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Abstract—In this paper, we present a descriptor for human
whole-body actions based on motion coordination. We exploit
the principle, well-known in neuromechanics, that humans
move their joints in a coordinated fashion. Our coordination-
based descriptor (CODE) is computed by two main steps.
The first step is to identify the most informative joints which
characterize the motion. The second step enriches the descriptor
considering minimum and maximum joint velocities and the
correlations between the most informative joints. In order to
compute the distances between action descriptors, we propose
a novel correlation-based similarity measure. The performance
of CODE is tested on two public datasets, namely HDMO05
and Berkeley MHAD, and compared with state-of-the-art ap-
proaches, showing promising recognition results.

I. INTRODUCTION

In the last two decades, encoding and classifying human
actions has been a key topic in computer vision and hu-
man movement science. Recently, motion interpretation has
become a topic of great interest also within the robotic
community. One of the challenges in modern robotics is to
bring robots out of the structured industrial environments and
let them work in close cooperation with humans. Robots will
execute tasks in environments dwelled by humans and in
direct contact with them. In order for robots to successfully
interact with human beings, a necessary step is representing
and classifying actions performed by humans.

In robotic applications, motion descriptors need to fulfill
specific requirements of computational complexity and scal-
ability in addition to accuracy. Modern autonomous robots
have complex software architectures and very demanding
planning and control algorithms. In order to make these
systems usable in real world scenarios, it is essential to keep
as low as possible the computational complexity, both for
sake of time and energy consumption. Scalability is also
an important issue, since in robotic applications the total
number of actions and the duration of each action cannot be
accurately predicted.

In order to take a step in matching these requirements, we
propose a COordination-based action DEscriptor (CODE).
CODE is characterized by a low time and space complexity,
and achieves good scalability and classification accuracy.
The concept of the proposed approach is shown in Fig.
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Fig. 1. Overview of the proposed approach for action representation and
recognition. Intuitively, we can say that selecting the most informative joints
splits the dataset into several action subsets. The actions within each subset
have similar most informative joints. Neuromechanically-sound features are
then added to make action descriptors more distinctive. Finally, action
classification is performed using the proposed CSM metric.

1. CODE leverages the property of human motion, well-
known in neuromechanics, that humans move their joints in
a coordinated fashion [1]-[4] and that the various degrees
of freedom present couplings and dependencies [2], [3].
One of the main contributions of this work is to exploit
such correlation among joints to increase the performance
of action recognition in terms of accuracy and scalability.

In CODE, therefore, information about correlation is a key
tool to characterize motion. In order to reduce the computa-
tional complexity, CODE analyzes the correlation properties
of a subset of joints, called most informative joints [5].
Roughly speaking, the most informative joints are the joints
which mostly contribute to the execution of a certain action.
CODE selects the most informative joints on the basis of the
signal variances. In the literature concerning motion analysis,
this assumption has been proven to be valid [5] for classi-
fication applications. To increase the discriminativeness of
each action, we enrich the descriptor with information about
motion coordination (correlation between joint pairs), and
information about velocities to discriminate the directionality
of motion. Moreover, we propose a novel similarity measure,
called Correlation-based Similarity Measure (CSM), which
performs better than the classical Euclidean and Manhattan
distances with a reduced number of informative joints.

The rest of the paper is organized as follows. Section II
presents the related work. Section III describes the proposed



action descriptor and similarity measure. Experiments on
two human action datasets, namely Hochschule Der Medien
2005 (HDMO5) [6] and Berkeley Multimodal Human Action
Database (MHAD) [7], and a comparison with state-of-
the-art approaches are shown in Sec. IV. Section V states
conclusions and proposes future extensions.

II. RELATED WORK

In the literature, there are diverse works on motion recog-
nition, which are based on different types of input data.
Two common representations of human motion are based on
normalized joint positions and on joint angles. In Cartesian-
based representations, motion is described with the positions
of the joints in the 3D space expressed in a reference frame
fixed to the human torso. As a consequence, a precise skeletal
model is required for this representation. Representations
based on joint angles, instead, are natively independent from
the used reference frame [5]. Joint angles can be computed
by inverse kinematics of a skeleton model or measured by
wearable sensors such as inertial measurement units [8], [9].
This representation is potentially more interesting in robotics,
since it does not implicitly assume the knowledge of the
skeletal model and it does not require a normalization step.
CODE is designed for angle-based representations, since the
neuromechanical properties of human motion coordination
have been proven for joint angles [1], [2].

Methods based on Joint Cartesian Positions: Cartesian
trajectories are strongly affected by the choice of the refer-
ence frame and the link lengths, which reduces the discrimi-
native power of Cartesian descriptors [10]-[12]. To alleviate
this problem, a normalization procedure is performed [10],
which expresses the joint positions in a frame fixed to the
torso and normalizes the length of the bones. The method is
defined skeleton-based (or model-based) because it requires
the knowledge of the skeletal model of the performer to
obtain a user-independent normalized representation. Using
this skeleton-based representation, in [10] a deep neural
network is proposed to classify motion capture sequences.
In [13], a hierarchical recurrent neural network is proposed
for action classification. A template-based approach to rec-
ognize actions [14] uses a small set of a-priori known
actions called templates. To align observed actions with the
templates, the dynamic time warping [15] is adopted. In
[16], a local skeleton descriptor is proposed that encodes the
relative position of joint quadruples. The input data are joint
Cartesian coordinates. The approach in [17] exploits learned
models to represent each action and to capture the intra-class
variance. The method shows promising results in dealing
with data from depth cameras. The work in [18] describes
a representation based on pairwise joint-to-joint distances in
the skeletal model and principal component analysis is used
to reduce the dimensionality.

Methods based on Joint Angles: In [19], an online seg-
mentation and recognition of manipulation task, based on
singular value decomposition, is proposed. An unsupervised
approach that exploits hidden Markov models to segment and
recognize actions is presented in [20]. The work presented in

[21] leverages the properties of human motion in frequency
domain to derive a compact action descriptor. Linear Dy-
namical Systems (LDS) are used in [22] to recognize human
gaits, and the methodology can be applied also to recognition
of whole-body actions. In [5], the authors propose three
descriptors ranking the most informative joints involved in
an action, i.e. the joints which have highest variance during
the motion. The descriptors are called Sequence of the Most
Informative Joints (SMLJ), Histograms of Most Informative
Joints (HMIJ) and Histogram of Motion Words (HMW),
respectively. This approach is particularly significant for our
work, since it proposes descriptors effective in discriminate
actions but also simple and computationally efficient. This
philosophy is also used in CODE as well as the concept of
choosing the most informative joints based on the variance.
There are two main differences between SMIJ [5] and
CODE. First, CODE computes the variance of the overall
motion trajectory (global descriptor) and has a constant size,
while SMIJ requires to split each action into several segments
(local descriptor). Second, we explicitly take into account
motion coordination and propose a novel Correlation-based
Similarity Measure (CSM) to compute the similarity between
action descriptors. Recognition performance of LDS, HMW,
SMI1J, HMIJ and CODE are compared in Sec. IV-D.
Aforementioned angle-based representations present two
important open points. First, they are tested only on a limited
set of classes (10-15 classes) and, therefore the scalabil-
ity is not investigated. Second, the complexity analysis is
usually neglected, even though it is an important theoretical
foundation for real applicability. CODE, on the other hand,
offers a good balance between accuracy, scalability, and
computational complexity. CODE performs well not only on
a typical datasets of 10-15 classes, but also on the whole
HDMO5 dataset, constituted by 80 classes and 2337 actions.

III. PROPOSED APPROACH

This section discusses three problems related to action
classification: i) which raw data from tracking systems are
better suited for action representation, ii) which features can
be extracted from sensory data to reduce the dimensionality
and increase the discriminativeness, and iii) how the similar-
ity between actions can be measured.

A. Whole-body action representation

Modern motion tracking systems adopt a kinematic model
of the human body, the so-called skeletal model, consisting
of a certain number of links connected by joints. The raw
information available from the tracking system is a time
series of skeletal poses sampled at different time instants. A
possible way to represent whole-body actions is to collect a
set of 3D joint positions sampled at different times, i.e. a set
of Cartesian trajectories. As discussed in Sec. II, Cartesian
trajectories depend on the reference frame in which the mo-
tion is expressed and on the length of human limbs. On the
other hand, joint angles between two connected links in the
skeletal model are naturally invariant to roto-translations and
scaling factors. Hence, in this work, we represent an action
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Joint angle variances as a function of joint index and repetition number. (a) claplReps and squatlReps have different sets of most informative

joints. This kind of actions can be correctly classified considering only the relevant joints. (b) claplReps and clapAboveHeadlReps have similar sets of
most informative joints. For this kind of actions misclassification may occur if only the most informative joints are considered as features.

as a set of joint angles trajectories, i.e. as the J x T matrix
A =lay,...,a ], where a; = {a’}]_, is the trajectory of
the j-th joint angle, J is the number of joints and 7' is the
number of time frames. One possibility is to directly use the
raw time series A for action classification. Alternatively, as
in this work, one can extract from A a feature vector (action
descriptor) whose objective is to reduce the size of the input
data and increase their discriminativeness.

B. Coordination-based action descriptor

The proposed action descriptor is based on two assump-
tions. The first assumption is that, while each subject can
perform the same action in different manners generating
different joint trajectories, all the subjects tend to activate
the same set of joints [5]. For example, in a clapping action
the arm joints are the most informative, while the rest are
practically unused. The second assumption is that humans
move the joints in a coordinated fashion [1], and, therefore,
motion coordination is discriminative for motion recognition.

Building upon these assumptions, we define the CODE
action descriptor A as the 5-tuple

A

A

(D

where I,, contains the indexes of the J,,, most informative
joints (MIJ), & € R'™, 9,4, € R'™ and 0,,;, € R are
respectively the normalized variances, maximum and mini-
mum velocities of the MIJ. The vector ¢ is the correlation
between each pair of MIJ and has J,,, (J,, —1)/2 components.
In more detail, the vector ¢ is obtained by concatenating
the correlation coefficients ¢;;, where (4, j) is a couple of
most informative joints of an action A. If an action has .J,,
most informative joints, we will have J,,, (J,,, —1)/2 pairwise
combination. With the symbols .4 we denote a finite ordered
list of elements (a tuple). Each element of this tuple is a
vector. For implementation purposes, the elements of the 5-
tuple A are stacked into an array of No = J, (J + 7)/2.
components. Hence, the number of MIJ J,,, determines the
size of the descriptor and it has to be chosen in order
to guarantee a good compromise between dimensionality

(Imv 6’, ﬁmama @min, C)

(computation time) and recognition performance. Details
about the action descriptor in (1) are provided in the rest
of this Section.

1) Selecting the most informative joints: During the exe-
cution of an action, not all the joints contribute in the same
manner. Hence, a possible way to represent a motion is to
find which joints contribute the most to the whole motion,
i.e. which are the most informative joints (MLJ). The variance
0,5 = 1,...,J of each joint angle trajectory is used to
identify the J,,, < J most informative joints, considering
that the higher the variance, the higher the contribution of
that joint to the whole-body motion [5].

For a given action A = [ay,...,a ], the variance is
computed for all the J columns of A, obtaining the vector
0% = [0¢,...,0%T. The elements of o are sorted as

(o, I°) = sort (),

S

T
o o5 0T, )
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where the function sort(w) sorts the elements of w in
descending order and returns the sorted indexes I°. The
vector of normalized variances & of the .J,,, M1J is computed
as

Ly = {i1,45,...,i5 _},
T
U:[UT?Og)"'?O.Ls]m] 9 (3)
N o PN N T
o = TS = [0'1,0'2,...70'Jm]
Zj:l 0;
The last expression in (3) guarantees that ijl o; = L

It is worth noticing that taking the variance of the MIJ &
as action descriptor significantly reduces the amount of data.
Indeed, as discussed in Sec. III-A, raw sensory data are T x J
matrices, where 7" is usually bigger than .J, while & is a
vector with J,,, < J components. In this work, we set J,,, =
20, as motivated in Sec. IV-B.

The colormaps in Fig. 2 represent the normalized joint
angle variances ¢ = o%/ Z‘j] 0% as a function of the

J
joint angle index. Three action classes are considered from



the HDMOS database: claplReps, clapAboveHeadlReps and
squatlReps. Each action is repeated 5 times, and each repeti-
tion is associated to a repetition number. Let us firstly focus
on a single action class, e.g. squatiReps in Fig. 2(a). Each
row of the colormap represents a repetition of squatlReps.
We can see that only a small subset of joints have not
negligible variance and all the repetition have a common
set of informative joints. Moreover, in Fig. 2, the class
claplReps is compared, in terms of joint angle variances,
with squatlReps in Fig. 2(a) and with clapAboveHeadlReps
in Fig. 2(b). Looking at the figure, it is evident how actions
that use different M1J, such as squatIReps and claplReps,
present a different joint variance pattern (see Fig. 2(a)).
On the other hand, classes like clapAboveHeadlReps and
clapIReps, which have similar MIJ, present a similar vari-
ance pattern, as shown in Fig. 2(b).

MIJ can easily discriminate actions executed with differ-
ent joints. Nevertheless, when dealing with large datasets,
different classes with similar M1J can become very common.
To increase the discriminativeness, we enrich our descriptor
with velocities and pairwise correlations between the MIJ.

2) Maximum and minimum velocity of the MIJ: The
variance captures information on joint angular motion with-
out considering the direction of the motion. Distinguishing
between positive and negative joint rotations increases the
informativeness of the descriptor and improves the recogni-
tion performance. The normalized maximum and minimum
MIJ velocities

N VUmax N Umin
Umax = —J. . Umin = —J. (4)
2521 [Vmaaj 22501 Vmin, g
are also considered in our descriptor. By construction, ¥4,
and v,,;, are vectors with J,, components.

3) Pairwise correlation of the MIJ: Neuromechanical
evidences show a certain degree of correlation between
the most informative joints (or a subset of MIJ) [1], [2].
To exploit such a correlation, we enrich the descriptor
with the vector ¢ of pairwise correlations of the J,, most
informative joints. In particular, given a MIJ trajectory
A, = |ai,...,a;,] € RT*/m one can compute the
pairwise correlation matrix

1 C1,2 C1,J,,
C2,1 1 2,7,
C = . . . . )
Clpd Clp2 -1

where the element —1 < ¢;; < 1 represents the linear
correlation between the joint ¢ and j and it is computed as

o= 2= (a; — ag)(af — a;) _ cov(a;, a;)

1] -
i\ VO]
The quantities @; and @; in (6) are the mean values of a; and
a; respectively, while the variances o} and o} are defined
as in (3). The numerator of (6) represents the covariance
between a; and a;. By construction, the correlation matrix
C in (5) is symmetric with unitary diagonal elements. The

(6)

JIm(Jm — 1)/2 different entries in C' are stacked into the
correlation vector ¢ and used to augment our descriptor. The
procedure to compute CODE is summarized in Algorithm 1.

Algorithm 1 CODE Descriptor
input: Action matrix A, MIJ number J,,
1: Compute normalized variance and MIJ indexes
o = variance (A)
(o, I°) = sort (6%)
o =lo},05,...,0%
Im = {Zi7lg7 A 7Zst}
~o_ Im s
6=0/;"0;
2: Compute normalized velocities
N I
VUmaz = 'vma:r/ Z

VUmin = Umin/ Zj;nl Umin,j
3: Compute correlation vector

C = {c”}zii’;:]l:‘]m, where ¢;; = cov(a;, a;)/(1/0F,/03)

}T

1 Umacc,j

stack the upper (or lower) triangular part of C into the vector ¢
4 return [I,, 6, Vmaz, Omin, C|

C. Analysis of Space and Time Complexity

We report in Table I the (computational) time and space
complexity of the CODE descriptor as a function of the
number of most informative joints .J,,, and the number of
action time frames 7". As described previously in this section,
CODE has J,,,(J,, +7)/2 components. Hence, using the big
O notation [23], its space complexity is O(J2,). The space
complexity is O(1), since the size of CODE is independent
from the number of time frames 7. Regarding the time
complexity as a function of .J,,, the most time-complex
operation in Algorithm 1 is step 3, i.e., computation of
the correlation vector. The computation of the correlation
coefficient is performed as in (6) for each pair of MIJ. Since
there are J,,(J,, — 1)/2 combinations of MIJ pairs, the
time complexity as a function of J,, is O(J2). The time
complexity as a function of the number of time frames is
O(T), since the computation of variances in (3), the compu-
tation of normalized velocities in (4), and the computation
of the correlation vector in (6) have O(T') time complexity.
Overall, CODE has O(J2,T) time complexity and O(.J2)
space complexity.

Time Complexity | Space Complexity
MILJ number (J,,) O(J2) O(JZ)
Frames (1) o(T) O(1)
Overall (J,,, T) O(JZT) O(JZ)
TABLE I

TIME AND SPACE COMPLEXITY OF CODE AS A FUNCTION OF THE
NUMBER OF M1J J,,, AND THE NUMBER OF FRAMES 7T'.

D. Correlation-based similarity measure

As described in Sec. III-B, CODE represents an action
with a vector of dimension N¢o. To measure the similarity



among actions, we propose a novel similarity measure called
Correlation-based Similarity Measure (CSM).

Consider the two action descriptors A® and .A” where
A% = (1% 6", Opaws Omins €*)s u = a,b. Let us define
the set S = {(4,5) € I3,N 14 |i # j}. In practice, S contains
the pairs of MIJ that are common to A% and A°. The CSM

between two action descriptors A% and A’ is defined as

CSM(A*, A") = > wi[(6¢ + 69 + 67 +6%) +
i,jES
~a ~a ~b ~b
+ (Uma;c,i + U’rnaw,j + Umaw,i + Umaw,j)
~a ~a ~b ~b
+ (Umin,i + vmin,j + vmin,i + vmin,j)}

)

where the weight w;; = 1 — 0.5|cf; — ¢};| is maximum
(w;; = 1) when the action a and b have the same correlation
between the common most informative joints ¢ and j. The
weight w;; is minimum (w;; = 0) if the common MIJ
i and j are perfectly correlated in action a (c¢f; = 1)
and anti-correlated in action b (ci?j = —1), or viceversa
(¢f; = —1 and c,ll?j = 1). The correlation-based similarity
measure in (7) is a summation of variances and velocities
of common MIJ weighted by the differences in pairwise
correlations between the two actions. Hence, two actions
which use the same MIJ, but are characterized by a different
correlation pattern, will have a low CSM score. High values
of CMS indicate a high similarity between two actions. CSM
is zero if two actions have no common MIJ or if all the
MIJ are anti-correlated. Moreover, the joints that present
a higher variance, maximum and minimum velocities give
more contribution to the evaluation of similarity CSM than
joint with low variance, and velocities. Figure 3 shows the
value of the weight w;; for two actions a and b as a function
of the difference in correlation between two common most
informative joints ¢ and j.

24

Fig. 3. Value of the weight w;; as a function of cf; — ¢

IV. EXPERIMENTAL RESULTS

In order to prove the effectiveness of our approach, we per-
form three types of experiments on the public motion datasets
HDMO5 [6] and MHAD [7]. In the first type of experiments,
we evaluate the accuracy on the whole HDMO5 dataset as
a function of the number of most informative joints with
different features and different similarity measures. In the
second set of experiments, we evaluate accuracy, precision

and recall of CODE. The third class of experiments consists
in a comparison with other descriptors in the literature. In
order to reduce high-frequency noise, we apply a butterworth
filter with cut-off frequency of 10 Hz.

A. Dataset description

We use three different datasets for our experiments: (i)
HDMOS5, (ii) Reduced HDMO5 and (iii) MHAD. The main
characteristics of each dataset are summarized in Table II.

The HDMOS dataset contains 2337 actions split into 130
classes, and the actions are performed by 5 subjects. We
consider 80 classes obtained by merging the motion record-
ings that contain multiple executions of the same action. For
example, clap one repetition and clap five repetitions have
been considered to be in the same class.

The Reduced HDMOS5 (R-HDMO5) dataset is a sub-
set of HDMOS5 composed by 401 action sequences split
into the 16 classes: ‘“emphdepositFloorR (1), elbow-
ToKneelRepsLelbowStart (2), grabHighR (3), hopBoth-
Legslhops (4), jogOnPlaceStartAir2StepsLStart (5), jump-
Down (6), jumpingJacklReps (7), kickLFrontlReps (8),
lieDownFloor (9), rotateArmsBothBackwardlReps (10), sit-
DownChair (11), sneak2StepsLStart (12), squatiReps (13),
standUpKneelToStand (14), throwBasketball (15), throwFarR
(16)”. The numbers in brackets are the class labels used in
Fig. 6. These are the action classes chosen in [5], which we
adopt to perform comparisons.

MHAD is constituted by 11 classes:*jumping (1), jumping
Jjacks (2), bending (3), punching (4), waving two hands (5),
waving one hand (6), clapping (7), throwing (8), sit down (9),
stand up (10), sit down/stand up (11)”. The numbers in
brackets are class labels used in Fig. 7. Each action is
performed by 12 subjects 5 times, yielding a total of 659
actions (1 erroneous action was removed from the database).

B. Number of most informative joints

The goal of this experiment is two-fold. First, it shows the
contribution of the different CODE components in Sec. I1I-B.
Second, it investigates how to choose an efficient number of
most informative joints. To guarantee a statistical relevance,
we tried CODE on a large set of actions and classes, i.e.,
the 80 classes and 2337 actions of HDMOS. The accuracy
of CODE, evaluated as a function of the Most Informative
Joints (MIJ) number J,,,, is shown in Fig. 4(a). The accuracy
is computed as the ratio between the number of total test
inputs correctly classified and the number of test inputs. In
the figure, CODE with the proposed CSM is compared with
descriptors based (i) only on variance of M1J, (ii) on variance

‘ Dataset ‘ Subjects (#) ‘ Classes (#) ‘ Actions (#) ‘ Frame Rate (Hz) ‘

| HDMO5 | 5 \ 80 | 2331 ] 120 \
[ R-HDMO5 | 5 \ 16 | 401 \ 120 \
[ MHAD | 12 \ 11 | 659 ] 480 \

TABLE I
DATASETS CHARACTERISTICS.
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(b) Descriptors dimension as a function of MIJ number.

Results on the HDMOS dataset (2337 actions and 80 classes). (a) Recognition results for different values of .J,, and different features vectors.

(b) Motion descriptors that consider only variance or variance and velocity as features grow linearly with J,,,, while CODE grows quadratically. CODE
with CSM offers a good compromise between recognition rate (80.0%) and descriptor dimension (270 components with J,, = 20).

and joint angular velocities of MIJ, (iii) on variance, velocity,
and correlation of MIJ. The results show that all CODE
features contribute to improve the recognition rate.

The continuous lines in Fig. 4(a) denote the use of
Manhattan distance, while the dashed lines denote Euclidean
distance to evaluate the similarity between actions. In case of
CODE+CSM, we use our proposed metrics to evaluate the
similarity. We can see that, in general, Manhattan distance
performs better than Euclidean, and CSM performs better
than Manhattan distance for J,, > 5. An advantage of
the proposed Correlation-based Similarity Measure is that
CODE+CSM performs better with less MIJ with respect
to Euclidean and Manhattan distances. For example, with
Jm = 20, CODE+CSM achieves 80.0% of accuracy, while
CODE+Manhattan achieves 78.6% of accuracy. When in-
creasing the number of MIJ (J,, > 20), the difference
between the metrics becomes smaller. For example, with
Jm = 30, CODE+CSM achieves 80.7% of accuracy, while
CODE+Manhattan achieves 80.1% of accuracy. We can con-
clude that CSM achieves better performance than Euclidean
and Manhattan distances with a reduced number of MIJ.
Figure 4(b) shows the dimension of CODE as a function
of the number of most informative joints. The dimension of
CODE increases quadratically with .J,,,. This is an expected
result considering the spatial complexity analysis in Sec. III-
C. Using only variance and variance+velocities, the size of
the descriptor increases linearly. The price paid for a more
precise characterization of the motion is an increase in the
descriptor dimensionality. Considering the accuracy in Fig.
4(a) (80.0% with J,,, = 20 and 80.7% with J,,, = 30) and the
descriptor size in Fig. 4(b) (270 components with J,,, = 20
and 555 components with J,,, = 30), we can conclude that
CODE+CSM with J,, = 20 offers a good compromise
between recognition rate and size of the descriptor.

C. Performance Evaluation

Using 10-fold cross-validation, accuracy, precision, and
recall of CODE have been evaluated on three datasets:
HMDO05, R-HMDO05, and MHAD. Precision is obtained
as the ratio between true positives and the sum of true
positives and false positives. Recall is obtained as the ratio
between true positives and the sum of true positives and
false negatives. Also, we report the time to compute CODE
for all the actions of each dataset. The computer used for
the evaluation has an Intel® Core™ i7 — 4790K - 4 Cores
CPU, and 16 GB of memory. CODE is implemented in
Matlab® 2014b. The results, summarized in Table III, are
obtained using CODE with CSM, J,, = 20 and 1-NN
classification. The average accuracy of CODE on HDMO05
is 80.0%, precision is 73.7% and recall is 73.0%. The time
to compute the CODE for all the actions of HDMOS is 3.84 s
with our unoptimized Matlab implementation. For the R-
HDMO5 dataset, we achieve the average accuracy of 96.0%,
the average precision of 94.5%, and the average recall of
95.6%. The time to compute the descriptor for all action
of R-HDMOS is 0.64s. In the experiments on the MHAD
dataset accuracy, precision, and recall are 96.4%, 96.7% and
96.8%, respectively, while the time to compute CODE for
all the actions is 9.54s. In Fig. 5, the robustness of CODE
in presence of Additive Gaussian White Noise (AGWN) is

100
S
>
£
§ 80+ = mm
3 S
70, [===MHAD R-HDMO05 — - —HDMO5|
0 25 5

AGWN standard deviation (deg)

Fig. 5. Accuracy of CODE for different values of the AGWN standard
deviation, evaluated on HDMO05, R-HDMO05, and MHAD.



Dataset Accuracy (%) | Precision (%) | Recall (%) Time (s)
(mean-std) (mean=std) (mean=std) (mean-std)
| MHAD | 964+29 [ 967+33 [ 968+25 | 954 £ 06l |
[ R-HDMO5 | 960 +27 [ 945+35 | 956438 [ 0.64+0.02 |
[ HDMOS | 800+29 [ 737+26 [ 730427 [ 38401 |
TABLE III

CROSS-VALIDATED (10-FOLD) RESULTS WITH CODE+CSM.

’ Descriptor ‘ Classification ‘ Accuracy (%) ‘

[CODE+CSM | 1NN | 98.4 \

[ smu(s) | INN | 915 \

[ BMUG5] [ 1NN 735 \

[ Bmw s | INN | 774 \

[LDSP[51.[22) | 1NN | 67.8 \
TABLE IV

CLASSIFICATION RESULTS FOR THE R-HDMO0S5 DATASET.

evaluated. We corrupted the joint angle signals with AGWN
of standard deviation in the range [0, 5] deg. For R-HDMO5,
with a standard deviation of 5deg the accuracy is 93.8%, for
MHAD is 93.3%, while for HMDO5 the accuracy is 77.5%.
Roughly, we loose about 3% accuracy corrupting the signals
with additional AGWN of 5 deg standard deviation.

D. Comparison with angle-based approaches

We compare the recognition performance of CODE with
the state-of-the-art descriptors in [5], [16], [22]. The compar-
ison is carried out on both the R-HDMO5 and the MHAD
datasets. As in the previous experiments, we use CSM to
measure the similarity between the CODE descriptors of
different actions and .J,,, = 20 most informative joints.

OO BN —

1 2 3 4 5

6 7 8 9 10 11 12 13 14 15 16

Fig. 6. Confusion matrix for 1-NN classification of the R-HDMO0S5 dataset.

R-HDMO5: For a fair comparison, we adopt the same 16
classes (see Sec. IV-A) and the same cross-subject validation
protocol used in [5]. In particular, we consider 3 subjects
(219 action sequences) for training and the remaining 2
subjects (182 action sequences) for testing. Cross-subject val-
idation is particularly interesting to demonstrate the general-
ization capabilities of CODE across different users. Addition-
ally, we compare CODE with Histograms of Most Informa-
tive Joints (HM1J) [5], Histogram-of-Motion Words (HMW)
[5], and Linear Dynamical System Parameter (LDSP) [22].

The results of this comparison are shown in Table IV. We
can see that the best results are achieved by CODE, with an
accuracy of 98.4%. The confusion matrix relative to this case
study in presented in Fig. 6. The actions that do not achieve
100.0% accuracy are jumpDown (6), kickLFrontlReps (8),
lieDownFloor (9). The action jumpDown has 87.0% accu-
racy and is confused with hopBothLegslhops (4) in 13.0%
of cases. The accuracy for kickLFrontIReps (8) is 92.0%
and it is confused with jumpDown (6). lieDownFloor (9),
which presents an accuracy of 90.0%, is confused with
JjumpDown (6) in the 10.0% of cases.

MHAD: The comparison between CODE, SMIJ, HMIJ,
and LDSP on the classes of the MHAD database is reported
in Table V. In this case, CODE achieves 98.5% accuracy
and the second best is SMIJ that achieves 94.5%. In this
experiment, 7 subjects are chosen for training (384 action
sequences) and 5 (275 action sequences) for testing, accord-
ing to the cross-subject validation protocol adopted in [5].
The confusion matrix is shown in Fig. 7. We can see that
the accuracy of CODE is 100.0% for the majority of the
classes, except for three classes: jumping (1), sit down (10),
sit down and stand up (11). The accuracy is 96.0% for the
action jumping (1), which has been confused in 4.0% of cases
with the action jumping jacks (2). Moreover, the action sit
down (10) presents a recognition rate of 92.0%, since it is
confused in 4.0% of cases with stand up (9), and in 4.0% of
cases with sit down and stand up (11). The action sit down
and stand up achieves 96.0% accuracy and it is confused
with sit down in 4.0% of cases.

[ Descriptor | Classification [ Accuracy (%) |

[CODE+CSM | 1NN [ 985 |

l SMIJ [5] [ 1-NN [ 94.5 ]

[ oMb [5] | 1NN [ 803 |

[ BMW[] | NN [ 777 ]

[LDSP 5L, 1221 | NN [ 849 |
TABLE V

CLASSIFICATION RESULTS FOR THE MHAD DATASET.
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Fig. 7. Confusion matrix for 1-NN classification of the MHAD dataset.

E. Comparison with position-based approaches

In addition to the comparison with angle-based methods,
we compare CODE also with approaches that use joint
Cartesian positions. The two representations work with dif-
ferent input data, i.e. joint angles and 3D joint positions,



respectively. Since the recognition performance strongly de-
pends on the type of input data, the comparisons in terms
of accuracy are merely indicative. However, the scope of
this section is to discuss basic differences between CODE
and most successful position-based recognition approaches.
First, we compared CODE with the skeleton quad descriptor
presented in [16]. This approach obtains 93.89% on a subset
(11 classes) of the R-HDMOS5 dataset. On the same subset,
CODE achieves 100% accuracy. The second comparison is
with the template-based approach (TBA) presented in [14].
It adopts DTW [15] to align the training trajectories with
the test trajectories and has been tested with 9 classes [14]
of HDMO5 dataset, achieving 98.0% accuracy. On the same
classes CODE achieves 98.3% accuracy. In terms of accu-
racy, the performance of TBA and CODE are similar on the
tested classes. However, TBA has a O(T') spatial complexity
(to store the entire joint position trajectories) and O(T?) time
complexity (to align training and test trajectories with DTW),
while CODE has O(1) spatial complexity and O(T') time
complexity (see Table I). The third comparison is with the
skeleton-based approach (SKA) in [10]. It uses a deep neural
network and a frame-by-frame classification to recognize
motion capture sequences. The experiments are performed
on 2337 actions of HDMOS split in 65 classes, achieving
95.6% accuracy. On the same action set CODE achieves
87.7% accuracy. In terms of accuracy SKA performs better
than CODE. However, SKA uses a more complex descriptor
with 33 x T elements, where T is the number of time frames.
The space complexity is therefore O(T'), while CODE has
a fixed size of 270 x 1 elements. Moreover, SKA adopts
a classification algorithm based on deep learning, which
requires a relatively long training time, while in this work
we use a 1-NN classifier to keep the system simple and fast,
according to the requirements typical of robotic systems.

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented CODE, a COordination-based
action DEscriptor. CODE is based on the assumption, ac-
cepted in neuromechanics, that humans move in a coordi-
nated fashion. CODE encodes the coordination properties
of human motion by computing the pairwise correlations
between the most informative joints. With experiments on
two different datasets containing a large set of actions, we
have shown that, including information about correlation and
about joint velocities, the recognition performance improves
significantly. The size of CODE is independent from the ac-
tion duration and increases quadratically with the number of
most informative joints. The comparisons showed that CODE
outperforms several approaches for action recognition.

Future work will consist in evaluating CODE on represen-
tations based on Cartesian joint positions. Most renowned
works in neuromechanics, in fact, discuss human motion
correlation at a joint angle level. Therefore, the possibility to
encode joint Cartesian positions with CODE-like descriptors
requires further investigation. In order to segment streams of
data before the classification, CODE can be combined with
a state-of-the-art segmentation method such as [24]. A future

work direction will consist in applying the basic concept of
CODE also to the segmentation problem.
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