and the GRACE gravity field models (days 140-
150/2010).
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Figure 11.3 GRACE-B orbit based on the IGS Final GPS orbit and clock products against the GRACE-B
orbit provided by JPL (GRACE Level 2 Product).
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Observed Noise in the LP Ambiguities
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Figure 11.4 Observed noise in the estimated carrier-phase ambiguities using the (Positive Code-Phase) lin-

ear combination of the I; and C'/A code measurements.
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Figure 11.5 Single-frequency GRACE-B orbit based on real-time GPS orbit and clock products, versus the
GRACE-B orbit from JPL.

This clearly opens doors to fix track-to-track carrier-phase ambiguities on L; (see Section 21). It should be

noted that biases in the code measurements, which are common to all tracking passes, are eliminated by
forming track-to-track ambiguities.
Figure 11.5 shows the GRACE-B orbit based on real-time IGS clock products (latency 10 s). One can

see that the orbit quality is only slightly reduced when real-time GPS satellite clocks are used, i.e., from
26 mm to 33.8 mm as a typical RMS for all three orbit components. Again, the radial orbit component is

the most accurate (15.6 mm RMS).

11.3 Estimation of GPS Satellite Group Delay Patterns Using the LP
Linear Combination

Figure 11.6 shows the LP residuals from the reduced-dynamic orbit determination of the GRACE-B satellite

as a function of GPS satellite nadir angle. One can see that residuals, when plotted in the GPS satellite frame,

are strongly nadir dependent, as is to be expected, when elevation dependency of the residuals is observed for
the receiving GPS antenna on the ground. This test confirms that the group delay patterns for C'/A code are
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Figure 11.6 GRACE-B residuals (SVN49) from the reduced-dynamic orbit estimated using the LP linear

combination of L; and C/A code as a function of GPS satellite nadir angle (day 150/2010).
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Figure 11.7 Single-frequency GRACE-B orbit based on P, and L, measurements compared with P, and

C/A code measurements. One can see a significant degradation of the P, based orbit compared to other code

measurements, most likely due to the P, group-delay patterns of GPS satellites.

flat (within about 6 —8 cm peak-to-peak) and that both the choke-ring antenna on board the GRACE-B and
the GPS satellite transmitter (SVN49) have similar characteristics in terms of group delay variations.

Let us now see if the same POD performance can be achieved when other code observables are used,
namely P, P, and L, carrier-phase. Figure 11.7 shows the daily RMS of the orbit estimated using all alter-
native code observables against the orbit based on dual-frequency carrier-phase used as a reference. One can

clearly see the significant degradation of the orbit based on P, code that could be explained by higher varia-
tions in the group-delay variation (GDV) patterns on P,. A significantly smaller effect can be seen in the
orbit based on P, code. Figure 11.7 shows that the LP linear combination could be used to estimate single-
code group delay patterns of GNSS satellites. The GDV patterns estimated based on the LP linear combina-
tion are related to the single code observables and not to an ionosphere-free linear combination, an advantage
in the presence of multi-GNSS data.

Figure 11.8 shows the GDV pattern on P, for the GPS satellite GPS-08 based on code measurements
from the GRACE-B satellite and the LP linear combination. One can see a strong nadir dependency as well
as variations with azimuth. This GDV pattern was estimated based on the choke-ring antenna on the GRACE-
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for GNSS-Radio-Occultations

B satellite that has a very low multipath environment in LEO orbit. This is the lowest code noise < 10 cm

RMS, reported for a GPS receiver.

180

Figure 11.8 Preliminary map of the group delay pattern on P, in [cm] for the GPS satellite GPS-08 in the
satellite-specific reference frame based on P, code measurements from the GRACE-B satellite and the LP

linear combination, day 214/2008. Typically, Block IIR-M satellites show large group delay variations, (Svehla
et al. 2010a).

11.4 "Negative Code-Phase” Linear Combination: A Geometrically Correct
lonosphere-Free Linear Combination for GNSS-Radio-Occultations

The first-order ionospheric effects can be eliminated by adding code and phase measurements together. Let us
now see what happens when those two types of observables are subtracted from each other. In this case we
obtain what we call the LM linear combination (phase minus) or "Negative Code-Phase” linear combination,
defined as follows

1
LMipo,; = E(PLSEO,Z' - LSLEO,Z’) (11.6)

from which we can derive the observation equation of the geometry-free linear combination
. 1 , ,
LMjpo,; = _E)VNEEO,Z' —Ijpo; +e(LM;) (11.7)

As with the LP linear combination, the wavelength of the LM linear combination is half that of the original
wavelength, A, and the noise e(LM,) is half the code noise

e(LM;)~ —e(P;)~5—8cm CHAMP

(11.8)

e(LM,)~=e(P,)~2—4cm GRACE-B

N~ |-

From (11.7) it follows that the ionospheric slant delay between the LEO and the GPS satellite can be calcu-
lated as

1
Iipo; = —LMjgo; — EAiN;,EO‘i +e(LM;) (11.9)
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11 GPS Single-Frequency: From First cm-POD to Single Frequency GNSS-RO/R

Eq. (11.9) is biased by an unknown carrier-phase ambiguity Njp; that could be back-substituted from the

orbit determination procedure based on the LP (Positive Code-Phase) linear combination. When GPS meas-
urements are provided at a high sampling rate an additional averaging or smoothing of (11.9) can be employed.

The corrected, ionosphere-free carrier-phase measurement ESL £o.; is then
— 1 '
Ligo; = Ligo; + <LMEE0,¢ + 5/\7:N2E0,i + E(LMi)> (11.10)

where <> denotes the smoothing or averaging operator. With an increased sampling rate, one could average

code noise and even form normal points at a sampling rate below the GPS-RO signal. In addition, the code
noise could be reduced by the GPS-RO antenna with high-gain (phased-array, etc.).

For GPS radio-occultations, the first derivative of (11.10) is actually needed. Thus, as a smoothing oper-
ator one could employ a simple polynomial. The first derivative of the fitted polynomial can be used directly
as an input for the inversion of GPS-RO data. If the multipath level on board the LEO satellite is low, the
single-frequency approach described above could provide an alternative GPS-RO observable with very low
noise. GPS-RO with 10-15 GEO satellites could provide added value to the standard GPS-RO approach with
GPS satellites in MEO. Typically, satellites such as EGNOS, and WAAS provide single-frequency carrier-
phase and code measurements that are collected by the ground GPS receivers, but hardly used for any appli-
cation.

It is very important to mention that the L, carrier-phase and the C'/A code follow the same path in the
ionosphere, even in the case of extremly bent GPS-RO signals. This is not the case with the GPS-RO carrier-
phase measurements on two GPS frequencies, since it is well known that the vertical separation between the
paths of L; and L, signals in the GPS-RO profile can reach up to 500 m (Axel von Engeln, priv. com.). In
the case of GPS-RO carrier-phase measurements, such significant bending leads to difficulties in forming the
ionosphere-free linear combination in order to completely remove the first-order ionosphere effect. The error
created when forming such a dual-frequency ionosphere-free GPS-RO observable can easily be above the noise
level of the alternative single-frequency approach. Therefore, the single-frequency approach described above is
an attractive alternative to the standard GPS-RO strategy, especially in the light of possible future GNSS
signals, considering other applications in GNSS radio-occultation and GNSS reflectometry, providing code
measurements at frequencies outside the conventional L-band and under different tracking conditions.

11.5Pre-processing and Synchronization of Single-Frequency GPS Data

A disadvantage of the LP linear combination lies in the data pre-processing, since in the case of single-
frequency GPS receivers, pre-processing has to be performed without the second GPS frequency. The pre-
processing approach, as implemented in the Bernese GNSS software for undifferenced dual-frequency carrier-
phase measurements, is based on the estimation of position differences and one clock parameter between
subsequent epochs, (see (Svehla and Rothacher 2003b)). Considering the relatively high sampling rate of
carrier-phase measurements compared to the changes in the ionospheric TEC, it can be shown that phase
cycle-slips can be reliably detected by looking at the differences between successive epochs. Thus the same
algorithm used to pre-process carrier-phase measurements could be used to pre-process single-frequency meas-
urements. When dual-frequency data are processed as single-frequency, the pre-processing can be performed
at the dual-frequency level using the ionosphere-free linear combination and the aforementioned algorithm
used in the Bernese GNSS software.

When GPS measurements are provided at high sampling rates (e.g., 30 s ), the following linear combina-

tion could be employed utilizing epoch-wise differencing between consecutive epochs ¢, | and ¢,
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11.5 Pre-processing and Synchronization of Single-Frequency GPS Data

1EO, (thh) = Lipoitii) — Lipo: () = [PZEO (tro1) — PLpo (tk)} (11.11)
+ [1 1p0i(ty) =1 iEO,i(tk)] + (€8t po (thy1) — Ot 1o ()]
Pipo (™) = Pipoi(tsr) = Pl (t) = [PZEO (te1) — PLEO (g )] (11.12)

- [[ 180 tei1) = Lipo.i(ty, )] + [C5tLE0 (tps1) — Ot Loty )]

Large clock variations from epoch-to-epoch can further be detected and eliminated by forming differences
between two GPS satellites s and r tracked at the same epoch

250 (tET) = Do, () = [PiEo(tzlfH) - PEEo(ffH)] + [I 10 () = Iipo, (4 )] (11.13)

Pyt = Ploo s () = [0t = pheotE D] = [Lipos ) — Tipo, tF)]  (11.14)

The advantage of this alternative pre-processing algorithm, is that the variation of the ionosphere effect from
epoch to epoch is smooth and small enough to detect phase breaks between epochs. This approach could be
combined with the estimation of kinematic differences between successive epochs along an a priori reduced-
dynamic orbit as described above. The a priori LEO orbit needed for this algorithm is obtained by making
use of the single- or dual-frequency code measurements and a relatively small number of orbit parameters
(e.g., 6 Keplerian parameters and 9 empirical accelerations per day). Variations in the ionospheric delay from
epoch to epoch and relative orbit errors between subsequent epochs are small enough to limit epoch-wise
kinematic orbit differences. In this parameter estimation, single-frequency L, phase measurements are used
between two consecutive epochs and four parameters are estimated, including three kinematic position differ-
ences and one clock parameter between two consecutive epochs.

In the case of dual-frequency GPS data, the ionosphere-free linear combination of code measurements is
used to obtain a priori LEO positions and to approximately synchronize LEO measurements to GPS time. For
single-frequency GPS data, receiver clock synchronization of raw phase and code measurements can only be
performed by means of the single-frequency code measurements fully affected by ionosphere effects. The use
of IGS ionosphere maps corrected for the LEO altitude could be used to further improve this procedure.

In the case of dual-frequency GPS receivers, the synchronization of the GPS receiver time to the GPS
time scale is limited by the noise of code measurements and the a priori orbit errors. For a maximum orbit
error of e.g., 1 cm and a velocity of the LEO satellite of about 7.7 km/s, synchronization could be carried

out with an accuracy below 1.3 us, if code measurements of similar quality were available

0.01m

—— =13 us 11.15
7700 m/s a ( )

This corresponds to about 400 m in terms of the code error. If we now consider total electron content (TEC)
above the LEO satellite to be very extreme, reaching about 200 TECU (TEC Units, 1 TECU = 10'6 electrons

per m?) in the vertical direction (VTEC ), the maximum ionospheric error reads as

1 40.3
I1po1 = ——=——VTEC (11.16)

T osinE g2
which at an elevation of F =10° is about 330 m. We see that such an error is below the synchronization
error of 400 m. Generally speaking, even during the solar maximum, and under very extreme ionospheric

conditions, the a priori synchronization of the receiver clock can be performed with sufficient accuracy without
using any a priori ionosphere model.
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12. Absolute Code Biases Based on the Ambiguity-
Free Linear Combination — DCBs without TEC

bsolute code biases and associated DCBs determined using absolute code biases are called “absolute”
because they do not require TEC information to estimate them and are defined against the IGS Clock

Convention (” P, clocks”).

Differential code biases (DCBs) are typically determined by co-estimating the first-order ionosphere effect
using the geometry-free linear combination of code measurements from two different GNSS frequencies. We
develop ambiguity-free linear combinations based on the dual- or triple-frequency GPS carrier-phase and code
measurements on only one GPS frequency. In this way, we can estimate code biases on a single GPS frequency.
Since the datum of the GPS satellite clock corrections is defined by the ionosphere-free linear combination of
the P-code measurements on L; and L, we can estimate these single-frequency code biases as “absolute
biases” using the geometry-free approach. Our ambiguity-free linear combination removes single-frequency
ambiguities, but it requires the estimation of one wide-lane ambiguity with a very long wavelength, a wave-
length that is significantly greater than the size of the code biases. In addition, by forming single-differences
between two GNSS satellites using measurements from one station, one can separate satellite-based from
station-based code biases. We show the relationship between the code biases and the narrow-lane biases in the
Melbourne-Wiibbena linear combination and DCBs. The same approach is extended to other multi-GNSS code
observables.

Absolute code biases defined for single-frequency observables can be used to combine carrier-phase and
code measurements consistently in a multi-GNSS environment and to define carrier-phase ambiguities and
ionospheric effects in an “absolute sense”. Absolute code biases can provide a datum for estimated global
ionosphere maps and for all calibration of multi-GNSS code measurements (e.g., group delays). We show here
absolute code bias in F; and Cy code GPS measurements on L; and Ly carrier-phases and present calibra-
tion of “4-ambiguities associated with Ly;. We discuss absolute code biases in the light of the S-curve bias and
group delay variation maps for GNSS satellites. We show how, by introducing absolute code biases, we can
consistently define a datum for GNSS satellite clock parameters and ionosphere maps in a multi-frequency
GNSS environment. Galileo and future GNSS will introduce wide-band signals that will lead to low code noise
(in the cm-range). Specifically, the Galileo E5 wide-band signal (nominal bandwidth of 51.15 MHz) and the
AItBOC modulation will offer code noise at cm-level. The same approach could be applied to Galileo using

wide-band signals as reference signals to determined absolute code biases.
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12.1 Definition of Absolute Code Biases in the Light of Multi-GNSS Data

In the case of the positive code-phase linear combination, any bias in the GPS satellite clock parameters or
any satellite/receiver code biases are absorbed by the estimated carrier-phase ambiguities. By definition, GPS
satellite clock parameters provided by the IGS are based on the standard ionosphere-free linear combination
of P code measurements on both GPS carrier-frequencies ( L; and L, ). The use of any other code observable
(e.g., C/A, L2C code) or linear combination (e.g., Melbourne-Wiibbena), requires a consistent handling of
the code biases. At the moment, only relative or so-called differential code biases (DCBs) are used by the IGS
for GPS satellites, relating two code observables at a given time and fulfilling the zero-mean condition over
all GPS satellites in the constellation. By forming the negative code-phase linear combination, one can measure
the first-order ionosphere effect. However, even by knowing the absolute values for carrier-phase ambiguities,
we will not be able to define a datum for ionosphere measurements in an absolute sense. This is because DCBs
are always defined between two different code observables and the absolute single-frequency biases have not
yet been considered by the IGS. Therefore, in the light of multi-frequency GNSS there is a need to introduce
absolute code biases, defined separately for each code observable relative to the corresponding carrier-phase
on the same frequency.

The LP linear combination (“Positive Code-Phase”) of phase L; and code P; measurements on the

carrier-frequency 4 is defined as (Svehla and Rothacher 2003a), (Svehla and Rothacher 2005b) (for more
information see Section 11)

3

1
LP :E(PZ +L) (12.1)
The observation equation for the LP linear combination including the absolute code bias AB; is then
1 o1
LP, = p—ﬁ—a)\iNZ- + cbt — ct? +§ABZ~ +¢e(LP) (12.2)

with the geometry term p, and the satellite and receiver clock parameters ¢t and c¢6t® . The wavelength of
the LP linear combination is half that of the original wavelength A, and the noise €(LP;) is half that of the

original code noise. If we look at the difference between any two associated code and carrier-phase measure-
ments on the carrier frequencies 7, j and k we obtain the following two possibilities

LP, —LP, =

1 1
. j =5 O AN+ DNy + 5 (AB; — ABj) + &(LP, — LP))

(12.3)

N~ o=

LP, —LP, =

K3

1 1
(A = AN, +5)\kNW(z‘,k) + E(ABz‘ —ABy)+e(LP, — LP,)

where N Wij) = N,—-N j and where the third term represents the relative differential code bias between two

frequencies

DC’BM = AB, —ABj (12.4)
From the reference absolute bias, e.g., on the first frequency AB; , we can estimate any other absolute bias

AB; = AB; + DCB,, (12.5)
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12.2 Absolute Code Biases Based and the Ambiguity-Free Linear
Combination

Let us first define the ambiguity-free linear combination AF with only one code observable at a given time.

For this, we make use of the LP linear combination (12.2) and the ionosphere-free linear combination L, of

two carrier-phase measurements L, and L,
AR, =k Ly + k¥ LP, (12.6)

(12.6) only contains absolute code bias on the P, code measurement, see (12.2). The geometry-preserving

condition for the multiplication factors /iilf and li;f is then as follows
w4 kY =1 (12.7)

For the first time, we introduce here an ambiguity-free condition that for ambiguity N; on L; carrier-phase

is defined as

A
wi Ay + g ?1 =0 (12.8)

where Ay =c¢/(f; +f,) denotes the narrow-lane wavelength of narrow-lane ambiguity in the ionosphere-free

linear combination Ly with the two GPS frequencies f; and f,. The A;/2 is the wavelength of the L; am-

biguity in the LP, linear combination. The basic idea of the ambiguity-free condition (12.8) is to eliminate
the N, ambiguity that appears both in the ionosphere-free L, and the LP, linear combination

R i

37 0 0l e

=7 =5

1 1 1 .

LP = E(Ll +P )= p+§)\1N1 +§AB1 + cbt — cbt’

Ly = p+ AN, + 200y — Ay)Ny + ot — cbt*
2 (12.9)

where AB, is the absolute code bias on P, . In a similar way, in order to obtain the AB,, the absolute code
bias on P, we need to eliminate the N, ambiguity that appears both in the ionosphere-free L; and the LP,
linear combination
_ f12 f22 _ 1 s
L, = 5 2L17 5 2L2—p+)\NN1+—()\Wf/\N)NWJrc&tfcét
=1 =1 2 (12.10)

1 1 1 1
LPy =Ly + Ry) = p+ XNy = 20Ny + = ABy + et — cbt

For the AB;, the absolute code bias on code measurements on Ly carrier-phase, denoted here as C'y, we use

the following two linear combinations

2 2
1 o
L3: 2f1 2L1_ 2f2 2L2:p+/\NN1+_(/\W_)‘N)Nw‘f'C(St—C(St‘S
= =1 2
b b (12.11)
1 1 1 1 7
LE; = §(L5 +05) = /’+5/\5N1 _EASNW(LE)) +§AB5 + cbt — bt

where Ny, 5 = Ny — N;. The ambiguity-free condition (12.8) is fulfilled as long as the wide-lane ambiguities

Ny, = N, — N, are fixed in the ionosphere-free linear combination, i.e., all ambiguities are aligned to each
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other so that N; = N,, using e.g., the Melbourne-Wiibbena linear combination. After solving (12.8) and

(12.7) for the multiplication factors of the ambiguity-free linear combination in (12.6) we obtain

o — it i = 20 (12.12)
f1 - f2 fl - f2
or ambiguity-free linear combination
cf h
AR, =p— 2 _ Ny + AB, + cbt —cbt? (12.13)
(h =5 h=Fk

where the wide-lane ambiguity is associated with a long wavelength of

ek

(h =5

We can also write the ambiguity-free linear combination (12.6) for other code measurements and frequencies.
For Lp, = (L, + P,)/2 we obtain

~-304m (12.14)

AFy = il Ly + K5l LP, (12.15)
with
of _Nhth of ___2h
Kila) = 5 Kols) = —h (12.16)
or
AF, =p+ ch Ny — ) AB, + cbt — cbt® (12.17)

(fi = h)? h=5h

where the wide-lane ambiguity is associated with a long wavelength of

c.
_ch S ~3.90m (12.18)
(h—5h)
and for LF} = <L5 +C5)/ 2 and ionosphere-free linear combination Ly
AFy = k{5 Ly + vyl LPy (12.19)
with
+f; : 2/
jof —__hth 7 Y =25 12.20
6" 8 54, 200 " of 1~/ (12.20)
or
c f2 Cc fr'
AF. =p— . N,———~ N +—2——AB. +cht—cbt®  (12.21
BT A T T e
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According to the IGS convention, GNSS satellite clock parameters are defined by the ionosphere-free linear

combination L3 of the two carrier-phase measurements 1, and L, , and the ionosphere-free linear combina-

tion B3 of the two code measurements p, and p,. The use of any other code observable requires the
introduction of differential code biases. Any bias in those two code observables will move into a clock param-
eter, or, in other words, by convention ionosphere-free linear combination P3 does not contain any code bias,

thus one can define code biases in an absolute way. This also means that any absolute bias in p, or p, would

need to be defined in terms of the P3 observable. Therefore, in the next step we define the geometry-free form
of the ambiguity-free linear combination (12.6)

_ af
AF1 = AF, - P, = /Ly + v/ LP, — P, = ”; AB, (12.22)

From (12.22) we may calculate the absolute bias 4 B, on the P, code measurements using the absolute bias

linear combination defined as

2 —
AB| =—(AF, - P,) = h=b (AF, — P) (12.23)
n;f 1
or
c-fy b 2 h—h
AB, ———=——Ny, = AB, == \y Ny, =—(AF, - B) = (AF, — PBy) (12.24)
hh=£) h o h
where the wide-lane ambiguity £V w is associated with the wavelength of
__ch by g6rm (12.25)

hh = F) h

and the wide-lane wavelength /\W :C/ (fl —fz). Assuming that o(P,) ~ o(P,), for the noise level of the

estimated absolute bias A B, , we may write

o(AB)) ~ J;—ZwT(Pl) ~ 0.78-0(P,) (12.26)
1

For code observables on the second GPS frequency we may write

AB, = a2 (AF, — P) = —fl;—f?(AF2 - Py) (12.27)
Ko(2) 2
or
C'f1 f1 2 f1 _f2
ABy ——— Ny, = AB, — L\, N}y = AFy —P) = —"—"2(AF, - P 12.28
2 fg(fl _fg) w 2 fg warw 53{2)( 2 3) f2 ( 2 3) ( )

where the wide-lane ambiguity N, w s associated with the wavelength of

_ch __hy i 12.29
AR (12:29)

Assuming that o(P)) ~ o(P,), for the noise level of the estimated absolute bias AB, we get
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0(AB,) ~ ;—Q-U(Pl) ~1.28-0(P) (12.30)
1
and for the third GPS frequency
2 [~ -
ABy = 2 (AR, —p) =W b 4y _p) (12.31)
kY f5
2(5)
or
2f — f —
AB -ty =2 —p) =T h kg ey 2y
h=5) 5 n;{5> s
or
[ 2 2f; —h - f
AB; - f—Z)\WNW ~ AN = = (AF; — By) = =2—1—2(AF; - Iy (12.33)
5 Ko(5) 5

where the wide-lane ambiguity Ny, is associated with the wavelength of

el by 0o 12.34
A A " .

and assuming that o(P)) = o0(P,) ~ o(Cy), with the noise level

o(AB;) ~ M-U(Pl) ~1.38-0(P,) (12.35)

5

Let us now remove wide-lane ambiguity in (12.24) and (12.28) with the following ambiguity-free condition

Ky’ f—2 + Ky ﬁ =0, K+ Ky =1 (12.36)
fi f
from which we can derive the following multiplication factors ;" and x3’
2 2
T | S (12.37)
f1 - f2 fl - f2

which are equal to the multiplication factors of the ionosphere-free linear combinations of x; and sy . Since
the ionosphere-free linear combination of P, and P, code observables is by convention free of biases we

obtain
k{"AB) + k§ABy = k1 AB; + k9ABy =0 (12.38)

from which it follows that the relationship between absolute code biases and differential code bias DCB PP,

2 2 2
AB, :%ABI —  AB, = - Qf? ~(AB; — ABy) = — 2f2 ~DCBp p, (12.39)
5 i i ’
If we now subtract (12.24) and (12.28) we derive
=1 =5 h=h77%  h—h s
AB, — AB, +%AWNW =DCBp, p + 2Ny Ny =2 4F + 2 AF,  (12.40)
1/2 1/2 1 2
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12.2 Absolute Code Biases Based and the Ambiguity-Free Linear Combination

Let us now estimate wide-lane ambiguity Ny, in (12.24), (12.28) and (12.33). For this we use the follow-
ing two ionosphere-free linear combinations (omitting the receiver/satellite clock parameters)
1
Ly =p+ Ay, +§<)‘W =y )Ny
(12.41)

5 1
L3 = p+ AyasyM — Aves)Nw + 5 (>\W<2,5) —Anp) ) Nyy(a5)

In order to eliminate the n, ambiguity we use the following ambiguity-free and geometry-free condition

sy 65 Ay =0, w4k =1 (12.42)
from which we obtain the multiplication factors
" -2 * A
R = NCH hth g0 kY = N - B Y (12.43)
Av —Aves  h—) Av — An(es) fi—1

For more on this linear combination we refer to Section 22. Finally, for this ambiguity-free linear combination

we derive

LY = kL 4 k020

K/{lf* pr K:;f* (12.44)
R (A =) =58 Ay | Nw + 5 (/\w<2,5> - )‘N(Q,S))NW(Z,E))

with the wavelengths of wide-lane ambiguities that are relatively very long, i.e.,

af*
* K’l %
N = (\w = Ay ) =58 Ayes ~340m (12.45)
af* K;f*
/\W(Q,E)) = T()\W<25) — AN(Z,{))) ~ —17.28 m
In a similar way, we can eliminate wide-lane ambiguity by combining (12.13) with (12.44)
C .
T TR =0, W 4R 21 (12.46)
2
(h—5)
with
kT 2053, kYT ~047 (12.47)
and (12.17) with (12.44), using the following ambiguity-free and geometry-free condition
%ﬁff*** + li;f***)\%* — 07 ﬁff*** + ﬁ;f*** _ 1 (1248)
(i = 5)
with
kT =680, kYT =780 (12.49)
After removing the geometry term by subtracting P; we obtain
AR = kAR + 5L - By = £ %AB1 + 18 N s Nwes) (12.50)
17 /2

and
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AF; _ /{,{lf***AFQ + /{,;f***Lgf* . P3 _ ﬁff*** *fg ABl + /{;f***)\;{:275>NW(215) (1251)
12
that give
AB) = 4 _**fQ ’Q{Lf**AFl + “Sf**[%f* - b= ’igf**)‘%z 5N w(25) (12.52)
of (2,5)
w11 h
AB, = — fif;*fz [(Hlaf***AFQ n I{;f***L?gf* _ P3) . ffgaf***)\%(*gﬁ)NW(?ﬁ)] (12.53)
K1y
and finally
1= af 1 W(2,5) .
ki h
Ap. - _ N Fh AR 4 APy (12.55)
2 af ek 2 W(2,5) :
iy 2
with the wavelengths MF and MF™ of the wide-lane ambiguity NW(2,5)
MFT ~341m (12.56)
AP A 5.62m (12.57)

Assuming that o(P)) ~ o(P,), the noise levels are

F(AB)) = \J0.06202(P) + 0.65%02(P,) ~ 0.65- o(Py) ~ 0.65- o(P) (12.58)

0(ABy) ~ \[10620%(P,) + 0.11262(P,) ~ 1.07- o(P,) (12.59)

It is interesting to note that the noise level of AB; is mainly driven by o(P,), whereas the noise level of AB,
by o(P;). Closer look at (12.56) and (12.55), in addition to noise level (12.59) confirms the scaling factor
AB, = f? ] f}AB, in (12.39).

Another approach to estimate AB; is to subtract (12.17) and (12.44)

af* f
Ny — )‘V[{(Z,E))NW(ZE’)) ——2—AB, (12.60)

h=F

C~f1 _/\I{g*

AR, — 19" =
S (TS

Inserting A32 :le / f22ABl we derive

*

Ll —F) N + Mo Nwios)

f12

AB, = — AF, — LY + i—/\“f* (12.61)
! S AT S

12.3 Absolute Code Biases and Melbourne-Wiibbena Linear Combination

Since our ambiguity-free linear combination (12.22) is geometry-free, there must be a direct relation to the
wide-lane biases in the Melbourne-Wiibbena linear combination
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12.3 Absolute Code Biases and Melbourne-Wiibbena Linear Combination

R S

MW,y = \yNy, = Ly, — Py = L, — 4+
L2 h=f " h—f > Ch+h ' R+h

P) (12.62)

that is also both geometry-free and ionosphere-free. In (12.62) Ly, and Py represent the wide-lane and nar-
row-lane linear combinations of the carrier-phase and code measurements respectively, while Ny, is the wide-
lane ambiguity and Ay = ¢/ (f, — f,) the wide-lane wavelength. In contrast to the ionosphere-free linear com-
bination P;, the Melbourne-Wiibbena linear combination is in general, by convention, not free of biases.

Therefore, in (12.62) we need to introduce the narrow-lane bias denoted as 6
MW,y =Ly, — Py = Ay Ny, +6y (12.63)

We will see later that the wide-lane biases can be removed by forming track-to-track ambiguities (pass-to-pass
ambiguities) between consecutive tracking passes at the zero-difference level which can then be removed by
forming double-differences. However, this is not the case for the ambiguity resolution of wide-lane ambiguities
using zero-difference measurements. By estimating absolute code bias, wide-lane biases can be adequately dealt
with for all GNSS code observables in a multi-frequency GNSS environment. It can be shown that the following

relation exists between our geometry-free form (12.22) of the ambiguity-free linear combination AF and the
Melbourne-Wiibbena linear combination (12.62)

MW, — -2 3R, (12.64)
. fz
Mw,, =2, (12.65)
) fl
From (12.64) and (12.65) it follows that absolute code biases can be calculated directly from the narrow-lane
biases 6,
_ _h
AB|(P))=AB, = —=6y (12.66)
h
_Ap. - _h
AB,(P)) = AB, = — P Oy (12.67)
2

Since GNSS satellite clock data provided by the IGS refer, by convention, to the ionosphere-free linear com-

bination Py, following our expression for the absolute code biases (12.66) and (12.67) we may write

2
ABy(Py) = %ABl(Pl) (12.69)
2
Therefore, we can calculate differential-code bias directly from the narrow-lane bias
DCB =AB_ —AB ——f—26 +i5 (12.69)
h.p T 7P P, N N )
hi f
from which we may derive the following relation between the differential-code bias and the narrow-lane bias
-5
DCBp, p =20y (12.70)
hts

This also means that for a given differential-code bias, one can calculate the narrow-lane bias

ht
Sy = 1—22DCBPDP2 (12.71)

=1
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and for the absolute code biases we finally obtain

f?
AB)(P)=AB, = 7 : 7 DCBp p, (12.72)
1~ J2
AB,(P,)= AB, = Iy DCB 12.73
2 () = 2*‘}02 12 PP, (12.73)
1~ J2

Similar relations can be derived for the Melbourne- Wiibbena linear combination M WL5 for code and

carrier-phase measurements on f; and f; frequencies as

MWLo = —Mﬁg‘,(lg)) (12.74)

5

*
where AF'5 is the ambiguity-free linear combination defined relative to the ionosphere-free code measurements

Py
AF5 = AF; — Py 5 = Ky Ly 5 + Ky LBy — Py 5) = 5 AB,; (12.75)
ABy, - (P) = ABy, - = —356 12.76
105)(P1) = ABy5) = 1 owas) (12.76)
1

As mentioned above, Galileo and future GNSS will introduce wide-band signals with low code noise (in the
cm-range). The Galileo E5 wide-band signal (nominal bandwidth 51.15 MHz) and the AltBOC modulation
will offer code noise at cm-level. However, this is not the case for its subcarriers E5a and E5b. Therefore, the
same approach could be applied to Galileo using the E5 signal as a reference observable to derive absolute
code biases.

12.4 Estimation of DCBs and Absolute Code Biases

In order to demonstrate this new approach, Figure 12.1 shows the absolute code biases on p, for satellites of

the GPS constellation from the station ZIMJ over a period of 11 days, using dual- and triple-frequency GPS
measurements. The triple-frequency ambiguity-free linear combination offers a very long wavelength of 3.41m

(12.56). Figure 12.1 show that the noise level over 11 days is o = +0.065 m without any elevation-dependent
weighting and wind-up effect applied. An additional effect, the apparent clock variations, was reported for the
third GPS frequency f 5, see (Montenbruck et al. 2012) that could affect the code measurements on the third

GPS frequency. For comparison, the noise of the dual-frequency code biases is ¢ = £0.027 m, as can be seen
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12.4 Estimation of DCBs and Absolute Code Biases

Daily Absolute Code Biases for P1 (Fractional Parts) from ZIMJ (190-200/2015)
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Figure 12.1 Daily estimates of p, absolute code biases (11 days) for GPS constellation from ZIMJ station.
One can see a very low noise of ¢ = #£0.027 mfor the two-frequency solution and for the triple-frequency

solution with wavelengths of 0.67 m and 3.41 m respectively.

Daily Absolute Code Biases for P1 (Fractional Parts) from ZIMJ (190-210/2015)
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Figure 12.2 Daily estimates of absolute code biases (21 days) for GPS constellation from ZIMJ station (Javad).
Over a longer period of time, one can see % carrier-phase ambiguities due to f 5 that give a code bias of about

0.85cm .

in Figure 12.1. It is very interesting to note that the estimated code ambiguities are very stable and show
similar fractional parts over those 11 days. Hoverer, when longer data sets are processed, such as the 21 days
in Figure 12.2, one can see that triple-frequency solution shows the % carrier-phase ambiguities typically
associated with the L5 carrier-phase measurements and Javad GPS receiver (Javad TRE _G3TH Delta3.4.9).
One quarter of the 3.41-m-wavelength gives a code bias of about 0.85 cm. From this, we can draw the con-
clusion that resolution of code biases could also be used to detect the '4-ambiguities associated with carrier-

phase measurements.
About 10 satellites in the GPS constellation currently transmit on three, rather than two, GPS frequen-
cies. This opens the opportunity of comparing the estimation of absolute code biases using the two GPS

frequency A B,(L,,L,) with the triple-frequency solution ABl(Ll,Lz,lg) of higher wavelength. Figure 12.3

shows the resolution of dual-frequency solution against the triple-frequency solution.
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Step 1: Resolution of Two- Against Triple-Frequency Code Biases
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Figure 12.3 Step 2: Resolution of absolute code biases 4 B, (L,,L,) with carrier-phase L5 benefitting from

the large wavelength of 3.41 m. Code biases with triple-frequency linear combination are used as a reference
for the two-frequency data. We can see that for one satellite, out of 10 satellites in the GPS constellation, the
wavelength was fixed incorrectly by 0.67 m. Elevation dependent weighting and wind-up effect were not used.
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Figure 12.4 Step 3: Estimation of DCBs based on absolute code biases 4 B,(L,,L,) and ABl(lpLz,Lg,)
Note that DCBs between GPS satellites within the same GPS BLOCK are very small.

The advantage of such a “fixed” dual-frequency solution is the lower noise level (about 50 % lower than that
of the triple-frequency solution, see Figure 12.1). For the remaining satellites in the GPS constellation with
dual-frequency GPS measurements only, we averaged the fractional code biases in Figure 12.1.

In step 3, from the estimated absolute code biases in Figure 12.3 we derived differential-code biases
(DCBs) using (12.72). Due to the multiplication factor in (12.72), the wavelength of 3.41 m is reduced to 2.21
m. and the wavelength of 0.67 m to 0.43 m for the dual-frequency code biases. Figure 12.4 shows that the
estimated DCBs are very close to each other within the same GPS BLOCK. This is more visible in Figure
12.5 where the mean DCB is calculated for every GPS BLOCK and subtracted from the individual DCB value
for every GPS satellite. From Figure 12.5, one can draw the conclusion that estimated DCB values are within
a wavelength of 0.43 m for all satellites in the GPS constellation. A closer look at Figure 12.4 shows that
values for all GPS BLOCK IIF satellites with the third GPS frequency are centered at about -2.21 m.
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12.4 Estimation of DCBs and Absolute Code Biases

CODE DCB(P1-P2) - mean(per BLOCK)
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Figure 12.5 Step 3: DCBs between GPS BLOCKs are small: GPS BLOCK II-A/IIR-A/IIR-B/IIR-M.
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Figure 12.6 DCBs from the absolute code biases in comparison with the DCB available from the CODE
Analysis Center. One can see a good overall agreement for dual- and triple-frequency solutions.

Figure 12.6 shows DCBs from Figure 12.5, estimated by making use of the absolute code biases, in comparison
with the DCBs provided by the CODE Analysis Center. The difference is also displayed in Figure 12.7, where
a mean DCB value (per GPS BLOCK) is subtracted from the single satellite DCB solution. It should be noted
that CODE DCBs are based on the two zero-mean conditions, separately applied for the DCBs of GPS satel-
lites and ground receivers, constraining in this way the DCBs for all satellites and receivers to the zero value.
In the same way as the GPS satellite clock parameters provided by IGS are referenced to a reference clock in
the ground IGS network, our estimates of DCBs values are solely based on the ZIMJ ground station. However,
the overall agreement with the DCB values provided by the CODE AC is very good for such a limited data
set of only 11 days. From this we can draw the conclusion that the approach presented for deriving absolute
code biases offers relatively low noise and a resolution of code biases that can be used in the next step in
calculating DCB values. Generally speaking, one can identify three applications of the approach associated
with the dual- and triple-frequency GPS data:

e estimation of wide-lane ambiguities (two- and triple-frequency)

e detection of “-ambiguities

e resolution of absolute code biases and DCBs.
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Figure 12.7 CODE DCBs vs. DCBs based on the absolute code biases (mean DCB removed).

12.5 Consistent Datum Definition for GNSS Clock Parameters and
lonosphere Maps

So far we have used the ambiguity-free linear combination (12.22) to derive a geometry-free definition of
absolute code biases in terms of the ionosphere-free linear combination of p, and p, code GPS measure-
ments. However, in the multi-frequency GNSS environment, it would be interesting to estimate GNSS clock
parameters based on all carrier-phase measurements, since all forms of error in carrier-phase and code meas-
urements would be averaged over a range of different frequency bands and signal modulations. This is
particularly true for the GPS “apparent clock variations” in the case of carrier-phase on a different frequency
and different multipath sensitivity in the case of code measurements on several frequencies. It was reported in
(Montenbruck et al. 2012) that small delays can be noticed between carrier-phase on different GNSS frequen-
cies. For Galileo, such a thermal delay or internal multipath delay will be negligible. However, ionosphere-free
carrier-phase values obtained by averaging measurements over several frequencies will always be more accurate
than a single ionosphere-free carrier-phase measurement. In order to be consistent with the IGS convention
for GNSS clock parameters, we can always use absolute code biases from different GNSS observables to trans-
form GNSS clock parameters into the two-code measurements used by IGS per convention. Based on (12.68),
absolute code biases for the ionosphere-free linear combination can be written as

f2 f22 . f12

ABg(ﬂ,Pg):WABﬂPO—ﬁ f—AB1(P1)1:0 (12.77)

2 42
1~ /2 =5k
that gives a zero bias for AB3(H,P2) =0, as expected. For any other two-frequency ionosphere-free linear

combination, the ionosphere-free bias AB3(B,1E;) is

ABy(P;,P;) == LABl.(P,)——ABj(P.) (12.78)

7] J
17 =1 f7 =1

Therefore, we may use the zero-bias condition (12.77) to estimate a frequency-independent GNSS clock pa-
rameter that is consistent with the IGS convention for GNSS satellite clock parameters. Relative code biases

between different observables on the same GNSS frequency can be measured directly.
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12.6 S-Curve Bias and Group Delay Variations

For a permanent GNSS network, such as that of IGS, track-to-track ambiguities (integer ambiguities
between consecutive tracking passes) can be estimated or fixed to their integer values over longer periods of
time. After resolving track-to-track ambiguities for a given station and a given GNSS satellite, there remains
only one carrier-phase ambiguity to be estimated over several days, weeks or even months. Since absolute code
biases are removed by forming track-to-track ambiguities, we can establish a consistent datum to define GNSS
satellite clock parameters and absolute code biases. The only possible ambiguity that could arise in this datum
definition is the size of the wide-lane ambiguity in (12.23). The size of the wide-lane ambiguity for GPS is
around 86 cmor 5.86 cm for the super-wide-lane, and so can easily be detected by a ground H-maser or GNSS

satellite clock. From this, we may draw the conclusion that the ambiguity-free linear combination can be used
to define a geometry-free datum for GNSS satellite clock parameters that is consistent with the IGS definition
of clock parameters and at the same time is absolute in nature. For the evolution of ground TEC maps over
longer periods of time, such a datum definition will provide long-term TEC stability and at the same time can
be used to give consistency to any time/frequency transfer over long periods. Moreover, absolute code biases
provide a framework for combining all multi-GNSS observables.

12.6S-Curve Bias and Group Delay Variations

There are several other justifications for the use of absolute code biases in the multi-frequency GNSS, such as
code-carrier coherency, S-curve bias and related code-offset delay variations. Code measurements need to be
coherent with the carrier-phase for both the satellite and the ground receiver. Any synchronization offset
between code and carrier-phase will introduce an additional carrier-phase bias. Such a bias should be constant
and satellite-specific. It has been noticed that some GPS receivers in the IGS network sporadically experience
so-called “ms-jumps”, i.e., the code measurements do not have the same receiver time as the carrier-phase
measurements. However, for GPS satellites any delay can be considered as constant bias and is driven by the
analog technology of the satellite electronics causing different delays between code and carrier-phase. These
delays can be measured and monitored by phasemeters on board the GNSS satellite. They can also be partially
reduced in a relative sense by applying information on group delay variations provided in the navigation
message.

The S-curve bias is an effect that can be measured by a GPS receiver connected to a high-gain antenna
(e.g., the size of a VLBI antenna). The very large size of such a GPS antenna reduces the thermal noise of the
tracked GPS signal and offers code measurements with sub-cm precision. If the GPS signal is sampled with
such an antenna in the open-loop mode or if several GPS receivers are connected to this antenna with different
correlator spacing (narrow-band correlator to wide-bands with long integration time), one can observe a bias
as a function of the correlator spacing. This S-curve bias effect can also be seen if the group delay pattern of
the GPS satellite transmitter is estimated using GPS receivers with different correlator spacing, since results
will be biased to each other. This is also one of the reasons why so far no reliable maps of group delay variations
for GPS satellites have been provided by the IGS, as GPS receivers based on different correlator spacing will
give slightly different results.

One can show that when different GPS satellites are compared, S-curve bias effects can easily reach
1.5—-2.5 ns for C/A and P code with differences in the order of 0.5 ns between different GPS satellites.
The related code-offset delay variations could easily reach 0.5 —1.0 ns between different GPS satellites. These
variations in the absolute code biases between different GPS satellites and receivers play a very important
role in the definition of the IGS time scale, especially on a day-to-day basis. It is well known that the daily
solutions of the GPS satellite clock parameters are biased by about 1 ns when the common clock parameter
at day-boundary is compared.

The best way forward to calibrate code measurements for different GNSS receiver classes and to estimate
group delay variation maps for GNSS satellites is to use a high-gain ground GNSS antenna. Such an antenna
should be as large as possible, i.e. at least as the VLBI antenna, in order to reduce thermal noise and should
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be connected to several different GNSS receivers with different correlator spacing (narrow- to wide-bands with
longer integration time).

120



13. LEO Near-Field Multipath and Antenna Effects

n an internal technical note (Svehla and Rothacher 2004d), it was suggested to the GOCE Project Office

in ESA that a study be conducted on the effect of the near-field multipath on a POD antenna due to the

structural environment of the GOCE satellite itself. The idea was that by performing an absolute calibra-
tion of the GOCE antenna, with and without a mock-up (solar panel wing), the near-field multipath effect
could be described as the difference between the two estimated PCV maps. In the case of near-field multipath,
the total antenna PCV correction can be defined as the sum of the nominal antenna PCV map and the antenna
map resulting from the near-field multipath. This section studies multipath effects originating from the satellite
environment and the impact of GPS antenna calibration on orbit determination of LEO satellites. It is shown
that near-field multipath has a very strong effect on the kinematic POD of a LEO satellite using carrier-phase
measurements. At the end of this section, a near-field multipath calibration method is proposed and then
discussed for GNSS satellites.

13.1 Near-Field Multipath Onboard LEO Satellite

Multipath is one of the main factors limiting the positioning accuracy of GNSS. For carrier-phase measure-
ments, its theoretical maximum is a quarter of the carrier wavelength, or about 4.8 cm for L -band
frequencies. For pseudo-range measurements, the situation is significantly worse and the theoretical maximum
effect is half the code chip length, i.e., for P code measurements it is about 15 m and for C/A code up to

150 m when the reflected/direct signal amplitude ratio is 1. Several authors have reported measured multi-
path on P code pseudo-ranges between 1.3 m, in a benign environment, and 4 to 5 m in a highly reflective
environment, (for more see (Langley 1998)). For (/A code, values that are up to one order of magnitude

larger may be expected. Generally speaking, multipath can be to a great extent mitigated by the GPS receiver’s
multipath mitigation techniques and by a choke-ring antenna.

There is a principal difference between the multipath of a ground GPS antenna and that of a GPS
antenna on board a satellite. A LEO antenna is less affected by the far-field reflectors and the main multipath
driver on board a LEO satellite is the near-field antenna environment and solar panels. Other payloads in the
vicinity can also interfere with the POD antenna, e.g., a radio-occultation antenna placed close to the POD
antenna, as is the case with the CHAMP satellite (cross-talk). By tuning tracking loops and optimizing mul-
tipath mitigation techniques within the spaceborne GPS receiver, multipath can be minimized to a large
extent. In the case of geodetic satellite missions with the highest POD requirements, it is important to ensure
that there is a flat surface and a clear horizon surrounding the GPS antenna. The possible impact of the
satellite surface rims on the GPS signal, as in the case of the CHAMP satellite, was pointed out by (Isler,
priv. com.) and confirmed using GPS data as shown in Figure 13.6 later in this section. In some cases, the
GPS receiver itself can be a multipath generator. With the four Septentrio Polarex GPS receivers connected
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13 LEO Near-Field Multipath and Antenna Effects

to the same GPS antenna and external Cs-frequency standard, we noticed that single-differences formed be-
tween different receivers show significant differences of up to 1.5 cm on the second GPS frequency. The first

explanation offered for this multipath-like effect was that it was due to the front-end of the receiver (Simsky,
priv. com.). However, the signal splitters of the antenna cable has also been put forward as a possible cause
of this effect (Petit, priv. com.). That a GPS receiver itself can generate a multipath-like effect was also
reported for the IGOR GPS receiver (Montenbruck, priv. com.) on the TerraSAR mission.

It is known that multipath interference induced by reflecting objects in the very close vicinity of GPS
antennae (e.g., surfaces of pillars) as well as antenna imaging effects and diffraction cause near-field effects on
the GPS signal received, (see e.g., (Elosegui et al. 1995)). (Elésegui et al. 1995) reported that the part of the
GPS signal scattered from the surface of a pillar on which a GPS antenna is mounted interferes with the direct
signal. The error depends on the elevation angle of the satellite, varies slowly with elevation angle and time
and is not necessarily eliminated by changing the antenna configuration and/or lengthening the baselines. It
introduces systematic errors at the centimetre-level in the estimates of all parameters including site coordinates
and residual tropospheric propagation delays, see (Eldsegui et al. 1995). Although imaging and true multipath
are similar phenomena and are often simply called multipath, they are frequently distinguished from scattering
(Langley 1998). Multipath effects, when averaged over a longer time period, will be considerably reduced for
ground static positioning or reduced-dynamic POD of LEO satellites. However, this is not true for imaging
effects, which, by definition, leave biases in the measurements, since the reflecting object generates an image
of the antenna and the effective antenna is a combination of the nominal antenna and its image. Imaging
effects for LEO satellites can easily be demonstrated in the case of the Jason-1 satellite, where the GPS
antenna is tilted towards the satellite body by about 45° and, together with the reflecting satellite surface,
generates a new antenna pattern. Looking at the calibrated Jason-1 antenna map, see e.g., (Haines et al. 2004),
one can easily recognize the satellite’s structure in the derived antenna PCV maps.

The far-field multipath effects caused by reflecting objects located further away from the GPS antenna
tend to be much weaker compared to the signals reflected in the vicinity of the antenna and can be to a greater
extent reduced by the antenna design and receiver mitigation methods. Despite the difference in amplitude,
the near-field and far-field multipath also have different periodic behavior. By means of signal processing
techniques, a GNSS receiver can mitigate the effect of multipath when the multipath distance (the difference
between the direct path and the indirect path) is more than about 10 m. In cases where the antenna is

mounted on a satellite or a boom, the multipath distance is much shorter than 10 m and the multipath cannot

be mitigated significantly. A number of different receiver-tracking techniques have been developed to mitigate
multipath, e.g., using narrow correlators or using multiple-correlator channels to estimate multipath. For more
about multipath mitigation techniques, especially those based on receiver-internal approaches such as the
narrow correlation technique, double delta correlator implementation and Early/Late Slope (ELS) techniques
we refer to (Irsigler 2008). The author also discusses several other mitigation approaches, such as those based
on arrays of closely spaced antennae. It is demonstrated that carrier smoothing does not ensure efficient
multipath mitigation in any situation (Irsigler 2008). In the same source, a new multipath monitoring approach
is proposed based on multi-correlator observations. It allows instantaneous detection of multipath signals and
can be used to detect very weak multipath-affected observations (Irsigler 2008).

Near-field multipath, caused by the satellite structure in the vicinity of the antenna or the satellite
underneath the antenna, can be mitigated to a large extent by choke-ring ground planes. A choke-ring ground
plane consists of several concentric thin rings around the antenna element in the center. The principal disad-
vantage of the choke-ring design is that the radial spacing of the rings is related to the wavelength of the
GNSS signal and therefore the choke-ring can be tuned only for one frequency at a time. This is the reason
why a choke-ring antenna in a conical form has been developed for different GNSS frequencies (Leica AR25
r.4), although often incorrectly termed a “pyramid”.

In (Svehla and Rothacher 2004d), it was suggested to the GOCE Project Office in ESA that a study be
conducted on the near-field multipath caused by the structural environment of a GOCE satellite. We proposed
calibrating the GOCE GPS antenna using the robot absolute calibration method, with and without the GOCE
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13.1 Near-Field Multipath Onboard LEO Satellite

mock-up, i.e., the solar panel (wing) as shown in Figure 13.1. The antenna calibration was then performed by
ESA (the GOCE Project Office). With the calibration set up depicted in Figure 13.1 it is possible to calibrate
phase center variations in an absolute manner by tilting and rotating an antenna. The errors from sources
such as the ionosphere or troposphere, or satellite orbit/station errors are eliminated by using an additional
nearby reference station. The idea was to perform antenna calibration with and without a mock-up and to
describe the near-field multipath effect as the difference between the two estimated antenna PCV maps. In
the case of near-field multipath, the total antenna PCV correction ép.y, can be defined as the sum of the

nominal antenna PCV map 632}, and the antenna map originating from the near-field multipath 6z,

dpev = Opcy + Onpu (13.1)

It is assumed that near-field multipath can be represented in much the same way as the nominal antenna map
using an elevation/azimuth grid or a spherical harmonic representation. However, due to the shape and struc-
ture of the reflecting antenna environment, large gradients can be expected, especially for the L, frequency
and therefore, the near-field multipath map should be provided with sufficient resolution. Figure 13.2 confirms
that larger gradients can be expected for the L, frequency. In the case of satellites with movable parts, such
as solar panels on board COSMIC satellites in LEO orbit, near field multipath cannot be adequately repre-
sented by only one antenna map, but requires a function of time or Sun position in the antenna reference
frame. In this case, several antenna maps could be used to model near-field multipath based on representative
cases of the antenna environment.

Later on in (Wiibbena et al. 2006), the near-field multipath was studied for different configurations of a
ground GPS antenna, in particular an antenna mounted on a pillar with different antenna heights from 7 cm
up to 27 cm, as well as an antenna installation mounted on a standard tripod (height of 175 cm ). A signifi-
cant low-frequency effect even at high elevations was reported, especially in the first case. In particular, a
systematic bias, predominantly in the height component, was reported, which does not average out over long
observation time periods and increases with lowering antenna height. Although only elevation-dependent ef-
fects have been shown, there are also azimuth-dependent influences for asymmetric configurations. The same
paper (Wiibbena et al. 2006) includes report analyses for the two common geodetic set-ups using Dorne Mar-
goline choke-ring antenna with a tribrach on a round (diameter 20 cm) and a quadratic pillar (sides of

30 cm ). The influence of the near-field has a magnitude of up to 7.5 mm at low elevations and even 5 mm

at 10° elevation. For some azimuthal regions at the horizon the effect was even larger.

In (Lau and Cross 2007) it is developed a new ray-tracing approach for carrier-phase multipath modeling.
It takes into account the relative positions of the receiving antenna and reflectors, relative permittivity of the
reflecting surfaces, the correlator spacing of the receiver, the RCP gain pattern of the receiving antenna and
the phase center offset and variation map of the receiving antenna. Sensitivity tests with the model showed
that the accuracy of the predicted multipath errors was highly dependent on precise knowledge of the relative
antenna-reflector geometry. For instance, errors of up to 1 cm in their relative height can cause errors in the
modelled multipath from reflectors below the antenna of up to 1 cm . It was shown that an error of up to 10%
in the assumed permittivity of the reflector would not have a noticeable effect on the modeled multipath (Lau
and Cross 2007).

Figure 13.1 shows the proposed set-up for the near-field multipath calibration of the GOCE antenna
using a robot (Svehla and Rothacher 2004d). One can recognize the GOCE helix antenna mounted on the
solar panel (mock-up). The original idea was to perform absolute calibration both with and without the mock-
up, and compare the resulting antenna maps. The difference between the two respective antenna maps is a
measure of the constant near-field multipath environment.
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13 LEO Near-Field Multipath and Antenna Effects

Figure 13.1 GOCE GPS antenna set-up for near-field multipath calibration using a GOCE mock-up as orig-
inally proposed to ESA (GOCE Project Office) in (Svehla and Rothacher 2004d). (credit ESA)

The impact of the GOCE solar panel wing (mock-up), depicted in Figure 13.1, on the L, and L, antenna
phase-center is shown in Figure 13.2, based on the PCV maps provided by the GOCE Project Office in ESA.
One can clearly see an effect due to the satellite mock-up and a significantly increased effect for the L,
frequency of about —3 mm at 45° zenith angle and 10 mm at 90° (close to antenna horizon).

By forming the ionosphere-free linear combination of the original L; and L, phase patterns, it can be
determined that the phase-center variations are increased by up to 1 cm when the wing is present, see Figure
13.3. This is an increase by at least a factor of three compared to the accuracy of the original L; and L, GPS

carrier phase measurements. Reference directions (0° azimuth) for all GOCE PCVs is the along-satellite axis
(flight direction).

Effect of the wing on the L1 PCV Effect of the wing on the L2 PCV
[mm] [mm]

Figure 13.2 The GOCE near-field multipath. Impact of the GOCE solar panel (Figure 13.1) on the GPS an-
tenna phase-center pattern. Phase-center variations are at the level of a few millimeters.
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13.2 Impact of the Near-Field Multipath on GOCE Kinematic POD

Effect of the wing on the iono-free PCV
[mm]

Figure 13.3 GOCE antenna phase-center variations for the ionophere-free linear combination.

This study shows that the antenna calibration results depend heavily on the antenna environment during the
calibration. Therefore, it is necessary to calibrate the antenna together with the satellite mock-up, i.e., using
a set-up similar to the real satellite. For highly accurate LEO POD, the use of a choke-ring antenna to suppress
the near-field multipath is required, i.e., a “conical design” for all GNSS frequencies.

13.2Impact of the Near-Field Multipath on GOCE Kinematic POD

In order to study the effect of the near-field multipath on the GOCE kinematic POD, GPS phase measurements
were simulated for the GOCE antenna with and without PCV maps characterizing the near-field multipath
on board the satellite. The simulation was carried out with a cut-off angle of 0° for the nominal case and also
with 15°, given the limitations of the GOCE GPS receiver that only locks the signals above 12° elevation.
From Figure 13.4, one can see variations in the kinematic positions in the order of several centimeters for a
single orbit component (1 —3 cm RMS), or 3 —5 cm RMS for the 3D orbit error. To a large extent this effect
can be smoothed out by employing reduced-dynamic POD. The long-periodic structure is clearly visible.

It was assumed that elevation-dependent weighting for phase measurements would down-weight the effect
of near-field multipath on the GOCE antenna. Figure 13.5 shows the results when elevation-dependent
weighting was employed. The differences are even greater (3 —5 cm 3D RMS), due to the fact that the entire
antenna map is affected, and that the conventional elevation-dependent weighting is not optimal in this case.
It should be noted that the antenna phase-center offset was not corrected in the case when the antenna PCV
map was used with a cut-off angle of 15° elevation. However, such an offset would mainly produce bias in the
radial direction, since the kinematic coordinates were estimated every epoch. The presence of a radial bias is
not visible in Figure 13.4.
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Figure 13.4 The effect of the near-field multipath on the GOCE kinematic POD for 2 different cut-off an-
gles.
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Figure 13.5 The effect of the near-field multipath on the GOCE kinematic POD for 2 different antenna cut-
off angles when using elevation-dependent weighting.

13.3CHAMP Near-Field Multipath

Figure 13.6 shows the CHAMP ionosphere-free code residuals vs. azimuth, after precise orbit determination
(POD). The orbit was estimated with carrier-phase measurements and to obtain residuals of code measure-
ments, the CHAMP reduced-dynamic orbit was fixed and clock parameters were estimated every epoch using
only ionosphere-free P code measurements. Considering the very low noise level of these code measurements
and the orbit quality of several centimeters, it can be assumed that the code residuals obtained are only
affected by noise and multipath effects. One can clearly see multipath originating from the aft side of the
satellite, (Svehla and Rothacher 2003c). Two particular directions can be clearly identified: at azimuth 135°
and at azimuth 225° (Svehla and Rothacher 2003c) and this effect is related to the shape of the CHAMP
satellite structure (sharp edges on the aft side), see Figure 13.7. The satellite holding mechanism, visible in
Figure 13.7 in the same direction, was also identified as a potential candidate to explain those two particular
directions. Multipath at azimuth 180° is mainly driven by the receiving radio-occultation antenna, see also

(Montenbruck and Kroes 2003).
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13.4 CHAMP/GRACE GPS Antenna

Residuals in meters
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Figure 13.6 CHAMP ionosphere-free code residuals vs. azimuth for day 200/2002 clearly show multipath
originating from two particular directions: at azimuth 135° and 225° (due to satellite structure - edges, see
Figure 13.7). Multipath at azimuth 180° is due to radio-occultation antenna (cross-talk with POD antenna).

13.4CHAMP/GRACE GPS Antenna

The POD antenna on board the CHAMP, GRACE and TerraSAR/Tandem missions is a space qualified GPS
patch antenna (Sensor Systems S67-1575-14 model), see Figure 13.7. This model was selected for the CHAMP
mission because of the slightly better performance of this antenna on the L, frequency and its better thermal
behavior (Grunwaldt, priv. com.). The helix radio occultation antenna on board the CHAMP satellite is the
JPL design with a gain of up to 9 dB along boresight and a half cone (at 3 dB) of 45°. For radio-occultation
satellites such as COSMIC, radio-occultation antennae are built up from stacked patch arrays of 4x1 elements,
which should have a gain of up to 11.5 dB, but exhibit a very narrow gain characteristic (Grunwaldt, priv.
com.). For more information on the POD of the Formosat-3/COSMIC mission we refer to (Hwang et al. 2009),
(Tseng et al. 2012).

Figure 13.7 shows the main CHAMP POD antenna together with the choke ring, pointing in the zenith
direction, and the helix antenna, directed aft. The lightweight choke ring developed by the
GeoForschungsZentrum (GFZ) Postdam is used to suppress multipath and to achieve high-grade code and
carrier-phase measurements. In Figure 13.7, one can also see a small POD antenna without a choke ring close
to the helix antenna and also directed aft. This is a spare POD antenna and has never been used. The GRACE
mission uses BlackJack GPS receivers and GPS antennae of the same type as CHAMP. There are two omni-
directional POD antennae (one primary in the zenith direction and one backup directed aft) and one high-
gain helix antenna with a 45° field of view directed aft. The aft-pointing POD antenna serves as a redundant
source for orbit determination in case of a failure of the zenith antenna.
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13 LEO Near-Field Multipath and Antenna Effects

Figure 13.7 CHAMP POD antenna with the choke ring (zenith) and radio-occultation antenna (aft). Next
to the radio-occultation (helix) antenna is the spare POD antenna without choke ring (aft). (credit GFZ)

13.5 Antenna Calibration on Board CHAMP, GRACE and JASON
Satellites

Two types of antenna calibration can be performed: relative and absolute. Relative antenna calibration is
based on the Dorne Margolin T choke-ring antenna as the reference antenna for all other GPS antennae. It
can be performed on a very short baseline using a series of GPS measurements. However, the absolute antenna
calibration, carried out independently with a robot and in a separate procedure in an anechoic chamber,
showed in both instances that the Dorne Margolin T antenna phase center varies with elevation and azimuth.
Starting with the GPS week 1400, IGS has included absolute phase-center offsets and patterns for all ground
GPS antennae and GPS satellites in its routine processing of global IGS data, (Schmid and Rothacher 2003),
(Gendt 2006).

In the case of the Jason-1 mission, several attempts have been made to calibrate the GPS antenna using
dynamic POD and to estimate the GPS antenna parameters together with the orbit parameters. Due to the
high orbit altitude, it is possible to perform fully dynamic POD for the Jason-1 satellite by estimating a
relatively small number of orbit parameters. Hence in-orbit antenna calibration is feasible. At the same time,
highly accurate and fully independent Jason-1 orbits based on SLR and DORIS are available for comparison.
More about Jason-1 POD and the related GPS antenna problem on the Jason-1 satellite can be found in
(Luthcke et al. 2003), (Haines et al. 2004) and (Flohrer et al. 2011).

Figure 13.8 shows the CHAMP absolute phase-center variation over all elevations estimated using iono-
sphere-free carrier phase measurements together with all orbital parameters, see (Svehla and Rothacher 2004a).
The elevation-dependent PCV was estimated in bins of 5° and 10° and both series of parameters show very
close agreement (about £0.15 mm ). The estimation of azimuth-dependent phase-center variations revealed
the high correlation between the phase center variations in the along-track direction, the along-track orbit
component and the pseudo-stochastic pulses. The azimuth-dependent pattern can be estimated using the
higher accuracy in the cross-track direction. Elevation-dependent weighting is not used for the CHAMP car-
rier-phase, although in ground GPS applications it is mostly applied. Recently, the GPS antenna on board
CHAMP and GRACE has been absolutely calibrated by the robot calibration system developed by the Institut
fiir Erdmessung (IfE) and Geo++ in Hannover, see (Montenbruck et al. 2009). Comparing Figure 13.8 and
Figure 13.9 one can see a close overall agreement between the CHAMP elevation-dependent antenna patterns
estimated in-flight using GPS carrier-phase and the ground calibration using the robot. The opposite sign is
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due to the different sign conventions used, namely the sign of the PCVs provided by IGS is opposite to that

of the IfE. 1In both cases, we see an effect from —10 mm to 10 mm with a maximum value at 50° zenith

angle. Deviations can only be seen in the zenith direction and are most likely due to the slightly different

mean phase-center offset.
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Figure 13.8 CHAMP absolute phase-center pat-
tern based on one week of measurements, days 195-
201/2002, (Svehla and Rothacher 2004a). The op-
posite sign w.r.t. robot calibration is due to the
different sign conventions used, namely the sign of
the PCVs provided by IGS is opposite to that of
the robot calibration from IfE.
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13 LEO Near-Field Multipath and Antenna Effects

13.6 The Ray-Tracing Technique for Multipath Maps of GNSS and LEO
Satellites

Antenna phase-center maps for GPS satellites were estimated using a least-squares adjustment and GPS
measurements from the ground IGS network, applying absolute antenna PCV maps for the ground GPS
antennae from robot calibrations, see (Schmid and Rothacher 2003). GPS satellite antenna PCV parameters
were estimated together with all other reference frame parameters, including GPS satellite orbits, troposphere
parameters and station coordinates. As a result, the estimated GPS satellite antenna PCVs contain residual
effects due to high correlations with other reference frame parameters and poor geometry, given the high
altitude of GPS satellites and the relatively small GPS satellite antenna aperture angle of about 28°. Those
maps were estimated and then averaged over a long period of time and do not necessarily represent the GPS
satellite PCV affected by near-field multipath stemming from the rotation of large GPS solar panels. Therefore
it would be interesting to calibrate and derive near-field multipath maps using an alternative technique (e.g.,
as a function of solar beta angle and argument of latitude of the satellite relative to the Sun’s position in the
orbital frame). Although calibration on a robot or in an anechoic chamber provides similar results for the
receiving ground antennae, using such a technique for calibration of GNSS transmitting antennae together
with a rotating solar panel would be a more demanding and challenging task. Perhaps this could still be done
for new GNSS satellites.

An alternative method is the ray-tracing technique based on the antenna electro-magnetic characteriza-
tion and coupling between the antenna environment and the phase-center variations. Figure 13.10 shows the
GOCE antenna PCV profile (along the satellite axis) for the L, frequency. This PCV profile was estimated
using a model of the complete GOCE satellite. The green line shows the nominal L, PCV, whereas the blue
line is the PCV profile considering the GOCE mock-up, the same as that used for the robot calibration shown
in Figure 13.2. The red line shows the near-field effects stemming from the complete satellite structure. The
blue line shows a good overall agreement with Figure 13.2, where the entire PCV map is depicted. One can
clearly recognize an effect of about —3 mm at 45° zenith angle and 10 mm at 90° (horizon).

0.015 T T T T T T T T T
nominal PCV
mock-up PCV
satellite PCV
0.01
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Figure 13.10 GOCE L, PCV profile (along the satellite axis) in [mm)] vs. zenith angle in [°] estimated using

the ray-tracing technique. The blue line is the PCV estimated using a mock-up and shows very close agreement
with Figure 13.2, namely an effect of —3 mm at 45° and 10 mm at 90° (data: ESA GOCE Project Office).
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13.7 Multipath Linear Combination

It is interesting to note that the complete model of the GOCE satellite gives a very variable signal over all
elevations. A high-resolution GOCE PCV map is difficult to derive using a POD technique that is independent
of the gravity field, since a very small step size is needed to pick up all PCV variations, especially close to the
antenna horizon and in the direction of the solar wing. This very good overall agreement between robot
calibration and the ray-tracing technique opens up the possibility of calibrating GPS antennae on any LEO
satellite, or even calibrating near-field multipath on GNSS satellites.

In the case of the GNSS or the six COSMIC satellites, antenna phase center maps could be provided for
several characteristic orientations of the satellite solar panels. In this way, temporal PCV maps could be
established for GNSS and LEO satellites to more accurately model the near-field multipath (including multi-
path, imaging and scattering effects) generated by the on-board near-field antenna environment and large
solar panels. The same approach could be used for the ground or spaceborne LEO GNSS antennae and trans-

mitting antennae on board GNSS satellites.

13.7 Multipath Linear Combination

Here we derive a multipath linear combination that can be used to assess and monitor multipath in GPS
measurements, as was performed for the GOCE mission, but which can also be easily extended to any other
GNSS observable. Similar linear combination, without derivation, can be found in (Estey and Meertens 1999).

Let us look again at the ionosphere-free linear combination Lj of the carrier-phase measurements L;

and L, converted from cycles to meters

1 1
Ly = g (f12L1 - f22L2) =p AN, + E(AW — ANy =p+ By (13.2)
T F

with the geometry term p and the ionosphere-free bias denoted as B,
1
By = Ay N, +5(/\W — Ay )Ny (13.3)

with the narrow-lane wavelength Ay , the wide-lane wavelength ), and the corresponding wide-lane ambi-
guity Ny, . The ionosphere effects can also be removed by forming the so-called LP linear combination by
adding carrier-phase and code measurements on the same GPS frequency
_L+h

2

LP (13.4)

Bearing in mind that multipath and the noise of the carrier-phase measurements can be neglected compared

to multipath Mp, and noise of the code measurements €p;, the following relation between the LP linear

combination and the ionospehe-free linear combination L; can be written

2LP =L+ P, =2p+A\N; + Mp, +¢ep,
=L +P =2(Ly —By)+ \N, + Mp, +¢p; (13.5)
=2Ly + Bp, + Mp, +¢p,

where ), is the wavelength of the L, carrier-frequency with the corresponding integer ambiguity N,. M P
denotes the multipath and €p the noise of P, code measurements. Bp; can be considered as a bias in the

LP linear combination

A
Bp, = —2B; + \\N; = —2(\y fgl)zv1 —\w —Ay)Ny (13.6)
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The following expressions can be written and used for the evaluation of multipath on C'/A, P, and P, code

measurements, respectively:

2
Mey +eop =Ly +C/A-——— (f12L1 *fQQLQ)*Bm
T f
2
Mptep =L+ P ———— (f12L1 —f22L2)—BP1 (13.7)
fl —J2
2
Mpy +epy = Ly + Py — P (f12L1 _f22L2)_BP2
1 /2

The float ambiguity should be constant throughout each pass and can be removed by calculating the mean.

The Bp, denotes a bias in the LP linear combination for the second GPS frequency

A
Bpy = —2B; + MNy = —2(\y —?Z)N1 =\ = Ay F )Ny (13.8)
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14. Probing the Flyby Anomaly Using Kinematic
POD - Exotic Applications of Kinematic POD

he idea presented here is to use the GPS receiver for the comparison of kinematic and dynamic orbits
of an interplanetary mission during Earth flyby, e.g., BepiColombo, Juno. Purely geometrical orbits
can be estimated to an accuracy of 1 cm RMS using GPS carrier-phase measurements, whereas dy-

namic orbits will be affected by any potential flyby anomaly effect on the spacecraft while it is in Earth flyby.

The flyby anomaly is an unexpected increase in the spacecraft velocity or orbital energy during Earth
flyby. This anomaly has been observed in Doppler measurements by a number of ground ESA/NASA stations
operating in S- and X-band, for more details see e.g., (Anderson et al. 2008). The orbit velocity increase is in
the order of 7 —13 mm/s and it has not been reported for all swingbys (Morley, priv. com.).

The minimum altitude for a flyby is in the order of 500 — 2500 km , which means that an Earth flyby

could be observed using a GPS receiver over several hours (up to altitudes of e.g., 10000 km ). In the case of

kinematic POD, the velocity of the satellite can be estimated geometrically to an accuracy well below
0.05 mm/s (Svehla and Foldvary 2006). Using a GNSS receiver on a future interplanetary mission during

Earth flyby we will be able to monitor the flyby anomaly geometrically and compare the results with dynamic
orbits. An additional SLR retro-reflector would enable ground laser stations to monitor the flyby anomaly.

In 2009 we proposed mounting a GPS receiver on the BepiColombo spacecraft. However, after approach-
ing the BepiColombo Project Office it was deemed to be too late to include one in the payload. Nevertheless,
the concept is well worth further test, since kinematic POD can assess the flyby anomaly effect far more
accurately than Doppler S-band/X-band tracking from the ground. Figure 14.1 shows the predicted ground
track of the Juno satellite in interplanetary orbit at Earth swingby on 9.10.2013.
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Figure 14.1 Predicted ground track of the Juno satellite at Earth swingby on 9.10.2013. Every hour is marked
in red with an orbit altitude in [km]. The yellow areas show tracking visibility from the two ground stations.
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15. Galileo-2: A Highly Accurate Dynamical GEO
Reference Frame to Complement the TRF

n (Svehla 2007a), (Svehla et al. 2008) and in (Svehla 2008a) we presented a novel design for the GNSS
system called here Galielo-2 based on recent developments in optical clocks, frequency combs and time/fre-
quency comparison technology. We demonstrated a concept of a navigation system in MEO based on
master clocks in the GEO orbit and two-way optical/microwave links to transfer their stable frequency to the
navigation satellites in MEO orbit (either from the ground or via GEO). In this way, the use of H-masers and
Cs- or Rb-clocks in the GNSS satellites can be avoided and frequency combs could be used to generate the
desired navigation radio (and optical) signal in the MEO orbit. The development of “Ultra”-USO, e.g., for the
STE-QUEST mission with a frequency stability in the order of 107™'%at 1s is sufficient to meet the required

GNSS clock stability over a longer period of time (e.g., one day), and thus one could separate precise orbit
determination of GNSS satellites from estimation of GNSS clock parameters. GNSS clock frequency can be
steered either from the ground or from the GEO orbit making use of the two-way metrology links. For this,
master clocks in GEO do not need to be of the highest accuracy, they could be optical clocks or the latest Rb-
clocks with high short-term stability. However, the assembly of several GEO clocks equipped with optical /mi-
crowave links for frequency transfer will meet the needs of the timing community for clock comparison in the
generation of the global TAI/UTC time scale. Thus, the idea of Galileo-2 is twofold: Firstly, to combine
positioning and timing systems under one umbrella, and, secondly, to enable new applications in geosciences.

Generally speaking, a highly accurate dynamic reference frame in the GEO orbit would, in future, have
the potential in terms of accuracy to provide an alternative to, and to complement, the terrestrial reference
frame of the Earth. Drag-free and ranging technology as developed for the LISA mission provide very strong
arguments in this direction. A GEO reference frame could provide the basis for a real-time positioning/timing
facility for all GNSS Earth-based applications, from LEO to GEO orbit and beyond towards lunar orbits.
Intersatellite ranging between such (drag-free) GEO satellites could be obtained to a very high level of accu-
racy, e.g., sub-micrometer — several orders of magnitude higher than the accuracy of a terrestrial reference
frame. Considering the orbit-redshift equivalence principle we introduce in Section 29 (a symmetry between
the error in orbit position and velocity such that these cancel or compensate each other out in generating the
net redshift effect), an orbit in space (GEO) offers the best environment to define and realize the frequency
standard and define the SI second using an atomic clock. A far more reliable method than using the geoid and
the surface of the Earth. This is mainly due to the fact that cold atoms in the clock can be observed for a long
time in space (weightlessness) and are not limited by free-fall as they are on Earth. This typically gains an
additional 3-4 orders of magnitude in sensitivity. Therefore, in future, GEO orbit could offer the best place to
define the datum for time and so support positioning on Earth. The terrestrial reference frame of the Earth
is, by definition, tied to the ground network of station coordinates on the Earth’s crust. Thus the proposed
realization using GEO orbit is an extended and complementary realization of the terrestrial frame which aims
to achieve higher accuracy and precision and to obtain synergy with time realization.



15 Galileo-2: A Highly Accurate Dynamical GEO Reference Frame to Complement the TRF

15.1 Galileo and Beidou — Paving the Way Towards the new GNSS
Science?

Can we design a navigation system that can meet the requirements of both navigation and geosciences at the
same time? Is there a place for improving GPS, for something better than introducing a third navigation
frequency? Can we enhance GNSS so that it can be used for novel applications in geosciences? What new
developments and potential will Galileo and Beidou bring? Can we use satellites in the GEO orbit for real-
time positioning of GNSS satellites, just as GNSS is used for to the POD of satellites in the LEO orbit?

If we look back some 30 years, GPS was primarily designed to meet US military requirements for navi-
gation. However, over the years, GPS has become much more than just a navigation system. It is now a
driving force in geodesy, with applications ranging from precise geodetic positioning, geodynamics and timing,
to meteorology and remote sensing techniques, such as radio-occultation and reflectometry/scatterometry.
Today GNSS receivers are readily available and GNSS has become an indispensable part of the infrastructure
in every aspect of human activity.

Block I 11 1CS 2Rb

Block II 9 2CS 2Rb
Block ITIa 19 2CS 2Rb
Block IIR 13 3 Rb

Block IIR-M 6 3 Rb

Total : 58 67 CS 135 Rb

Figure 15.1 Number of cesium and rubidium atomic clocks on board 58 GPS satellites since the launch of
the first GPS satellite on 22 February 1978.

Every GNSS satellite carries several atomic clocks, and as a result GNSS satellites are very expensive, bulky,
heavy and the entire constellation needs to be maintained by launching new satellites every 5-10 years. Atomic
clocks on board GNSS satellites have demanding requirements in terms of power and payload and hence all
GNSS satellites are equipped with large solar panels and with three-axis attitude stabilization. The atomic
clocks placed on board such satellites are probably the most crucial single element in achieving a high-perfor-
mance GNSS (Hein et al. 2007). A more accurate and stable frequency inside the GNSS satellite means a
reduction of uncertainty in clock prediction and hence improved real-time positioning and greater integrity of
information.

Figure 15.1 shows the number of atomic clocks put into space since the launch of the first GPS satellite
in early 1978. One can see that of the 58 GPS satellites launched to date, only 30 are still active and over the
last 30 years altogether 202 atomic clocks have been launched into space. Altogether 170-180 atomic clocks
are orbiting the planet Earth on board the decommissioned GNSS satellites without sending any signal towards
the Earth. Although the lifetime of GPS satellites is higher compared to those of GLONASS, satellites of both
GNSS systems have to be decommissioned in orbit and their lifetime is limited by the lifetime of the on-board
batteries and the radiation environment in MEO orbit. If we now take 30 years of GPS and 200 clocks per
single GNSS system and multiply this by 4 GNSS systems in the near future (GPS, GLONASS, Galileo and
Beidou, not including Indian and Japanese regional navigation systems IRNSS and QZSS), we end up with
about 1000 atomic clocks in space in just 20 years from now. Is there an alternative? It is generally considered
that clocks in timing labs will always be more accurate than even the most modern optical clocks developed
for space. However, this is not completely true since it is well known that weightlessness in space offers orders
of magnitude improvements in clock performance compared to ground clocks. Therefore, it would seem logical
to develop a number of very high-quality clocks and put them into GEO orbit. Their frequency could always
be controlled by the ultra-accurate optical ground clocks. Their main purpose would be to compare optical
ground clocks defining TAI/UTC and to distribute this frequency standard to GNSS satellites in MEO orbit.
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In order to ensure integrity, 3-5 master clocks would be required in GEO orbit. As in the case of GNSS
satellites, additional onboard clocks would meet all redundancy and integrity requirements. Frequency dis-
semination in space between GEO and MEO is easier given the atmospheric conditions close to the Earth’s
surface and can either be performed optically or in the microwave domain.

Despite high quality onboard clocks, GNSS are not designed for time/frequency transfer. Unlike ground

0716

Cs-fountains in TAI labs that provide frequency with a stability of below one part in 1 or optical clocks

with a stability of less than one part in 10717 /3 h, GNSS systems cannot meet the demanding requirements

of time/frequency transfer for TAI/UTC. One can draw the general conclusion that positioning and timing
are two separate worlds and both communities are using their own global timing and positioning systems. The
main problem is that positioning is based on one-way systems and time/frequency transfer requires a two-way
system. Why not combine them and benefit mutually? In the case of a two-way system, such as TWSTFT, a
signal is sent in both directions and, by differencing, the first order Doppler effect and all geometry and
propagation delays are removed. There are still residual higher-order ionosphere terms present in the two-way
microwave measurements, but due to the very high frequency used they are very small (they sum up for the
uplink and downlink). In the case of optical two-way measurements, all propagation effects are eliminated,
and atmospheric turbulence is the main source of error.

Currently, there is no operational system available which can compare on a global scale the best ground
optical clocks that have already demonstrated an accuracy of two parts in 10718, (Nicholson et al. 2015). In
the very near future, there will be a gap in performance between the TAI clocks and the satellite-based
time/frequency comparison systems. In fact, the best ground optical clocks have reached such a level of accu-
racy that it is already now feasible to measure dynamic heights (geopotential numbers) using terrestrial clocks,
but there is no satellite system available to compare ground clocks with sufficient accuracy. GNSS receivers
measure geometric heights above the ellipsoid, whereas physical height systems use the equipotential surface
of the reference geopotential, called geoid, as a datum. Therefore, a two-way link on a GNSS satellite would
allow the unification of the timing and positioning systems, and hence the unification of geometrical and
gravitational positioning (gravity potential).

Compared to carrier-phase and pseudo-range measurement of the present and the forthcoming one-way
GNSS constellations, a two-way system would provide geometry-free transfer of clock frequency. This would
allow geometry-free steering of the GNSS satellite clock frequency. In the case of Galileo H-maser, we already
see that the satellite clock can be modelled with just two linear parameters per day (time drift and bias)
providing a standard deviation of remaining residual clock parameters at the cm-level. By introducing fre-
quency steering of the Galileo satellite clock, one could predict satellite clock over a longer time period and
thus separate orbit from determination of clock parameters. In the case of pseudo-ranges, or, generally speak-
ing, observables of all traditional one-way GNSS systems, receiver and satellite clock parameters need to be
estimated or removed every epoch. That clock parameters cannot be separated from the propagation effects
in the orbit determination or parameter estimation is the main disadvantage of the one-way GNSS systems.
Even with the three or four Galileo frequencies we cannot estimate absolute TEC and calibrate all biases at
the mm-level in order to “measure carrier-phase ambiguities”. In the processing of one-way GNSS data, we
fix something that we call “phase ambiguity” by estimating a very large number of other global parameters
such as station coordinates, tropospheric zenith delays and gradients, Earth rotation and satellite orbit pa-
rameters. This is the case with zero- and double-difference carrier-phase measurements. Even with the three-
carrier ambiguity resolution strategies, these problems still remain to a great extent, and propagation effects
need to be separated from the integer phase ambiguities. There is always a trade-off between the ambiguity
space and the parameter space (all global GNSS parameters including ambiguities). In zero-difference GNSS
applications, carrier-phase ambiguities are additional “nuisance” parameters that need to be estimated and
they constrain the capacity to reduce the influence of systematic errors of GPS orbit/clock products, and
tropospheric, multipath and other effects. The absolute ionospheric effects and tropospheric delays cannot be
separated entirely from GNSS satellite/receiver clock parameters. The bottom line is that modern and future
GNSS systems must be a combination of one-way and two-way systems.

137



15 Galileo-2: A Highly Accurate Dynamical GEO Reference Frame to Complement the TRF

In the orbit determination for GNSS satellites we estimate typically 9 empirical solar radiation pressure
(SRP) parameters per daily orbit arc and the SRP effects propagate into geocenter results, EOPs, and the
orbits of altimetry and gravity field missions that require the highest accuracy. On the other hand, GNSS
satellites are placed at a very high altitude above the Earth with a very small antenna aperture angle of about
14° half angle, and due to this “bad geometry”, orbit errors such as residual solar radiation pressure propagate
into all global GNSS parameters (EOPs, geocenter, etc.).

Therefore, one could generate a dynamic reference frame in the GEO orbit consisting of several GEO
satellites, similar to the three drag-free satellites of the LISA mission in a triangular constellation. In this way,
one could extend and complement the classical definition of the terrestrial reference frame based on a network
of ground stations and thus tied to the Earth’s crust. Intersatellite ranging between those GEO satellites could
lead to a very high level of accuracy, several orders of magnitude higher than that of a terrestrial reference
frame. However, since the conventional terrestrial frame is by definition tied to the ground stations on the
Earth’s crust, one would still need a tie with such a dynamic system in space. Thus, one could talk about
complementarity between the space-based and the ground-based reference frames, where space-based frames
provide higher accuracy and stability.

One could make use of frequency combs as a metrology system between GEO satellites as well as a
generator of microwave/optical frequencies for the navigation signals. Frequency combs were proposed for the
various ESA missions that use formation flying and high-accuracy long-distance metrology (Holzwarth et al.
2008). In the latter, femtosecond-based laser systems are combined with incoherent time-of-flight absolute
distance measurement capabilities over long distances using coherent high-resolution interferometric methods.
Such optical systems provide sub-micrometer resolution in an absolute measurement of nearly arbitrary dis-
tances (Holzwarth et al. 2008). On the other hand, the GEO orbit is high enough above the Earth and the
microwave downlink transmitter of the two-way system can be tracked by VLBI antennas in S- and X-band
and up to Ka-band. This is the same frequency band used by VLBI to observe quasars (VLBI2010). Thus the
use of VLBI in combination with a satellite in a higher orbit (e.g., GEO), would open up new possibilities in
combining the terrestrial reference frame and the, at the moment, fully independent VLBI celestial reference
frame based on extragalactic radio sources (quasars).

15.2 Geometrical Properties of Positioning with Four GNSS -
Homogeneous and Isotropic Positioning with Galileo

What improvements will Galileo and Beidou bring to global positioning? We carried out a simulation of IGS-
type processing with four GNSS. For that purpose the Bernese GPS software was adapted for GNSS, i.e.,
Galileo/Beidou data processing, within the scope of a project with Astrium and GFZ. The first results in
processing GIOVE-A data with this new version of Bernese multi-GNSS software were presented in (Svehla
and Heinze 2007). The simulation covered a period of one day and included 31 satellites of the GPS constel-
lation (day 62/2007), 24 GLONASS satellites (8 satellites were added to simulate the complete GLONASS
constellation), 30 Galileo satellites and 30 Beidou satellites. This gives 115 GNSS satellites in total, the number
one can expect to be in Earth orbit in the near future, see Figure 15.2 and Figure 15.3. For the IGS network
we considered a grid of 15°x15° which covers about 200 ground stations. Carrier-phase measurements were
simulated with a white noise of 3 mm.
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Figure 15.2 GNSS satellites and orbital planes used in the simulation (day 62/2007).

For Galileo and Beidou we considered the L; and Eb5a frequencies, which leads to an increase in the noise
level of the ionosphere-free linear combination in the order of ~ 2.588 (w.r.t. the noise of L, ), compared to
~ 2.978 in the case of GPS and GLONASS. For the ground stations, the so-called elevation-dependent
weighting was used to model noise as a function of elevation. For GPS and GLONASS we used IGS Final
Orbits for day 62/2007, see Figure 15.2, whereas Galileo and Beidou were simulated in a Walker constellation
based on the constellation parameters available in 2007.

Figure 15.4 shows the number of visible GNSS satellites using an antenna cut-off angle of 10°. One can
see that, whereas there are about 9 GPS satellites in the field of view at present, in future we can expect about
16 GNSS satellites by considering the complete GLONASS constellation in addition to GPS, and 26 GNSS
satellites with the addition of both the GLONASS and Galileo constellations. The additional Beidou satellites
increase the number of visible GNSS satellites to 35. From Figure 15.4 one can clearly see that the number of
visible GNSS satellites varies strongly with geographical latitude, with the highest number of GNSS satellites
visible in polar regions and along the equator.
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Figure 15.3 Orbit altitude of GNSS satellites used in the simulation.
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Figure 15.4 Mean number of visible GNSS satellites over one day with all four GNSS (10° cut-off angle).

Figure 15.5 shows the error ellipses of the horizontal position based on one-day PPP solutions with all four
GNSS (10° cut-off angle). We calculated the Helmert error ellipse (central ellipse) M

A% + B? = M? = 2R? (15.1)

with the semi-major axis A and the semi-minor axis B . The Helmert ellipse is often called the central ellipse
because it is the smallest in size and can be described by a circle of radius R with a probability of 0.39. For
the sake of completeness we would like to mention that an ellipse with a probability of 0.63 in the interval

+10 has semi-major axes A\/E and B\/§ .

Based on the central Helmert ellipse of radius R, one can calculate an improvement factor by adding
each individual GNSS constellation separately. One can see an improvement in the central ellipse by a factor
of 1.51 when adding GLONASS and by 2.22 when adding in addition Galileo and Beidou. More homogeneous
and isotropic positioning with Galileo can clearly be seen from Figure 15.5, since by increasing the number of
GNSS satellites, error ellipses become smaller and more circular, i.e., the dominant east-west orientation is
reduced.

Isotropic positioning in our definition here means that the error ellipses are circular in shape, i.e., the
accuracy of the estimated horizontal station coordinates is the same at all azimuth angles. Homogeneous
positioning in our definition here refers to a mean accuracy of station coordinates that is similar or equal over
all geographical longitudes and latitudes, i.e., irrespective of the location of the station. It is interesting to
note the east-west orientation of error ellipses also in the polar regions. Figure 15.6 shows the formal errors of
the station height based on PPP over one day with four GNSS. One can clearly see that the highest accuracy
can be expected in mid-latitudes. Around the polar regions, despite the highest number of visible GNSS
satellites, the accuracy of the estimated station heights is lowest, simply due to the satellite geometry and the
low elevations of GNSS satellites tracked.
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Figure 15.5 Error ellipses of the horizontal position based on one-day PPP solutions with all four GNSS (10°

cut-off angle). More homogeneous and isotropic positioning with Galileo. Improvement in the central Helmert
error ellipse by a factor of 1.51 when adding GLONASS and 2.22 when adding in addition Galileo and Beidou.
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Figure 15.6 Formal error of station heights based on one day PPP with all four GNSS (10° cut-off antenna
angle). Improvements by a factor of 1.8 are obtained by adding Galileo and 2.4 with all 4 GNSS.
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Figure 15.7 Formal errors of troposphere zenith delays with all four GNSS (estimated every two hours, 10°
cut-off angle). Periodic patterns are visible at mid-latitudes, most likely due to the six orbital planes used.

By adding Galileo to complete the GPS and GLONASS constellations one can reduce the formal errors by a
factor of 1.8 of the estimated station heights and by a factor of 2.4 by using all 4 GNSS. Figure 15.7 shows
the formal errors of tropospheric zenith delays (TZDs) estimated every two hours using all four GNSS. The
improvement compared to the GPS-only scenario due to the addition of the GLONASS and Galileo constel-
lations amounts to a factor of 2 in terms of formal errors of the estimated tropospheric zenith delays.

Comparing tropospheric zenith delays in Figure 15.7 with station heights in Figure 15.6, one can clearly
see that station heights can be estimated most accurately in the mid-latitudes, whereas tropospheric zenith
delays are estimated most accurately around the equator. This must be due to correlations between station
heights, tropospheric zenith delays and station clocks as well as observation geometry. A closer look at Figure
15.7, reveals very strong periodic patterns at mid-latitudes, most likely related to the six orbital planes.

15.3Can we Improve GPS Satellite Orbits With Galileo?

Can we improve the orbit determination of GPS satellites with Galileo? The answer is “yes”. Galileo meas-
urements contribute to common parameters estimated together with GPS measurements, such as tropospheric
zenith delays and station coordinates, EOPs and GNSS receiver clock parameters. We have extended our GPS
simulation by adding the Galileo constellation and Figure 15.8 shows the typical improvements in the orbit of
one GPS satellite against orbit estimation based only on the GPS constellation. The effect is in the order of
1—2 cm . The estimation was based on zero-difference carrier-phase measurements and the orbit parameteri-
zation is exactly the same as that used at the CODE IGS AC for the one-day orbit arc. The only difference is
that the combined GPS/Galileo processing was based on zero-difference measurements without ambiguity
resolution.
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Figure 15.8 Typical differences in GPS satellite orbits by adding measurements from 30 Galileo satellites.
For the simulation of the combined processing of the GPS and Galileo constellations, see (Svehla and Heinze

2007).
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15.4 Orbit Determination of GNSS Satellites From GEO

How accurately can one estimate the orbit of a GEO satellite? Can we generate a highly accurate space-based
reference frame in GEO orbit and combine such a geometric/dynamic frame with the conventional terrestrial
and celestial frame? With just three to five satellites in GEO orbit one could cover, in terms of visibility, the
entire Earth, (see Figure 15.9) and continuously measure range or range-rate between the reference GEO

Figure 15.9 Intermediate GEO Reference Frame based on 3-5 reference satellites connected with intersatel-
lite metrology links and closely tied to the ground terrestrial frame and GNSS satellites.

satellites with very high, e.g., sub-micrometer accuracy. Any additional reference “station” in GEO orbit will
be in the field of view of all other reference “stations” in the GEO orbit, as shown in Figure 15.9. No matter
how accurately one could determine the GEO orbit from the ground, any reduced-dynamic or dynamic POD
approach will constrain the relative GEO orbit information to highly accurate range (or range-rate) measure-
ments. This is also demonstrated with simulated data later in the text in more detail, see Figure 15.10. The
relative orbit information between reference “stations” in the GEO orbit will be several orders of magnitude
more accurate than the relative information between the satellites and the ground geodetic stations of space
geodesy techniques such as GPS, VLBI, SLR and DORIS. This can be argued based on the intersatellite link
between two GRACE satellites that uses K-band measurements with a noise level below 10 pm . The relative
radial and along-track orbit information will be of the highest accuracy, whereas out-of-plane orbit information
will strongly depend on the accuracy of the ground-to-space link and the ability to orient this orbital frame in
space. The gravity field of the Earth, like e.g., J, coefficient, will provide additional constraints to the accuracy
of the cross-track orbit direction. Additional ranging from GEO to any satellite in MEO or LEO orbit will
provide a space-based reference frame of utmost accuracy in all directions.
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GALILEO orbit based on 10 ground stations GEO orbit based on 10 ground stations
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Figure 15.10 Accuracy of Galileo orbit (MEO) based on tracking from 10 ground stations (left) and accu-
racy of GEO orbit based on 10 ground stations (right).

This GEO reference frame needs to be tied to the ground to complement the Earth terrestrial reference frame
defined by the global network of ground stations fixed to the Earth’s crust.

Compared to pseudo-range and carrier-phase measurements from the GPS or Galileo system, SLR meas-
urements provide ranges that do not require the estimation of clock and ambiguity parameters in orbit
determination. This is the reason why simulations show that using such range measurements, orbits of GEO
satellites could be determined with an accuracy of a few centimeters based on only 10 ground stations, see
Figure 15.10. At the moment, not all SLR stations can be used for tracking GNSS satellites and thus also not
for GEO satellites. It should be noted that such level of accuracy of orbit determination cannot be obtained
with one-way measurements, such as carrier phase or pseudo-range measurements. GNSS based one-way meas-
urements require the estimation of additional parameters, such as phase ambiguities and clock parameters,
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Figure 15.11 Noise level used in the simulation for range and carrier-phase of the navigation concept with 3-
5 GEO satellites, Galileo in MEO and 10 ground stations. The ROCK solar radiation pressure model was
applied a priori in the simulation. Typically, 15 orbital parameters were estimated for daily GNSS orbits.
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Figure 15.12 Geometry of the GEO and MEO orbit sensitivity, distinguishing the orbit error in the along-
track and the radial orbit directions influenced by the clock error.

that are highly correlated with the GEO orbit parameters and, in this case, cannot be separated from orbit
parameters with sufficient accuracy. This can be clearly seen in Figure 15.10 (right). The RMS of 14.3 m in

the along-track direction for the orbit solution based on carrier-phase measurements compares with 0.04 m

based on ranges. The simulation was carried out using 10 globally distributed SLR stations, assuming noise in

the range measurements of o(range) =15 mm and in the carrier-phase o(phase) =3 mm . For the noise

level applied in the simulation for range and carrier-phase measurements of the navigation concept with 3-5
GEO satellites, we refer to Figure 15.11. Since the gravity field can be assumed as error-free for the GEO orbit
altitudes, the main source of error remains solar radiation pressure. It should be noted that GEO orbit deter-
mination will be sensitive to the polar and equatorial flattening of the Earth’s gravity field as well as lunar
and solar gravitational forces, and they will be driving factors in the dynamic orientation of the orbital plane
in the inertial frame. One should also consider resonances in the GEO orbit and periodic maneuvers. However,
since all 3-5 satellites are affected by resonances in longitude in a similar way, it is expected that the entire
GEO constellation could also drift as a whole over a longer period of time. For more on resonances of GEO
satellites see (Hugentobler et al. 1999).

Solar radiation pressure remains the main source of error in the realization of the GEO reference frame.
In the simulation, we employed the ROCK model developed for GPS satellites as implemented in the Bernese
GPS Software v5.1, see e.g., (Rothacher and Mervart 1996). The GEO orbit determination was performed
using orbit parameterizations similar to GPS satellites, i.e., an arc length of only 24 hours and the standard 9
solar radiation pressure parameters in the Bernese GPS Software v5.1. Since we did not make use of longer
arcs, in reality one could expect significantly better results, especially when all GEO satellites are combined
together with cross-link measurements and the solar radiation pressure parameters are estimated simultane-
ously for all GEO satellites. Looking at Figure 15.10, one can observe that the orbit quality in the radial
direction is well below the noise level of the simulated measurements, i.e., it is heavily constrained by the
gravity field of the Earth. It has been shown, (Thaller et al. 2010), that for good ground ILRS stations, the
noise floor of SLR measurements to GPS satellite G06 is at the level of 13 mm . Performing the same simula-

tion for GPS satellites and using the same 10 ground stations reveals that GEO orbits can, in fact, be estimated
with better accuracy than MEO orbits, see Figure 15.10 (left). This is especially true for the radial and along-
track orbit components, whose accuracy is better by a factor of ~2 compared to the GPS orbit. This paradox
in our simulation can be explained by the fact that the radial orbit error for GEO is smaller by at least a
factor of 2 than that for GPS, and thus the along-track component of the GEO orbit can indeed be better
estimated. However, this is only true if highly accurate range measurements are available that heavily constrain
the radial orbit component.

Figure 15.12 graphically explains why the along-track orbit component of a GEO orbit is estimated with
very low accuracy when using carrier-phase measurements, or any observable that requires the estimation of
GEO satellite clock parameters. True range measurements such as SLR can provide enough information to
accurately constrain in-plane orbit rotation. It should be noted that MEO orbit can only be observed by the
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15.4 Orbit Determination of GNSS Satellites From GEO

same ground station for several hours, whereas GEO orbit allows continuous tracking from the terrestrial
reference frame. Other alternatives for determining an accurate along-track GEO orbit component include
differential VLBI or GNSS double-differences (against the GNSS constellation and the GEO satellite). How-
ever, ambiguity resolution would play an important role in this case and should be performed using a geometry-
free method. One could also assume that significant information will come from the highly accurate intersat-
ellite ranging between GEO satellites, since sub-micrometer level accuracy could be achieved in the free space
in GEO orbit.

Generally speaking, a GEO dynamic reference frame has the potential to provide an alternative realization
of the frame and complement and extend realization of the conventional terrestrial reference frame of the
Earth. In this way, both the celestial and the terrestrial reference frame of the Earth could be combined with
a GEO dynamic reference frame at the same time. Drag-free and ranging technology as developed for the LISA
mission support this contention. A GEO reference frame could not only provide a basis for the real-time
positioning/timing facility for GNSS Earth-based applications, but could also be used for positioning and
time/frequency dissemination in the very populated GEO belt. MEO (GNSS), LEO, and satellites in GEO
orbit could make use of this reference frame in GEO orbit, e.g., for real-time orbit determination and time/fre-
quency dissemination. Figure 15.13 shows the accuracy of a Galileo orbit based on tracking from five GEO
satellites. One can see that all three orbit components can be estimated with a similar level of accuracy. If
tracking from several GEO satellites in the equatorial plane is available to satellites in MEO, one should
expect that one orbit component could be determined with less accuracy. However, considering that GNSS
orbit is determined with only 15 parameters, one can see from Figure 15.13 that all orbit components for a

GNSS satellite can be determined with a similar level of accuracy.
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Figure 15.13 Accuracy of a Galileo orbit (MEQ) based on tracking from five GEO satellites. Considering that
GNSS orbit is determined with only 15 parameters, one can see that all orbit components can be determined
with a similar level of accuracy. The along-track component is slightly more accurate, considering equatorially
placed GEO satellites.
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16. The GPS Transponder Concept — Towards One-
way and Two-way GNSS Frequency Transfer

n this section we discuss alternative, geometry-free approaches for positioning and time/frequency transfer
using one-way and two-way measurements. The transmitter and receiver clock parameters can be sepa-
rated or removed from the tracking geometry by using two-way measurements or introducing one-way
measurements into the geometry-free linear combination. Clocks on board GNSS have become so stable that
it makes interesting to steer their frequency using a geometry-free approach as demonstrated here. Galileo
satellite clock parameters can be modelled using just two parameters per day (time drift and offset) with the
remaining residual clock parameters showing the standard deviation at the level of 15 mm , see Section 18.

Therefore, frequency steering of the satellite clock could be performed far more infrequently, (e.g., once a day)
using the two-way frequency transfer approach. This could also bring to the separation of the prediction of
GNSS satellite clock parameters (based on frequency steering) from the orbit prediction. We also discuss an
application of the one-way frequency transfer approach based on geometry-free linear combination between
two satellites (e.g., between GNSS satellites in MEO or with GEO). On the development of the two-way
microwave metrology links for atomic clocks of the ACES mission we refer to (Cacciapuoti and Salomon 2009).

In addition to providing a two-way frequency transfer capability for GNSS, one could also consider the
GPS-transponder concept, where a GNSS signals is tracked by a LEO GBSS receiver and then re-transmitted
by the LEO satellite to a ground station (e.g., on a slightly shifted frequency). This opens up the possibility
of separating tracking geometry from clock information when using a one-way approach for positioning, similar
to the geometry-free two-way approach. One could also consider combining the standard one-way GPS posi-
tioning with the one-way frequency transfer. Observables in the one-way frequency transfer based on geometry-
free linear combination would then be free of propagation effects, such as the effects of the ionosphere and the
troposphere. The one-way approach based on geometry-free linear combination would also eliminate errors
due to tropospheric effects and atmospheric turbulence in the case of optical measurements, and tropospheric
effects and first and higher-order ionospheric corrections in the case of microwave measurements.

We also discuss the geometrical mapping of GNSS constellations with VLBI against extragalactic radio
sources in the GPS-transponder configuration. At the end of this section, we discuss the idea of a similar two-
way approach constructed using VLBI to observe both LAGEOS and passive laser retro-reflectors on the
Moon in a bi-static radar configuration.

16.1 Principles of the One-Way and Two-Way Tracking
One-way tracking involves one signal transmitter with a stable frequency reference and one receiver, whereas
in the case of two-way tracking an additional transponder is used. Such a configuration can be implemented

for both radio and optical frequency bands anywhere within the Solar System. Transponders in naviga-
tion/data communication in space (e.g., interplanetary satellites) typically operate by sending the received
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16 The GPS Transponder Concept — Towards One-way and Two-way GNSS Frequency Transfer

radio signal back to the transmitter, only with amplification of the received signal and shifting the signal from
the uplink to the downlink frequency in order to avoid signal interference. Thus transponders work as a
frequency translator, using an onboard ultra-stable oscillator (USO) and a frequency mixer to convert the
frequency of the received incoming Doppler-shifted signal to the frequency required for the transmitted down-
link signal. An onboard satellite receiver uses a phase-locked loop to lock the uplink carrier and to generate a
reference signal coherent with that uplink carrier. Similar to GNSS, this reference signal is used to demodulate
the ranging signal (ranging tones) received on the uplink carrier. As with GNSS, this ranging signal is again
phase-modulated onto the downlink carrier that is shifted in frequency and coherent with the uplink carrier
(reference signal). Thus, the frequency transmitted by the satellite is a Doppler-shifted replica of the uplink
frequency. Typically, for the Deep-Space Network (DSN) for example, the downlink carrier frequency is higher
by a factor of 880/749 in X-band and 3344/749 in Ka-band for an X-band uplink. The station that generated
and transmitted the uplink signal receives the downlink signal and uses a PLL (Phase Locked Loop) to generate
a reference signal coherent with the received signal. The round trip two-way transit time is determined by
comparing the received range code with a model of the transmitted range code on the uplink. The same ground
frequency standard is used to generate ranging codes consisting of a sequence of sinusoidal tones. In addition
to range measurements, two-way Doppler measurements are derived by comparing the received reference signal
with the same ground frequency reference used to generate the uplink carrier. The Doppler cycle counter
measures the phase change of the Doppler tone (frequency difference) during a given count time, thus providing
a measure of the range change over a given time interval.

The state of the art of technology in two-way interplanetary tracking is the radio-science instrument
developed for the BepiColombo mission based on a Ka/Ka-band digital transponder enabling a high phase
coherence between uplink and downlink carriers and supporting a wideband ranging tone. (For more details
see (Iess et al. 2009).) The BepiColombo wideband ranging system is designed for an end-to-end accuracy of
20 cm using integration times of a few seconds based on the simultaneous transmission and reception of
multiple frequencies in X- and Ka-bands with two-way range-rate measurements accurate to 3 um/s, (Iess
et al. 2009). In the case of the SELENE mission, differential same-beam VLBI interferometry has been suc-
cessfully demonstrated between the two Lunar orbiters tracked by the same ground VLBI antenna, and further
differenced between two ground stations. Differential same-beam interferometry provides extremely accurate
relative position measurements in the plane-of-the-sky, thus complementing the line-of-sight information one
can obtain from the two-way Doppler and range measurements. It was reported in (Goossens et al. 2010) that
the differential phase delay obtained in this way on the X-band signal can be estimated to within 1 ps
(0.3 mm). In the case of S-band data, obtained with wider beamwidth compared to X-band, differential phase
delay was determined with an error of a few picoseconds (roughly 1 mm ) for narrow separation angles of the
spacecraft, and about 10 ps (3 mm) for wider angles. These accuracies include effects of the ionosphere and
atmosphere, (Goossens et al. 2010). The advantage of the differential same-beam VLBI measurements lies in
the differencing out of common errors over a very narrow beamwidth angle. However, if the differential meas-
urement is performed on only a single frequency, the total phase delay is biased by an integer ambiguity. To
overcome the cycle ambiguity problem in the same-beam VLBI interferometry and to increase the accuracy of
the SELENE measurement, a multi-frequency method was used, with three carriers in the S-band (2212, 2218
and 2287 MHz ) and one in the X-band (8456 MHz), (Goossens et al. 2010).

Following (Border and Kursinski 1991), the internationally allocated frequency bands for uplink/downlink
used in the communication/navigation of interplanetary missions are given in Table 16.1. In the case of a very
long round trip transit time, e.g., a distant interplanetary mission, when the downlink signal reaches Earth,
the satellite might no longer be in the field of view of the ground station which transmitted the uplink signal.
Thus a second ground station is required to receive the downlink signal. Such tracking is referred to as “three-
way tracking”. For example, for the distances to Neptune, the round-trip light travel time is more than 8
hours. Similar scenarios may arise with two satellites (e.g., the SELENE mission in the lunar orbit) and one
ground station, where one can even identify four-way tracking. In all these cases, high stability of the onboard
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16.2 Geometry and Propagation Constraints from LEO to Interplanetary Distances

Frequency Uplink Frequency Downlink Frequency
Band [MHz] [MHz]
S 2110 - 2120 2290 - 2300
X 7145 - 7190 8400 - 8450
Ka 34 200 - 34 700 31 800 - 32 300

Table 16.1 Internationally allocated frequency bands used for navigation/communication of interplane-
tary missions (DSN) (Border and Kursinski 1991).

(ultra-) stable oscillator is essential and, typically, additional parameters need to be taken into account in
orbit determination to model the onboard frequency offset. Thus, any instability or inaccuracy of the onboard
frequency reference translates directly into an error Ap in range rate

Ap=cBL (16.1)

f
Assuming the frequency instability over a tracking pass to be in the order of Af / f = 10~ | we have an error
in the range rate in the order of 3 pm/s. For comparison, the typical accuracy of the radial velocity of GPS
satellites is in the order of 5—10 pm/s (based on orbit solutions provided by the IGS Analysis Centers),

whereas in the case of GOCE, in very low LEQO, the velocity can be determined with an accuracy in the order
of 15—25 pm/s for all three components.

The state-of-the-art two-way approach was developed for the ACES mission in LEO orbit, see (Caccia-
puoti and Salomon 2009) making use of the small ground and spaceborne antenna. Therefore, there are enough
arguments to consider the two-way approach for future GNSS. This is especially true considering that clocks
on board Galileo have become so stable that they can easily be steered from the ground using the two-way
frequency transfer approach. This could be performed very infrequently, e.g., once a day, using ground clocks
in the UTC/TAI network that have several orders of magnitude better accuracy and stability than the Galileo
clocks. Such an approach could even be extended by using master clock(s) in the GEO orbit. Frequency
steering for GNSS is a very interesting new technique for GNSS, considering that Galileo satellite clock pa-
rameters can be modelled with just two parameters per day (time drift and offset). See Section 18, for more
details on the Galileo clock performance, where we showed that remaining residuals for Galileo clocks (after
removing the linear model) have a standard deviation at the level of 15 mm . This could also bring to the

separation of GNSS satellite clock parameters (frequency steering) from the orbit prediction.

16.2 Geometry and Propagation Constraints from LEO to Interplanetary
Distances

The two-way approach can be used to transfer frequency between two clocks free of any geometry effects,
since these are removed by differentiating downlink and uplink measurements. The observation equation for

the downlink I2(t,) from e.g., a satellite to a ground station and uplink L}(t,) carrier-phase measurements

in the two-way form can be given as

L%(tQ) = p12 + A12‘N12 - bsat(tl) + brec(tZ)

1 1 1a7l sat . (16.2)
Ly(ty) = py + ANy +b°"(ty) = b, (4)

where I2(t,) is tracked by the ground receiver at the reception time #,. The b,,.(t,) denotes the receiver

rec
clock error at the reception epoch ¢, and the satellite clock error bsut(tl) is referred to the transmitting epoch

t;. The term pl2 includes all geometry terms for the downlink between epochs #; and t,. One can say that
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16 The GPS Transponder Concept — Towards One-way and Two-way GNSS Frequency Transfer

the first equation given for the downlink in (16.2) is the same as for the GNSS one-way measurements. The
uplink carrier-phase measurements Ll2 (ty) can be performed on the satellite, or referred to the ground receiver
if the satellite is used as a transponder of the uplink signal and the signal is sent by the ground station. If we
assume that the satellite measures carrier-phase L12(t2) from the uplink, the observation equation is given as

the second equation in (16.2). For the GNSS orbit altitude, we can model light-travel time for the uplink and
the downlink using the line-of sight velocity of the GNSS satellites relative to the ground station, similar to
the geometry between GNSS and a ground station or a LEO satellite in space, see Section 2. This means that

the geometry terms for downlink pl2 and uplink pé are nearly equal and can be removed with the sufficient
accuracy. Making a difference of (16.2) we derive
1

9 (L% - L12) = %(A%N% - )‘%N%) - %(bsat (tl) + bt (t2 )) + %(brec (t2) + brec(tl)) (16'3)

From (16.3) we can see that our observation model is still biased by the carrier-phase ambiguities for downlink
A N? and uplink AJNJ that are typically given at different frequency. To remove ambiguity parts, one can

make use of differencing over time. Frequency difference between a ground clock and a space clock from time

t, and tg
1 2 1 1 2 1 _ 1 sat sat 1
E(Ll _L2> - E(Ll _L2) - _E(b (t1)+b (t2))+5(bmc(t2)+br@c(t1)) -
tp ta tp
1 1
la(bsat (tl) + bsat (t2)> + 5 (brec (t2) + brec (t1)> (164)
ty
= f'rec - fsat
gives the frequency difference f5* — f_ that can be written
dil 2 1) — — sat
E\E (Ll - LQ) =Af= frec - (165)

If the satellite is used as a transponder of the uplink signal sent from a ground station, carrier-phase measure-
ments can be performed separately for uplink and downlink by the ground receiver. Carrier-phase
measurements can also be performed between an uplink and a downlink signal by the ground station. In case
the ground station is used as a transponder, carrier-phase measurements can be performed by the satellite.
Again, a geometry-free frequency offset is determined between a ground station clock and a satellite clock.
Such measurements can be used to steer very accurately the onboard frequency of a GNSS satellite. We do
not consider an error budget in full detail here. However, visibility time of a GNSS satellite from a ground
station is typically several hours (e.g., 6 hours), compared to a very short observation time, limited to about
5 min, for the ACES mission in LEO orbit. This gives a lot of confidence for future GNSS considering that
the ACES two-way link with satellite clocks showing two orders of magnitude better performance compared
to Galileo clocks is a guarantee of such an approach.

The question is what are the limitations of the two-way approach? Considering that there is a light-travel
time between a satellite and a ground station At#, one could distinguish a A-configuration when differencing
is referred to the common epoch on a satellite or V-configuration when differencing between downlink and
uplink measurements is done for an epoch referred to the a ground station, see Figure 16.1. The propagation
path in the atmosphere for A-configuration and V-configuration is slightly different, and could be a source of
error. This is especially true for the ground-to-LEO or ground-to-GNSS clock comparison in A-configuration
with a large point-ahead angle between the ground station and the LEO satellite, or for a HEO orbit with a
very long light-travel time. In both cases, atmospheric turbulence (with a spectrum up to some 1000 Hz ) can
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V-configuration A-configuration
4 4% 4 GNSS
" GNSS &t
4 4
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i | | Wi ws  Ground station
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Figure 16.1 The A-configuration and V-configuration of the two-way approach for uplink and downlink meas-
urements. Due to the light-travel time At , signal propagates slightly differently for the atmosphere conditions
in the A-configuration, whereas satellite moves during the light-travel time in the V-configuration.

generate an effect in the optical or microwave phase that is not eliminated by forming differences between
carrier-phase measurements of the two symmetric paths. Considering the very short wavelength of the optical
frequencies used, in the case of optical measurements, this asymmetry could even prevent coherent tracking
of the optical signal, i.e., coherent optical carrier with GHz-modulation. In the case of a clock on an interplan-
etary satellite, the light-travel time could easily reach 30 min (2x8.3 min/AU ) and during that period of

time the dry/wet part of the atmospheric delay could significantly change (not only due to atmospheric
turbulence). Because of Earth’s rotation, the point-ahead angle changes by = 2x2.1°/AU, and is about 10°

at the distance to, e.g., Mars (@ = 1.5 AU ). In the case of the ionosphere this asymmetry introduces different

bending angles between two counter-propagating waves and the ionospheric/plasmaspheric effects are gener-
ally different for the two waves. This complicates the removal of the first order ionosphere-effect by using the
ionosphere-free linear combination. In the case of higher order effects of the ionosphere, these are not elimi-
nated by forming differences or ionosphere-free linear combination, but effects on uplink and downlink sum
up. Tonospheric/plasmaspheric effects can be reduced by making use of the higher microwave bands such as
Ka-band or higher, where the second and higher order effects are insignificant. In the case of the LISA mission
(The Laser Interferometer Space Antenna) with an armlength of 5 Mkm , or eLISA (Extended LISA) with an
armlength of 1 Mkm , an additional constraint is precise pointing or alignment for the optical telescope. Even
ILRS stations with very good ground stabilization very often report difficulties in directing SLR telescopes at
GNSS satellites. Tracking over lunar distances is feasible only for a few ILRS stations. Considering the previous
example with the Mars distance, the SLR telescope should be re-aligned by about 10° between an uplink and
a downlink.

All these geometry and propagation constraints would be eliminated if one designed a one-way metrology
link, because in that case the signals would propagate along the same path through the atmosphere or inter-
planetary plasmasphere.
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16 The GPS Transponder Concept — Towards One-way and Two-way GNSS Frequency Transfer

16.3 The One-way Geometry-Free Approach to Frequency Transfer

Let us imagine that a satellite clock is transmitting to the receiver the same signal twice, i.e., with frequency
f2* and a frequency f**? shifted by an offset Af , with f%%2 = £ L Af see Figure 16.2. Such a scenario
is typical for GNSS satellites, for time and frequency transfer, and for some interplanetary missions. In addition

to the reference clock error % associated with the frequency f**, any use of a transponder or frequency

multiplication, such as the case of GNSS, will introduce an additional time delay error 52 in the generation

of the frequency offset Af. The observation equation for the carrier-phase measurements denoted here as

Ly (b*%) and L, (b**,b%%2) tracked by the receiver is

Ll (bsat) =p+ )\lNl(bSat) _ psat + brcc + Il

foat o (16.6)
1

L2 (bsat’bsat,Q) =p+ )\2N2 (bwt7b5ut’2) _ bsat _ bsat,Z +b _|_( —
fsa s

Tec

where b,,, is the receiver error on the ground with geometry term p, ambiguity terms A\ N; and AN, and

C

the first-order ionosphere-effect I;. The frequency offset can be small enough to guarantee that there is no

interference between the two signals. The geometry-free linear combination L, (b*,5%%2) is then

L4(b5at,b5at’2) _ Ll(bsat) _ Ll (bsat’bsat,Q)

sat 16.7
— bsat,2 + AlNl(bsat) _ AQNQ(bsat’bsat,Q) +11 _( f )2 I ( )

with the last term denoting the differential first-order ionosphere effect AI,. If we now make a difference of

(16.7) over a time interval ¢, the ambiguity parameter will be removed

t
AL4(bsat7bsat,2) — A{Ll (bsat) _ Ll (bsat7bsat,2)}0 — bsat,? (t) _ bsat,Q + All (t) _ All

t (16.8)
= [(af+ar,)-d
0

By increasing the frequency, the first order ionosphere-effect reduces by 1/ f%. We will show later in this

section that differential ionospheric effects AI; between two frequencies are proportional to 1/f 3 and thus

4 satellite clock
J’ transmitter
A4

Af
fsat fsat,Q — fsat + Af

receiver

Figure 16.2 General concept of the one-way approach to transfer frequency offset Af . When received by the

receiver, geometry and propagation effects can be removed by using geometry-free linear combination in the
time domain. In this way, frequency offset Af can be directly measured by the ground receiver. The first order

ionosphere-effect reduces by 1/ f2 and is significantly smaller in size when differenced in time.
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16.3 The One-way Geometry-Free Approach to Frequency Transfer

are significantly smaller in size when differenced in the time domain. Thus, they can either be neglected or
removed using an a priori ionosphere-model. The use of two frequencies in X-band or in the Ka-band will
decrease the first order ionosphere effect by a factor of at least 100 compared to the GNSS frequencies in the
L-band. The high-order ionosphere-effects that are proportional to 1/ f3, 1/ f* or 1/ f° are reduced even
faster by increasing the frequency. When considering such a concept in space, using a space-based receiver
and a space-based transmitter, frequency steering between satellites or a GEO satellite could, in principle, be
performed using the one-way approach. GNSS satellites are high above the ionosphere and plasmasphere effects
are significantly reduced.

The clock parameter b**2(t) in (16.8) is associated with the frequency f**? and measured against the

frequency of the receiver f,.

¢
bsat,Q(t):fAf.dt (16.9)
0

In this way, we can measure a frequency offset Af of the satellite clock relative to the same frequency offset
generated by the receiver. The geometry and propagation effects can be removed by using the geometry-free
linear combination in the time domain (16.8). This concept could be realized with optical and microwave
measurements and is basically free of all propagation effects. If we assume that typical LEO orbit velocity is
known with a standard deviation of 0.01 mm/s (over a daily period), the error in the first order Doppler effect
will give a relative frequency offset in the reference frequency to an accuracy of 3-107!* for a single station

and the effect will be reduced by using single-differences with two stations as a function of nadir angle «a,,, ;.

one station two stations

AF 00 g &S00
f c f c

Since the determined radial orbit velocity is more accurate for GNSS and averages out for a typical GNSS

B . (16.10)
[1 - cos(ozm(m)] ~4-10716 /10

orbit, this approach is very interesting for the application of tri-carrier GPS measurements (GPS BLOCK-
ITF). In the case of common-view single-differencing the effect is significantly reduced by about two orders of
magnitude, offering the possibility of achieving a level of accuracy for the relative frequency comparison in the
order of 107! over several hours of averaging. Currently, there are about 12 GPS BLOCK-IIF satellites in
the GPS constellation.

16.3.1 Differential Atmospheric Effects in Optical and Microwave Bands

Here we look at the differential ionospheric and tropospheric effects on the one-way signal on the two frequen-
cies fl* and f; close to one another in the optical band and separately, two frequencies f" and f; in the

microwave frequency band.
Let us first look at the differential ionospheric effect on the two frequencies close to one another in the
GNSS L-band. The derivative of the first order ionosphere-effect I in the zenith direction gives

2-k
dI:ﬂTEO-df:—zﬁf (16.11)
f&
with typically used value for kpp, = 40.3 in the first-order ionosphere-effect. With a differential microwave
frequency df at the MHz-level, the first order effect is reduced by about three orders of magnitude, thus it

can be neglected or easily eliminated to below the mm-level by the simple Klobuchar-grade ionosphere models
available from the broadcast navigation message. Higher-order ionospheric effects are completely eliminated
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as are the tropospheric effects. At higher frequencies, such as Ka-band, the first order ionosphere-effect is
further reduced by a factor of about 30 compared to the f; GPS frequency. For the differential atmospheric

effect on optical frequencies, we make use of the Marini-Murray model, IERS Conventions 2003 (McCarthy
and Petit 2004). The range correction due to the Marini-Murray is

AR — fN) . A+ B
B/(A+B)
sin £ 4+ 0.01

16.12
(9, H) sin £ + ( !

with elevation of satellite £ and A and B given in (McCarthy and Petit 2004). The laser site function is
denoted by f(¢,H) and the laser frequency parameter f(A) is

ky
\2

ks

f) =k +—=+ o (16.13)

given for the wavelength A in micrometers. For a ruby laser f(A\)=1. For the constants k; = 0.9650 and
ky = 0.0164 and kg = 0.000228 we refer to (McCarthy and Petit 2004). From (16.13) it follows that the dif-

ferential in the range correction (meters) is

0.0334

dAR ~ —AR 3 X (16.14)
A
which for the infrared wavelength of 1064 nm gives
dAR ~ —0.0311AR - d\ (16.15)

A difference in the wavelengths of 1 nm gives about 30 um per 1 m of range correction for a wavelength of
1064 nm . The accuracy of the troposphere models used for SLR is below one millimeter, (see IERS Conven-

tions 2010 (Petit and Luzum 2010)). Therefore, by utilizing an a priori troposphere model, e.g., (Mendes and
Pavlis 2004), the accuracy of our differential troposphere model (16.15) can be significantly increased.

16.3.2 A Concept for an Interferometric Metrology Link

. . . . . . * * .,
Let us now look at the case where a satellite is transmitting a carrier-wave on two frequencies f; and f, in

the optical or near-infrared spectrum separated by the beat frequency Af”in the microwave domain. This

frequency separation could be chosen to be in the microwave band of GNSS frequencies, e.g.,
Aff=f —f =154-f, = f,, (16.16)
where f; denotes the fundamental GPS frequency f, =10.23 MHz and f; is the GPS frequency. Taking into

account only the first order Doppler effect, the frequencies of the signal received on the ground are

f;; = 1_§]f1*a f};,2 = [1—§]f2* (16.17)

where p denotes the line-of-sight range rate with the Doppler shifted beat frequency A f;

Afg = fra = I = [1 -5

Af = [1—§]f1 (16.18)

Instead of tracking each optical frequency separately, we combine them in order to generate the beat frequency

A fg using optical heterodyning
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sin<27rf;71 t)sin(27rf;72 t) = %COS[QTF(J(EQ — f};l)t] — %cos[%r(f}?2 + f;ﬁl)t} . (16.19)

Heterodyning is a radio/optical signal processing technique in which two reference frequencies are linearly
combined or mixed in order to create two new frequencies (differencing/summation). From the trigonometric
relation (16.19), we see that the multiplication of two carrier waves generates two new signals. Applied to our

case, two frequencies close to one another in the visible part of the spectrum f;.l and fEQ illuminate the

photo-detector in the receiver and the oscillating electrical signal corresponds to the difference between their

frequencies, i.e., the beat frequency A f; . In our case, this beat frequency corresponds to the Doppler-shifted

GPS frequency f, in the L-band. In the next step, the generated beat signal with frequency A f; is compared

against the reference signal from the ground frequency reference in order to generate carrier-phase measure-
ments. Using this approach, we can obtain very precise measurements of phase and frequency differences
between two optical signals. Optical heterodyne detection is used for many applications, such as coherent
Doppler LIDAR measurements that are capable of detecting very weak light scattered in the atmosphere or
monitoring wind speeds in the atmosphere with a high degree of accuracy. One can find many applications in
high-accuracy optical frequency measurements, including frequency combs.

Considering the relative velocity of the GPS satellite in (16.18) for the range rate of, e.g., p =4 km/s,

the beat frequency A f; is in the order of 21 kHz and it generates the same carrier-phase signal as the GPS

frequency f; . The received beat frequency A f; is free of the first and higher-order ionospheric-effects, and

the influence of atmospheric turbulence as well as the dry/wet part of the tropospheric delay is basically

eliminated. Another approach would be to modulate the GPS frequency f; onto the optical carrier with fre-

quency fl* (e.g., using phase modulation) and use the optical carrier as an “atmosphere tunnel”, since optical
frequencies are not affected by ionospheric effects and the dry/wet part of the troposphere can be modeled at
the sub-mm-level, see IERS Conventions 2010 (Petit and Luzum 2010). In that case, carrier-phase measure-
ments would need to be performed using a modulated “GPS carrier” on the optical carrier comparing it against
the reference frequency used by the receiver. Such a concept would be feasible with only one optical frequency.

16.4 The GPS One-way Approach to Frequency Transfer

Typically, a GPS satellite uses the fundamental frequency f, =10.23 MHz to generate by multiplication
fi=154-fy, f, =120-f, and f; =115 f,. Let us imagine a frequency offset Af associated with, e.g.,

fi =(115- f, + Af). Such an error will generate an additional clock error b (t) accumulated over time ¢

b3et (¢ fAf dt—c{ ?f 1;5f?0f (16.20)

given in meters and using the speed of light ¢ . In addition to the satellite clock error %% associated with an

error in reference GPS frequency df, and corresponding receiver clock error b,,. estimated every epoch, the

ec

observation equation for carrier-phase L; and L, with this newly modified L; observable using f; is

L =p+MNN, —b +b

rec

Ly = p+ ANy —b%" +h

rec

f12 I, (16.21)
I3
i
+o51h
5

*

Ly = p+ A\ Ns — b — b3 () + 0,

5
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with geometry term p, ambiguities N; and N,, and wavelengths A, and ), . For the new frequency 5*7 we
have an integer ambiguity N ; and wavelength )\;. The first order ionosphere-effect on f; is denoted by I, .

If we now form the ionosphere-free linear combination relative to L, we obtain

c N+ foc

_ _ __ psat
Ly(Lys Ly) = p + i h VTR g (N = Ny) =0 + by, .
L (L L*) + ¢ N fS'C (N N*)+ f5*2 psat — psat 1 p ( . )
3\ i) = P 1 1 Ns) T 505 0
R VR

The satellite clock error b*(t) accumulated over time ¢ for ionosphere-free linear combination Lg(L,Ls)
can be derived from a clock error df, in the fundamental GPS frequency f, as
sat hi-c t fy -c t tdfo
psa (t):TfolM-dfO-dt—WIIQO-dfO-dt:c-ff—-dt (16.23)
1 —J2 9 1 7J2 9 o 0

where df, / f, denotes the relative frequency error of the fundamental clock frequency f,. The same satellite

clock is defined using the ionosphere-free linear combination on f; and f;

c

bsat (t) — fl

=1

t f e t t df
154 dfy - dt — > 115-dfy-dt =c- [ =L-dt (16.24)
Jovdam gl 5

Following the IGS convention, GPS satellite clock parameters are defined using the ionosphere-free linear
combination Ls(L,,Ly) of L; and L, measured on P -code. From, (16.24) one can see that the same clock
parameter is defined by f; and f; as long as f5* =fy=115-f, and Af =0.

If we now subtract the two equations in (16.22), we derive AL,

* f5*2 sa *
ALy = Ly(Ly, Lg) = Ly(Ly, Ly) = —=——b3"" + ()‘N(l,Z) - )‘N(1,5)>N1
=1 (16.25)

1/« 1/.x *
+3 (AW(LQ) —An(2) ) Ny — 5 ()‘W(l.ﬁ) —AN(s) ) Ny

with the narrow-lane Ayq) =c/(f; +f,) and A;V(1,5) =c/(f,+f), and the wide-lane wavelengths

Awaz) = ¢/(fi —f,) and )‘[*m

The ambiguity part in (16.25) can be removed by making a difference in time ¢, measuring directly

, = /(i — fs*) ; and ambiguities Ny, ) = N; — N, and N;V(l,s) =N, — N;

frequency offset Af using the geometry-free linear combination AL,(t) differenced over time

3

*9 *9
in > bgat(t):f5— C-fAf'dt (16.26)

21, - 4R

ALs(t) =
considering that b5%(t) is an accumulated time error over t. The size of the term (f2 / f2 + f?) ~ 1.26 is

modest. Eq. (16.26) shows that one can transfer frequency offset Af or relative frequency Af / f; from

space to ground in a geometry-free way, as in the case with the one-way approach with two frequencies.
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16.5 The GPS Transponder Concept — Towards "Geometry-Free”
Positioning

As demonstrated earlier in this section, using a one-way or two-way approach it is possible to eliminate
frequency offset between receiver and transmitter from equations used in orbit determination.

Quasars can be observed over the entire observable electromagnetic spectrum, including radio, infrared,
optical, ultraviolet, X-ray and even gamma rays. A selected frequency band could be observed by a phased-
array antenna on board a satellite. The same approach could be applied to a GNSS and a LEO satellite,
(Figure 16.3). This tracking could be performed in open-loop, as in the case of VLBI, or using a frequency
comb to measure the spectrum of the received signal. The ideal solution would be to perform carrier-phase
measurements, as in the GNSS-LEO case. At the same time, the signal tracked by the antenna array could be
transmitted to Earth or measurements taken could be downloaded to a ground station using an (optical)
communication link or retransmitted towards the Earth (?GPS transponder” concept) in the case of GNSS-
LEO configuration. If the same quasar is tracked in the vicinity of the satellite (in the line-of-sight), one could
directly measure the Doppler shift, i.e., the line-of-sight velocity of the satellite, by comparing the same signal
from satellite and/or quasar. This measurement is geometry-free, since the frequency of the clock onboard the
satellite could be measured from the ground using either one-way or two-way frequency measurements. This
measurement of the line-of-sight velocity is not only geometry-free, but is also free of any propagation effects.
The more than 3000 radio sources listed in ICRF2 are sufficient to enable any satellite to carry out such
measurement in the light-of-sight direction. For the ground tracking, one would need to use VLBI or phased-
array antennae. Due to good multipath mitigation capabilities and the low noise of GNSS observables, it is
believed that phased-array antennae will find an application in permanent GNSS networks such as IGS.

This type of geometry-free measurement could support a pulsar-based time scale. According to (Hobbs
et al. 2012), there are about 30 quasars that in terms of timing stability provide an alternative to TAI, as
demonstrated in (Hobbs et al. 2012). With the proposed geometry-free approach, one could transfer a pulsar
time scale from the satellite to the ground, eliminating atmospheric effects with the one-way or two-way
approach. STE-QUEST has the potential to be the first mission to demonstrate the geometry-free one-way
approach for positioning (making use of the existing onboard payload), see Section 27. The same approach
could be applied to deep space missions carrying metrology links.

GNSS P

A

LEO
qé_: GNSS or LEO Satellite

6’\

£ @
: VLBI Telescope

Figure 16.3 Concept of one-way geometry-free positioning: with a GNSS satellite and a quasar (left) and a
GNSS satellite and a LEO or a GEO satellite (right) ”GPS transponder” concept. Since time could be elimi-
nated from orbit determination, the orbit itself can be observed w.r.t. another satellite or object. A navigation
signal needs to be received and re-transmitted from the target satellite relative to the known object, e.g., the
GNSS satellite or quasar.
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16.6 Geometrical Mapping of a GNSS Constellation Against Extragalactic
Radio Sources

Geometrical mapping of a GNSS constellation against extragalactic radio sources (quasars) can be realized by
observing quasars at the approximate location of GNSS satellites. This is similar to the Delta-DOR, approach
used in the tracking of interplanetary satellites, where an open-loop receiver samples VLBI signals in the S-
/X- and/or Ka-bands. To track GNSS satellites, one would also need to sample GNSS signals in the L-band,
and correlate them on a correlator. Compared to GPS, there would be an advantage for Galileo, due to the
wide range of different modulations on several frequencies and the higher bandwidth one could obtain from
the Galileo signals. A second approach would be to observe GNSS carrier-phase and code measurements using
a GNSS receiver connected to a VLBI antenna. Due to the size of the typical VLBI antenna dish and the
pointing of the antenna, the thermal noise of the received signal would be significantly less than that experi-
enced with the standard choke-ring omni-directional antenna currently used by the IGS.

Figure 16.4 shows ionosphere-free code against ionosphere-free carrier-phase measurements from the
GNSS receiver connected to a 25 m antenna dish. Translated to the original single frequency observable, the

noise of the code measurements is at 6 mm precision. Such a low code noise significantly simplifies ambiguity

resolution of the carrier-phase measurements. This opens up the possibility of using the differential same-beam
VLBI interferometry approach to track GNSS constellations. In this technique, two ground-based VLBI sta-
tions track the same two close-by GNSS satellites within the beam width of the VLBI antennae. Differential
same-beam interferometry provides very accurate relative positioning measurements in the plane-of-the-sky
(same plane), thus complementing the line-of-sight information one can obtain from the one-way GNSS carrier-
phase and code measurements. The main advantage of differential same-beam VLBI lies in the differencing
out of common errors over a narrow beam-width angle. However, if the differential measurement is performed
on only a single frequency, the total phase delay is biased by an integer ambiguity, thus ambiguity resolution
is required (with very accurate code measurements in that case). A VLBI session would always need to be
scheduled in such a way that several GNSS satellites are visible in the same beam-width in the vicinity of a
selected quasar seen from two different VLBI stations. Differential same-beam interferometry between GNSS
satellites in close proximity to one another is, by its very nature, a double-difference approach.

First attempts have already been made to observe GNSS satellites using VLBI (Kodet et al. 2013) by
observing GLONASS satellites from the Wettzell and Onsala VLBI stations with an open-loop receiver. The
receiver of the Wettzell 20 m VLBI antenna has been modified to measure the GNSS L; signal without chang-
ing the local ties (Kodet et al. 2013). It is very important to mention that with the VLBI technique it is
possible to determine GNSS satellite orbits without using any other GNSS or SLR measurements. The noise
level of the positions of 3414 S-/X-band radio sources listed in ICRF2 (295 defining sources) is in the order of
~ 40 pas with an axis stability of ~ 10 pas (Gordon et al. 2010). Translated to GNSS altitudes, this gives a
position precision of 5 mm RMS for these 3414 S-/X-band radio sources. Very small steerable antennae will
be required to observe the orbits of GNSS satellites against quasars using higher frequencies (Ka-band or W-
band). Such a configuration could be improved by making use of a fixed phased-array antennae with beam
forming on receive. The phased-array technique would improve the gain of the antenna and it could track all
in-view GNSS satellites and refer them to the common measurement epoch. Table 16.2 lists the advantages
and disadvantages of VLBI at higher frequencies. First attempts to define a celestial frame at 32 GHz have
already been made, mainly driven by the radio-science objectives of the most recent space missions. It is
expected that the next realization of the ICRS will include radio-sources observed at higher frequencies, in at
least the Ka-band (32 GHz).
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Figure 16.4 GPS signal observed with an L-band receiver connected to a 25 m antenna. Difference between
ionosphere-free code (C/A on L;) and ionosphere-free carrier-phase measurements (Svehla et al. 2010a) con-

verted to the noise level of the original single-frequency measurements. The code measurements have a
precision of about 6 mm .

Advantages
*  Main drivers are new space missions (Mars Reconnaissance Orbiter, BepiColombo,

JUICE, Netlander...) requiring higher telemetry rates, radio-science, improved deep-
space navigation (gravity field), lower ionosphere/solar plasma-effects, etc.

* Higher telemetry data rates in deep space

*  Onboard RF systems are smaller (antenna) and lighter

*  Avoidance of RF interference in S-band

* Tonospheric & solar plasma effects decreased by 16 —100 times at 32 GHz/90 GHz

compared to 8 GHz

*  Observations possible closer to the Sun/galactic center

*  Very compact sources (spatial distribution of flux) that give more stability in posi-
tion over time

*  Compared to ICRF2 frame defined in S/X-band, positions in Ka-band are closer to
optical positions (GAIA)

Disadvantages
*  More weather-sensitive (close to the 22 GHz water vapor line)

*  Antenna pointing requirements 4-10 times higher at 32 GHz/90 GHz than at
8 GHz (beam forming technique)

* In order to increase sensitivity, sampling rate needs to be 4 —10 times higher at
32 GHz/90 GHz compared to 8 GHz

*  Currently no celestial frame in the W-band, first realization of celestial frame at
32 GHz

Table 16.2 Advantages and disadvantages of VLBI at higher frequencies (Ka/W-band) that could allow the

use of smaller antennae for combined GNSS/VLBI tracking using a phased-array antenna design.
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16.7Can LAGEQOS or Lunar Retro-Reflectors be Observed by VLBI?

Radars are used to detect and track objects in space with metre-grade ranging, (Joint Space Operations Center
(JSpOC) and NORAD in the USA and TIRA (Tracking and Imaging Radar) of the Fraunhofer Institute in
Europe). JSpOC tracks more than 16 000 objects and uses infrared sensors to detect the re-entry of satellites.

If the ground radar sends microwave signals towards a LAGEOS satellite, this signal will be reflected and
scattered by the surface of the satellite into all directions and a tiny part of the wave’s energy will be directed
towards the ground VLBI antennae, see Figure 16.5.

How the microwaves transmitted by the ground radar scatter on the surface of the satellite depends on
their wavelength and the shape of the satellite. If the wavelength of the microwave signal is smaller than the
size of the satellite, the wave will be reflected in a specular way similar to light. However, due to diffraction,
divergence of the reflected signal will allow tracking the same signal by the VLBI antennae at different loca-
tions. It is assumed that such a wide-band microwave signal could be tracked by the open-loop receiver or
similar techniques used for tracking extragalactic sources and inter-planetary satellites.

Making use of such a bi-static VLBI concept, the LAGEOS orbit could be determined by SLR and
microwave VLBI and tied against the positions of extragalactic radio sources. The same principle could be
applied to lunar laser retro-reflectors. So-called persistent scatterers, as they are known in SAR interferometry,
are objects that reflect radar well, e.g., metallic structures, buildings etc. If the radar is directed towards the
laser retro-reflector on the Moon, the diffraction pattern from the laser retro-reflectors will be different to that
from the surrounding lunar surface. Thus one could correlate VLBI signals observed by several VLBI antennae
on Earth. Potentially, this could be extended to all 5 retro-reflectors on the Moon in order to monitor lunar
orientation (librations). The proposed bi-static concept could potentially open up new applications of VLBI
in combining geometric and dynamic frames. Here we only outline the idea and perform no simulations.

Another possible approach is to use a principle of photoconductive antennae, where a passive detector
(e.g., on lunar/Mars surface), after being illuminated by SLR or a ground radar, transmits a wide-band mi-
crowave signal observed by several VLBI antennae on Earth. This could be called planetary VLBI.

~. LAGEQOS or lunar laser retro-reflector

'\ F
f 7
— P = Bl
VLBI antenna Radar or wide-band VLBI antenna

microwave signal

Figure 16.5 A possible bi-static concept of VLBI with a LAGEOS satellite or lunar laser retro-reflectors. A
radar microwave signal is transmitted towards the LAGEOS satellite and after reflection/scattering by the
satellite, is tracked by the VLBI radio-telescopes on Earth. In the case of laser retro-reflectors on the Moon,
the diffraction pattern from the retro-reflectors will be different to that from the surrounding surface, thus
one could possibly correlate wide-band signals received by different VLBI antennae. Another approach is to
use the principle of photoconductivity, where a passive detector (e.g., on lunar/Mars surface), after being
illuminated by SLR or a ground-based radar, transmits a wide-band signal tracked by several VLBI antennae.
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17. The SLR/LLR Double-Difference Baseline

ere we present a novel SLR double-difference approach with GNSS satellites. It is shown how forming
Hdouble—differences of SLR measurements between Herstmonceux (HERL) and Graz (GRZL) ILRS

stations and two Galileo satellites removes common SLR biases: i.e., ILRS station range biases and
common retro-reflector effects. By using the orbits of GNSS satellites from IGS as fixed in the parameter
estimation, the double-difference SLR approach offers a bias-free estimation of relative coordinates with the
mm-accuracy between two ILRS stations (SLR baseline) that are separated by about 5000 km. In this way,
we obtain SLR observables of utmost precision and accuracy at sub-millimeter level with the standard devia-

tion 0 =0.5—1.0 mm . We show that after differencing the remaining noise in the SLR measurements nicely

averages out, leading to estimation of station coordinates, local ties between different space geodesy techniques
and precise comparison of optical/microwave tropospheric effects. Considering that relative station coordinates
between ILRS stations can be estimated in a similar way between collocated GNSS stations using the GNSS
double-differences, the SLR approach allows direct estimation of local ties between SLR and GNSS ground
stations. We extend the common-view SLR and make double-differences over time by considering the different
observation times for all SLR measurements between all SLR stations. SLR range biases and small biases
between SLR sessions are removed. The scale is preserved when double-differencing SLR and free of range
biases (at mm-level), making this approach very attractive to combine ILRS network with IGS network in the
global GNSS solution. We show that LLR offers estimation of UT0 and with differential SLR the global GNSS
can estimate a complete terrestrial frame. For the un-differenced SLR we refer to (Pearlman et al. 2002).
When a LEO satellite is observed by two SLR stations quasi-simultaneously with a GNSS satellite, one
can calculate the “vertical SLR baseline” (vector) between the GNSS and the LAGEOS (LEO) satellite as
well as the “vertical SLR range” (GNSS-LEO range) derived from geometry. This provides radial orbit infor-
mation that can be used for altimetry and gravity field missions as well as reference frame satellites. At the
end we extend the double-difference approach to other space geodesy techniques such as lunar laser ranging,
VLBI and DORIS and discuss estimation of local ties and global reference frame parameters. We also derive
a relationship between a possible bias in LAGEOS center of mass correction and radial bias in GNSS orbits.
At the end we extend the concept of SLR double-differencing to lunar laser ranging (LLR) and present first
results for the LLR double-difference baseline. We succeeded in processing LLR measurements to Apollo and
Luna retro-reflectors on the Moon, and, in a similar way, have processed SLR measurements to GPS satellites

considering only the geocentric frame in order to model the uplink and downlink for lunar laser ranges.

17.1SLR Double-Differences — Over Time and Common-view
Double-differences are widely used in the processing of GPS measurements, forming so-called GPS baselines,

or vectors between ground GPS stations. In the case of common-view double-difference SLR, the approach is
very much the same, we need SLR ranges or SLR normal points given at the same (common) epoch ¢ from

163



17 The SLR/LLR Double-Difference Baseline

n ‘3‘ Galileo-1
" nEmmEm "' ue Radial Orbit Differences, GPS-36
0.03 , ; ; : : :
: : : ‘ : 6=0.010m CODE
Galileo-2 o002 , , , e=0.008 m ESOC
‘. EEER L} EEEN ! B 6=0. m
/«z ' ' 6=0.009m JPL ||
001 ‘ 6=0.006 m NGS
= Z
L t E o \‘\.4.,.-/ : \
t t © x»«“"""‘*-‘vx-
3 4 o
o 001k /-~ T /
x ‘ :
Range V Range S0.020 e .
Bias A l ‘ | ‘ | |
a8 l‘ Bias B g4 2003/
Station A Station B 004, 3 6 9 12 15 18 21 24

Time in hours, 25 June 2012

Figure 17.1 Figure on the left shows the general case, i.e. the SLR double-differences over time (green) with
four different observation epochs observing two Galileo satellites from two ILRS stations with SLR range
biases (red). Figure on the right shows radial orbit differences between different IGS solutions and the IGS
Final Orbit. The high level of orbit precision for GPS satellites enables interpolation of SLR normal points to
the common epoch to form common-view SLR double-differences. Range- and satellite-biases are removed.

two stations (one station as reference), see Figure 17.1 (left). In that case, the SLR single-difference SD}L B

between the ranges d of stations A and B to a satellite 1 ” for a given common epoch ¢ can be defined as
SD}y (1) = dj(t) — d} (1 (17.1)

If we observe quasi-simultaneously a second satellite “2 ” from both stations, similar to GPS, we can define
the common-view SLR double-difference or the common-view SLR baseline as

DDIP(1) = [d,% (t)—d? (t)} - [d,% (t)—dj (t)] (17.2)

as originally proposed in (Svehla et al. 2012) and later extended with more measurements and discussed in
more detail in (Svehla et al. 2013a; Svehla et al. 2014; Svehla et al. 2015b). From (17.1), we see that by
forming SLR single-differences between two ILRS stations and a common GNSS satellite, common orbit errors
are removed as well as common retro-reflector effects. According to (17.2), common-view SLR double-differ-
ences remove range-biases and station-specific effects such as common troposphere effects between the two
ILRS stations and the same two GNSS satellites. In general case, that is more appropriate when ILRS network
is processed with IGS network, we can define the SLR double-differences over time, considering different
observation time for all ILRS stations. SLR range biases and small biases between SLR sessions are removed.

In the case of GPS, measurements are taken at integer seconds of receiver time that is synchronized to
the global GPS time scale, and the navigation solution is calculated internally by the GPS receiver. Hence,
GPS double-differences can be formed between any two stations in the world that have two GPS satellites in
common-view. The velocity of the observed satellite drives the synchronization accuracy required to form
common-view double-differences. A synchronization error of 0.1 us will lead to an orbit error of 0.4 mm in
the case of GNSS satellites or 0.8 mm in the case of LEOs. In order to form common-view SLR double-
differences with an accuracy better than 0.4 mm RMS, SLR measurements between two stations need to be
synchronized (e.g., to GPS time) with an accuracy of about 50 ns RMS that corresponds to a GNSS orbit-
induced error of 0.2 mm. The typical accuracy of a GPS receiver clock parameter estimated by the navigation
solution in a GPS receiver is in the order of 10 ns RMS. The required level of synchronization for the SLR
double-difference approach is already provided by GPS and available at ILRS stations.
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17.1 SLR Double-Differences — Over Time and Common-view

The easiest way to form common-view double-differences of SLR measurements between two ILRS sta-
tions is to generate SLR normal points at the common epoch for both stations. Since this is currently not
done, SLR normal points need to be interpolated using the epoch of one of the stations in the pair as a
reference. Figure 17.1 shows the orbit differences in the radial direction for the GPS-36 satellite between
different IGS Analysis Centres and the IGS Final Orbit. One can see that for the best orbit solutions, the
radial orbit error is always under 1 ¢cm, which corresponds to a standard deviation of about o =3 mm . If we

look at the first derivative, we have a slope in the radial orbit error in the order of up to 1 cm/3 h (vs. IGS
Final Orbit). Therefore, if we assume the interleaving time between the SLR observations of two GNSS satel-
lites to be, e.g., 10 min, we have a systematic error of about 0.5 mm. However, it should be noted that any
mean in this interpolation is removed by single-differencing to the same satellite, thus a standard deviation
below 0.1 mm is more realistic considering also that IGS Final Orbits should be more accurate than any of
the individual orbit solutions. For some ILRS stations (e.g., Herstmonceux and Graz), the interleaving time
between GNSS satellites can be reduced to 30-60 s, thus several GNSS satellites could be observed simultane-
ously in the same session. This analysis shows that SLR single-differences do not remove the interpolation
error of SLR normal points. However, the use of the precise orbit keeps this orbit error below the precision of
the SLR normal points even for longer interleaving time intervals.

SLR range biases are not eliminated by forming single-differences between two stations, thus the single-
difference to another satellite in common-view is needed. When orbit and range biases are removed by double-
differencing, SLR with sub-millimeter precision is feasible, and is mainly limited by the station-internal noise.
The use of zero-signature retro-reflectors, kHz-ranging systems for GNSS arrays, and the use of enhanced
troposphere modeling have produced a degree of precision in SLR that is heading towards the sub-millimetre
level. Both GNSS satellites need to be observed quasi-simultaneously (within some e.g., 10-30 min) so that
SLR residuals from two stations can be interpolated to the common epoch. Although double-differencing
increases the noise level by a factor of 2 w.r.t. the original SLR observable, all session-based systematic effects
are at much higher levels and are removed, thus paving the way for sub-millimeter SLR.

We call this approach geometrical because, for the separation of ground SLR stations up to a distance of
about 1000-5000 km, GNSS orbit errors of 1 cm RMS do not have a significant impact on the SLR double-
difference baseline, or they are significantly reduced to below 1.7 mm. This topic is further discussed in this
section. Therefore, relative station coordinates can be determined using double-difference SLR without further
improving the orbits of the target satellites that need to be at higher altitudes (GNSS). In this way, this
approach is similar to geometrical VLBI, where relative station coordinates are estimated. In our view, when
LAGEOS and Etalon satellites are observed by SLR for reference frame realization, any orbit error or defi-
ciency in the orbit modeling, such as e.g., solar radiation pressure and other effects, propagates directly into
the estimated station coordinates. In addition, SLR measurements are very sparse in nature: the orbits of SLR
satellites used for reference frame realization are not observed continuously, as is the case with GNSS. In this
way, the quality of the satellite orbit determination that is based on SLR measurements has a significant
impact on reference frame realization and the averaging process is essential for the estimation of high-precision
station coordinates over a long period of time. In our view, all these deficiencies of the classical SLR approach
can be avoided by making use of double-differences with satellites in high Earth orbit, e.g., GNSS. In this
case, ground stations are within half of the max. nadir angle, i.e., 12° —14°, as seen from the GNSS satellite.

Differencing of SLR measurements was considered back in the 80ies, where the use of simultaneously
(from two stations) observed range differences to LAGEOS satellites was investigated. For more details see
(Pavlis 1985) or (Dedes and Mueller 1989). However, the LAGEOS orbit is too low for the common-view
double-differencing that is used in this paper with GNSS satellites.
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17 The SLR/LLR Double-Difference Baseline

17.2Biases in SLR Measurements

In order to assess the size of the biases in the SLR range measurements, we compared SLR residuals of the
Galileo E11 satellite from different ILRS stations against Galileo residual clock parameters calculated by
removing a daily time offset and time drift from the estimated clock parameters. Due to the high altitude of
the Galileo satellite orbits, any radial orbit error is compensated by the estimated clock parameter in the orbit
determination. Therefore, when a linear model is removed from the estimated Galileo clock parameters, resid-
ual clock parameters map radial orbit errors along the orbit with an opposite sign relative to the SLR residuals.
Figure 17.2 shows a very good agreement between SLR residuals and residual clock parameters for the Galileo
E11 satellite. We chose a period of 30 days (95-125/2013) with high Sun elevation angle above the orbital
plane (8 = 60°—67°) in order to avoid a large impact of solar radiation pressure effects in the radial orbit

direction. Galileo E11 clock parameters were corrected only for the periodic relativistic correction due to J,

gravity field coefficient, following (Kouba 2004). The standard deviation of the calculated residual clock pa-
rameters is 20.7 mm, whereas SLR residuals show a higher standard deviation of 25.3 mm. For this analysis
we used the Galileo orbit/clock solution submitted to MGEX Campaign of IGS by the Astronomical Institute
of the University of Bern (AIUB). For more on the MGEX Campaign we refer to (Steigenberger et al. 2014).
We have carried out very realistic simulations of Galileo H-masers based on ground test results, and it can be
shown that the standard deviation of simulated Galileo residual clock parameters is at the level of 15.5 mm
for a period of 24 h and about 7 mm for a period of half the orbit revolution. In this simulation we also
considered all onboard environmental effects such as variations due to temperature and magnetic field along
the Galileo orbit, for more information see (Svehla et al. 2015a) and (Svehla et al. 2016). Thus the standard
deviation of the corresponding Galileo radial orbit error should be at the level of about 14 mm for the selected
period of 30 days. That is about a factor of 2 smaller than the standard deviation of the SLR residuals of 25.3
mm. From this, we can draw a conclusion that space/ground local ties as well as biases in some of the SLR
ranges and in the reference frame (e.g., geocenter), prevent the maximum exploitation of SLR normal points

Galileo E11 Residual Clock Paramaters Against SLR Residuals
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Figure 17.2 Residual clock parameters of Galileo E11 satellite against SLR residuals for a 7-day subset of the
30-day analysis period. From the Galileo E11 clock parameters (MGEX-AIUB) a daily time drift and time
offset was removed. The standard deviation of residual clock parameters is 20.7 mm for days 95-125/2013,
whereas noise contribution of the Galileo H-maser is about 15.5 mm over a 24 h period (based on simulated
data of Galileo H-masers using ground test results). This leads to radial Galileo orbit error at the level of
~ 14 mm. In comparison with clock parameters, SLR residuals show a higher standard deviation of 25.3 mm
and this factor of &~ 2 is most likely due to space/ground local ties, biases in some of the SLR ranges and in
the reference frame (e.g., geocenter). The SLR residuals were calculated using the Bernese GNSS Software at
TU Miinchen and provided by ATUB, but this should introduce no inconsistencies.
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17.2 Biases in SLR Measurements

SLR Residuals
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Figure 17.3 SLR residuals of the GLONASS 103 (top) and 129 (bottom) satellites from the Graz (GRZL) and
Herstmonceux (HERL) ILRS station. SLR residuals based on the orbit solution from CODE IGS Center.

that show standard deviations at much lower noise levels, going down to some 0.2 mm, which is actually the
limit for the best SLR ground stations. On the other hand, orbit predictions operationally provided for the
first Galileo satellites are currently not of high accuracy compared to those for other GNSS satellites, thus
they are not easy targets for the ground ILRS stations. As a consequence, any change in the ranging gate at
ground stations will also result in session-specific SLR range biases. Figure 17.3 shows SLR measurements
from Herstmonceux and Graz ILRS stations taken to the GLONASS 103 and GLONASS 129 satellites. One
can see clear common orbit errors of the order of 1-5 cm in the SLR residuals from both stations. The second
interesting feature is the long-periodic systematic effects spread over several tracking passes observed by both
stations at the mm-level. This effect is either caused by the orbit dynamics, satellite reflector signature, trop-
osphere modeling or time-varying station effects, e.g., unmodelled tidal effects or atmosphere loading. The
third interesting feature to note is the small relative range biases, in the order of about 3.4 mm between the
two stations. These that are similar in size (except for the first normal point), but there is a clear difference
between the consecutive tracking passes measured at the two stations. For LAGEOS satellites, used for refer-
ence frame determination, there exists a 7 mm difference between the CoM corrections to be applied to stations
GRZL and HERL, as recommended by the ILRS and applied by the analysis centres (Otsubo and Appleby
2003). It is interesting to note that SLR residuals to Galileo E11 in Figure 17.2 also show similar SLR range
bias between the two stations with the same sign. Tentatively, we suggest that loading effects of a few milli-
meters may contribute, and these will be investigated in the future.

The question remains as to whether there are any signature effects due to the SLR array or to the variable
angle of incidence. The SLR arrays are flat, thus the only systematic effect introduced into the range meas-
urement will be via the angle of incidence, (Otsubo et al. 2001). However, GRZL and HERL ILRS stations
only receive single photons (due to 0.4 mJ pulses). With single photons, the mean reflection point is very close
to the center of the SLR array, and it will remain there, regardless of the angle of incidence. Hence there is no
systematic range error from the “array signature”. Small variations, as induced by variations in the far field
diffraction pattern due to non-perfect prisms, are at the mm-level, and should not appear here. Variations in
the angle of incidence will only have an effects on the RMS of the measurements: min. at 90° angle of incidence,
and max. at lower elevations/angles of incidence.

The first normal point to GLONASS 103 in Figure 17.2 has a slightly different range bias, thus differ-
encing could be used in the SLR data pre-processing for screening and calibrating SLR normal points. This is
more visible for the Galileo satellites in Figure 17.4, where the second tracking pass (after 24 h) shows a small
bias for both satellites compared to the tracking pass 24 h before. Orbits for both Galileo satellites in Figure
17.4 were generated as two independent daily 24-h arcs for both days and SLR measurements were most likely
taken during the same session. Thus, apparently we could have two independent tracking passes.
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17 The SLR/LLR Double-Difference Baseline

SLR Residuals: Galileo 103 and 104

003 . ‘ ‘ ® GRZL (Galileo 103)L
X F o8 .. - . | ® HERL (Galileo 103)
€ -0.04 % ! o8 .
=005 hd |
_006 L Il L L Il
21 22 23 24 25 26 27
T T
® GRZL (Galileo 104)
“0.03 ® HERL (Galileo 104)
— [ ]
— e [y 4
E -004 o
- L o & 0 o i
0.05 “ .. .o 00
_006 L L L L Il
21 22 23 24 25 26 27

Time in hours, 15.8.2013

Figure 17.4 SLR residuals of Galileo 103 (top) and 104 (bottom) satellites from Graz (GRZL) and Herstmon-
ceux (HERL). SLR residuals based on the orbit solution from MGEX IGS Campaign (AIUB).

17.3The First SLR Double-Difference Baseline and the Local Tie

In order to form SLR normal points at common epochs for the Galileo 103 and Galileo 104 satellites in Figure
17.4, a linear model (first order polynomial) was fitted to the normal points of the GRZL station separately
for both tracking passes. In this way, the SLR normal points of the GRZL station were interpolated to epochs
of the normal points of the HERL station, separately for each satellite and tracking pass.

Figure 17.5 shows single-difference SLR measurements for both Galileo satellites. One can clearly see that
residuals are grouped for each tracking pass, whereas differences between the two satellites within the tracking
pass are very small (mm-level). Single differences cannot remove station-specific range biases, and this explains
why SLR differences to both Galileo satellites show the same bias. This bias is removed by forming double-
differences in Figure 17.6. However, here we did not use a linear model (first order polynomial) to interpolate
SLR normal points, we merely calculated a mean SLR bias for the single-differences of the Galileo 104 satellite.
At this level, residuals shows random nature and it is difficult to model any trend using a linear model.
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Figure 17.5 Concept of SLR single-differences (left) and the first SLR single-differences (right) to the Galileo
103 and Galileo 104 satellites using SLR measurements from HERL and GRZL stations. Orbit errors in the
original SLR measurements are removed, since the single-difference residuals are very similar for both Galileo
satellites. The remaining biases reflect range biases between the two stations.
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17.3 The First SLR Double-Difference Baseline and the Local Tie
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Figure 17.6 Concept of SLR double-difference (left) and the first SLR double-differences (right) between the
Galileo 103 and Galileo 104 satellites using SLR measurements from HERL and GRZL. Orbit and range biases
in the original SLR measurements are removed, giving a SLR baseline with a standard deviation of only 1.2
mm for MGEX-TUM orbits and 0.9 mm for MGEX-AIUB orbits. Results were confirmed with more data from
different days and different ITRS (Svehla et al. 2015b).

Least-squares prediction with an empirical covariance function would probably be more suitable for in-
terpolating single-difference normal points. After subtracting the single-differences of the Galileo 103 and
Galileo 104 satellites in Figure 17.5 we obtained the double-difference SLR residuals shown in Figure 17.6.
Figure 17.6 nicely shows that all orbit and SLR range biases are removed by forming double-differences of
SLR measurements. The standard deviation of double-difference residuals is ¢ =1.2 mm for MGEX-TUM
orbits and ¢ = 0.9 mm for MGEX-AIUB orbits. Since by forming double-differences the noise is increased by
a factor of 2, the noise level of the original SLR normal points is about ¢ = 0.5 mm. A small bias in the
remaining SLR double-differences for both orbits in Figure 17.6 indicates remaining systematic effects that
were not removed by differencing. However, the scale of the SLR measurements is preserved by differencing
and should be free of biases in the case of double-differences. Table 17.1 shows estimated coordinates of the
HERL station w.r.t. the ITRF2008 terrestrial reference frame using the SLR double-difference baselines from
GRZL and HERL stations. The a posteriori sigma of unit weight from the least-squares adjustment is

0y = £0.7 mm . Figure 17.6 is the first demonstration of sub-millimeter differential ranging from Earth to

space, to the Galileo satellites with an orbit altitude of 23 222 km, see Figure 17.7. In our view, the SLR
double-difference approach

Estimated coordinates of HERL in (mm) Given Local Tie  GRAZ(SLR-GPS): AX=2.5580 AY=-8.5160 AZ=1.3210
using SLR double-differences from GRZL |  Baseline  GRAZ-HERS (SLR-GPS): AX=-0.0427 AY=-17543 AZ=2.6192

MGEX-TUM Orbits | MGEX-AIUB Orbits Estimated Local Tie HERS(SLR-GPS): AX= -6.4847 AY=-10.2703 AZ=3.9402
op==+=1.2mm 6p = £0.7 mm ITRF2014 Local Tie HERS(SLR-GPS): AX= -6.4868 AY=-10.2700 AZ=3.9487
N=1.2+25 N=42+47.2
E=2.1+0.8 E=8.1+2.4 Difference Local Tie (Measured — ITRF2014): N=-0.007 E=0.0005

Table 17.1 Left: estimated horizontal coordinates (N-North, E-East) of the HERL station w.r.t. ITRF2008
terrestrial reference frame using the SLR double-difference baselines from GRZL based on only 15 double-
difference normal points. Both solutions, based on the MGEX-TUM and MGEX-AIUB orbits for Galileo 103
and Galileo 104 provide similar results with an accuracy of several millimeters. If all three local coordinates
are estimated, accuracy is at the cm-level based on only 15 normal points and two GNSS satellites observed
over 2 h. Right: estimated local tie in ITRF2014 between SLR and GPS at HERL station based on collected
double-difference SLR and GPS baseline between GRAZ and HERL. Local tie at GRAZ is from ITRF2014.
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17 The SLR/LLR Double-Difference Baseline
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Figure 17.7 Common-view observation of Galileo 103 and Galileo 104 satellites from GRZL and HERL ground
ILRS stations. Blue and magenta dots denote 15 SLR normal points on the ground tracks of the Galileo 103
and Galileo 104 used to form the first SLR double-difference baseline. The error-ellipse (red) refers to estimated
HERL coordinates with semi-major axes m, = 2.5 mm and mz = 0.7 mm (based on MGEX-TUM orbits).

allows for a precision and accuracy significantly better than any other space geodesy technique (GNSS, VLBI,
DORIS, or classical SLR). With sub-millimeter precision and accuracy, this approach recommends itself for a
suite of novel applications in geodesy and terrestrial reference frame realization, especially considering effects
that could be monitored between SLR stations, such as tidal effects and atmosphere loading. Making use of
long SLR baselines, the double-difference SLR. approach offers bias-free estimation of all terrestrial reference
frame parameters. SLR double-differences are similar to GPS double-differences with fixed carrier-phase am-
biguities. However, SLR is much more precise and accurate than GPS considering multipath, antenna phase
center effects and other signal propagation effects, such as troposphere and higher-order ionosphere effects.
When a pair of GNSS satellites is observed simultaneously using both microwave (GNSS/VLBI) and SLR
techniques, one could use this configuration to estimate very accurately local ties by comparing (or subtracting)
GNSS and SLR double-difference baselines, see Figure 17.8, showing that there is only one local tie between
IGS and ILR networks and the same approach for local ties could be extended to VLBI and DORIS.

A~ GPS
SLR /
p g al Tie = i g
A Loc ﬁ I\
— o

Local Tie

Figure 17.8 An efficient approach to estimate local ties between SLR and GPS ground stations by estimating
baselines (relative coordinates) using double-difference SLR and collocated double-difference GPS relative to
the reference station. Therefore, there is only one local tie between the global IGS and ILRS networks.
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17.4 Sensitivity Analysis of SLR Double-Differences

17.4 Sensitivity Analysis of SLR Double-Differences

Let us now try to estimate station coordinates using simulated measurements for an SLR baseline. Table 17.2
shows the ZIML station coordinates estimated relative to WETL based on simulated SLR double-differences
with normal points every 5, 10 and 15 min. Before differencing, SLR measurements were simulated with an
RMS of 2.2 mm for GPS and 6.0 mm for GLONASS satellites. This RMS corresponds to ¢ = 3.2 mm of
epoch-wise differences of normal points for GPS-36 and 8.5 mm for epoch-wise differences for GLONASS R07,
taken over a period of 7 years from SLR station GRZL, (Thaller et al. 2011). Table 17.2 shows that with just
two SLR double-difference passes (based on three GNSS satellites) one can estimate station coordinates at the
mm-level. The noise level is a factor of 2-3 higher for GLONASS. When all satellites of the GPS or GLONASS
constellations are taken into account over a period of one day (last column in Table 17.2), the precision of the
station coordinates is within the sub-millimeter level, assuming white noise only. However, in our case the
noise level of the original SLR measurements of o = 0.5 mm is 3-4 times smaller. This tells us that with the
geometrical SLR double-difference approach station coordinates could be estimated with millimeter precision
and accuracy for all three coordinates, as we showed for the first time in (Svehla et al. 2012).

An error in the order of 4-6 cm RMS was introduced to the GNSS orbits for the processing of the
simulated SLR baseline. The effect on station coordinates was negligible over such a short SLR baseline,

confirming the “rule of thumb” in Eq. (17.3). Eq. (17.3) relates the station vector component error ép,, .

(scale) with an orbit error & multiplied by the baseline length [ and normalized by the orbit altitude R,
and is identical to the “rule of thumb” given by (Bauersima 1983) for GNSS

6Py = éér (17.3)

Considering that GNSS orbits can be estimated with an accuracy of about 1 cm RMS, one can see that for
baselines of 1000-5000 km the impact of orbit errors on station coordinates is in the order of only 1.7 mm,
whereas for a baseline of 1000 km the effect is only 0.3 mm and for a baseline of 500 km only 0.2 mm
6r(GNSS) =1 cm
I =500 km — 6p, , =0.2mm
I'=1000 km — ép,,, = 0.4 mm
I =5000 km — 6p,, =2.2mm

(17.4)

Simulation shows that with just a few double-difference passes one can estimate station coordinates at the
mm-level or even at the sub-mm level, whereas for longer SLR baselines it is suggested that IGS Final Orbits
are used in order to reduce the impact of the GNSS orbit on the estimated station coordinates.

The SLR double-difference approach is similar to the GPS double-difference approach. Since the iono-
sphere-free linear combination is used to process GPS measurements, the noise of the calculated GPS double-
differences is increased by a factor of 3, in addition to the factor of two resulting from forming double-differ-
ences. Compared to this factor of 6 in the increase in noise of the original GPS measurements provided by a
geodetic GPS receiver, in the case of SLR, double-differencing increases the noise of SLR normal points by a
factor of 2, but the size of range biases in the SLR measurements is significantly higher than the noise of SLR
normal points. In addition, range biases and satellite orbit error are removed or significantly reduced in the
case of double-differencing. Thus, the SLR double-differences are significantly more accurate than the original
SLR measurements.

This is why one could claim that the double-difference SLR approach has the potential to offer a level of
precision and accuracy that is significantly better than any other space geodesy technique (GNSS, VLBI,
DORIS, or classical SLR). As with GPS, with very long SLR baselines all terrestrial reference frame parameters
could be estimated, including station coordinates, geocenter and Earth rotation parameters (ERPs), since
following Eq. (17.3) the effect of the orbit error will be linearly scaled in the estimated station coordinates.
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17 The SLR/LLR Double-Difference Baseline

Two Double-Differences with 3 GNSS Satellites Full GNSS
GPS/GLONASS Constellation
ZIML Normal Point Normal Point Normal Point Normal Point
Coordinates [mm] every 5 min every 10 min every 15 min every 10 min
Up -1.4/-3.7 5.4/14.6 -5.7/-15.6 -0.1/-0.3
North 0.3/0.7 -0.7/-2.0 0.1/0.3 0.0/0.0
East 0.2/0.5 0.1/0.2 0.0/-0.1 0.0/0.0

Table 17.2 Sensitivity analysis of simulated SLR double-differences for GPS/GLONASS: ZIML station coor-
dinates estimated relative to WETL based on only two SLR tracking passes with three GNSS satellites (left
columns) and the full GNSS constellation for GPS/GLONASS (last column), day 293/2012.

However, the estimation of ERPs and the geocenter will most likely require the modelling of the satellite
orbits, or relative dynamics between the two GNSS satellites involved in double-differencing. Galileo satellites
could also be treated as geometrical targets where geocenter and ERP errors are common to all observed
satellites and also mapped geometrically in the radial direction by the onboard Galileo H-maser. This issue on
combination of Galileo clock information and SLR, is outside the scope here and will be addressed in future
work.

17.5How to Observe Four GNSS Constellations with SLR

Figure 17.9 shows the first common-view SLR ranging to the Galileo constellation from three ILRS stations
that was used to form the first SLR double-difference baseline. The complete Galileo and Beidou constellations
as well as GLONASS and future GPS satellites equipped with SLR retro-reflectors will provide about 35 SLR,
targets above 10° elevation. With three GNSS constellations this global mean number of SLR targets over all
latitudes and longitudes is about 26. Given that the SLR double-difference approach may allow precision and
accuracy that is much better than any other space geodesy technique, it is assumed that SLR telescopes will
be improved in the future, enabling wide-angle SLR ranging, see Figure 17.10. Beam steering within the optical
telescope has been developed in optical communication providing wide-angle tracking in space (up to some
120° without a loss in energy). With a telescope that does not move during one SLR session, very accurate
pointing could be achieved, allowing very fast tracking of all common-view GNSS satellites including all LEO
and reference frame SLR satellites.
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Figure 17.9 First common-view SLR observation of Galileo constellation on Aug 15, 2013.
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17.6 Vertical SLR Double-Difference Baseline and Vertical SLR Range Between GNSS and LEO Satellites

Figure 17.10 Proposed wide-angle SLR ranging to several GNSS with a telescope using beam steering (over
e.g., 10° - 60° angle) and does not move during one session.

17.6 Vertical SLR Double-Difference Baseline and Vertical SLR Range
Between GNSS and LEO Satellites

For altimetry and gravity field missions, the radial component is the most important orbit component as it is
the direction of the main gravity gradient (Rummel et al. 2011) and the direction in which the range to the
sea surface topography is measured by satellite altimetry. In addition, we have SLR range biases for measure-
ments to LEO satellites that cannot be directly assessed due to the very low orbit altitude, i.e., no common-
view to a LEO satellite (including LAGEOS) from two stations in, e.g., the US and Europe. If we observe a
quasi-simultaneously a LEO and a GNSS satellite from two SLR ground stations A and B, see Figure 17.11,

one can define the vertical SLR double-difference baseline DDéﬁs& .o defined for a common epoch t as

.!-,_\

Figure 17.11 Quasi-simultaneous SLR tracking of a LEO and a
GNSS satellite from two ground SLR stations (in green). Verti-
cal double-difference SLR baseline (red) between a GNSS and a
LEO satellite w.r.t. two ground SLR stations.
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17 The SLR/LLR Double-Difference Baseline

DD{fss ro(t) = [dgEO (t) — dgnss (t)] - {dflEo (t) — dénss (t)] (17.5)

with SLR ranges to the LEO dflE() and deO, and to the GNSS satellite déNSSv dgNSS' In this case, the

orbit of a LEO satellite can be defined w.r.t. the GNSS satellite. We call this baseline “vertical”, because
GNSS and the LEO satellite are observed by SLR at different elevations, the GNSS-LEO baseline itself is
always “vertical” or "radial”. The advantage of the “vertical SLR baseline” lies in the elimination of SLR
range biases and radial GNSS orbit errors, since both stations are within a small angular separation as seen
from the GNSS satellite. It is assumed that the station range biases are independent of the satellite altitude,
which is not necessarily true for LEO and GNSS (e.g., when the time delay measurement system has non-
linear errors). Since SLR measurements to the LEO and the GNSS satellite need to refer to the same obser-
vation epoch t, only the LEO satellite needs to be observed simultaneously from both stations. We have seen
in the beginning of this section that SLR residuals of GNSS satellites can be interpolated very accurately to
the common epoch over an interval of e.g., 10-30 min. In the case of a ground twin-SLR telescope, the LEO
and the GNSS satellite could even be observed with the same laser pulse generated for both telescopes in the
twin-configuration. The same approach could be applied to the two LAGEOS reference frame satellites in
combination with GNSS.

Taking, in addition, a fixed distance between the two SLR stations in Figure 17.11, we can calculate
another completely independent observable, what we call the “vertical SLR range” between a GNSS and a
LEO satellite. For this, GNSS needs to be observed in approx. the radial direction as seen from a satellite in
the lower orbit (e.g., LAGEOS, JASON-2). The “vertical SLR range” and residuals will refer to the radial
orbit direction in that case and can be calculated from the geometry of the two “observed” triangles A-LEO-
B and A-GNSS-B, even without any LEO/GNSS orbit information.

17.7 Double-Difference Approach in Space Geodesy: SLR/GNSS/VLBI

Figure 17.12 shows the double-difference concept of space geodesy. Figure 17.12 (left) depicts different ways
to form SLR double-differences based on satellites in different orbits, such as lunar, MEO and LAGEOS orbit.
In all cases SLR satellites are observed quasi-simultaneously against the background GNSS constellation. By
forming SLR double-differences, one can combine, with reduced SLR biases, the orbits of GNSS satellites with
the ETALON and LAGEOS satellites used for definition of the terrestrial reference frame, as well as Lunar
Laser Ranging (LLR). One could also form double-differences between two retro-reflectors on the Moon, con-
sidering that the baseline/altitude ratio in (17.3) approaches zero in that case. In a few years from now, when
the Galileo and Beidou constellations have been deployed, together with GLONASS we will have three GNSS
constellations completely equipped with SLR arrays - more than 70 GNSS satellites in space with SLR reflec-
tors. Currently, only GPS-36 is equipped with SLR reflectors, but future GPS satellites will carry new
generation SLR arrays. Figure 17.12 (right) depicts SLR, GNSS and VLBI double-differences with GNSS
satellites. In the case of SLR measurements, double-differences can be used to geometrically map SLR reference
frame satellites against GNSS constellations, whereas VLBI double-differences can be used to geometrically
map the GNSS constellations against the VLBI quasars (extragalactic sources) that define ICRF-2 (Interna-
tional Celestial Reference Frame).

When both GNSS satellites are observed simultaneously using both the microwave (GNSS/VLBI) and
SLR techniques, one could use this configuration to estimate very accurately local ties by comparing (or

subtracting) GNSS and SLR double-difference measurements (17.6). In (17.6), pﬂkB denotes the geometry

term and 6pilkB represents tropospheric effects. Thus (17.6) can be used for very precise comparisons of trop-

osphere models and mapping functions between the optical and microwave domains, as well as local ties
between different space geodesy techniques
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17.7 Double-Difference Approach in Space Geodesy: SLR/GNSS/VLBI

jk ik ik
DD} (GNSS) = p'y + 8p p(TZD

microwave )

ik ik ik .
DDZ!B (SLR) = pzjélB + 6p,]4B(TZDoptical) + local tleSLR (176)
ik ik ik .
DD./]LXB (VLBI) = pﬁlB + 6l0,]4B (TZDmicrowave) + local tleVLBI

Following the “Bauersima rule of thumb” (Bauersima 1983), we see that in all three cases (GNSS, SLR
and VLBI double-difference baseline), we do not need very accurate GNSS satellite orbits to estimate station
coordinates. In all these cases, GNSS satellites could be considered as geometrical targets on the celestial
sphere, i.e., similar to quasars in VLBI. From this point of view, the double-difference concept of space geodesy,
as outlined in this section, is very much a geometrical technique by its nature, similar to VLBI.

However, in the case of very long double-difference baselines, the estimated vector will be affected by an
additional rotation of the GNSS reference frame (common to all baselines in the network). This will not be
the case, if this baseline is composed of two shorter baselines, e.g., by adding one or more stations in between.
From this we can draw the conclusion that orbits of GNSS satellites could be mapped against the celestial
frame (e.g., using the Delta-DOR approach), and thus GNSS satellites could serve geometrically as “moving
quasars” on the celestial sphere. Observing these geometrical targets with SLR, GNSS or VLBI double-differ-
ence approaches we could estimate all other parameters, not only station coordinates, but also parameters
such as Earth rotation/orientation and geocenter coordinates. Since Earth orientation and rotation can be
considered as dynamic in nature, especially regarding the parameters used to interpolate normal points to the
common epoch, the double-difference concept of space geodesy as outlined in this section is a viable method
for observing and combining the geometry and dynamics of reference frames.

Geometrical Mapping of SLR Frame Satellites
against GNSS Constellation

.

Geometrical Mapping of GNSS against Quasars

Satellite j - Satellite k

Station A Station B

a) SLR Double-Differences against GNSS Constellation b) VLBI/ SLR/GNSS Double-Differences

Figure 17.12 Double-difference concept of space geodesy. SLR observation of reference frame satellites
(ETALON, LAGEOS) and Moon, quasi-simultaneously with (against) background GNSS constellation (left).
SLR, GNSS and VLBI double-differences with GNSS satellites (right). In the case of SLR, an a priori orbit is
used whereas in the case of VLBI, the new generation of GNSS clocks will allow interpolation of VLBI meas-
urements to a common epoch (e.g., Galileo Passive H-Maser).
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17 The SLR/LLR Double-Difference Baseline

So far we have not referred to DORIS, the fourth space geodesy technique. Tracking of DORIS and GNSS
is very similar and we are now seeing the first attempts to upgrade geodetic space GNSS receivers with DORIS
tracking, i.e., as proposed for the STE-QUEST mission in highly elliptical orbit for terrestrial and celestial
reference frame determination. For this part of the STE-QUEST mission see (Svehla et al. 2013b). DORIS has
the potential to complement GNSS with a nadir pointing antenna at higher altitudes. By making use of the
phased-array antenna design and beam forming on receive it should be possible to increase the gain of the
DORIS antenna and hopefully achieve DORIS tracking at higher altitudes.

17.8 Global Solution with Double-Difference SLR Approach

In order to simulate global SLR baselines, we have chosen 4 globally distributed ILRS stations, see Figure
17.13, with one short SLR baseline between GRZL and HERL, (Svehla et al. 2014). We simulated double-
difference SLR measurements as normal points (NPT) every 10 min with two common GPS satellite (denoted
by PRN numbers in Figure 17.13) between two ILRS stations in common-view. We used simulation for com-
mon-view due to simplicity. The noise level used in the simulation was +1 mm for SLR measurements from

GODL, GMSL, HARL, and #0.5 mm for those from HERL and GRZL. In the next step, for a period of 17

days we estimated daily solutions for global parameters including X- and Y-pole and rates, length-of-day
(LOD) and the geocenter coordinates in the Z-direction. The X-pole and Y-pole coordinates with rates and
LOD parameters were estimated against the C04 values. In this estimation, we used two independent solutions,
keeping the orbits of the GPS satellites fixed and simulating the orbit error using the daily orbit difference
between orbits provided by the two IGS AC centers (CODE and ESOC), see Figure 17.14, Figure 17.15 and
Figure 17.16. Solution with fixed GPS orbits shows the sensitivity of the measurements to the estimated
parameters. When orbit error is introduced for GPS satellites, one can see that by forming double-differences
with SLR measurements, the long SLR baselines are still affected by the orbit error and one would need to
estimate orbit parameters, or to combine DD-SLR with GPS measurements. Simulation shows that by intro-
ducing an orbit error, the noise of all estimated parameters is about 2-3 times higher compared to difference
between CODE and ESOC ACs. This is based on only 4 ground ILRS stations.

90 T T T T
- Number of NPT-—49 7 i ) mb TR
; hbe,
60} ~ PRN 05 - PRN 26 HERL . RN " OFNPTS 2 &
PRN 14-PRN 25 " 08
i "1
30 --------..---Il""".-OGODL B
Number of NPT"13
PRN 01 - PRN 32
ok PRN 06 - PRN 27 i
-30f | ) .
60| ) 1
-90 1 1 1 1 1
-180 -120 -60 0 60 120 180

Figure 17.13 Simulation of the global double-difference (DD) SLR approach with 4 ground ILRS stations
(GRZL, HARL, GSL and GODL). To form the baseline we 2 GPS satellites observed simultaneously from
two ILRS stations in common-view (blue). The “Number of NPT"” shows the daily number of DD-normal
points.

176



17.8 Global Solution with Double-Difference SLR Approach

a) Without orbit error
Estimated X-Pole and Y-Pole Agalnst co4 A F’osterlorl RMS of the Estimated X-Pole and Y-Pole Agalnst Co04
0.1

0l —
0.081 : - X-Pole: o(X1=0.042 mas - ! ' X-Pole: mean RMS=0.027 mas
: . = Y-Pole: 6(Y)=0.022 mas | 0.09F —— Y-Pole: mean RMS=0.024 mas |
0.061 .c‘ A 1 0.08F |
0.04 007t - ! 1
0.02 0.06
(2] @ H
@ S 4
E 0 g 0.05
002 0.04 : 1
0.04 0.0 e —
008} W/ ‘ 1 0.0z 1
i 0otk |
-0.08+ ST — ST — I RU— R S—— SN | H
e 2 2o 2u8 259 20 T 23 23 7ea 2en 7 J 922223 224 225 225 227 226 229 230 231 232 233 234 235 236 237 238
22 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 Day of Year 2013
Day of Year 2013
Estimated X-Pole Rates and Y-Pole Rates Against C04 A Posteriori RMS of the Estimated X-Pole and Y-Pole Against C04
opy—————————— ", 02—
H —— X-Pole Rates: ¢(X)=0.102 mas/day —— X-Pole Rates: mean RMS=0.097 mas/day
0.15 A —— Y-Pole Rates: 6(Y)=0.079 mas/day 0.18r —— Y-Pole Rates: mean RM$=0.072 mas/day |
| i f\ 0.16 : :
0.1
\ 0.14 i
\ PN
.. 0051 012b— R
(] W N\
e} i \
g 0 E 0.1 7 \
£ 0.08 b ]
-0.05 — —
0.06
0.1 :
0.04f : i
-0.15 0.02f
0.2 L L i s L s L L L L L i " ! ! ! ! ! L " : "
522 223 224 225 226 227 228 228 230 231 232 233 234 235 236 237 238 822 223 224 225 226 227 228 220 230 231 232 233 2%4 235 236 237 238
Day of Year 2013 Day of Year 2013
b) With orbit error
05 Orbit Error: Estimated X/Y-Pole Against C04 Orblt Error: A Posteriori RMS of the Estlmated X/Y Pole Agalnst C04
. — ——T—T—T—1—
0.4l X-Pale: 5(X)=0.137 mas | —X-Pole: mean RMS=0.062 mas
' ~— Y-Pole: 5(Y)=0.133 mas 0.45 —— Y-Pole: mean RMS=0.054 mas
03 : = i 04l |
\ /
\ 7
\ 7 0.35- ; ,
Nt 03- 1
.\ A . :
NP 2025
i 1 0.2
02+ N : 1 0.15- 1
-0.3F i 1 01+ 1
04 : : ] o05k= NS B
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 822 225 224 225 226 227 228 220 230 231 252 233 234 236 236 237 238
Day of Year 2013 Day of Year 2013
Orbit Error (ESOC): Estimated X/Y-Pole Rates Against C04
15— (‘ ? : : ) . g : Orblt Error (ESOC): A Posteriori RMS of the Estimated X/Y Pole Agalnst Co4
——— X-Pole Rates: o(X)=0.639 mas/day 1.5 ! T T ! T T T . L

. - X Pole Rates mean RMS 0. 219 maslday
Y-Pole Rates. c(Y)—O.ZQSVr:‘naslday | —— Y-Pole Rates: mean RMS=0.162 mas/day

15 i L L 1 L i L 1 L L 1 L 1 1 | I 1 i 1 | 1 L 1 I I 1
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 922 223 204 225 226 227 228 220 230 231 232 233 234 235 236 237 238
Day of Year 2013 Day of Year 2013

Figure 17.14 The X-Pole and Y-pole coordinates and rates estimated with a posteriori RMS values against
the C04 values using only 4 global ILRS stations. The solution a) refers to the fixed orbits of GPS satellites,
whereas in b) the orbit error was simulated using the daily orbit difference between two IGS AC centers.
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Figure 17.15 The estimated length-of-day (LOD) with a posteriori RMS values against the C04 values using
only 4 global ILRS stations. The top figures refer to the fixed orbits of GPS satellites, whereas in the bottom
figures an orbit error is simulated as the daily orbit difference between orbits provided by the two IGS AC.
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Figure 17.16 The geocenter Z-coordinate with a posteriori RMS values estimated with fixed orbits of GPS

satellites and with a daily orbit difference between two IGS AC centers using only 4 global ILRS stations.
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17.9 Relationship Between Bias in LAGEOS Center of Mass Correction and Radial Bias in Orbits of GNSS
Satellites

17.9 Relationship Between Bias in LAGEOS Center of Mass Correction
and Radial Bias in Orbits of GNSS Satellites

Let us now see what would be the impact of the bias of e.g., 7 mm in the LAGEOS center of mass correction

on the GNSS orbits. The existence of a potential small bias is indicated in the single-difference SLR measure-
ments between HERL and GRZL in Figure 17.3. As we mentioned before, HERL employs strictly single-
photon ranging to all satellites with a center of mass correction of 245 mm, whereas GRZL uses “leading

edge” post-processing with a center of mass correction of 252 mm. The SLR frame bias of 7 mm in the radial

orbit of LAGEOS satellites (reflected as the bias in the center of mass correction) will give a scale error or
radial bias in the orbits of GNSS satellites, since the scale of the GNSS frame is typically taken from the SLR

frame. From Kepler’s third law written in the form n?> = GM /a?, we can derive the following relation for

the semi-major axis a;4qpog of LAGEOS and GNSS satellites aqygg respectively

[
_ Ggngg N -~
Aagygg = PR Aapggpos — Dagps 2.2 Aapcposy  Dgaue, = 24 Dapygpos  (17.7)
LAGEOS

A bias in the semi-major axis of LAGEOS satellites (a bias in the center of mass correction) of

Aay4apos = —7 mm would give a radial orbit bias Aagy., &~ —17 mm in the orbits of Galileo satellites

and Aagpg ~ —15 mm in the orbits of GPS and GLONASS satellites, see Table 17.3

LAGEOS Galileo GPS GLONASS
—7 mm —17.1 mm —15.4 mm —14.8 mm
—4.1 mm —10 mm —9 mm —8.7 mm

Table 17.3 Radial bias in the orbits of GNSS satellites calculated as a function of the bias in the center of
mass value of LAGEOS satellites. One can see that the Galileo radial orbit bias of —10 mm corresponds to a

bias of —4.1 mm in the SLR measurements to LAGEOS that determine scale of the GNSS terrestrial frame.

17.10Lunar Laser Ranging Double-Differences and Estimation of UTO0

We have processed undifferenced and double-difference lunar laser ranging (LLR) measurements to Luna and
Apollo retro-reflectors on the Moon in a similar way we are processing SLR measurements to GPS satellites,
see (Svehla et al. 2015). We made use of the latest lunar libration models and DE430 ephemerides given in
the Solar system barycentric frame and modeled uplink and downlink LLR ranges in the geocentric frame as
one-way measurements, like the SLR to GPS satellites. We estimated all orbital parameters including UTO.

For the lunar orbit, we implemented the latest DE430 ephemerides given in the barycentric frame and
described in (Williams et al. 2009). The same model provides physical librations of the Moon and coordinates
of the two Luna and three Apollo lunar laser retro-reflectors. The DE430 model includes solid-body tides of
the Moon in the form of permanent tidal displacements separately for each retroreflector array.

Following (Williams et al. 2009), the LLR retro-reflector principal axis coordinates were determined
during the solution of DE430 ephemerides. These coordinates are rotated from the LLR principal axis frame
(PA) to the lunar mean Earth/mean rotation axis frame (MER) by

P = R,(67.573")R,(78.580")R, (0.285") - i (17.8)
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. DE430 Ephemerides

*  Frame aligned to the International Celestial Reference Frame v.2.0

*  Solar System barycentric frame

*  TDB used as the Solar System barycentric coordinate time
TCB-TCG (IERS2010 Conventions)

*  Lunar librations (DE430)

*  Lunar reflector coordinates (DE430)

*  Principal axes and mean Earth/mean rotation axes

*  Constant tidal displacements from the Earth and the Sun (DE430)

+  Different force modeling for Moon (compared to GNSS/LEOs)

*  Shapiro effect:

1. Sun gravitational field: 7.5 m
2.  Earth gravitational field: 0.04 m
3. Moon gravitational field: <1 mm

Table 17.4 Processing standard for the LLR measurements following the IERS Conventions 2010 [Petit and
Luzum, 2010] and (Williams et al. 2009). Figure on the right shows position of the 5 Lunar retro-reflectors.

where i is the vector from the Lunar center of mass to a surface point in the mean Earth/mean rotation axis
frame (MER) and p is the same vector in the principal axis (PA) frame. Such a transformation needs to be
performed for the lunar libration rotation matrix provided by the DE430 ephemerides. For a description of
DE430 models, we refer to (Williams et al. 2009), see Table 17.4. The lunar solid tides (constant tidal dis-
placements due to Earth and Sun) are applied to the coordinates of the lunar retro-reflectors given by the
DE430 ephemerides, (Williams, 2013).

It is interesting to note that the size of the Shapiro effect (Petit and Luzum 2010) in Table 17.4 for LLR
measurements is in the order of 7.5 m for the Sun gravitational field and only 4 cm for the gravitational field
of the Earth. For the analysis of LLR data in the geocentric frame, we used the following formulation in the
IERS Conventions 2010 (Petit and Luzum 2010),

(17.9)

that provides transformation of the vector 7, a geocentric position vector expressed in the GCRS (Geocentric

Celestial Reference System), to 7} , the vector expressed in the BCRS (Barycentric Celestial Reference Sys-

tem). U is the gravitational potential at the geocenter (excluding the Earth's mass) and V is the barycentric
velocity of the Earth. The geocentric and barycentric systems are chosen so that the geocentric space coordi-

nates (position vector 7, ) are consistent with terrestrial time (TT) and that the barycentric space
coordinates are TDB-compatible (position vector 7ppp from DE430 ephemerides) (Petit and Luzum 2010).

The transformation of 7pp to 7ppp is then given by

U

o o 1
"rpp = TrT [1 - Le
C

Vo).
A Al b4 (17.10)
2| 2

with the conversion factor L, given in the IERS Conventions 2010, (Petit and Luzum 2010). The difference

between TCB and TCG time scales (TCB-TCG) is calculated at the geocenter, using the approximation of
the time ephemeris TE405. The ITERS subroutine HF2002.f provided by the IERS Conventions approximates
TEA405 time ephemeris (including the trend) with an error of 0.453 ns (RMS) over the years 1600-2200, (Petit
and Luzum 2010). For other time transformations: TCG-TT, TDB-TCB, TDB-TT we refer to IERS Conven-
tions 2010, (Petit and Luzum 2010). The novelty is that we processed LLR measurements in the geocentric
frame in a similar way we process SLR measurements in the geocentric frame for GPS satellites. For this, we
calculate a light-travel time for LLR measurements from a ground ILRS station to
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17.10 Lunar Laser Ranging Double-Differences and Estimation of UTO
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Figure 17.17 Undifferenced and single-difference LLR residuals to Apollo-11 and Apollo-15 lunar retro-reflec-
tors from ground stations GRASE and Apache Point Observatory. Single-differencing is performed by making
use of the residuals from the nearest epoch. Lunar ephemerides were fixed to DE430, along with all other
parameters, and station coordinates were fixed to SLR2008. The cm-accuracy is achieved by single-differencing.

a lunar retro-reflector, and evaluated lunar libration at the epoch when LLR photons sent by a ground LLR
station arrive at the lunar retro-reflectors. It was noticed that the physical lunar librations change significantly
during the light-travel time. This separation between the epoch of lunar librations and the epoch of the Lunar
orbit, enables to model uplink and downlink lunar laser ranges in the geocentric frame as the one-way meas-
urements (similar to SLR measurements to GPS satellites). SLR measurements for GPS satellites are typically
calculated at the reception epoch, when the reflected SLR signal arrives at the ILRS station. The same occurs
with LLR, with the difference that the lunar orbit is provided by the DE430 ephemerides and given in TDB
time. We calculate lunar librations from DE430 ephemerides at the reflection point (reception time minus
one-way light-travel time) and took into account the velocity of the Earth v,,,, in the barycentric frame.
The one-way light-travel equation for a distance d between a ground receiver and a satellite, for GPS and
SLR measurements, is given by (17.11) in the equatorial true system of date. The same equation (17.11) can

also be used for lunar laser ranging, taking into account the velocity of the Earth, v, :

_ A—’aat sat ,
GPS:d =d-|1 %7 |A zsot
oped_d [ Az [ Azm@e -2, -
2 C- d c.d
LLR : E = i 1— Aﬂ;% s +l1— AH;Z(L;( sab — 2. 177‘6(3) A*mt CAAY f(elf UBarth
2 c-d c-d c2 d

where AZ % denotes to the station-satellite vector and ¥** and u,,. are the satellite and receiver velocity.

Figure 17.17 shows undifferenced and single-difference LLR residuals to Apollo-11 and Apollo-15 lunar
retro-reflectors for a period of 90 days. All parameters were kept fixed, including lunar ephemerides, and
station coordinates were in the SLR2008 frame. One can see that the accuracy of DE430 ephemerides and the
ranging model is at the level of several centimeters, whereas single-difference residuals show significantly
smaller scatter, with a standard deviation of about o = 2.5 cm . In the next step, we formed double-difference
LLR measurements between two lunar retro-reflectors and two LLR stations, see Figure 17.7. Since, by forming
double-differences of LLR measurements, all range biases are removed and orbit errors are significantly reduced
(the lunar orbit is much further away than GPS orbits), one can consider the double-difference LLR as an
“orbit-free” and “bias-free” differential approach. This is the reason why the noise level of residuals is reduced
significantly in Figure 17.17, and for double-difference Apache LLR measurements achieved a noise level of
o ==+7.5mm (one-way) and those from GRASSE a level of o = £7.1 mm .
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Double-Difference LLR Residuals with APOLLO-15 and APOLLO-11
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Figure 17.18 Double-difference LLR residuals to Apollo-11 and Apollo-15 from GRASE and Apache Point
Observatory. Apache LLR measurements (one-way) show noise o = £7.5 mm (mean —3.6 cm ), compared to

GRASSE 0 =+7.1mm (mean 4.6 c;m ). Differencing performed with residuals at the nearest epoch.

Estimation of 6 Keplerian parameters for the lunar orbit over 90 days improves the RMS of LLR residuals by
x2 (from RMS=8.4 cm to RMS=4.8 cm). These residuals are further improved by estimating UTO0 (every 10
days) to an RMS of about 3.5 cm, see Figure 17.19. LLR residuals plotted relative to Sun position in the lunar

orbital plane in Figure 17.19 show a distinct pattern around 90° and 270° relative argument of latitude. This

indicates that remaining modelling errors could also be associated with errors in the Earth orbit around the

Sun. UTO results are similar when additional empirical parameters are estimated in Figure 17.20.

LLR residuals after estimating 6 Ki

eplerian parameters (90-day arc)

0.15 T T T
. .
o
0.1} o1k i
F - 5 :
-+ 3 .
0.05/ * oedasy 0.05 o ik +
+ . Feey T ’ . o & 5 .
+ | ; + o 3% | . F
i ] . . + -
5..id : hat : : LIEIE % 2
L . 4 . i B +
0 : . | S i of R = o * :- ] o
' o et 3= i + L . . : +
t f; - i ot JE] 4
0.05 & o @ 0.05 - -
® 7045-Apollo 15 mean=-0.007+-0.043 e 7045-Apollo 15 mean=0.009+-0.038 | | °
® 7045-Apollo 11 mean=-0.030+-0.042 ® 7045-Apollo 11 mean=-0.025+-0.039 o
01k * 7045-Apollo 14 mean=0.011+-0.058 . 011 * 7045-Apollo 14 mean=0.012+-0.046
{ 7845-Apollo 15 mean=0.017+-0.033 { 7845-Apollo 15 mean=0.010+-0.032
t 7845-Apollo 11 mean=-0.011+-0.036 + 7845-Apollo 11 mean=-0.033+-0.035
N L 7845-Apollo 14 mean=-0.013+-0.082 i | 7845-Apollo 14 mean=»0.017+-0‘066> i
0 60 120 180 240 300 360 0 60 120 1 300

Relative Argument of latitude (°)

80 240
Relative Argument of latitude (°)

Figure 17.19 LLR residuals over 90 days after estimating 6 Keplerian parameters (left) and UTO (right).
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Figure 17.20 Estimation of UTO over 90 days with an additional 9 empirical parameters (vs. CODE EOPs).
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18. Noise Model of the Galileo “mm-Clock”

alileo is the first GNSS system equipped with a highly stable H-maser. In this section we conduct a

comprehensive analysis of the performance of the Passive H-Maser (PHM) used as a primary clock

on board Galileo navigation satellites. PHM ground test results are compared to the clock parameters
estimated from the MGEX data. The time evolution of the relativistic effects arising from the J, term of
Earth's gravity field, as well as Sun and Moon gravitational potential have been calculated and taken into
account. In addition, an analysis has been performed of the space environment (temperature and magnetic
field variations) and the corresponding perturbations on the timing signal evolution .

Based on available ground test results, we derived relevant noise processes for the Galileo onboard passive
maser, including the white frequency noise at the level of 5.9x10~!3 — defining the short- to medium-term
performance, and the flicker frequency noise of 7.9 x107'6 — defining the clock long-term behavior. The white
phase noise of 9.8 x107!3 plays a role only for very short integration times (up to about 10 s), whereas a
relatively low frequency drift of < 1x107! /day plays a role only for measurement times longer than a few
days.

Galileo clock parameters simulated according to the noise processes above show a residual standard de-
viation of ¢ =15.5 mm, when time offset and time drift (linear model) are removed at 24 h intervals from
the simulated epoch-wise Galileo clock parameters over 10 days. This standard deviation is reduced to
o =11.2 mm, when the linear model is removed every 14 h (orbit period), going down to o = 2.7 mm after
time offset and time drift removal at 1 h intervals. For more see (Svehla, Cacciapuoti, Rothacher 2015, 2016,
2017), (Svehla et al. 2017).

The simulated data where then compared to the real in-orbit data. The Galileo clock solution from AIUB
submitted to the MGEX Campaign of IGS shows a standard deviation of residual clock parameters at the
level of o =20.7 mm, whereas SLR residuals show a higher standard deviation of ¢ = 25.3 mm. From this,
one can derive a standard deviation of the radial orbit error to a level of ¢ &~ 13 —14 mm. This factor of about
2 in precision between Galileo clock and SLR is most likely due to space/ground local ties, biases in some of
the SLR ranges and in the reference frame (e.g., geocenter). We analyzed a period of 30 days 95-125/2013 of
MGEX data with a high Sun elevation angle (> 60° ) above the Galileo satellite orbit plane in order to decouple
orbit errors from the clock noise in the estimated Galileo clock parameters. In this case, the orbit errors
originating from the modelling of solar radiation pressure are very modest compared to the rest of the draconic
year of about 357 days for Galileo orbits. Similar results were obtained for Sun elevation angles < —60° and
four Galileo IOV satellites.

The main perturbation affecting the Galileo clock parameters for the analyzed period with high Sun
elevation (> 60" ) is the periodic relativistic effect due to the Jo gravity field coefficient that contributes an
amplitude of about 18 mm at twice the orbital frequency. Accumulated time along the Galileo orbit due to
the gravitational potential of Sun and Moon after removing daily time offset and time drift shows distinct,
twice per revolution effects below 0.4 mm for the Sun potential and 1 mm for the Moon potential. Environ-
mental effects, such as variations in temperature and magnetic field, were integrated along the orbit, but did
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18 Noise Model of the Galileo “mm-Clock”

not have a significant impact on the Galileo residual clock parameters. The maximum effect due to the mag-
netic field is below 0.8 mm while temperature perturbations are well below 1x1071%.

This analysis clearly shows that the onboard Galileo passive maser is stable enough to map for the first
time radial perturbations continuously along the orbit. This is also confirmed by the close agreement with
SLR residuals.

Estimated GNSS satellite clock parameters completely absorb variations in radial orbit error along the
orbit. As a result, one can talk about an equivalence between the Galileo clock and SLR residuals, such that
the Galileo clock can be considered as providing "continuous SLR" measurements along the orbit.

In summary, based on the simulated and real Galileo clock data, as well as the independent SLR meas-
urements, the Galileo primary clock offers a wide spectrum of new applications, such as:

e geometrical mapping of the orbit perturbations along the orbit;

e clock modeling with only two linear parameters (time offset and time drift) or with a low-degree
polynomial for a period up to one day, considerably reducing the number of estimated parameters in
the orbit determination;

e primary clock on future LEO missions (e.g., DORIS on altimetry missions, or gravity missions) and
for one-way ranging on interplanetary missions;

e mapping of troposphere slant delays between Galileo and a ground H-maser of similar stability.

18.1 An Overview of Galileo Clocks

The first two satellites of the European navigation system Galileo were launched on 21 October 2011, followed
by the launch of two additional satellites on 12 October 2012 (ESA Portal 2014). The first four Galileo
satellites are part of the Galileo In-Orbit Validation (IOV) Phase and contribute to the full constellation of
30 Galileo satellites. The Galileo navigation payload consists of two Passive Hydrogen Masers, two Rubidium
Atomic Frequency Standards (RAFS) serving as backup, the Clock Monitoring and Control Unit (CMCU),
the navigation signal generator unit, the L-band antenna for transmission of the navigation signal, the C-band
antenna for uplink signal detection, the two S-band antennae for telemetry and telecommands, and the search
and rescue antenna (ESA Portal 2014). The first Satellite Laser Ranging (SLR) to the retro-reflector arrays
of the first two Galileo IOV satellites, denoted as Galileo-101 and Galileo-102 by ILRS (International SLR
Service) and Galileo E11 and Galileo E12 by IGS (International GNSS Service), was carried out on 27 and 29
November 2011, respectively, using a near-infrared laser beam, (Svehla and Navarro-Reyes 2011).

The development of on-board clocks was initiated by ESA in the late nineties and resulted in the valida-
tion and qualification of two technologies. The Rubidium Atomic Frequency Standard is a microwave clock
based on a vapour-cell with buffer gas operated on the double optical-microwave resonance of rubidium atoms.
The clock, very compact and with low power consumption, has a fractional frequency stability better than
5x10712771/2 over one day of integration time (Waller et al. 2009). The Passive Hydrogen Maser is based
on the stimulated emission of microwave radiation on the hyperfine transition of the hydrogen ground state.
Its fractional frequency stability is about 5 times better than that of RAFS (Waller et al. 2009). An overview
of the Galileo clocks and their specifications can be found in (Rochat et al. 2012) and (Waller et al. 2009).

In the light of the new Galileo and BeiDou global navigation satellite systems (GNSS), as well as regional
navigation and augmentation systems such as the Japanese Quasi-Zenith Satellite System (QZSS) and the
Indian Regional Navigation Satellite System (IRNSS), the IGS initiated the Multi-GNSS EXperiment
(MGEX). The goal of MGEX is the data collection and analysis of all available GNSS (Montenbruck 2013).
The MGEX Tracking Network currently consists of about 90 active tracking stations contributed by about 25
different institutions (Steigenberger et al. 2014). The general consistency of the MGEX orbit products for
Galileo is slightly better than one decimeter (Steigenberger et al. 2014). This rather rough orbit quality limits
evaluation of the Galileo clock performance, since any orbit error will also be reflected in the estimated Galileo
clock parameters. Perturbations which strongly depend on the satellite orbit have been recently observed in
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18.1 An Overview of Galileo Clocks

the analysis of MGEX Galileo clock solutions (Steigenberger et al. 2014). These measurements also confirm
earlier results reported in (Waller et al. 2009) or (Rochat et al. 2012) and clearly indicate that clock perfor-
mance evaluation is heavily biased by orbit errors. Improvements in the quality of Galileo IOV orbit
determination were reported recently in (Montenbruck et al. 2014) by employing an empirical a priori solar
radiation pressure model that reduces the overall standard deviation of SLR residuals from 8-10 cm to 5-7 cm
for all four Galileo IOV satellites (Montenbruck et al. 2014).

Modelling of the solar radiation pressure (SRP) based on the CODE SRP model (Beutler et al. 1994)
introduces an error in the orbit as a function of the Sun elevation angle 3 above the orbital plane and the
satellite argument of latitude (u ) relative to the Sun’s position in the orbital plane, see Section 19. At lower
elevations there will be an additional effect on the orbit due to orbit eclipses. The same is true, if an empirical
a priori SRP model is used, as this improves the overall accuracy of the orbit, but also introduces an additional
signal at different orbit frequencies.

This has led to the development of a completely different approach to assess the quality of the Galileo
PHM clock. Our proposed method for evaluating Galileo clock performance is based on two distinct facts. We
decouple orbit and clock error by analyzing estimated clock parameters at high Sun elevation above the orbital
plane —60° > 8> 60", where orbit quality is increased by a factor of 5-8 compared to low Sun elevations. In
addition, we introduce what we call an equivalence between orbit error and clock error (see Figure 18.1), and
use the SLR measurements in direct comparison with the Galileo epoch-wise clock parameters. This leads us
to the first geometrical mapping of GNSS orbit perturbations. Power Spectral Density, Allan deviation and
other metrics of the simulated and estimated Galileo clock parameters corrected by all known relativistic and

environmental effects are then analyzed.

GNSS i tResudual Clock Parameter

lSLR Residual AClock = AOrbit= —~ASLR

//> max. ~12° Galileo
>

Figure 18.1 Equivalence between the radial orbit error and the residual clock parameters. Any radial orbit
error (A Orbit) is compensated by the estimated clock parameter (A Clock) that corresponds to a negative
SLR residual (—A SLR). Since the majority of ground stations are visible from a Galileo orbit at a nadir angle

of ~ 10, a slant error of, e.g., 10 mm will give an error of only -1.5 mm, when projected in a radial direction.
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18 Noise Model of the Galileo “mm-Clock”

18.2First Geometrical Mapping of GNSS Orbit Perturbations

For satellites at GNSS orbit altitudes, any radial orbit error is directly mapped into the estimated clock
parameters resulting in an opposite sign between the SLR residuals and the residual clock parameters (see
Figure 18.1). SLR residuals are calculated as “observed-minus-computed”, i.e., as the laser-measured ranges
minus the ranges calculated from the solved-for satellite orbit. In this case, it is possible to establish an
equivalence between the radial orbit error and the residual clock parameter. Therefore, if the clock onboard a
GNSS satellite is stable enough, it can be used to map orbit perturbations along the satellite orbit. That was
the original idea to assess the quality of the Galileo primary clock: to compare epoch-wise estimated Galileo
clock parameters with the SLR measurements.

Figure 18.2 shows residual GIOVE-B clock parameters over a period of 4 days after subtracting a daily
time offset and time drift from the clock parameters estimated epoch-wise every 30 s. One can clearly see a
distinct pattern in the orbital period, highly correlated with the SLR residuals (plotted with an opposite sign)
used only for the external orbit validation (dark blue). By adjusting just two linear parameters (time offset
and drift over a one-day period) to the estimated Galileo clock parameters, the passive H-maser can be mod-
elled with cm-accuracy, mapping the radial error continuously along the orbit with an excellent agreement
with SLR measurements. We call this approach geometrical, as the stable Galileo clock measurements are
equivalent to “continuous” SLR at every given GNSS epoch. The SLR residuals have a RMS of 5.4 cm.

This RMS value is significantly higher than the differences between the SLR residuals and GIOVE-B
clock residuals, as one can see in Figure 18.2, indicating that any potential use of SLR measurements in the
dynamic orbit determination is irrelevant to this approach.

Figure 18.3 shows residual clock parameters for the Galileo E11 satellite against SLR residuals from
different ground ILRS stations. We used the Galileo clock solution from AIUB submitted to the MGEX
Campaign of the IGS, days 95-125/2013.
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Figure 18.2 Residual GIOVE-B clock parameters after subtracting a daily time offset and drift from the
satellite clock parameters estimated every 30 s (starting with day 250 in 2009). Dark blue dots represent SLR
residuals (with an opposite sign) used only for orbit validation, showing that the passive H-maser on board
GIOVE-B can be used to geometrically map orbit errors with remaining clock variations at the cm-level. This
figure shows the first use of a stable GNSS clock in precise orbit determination/validation, (Svehla 2010a).
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Galileo E11 Residual Clock Paramaters Against SLR Residuals
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Figure 18.3 Residual clock parameters of the Galileo E11 satellite against SLR residuals for a 7-day subset of
the 30-day analysis period. From the Galileo E11 clock parameters (MGEX solution from AIUB) a daily time
drift and time offset were removed. Remaining residual clock parameters map radial orbit errors with an
opposite sign relative to the SLR residuals calculated as ”observed-minus-computed”. The standard deviation
of residual clock parameters is o = 20.7 mm, for days 95-125/2013, whereas the noise contribution of the
Galileo H-maser is about o =15.5 mm over a 24 h period (see Figure 18.6). This gives the radial Galileo orbit
error with ¢ ~ 13 —14 mm. In comparison with clock, SLR residuals show a higher standard deviation of
o =25.3 mm (mean is -4.9 cm) and this factor of about 2 is most likely due to space/ground local ties, biases
in some of the SLR ranges and in the reference frame (e.g., geocenter). The SLR residuals were provided by
and compared with the Bernese GNSS Software v.5.3 at ATUB.

When a daily time drift and time offset is removed from the calculated satellite clock parameters, the remaining
residual clock parameters map radial orbit errors with an opposite sign relative to the SLR residuals at the
sub-cm level. We selected a period with high Sun elevation above the orbital plane < —60° and > 60" to
significantly reduce the distinct periodic perturbation observed in Figure 18.2 at low Sun elevations. Only a
periodic relativistic correction (Kouba 2004) due to the J, gravity field coefficient was applied to estimated
Galileo E11 clock parameters. It is interesting to note that the standard deviation of residual clock parameters
is ¢ = 20.7 mm, whereas SLR residuals show a higher standard deviation of ¢ = 25.3 mm. We will see later
in the text from the end-to-end simulation of the Galileo clock that the noise contribution of the PHM is about
o =15.5 mm over a 24 h period (see e.g., Figure 18.6). From this, one can derive a standard deviation of the
radial Galileo orbit error of o ~ 13 —14 mm. This factor of about 2 in precision between Galileo clock param-
eters and SLR measurements is most likely due to space/ground local ties, biases in some of the SLR ranges
and in the reference frame (e.g., geocenter).

This analysis confirms that the Galileo PHM can be used as ”continuous SLR” along the orbit. However,
the Galileo clock only maps the radial orbit error, whereas SLR maps, in addition, the contribution of the
along-track and cross-track error. Since we did not account for the noise contribution of the global ground
network in the standard deviation of residual clock parameters of o = 20.7 mm, we can assume that the
standard deviation of the radial orbit error is ¢ ~ 10 mm.
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18 Noise Model of the Galileo “mm-Clock”

18.3 Noise Model of the Galileo H-maser

In order to evaluate the quality of the measured orbit errors in the radial direction, i.e., the stability of the
residual Galileo clock parameters, we analyzed the performance of the Galileo onboard H-maser and evaluated
possible environmental effects along the orbit.

The overlapping Allan variance corresponding to one of the best stability curves achieved during PHM
performance tests on the ground (P. Rochat, private communication and (Wang et al. 2013) as available from
SpectraTime) was considered as a reference. A model function, including all the relevant noise processes, was
fitted to the data points:

f(7) :f—22+372+02 + D1 + E%7? (18.1)
where the coefficients A, B, C', D and E are the fit coefficients. Only the first three coefficients in (18.1)
were considered here: white phase noise, white frequency noise and the flicker frequency noise, respectively.

The relevant noise processes for the passive maser include the white frequency noise, defining the short
to medium-term performance, and the flicker frequency noise, defining the clock long-term behavior. The white
phase noise only plays a role for very short integration times (up to about 10 s) and becomes irrelevant for
our analysis. Both, experimental data and the fitting function are shown in Figure 18.4. In the next step, the
fit results are used in the Stable32 software (Riley 2014) to generate a time series of simulated clock data
covering the same time span of 10 days that is available for the MGEX space clock parameter data. A fre-
quency drift of 1x107'° /day, as measured during the flight model tests on Galileo passive masers, was also
added to the model function. The drift considered here is an upper estimate, which anyhow plays a role only
for measurement times longer than a few days. Simulated clock data were generated at a sampling rate of 30
s, according to the model function parameters (Allan deviation at 7 =1 s) listed below:

e White phase noise: 9.8 x10~13
e  White frequency noise: 5.9x10713
e Flicker frequency noise: 7.9x 10716
e TFrequency drift: 1.2x10720 /s?

Figure 18.5 shows the resulting Allan deviation compared with the Allan deviation of real Galileo residual
clock parameters from the MGEX Campaign. The higher noise observed in the MGEX data at about 7 hours
(half the orbit period) will be discussed later in detail.
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Figure 18.4 Overlapping Allan variance (black) of one of the best performing Galileo passive masers charac-
terized during performance tests on the ground (P. Rochat, private comm.; see also (Wang et al. 2013) as
available from SpectraTime) and best fit of the data points including all the relevant noise processes (red).
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Figure 18.5 Allan deviation of the simulated clock parameters (red) and ground Galileo test results (green)
against PHM specifications (cyan). In blue is the Allan deviation of the real residual clock parameters after
time drift and bias removal every 24 h from the MGEX clock solution (AIUB) of IGS (days 96-106/2013).
The ”connected phase” denotes residual clock parameters connected at day boundaries and therefore showing
better short term stability.

Simulated Galileo PHM data were then used to estimate the standard deviation of the clock error and compare
it to the results obtained from MGEX data after applying the same processing algorithms. Simulated Galileo
residual clock parameters show a standard deviation of ¢ =15.5 mm, when time offset and time drift (linear
model) are removed at 24 h intervals. The corresponding data are shown in Figure 18.6. For comparison, it is
interesting to note the qualitative agreement between Figure 18.3 and Figure 18.6 in terms of peak-to-peak
variations and noise behavior. The standard deviation is reduced to ¢ =11.2 mm, when a linear model is
removed every 14 h, down to ¢ = 2.7 mm after time offset and drift removal at 1 h intervals.

Simulated Galileo Residual Clock Parameters

Residuals [m]

10

Time in days

Figure 18.6 Simulated Galileo residual clock parameters over a period of 10 days. Only time offset and time
drift were removed from the Galileo clock parameters every 24 h. Simulated residual clock parameters show a
very good agreement with the real Galileo clocks in Figure 18.3, where the periodic relativistic effect of J,

was removed, and Figure 18.7. The noise introduced by the GNSS network has not been considered.
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18 Noise Model of the Galileo “mm-Clock”

The results of our analysis are shown in Table 18.1. With a polynomial of higher degree, mm-accuracy
can be reached (Table 18.1). This is in line with Figure 18.3 which clearly shows consistency between clock
and SLR residuals at the sub-cm level, when time offset and time drift is removed at 24 h intervals. However,
for short intervals in Table 18.1, it is difficult to fully confirm values with real MGEX data, due to the short-
term noise in the estimated clock parameters of the limited MGEX network, see Table 18.2. This is reflected
in higher ADEV values in Figure 18.5 for MGEX satellite clock parameters for integration times up to several
hours.

Table 18.3 shows standard deviation differences between MGEX clock parameters and simulated clock
parameters based on the ground test results in Table 18.1. By forming such a differences, Table 18.3 reflects
the noise of the ground data processing in the estimated MGEX Galileo clock parameters. It is interesting for
a linear model to note that values at 12-h, 24-h and at the orbit period interval, are very similar, indicating
that there is no significant signal at the orbit period and is most likely represented by flicker frequency noise
after about 8-10 h (see also Allan deviations in Figure 18.5). This noise figure is most likely related to the
significant orbit error represented by the orbit period being in the order of 7 h.

Simulated Galileo H-Maser (¢ in mm)
Degree | 02h | 0.25h [05h |1.0h | 15h [6h |12h | 14h |24k
1 1.2 1.4 2.0 2.7 34 |68 93 | 11.2 | 155
2 1.0 1.1 1.5 2.2 2.7 | 5.7 | 1.7 8.8 | 10.3
3 0.8 0.9 1.3 1.9 23 | 47| 65 | 7.8 | 9.8
4 0.7 0.8 1.2 1.7 2.1 | 43| 538 6.6 8.7
5 0.8 0.9 1.1 1.5 19 [ 38| 52 | 56 | 7.8

Table 18.1 Standard deviation of the simulated clock parameters for Galileo passive H-maser over a period of
10 days, after removing a polynomial of degree 1-5 over time intervals from 0.2 h to 24 h. Accuracy at the
mm-level can be achieved by using the low-degree polynomial, significantly reducing the number of estimated
clock parameters.

MGEX (AIUB) Clock Parameters (o in mm)

Degree | 0.2h | 025h |05h [ 1.0h |1.5h | 6h |12h |14 h |24k

1 - 1.8 2.9 4.2 53 [10.9] 16.2 | 18.3 | 20.2
- - 2.3 3.7 4.2 | 83 | 125 | 14.1 | 17.8
- - 1.8 3.1 3.8 7.1 | 104 | 124 | 16.9
- - 1.3 2.8 34 | 64 | 93 | 104 | 12.9
- - - 2.8 3.2 5.6 | 8.5 9.6 | 11.9
Table 18.2 Standard deviation of the MGEX clock parameters (AIUB) for Galileo passive H-maser over a
period of 10 days (96-106/2013), after removing a polynomial of degree 1-5 over time intervals from 0.2 h to

U= | N

24 h. Missing values are due to the lower sampling of MGEX clock parameters, given every 300 s.

Difference: MGEX (AIUB) - Simulated, (o in mm)
Degree | 02h | 0.25h [05h |1.0h | 15h [6h |12h | 14h |24 ]k
1 - 1.1 2.1 3.2 4.0 | 851|133 | 145 | 13.1
2 - - 1.7 2.9 3.2 | 61| 98 | 11.0 | 144
3 - - 1.2 2.4 3.0 | 53] 81 9.7 | 13.8
4 - - 0.5 2.2 2.7 | 47| 73 | 81 9.6
5 - - - 2.3 26 |42 6.7 | 79 | 9.0

Table 18.3 Standard deviation difference between MGEX clock parameters (AIUB) in Table 18.2 and simu-
lated clock parameters based on ground test data in Table 18.1 for Galileo passive H-maser over a period of
10 days (96-106/2013), after removing a polynomial of degree 1-5 over time intervals from 0.2 h to 24 h.

190
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Parameters

18.4 Relativistic Effects of Earth's Oblateness and Gravitational Fields of
the Sun and Moon on the Galileo Clock Parameters

Following (Petit and Luzum 2010), the proper time 7 of a clock with the coordinate position x(t) in the
Geocentric Celestial Reference System (GCRS) moving with the coordinate velocity v = dx / dt , where t is
Geocenteric Coordinate Time (TCG), is
2

fl—; - 1—6% S Up () + VX) V(X p) 20,V (X )] (18.2)
where ¢ is the speed of light and Uy the gravitational potential of the Earth at the clock position x in the
geocentric frame. V' denotes the sum of the gravitational potential of the Sun and the Moon calculated at a
location X in barycentric coordinates of the Solar system, separately for the Earth's center of mass X and
the clock location X . GNSS satellite clock parameters provided by IGS only include conventional periodic
relativistic correction due to satellite orbit eccentricity. Considering only the central term of the Earth's
gravity field (Kouba 2004), the Up term in (18.2),

At = —% GMa -esin £ (18.3)

per .
where a, e and E are the osculating semi-major axis, the eccentricity and the eccentric (angular) anomaly
of the GNSS satellite orbit and GM is the geocentric gravitational constant. This periodic effect, with the
orbit frequency mainly depends on the orbit eccentricity, i.e., special and general relativity effects due to
satellite height and velocity variations from the mean values along the orbit. Considering the very small orbit
eccentricity of e =0.0002, the amplitude of this effect is only about -0.15 m for Galileo E11 (similar to all
four IOV satellites), and it is about one order of magnitude higher for the constellation of GPS satellites that
typically have higher orbit eccentricities by at least one order of magnitude. An alternative, but more conven-

ient formulation of (18.3) applied directly in GNSS software packages is At =—2r-v /¢?, where r and
v denote for the satellite position and velocity vectors, respectively (Kouba 2004).
The periodic relativistic effect due to the J, gravity field coefficient was calculated using the following
expression (Kouba 2004)
2
AHT,),, = 7% "L J,]GMa -sin? isin2u (18.4)

per
a 62

where a is the semi-major axis of the orbit, ¢ the orbit inclination, u the argument of latitude and aj the
semi-major axis of the Earth's ellipsoid. This effect is due to special and general relativistic effects of the
elliptical orbit perturbed by the Earth's oblateness, reflected in the J, coefficient (dynamic flattening) of the
Earth's gravity field. Periodic effects of other low-degree zonal gravity field coefficients are negligible in our
case. An additional time drift due to the J, coefficient in (Kouba 2004) is not considered here, since residual
clock parameters are calculated by removing time offset and time drift of the satellite clock parameters esti-
mated against the reference H-maser on the ground.

Figure 18.7 shows Galileo residual clock parameters (MGEX) at high Sun elevations from 60° to 65°
together with the calculated J, contribution. The periodic relativistic correction (18.3) was added to the Gal-
ileo residual clock parameters in Figure 18.7 after multiplication by the speed of light ¢ in a vacuum. The

standard deviation of the calculated residual clock parameters is reduced from 2.5 cm to 2.1 cm. The amplitude
of the periodic effect (18.4) for the orbit of the Galileo E11 satellite is about 18 mm. Figure 18.8 shows the
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Figure 18.7 Galileo E11 residual clock parameters at high Sun elevations from 60° to 65  (clock solution
from MGEX/AIUB). After removing the periodic relativistic effect due to the J, gravity field coefficient,

remaining residual clock parameters show a standard deviation (STD) of 2.1 cm.

power spectral density of the Galileo E11 residual clock parameters before and after applying the correction

for the periodic relativistic effect due to the J, gravity field coefficient. The peak originally present at twice

the orbital frequency is removed after accounting for the J, perturbation.
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Figure 18.8 Power Spectral Density (PSD) of the Galileo E11 residual clock parameters (unit of length) at
high Sun elevations from 60° to 65  before (blue) and after removing (red) the periodic relativistic effect due

to the J, gravity field coefficient. The effect at 3 cycles per orbit revolution is still to be understood. Clock
solution from MGEX/AIUB, days 96-106 in 2013.
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18.4 Relativistic Effects of Earth's Oblateness and Gravitational Fields of the Sun and Moon on the Galileo Clock
Parameters

Effect of the Sun and Moon Gravitational Potential on Galileo Clock
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Figure 18.9 Accumulated time along the orbit of the Galileo E11 satellite due to the gravitational potential

of Sun and Moon for a selected period of 6 days with low Sun elevation 4° > 3> —2° above the orbital plane.

When the Sun is in the Galileo orbital plane, the satellite orbit spans about 2x 29600 km per orbit revolution

in the Sun’s gravitational field (max.-min. distance to the Sun). The maximum is reached for a Moon elevation

of 28.5°.

The CMCU onboard the Galileo satellite can be used to adjust the constant frequency offset of the clock
due to the effects of the general and special theories of relativity (Svehla 2010a) arising from the orbit altitude,
see e.g., (Kouba 2004). Since this frequency adjustment could be performed in small finite steps, the absolute
frequency of the Galileo clock is ambiguous by a constant step of the CMCU unit (Svehla 2010a). Therefore,
here we are not considering the absolute frequency of the Galileo primary onboard clock (i.e., the time drift).

Since the first two terms in the brackets of (18.2) consider the periodic relativistic corrections (18.4) and
(18.3) in the Earth’s gravitational field, the accumulated time due to gravitational potential of the Sun and
the Moon in (18.2) along the Galileo orbit was evaluated by the following expression based on (Wolf and Petit
1995)

i 1 1 X g pX
V(X4) = V(Xp)—oh0V(Xp) = 3 GM [ ——— + TAEREL | (18.5)
A=E Tap  TAE Ty

and displayed in Figure 18.9. A summation was carried out with the subscript A denoting Sun and Moon,
and the subscript E is Earth. r is the modulus of the corresponding vector z to satellite P in the barycen-
tric frame. Figure 18.9 shows that the net relativistic effect due to the Sun’s and the Moon’s gravitational
potential is very small and, after removing the daily time offset and drift (see Figure 18.10), it reduces to 0.4
mm for the Sun and 0.8 mm for the Moon. We selected a period of 6 days with low Sun elevation in order to
have a maximum extension of the Galileo satellite orbit in the Sun’s gravitational field of about 2x 29600 km
over one orbit revolution. The larger oscillations for the Moon gravitational potential for the first few days in
Figure 18.10 are due to the low elevation of the Moon above the satellite orbital plane.
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18 Noise Model of the Galileo “mm-Clock”

Effect of the Sun and Moon Gravitational Potential on Galileo Clock
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Figure 18.10 Accumulated time along the orbit of the Galileo E11 satellite due to the gravitational potential

of Sun and Moon after removing daily time offset and drift. One can clearly see a distinct twice per revolution

effect for the Sun potential. After removing daily time offset and time drift, the remaining effect on the residual

clock parameters is below 0.4 mm for the Sun and up to 1 mm for the Moon potential.

18.5 Environmental Effects on the Galileo Clock Parameters

In this section, we discuss the impact of the in-orbit environment (magnetic field and temperature variations)
on the Galileo clock performance. Magnetic field perturbations can be estimated by using the magnetic sensi-
tivity coefficient of < 3x10713 /G (one gauss equals 10™* tesla) in fractional frequency, as measured during
ground tests (Boving et al. 2009) and (Rochat et al. 2012). Magnetic filed variations along the Galileo orbit
were calculated by using the International Geomagnetic Reference Field (IGRF) model (International Associ-
ation of Geomagnetism and Aeronomy et al. 2010) in the direction of the satellite X, Y and Z axes. The time
accumulated along the orbit was obtained by integrating the fractional frequency variations due to the ambient
magnetic field (see Figure 18.11). Considering that the magnetic field is in the order of 300-550 nT along the
Galileo orbit (days 100-116 in 2013), the contribution of magnetic perturbations to the estimated residual
clock parameters is in the order of several millimeters. However, assuming the orientation of the Galileo maser
cavity along the satellite X-axis (that never faces the Sun), the maximum effect of the magnetic field is below
0.8 mm, see Figure 18.11. When applied as a correction, the standard deviation of the residual clock parameters
in Figure 18.7 was improved by only 0.1 mm. We can therefore conclude that the impact of magnetic field
variations on the Galileo clock parameters is very small and negligible. In addition, shielding of the satellite
further reduces their effect. However, this would not be the case if the same clock were placed in a LEO orbit,
where the magnetic field strength is higher by two orders of magnitude.

Unfortunately, no public data is available on the in-orbit temperature at the clock reference point, there-
fore not much can be said about thermal perturbations. (Boving et al. 2009) reported a thermal sensitivity
coefficient of the Galileo H-maser as measured on the ground of <2x107 /°C. The cavity temperature of
the Galileo H-maser is stabilized by a two-stage thermal control and an additional electronic Automatic Cavity
Tuning (ACT) system is used to optimize the cavity frequency pulling effect caused by the residual thermal
drift (Mattioni et al. 2002). From (Mattioni et al. 2002), one can see that, for platform temperature variations
of 5 °C, the cavity thermal control stabilizes the temperature within 3 m°C.
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18.5 Environmental Effects on the Galileo Clock Parameters

Max. Accumulated Time due to Magnetic Field Along the Galileo E11 Orbit
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Figure 18.11 Maximum accumulated time in (mm) along the orbit of Galileo E11 satellite assuming a maxi-
mum magnetic sensitivity coefficient of 3x107!3 /Gauss. The magnetic field along the X, Y and Z satellite
axes was calculated using the IGRF model giving a magnetic field variation of 300-550 nT along the orbit.
Assuming the orientation of the H-maser cavity along the X satellite axis (never faces Sun), the maximum
effect of the magnetic field on residual clock parameters is below 0.8 mm. Along the Z axis, the effect is about
three times higher. Daily bias and drift were removed.

Temperature variations at the PHM reference point on-board the Galileo satellite are expected to have
two different periods, the orbital period and the period of the stabilization loop. An analysis of the Allan
deviation and PSD curves in Figure 18.7 and Figure 18.8, reveals no perturbation at the orbital period nor for
periods shorter than 1000 s that could be attributed to temperature effects. This allows us to conclude that
the temperature stability at the PHM reference point is at the level of a few tenths of a Kelvin.
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19. Model of Solar Radiation Pressure and Thermal
Re-Radiation

he non-gravitational force solar radiation pressure is the main source of error in the precise orbit

I determination of GNSS satellites. All deficiencies in the modeling of solar radiation pressure map into
estimated terrestrial reference frame parameters as well as into derived gravity field coefficients and
altimetry results when LEO orbits are determined using GPS. Here we introduce a new approach to geomet-
rically map radial orbit perturbations of GNSS satellites, in particular due to solar radiation pressure along
the orbit, using high-performing clocks on board the first Galileo satellites. We have seen in Section 18 that
only a linear model (time offset and time drift) need be removed from the estimated Galileo clock parameters
and the remaining clock residuals will map all radial orbit perturbations along the orbit. Agreement between

SLR residuals and clock residuals is at the cm-level RMS for an orbit arc of 24 h. Looking at the clock

parameters determined along one orbit revolution over a period of one year, we show that the so-called SLR
bias in Galileo and GPS orbits can be represented by a translation of the determined orbit in the orbital plane
away from the Sun. This orbit translation is due to thermal re-radiation and does not account for the Sun’s
elevation above the orbital plane in the parameterization of the estimated solar radiation pressure parameters.
SLR ranging to GNSS satellites takes place typically at night, e.g., between 6 p.m. and 6 a.m. local time, when
the Sun is in opposition to the satellite. Therefore, SLR mostly observes that part of the GNSS orbit with a
radial orbit error that is mapped as an artificial bias into the SLR, observables. The Galileo clocks clearly show
an orbit translation for all Sun elevations: the radial orbit error is negative when the Sun is in conjunction
(orbit noon) and positive when the Sun is in opposition (orbit midnight). The magnitude of this SLR bias
depends on the accuracy of the determined orbit and should rather be called “GNSS orbit bias” instead of
“SLR bias”. All LEO satellites, such as CHAMP, GRACE and JASON-1/2, need an adjustment of the radial
antenna phase center offset. When LEO satellite orbits are estimated using GPS, this GPS orbit bias is mapped
into the antenna phase center. GNSS orbit translation away from the Sun in the orbital plane not only
propagate into the estimated LEO orbits, but also into derived gravity field and altimetry products. The
mapping of orbit perturbations using an onboard GNSS clock is a new technique to monitor orbit perturbations
along the orbit and was successfully applied in the modeling of solar radiation pressure. We show that the
CODE solar radiation pressure parameterization lacks the dependency on the Sun’s elevation above the orbital
plane, i.e., the elongation angle (rotation of solar arrays), especially at low Sun elevations (eclipses). Sun
elongation angle is used in the so-called T30 model (ROCK) that includes thermal re-radiation. A preliminary
version of a solar radiation pressure model for the first five Galileo and the GPS-36 satellite is based on the
orbit/clock solution of 2x180 days of the MGEX Campaign. We show that, in addition, Galileo clocks map
the Yarkowsky effect along the orbit, i.e., a small time lag between the Sun’s illumination of the satellite and
its thermal re-radiation. We present the first geometrical mapping of the anisotropic thermal emission of
absorbed sunlight of an illuminated satellite.
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19 Model of Solar Radiation Pressure and Thermal Re-Radiation

19.1 Galileo Clock Parameters and the SLR Bias in GNSS Orbits

Argument of latitude w.r.t. Sun &

Figure 19.1 Definition of a Sun-fixed orbit coordinate system. The 3 angle denotes the elevation of the Sun
above the orbital plane, Au is the argument of latitude w.r.t. the argument of latitude of the Sun and F

denotes Sun elongation angle.

In Section 18 we demonstrated that the estimated epoch-wise Galileo clock parameters can be used to map
radial orbit error continuously along the Galileo orbit. That was confirmed by an external validation with
SLR measurements. Based on this analysis of Galileo clock parameters, it was reported in (Svehla et al. 2013c¢)
that modelling solar radiation pressure (SRP) based on the CODE SRP model (Beutler et al. 1994) will always
introduce an error in the orbit modeling as a function of the Sun elongation angle F. The Sun elongation
angle E is the angle at which the satellite “sees” the Sun and the geocenter and can be determined from

spherical geometry, see Figure 19.1,
cos E = —cos 3 cos Au = —cos 3 cos(u —u) (19.1)

as the function of the Sun elevation angle 3 above the orbital plane and satellite argument of latitude u
relative to Sun position in the orbital plane of the satellite u, . The Sun elongation angle is also the angle

defining the orientation of the solar array with respect to the satellite body. The same Sun elongation angle
is explicitly used in the so-called T30 model (ROCK) an a priori SRP model for GPS satellites that includes
thermal re-radiation (Fliegel and Gallini 1996) and an empirical SRP model from JPL (Bar-Sever and Kuang
2004). In these two models amplitudes are typically given for the following harmonics: £, 3E, 5E in the
GPS satellite Z-direction with an additional 2F and 7FE in the X-component. However, as reported in (Svehla
et al. 2013c), Galileo clock parameters clearly show only the first harmonic E in the Galileo orbit over all
Sun elevations that can be modelled as AcosfcosAu=—AcosE, where A denotes amplitude. Recently,
(Montenbruck et al. 2014) reported an a priori SRP model for Galileo satellites that is very similar in param-
eterization to (Svehla et al. 2013c). The same approach was also recently applied in the parameterizations of
solar radiation pressure for GPS and GLONASS (Arnold et al. 2014), reporting estimation of harmonic am-
plitudes of the elongation angle that go up to 3F and 4E.
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19.1 Galileo Clock Parameters and the SLR Bias in GNSS Orbits

Let us now analyze Galileo residual clock parameters for all Sun elevations above the orbital plane. We
use the Sun-fixed orbital frame, as defined in Figure 19.1 with Sun elevation angle 3 above the orbital plane
and argument of latitude of the Galileo satellite relative to the Sun position in the orbital plane Aw . Figure
19.2 shows Galileo E11 residual clock parameters for rising and setting Sun (ascending and descending Sun
elevations) based on MGEX orbit/clock solutions from AIUB and GFZ Potsdam. As expected, one can see a
very close agreement between different MGEX solutions. Figure 19.2 shows that residual Galileo clock param-
eters are centered at an argument of latitude of Au = 180° relative to the Sun and the magnitude decreases
with increasing Sun elevation. The maximum effect is when Sun and satellite are in opposition Au = 180°,
and the minimum at Awu = 0° when they are in conjunction. The same effects can be seen in the MGEX
orbits available from TU Miinchen in Figure 19.3.

Since the minimum and maximum are reached at Sun/satellite conjunction (orbit noon) and opposition
(orbit midnight) for all Sun elevation points towards translation of the calculated orbit away from the Sun in
the Sun-fixed orbital frame, i.e., the radial orbit error is positive when the Sun is in opposition and negative

when Sun is in conjunction, see Figure 19.3 and Figure 19.4.

Rising Sun Galileo E11 (AIUB)
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Figure 19.2 Galileo E11 residual clock parameters in Sun-fixed orbital frame for rising (top) and setting Sun
elevations (bottom) against the argument of latitude relative to the Sun argument of latitude. Figures are
based on the MGEX clock solutions from ATUB and the bottom-right figure on the MGEX solution from GFZ
Potsdam. One can see a very close agreement between different MGEX solutions and asymmetry in argument
of latitude between rising and setting Sun elevations. Max. effect is at Au = 180° (vertical red line), when
the Sun and the satellite are in opposition and min. effect at Au = 0° when they are in conjunction. The

horizontal red lines show Sun elevations between —12° < 3 <12° (satellite passing eclipses).
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19 Model of Solar Radiation Pressure and Thermal Re-Radiation

GIOVE-B Clock Residuals
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Figure 19.3 Clock residuals of GIOVE-B, Galileo E11 and Galileo E12 satellites against the argument of
latitude of the satellite relative to the Sun argument of latitude. Max. effect is at Au = 180°, when the Sun
and the satellite are in opposition and at Awu = 0°, when they are in conjunction. Note also a slight asymmetry
for the GIOVE-B satellite clock parameters that follows the high Sun elevation. Based on 2x180 days
(2012/2013) of data from the MGEX Campaign of IGS (Galileo Clock Solution from TU Miinchen).

Estimated clock parameters for all three Galileo satellites show a periodic effect (cosine function) highly cor-
related with the argument of latitude relative to the position of the Sun. The maximum effect is reached when
Sun and satellite are in opposition Au =180°, and at Au = 0°, when they are in conjunction. Due to the
fact that SLR ranging to GNSS satellites takes place typically at night, e.g., between 6 p.m. and 6 a.m. local
time when the Sun is in opposition to the satellite, SLR measurements observe only one part of the GNSS
orbit, including radial orbit error that leads to an artificial negative bias in SLR measurements, see Figure
19.4. The Galileo clocks clearly show this orbit translation for all Sun elevations.
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19.1 Galileo Clock Parameters and the SLR Bias in GNSS Orbits
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Figure 19.4 Translation of the GNSS orbit away from the Sun in the orbit plane, as mapped by the Galileo
clock. Night-time SLR ranging (depicted in grey) covers mainly that part of the orbit with positive radial
orbit errors Ar > 0. This explains why the SLR bias should be called “GNSS orbit bias” instead of “SLR
bias”. Based on information provided on the ILRS homepage, the blue/black arrows depict +Y and +Z-axes
of the attitude yaw steering such that the +Y axis has an opposite sign to the +Y axis of GPS II/IIA, i.e.,
the +X (red arrow) spacecraft panel is maintained away from the Sun. This is the same as for GPS IIR
satellites.

for all Sun elevations: the radial orbit error is positive, when the Sun is in conjunction (orbit noon) and
negative when the Sun is in opposition (orbit midnight), see also Figure 19.5. The magnitude of this artificial
negative SLR bias depends on the orbit quality and, therefore, should rather be called “GNSS orbit bias”,
instead of “SLR bias”. For example, early Galileo orbits were showing a bias of —10 cm that dropped to some
—6 cm, when orbits improved by a factor of 2. When LEO satellite orbits are estimated using GNSS, this
orbit bias could be reflected as phase center offset in the radial direction, and this could be the reason why all
LEOQO satellite missions need an adjustment of the antenna phase center in the radial direction. Moreover, the
GNSS orbit translation in the Earth-Sun direction in the orbital plane directly maps into the estimated LEO
orbits and subsequently into derived gravity field or altimetry products in the case of gravity and altimetry
missions.

In order to model the periodic effect in Figure 19.2 and Figure 19.3, as a first approximation we may use
the cosine function of the satellite argument of latitude relative to the Sun position in the orbital frame Aw .

Figure 19.5 True and calculated orbit as revealed by the Galileo clock parameters.
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19 Model of Solar Radiation Pressure and Thermal Re-Radiation

In addition, by making use of the Sun elevation above the orbital plane (3, the satellite radial orbit error Ar

along the orbit can be approximated by
Ar = A-cosfBcosAu (19.2)

In the case of GIOVE-B and the first four Galileo satellites, the amplitude A is in the order of A = 20 cm

and depends also on the orbit quality. Let us now introduce the elongation angle F from (19.1) at which the
satellite “sees” the Sun and the geocenter, see Figure 19.1. Hence, as a first approximation we can introduce

an empirical model 6, for the Galileo residual clock parameters as
8, = Ar=—A-cosE (19.3)

Figure 19.6 shows the first approximation model of the Galileo residual clock parameters parameterized by
the elongation angle in (19.3). Since (19.3) gives the circular pattern in Figure 19.6 that can also be seen with
real Galileo data in Figure 19.2, we have given this effect the name “eye-effect”. Figure 19.6 also shows a
similar pattern for the model of GPS radial error due to solar radiation pressure modelling deficiencies for
GPS 06 (Svehla et al. 2011). Compared to Galileo, one can see the very modest amplitude of about 10 cm

due to the Galileo orbit quality at that time.

Eq. (19.3) and Figure 19.6 clearly point towards a translation of the calculated orbit away from the Sun
in the Sun-fixed orbital frame, i.e., the radial orbit error is positive at orbit midnight, when Sun is in opposition
E =180°, and negative at orbit noon E = 0°. Such an orbit translation will introduce an orbit bias and
subsequently an SLR bias when GNSS orbit is observed by nigh-time SLR ranging between e.g., 6 pm and 6
am that corresponds to the interval of about Awu = 90° — 270°.

If we now plot residual clock parameters as a function of elongation angle, we obtain Figure 19.7, showing
that Galileo residual clock parameters (radial error) closely follow the Sun elongation angle, i.e., the orientation
of the solar array w.r.t. to the satellite body. This is also confirmed by SLR residuals plotted with a negative
sign in Figure 19.7 (right). The use of Sun elongation angle in (19.3) clearly points towards deficiencies in the
modeling of solar radiation pressure. Sun elongation angle is explicitly used in the so-called T30 model (ROCK)
that includes thermal re-radiation (Fliegel and Gallini 1996) and in an a priori empirical model of solar radi-
ation pressure for GPS satellites used at JPL (Bar-Sever and Kuang 2004).

The clock estimates for all five Galileo satellites clearly show this orbit translation for all Sun elevations:
the radial orbit error is positive when the Sun is in conjunction (orbit noon) and negative when the Sun is in
opposition (orbit midnight). This is fully in line with (Urschl et al. 2007) that reported for the first time an
eye-type pattern in the SLR residuals of the two GPS and GLONASS satellites equipped with SLR retro-
reflectors, indicating negative SLR residuals with a maximum effect when Sun and satellite are in opposition.
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Figure 19.6 The first model of the Galileo clock residuals (left) in [m] using elongation angle and a model for
SLR residuals for GPS 06 (right) (Svehla et al. 2011). For GPS, one can see the very modest amplitude of
about 10 cm and change of the sign for SLR. The higher amplitude of the effect for Galileo is due to the orbit
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quality available for Galileo satellites from TU Miinchen at that time.
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Figure 19.7 Residual clock parameters (left) and SLR residuals (right) in [m] against Sun elongation. Galileo

E11 clock residuals follow the Sun elongation angle, i.e., the orientation of the solar array, as confirmed by

independent SLR residuals (right) given with an opposite sign. Residual clock parameters are based on the
Galileo clock solutions from TU Miinchen submitted to the MGEX Campaign of IGS.

Compared to SLR, Galileo clock parameters map the radial orbit error along the entire orbit, including

when the Sun and satellite are in conjunction Aw = 0°. This is a strong argument to claim the orbit translation,
not only for Galileo, but also for GPS and GLONASS. Due to the fact that SLR ranging to GNSS takes place
typically at night, e.g., between 6 pm and 6 am local time, when the Sun is mainly in opposition to the

satellite, SLR observes mainly that side of the GNSS orbit with a negative radial orbit error that is mapped

as an artificial bias into the SLR ranges. The magnitude of this artificial negative SLR bias depends on the
orbit quality and, therefore, should rather be called “GNSS orbit bias”, instead of “SLR bias”. For example,
early Galileo orbits were showing a bias of 10 cm that dropped to some 5 cm when orbits improved by a factor
of 2. This can also be seen in Figure 19.2 and Figure 19.3 where MGEX orbits from AIUB show a smaller
amplitude compared to orbit/clock solutions from TU Miinchen. Partially, this orbit translation is also af-

fected by albedo effects, although the net albedo effects tend to move the orbit in an opposite direction

(towards the Sun) compared to our case. Related to albedo see (Ziebart et al. 2007), (Rodriguez-Solano et al.
2012). When LEO orbits are estimated using GNSS, any GNS orbit translation maps into the estimated LEO

orbits.

Figure 19.8 shows a histogram of SLR residuals as a function of satellite argument of latitude Awu relative

to the position of the Sun in the orbital plane. SLR residuals refer to two periods of about 50 days (days 69-
131/2013 and 300,/2013-52/2014) for ATUB orbit solutions showing a mean SLR bias of —6.5 cm . One can see

that SLR measurements are not spread uniformly along the orbit and for Galileo the majority of SLR meas-

urements are taken around midnight, whereas fewer SLR measurements are available for when Galileo satellites

are closer to the Sun. Therefore, the mean SLR bias (orbit bias) &g, can be decomposed into one part due

to an orbit modelling, accounting for mismodeling of e.g., solar radiation pressure ESLRmodel by using e.g.,

(19.3) and a constant part along the orbit gconst generated by e.g., the antenna trust effect or constant part

of the Earth's albedo.

6SLR = 5SLRmodel + 5con,st

If we now calculate the weighted average of SLR residuals in Figure 19.8, making use of (19.3)

3 7Zni-AcosEi
SLR _T

+ 0

~
const
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Figure 19.8 Histogram of SLR residuals based on the MGEX solution from AIUB (days 69-131/2013 and
300/2013-52/2014). One can see that the Galileo E11 orbit is observed when Sun and satellite are in opposition.

as a functional model and weighting by the number of measurements n, in histogram bins shown in Figure
19.8. The weighted SLR bias (orbit bias) is ESLR = —6.5cm, giving an estimated constant SLR bias of
—2.4 cm . We will see in the next section that the Earth's planetary radiation contributes approx. —14.6 mm
to the constant bias in the radial direction. For GPS we estimated this value to be about —6.3 mm for GPS
Block-IIR and —7.7 mm for GPS Block-IIF. Considering the transmitted power of Galileo IOV satellites, our
estimate of the Galileo trust effect is in the order of —9 mm to —11 mm. These values are in line with (Ziebart
et al. 2007) that also reported a constant effect of the Earth's albedo in the radial orbit error of GPS satellites
at the cm-level and an antenna trust effect of —5 mm for GPS Block-IIF satellites.

We conclude this section by validating the derived empirical Galileo clock model in (19.3) with SLR
measurements over all Sun elevations. Figure 19.9 shows SLR residuals (with an opposite sign) in the Sun-
fixed orbital frame for two periods of about 50 days in 2013 and 2014 with rising Sun elevation. One can see
very close agreement with the residual clock parameters displayed in Figure 19.2. Distinct asymmetry for
rising and setting Sun elevations vs. orbit noon and midnight is consistent for both Galileo clock residuals and
SLR.

-SLR: Rising Sun Galileo E11 (MGEX AIUB) -SLR: Rising Sun Galileo E11 (MGEX AIUB)
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Figure 19.9 Galileo E11 SLR residuals (with negative sign) for rising Sun elevations based on the MGEX
clock solutions from AIUB (days 69-131/2013 and 300/2013-52/2014). The figure on the left and on the right
show negative SLR residuals relative to the satellite argument of latitude (relative to Sun position in the orbit
frame). Notice a small asymmetry of residuals vs. orbit noon and midnight for SLR and Galileo clock residuals.
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19.2 A Model of Solar Radiation Pressure Based on Galileo Clock Parameters and Circular Perturbations

19.2 A Model of Solar Radiation Pressure Based on Galileo Clock
Parameters and Circular Perturbations

Eq. (19.2) can be written as the radial perturbation equation in the form Acos(u +u,), see (19.23), which is
the general solution of the radial harmonic oscillator. Thus, we may use the following circular model to ap-

proximate the associated perturbations:

F=¢cosnt+&sinnt, & L&, [&f=[6|=r (19.6)

with two orthogonal vectors ¢; and ¢,, the mean motion n = 27/P of the satellite and the orbit period

P ~ 14 h for Galileo. The second time derivative is then
i (51 cosnt + ¢, sin nt) = —n?7 (19.7)

that gives circular radial orbit perturbation A¥ = —n? . Ar assuming constant mean motion n. We may ap-
proximate A7 with the radial component of acceleration due to mismodeled solar radiation pressure, as
observed by clock residuals in (19.2). After substituting with (19.2), we obtain

Ai# =—n?%-A-cosfcos Au (19.8)

By introducing the elongation angle E (19.1), (see Figure 19.1), and after substitution into (19.8), we obtain
the circular perturbation of the modelled clock residuals

2 2
Ai=—A- [2%] -cos Bcos Au = A[%r] cos (19.9)

We now note that —cos (3 cos Au is the projection of the Sun unit vector §® onto the Z-axis in the satellite

body frame pointing radially inwards towards the geocenter. For all three components of the Sun unit vector

8oy = —cos Bsin Au
Sey = —sinf (19.10)
5o, = —cos Bcos Au

In an analogous way, similar to ROCK-type models where only X- and Z- directions are considered (Fliegel

and Gallini 1996), we may define an orthogonal effect in the X-direction Z = —(5, xZ)xZ . As a result we

may thus propose a perturbation model for both components in the satellite frame parameterized with two

amplitudes 4, and A, as follows

2 2
AP, = A, [Q—W] cos fsin Au = —A, [Q—W] sin £
T P o P
) (19.11)

", cos B

2
AF, = A, [Q—W] cosffcosAu=—A4A, [Q—W
P P

The amplitudes in (19.11) can be determined from the estimated clock parameters or estimated as parameters
in the global GNSS solution. We typically remove daily time offset and drift from the Galileo clock parameters,
thus (19.11) is a good approximation for the residual SRP acting along the satellite orbit (radial offset and

drift removed). Eq. (19.2) or the form ¢, = Ar=—A-cosE, is a general solution of the radial harmonic

oscillator and (19.11) is a good approximation that gives an order of magnitude of the total effect. The Galileo
clock amplitude of ~ 20 cm shows a very close agreement in Figure 19.10 with the solution of Hill equations
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19 Model of Solar Radiation Pressure and Thermal Re-Radiation

(Colombo 1986). Small terms due to orbit velocity in Hill equations (Hill-Clohessy-Wiltshire equations) are
not modelled and will affect the radial orbit (radial linear model removed), (Clohessy and Wiltshire 1960).

19.3 Thermal Re-Radiation Acceleration and Thermal Inertia of the
Satellite

A satellite illuminated by the Sun experiences acceleration due to the absorption and reflection of photons on
the exposed surface areas. This effect is commonly known as solar radiation pressure (SRP) and is dependent
on the optical properties of the satellite surfaces. Solar radiation pressure is driven by the solar radiation

intensity J, that for a given distance d from Sun can be calculated as, see e.g., (Fortescue et al. 2011)

P
4d?

J

S

(19.12)

where P is the total power output from the Sun, or the solar flux 3.856 x 1020 W . At the Earth's mean
distance from the Sun (1 AU) it is approx. 137145 W/m? and often referred to as the Solar Constant. Since
the satellite acceleration induced by solar radiation is proportional to the projected area exposed to the Sun
(here denoted as A,) and inversely proportional to the total mass m of the satellite, the SRP acceleration
in satellite-Sun direction € is

5 Jy A,

Tspp = —Cspp —=—=¢€, (19.13)

cm

where ¢ is the speed of light in a vacuum and Cgpp the Solar radiation pressure coefficient describing optical

properties of the satellite surface. Let us now define a normal to the surface # with an angle 6 defined as

cosf =nT

-€, . We introduce the optical properties on the satellite surface by defining absorptivity, specular
and diffusive reflectivity

- the specular reflectivity: —2p, -cos? O
S 2 N
- the diffusive reflectivity: —p, -cosf-e, — gpd -cosf-n

- the absorptivity: —a-cosf-€,
with specular, diffusive and absorptivity coefficient p, + p; + o = 1. From this we can derive an equation for

the solar radiation pressure acceleration

- J, A,
Topp = ————%cosf

S 1.
(1—p,)é, +2(p,; cosd +=p,)ii (19.14)
cm 3

In the case of solar arrays oriented towards the Sun

- . 2 . Jg A
TsSrp = —?SE‘ 1+p, +§Pd € = —Cspp f;% (19.15)

2
where Cgpp =1+ p, + gpd . A similar expression can be found in (Milani et al. 1987).

Solar radiation acceleration is typically estimated as part of orbit determination by utilizing the widely
used CODE SRP model (Beutler et al. 1994). As a function of argument of latitude u
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D(u) = Dy + D, cos(u) + D, sin(u)
Y(u) =Y, +Y, cos(u) + Y, sin(u) (19.16)
B(u) = By + B, cos(u) + B, sin(u)

The CODE SRP model (19.16) defines estimated empirical acceleration in the satellite-Sun direction D(u),
along the solar panel axis Y(u), and B(u) completes the orthogonal triad. Typically, the CODE 5-parameter
version is used where of the nine empirical parameters in (19.16) only the direct accelerations D, Y, B, are

estimated, along with two periodic components B, and B, . The remaining four amplitudes D,, D,, Y, and

Y, in (19.16) are either not estimated or constrained in the orbit determination. It is neither well known nor
available in the relevant literature, but due to variable satellite-Sun distance d along the orbital plane, all
nine SRP parameters in (19.16) are scaled to one Astronomical Unit (1 AU), making use of the scaling factor
(1 AU /d)?.

The SRP acceleration is induced by incident solar radiation due to the exchange of momentum with the
satellite surface depending on how much power is absorbed or reflected either diffusely or specularly by the
satellite surface. This exchange of momentum depends also on the nature of the Sun radiation. Since a satellite
is not a black body, it absorbs only a fraction of the incident Sun energy (absorptance «). The actual tem-
perature T of the satellite surface will cause infrared re-radiation emission at thermal infrared wavelengths
generating thermal re-radiation intensity according to Stefan-Boltzmann's law

‘]radiated =¢c-0-T! (1917)

where ¢ denotes the emittance and o the Stefan-Boltzman constant 5.67 x 1078 Wm™2K~*, see (Fortescue

et al. 2011). With the effective area of the satellite for absorbing A, and for emitting A_, with no internal

€

heat dissipation, the equilibrium temperature 7' is achieved when absorbed thermal flux ¢, and emitted

thermal flux ¢, are equal, ¢, = ¢,

Ayca-J,=A e-0-T4 (19.18)

For a given ratio between absorptance and emittance « /& which mainly depends on the surface color, one
can calculate the equilibrium temperature 7' at the exposed satellite surface.

According to the ESA News of 11.7.2013, each of the solar arrays in the pair on board a Galileo satellite
is 1x 5 min size and consist of more than 2500 state-of-the-art gallium arsenide (GaAs) solar cells. This type
of solar cells is also used on GPS Block-IIF satellites, see Table 19.1 and other ESA satellite missions, such as
Rosetta. Typical values for absorptance and emittance for GaAs solar cells can be found in the relevant
literature, e.g., (Fortescue et al. 2011), and are a =0.88 and ¢ =0.80. For the ratio between absorptance
and emittance for the Galileo solar arrays this gives « /& =1.10. For the black paint that is typically used
for the satellite body one obtains 1.16. At the distance of 1 AU for Galileo solar arrays this gives an equilib-
rium temperature of T =339.60 K or T = 66.45 °C. This is based on the assumption that A. /4, =2, as
a first approximation, it was assumed that both the front and the rear side of the Solar array are radiating
equally. When the Sun is in the orbital plane, the max. difference in temperature along the orbit (between
orbit noon and orbit midnight) is only 0.07 °C .

Since the satellite acceleration due to thermal re-radiation is proportional to the area of the radiating
satellite body surface A_ and inversely proportional to the total mass m of the satellite, the final expression

for thermal re-radiation acceleration in the Sun-satellite direction can be derived from the emitted thermal

flux @

€

L 2Q. A 2 \
H=——-""t=—=C,. T 19.19
t 3¢ m 3 ther“f+ f ( )
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19 Model of Solar Radiation Pressure and Thermal Re-Radiation

where Tf denotes the equilibrium temperature at the satellite body surface considering only Lambertian dif-
fuse reflectivity and neglected specular reflectivity. Thus, the factor 2/3 in (19.19) comes from Lambert’s
cosine law integrated over the whole hemisphere. Following (Rievers et al. 2009), if the radiating surface is an
ideal radiator, the radiation pattern is hemispheric and the distribution of intensity over the hemisphere can
be expressed by Lambert’s cosine law. We define the thermal coefficient C,,. in the following way

A o

Oth,er = [m/(SZK4)] (19.20)

m ¢
In the case of solar panels we need to account for the thermal re-radiation from both sides of the solar panels,
i.e., a difference between emitted thermal flux from the front and the rear side of the solar panel Qi — Qer

. _ ofront | srear
Tther = Tther + Tther

Q. —Q.. A (19.21)
= _f—_ = _Cther(eijf1 - erTr4)
c m

where T, denotes the temperature of the rear side of the solar panel. Following (Fortescue et al. 2011), ab-
sorptance of a satellite surface illuminated by solar radiation that has a peak intensity at about 0.45 ym in

the optical part of the spectrum has a corresponding emittance of a surface radiating in the infrared region
with peak intensity at about 10 gm in the infrared spectrum.

Since the heat flow through the typical honeycomb core structure of the solar arrays occurs by conduction
only, the thermal emission properties of solar arrays are practically unaffected by outgassing and radiation of
the heat flux through the cavities within the solar array core. Radiation is the main mode of heat transfer in
a vacuum and thus in space. Therefore, we may calculate the temperature difference between the front and
the rear side of the solar array AT due to the heat flow from the warmer front panel to the colder rear panel

knowing the conductive heat flow rate @, that is equal to the absorbed thermal flux A, -a-J, in (19.18)
AA
Q, = lc AT =h(T; -T,) (19.22)

where h, is the thermal conductance as a function of cross-sectional area A,, I the conductive path length

(approx. thickness of the solar array) and A the thermal conductivity. Since the GaAs solar cells are also used
on other ESA missions, such as Rosetta, we assumed that the inner core of the Galileo solar arrays consist of
a thin honeycomb structure made of aluminum (Al), whereas the external front and rear solar array surfaces
are made of Carbon Fiber Reinforced Plastic (CFRP), with the front surface being covered by the GaAs solar
cells. Typical thermal conductivity for Al-honeycombs as A =109 + 0.245- (T, —273.15) where T, is the mean

temperature T, = (Tf —T,)/2. Emissivity of CFRP surface have a strong temperature dependency that is

empirically given as ¢ = 0.312 + 0.003288- T — 0.00000533 - T2 .

Figure 19.10 shows estimated Galileo clock parameters after removing linear clock model (time offset and
drift) against the effect of the thermal re-radiation acceleration of the satellite body in the radial direction.
For this calculation we used analytical Hill equations for the radial orbit direction given in (Colombo 1986)
perturbed by the analytical effect of thermal re-radiation from this section. For the calculated radial pertur-
bation we removed offset and drift in order to be comparable to the Galileo clock parameter. Figure 19.10
shows very close agreement between both analytical effects without any parameter estimation. For the small
asymmetry with the orbit non-midnight direction we used thermal inertia of 4.7 min.

Solar radiation pressure for orbits of GNSS satellites is mainly driven by the large solar panels. Since
these are relatively thin, the main component of the thermal re-radiation of Solar panels at infrared wave-
lengths act in the opposite direction to that of the solar radiation pressure. Considering that the same
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Figure 19.10 Estimated Galileo clock parameters (linear model removed) (dotted line) against effect of the
thermal re-radiation (red) in radial direction calculated using analytical orbit Hill equation, (Colombo 1986).
For the thermal inertia, a small asymmetry with the orbit non-midnight direction, we used a value of 4.7 min.
Note the size of the amplitude & 20 cm in the radial direction that is similar to our simple model A-cosFE .

area of solar panels is illuminated by the Sun along the orbit, both solar radiation and related thermal re-
radiation of solar panels generate a net force along the GNSS orbit that is removed by the estimated CODE
5-parameter model. This is not the case with the thermal re-radiation of the satellite body that when heated
by the Sun generates a re-radiation force acting in the same direction as the solar radiation pressure, but with
a delay needed to heat the surface. This is so called thermal inertia or Yarkovsky effect, often associated with
the orbital dynamics of asteroids, see (Chesley et al. 2003). Thus, once illuminated by the Sun, the satellite
surface will warm up after some delay and stay warmer even after pointing to the Sun. This afternoon side of
the satellite is hotter and thus will generate thermal re-radiation acceleration that is away from the Sun-
satellite direction and not co-linear with the SRP acceleration. Due to the size of the satellite body, the solar
radiation pressure is significantly smaller compared to the thermal re-radiation for the satellite body. Because
of the time lag, the net effect due to thermal re-radiation is not collinear with the direction of solar radiation
pressure and we see an asymmetric effect when comparing rising and setting Sun elevations for orbit noon and
midnight. This thermal inertia of the satellite or the Yarkovsky effect, can be confirmed with Galileo clock
residuals and SLR residuals plotted against the satellite argument of latitude in all figures in this section, see
e.g., Figure 19.2 or Figure 19.7.

The Yarkovsky effect was first claimed for the asteroid 6489 Golevka tracked by the Arecibo radio tele-
scope in 1991-2003. The asteroid drifted 15 km from its predicted position over 12 years, (see Science paper
(Chesley et al. 2003)). An illuminated object, or a Solar array and a satellite body in our case, takes some
time to become warm when illuminated and to cool down when this illumination stops. Recently (Turyshev
et al. 2012) have claimed that the anomalous acceleration of the Pioneer 10 and 11 (Pioneer anomaly) is due
to the recoil force associated with an anisotropic emission of thermal radiation from these vehicles.

In (Lucchesi et al. 2004), a part of the total Yarkovsky effect is analyzed for the LAGEOS-2 satellite
(called the Yarkovsky—Schach effect) that is modulated only during the eclipse passages through the Earth's
shadow. For satellites that are rapidly spinning, such as LAGEOS-2, one can assume a latitudinal distribution
of temperature across the satellite surface, and therefore, the thermal re-radiation acceleration is directed along
the satellite spin axis. Due to the absence of solar radiation in the eclipse passages, and associated change in
the surface temperature, the finite thermal inertia of the spinning satellite produces a small change in the
thermal re-radiation acceleration along the spin axis. This gives rise to a non-null along-track acceleration
along the orbit revolution and associated long-term effects in the satellite semimajor axis (Lucchesi et al.
2004). (Rubincam 1987) discusses a similar thermal inertia effect for the rapidly spinning LAGEOS-2 satellites
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due to the Earth's infrared radiation, causing a net force along the direction of the spin axis. This effect is
often called the Earth-Yarkovsky or Rubicam effect, see e.g., (Lucchesi et al. 2004).

However, GNSS satellites or typical gravity or altimetry missions in the polar Earth orbits, do not rapidly
spin as does the LAGEOS-2 satellite. This is a significant factor, as one cannot assume a latitudinal distribu-
tion of temperature across the satellite surface and easily distinguish between the “cold” and the “hot
hemisphere” for a spherical approximation of satellite surface. In this case, thermal re-radiation acceleration
is fixed in the inertial space, relative to Sun direction. For nadir- pointing satellites typical rotation is associ-
ated with one orbital period. For GNSS satellites one should also consider yaw steering along the nadir
direction with typical oscillations from 3 to 180" — 3 outside the fixed yaw-steering regime when Sun eleva-
tion is close to zero.

In the general case of a spinning satellite both a spin component and an equatorial component of the
acceleration are present. The recoil acceleration for a spinning satellite is generated by the imbalance of the
temperature distribution across the satellite surface and directed along the satellite spin axis, away from the
colder pole. As soon as the spinning satellite is in full sunlight, i.e., in the absence of eclipses, the along-track
acceleration at a given point of the orbit is compensated by an equal and opposite acceleration at the opposite
point of the orbit, giving a resultant null acceleration over one orbital revolution.

Since all GNSS satellites are pointing towards the Earth, there will always be a component of thermal
re-radiation in the radial orbit direction as a function of relative Sun argument of latitude cos Au that is not
removed by the estimated CODE 5-parameter model. The estimated CODE 5-parameter model removes only
solar radiation/re-radiation pressure of the solar panels constantly oriented towards the Sun. Since
cos(0°) = —cos(180°) , we get the maximum effect of the thermal re-radiation of the satellite body in the radial
direction when Sun and satellite are in opposition Aw = 180°, and the minimum at Au = 0° when they are
in conjunction. Thus, the net effect translates the orbit away from the Sun. Satellite payloads also generate
heat within the satellite and radiators placed on the satellite surface channel this heat outside the satellite.
However, they are typically placed symmetrically to each other along the Y-axis (Solar panel axis) of the
satellite. Therefore the net thermal effect of the internal heat dissipation is zero and with appropriate thermal
design should not have a significant effect on the satellite orbit.

Figure 19.11 graphically depicts the Yarkovsky effect on satellite orbit around the Earth. Radiation from
the Sun heats the satellite body on the nearest side to the Sun (orbit noon). The net effect in the along-track
direction accelerates the satellite in Sun-satellite opposition and slows it down in Sun-satellite conjunction.
This can be geometrically measured in the radial direction by the Galileo H-maser. One can distinguish the
Yarkovsky effect at orbit period in Figure 19.11 and at draconic period between rising and setting Sun eleva-
tions in Figure 19.12. The GNSS draconic year is the repeat period of the GNSS constellation w.r.t. Sun which
is approximately 351 days for Galileo and 357 days for Galileo.

For rising and setting Sun elevations, Galileo radial orbit error or residual clock parameters can be
approximated by

Ay = Ar, = A, cos Beos(u—uy) Rising Sun

o (19.23)
Ay = Ary = A, cos feos(u —u,, —180 ) Setting Sun

where u,, denotes the argument of latitude of the Sun's ascending node on the satellite orbit plane. By intro-
ducing a time lag for the thermal inertia «, the clock model A is then given for rising and setting Sun

elevations

Ay = Ar, = A, cos Bcos(u —ug) Rising Sun (19.24)
A = Ary = —A, cos fcos(u —ug +a) Setting Sun .
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Figure 19.11 Yarkovsky effect on a spherical, nadir-pointing satellite in a prograde orbit around the Earth in
the Sun-fixed orbital coordinate system. Due to thermal inertia, the maximum of the surface temperature
(red) and subsequently its thermal radiation acceleration (green arrows) is displaced from the Sun-satellite
direction. The hotter side of the satellite (red) is the afternoon side (past the orbit noon) that re-radiates most
of the absorbed solar radiation (red arrows). As long as the satellite is in sunlight, the effect will result in zero
net acceleration over one orbital revolution, since the projection of thermal acceleration in the along-track
orbit direction at any given point along the orbit will be compensated by equal and opposite acceleration at
the antipodal point of the orbit. When Sun and satellite are in opposition, Au = 180°, additional along-track
acceleration increases the satellite velocity, whereas it is compensated by an equal and opposite accelerations
at the orbit Sun/satellite conjunction Au = 0°, where it is opposite to the along-track velocity. Thus, the net

effect along the orbit will result in translation of the orbit in the Sun-satellite direction away from the Sun.
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Figure 19.12 Yarkovsky effect on a spherical nadir-pointing satellite in orbit around the Earth due to rising
and setting Sun elevations over one draconic period (357 days for Galileo). Due to thermal inertia, the maxi-
mum of the surface temperature (red) and subsequently its thermal radiation acceleration (green arrow) is
displaced from the Sun-satellite direction. This seasonal Yarkovsky effect between orbit summer and orbit
winter is equivalent to the Yarkovsky effect with orbit revolution between orbit noon and orbit midnight. The
hotter side of the satellite (red) is the summer side of the orbit (rising Sun elevations) that re-radiates the
most of the thermal radiation (red arrows). As long as the satellite is in sunlight, the effect will result with
null acceleration over one Sun draconic period. Projection of thermal acceleration to the radial orbit direction
at any given orbit noon along the summer orbit will be compensated by an equal and opposite acceleration in
the antipodal point of the winter orbit. When Sun and satellite are in opposition Awu = 180°, additional radial
acceleration increases the satellite velocity whereas it is compensated by an equal and opposite accelerations
in the orbit Sun/satellite conjunction Au = 0°, where it is opposite to the along-track velocity. Thus, the net
effect along the orbit will result in the orbit rotation along the orbital plane direction.
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19.4 Planetary radiation of the Earth

The Earth and other planetary bodies in the Solar System have non-zero temperature. Therefore, in addition

to thermal flux due to solar radiation intensity J, given by (19.12) there is also the planetary radiation of
the Earth to be considered. This has a wavelengths in the infrared spectrum between 2 and 50 um , exhibiting
peak intensity around 10 um , and is generated by the whole cross-sectional area of the Earth. Intensity of

planetary radiation J, is a function of orbit altitude R,,;;, and is given by

p

J, =237 (19.25)

orbit

where R, is the radius of the effective radiating surface, and in the case of the Earth can be approximated
by the mean Earth's radius. For the Galileo orbit altitude one can find J, =11.0037 and for GPS
J, =13.7292. This corresponds to about 0.8% of the solar intensity for the Galileo orbit and 1.0% for the
GPS orbit at 1 AU from (19.12). Estimated radial orbit bias is given in Table 19.1 for Galileo and GPS

satellites calculated using satellite properties available from http://www.gps.gov and http://www.gsa.eu-
ropa.eu/galileo/programme.

From Table 19.1 one can see that the orbit bias Ar = —14.6 mm of calculated Earth's radiation for
Galileo satellites is in a very good agreement with the mean bias in SLR residuals that is in the order of
—2.4 cm . The remaining bias of —9.4 mm is close to the estimated antenna trust effect, see previous section.

For solar arrays, the effect of the Earth's radiation is strongly dependent on the cross-sectional area of
the solar arrays in the nadir direction and the orientation of the solar arrays. This relationship can be modelled

using the elongation angle E

Ar=A -cosk

(19.26)

In order to calculate the amplitude A, one also needs to take into account the emittance of the rear side of

the solar panel.

Galileo GPS Block-IIR | GPS Block-IIRM | GPS Block-ITF GPS III
Mass 696.815 ke 1127 ke 1127 kg 1465 kg 2161 ke
Solar array 2x5x1.58 m? 13.4 m? 13.4 m? 13.4 m? 13.4 m?
Nadir surface (3.02-0.18)x1.58 m| 1.57x2.21 m 1.57x2.21 m 2.49%2.24 m 2.49%2.24 m
Earth’s thermal radiation for Solar array and satellite body
Absorptance o (nadir) (0.95) (0.95) (0.95) (0.95) (0.95)
Emittance ¢ (nadir) (0.82) (0.82) (0.82) (0.82) (0.82)
Ar (nadir surface) 14.6 mm 6.3 mm 6.3 mm 7.7 mm 7.9 mm
Absorptance o (nadir)| (0.88) GaAs cells |(0.75) silicon cells|(0.75) silicon cells|(0.88) GaAs cells|(0.88) GaAs cells
Emittance € (nadir) | (0.80) GaAs cells |(0.82) silicon cells|(0.82) silicon cells|[(0.80) GaAs cells|(0.80) GaAs cells
Ar (Solar array) [mm)] 23.8 - cosE 9.5 - cosE 9.5 - cosE 8.6 - cosE 5.8 - cosE

Table 19.1 Effect of planetary thermal radiation on Galileo and GPS satellite orbits in the radial direction.
Assumed values used in the calculation are in brackets.
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19.5 Galileo Clock Parameters and Attitude

According to the description of Galileo satellite parameters provided on the ILRS homepage, GIOVE-A,
GIOVE-B and the Galileo satellites follow the yaw steering law. The satellite body +Z axis points continuously
to nadir (as in GPS), and a rotation performed around the Z axis maintains the satellite +Y axis perpendicular
to the Sun. The +X spacecraft panel is maintained away from the Sun. From the information provided on the
ILRS homepage it follows that the +Y axis has the opposite sign to the +Y axis of GPS Block II/ITA satellites,
i.e., the axis definition for Galileo is the same as for GPS Block IIR satellites, (see IGSMail#16353 for a
description of Block IIR satellites). The Galileo clock residuals and Figure 19.3 show that the accumulated
carrier-phase due to the antenna wind-up is similar to that for a GPS orbit, indicating that orientation of the
yaw steering for Galileo is the same as for GPS. Since the clock residuals nicely match the SLR residuals, we
may draw the conclusion that the Galileo wind-up effect was correctly calculated and that the assumptions
used in the Galileo axis definition and attitude law are correct. In addition, the ILRS homepage states, “As
with GIOVE-A] it is foreseen that the theoretical attitude will not be achieved at times where the beta angle
is small, due to limitations in the reaction wheels and yaw measurement (Sun co-linearity)”. This is similar to
GPS Block IIR satellites. According to IGSMail#1653, it was reported that for low Sun elevations,
—1.6° < 8 <1.6°, GPS IIR satellites switch from yaw steering to a fixed yaw mode. This transition happens
at orbit dusk and in this mode the yaw angle is fixed, i.e., the X and Z axes are in the orbital plane, while
the +X points approximately in the direction of the velocity vector (axes definition for GPS Block IIR), (see
IGSMail#1653). In the case of Galileo, the yaw steering algorithm was presented in (Gonzalez 2010), where
it was indicated that the beta angle, at which yaw steering is switched to the fixed yaw mode is below 2°.
Figure 19.13 shows the clock residuals of the Galileo E11 satellite during fixed yaw steering (Sun elevation
B =0°). Since the antenna wind-up effect was calculated for nominal yaw steering, one can clearly see a jump
at Au =180° and a slightly smaller jump at Aw = 0°. This indicates that during fixed yaw steering (Sun
elevation 8 =0°), the satellite rotates by 180° about the Z axis at Awu = 180°, i.e., it makes a turn in the
yaw angle from 0° to 180° over an interval in the argument of latitude of about 15°. A rotation by 180° in the
yaw angle corresponds to the wind-up effect of half of the narrow-lane wavelength, and this is mapped into
estimated satellite clock parameters. Figure 19.13 indicates that this yaw rotation turn also takes place at
Awu = 0°, in the opposite direction and is less visible.
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Figure 19.13 Galileo E11 clock residuals against the argument of latitude relative to the Sun’s position. One

can see a clear jump at Au = 180° and a slightly smaller jump at Au = 0° of about half a narrow-lane wave-

length, indicating that during fixed yaw steering (Sun elevation 3 = 0°) the satellite rotates approx. 180°

about the Z axis, i.e., a turn in the yaw angle from 0° to 180° over an argument of latitude of a2 15°. The

antenna wind-up was based on nominal yaw steering. A rotation of 180° in yaw corresponds to half a narrow-

lane wavelength.
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19 Model of Solar Radiation Pressure and Thermal Re-Radiation

Calculation of the antenna wind-up effect was based on nominal yaw steering. Figure 19.13 shows the
clock residuals of the Galileo E11 against the Sun’s elevation above the orbital plane and the argument of
latitude of the satellite relative to the Sun’s position. One can see that at low Sun elevations the clock residuals
experience higher variations, which are most likely due to eclipses. For GNSS, eclipse periods take place when
—14° < 3 < 14°. For Galileo, the eclipse interval is slightly narrower, i.e., —12° < 3 <12° due to the higher
orbit altitude. The angle of 12° is the angle of the Earth’s radius as seen from the Galileo orbit altitude.

19.6 Comparison with a Thermal Re-Radiation Model for GPS Satellites at
Low Sun Elevations

By inserting the mass of the GPS PRNO06 (975 kg ) and the model of solar radiation pressure (19.11) we obtain

for the force due to solar radiation pressure

2
f=0.10- 2?”] ~cosE-975=0.21-cos E [1075N] (19.27)

in units of [10"°N]. Comparison of (19.27) with the T30 thermal re-radiation model of ROCK-type Solar

radiation pressure models, reveals parameterization with the elongation angle E that is similar to our model
(19.11). Following (Fliegel and Gallini 1996), for BLOCK IIR GPS satellites, the T30 model including thermal
re-radiation in the X and Z directions of a satellite body-fixed system is

fz =—11.3cos E 4+ 0.1cos 3E + 0.2 cos5F

19.28
fx =—11.0sin £ — 0.2sin3EF + 0.2sin5F ( )

in units of [107°N], as a function of the elongation angle only. Explanation for the frequencies 3E and 5E is
not given in (Fliegel and Gallini 1996). Similar parameterization to the T30 thermal re-radiation model was
presented in (Bar-Sever and Kuang 2004). Note that the Z direction for GNSS satellites is a negative radial
direction, hence the change in sign compared to our model (19.27). The 5 or 9 standard CODE solar radiation
pressure parameters are not suited to absorbing an effect that varies significantly with the Sun 8 —angle. A
variation in Sun elevation by one degree will generate an additional acceleration at the ~ 107 m/s? level
that can explain the effect in (19.11). This is why GPS and Galileo orbits are at their most accurate levels
when the Sun is high above the orbital plane. We can draw the conclusion that 9 CODE solar radiation
pressure parameters should be used in addition to our thermal re-radiation model, or the parameters of the
T30 model in (19.28) should be estimated empirically in addition to the CODE Solar radiation model. Con-
sidering the single term in (19.11), one could estimate empirically two additional frequencies such as

Af = A(27T/P)2 cos E + A, (67T/P)2 cos3E + Ay (1077/]3)2 cosbE (19.29)

in order to properly model the “side lobes” at lower Sun elevations, (see Figure 19.14). At low Sun elevations,
the amplitude of the twice-per-rev. frequency is more visible, due to the high Sun beta angle in Figure 19.14.
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Figure 19.14 Clock parameters of the Galileo E11 satellite at low Sun elevations <12°. At these Sun elevations,
the amplitudes of the “side lobes” due to the 3E and 5F frequency are more visible.

19.7 Solar Wind Pressure and its Symmetry with Solar Radiation Pressure

Solar wind pressure has not been considered so far in precise orbit determination. However, with increasing
orbit accuracy, this effect is becoming more interesting. Here we derive a theoretical model of solar wind
pressure and discuss its application in precise orbit determination.

With several groups performing POD of SLR satellites, (Ciufolini et al. 2012) reports that the recently
launched LARES satellite shows the smallest deviations from a geodesic motion of any artificial satellite, i.e.,

its residual mean acceleration away from a geodesic motion is less than 0.5x107!2 m/s? after modelling non-
gravitational perturbations. When talking about orbit modeling at the 1072 —107!3 m/s? level, the effect of
solar wind pressure becomes far more interesting, not only for LARES, but also for GPS and Galileo satellites
with very large cross-section-to-mass ratios (form factor) and long orbit arcs.

Analogous to solar radiation pressure due to the photon flux from the Sun that propagates at the speed
of light, we may consider, in addition, pressure due to solar wind that propagates at velocities
v, =400 —800 km/s. According to (Feldman et al. 2005), solar wind has two components: slow solar wind
with a velocity of about 400 km/s and a composition similar to the Sun’s corona; and fast solar wind with a
typical velocity of 750 km/s and whose composition nearly matches that of the Sun's photosphere. The slow

solar wind is twice as dense as the fast solar wind. Solar wind is believed to originate very close to the Solar
surface, but since it is accelerated significantly above the solar surface, its velocity cannot be correlated with
remote observations to trace its origin, (Feldman et al. 2005). Sun particles travelling at a velocity of
400 — 750 km/s reach the Earth after about 2.2 —4.4 days from an apparent direction that is 2.2° —4.4°

away from the Earth-Sun direction. Satellites such as Ulysses (ESA) or ACE (NASA) at the L1 Lagrangian
point (about 1 Mkm away from the Earth towards the Sun) measure the speed of the solar wind and the

number of protons per cm?. Taking into account the mass of a proton m, = 1.672621777(74) x 10727 kg and

the number of protons n, per cm?®, we obtain the pressure of the solar wind as a function of solar wind

velocity v, in [km/s| and proton density n, (number of protons per cm?) given in nPa

(19.30)
or
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19 Model of Solar Radiation Pressure and Thermal Re-Radiation

B, =1.6726-10""-n,-v2  [nNm?] (19.31)

1
where 3 mpvz is the kinetic energy of a single particle. Introducing the effective cross-sectional area A divided

by the mass of the satellite m , or the form factor of the satellite A/m , we can obtain the acceleration of the

satellite due to the force exerted by the solar wind

A 9
a, =-2-m, -Emp vy, (19.32)
or
—72-16726~10*16~£- 02 [nm/s?] (19.33)
(lp = . m TLP ’Up nm/s .

where the factor of 2 arises when there is pure absorption. We may introduce the solar wind pressure coefficient

C,, similar to that for solar radiation. The acceleration of a satellite due to solar wind can then be defined as

A 2
a, =-m,-C,-—-n, v (19.34)
m
or
a, =-1.6726-10"16.C -é-n 02 (19.35)
P W PP )
As an example, for a wind speed of 400 km/s, n, =20 protons/cm? , and pure absorption C, =2 we obtain
a, =—2.7-10712 A [m/s?] (19.36)
p =2 -~ .

For the form factor in the order of A /m = 0.02 for GNSS satellites, we get an effect in the order of about
a, =-0.5- 10713 m/s?. One should bear in mind that the effect of solar wind pressure is very systematic, i.e.,

it does not average out and, in our example, is about 4.4° away from the Sun’s direction.
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20. Track-to-Track Ambiguity Resolution for Zero-
Differences — Integer Phase Clocks

n this section we introduce a novel approach for GNSS ambiguity resolution at the zero-difference level,
what we call Track-to-Track (T2T) ambiguity resolution. The T2T approach is based on the resolution
of wide-lane and narrow-lane ambiguities between consecutive satellite tracking passes, what we call track-
to-track or pass-to-pass ambiguities. To fix T2T ambiguities to their integer values, GNSS measurements from
only a single GNSS receiver are used without forming any double-differences or similar combinations between
different GNSS receivers. Thus, the T2T approach is especially appropriate for LEO applications, to connect
very short tracking passes (typically 15— 20 min ) that introduce a very large number of zero(double)-differ-

ence ambiguities, and for ground networks, where the ambiguities of a single GNSS satellite can be connected
over a longer period of time (e.g., one week). This opens up a new application for T2T ambiguities to monitor
stability and to define code biases and GNSS clock parameters over a long period of time. In this section, we
demonstrate the T2T ambiguity resolution approach using LEO and ground GPS measurements. We show
that LEO T2T ambiguity resolution leads to an optimal combination of LEO and ground GPS measurements
and thus opens doors to form a network of LEO satellites in space for the determination of combined
GNSS/LEO terrestrial reference frame parameters. This is possible thanks to the connected LEO ambiguities
over all tracking passes (about 16 ambiguities per day per GPS satellite). Hence double-differences between a
LEO satellite and ground stations are connected, reducing the number of zero-difference or double-difference
ambiguities with the ground IGS network by nearly 95% .

The same Track-to-Track (T2T) ambiguity resolution approach based on carrier-phase measurements
could be applied to double-differences. Biases in the double-differences that are common and repeat from one
GPS tracking pass to another tracking pass (e.g., multipath effects, orbit errors, etc.) will be removed when
forming differences of double-difference ambiguities between consecutive tracking passes. This is particularly
true for the narrow-lane ambiguities where the reduction of common systematic effects between tracking passes
will significantly improve ambiguity resolution. In this way reducing the effects like near-field multipath and
orbit errors, that repeat in a similar way from the track to the track.

20.1 Direct Resolution of T2T Wide-Lane and Narrow-Lane Ambiguities
at the Zero-Difference Level

Wide-lane ambiguities can easily be fixed at the double-difference level using the Melbourne-Wiibbena linear
combination with a very high success rate close to 100% . Thanks to improved receiver-tracking and multipath
mitigation techniques and better antenna design, the relatively low noise of the pseudo-range measurements
guarantees very robust resolution of wide-lane ambiguities. In the light of the forthcoming Galileo navigation
system offering a wide range of different pseudo-range observables with relatively low noise, the

217
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Figure 20.1 Stability of the differential code biases (P1-P2) provided by IGS. Note jumps of up to one nar-
row-lane ambiguity and differences larger than one wide-lane ambiguity.

success rate in fixing wide-lane ambiguities will follow this trend. Compared to double-differences, wide-lane
ambiguities at the zero-difference level are affected by additional satellite and receiver code biases that need
to be correctly modelled. One of the main problems stems from the convention used to define satellite and
receiver differential code biases (DCBs). By convention, satellite and receiver DCBs are defined as a zero mean
over all GPS satellites and over all ground receivers, respectively. This convention is inappropriate for the
resolution of wide-lane ambiguities at the zero-difference level, since after applying the DCBs, the Melbourne-
Wiibbena linear combination will always be affected by an additional wide-lane bias. Figure 20.1 shows satellite
DCB:s for a period of about three months. One can clearly see jumps in the time series of up to one narrow-
lane ambiguity, and differences between different GPS satellites larger than the wavelength of the wide-lane
ambiguity. DCBs are typically estimated using global ionosphere maps, and any change in the number of
satellites in the GPS constellation or tracking problems of a single GPS satellite, have an impact on the DCBs
of all GPS satellites.

When resolution of wide-lane and narrow-lane ambiguities is performed with the DCBs depicted in Figure
20.1, the percentage of the resolved wide-lane ambiguities at the zero-difference level is only about 20 — 30%
. This considerably limits the ambiguity resolution of subsequent narrow-lane ambiguities to 20 —30% or less.
Narrow-lane ambiguity resolution is directly limited by the success rate in fixing wide-lane ambiguities and
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Figure 20.2 Impact of direct zero-difference ambiguity resolution on station coordinates
with 45 ground stations (float minus ambiguity fixed solution), day 200/2003.
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20.1 Direct Resolution of T2T Wide-Lane and Narrow-Lane Ambiguities at the Zero-Difference Level
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Figure 20.3 Impact of direct zero-difference ambiguity resolution on GRACE-A determined orbit (float mi-
nus ambiguity fixed solution).

can only be equal to or lower than the number of successfully resolved wide-lane ambiguities. Wide-lane
ambiguities align ambiguities on both GPS frequencies. Figure 20.2 shows the influence of the resolved zero-
difference narrow-lane ambiguities on the station coordinates using the phase clock approach, i.e., carrier-
phase measurements only. For this test, a global network of about 45 ground stations has been processed for
a period of one day, estimating all relevant global parameters, such as station coordinates, GPS satellite orbits,
troposphere parameters and satellite and receiver high-rate clock parameters. The effect of the ambiguity
resolution on station coordinates is relatively small, and this can easily be explained by the low number of
successfully resolved narrow-lane ambiguities (about 22% ), limited by the number of resolved wide-lane am-
biguities. From Figure 20.2 one can see that the main effect of the direct ambiguity resolution on station
coordinates is in the East-West component, whereas the North-South component is less affected. A similar
effect, in terms of Cartesian coordinates, can be seen in Figure 20.3, where the impact of direct ambiguity
resolution is shown in the case of a LEO orbit. The effect is in the order of 1 cm RMS. Figure 20.3 shows the
GRACE-A orbit calculated for a period of 3 hours. Figure 20.4 shows the impact of the direct resolution of
narrow-lane ambiguities on the GPS satellite orbits. Although the reduction of 20 —30% in the overall number
of narrow-lane ambiguities is relatively small, the difference in GPS satellite orbits between the zero- and the
double-difference solution with fixed ambiguities is in the order of 1 —3 cm RMS.
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Figure 20.4 GPS satellite orbits based on phase clocks with a limited number of fixed narrow-lane ambigui-
ties (direct approach with about 22% of fixed narrow-lane ambiguities) in comparison to double-difference
orbits with fixed ambiguities (close to 100% ).
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Figure 20.5 East-west effect of float ambiguities on the error ellipses in the PPP solution (24 h) based on

simulated carrier-phase measurements for all four GNSS (day 3.3.2007). On can notice reduced noise and more
isotropic errors when measurements for all four GNSS are included.

A typical geographically correlated East-West error structure can be seen in the PPP results shown in Figure
20.5 based on simulated carrier-phase measurements with float ambiguities of four GNSS systems (E1/E5 used
for Galileo/Compass). One can notice homogeneous and more isotropic positioning and an improvement by a
factor of 2.2 in the Helmert error ellipse radius, compared to GPS-only results. Figure 20.6 shows the effects
of float ambiguities in the troposphere zenith delays estimated as a piece-wise constant function every hour
for an evenly distributed global network of ground stations. Carrier-phase measurements were simulated for
the network of ground stations over one day with noise ¢ =1 mm and sampling interval of 30 s .
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Figure 20.6 Effect of the float ambiguities in the troposphere zenith delays in [mm] based on PPP with
simulated GPS constellation (day 3.3.2007). Noise of the estimated TRP parameters is reduced by a factor of
2.5 compared to the solution with four GNSS (E1/E5 used for Galileo/Compass). The 6 simulated orbital
GPS planes can easily be recognized as geographically correlated errors. Black dots shows an evenly distributed
global network where carrier-phase measurements were simulated over a period of one day.
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20.2 Track-to-Track Ambiguity Resolution of Wide-Lane Ambiguities

GRACE-B: Wide-lane Ambiguities, GPS PRN15
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Figure 20.7 Schematic view (in green) of fixing ambiguities between consecutive passes to the same GPS
satellite (from GRACE-B GPS receiver) over a period of one day — called here track-to-track ambiguities
(T2T). One can see wide-lane ambiguities (in red) every 30 s as estimated using Melbourne-Wiibbena linear
combination, affected by the same wide-lane bias for all tracking passes. The integer property of wide-lane
ambiguities is preserved by forming differences between consecutive tracking passes (T2T ambiguities).

20.2 Track-to-Track Ambiguity Resolution of Wide-Lane Ambiguities

Over the last couple of years, several ambiguity resolution approaches have been under development at the
zero-difference level. The ambiguity resolution approach followed by the IGS Analysis Centre at CNES is
based on a very frequent estimation of biases in the Melbourne-Wiibbena linear combination, leading to a very
high success rate of almost 100%, (Laurichesse and Mercier 2007). However, the very frequent estimation of
calibration biases might introduce additional nuisance parameters in the least-squares adjustment, leading to
aliasing effects in all other GPS parameters. In the ambiguity resolution approach proposed by (Ge et al.
2007), a network of ground receivers is required to estimate so-called uncalibrated phase delays in the GPS
measurements. However, in the case of GPS measurements from LEO satellites, very short tracking passes in
LEO GPS measurements (typically 15—20 min ) introduce a large number of double-difference ambiguities
with the stations of the global ground network. Thus, an ambiguity resolution approach needs to be developed
for zero-differences that overcomes both problems, i.e., it does not require a ground network in order to resolve
ambiguities from a single GPS receiver, and estimation of biases should be limited and preferably avoided.

In order to avoid estimation of the satellite and receiver code biases (b5

,b,..) in the least-squares ap-

proach and possible aliasing effects on other GPS parameters, we show that it is possible to remove those
biases between subsequent tracking passes. Let us first write the Melbourne-Wiibbena linear combination

Ly between two consecutive tracking passes 4,7 +1 to the same GPS satellite

LMW(LDLQ:PDPQ)i = )‘WNIZ/‘V+b5at+brcc (20 1)
Lysw(Ly Ly, Py Py) iy = Ay NIt + 6% + b

rec

with Ay Ny denoting the wide-lane ambiguity. We use the standard definition of the Melbourne-Wiibbena
linear combination as the difference between the wide-lane linear combination Ly, of carrier-phase measure-

ments (L;,Ly) and the narrow-lane linear combination Py of code measurements (P, P,). In addition, we

221



20 Track-to-Track Ambiguity Resolution for Zero-Differences — Integer Phase Clocks

calculate the mean of all measurements j related to one tracking pass with the number of epochs denoted

here as n,

1 &
Ly (Ly Ly, Py Py) i= — 3 [ Ly (L, Ly) = Py (B, Py (20.2)
e j=1
Since the noise of code GPS measurements is typically dependent on the zenith angle, the weighted mean

Melbourne-Wiibbena linear combination over one tracking pass is finally defined as

7,
D ’[LW(LDL?) - PN(P17P2)]]~
j=1
Lyw (Ly, Ly, P, Py) =2 : p; = cos?(z;) (20.3)

n,
Z D;
j=1

with the elevation-dependent weighting p;. Wide-lane and narrow-lane observables are then

h f

Kw1 » Ryyg =
Ly (Ly, Ly) = Ky Ly + KoLy fi =1 hi—F
Py (P, By) = ki Py + ko Py __h fy

Ky y Ko =
YR+ h+h

(20.4)

By differentiating weighted mean Melbourne-Wi{ibbena linear combinations between consecutive tracking

passes, we define the track-to-track (T2T) wide-lane ambiguity AN XZ/V as
ANy ANy = )\WN%,H — Ay N, (20.5)

defined as the bias-free integer wide-lane ambiguity between Melbourne-Wiibbena linear combinations of con-
secutive tracking passes of the same GPS satellite

A ANy = Ly (Ly, Ly, Py Py) iy — Ly (Iy, Ly, Py Py); (20.6)

assuming that the satellite and receiver code biases (bm,brec) are constant between the consecutive tracking
passes 7 and 7+ 1. Considering that the duration of data gaps between consecutive tracking passes is about
6—12 hours and less than 30 min in the case of a LEO GPS receiver, we will show with real GPS data that
satellite and receiver biases are stable enough over this period of time and are almost completely reduced by
forming the difference (20.6). It should be noted that T2T wide-lane ambiguities can be fixed to their integer
values without knowing any geometry, even in real-time, by the GPS receiver.

The cumulative integer wide-lane ambiguity N}, of the tracking pass ¢ is defined then as the sum of all

T2T wide-lane ambiguities AN "fv’ 1 added to the initial wide-lane ambiguity N I%V

ANy = Ay Nl + 2 Y AN (20.7)
k=2

The initial or reference wide-lane ambiguity N{, is affected by satellite and receiver biases b*%* and b,,,

Bt = b5t 4 b, = niZ[LMW(LI,LQ,PpPQ)Z. -\ N, (20.8)

rec rec
t n,

where the bias B;gct is the fractional difference to the nearest wide-lane integer, common to all tracking passes.

In the light of this approach, one could consider defining these receiver and satellite code biases as “absolute
DCBs", to associate them with the term “relative DCBs” used by IGS. The absolute DCBs in (20.8) should
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GRACE-B: Wide-lane Ambiguities, GPS PRN15
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Figure 20.8 Float wide-lane ambiguities estimated using the Melbourne-Wiibbena linear combination based

on C/A and P, code measurements

allow for the “absolute” resolution of wide-lane ambiguities at the zero-difference level. One way to define
“absolute DCBs” is to consider them to be zero in the ionosphere-free linear combination of code measurements
P, and P,. This is in line with the IGS convention for the estimated GPS satellite clock parameters that by

definition are not affected by the ionosphere-free DCBs. In this way, one could talk about the “absolute
DCBs”, keeping in mind that by forming T2T ambiguities all systematic effects between consecutive tracking
passes are removed, and considering that the bias Bf_gg requires an “absolute” integer number of wide-lane
cycles. In order to demonstrate the T2T ambiguity resolution approach, Figure 20.8 and Figure 20.9 show
float wide-lane ambiguities for the GRACE-B satellite estimated using the Melbourne-Wiibbena linear com-
bination. Figure 20.8 is based on C/A and P, code measurements, whereas Figure 20.9 on P, and P, code.
One can see that the variation between consecutive tracks or tracking passes can be up to several cycles of
wide-lane ambiguity in size. To demonstrate the robustness of the approach, typical modeling effects such as
satellite and receiver antenna phase-center variations and offsets for different carrier-phase frequencies, as well
as the antenna wind-up effect, were not applied. Only raw GPS measurements were used to form the Mel-
bourne-Wiibbena linear combination without any screening or data pre-processing. Elevation-dependent
weighting was not applied, and for each track the mean Melbourne-Wiibbena linear combination was calcu-
lated using (20.2). Typically, at the beginning and at the end of every tracking pass one can expect greater
noise in the code measurements that could be dealt with by using elevation-dependent weighting, c.f. (20.3).
It should be noted that the noise of the Melburne-Wiibbena linear combination is in the order of 70% of the
original noise floor for the GPS code measurements.

Comparing Figure 20.9 with Figure 20.8 based on C/A and P, code measurements (Melbourne-Wiib-
bena linear combination), one can clearly see a constant bias over all tracking passes. This bias is more visible,
when wide-lane ambiguities from Figure 20.9 and Figure 20.8 are rounded to the nearest integer value, as
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GRACE-B: Wide-lane Ambiguities, GPS PRN15
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Figure 20.9 Float wide-lane ambiguities estimated using the Melbourne-Wiibbena linear combination based

on P, and P, code measurements.

shown in Figure 20.11 and Figure 20.10, respectively. One can see that the fractional parts of wide-lane
ambiguities show a clear bias for all tracking passes of about -0.2 cycles for P, and P, code measurements,
and about -0.4 cycles for C/A and P, code measurements. These biases are the reason why direct resolution
of wide-lane ambiguities at the zero-difference level has a very low success rate, although the noise of the code
measurements is sufficiently low to fix wide-lane ambiguities reliably. Ambiguity resolution at the zero-differ-
ence level without properly considering these biases could give misleading results. There are two approaches
possible: either to estimate wide-lane biases as parameters or to remove them by forming T2T ambiguities. If
the wide-lane biases are estimated as parameters, one should count on additional correlations with ambiguity
parameters in the least-squares.

The two outliers in Figure 20.11 are due to rounding to the nearest integer, since the bias is very close
to 0.5 cycles. Variations in the estimated wide-lame ambiguities between successive tracking passes are within
0.1 cycles, or significantly less in the case of C'/A code measurements. This depends on the DCBs applied to
the code measurements of the GPS satellite and a GPS receiver. In this particular case, we did not apply any

DCB between C/A and P, code data. When differences are formed between consecutives passes, such a bias

is removed. If the bias in carrier-phase tracking in the GPS receiver is randomly initiated for every
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Figure 20.10 Fractional parts of the float wide-lane ambiguities from the nearest integer values, based on

P, and P, code measurements.
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20.2 Track-to-Track Ambiguity Resolution of Wide-Lane Ambiguities

GRACE-B: Franctional Wide-lane Ambiguities, GPS PRN15
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Figure 20.11 Fractional parts of float wide-lane ambiguities from the nearest integer values, based on C/A
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and P, code measurements. The two outliers (/4 h and 14 h) are due to rounding to the nearest integer.

tracking pass, the common bias in T2T ambiguities would experience a random property, but this is not
visible. Figure 20.13 shows residuals after fixing T2T ambiguities, or differences between mean float wide-lane
ambiguities along consecutive tracking passes. One can see that the common bias is removed between consec-
utive tracking passes and remaining residuals are below 0.1 cycles. Figure 20.13 clearly shows that T2T wide
lane ambiguity resolution can be performed with a very high success rate very close to 100% . Figure 20.12
shows the same T2T ambiguities, but based on C'/A and P, code measurements.

In a similar way, we show in Figure 20.14 mean wide-lane ambiguities for the ground station ALGO and
all GPS satellites tracked, for a period of one day. Again, one can see a clear bias between consecutive float
wide-lane ambiguities. Typically, for one day of ground GPS measurements, one can expect 2 —3 tracking
passes with 2 —3 wide-lane ambiguities to the same GPS satellite. After forming differences between consec-
utive passes, common biases are eliminated for all GPS satellites and fractional parts of the T2T ambiguities
are below 0.1 cycles, see Figure 20.15. This shows again that track-to-track differences remove common biases
and the remaining float ambiguity can be fixed with a success rate close to 100%. Thanks to the very long
observation time, noise in the code measurements is averaged over a period of 4 —6 hours
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Figure 20.12 Residuals in wide-lane ambiguities after fixing track-to-track ambiguities to their integer values

(RMS = 4.8 cm , antenna wind up, PCVs and other similar effects not applied). This solution is based on
C/A and P, code measurements (GPS PRN 15).
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GRACE-B: Residual Wide-lane Ambiguities, GPS PRN15
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Figure 20.13 Residuals in wide-lane ambiguities after fixing T2T ambiguities (RMS = 5.2 ¢cm , antenna

wind up, PCVs and other similar effects not applied). This solution is based on P, /P, code measurements.

leading to very small errors in the fractional parts of the wide-lane ambiguities. However, if the tracking pass
is very short (LEO or a ground station), the ambiguity resolution could be critical, and therefore, GPS data
should be properly combined between consecutive days (day boundaries). Typically, the beginning and the
end of a tracking pass show higher noise and multipath effects compared to the middle. Elevation-dependent
weighting could give misleading results if only a short fraction of a tracking pass (close to a day boundary) is
processed. However, Figure 20.15 shows that even in this case, when one could expect higher noise for the
tracking passes close to day boundaries (see in Figure 20.14 cases with GPS satellites with three passes per
day), estimated fractional parts are below 0.2 cycles. In this calculation we used standard processing models
for carrier-phase and code measurements, such as satellite and station PCO/PCVs, antenna wind-up effect
and elevation-dependent weighting. Other geometrical effects such as light-travel time corrections, relativistic
corrections, tidal effects in the station coordinates, etc. do not play any role in the Melbourne-Wiibbena linear

combination.

MW ambiguities - ALGO station (one day from an IGS run)
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Figure 20.14 Float wide-lane ambiguities for the ground station ALGO over one day. Typically, 2 —3 wide-
lane ambiguities have to be set up per satellite for a one-day arc. Note the different common biases between
GPS satellites and the very similar magnitude of the float wide-lane ambiguities for the same GPS satellite.
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20.3 Track-to-Track Ambiguity Resolution of Narrow-Lane Ambiguities

Track-to-Track MW Ambiguities - ALGO station (one day from an IGS run)
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Figure 20.15 The fractional parts of the track-to-track wide-lane ambiguities over one day are well below 0.2
cycles and can be reliably fixed to their integer values (green lines). Please note that the wide-lane ambiguities
were processed for a period of one day, thus, a short fraction of a tracking pass (close to a day boundary)
could in principle produce a fractional part with higher error.

20.3 Track-to-Track Ambiguity Resolution of Narrow-Lane Ambiguities

We first write the ionosphere-free linear combination L, between consecutive tracking passes 7,7+ 1

sat rec

, 1 S .
Ly(Ly, Ly); = p" + Ay N{ + =Ny = Ay )Ny = 65y + 07 —b° +b
2 (20.9)

rec

Ly(Ly, Ly)yy = p" + Ay N{T 4 %O‘W — AN =80+ 61d T — b5t b,

Compared to the Melbourne-Wiibbena linear combination, additional terms are involved, namely geometry p
1)

is to extract narrow-lane ambiguities from the parameter estimation procedure based on float ambiguities and

and satellite and receiver clock parameters (§ . Thus the easiest way to form track-to-track differences

sat Orec )
then to form T2T ambiguities. If GPS satellite orbits and high-rate GPS satellite clock parameters are avail-
able, one would need to estimate station coordinates or the LEO orbit together with GPS receiver clock
parameters, and subsequently form T2T ambiguities. In the float solution, it is a prerequisite that GPS satellite
clock parameters are continuous, i.e., clock parameters of successive tracking passes are connected. Typically,
GPS satellite clock parameters estimated using the phase clock approach, or a combination of code and phase
measurements with down-weighted code measurements, show excellent stability between GPS tracking passes.
They are, however, biased in the absolute sense by b . This is especially the case with phase clocks estimated
using only carrier-phase measurements. A global ground network of about 45 stations is sufficient to estimate
GPS satellite clocks that do not experience discontinuities, and can thus be used to connect consecutive
tracking passes. However, they are biased in an absolute sense. This common bias can be removed by forming

differences between consecutive tracking passes, defining the track-to-track narrow-lane ambiguity AN }V

AVAN] = Ay Nt — XN (20.10)
as the bias-free, integer narrow-lane ambiguity between ionosphere-free linear combinations of consecutive
tracking passes to the same GPS satellite

si;;fl - 6§at) - (6;(:21 - 67[:60) .

ANANT = Ly(Ly, L)y — Ly(Ly, Ly); — (p™ = p7) = (6 (20.11)
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20 Track-to-Track Ambiguity Resolution for Zero-Differences — Integer Phase Clocks

From (20.11), we see that satellite and receiver code biases are completely removed. Any bias in the GPS
satellite clock parameters is removed by forming differences between consecutive float ambiguities. There are
only a small remaining effects on the carrier-phase that are not constant between consecutive passes, e.g., due
to the geometry terms (troposphere, GPS orbits), multipath, receiver front-end, etc.

The cumulative narrow-lane ambiguity N/ is then defined as the sum of all consecutive narrow-lane

ambiguities AN 1’“’1 added to the initial narrow-lane ambiguity denoted as N},

i
AN = AyNT + Ay > AN (20.12)
k=2
Compared to the ambiguity resolution of T2T wide-lane ambiguities, the additional geometry and satellite/re-
ceiver clock parameters need to be modeled to an accuracy of 1 —2cm RMS. This is required in order to

obtain a noise level of the estimated fractional T2T ambiguities in the order of 10 —20% of the narrow-lane
wavelength of ~10.7 cm .

Figure 20.16 shows fractional (residual) T2T narrow-lane ambiguities of the IGS station ALGO for all GPS
satellites over a period of one day. One can see that the noise level of the estimated T2T ambiguities is
< 0.3 cycle, and thus most T2T ambiguities can be fixed to their integer numbers. In this solution, GPS

satellite orbits and high-rate clock parameters were estimated, together with the ground station coordinates,
Earth’s rotation and troposphere parameters, using all state-of-the-art modeling and processing standards for
GPS measurements.

In order to align the integer T2T narrow-lane ambiguities, an additional satellite/receiver bias needs to
be estimated together with the initial narrow-lane ambiguity. This could be solved by estimating the initial
narrow-lane ambiguity as a float integer, or in a similar way to wide-lane ambiguities, by estimating a common
fractional part in the narrow-lane ambiguities over all tracking passes. For LEO measurements, T2T ambiguity
resolution can be performed first (for the very short-duration LEO ambiguities), and in the second step, the
common bias can be removed using ground-to-LEO baselines. In this way, T2T ambiguities are estimated
together with the ground-to-ground (long duration) and ground-to-space phase ambiguities. T2T ambiguity
resolution could be considered as the optimal method for combining LEO and ground GPS measurements. In
this way, the LEO can serve as a “flying station” connecting carrier-phase ambiguities for all ground stations
in only 90 min (LEO orbit period).

By forming double-differences, biases in the initial narrow-lane ambiguities are removed. If those biases
are not stable over time, double-difference ambiguities cannot be fixed to their integer values. For all GPS
receivers in the IGS ground network it is well-known that double-differences remove all common biases between
a GPS receiver and a GPS satellite.

It is important to mention that, if the bias in the tracking of carrier-phase in the GPS receiver were
randomly initiated for every tracking pass, the common bias in the narrow-lane T2T ambiguities would expe-
rience a random property from one tracking pass to the next, but this is not visible in the data.
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20.4 L1-L1A Track-to-Track Ambiguities
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Figure 20.16 Fractional parts in track-to-track narrow-lane ambiguities for a period of one day. All residuals
are within an interval of +3 cm.

20.4L1-L1A Track-to-Track Ambiguities

For GPS measurements from the GRACE mission, two types of carrier-phase measurements are available on
the first GPS frequency f;: carrier-phase measurements from C/A, and measurements from the P, code
tracking. Figure 20.17 (left) shows the differences between L; and L;, carrier-phase measurements, abbrevi-
ated to "L1-L1A" float ambiguities. One can see that there is a common bias in all ambiguities of about one
wide-lane ambiguity and the differences between consecutive tracks are in the order of one wavelength A .
Once track-to-track measurements are formed, the common bias is removed and the integer nature of the
track-to-track ambiguities can be clearly seen in Figure 20.17 (right). After rounding the track-to-track L1-
L1A ambiguities to their integer values, the remaining phase residuals are in the order of 0.29 mm RMS, as
shown in Figure 20.18. This value corresponds to the typical noise floor of carrier-phase measurements. It is
important to note that Figure 20.18 does not show any systematic effects in the carrier-phase measurements
between consecutive tracking passes. Figure 20.17 (left) shows that larger differences between L; and L;,

phase measurements can be expected at the beginning and end of the tracking pass and making use of the
elevation-dependent weighting, the residuals in Figure 20.18 might be even smaller.

GRACE-B: L1-L1A Ambiguities, GPS PRN15 GRACE-B: L1-L1A T2T Ambiguities, GPS PRN15
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Figure 20.17 Differences in L1-L1A phase measurements (left) and track-to-track ambiguities (right).
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GRACE-B: Residual L1-L1A T2T Ambiguities, GPS PRN15
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Figure 20.18 Residuals in the L1-L1A T2T ambiguities after rounding to their integer values.
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20.5 Using Stable Satellite Clocks for Track-to-Track Ambiguity
Resolution

Let us now see what satellite clock stability would be needed to predict clock parameters reliably over the
data gaps caused by tracking geometry, if one had a linear combination with a sufficiently high wavelength.
One could then estimate integer track-to-track ambiguity as simple carrier-phase cycle-slip.

As long as phase clocks are estimated without code measurements and GPS phase measurements remain
connected for all satellites and ground stations, we may select one reference H-maser and relate all epoch-wise
ground and station clock parameters in the IGS network to this reference clock. In that sense, phase clocks
estimated with float ambiguities are a closed system and can be used for the ambiguity resolution of track-to-
track narrow-lane ambiguities. The absolute bias in the phase clocks of the same GPS satellite is removed by
forming track-to-track differences. Or one could use IGS Final clock solutions and relate carrier-phase between
consecutive passes. On the other hand, one could use stable clocks in the IGS network and attempt to treat
consecutive narrow-lane ambiguities as cycle-slips. Considering that there are about 70 H-masers and other
atomic clocks in the IGS network, ambiguity resolution of track-to-track narrow-lane ambiguities could be
considered as cycle-slip fixing.

Let us now see what level of clock stability would be required to reliably predict or estimate the receiver
and satellite clock terms in (20.11) between two successive tracking passes, i.e., over a period of 6-12 hours.
For an H-maser, given the Allan deviation ADEV(7) over an integration time 7 =1s, we can calculate the

Allan deviation for an integration time 7 using
ADEV(r) = ADEV(1 5) /<7 (20.13)

The time deviation of the receiver or satellite clock over a time interval 7, for a given (modified) Allan
deviation (MDEV) is then

o (6,4(7)) = = MDEV(7) (20.14)

V3

or in simple terms, TDEV is equal to MDEV whose slope is normalized by 3, (Riley 2014). The time Allan
variance is equal to the standard variance of the time deviations for white phase modulated noise. It is par-
ticularly useful for measuring the stability of a time distribution network (Riley 2014).
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20.5 Using Stable Satellite Clocks for Track-to-Track Ambiguity Resolution

In Section 18 on the performance of the Galileo passive H-Maser (PHM) based on ground data, we derived
white phase noise in the order of 9.8 x10713 white frequency noise of 5.9x 10713 flicker frequency noise of
7.9x1071 and a very small frequency drift of 1.2x1072° /5. Figure 18.5 shows the Galileo PHM clock model
based on ground data with the linear model removed (time offset and time drift over a period of time 7) in
comparison with simple TDEV without the linear model removed. One can see that removal of time drift and
time offset significantly improves performance of the Galileo PHM, especially for flicker frequency and white
frequency noise. Flicker frequency is the dominant error source only after Galileo orbit period (14 h). Note
that frequency drift is very small. This confirms that the Galileo PHM clock is stable enough to maintain
carrier-phase over data gaps to the same ground station and can be used for T2T ambiguity resolution.

U((Sclk(T)) 0(720.5 h) (7(7': 1h> (T(T: 7h> 0(7':14 h)
Galileo PHM all frequency noises 9 mm 97 mm 6.8 mm (6 h) 11.2 mm
(linear model removed)

—12 .
1x10 (Galileo PHM) 7 mm 10 mm 27 mm 39 mm
(linear model included (20.14))
1x10713 (H-maser) 0.7 mm 1.0 mm 2.7 mm 3.9 mm
1x10716 (optical clock) 0.0007 mm 0.001 mm 0.0027 mm 0.0039 mm

Table 20.1 Allan deviation of an H-maser for Galileo and a highly stable H-maser in the IGS network in
comparison with an optical clock in terms of time standard deviation over an interval of 0.5 to 14 hours.

Table 20.1 shows that a highly stable H-Maser in the IGS network can predict and keep phase between two
consecutive tracking passes of the same GPS satellite up to 6-12 hours. It should be noted that Allan variance
actually gives the accuracy of the linear time drift, i.e., the accuracy of the slope defined by two parameters
(time offset and drift), and therefore, the estimated GPS receiver clock parameters are considerably more
stable than depicted in Table 20.1. In a similar way, any gap in the Galileo satellite clock could be preserved
over a period of about 0.5—-1 hour. However, if the Galileo clock is modeled using linear bias and drift over a
period of one day, the estimated results are sufficiently stable to resolve the T2T ambiguities. The last line in
Table 20.1 refers to an optical clock and represents the state-of-the-art in clock performance.

This analysis shows that T2T narrow-lane ambiguities can be considered as cycle-slips, and stable clocks
in the IGS network could be used to correct them between subsequent tracking passes. This statement is true,
as long as 40-50 well performing H-masers in the IGS network can be modeled with just two linear clock
parameters per day. An additional geometry term, including station coordinates and troposphere parameters
can be estimated with sufficient accuracy and its impact could be considered smaller than the clock contribu-
tion.

On the other hand, the best IGS Final clocks for GPS and GLONASS satellites (estimated epoch-wise
satellite clock parameters) show standard deviation of about 15 ps (a typical comparison between the best

GPS/GLONASS clock solutions and the IGS Final Product in 2011). This corresponds to a standard deviation
of about 4.5 mm or roughly 3.4 mm above the noise floor of the ionosphere-free linear combination. The

3 mm noise floor of the ionosphere-free linear combination corresponds to a phase noise of about 1 mm on
L, and on L, . It is expected that the noise floor of 15 mm will be improved in the near future to 5—10 ps
(2—3 mm ), especially when additional Galileo satellites become available. Galileo satellites can reduce noise

in the estimated epoch-wise clock parameters of GPS and GLONASS satellites by using common ground
station clock parameters. This is what one can see when processing GLONASS data together with GPS — a
clear improvement in the estimated GPS satellite clock parameters. This analysis shows that estimated satellite
clock parameters are of sufficient accuracy to be used for T2T ambiguity resolution, i.e., to bridge the gap
and fix the cycle-slip ambiguity between two consecutive tracking passes. Since the GPS satellite orbit can be
predicted very accurately, assuming Galileo satellite clock stability one could estimate T2T ambiguities as
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20 Track-to-Track Ambiguity Resolution for Zero-Differences — Integer Phase Clocks

cycle-slips. In the following sections, we will develop a Galileo/GPS three-carrier linear combination with a
wavelength sufficient to fix ambiguities to their integer values by treating them as simple cycle-slips.

20.6 Towards the LEO Network in Space and Combined LEO/GNSS
Frame Parameters Based on the Cumulative Track-to-Track
Ambiguities

For one LEO satellite and the constellation of 30 GPS satellites, one can expect about 450 zero-difference
ambiguities for a period of one day. Connecting the carrier-phase between consecutive tracking passes, the
T2T ambiguity resolution leads to a reduction in the overall number of LEO ambiguities of about 95%. After
fixing ambiguities between consecutive tracking passes (16 LEO revolutions), we end up with only one cumu-
lative or core float zero-difference ambiguity per GPS satellite (and LEO) for the period of one day or longer
(i.e., 30 ambiguities in total for all GPS constellation a total of about 30 GPS satellites).

If we now look at a constellation of several LEO satellites, or just two LEO satellites flying in formation
(as with the GRACE-A /B mission), after T2T ambiguity resolution we need to fix only one arc-specific float
ambiguity, i.e., one core float ambiguity per GPS satellite and one LEO satellite for the entire arc. Once
carrier-phase between the LEO satellite and one GPS satellite is connected for the entire arc (about 16 orbits
per day), one can form baselines between the LEO satellites and/or between the LEO satellite and the ground
stations. Typically, for the ground-to-LEO GPS baselines with about 100 ground stations, we have about 5000
double-difference ambiguities for the period of one day. Following the proposed T2T approach, this total
number of ambiguities can be reduced to one double-difference ambiguity per LEO satellite and ground station.
It should be noted that the duration of LEO passes is very short (typically 15—20 min) and when GPS
baselines are formed between LEO satellites or a ground station and a LEO satellite, the observation time of
one double-difference ambiguity is significantly shorter than that for the original zero-difference ambiguity.
However, after fixing T2T ambiguities, the observation time of one double-difference ambiguity is increased
to the entire duration of the arc (e.g., 24 h or even one week).

It should be noted that LEO orbits can be estimated with an accuracy of 1 —2 cm without any ambiguity

resolution. Thus, the float orbit solution could be used and T2T ambiguities could be fixed to their integer
values. After T2T ambiguity resolution, an efficient combination of LEO and ground GPS measurements is
feasible, leading to a combined LEO-to-LEO or ground-to-LEO reference frame solution of utmost accuracy.

When the global IGS network is processed at the zero-difference level by estimating all GNSS terrestrial
frame parameters and zero-difference ambiguities are fixed using, e.g., the "GFZ approach”, the additional
constraints at the normal equation level for T2T ambiguities improves the overall ambiguity resolution by a
total of about 30-40%. However, the best results are obtained if core T2T ambiguities are fixed first and the
carrier-phase is connected for all tracking passes. This reduces the number of all narrow-lane ambiguities by
about 95%.
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21. Integer Ambiguity Algebra

n this section we develop integer ambiguity algebra, a mathematical approach to handle integer ambigu-

ities between different GNSS frequencies and introduce what we call the ambiguity-free linear

combination. We first show the vector form of the wide-lane ambiguity for multi-frequency GNSS and
then develop integer ambiguity algebra and show in detail the integer property of the ionosphere-free ambi-
guity for GPS and Galileo. We show that any GNSS ionosphere-free linear combination can be represented by
an integer ambiguity without resolving wide-lane ambiguity. This opens up the possibility of forming an integer
ambiguity of arbitrary wavelength, when combined with narrow-lane ambiguity. We introduce an elegant way
to resolve wide-/narrow-lane ambiguities using the ambiguity-free linear combination that is consistent with
what we term absolute code biases. The advantage of this approach is the consistent resolution of wide-lane
ambiguities and calibration of wide-lane biases in an absolute sense, since the same ambiguity-free linear
combination can be used to estimate absolute code biases, (see section on absolute code biases). Code biases
can be defined in an absolute sense if one uses the IGS convention for estimated clock parameters that the net
effect of code biases is zero for the ionosphere-free linear combination of P-code measurements, or so-called
P;-clocks. They are still limited by the full number of wide-lane ambiguities that can be defined separately
for two- and three-carriers with a wavelength of 0.67 m and 3.41 m respectively. Since absolute code biases
are determined against the ionosphere-free P-code, we obtain a consistent framework for ambiguity resolution
for all four GNSS. Then, by using integer ambiguity algebra, we develop three-carrier wide-/narrow-lane linear
combinations for GPS/Galileo and show how to use this approach for ambiguity resolution and retrieval of
ionospheric effects. We show that a three-carrier-type Melbourne-Wiibbena linear combination can be derived

by means of ambiguity algebra.

21.1 Code-Ambiguity Linear Combination

Due to receiver tracking difficulties, e.g., due to missing broadcast orbits, code measurements can also be
biased by integer ambiguities, or what we call “code ambiguities”. A typical example occurred with the
GIOVE-A /B and early Galileo data, when ground receivers were tracking the Galileo signal without knowing
satellite’s position (the broadcast navigation message not being transmitted). In this case, a GNSS receiver
could not resolve the full number of code chip lengths from the receiver to the satellite, as noted for the first
time in (Svehla et al. 2008). It was reported by the Galileo Project Office at ESA/ESTEC that (Svehla et al.
2008) was the first solution of this problem [F. Gonzalez, priv. com.]. This was already available to the Galileo
Project Office (in 2007). Table 21.1 shows code ambiguities applied to different code observables and the clear
clock bias once the code ambiguities are applied. Another aspect of tracking that could cause code integer
biases is incorrect locking in the tracking loops. Figure 21.1 shows the so-called 10-m jumps in the Galileo
PRS (Public Regulated Service) modulation code (C1A-C1B) residuals from GIOVE-A station GIEN, due to
incorrect tracking lock to the nearest asymmetric side-peak (on the right), spaced at 1/12 chip length

~9.77m.
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21 Integer Ambiguity Algebra

Code Raw Pseudorange Chip Length Code Ambiguity  Corrected Pseudorange
[km] [msec] [sec] [km]

C1A 399801 100 -12 40050

C1B -49888 4 75 40050

C1C -49888 100 3 40050

Csl 1149282 20 -185 40050

C5Q 1149282 100 -37 40050

c7Q -49888 100 3 40050

C8Q 1149282 100 -37 40050

Table 21.1 Ambiguities in pseudorange measurements (broadcast navigation message not being transmitted)
in the early GIOVE-A data (GNOR, day 70/2007). The last column shows corrected pseudoranges after
applying code ambiguities with chip length (third column) that we found to match the original data. One can
see a common clock bias in the corrected pseudoranges.

The PRS code chip length corresponds to about ~ 117.2 m and if we consider a correlation profile with 12
chips (as shown in Figure 21.1) the offset to the nearest side-peak is = 9.77 m, (Svehla et al. 2008). Similar
code ambiguities caused by the tracking loops in the receivers could be seen in the early GPS measurements

from the CHAMP mission in 2001, typically at low elevations.
The general form of the code-ambiguity linear combination for measurement on the frequency pair (1,q)

to resolve code and phase ambiguities to their integer numbers can be defined as a difference of wide-lane

phase LW(Lq) and narrow-lane code PN(l,q)

Leanp(Lys Ly, Py By) = Ly g) — Py

=\ 1-¢ A 1-¢ A psat b (211)
= MagNwag ~ Evade TRy Pq)+ + 0

where Ap; and A pg denote code ambiguities on both tracking frequencies and N W(Lq) the wide-lane carrier-

phase ambiguity with wavelength AW (1,q) - The satellite and receiver code ambiguities are denoted as b** and
bye. - Furthermore, the code ambiguity Ap,, can be defined as the sum of an integer number (g ) of code
chip lengths (A, ) between receiver and satellite, and what we call the integer side-peak offset ambiguity (

IIgp ) with length Agp
qu = ACLHCL + ASPHSP’ HSP = :tl (212)

Typically, the integer side-peak offset ambiguity IIgp = %1. It should be noted that by forming T2T ambi-
guities, the code ambiguity A,; will be completely removed for all tracking passes, enabling resolution of
T2T wide-lane ambiguities. However, this is not the case with the integer side-peak offset ambiguity A pIl;

that can change from track to track, as shown in Figure 21.1. That additional effect is due to incorrect lock
to the nearest asymmetric side-peak of the correlation profile in the receiver tracking loop. As long as broadcast
ephemerides are transmitted from a GNSS satellite and the receiver knows the approximate position of the
GNSS satellite, code ambiguities can be directly fixed by the receiver. However, in some extreme tracking
situations, especially at low elevations, with a poor S/N ratio, or in a strong multipath environment, the
receiver can in addition incorrectly lock the signal to the nearest side-peak in the correlation profile. This
incorrect lock could be detected in the early measurements from the GIOVE-A satellite and the very first GPS
measurements from the CHAMP satellite in LEO orbit. Code ambiguities were present in GNSS measurements
from GIOVE-B as well as early Galileo satellites, or in all cases where broadcast navigation messages were not
being transmitted by the GNSS satellite.
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Figure 21.1 The so-called 10-m jumps (left) in the GIOVE-A PRS code residuals (C1A-C1B) due to incorrect
lock to the nearest asymmetric side-peak in the receiver tracking loop (right) spaced at 1 /12 chip length of

~9.77 m (GIEN).

21.2 Ambiguity Resolution based on a Symmetric Geometry-Free Form of
the lonosphere-Free Linear Combination

In the case of three- or multi-frequency GNSS measurements, receiver and satellite code biases will always be
present in the estimated wide-lane and narrow-lane ambiguities at the zero-difference level. T2T ambiguity
resolution can be used to remove these biases in the zero-difference GNSS measurements (by forming difference
between satellite tracks) and reliably fix ambiguities to their integer values. Absolute code biases can be
estimated using ambiguity-free linear combination (see section on absolute code biases). This enables an ab-
solute datum for the remaining float ambiguities to be obtained after the T2T ambiguity resolution.

For any combination of two-frequency GNSS measurements, the geometry-free form of the ionosphere-

free linear combination Ly (comprising only the ambiguity part) can be written as
AN, + Oy = ANy =Ly — Py) + Ly — Py) =2(Ly — By) (21.3)

with Py and Py denoting the narrow-lane and wide-lane linear combination of code measurements with
wavelength Ay, and Ay of the wide-lane Ny, and narrow-lane ambiguities. The main drawback of (21.3) is

the very high noise of the wide-lane linear combination of code measurements. This noise level can be reduced
by the symmetric form of the ionosphere-free linear combination (21.3), with the negative wide-lane ambiguity

2Av Ny = Ny = ANy = (Ly — Py) — (Ly — Py)

(21.4)
= —(kyy + HNl)[(Ll —Ly)+ (P — PQ)]

where Ky and Ky, are the wide-lane and narrow-lane multiplication factors for the first GPS frequency. In

both cases, the noise of the linear combination is too high to reliably fix the narrow-lane ambiguity Ay NV,
and thus an additional transformation is needed to increase the wavelength of the ambiguity with respect to
the noise of the code measurements.

Galileo and future GNSS will introduce a wide-band signal that will lead to very low code noise (in the
cm-range). The Galileo E5 signal with a wide-band signal (nominal bandwidth of 51.15 MHz) and AItBOC
modulation will offer a code noise at the cm-level, enabling reliable ambiguity resolution of the narrow-lane,
or, generally speaking, original carrier-phase ambiguities. The multipath level is expected to be in the order
of several centimeters for the worst-case environment. An alternative to a broadband signal is to use a high-
gain antenna with a very large antenna size. Since the thermal noise is significantly reduced by an increase in
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Observed Noise in the LP Ambiguities LP(L1,C1): Residuals, GPS SV24 (Block IIA)
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Figure 21.2 Ambiguity resolution using a symmetric geometry-free form of the ionosphere-free linear combi-

nation (21.4). The figure on the left shows the noise level in fixing the T2T N; ambiguities in terms of single-

frequency LP linear combination (“graphic data” of L; and C/A code). GPS measurements from the
GRACE-B satellite.

the antenna size, in both cases we can get code measurements with noise at the cm-level or even sub-cm
precision with very large antennae (VLBI). This offers direct resolution of the narrow-lane ambiguities using
a geometry-free form of the ionosphere-free linear combination (21.3) or its symmetric counterpart (21.4).

A closer look at the symmetric geometry-free form of the ionosphere-free linear combination (21.4) reveals
differences in the LP linear combination (mean sum of code and phase) on both GPS frequencies that are
scaled by constant wide-lane sy, and narrow-lane kj; multiplication factors. By forming the LP linear
combination, the first order ionosphere effect is removed and the code noise is reduced by 50%. One of the
best code tracking performances can be seen in the case of the GRACE-B mission, with code noise at a level
of 5—6 cm . Figure 21.2 shows residuals in the original T2T narrow-lane N; ambiguities after forming the
LP linear combination. Figure 21.2 confirms that with a low code noise, the symmetric geometry-free form
of the iono-free linear combination (21.4) can be used for ambiguity resolution for two-frequency GNSS meas-

urements.

21.3 General Geometry-Free Form of the lonosphere-free Linear
Combination

Let us now find the general form of the linear combination of carrier-phase and/or pseudo-range measurements
that fulfils both the ionosphere-free and the geometry-free condition at the same time. In addition, such a
linear combination should be applicable to two-frequency as well as multi-frequency GNSS measurements. The

general form of the linear combination L(ng""7Q) of ¢ carrier-phase observables can be defined as

f
LYo (Ly, Ly, L) = oy N IS a,~ L, (21.5)

LC LC LC

)

where fL(lc’? denotes the frequency of the linear combination

1,2,y
RE D = ogfy dagy +taf, o €R (21.6)
In the case of narrow-lane and wide-lane type linear combinations

a; € {-11} (21.7)
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Introducing the multiplication factor x;

K, = Ji (21.8)

1 1 fLC
we finally obtain the general form of the linear combination for multi-carrier GNSS measurements as
12,
LY Ly, Ly Ly) = 1Ly + by Ly + oo+ 5 L, (21.9)

The basic condition one can formulate in forming any linear combination is the geometry-free condition that
removes the geometrical terms from the observation equation. The geometry-free condition is fulfilled if the

sum of all multiplication factors r;, of n observables, is equal to zero
Ky +hy+..+K, =0 (21.10)

The geometry-free condition guarantees that ambiguities are estimated solely by means of measurements. In
a similar way, the geometry-preserving condition is given when the sum of the coefficients is equal to one

K+ Ky +.+k, =1 (21.11)

In order to remove the first-order ionosphere effect, we need to formulate an ionosphere-free condition that

could easily be derived by setting the sum of the first-order ionosphere effects I, equal to zero for each ob-

servable
kil +roly + .4k, 1, =0 (21.12)
or in the final form
2 2
Ky +n2%+...+mn%:z0 (21.13)
f2 n

It is assumed that higher-order ionosphere effects can be pre-computed with sufficient accuracy, and, consid-
ering their size, will not have any significant impact on ambiguity resolution. When multiplication factors
fulfill the ionosphere-free condition, we may define the ambiguity linear combination

KM Ny + B ANy + .o+ K AN, = AN (21.14)

with the ionosphere-free ambiguity AN . In this section we will show in more detail that the ionosphere-free
ambiguity term can be represented by an integer N and an ionosphere-free wavelength A, as with any other
carrier-phase observable. In the general case of the ambiguity linear combination (21.14)

g<n (21.15)

if carrier-phase measurements are combined with pseudorange measurements. In order to preserve the integer
nature of the ionosphere-free ambiguity, we need to formulate an additional, what we call, the integer ambi-
guity condition. One way to derive the integer ambiguity condition is to introduce into (21.14) the normalized

wavelength Xi , defined as

X =L (21.16)

and the normalized ambiguity linear combination
NNy + koA N, +...—|—anqu =N (21.17)

which gives the integer ambiguity equation defined as
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N = i,N| +i,Ny +isNy + ...+ i, N, iy iy iy, iy € Z (21.18)

with

B = RN, Oy = Koy, ey = K\, (21.19)

I
From (21.6) it follows that in the case of wide-lane and narrow-lane type linear combinations the following
integer ambiguity equation can be defined

N =N, +ayNy +...+a,N, o, €7 (21.20)

2

Another integer ambiguity condition for four-frequency Galileo measurements can be found in (Ji et al. 2007)
and for code-phase linear combinations in (Henkel 2008).

An elegant way to find the integer multiplication factors in (21.18) is to make use of the wide-lane
ambiguities that can be resolved directly at the zero-difference level. Wide-lane ambiguities align the phase
ambiguities between two different carrier-phase observables and for a particular frequency pair can be reliably
determined to their integer values using the Melbourne-Wiibbena linear combination. Wide-lane and narrow-

lane ambiguities relative to the reference ambiguity N, can then be defined as

Ny =N =Ny . Nyq =N-N,

=N, —|—Nq

(21.21)

Ny =N +Ny, .. Ny,

and after substitution into the ambiguity linear combination (21.14), we obtain the expression for the narrow-
lane-wide-lane ambiguity linear combination of the generalized ionosphere-free ambiguity

(K1AL F RgAy + o R AN = (RoAg Ny + g Ag Ny 50 4 oo+ K A Ny ) = AN (21.22)
or, in short
q q
AN = NiD ok =D 8NNy (21.23)
i=1 i=2

Substituting (21.8) for «; € Z (wide-lane/narrow-lane type linear combinations) into (21.23) we obtain

q q
N =N a; =Y Ny, (21.24)
i=1 =2
Since
Nyaag = Nw + Ny (21.25)
we finally obtain
q q q
N=N) a; =Ny a; =) a;Nyy, (21.26)
i=1 i=2 i=3

The simplest form of (21.22) can be written as

1
—()\N + Ay oot )\N(Lq))Nl +
q (21.27)

+2%1[()% - AN)NW * <)\W<1*3> ~Av <1a3>)NW<1,3> Fot ()\W(l,q) - AN(l,q))NW(LqJ = AN

or
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1d 1 d
AN = N, ;Z Avay T Q_QZ ()‘W(Li) - )\N(l,i))NW(l,i) (21.28)
i=2 i=2
that reduces to
1d 1 d 1 d
AN =N, ;Z Anay + 2—qZ ()‘W(l,i) - )‘N(l,i))NW + % > (AW(LZ') - )‘N(l,i))NW(Q,i) (21.29)
=2 =2 i=3

Eq. (21.28) combines all possible carrier-phase measurements in a multi-frequency GNSS environment, reduc-
ing the noise level by \/; , and thus is equivalent to processing all measurements without forming any linear
combinations and estimating one ionosphere-free slant delay per epoch and satellite. The advantage of esti-
mating an additional ionosphere-free slant delays is in the absorption of one common multipath effect per
epoch and satellite. However, such an epoch-wise bias could also be estimated on the level of ionosphere-free
linear combinations. Nevertheless, if precise point positioning is based on estimated clock parameters using
either of these two approaches, the results will be consistent in both cases if carried out in a consistent manner.
This is especially important considering that two-frequency ionosphere-free linear combinations will be stand-
ard for all Galileo services, as is the case for GPS and all four GNSS. In the case of precise point positioning,
an additional epoch-wise bias can always be estimated to average out common systematic effects, such as
multipath and front-end effects of the receiver. The estimation of an epoch-wise bias per satellite and receiver
was first performed in (Schaer 1999) in the case of two-frequency GPS measurements, where this parameter
was called the SIP or the stochastic ionosphere parameter.

In the case of carrier-phase measurements from two GPS frequencies L; and L, , the general form (21.28)

reduces to the well-known expression for the ionosphere-free bias that is actually a float ambiguity
1
/\NN1+§()‘W — Ay )Ny = AN, (21.30)

typically denoted as N, and the associated wavelength as ;. We will see later that N, is an integer ambi-
guity with the specific wavelength A;. For the integer properties of the ionosphere-free ambiguity, we refer to

Section 21.5. The ionosphere-free ambiguity in (21.30) is directly related to the general form of the ionosphere-
and geometry-free linear combination for two-frequency GPS measurements.

21.4 Triangular Form of Wide-Lane Ambiguities

Considering all possible dual-frequency pairs of multi-frequency GNSS measurements, wide-lane ambiguities
can be resolved using the Melbourne-Wiibbena linear combination. If the frequencies in such a pair are very

close to each other, e.g., Ly and Ly, the resulting wide-lane ambiguity will have a so-called super-wavelength
(~ 5.86 m) , about an order of magnitude larger than the original wide-lane wavelength between the L; and

L, carrier-phase observables. However, the noise floor of such a super wide-lane linear combination will be

increased by a factor of about 33. Nevertheless, it will still be, by a factor of about 2, the wide-lane ambiguity
to be best determined of the three wide-lane linear combinations. Thus, in order to use such a super wide-lane
ambiguity as an additional constraint in the estimation of wide-lane ambiguities, we introduce the vector form
of the three-carrier wide-lane ambiguities as depicted in Figure 21.3
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Figure 21.3 Triangular form of the three-carrier wide-lane ambiguities. The three pairs of wide-lane ambigu-
ities are fully linearly dependent, but only two pairs can be estimated independently.

Ny =N, —N,
Nys = Ny — Ny (21.31)
NW(2,5> =N, —Nj

from which it follows the triangular form of the wide-lane ambiguity
Nws) = Nwas) = Nw (21.32)

that can be used to additionally constrain the resolution of the other two wide-lane ambiguities. From (21.32)
we see that for all frequency pairs, the wide-lane ambiguities can be reliably fixed to their integer values and
be used to align carrier-phase ambiguities between different frequencies. However, all three pairs of ambiguities
are fully linearly dependent and one can estimate only two pairs independently.

A similar geometry-free approach can also be applied when different measurements on the same frequency
are available. For instance, in the case of two-frequency GPS measurements from the GRACE-B satellite, we
can form two different narrow-lane and two wide-lane ambiguities between the L, — L;, phase measurements
on the first frequency and the second GPS frequency. It is assumed that the common ambiguities on the same
frequency can easily be fixed between L; — L;, phase measurements, as demonstrated in Section 20.4. Thus
with the reference ambiguity denoted as N, on P, we can write the following transformed ambiguity equa-
tion

n

1 & 1
AN =N, on > Ay T on > Awas — v N (21.33)
1 1

From (21.33) we see that, with this technique related to a parameter transformation, we can combine all
independent ionosphere-free linear combinations, transforming all narrow-lane ambiguities into the ionosphere-

free linear combination with the common N; ambiguity, see also (21.29). Thus in the case of multi-frequency

GNSS measurements, the number of parameters is the same as for two-frequency GPS using L, . However,
the noise level can be decreased by about \/5 by adding the second ionosphere-free linear combination L3<1 5)

in the case of the third GPS frequency, or by adding the ionosphere-free linear combination based on L;,

carrier-phase L3(1 A5)
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Ambiguities

21.5 Ambiguity-Free Linear Combinations — Geometry-Free Ambiguity
Resolution of Wide-Lane and Narrow-Lane Ambiguities

Here we introduce an elegant way to resolve wide-lane and narrow-lane ambiguities with the ambiguity-free
linear combination that is consistent with the code biases (see section on the absolute code biases). Let us

write the ionosphere-free linear combination for L; and L,, and, in addition, for L, and Lj carrier-phase

measurements

1
L5* = p+ 2y N, +§<>‘W — Ay )Ny

. (21.34)
25 _
Ly” = p+ Ayves N1 — AvesNw + 5 (>\W<2,5) —AN@p) ) Nyp(a5)
We now define the following ambiguity-free condition
KAy + 58 Ay oz =0 (21.35)
satisfying the geometry condition
R R =1 (21.36)

from which the following expression to calculate ambiguity-free multiplication factors that are of very moderate

magnitude results:

. A
~ 7.02 wyl N __hTh g (21.37)

Lt __TWes)  _hth _
Av —Aves)  h— ks Av —Aves) hi=1

1

Applying the ambiguity-free condition to the ionosphere-free linear combination, we obtain the following nar-

row-lane ambiguity-free linear combination

L?;f* = Iﬂff*lé'? + /i;f*]_%’s

K{zf* " Hgf* (21.38)
=rt|=5 (Aw = Ay ) — x5 Avis) | Nw + 5 ()‘W(Q.S) - )‘N(Q,S))NW(ZS)

with the following wide-lane wavelengths of considerable magnitude

af* .
N = - (=)= H;f*AN(%) ~ 3.40 m
f* (21.39)
aq,
f Ko N
A(es) = 5 ()‘W(2,5) - )\N(g,g,)) ~—17.28 m

Let us now repeat the procedure with the (L, Ly) and the (L;,L;) combination of the ionosphere-free linear
combination
1
Li* = p+ Myl +5<)‘W — Ay )Ny
. (21.40)
15 _
Ly” = p+AyasN + 5 ()‘W(1,5) - )‘N(LS))N W(L5)

We thus obtain the ambiguity-free multiplication factors
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o Twas fith
K/l =

N hlh

~ 54.8 k™ =

- 538 (21.41)
Av —Avas ok Av = Anas) =1

and the following narrow-lane ambiguity-free linear combination

Lgf** — ,l{f‘f**Lé’Q + fi;f**_[,éﬁ
Kaf** liaf** (2142)
=p+ 12 (A = Ay )Ny + 22 (/\W(l,s) — /\N<1,5)) Nyas)

with the following wide-lane wavelengths

af**
AT = ”12 (A —Ay) ~ 20.69 m
- (21.43)
a,
f** . RQ' ~
Repeating the procedure with the third combination of ionosphere-free linear combination
P =p+A Ly A
L3" = p+ AyasN +5( W(L5) — N(l,s))N W(L5)
) (21.44)
25 _
L3" = p+ Aves N1 —AvesNw + 5<)‘W(2,5) - )‘N(2,5))NW(2,5)
we obtain the ambiguity-free multiplication factors
- A
Rl = Ve Ktk gg gt o N9 B o1 (91.45)

Avag) —Aves)  h—h Avs) — ANes) hi=Fh

and the following narrow-lane ambiguity-free linear combination

L(éf*** — /ﬁ;ff***[%‘fl i /{;f***l%s _
af R (21.46)
()‘W(2,5) —ANes) ) Ny 25

K
=p—hy  AyesNw + 12 ()‘W(I,S) - )‘N(LE)))N ws) T

kkk

where nff***)\N(m)Nl + Ky AN(2,5)N1 =0 due to the ambiguity-free condition for N, i.e., the multiplica-

tion factors (21.45). For the wide-lane wavelengths in (21.46) we obtain

)‘%*** = *"“gf***AN(Q,E)) ~ —0.86 m
f
N Ky’ _()\ - ) ~ 2.54 m (21.47)
W(L5) 9 W(L5) ~ "N(L5) ~ 2. )
. s “i; Kokok N
AW(zs) = 5 ()‘W(Q,s) - >\N(2,5)) ~—19.82 m

It can be shown that the differences of the two linear combinations (21.38) and (21.42) is equal to zero
* sk
L =L = 0= Ni Ny + Npsy Nwas) + Nies Nives) (21.48)

i)

where
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Ambiguities
Haf* _ K:a/** .
A = %(AW ~Ay) =68 Ay ~-1728m
af
Mrws = ——2—(Mwas) — Mvas)) ~ 17.28m (21.49)
W(15) 5 W15 ~ AN(L5) . .
+ “gf* N
AW (25) = T()‘W(Q,E)) - )‘N(Q,S)) ~—17.28m
or
* Hok Kaf* * ,‘ﬁ;af*
" — o ===\ =y ) =55 Ao [N + 2_<)‘W(2,5) - )‘N(2,5)>NW(2,5) -
2 2 (21.50)
/{/ff** /ﬁ;;f**
75 (A = Ay ) Ny — 5 ()\W(1,5) - /\N(Ls))N W(L5)
that can be reduced to
* )k Iiaf* — K,af** *
L?’,f —L(:L).f =1—"1— 5 ! ()‘W _)‘N)_Kgf Avies) |[Nw + ( )
21.51

* k%
af K gf

+ 22 ()‘W(Q,f)) - >‘N(275))N W(25) ~ (AW(LS) - )‘N(1,5)>N W(L5)

Thus, there is a way to resolve the wide-lane ambiguities and obtain ambiguity-free linear combination con-
sidering only wide-lane ambiguities from the GPS carrier-phase measurements on the three frequencies.
Another approach to remove geometry in these linear combinations is to form ambiguity-free linear com-
binations of single code measurements. This could be very interesting for future wide-band GNSS signals, such
as PRS code on Galileo E6 that offers cm-level precision. For this, we make use of the LP linear combination

LP =(L+ P)/2 and the ionosphere-free linear combination L, of two carrier-phase measurements L; and

L2
AF, = Ly + k¥ LP, (21.52)

that contains only an absolute code bias from P, code measurements. The geometry-preserving condition for

multiplication factors nff and /{;f is then as follows

w4 Rd =1 (21.53)

For the first time, we are introducing here an ambiguity-free condition (a condition to remove an ambiguity

that is common to a pair of linear combinations) that for ambiguity N; on L; carrier-phase is defined as
af af )‘1 .
a4+ wgf TH=0 (21.54)

where )y denotes the narrow-lane wavelength of the narrow-lane ambiguity in ionosphere-free linear combi-
nation Ly and A;/2 is the wavelength of the L; ambiguity in the LP, linear combination. The ambiguity-

free condition is fulfilled as long as wide-lane ambiguities are fixed, i.e., all ambiguities are aligned to each
other N, = N, = N, using e.g., Melbourne-Wiibbena linear combination. After solving (21.53) and (21.54),

for the multiplication factors of ambiguity-free linear combination in (21.52) we obtain

X X )
oof _ _hth oo __2h (21.55)

! L1 Y h—h
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We can also write ambiguity-free linear combination (21.52) for other code measurements and frequencies. For
LP, = (L, + P,)/2 we obtain

AFy = kil Ly + w5, LPy (21.56)

with
wf 2hth o g 2 (21.57)

W hh R
and for LP; = (L; +Cy)/2

AFy = k{ly Ly + Kl LP; (21.58)

with

2f;
Wil = hth il = 2 (21.59)
2f5—h—h 2f5=h—h

Accordingly, for the Galileo E6 signal we introduce LFy; = (Lg + E;;)/2 that divides E; by 2 and reduces the
code noise of the original E6 frequency by 50%

AFyg = rli Ly ) + gl Py (21.60)
with

oof Wt R
1(E6) fi— 1 2(E6) fi—1

(21.61)

Such an ambiguity-free linear combination could offer a noise level of 10 —15 cm and could be used for the

resolution of wide-lane and narrow-lane ambiguities by making differences to e.g., (21.38) and removing the

geometry term. Once singe-frequency ambiguity is resolved on the wideband GNSS signal, e.g., Ej, all ambi-

guities are resolved, since wide-lane ambiguities can be fixed to their integer values. This is also true for the
absolute code biases that could be used as a reference for the absolute calibration of code measurements and
the resolution of wide-lane ambiguities; see the section on absolute code biases and calibration of code meas-
urements. The advantage of this approach is that it offers consistent resolution of wide-lane ambiguities and
calibration of wide-lane biases in an absolute sense, since the same ambiguity-free linear combination is used
to estimate single-frequency absolute code biases. Since absolute code biases are determined against the iono-
sphere-free P-code observable (IGS conventions for clock parameters) we can establish a consistent framework
to process observables that could be extended to all four-GNSS.

21.6Integer Ambiguity Algebra and the Integer Property of the
lonosphere-Free Linear Combination

The ionosphere-free ambiguity of L; and L, carrier-phase measurements is a real number and can be decom-
posed into the sum of a narrow-lane and a wide-lane ambiguity. Here we show that it is possible to express
an ionosphere-free linear combination as a function of a single integer ionosphere-free ambiguity without
resolving the wide-lane ambiguity.

We start with the ionosphere-free linear combination and introduce the integer ionosphere-free ambiguity

N; with the wavelength Ay as follows:
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KA N + KgAgNy = A3 N5, N;eZ (21.62)

with corresponding multiplication factors x; and s, defined as

2 2
Ky = 2f1 oy :7% (21.63)
f1 - f2 f1 - f2
These can easily be derived from the ionosphere-free (21.13) and geometry-preserving condition (21.11)
f2
Ky + Ky f% =0, K +hry=1 (21.64)
2

It is interesting to note that the ionosphere-free multipliers can be represented as the product of the wide-lane
and the narrow-lane multipliers on the first and the second frequency

K1 = Ky Ky, Ko = Rw() RN (21.65)
with
h fy
K“N(l) =, K (2) = (2166)
h +5 h +1h
h fy
Kwa) = y  Bwo) = (21.67)
@ f 1 ) f—
Let us now substitute (21.63) into (21.62) to obtain
h fy 1

N, - Ny=—N (21.68)
f12_f22 ! f12_f22 ? f3 ’

that in the case of aligned ambiguities N; = N, , after wide-lane ambiguity resolution reduces to

—L N =1w, (21.69)
f T f 1 f 3
1 2 3
fi=Hh +f =(154+120)- f - Ay = Ay (21.70)
Let us now write (21.62) in the following form
A A
N1 n RoAg ]\/v2 — _3]\73 (21.71)
KAy KAy

and since

Fody S 1200fy 60 (21.72)
kN f, 164-f, 77

it follows that

ff-F

3

[Ny = foNy =

N, (21.73)

Eq. (21.73) will remain unchanged if the two GPS frequencies 154 - f; and 120- f; are divided by the funda-
mental GPS frequency f; =10.23 MHz. The same is true for (21.62). Therefore, we may normalize all GPS

245



21 Integer Ambiguity Algebra

frequencies with the fundamental GPS frequency f, and consider f; and f, to be integers of 154 and 120

respectively.
One of the integer ambiguity solutions of (21.73) is

f3 = (f12 _f22)/fo = (fl _fz )(fl + fz )/f() = foW 'fo (21~74)
or finally
fs = TIntw - fo (21.75)

with the normalized wide-lane frequency fi = (f; —f,)/fy and the normalized narrow-lane frequency
v = (fi + £)/fy - When ambiguities N; = N, are aligned, e.g., after wide-lane ambiguity resolution, we may

write
h=R-F — AN =+ LN, (21.76)
Thus
JwNy = N; (21.77)
giving a direct relationship between the narrow-lane wavelength Ay and the ionosphere-free wavelength Ag

An

T e

~ 3.14 mm (21.78)

Since f;; is an even number in the case of the two GPS frequencies, we may further write

A A
Ay =—N =2 "N _ 629 mm (21.79)
fw fw o
W
2
The same expression can be developed following (21.68) that for two GPS frequencies gives
)‘3
TTN, —60N, = 17N + 60Ny, =77——N, (21.80)
W

If N, and N, are integers, the ionosphere-free ambiguity N, will be an integer when the following condition

is met
A
TS =41 (21.81)
KA
Finally, the integer equation of the ionosphere-free ambiguity N, of the ionosphere-free linear combination
can be defined as
Ny == TTN, —60N, = 17N, 4+ 60Ny, = 137N, — 60N (21.82)
Ny, and Ny denote the wide-lane and narrow-lane ambiguity respectively and A; is the ionosphere-free
wavelength

A A
o1 o A =0 ), L 629 mm (21.83)
K\ 7 4658 f,

with the fundamental GPS frequency f, =10.23 MHz and the speed of light ¢. The ionosphere-free linear

combination with the integer ionosphere-free ambiguity N, is then defined as
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21.6 Integer Ambiguity Algebra and the Integer Property of the lonosphere-Free Linear Combination

Ly = k1 Ly + KoLy == p+ A\3N4 (21.84)
with the geometry term denoted by p. Introducing

A
n_ofkM o h ey (21.85)
m Kol f

we obtain the general form of the integer ambiguity equation (21.82)

nN; +mNy = Ny (21.86)
with
Y
Ay = 10L (21.87)
n

The final form of the equation for the wavelength of the ionosphere-free ambiguity A; with an integer iono-

sphere-free ambiguity N, is

3= ﬁ (21.88)
or in terms of frequencies
¢
Ay = pranr (21.89)
Let us now define a new, transformed ionosphere-free integer ambiguity in the following way
N, =TIN, (21.90)

and after substitution in (21.81) we obtain the following new solution for the wavelength \; denoted as ),

5

=1 — =)\ ~4844cm (21.91)
1A

that is considerably longer than the original ionosphere-free wavelength. From (21.90) and (21.91) we obtain
the following ambiguity equation

17N, 460Ny, = 77N, (21.92)

showing that in an arbitrary case our new transformed ambiguity N 3 is not an integer, but rather a float

ambiguity. However, the integer condition is fulfilled in the special case

—L =1 - Nyjez (21.93)

From the integer equation of the ionosphere-free ambiguity (21.82) and from the transformed ambiguity equa-
tion (21.92) we see that adding one narrow-lane ambiguity to our integer equation (21.82) will modify the

wide-lane ambiguity to (N; +1—N,) and the ionosphere-free linear combination by the wavelength
Xg ~ 48.44 cm (21.91). Therefore, instead of aligning initial ambiguities N; = N, first, by applying a wide-
lane ambiguity, one can first determine the narrow-lane ambiguity NN, with a relatively long wavelength of
X3 ~ 48.44 cm . In the second step, the wide-lane ambiguity can be applied, aligning the initial ambiguities

N, =N,.
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21 Integer Ambiguity Algebra

From this, we can draw the conclusion that one can add an arbitrary number of integer wide-lane ambi-
guities to iono-free linear combination, as long as the single-frequency ambiguity N; or N, is estimated. This
also means that there is a mechanism to form iono-free linear combination with an arbitrary wavelength. Let

us now find the simplest solution when N5 =0, i.e., when iono-free integer ambiguity is fixed. From the

integer ambiguity equation (21.82) we obtain

17N, + 60Ny, = Ny =0 (21.94)
and
60
le—ENW N,c€Z, NyeZ (21.95)

Therefore, after aligning carrier-phase measurements on both frequencies by wide-lane ambiguity resolution,

one can add an arbitrary number of wide-lane ambiguities Ny, under the condition
Ny =17-k keZ (21.96)
that gives the following solution for the single-frequency ambiguity N;
N, =—60-k (21.97)

This means that adding a number of wide-lane ambiguities Ny, = 17k to iono-free linear combination of GPS

carrier-phase measurements is equivalent to adding single-frequency ambiguities NV, = —60k , since the total

number of iono-free ambiguities in (21.94) will not change.

21.7 Integer Ambiguity Algebra for Narrow-lane and Wide-lane
Ambiguities

It can easily be shown that narrow-lane and wide-lane ambiguities with wavelengths

==L e =L Ct10m0m
h+f  154+120 f 274 f,
) . (21.98)
Ay = —— = Lo Ay =— S ~8619em
h—f 154-120 f, 34 fy
have direct integer properties
Ay 4658 Aw 4658
——=—=17 — Ay =17\ ——=——=137 — Ay =137 A
N, 274 N s N, 34 v S (21.99)
satisfying the following integer relations with wide-lane ambiguities
KA T+ KAy Koy n 17
N, — Ny =N, — gy =gy — = — 21.100
" 17, e =N ) =N TS ( )
that gives
(77— 60)N, + 60Ny, = N, (21.101)
or
17N, + 60Ny, = N, (21.102)
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Once the wide-lane ambiguity is introduced in (21.102) one can form an integer ambiguity of arbitrary wave-
length considering that the ambiguity-free linear combination provides absolute (pseudo)-range with an
accuracy of about 20 cm RMS. Thus, we obtain in that case

17N, == N, (21.103)

that could be used as a “ruler” in the ambiguity space when forming a wavelength of an integer ambiguity.

With narrow-lane type ambiguity AyN; in the ionosphere-free linear combination we obtain
Ay Ny Ay Ny = AN, (21.104)

denoting the intermediate wavelength Ay, , where

1 .
A :E(AW_)\N): 5 2 e (21.105)
=15
For the narrow-lane ambiguities it follows that
Al — FgA A 1
A Ry ey oy o 1T (21.106)
Ag A3 m 60

and considering (77 4+ 60)N; — 60N, = N, we obtain

137N, — 60N = N, (21.107)

with a wide-lane type ambiguity Ay, N, in the ionosphere-free linear combination
ANy = Ayw Ny = A3N5 (21.108)

The sum of narrow-lane and wide-lane ambiguity is then

n Ay 17
Ly + Ly, =2L - —=—"—=— 21.109
VoW m Ay 137 ( )
After substituting (21.98) we derive
17Ny + 137Ny, = 2N, (21.110)

21.8 Integer Ambiguity Algebra for the Third GPS Frequency

For other combinations of two fundamental GPS frequencies including L; we have

=154
n__h_ 134 h fo (21.111)
m  f 115 fs =115 f,
=120-
ﬁszizfﬁzf% 5 fo (21.112)
m  f 115 23 |f=115-f,
that in the first and second cases gives the following ionosphere-free wavelength
Ayrs = —— A 2.8 mm (21.113)
S5 0401 £, T '

Similarly, for the second and third GPS frequencies we obtain
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21 Integer Ambiguity Algebra

1 ¢ c
Ayigry = —+— = = Ayiory &~ 12.5 cm 21.114
05 o T T e ( )

In the second case, the wavelength of the ionosphere-free ambiguity is equal to the narrow-lane ambiguity. In
a similar way, the following ambiguity equation can be obtained for the first GPS frequency pair

39Ny + 115Ny 5) = Ny 5 (21.115)
269N, — 115N 5 = Ny (21.116)
and the second GPS frequency pair
Ny +23Ny(55 = Ny (21.117)
47N, — 23N y (05 = Nygas) (21.118)

After substituting Ny, = Ny — Ny, (21.117) reduces to
N1 _ NW + 23NW(25) == N3(215) (21119)

From (21.117) it follows that in the case of L, and Ly phase measurements, wide-lane ambiguities can be

represented as multiples of the narrow-lane ambiguity

A
WES _ 47 (21.120)
AN (25)
with the super wide-lane wavelength
A (25 ~ 5.86 m (21.121)

From (21.117) it follows that for the ionosphere-free linear combination based on L, and L; phase measure-

ments there is no need to solve wide-lane ambiguities before solving narrow-lane ambiguities, since the iono-

free integer has the same wavelength as the narrow-lane ambiguity

1
Lyos =P+ Ayes N + 5 w25 = Aves) Nw(es)
=P+ AvesNses

21.9Integer Ambiguity Algebra for Galileo Ambiguities

In a similar way we can apply integer ambiguity algebra to Galileo measurements. In the case of Galileo

frequencies, the longest wavelength can be obtained by combining Ly, and Lg observables

—125.
n__Jfo_ 125 25 Js fo (21.123)
m f, 115 23 o, =115 f,

from which follows the ionosphere-free wavelength, which is half the narrow-lane wavelength A\ N(6,50)

1 ¢ c 1
)\3(6,5(1 =" — Y = )‘N(G,Sa) — )\3(6750,) =6.1cm (21124)

VT80 fy 2(fo+ f) 2

The corresponding ionosphere-free frequency f3(6.,50) 18 then defined as

250



21.9 Integer Ambiguity Algebra for Galileo Ambiguities

f3(6,5a) =480 f = 2(f6 + fSa) = 2fN(6‘5a) - )‘3(6,5a) = %)‘N(G.{)a) (21.125)
with the corresponding integer ambiguity equation
25Ng — 23Ny, = N3(6,5a) (21.126)
Inserting the wide-lane N W(6,50) and the narrow-lane N N(6,50) ambiguity, we finally obtain
2N + 23N 1650 = Ns650) (21.127)
48N — 23N 650 = Ny (21.128)
Let us now define the frequencies of the new wide-lane and narrow-lane linear combination, respectively

163) 1
fv(v V= 4§ + fsa =< f36.50)

2 (21.129)
1
2

163)
fJE/ )= fi = Jsa + 5 F36.50)

as linear combinations of L;, Ly and the ionosphere-free linear combination L3(6‘5 0 The frequencies of the

new wide-lane and narrow-lane linear combinations are essentially equal to the frequencies of the wide-lane

and narrow-lane linear combinations of the original L; and L, measurements

B = £ = fs = fwas)

63 (21.130)
N7 =h+ T = Ivae
With the wide-lane and narrow-lane wavelengths defined as
1 ¢
\(163) c - ¢ ¢ _1.°_\ ~101.1 cm
W W(16)
Si + fsa — 0.5 hi—=ts 29 f,
1T Jsa 3(6,5a) 1 Je W(1,6) 1 (21.131)
ALO3) ¢ —_c¢ ¢ _ - .c_ Avig) ~10.5 cm
fi=Fsa +05f5650  fi+le Svas 279 o '
the three-carrier wide-lane ambiguity is then
(16.3) _ 1 _ 1
N = Ni 4 Ny =5 Nyg50 = M1+ N —5(25]\76 —23N,)
23
= Ny + Ny, = Ng = (Ng = N5,) (21.132)
25
=N, - EY Ny (650)
In its final form the three-carrier wide-lane ambiguity is defined as
NGO = 2N — 25N 50 (21.133)
In a similar way, we can derive the three-carrier narrow-lane ambiguity
16,3 1
NG =N — Ny, + 5 Vs = N1 = Nsy +5 (25N —23N,,)
23
=Ny =Ny, + No, + - (Ng = N5,) (21.134)
25
=N, + > Ny 6.50)
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21 Integer Ambiguity Algebra

In its final form, the three-carrier narrow-lane ambiguity is defined as

aN (03 = 2N, + 25N, (21.135)

(6,5a)
Eqgs. (21.133) and (21.135) show that with integer ambiguity algebra it is possible to express the wide-lane

and the narrow-lane linear combinations of the original L; and L; measurements as a linear combination of
the wide-lane ambiguity between L; and Ly, measurements. However, the noise floor of the wide-lane linear

combination LW( needed to derive the super wide-lane ambiguity N W (6,50) is higher by a factor of 17 than

6,5a)

that of the original measurements L; on the reference Galileo frequency

o(Ly (g 50)) = 17+ 0(Ly) (21.136)

Therefore, in order to obtain the super wide-lane ambiguity N W(6,50)» We Propose to make use of the vector

form of the wide-lane ambiguity (21.32)

—

N = Nyysn — Ny (21.137)

W(6,5a) (1,5a) (1,6)

since the wide-lane ambiguities N W(i50) and N Wi can be fixed to their integer values using the Melbourne-

Wiibbena linear combination.

Let us now derive a mathematical model of the three-carrier wide-lane and narrow-lane linear combina-
tions and prove that the final form of the three-carrier linear combinations can be reduced to the wide-lane
and narrow-lane linear combinations of two frequencies. By means of (21.129) the three-carrier wide-lane
linear combination is

L%5a73)(L17L5a7LN 650)) = h L+ o Ly,
(650 Ji + fsa = 0556 50) Ji + fsa = 0556 50) (21.138)
_ 0'5f3(6,5a) I
fi + Fsa = 0556 50) {650
and in its final form can be defined as
- 4 + fl’
L(135’173) L ,L ,L ) — fl L + foa L. — f6 5a L )
w ( 15 5a N(6,5a)) f1 _f6 1 f] _f6 5a f1 _f6 N(6,5a) (21139)
= LW(LG)

In a similar way, by means of (21.151) and (21.153) we obtain the three-carrier narrow-lane linear combination

L(1,5ll,3) (L L. L ) _ fl L. — f5a L
i 1 Lsgs Liys s 1 5
I A A R TR LT T (21.140)
N 0-5/3(6 50)
N(6,5
Ji = fsa 055650 (6:50)
leading to the final form of the three-carrier narrow-lane linear combination
. +
L(l,aa,&) L, L. L )= fl L. — f5a 4 fG 5a 1 .
N (L Dsgs Ly a)) R T (21.141)
= Lyag)

As expected, the three-carrier wide-lane and narrow-lane linear combinations (21.139) and (21.141) have been

reduced to the wide-lane and narrow-lane linear combination of the original L; and L; measurements. The

mathematical model of the three-carrier wide-lane linear combination is then defined as
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A X
54,3 W (1,6 J;
L (L, L) = p + Ay Ny —25 2L Ny — f—lll (21.142)
6
and for the three-carrier narrow-lane linear combination
L5 (L, L) Avag Ny +25 200 i ‘ 9 N Sy 21.143
N 1:4g) =P+ AvaeN1 + W(65u)+f 1 (21.143)
6

The code version of the three-carrier narrow-lane linear combination (21.141) is then

hg

6

Py (P Py )= p— (21.144)

21.10Exotic Three-Carrier Wide-Lane and Narrow-Lane Combinations

In Section 21.5, we developed ambiguity integer algebra that can easily be extended to any GNSS frequency

and observable. Let us now form the ionosphere-free L3(2’5) , wide-lane LW(275) and narrow-lane L N(25) linear

combinations of L, and Ly phase measurements

Lyo5y = P+ X325 V3025

f?
Lys) = P+ MwesNwes) — Efl (21.145)
L + Aygs N + s I
N@25) — P N(2,5)1V N(2,5) f 1

with the ionosphere-free ambiguity N 302,5) defined by the integer equation (21.117) in Section 21.5

1 c c
Ny +23Ny o5 = Nz  — As(25) = EE - f3(2.5)
5

~12.5 cm (21.146)

The corresponding ionosphere-free frequency f3(2 5) Is then equal to the narrow-lane frequency fN<2 5)
faep) =235 fo = fo + 5 = fnes) - A325) = An(25) (21.147)

From (21.147) we can see that in the case of L, and L, phase measurements the ionosphere-free and the

narrow-lane linear combinations have exactly the same frequency and wavelength. Following (21.117), the
ionosphere-free integer ambiguity can be defined as

Ny5) = 24N, — 23N, (21.148)
Following (21.5), the general form of the linear combination L(ng’s) of three carrier-phase observables is
L0y, Ly, L) o= oy =2 S Ly +ay S Ly + o Js s (21.149)
LC LC LC
with the frequency of the linear combination f;, defined as
(1,2,5)
fL =ofy +agfy +agfy a; €R (21.150)

Let us now define the frequency of the three-carrier wide-lane and narrow-lane linear combination in the
following way

253



21 Integer Ambiguity Algebra

153)
fV<V b=, + /5 = f25)

o (21.151)
I = h =t Bes

i.e., as a linear combination of L;, Ly and the ionosphere-free linear combination Ly - The frequency of

the new wide-lane and narrow-lane linear combinations is essentially equal to the frequency of the wide-lane

and narrow-lane linear combinations of the original L; and L, measurements

fv(l}’{)"g) =f—-f=f f=34f

- (21.152)
N =R fy =y fy = 274y

With fundamental GPS frequency f, =10.23 MHz , the wide-lane and narrow-lane wavelengths can be defined

as

(1,5,3) . ¢ ¢ ¢

+f— 1 - :
LT 7 ey T Jwtdo , v (21.153)
AL ¢ ¢ - Loy ~107em

By means of (21.117), the three-carrier wide-lane ambiguity is then
15,3
N* = Ny + Ny = Ny = Ny + Ny — (24N, — 23N)
=N, + N, —N, —23(N, — N;)
= N; + Ny — 23Ny 05, (21.154)
== N2 +NW _24NW(275)
=Ny = 24Ny o5

In its final form, the three-carrier wide-lane ambiguity is defined as

NG = Ny = 24Ny ) (21.155)
or by adding Ny — N, to (21.155)
NG = Ny + Ny — 24Ny 05, (21.156)

In a similar way, we can derive the three-carrier narrow-lane ambiguity

Nﬁ\}"”’f’) =Ny =Ny +Nypq =Ny — Nj +(24N, —23N5)
=-N; +N, + N, +23(N, — N;) (21.157)
= N5 + Ny +23Ny 0

In its final form, the three-carrier narrow-lane ambiguity is defined as

1,53
NG = N, 424N, (21.158)

25)
Eqgs. (21.155) and (21.158) show that with integer ambiguity algebra it is possible to express the wide-lane
and narrow-lane linear combinations of the original L; and L, measurements as a linear combination of the
wide-lane ambiguity between L; and L; measurements. However, the noise floor of the wide-lane linear com-

bination LW( is higher by a factor of about 33 than that of the original measurements L; on the first GPS

2,5)

frequency
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(L) ~ 33-0(L;) (21.159)

W(2,5)

Therefore, in order to obtain the super wide-lane ambiguity N W(2;5)> We propose to make use of the vector

form of the wide-lane ambiguity (21.32)

—

wes) = Nwas — NVw (21.160)

since the wide-lane ambiguities N W(L,5) and Ny, can be fixed to their integer values using Melbourne-Wiib-

1,5
bena linear combination.

Let us now derive a mathematical model of the three-carrier wide-lane and narrow-lane linear combina-
tions defined by (21.151) and prove that the final form of the three-carrier linear combinations is reduced to
the wide-lane and narrow-lane linear combinations of two frequencies. The three-carrier wide-lane linear com-
bination is then

L Ly, Ly, Lo ) = A Ly + 5 Ly —
(29) fi + 15 = fes) fi + 15 = I (21.161)
f32,5) '
————Lves) T Anes
f1+f5,f3<2’5)( 25 T Anes)
with AN<275> denoting
i
215
since from (21.145) and (21.146) we have
L =1L -\ N: + 23\ N — ﬁ 1
325) = LN(25) T A325) s 32,5V W (2,5) s 1 (21.163)
= Lys) +Aneps)
In its final form, (21.161) can be defined as
153 f f5 fo+f
L(W )(L1»L57L3<2,5)) = 7 _lf L+ 77 Ly - fQ —f5 (LN(2,5) JFA1v(2,5))
1 2f f 1 2 1 2 (21164)
+
= Ly — f? —fj A1\7(2.,5)
that reduces to
L+
Ly (Ly, L, Lyns)) = p + Ay (N = 24N p5) + 221 1) (21.165)

h=Fh I

and after substitution of (21.155), we finally obtain the (super) ionosphere linear combination or the three-
carrier wide-lane linear combination

WEIIW

153 153
L (Ly, Ly, Ly z) = p+ Ay Ny D (21.166)
1= J2 )5
Since in (21.166) the first order ionosphere effect is multiplied by the very large factor
1Ly = M’ill ~10.6-1, (21.167)

h=F I
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it can be used to derive the first order ionosphere effect. It can be shown that the multiplication coefficients
in (21.161) follow the following properties

Aok
f1 + f5 - f3(2,5) fl - f2
s __k (21.168)
f1 + f5 - f3(2,5) fl - f2
ey _ B
fi + 15 = Fes) fi—F
and so in its final form we obtain the three-carrier wide-lane linear combination
153 bi f; fe25
Ly Ly, Ly, Lyn)) = =2 Ly + =01 - 220 L (21.169)

F=h " h=h" fi—h

In a similar way, by means of (21.151) and (21.153) we obtain the three-carrier narrow-lane linear combination

I (L, Ly o) = ff1+f ho ffif b
1 ; 3(2,5) 1= J5 T J3025) (21.170)
3(2,5)
+——"——(Lya5 T Anis
h—f+ f3(2,5) ( N@5) N >)
leading to the final form of the three-carrier narrow-lane linear combination
L(103)(L1’L07L N )): fl Llf f5 L5+f2+f L +A e ))
Ak hth hth (21.171)
= LN +MAN(2,5)
h+h '
that reduces to
55 h=F
LPI(Ly, Ly, Lya) = p 4+ Ay (N + 24Ny ) — 2—2 21 1, (21.172)
hi+h fs
and after substitution of (21.158) we finally obtain
L1, Ly, L = p+AyN h=hh I, 21.173
(Ly, Ly, Ly 5)) = p + Ay Ny 5) — T ( )
or
153 153 N —f5 f
LY Ly, L, Ly ) = p + Ay NG _fi+—f2ill (21.174)
Note that in (21.173) the first order ionosphere effect is multiplied by the very small factor
() = _hoh A I, ~—0.19-1, (21.175)

h+h ks

As expected, the three-carrier wide-lane and narrow-lane linear combinations (21.164) and (21.171) have been
reduced to the wide-lane and narrow-lane type linear combination of the original L; and L, measurements.

It can be shown that multiplication coefficients in (21.170) follow the following properties
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ho
h=fs+hes hth
- f5 ___b (21.176)
fi =15+ fyep) L+
f3(2,5) _ f3(275)
fi—f+hes hth
and in its final form we derive the three-carrier narrow-lane linear combination
L<1’5’3)(L L., L )= h L, — 5 L: + f3(2’5) (21.177)
N 10450 43(2.5) f+ 1 f+ 5 f+ 3(2,5)
with the following property
h s Ay =0 (21.178)

A —
fi+ 1k h+h

Thus, only the third multiplication factor in (21.177) effectively contributes to ambiguity resolution when the
original zero-difference ambiguities are aligned using wide-lane ambiguities.
The mathematical model of the three-carrier wide-lane linear combination we will use for ambiguity

resolution is defined as

LMLy, Ly) = p + My Ny — 240 Ny + NEL -4 (21.179)
—h s
and for the three-carrier narrow-lane linear combination
L(NLQ'{))(LMLQ) =p+AyNy + 240y Nypo5) — hokh = h (21.180)
h+hfs
The code version of the three-carrier wide-lane linear combination (21.179) is then
pi2d —p _fth e, (21.181)
h=Fh fo
and in its final form
pU2 _hthL (21.182)
h=F I
The code version of the three-carrier narrow-lane linear combination (21.180) is then
pi2d _p R th g (21.183)
fl + fQ f2f5
and in its final form
[ B Sl ¥/ (21.184)
h+1h ks
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21.11 Three-Carrier Type Melbourne-Wiibenna Linear Combination

By subtracting the three-carrier wide-lane linear combination of phase measurements (21.179) from the three-
carrier narrow-lane linear combination of code measurements (21.183) we derive the three-carrier Melbourne-
Wiibbena linear combination

12,3 1,2,3 125
MWLy, Lo, Ly 51, P, Py, Pyos)) = Ly (Ly, Ly, Lo 5)) — P37 (P Py, Py ) (21.185)
that can be reduced to

MW(LQ’S)(LDL5»LN(2,5)7Pl»P5vPN(2-,5)) =MW = Ly — Py = Ay Ny (21.186)

with Melbourne-Wiibbena linear combination MW . The mathematical model of the three-carrier Melbourne-

Wiibbena linear combination is defined as
MW = Ny Ny =240 Ny o5, (21.187)
with an acceptable noise floor, mainly driven by the code measurements
oMWy = oMWY x (MWD % 0.71- o(P)) (21.188)

From (21.187) we see that the three-carrier Melbourne-Wiibbena linear combination can be used to fix the

reference ambiguity N; to an integer value. However, the reference ambiguity N; can also be estimated

using L; and Lj phase measurements, i.e., using the following Melbourne-Wiibbena linear combination
L5) ._ _
MWD = Nys) (N + Nivas)) = Wwas M1 = 280was Nwes) (21.189)
By adding (21.187) and (21.189) we obtain the following observation equation for wide-lane ambiguities
15
Mw L pyw = A + A )N — 240y + 23005 N w25 (21.190)

Although the noise level of (21.190) is increased by a factor of about \/5 in this way, the wavelength of the

reference ambiguity /\W<172~5> is approximately doubled in size and defined as

2 - — J5
Mvaas) =M+ M) = 2hmhTh 0864075~ 1.61m (21.191)

(h = R)h = 15)
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22. Earth Orientation Quaternion

n (Svehla 2006), it was proposed for the first time to represent Earth orientation and rotation by means

of an Earth Orientation Quaternion (EOQ). Quaternions are a very practical way to represent the Earth’s

orientation parameters (EOPs), because the transformation between the terrestrial and the inertial system
can be performed without calculating rotation matrices. Most importantly, the use of EOPs stored in the form
of a quaternion avoids the use of the latest models and standards available from the IERS Conventions, as in
the case of the EOP/ERP parameters provided by IGS and IERS. In this way, information about the Earth’s
rotation/orientation is straightforward and the transformation can be performed much in the same way as for
satellite attitude. This idea that was originally presented in (Svehla 2006), was included in the recommenda-
tions of the Workshop on Precise Orbit Determination for the future ESA Earth observation missions, held at
ESTEC/ESA in 2007 (Svehla 2007c). Following this recommendation, the ESA Core Mission GOCE provides
Earth Orientation Quaternions as a separate product accompanying the kinematic and reduced-dynamic orbit.
The sampling rate of Earth Orientation Quaternions, as provided in the scope of the GOCE mission.

The four Euler symmetric parameters written in the form of a quaternion are a minimal set of parameters
for defining non-singular mapping to the corresponding rotation matrix. Besides their symmetrical properties,
modeling finite rotations using quaternions has many advantages compared to using Euler angles since any
interpolation or integration can be performed on the sphere, preserving the orthonormality of the rotation
transformation (Svehla 2006).

Hamilton or quaternion algebra avoids the use of a rotation matrix and any sequence of successive rota-
tions can be represented very elegantly by the quaternion operator. This also holds for the derivatives of the
successive rotations and the treatment of the kinematic equation of rotation. We show how to interpolate and
extrapolate the Earth orientation quaternions preserving the orthonormality of the transformation. We intro-
duce a transition quaternion derived from the kinematic equation of rotation.

In the field of numerical solutions of ordinary differential equations, geometric integration is defined as a
numerical method that preserves the geometric properties of the exact flow of a differential equation. There-
fore, when talking about integrating quaternions on the sphere and preserving orthonormality of the rotation
transformation at the same time, we are actually talking about using geometric integration.

22.1Kinematic Equation of Earth’s Rotation in Terms of Quaternions

The kinematic rotation of a planet such as the Earth, or a satellite in the orbital plane, can be defined as a
rotation irrespective of the forces that govern that rotation. Kinematic rotation describes rotation of a body,
e.g., (Operation and Wertz 1978), and can be given by a set of first-order differential equations specifying the
time evolution of the rotation parameters. Modeling rotation is, in essence, modeling an instantaneous angular
velocity vector. Space geodesy techniques, such as VLBI, measure the geometric rotation and orientation of
the Earth. Much in the same way, star trackers placed on a satellite take images of stars to provide orientation.
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22 Earth Orientation Quaternion

The Earth Orientation Quaternion defines a rotation between a terrestrial reference frame, such as ITRF,
and the inertial, quasi-inertial, true system of date, or a celestial reference frame, here donoted as ICRF. The

quaternion ¢ is defined in terms of Euler symmetric parameters {q;,¢,,¢5,¢,} defined as e.g., (Hamilton 1853)

q = qq +iq + gy + kqy

q = elsing
P
gy = eQSmE (22.1)
q sin ki
= €4 _—
3 3y
gy = Cos—
0 2

where {e;,ey,e5} are the components of the Euler axis and ® the corresponding rotation angle. The quantity
g is the real or scalar part of the quaternion and ig, + jg, + kg is the imaginary or vector part. {i,j,k} are

the hyperimaginary numbers satisfying the conditions

2= =k=-1

G=—ji=k (22.2)
o= —kj=1i
ki = —ik = j

For more detail on the definition of quaternions and geometric algebra see the original paper (Hamilton 1853).
When working with quaternions available from satellite missions, one needs to take into account the scalar

term ¢, in (22.1) that can be provided either as the first or the last element.

The relationship between quaternions and the rotation matrix can be derived from the so-called "Eu-
ler/axis-angle” representation of the rotation. Following (Operation and Wertz 1978), the direction cosine
matrix A is in this case given by

cos® +e(1—cos®)  eeq(l—cos®)+eysin®  ee5(1— cos®) — ey sind
A=l|eey(1—cos®)—ezsin®  cos®+e3(1—cos®)  eyeq(l—cosP) +e sin® (22.3)
e1e3(1—cos®) + e, sin®  eyez(l —cos®) —e; sin®  cos® + e (1 — cosP)

From there, the direction cosine matrix expressed in terms of the Euler symmetric parameters, or in our case
the rotation matrix R from the terrestrial into the inertial reference frame, is defined as

G- -a+ta g +Hazq) 2q, 45 — 029,)
R=| 2q,qy —a39,) —q +d5—a3+a 295 +a,4,) (22.4)
2qy 45 + 054y) Aq005 —0,9,) —4 — @+ a5 +q;

For a position vector X;rgpp and a velocity vector XITRF given in the Earth-fixed reference frame, the trans-

formation into the quasi-inertial reference frame can be calculated as follows

XICRF =R XITR.F ' (22.5)
Xicrp = B Xyrpp+R Xyrgp

Expressing the first derivative of the rotation matrix by means of the skew-symmetric matrix €2 we have

Xicrp = R Xippp + Q3,38 Xirgp (22.6)
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22.1 Kinematic Equation of Earth’s Rotation in Terms of Quaternions

where the skew-symmetric matrix (23 , can be defined by means of the angular velocity vector

& = {w;,wy,wy} as follows

0 wy —wy 0 wy O

Qoo = |—w. 0 w ~|l—w, 0 0
3x3 3 1 3 (22.7)

Wy —wy 0 0 0 0

wy= —7292115.1567 - 10! rad/s

and can, in some cases, be approximated with sufficient accuracy by a rotation about only one axis. Using
quaternions, the calculation of the rotation matrix can be avoided and the rotation can be replaced by the

quaternion multiplication with (4x1) vectors Xirpp and X opp (the fist value is zero)

Xcrp=0" Xirrp - ¢ (22.8)

where ¢* denotes the conjugate or inverse quaternion ¢* defined as

*

q* = qy —iqy — Jqy —ka (22.9)

The multiplication of two quaternions, ¢ and ¢', can be written as

" !

9 =49 -q

" ’ ’ ’ /

90 49 —0 42 —43]| |qg
" ’ ’ ’ ,
Gi|_|% 90 —93 d2| % (22.10)

" ’ ! ! !
92 42 43 90 4| |92
" ’ ! ! ’
a3 43— @ 4o | B
For the GOCE mission, the Earth Orientation Quaternions are provided for every integer second ¢, of GPS

time (terrestrial time). To obtain quaternion information for the actual epoch time bepo s the kinematic equa-

tion of rotation may be used to propagate quaternion information between the two nearest integer seconds

445 (ty) and qu () . Following (Operation and Wertz 1978), the time derivative of a quaternion reads as

ot + Ab) ~ |I+%QAt o) (22.11)

where I denotes the (4x4) identity matrix and €2 is the skew-symmetric (4 x 4) matrix defined as

0 W3  —Wy Wy
— 0
Q.= 8 YL (22.12)
wy  —w 0 ws

—w; —wy —wg 0
Finally, the first time derivative of a quaternion, or kinematic equation of rotation reads as

dg _ A —g() _ 1o (22.13)
dt At—0 At 2

Assuming the angular vector to be constant between two epochs, by integrating (22.13), we can obtain a
closed solution for the kinematic equation of rotation, see e.g., (Operation and Wertz 1978)

g(t)=e2 -q(ty) (22.14)
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22 Earth Orientation Quaternion

22.2 Transition Quaternion

Since any sequence of successive rotations can be represented very elegantly by the quaternion multiplication

operator as given in (22.10), we introduce and define the transition quaternion ¢, in the following way
q(t)) = a,q(t)
* 1
q (ty) _ o 22.15
0, = alt) 2 = 2 (22:15)
||Q(t0)"

where q* is the conjugate or inverse quaternion defined in (22.9) with the norm of a quaternion given as

Jo] = oo™ (22.16)

Eq. (22.15) allows the calculation of a transition quaternion between two consecutive epochs. Let us now see
how the transition quaternion can be calculated for an intermediate epoch. Using the expansion of the expo-

nential function as given in (Bronstein and Semendjajew 1996) we obtain

kel o0
2 — Z (22.17)
=0 n!
which can be written as
2 2n+1
[Qt] " [Qt "
LAY 2
e2 =% (22.18)
=0 (2n)! 2n+1)!
And since
Q7 = (-D)"wl, , (22.19)
with the identity matrix I, , we obtain
2n 2n+1
n|l n|l
o m(l)&w] m(l)bw
e2 =1, 4Z—+Qw‘12—
A (2n)! = @n+1)! (22.20)
1 1|1
=1, cos|=wt|+ Quw™" sin|—wt
2 2
with the rotation rate w, and finally
cos lwt ﬁsin lwt —ﬂsin lwt ﬂsin lwt
2 w 2 w 2 w 2
Qt —ﬁsin lwt cos lwt ﬁsin lwt ﬂsin lwt
- w 2 2 w 2 w 2
e2 = (22.21)
wy . |1 wy . |1 1 ws |1
—=sin|—wt ——sin|—wt cos|—wit —=sin|—wt
w 2 w 2 2 w 2
—ﬂsin lwt —ﬂsin lwt —ﬁsin lwt cos lwt
w 2 w 2 w 2 2
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22.2 Transition Quaternion

In the case of an extrapolation or interpolation, e.g., between two consecutive epochs, the transition quaternion

g, at epoch bep

o

4 (tepo ) = S4><4q4><1 (t() )
At:tepo —ty
1
cos|—wAt
2

_ s sin [% wAt]
w
S4><4 =

can be obtained in the following way

w

cos [l wAt]
2

Y3 sin [% wAt]

fﬁsin lu}At
w 2

w

ﬂsin[%wAt]

w

ﬁsin[%wAt]

w

—ﬂsin [% wAt] cos [% wAt]

1
ﬂsin —wAt
w 2

&Sin lu}At
w 2
w 1
23 sin|= wAt
w 2

(22.22)

—ﬂsin lwAt —2sin lwAt —ﬁsin lwAt cos lwAt
w 2 w 2 w 2 2

When the Earth Orientation Quaternions are provided with a sufficient sampling rate, (22.22) can be further
approximated by

cos l(,uAt —sin l(,uAt 0 0
2 2
|1 1
sm[—wAtJ cos[—wAt] 0 0
2 2
Syss = ) . (22.23)
0 0 cos|—wAt| —sin|=—wAt
2 2
|1 1
0 0 sin|—wAt cos|—wAt
2 2

with the rotation rate w = —7292115.1567 - 10"!' [rad/s]. Before interpolation or extrapolation of the quater-
nions given at two epochs, one first needs to check if there is any ambiguity in the quaternion between
consecutive epochs, i.e., that the rotation is carried out in the correct direction.

Once the Earth Orientation Quaternion is known for the given epoch, the position vector Xyppp is first

written in the form of a quaternion (the scalar part, or the first value is zero). Finally, transformation from
the Earth-fixed reference frame (ITRF) into ICRF can be calculated as follows

0 q0 aq d9 qs3 990 —491 —492 —43 0
X - - —q,| |X
ICRF| _ |01 9 93 2| |91 90 93 a2 ITRF (22.24)
Yicrr —qy —q3 4o 41| |92 —93 do 41| |YITRF
Zicre] 1793 92 @ qo ) 43 92— 40 ] [ZitRE
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23. A Geometrical Approach to Maodel Circular
Rotations

ere we introduce an elegant way to geometrically model the rotation of a rigid body in vector form.

Typically, to perform a rotation in Euclidian space R one uses rotation matrices based on a given

sequence of Euler angles. Another approach is to use quaternions. A matrix exponent is often used
to describe rotations in mathematical expressions and derivations, i.e., the exponential map from so(3) to
SO(3). However, the nine elements of the rotation matrix are still exclusively used for calculating rotations in
Euclidian space. The axis/angle representation in terms of quaternions and Rodrigues’ rotation formula are
alternative approaches. However, hidden geometrical properties, or the complexity of using quaternion algebra
are the stumbling blocks that lead to the situation that rotation matrices are still almost exclusively used
nowadays. Here we introduce the spherical orthodrome rotation that describes a rotation purely geometrically
in a highly transparent way as an orthodrome, or a great arc on a sphere. The application of such transparent
geometrical rotations in vector form has many advantages compared to any other rotation. Here we introduce
spherical rotation and show basic geometrical properties, i.e., the use of vector algebra to very efficiently
perform rotation of a vector in Euclidian space or to describe any orientation. Thus, this approach could be
used to model Earth orientation and rotation as well as the attitude of a satellite. We also show that this
geometrical rotation approach could be used in orbit modeling, since orbit perturbations can be represented
by circular rotations with an axis of rotation very close to the main axis of the satellite orbit.

23.1Vector Rotations: Spherical Rotation

Spherical rotation on the sphere, as introduced here, is based on the equation of a great circle on a sphere,
called the orthodrome. More on the equations of orthodrome and loxodrome on a sphere, given in a very
elegant orthogonal vector form, can be found in (Svehla 1995) and (Svehla 1996), two student theses (not
Diplom). The first was awarded the Rector’s Prize in 1995 and the second the same prize in 1996. In (Svehla
1995), the following equation of the orthodrome was elaborated in the light of differential geometry and various

projections on a sphere based on two orthogonal vectors ¢, and ¢,
7(a) = ¢, cosa + &y sina ¢ L¢,, |Z’1| = |E'2| = |7_"'(oz)| (23.1)

Thus, to describe a great arc on a sphere we need an orthogonal basis {81,82} and an angle « . The normal

to the orthodrome is then given by & = ¢; x ¢,. Representation (23.1) can be extended and used to describe

the rotation of any vector 7 around an axis of rotation @ and the rotation rate w = |LT)| , along the given arc

of the orthodrome on the sphere.
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23 A Geometrical Approach to Model Circular Rotations

r

Figure 23.1 Spherical rotation - an elegant method of vector rotation, avoiding the use of rotation ma-

trices, quaternions, etc.

We first consider a sphere of radius r, with the fixed rotation axis & and the rotation angle wt defined by

w= |c?1| . In the second step we consider a plane defined by the normal that is collinear with the rotation axis

@ and intersects the sphere in a circle that describes the rotation of the vector r(t), see Figure 23.1. A

rotation of the vector 7(t) is then described uniquely by the following orthogonal basis
{@°, @ xixa°, &°x7} (23.2)

where unit vector &° points along the rotation axis &, &°x7 x&° defines the direction in the meridian
towards the vector 7 and &@°x7 is collinear with the normal to the meridional plane defined by the vector
7. The spherical rotation of the vector 7 around the rotation axis @ and the angle of rotation wt is then
defined as

7(t) = 7rd° &° + O° X7 X &°- coswt + &° X 7 - sin wt (23.3)

After including the scalar product 7&° = rcosa,,, that is constant for all rotation angles and
a= [FO X @°- coswt + 7° - sin wt] (23.4)
we obtain the second form of the spherical rotation
7(t) = r[¢3° cosa,,, + &°x 5] (23.5)
The inverse rotation denoted here as 7" (t) is defined by the negative argument —t
P() = T(—t) = F@°- @° 4+ ° X 7 X @°- coswt — @° X 7 - sinwt (23.6)
thus we obtain the following property
F(t)—7"(t) = 2-&° X7 - sinwt (23.7)
from where it follows
X)) =7{t)—2-0°x7-sinwt (23.8)

Keeping the radius constant, the first and second derivatives are
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23.2 Multipole Spherical Rotation

dr(t)

=rd°xa
dt
oL =L 0 o =
= —w-W°XTF XD -sinwt +w-&° X7 - coswt (23.9)
= wr - W°X|—r°x&° sinwt + 7°- cos wi
d27(t .
():rwoxa
dt?
= —w? G°XTx&° coswt —w? - &° X 7 - sinwt (23.10)

= —wr - W°X|F°x &°-coswt + r°-sin wt

or

d?7(t)
dt?

= —w? - (F(t) - 75°- &°) (23.11)

The kinematic rotation of a planet such as the Earth, or a satellite, can be defined as a rotation irrespective
of the forces that cause that rotation. Here the focus is on the model using uniform circular rotation. This
kinematic rotation can be described by a set of first order differential equations specifying the time evolution
of the rotation parameters.

23.2Multipole Spherical Rotation

Let us now look at the case when the rotation axis @ in is not fixed, but slowly rotating or precessing around
a fixed axis &;. Generally speaking, we can add any number of additional frequencies and additional axes of

rotation. For instance, in the case of Earth rotation, one could also add Chandler wobble, daily and annual
terms, nutation due to tidal forces of the Moon and Sun, with the main period of 18.6 years, as well as

precession. Thus, to add an additional rotation around an axis &7 by an angle w;t, we may write

W°(t) = &y - cos Oy, @7 X (EJO X @5 - coswyt + &° - sin w1t> (23.12)
or
&°(t) = &y cos Qyy + o7 X Ziwl (23.13)
with
—0 =0
cosa,, = W°W;
“a (23.14)
Ziwl = &° X &7 - coswyt + &°- sinwyt
such a nested rotational spherical structure can be extended to any frequency argument

Fl(t) =% cosay, +@°Xa n-w,t and rotation axis &7 . The same model could be applied to the attitude of

GNSS, or of LEO satellites, such as GOCE.

23.3Transition Spherical Rotation

If two vectors are given on a sphere, the question is how to define the spherical rotation that directly connects
them. This would be the same as the so-called second geodetic task on a sphere, i.e., given the positions of
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23 A Geometrical Approach to Model Circular Rotations

two points on a unit sphere {ﬁo(tl),@" (tQ)} we need to define the orthodrome or great arc between them.
Following (23.1) we may define

6 = i(h) (23.15)
from where it follows

coso = cosw(ty —t) =7°(t) 7 (L)
) Ro 70 coso (23.16)
Cg=—"7"——

sino

Finally, for the transition spherical rotation we obtain

7°(t) = ¢, (1) cos wt + (1) sin wit (23.17)
with the first and second derivative
dro(t R R
7(t) = w[—cl(tl)sin wt + (1) cos wt]
P j‘fft (23.18)
r ( ) _ _w2 Fo(t)
dt?

In a similar way we obtain for the apsidal precession, i.e., the precession of the line of apsides dw/dt , around

the unit momentum vector EO(t)

Faops (t) = Fat;t

(t)cos (wot + u')t) + [l;°(t) X T2 (t)] sin (wot + u’)t) (23.19)

with an initial angular value w,. Since the precession of the orbital plane is uniquely determined by the
normal of the orbital plane, one can directly model the angular momentum vector h by rotating it around
the normal to the equatorial plane &g using the following orthogonal rotation

7(t) =70% B° + O° X F X &°- cos wt + @° X 7 - sin wit (23.20)

After including the scalar product fl&;’?l = cosqy,, , that is constant for all rotation angles, we obtain

h(t) = &°- cos ap,, + &° % (ﬁ X &% coswt + I - sinwt) (23.21)

that reduces to a very elegant orthogonal spherical rotation defined as

CR(t) = &°- cos oy, +@°xa. (23.22)
with vector @ where

@ :=hx&-coswt+ h -sinwt (23.23)

Such an elegant method to geometrically rotate a vector around an axis for a given angle of rotation has not
been reported so far in literature.

To calculate the first derivative of the angular momentum vector i_i(t) in (25.23), only the second term
plays a role
E(t) = @°X i = —-&° x|k x&°-sinwt —h - cos wt] (23.24)
If we would like to rotate the vector 7 by an angle 6 around a rotation vector &, or arbitrary number

of rotation vectors (&;,dy,ds,...,d,) we can also use the following nested relations

n
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23.3 Transition Spherical Rotation

(&) = r°cosf + (cﬁl X F°)sin6’
(@), @y) = 7)) cos 0 + (@, x (&) )sin 0
70y, @y, Wq) = T°(Wy,@y) cos 0 + &g X (&, Dy) sin 6
(23.25)

aor o o - or - ] o oo o - .
T(Wy,@g,Wg,...,&,,) = T(Dy,@q,...,0,_1)cosd + &, X F(dy,Dy,...,0,_;)sinf

|8 x 7 = [@y x 7@ = ... = [, x 7@y, By, B, )| =1

Generally speaking, an Earth-centered satellite orbit has a main axis of rotation that is precessing around an
another axis that defines apsidal and nodal precession of the orbit. Typically, non-gravitational forces such as
air-drag or solar radiation pressure have a clear orbit period signal. Therefore, all orbit perturbations can be
described by multipole rotations with an axis of rotation close to the main axis of the orbit. The concept of

circular motion and orbit representation will be discussed further in this thesis.
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24. The Concept of Counter-Rotating Circular
Orbits

ere we discuss the concept of bi-circular orbits and bi-circular orbit perturbations. It is shown how
an elliptical orbit can be decomposed into two counter-rotating circular orbits. In this way, orbital
dynamics can be approximated geometrically by circular orbits or circular rotations. Two counter-
rotating orbits remove the variation of the orbit radius. Bi-circular orbit representation is essentially a linear
combination of two harmonic oscillators with an opposite direction of rotation. In Section 19, we applied a
simple harmonic oscillator to daily estimates of residual Galileo clock parameters. We just looked into the
remaining amplitude in the clock parameters that measure the radial orbit error after removing a linear model
(time offset and drift removed). Similar results to the circular representation of the effect where obtained when
a solution of Hill equations in the radial direction (Colombo 1986) was plotted after removing a linear model
(bias and drift) in the radial direction, see Section 19. The use of harmonic oscillators leads us also to the
synergy or unification in modeling of orbital and rotational dynamics. We will show in the next section an
interesting feature of circular orbit representation: that for a Keplerian orbit the velocity vector describes a
circle. The velocity vector of the satellite in the presence of any point-like mass will rotate about that object
along a circle with a constant radius. Thus an interesting application is in supporting numerical integration.
Another interesting feature of circular perturbations is in preserving the orthonormality of the rotation
transformation, i.e., the geometrical properties of the orbit. The term orthonormality group denotes an or-
thogonal set of vectors that are normalized in terms of length. Most analytical orbit theories use a form of
Keplerian motion as a reference and in numerical integration, typically, higher-order polynomials are used to
approximate the orbit over an integration step. Here we use a combination of two uniform circular motions to
represent the orbit in terms of orbit positions and in the next section we will see how to use a circular
representation and its multipole expansion in modeling orbit velocity.

24.1 The Concept of Bi-Circular Orbits

The simplest orbit in celestial mechanics is the circular orbit. It can be represented as a special case of a
Keplerian orbit which is the general solution of the two-body problem. In the case of circular orbit, geometry
of the orbit is represented by a circle and Kepler’s equation reduces to the equation of uniform mean motion.
The vector of motion of a satellite in uniform circular rotation with a radius ¢, and a constant rotation rate

n can be defined as
T = 0(6’1 cos(nt) + 6'2 sin(nt)) (24.1)

with the orthonormal vector basis 6’1 and 6’2. The mean motion is derived from Kepler’s Third Law
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24 The Concept of Counter-Rotating Circular Orbits

n=|=— (24.2)

with the geocentric constant GM . Denoting the prograde orthonormal rotation with ¢ (n)
67" (n) = C, cos(nt) + C, sin(nt) (24.3)
the final kinematic equation of the prograde orthonormal rotation can be written as
7, =cot(n) (24.4)
Introducing the second derivative
ot (n) = —n2+(n) (24.5)

we then obtain the dynamic equation of the prograde orthonormal rotation

7= cot(n) (24.6)
or
r, = —n’f, = ——G{Y 67 (n) (24.7)
C

Rearranging both sides we can see that (24.7) is the differential equation of a simple harmonic motion
7y 4+’ =0 (24.8)
with n as angular frequency of oscillation. Finally, introducing the mean motion we obtain

= M =
TG +G—37"® =0 (249)
c

which is the equation of motion resulting from a central gravity term.
The velocity and orbit (gravity) gradient can be obtained in a similar way starting with the first derivative
of the prograde orthonormal vector basis

ot (n) = n(—al sin(nt) + 5’2 cos(nt)) (24.10)
and finally
Po=cot (24.11)
or
F oo nlit= = GMi _ GMa, (24.12)
3 c?

Let us now introduce the retrograde orthonormal circular motion ¢~ (n) that describes a circular motion in

the opposite direction

3~ (n) == cd(—n) = cC, cos(nt) + cC, sin(—nt) (24.13)
or
7., =co (n) (24.14)

The dynamic equation of the retrograde orthonormal orbit follows as
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24.1 The Concept of Bi-Circular Orbits

0~ (n) = —n%3"(n)
5 GM _ (24.15)
T, = —c—Qof(n)

Velocity and orbit (gravity) gradient can be obtained in a similar way as

6~ (n) = n(~C\ sin(nt) - C, cos(nt)| (24.16)

=i (24.17)

7= —n2d = —n? = _GM. _ GMo (24.18)
*) *) C'S & CQ

So far, we have considered two simple circular orbits with counter-rotation. Let us now define a linear combi-
nation of a prograde and a retrograde circular orbit with radii of rotation ¢ and d that rotate at the same

rotation rate n
7i=co"(n)+do (n) (24.19)
Introducing the vector basis 5‘1 and 6‘2 into (24.19) we obtain the equation of an ellipse
7 = (¢ +d)C, cos(nt) + (¢ — d)C, sin(nt) (24.20)
7= aal cos(nt) + 66’2 sin(nt) (24.21)

with semi-major ¢ and semi-minor axis b defined as

a=c+d

24.22
b=c—d ( )

from which it follows

(24.23)

The constant radius of rotation ¢ of the first circular orbit is given as the mean between the semi-major and
semi-minor axis whereas the radius of the second circular orbit is computed as half the difference between the
ellipse axes. The magnitude of the resulting radius vector can be derived as follows

. L2 L2 L2 -
r? = |co+ —|—d0’| = |co+| +|d0*| +2cdoto~ (24.24)
r? = ¢ 4+ d? + 2cd cos(2nt) (24.25)
which is the same as
r? = ¢ 4+ d? — 2cd cos(m — 2nt) (24.26)

confirming that the sum of two vectors satisfies the cosine law, since (7 —2nt) is the supplement of the angle

between them. Introducing (24.23) into (24.25) leads to the equation of an ellipse
r2 = a® cos?(nt) + b2 sin?(nt) (24.27)

As a conclusion, we have demonstrated that an elliptical motion can be represented as a superposition of two
counter-rotating circular orbits. The general solution of the ordinary differential equation of a simple harmonic
motion (24.8) is an ellipse and it can be decomposed into a superposition of two circular motions (24.21) with
opposite rotation. This is graphically shown in Figure 24.1. If we rotate the inner and outer circle by the same

angle in opposite directions, point A represented by the vector 05'1 on the outer circle rotates to point A™
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24 The Concept of Counter-Rotating Circular Orbits
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Figure 24.1 Elliptical motion as a superposition of two counter-rotating circular motions.

and the corresponding point on the inner circle is rotated together with the vector d5’2 to the point A~ . The
resulting vector 7 on the ellipse is the superposition of these two vectors. The eccentricity of the ellipse is
then defined as

a?—b%2  2Hed

e:= = . (24.28)
a c+d

Combining (24.22) with (24.28), we can write the radius of the second circular orbit as a function of the orbit
eccentricity and the radius of rotation of the first circular orbit

1= 1—e2

d: c (24.29)

N 1++1—¢?
Once the eccentricity has been derived, the equation of Kepler’s ellipse centered at one of the focii is
7 = 6" (n) + d5~(n) — 2JedC, (24.30)
or by introducing the eccentricity vector as
é:=eC, (24.31)
the kinematic equation of motion in terms of a uniform prograde and retrograde rotation, is given as
7 =co"(n)+do (n)—ce—dé (24.32)

From (24.32) we see that for every circular motion we have one translation to decompose Kepler’s ellipse. The
orthonormal vector basis 5‘1 and 6‘2 is defined such that 5‘1 points towards the orbit pericenter and 5’2 is a
perpendicular coplanar vector pointing in the direction of the satellite velocity at the pericenter. Figure 24.2
shows how the Kepler orbit can easily be oriented and for ¢ = d one obtains a linear motion represented by
circular rotations.

In the next section we will see how to use circular representation and its multipole expansion in modeling
orbit velocity. We will discuss in more detail the property that the velocity vector of the satellite in the
presence of any point-like mass will rotate about that object along a circle with a constant radius. Therefore,
the potential application of this model is in supporting numerical integration over long integration arcs, e.g.,
reference frame satellites, interplanetary orbits, etc.
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W
/

Figure 24.2 Elliptical orbit (left and middle) and linear motion (right) as a result of a coplanar counter-ro-
tating motion. Ellipse: ¢ = 0.85a, d = 0.15a (left and middle), ¢ =d =0.5¢ — e =1 linear motion (right).
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25. The Circular Kinematic and Dynamic Equation
of a Satellite Orbit

ere we discuss the kinematic equation of a satellite orbit based on a circular representation of the

velocity vectors of a Kepler orbit, otherwise known as the two-body problem in celestial mechanics.

The velocity vector for Keplerian orbit describes a circle, i.e., we show that the velocity vector of the
satellite in the presence of any point-like mass will rotate about that object along a circle with a constant
radius. Thus, an interesting advantage of using circular perturbations is that this method preserves the or-
thonormality of the rotational transformation, i.e., the geometrical properties of the orbit. We show that the
proposed circular model could be applied to kinematic as well as dynamic modeling of the orbit and rotation
of a rigid body (satellite, Earth, etc.). In the case of circular perturbations, the radius of rotation is preserved,
as is also the case with rotation of a rigid body (satellite, planet, etc.). At the end of this section, we discuss
the proposed model in the light of geometrical integration, a special kind of integration that preserves the
properties of the orbit, i.e., the exact flow of differential equations or Hamiltonian systems that govern satellite
motion and rotation. In the light of circular perturbations we extend Newton’s theorem of revolving orbits
that defines a special central force as one that is changing the angular speed of the orbit by some constant
factor, while the radial motion remains unaffected.

25.1 The Circular Kinematic and Dynamic Equation of Orbit

Let us first write the dynamic equation of satellite motion given by the radius-vector 7 including the central

gravity term GM / r?
G_dr__GM, (25.1)

with the unit vector defined as 7°. The associated constant angular momentum h of the orbit (given per unit

mass, i.e., or the specific angular momentum) can be written as
h=FxT7 (25.2)
and considering the areal velocity over an angle 6, i.e., the area of the ellipse swept over a given period

— - - — 2 —
h=o- :r2d—9h°:QLh‘”:«/GMa(l—eQ)h":,/GMb he (25.3)

eriod dt a
P o / GM
a3

with the ellipse semi-major axis a and semi-major axis b and eccentricity e, and the unit vector h°

h = \GMa(l — e*) = const (25.4)
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25 The Circular Kinematic and Dynamic Equation of a Satellite Orbit

Including semi-latus rectum p of the Kepler orbit

2
p= Lag a(l —e?) = const (25.5)
a

for the specific angular momentum we obtain

N N 2
h=JoMpie — h=JoMp — cm="" (25.6)
p

and from (25.3) we then have

dt r2 r? r2

_r_ _ (25.7)
a9 h \/GMa(l —e?) \/GMP
By inserting (25.7) into the dynamic equation of satellite motion (25.1), we obtain
i GM_, GM GM_., ~NGMa ., i GM_,
— = [— == T — — =T (25.8)
do h ’GMa(l _ 62) p b do h
Finally, considering (25.6), we obtain the derivative
ar _ _hge (25.9)
do P
or
= X
d_rz_ﬁ;:o:_‘ 7o (25.10)
de D D

We see that the velocity vector describes a circle as a function of the true anomaly 6, i.e., the derivative of
the velocity vector w.r.t. true anomaly is a circle with a constant radius h/p. If we now integrate (25.9) we

obtain the equation of a circle centered at k
5 hoe o o oo w020 o
T=——7 +k o7, =0, T°XT =h (25.11)

where & is a constant velocity vector of integration and Fj is unit vector orthogonal to 7°. It is interesting

to note that the size of the circle in (25.10) does not depend on the orientation of the orbit, only on the shape
of the orbit given by the semi-latus rectum p. In addition, there is one more interesting property: since 7°

and Fj are two orthogonal vectors, the velocity 7 and the orbit vector 7 are orthogonal under the following

condition
(F-F) L7 (25.12)

Generally speaking, the specific angular momentum is not constant i =0, i.e., h = E(t) and p = p(t). Thus

we obtain a torque exerted by the perturbing 7

d

=a(?x?)=?x?+?x#:m# (25.13)

A1)

Finally, combining (25.10) and (25.13), we obtain the equation of motion in the form defined as

ar _ M) e _ 7o (25.14)
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25.1 The Circular Kinematic and Dynamic Equation of Orbit

We call (25.14) the kinematic equation of motion or the kinematic form of the equation of motion, because
the central gravity term that governs the motion does not appear in the equation. Kinematic equation is the
terminology typically reserved for the description of the rotation of a body irrespective of the dynamics that
govern that motion. We will see later in this section how a multipole representation could be used to model
the general case, including all perturbations.

The importance of the kinematic equation of motion (25.14) is two-fold. Firstly, we see that the velocity
vector of the satellite in the presence of any point-like mass (like central term of the gravity field) will rotate
about that object along a circle with a constant radius GM /h or h /p. This "dynamic”-like constant radius
GM /h or "kinematic”-like constant radius h/p is a constant in a Kepler orbit, analogous to the constant
radius of a circular orbit. Thus one can model the orbit of a satellite in a way similar to the way we model
the rotation of a rigid body, e.g., the attitude of a satellite or Earth rotation, making use of the specific angular

momentum £ and 7. We can see that in the case of a Kepler orbit, GM/h aswell as h/p are both constants.

Thus d7 /df is a constant in a Kepler orbit, dependent only on the shape of the orbit, i.e., dependent only on
the geocentric gravitational constant GM .

Eq. (25.14) can be integrated kinematically or dynamically with the initial state vector {FO,?O} defining

the initial osculating Kepler orbit. This leads us to a special type of integration of ordinary differential equa-
tions that is often termed geometric integration, a numerical integration method that preserves the geometric
properties of the exact flow of the differential equations. This means that the geometric properties of the orbit
will be preserved even over a very long integration time, as well as if one were looking at the orbit at very
short “microscopic” intervals. In this particular case, one can define energy to have conservative property in
the geometric integration. This also opens up the possibility of separate numerical integration for the con-
servative and the non-conservative part of the orbit. This is not the case with polynomial representation of
the orbit, as in the case of collocation approaches used in numerical integration. Geometric integration is very
often considered in highly oscillatory mechanical systems as it preserves the properties of the Hamiltonian
systems. Since geometrical integration is well known in literature, we do not give a specific reference. However,
compared to Hamiltonian systems in celestial mechanics, where often generalized coordinates are used in terms
of “momentum” and position, here we are using the geometrical properties of differential orbit velocity, that,
according to (25.14), follow a simple circular motion (similar to a harmonic oscillator). Therefore, the second
important aspect of (25.14) is that any satellite orbit can be represented by circular perturbations, i.e., geo-
metrical rotations only. It is also astonishing that the kinematic “circular velocity equation” (25.14) is not a
function of time at all, but depends only on the geometric angle 6, and h/p also has a purely geometrical
representation, i.e., it does not explicitly depend on the gravity field. This is the reason why we call it a
kinematic equation. Circular perturbations, e.g., in multipole expansion, offer a new way to represent and
numerically integrate satellite orbits and are an alternative to the high-degree polynomials that are used in
numerical integration at the moment. This is especially true for applications that require long integration
time, as it is often the case in planetary geodesy, where the orbits of satellites and planets are integrated over
long time periods, or gravity field missions for temporal gravity field variations. In the case of the general
collocation methods often used in orbit integration, the polynomial model that approximates the orbit for each
orbit component separately in the integration step reads as
q
r(t) =Y (t—ty)" - ny (25.15)
i=0

with ¢ denoting the degree of the polynomials and r,; the coefficients that are estimated when fitting the

second derivative of (25.15) to the acceleration field that governs the equation of motion and is calculated

from models.
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25 The Circular Kinematic and Dynamic Equation of a Satellite Orbit

If we now consider the principle of moments from mechanics (Varignon’s theorem), where the sum of the
torques exerted by several forces (c.f. due to different harmonics in the spherical harmonic expansion) is equal
to the torque of the resultant force, we can derive

=

h=7xi=7xT" +?><ﬁ+...+?><7§n (25.16)

[
w

Thus, instead of integrating the acceleration field 7 along the orbit, one could use specific angular momentum

(torque) h since, in the case of a nearly circular orbit in the Earth’s gravity field, angular momentum changes
very slowly, c.f. precession of the orbital plane and apsidal line due to the J, coefficient of the Earth’s gravity
field. This makes angular momentum suitable for numerical integration of the orbit. We will see later in this
section that to preserve the circular property of the orbit one could also make use of Newton’s theorem of
revolving orbits to account for perturbations in rotation, and the concept of bi-circular orbits to account for
perturbations in a radial direction. Generally speaking, the circular property of the orbit can be preserved by
integrating the velocity vector (25.10) making use of the linear Hill equations for constant acceleration along
an orbit.

25.2 Orbit Representation Using Spherical Rotation

Let us now first see how, by introducing spherical rotation from the previous section and secular perturbations
in orbital elements (Kaula 1966), one can easily represent a satellite orbit over a long period of time. Let us
define the Kepler orbit by the specific angular momentum vector % and the line of nodes 7., (pointing to-

n
wards the right ascension of the ascending nodes) and introduce precession of the orbital plane d€2/dt due to
the J, coefficient of the gravity field. Generally speaking, we may model the rotation of the vector #,, around

the normal to the equatorial plane &g =~ {0, 071} in a very elegant way by using the following orthogonal

vector form, which we call spherical rotation

T (t) = T, cosQt + [ x 75, |sin 1 (25.17)

In a similar way we can write for the apsidal precession, i.e., precession of the line of apsides dw/dt , around

the momentum vector EO(t)

P o () = T (t) cos (wy + dt) +

aps

ho(t)x 72, (t)] sin (wy + wt) (25.18)
with the orbital plane defined uniquely by

he(t) =

AOREN0 (25.19)

an aps

Following (Kaula 1966), secular perturbations in the Keplerian elements due to the J, gravity field coefficients

are given by

3nCyna2 3nC. a2 3nC.na
@ 3nlywa, &2&[1—5%521‘] aM _ 3nCOya, Beos?i— 1]
dt  2(1—e?)%a? dt 4(1—e2)2a? dt 41— e2)3/242

(25.20)
with da/dt = de/dt = di/dt = 0. Therefore, with just a few parameters, it is possible to model an orbit with
an orthogonal vector basis over a long period of time. Since precession of the orbital plane is uniquely deter-
mined by the normal of the orbital plane, one can directly model specific angular momentum vector h by

rotating it around the normal to the equatorial plane &g using the following orthogonal rotation
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25.3 Multipole Circular Perturbations and Newton's Theorem of Revolving Orbits

ﬁ(t) = H&Jﬁ R h x @ - cos Ut + & X b -sin 2t (25.21)
and after including the scalar product k- Wq = cosay,,, that is constant for all rotation angles, we obtain
fz(t) = &g - cosay,, + DG X (l_i X 3§ - cos QU + h- sith) (25.22)
that reduces to a very elegant orthogonal spherical rotation given by
h(t) = @ - cos oy, + @ X @ (25.23)
with the vector @
a= f:x&)g’) ccos Ut + h - sin (25.24)

To our knowledge, such an elegant way to geometrically rotate a vector about an axis for a given angle of
rotation has never before been published.
To calculate the first derivative of the angular momentum vector l?(t) in (25.23), only the second term

plays a role
E(t) = &§ X i= —Q- 3§ x {E X B¢ - sin Qt — h- coth] (25.25)

In the general form of spherical rotation (25.23), we can add different frequencies and additional axes of
rotation. For instance, in the case of Earth rotation, in addition to precession we have nutation due to tidal
forces of the Moon and Sun, with the main period of 18.6 years, the same as that of the precession of the

Moon’s orbital nodes. Thus, to add an additional rotation on top of (25.23) around an axis &7 by an angle

w;t we may write
@G (t) = @y -cos oy, + @&y X (&56 X @7 - coswit 4 W - sin wlt) (25.26)
Such a nested rotational structure can be extended to any frequency argument nw;t and rotation axis &y .

Wq = W7 coswyyt + W5 sinwy ot op Los Loy (25.27)

25.3 Multipole Circular Perturbations and Newton’s Theorem of Revolving
Orbits

To continue this discussion on orbit representation, let us now see if one can separate radial motion from
angular motion. In Proposition XLIIT and in Proposition XLIV of Newton’s Principia (Newton 1687), it is
stated

PROPOSITION XLIII. PROBLEM XXX.
It is required to make a body move in a trajectory that revolves about
the centre of force in the same manner as another body in the same
trajectory at rest.

PROPOSITION XLIV. THEOREM XIV.
The difference of the forces, by which two bodies may be madi. to niove
equally, one in a quiescent, the other in the same orbit revolving, i« in
a triplicate ratio of their common altitudes inversely.
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25 The Circular Kinematic and Dynamic Equation of a Satellite Orbit

“It is required to make a body move in a trajectory that revolves about the centre of force in the same
manner as another body in the same trajectory at rest.” — Proposition XLIII
“The difference of the forces, by which two bodies may be made to move equally, one in a quiescent, the

other in the same orbit revolving is in a triplicate ratio of their altitudes inversely. ” — Proposition XLIV

Figure 25.1 Newton’s theorem of revolving orbits, as published in Philosophie Naturalis Principia
Mathematica, (Newton 1687) showing apsidal precession of the Kepler orbit.

Following Newton’s theorem of revolving orbits in Figure 25.1, Proposition XLIII introduces apsidal precession
under the special category of a central force. Proposition XLIV says that the difference of the central forces
between those two orbits (perturbed and unperturbed “at rest”) varies inversely as the cube of their radial
distances. Newton’s theorem of revolving orbits defines a central force as one that is changing the angular
speed of the orbit by some constant factor &, while the radial motion stays unaffected. Thus, for the true
anomalies between those two Newtonian orbits we may write

dao, dao,

—r—L (25.28)
dt dt

and for the corresponding specific angular momentums
hy =12 —2=rl—L =k h (25.29)

If we now assume that the orbit is circular or nearly circular we may write the following Euler-Lagrange

equation

S R 25.30
" (25.30)

d?r [@]2% 0
dt? at* 3

2

2
separating radial d—; and rotational part r[z—f] . Considering (25.29), we obtain for the difference in radial
dt

acceleration (Newton 1687)

ht  k*h}  h}
AF = i(ry) — i(ry) = L+ - —L = L {1 §? (25.31)
2 1 3 3 3
s T T

Thus, by considering an inverse-cube acceleration, the angular speed or angular momentum will be changed
by a constant factor k. There will be no effect of the new radial acceleration in (25.31) if k¥ = +1. However,
the total angular momentum in (25.28) depends on the sign of k. By setting k£ =2,3,...,n, (25.31) can be
used for multipole expansion of the orbit representation, where each angular frequency defined by k gives a
different perturbation at a different orbit frequency, and so a different contribution to the final orbit.

In multipole representation, the kinematic equation of orbit (25.14) can be written as
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= k. -h PxT PxT
Iy = F°:—ki| 7o = —kiu
do p p a(l —e?)

7 (25.32)

Therefore, the integration of the individual frequencies will lead to an orbit velocity

r°df = —Z
i

kh
p

k; -
p

F=_

hoo o -
7+ ky (25.33)

This model could be extended considering that each frequency k; contributes with a coefficient ¢;, which

leads to

e M_'Odgz —Zci
p i

k, -

h e
7+ ky (25.34)
p

with an initial condition 120. Let us now see how to consider the general case of (25.32), when k = k(6), thus

k/a(1—e?) is no longer a constant radius in (25.32). For this we will introduce the concept of bi-circular
orbits.

With the theorem of revolving orbits, (Newton 1687) introduced the concept of an inverse-cube central
force in order to explain the apsidal precession of the Moon’s orbit. Newton’s theorem of revolving orbits
defines a central force that increases the angular rate of the orbit by some constant factor &, while the radial
motion remains unaffected

% = kﬂ (25.35)
dt dt
which is the same as (25.28). This is a very important theorem that tells us that by adding inverse-cube type
acceleration to any type of central force, the angular rate of the corresponding orbit will be changed by a
constant factor, while the radial motion is the same for both orbits. The specific angular momentum for the
second orbit is then again

de. de
hy = r2—2 — 21

—=k-h 25.36

dt dt ! (25.36)
Let us consider a spherically symmetric gravitational potential, i.e., a potential that depends only on the radial
distance, so that V ~ GM -a" /r"*! . Making use of spherical harmonic rotation, the general form of the spher-
ical harmonic representation of the gravity field of the Earth can be written as spherically symmetric
gravitational potential V ~ GM -a"/ r"*1 considering that the rotation w.r.t. the initial state is purely a mat-

ter of datum definition. When acceleration is expressed in polar coordinates, the radial component is non-zero
and we may write, see (25.30)

2 2 2 2
ar _ (48] _dr R (25.37)
dt? dt a2 3

For the two orbits sharing the same radial motion, we may write for the difference in radial acceleration

k2h2  h?2  h?
AF = #(ry) = #(r) = ——- + =L = ~L(1-2) (25.38)
T T T

that gives the inverse-cube acceleration. Considering only the central term of the Earth’s gravitational field
V = GM/r , the specific angular momentum of the Keplerian orbit is h; = y/GMa(1 —¢?) , hence we obtain

_GM a

r2 T

AF (1- 62)(1 - k?) (25.39)
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25 The Circular Kinematic and Dynamic Equation of a Satellite Orbit

an inverse-cube acceleration, whereas the specific angular momentum is changed by constant factor k. Since
both initial and perturbed Keplerian orbits share the same radial motion, we may introduce the equation of
the initial orbit a(l —e?)/r = (1 + ecosf)

AF = G—Jg-a +ecos 9)(1 - k2) (25.40)
T

Thus the equation of motion of the perturbed orbit can be written in the form

& GM .,  GM 2\ o
T +T—2-(1+ecost9)(1—k )r (25.41)

Assuming a circular orbit e =0 we obtain
Ai = ————Fk? (25.42)

Thus the equation of motion of the perturbed orbit can be written in the form

@i GM ., GM
a__GM. +_(
dt 7,2 7”2

— 7k2 %,’jo

1—k2)f'° 5

(25.43)
We see that for k£ = £1 we have the initial unperturbed Keplerian orbit. By setting k£ = 2,3,...,n, the angular
rate or the specific angular momentum will be perturbed by a constant factor k , whereas the radial accelera-
tion is changed by k2. However, orbits will share the same radial motion, i.e., the radius of both central orbits
will be the same r = a. This can easily be seen if (25.43) is multiplied by

2
a_ (25.44)
a0 k-
and we thus obtain the circular velocity perturbation
d_T’ _ —k GM 7—;0 _ —]C- R*FO = dT — _GM 7—;0 — —R*FO (2545)
do hy k-do, hy

where R* is the constant radius of the circle R* = GM /h, . If we denote a as the radius or semi-major axis

of the initial central orbit we see that there is a geometrical interpretation of the factor k£, i.e., for central
orbits we may write k = a/r. Thus for degree n =2 of the spherical harmonic expansion we may write

ky =2 (25.46)
T

Eq. (25.31) can be used for a multipole expansion of the orbit representation, since each angular frequency
defined by k£ defines a perturbation at the frequency that is a harmonic of the original orbit frequency. If
k > 1, the added inverse-cube force is attractive, whereas it is repulsive when —1 <k <1. When k =~ 1, both
orbits are similar and the net effect is either apsidal precession, if & is slightly lower than 1, or regression, if
k is slightly higher than 1.
Let us now derive the circular perturbations for Newton’s inverse-cube acceleration (25.31) of the initial
Keplerian orbit in the form
d_T:_G_M;oJrﬁ(l_k?);o (25.47)
dt r? r3
The specific angular momentum of the perturbed orbit is hy, = kr? -df, /dt = kr?-df/dt . Thus by multiplying
(25.47) with
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dt r2

at _ (25.48)
o k- hy
we obtain
d—’”:—G—MFwﬂ(l—k?)Ff’ (25.49)
a0 kb kr

Considering that both orbits share the same radial motion of the Keplerial orbit in the form
r=a(l—e?)/(1+ecosf) and considering the specific angular momentum of the initial Keplerian orbit

h# = GMa(l — e?) , we obtain

by = G—M(l + ecos 9) (25.50)
T hy

In addition, by denoting R* = GM /h, , equation (25.49) reduces to

= )
d—r:—R*k 1—1 i ecosf|r° (25.51)
de
12
Finally, by introducing the eccentricity of the perturbed orbit e* = ¢, we obtain
dr . p\ae
—=—k-R* (1 —e* cos 9)7" (25.52)
do

12
This is the equation of an ellipse as long as

e <1, and can be written in bi-circular representation and

be directly integrated without any numerical integration. For k£ =1, (25.52) reduces to the equation of a circle
for the Keplerian orbit.

Let us now see, what happens when £ is not constant along the orbit and is dependent on the radial
distance to the satellite, i.e., k ~1/r. In general form, the radial gravitational acceleration can be written as

- C .an
4 M 1)L e
dt T"+1

R-7° (25.53)

where R-7° is the rotation of the unit-radius vector 7° of the orbit in the direction of gravitation. In the

case of Earth-bounded orbits, those two vectors are nearly collinear. The a, is the equatorial Earth radius
used in the spherical harmonic expansion of the gravity field and C, = C,(7#°) can be related to the initial

state vector 7° of the orbit

c, =R, C, (") (25.54)

n n [¢]

where R, is the transformation matrix of the spherical harmonic coefficients defining rotation of the harmonic

coefficients €, given for a degree n. Therefore, in the general case k, =c, /r" we may write

40y _ . 40y _ ¢, d0, (25.55)
a " dt pnodt '

with ¢, = ¢, (7°) for a degree n. Considering again the Keplerian orbit in the form r = a(l—e?) /(1 + ecos®)

for ky = ¢;/r we derive
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Z—Z =—¢, - R* (1 —e* cos 9)(1 — ecos 6’)?0 (25.56)

Thus, since adding an inverse-cube radial acceleration to the inverse-square acceleration corresponds to a

potential ~ 1/r2 (first degree in terms of spherical harmonics), we can derive

v, = %(1 - k2) (25.57)

or
(25.58)
Discussion in this section shows that there are very interesting alternative approaches for representing an orbit

from the geometrical point of view and that Newton’s theorem of revolving orbits, although not well known
in the relevant literature, leads to very interesting geometrical properties.
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26. A Geometrical Approach for the Computation
and Rotation of Spherical Harmonics and Legendre
Functions up to Ultra-High Degree and Order

n this section we introduce a new algorithm for the computation and rotation of spherical harmonics,

Legendre polynomials and associated Legendre functions up to ultra-high degree and order. The algorithm

is based on the geometric rotation of Legendre polynomials in Hilbert space. It is shown that Legendre
polynomials can be calculated using geometrical rotations and can be treated as vectors in the Hilbert space
leading to unitary Hermitian rotation matrices with geometric properties. We use the term geometrical rota-
tions because although rotation itself is not governed by gravity and it can be used as a proxy to represent a
gravity field geometrically. This novel method allows the calculation of spherical harmonics up to an arbitrary
degree and order, i.e., up to degree and order 10° and beyond.

26.1Basic Definitions

Following (Arfken et al. 1995), Legendre polynomials may appear in many different mathematical and physical
solutions: 1) they may originate as solutions of the Legendre differential equation, 2) they may appear as a
consequence of Rodrigues’ formula, 3) they may be constructed as a consequence of the requirement for a
complete, orthogonal set of functions (Gram-Schmidt orthogonalization), 4) we find them in gravity field
modeling when representing a function in terms of spherical harmonics or in quantum mechanics to represent
angular momentum eigenfunctions, 5) they may be generated by a generating function. The so-called Legendre
differential equation is a second-order ordinary differential equation with two linearly independent solutions.

The associated Legendre function of the first kind, often denoted as P,,, (cos#) of degree n and order m is

a solution of the Legendre differential equation which is regular for all co-latitude angles 6. The associated

Legendre function of the second kind, often denoted as @,,,(

cosd) is singular for 6 € {0,71’}. The complete
solution of the Legendre differential equation is a linear combination of the associated Legendre functions of
the first and second kind. In their famous textbook on physical geodesy (Heiskanen and Moritz 1967), one can
find surface spherical harmonics as the angular portion of the solution to the Laplace equation in spherical
coordinates, assuming that azimuthal symmetry is not present. This is the standard representation of the
spherical harmonics used in geodesy, i.e., modeling the gravity field of the Earth and other planets.

The general method for calculating Legendre polynomials is by using a hypergeometric series (Abramowitz
and Stegun 1965), (Koepf 1998) (see the given references for the description of arguments)

n

P (z)= 2F1[—n,n+1,1,1_Tx], n=0,12,... (26.1)
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Hypergeometric functions are solutions to the hypergeometric differential equation, which is a general second-
order ordinary differential equation. Many elementary functions, such as Bessel functions, elliptic integrals,
error functions, gamma functions, and classical orthogonal polynomials are in fact special cases of hypergeo-
metric functions. There are several alternative methods to evaluate Legendre functions, and the standard

recursion formulae exclusively used to compute associated Legendre functions P, = P, (cosf) are as follows

nm nm
(e.g., (Hobson 1931)):

mm

P =(2m —1)sin 6’]:’”%177"71 AV

Ppiim = (@2m+1)cosOP,, ! (26.2)
1
an - n—m ((277, o 1) Ccos epnfl,m - (n +m— 1)Pn72’m) l

where arrows symbolically show the direction of computation (recursions) over degree n and order m . This
approach has the disadvantage that Legendre functions of a particular degree/order require the computation
of previous degrees/orders in the recursion chain. Thus, the numerical errors accumulate with increasing degree
and the absolute size of the functions may reach the critical size for representation on standard computation
platforms. Usually, for a particular degree of expansion, the recursions start with associated Legendre functions
of sectorial harmonics of the previous degree. In this case, order and degree are equal and Legendre functions
reach extreme values that cannot be handled on standard computation platforms.

26.2 Admissible Underflow Co-Latitudes for the Computation of
Associated Legendre Functions

Compared to associated Legendre functions, normalized or unnormalized Legendre polynomials up to ultra-
high degree (i.e., 3000 or even up to 10 000 or higher) are very uniform in size and experience neither compu-
tational nor numerical problems. This will be demonstrated in the following sections.

In the relevant literature one can typically find three basic numerical aspects in computing spherical
harmonics or Legendre functions of ultra-high degree: 1) the numerical efficiency of the algorithm, 2) the
stability of the recurrence relations in the computation of the Legendre functions and 3) the underflow problem
in recurrence relations. Recurrence relations are crucial in all three categories. The term underflow or arith-
metic underflow (or floating point underflow) is a condition where the result of a computer program calculation
is a number that has a smaller absolute value than the smallest value that computer can store in its memory.
The underflow problem in recurrence relations can easily be seen in the asymptotic approximation of the
normalized associated Legendre functions (Smith et al. 1981)

1/4
P~ %[ﬁ] (sinf)", n — oo, 0 fixed, (26.3)
™

where Pnn denotes the fully normalized associated Legendre functions of degree and order n. The standard

recursion commonly used to compute ﬁnm cannot be initialized due to an underflow during the computation

of P

> - Following (Wittwer et al. 2008) the maximum admissible degree n for a given function of the smallest

non-zero positive and the largest non-zero negative normalized number w that is storable for the given com-
piler and software is

g2 — L1g 2182
. 2 “mlg(sin?f) _ 2lg2w (26.4)
e lg(sin? 0) lg(sin? 0) . .
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According to the IEEE standard for binary floating-point arithmetics in double precision
w A £2.225x 107308 | For instance, an underflow will occur in IEEE double precision for co-latitudes outside
the interval from 21.7° to 158.3° if the maximum degree is 720 (Wittwer et al. 2008). One can draw the
general conclusion that errors may occur for co-latitude angles close to 0° and 180°. For instance, with the
expansion up to degree 360, an underflow will occur for all co-latitudes below 8° and above its complementary
co-latitude angle of 172°. For an expansion up to degree 240 the underflow co-latitude angle is 3° and for
degree 180, the underflow will occur for all latitudes below 1.13° and above its complementary co-latitude
angle of 1.13°. Considering that almost all geodetic LEO satellites are in polar orbits, i.e., with orbit inclina-
tions close to 90°, such effects will take place in the dynamic orbit modeling, especially for missions where
gravity field determination requires high resolution. There are a number of proposed ways to extend the
interval of admissible co-latitudes, such as (Wenzel 1998), where all the upward computations are scaled by a
factor of 10200,

In (Libbrecht 1985) and (Holmes and Featherstone 2002) a method was presented based on a recurrence

relation for ﬁnm / sin(mf) that eliminates the problematic sin(mf) term from the recursive algorithms and

reintroduces it by employing Horner’s scheme. However, in order to avoid an overflow during the recursions,

a scale factor of 10280

is introduced. In (Jekeli et al. 2007) it is observed that Legendre functions for specific
orders show a very strong attenuation w.r.t. the degree/order domain as a function of the degree and the co-
latitude.

A closer look at asymptotic expressions for Legendre polynomials, e.g., given in (Press et al. 2007), reveals

two particular cases that do not pose any numerical problems, i.e., for sectorials m = n we obtain

1/4
s = 1|n
=3 Rl
B 1n 1/4 T
Pnn ~ 5[;] (Sin e)n = 3 (26.5)
0=0: m =0
and for Legendre polynomials (zonals m = 0)
1/2
f=": P ~ 2
1/2 2 nw
P~ sinlm+nl = (26.6)
" nm 2
6=0: P, =1

For an ultra-high degree and order, e.g., n = 105, we obtain

™ = ™
0= 3 n=10% — Pnn(cosg) ~47.5 (26.7)
0= g : n=10% — ﬁn(cosg) ~ 1.6 (26.8)

showing that there are no numerical problems for the calculation of zonal and sectorial spherical harmonics at
the equator and pole. This means, if a rotation of the spherical harmonics can be decomposed into several
rotations and where that about the equatorial axis is limited to a rotation only from equator to pole, we can
calculate spherical harmonics to any desired ultra-high degree and order. Or in other words, the algorithm to
calculate associated Legendre functions could be based on pre-calculating associated Legendre functions at the
equator (with recursions that are stable) and solely use an equivalent rotation along the equator to obtain
associated Legendre functions at any location on the sphere.
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26.3 Geometrical Rotation of Spherical Harmonics in Hyperspace

Spherical basis functions, e.g., spherical harmonics or wavelets, play a central role in modeling spatial and
temporal processes in the system Earth. So far, to our knowledge, no usable algorithm has been published
neither for rotation of spherical harmonics nor wavelet representations. The transformation of spherical har-
monics under an arbitrary rotation of the coordinate system has been studied in the past and the earliest
reference dates back to (Schmidt 1899). Most of the work in this field over the last 50 years has been based
on (Wigner 1959) and (Edmonds 1960) and related to group theory in quantum mechanics. In geodesy, the
rotation of spherical harmonics has been related to inclination functions and the analysis of the perturbations
of satellite orbits. Inclination functions were introduced in [Kaula, 1961] and in [Kaula, 1966]. If we write

V= i Xn: Vi (26.9)

n=0m=0
n n C n—m even n—m even
a
Vom = GM nil > Eop (11 ™ cos [(n —2pju+ mA] +|mm sin[(n —2pju + mA]

r p=0 nm lp—m odd nm In—m odd
U=w-+vr
A=Q-90

(26.10)

expressing the gravitational potential V as a function of orbit inclination ¢, argument of latitude u (sum of
eccentric anomaly w and true anomaly v ), right ascension of the ascending node € and Greenwich Sidereal

Time 0. The equatorial radius is denoted by a, and GM is the geocentric gravitational constant. The cor-

responding inclination function F, (i) is

— |
anp (i) = Z (2n —20)! inn—m—2t ;
(= t) ! (n —m —2t)122"
m_(m n—m-—2t+s|l m—s “k (26.11)
XZ cos’ ZZ (_1)6
s=0\ 9 ¢ c p—t—c

where £ is the integer part of (I —m) /2 and ¢ is summed from 0 to the lesser of p or k, and ¢ is summed

over all values making the binomial coefficients non-zero, see [Kaula, 1966]. This expansion is based on the
particular form of the associated Legendre functions that can be found in (Hobson 1931)

k
P (siny) = cos™ ‘PZ T\ SN2 (26.12)

nm
t=0

and

(—1)!(21 — 2¢)!
2111 — )11 —m — 2t)!

(26.13)

Imt —

Note that gravity models are provided with normalized coefficients and, therefore, the inclination function in
(26.11) needs to be normalized in order to be consistent. At the moment two of the most stable and accurate
algorithms to calculate inclination functions can be found in (Emeljanov and Kanter 1989) and (Gooding and
Wagner 2008). Based on a re-parameterization of the potential using orbital elements (26.10) and in combi-
nation with the Lagrange Planetary Equations, (Kaula 1966) developed his famous first-order linear
perturbation theory of satellite orbits. The main application of this theory is in very efficient error-assessment
tools developed for satellite-to-satellite tracking ((Rosborough and Tapley 1987), (Casotto 1993)) and for
satellite gradiometry (Sneeuw 2000). (Sneeuw 2000) applied Kaula’s first-order theory to a Hill orbit and
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showed how gravity field coefficients can easily be interpreted as the 2D Fourier spectrum of a function on a
torus, reducing the gravity field inversion to a very simple block-diagonal normal equation matrix. (Goldstein
1984) was the first to introduce complex inclination functions and (Masters and Richards-Dinger 1998) proved
to be about twice as efficient as (Goldstein 1984) and provide results which agree to one part in 10'® up to
harmonic degree 256 (Masters and Richards-Dinger 1998).

Furthermore, the rotation of spherical harmonics has been used by (Balmino and Borderies 1978) to
expand the gravitational potential in terms of harmonic coefficients relative to the axis of rotation of a rotating
solid body. (Kleusberg 1980) derived an approximation of spherical harmonic rotation valid for small rotations
that were used recently by (Kotsakis). Complete transformations of spherical harmonics, including translations
and rotations were developed in (Giacaglia and Bursa 1980) using Clebsch-Gordan coefficients. However,
following (Goldstein 1984), due to the complexity of the general transformation formula and numerical insta-
bility in the propagation of the transformation coefficients, this has been used only for low degree (<10)
expansions. Although (Goldstein 1984) presented the rotation of spherical harmonics with expansions up to
degree 180, the mathematical apparatus is very complex, and numerically and computationally extensive.
Generally speaking, all algorithms for spherical harmonic rotations are based on the recursions starting with
Wigner matrices of degree one, or the actual rotation matrix of the coordinate frame rotation. The problem is
that these recursions are instable in themselves, as frequently reported in the associated literature.

The gravitational potential in terms of real spherical harmonics reads as (Heiskanen and Moritz 1967)

o0
Viro.0) =Yl 5
T

n n
ﬁ] Z (Cnm cosmA + S, sinmA|P,(cos®) (26.14)
n=2

m=—n

where C,, and S,,, represent unnormalized spherical harmonic coefficients (SH). Typically, SH are normal-

ized, employing the normalization function (27.28) in order to obtain the normalized associated Legendre

functions

=N, P (26.15)

nm nm nm

and the normalized spherical harmonic coefficients énm and §nm using

c 5 S . (26.16)

nm = Nnm : nm

C

nm = Nnm : nm?

By introducing
Cop» m=20
CTWYL = {Sn,’n? m < 0] (2617)
we obtain

o0
V(r,0,\) = oM 1+
T

n=2

[3] znj ¢, Y, (0,\) (26.18)

r m=—n

or the general case, assuming an arbitrary position of the center of gravitation with respect to the figure axis
of the Earth

n
37 o Yum (0,2 (26.19)

m=—n

V(r,0,\) = —

r r

220
n=0

or shortened using the general form with the harmonic V,,, (r,6,)) similar to (26.9)
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V(r,0,)) = Z Z o (150, ) (26.20)

n=0m=-n
We can identify two scaling factors in (26.19), namely a geometrical scale a and dynamical scale GM that
refer to the size of the central term V), of the underlying gravitational field represented by a sphere with the

radius a and the geocentric gravitational constant GM

Vi (a,0,\) = GTM (26.21)

The real spherical harmonic functions can be further written as

cosmA, m>0
Yom(0,2) = Py (cos(0)) sinpnA, m <0[ (26.22)
In the complex notation spherical harmonic functions Y, (6, ) read as
Y, (0,0) = €™ P, (cos(6)) (26.23)

By the rotation of spherical harmonics we find a new set of spherical harmonic coefficients {’%m} representing

the rotated gravitational potential

v (R() = Gi” 1+§j
=2

]/ Z B Y ( (26.24)
o

m=—n

where $ denotes the rotation matrix applied to the initial position 7, and &, a set of coefficients as a

function of the rotated position
an = ’%nm (%(FOD . (2625)

The gravitational potential for a specific degree n can be exactly represented by the rotated set of coefficients

v, obtained from the rotation of the initial spherical harmonic coefficients ©,, . This rotation can be carried

out as a simple linear transformation for a specific degree n
v, =R0O, (26.26)

considering all SH coefficients of the same degree n . In the general case, including SH coefficients of all degrees,

rotation matrix R<n n) is a block-sparse rotation matrix with a dimension nxn

v= (26.27)

(n,n)

with blocks R, on the main diagonal, see Figure 26.1. The © denotes a vector of spherical harmonic coeffi-

cients over all degrees. Rotation matrices in space with an arbitrary dimension or so-called Wigner D functions
are the matrix representation of the rotation operators on the basis of spherical harmonics. The rotation matrix

of the first degree, i.e., R, is a rotation matrix in the Euclidian space and in spherical harmonic space at the

same time
F =R, v, =RO, with 0, ={$,,,C,),Cy} (26.28)

A graphical representation of the structure of the rotation matrix of the spherical harmonic coefficients for
every degree n can be seen in Figure 26.1.
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Figure 26.1 Structure of the spherical harmonic rotation matrix for a rotation abo