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Abstract— A typical formation shape control problem in-
volves point agents sensing relative positions, i.e. directions
and distances, of their neighbors and then moving so that
these relative positions achieve some prespecified values. Such
a procedure requiring as it does sensing of directions implicitly
presupposes that all agents have a shared understanding of the
direction of north. On the other hand, there may be biases in
sensors, variations in the earths magnetic field interfering with
compass-based sensing, or drift in inertial sensors, with the
result that directions are inconsistently measured or measured
with error. This paper considers the consequences of this error,
considering first the two agent case in a two-dimensional plane.
We show that the agents converge to a fixed, but distorted
formation exponentially fast. In contrast to the matched case,
the formation is not asymptotically stationary, but rather
instead translates with a certain constant velocity. The distance
error and the angular error between the actual final formation
and the desired formation are explicitly given, as well as the
steady state velocity of the formation. Based on the results,
estimation algorithm is given to obtain the mismatch angle,
which allows a compensation algorithm to be proposed such
that the desired formation is achieved with zero steady-state
velocity for the formation as a whole. The case of the three-
dimensional ambient space is then considered and similar
phenomena are observed. Simulations are also provided to
validate the theoretical results.

I. INTRODUCTION

Formation shape control problems are considered an im-
portant issue in the study of multi-agent systems and shape
control has broad applications [1], [2]. There are different
variations for the formation shape control problem. For ex-
ample, problems with or without a leader were considered in
[3], [4]; problems with undirected or directed communication
topology were studied in [5], [6] and problems with velocity
consensus and moving final formation were investigated
in [7], [8]. Another major distinctions rest with problems
where there are both a prescribed shape and a prescribed
orientation, and problems seeking simply to achieve targeting
on a prescribed shape. A linear consensus-based algorithm
can be used to solve a formation shape control problem
with both a prescribed shape and a prescribed orientation
[9], [10] while the gradient-based approach (which involves
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nonlinear control) can be used for shape control without
orientation objective [11], [12]. In this paper, the consensus-
based approach is considered. An indispensable assumption
for consensus-based approach is that all agents need the
knowledge of the direction of the common/global north.
Although common knowledge of north can be secured by
assuming that all agents have access to accurate GPS data,
this can be an overly-ambitious assumption indoors or in a
military environment. Therefore, a more practical approach
is to require all agents to be equipped with some form of
compass.

It is however evident that it will often be unrealistic to
claim that all agents have common error-free knowledge of
where north is: biases can exist in instruments; drift can occur
in inertial navigation systems; spatial variation can occur in
the earth’s magnetic field, and so on. This paper explores
the consequence of postulating the existence of errors in the
direction of north, i.e. agents have differing views of where
north is. To illustrate the key concepts, we start from the
matched formation shape control for two agents in a two-
dimensional plane,

Ȧ1 = (A2 −A1)−D, (1a)

Ȧ2 = (A1 −A2) + D, (1b)

where A1 = [x1, y1]T ∈ R2 and A2 = [x2, y2]T ∈ R2

are the positions of agents 1 and 2, V1 = Ȧ1 and V2 =
Ȧ2 represent the velocities of agents 1 and 2, and D =
[dx, dy]T ∈ R2 is a given desired relative position and known
for each agent. The objective is to drive agents 1 and 2 to
form a steady formation in the plane such that A2 = A1+D.
Note that the position of the centroid is unspecified, while
the orientation and shape of the formation are specified. It
is straightforward from (1) to show that limt→∞(A2(t) −
A1(t)) = D, limt→∞ Ȧ1(t) = 0, and limt→∞ Ȧ2(t) = 0
exponentially fast. Therefore, agents converge to the desired
formation and the velocities converge to zero exponentially
fast.

The above algorithm assumes that A2 −A1 for agent 1
and A1−A2 for agent 2 are identical (up to the sign). This
means that a global coordinate system is shared for the two
agents. However, this assumption is unlikely to be satisfied
in real systems. As already indicated, we will focus on the
directional (as opposed to range) error, i.e., error maybe
arising from a compass mismatch.

Without any loss of generality, we suppose that the global
coordinates coincide with the coordinate basis of agent 1.
We next derive the equation of motion of agent 2 in global
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Fig. 1. Coordinates of agents 1 and 2.

coordinates. Suppose Ai denotes the position of agent i,
i = 1, 2 in global coordinates and 2Ai denotes its position
in agent 2’s coordinates. Suppose agent 2’s view of north
is that it is φ radians in a counterclockwise direction from
agent 1’s view, where φ ∈ (−π, π] and Figure 1 gives an
illustration. Therefore, a line vector in global coordinates
1v = [x, y]T can be described in agent 2’s coordinate basis

as 2v = R(φ)1v, where R(φ) =

[
cosφ − sinφ
sinφ cosφ

]
is the

rotation matrix.
Then, in each agent’s own coordinate basis, the actual

kinematics of each agent with mismatched directions are
given by

1Ȧ1 = A2 −A1 −D, (2a)

2Ȧ2 = R(φ)(A1 −A2) + D, (2b)

where A1−A2 is expressed in global coordinates, 1Ȧ1 and
2Ȧ2 are the velocity vectors of agents 1 and 2 expressed in
each agent’s own coordinate basis.

The authors of [13] considered a similar problem with an
orientation mismatch of local reference frames of the agents
for the formation shape control problem. Under the assump-
tion that the orientation of each agent can be exchanged, both
orientation alignment control algorithm and formation shape
control algorithm were proposed. Distance errors have been
considered in the context of formation shape control without
orientation in [14], [15]. It was shown in [14] that if the
agents have different understandings on either the desired
distance between them, or of the actual distance between
them, the resulting steady state formation will be of fixed
shape but distorted relative to the desired shape (the amount
of distortion depending on the mismatch). Instead of being
stationary, the resulting formation shape will converge to a
circular closed orbit in two-dimensional plane. The radius
may be large, but the angular velocity is proportional to the
mismatch. The extension to the case of a three-dimensional
tetrahedron formation shape control problem was considered
in [15] and it was shown that the motion behavior is typically
a helix and attributable to mismatch in desired or measured
distances for a pair of agents.

In this paper, we first consider the directional mismatch
problem modelled by (2) in a two-dimensional plane and

then study the case of a three-dimensional ambient space. In
particular, we show that the agents converge to a fixed, but
(relative to the desired one) distorted formation exponentially
fast for both cases. The shape error between the actual
final formation and the desired formation is explicitly given
and is roughly proportional to the angular mismatch in the
coordinate axis directions of the two agents. An estimation
algorithm for the mismatched angle is also proposed. Based
on the design of the estimator, which is incorporated in a
more complicated control, a mismatch compensation algo-
rithm is proposed such that the desired formation is achieved
and in steady state, it is stationary. We finally include
discussions on the case of a three-dimensional ambient space.

Notation: ‖x‖ denote the 2-norm of a vector x ∈ Rd. Let
f and g be two functions defined on some subset of the real
numbers. One writes f(x) = O(g(x)) as x→ 0 if and only
if there exists a positive real numbers M and δ such that
|f(x)| ≤M |g(x)| for |x| < δ.

II. TWO-DIMENSIONAL PLANE CASE

Let us go back to (2) and assume that φ is constant. By
noting the fact that 1Ȧ2 = R(−φ)2Ȧ2, it is not hard to show
that (2) can be written as

Ȧ1 = A2 −A1 −D, (3a)

Ȧ2 = A1 −A2 +R(−φ)D, (3b)

where A1, A2, Ȧ1, and Ȧ2 are all expressed in global
coordinates. We next focus on (3) and study both the intra-
formation motion and whole-formation motion of the closed-
loop system.

A. Behaviors of the formation

We first establish the following result on how the for-
mation of two agents evolves when there exist directional
mismatches.

Theorem 1: Consider the mismatched formation shape
control algorithm (2). Suppose φ 6= 0 and constant. It follows
that

[Intra-formation motion]
(I) The agents converge to a fixed formation exponen-

tially fast. In particular, limt→∞(A2(t) − A1(t)) =
cos φ2R(−φ/2)D.

(II) The relative velocities of the agents converge to zero
exponentially fast, i.e., limt→∞(V2(t)−V1(t)) = 0.

(III) If D 6= 0, the final formation is distorted from the
desired one. The distance error and the angular error
between the actual final relative position and the de-
sired one are O(φ2), as φ → 0 and |φ|2 , respectively.
If D = 0, then rendezvous is still achieved, i.e.,
limt→∞(A2(t)−A1(t)) = 0.

[Whole-formation motion]
(IV) If D 6= 0, the absolute velocities of each agent

converge to the same nonzero constant exponentially
fast. In particular, limt→∞V1(t) = limt→∞V2(t) =

sin φ
2

[
sin φ

2 cos φ2
− cos φ2 sin φ

2

]
D and limt→∞ ‖V1(t)‖ =
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limt→∞ ‖V2(t)‖ = O(|φ|), as φ → 0. If D = 0,
the absolute velocities of both agents converge to zero
exponentially fast.

(V) If D 6= 0, the agent positions A1(t) and A2(t)
are neither convergent nor bounded. If D = 0,
limt→∞A1(t) = limt→∞A2(t) = A1(0)+A2(0)

2 , where
A1(0) and A2(0) are the initial states of agents 1 and
2.

Proof:
(I) Define Q = A1 −A2 + 1

2 (I + R(−φ))D. It follows
from (3) that

Q̇ = −2Q. (4)

It then follows that limt→∞(A2(t) − A1(t)) = D ex-
ponentially, where D = 1

2 (I + R(−φ))D. Straightfor-

ward calculation shows that D =

[
1+cosφ

2
sinφ
2

− sinφ
2

1+cosφ
2

]
D =

cos φ2R(−φ/2)D. This verifies (I).
(II) Since limt→∞(A2(t)−A1(t)−D) = 0 exponentially

fast, it follow from (11) that limt→∞(Ȧ2(t) − Ȧ1(t)) = 0
exponentially fast. Therefore, (II) is proven.

(III) Note that the desired formation is determined by D,
but the actual final formation is determined by D 6= D.
Therefore, for the case of D 6= 0, the final formation is
distorted from the desired one. We define the distance error
between the actual final relative position and the desired one
as δD =

∣∣‖D‖ − ‖D‖∣∣. It is not hard to show that ‖D‖ =

cos φ2 ‖D‖. Therefore, for small |φ|, δD = (1−cos φ2 )‖D‖ =

2 sin2(φ/4)‖D‖ ≈ φ2

8 ‖D‖. This shows that δD = O(φ2),
as φ→ 0. In addition, by noting that D = cos φ2R(−φ/2)D,
we know that the angular error between the actual final
relative position and the desired one is |φ|2 .

On the other hand, if D = 0, it follows from the definition
of D that rendezvous is still achieved, i.e., limt→∞(A2(t)−
A1(t)) = 0.

(IV) It follows from (2) that limt→∞ Ȧ1(t) =
limt→∞ Ȧ2(t) = 1

2 (R(−φ) − I)D =[
cosφ−1

2
sinφ
2

− sinφ
2

cosφ−1
2

]
D = sin φ

2

[
sin φ

2 cos φ2
− cos φ2 sin φ

2

]
D.

This further implies when D 6= 0 that limt→∞ ‖Ȧ1(t)‖ =
limt→∞ ‖Ȧ2(t)‖ = O(|φ|), as φ → 0. Therefore, for the
case of D 6= 0, the absolute velocities of both agents
converge to the same nonzero constant exponentially fast.
For the case of D = 0, the absolute velocities of both
agents converge to zero exponentially fast.

(V) For the case of D 6= 0, the conclusions are obvious
due to (IV). If D = 0, the problem reduces to a standard
average consensus problem [9].

We next describe simulations which illustrate the validity
of Theorem 1. We first consider the case of D 6= 0.
In particular, D = [0,−5]T, φ = −0.2π, and the two
agents start from the desired formation. Figure 2 shows the
positions of the agents during the time interval [0, 10]. Due
to the existence of mismatched directions, the agents keep
moving with non-zero constant absolute velocities and the
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(a) The dotted lines denote the trajectories of the posi-
tions of the agents. The circles and the solid black lines
denote respectively, the positions of the agents and the
formation shape at t = 0 s, t = 2 s, t = 5 s, and t = 7.5
s.
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(b) The solid black line and the dotted black line denote
respectively, the actual formation shape and desired
formation shape at t = 7.5 s.

Fig. 2. Two-dimensional case with D 6= 0.

final formation is distorted from the desired one. This is in
contrast to the case with matched directions where the agents
converge to the desired stationary formation.

B. Estimation and compensation algorithms

In this section, we first consider the estimation of φ. We
shall show later how the use of an estimate of φ can eliminate
the problem caused by the directional mismatch.

Since each agent in the steady state will perceive a
discrepancy in its own coordinate basis between the desired
formation and the actual formation, with an angular error of
φ
2 , each agent is able to estimate φ separately using its own
available information. (Of course, since the estimation is to
be used to eliminate the mismatch problem, it is desirable
to do this before steady state is reached, and the approach
for this is set out in more detail below). Without loss of
generality, we let agent 2 be responsible for the estimation of
φ. The following compensation control algorithm is proposed

1Ȧ1 = A2 −A1 −D, (5a)

2Ȧ2 = R(φ)(A1 −A2) + D + U, (5b)
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where U ∈ R2 denotes a compensation input. We next spec-
ify how to design the estimation of φ and use the estimated
information on φ to compensate the original mismatched
algorithm such that the desired formation is achieved.

We assume that the relative position information of agent
2 is available for agent 2 and expressed in the coordinate
basis of agent 2, i.e., 2A2 − 2A1 = [2x2 − 2x1,

2y2 − 2y1]T

is available for agent 2.
It follows from (5a) and the fact 2Ȧ1 = R(φ)1Ȧ1 that

2Ȧ1 = R(φ)(A2 −A1)−R(φ)D.

Therefore, using (5b), we know that
2Ȧ2 − 2Ȧ1 = −2(2A2 − 2A1) +R(φ)D + D + U.

It then follows that for any estimate φ̂(t),

R(φ)D−R(φ̂(t))D = 2Ȧ2 − 2Ȧ1 + 2(2A2 − 2A1)

−R(φ̂(t))D−D−U. (6)

In the light of this equation, we propose the following
estimation algorithm for φ̂(t):

ż =k
(
2dx(2y2 − 2y1)− 2dy(2x2 − 2x1)

−(d2x + d2y) sin φ̂− (dxuy − dyux)
)
,

φ̂ = z + k
(
dx(2y2 − 2y1)− dy(2x2 − 2x1)

)
, (7)

where k is a positive constant and U = [ux, uy]T.
We next present the following result regarding the conver-

gence of φ̂(t) using the estimator (7) for the compensation
algorithm (5).

Theorem 2: Consider the estimator (7) for the compensa-
tion algorithm (5). Suppose that |φ| < π

4 and |φ̂(0)| ≤ π
4 . It

follows that limt→∞ φ̂(t) = φ.

Proof: Denote D̃ =

[
0 −1
1 0

]
D. It follows by an easy direct

calculation that

D̃T(R(φ)−R(φ̂(t)))D = − (sin φ̂− sinφ)‖D‖2.

Also note that (7) can be written as

ż = kD̃T
(

2(2A2 − 2A1)−R(φ̂(t))D−D−U
)
,

φ̂(t) = z(t) + kD̃T(2A2 − 2A1).

It then follows that
˙̂
φ =kD̃T

(
2Ȧ2 − 2Ȧ1 + 2(2A2 − 2A1)

−R(φ̂(t))D−D−U
)

= kD̃T(R(φ)−R(φ̂(t)))D

= − k(sin φ̂− sinφ)‖D‖2

= − 2k sin

(
φ̂− φ

2

)
cos

(
φ̂+ φ

2

)
‖D‖2.

Choose a Lyapunov function candidate as V = (φ̂ −
φ)2. Since |φ̂(0)| ≤ π

4 and |φ| < π
4 , it follows that

cos
(
φ̂(0)+φ

2

)
> 0. This implies that V̇ ≤ 0 at t = 0. We

thus know that |φ̂(0+) − φ| ≤ |φ̂(0) − φ| < π
2 . Noting that

|φ̂(t) + φ| = |φ̂(t) − φ + 2φ| < |φ̂(t) − φ| + π
2 , it follows

that |φ̂(0+) + φ| < π and cos
(
φ̂(0+)+φ

2

)
> 0. Therefore,

V̇ ≤ 0 at t = 0+. We next use this observation to show that
|φ̂(t)−φ| < π

2 , for all t ≥ 0 using a contradiction argument.
Suppose it is not true. Then, there must exist a finite time
instant T for which |φ̂(T ) − φ| = π

2 and |φ̂(t) − φ| < π
2

for all t ∈ [0, T ). Based on the continuity, there must exist
a neighborhood [T − δ, T ) such that |φ̂(t)− φ| is increasing
during t ∈ [T − δ, T ), where δ > 0. However, based on the
definition of T and the observation for the case of t = 0+,
we know that V̇ (t) ≤ 0, for all t ∈ [0, T ). This shows that
|φ̂(t) − φ| is non-increasing during t ∈ [0, T ) and therefore
indicates a contradiction. Therefore, we know that V̇ ≤ 0,
for all t ≥ 0. Then, based on the Lasalle invariance principle,
we can conclude that limt→∞ φ̂(t) = φ.

Next, we show how to use the estimated information on φ
to compensate the original mismatched algorithm such that
the desired formation is achieved. Specifically, the following
compensation control algorithm is proposed

U(t) = −D +R(φ̂(t))D, (8)

where φ̂(t) is obtained by the estimator (7).
We next show that A2(t)−A1(t) converges to the desired

formation using compensation input (8) and the estimator (7).
Theorem 3: Consider the algorithm (5) with compensation

input (8) and the estimator (7). Suppose that |φ| < π
4 and

|φ̂(0)| ≤ π
4 . Then limt→∞ φ̂(t) = φ, limt→∞(A2(t) −

A1(t)) = D, and limt→∞V1(t) = limt→∞V2(t) = 0.
Proof: It is not hard to show from (5) and (8) that

Ȧ1 − Ȧ2 = −2(A1 −A2 + D) + D−R(φ̂− φ)D.

Noting that we have shown from Theorem 2 that
limt→∞R(φ̂(t) − φ) = I , it then follows from the input-
to-state stability property ( [16]) that limt→∞(A2(t) −
A1(t)) = D. It is then trivial to show that limt→∞V1(t) =
limt→∞V2(t) = 0.

III. FORMATIONS IN THREE-DIMENSIONAL SPACE

To this point, we have considered undirected formations
in a two-dimensional plane. We now show that similar
results hold for the two agent case in a three-dimensional
ambient space. In this section, we abuse the notation as
A1 = [x1, y1, z1]T ∈ R3, A2 = [x2, y2, z2]T ∈ R3, and
D = [dx, dy, dz]

T ∈ R3. We still assume that the global
coordinates coincide with the coordinate basis of agent 1
and suppose that the rotation from the coordinate of agent 1
to that of agent 1 is represented by an Euler axis and angle
[17]. An illustration is given in Figure 3.

Then, in each agent’s own coordinate basis, the actual
kinematics of each agent with mismatched directions are
given by

1Ȧ1 = A2 −A1 −D, (9a)
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Fig. 3. Coordinates of agents 1 and 2.

2Ȧ2 = R(n, φ)(A1 −A2) + D, (9b)

where R(n, φ) is the rotation matrix [18], n =

n1n2
n3

 ∈ R3

is a unit vector and φ ∈ (−π, π] is an angle. In particular,
R(n, φ) = I+sinφ[n]×+(1−cosφ)([n]×)2, where [n]× = 0 −n3 n2
n3 0 −n1
−n2 n1 0

 denotes the cross product matrix of n.

It is not hard to show that (9) can be written as

Ȧ1 = A2 −A1 −D, (10a)

Ȧ2 = A1 −A2 +R(n,−φ)D, (10b)

We next present the following result on the case of three-
dimensional ambient space.

Theorem 4: Consider the mismatched formation shape
control algorithm (9). Suppose n 6= 0 and φ 6= 0 and
constants. It follows that

[Intra-formation motion]
(I) The agents converge to a fixed formation exponentially

fast. In particular, limt→∞(A2(t) − A1(t)) = 1
2 (I +

R(n,−φ))D.
(II) The relative velocities of the agents converge to zero

exponentially fast, i.e., limt→∞(V2(t)−V1(t)) = 0.
(III) If D 6= 0, the final formation is distorted from the

desired one. The distance error between the actual final
relative position and the desired one is O(φ2), as φ→
0. If D = 0, then rendezvous is still achieved, i.e.,
limt→∞(A2(t)−A1(t)) = 0.

[Whole-formation motion]
(IV) If D 6= 0, the absolute velocities of both agents con-

verge to the same nonzero constant exponentially fast.
In particular, limt→∞ ‖V1(t)‖ = limt→∞ ‖V2(t)‖ =
O(|φ|), as φ → 0. If D = 0, the absolute velocities of
both agents converge to zero exponentially fast.

(V) If D 6= 0, the agent positions A1(t) and A2(t)
are neither convergent nor bounded. If D = 0,
limt→∞A1(t) = limt→∞A2(t) = A1(0)+A2(0)

2 , where
A1(0) and A2(0) are the initial states of agents 1 and
2.

Proof:
(I) Define Q = A1−A2 + 1

2 (I+R(n,−φ))D. It follows
from (3) that

Q̇ = −2Q. (11)

It then follows that limt→∞(A2(t)−A1(t)) = D exponen-
tially, where D = 1

2 (I +R(n,−φ))D. This verifies (I).
(II) Since limt→∞(A2(t)−A1(t)−D) = 0 exponentially

fast, it follow from (11) that limt→∞(Ȧ2(t) − Ȧ1(t)) = 0
exponentially fast. Therefore, (II) is proven.

(III) Note that the desired formation is determined by D,
but the actual final formation is determined by D 6= D.
Same as the case of a two-dimensional plane, we define the
distance error between the actual final relative position and
the desired one as δD =

∣∣‖D‖ − ‖D‖∣∣. Note that R(n, φ) = c+n21(1− c) n1n2(1− c)−n3s n1n3(1− c)+n2s
n1n2(1− c)+n3s c+n22(1− c) n2n3(1− c)−n1s
n1n3(1− c)−n2s n2n3(1− c)+n1s c+n23(1− c)

,

where c = cosφ and s = sinφ. Denote c̄ = cos(φ/2) and
s̄ = sin(φ/2). It follows that

I +R(n,−φ)

= 2

 c̄2 + s̄2n21 n1n2s̄
2 + n3s̄c̄ n1n3s̄

2 − n2s̄c̄
n1n2s̄

2 − n3s̄c̄ c̄2 + s̄2n22 n2n3s̄
2 + n1s̄c̄

n1n3s̄
2 + n2s̄c̄ n2n3s̄

2 − n1s̄c̄ c̄2 + s̄2n23


= 2s̄2

 n21 n1n2 n1n3
n1n2 n22 n2n3
n1n3 n2n3 n23

+ 2c̄

 c̄ n3s̄ −n2s̄
−n3s̄ c̄ n1s̄
n2s̄ −n1s̄ c̄


= 2(1− c̄)

 n21 n1n2 n1n3
n1n2 n22 n2n3
n1n3 n2n3 n23

+ 2c̄

×

 c̄ n3s̄ −n2s̄
−n3s̄ c̄ n1s̄
n2s̄ −n1s̄ c̄

+(1−c̄)

 n21 n1n2 n1n3
n1n2 n22 n2n3
n1n3 n2n3 n23


= 4sin2(φ/2)

 n21 n1n2 n1n3
n1n2 n22 n2n3
n1n3 n2n3 n23

+2 cos(φ/2)R(n,−φ/2).

Therefore, for small |φ|, it is not hard to show that δD ≈
(1 − cos φ2 )‖D‖ = 2 sin2(φ/4)‖D‖ ≈ φ2

8 ‖D‖. This shows
that δD = O(φ2), as φ→ 0.

On the other hand, if D = 0, it follows from the definition
of D that rendezvous is still achieved, i.e., limt→∞(A2(t)−
A1(t)) = 0.

(IV) It follows from (2) that limt→∞ Ȧ1(t) =
limt→∞ Ȧ2(t) = 1

2 (R(n,−φ)−I)D = sin φ
2 (− cos φ2 [n]×+

sin φ
2 ([n]×)2)D. This further implies when D 6= 0 that

limt→∞ ‖Ȧ1(t)‖ = limt→∞ ‖Ȧ2(t)‖ = O(|φ|), as φ → 0.
Therefore, for the case of D 6= 0, the absolute velocities of
both agents converge to the same nonzero constant exponen-
tially fast. For the case of D = 0, the absolute velocities of
both agents converge to zero exponentially fast.

(V) For the case of D 6= 0, the conclusions are obvious
due to (IV). If D = 0, the problem reduces to a standard
average consensus problem [9].

6777



0
5

10
15

20

20

25

30
−20

−15

−10

−5

 

xy
 

z

Agent 1
Agent 2

t=2s

t=7.5s

t=5s

t=0

(a) The circles and the solid black lines denote respec-
tively, the positions of the agents and the formation
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respectively, the actual formation shape and desired
formation shape at t = 7.5 s.

Fig. 4. Three-dimensional case with D 6= 0.

We next describe simulations which illustrate the validity
of Theorem 4. We first consider the case of D 6= 0. In
particular, D = [0,−5, 0]T, φ = −0.2π, and the two
agents start from the desired formation. Figure 4 shows the
positions of the agents during the time interval [0, 10]. Due
to the existence of mismatched directions, the agents keep
moving with non-zero constant absolute velocities and the
final formation is distorted from the desired one. This is
similar to the case of two-dimensional plane.

IV. CONCLUDING REMARKS

This paper studied the formation shape control problem
with mismatched directions. Such a mismatch is a con-
sequence of the fact that it is not physically realistic to
claim that all agents have common error-free knowledge
of where north is. We examined the consequences of the
mismatched directions on a standard formation shape control
algorithm. The two agent case in a two-dimensional plane
was first studied and we showed that the agents converge to
a fixed, but distorted formation exponentially fast. Unlike the
matched case, the formation is not asymptotically stationary.
The shape error between the actual final formation and
the desired formation was explicitly established. We then
proposed estimation and compensation algorithms such that
the desired formation shape is achieved exponentially fast.

The exponential property provides a measure of robustness to
noise. Although not covered in the paper, the ideas are easily
extended to more complicated formations. The extensions to
the case of a three-dimensional space were indicated also.
Simulations are provided to validate the theoretical results in
the absence of noise. The results of this paper raise a number
of open issues, including considering other agent models,
such as second order agents or unicycle agents, considering
the effect of bias in distances simultaneously with mismatch
in the direction of north, and studying estimation and com-
pensation algorithms for the three-dimensional ambient space
case.
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