
Fakultät für Informatik
der Technischen Universität München

Lehrstuhl für Sicherheit in der Informatik

Hardware-based Integrity Protection combined with

Continuous User Verification in Virtualized Systems

Michael Velten

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Jörg Ott

Prüfer der Dissertation: 1. Prof. Dr. Claudia Eckert

2. Prof. Dr. Georg Sigl

Die Dissertation wurde am 04.05.2017 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 10.09.2017 angenommen.

iii

Abstract

The ubiquity of computer systems, their application in security and privacy

critical contexts like electronic voting, online shopping, or online banking,

and the fact that these systems contain sensitive data pose security and pri-

vacy risks. There is a threat of malicious users and software, like viruses,

worms, and trojans, attacking and exploiting vulnerabilities in order to com-

promise the computer systems and to spy on users or to manipulate data.

Because mobile devices are often used to interact with these systems, an-

other attack vector can be lost, stolen, or compromised devices used for

gaining illegitimate access to the systems and to sensitive data hosted on

the systems like account or credit card information. Such attacks constitute

a threat to system integrity and data confidentiality and therefore ultimately

to the confidence in the trustworthiness of the systems. Therefore, suitable

protection and defense mechanisms are required.

In this work, we develop concepts and methods to ensure the continu-

ous integrity of computer systems through a combination of virtualization

techniques and a Trusted Platform Module (TPM). This includes the de-

velopment of secure mechanisms for taking integrity measurements of soft-

ware running inside virtual machines and for securely storing the obtained

integrity measurements in a TPM. Furthermore, we explore how only legit-

imate users will be allowed to access the computer systems and the hosted

user data by continuously authenticating all users interacting with the sys-

tem.

We first show how to store and multiplex integrity measurements of ar-

bitrarily many virtual machines in the TPM without lowering the security

level provided by the TPM. A specially tailored attestation protocol en-

ables us to prove the trustworthiness of individual virtual machines and to

protect the privacy of other virtual machines by concealing sensitive data

inherently required to be disclosed within the attestation process. We pro-

pose a virtualization-based architecture for securely taking integrity mea-

surements from outside of the monitored virtual machines that effectively

prevents attackers located in the virtual machines from manipulating the

measurement process and the obtained measurements. The development of

a flexible rule-based access control mechanism for protecting the integrity

of virtual machines enables users to autonomously and securely install and

update software packages while still preventing the installation of malicious

or vulnerable software, and without requiring the intervention of the sys-

tem administrator. Furthermore, we show how to continuously authenticate

users of mobile devices—like smartphones and tablets—accessing and in-

iv

teracting with the system by comparing the touchscreen interactions of the

current user with the individual behavior patterns of the legitimate user.

The proposed concept enables us to detect and disable compromised user

accounts without requiring any special software, permissions, or provision-

ing on the device. We develop and evaluate prototypes to demonstrate the

practicality of the proposed concepts and mechanisms.

v

Kurzfassung

Die Allgegenwärtigkeit von Computersystemen, deren Einsatz in sicherheits-

und privatsphäre-kritischen Kontexten wie etwa Electronic Voting, Online

Shopping oder Online Banking und die damit einhergehende Existenz sen-

sibler Daten bergen besondere Risiken bezüglich der Sicherheit dieser Sys-

teme und des Datenschutzes. Zum einen besteht die Gefahr, dass bösartige

Nutzer und Malware, wie beispielsweise Viren, Würmer und Trojaner, durch

die Ausnutzung von Schwachstellen der Computersysteme diese kompromit-

tieren und so etwa Benutzer ausspionieren oder Daten manipulieren. Da

der Zugriff auf die Systeme zudem oft über mobile Endgeräte erfolgt, stellen

verlorene, gestohlene und kompromittierte Endgeräte einen weiteren poten-

tiellen Angriffsvektor dar, um unberechtigten Zugriff auf die Systeme und auf

dort vorhandene sensible Daten wie etwa Konto- und Kreditkarteninforma-

tionen zu erlangen. Solche Angriffe bedrohen somit die Integrität der Com-

putersysteme, die Vertraulichkeit der dort befindlichen Nutzerdaten und

damit letztlich das allgemeine Vertrauen der Benutzer in solche Systeme.

Dementsprechend werden geeignete Absicherungs- und Verteidigungsmaß-

nahmen benötigt.

Gegenstand dieser Arbeit ist zum einen die Erforschung von Konzepten

und Mechanismen zur kontinuierlichen Sicherstellung der Datenintegrität

eines Systems unter dem Einsatz von Virtualisierungstechniken in Kombina-

tion mit einem Trusted Platform Module (TPM). Dies umfasst insbesondere

die sichere Durchführung von Integritätsmessungen der sich in den virtuellen

Maschinen befindlichen Komponenten und die sichere Verwahrung der ent-

nommenen Integritätsmesswerte im TPM. Zum anderen wird untersucht,

wie sichergestellt werden kann, dass nur legitime Benutzer Zugriff auf das

System und auf die dort vorhandenen Nutzerdaten erhalten, indem kon-

tinuierlich die Authentizität der mit dem System interagierenden Benutzer

verifiziert wird.

Zunächst wird dazu gezeigt, wie man die aus beliebig vielen virtuellen

Maschinen entnommenen Integritätsmesswerte so im TPM speichern und

multiplexen kann, dass dies nicht zu einer Beeinträchtigung des Sicherheits-

niveaus führt. Darauf aufbauend wird ein Attestationsprotokoll vorgestellt,

das es erlaubt, die Vertrauenswürdigkeit einzelner virtueller Maschinen nach-

zuweisen, wobei inhärent offenzulegende Daten anderer virtueller Maschinen

so verschleiert werden, dass keine kritischen Informationen preisgegeben wer-

den. Zur sicheren Durchführung der Integritätsmessungen wird eine virtu-

alisierungsbasierte Architektur entworfen, mit deren Hilfe die Integritäts-

messungen von außerhalb der überwachten virtuellen Maschinen erfolgen

vi

können, so dass sowohl Manipulationen des Messvorgangs als auch der Mess-

werte durch einen in den virtuellen Maschinen befindlichen Angreifer effek-

tiv verhindert werden. Zusätzlich wird eine flexible regelbasierte Zugriffs-

kontrolle zur Gewährleistung der Datenintegrität erarbeitet, die Benutzern

von virtuellen Maschinen die autonome Installation und Aktualisierung von

Software-Paketen ohne die Notwendigkeit der Intervention durch den Sys-

temadministrator ermöglicht, dabei jedoch die Installation bösartiger und

verwundbarer Software unterbindet. Des Weiteren wird untersucht, wie die

Authentizität der mit dem System über mobile Endgeräte – wie Smart-

phones und Tablets – interagierenden Benutzer kontinuierlich verifiziert wer-

den kann, indem die Interaktionen des aktuellen Benutzers mit dem Touch-

screen des verwendeten mobilen Endgerätes mit den individuellen verhal-

tensbasierten Charakteristika des legitimen Benutzers abgeglichen werden.

Das vorgestellte Konzept erlaubt die Erkennung und Deaktivierung kompro-

mittierter Benutzerkonten, ohne dass es dazu spezieller Software, besonderer

Berechtigungen oder einer vorherigen Provisionierung des Endgeräts bedarf.

Die Praktikabilität und Effektivität der erarbeiteten Konzepte und Mech-

anismen werden durch prototypische Umsetzungen und deren Evaluation

demonstriert.

vii

Acknowledgments

First of all, I would like to thank Prof. Dr. Claudia Eckert for giving me the

opportunity to pursue a PhD in the field of IT Security and for providing

me with her supervision, support, and encouragement.

I would also like to thank Prof. Dr. Georg Sigl for his interest in my work

and his contribution as a second examiner.

I am thankful to all the members of the departments Embedded Security

and Trusted OS and Secure Operating Systems at the Fraunhofer Institute

for Applied and Integrated Security. I would like to especially thank the

following colleagues—in alphabetical order—for fruitful discussions, valuable

feedback, and their support and companionship: Julian Horsch, Manuel

Huber, Nisha Jacob, Prof. Dr. Dominik Merli, Dieter Schuster, Dr. Michael

Weiß, Philipp Zieris.

I would also like to thank the former students Matthias Fischer and Peter

Schneider who assisted me in my research.

Finally, I am grateful to my parents and the rest of my family for their

endless support. This dissertation would not have been possible without

them.

viii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 4

1.3 Contributions . 6

1.4 Thesis Outline . 9

2 Background 11

2.1 Trusted Computing . 11

2.1.1 Integrity Measurement 13

2.1.2 Remote Attestation 14

2.2 Virtualization . 15

2.2.1 Full Virtualization . 15

2.2.2 Paravirtualization . 16

2.2.3 Operating-System-Level Virtualization 17

2.3 Distributed Filesystems . 18

2.3.1 9P Filesystem . 18

2.4 Machine Learning . 20

2.4.1 Classification . 20

3 Multiplexing TPM Integrity Measurements 23

3.1 TPM Virtualization Challenges 24

3.2 Requirements Analysis . 26

3.3 Attacker Model and Assumptions 27

3.4 System Overview . 28

3.5 Multiplexed Storage and Attestation 30

3.6 Measurement Concealment 31

3.6.1 Multiplexed Measurement List 33

3.7 Integrity Reporting . 34

3.8 Integrity Validation . 35

3.9 Security Analysis . 38

x CONTENTS

3.9.1 Discarding Measurements 39

3.9.2 Substituting Measurements 39

3.9.3 Substituting VM-IDs 39

3.9.4 Blinding Measurements and VM-IDs 39

3.10 Prototype Implementation . 42

3.11 Performance Evaluation . 43

3.12 Related Work . 45

3.13 Summary . 46

4 Integrity Monitoring using Paravirtualized Filesystems 49

4.1 Virtualization-based Integrity Monitoring 50

4.2 Attacker Model and Assumptions 52

4.3 Monitoring of Guest VMs . 52

4.3.1 Filesystem Relocation Mechanism 53

4.3.2 Relocation Scenarios 53

4.4 System Overview . 55

4.4.1 File Operation Monitor 56

4.4.2 Execution Detection Engine 56

4.4.3 Package Maintenance Engine 57

4.4.4 File Protection Enforcer 57

4.5 Monitoring and Analyzing File Operation Requests 57

4.5.1 Shadow Copy Write 58

4.6 Secure Storage of Integrity Measurements 59

4.7 Enforcing File Protection . 61

4.7.1 Policy Predicates and Request Mapping 61

4.7.2 Package Policy Rules 63

4.7.3 Policy Example . 63

4.8 Detecting Program Execution 65

4.9 Autonomous Software Package Installation and Upgrade . . . 66

4.9.1 Signaling of Package Maintenance Request 67

4.9.2 Checking Package Integrity and Permissions 67

4.9.3 Executing Package Maintenance Request 68

4.9.4 CPVM Rationale . 68

4.10 Prototype Implementation . 69

4.10.1 Installation and Upgrading of Packages 70

4.11 Performance Evaluation . 70

4.11.1 Network-based Filesystem Relocation 73

4.12 Security Analysis . 75

4.12.1 Persistent Malware . 75

4.12.2 Fileless Malware . 76

CONTENTS xi

4.12.3 Persistent File Manipulations 76

4.12.4 Software Package Manipulations 76

4.12.5 Non-Persistent Manipulations 77

4.13 Related Work . 77

4.14 Summary . 79

5 Continuous Authentication using Touchscreen Dynamics 81

5.1 Behavioral Biometrics for Authentication 83

5.2 Attacker Model and Assumptions 85

5.3 Touch Interaction Selection in Web Contexts 85

5.3.1 Touchscreen Gestures 86

5.3.2 Device Sensor Data 87

5.4 System Overview . 88

5.5 Touch Behavior Model Training 88

5.6 User Identity Verification . 89

5.7 Feature Extraction . 91

5.7.1 Path Offsets . 91

5.7.2 Bounding Box . 91

5.7.3 Raster . 92

5.7.4 Velocity . 92

5.7.5 Curvature . 92

5.7.6 Acceleration . 92

5.8 Verification Strategy . 93

5.8.1 Subsequence Processing 93

5.8.2 Confidence Value Calculation 93

5.9 Framework Implementation 94

5.10 Classification Evaluation . 96

5.10.1 Feature Suitability . 97

5.10.2 Classification Accuracy 98

5.11 Performance Evaluation . 101

5.11.1 CPU Usage . 102

5.11.2 Battery Consumption 105

5.11.3 Network Traffic Generation 108

5.12 Security Analysis . 111

5.12.1 Blocking Attack . 111

5.12.2 Imitation Attack . 112

5.12.3 Replay Attack . 112

5.13 Related Work . 114

5.14 Summary . 116

xii CONTENTS

6 Conclusion and Future Work 119

6.1 Contributions . 120

6.2 Future Research . 122

Bibliography 125

List of Acronyms 145

List of Figures 150

List of Tables 151

Chapter 1

Introduction

In this chapter, we introduce and motivate the topic of this thesis. We give

the problem statement, describe the main challenges, and list our contribu-

tions. Furthermore, we give an outline of the thesis.

1.1 Motivation

Computer systems have become ubiquitous and are used in a wide variety

of scenarios like cloud computing, online shopping, social media, electronic

voting, and online banking. The fact that these systems perform security

and privacy critical operations and often host large numbers of user ac-

counts containing sensitive data makes them a prime target for computer

criminals trying to compromise and exploit them [103, 187, 49, 140, 20].

Malicious users and malware, like viruses, worms, and trojans, located on

these systems will try to attack and exploit vulnerabilities in order to com-

promise the systems, gain illegitimate access to user accounts, and spy on

users or manipulate data [66, 26, 21]. Because computer systems often act

as servers providing functionality to clients over communication networks—

most notably the internet—they are also exposed to network attacks trying

to exploit vulnerabilities of provided services [75, 114]. To this end, at-

tackers may also try to launch indirect attacks in order to compromise the

accounts hosted on the server. In this context, attackers first exploit lost,

stolen, and compromised mobile devices of users having legitimate access

to the server’s user accounts [37, 60, 7]. After successfully hijacking those

user accounts, the attacker may then, for example, manipulate or steal data

of cloud computing users [72], transfer money to the attacker’s banking ac-

count [126], or manipulate electronic votes [88]. Depending on the privilege

level of the hijacked account, the attacker may even be able to compromise

2 CHAPTER 1. INTRODUCTION

other user accounts and other parts of the system. For example, a hacked

system administrator account is likely to entail a fully compromised system.

Therefore, it is crucial to ensure both the system integrity of the com-

puter systems and the authenticity of users interacting with them. There

exist various mechanisms and techniques to protect computer systems and

to defend against attacks [43, 155, 184, 78, 35]. A well-known approach

for improving system security is the utilization of a Trusted Platform Mod-

ule (TPM) [173, 174] as specified by the Trusted Computing Group (TCG)

[172]. A TPM is an implementation of a secure cryptoprocessor acting as a

cornerstone for securely performing crucial cryptographic operations. This

allows securing computer systems and proving their integrity as part of a

remote attestation to third parties. Nowadays, a large majority of server sys-

tems, personal computers, and notebooks ship with a TPM [3]. Prominent

use cases include Microsoft’s BitLocker for full disk encryption [55] and the

versatile utilization in Google Chromebooks [48]. In particular, the TPM

can be used to securely store integrity measurements in special hardware-

protected registers called Platform Configuration Registers (PCRs) that re-

flect a system’s configuration. This can be utilized to keep track of the

system’s integrity starting with the initial startup of the system by measur-

ing each component in the system’s booting sequence, before the component

is actually being executed, and storing the corresponding measurements in

PCRs. The integrity measurements can then be used in the course of a

remote attestation to prove to a remote party that the system platform is

in a trusted state. Even in the event of an attacker compromising the com-

puter system, it is impossible to manipulate integrity measurements already

stored in the TPM.

The popular Integrity Measurement Architecture (IMA) [148] extends

this chain of trust to the application layer by measuring programs executed

in the operating system and storing the measurements in a PCR of the TPM.

A common disadvantage of IMA and similar measurement agents is that they

have no strong isolation from the measurement target (i.e., the measured

operating system). Therefore, an attacker gaining sufficient privileges (e.g.,

through runtime attacks targeting the operating system kernel) may be able

to tamper with the measurement agent such that measurements will not be

taken correctly anymore. Consequently, attestations issued by the system

about its integrity cannot be trusted.

A concept to mitigate the aforementioned problems and to isolate the

measurement agent (e.g., IMA) from the measurement target (the operating

system) is virtualization [97, 61]. In this case, the measurement target is

placed inside a Virtual Machine (VM) and the measurement agent is located

1.1. MOTIVATION 3

outside of the VM, thus being able to monitor the target from “outside of

the box”. Using this approach, it is possible to securely take integrity mea-

surements and store them in the TPM even in the event of a completely

compromised VM. Virtualization also allows running and monitoring mul-

tiple measurement targets on a single physical computer system. This is

especially relevant in scenarios like cloud computing where there usually

exists a multitude of VMs. Furthermore, virtualization allows supervising

guest operating systems and interposing and preventing critical operations

(e.g., write operations on crucial files) [117, 61]. These mechanisms can be

used to better defend against malware—like viruses, worms, and trojans—

located in the VMs [79, 80, 41, 81].

However, a problem with using both virtualization and TPM function-

ality is that currently it is not possible to combine them without lowering

the TPM security level. In particular, the TPM was not designed to store

integrity measurements of multiple VMs. There exist approaches to solve

this problem by introducing virtual TPMs [9, 89, 101, 46]. However, these

approaches do not provide the same level of security as a hardware TPM

because they emulate PCRs in software. On a compromised system, these

PCRs can be manipulated by an attacker, allowing him to forge remote

attestations. Therefore, in order to improve the security of such systems,

a mechanism is required to securely store and multiplex integrity measure-

ments from multiple VMs directly in the hardware TPM. Another difficulty

arises from the fact that the virtualization layer introduces a semantic gap

[61] resulting in external monitoring components having a rather abstract

and less detailed view of the supervised guest operating system. Hooks

placed inside the monitored VMs can help to better cope with the complex-

ity of interpreting guest operating system specific structures and events and

to gain a more detailed view. However, this poses the risk of attackers tam-

pering with the hooks [4]. Hence, it is also necessary to have a mechanism

that allows for proper and sufficiently detailed monitoring of VMs where an

attacker cannot circumvent the monitoring process by tampering with the

hooks.

The proper utilization of both virtualization and TPM functionality,

as described above, allows us to secure and protect the integrity of guest

operating systems and to defend against attackers and malware located in

VMs. However, such virtualized systems typically contain a user class with

special privileges—system administrators—who are not confined to VMs

but are able to make system-wide modifications. Because these systems

usually allow remote access, a system administrator can take advantage

of portable devices like smartphones to access and maintain the system

4 CHAPTER 1. INTRODUCTION

from virtually everywhere. However, carrying around these devices amplifies

the risk of loss or theft, thus increasing the threat of attackers hijacking

critical system administrator accounts and potentially compromising the

entire system [37, 7]. Therefore, in order to further improve the overall

system security, it is necessary to continuously verify the identities of all

users accessing and interacting with the system and to detect and disable

hacked accounts [144].

In this thesis, we will explore novel ways of improving system security

based on a combination of virtualization, the utilization of a TPM, and

continuous user authentication. Virtualization allows us to monitor critical

operations and to take integrity measurements of multiple, isolated VMs

from outside of the VMs. By leveraging a hardware TPM to store and

multiplex the obtained measurements, we can take full advantage of the

TPM’s hardware-based security guarantees. In addition, continuous user

authentication enables us to detect and disable compromised accounts, thus

further enhancing the overall system security.

1.2 Problem Statement

In the following, we describe the main challenges we have to solve in order to

realize a system that successfully combines virtualization, the utilization of

a TPM, and continuous user authentication in order to improve a system’s

overall security.

Securely storing measurements of multiple VMs. The utilization of

a TPM can improve system security. However, the TPM was not designed

to be used directly in virtualized environments. In particular, it is not pos-

sible to store integrity measurements on a per-VM basis because there is

only a rather small number of registers (PCR) for storing measurements

but a potentially large number of VMs. Virtual TPMs hold measurements

in software-emulated PCRs to solve this problem. However, this makes them

more susceptible to attacks and therefore does not provide the same level of

security as a hardware TPM. Consequently, to improve the security of such

systems, a mechanism is required that allows us to securely store integrity

measurements from multiple VMs in the hardware TPM. The challenge is

to share and multiplex measurements from n VMs in m < n available PCRs

such that there exists an integrity-protected mapping between each mea-

surement and its respective VM that cannot be manipulated by an attacker

(e.g., hiding malicious programs by mapping their measurements to other

VMs).

1.2. PROBLEM STATEMENT 5

Attesting the integrity of individual VMs. The integrity measure-

ments can be used in the course of a remote attestation to prove to a remote

party that the system platform is in a trusted state. However, the TPM

inherently requires the disclosure of all measurements of all VMs that share

PCRs with the attested VM. The reason is that the measurements are stored

as a hash chain in the PCRs, and all elements of the hash chain are required

to verify and guarantee the integrity of the measurement values. Therefore,

to protect the privacy of other VMs, a novel mechanism is required that al-

lows for attesting individual VMs without disclosing measurements of other

VMs that share the same PCRs. Furthermore, it must not be possible for

an attacker to hide measurements or map them to a different VM.

Taking reliable measurements. A measurement agent takes integrity

measurements of crucial system components and stores them in the TPM.

Virtualization can prevent attackers from tampering with the measurement

agent. In this case, the measurement target is isolated in a VM and the mea-

surement agent is located outside of the VM, thus being able to supervise the

target from “outside of the box”. However, the external measurement agent

now only has a rather coarse and abstract view of the supervised operating

system’s internal structures. The challenge is to bridge this semantic gap

[61] in such a way that the measurement agent is provided with sufficient

information about all relevant operations occurring within the guest operat-

ing system in order to take adequate integrity measurements. An attacker

must not be able to tamper with hooks placed inside of a VM in order to

hide critical file operations.

Monitoring file operations using flexible policies. The described vir-

tualized monitoring techniques not only allow to take measurements from

outside of VMs. They also enable external monitoring components to inter-

pose on critical file operations and to prevent them. Policy-based access con-

trol mechanisms can prohibit all filesystem operations within a VM unless

an operation is explicitly granted by a policy rule. While such approaches

can significantly increase the security of the monitored system, they may

also heavily restrict what a legitimate user is allowed to do. In particular,

they may result in an inflexible system where it is impossible for legitimate

users to autonomously install or upgrade software without the need of man-

ual intervention by the administrator of the physical system. The challenge

is to develop a mechanism that allows us to monitor and prevent illegal file

operations based on a policy-based approach. An attacker must not be able

to evade the monitoring and manipulate files without the monitoring com-

6 CHAPTER 1. INTRODUCTION

ponent noticing it. However, at the same time, regular users of VMs should

be able to autonomously install, remove, upgrade, and downgrade software

packages in a secure and controlled manner.

Detecting compromised accounts. System administrator accounts and

other accounts on a system can be accessed through portable devices like

smartphones. However, this allows attackers to hijack accounts through the

device, sometimes even without having to enter a password or PIN because

having physical access to the device often entails direct access to several

accounts where the user is still logged into. A possible countermeasure is

to take advantage of behavioral biometrics. In this context, the user iden-

tity can be continuously verified based on individual interaction behavior

(e.g., interactions with the touchscreen of a smartphone) caused by physi-

cal differences between users, varying habits, and personal preferences. The

challenge is to find ways to enable the server to deploy such continuous user

authentication on the fly without requiring any special software, prior setup,

or special privileges on the user’s device as this simplifies deployment signif-

icantly. Furthermore, the user verification process should be as unobtrusive

and transparent for the user as possible. However, the above constraints can

result in limited access to behavioral biometrics data and a lower degree of

precision. Therefore, another challenge is to find a selection of features that

still allow for successful user classification under these conditions.

1.3 Contributions

In this thesis, we explore novel mechanisms to multiplex integrity measure-

ments originating from arbitrarily many VMs in a secure and privacy-aware

manner in a hardware TPM, thus achieving a higher level of security com-

pared to existing approaches emulating PCRs in software. We take advan-

tage of virtualization to develop a system that enables us to monitor multiple

operating systems from “outside of the box”, take integrity measurements

on a per-VM basis and securely store them in a hardware TPM, and to de-

tect and prevent critical file operations through policy-based access control

mechanisms. Finally, we show new methods to utilize continuous user au-

thentication in order to better protect user accounts such that lost, stolen,

or compromised user devices do not lead to compromised user accounts and

systems.

Figure 1.1 gives a high-level view of the main components explored in

this thesis and how they relate to each other. The three main components

1.3. CONTRIBUTIONS 7

VM ...VM VM

Virtualization-based
Integrity Monitoring

TPM

Measurement Multiplexing
and Attestation

1

2 3

Part 1: Multiplexing TPM Integrity
 Measurements

Part 2: Integrity Monitoring using
 Paravirtualized Filesystems

Part 3: Continuous Authentication
 using Touchscreen Dynamics

Continuous
Authentication

Figure 1.1: High-level view of the main components explored in this thesis.

correspond to the work done in Chapters 3 to 5. In each chapter, we con-

tribute to the existing research. The conceptual work is complemented by

implementing and evaluating proof of concepts to demonstrate the practi-

cality of our proposed approaches.

In the following, we list the main contributions of this thesis.

Contribution 1. We show how to multiplex integrity measurements orig-

inating from arbitrarily many VMs with just a single standard TPM

and only requiring one PCR. In contrast to previous work emulating

PCRs in software, our approach achieves a higher level of security since

measurements are always stored in the hardware-protected PCRs of

the TPM. We implement a proof of concept to take and multiplex in-

tegrity measurements and evaluate its performance for different num-

bers of virtual machines.

Contribution 2. We develop a secure and privacy-aware remote attesta-

tion protocol for attesting the integrity of individual VMs. In this

context, we present a novel approach for handling concealed integrity

measurements that enables us to disclose only selected measurements

of the hash chain stored in a shared PCR without degrading the TPM’s

security guarantees. However, this approach poses the risk of an at-

tacker manipulating the attestation protocol through exploitation of

the newly introduced concealment capabilities in order to hide mea-

8 CHAPTER 1. INTRODUCTION

surements. We give an exhaustive list of possible attacks and show

how our remote attestation protocol protects against them.

Contribution 3. We present a virtualization-based architecture that al-

lows for “outside of the box” integrity monitoring by relocating a su-

pervised VM’s entire filesystem into the isolated realm of the host

such that all file operations must necessarily be routed through the

hypervisor-level. This efficiently bridges the semantic gap and—in

contrast to existing monitoring approaches—has the advantage that

hooks placed inside the VMs are not prone to manipulation by mal-

ware because disabling hooks inevitably renders the VM incapable of

accessing or manipulating its own filesystem. We implement and evalu-

ate a proof of concept using a minimalist and lightweight virtualization

solution.

Contribution 4. We take advantage of the developed virtualization-based

architecture and present a policy-based access control mechanism for

enforcing file protection. We solve the problem of too restricting and

inflexible policy rules by enabling regular VM users to autonomously

install, remove, upgrade, and downgrade software packages. Our ap-

proach contributes to the security of the VMs by preventing both reg-

ular users and malicious users from installing or downgrading software

versions known to contain vulnerabilities.

Contribution 5. We show how to continuously authenticate users based

on user interaction behavior with smartphone touchscreens. Our so-

lution is widely applicable on everyday smartphones and, in contrast

to other work, does not require any special software, prior setup, or

special privileges on the user’s smartphone. We rather take advantage

of standard mobile web browser capabilities to remotely capture and

analyze touchscreen interactions in order to continuously verify user

identities. In contrast to existing work, we do not have direct access

to the API of the touch device’s operating system. This means that

touch interaction data, proven to be beneficial for user classification,

has a lower degree of precision and some data cannot be obtained at

all. We provide a selection of features that still allow for successful user

classification under these conditions. We implement a proof of concept

and evaluate the user classification accuracy as well as its overhead to

assess the practicality of our approach.

1.4. THESIS OUTLINE 9

1.4 Thesis Outline

The remainder of this thesis is organized as follows.

Background. Chapter 2 provides the necessary background on Trusted

Computing, virtualization, distributed filesystems, and machine learn-

ing. Furthermore, it introduces the terminology used throughout this

thesis.

Multiplexing TPM Integrity Measurements. In Chapter 3, we intro-

duce our approach for secure and privacy-aware multiplexing of hard-

ware-protected TPM integrity measurements within virtualized envi-

ronments. In particular, we show how to multiplex integrity measure-

ments of arbitrarily many virtual machines with just a single TPM.

Furthermore, we develop a privacy-aware remote attestation protocol

for proving the integrity of individual virtual machines. We construct

the protocol in such a way that no integrity measurements and no

other sensitive information of other virtual machines is disclosed.

Integrity Monitoring using Paravirtualized Filesystems. In Chap-

ter 4, we build upon the above work and develop a system for moni-

toring the filesystem of multiple virtual machines from “outside of the

box” and store the so-obtained integrity measurements in the multi-

plexed TPM. In particular, we present our approach of relocating a

supervised virtual machine’s entire filesystem into the isolated realm

of the host. In this way, we can enforce that all file operations on

the virtual machine’s filesystem must necessarily be routed through

the hypervisor-level, and thus can be tracked and even be prevented.

This enables us to secure and protect the integrity of virtual machines

and to defend against attackers and malware—like viruses, worms, and

trojans—located in the virtual machines.

Continuous Authentication using Touchscreen Dynamics. In Chap-

ter 5, we develop a framework that allows for secure interaction with

the above system. In particular, we protect the system’s user ac-

counts by continuously verifying user identities based on user inter-

action behavior with smartphone touchscreens. This enables us to

disable critical functionality and to enforce a reauthentication in case

of suspicious behavior. Our approach is completely transparent for

the user and works on everyday smartphones without requiring any

special software or privileges on the user’s device. We show how to

10 CHAPTER 1. INTRODUCTION

successfully classify users even on the basis of limited and imprecise

touch interaction data.

Conclusion and Future Work. Chapter 6 concludes this thesis and pro-

vides directions for future research.

Chapter 2

Background

In this chapter, we present the necessary background on Trusted Computing,

virtualization, distributed filesystems, and machine learning. Furthermore,

we introduce the terminology used throughout this thesis. The background

information on Trusted Computing and virtualization is primarily required

for Chapters 3 and 4, the background information on distributed file systems

for Chapter 4, and the background information on machine learning for

Chapter 5.

2.1 Trusted Computing

Trusted Computing is a technology developed by the Trusted Computing

Group (TCG) allowing to protect computing infrastructure and end points

based on a hardware root of trust [172]. The core component is the Trusted

Platform Module (TPM) [173, 174]. A TPM is a cryptographic coprocessor

that is present on most commercial PCs and servers [3]. A TPM is similar

to a smart card, however, an important difference between a smart card

and a TPM is that the latter is bound to a specific platform [47]. The

TPM provides several security functionalities like random number genera-

tion, hashing, secure key generation, signing, and encryption. The provided

functionality and the supported cryptographic algorithms differ between a

TPM 1.2 [173] and the latest TPM 2.0 [174], the latter of which is sometimes

called next generation Trusted Platform Module [132]. Table 2.1 gives an

overview of some key differences between a TPM 1.2 and a TPM 2.0.

An essential cryptographic key of both TPM 1.2 and TPM 2.0 is the En-

dorsement Key (EK). The EK makes it possible to identify a particular TPM

by utilizing asymmetric cryptography. In particular, the public portion of

the EK key pair can be used to verify that a given TPM is in possession of

12 CHAPTER 2. BACKGROUND

TPM 1.2 TPM 2.0

Endorsement Key fixed: single RSA 2048 flexible: multiple

Asymmetric Algs fixed: RSA flexible: RSA, ECC

Symmetric Algs optional: AES AES

Authorization HMAC, PCR, PP, locality PW, HMAC, EA

Hash Functions fixed: SHA-1 flexible: SHA-1|256

Number of PCRs minimum of 16 depends on platform

Table 2.1: Comparison of some key features of a TPM 1.2 and a TPM 2.0.

PP=Physical Presence, PW=Password, EA=Enhanced Authorization.

the corresponding, matching private portion. The private portion of the EK

key pair never leaves the TPM. The TPM 1.2 supports only an RSA 2048-

bit EK key pair, whereas the flexible algorithm agility approach of the TPM

2.0 allows for various asymmetric key types. Furthermore, with TPM 2.0 it

is possible to have multiple EKs instead of only one. In this case, all TPM

2.0 EKs can be created based on a single persistent, randomly generated

Endorsement Primary Seed (EPS). This prevents the necessity of having to

store all key pairs in the rather scarce amount of available TPM non-volatile

memory.

TPM 1.2 supports only RSA as its asymmetric cryptographic algorithm,

whereas TPM 2.0 supports both RSA and Elliptic Curve Cryptography

(ECC). Regarding symmetric cryptographic algorithms, the TPM 1.2 spec-

ification states that the Advanced Encryption Standard (AES) may be sup-

ported but that TPM 1.2 does not expose any of the symmetric operations

for general message encryption [173]. In contrast, TPM 2.0 does expose

AES for general message encryption.

TPM 1.2 offers several means for authorization based on Hashed Message

Authentication Code (HMAC), the state of PCRs (cf. Section 2.1.1), the as-

sertion of physical presence, and proof of locality by indicating a command

is coming from a trusted process. The TPM 2.0 offers password-based au-

thorization, HMAC, and a powerful policy-based authorization mechanism

called Enhanced Authorization (EA) which includes TPM 1.2 features: 1.2

HMAC, PCR, physical presence, and locality.

The TPM 1.2 specification is restricted to the hash function SHA-1 (160-

bit). This restriction is getting increasingly critical. Theoretical attacks on

SHA-1 have been known since 2005, and SHA-1 was officially deprecated by

NIST in 2011 [44]. In 2017, security researchers at CWI Amsterdam and

Google have announced the first practical collision attack on SHA-1 [165].

In contrast, the algorithm agility approach of the TPM 2.0 specification

2.1. TRUSTED COMPUTING 13

CRTM

C1

PCRs

TPM

1. measure C2

4. execute C2

2. extend
measurement
H(C2)

3. store auxiliary
measurement
information

BIOS

C2

CRTM

C1

Boot Loader

C3

OS

C4

SML

Figure 2.1: Authenticated boot sequence with components C1 to C4 involved

in establishing a transitive chain of trust. Measurements are extended in the

TPM and auxiliary information is stored outside of the TPM.

allows virtually any hash function (e.g., SHA-256), thus protecting against

the above collision attack.

Finally, the TPM 1.2 specification [173] guarantees a minimum of 16

PCRs, whereas the platform-specific specifications of the TPM 2.0 range

from a minimum of one PCR for TCG TPM 2.0 Automotive Thin Profile

[175] to a minimum of 24 PCRs1 for the TPM 2.0 TCG PC Client Platform

TPM Profile (PTP) specification [176].

2.1.1 Integrity Measurement

An authenticated boot is used to establish a transitive chain of trust by

measuring each component in the booting sequence, starting with an in-

herently trusted component called the Core Root of Trust for Measurement

(CRTM). The sequence of steps involved in an authenticated boot is de-

picted in Figure 2.1. Each component Ci first measures the next component

Ci+1 in the booting sequence by applying a cryptographic hash function

H to the executable code of Ci+1 before control is eventually passed to

Ci+1. The obtained integrity measurement m := H(Ci+1) will be stored in

a shielded location of the TPM’s volatile memory2 called Platform Config-

uration Register (PCR). A PCR may hold arbitrarily many measurements

by storing the measurements as a hash chain. The TPM only allows adding

measurements to a hash chain through a special extend operation. The ex-

1Optionally, a TPM 2.0 may also support additional banks of PCRs.
2The TPM 2.0 Library Specification [174] also allows TPM vendors to implement PCRs

in non-volatile memory.

14 CHAPTER 2. BACKGROUND

tend operation for a measurement m to a PCR with index i is defined as:

PCR[i] ← H(PCR[i] || m) (where || denotes concatenation).3 Note that

the extend operation does not change the size of the hash chain value stored

in the PCR. Furthermore, the extend operation preserves the chronological

ordering of added measurements. The TPM does not allow to remove a once

extended measurement from a PCR, nor does it allow to reset a PCR with-

out restarting the entire system (platform power-up). In addition to the ex-

tend operations, all measurements—along with auxiliary information—will

be stored in an ordered list (outside of the TPM) called Stored Measurement

Log (SML) or TCG event log. The log keeps track of all measurements used

for the extend operations and allows recalculating the hash chain value of

a PCR. Eventually, control is given to the next component Ci+1 and the

steps will be repeated. The established chain of trust may extend up to the

operating system and application layer by taking and extending integrity

measurements of operating system components, executables and other files

as well as configuration data.

2.1.2 Remote Attestation

A remote attestation allows a system to prove its trustworthiness to another

(remote) party by leveraging the attesting system’s TPM. The attesting

platform is called prover. The party requesting the attestation is called

verifier. The remote attestation procedure can be divided in two phases:

integrity reporting and integrity validation. In the integrity reporting phase,

the prover sends the SML to the verifier. This allows the verifier to inspect

a list of all components running on the attesting platform. In addition, the

prover transmits the contents of the relevant PCRs by requesting a corre-

sponding quote from the TPM. This means that the TPM uses a special

signing key called Attestation Identity Key (AIK) (TPM 1.2) or Attesta-

tion Key (AK) (TPM 2.0) to vouch for the authenticity and integrity of the

transmitted PCR contents. The AIK and AK, respectively, are used instead

of the TPM’s EK for reasons of privacy. Further privacy-aware techniques

include Direct Anonymous Attestation (DAA) [18] and property-based at-

testation [69, 24, 146]. In the integrity validation phase, the verifier verifies

the signature and calculates the hash chain values based on the SML. If the

calculated hash chain values match the (signed) PCR values, the verifier

can be sure that the SML is untampered. Finally, the verifier determines

whether the components contained in the SML represent a trustworthy sys-

tem.

3On platform power-up, all PCRs are initially set to zero.

2.2. VIRTUALIZATION 15

2.2 Virtualization

Virtualization allows creating special environments called Virtual Machines

(VMs) on a physical machine and maintaining hardware resources for these

VMs such that it is possible to run (different) operating systems inside

of them [129, 164]. The virtualization is realized by a piece of software

called hypervisor or Virtual Machine Monitor (VMM). The hypervisor has

complete control of the machine’s hardware resources—in particular, the

CPU, memory, and I/O devices—and is able to regulate which VM is allowed

to access which hardware resources. In this way, the hypervisor decouples

the software from the hardware by forming a level of indirection between the

software running in a VM and the hardware [142]. The physical machine

running the hypervisor is called the host machine and the VMs are called

the guest machines. An operating system running inside of a VM is called

a guest operating system.

The hypervisor provides strong isolation by preventing a VM from ac-

cessing or manipulating the software running in the hypervisor or in a sep-

arate VM [61]. Isolation in combination with the hypervisor’s ability to

inspect the state of VMs and to interpose on certain operations makes vir-

tualization an interesting technique w.r.t. system security. In this context,

inspecting a virtual machine from the outside for the purpose of analyzing

the software running inside it is called Virtual Machine Introspection (VMI)

[61]. The inherent loss of certain semantic information due to the rather

coarse and abstract view of a virtual machine’s state from the outside is

called the semantic gap [25].

2.2.1 Full Virtualization

Full virtualization allows running unmodified operating systems by having

the hypervisor simulate the underlying hardware. This is realized by the

hypervisor’s ability to trap instructions executed by the guest operating sys-

tem and to emulate the desired behavior. The efficiency of full virtualization

can be improved by leveraging hardware-assisted virtualization.

Hypervisors are often classified into type 1 and type 2 hypervisors. Both

hypervisor types are shown in Figure 2.2. A type 1 hypervisor or bare-metal

hypervisor runs directly on the host machine’s hardware to manage guest

operating systems. In this case, the hypervisor runs in the CPU’s kernel

mode and the guest operating system runs in the CPU’s user mode. A

type 2 hypervisor or hosted hypervisor runs on a regular operating system

called host operating system and, in turn, spawns guest operating systems

16 CHAPTER 2. BACKGROUND

Hardware

Guest Kernel

Guest User Space

Applications

VM 1

Guest Kernel

Guest User Space

Applications

VM 2

Hypervisor (type 1)

(a) Type 1 hypervisor

Hardware

Host Kernel

Host User Space

Hypervisor (type 2)

Host OS

Guest Kernel

Guest User Space

Applications

VM 1

Guest Kernel

Guest User Space

Applications

VM 2

(b) Type 2 hypervisor

Figure 2.2: Comparison of type 1 and type 2 hypervisors. A type 1 hyper-

visor runs directly on the machine’s hardware, whereas a type 2 hypervisor

runs on top of a native operating system.

as processes of the host operating system. Prominent examples of type 1

and type 2 hypervisors are Xen [5] and QEMU [8], respectively.

2.2.2 Paravirtualization

In contrast to full virtualization, paravirtualization provides virtual machines

with a software interface that differs from that of the underlying hardware.

Therefore, guest operating systems must be modified to take advantage of

this special interface by including hypervisor-specific code. This is depicted

in Figure 2.3a. In particular, sensitive instructions like processor mode

changes or hardware accesses will be replaced with hypercalls. A hyper-

call is used by the paravirtualized guest operating system to make calls to

the hypervisor, similarly to a user space program making system calls to a

(regular) operating system kernel. Furthermore, paravirtualization provides

special hooks that will be triggered on certain guest state changes. One of

the advantages of paravirtualization is its possibly improved performance

over full virtualization (especially in the absence of hardware-assisted virtu-

alization) since expensive instructions—that is, instructions that are difficult

and time-consuming to simulate—will be replaced with more efficient hyper-

2.2. VIRTUALIZATION 17

Hardware

Mod Guest Kernel

Guest User Space

Applications

VM 1

Mod Guest Kernel

Guest User Space

Applications

VM 2

Hypervisor (type 1 or 2)

(a) Paravirtualization

Hardware

Host Kernel

Host OS

Host User Space

Applications

Container 1

Host User Space

Applications

Container 2

(b) OS-level virtualization

Figure 2.3: Comparison of paravirtualization and OS-level virtualization.

Paravirtualization takes advantage of modified guest kernels. OS-level vir-

tualization uses one host kernel which may run multiple isolated user space

instances (all of which use the same host kernel).

calls. Furthermore, paravirtualization explicitly allows requesting particular

functionality from the hypervisor upon certain conditions. The concept of

paravirtualization is complementary to the concept of type 1 and type 2

hypervisors and may be used with either approach (cf. Figure 2.3a).

2.2.3 Operating-System-Level Virtualization

Another way of achieving virtualization is called operating-system-level vir-

tualization, or OS-level virtualization. This approach differs from the above

virtualization mechanisms in that it utilizes multiple isolated user space in-

stances, called containers, which all share the same (host) kernel. This is

shown in Figure 2.3b. OS-level virtualization can be thought of as a more

sophisticated version of Unix-like chroot environments.

One advantage of OS-level virtualization is that it is relatively easy to

set up, and to employ and run different containers. Furthermore, OS-level

virtualization, in general, achieves high performance. This is especially true

in case of machines lacking hardware-assisted virtualization support. In

this context, OS-level virtualization is particularly well suited for deploy-

ing virtualization on mobile devices [73]. Another advantage is the flexible

and efficient use of resources (and avoidance of redundancy) by different

containers. However, this flexibility may result in one container negatively

impacting the available resources, and performance, of other containers—

18 CHAPTER 2. BACKGROUND

intentionally or by accident. Therefore, in addition to isolating containers

from one another, the kernel also often allows limitation and prioritization

of resources like CPU, memory, and I/O. One drawback of OS-level vir-

tualization is the fact that all containers must use the same (host) kernel.

This excludes the possibility of running a different operating system ker-

nel within a container. For example, a Linux (host) kernel implementing

OS-level virtualization is not capable of running Windows within a con-

tainer. A prominent example of software utilizing OS-level virtualization is

the open-source project Docker [108].

2.3 Distributed Filesystems

A filesystem usually acts as an interface to a connected non-volatile memory

storage device – typically a Hard Disk Drive (HDD) using magnetic storage

or a Solid State Drive (SSD) using flash memory. The storage for HDDs and

SSDs is organized as blocks and the filesystem maps files to the block-level

storage. A distributed filesystem, sometimes also called network filesystem,

allows accessing remote files over a computer network without requiring di-

rect block-level access to the storage of the physical device where the files

reside on [162]. In this way, distributed filesystems may even be used to

implement computing devices having no attached physical storage device at

all. Distributed filesystems are based on a client-server model where the

client is able to access and operate on remote files by communicating with

one or more servers over the network. Prominent examples of distributed

filesystems include Network File System (NFS) and Server Message Block

(SMB), the latter of which is also known as Common Internet File System

(CIFS). The aforementioned filesystems along with other common filesys-

tems are supported by the major operating systems like Microsoft Windows,

Apple’s macOS, and Linux.

2.3.1 9P Filesystem

Plan 9 is a distributed operating system developed by Bell Labs and has

been available as open source software since 2003. The objective of Plan

9 is to represent all resources as files without distinguishing between local

and non-local objects. The 9P filesystem has been developed as part of

Plan 9 in order to achieve this. In particular, 9P has been designed as a

distributed filesystem protocol that may be used over a computer network

and which operates on a file-based granularity. The client-server protocol

uses messages that reflect ordinary file operations like reading or writing a

2.3. DISTRIBUTED FILESYSTEMS 19

class op-code description

session version parameter negotiation

auth security authentication

attach establish a connection

flush abort a request

error return an error

file walk lookup pathname

open access a file

create create and access a file

read transfer data from a file

write transfer data to a file

clunk release a file

metadata stat read file attributes

wstat modify file attributes

Table 2.2: Set of 9P2000 operations [178]

file. Each request message, called T-message, results in a single response

message, called R-message, or—in case of an error—an R-error message.

There exist three important versions of the 9P protocol: 9P2000, 9P2000.U,

and 9P2000.L. The 9P2000 protocol [178] is the last version of the Plan 9

protocol that has been developed by Bell Labs. It only contains a small set

of basic operations all of which are initiated by the client. The operations

are shown in Table 2.2. 9P2000.U extends the 9P protocol by incorporating

better Unix support and providing full POSIX semantics. 9P2000.L [62]

is another extension of the protocol in order to make it better suitable for

Linux; it is feature complete as of 2.6.38. v9fs [91] is a Linux client im-

plementation of the 9P protocol supporting the versions 9P2000, 9P2000.U,

and 9P2000.L.

An important feature and advantage of 9P is that it is protocol inde-

pendent. In fact, it can be used over any reliable, in-order transport [178].

In particular, the 9P client may communicate with a remote 9P server over

a computer network (e.g., using a TCP connection) but it may also com-

municate with a 9P server located on the same machine (e.g., using named

pipes).

20 CHAPTER 2. BACKGROUND

2.4 Machine Learning

Machine learning is widely used in computer science and other fields and

can be applied to figure out how to perform important tasks by generalizing

from examples [38]. This allows using experience to improve performance

or making accurate predictions [111].

First, a model is learned in the training or learning phase. In this context,

the examples contained in the training set are used to adjust the parameters

of the adaptive model. After the training phase, the model can be used

to make predictions for unseen data contained in a test set. The ability of

correctly handling unseen data in a reasonable manner is known as gener-

alization. For most practical applications, the original input variables are

typically preprocessed to transform them into some new space of variables

where, it is hoped, the pattern recognition problem will be easier to solve

[11]. In this context, it is common to reduce the dimensionality of complex

data. To this end, certain properties of the data, called features, will be

considered that are known or presumed to be discriminative and charac-

teristic for the observed inputs. Multiple features are often grouped in a

feature vector. The described preprocessing procedure itself is called feature

extraction.

Two important categories of machine learning are supervised learning

and unsupervised learning. In supervised learning, the examples of the train-

ing set are labeled. This means that the correct output of the model for a

given input of the training set is known. In unsupervised learning, the ex-

amples of the training set are unlabeled and the objective is to group the

data based on similarities. Supervised learning is more developed in the

literature than unsupervised learning [58].

2.4.1 Classification

Classification is an important instance of supervised learning. In fact, it

is the most mature and widely used machine learning type [38]. The cor-

responding unsupervised method is called clustering. In classification, the

training data is labeled and a discrete output is produced that belongs to

one out of two or more classes. A common example of classification is spam

filtering where emails are processed as input and assigned to the classes

“spam” or “no spam”, that is, the emails will be labeled accordingly. The

described case of assigning a given input to one out of two possible classes is

called binary classification. Figure 2.4 shows an exemplary visual represen-

tation of binary classification for the use case of spam filtering. In contrast,

2.4. MACHINE LEARNING 21

Figure 2.4: Visual representation of binary classification. The white dots

represent “no spam” emails (first class). The black dots represent “spam”

emails (second class). The dashed black line shows the class boundary ap-

proximated by the utilized classifier. The encircled white dots represent type

I errors (false positives). The encircled black dots represent type II errors

(false negatives).

multiclass classification4 or multinomial classification assigns a given input

to one out of more than two classes, e.g., the newspaper categories “politics”,

“science”, and “business”. A classifier is an algorithm implementing clas-

sification. Some well-known classifiers include Näıve Bayes [59], k-Nearest

Neighbor (k-NN) [30], Support Vector Machines (SVMs) [29], and Random

Decision Forests [70], in particular, Breiman’s Random Forests [17]. Model

selection uses available labeled data to train a range of models and com-

pare them on independent labeled data, called a validation set, to select the

one having the best predictive performance [11]. However, in practice, the

amount of labeled data is often too small to set aside a validation set since

that would leave an insufficient amount of training data. Therefore, a com-

mon technique known as n-fold cross validation can be applied where the

labeled data is used for both model selection and training [111]. Classifier

performance can be measured by the percentage of new patterns that are

assigned to the wrong category [40]. This is called the classification error

rate. A classifier may exhibit two types of errors. A type I error, also known

4Not to be confused with multi-label classification where multiple labels are assigned

to a given input.

22 CHAPTER 2. BACKGROUND

as a false positive, is an output indicating a tested condition is true (e.g.,

email is spam) even though the condition is not fulfilled (email is, in fact,

not spam). In Figure 2.4, type I errors are represented by encircled white

dots. A type II error, also known as a false negative, is an output indicating

a tested condition is false (e.g., email is not spam) even though the condi-

tion is fulfilled (email is, in fact, spam). In Figure 2.4, type II errors are

represented by encircled black dots.

Chapter 3

Multiplexing TPM Integrity

Measurements

Measuring the integrity of critical operating system components and securely

storing these measurements in a hardware-protected TPM is a well-known

approach for improving system security. However, currently it is not possible

to securely extend this approach to TPMs used in virtualized environments

while maintaining the same level of security.

In this chapter, we show how to multiplex integrity measurements orig-

inating from arbitrarily many Virtual Machines (VMs) with just a single

standard TPM. In contrast to existing approaches such as Virtual Trusted

Platform Module (vTPM), our approach achieves a higher level of secu-

rity since measurements, once stored, will never be held in software but are

fully hardware-protected by the TPM at all times. We develop a remote

attestation protocol enabling the integrity reporting of individual VMs. We

establish an integrity-protected mapping between each measurement and

its respective VM such that it is not possible for an attacker to alter this

mapping during remote attestation without being detected. Furthermore,

all measurements will be stored in the TPM in a concealed manner in or-

der to prevent information leakage of other VMs during remote attestation.

The experimental results of our proof of concept implementation show the

feasibility of our approach.

In Chapter 4, we will explore how to take integrity measurements of

multiple VMs by monitoring the VMs from “outside of the box”. We will

build upon and take advantage of the work developed in this chapter in

order to securely store the obtained measurements in a single, multiplexed

TPM.

24 CHAPTER 3. MULTIPLEXING TPM INTEGRITY MEASUREMENTS

Parts of this chapter have been published in Secure and Privacy-Aware

Multiplexing of Hardware-Protected TPM Integrity Measurements among

Virtual Machines at the 15th International Conference on Information Se-

curity and Cryptology (ICISC) in 2012 [179].

The rest of this chapter is organized as follows. In Section 3.1, we de-

scribe the challenges in using TPMs in virtualized environments and present

our contributions to solve the challenges. In Section 3.2, we state the require-

ments and central points of our concept. Section 3.3 describes the attacker

model and our assumptions. Section 3.4 gives an overview of how we take in-

tegrity measurements, store and multiplex them, and provide privacy-aware

attestation information to third parties. The multiplexing technique used

for storing the measurements and attesting individual VMs is explained in

Section 3.5. We take special precautions to guarantee the privacy of VMs

by concealing the measurements; the details of these concealment transfor-

mations are described in Section 3.6. In Section 3.7, we show our adapted

remote attestation protocol enabling the integrity reporting of individual

VMs. Section 3.8 describes how to verify the measurements of an attested

VM. In the security analysis in Section 3.9, we discuss how we prevent

an attacker from manipulating measurements and the mapping to VMs.

Section 3.10 describes our proof of concept implementation. Section 3.11

presents the performance evaluation results. Section 3.12 discusses related

work. Section 3.13 concludes this chapter.

3.1 TPM Virtualization Challenges

Virtualization and the utilization of secure cryptoprocessors are two well-

known approaches for improving system security. Virtualization can be used

to partition a system into several VMs such that critical system components

are isolated from one another, thus being able to reduce the Trusted Com-

puting Base (TCB) of the overall system. Virtualization is also heavily used

in the context of cloud computing [105] where multiple VMs of different

customers run concurrently on the same system platform. In this context,

it is crucial that one VM cannot access or manipulate data of another VM.

A secure cryptoprocessor is a microprocessor or System on Chip (SoC)

usually capable of securely managing cryptographic keys and storing data

such that it is not possible for an attacker to extract or manipulate these

keys and data. A very prominent and widespread implementation of a secure

cryptoprocessor is the Trusted Platform Module (TPM), most notably the

TPM 1.2 [173] and the TPM 2.0 [174] as specified by the TCG [172]. In

particular, the TPM can be used to securely store integrity measurements

3.1. TPM VIRTUALIZATION CHALLENGES 25

in special PCRs that reflect a system’s configuration. An authenticated

boot is used to establish a chain of trust by measuring each component in

the booting sequence, starting with an inherently trusted component called

the CRTM. Developments such as the IMA [148] extend this chain of trust

to the application layer by measuring programs executed in the Operating

System (OS) and storing the measurements in a PCR of the TPM. Finally,

the integrity measurements are used in the course of a remote attestation to

prove to a remote party that the system platform is in a trusted state.

Unfortunately, the TPM was not designed to be used directly in virtu-

alized environments and thus the advantages of virtualization and TPMs

cannot be easily combined. In particular, both TPM 1.2 and TPM 2.0 were

not designed to store integrity measurements on a per-VM basis within the

TPM. Furthermore, it is impossible to perform remote attestations only for

particular VMs. Researchers have proposed several ideas to tackle these

problems. The emulation of PCRs in software for each VM was proposed in

[9, 89, 101, 46]. However, on a compromised system these PCRs can be ma-

nipulated by an attacker, allowing him to forge remote attestations. There

also exist proposals that describe TPM adaptations with hardware-based

virtualization support that do not suffer from the aforementioned security

vulnerability [166, 51]. However, these proposals suffer from other limita-

tions which will be described in detail in Section 3.12.

In this chapter, we make the following contributions:

• We show how to multiplex integrity measurements originating from ar-

bitrarily many VMs with just a single standard TPM and only requir-

ing one PCR. In contrast to [9, 46], which emulate PCRs in software,

our approach achieves a higher level of security since measurements

are always stored in the hardware-protected PCRs of the TPM.

• We show how to establish an integrity-protected mapping between

each measurement and its respective VM such that it is not possible

for an attacker to alter this mapping (e.g., hiding malicious programs

by mapping their measurements to other VMs) without being detected.

• We develop a remote attestation protocol for attesting the integrity of

individual VMs. A crucial problem we have to solve in the context of

remote attestation is that our approach of sharing PCRs among VMs,

inherently requires the disclosure of all measurements of all VMs. This

entails security and privacy issues as even a legitimate challenger in

the remote attestation protocol is then able to determine exactly which

26 CHAPTER 3. MULTIPLEXING TPM INTEGRITY MEASUREMENTS

software is running in all other VMs. This information might be used

to exploit (known) vulnerabilities of that software. We overcome this

problem by storing all measurements in the multiplexed PCR in a

concealed manner. This enables us to fully disclose the (concealed)

contents of the PCR and to selectively reveal non-concealed measure-

ments on a per-VM basis.

3.2 Requirements Analysis

The concept for secure and privacy-aware multiplexing of integrity measure-

ments among VMs as developed in this chapter shall satisfy the following

requirements. A rationale is given for each requirement to illustrate as to

why the requirement is important.

(R1) Hardware Protection. Integrity measurements must be stored on

a per-VM basis in the hardware-protected secure storage area of a

TPM such that stored measurements cannot be manipulated by an

attacker in order to forge remote attestations of VMs, even on an

entirely compromised system w.r.t. software running on the system,

which includes the hypervisor in virtualized environments. The ratio-

nale is to achieve a higher level of security compared to approaches

storing the measurements of VMs only in software.

(R2) Measurement Multiplexing and Isolation. The secure storage

must be shared by all VMs. Storing integrity measurements of a VM

in the shared secure storage must not influence previous or future mea-

surements of other VMs. This is an important requirement because

of the limited amount of available registers due to specification and

hardware constraints. In particular, the TPM 1.2 specification [173]

guarantees only a minimum of 16 PCRs, whereas the platform-specific

specifications of the TPM 2.0 range from a minimum of one PCR for

TCG TPM 2.0 Automotive Thin Profile [175] to a minimum of 24

PCRs for the TPM 2.0 TCG PC Client Platform TPM Profile (PTP)

specification [176].

(R3) Integrity-Protected Measurement Mapping. Integrity measure-

ments must be annotated in such a way that there exists a one-to-one

mapping between each measurement and its associated VM. It must

not be possible to change a mapping afterwards without being de-

tected. Therefore, we require the mapping to be part of the mea-

surement data which will be securely stored in the utilized PCR of

3.3. ATTACKER MODEL AND ASSUMPTIONS 27

the TPM. Furthermore, we require the remote attestation protocol

(cf. Requirement R5) to be based on this hardware-protected map-

ping such that the mapping cannot be manipulated in software within

a remote attestation protocol run.

(R4) Unlimited Measurements. There is no (conceptual) upper bound

on the number of integrity measurements that may be stored for a

VM. Additionally, there is no (conceptual) upper bound on the total

number of VMs. The rationale is to avoid potential restrictions likely

to be entailed by naive multiplexing approaches and to stay as flexible

as possible such that the concept can even be applied to machines and

use cases that depend on a very large number of VMs, for example,

servers used in cloud computing.

(R5) Privacy-Aware Remote Attestation. The remote attestation pro-

tocol must allow for the attestation of individual VMs in such a way

that no integrity measurements and no other sensitive information of

other VMs is disclosed. This is important as such information could

otherwise not only be gained and misused by an outside adversary

attacking the protocol but also by legitimate participants of the pro-

tocol extracting sensitive information like knowledge of software used

by competitors, which can result in a market advantage or can even

be used to launch targeted attacks.

3.3 Attacker Model and Assumptions

Our objective is to multiplex integrity measurements originating from arbi-

trarily many VMs in a secure and privacy-aware manner with just a single

standard TPM and only requiring one PCR.

In this context, we develop a remote attestation protocol for attesting

the integrity of individual VMs. We focus on the measurement data of the

multiplexed PCR as we assume the rest of the system can be attested with

general remote attestation techniques. We consider all Man-in-the-Middle

(MITM) attacks on the remote attestation protocol where an attacker tries

to manipulate measurements of one or more attested VMs in order to hide

certain software (e.g., malware) and configurations present in the respective

VMs. The MITM is located between the prover and the verifier and is able

to intercept and manipulate the transmitted data, e.g., the attacker may

discard or forge measurements.

We assume that the Attestation Agent (AA), which is responsible for

attesting the trustworthiness of individual VMs, utilizes some form of VM-

28 CHAPTER 3. MULTIPLEXING TPM INTEGRITY MEASUREMENTS

based (one-way) authentication of parties requesting a remote attestation

for a particular VM. Note that even for authenticated parties, we still need

to privacy-protect the measurement data of other (non-authenticated) VMs

as done by our approach.

We also consider attacks on the attesting platform in which an attacker

tampers with the platform’s software (e.g., by forging remote code updates

intended for the attesting platform). The malicious software (or the at-

tacker) may try to hide its execution by removing or manipulating its re-

spective integrity measurement.

We do not consider direct physical attacks on the TPM.

3.4 System Overview

Our concept is based on a virtualized platform consisting of a single hard-

ware TPM1, a hypervisor, and arbitrarily many VMs. We take integrity

measurements of supervised files located in the VMs and securely store these

measurements in the TPM such that individual VMs can be attested in a

privacy-aware manner. In general, there mainly exist two approaches within

the described scenario for obtaining integrity measurements. In the first ap-

proach, a Measurement Agent (MA) (e.g., IMA [148]) runs in each VM and

monitors (the execution of) supervised files, calculates according integrity

measurements, and propagates them to the hypervisor-level. In the second

approach, the MAs are not located within the VMs themselves but the mon-

itoring of supervised files of all VMs is rather conducted by an MA located

at the hypervisor-level. This “outside of the box” monitoring is used in our

concept and has the advantage of only requiring a single MA. Thus, it is

more scalable than the first approach where as many MAs are required as

there exist supervised VMs. Additionally, it is more secure than the first

approach where at the hypervisor-level one has to trust the measurement

information originated from the VMs themselves—this information is un-

trustworthy and might be manipulated by an attacker located in the VM.

In Chapter 4, we show the details of how to realize this integrity monitoring

approach by taking advantage of paravirtualized filesystems in order to take

measurements from VMs in a secure way.

Our system architecture is shown in Figure 3.1. The Measurement Agent

(MA) is responsible for taking measurements of all VMs as described above

(step 1). A new measurement m along with a VM identifier vm uniquely

1For the sake of readability, the descriptions in this chapter are geared towards TPM

1.2. However, the developed concepts can also be applied to TPM 2.0 (e.g., using SHA-256

instead of SHA-1, PCR2 Quote instead of PCR Quote , or AK instead of AIK).

3.4. SYSTEM OVERVIEW 29

Hypervisor

Measurement
Agent

(3) append
m and vm Multiplexing

Agent
Attestation

Agent

 Multiplexed
 Measurement

 List

1

2

3

4

...

VM 1 ...

Hardware

TPM

VM 2 VM n

(1) take measurement
m from VM vm

(2) forward m and
identifier vm

(4) store auxiliary
information about
m and vm

(5) request
measurement list

(6) request signed
integrity information

 (7) provide concealed
 attestation information
 for vm

Figure 3.1: System architecture showing the main components and the work-

flow for virtualizing integrity measurements and reporting them.

representing the measurement’s associated VM (i.e., the VM containing the

supervised file of which the measurement was taken) will be forwarded to the

Multiplexing Agent (MPA) (step 2). The MPA appends m and vm to the

so-called Multiplexed Measurement List (MML) (step 3). This allows the

MPA to keep track of all measured files together with their associated VMs.

Furthermore, the MPA stores auxiliary information about m and vm in the

TPM in order to hardware-protect this information (step 4). The details will

be described in Sections 3.5 and 3.6. Note that the integrity of the MML

must not be specially protected as manipulations of the measurements or

VM identifiers will be detected in the course of a remote attestation through

the auxiliary information stored in the TPM. The Attestation Agent (AA)

is responsible for attesting the trustworthiness of individual VMs. In this

context, the AA takes advantage of the information provided by the MML

(step 5) as well as of the auxiliary information provided by the TPM (step

6). Note that our approach of sharing and multiplexing measurement in-

formation of multiple VMs in the TPM inherently requires the disclosure of

all measurements of all VMs in the course of a remote attestation. In order

to preserve the privacy of all other (non-attested) VMs, the AA conceals all

measurements of the other VMs. This is done in such a way that a proper

30 CHAPTER 3. MULTIPLEXING TPM INTEGRITY MEASUREMENTS

remote attestation is still possible. The concealed data is then transmitted

to the verifier (step 7). The details will be described in Section 3.7. We note

that the AA is not required to be part of the TCB as even a completely

compromised AA cannot be misused by an attacker to induce a forged re-

mote attestation. The reason is that the auxiliary measurement information

stored in the TPM is still protected from manipulation. Finally, the verifier

inspects the received concealed attestation information in order to attest

the VM. The verifier possesses knowledge of the concealing algorithm allow-

ing him to perform the necessary transformations of the received data in

order to carry out a successful validation. The details will be described in

Section 3.8.

3.5 Multiplexed Storage and Attestation

The MPA stores integrity measurements in a single shared PCR of the TPM.

This ensures that all measurements are hardware-protected by the TPM

(cf. Requirement R1). Furthermore, by only requiring one PCR, we are able

to efficiently deal with the limited resources offered by the TPM (cf. Require-

ment R2). We define an integrity measurement (often just measurement) m

as the output of a hash function H applied to (the contents of) a file f , i.e.,

m := H(f). A PCR of a TPM may hold arbitrarily many measurements by

extending the measurements as a hash chain, i.e., PCR[i]← H(PCR[i]||m),

for a measurement m and PCR with index i (where || denotes concatena-

tion). We take advantage of this property in order to store and multiplex

a conceptually unlimited number of integrity measurements of arbitrarily

many VMs (cf. Requirement R4). However, to retain the integrity-protected

information in which VM a measurement m took place (cf. Requirement

R3), the MPA not only extends m but also the corresponding VM’s unique

Virtual Machine Identifier (VM-ID) in the PCR (cf. Section 3.6).

In our concept, the AA is able to attest the integrity of individual VMs

to a verifier (cf. Section 3.7) by utilizing the information that has previ-

ously been stored by the MPA. However, without further precautions, this

requires the disclosure of all measurements of all VMs sharing the PCR.

This entails security and privacy related problems as described in the intro-

duction. Therefore, before extending the PCR, the MPA first conceals each

measurement with a special value called concealment. A concealment is a

non-predictable random or pseudorandom value that is at least the size of

the output of the hash function H in which we will use it (cf. Section 3.6).

The reason for this size is to adequately protect against dictionary attacks,

brute force attacks, and lookup attacks trying to extract the plain measure-

3.6. MEASUREMENT CONCEALMENT 31

ments [110, 106]. The concept of a concealment is related to the concept

of a salt. However, in contrast, a concealment is unknown to a verifier and

will only be disclosed to him when attesting a particular VM. The MPA

maintains one base concealment for each VM and derives further conceal-

ments from it. In addition to concealing measurements, we also conceal

the measurement’s associated VM-ID to prevent a verifier from gathering

information about how many measurements have been taken in other VMs.

This information might otherwise be misused to detect usage patterns (e.g.,

activity level of VMs of competitors).2

Finally, this enables the AA to disclose all measurements of all VMs in

a concealed manner to a verifier (cf. Requirement R5). For the attested

VM, the non-concealed measurements, along with the attested VM’s base

concealment, are additionally revealed. The base concealment is used by the

verifier to derive the same concealments as the MPA, which are then used

to link the non-concealed measurements to their corresponding concealed

measurements. This, in turn, allows the verifier to recalculate the proper

hash chain (consisting of concealed measurements only) and to match it

against the (signed) PCR value, thus ensuring the measurements’ integrity

and authenticity (cf. Section 3.8).

3.6 Measurement Concealment

In the following, we describe the details of the aforementioned concealment

transformations of the integrity measurements. We let idvm1 , . . . , idvmn de-

note unique and publicly known VM-IDs w.r.t. the set of all n VMs on a par-

ticular system. The MPA maintains for each VM idvm one non-predictable

base concealment cvm ∈ {0, 1}k, with k ≥ 160 (i.e., at least the size of the

output of SHA-1). For the i’th measurement transformation (counting from

zero) of a VM idvm, the MPA derives a new concealment civm by increment-

ing cvm i times, that is, civm := cvm + i, i ≥ 0. Note that c0vm denotes the

base concealment cvm. For brevity, we define H := SHA1 for the remainder

of this chapter. We note that in the case of TPM 1.2, the specification is

restricted to the hash function SHA-1. This restriction is getting increas-

ingly critical. Theoretical attacks on SHA-1 have been known since 2005,

2Note that even though the employed technique efficiently reduces information leakage

of other VMs, an attacker might still be able to infer vague (and rather unreliable) infor-

mation based on the presence, absence, or number of concealed VM-IDs. For example,

a large number of concealed VM-IDs may imply the presence of some other very active

VM (many measurements stored) but it may also imply the presence of several VMs, with

each VM being relatively inactive.

32 CHAPTER 3. MULTIPLEXING TPM INTEGRITY MEASUREMENTS

and SHA-1 was officially deprecated by NIST in 2011 [44]. In 2017, secu-

rity researchers at CWI Amsterdam and Google have announced the first

practical collision attack on SHA-1 [165]. In contrast, the algorithm agility

approach of the TPM 2.0 specification allows virtually any hash function

(e.g., SHA-256), thus protecting against the above collision attack.

Each time MA measures (the content of) a monitored file f executed in

VM idvm by calculating m := H(f) and forwards it to the MPA, the MPA

associates m with idvm, conceals both m and idvm, and extends the result

to the shared PCR p. In particular, for the i’th measurement of VM idvm,

the MPA does the following five steps (called a round in the following):

1. Derive new VM-specific concealment civm from base concealment cvm

2. Conceal measurement m by hashing it with civm, i.e., µ := H(m||civm)

3. Conceal VM-ID idvm with same concealment civm, that is, δvm :=

H(idvm||civm)

4. Hash over the concealed measurement value µ combined with the con-

cealed VM-ID δvm, i.e., ϕ := H(µ||δvm)

5. Extend the TPM’s shared PCR p with ϕ

Note that it is not possible to defer this measurement transformation

(e.g., to the point in time where a remote attestation is requested) because

the measurement must immediately be stored in the TPM in order to prevent

an attacker from removing or manipulating previous integrity measurements

once the system gets compromised.

Step one guarantees that we use a new concealment for each round. It

is important that a verifier is able to produce the exact same sequence of

concealments c1vm, c
2
vm, . . . from the base concealment cvm = c0vm (cf. Sec-

tion 3.8). Note that simple incrementation is sufficient for deriving the

concealments (in terms of confidentiality of the concealed values in steps

two and three) since two consecutive (and thus similar) concealments civm
and ci+1

vm result in two completely different hash values H(civm) and H(ci+1
vm)

due to the avalanche effect [177].

Step two makes sure that it is sufficient to only disclose concealed mea-

surements to a verifier V in order to reconstruct the hash chain represented

3.6. MEASUREMENT CONCEALMENT 33

by the shared PCR p. Note that if the measurements were extended to the

PCR without concealing them first, a verifier V would be required access

to all non-concealed measurements in order to recalculate the hash chain

(cf. Section 3.8). This would violate the privacy-aware remote attestation

requirement (cf. R5) as in this case the measurements of all other (non-

attested) VMs had to be revealed. With our approach, V can easily verify

that a measurement m of the attested VM corresponds to the concealed hash

value µ by checking whether µ = H(m||civm) holds. Note that it is infeasi-

ble to find some other preimage x 6= m||civm such that H(x) = H(m||civm)

because of the second-preimage resistance property of H.

In step three, we conceal the VM-ID to prevent V from gathering us-

age patterns of other VMs. Note that the usage of a static (VM-based)

concealment cvm would always map a VM-ID idvm to the same concealed

VM-ID δvm = H(idvm||cvm), thus allowing to link (concealed) VM-IDs and

measurements. We use different concealments for each round in order to

prevent this.

Step four establishes the mapping between µ and δvm and thus implicitly

also between m and idvm.

In step five, the concealed hash value ϕ gets finally extended to the

PCR p by using ϕ as the incoming operand TPM DIGEST of the TPM Extend

command [173]. Note that it is sufficient to use the standard, non-modified

TPM Extend operation. Also note that storing the just described mapping

between measurement and VM-ID directly in the integrity protected PCR

(PCR Quote may be used to sign the value of the PCR) makes it redundant

to maintain an external integrity protected mapping.

3.6.1 Multiplexed Measurement List

In the course of a remote attestation, the verifier needs to inspect all in-

tegrity measurements of an attested VM in order to determine the VM’s

trustworthiness. However, the final hash chain value contained in PCR p

is not sufficient to reconstruct the actual measurement data. Therefore,

the MPA additionally stores all measurement data in chronological order

w.r.t. their corresponding TPM Extend operations in the Multiplexed Mea-

surement List (MML) as depicted in the system architecture in Figure 3.1.

The MML is an ordered list of pairs of the form (m, idvm), where m is a

(non-concealed) measurement and idvm the corresponding (non-concealed)

VM-ID idvm, denoting the VM in which the measurement took place, that

is:

34 CHAPTER 3. MULTIPLEXING TPM INTEGRITY MEASUREMENTS

MML :=
〈

(m0, idvmi0), (m1, idvmi1), . . . , (mn, idvmin)
〉

The AA takes advantage of the information provided by the MML and

transforms it in such a way that only the information required for the suc-

cessful attestation of a specific VM will be disclosed. This will be described

in the following as part of the remote attestation’s integrity reporting phase.

3.7 Integrity Reporting

The TPM specification defines integrity reporting as “the process of attest-

ing to integrity measurements recorded in a PCR. The philosophy behind

integrity measurement, logging, and reporting is that a platform may enter

any state possible—including undesirable or insecure states—but is required

to accurately report those states” [174].

Figure 3.2 shows our adapted remote attestation protocol enabling the

integrity reporting of individual VMs. Note that the remote attestation

process actually consists of the integrity reporting phase as explained in

the following as well as of the integrity validation phase as explained in

Section 3.8.

In the integrity reporting phase, the verifier V first requests integrity

measurement data for a particular VM and PCR p by providing the VM’s

unique and publicly known VM-ID idvm. The prover P (represented by AA,

in our case) then triggers the TPM to sign the content pcrp of the requested

PCR p—together with a supplied nonce in order to guarantee the freshness

of pcrp—with a special key of the TPM, called an AIK. This proves to V

the content of the requested PCR. Note that P is required to disclose all in-

formation involved in the TPM Extend operations (cf. Section 3.6, step five)

in order to allow V to validate the measurements by recalculating the final

hash chain value as described in Section 3.8. As explained above, this is the

reason for extending only concealed measurements and VM-IDs in the PCR

because it is sufficient then to only disclose concealed measurements and

VM-IDs for non-attested VMs instead of revealing all plain measurements

and VM-IDs. Therefore, in the multiplexed remote attestation protocol,

P does not disclose the MML (containing all non-concealed measurements)

directly to V as this would violate the privacy of all other (non-attested)

VMs. Instead, the VM-specific Concealed Multiplexed Measurement List

(CMML) CMMLvm is constructed from the MML for attesting the VM idvm.

The construction is done by sequentially processing all pairs of the MML

from left to right. Pairs not belonging to the attested VM idvm are substi-

3.8. INTEGRITY VALIDATION 35

TPM P V

create 160bit nonce n

request PCR p for VM idvm, n

load AIKsk

quote PCR p with n

=:q
︷ ︸︸ ︷

sig{pcrp, n}AIKsk

retrieve MML and cvm

construct CMMLvm from MML

q, cvm,

=CMMLvm

︷ ︸︸ ︷

〈(m0, idvm), (µ1, δvm′), . . . 〉

retrieve cert(AIKpk)

verify q with AIKpk and validate n

validate CMMLvm using cvm and pcrp

Figure 3.2: Multiplexing remote attestation protocol enabling the integrity

reporting and validation of individual VMs.

tuted with their concealed counterparts (cf. Requirement R5). In particular,

the i’th occurrence (counting from zero) of a pair (m, idvm′) ∈ MML, for

some measurement m and some VM-ID idvm′ 6= idvm, gets substituted with

(H(m||civm′), H(idvm′ ||civm′)). In this context, the AA requests the required

concealment values from the MPA. Pairs belonging to the attested VM re-

main non-concealed. Finally, P sends CMMLvm, the base concealment cvm,

and the signature data q of content pcrp to V. Note that AA may cache the

concealed pairs to avoid recalculating them for each remote attestation.

3.8 Integrity Validation

In the following, we describe how to validate the CMML and its contained

measurements transmitted in an integrity reporting run as described before.

We will show that a validation always fails if a MITM manipulates com-

36 CHAPTER 3. MULTIPLEXING TPM INTEGRITY MEASUREMENTS

binations of CMMLvm, cvm, and q. The verification process done by V is

twofold.

In the first phase, the CMML is validated to make sure that a MITM

did not tamper with the data and that consequently all contained measure-

ments are correct. The validation process will be explained in detail in the

following.

In the second phase, V inspects these measurements to determine the

trustworthiness of the attested VM. This might be done by a whitelist or

blacklist approach that checks for good measurements (e.g., legitimate pro-

grams) or bad measurements (e.g., known malware), respectively. The TPM

specification states that “an independent process may evaluate the integrity

states and determine an appropriate response” and “log entries may be eval-

uated individually to determine if the change in system state indicated by

the event is acceptable” [174]. The descriptions are vague because deter-

mining the trustworthiness of an attested VM (or, in general, an attested

machine) and determining the appropriate responses by the verifier strongly

depend on a multitude of factors and must be determined based on the ac-

tual use case. In this work, we also focus on the first phase of the integrity

validation to protect against attacks trying to manipulate the reported in-

tegrity measurements. This builds the necessary foundation for the correct

execution of the second phase of the integrity validation.

The validation process for the first phase of the integrity validation is

shown in Algorithm 1. V first uses AIKpk on q to verify the authenticity

and integrity of content pcrp of the requested PCR p. This detects all

manipulations of q by a MITM as well as replay attacks due to the included

nonce n. V then validates the CMML with the help of cvm and pcrp. The

validation process is shown in Algorithm 1. It simulates all PCR Extend

operations that have (allegedly) been done by P and compares the result

with the signed PCR value pcrp =: pcr. This is done by inspecting each

pair (a, b) of the CMML. Each pair (a, b) with b = idvm contains non-

concealed measurement data a for the attested VM idvm. However, since all

measurements have been extended to the PCR by P in a concealed manner

(cf. Section 3.6), V needs to reconstruct the corresponding concealed value

ϕ := H(µ||δ), where µ := H(a||civm) and δ := H(b||civm) (for round i), in

order to correctly simulate all PCR Extend operations. All other pairs (a, b)

with b 6= idvm do not belong to the attested VM idvm and have already

been concealed by P, that is, a = µ and b = δ. Thus, the concealed values

µ and δ can be directly used to construct ϕ := H(µ||δ). Finally, ϕ is used

to simulate the PCR Extend operation. These steps are repeated for each

pair of the CMML. If the final simulated PCR value pcr′ matches the signed

3.8. INTEGRITY VALIDATION 37

Algorithm 1 Validation of CMML

1: procedure Validate CMML(idvm, cmmlvm, cvm, pcr)

2: pcr′ := 0

3: usedc := false

4: for (a, b) in cmmlvm do

5: if b = idvm then . does pair belong to attested VM?

6: µ← H(a||cvm) . construct concealed measurement value

7: δ ← H(b||cvm) . construct concealed VM-ID

8: cvm ← cvm + 1 . set concealment for next round

9: usedc ← true . exhaustive blinding attack now impossible

10: else

11: µ← a . measurement already concealed

12: δ ← b . VM-ID already concealed

13: if δ = H(idvm||cvm) ∨ δ = H(idvm||cvm − 1) then

14: return false . blinding attack

15: end if

16: end if

17: ϕ← H(µ||δ)
18: pcr′ ← H(pcr′||ϕ) . simulate PCR Extend

19: end for

20: if pcr′ = pcr ∧ usedc = true then

21: return true . confirm integrity of cmmlvm
22: else

23: return false . integrity violation detected

24: end if

25: end procedure

PCR value pcr, the measurements of the CMML correctly reflect the actual

measurements of the attested VM.

The check in line 13 of Algorithm 1 detects blinding attacks where a

MITM tries to hide non-concealed pairs (a, b) = (a, idvm) belonging to the

attested VM idvm. The blinding is done by substituting pairs (a, idvm) with

their corresponding concealed pairs (µ, δ) := (H(a||civm), H(idvm||civm)),

with the intention of misleading V into thinking that the concealed pairs

(µ, δ) do not belong to VM idvm. Note that in this case the recalculated

pcr′ would still match pcr since (µ, δ) has indeed been extended to the TPM.

Note also that in our concept we intentionally conceal a measurement m and

its corresponding VM-ID idvm separately instead of concealing m and idvm
combined, e.g., ϕ := H(m||idvm||civm). The reason is that in the latter

38 CHAPTER 3. MULTIPLEXING TPM INTEGRITY MEASUREMENTS

case, it would be impossible for V to check whether a non-concealed pair

(m, idvm) has been blinded (i.e., checking whether ϕ = H(m||idvm||civm)

holds) because the measurement m is unknown to V. We will come back to

blinding attacks in the Security Analysis in Section 3.9.

A special case of the described blinding attack is to blind all non-

concealed pairs and to additionally substitute the base concealment cvm =

c0vm with some c′vm 6= c0vm ∧ c′vm 6= c1vm. Note that in this case the check

for blinding attacks in line 13 fails since the original base concealment cvm
used for the (first) blinding operation now differs from the concealment c′vm
used in the check. Furthermore, the substitution of cvm with c′vm will not

be detected since c′vm is never used to calculate a concealed pair out of a

non-concealed one (because there are no non-concealed pairs left) and thus

pcr′ matches pcr. Therefore, in order to detect such exhaustive blinding at-

tacks, we explicitly check in lines 9 and 20 of Algorithm 1 that V used the

base concealment in the calculation of pcr′.

3.9 Security Analysis

In this chapter, we presented our approach for multiplexing integrity mea-

surements originating from arbitrarily many VMs within a TPM in a secure

and privacy-aware manner. In the following, we evaluate the security of this

approach. In general, we assume that an attacker tries to manipulate mea-

surements of one or more attested VMs in order to hide certain software (e.g.,

malware) and configurations present in the respective VMs. To achieve this,

the attacker might try to compromise the attesting system in an attempt

to either remove or manipulate the corresponding integrity measurements.

However, it is not possible to remove or manipulate the corresponding mea-

surement data stored by the MPA in order to forge a valid remote attestation

because of our utilized hardware-protection of measurements and integrity-

protected measurement mapping realized by our approach (cf. Requirements

1 and 3).3 However, on a compromised system, the attacker is still able

to manipulate all data located outside of the hardware-protected realm of

the TPM, in particular, the VM-specific concealments and the VM-specific

CMMLs. In the following, we focus on an adversary attacking our remote

attestation protocol by manipulating this data.

3We note that an attacker is able to add (fake) measurements after the system has

been compromised but this is considered non-critical as it still does not allow the attacker

to manipulate already taken measurements.

3.9. SECURITY ANALYSIS 39

3.9.1 Discarding Measurements

The attacker might try to hide measurements—such as a measurement m of

a malicious program—of the attested VM by simply discarding the element

(m, id) ∈ CMML. In this case, however, the hash chain value pcr′ calculated

by the verifier from the CMML (cf. Algorithm 1) will not match the TPM’s

quoted PCR value pcr anymore and the attestation will fail.

3.9.2 Substituting Measurements

Another attack consists of substituting a measurement m with some other

(fake) measurement m′ 6= m such that the recalculated hash chain value pcr′

still matches pcr. This implies that for the hash function H it must hold

that H(m) = H(m′). However, finding such an m′ is infeasible because of

the second-preimage resistance property of the hash function H. Note that

this argument still holds in the case of an attacker substituting multiple

measurements (such that the final hash chain value pcr′ still matches pcr,

even though intermediate values eventually leading to the value pcr′ might

differ) as such an attack can be reduced to the above case of manipulating

a single measurement.

3.9.3 Substituting VM-IDs

Instead of manipulating a measurement m itself, the attacker might try to

change a measurement’s associated VM-ID id with the intention of hiding

the measurement in the attested VM. However, the naive approach of just

substituting the id of a pair (m, id) ∈ CMML with some other id′ 6= id does

not work since the pair (m, id′) will be incorrectly treated as an already

concealed one (cf. Algorithm 1) and thus the validation will fail. The case

of an attacker not only substituting the VM-ID id but also the corresponding

measurement m of a pair (m, id) ∈ CMML is called a blinding attack and

will be discussed in the following.

3.9.4 Blinding Measurements and VM-IDs

In a blinding attack, a MITM substitutes both the measurements and the

VM-IDs with their corresponding concealed pairs. The attacker’s goal is

to hide a measurement m belonging to an attested VM idvm. In order to

blind a measurement m and a VM-ID idvm, the attacker substitutes the

pair (m, idvm) ∈ CMML with the corresponding concealed pair (µ, δ) :=

(H(m||civm), H(idvm||civm)), with the intention of misleading the verifier into

thinking that the concealed pair (µ, δ) does not belong to the attested VM

40 CHAPTER 3. MULTIPLEXING TPM INTEGRITY MEASUREMENTS

idvm. The rationale is that—according to the integrity reporting protocol in

Section 3.7—a pair will be transmitted in its concealed form only if the pair

belongs to another (non-attested) VM. Note that in the case of a blinded

pair, the recalculated pcr′ in Algorithm 1 would still match pcr since (µ, δ)

has indeed been extended to the TPM as described in Section 3.6.

There exist four types of blinding attacks (and combinations thereof)

w.r.t. the position of the blinded pairs within the CMML: intermediate,

trailing, leading, and exhaustive. In the following, we will analyze each type

and show that our concept protects against all of them.

Note that since concealed pairs in the CMML do not influence the state

of the concealment cvm in Algorithm 1, we consider, w.l.o.g., only pairs of

the attested VM. In particular, we assume the following CMML (along with

signature data q and base concealment cvm) is sent from the prover P to the

verifier V in the course of a remote attestation protocol run as described in

Section 3.7:

CMMLvm = 〈(m0, idvm), (m1, idvm), (m2, idvm)〉

Intermediate Blinded Pairs

In this attack, a MITM blinds a pair (or several consecutive pairs) which is

neither the first pair nor the last pair of the CMML. In other words, there

exists at least one pair both before and after the blinded pair:

q, c0vm,
〈

(m0, idvm), (H(m1||c1vm), H(idvm||c1vm)), (m2, idvm)
〉

In this case, the attestation fails because the wrong concealment c1vm is used

by the algorithm to conceal the third pair. The reason is that the conceal-

ment will not be incremented when processing the intermediate blinded pair

(cf. Algorithm 1, lines 11 to 15).

Trailing Blinded Pairs

In this attack, a MITM blinds one or more consecutive trailing pairs:

q, c0vm,
〈

(m0, idvm), (H(m1||c1vm), H(idvm||c1vm)), (H(m2||c2vm), H(idvm||c2vm))
〉

In contrast to the previous scenario, in this case the attestation would actu-

ally succeed if there was not the explicit check for blinded pairs in line 13 of

3.9. SECURITY ANALYSIS 41

Algorithm 1. The reason is that the “out of sync” concealment will not be

used anymore after concealing the first pair (as was the case above). With

the explicit check, the algorithm detects H(idvm||c1vm) in the second pair

and the attestation fails. In general, the check always matches the leftmost

trailing blinded pair.

Note that in our concept we intentionally conceal a measurement m and

its corresponding VM-ID idvm separately instead of concealing m and idvm
combined like H(m||idvm||civm). The reason is that in the latter case, it

would be impossible for the verifier V to check whether a non-concealed

pair (m, idvm) has been blinded with civm because the measurement m is

unknown to V.

Leading Blinded Pairs

In this attack, a MITM blinds one or more consecutive leading pairs:

q, c2vm,
〈

(H(m0||c0vm), H(idvm||c0vm)), (H(m1||c1vm), H(idvm||c1vm)), (m2, idvm)
〉

Note that in this type of attack, the MITM needs to manipulate the trans-

mitted base concealment such that it correctly blinds the first non-concealed

pair in the CMML. In particular, since the base concealment is now c2vm,

the explicit check for the first pair on whether δ equals H(idvm||c2vm) ∨
H(idvm||c1vm) fails because c0vm was used for the blinding by the MITM.

However, the check matches the second pair and the attestation fails. In

general, the check always matches the rightmost leading blinded pair.

Exhaustively Blinded Pairs

In this attack, a MITM blinds all pairs and substitutes the base concealment

c0vm with some c′vm 6= c0vm ∧ c′vm 6= c1vm. In this case, the above checks for

detecting intermediate, trailing, and leading blinded pairs attacks fail. The

reason is that the proper base concealment c0vm is never used by the verifier

to calculate a concealed pair out of a non-concealed one—as explained in

Section 3.8. Therefore, we enforce the utilization of the base concealment

c0vm in the recalculation of the measurement hash chain (lines 9 and 20 of

Algorithm 1) in order to detect the base concealment’s manipulation, thus

preventing such attacks.

42 CHAPTER 3. MULTIPLEXING TPM INTEGRITY MEASUREMENTS

3.10 Prototype Implementation

We have implemented a proof of concept based on the Integrity Measurement

Architecture (IMA) [148]. The implementation realizes the first approach

for obtaining integrity measurements (measuring from within the VMs) as

described in Section 3.4. The proof of concept is described in the following

and is also used for the performance evaluation in Section 3.11. In Chapter 4,

we show how to improve this concept, enabling us to monitor the VMs from

outside by taking advantage of paravirtualized filesystems.

The proof of concept utilizes the QEMU emulator [8] (version 1.0.50)

with enabled Kernel-based Virtual Machine (KVM) [84] full virtualization

support. The host system runs the Ubuntu OS (version 11.04). Each guest

VM runs Ubuntu 10.04 with an IMA-enabled Linux kernel (2.6.35). We

patched the IMA kernel code so that measurements are not directly ex-

tended to the TPM but instead are forwarded to the MA running in the

host system. The communication between the MA and the VMs is done

over Virtual Local Area Network (VLAN). The MA listens on a dedicated

range of ports for incoming connections. Whenever a new VM is started,

QEMU connects the VM to a free port in that range using guest forward

(guestfwd) rules. The so established socket is then used by our patched

IMA to forward measurements to the MA; all communication over other

ports is blocked.

The MPA has exclusive write access to the TPM (using TrouSerS [171],

version 0.3.5-2) and implements the multiplexing concept as described in

Section 3.4. The MPA requests the port number of the connected VM from

the MA and uses it to derive the VM’s unique VM-ID. Furthermore, the

MPA dynamically generates and maintains a fresh concealment for each

VM. Note that the mapping of VMs to VM-IDs and the VMs’ associated

concealments cannot be changed from within a VM in an attempt to forge

the VM-ID or concealment since this data is maintained solely by QEMU,

the MA, and the MPA, respectively, all of which are isolated from the VM.

Note that our patched IMA does not block until the measurements have

actually been extended to the TPM. It rather just forwards them to the MA

and is immediately ready for further tasks. The MA asynchronously pro-

cesses and forwards the measurements to the MPA which, in turn, extends

the measurements in a round-robin fashion to the TPM. This asynchronous

approach significantly increases response times and overall performance in

the VMs.

3.11. PERFORMANCE EVALUATION 43

VMs No IMA
Patched IMA

Ratio VM Ratio total
VM only Total

1 48.87 86.73 200.84 1.77 4.11

2 50.91 104.96 400.29 2.06 7.86

3 79.61 171.85 601.02 2.16 7.55

4 108.73 229.32 825.06 2.11 7.59

5 146.32 295.27 1318.17 2.02 9.01

Table 3.1: Average processing time for 10,000 measured files in each VM (in

seconds)

3.11 Performance Evaluation

We analyze our proof of concept implementation to determine whether the

MA and MPA might constitute possible performance bottlenecks since they

represent the centralized location where all measurements from all VMs are

collected, processed, and extended to the TPM.

The testing hardware consists of

• PC with an Intel Core2 Duo 3 GHz CPU,

• 4,096 MB RAM,

• TPM 1.2.7.40 from STM.

Each VM gets assigned 512 MB RAM and contains 10,000 distinct test-

ing binaries which, on execution, just return. Furthermore, each VM runs

our patched IMA that we additionally modified for the evaluation such that

only the testing binaries get processed. To start the testing, we simultane-

ously trigger in all VMs the execution of the testing binaries in successive

order.

Section 3.11 shows the testing results. Column four lists the total time

needed from measuring all files to extending the measurements in the TPM.

Note that the TPM requires most of the computation time. It takes about

200ms for 10,000 operations. Column three shows the fraction spent in

a VM (on average) for measuring and forwarding. Column two lists the

time needed by a VM (on average) running no IMA at all. The latter

allows us to better compare how the parallel execution of multiple VMs

naturally slows down program execution time in the VMs because of shared

hardware resources. In fact, the parallel execution of three or more VMs

44 CHAPTER 3. MULTIPLEXING TPM INTEGRITY MEASUREMENTS

Figure 3.3: The average processing time of three or more VMs executed in

parallel results in a slowdown for both our patched IMA and the system

running no IMA at all.

exhibits such a slowdown for both our approach and the system running no

IMA at all, as visualized in Figure 3.3. The time ratio in column five of

Section 3.11 indicates an overhead of approximately a factor of two for our

approach considering the time spent in the VMs. This is due to forwarding

the measurements over VLAN to the MPA. Techniques like shared memory

may be used to further reduce this overhead. The total ratio in column

six reflects mainly the time needed for the TPM Extend operations as noted

above. We can see that our approach scales roughly linearly with the number

of VMs. The increased slowdown with more than three VMs is mainly due to

the rather limited hardware resources of our testing system as it occurs also

with the system running no IMA at all. Consequently, our results indicate

that the MA and MPA do not constitute performance bottlenecks.

We also note that for a remote attestation, in order to attest a single VM,

we need to send the measurement data (CMML) of all VMs (cf. Section 3.7).

Thus, in general, the size of the transmitted data increases linearly with the

number of VMs. This is a disadvantage compared to other approaches that

emulate a set of PCRs for each VM in software [9, 46] or maintain them in

hardware [166, 51], where it is sufficient to only send measurement data of

the attested VM. However, these approaches suffer from other limitations

as described in the following Section 3.12.

3.12. RELATED WORK 45

3.12 Related Work

There exist various approaches that try to tackle the challenges of using

TPMs in virtualized environments. In particular, the field of cloud comput-

ing [105] lead to various security-related research [23, 151, 94, 183, 33, 10].

In our work, we focus on one of the core security-related problematics which

appears both in the context of cloud computing and in other more general

virtualization scenarios; namely, how we can securely store integrity mea-

surements originating from multiple virtual machines in a TPM and main-

tain the same level of security as provided by the TPM in a non-virtualized

environment. In the following, we provide an overview of related research.

Berger et al. describe a virtualized TPM emulating TPM functionality

in software, called vTPM [9]. In particular, each VM is provided its own

vTPM with its own instance of (upper) PCRs. All upper PCRs are held in

software and their contents may be signed by the hardware TPM. However,

this does not provide the same level of security as storing measurements

in hardware-protected PCRs since measurements held in software can be

manipulated by an attacker once the system is compromised.

The available vTPM implementations [89, 101] of the Xen and QEMU

virtualization solutions, respectively, are based on the above work and suffer

from the same problems. In fact, Cucurull et al. [31] review the existing

vTPM implementations for Xen and QEMU and conclude that they do not

provide a level of security comparable to a non-virtualized solution.

In [46], England et al. try to reduce the complexity of approaches such as

vTPM by not emulating the entire TPM interface in software. They utilize

a para-virtualized approach that will pass through most of the functionality

of a real TPM, but changes some aspects of the device interface. However,

this approach suffers from the same problem as vTPM since (upper) PCRs

are emulated in software and thus can be manipulated on a compromised

system.

Feller et al. propose dcTPM [51], an architecture to multiplex several

software-based TPMs, hardware TPMs, or a combination thereof. By mul-

tiplexing only hardware TPMs, the above issue of software-emulated PCRs

can be solved. However, their approach does not scale very well. In fact,

multiplexing cloud systems consisting of hundreds of VMs becomes infea-

sible in terms of technology (e.g., limited number of Field-Programmable

Gate Array (FPGA) pins needed for multiplexing TPMs) and in terms of

economy (e.g., hardware must be especially built with as many hardware

TPMs as the (maximum) number of associated VMs).

46 CHAPTER 3. MULTIPLEXING TPM INTEGRITY MEASUREMENTS

In [166], Stumpf et al. propose a concept for enhancing a TPM to sup-

port hardware-based virtualization without the above scaling issues. This

is achieved by employing a root-data structure that is only accessible at

the hypervisor-level and a TPM-control structure that is used to dynami-

cally swap TPM-context information of each VM in and out in an encrypted

manner. Unfortunately, such a TPM is not available for production use.

Proskurin et al. propose seTPM [131] and Raj et al. propose fTPM

[135]. Both approaches provide software-only TPM emulations, but they

utilize supplemental hardware-based features to increase their level of secu-

rity. With seTPM, the TPM functionality is implemented as an applet on a

Java Card. The authors mention that the isolation capabilities of Java Card

applets within secure elements may be used to manage multiple instances of

seTPM in order to provide TPM functionality to multiple virtual machines,

given sufficient memory resources of the secure element. The implementa-

tion of the firmware-based fTPM leverages ARM TrustZone. The authors

show how fTPM can be used to build software systems with security guar-

antees similar to those of dedicated trusted hardware. However, the authors

do not cover how to take advantage of fTPM in virtualized environments

but we suspect the concept could be extended to support multiple virtual

machines.

The approach presented in this thesis allows us to store and multiplex

integrity measurements from an unlimited number of virtual machines in

the actual hardware TPM. By leveraging the hardware-based capabilities of

the TPM, we attain a high level of security while also making our approach

relatively easy to deploy.

3.13 Summary

We have shown that it is possible to multiplex integrity measurements orig-

inating from arbitrarily many VMs with just a single standard TPM and

only requiring one PCR. In contrast to existing approaches that emulate

PCRs in software, our approach achieves a higher level of security since

measurements, along with the mapping to their respective VMs, will always

be stored in the hardware-protected PCRs of the TPM. We presented a re-

mote attestation protocol for attesting the integrity of individual VMs. A

crucial problem we had to solve in this context, was that our approach of

sharing PCRs among VMs, inherently requires the disclosure of all measure-

ments of all VMs. We overcame this by storing measurements in the PCR

in a concealed manner. We additionally conceal a measurement’s associated

VM-ID, so as to prevent the collection of usage patterns. This enables us to

3.13. SUMMARY 47

fully disclose the (concealed) contents of the PCR and to selectively reveal

non-concealed measurements of individual VMs. However, this approach

poses the risk of a MITM launching blinding attacks where the measure-

ments and VM-IDs will be substituted with their corresponding concealed

pairs in order to hide certain measurements of the attested VM. We pre-

sented an exhaustive list of blinding attacks and showed that our integrity

validation algorithm protects against all of them. Finally, the experimental

results of our proof of concept implementation show the practicality of our

approach.

48 CHAPTER 3. MULTIPLEXING TPM INTEGRITY MEASUREMENTS

Chapter 4

Integrity Monitoring using

Paravirtualized Filesystems

In Chapter 3, we demonstrated how to store and multiplex integrity mea-

surements of arbitrarily many VMs with just a single standard TPM, thus

building a secure foundation for a variety of virtualized environment use

cases. However, in all scenarios, it is crucial to make sure that integrity

measurements will be obtained in a reliable and secure way and that it is

not possible for an attacker to manipulate the measurements before they

reach the TPM. In particular, having a Measurement Agent (MA) reside

within the realm of a supervised VM makes the MA susceptible to attacks

carried out in this VM and thus to measurement manipulations.

In this chapter, we show how to solve this problem by developing a sys-

tem that monitors and takes integrity measurements of multiple VMs from

outside of the VMs and only requires a single MA located at the hypervisor-

level. We present our approach of relocating a supervised VM’s entire filesys-

tem into the isolated realm of the host. In this way, we can enforce that all

file operations (e.g., modifying an existing file or creating a new file) on the

VM’s filesystem must necessarily be routed through the hypervisor-level,

and thus can be tracked and even be prevented. This guarantees secure and

complete file integrity monitoring of VMs. The experimental results of our

proof of concept implementation show the feasibility of our approach.

In Chapter 5, we will build upon Chapters 3 and 4 and explore how to

enable system administrators and other users to remotely interact with the

system developed in this chapter in a secure manner to protect the system’s

data integrity. We will achieve this by continuously authenticating users of

the system based on their interaction behavior with touchscreen devices.

50 CHAPTER 4. VIRTUALIZED INTEGRITY MONITORING

Parts of this chapter have been published in Active File Integrity Moni-

toring Using Paravirtualized Filesystems at the 5th International Conference

on Trusted Systems (INTRUST) in 2013 [180].

The rest of this chapter is organized as follows. In Section 4.1, we moti-

vate the need for virtualization-based integrity monitoring, potential weak-

nesses of other approaches, and present our contributions. Section 4.2 states

the attacker model and our assumptions. Section 4.3 sketches our monitoring

approach of relocating a supervised VM’s entire filesystem into the isolated

realm of the host. In Section 4.4, we introduce our system architecture.

Section 4.5 explains how we monitor and analyze file operation requests. In

Sections 4.7 and 4.8, we describe the techniques for enforcing file protec-

tion and detecting program execution, respectively. Section 4.9 details the

autonomous software package installation and upgrading mechanism. Sec-

tion 4.10 describes our proof of concept implementation. Section 4.11 gives

the performance evaluation results. In Section 4.12, we evaluate the security

of our approach. Section 4.13 discusses related work. Section 4.14 concludes

this chapter.

4.1 Virtualization-based Integrity Monitoring

Protecting the integrity of file objects is a fundamental security objective

for building trustworthy systems and for counteracting malware threats. A

prominent example of achieving file integrity protection is the Host-based In-

trusion Detection System (HIDS) Tripwire [82], which detects manipulations

to filesystem objects by comparing their hash values to reference hash val-

ues in periodic intervals. However, the problem with Tripwire, OSSEC [16],

and similar systems—including approaches based on Linux Security Mod-

ules (LSM), in particular, the four standard LSM modules SELinux [163],

AppArmor [22], Smack [152], and TOMOYO [120]—is that critical security

components (e.g., the monitoring components) are not isolated from the su-

pervised system. This allows malware to attack and disable the monitoring

components in order to conceal attack traces or to hide their presence alto-

gether. Researchers have proposed architectures leveraging virtualization in

order to isolate the critical security components from the supervised system.

The supervised system is moved into a separate VM while the monitoring

components are isolated and placed outside of the VM [61, 117]. The mon-

itoring components employ techniques like Virtual Machine Introspection

(VMI) [61] to inspect the supervised system and to potentially interpose on

certain operations (e.g., write operations on critical files). This approach

4.1. VIRTUALIZATION-BASED INTEGRITY MONITORING 51

prevents malware—like viruses, worms, and trojans—located in the VM

from attacking and disabling the monitoring components.

A challenge in this context is that the external monitoring components

now only have a rather coarse and abstract view of the supervised operating

system’s internal structures and high-level OS abstractions. This limitation

introduced by the virtualization layer is called the semantic gap [25]. Op-

erating system level semantics may be deduced from hardware-level state

(e.g., physical memory pages and registers) and events (e.g., interrupts and

memory accesses) in order to bridge the semantic gap [61]. Furthermore,

researchers have proposed monitoring techniques where hooks are placed

inside the monitored VMs in order to better cope with the complexity of

interpreting guest OS specific structures and events and to gain a more de-

tailed view [124, 134, 79, 182, 127, 128, 189]. However, malware can often

circumvent such monitoring by tampering with the hooks and components

placed inside the VMs, thus resulting in critical operations (e.g., critical file

operations) not being noticed on the hypervisor-level.

In this chapter, we make the following contributions:

• We present an architecture where we relocate a supervised VM’s en-

tire filesystem into the isolated realm of the host. The only way of

accessing and manipulating a VM’s filesystem is by communicating

with a privileged component located at the hypervisor-level which has

exclusive access to the VM’s filesystem. Therefore, it is guaranteed

that all file operations on the VM’s filesystem are necessarily routed

through the hypervisor-level.

• We build upon this architecture to monitor all file I/O operations

within a VM in real-time from “outside of the box” and to interpose

and prevent them from happening. Our approach solves the afore-

mentioned problem of having malware disable hooks in the VM as

this would render the VM (and as such the malware itself) incapable

of accessing or manipulating the VM’s filesystem.

• We efficiently bridge the semantic gap and preserve all relevant file

operation information by leveraging the paravirtualized Plan 9 filesys-

tem protocol [178] for communicating between guest VMs and the

hypervisor.

• We build upon and improve the work done in Chapter 3 to measure

all executed binaries of all VMs and to store these measurements in

52 CHAPTER 4. VIRTUALIZED INTEGRITY MONITORING

a single, multiplexed TPM. This allows for attesting the integrity of

individual VMs in the course of a remote attestation.

• We enable regular users of VMs to autonomously install and upgrade

software packages in a secure and controlled manner without the need

of requiring the intervention of the administrator of the physical sys-

tem. Additionally, and complementary to the autonomous approach,

our proposed concept allows system administrators to actively en-

force the upgrading of (outdated) packages running in VMs from the

hypervisor-level.

4.2 Attacker Model and Assumptions

Our objective is to monitor the integrity of files on the VM’s filesystem and

to prevent critical file events and illegal file modifications by leveraging a

paravirtualized filesystem. We assume a virtualized platform where attack-

ers, particularly in the form of malware, have full access to their respective

guest VMs.

We consider local and remote attacks against guest VMs as well as le-

gitimate users of guest VMs that may compromise the guest VM and gain

control of the guest user space and kernel.

We assume a correct implementation of the utilized 9P server such that

a guest VM cannot compromise the 9P server by sending specially crafted

requests, for example, requests causing a malfunctioning of the 9P server

through exploitation of buffer overflows.

We do not consider direct remote attacks against the host, nor do we

consider direct physical hardware attacks.

4.3 Monitoring of Guest VMs

The key aspect of our concept is that we relocate a guest VM’s entire filesys-

tem from the guest VM to the isolated realm of the host. We then grant only

a privileged component, located at the hypervisor-level, exclusive access to

the guest filesystems. This means that for all guest VMs, the only way of

accessing and manipulating their own filesystems is by communicating with

this privileged component located at the hypervisor-level. Therefore, it is

guaranteed that all file operations on a VM’s filesystem (e.g., write oper-

ations on critical files) are necessarily routed through the hypervisor-level.

This allows us to monitor all such file operations and to prevent them be-

fore they actually happen. Consequently, this enables us to protect against

4.3. MONITORING OF GUEST VMS 53

malware attacks trying to infect the system. We protect against malware

manipulations of a guest VM’s filesystem where the malware enforces its

reactivation even after a restart of the guest VM. By being able to prevent

such threats, we can guarantee that the guest VM starts in a trustworthy

state, free from malware. Our approach also makes sure that it is impossible

for an attacker to bypass the hypervisor (and as such circumvent the moni-

toring), even in the event of a completely compromised VM—since otherwise

there is no way of accessing the VM’s filesystem. This is an advantage over

other approaches (e.g., [124] and [134]) where disabling hooks in the VM

still allows for manipulation of filesystem objects.

4.3.1 Filesystem Relocation Mechanism

For our concept, we make use of the Plan 9 filesystem protocol 9P in order to

relocate a guest VM’s filesystem to the host. The 9P protocol is designed as a

distributed filesystem protocol that may be used over the network and which

operates on a file-based granularity. The client-server protocol uses messages

that reflect ordinary file operations, for example, messages originating from

read or write system calls. In the following, we give the rationale for choosing

9P as a means of achieving the described filesystem relocation of guest VM

filesystems.

9P is a minimalist message-oriented filesystem protocol which has been

designed with simplicity in mind. The core protocol consists of only twelve

basic operations which can be initiated by a 9P client [178]. Therefore,

9P’s complexity is easier to handle than more full-fledged protocols like

NFS [150] or CIFS [28]. This also results in a relatively small code base

of the 9P implementation, thereby reducing the likelihood of bugs which

may be exploited by an attacker. Another reason why 9P is well suited

for our concept is its protocol independence. In fact, it can be used over

any reliable, in-order transport [178]. This allows us to use it in a flexible

manner both on the same machine and over the network.

4.3.2 Relocation Scenarios

Figure 4.1 depicts three filesystem relocation scenarios which we will describe

in the following. Figure 4.1a shows the main scenario we consider in this

chapter and is also the scenario described above. In this virtualized system,

the filesystems of the VMs are not directly available to the VMs but relo-

cated to the hypervisor-level such that the hypervisor is able to monitor and

analyze all file operation requests. A 9P client resides in each guest VM and

cooperates with the 9P server located at the hypervisor-level. The actual

54 CHAPTER 4. VIRTUALIZED INTEGRITY MONITORING

Virtualized System

VM1

9P Client

VM2

9P Client

Hyperv.

9P Server

FS VM1 FS VM2

(a) Virtualized System

Virtualized System

VM1

9P Client

VM2

9P Client

Remote Host

OS

9P Server

FS VM1 FS VM2

(b) Virtualized System with

Remote Host

Regular System

OS

9P Client

Remote Host

OS

9P Server

FS

(c) Regular System with Re-

mote Host

Figure 4.1: Filesystem relocation scenarios. In the first case, the filesystems

of the virtual machines are located on the same machine. In the other cases,

the filesystems are located on a remote machine.

communication between the 9P clients and the 9P server is done over vir-

tio [145], which is the de-facto standard of a paravirtualizing framework for

Linux. This allows us to efficiently bridge the semantic gap and to preserve

all relevant file operation information. The concept and architecture will be

explained in more detail in this chapter. The detailed system architecture

is shown in Figure 4.2.

An advantage of our filesystem relocation approach using the Plan 9

filesystem protocol 9P (cf. Section 4.3.1 above) is that the filesystems of the

monitored VMs do not necessarily have to be located on the same machine

but may be used in a distributed fashion and moved to another physical

machine—or even multiple machines. This is depicted in Figure 4.1b and

Figure 4.1c. In Figure 4.1b, we consider a virtualized system with one or

more virtual machines. Each virtual machine contains a 9P client that com-

municates with a 9P server—located on a remote host—over the network.

In Figure 4.1c, we consider a regular (non-virtualized) system containing

a 9P client. Similar to the previous scenario, the filesystem of the regular

system is moved to a remote host and the 9P client communicates with the

remote host’s 9P server in order to access and operate on the filesystem.

The architectural arrangements in Figure 4.1b and Figure 4.1c can be

particularly interesting for use cases in the context of the Internet of Things

(IoT) and Automotive. In particular, relocating the filesystem to a remote

host not only allows monitoring systems but also to support devices with

no or only a very limited amount of storage. This is often the case with

4.4. SYSTEM OVERVIEW 55

minimalist IoT devices. Furthermore, it can also be applicable in the case

of a vehicle’s Electronic Control Units (ECUs). For example, in order to

monitor certain security-critical ECUs within a vehicle, their filesystems

could be relocated to the central gateway (GW) of the vehicle. The GW is

(among others) often responsible for security-related tasks like monitoring

certain components within the vehicle or controlling network traffic. Thus,

the GW could be extended to realize a similar kind of monitoring of ECUs as

is the case with the virtualized system in Figure 4.1a, where the hypervisor

monitors the virtual machines. In addition, the GW can be equipped with

a TPM which can be utilized for securely storing integrity measurements.

This mechanism will be described in Section 4.6.

In order to decide whether a 9P request originating from an IoT device

or an ECU will be granted or denied, a special agent located on the remote

host implements a policy-based access control approach. The details of our

policy-based approach will be explained in Section 4.7. In the case of IoT

devices, the remote host may be a backend system located within the secure

realm of the IoT operating company. In the automotive case, the remote host

may be the GW (as described above) or also a backend system located at

the OEM or Tier1. However, implementing the policy-based access control

directly on the GW has the advantage of not requiring an online connection

to the backend as well as a significantly lower latency (which can be critical

for certain ECUs). Finally, the policy rules on the GW can be updated and

extended by having the backend push the policy updates to the vehicle’s

GW. The performance aspects of relocating the filesystems to a remote host

as described in this section, will be evaluated and discussed in Section 4.11.1.

4.4 System Overview

Our paravirtualized monitoring architecture is shown in Figure 4.2. In gen-

eral, the hypervisor runs one or more guest VMs, which are subject to

monitoring. Each guest VM contains a 9P client that translates ordinary

file operation requests originating from within the VM to 9P request mes-

sages. These messages will be forwarded by the respective 9P client to the

9P server located in the realm of the hypervisor. The 9P server has ex-

clusive access to the filesystems of the guest VMs. The guest filesystems

are located on the filesystem of the host. The 9P server processes the 9P

requests accordingly, for example, by reading a file (and providing it to the

9P client) or by writing to the filesystem.

There are four components responsible for monitoring and enforcing file

integrity of the guests. These monitoring components are isolated from the

56 CHAPTER 4. VIRTUALIZED INTEGRITY MONITORING

Hardware

Hypervisor

Kernel

Guest VM 1

User Space

Hard Disk TPM

Host OS
Guest Filesystem VM 1

9P Server

9P Client File Operation Monitor

Security VM

Execution Detection Engine

Package Maintenance Engine

File Protection Enforcer

Guest Filesystem VM n...

...
Kernel

Guest VM n

User Space

9P Client

.
Hooks

Kernel

CPVM

User Space

9P Client

Figure 4.2: Paravirtualized monitoring architecture with externalized guest

filesystems. Each VM’s 9P client communicates with the 9P server, which

has exclusive access to the VM’s filesystems. The components responsible

for monitoring and enforcing file integrity of the guests are isolated in a

special security VM.

guest VMs (and the hypervisor) in a special security VM (cf. Figure 4.2).

We place hooks in all relevant parts of the request handlers of the 9P server

in order to inform the monitoring components of all relevant file operations.

This enables the security VM to monitor all requests originating from a

VM’s 9P client trying to access its guest filesystem. The components process

the 9P requests and decide—based on an access control policy—whether a

request will be granted or denied.

4.4.1 File Operation Monitor

The File Operation Monitor (FOM) receives and analyzes all hooked 9P

request messages from the 9P server. Relevant requests will be forwarded

to EDE and PME (see below). The details will be described in Section 4.5.

4.4.2 Execution Detection Engine

The Execution Detection Engine (EDE) detects when a guest VM is trying

to execute a file based on a heuristic approach which is based on recognizing

distinct sequences of 9P requests. Execution of files (possibly along with

certain write operations, see Section 4.6 for the details) will be securely

4.5. MONITORING AND ANALYZING FILE OPERATION REQUESTS 57

recorded by storing a corresponding integrity measurement (hash value) in

a TPM [173]. We take advantage of the work done in Chapter 3 to store

the integrity measurements in a single, multiplexed TPM. The details will

be described in Section 4.8.

4.4.3 Package Maintenance Engine

The Package Maintenance Engine (PME) detects when a guest VM is trying

to install, remove, upgrade, or downgrade software packages, and handles

it by utilizing a special VM, called the Complementary Privileged Virtual

Machine (CPVM). The details will be described in Section 4.9.

4.4.4 File Protection Enforcer

The File Protection Enforcer (FPE) decides whether a 9P request will finally

be granted or denied based on policy rules. The details will be described in

Section 4.7.

4.5 Monitoring and Analyzing File Operation Re-

quests

The File Operation Monitor (FOM) is responsible for analyzing 9P request

messages forwarded by the 9P server. In particular, FOM scans for all crit-

ical requests of the utilized 9P2000.L1 protocol [62]. A request is considered

critical if it has the potential to impact the integrity of the guest’s filesys-

tem. Table 4.1 lists all critical 9P requests that are handled by FOM along

with a description of their potential impacts.

Note that Table 4.1 does not list the 9P read request since it cannot

be used to affect a file’s integrity. However, read requests still play an

important part in our concept as they occur as a distinct sequence of 9P

requests whenever a file in the guest VM is going to be executed. Since the

9P filesystem protocol does not incorporate a dedicated execute request

itself, we take advantage of this sequence of read signature requests in order

to come up with a heuristic to detect the execution of files. The details will

be described in Section 4.8.

19P2000.L includes the core 9P2000 requests as a subset

58 CHAPTER 4. VIRTUALIZED INTEGRITY MONITORING

9P Request Potential Impact

write Writing new files or modifying the content of exist-

ing files, e.g., altering configuration files or executa-

bles

rename , renameat Moving files, thus effectively deleting them from one

location within the filesystem and possibly replac-

ing other files with the content of the renamed file

remove , unlinkat Removing files or directories, e.g., changing the be-

havior of programs by deleting their configuration

files or hiding traces by deleting log files

lcreate , mkdir Creating new files or directories; may be misused to

truncate existing files

link , symlink Creating a hardlink or symbolic link, e.g., creating

a link in a directory like /bin to a malicious ex-

ecutable in /tmp (where the creation of arbitrary

files may be allowed)

Table 4.1: Critical requests of the Plan 9 9P2000.L protocol

4.5.1 Shadow Copy Write

The 9P write request requires further consideration. A special case of the

write request is that it may exceed the message size of the 9P client or the

9P server implementation (or both). The reason is that the entire (to be

written) payload data has to be sent from the 9P client to the 9P server. In

such cases, the 9P client splits up a write request w[f, d] (containing the

payload data d for a file f) into several sub-requests w1[f, d1], . . . , wn[f, dn]

[62]. This poses a problem for monitoring write requests because FPE may

not be able to decide upon the partial information of a sub-request wi[f, di]

(in particular, the first sub-request w1[f, d1]) on whether the overall request

w[f, d] should be granted or not. In particular, if FPE only allows a file

f to be written if its future content (i.e., the content of f after applying

the write operation w[f, d]) matches a certain hash value (cf. Section 4.7),

knowledge of the entire future content of f is required in order to be able to

calculate the hash value of f . Note that in this regard, it is not sufficient to

only consider the payload data d. The reason is that a write request may

only partially write a file f . In this case, the payload data d differs from the

content of the resulting file f .

We solve this problem by introducing a technique called shadowing,

which works in three phases:

4.6. SECURE STORAGE OF INTEGRITY MEASUREMENTS 59

1. FOM detects a write sub-request w1[f, d1] by inspecting the request’s

header data. If f already exists on the guest’s filesystem, FOM creates

a shadow copy f ′ with the same content as f . If f does not exist, FOM

creates an empty file f ′. The shadow copy f ′ is located outside of the

guest’s filesystem and only accessible by FOM. Depending on the size

of f , and possibly other factors (e.g., hardware and performance con-

straints), the shadow copy may be kept entirely in RAM.

2. FOM applies the sub-request w1[f, d1] along with all other correspond-

ing sub-requests w2[f, d2], . . . , wn[f, dn] exclusively to the shadow copy

f ′. When all sub-requests w1[f, d1], . . . , wn[f, dn] have been processed

(which is detected by a terminal clunk or fsync operation [178]),

FOM signals to FPE that there is a new write request w[f, d] and

passes a pointer to f ′.

3. FPE is then able to calculate the hash value of f ′, which resembles the

potential future content of f , and to finally decide whether the overall

write request w[f, d] should be granted or denied. If it is granted, the

9P server eventually gets signaled to allow and process all sub-requests

w1[f, d1], . . . , wn[f, dn]. Finally, the shadow copy f ′ gets discarded.

4.6 Secure Storage of Integrity Measurements

We build upon and improve the work done in Chapter 3 to measure all

executed binaries of all VMs and store these measurements in a single,

multiplexed TPM. In this way, we are able to extend the chain of trust

in virtualized environments up to the respective application layers of the

guest operating systems and to effectively extend important concepts like

the TCG-based Integrity Measurement Architecture (IMA) [148], while at

the same time protecting the integrity measurements through the high se-

curity properties of a (hardware) TPM. In Section 3.4, we described two

approaches for obtaining integrity measurements. In the first approach, a

Measurement Agent (MA) runs in each VM and monitors the execution

of supervised files, calculates according integrity measurements, and prop-

agates them to the hypervisor-level. In the second approach, the MAs are

not located within the VMs themselves but the monitoring of supervised

files of all VMs is rather conducted by an MA located at the hypervisor-

level. The second approach has the advantage that only a single MA is

60 CHAPTER 4. VIRTUALIZED INTEGRITY MONITORING

required for monitoring the execution of files of all VMs from “outside of

the box” and for storing integrity measurements in the TPM. Additionally,

this prevents attackers from tampering with the monitoring and measur-

ing components, respectively, since they are out of the reach of the guest

VMs. Because of these advantages, we conceptually took advantage of a

Measurement Agent (MA) implementing the second approach for obtaining

integrity measurements in Chapter 3 as depicted in the system architecture

in Figure 3.1. However, there we just assumed the existence of such an MA

as the focus of Chapter 3 was on the secure and privacy-aware multiplexing

of integrity measurements. We are now able to fill this gap by leveraging the

paravirtualized integrity monitoring technique developed in this chapter.

In addition to measuring execution operations on files as described above,

our concept is also capable of monitoring file modifications (e.g., changes to

configuration files) by supervising write operations to these files. This al-

lows us to take integrity measurements of the modified file contents and to

securely store the measurements in the multiplexed PCR of the TPM, so as

to proof that the respective files have been altered in a certain way. In the

context of a remote attestation, this integrity measurement information—

along with the measurement information about executed files— can then be

provided to a verifier who uses it to assess the trustworthiness of the attested

virtual machine. For example, a verifier may only accept particular mani-

festations of file contents for a configuration file responsible for specifying

the cryptographic algorithm that is used for performing certain encryption

operations, and reject all other file contents. This may allow the verifier to

determine whether the attested system uses, for example, one of the strong

ciphers required by the verifier for deeming the system trustworthy. The

file contents are uniquely identified2 by their respective hash values, and the

verifier is assumed to be in knowledge of the respective hash values because

the expected potential file contents (the strong ciphers, in the example) are

known to him and thus he is able to calculate the hash values himself. The

verifier is then able to compare the hash values (integrity measurements)

provided as part of the remote attestation with his own list of reference

hash values. If a provided hash value is not in the list of reference hash

values, the corresponding file is considered untrustworthy. We note that, in

principle, the attesting system could additionally provide information about

the corresponding contents of hash values that are not known to the verifier

(e.g., a new strong cipher, in the example). This would allow the verifier

to confirm that the file content indeed matches the hash value submitted

2With very high probability.

4.7. ENFORCING FILE PROTECTION 61

in the remote attestation by recalculating the hash value (based on the file

content). However, this may involve manual intervention of the verifier in

order to understand the semantics of the received file content and to assess

whether it is considered trustworthy, and as such may not be feasible for

many use cases.

Finally, we note that the work developed in Chapters 3 and 4 of this

thesis provides the conceptual and technical groundwork for realizing the

described attestation scenarios. However, in this thesis we do not focus on

developing concrete policy rules for verifiers in order to assess the trustwor-

thiness of attested VMs (along with the derivation of appropriate actions

and responses) as they strongly depend on a multitude of factors and must

be determined based on the actual use cases.

4.7 Enforcing File Protection

The File Protection Enforcer (FPE) is responsible for deciding whether a 9P

request will be granted or denied. Our implemented mechanism resembles

a Rule Based Access Control (RBAC) approach3 [27]. In particular, the

decision making is based on Access Control Lists (ACLs) that define which

filesystem operations are allowed within guests and which ones are prohib-

ited. FPE implements a default closed policy [77], also known as whitelisting

[156], that prohibits all filesystem operations within a VM unless an opera-

tion is explicitly granted by an ACL.

For each guest VM there exist zero or more ACLs. An ACL defines for a

given file f whether certain operations on f are allowed or denied. This, in

turn, is realized through one or more Access Control Entries (ACEs) associ-

ated with a given ACL. ACLs may be realized through various approaches

such as using extended file attributes or utilizing a file path based approach.

In our prototype implementation (cf. Section 4.10), we take advantage of a

file path-based lightweight database approach for administering ACLs.

4.7.1 Policy Predicates and Request Mapping

We define a minimal set of four predicates that may be used to construct

an ACE. All predicates evaluate to either true or false. The predicates are:

3Not to be confused with Role Based Access Control.

62 CHAPTER 4. VIRTUALIZED INTEGRITY MONITORING

9P Request Predicate Policy Check

write(f,d) f ′ ← w[f, d] : W (f) ∧H(f ′)

rename(f1,f2) , renameat(f1,f2) W (f2) ∧D(f1) ∧H(f1)

remove(f) , unlinkat(f) D(f)

lcreate(f) W (f)

link(f1,f2) , symlink(f1,f2) W (f2) ∧H(f1)

exec(f) (*) E(f) ∧H(f)

(*) virtual request

Table 4.2: Critical requests mapped to policy checks using only predicates.

W (f) : (partial) writing of file f allowed?

D(f) : deletion of file f allowed?

E(f) : execution of file f allowed?

H(f) : hash of the content of file f matches a reference hash value?

The objective of exclusively using this minimal set of predicates in the

ACEs, is to abstract from the actual 9P requests and to come up with

simpler, more generic ACEs. This has the advantage that one does not have

to create ACEs for each specific 9P request. Instead, it is only required

to define for a file f whether writing W (f), deletion D(f), and execution

E(f) is allowed or denied (the latter of which is the default)—possibly in

conjunction with reference hash values that have to be matched (H(f)). In

particular, a file may be associated with a list of one or more reference hash

values 〈h1, . . . , hn〉. The predicate H(f) evaluates to true if and only if the

content of f matches one of the hash values hi or if the list of reference

hash values contains the wildcard character “∗”. Otherwise, H(f) always

evaluates to false.

For example, an ACE for a file f may define that writing of f is allowed

(W predicate) if the resulting content matches one of several reference hash

values (H predicate). Such an ACE may then evaluate to true not only for

9P write requests but also for rename , renameat , lcreate , link , and

symlink requests, respectively, as will be explained in the following.

For the actual policy enforcement, the FPE internally maps all critical

9P requests (cf. Table 4.1) to corresponding policy checks using only these

predicates. The mapping is shown in Table 4.2 (for clarity, we only illustrate

the policy checks for files and omit the checks for directories). If the overall

expression of such a policy check evaluates to true, the respective 9P request

will be granted by FPE. Otherwise, it will be denied. Note that a write

request w[f, d] (which might be a partial write) will first be applied to a

4.7. ENFORCING FILE PROTECTION 63

temporary file f ′ (denoted by f ′ ← w[f, d] in Table 4.2). This is similar

to shadowing as described in Section 4.5.1. If the content of the resulting

file f ′ matches a valid reference hash value, H(f ′) evaluates to true. Also

note that exec is not an actual 9P request but a virtual request which is

propagated by EDE. This is explained in Section 4.8. Finally, note that for

the predicates we do not use any supplemental information (e.g., user ID)

originating from within a VM. The reason is that this information is not

trustworthy as it may be manipulated.

4.7.2 Package Policy Rules

In addition to the predicates described above, we also define predicates

to determine which software package maintenance operations may be au-

tonomously issued by legitimate guest VM users (cf. Section 4.9). The

predicates are:

Pi(p) : installing, upgrading, or downgrading package p allowed?

Pr(p) : removing package p allowed?

Ph(p) : hash of the package p matches a reference hash value?

Whenever PME detects an installation, upgrading, or downgrading at-

tempt of a package p (cf. Section 4.9), respectively, it is propagated to FPE

which, in turn, will check whether the predicate Pi(p) evaluates to true.

Furthermore, the predicate Ph(p) may be used—analogously to H(f) as de-

scribed above—to restrict the installation, upgrading, and downgrading of

a package p to packages that match a reference hash value. This allows

us to selectively permit only certain packages (and package versions) while

prohibiting others, e.g., older versions with known vulnerabilities. For re-

moving attempts of p, FPE will check whether the predicate Pr(p) evaluates

to true.

4.7.3 Policy Example

Table 4.3 shows a simplified example for a machine with three guest VMs

to illustrate how the predicates may actually be utilized. In the table, each

row represents a policy rule. The first column defines the virtual machine

the policy rule is associated with. The label should uniquely identify the

virtual machine. The second column lists the policy rule’s directory path

(row 1), file path (rows 2 to 4), or package name (row 5). The third column

defines the allowed operations on the directory, file, or package. This is done

by stating the respective predicates as described in Sections 4.7.1 and 4.7.2.

The fourth column defines a list of reference hash values (or the wildcard

64 CHAPTER 4. VIRTUALIZED INTEGRITY MONITORING

VM Path or Package Predicates Reference Hash Values

1 /tmp/* W,D 〈∗〉
1 /etc/ssh/cipher W 〈a3b1..., 4c17...〉
2 /etc/crontab W 〈∗〉
3 /bin/web-server E 〈∗〉
3 ssh-server Pi 〈018f .. ., c668..., d4b2...〉

Table 4.3: Policy rules example utilizing the described predicates and refer-

ence hash values for a machine running three virtual machines.

character “∗”) that have to be matched in order for the respective predicates

to evaluate to true such that the respective operation will be allowed.

The first policy rule defines that in VM 1, write operations (as well as

create, rename, and link operations, cf. Table 4.2) and delete operations

in directory /tmp are permitted. Furthermore, since the list of reference

hash values uses the wildcard character “∗”, all write operations in /tmp

are allowed. Such policy rules can be used (by the system administrator)

to exclude directories and files where operations such as writing and delet-

ing directories and files are considered to not be crucial. In practice, this

may depend on several factors, for example, the actual use case, the re-

quired security level, or the virtual machine. The second policy rule states

that the (config) file /etc/ssh/cipher may be written but only if the hash

value of the resulting file content matches the reference hash value “a3b1...”

or “4c17...”. In this example, the configuration file /etc/ssh/cipher con-

tains the cryptographic algorithm that is used for performing the encryption

(and decryption) of traffic when using the Secure Shell (SSH) protocol. If

the system administrator, for example, only wants to allow the cipher aes

or 3des , he can use the respective reference hash values matching the file

contents when using these ciphers (in this example, “a3b1...” and “4c17...”,

respectively). In this way, the system administrator is able to enforce the

usage of strong ciphers and to effectively prohibit the usage of weak ci-

phers. The third policy rule allows arbitrary write operations to the file

/etc/crontab in VM 2. The fourth policy rule allows the execution of

/bin/web-server in VM 3 (but does not allow writing or deleting it). The

fifth policy rule allows installing, upgrading, and downgrading the package

ssh-server . Additionally, the system administrator is able to restrict the

ssh-server package resulting from these operations to the ones matching

the reference hash values “018f .. .”, “c668...”, or “d4b4...”. In this way, it

is possible for the administrator to enforce the usage of certain ssh-server

4.8. DETECTING PROGRAM EXECUTION 65

package versions (matching the reference hash values) and to effectively pro-

hibit obsolete versions or versions with known vulnerabilities.

Finally, note that in the context of a remote attestation, a verifier is

able to additionally check reference hash values in order to assess the trust-

worthiness of the attested virtual machine (cf. Section 4.6). For example,

a verifier may additionally require that the executed /bin/web-server in

VM 3 matches a particular reference hash value (e.g., a specific version of

the web server the verifier only trusts), whereas the policy rule in Table 4.3

(row 4) per se does not impose any restrictions on the executed version of

/bin/web-server . This allows the verifier to implement flexible, supple-

mental policies on top of the policy rules used on the attested machine.

4.8 Detecting Program Execution

The detection of executed programs from outside of the guest VMs through

EDE is not straight forward due to the fact that 9P does not distinguish

between reading a file and executing a file. Instead, in both cases a read re-

quest is sent by the 9P client and only the VM decides afterwards whether

the read file will be executed. Note that we cannot just extend the 9P

clients (and server) such that they distinguish between read and execute

requests (e.g., an executable-bit). The reason is that this information would

not be trustworthy since an attacker may tamper with it (e.g., setting the

executable-bit from 1 to 0) once the VM is compromised. Therefore, we

incorporate EDE which is able to detect the execution of a file within a

VM by utilizing a heuristic approach. EDE is protected from the aforemen-

tioned attacks since it is located in the security VM (cf. Figure 4.2) and

monitors the VMs from “outside of the box”, without relying on auxiliary

(untrustworthy) information sent from the VM.

Whenever a program is going to be executed within a VM, there will

be a distinct sequence of preceding Plan 9 requests in a defined chronolog-

ical order, as described in the following. EDE recognizes this sequence of

signature requests and deduces which file is intended to be executed. FPE

may then grant or deny the execution based on policy rules as described in

Section 4.7.

For the execution detection, we consider the Executable and Linking

Format (ELF) [170], which is the standard binary format for executables

on many Unix-like operating systems, including Linux. The heuristic for

detecting the execution of ELF files under Linux, consists of the following

signature requests (in their chronological order of occurrence):

66 CHAPTER 4. VIRTUALIZED INTEGRITY MONITORING

1. The execve system call first reads 128 bytes to determine the binary

type of a file f . Consequently, EDE scans for the corresponding 9P

read requests.

2. The ELF loader of the Linux kernel invokes the function kernel read ,

which reads 224 bytes from f , starting from offset 52.

3. A subsequent invocation of kernel read reads 19 bytes from f , start-

ing from offset 276, which gets treated as the path to an interpreter

[170].

The above signature requests are usually followed by multiple read re-

quests that attempt to map the entire file f into memory. Note that EDE

is also able to detect the loading of ELF libraries, which generate signature

requests similar to that of executed binaries.

4.9 Autonomous Software Package Installation and

Upgrade

Another key feature of our approach is that it is possible for legitimate

users of guest VMs to autonomously install, remove, upgrade, and down-

grade software packages without the need of any manual intervention by the

administrator of the physical system. However, these package maintenance

operations are not allowed to be done in an arbitrary manner, but all such

operations have to adhere to the policy rules enforced by FPE as described

in Section 4.7. Also note that it is not possible for a guest VM user to

directly manipulate the package contents as they are write protected. This

prevents illegal modifications of the guest VM by attackers—which includes

legitimate but maliciously acting VM users.

Another advantage of our software package installation and upgrading

mechanism is that in addition to the above autonomous approach, PME is

also able to actively enforce the upgrading of (outdated) packages running

in VMs from the hypervisor-level. This allows the system administrator to

keep critical software running in the VMs up to date, thus increasing the

overall system security by reducing the likelihood of an attacker exploiting

software packages with known vulnerabilities.

The work flow for installing, removing, upgrading, and downgrading

software packages is depicted in Figure 4.3 and will be described in the

following.

4.9. AUTONOMOUS SOFTWARE PACKAGE INSTALLATION AND UPGRADE 67

Hypervisor

Host OS
Guest Filesystem VM vm

9P Server

Security VM

Package Maintenance Engine

File Protection Enforcer

Kernel

Guest VM vm

User Space

9P Client

Kernel

CPVM

9P Client

.
Hooks

Adapted
Packet Manager

1. signal package
 maintenance action a
 for packet p

2. analyze package
 maintenance request

3. check if action a for
 packet p is allowed
 and verify integrity of p

4. attach vm's filesystem
 and trigger action a
 for packet p

5. execute action a
 for packet p on
 vm's filesystem

User Space

Packet Manager

... ...

Figure 4.3: Installation and upgrading of packages via CPVM. First, a VM

signals a package maintenance request. PME and FPE analyze the request

by checking the package integrity and permissions. Finally, the CPVM may

execute the request by operating directly on the VM’s filesystem.

4.9.1 Signaling of Package Maintenance Request

First, a legitimate user of the guest VM executes the package manager within

the VM with the corresponding maintenance action a (and parameters) for

a package p (step 1 of Figure 4.3). The request is forwarded by the 9P client

to the 9P server. The Package Maintenance Engine (PME) located in the

security VM catches and analyzes the package maintenance request (step 2).

In this regard, it is important to note that PME considers all information

gathered from the guest VM as untrustworthy. This means that even if an

attacker compromised the guest VM, it would still not be possible for him

to use the package manager to send fake information in a way that would

allow the circumvention of the policy rules or the malfunctioning of any

other security-critical component outside of the guest VM.

4.9.2 Checking Package Integrity and Permissions

PME sends a query to FPE in order to determine whether p is a known

and valid package on which the requested action a may be applied (step

3). Hence, FPE first checks if the action a on package p is allowed for the

respective VM by evaluating the Pi and Pr predicates of the corresponding

ACE. Afterwards, FPE verifies the integrity of the package p by evaluating

68 CHAPTER 4. VIRTUALIZED INTEGRITY MONITORING

the Ph(p) predicate of the corresponding ACE as described in Section 4.7.

The usage of reference hash values allows us to selectively permit only cer-

tain packages—and package versions—while prohibiting others (like older

versions with known vulnerabilities) that may otherwise be exploited by an

attacker to compromise the system. If the hash value is not valid, the main-

tenance process is aborted and an error is signaled to the package manager

of the guest VM.

4.9.3 Executing Package Maintenance Request

The package maintenance process for all guest VMs is executed in a special

VM, called the Complementary Privileged Virtual Machine (CPVM). The

CPVM runs in parallel to the guest VMs and has exclusive permission to

install, remove, upgrade, or downgrade packages of all VMs. A key feature

of the CPVM is that it operates—via the 9P protocol—on the same filesys-

tem (located in the host) as the guest VM vm that triggered the respective

package maintenance request. This is achieved by attaching vm’s filesystem

(on the fly) to CPVM, for the duration of the package management process

(step 4). In this way, all package management operations done by CPVM

(step 5) are immediately visible to vm, and vice versa. This prevents syn-

chronization problems and guarantees that both VMs always operate on the

same state of the VM, e.g., consistent information on which packages are

installed, their package versions, accompanying configuration file settings,

and so on. Note that the guest VMs only require minimal and non-security

critical user space modifications of the package management tools (cf. Sec-

tion 4.10.1) and no kernel modifications.

4.9.4 CPVM Rationale

In the following, we justify the execution of the package maintenance oper-

ations within CPVM as opposed to executing them in the guest VM itself.

The latter case could be achieved by having FPE properly adjust the policy

rules such that file operations like creating, deleting, or modifying files be-

longing to a certain package would be temporarily permitted for a certain

VM. However, many modern package managing tools also allow packages

(e.g., Debian packages, as used in our prototype implementation in Sec-

tion 4.10.1) to contain script files that will be executed before and after

a package maintenance operation, respectively. Parsing these script files

(which may contain arbitrarily complex commands) and extracting their

complete semantics in order to be able to have FPE temporarily grant the

corresponding file operations is a highly complex task. Possible workarounds

4.10. PROTOTYPE IMPLEMENTATION 69

include disallowing such scripts or imposing certain constraints on their con-

tents. However, this would prevent taking advantage of real-life packages

as shipped with modern Unix-like operating systems. Our CPVM approach

solves the aforementioned problems, yet it is fully compatible with full-

fledged Unix-like operating systems, e.g., Linux distributions such as De-

bian.

Note that our approach does not require to suspend or pause a guest

VM vm while CPVM is executing its software management operations on

vm’s filesystem but both VMs can run in parallel. This is due to the fact

that both VMs communicate with the same 9P server—which deals with

the correct synchronization of 9P requests. As such, the functioning of vm

and CPVM is comparable to two (especially isolated) processes operating

on the same filesystem within the realm of an ordinary operating system.

4.10 Prototype Implementation

We have implemented a proof of concept using the Native Linux KVM Tool

(NLKVM) [45], version 3.1.rc7, with enabled KVM full virtualization sup-

port. In contrast to QEMU-KVM [84, 8], NLKVM has the goal to provide

a clean, from-scratch, lightweight KVM host tool with only the minimal

amount of legacy device emulation. NLKVM ships with a 9P file server

utilizing the virtio framework [145] for communicating with the 9P clients

residing in the guest VMs. The 9P client functionality is provided by the

v9fs client of the Linux kernel [91], which supports both the standard 9P2000

protocol and the extended 9P2000.L protocol, the latter of which we use.

Our host system runs Ubuntu 12.10. Each guest VM runs Debian 6.0

with Linux kernel 3.5.0 and enabled virtio and 9P support. The Linux

guest kernel images reside on the host filesystem and will be passed as a

parameter to NLKVM whenever a new VM is started. The security VM

and CPVM also run Debian 6.0 with Linux kernel 3.5.0. The attached guest

filesystem of CPVM is passed to NLKVM as a reference to a symbolic link.

PME redirects this symbolic link dynamically to other guest filesystems as

required by package maintenance requests.

The 9P server hooking functionality is realized by patching all relevant

request handlers of the 9P virtio implementation so that FOM gets signaled

and forwarded all required information. FOM and EDE are implemented in

C. PME and FPE are implemented using a combination of Python scripts

and shell scripts. Furthermore, FPE utilizes SQLite3 for efficiently managing

the policy rules.

70 CHAPTER 4. VIRTUALIZED INTEGRITY MONITORING

4.10.1 Installation and Upgrading of Packages

As mentioned, the guest VMs run Debian, which ships with the package

management tool dpkg [116]. Since we do not allow guests to directly in-

stall, remove, upgrade, or downgrade packages on their own (cf. Section 4.9),

we replace the user space tool dpkg with our own version dpkgR which for-

wards all package maintenance requests to PME via the 9P protocol. We

take advantage of regular 9P requests and have PME treat them specially

in order to pass the information of package management action, parameters,

and package name. This approach allows us to use regular 9P protocol im-

plementations without the need of modifying them. In particular, we utilize

the 9P mkdir request (cf. Table 4.1) because it allows us to transfer all

required information. PME parses the request and queries FPE on whether

the action for package p is allowed and whether p is a valid package. If

the request gets granted by FPE, PME creates a new corresponding job

by placing a file in a special directory which is only accessible by CPVM.

The job file contains the respective command that will be executed by the

privileged CPVM as soon as CPVM gets scheduled by PME. PME attaches

the filesystem of the respective guest VM to CPVM and schedules CPVM

which, in turn, detects the new job and executes it. The return value of the

utilized 9P mkdir request can be used to report the status of the package

maintenance request to the requesting VM. In particular, upon successful

completion of the job, PME grants the 9P mkdir request in order to sig-

nal to dpkgR that the package maintenance request has been successfully

executed.

Finally, we note that it is sufficient to only replace dpkg as described

above in order to additionally yield 9P-protocol-aware versions of other pack-

age management tools like apt , aptitude , and synaptic . The reason is

that all of these tools utilize the shared library libapt-pkg [186] which

provides the common functionality for managing packages such as instal-

lation and removal of packages. The library libapt-pkg , in turn, takes

advantage of dpkg itself for executing low-level operations. Therefore, by

replacing dpkg with dpkgR the 9P-protocol-awareness propagates to all of

the aforementioned package management tools.

4.11 Performance Evaluation

We assess the performance of our prototype implementation by measuring

its write and read performance, and by comparing the results to three other

environments. The testing hardware consists of

4.11. PERFORMANCE EVALUATION 71

20 22 24 26 28 210 212 214 216 218 220 222 224

Block size in B

10-1

100

101

102

103

104

Ti
m

e
in

 m
s

Native I/O
Virtio w/o Plan 9
Plan 9 (unmodified)
Plan 9 (our prototype)

Figure 4.4: Write performance for different environments. The time to write

data is given as a function of the block size. Our prototype performs similarly

to the other examined environments for block sizes of up to approximately

4kB (212B).

• PC with an Intel Core i7-2640M 2.8GHz CPU,

• 4 GB RAM,

• Intel SSDSA2BW160G3L solid-state drive,

• ext4 filesystem with a block size of 4kB.

Figure 4.4 and Figure 4.5 show our testing results of the write and read

performance benchmarks, respectively. We conducted the write and read

operations with block sizes from 1B of up to 16MB (224B). For the experi-

ments, we disabled caching.

The write performance is depicted in Figure 4.4. The time (in ms) to

write data is given as a function of the block size (in bytes). All four exam-

ined environments—native I/O, virtio block without 9P, virtio block with

unmodified plain 9P, and virtio block with modified 9P (our prototype)—

perform similarly up to block sizes of approx. 4kB (212B). For larger block

sizes, the Plan 9 environments perform worse than native I/O and virtio

block. However, in our usage scenario such larger block sizes are negligible

since I/O operations are usually done in block sizes of typical filesystems.

These block sizes normally lie in the range of 512B to 4kB—the latter of

72 CHAPTER 4. VIRTUALIZED INTEGRITY MONITORING

20 22 24 26 28 210 212 214 216 218 220 222 224

Block size in B

10-4

10-3

10-2

10-1

100

101

102

103

Ti
m

e
in

 m
s

Native I/O
Virtio w/o Plan 9
Plan 9 (unmodified)
Plan 9 (our prototype)

Figure 4.5: Read performance for different environments. The time to read

data is given as a function of the block size. Similarly to the unmodified

Plan 9 environment, the read performance of our prototype stays relatively

constant for block sizes of up to approximately 4kB (212B).

which is also the maximum block size for ext4 on most architectures. Fur-

thermore, we note that 4kB is also the preferred block size for efficient

filesystem I/O of our Linux testing environment as determined by the stat

system call.4 Finally, note that there is no significant performance difference

between plain 9P and our prototype.

The read performance is depicted in Figure 4.5. Analogously to the write

performance, the time (in ms) to read data is given as a function of the block

size (in bytes). As might be expected, native I/O takes the least time to

read blocks, followed by virtio block, followed by the 9P environments—

which inherently have the biggest performance overhead. Furthermore, the

read performance of all four examined environments stays relatively constant

for block sizes of up to approx. 4kB (212B) and only then starts to decline

for larger block sizes—similarly to the write performance above. Note that,

analogously to the write performance, there is no significant performance

difference between plain 9P and our prototype.

4The stat(2) man page states that “the st blksize field of the stat structure gives

the ’preferred’ blocksize for efficient filesystem I/O”.

4.11. PERFORMANCE EVALUATION 73

4.11.1 Network-based Filesystem Relocation

In Section 4.3.2, we noted that an advantage of our filesystem relocation

approach using the Plan 9 filesystem protocol 9P is that the filesystems of the

monitored VMs do not necessarily have to be located on the same machine

but may be used in a distributed fashion and moved to another physical

machine. This incurs an additional network overhead for the write and read

performance evaluation results in Figure 4.4 and Figure 4.5. This overhead

consists of several factors which may differ depending on the actual scenario,

use case, and setup. In the following, we describe the most important factors

that influence the network overhead and latency:

• The given system must establish a connection to the remote host. This

is usually done over TCP/IP. In particular, for v9fs [91] this may be

achieved with the option trans=tcp .

• The payload for executing read and write requests over the network

must be transferred to or received from the remote host. In gen-

eral, the network overhead grows poportionally with the payload size.

In this regard, an important factor is the connection bandwidth (the

maximum possible transfer rate) as well as the throughput (actual

achieved transfer rate). For write requests the payload is transferred

to the remote host which means that the upstream speed is most rel-

evant. For read requests the payload is received from the remote host

which means that the downstream speed is most relevant.

• The latency increases with the length and the network hops the data

packets must travel as well as the utilized network telecommunications

protocol. For the latter, the latency can be as low as 10 ms (T1 line),

around 20 ms (DSL) or up to about 500-700 ms (satellite internet

access).

Because of the multitude of factors as mentioned above as well as varying

architectures and infrastructures used for various use cases, it is difficult to

determine a generally valid network overhead through practical experiments.

Therefore, in the following, we estimate the network overhead for different

bandwidths and payload sizes. Figure 4.6 shows the required time in ms to

transfer a certain amount of bytes over a network with a bandwidth of 1

Mbit/s (blue curve), 10 Mbit/s (red curve), and 100 Mbit/s (yellow curve),

respectively. The stated bandwidths may refer to the upstream for write

requests or the downstream for read requests.

74 CHAPTER 4. VIRTUALIZED INTEGRITY MONITORING

1 10 100 1,000 10,000 100,000 1,000,000
0

1000

2000

3000

4000

5000

6000

7000

8000

1 Mbit/s bandwidth

10 Mbit/s bandwidth

100 Mbit/s bandwidth

Transferred bytes

Ti
m

e
 in

 m
s

average file
size in /bin

average file
size in /etc

Figure 4.6: Required time to read and write files over the network for various

bandwidths.

We note that for many use cases the average amount of transferred bytes

will presumably be relatively small due to the average size of relevant files. In

particular, the average file size of configuration files in /etc on the author’s

Debian GNU/Linux system is 3,640 bytes—as indicated by the dashed green

line on the left-hand side in Figure 4.6. The files in /etc may be read and

written. The average file size of executables in /bin on the author’s system

is 94,691 bytes—as indicated by the dashed green line on the right-hand side

in Figure 4.6. The files in /bin will primarily be read (and executed). The

time for transferring the payload of files in /etc is relatively low. The time

for transferring the payload of files in /bin increases for a small bandwidth

of 1 Mbit/s but is still relatively low for bandwidths of 10 Mbit/s and 100

Mbit/s. The available bandwidths as well as the actual achieved transfer

rate depend on multiple factors and the use case. For example, in an IoT

use case the devices may be connected via (V)DSL and in an automotive use

case LTE may be utilized. For VDSL, the typical data transfer rate ranges

from 50 Mbit/s5 (profile 8a) up to 400 Mbit/s (profile 35b). For LTE,

the downstream will be around 300 Mbit/s and approximately 50 Mbit/s

upstream. Therefore, in both mentioned sample use case scenarios VDSL

5Bidirectional, i.e., upstream plus downstream.

4.12. SECURITY ANALYSIS 75

and LTE, respectively, provide sufficient bandwidth to keep the network

overhead relatively low.

In conclusion, relocating the filesystem over the network incurs a signifi-

cant (but expected) overhead compared to a local setup—the latter of which

is the primary focus of this chapter. Finally, we note that the overhead in

general may be reduced by maintaining a single TCP/IP connection instead

of establishing separate connections for each 9P request. Furthermore, the

overhead for write requests can be reduced by not transferring the entire

written file but only the changed bytes along with the offsets.

4.12 Security Analysis

In this chapter, we presented our approach for monitoring the integrity

of guest VMs by relocating a supervised VM’s entire filesystem into the

isolated realm of the host. Our objective is to monitor the integrity of files

on the VM’s filesystem and to prevent critical file events and illegal file

modifications by leveraging a paravirtualized filesystem. This enables us to

protect against malware attacks trying to infect the system. In the following,

we evaluate the security of our approach.

4.12.1 Persistent Malware

An integral part of most malware is a mechanism that enables it to enforce

its reactivation after a restart of the infected system in order to regain con-

trol of the system. In general, this requires the malware to make persistent

modifications to the filesystem. The malware could, for example, exploit the

operating system’s mechanism for automatically starting programs at boot

time (e.g., manipulating Windows Autostart or System V init scripts) or by

installing a kernel module that gets loaded at boot time (e.g., manipulating

/etc/modules and similar files). To hide such file manipulations from the

monitoring agent in the host (in particular, FOM), the malware could try

to compromise the guest OS kernel and tamper with the 9P kernel compo-

nents such that the 9P messages corresponding to the manipulations will

be blocked from being propagated to the 9P server. However, as explained

in Section 4.3, all such file operation requests must necessarily be routed

through the 9P server. Otherwise, it is impossible for a guest VM to ac-

cess the VM’s filesystem. It follows that it is impossible for a guest VM to

stealthily make modifications to the VM’s filesystem as would be required

above.

76 CHAPTER 4. VIRTUALIZED INTEGRITY MONITORING

4.12.2 Fileless Malware

Fileless malware describes a relatively new type of malware that is capable

of surviving restarts of the infected system without direct manipulation of

the filesystem. Examples of such fileless malware include POWELIKS [137],

Kovter [167, 39], and Phase Bot [98, 99]. These all have in common that

they run under the Windows operating system and exploit the autostart

functionality of the Windows Registry. As the Windows Registry is held in

Random Access Memory (RAM), this technique does not require the direct

manipulation of the filesystem.6 However, in our case, the guest VMs run

a paravirtualized Linux—or conceptually some other Unix-like OS—which

adheres to the “everything is a file” principle. This reduces malware to the

case of persistent malware as described above, which can be detected and

prevented by our approach.

4.12.3 Persistent File Manipulations

Certain types of malware may only execute a payload once but do not get

reactivated after a restart of the system. However, the payload may result

in persistent file manipulations impacting the system even after a restart.

For example, the payload may weaken the system’s security by configuring

weak encryption algorithms used for SSL/TLS connections or by generating

new remote login accounts as a backdoor. However, in all of these cases

we are able to detect and prevent the corresponding file manipulations as

explained in Section 4.12.1, thus protecting against such attacks.

4.12.4 Software Package Manipulations

A special case of file manipulations is the manipulation of software packages.

As explained in Section 4.9, it is possible for a guest VM to install, remove,

upgrade, and downgrade software packages. This fact could be misused by

malware, for example, to install malicious software or to downgrade already

installed software to a vulnerable version such that an attacker could exploit

this software even after a restart of the system. However, we enforce a mech-

anism that allows such software package maintenance operations only in a

well-defined manner. This guarantees that all software package maintenance

operations must necessarily be routed through the host (cf. Section 4.9.1)

6We note that the Windows Registry eventually also gets stored on the filesystem by

the OS in order for changes to survive reboots. In theory, this makes it possible to detect

changes of the corresponding files. However, in practice, maintaining a list of reference

hash values of these files is likely to prove difficult due to the frequent legitimate changes

of the Windows Registry.

4.13. RELATED WORK 77

as the guest VM does not possess sufficient privileges for executing these

operations itself. This, in turn, allows the host to check permissions and

to verify the package integrity (cf. Section 4.9.2). Therefore, we are able to

detect and prevent illegitimate software package manipulations.

4.12.5 Non-Persistent Manipulations

Some attacks may also consist of temporary, non-persistent manipulations

that do not survive a restart of the VM. For example, suppose that a le-

gitimate user of the guest VM downloads an executable from the internet

and wants to run it, without knowing that the downloaded file contains mal-

ware. In this case, the host (in particular, EDE) detects and measures the

execution of the file as described in Section 4.8. However, a security flaw

like inadequate policy rules may cause EDE to allow the execution. In this

case, we would still be able to detect and protect against persistent manip-

ulations by the malware as described above and to guarantee that a guest

VM (re)starts in a trustworthy state, free from malware. However, the mal-

ware may be able to perform non-persistent manipulations such as altering

the behavior of running processes in RAM or trying to execute a program

directly from RAM without accessing the filesystem. This could not be de-

tected by our filesystem-based approach, where we focus on manipulations

of the filesystem, and should be protected against by complementary work

(e.g., [93, 185, 71, 4]).

4.13 Related Work

Tripwire [82] is a commonly known HIDS, which detects changes to filesys-

tem objects by checking the filesystem in periodic intervals. However, there

is no support for real-time checking. Hence, Tripwire cannot prevent attacks

but just detect them after they have happened. Furthermore, Tripwire is not

isolated from the monitored system and as such is susceptible to attacks.

I3FS [122] tries to improve Tripwire by adding real-time integrity checks.

However, since the supervising agent and the relevant databases are located

within the realm of the monitored system, I3FS is also vulnerable to attacks.

Livewire [61] tries to solve the aforementioned drawbacks by introducing

a virtualization layer in order to place the monitored system into an isolated

VM and moves the supervising agent outside of the VM. By using a suite of

different intrusion detection policies Livewire is able to detect attacks within

the VM. However, Livewire is only capable of reporting an attack as opposed

78 CHAPTER 4. VIRTUALIZED INTEGRITY MONITORING

to interfering and preventing it. In contrast, our paravirtualized approach

not only allows the detection of attacks but also enables us to prevent them.

Lares [124] and Xenprobe [134] place hooks in the guest VMs in order

to trace syscalls. However, these hooks can be attacked and disabled from

within the VM. Hence, the hypervisor is not able to reliably monitor the

VMs. Our approach of relocating the guest VM’s filesystem from the realm

of the guest VM to the host guarantees that all file operations originating

from a VM are necessarily routed through the hypervisor-level in order to

realize reliable monitoring.

In [189], Zhao et al. implement monitoring in a virtualized environment.

They try to bridge the semantic gap between disk blocks and logic files

with the help of the block tap library blktap [123]. However, they still

allow the modification of files in security-critical directories (e.g., /etc)

while only logging these modifications, thus being incapable of preventing

potential attacks. Our monitoring approach allows VMs to autonomously

upgrade software packages in a controlled manner, thus enabling the secure

and restricted modification of files in security-critical directories.

In [79], Xuxian et al. utilize virtualization to detect stealthy malware that

uses hidden files within the guest VM. In our case, we relocate the filesystem

of the guest VM and allow the creation of files only through the host over

a well-defined interface. In this way, we prevent stealthy malware from

exploiting hidden files because without involving the host, it is impossible

for the malware to create any files on the guest filesystem.

In [80], Jones et al. describe Lycosid which enables the detection of

malware by utilizing a hidden process detection and identification service.

Their approach does not require knowledge of specific guest OS details.

While Lycosid is able to detect malware, it is not possible to prevent malware

in the first place. In contrast, our approach allows us to inspect all operations

on the guest VM’s filesystem before they actually happen and to prevent

them.

ReVirt [41] and IntroVirt [81] (which builds upon ReVirt) use VMI to

monitor and log the execution of application and operation system software

within a VM in order to allow for replaying events starting from a previous

VM state. This may be used to trace the cause of a vulnerability in a com-

promised VM. The disadvantage is that they rely on information obtained

from the VM even though this information may be manipulated by malware.

In contrast, we treat information originating from a VM as untrustworthy,

for example, whether a write request (including forged requests) is granted

or not depends only on the policy rules of the respective VM and not on

supplemental context information supplied by the VM.

4.14. SUMMARY 79

Patagonix [93], Manitou [92], and in [185] Wessel et al. realize hypervisor-

based integrity monitoring and take advantage of the Memory Management

Unit (MMU) to realize guest memory protection. Running programs will be

identified by comparing the hash values of individual memory pages. The

disadvantage is that these approaches require a large database of trusted

hash values of valid code pages.

Similar to Patagonix, HIMA [4] provides hypervisor-based monitoring of

critical guest events and guest memory protection. A notable feature is that

HIMA provides Time of Check to Time of Use (TOCTTOU) consistency,

i.e., changes of a process over its lifetime are reflected in the measurement

of the corresponding program. However, both HIMA and Patagonix require

considerable effort for bridging the semantic gap. In contrast, our approach

is very efficient in preserving the semantic knowledge of file operation events

within VMs on a high-level abstraction by utilizing the 9P filesystem pro-

tocol.

4.14 Summary

In this chapter, we presented our virtualized architecture that allows for

secure file integrity monitoring. The key idea of our approach is to relocate

a supervised VM’s entire filesystem into the isolated realm of the host such

that all file operations must necessarily be routed through the hypervisor-

level. This allows for complete monitoring and the prevention of critical

filesystem events. In contrast to existing monitoring approaches, our tech-

nique has the advantage that hooks placed inside the VMs are not prone

to manipulation by malware. The reason is that disabling hooks in a VM

inevitably renders the VM incapable of accessing or manipulating its own

filesystem (provided by the respective hook). Another key feature of our

approach is that we enable regular users of VMs to autonomously install

and upgrade software packages in a secure and controlled manner, without

the need of requiring the intervention of the administrator of the physical

system. Finally, we measure all executed binaries of all VMs and store these

measurements in a single, multiplexed TPM by building on the work de-

veloped in the previous chapter. The experimental results of our prototype

implementation show the practicality of our approach.

80 CHAPTER 4. VIRTUALIZED INTEGRITY MONITORING

Chapter 5

Continuous Authentication

using Touchscreen Dynamics

In Chapter 3, we demonstrated how to securely store and multiplex integrity

measurements of arbitrarily many VMs with just a single standard TPM.

We then built upon this work in Chapter 4 and developed a system for

monitoring the filesystems of multiple VMs from outside of the VMs and

stored the so-obtained integrity measurements in the TPM. This enables us

to secure and protect the integrity of VMs and to defend against attackers

and malware—like viruses, worms, and trojans—located in the VMs.

However, such virtualized systems typically contain a user class with

high privileges (system administrators) who are not confined to VMs but

are able to make system-wide modifications. For example, system admin-

istrators may use a web frontend offered by the system in order to create

and configure VMs or to change VM policy rules. Because these systems

usually allow remote access (one reason being that users are often located

at geographically different locations than the server), system administrators

can take advantage of portable devices like smartphones to access and main-

tain the system from virtually everywhere. However, carrying around these

devices amplifies the risk of loss or theft, thus increasing the threat of at-

tackers hijacking critical system administrator accounts and compromising

VMs and potentially the entire system.

In this chapter, we present a framework to secure accounts by continu-

ously verifying user identities based on user interaction behavior with smart-

phone touchscreens. This enables us to protect user accounts by disabling

critical functionality and enforcing a reauthentication in case of suspicious

behavior. Furthermore, additional actions may be triggered such as sending

an alarm to a (different) system administrator to investigate the situation.

82 CHAPTER 5. CONTINUOUS TOUCHSCREEN-BASED AUTHENTICATION

The developed techniques could also be used in other scenarios such as on-

line banking, where the user experience can be improved by increasing or

even removing the timeout until the user gets automatically logged out of

an online banking session while retaining the same or even gaining a higher

level of security.

We take advantage of standard mobile web browser capabilities to re-

motely capture and analyze touchscreen interactions. This approach is com-

pletely transparent for the user and works on everyday smartphones without

requiring any special software or privileges on the user’s device. We show

how to successfully classify users even on the basis of limited and imprecise

touch interaction data as is prevalent in web contexts. We evaluate the user

classification of our framework and show that the user identity verification

accuracy is higher than 99% after collecting about a dozen touch interac-

tions. Finally, we evaluate the CPU overhead, battery life, and generated

network traffic to assess the practicality of our approach.

Parts of this chapter have been published in User Identity Verification

Based on Touchscreen Interaction Analysis in Web Contexts at the 11th

International Conference on Information Security Practice and Experience

(ISPEC) in 2015 [181].

The rest of this chapter is organized as follows. In Section 5.1, we give

an overview of how behavioral biometrics can be used for authenticating

users, sketch our approach and highlight the differences to existing research,

and present our contributions. Section 5.2 states the attacker model and

our assumptions. In Section 5.3, we evaluate suitable touch interactions for

user classification in web contexts. Section 5.4 outlines our system archi-

tecture and the main components. In Sections 5.5 and 5.6, we explain the

touch behavior model training of our framework and detail the user identity

verification procedure, respectively. Section 5.7 describes the features we

extract from scroll gestures and the device’s acceleration sensor data in or-

der to realize the user identity verification by our framework. Regarding the

verification strategy, we identify the requirements for a reliable and accurate

confidence value calculation in Section 5.8. In Section 5.9, we describe our

proof of concept implementation. Sections 5.10 and 5.11 present the classifi-

cation and performance evaluation results, respectively. In Section 5.12, we

evaluate the security of our continuous user identity verification approach.

Section 5.13 discusses related work. Section 5.14 concludes this chapter.

5.1. BEHAVIORAL BIOMETRICS FOR AUTHENTICATION 83

5.1 Behavioral Biometrics for Authentication

Modern touch devices like smartphones and tablets have become ubiquitous

in everyday life. Consequently, they are used for an increasing number of

security-sensitive tasks ranging from reading email to more critical tasks like

online banking. The risk of loss or theft of such mobile devices is especially

prevalent because users carry them around and use them in unprotected

environments. Additionally, users often choose simple and weak secrets, in-

crease the screen lock timeouts of their devices, or completely disable unlock

[56]. This allows attackers to hijack accounts, sometimes even without hav-

ing to enter a password or PIN because having physical access to the device,

often entails direct access to several accounts where the user is still logged

into. A technique to protect against such threats is continuous user authen-

tication. This can be realized by continuously verifying the user identity

based on individual interaction behavior with the touch device caused by

physical differences between users, varying habits, and personal preferences.

In case of suspicious user behavior, the user account may be temporarily

locked and a reauthentication enforced. Furthermore, additional actions

may be triggered such as sending an alarm to a system administrator to

investigate the situation. This provides an additional protection layer which

can be used in combination with existing, complementary techniques.

In contrast to other authentication mechanisms such as entering a PIN or

fingerprint recognition, where it is possible for an attacker to enter the PIN

himself or to trick the fingerprint sensor with a mold of the legitimate user’s

fingerprint, individual behavior patterns are difficult to imitate precisely

[14]. This fact has been utilized to verify the identity of users in normal

desktop computer scenarios based on their keystroke dynamics [113] and

mouse movements [190, 50]. Recent research advances these techniques by

exploring ways to verify users based on their individual interaction patterns

with touch devices. There exists diverse research ranging from identifying

and verifying users based on their behavioral patterns when tapping on the

touchscreens [85, 191] to work that analyzes interactions like scroll gestures

[56, 14, 192]. Other work tries to infer keystrokes based on touch events

[32] or device sensor information [121]. Some research utilizes dedicated

hardware, e.g., modified touch displays [52, 54] or even specially prepared

gloves [53].

However, all these approaches require dedicated software on the user’s

device. Furthermore, computationally intensive user verification algorithms

executed on the smartphone can negatively affect the user experience. A

more generally applicable solution would be to verify user identities from

84 CHAPTER 5. CONTINUOUS TOUCHSCREEN-BASED AUTHENTICATION

remote servers, without the need to install, set up, and run any special

software on the device itself. Continuous user identity verification is then

performed by a remote entity. On the one hand, such a solution does not

suffer from the above problems and users can use their unmodified everyday

devices. On the other hand, users can still benefit from increased security by

having their identities continuously verified. In particular, this enables us to

improve the security of the system we developed in the previous chapters by

continuously authenticating users and system administrators. Furthermore,

other fields like online banking may also benefit from our work by enabling

them to improve the user experience (e.g., no automatic log out after a pe-

riod of inactivity) while retaining the same or even gaining a higher level of

security.

In this chapter, we make the following contributions:

• We show how to continuously verify a user’s identity by remotely an-

alyzing the user’s touch behavior using machine learning classification

techniques. Depending on a calculated confidence value indicating

whether the active user is indeed the legitimate user, we either pro-

vide the full service functionality or disable critical functionality and

enforce a reauthentication.

• In contrast to previous work [85, 191, 109, 56, 107, 14, 159, 130, 192],

our proposed method only requires a web browser running on the user’s

device which is used by the user to access web pages of remote sites

that utilize the techniques described in this chapter. Our approach

does not require any special privileges on the device and is completely

transparent for the user.

• A major challenge is that in contrast to existing work, we do not

have direct access to the API of the touch device’s operating system.

This means that touch interaction data, proven to be beneficial for

user classification [147], has a lower degree of precision and some data

cannot be obtained at all. We provide a selection of features that

still allow for successful user classification under these conditions and

implement a framework to continuously verify user identities.

• We evaluate the user classification accuracy of our framework by ana-

lyzing touch interaction data sets of 45 users. The results indicate the

feasibility of our approach with both False Acceptance Rate (FAR)

and False Rejection Rate (FRR) potentially being as low as < 1%

after collecting about 14 touch interactions.

5.2. ATTACKER MODEL AND ASSUMPTIONS 85

• We assess the practicality of our approach by conducting several ex-

periments to evaluate the CPU overhead on the device, how this affects

battery life, and we investigate the network traffic overhead generated

by a typical smartphone with enabled user verification.

5.2 Attacker Model and Assumptions

Our objective is to protect user accounts hosted by a remote server against

account abuse. The attacker is assumed to have physical access to a legiti-

mate user’s device (e.g., stolen device) and may use it for accessing the user’s

remote accounts. In this case, we assume the user to still be logged into all

of his accounts (active sessions). Additionally, the attacker is assumed to

be capable of reaching the legitimate user’s device over the network. We

consider all MITM attacks on the communication between client and server.

We do not consider direct attacks nor inside attacks (e.g., corrupt system

administrator) on the server infrastructure: web server, Touch Behavior

Verifier (TBV), and Continuous Authentication Monitor (CAM).

5.3 Touch Interaction Selection in Web Contexts

In contrast to existing work [85, 191, 109, 56, 107, 14, 159, 130, 192], we do

not have direct access to the API of the touch device’s operating system.

Instead, we capture touch interaction data from the user’s web browser. As

a consequence, this data has a lower degree of precision, access is restricted

to low-rate streams which provide data with slower frequencies as compared

to those provided in-app [104], and some data, proven to be beneficial for

user classification [147], cannot be obtained at all. Another difficulty arises

from the fact that different users are likely to use different kinds of touch

devices, all with potentially different properties. At first, it may seem that

under these circumstances it is actually easier to classify users and verify

their identities based on distinct properties of their associated devices—

along with other (software) properties like the utilized browser, browser-

version, browser-plugins and their configuration, language and time-zone.

In fact, (web-based) device fingerprinting has been the subject of various

research [42, 115, 102, 19] and even accommodates for changing fingerprints

(e.g., changing browser plugin configurations) using heuristics. However,

even though these fingerprinting techniques can be used to identify devices,

they cannot reliably be used to verify the identity of the user operating (the

86 CHAPTER 5. CONTINUOUS TOUCHSCREEN-BASED AUTHENTICATION

touchscreen of) such a device. This is especially true, for example, in the

case of a stolen device where device properties remain the same.

Therefore, we focus on user characteristics as opposed to device char-

acteristics. We require that touch interactions used for user classification

should be sufficiently precise. Furthermore, they should be available on all

touch devices, operating systems, and web browsers. Otherwise, it might

not be possible to classify certain users whose devices, operating systems,

or web browsers lack properties we use for classification. This requires us to

carefully select suitable touch interactions that can be successfully used for

user classification under these constraints.

In the following, we evaluate and select several touch interactions for

user classification in web contexts and give the rationale for our choice. We

distinguish two classes of information: details about gestures executed by

the user on the touchscreen, and complementary device sensor data obtained

from the device while executing those gestures.

5.3.1 Touchscreen Gestures

Scroll or Swipe (actions: press, move, lift) is one of the most common ges-

tures used in web browser contexts as it constitutes the primary means of

touch-based navigation on web pages. Scroll gestures between different users

are quite distinctive, yet we discovered that scroll gestures of a single user

are relatively similar and consistent (cf. Section 5.10.1). These properties

make scroll gestures well suited for user classification in web contexts. How-

ever, as mentioned above, we have to deal with less precise data and only

know a few, varying number of points along the scroll gesture’s path. We

will show how to solve this problem in Section 5.7.

Tap (actions: press, lift) is primarily used to follow hyperlinks on web

pages. In general, behavioral tapping patterns can be used for user classifi-

cation [85, 191, 109]. However, in web contexts, discriminative tap features

like the point in time where the maximal pressure occurs or the area covered

by the finger touching the screen cannot be obtained at all or only with low

precision. Furthermore, in our experiments, tap gestures occurred about

90% less than scroll gestures. Therefore, we exclude tap gestures for user

classification in this work.

Zoom (e.g., pinch, double tapping, double touch drag) allows increasing

or decreasing the web page’s content. Even though zooming may be recog-

nized by interpreting primitive touch events [168], we do not consider it for

user classification as the (internal) coordinate resolution and page offsets of

captured data changes, thus resulting in data that is difficult to compare.

5.4. SYSTEM OVERVIEW 87

Web Server

Continuous
Authentication

Monitor

Touch
Behavior
Verifier(0) authenticate with credentials credu

(1) request web page p

 p containing touch interaction hooks

(2) send recorded data dt and ds

(4) train / match
Mu with extracted
features from
dt and ds

(6) calculate
confidence from
c1, ..., ck and
set state

(5) rating ri and
certainty ci for u

(7) enforce reauthentication
if negative state reached

(3) forward user id u with
data dt and ds

Touch Device
with Web Browser

Figure 5.1: System architecture. The touch device on the left is used to

access web pages hosted by the web server. Our framework on the right

consists of the web server, Touch Behavior Verifier (TBV), and Continuous

Authentication Monitor (CAM).

Other gestures like Drag or Rotate normally do not occur in web contexts

and will therefore not be considered in this work.

5.3.2 Device Sensor Data

Acceleration data represents the acceleration force along the device’s x, y,

and z axes. We use it to evaluate the device’s feedback to scroll gestures,

thus increasing the classification accuracy. Capturing the acceleration data

as done in this chapter does not require any special privileges (as opposed

to, for example, capturing GPS location data) and is completely transparent

for the user.

Force indicates how much pressure the user applied to the touchscreen.

According to [147], the finger pressure gives discriminative information for

user classification. However, this data cannot be retrieved with all devices

and browsers (see also Table 5.1 for a list of our tested devices, operating

system versions, and web browsers). Furthermore, the update rate of the

force attribute is rather slow and the precision may be low—as described in

Section 5.11.1. We compensate for lack of this information by analyzing the

device’s acceleration feedback to touch interactions.

Gyroscope data gives the rate of rotation around the x-axis (compass

direction), y-axis (front-to-back tilt), and z-axis (left-to-right tilt). We do

not incorporate this information for classification as it caused overfitting

in our experiments, for example, front-to-back tilt differed depending on

whether the user was standing or sitting, thus hindering generalization.

88 CHAPTER 5. CONTINUOUS TOUCHSCREEN-BASED AUTHENTICATION

5.4 System Overview

The system architecture is shown in Figure 5.1. The smartphone on the left

is used to access web pages hosted by the web server on the right. Our frame-

work consists of the web server, the Touch Behavior Verifier (TBV), and the

Continuous Authentication Monitor (CAM). The web server is responsible

for initially authenticating users based on traditional authentication schemes

(e.g., password authentication) in order to provide access to user accounts.

TBV trains and maintains touch behavior models in order to classify users

based on their touch interactions. CAM continuously assesses whether the

current user is the legitimate user and enforces a reauthentication on suspi-

cious behavior.

In general, there exist two phases: training and verification. In the

training phase, a touch behavior model of a given user will be created based

on the user’s touch interactions and supplemental device sensor data. In the

verification phase, this touch behavior model is used to verify the identity

of the user. We point out that in this thesis we pursue user (identity)

verification as opposed to user identification. In the first case, for a given

user a certain a priori identity is assumed or determined in some way (in

our case, the web server initially determines the identity based on traditional

authentication schemes) and subsequently, within the verification process,

either confirmed or disproved with a certain probability. In the second case,

for a given user the identity will be determined with a certain probability

within the identification process, without having any a priori knowledge of

the user’s identity. Note that in our approach, the training and maintenance

of the touch behavior models as well as the user classification task are not

performed directly on the user device. We rather just forward the relevant

touch interaction data from the device to the remote server which then

executes the necessary tasks. This has the advantage of not requiring any

special software on the user’s device, and this approach works out of the

box on everyday smartphones. Furthermore, this outsources all machine

learning tasks of the training and verification phases to the (more powerful)

backend in order to save battery life on the user’s device.

5.5 Touch Behavior Model Training

In the following, we describe the steps involved in training a user’s touch

behavior model. First, a user u authenticates himself to the web server

through an SSL/TLS secured channel [57, 36] with credentials credu (step

0), for example, by entering a combination of username and password on

5.6. USER IDENTITY VERIFICATION 89

a page hosted by the web server. For each requested web page p (step 1),

the web server provides a modified version of p containing touch interaction

hooks. The hooks cause the user’s web browser to record touch interaction

data dt along with supplemental device sensor data ds. Both dt and ds will

be periodically sent to the web server (step 2) which, in turn, forwards the

data to the TBV (step 3). In step 4, the TBV parses the recorded (raw)

touch interaction data dt and identifies high-level gestures. The recognized

gestures will be augmented with device sensor data ds that occurred during

the time the respective gesture was executed. The combined result is called

an observation. The TBV extracts relevant features from an observation and

uses them to train a touch behavior modelMu. A detailed description of the

features used by our framework is given in Section 5.7. Note that the just-

described training phase inherently assumes that the recorded data indeed

belongs to the legitimate user u and that no illegitimate user compromised

the account during this time. The trained model Mu is eventually used in

the verification phase (which additionally includes steps 5-7) to verify user

identities.

Our utilized hooking technique (cf. Section 5.9) works out of the box with

all common mobile operating systems and browsers and does not require any

special permissions from the user (neither for recording touch interactions

nor for recording sensor data) and there is no indication provided to the user

that interactions are being recorded. Hence, it is completely transparent for

the user.

5.6 User Identity Verification

After the model Mu has been trained, subsequently recorded interaction

data of the active user u′ (steps 0-3) will be used by the TBV to verify that

u′ is indeed the legitimate user u (as claimed by the credentials credu of

the currently active user u′). We use the touch behavior model Mu and

utilize machine learning classification techniques to verify the user (step 4).

In step 5, the TBV calculates for an observation oi a binary rating ri (true

or false) indicating whether the framework considers the active user to be

the legitimate user (true) or an illegitimate user (false). The TBV also cal-

culates an associated certainty score ci that represents the probability that

the rating ri is correct. Since the accuracy to verify a user based on a single

observation is not very high (as shown in Section 5.10.2 as well as in [14]),

we consider sequences of (consecutive) observations in order to improve the

overall accuracy. This is achieved by aggregating the certainty scores of all

observations of a sequence (as explained in Section 5.8) in order to calculate

90 CHAPTER 5. CONTINUOUS TOUCHSCREEN-BASED AUTHENTICATION

r1=…=rk=true∧�1,k >θ

uncertain

disable critical
functionality

r1=…=rk=false∧�1, k>θ

r1=…=rk=true∧�1,k >θ

r1=…=rk=false∧�1, k>θ

�1, k≤θ �1, k≤θ

positive

enable full
functionality

negative

enforce
reauthentication

Figure 5.2: State diagram maintained by CAM for enforcing actions based

on the ratings r1, . . . , rk and the confidence value C1,k.

an aggregated certainty score called confidence. The CAM calculates and

uses this confidence value to decide if the active user is still the legitimate

user (step 6). The details will be explained in Section 5.8.

CAM distinguishes three states depending on the ratings and the con-

fidence: uncertain, positive, and negative. The state diagram is shown in

Figure 5.2. The uncertain state is the initial state and is also entered if the

ratings of consecutive observations are too inconsistent or the confidence is

lower than a specified threshold θ. In this case, critical functionality may be

temporarily disabled until the positive state is entered (again). The positive

state is entered if the ratings are consistently true and the confidence exceeds

θ. This state indicates that the framework deems the active user legitimate

and the full functionality is provided. The negative state is entered if the

ratings are consistently false and the confidence exceeds θ. In this case, the

framework considers the active user to be an illegitimate user and enforces

a reauthentication (step 7)—possibly combined with other actions, e.g., no-

tifying the system administrator. Note that CAM’s described behavior is

optimized for security-critical applications where protecting against attack-

ers is prioritized over the risk of (temporarily) restricting legitimate users.

Finally, the observations used for user verification will also be used as

training data to continuously improve the modelMu. However, since illegit-

imate users may only be recognized after inspecting multiple observations,

the inclusion is deferred until the TBV is sufficiently sure that the observa-

tions actually belong to the legitimate user.

5.7. FEATURE EXTRACTION 91

5.7 Feature Extraction

For user identity verification, we extract various features from scroll gestures

and the device’s acceleration sensor data. A scroll gesture is composed of

multiple touch events. A touch event t is a triplet t = 〈tτ , tx, ty〉 representing

a touched point 〈tx, ty〉 at time tτ on the two-dimensional Euclidean plane

represented by a device’s touch screen. Each touch event t is one of three

basic touch events: ts (touch start, i.e., finger pressed down), tm (touch

move, i.e., finger is moving while pressed down), or te (touch end, i.e., finger

lifted), that is, t ∈ {ts, tm, te}. A scroll gesture Sk refers to a sequence of

basic touch events starting with a touch start event, followed by one or more

touch move events, and terminated with a touch end event. Consequently,

a scroll gesture Sk is represented by an ordered list of touch events Sk :=

〈ts, tm1 , . . . , tmn , te〉 with n ≥ 1.

The following features will be used for user identity verification by our

framework.

5.7.1 Path Offsets

In web contexts, only a few unevenly distributed points along the path

described by a scroll gesture are known (cf. Section 5.3). However, it is

necessary to have the same number of points for all scroll gestures in or-

der to make their feature sets comparable. We solve this by dividing the

overall duration of a scroll gesture into a globally fixed number I of equal-

sized time intervals (where the interval size is fixed w.r.t. a single scroll

gesture). At each time interval boundary, we approximate the touch co-

ordinates along the path. These touch coordinates are called intermediate

points t1, . . . , tI . The respective x-components of the intermediate points

are enumerated with tx1 , . . . , t
x
I (analogously, the following descriptions ap-

ply to the y-components). The x-component txi of an intermediate point

ti is interpolated based on the x-components of the two (chronologically)

adjacent touch events t←i , t
→
i ∈ Sk of ti. In order to facilitate the following

calculations, we further define tx0 := txs and txI+1 := txe . Finally, intermediate

offsets are defined by calculating the distance of each intermediate point to

the touch start event ts ∈ Sk, that is, t4xi := txi − txs where 0 ≤ i ≤ I + 1.

5.7.2 Bounding Box

A bounding box is constructed around a scroll gesture shape in order to

obtain a coarse representation of the gesture. The bounding box’s width and

height reflect individual user behavior and scroll preferences on an abstract

92 CHAPTER 5. CONTINUOUS TOUCHSCREEN-BASED AUTHENTICATION

level (cf. Figure 5.5 and Figure 5.6). The width of a scroll gesture Sk
is defined as Swk := maxt∈Sk π2(t) − mint∈Sk π2(t), where π2 is the second

projection tx of a triplet t = 〈tτ , tx, ty〉. Similarly, the height of a scroll

gesture Sk is defined as Shk := maxt∈Sk π3(t)−mint∈Sk π3(t).

5.7.3 Raster

A coarse grid is fit over a scroll gesture’s bounding box to obtain an ab-

stract scroll gesture representation. The intention is to allow for better

recognition of gestures at different sizes as well as across different devices

with varying screen sizes. If the path of a scroll gesture Sk crosses the cell

〈i, j〉 ∈ {1, . . . , R}2 of an R×R raster, then S
ri×j
k = 1. Otherwise, S

ri×j
k = 0.

5.7.4 Velocity

The velocity of the finger’s motion is analyzed at different times when exe-

cuting a scroll gesture. The velocity varies for different users and different

sections of a scroll gesture (cf. Figure 5.7). We utilize intermediate offsets as

defined above in order to calculate the velocity over the horizontal distance

intervals [txi−1, t
x
i], where 1 ≤ i ≤ I + 1, and analogously over the vertical

distance intervals. We define tvxi :=
(
t4xi − t4xi−1

)
· I+1
tτe−tτs

, where 1 ≤ i ≤ I+1,

and analogously t
vy
i .

5.7.5 Curvature

The curvature of a scroll gesture is inspected at each intermediate offset in

order to recognize the same gesture shape executed at different sizes. This

approach is similar to the techniques used by gesture-recognition applica-

tions like easystroke [76]. We define t]i := arctan

(
t4yi
t4xi

)
where 1 ≤ i ≤ I+1.

5.7.6 Acceleration

A scroll gesture’s intrinsic features are augmented with the device’s ac-

celeration sensor data obtained at each intermediate point.1 This allows

us to evaluate the device’s feedback to touch interactions and is similar

to the approach used in [14]. For an intermediate point ti, we combine

the x, y, and z accelerations taxi , t
ay
i , and tazi , respectively, and define

1To be precise, the device’s acceleration will be recorded at the points in time when

the touch events t1, . . . , tn of a scroll gesture Sk occurred and will then be used for the

interpolated intermediate points calculated from these touch events.

5.8. VERIFICATION STRATEGY 93

tai :=
√

(taxi)2 + (t
ay
i)2 + (tazi)2 where 0 ≤ i ≤ I + 1.

Finally, for a scroll gesture Sk with intermediate points t0, . . . , tI+1 the

feature vector FSk is defined as FSk := 〈T4x, T4y, Swk , Shk , Srk, T vx , T vy , T], T a〉
where (for reasons of readability TX is an abbreviation for tX0 , . . . , t

X
I+1 and

Srk for the raster S
r1×1

k , . . . , S
rR×R
k .

5.8 Verification Strategy

We use the touch behavior modelMu and utilize random forests [17] classi-

fication to verify the identity of a user u. Random forests have proven to be

fast and effective classifiers [160] with good results in the context of touch-

screen interaction classification [53, 1] similar to our scenario. As explained

above, the overall user verification accuracy is improved by considering sub-

sequences 〈oi, . . . , oj〉 of the sequence of all observations O := {o1, . . . , on},
with 1 ≤ i ≤ j ≤ n, instead of only considering single observations. Such a

subsequence is denoted w.l.o.g. with O1,k := 〈o1, . . . , ok〉.

5.8.1 Subsequence Processing

For a subsequenceO1,k, we calculate the corresponding binary ratingsR1,k :=

〈r1, . . . , rk〉 with each ri ∈ {true, false} indicating whether the features

of the corresponding observation oi match (true) or do not match (false)

the model Mu. All ratings of O1,k are required to be consistent, i.e.,

r1 = . . . = rk = true or r1 = . . . = rk = false, in order to serve as a

basis for a meaningful confidence value calculation as described below. We

always consider the longest possible subsequences with consistent ratings.

For binary ratings R1,k, we derive associated certainty scores (probability

values) C1,k := 〈c1, . . . , ck〉 based on the class probabilities calculated from

the random forests. Finally, for certainty scores C1,k, the confidence value

C1,k is calculated as an aggregated certainty score.

5.8.2 Confidence Value Calculation

We identified three requirements for a reliable and accurate confidence value.

First, a subsequence O1,k should have a minimum length L in order to com-

pensate for the impact of unusually high certainty scores of single observa-

tions. Otherwise, the framework might, for example, enforce a reauthenti-

cation solely based on one outlier. Second, the confidence should increase

proportionally to the sequence length because, intuitively, the more consis-

94 CHAPTER 5. CONTINUOUS TOUCHSCREEN-BASED AUTHENTICATION

X

CSS p ixe l

0
5 0

1 0 0
1 5 0

2 0 0
2 5 0

3 0 0
3 5 0

t im
e (i

n s
)

0
1 0

2 0
3 0

4 0
5 0

6 0
7 0

8 0
9 0

 Y
C

S
S

 p
ix

e
l

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

Figure 5.3: Plotted scroll gestures of a user who utilizes both vertical and

horizontal scroll gestures, where vertical gestures have pronounced curva-

tures.

tent ratings exist the more likely it is that the rating value is correct. Third,

the chronological order of observations is significant: more recent observa-

tions should be considered more important than older ones. This is achieved

by assigning different weights w1 ≤ . . . ≤ wk to the certainty scores C1,k.

The following formula satisfies the above requirements and is used by

CAM to calculate the confidence for a subsequenceO1,k with certainty scores

c1, . . . , ck:

C1,k := C(c1, . . . , ck) := f(k) · 1∑k
i=1wi

·
k∑
i=1

wici, f(k) :=

{
0 : k < L
g(k) : k ≥ L

The function g with 0 ≤ g(k) ≤ 1 should be monotonically increasing in

order to satisfy the second requirement. The actual definition of g as well

as the values of the minimum length L and the weights w1, . . . , wk may be

flexibly adjusted depending on the use case scenario and policy rules.

5.9 Framework Implementation

We have implemented our framework (as shown in Figure 5.1) as a proof

of concept. We run an Apache web server and utilize a Python script re-

sponsible for authentication and for injecting JavaScript code for the touch

interaction hooks into all web pages hosted by the web server. The hooks

5.9. FRAMEWORK IMPLEMENTATION 95

X

CSS p ixe l

6 0 0
6 5 0

7 0 0
7 5 0

8 0 0
8 5 0

9 0 0
9 5 0

1 0 0 0
1 0 5 0

t im
e (i

n s
)

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

 Y
C

S
S

 p
ix

e
l

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

Figure 5.4: Plotted scroll gestures of a user where the vertical scroll ges-

tures are rather straight and quite distinct from the vertical scroll gestures

depicted in Figure 5.3.

will be executed on the client side within the user’s web browser. To real-

ize the hooking functionality, we leverage the JavaScript Touch Event API

[153, 13, 154] in order to capture the required touch events.

We add event listeners for the following events on the document DOM

object: touchstart (ts), touchmove (tm), and touchend (te). The user

agent (browser) dispatches these events to indicate when the user places a

touch point on the touch surface, moves a touch point along the touch sur-

face, and removes a touch point from the touch surface, respectively [153].

Furthermore, we add an event listener for the devicemotion event (ta) on

the window DOM object. This causes the browser to record the device’s

acceleration. We continuously record the acceleration and use the gath-

ered data to augment the recorded touchstart , touchmove , and touchend

events. However, the acceleration data recorded when no scroll gesture is ac-

tive (i.e., all acceleration data recorded outside of a touchstart – touchend

interval) is not required for user classification. Therefore, to improve effi-

ciency a possible approach could be to only register the devicemotion event

listener whenever a touchstart event fires and to remove the devicemotion

event listener again when a subsequent touchend event is detected. How-

ever, in our experiments we discovered that once the devicemotion event

listener gets registered the actual recording of the acceleration suffers from a

delay. This may cause the initial touchstart and (one or more) subsequent

96 CHAPTER 5. CONTINUOUS TOUCHSCREEN-BASED AUTHENTICATION

touchmove events to have no or only inaccurate supplemental acceleration

data. This may in turn result in a degraded classification performance. To

solve this, we leave the devicemotion event listener registered indefinitely.

In this case the incurred CPU and battery overhead is negligible (cf. also

Section 5.11) as the continuous recording takes only place if the web page

(containing the hooks) is in the foreground browser window. The recording

is suspended if another app—or even only another browser tab—is in the

foreground.

We note that capturing the touch events and device sensor data does not

require any special privileges and is completely transparent for the user—as

tested on Android 4.4.4 with Android Browser 4.4.4, Chrome 39.0.2171.59,

and Firefox 33.1 as well as on iOS 7.1 with Safari 7.0 and Chrome 39.0.2171.45.

The browser periodically transmits the captured data in the background

to the web server using AJAX via an XMLHttpRequest . Both TBV and

CAM are implemented in Python and run within the web server. The TBV

utilizes the scikit-learn open source machine learning library [125] to invoke

Breiman’s random forests algorithm [17]. The CAM continuously calculates

the confidence value as explained in Section 5.8. If the ratings are consis-

tently false and the confidence exceeds a certain threshold, CAM triggers a

user reauthentication by the web server.

5.10 Classification Evaluation

We use the implementation described in Section 5.9 and adapt it within

an experimental setup in order to evaluate the suitability of the extracted

features (cf. Section 5.7) and to evaluate the overall user classification accu-

racy of our framework. The test web server hosts several hyperlinked web

pages. Note that the web pages were intentionally not fabricated in such a

way that the layout would likely be the most beneficial for the user classifi-

cation accuracy of our framework. The reason is that we strived to obtain

more universal real-world data and evaluation results. Therefore, the clas-

sification accuracy may improve for specially tailored web pages and may

decline for less suitable web pages. In this regard, based on our findings in

this chapter, such specially tailored web pages could consist of pronounced

vertically distributed content as this would result in many vertical scroll

gestures and consequently in a higher number of samples (cf. Figure 5.8).

Furthermore, web pages with relatively large vertical dimensions—where the

content is also largely spread out across the pages—presumably cause the

user to perform larger scroll gestures which in turn may contain more usable

information about features like acceleration, velocity or curvature (cf. Sec-

5.10. CLASSIFICATION EVALUATION 97

Figure 5.5: Minimum, mean, and maximum values calculated (on a per-user

basis) over the heights Shk of all bounding boxes of the scroll gestures of eight

random users.

tion 5.7). Finally, such specially crafted web pages increase the number of

total (consecutive) scroll gestures and as such allow to improve the classifica-

tion accuracy by examining sequences of scroll gestures instead of only single

scroll gestures. This will be evaluated in the following in Section 5.10.2.

We recorded and evaluated touch interaction data sets of 45 users. The

users were intentionally not informed about the experiment’s objective of

verifying user identities based on their touch interaction patterns in order

for them to be unbiased. To evaluate our framework under real-world con-

ditions, the users used their normal everyday devices. This entails that the

data sets were obtained from a heterogeneous group of devices, operating

systems, and web browsers.

5.10.1 Feature Suitability

We demonstrate the suitability of scroll gestures for user classification as

used by our framework and show the rationale for selecting certain classifi-

cation features. Figure 5.3 and Figure 5.4 depict the scrolling behaviors of

two users. The visualization is based on the calculated intermediate points

of each scroll gesture (cf. Section 5.7). Note that scroll gestures between

these two users are quite distinctive (e.g., the curvature t]i), yet the scroll

gestures of a single user are relatively consistent. This property makes scroll

gestures well suited for user classification.

Figure 5.5 and Figure 5.6 exemplarily show that the bounding boxes

vary between different users. In particular, different mean values are char-

98 CHAPTER 5. CONTINUOUS TOUCHSCREEN-BASED AUTHENTICATION

Figure 5.6: Minimum, mean, and maximum values calculated (on a per-user

basis) over the widths Swk of all bounding boxes of the scroll gestures of eight

random users. The users are the same as in Figure 5.5.

acteristic for different users. Note that in both Figure 5.5 and Figure 5.6

very low minimum values for both Shk and Swk (e.g., user 3) may also be

caused by accidental screen touches interpreted as scroll gestures.

Figure 5.7 shows various features of a horizontal scroll gesture from right

to left (user 1) and of a vertical scroll gesture from the bottom up (user 2),

respectively. We use I := 12 for the evaluation which results in twelve inter-

mediate points for a scroll gesture (plus start and end points both of which

are omitted in the diagram). The delta x bars represent the intermediate off-

sets t4x1 , . . . , t4x12 of the respective scroll gesture in CSS pixels (analogously

for delta y). The curvature bars show the angles t]1 , . . . , t
]
12 in degrees for

each section of the scroll gesture. The velocity x bars show the (scaled)

velocities tvx1 , . . . , t
vx
12 for each section of the scroll gesture (analogously for

velocity y). These features reflect subtle but distinct individual user behav-

ior, for example, by indicating where the curvature’s peak values are located

or by representing the velocity fluctuations within scroll gestures.

5.10.2 Classification Accuracy

We evaluate the user classification accuracy by using the de facto perfor-

mance evaluation method for touch-based authentication systems on smart-

phones and other touch input devices (cf. [157, 34, 53, 138, 67]). In partic-

ular, the touch interaction data samples of a given user are tested against

the touch behavior model of another user. The scores are obtained by cross-

validation with a 70% (training set) to 30% (validation set) partitioning of

the gathered data. We inspect the False Acceptance Rate (FAR) and False

5.10. CLASSIFICATION EVALUATION 99

Figure 5.7: Feature value comparison of scroll gestures by different users.

User 1 executes a horizontal scroll gesture from right to left. User 2 exe-

cutes a vertical scroll gesture from the bottom up. We use I := 12 for the

evaluation which results in twelve intermediate points for a scroll gesture.

Rejection Rate (FRR) based on different numbers of observations. The

FAR is the probability that an illegitimate user is accepted. The FRR is the

probability that a legitimate user is rejected.

Single Gesture

We analyze the classification accuracy based on only a single scroll gesture.

In this case, the FAR and FRR are 23% and 22%, respectively. Figure 5.8

shows how the FAR and FRR develop for different users over an increasing

amount of training data. Each pair of blue and red bars represents a single

user with the specified number of samples. The reason the FAR and FRR

fluctuate is because some users may be classified more easily than others

(e.g., some user’s features may be rather unique among the set of users and

thus classification works well even with fewer samples). Nonetheless, for

70 or more samples the FAR and FRR development, on average, stabilizes

and starts to improve noticeably. These results indicate that it is advisable

to trigger actions (e.g., a forced reauthentication) not before this minimum

number of samples has been acquired. The above results indicate, however,

that user classification on the basis of only one gesture is not accurate enough

to reliably verify users. This has even been shown to be the case when more

precise interaction data can be gathered directly on the device [188, 14].

Therefore, we consider sequences of consecutive scroll gestures (as explained

in Section 5.8). This enables us to significantly improve the classification

accuracy.

100 CHAPTER 5. CONTINUOUS TOUCHSCREEN-BASED AUTHENTICATION

Figure 5.8: FAR and FRR based on only a single scroll gesture for (different)

users with an increasing number of samples (non-linear x-axis). Each pair of

blue and red bars represents a different user, thus FAR and FRR fluctuate.

Multiple Gestures

We evaluate how the classification accuracy changes within our experimental

setup if we increase the number of considered scroll gestures. The graph in

Figure 5.9 shows the FAR and FRR for different subsequence lengths. For

subsequences containing just four scroll gestures, we are already able to

achieve FAR and FRR of less than 10%. Further significant improvement

requires more than ten scroll gestures, resulting in FAR and FRR of less than

5%. When increasing the subsequence length to 14 scroll gestures, both FAR

and FRR can further be reduced to < 1% within the experimental setup.

These results can be utilized to adjust the parameters (e.g., the minimum

subsequence length) used for calculating the confidence values.

Note that the FAR and FRR may deteriorate even with an increasing

subsequence length. In Figure 5.9, this is, for example, the case for the FAR

between the subsequence length of six and seven. The reason is that the

certainty score of the last observation of the subsequence may influence the

confidence value in such a way that it causes a misbehavior that would not

have occurred without the last observation. For example, without the last

observation the system may (correctly) reject an illegitimate user based on

the confidence value, whereas a (slightly) different confidence value (caused

by the certainty score of the last observation) may lead the system to (in-

correctly) accept the user. Finally note that in general the classification

accuracy ultimately depends on the actual set of users: the more the users’

gestures are alike (e.g., an attacker performs scroll gestures in a similar

5.11. PERFORMANCE EVALUATION 101

Figure 5.9: FAR and FRR for different subsequence lengths. Significant

improvement is achieved after only considering four scroll gestures with FAR

and FRR < 10%. After ten scroll gestures, both FAR and FRR are < 5%,

and after 14 scroll gestures < 1%.

fashion as the legitimate user) the more difficult it gets to correctly distin-

guish and classify them. Consequently, the FAR and FRR may fluctuate

accordingly.

5.11 Performance Evaluation

We assess the practicality of our approach by conducting several experiments

to evaluate the performance of the implementation. In the following, we

first give a description of the experimental setup. In Section 5.11.1, we then

evaluate the CPU overhead on the device, i.e., the additional CPU load

required for the user identity verification. If this additional CPU load is too

high, it could negatively influence the performance of other services and apps

running on the device and thus it may have a negative impact on the overall

user experience. In Section 5.11.2, we analyze how this affects battery life;

this is important because if battery life is affected too negatively, users may

be unwilling to accept the user verification. Furthermore, we investigate the

network traffic overhead generated by a typical smartphone with enabled

user verification in Section 5.11.3. If there is too much traffic overhead,

users with a limited mobile data plan might be inclined to disable the user

verification in order to save bandwidth.

102 CHAPTER 5. CONTINUOUS TOUCHSCREEN-BASED AUTHENTICATION

Experimental Setup

For the practical performance evaluation in this section, we use a Nexus 6

equipped with a Snapdragon 805 (2.7 GHz quad-core Krait 450) as the test

device with the following setup:

• Stock Android (Lollipop, version 5.1.1, with kernel 3.4.0)

• Enabled WiFi

• Disabled Bluetooth, GPS, and NFC

• Screen always on (in order to prevent Android from going into deep

sleep mode or utilizing other energy-saving features); fixed minimum

brightness with adaptive brightness feature disabled; disabled auto-

matic screen timeout (using the app Stay Alive [119])

• Disabled Android’s app auto-update functionality to prevent undesired

CPU usage while running the experiment

• Fresh reboot of completely charged phone

• Chrome browser version 43.0.2357.93 (unless stated otherwise) with

only 1 tab open containing our test website

• No additionally installed apps aside from the apps that were already

installed on stock Android and Stay Alive

• No explicitly started apps except Chrome browser

• Device is put onto a table face-up and is not moved during the whole

experiment

5.11.1 CPU Usage

We evaluate the CPU overhead on the device caused by our approach. If the

CPU load caused by the user identity verification is too high, other services

and apps might suffer from bad performance (e.g., deteriorating responsive-

ness). This could have a negative impact on the overall user experience and

may cause users to disable the user verification. Furthermore, a high CPU

load decreases battery life; we investigate this in Section 5.11.2.

We conduct an experiment where we simulate touchscreen interactions

in a well-defined and reproducible manner. This is realized with the help

of the monkeyrunner tool [112]. Within the experimental setup, our web

server hosts an HTML test page containing sufficient content to allow for

5.11. PERFORMANCE EVALUATION 103

1 #!/usr/bin/env monkeyrunner

2

3 import time

4 from com.android.monkeyrunner import MonkeyRunner, MonkeyDevice

5

6 device = MonkeyRunner.waitForConnection()

7

8 a=(500,1700)

9 b=(500,700)

10 duration=1.0

11

12 for i in range(0, 900): # execute for 60 min

13 device.drag(a, b, duration, 30) # scroll down

14 time.sleep(1)

15 device.drag(b, a, duration, 30) # scroll up

16 time.sleep(1)

Listing 5.1: Monkeyrunner script used for the evaluation of the CPU usage

and the generated network traffic (cf. Section 5.11.3)

vertical scrolling. We open this page in the test device’s web browser prior

to starting the experiment. A laptop is connected to the test device with

a USB cable in order to execute the monkeyrunner instructions on the test

device and to gather CPU load measurements using the Android Debug

Bridge (ADB) [63]. The monkeyrunner script is shown in Listing 5.1. It

causes alternating executions of scroll down and scroll up gestures on the

web page.

The CPU load over a period of one hour is shown in Figure 5.10. The blue

curve shows the CPU load with enabled user identity verification. The mean

is 10.45%. The red curve shows the CPU load with disabled verification

(scientific control). The mean is 7.88%. Thus, the additional CPU load

required for the verification is about 2.57%.2

In the experiment, we discovered that measuring just the CPU over-

head for the registered event listeners for touchstart , touchmove , and

touchend (cf. Section 5.9) caused virtually no overhead, i.e., we obtained

no statistically significant deviation from the scientific control. The same is

true for determining the CPU overhead for sending the recorded touch event

2Note that in a real world scenario (i.e., no simulated touch interactions) the CPU load

will be higher than in our experiment because of the processing of the user’s touchscreen

interactions, Android’s gesture recognition, and so on. However, as this additional CPU

load is caused in both cases—with and without enabled touchscreen interaction hooks—

and since we are only interested in the relative difference between the two cases, we can

neglect this fact.

104 CHAPTER 5. CONTINUOUS TOUCHSCREEN-BASED AUTHENTICATION

Figure 5.10: Comparison of CPU load of Chrome browser with enabled

and disabled user identity verification. The mean for enabled verification is

10.45%, for disabled verification it is 7.88%.

data. However, registering the devicemotion event listener for recording

the devicemotion while executing a scroll gesture has a significant impact

on the increased CPU load shown in Figure 5.10. This knowledge could be

used to reduce the CPU load of our approach by avoiding the utilization of

the acceleration data (devicemotion) for user classification. Instead, the

information about how much pressure the user applied to the touchscreen

(force) could be used. The latter causes less CPU load, is supported by

current browsers (cf. Table 5.1) and gives discriminative information for user

classification [147]. However, the precision of the force attribute is rather

low as the applied finger pressure is normally derived by inspecting auxiliary

information like the finger’s covered surface area. This problem is likely to

be solved by emerging technologies like Apple’s Force Touch [83] and 3D

Touch [133], or Synaptics’ ClearForce [74]. In our experiments, we discov-

ered another problem: the update rate of the force attribute is rather slow

causing multiple touchmove events to have the same force value even when

the finger pressure is steadily changing. In this case, the force update rate

may be too low to be utilized for reliable user verification.

5.11. PERFORMANCE EVALUATION 105

Chrome Opera Firefox Dolphin

43.0.2357.93 30.0.1856.93524 39.0 11.4.17

Galaxy S4 7 7 7 7

Nexus 5 3 3 3 7

Nexus 6 3 3 3 7

Table 5.1: Tested devices and browsers supporting force attribute. The

Galaxy S4 runs Android KitKat 4.4.4. The Nexus 5 and Nexus 6 both run

Android Lollipop 5.1.1.

5.11.2 Battery Consumption

We evaluate how much battery overhead is caused by the user identity veri-

fication on the device. Having a low battery overhead is likely to be of high

importance to users. There should be a reasonable trade-off between the in-

creased security and the lower smartphone battery life. If battery life is too

negatively affected, users may be unwilling to accept the user verification.

For measuring the battery overhead, we consider the recording of the

scroll gestures and device sensor data (acceleration) as well as the trans-

mission of the recorded data to the backend. For the latter, we distinguish

whether the test device is connected to a WiFi network or is utilizing a

mobile data connection (4G in our experiments). We do not use the mon-

keyrunner tool as in Section 5.11.1 because it would require us to connect a

laptop to the phone via USB cable, thus causing the phone to be charged.

This would interfere with our objective of measuring the battery consump-

tion. Therefore, we only simulate the recording of touch interactions; this

is possible without having a USB cable plugged into the phone. For this

purpose, we patch the JavaScript code of the test web page such that the

event listeners for touchstart , touchmove , touchend , and devicemotion

will be periodically triggered without requiring any real (or monkeyrunner-

simulated) touchscreen interaction. We take advantage of the knowledge

gathered in Section 5.11.3 in order to trigger the event listeners as often as

would be the case under real circumstances when executing scroll gestures

with a duration of one second each. Thus, we are able to construct data

records of the proper size and to transmit them to the backend.

We take advantage of the Linux power supply subsystem [90] and monitor

the current charge counter3 giving us relative, time-based measurements in

µAh. This allows us to continuously track the battery usage over time.

3 /sys/class/power supply/battery/charge counter

106 CHAPTER 5. CONTINUOUS TOUCHSCREEN-BASED AUTHENTICATION

Figure 5.11: Comparison of battery usage (in percent) of a standard system

without user identity verification, enabled verification connected via WiFi,

and enabled verification connected via mobile data.

For this purpose, we deploy a shell script on the phone using adb [63] and

execute it with the nohup command such that it ignores the hangup signal

generated when the USB cable gets removed and continues to run.

The battery usage over a period of twelve hours is shown in Figure 5.11.

The measurements are based on the recording of simulated scroll gestures

executed successively—with a duration of one second each—and the trans-

mission of the recorded data, as described above. The blue curve shows

the battery percentage of the test device of a standard system without user

identity verification (scientific control). The red and yellow curves show the

battery percentage with enabled user verification where the test device is

connected via WiFi and mobile data, respectively. Figure 5.12 shows the

corresponding battery usage in µA over a period of 60 minutes.4

In the following, we calculate the average battery overhead of a more

realistic scenario based on the measurement data of Figure 5.11 and Fig-

ure 5.12.

Overhead Calculation

In the following, we calculate the battery overhead for WiFi and mobile

data. We first give an estimation of how much time an average user typically

4Note that the differences among the measurements are relative—not absolute—as we

do not consider the battery usage caused by touchscreen interactions, Android’s gesture

recognition, and so on.

5.11. PERFORMANCE EVALUATION 107

Figure 5.12: Comparison of battery usage (in µA) of a standard system

without user identity verification, enabled verification connected via WiFi,

and enabled verification connected via mobile data. The means are 41.90 µA

(standard system), 52.06 µA (user verification via WiFi), and 69.63 µA (user

verification via mobile data).

utilizes the user identity verification per day. Note that, in this regard, the

verification technique is only used on a few websites during a typical day

(e.g., online banking websites or a cloud configuration web frontend) where

the web server makes use of our approach and injects the appropriate hooks.

We estimate the average time on site for such a website to be 20 min =

1200 s. Furthermore, we estimate that in 10% of the time (120 s) there

occur scroll gestures and that each scroll gesture has a duration of 1.0s,

resulting in 120 scroll gestures. In the remaining time the user may be

reading, typing, idling and so on. Assuming that there occur 3 sessions per

day, this results in a total of 3 · 120 = 360 scroll gestures a day and entails a

total recording time (caused by the injected hooks) of tr := 3 ·120 s = 360 s

a day.

Furthermore, we give a rough estimation on the total time an average

user spends on his smartphone in order to compare it to the fraction of time

actually spent doing user integrity verification. Based on the arithmetic

mean of two recent surveys results [141, 96], we assume this to be 6 hours.

Of course, the actual user behavior strongly depends on multiple factors

such as user preferences (e.g., slow vs. fast scrolling), website content (e.g.,

large vs. little amount of content), and use cases (e.g., changing only one

108 CHAPTER 5. CONTINUOUS TOUCHSCREEN-BASED AUTHENTICATION

configuration option on the website vs. complex tasks). The actual user

behavior may therefore deviate (significantly) from the above estimations.

Based on the measurements in Figure 5.12, the battery usage overhead

using WiFi is 52.06 µA − 41.90 µA = 10.16 µA per second. Given our

estimated recording time above, we obtain an overhead of 360 · 10.16 µA =

3, 657.60 µA per day. The battery usage without enabled user identity

verification over a duration of 6 hours (21600 seconds) is 21, 600 ·41.90 µA =

905, 040.00 µA. Consequently, the total battery overhead per day in percent

is 3, 657.60 µA / 905, 040.00 µA · 100 ≈ 0.4 % for WiFi.

We calculate the overhead when using mobile data instead of WiFi in

the same way. The battery usage overhead using mobile data is 69.63 µA−
41.90 µA = 27.73 µA per second. Hence, we obtain an overhead of 360 ·
27.73 µA = 9, 982.80 µA per day. Consequently, the total battery overhead

per day in percent is 9, 982.80 µA / 905, 040.00 µA · 100 ≈ 1.1 % for mobile

data.

The calculations show that the battery usage overhead is low.

5.11.3 Network Traffic Generation

We evaluate the network traffic overhead generated by a typical smartphone

with enabled user identity verification. This information is especially inter-

esting for users with a limited mobile data plan. If there is too much traffic

overhead, users might be inclined to disable the user verification in order to

save bandwidth.

In the following, we consider all recorded scroll gesture data and de-

vice sensor data sent over the network to the backend in order to calculate

the traffic overhead. We estimate the amount of generated network traffic

by first determining the number of fired JavaScript events (caused by the

registered event listeners for touchstart , touchmove , and touchend as de-

scribed in Section 5.9) for a typical scroll gesture. For this purpose, we use

the monkeyrunner script shown in Listing 5.1 and count the number of fired

events. The experiment is done on a Nexus 5 and Nexus 6 (both running

Android Lollipop 5.1.1), and on a Samsung Galaxy S4 (running Android

KitKat 4.4.4). On each device we use the browsers Chrome 43.0.2357.93,

Opera 30.0.1856.93524, Firefox 39.0, and Dolphin 11.4.17. The results are

shown in Figure 5.13.

The first observation is that in our experiment the number of fired events

varies based on the utilized browser—but seems to be independent of the

used device. In general, the rate at which a browser sends touchmove

events is implementation-defined, and may depend on hardware capabilities

5.11. PERFORMANCE EVALUATION 109

Figure 5.13: Comparison of the number of fired JavaScript events caused by

the registered event listeners for touchstart , touchmove , and touchend

for a typical scroll gesture using different web browsers. Chrome, Opera,

and Dolphin all exhibit a constant number of fired events whereas Firefox

generates a varying number of fired events.

and other implementation details [153]. In Figure 5.13, both Chrome and

Opera exhibit a constant number of eight fired events (one touchstart , six

touchmove , one touchend) per scroll gesture (both up and down). Dolphin

generates a relatively high constant number of 32 fired events per scroll

gesture. The only browser with a varying number of fired events—for both

scroll down and scroll up gestures—is Firefox where the number lies in the

interval [28, 31] with an arithmetic mean of approximately 29 and a median

of 29.5

We note that in our experiments, for both Firefox and Dolphin the actual

number of fired events was also dependent on the content as well as the

zoom-level of the website. With Chrome and Opera this was not the case,

which, we suspect, is due to the fact that both Chrome and Opera use the

web browser engine Blink [12], a fork of the WebCore component of WebKit

[169], and therefore exhibit the same behavior.

5The relatively high number of fired events does not seem to be caused by Firefox’s

scroll animation as disabling it by using JavaScript’s preventDefault() does not reduce

the number of fired events.

110 CHAPTER 5. CONTINUOUS TOUCHSCREEN-BASED AUTHENTICATION

Fired events Traffic/day Traffic/month in

per day in kB MB (% of quota)

Chrome 43.0.2357.93 2,880 126.56 3.71 (0.36%)

Opera 30.0.1856.93524 2,880 126.56 3.71 (0.36%)

Firefox 39.0 10,440 458.79 13.44 (1.31%)

Dolphin 11.4.17 11,520 506.25 14.83 (1.49%)

Table 5.2: Comparison of generated network traffic per browser. The ob-

tained results are based on 360 scroll gestures a day with enabled user iden-

tity verification and a monthly quota of 1 GB.

In the next step, we determine the size of a typical data record generated

as a result of the triggered events. A data record consists of the following

fields:

Timestamp The number of milliseconds since 1970/01/01 as obtained by

JavaScript’s getTime() method, e.g., 1443688563854

Touch type One of the triggered events touchstart , touchmove , or

touchend encoded as 1, 2, and 3, respectively

Touch coordinates The two-dimensional point on the device’s touchscreen

where the touch event occurred, e.g., (1621.53, 864.17)

Acceleration data The acceleration force along the device’s x, y, and z

axes at the time when the touch event fired, e.g., (4.21, 7.44, 0.51)

Hence, a typical data record may look like

1443688563854|3|1621.53|864.17|4.21|7.44|0.51

and has an (average) length of 45 bytes.6

Finally, we are able to calculate the amount of transmitted data for one

scroll gesture by multiplying the determined number of fired events for a

typical scroll gesture with the length of an average data record generated

for each such fired event. With this knowledge, we utilize the user behavior

model given in Section 5.11.2 to estimate the daily and monthly generated

network traffic. The generated network traffic caused by different browsers

is shown in Table 5.2.

6It is possible to reduce this length by using a more efficient encoding; however, this is

out of the scope of this thesis.

5.12. SECURITY ANALYSIS 111

Based on Figure 5.13, we now consider the mean over all browsers and

obtain d(8 + 8 + 29 + 32) /4e = 20 fired events for a single scroll gesture on

average. Consequently, 360 scroll gestures a day cause 360 ·20 = 7, 200 fired

events. This results in 7, 200·45 B = 324, 000 B ≈ 316.41 kB network traffic

per day, or 30 · 316.41 kB = 9, 492.30 kB ≈ 9.27 MB per month. Assuming

the user’s limited mobile data plan has a quota of 1 GB, the user verifica-

tion requires approximately 0.91%7 on average. The calculations show that

taking advantage of the presented user identity verification approach is fea-

sible w.r.t. network traffic and only incurs a small overhead on the monthly

quota.

5.12 Security Analysis

In this chapter, we deal with the scenario that a remote server tries to de-

termine if a client really is who he claims to be by assessing whether the

current user behavior fits the (previously learned) user behavior associated

with the claimed credentials. Our objective is to protect the user accounts

hosted by such a remote server against account abuse. However, we do not

focus on protecting the user’s touch device itself—this may be realized by

complementary research [191, 34, 1, 192, 56, 14]. In the following, we eval-

uate the security of our continuous user identity verification approach. We

point out that the majority of cases where our approach thwarts account

abuse is presumably against ordinary attackers not being aware of the uti-

lized user identity verification. However, in the following we deliberately

consider a more sophisticated attacker with complete knowledge of the em-

ployed user identity verification mechanisms who tries to actively circumvent

them. Finally, note that orthogonal attacks not targeting the user identity

verification itself but, for example, targeting the payload data (e.g., a trojan

manipulating the amount and target account of a bank transfer) are out of

the scope of this discussion.

5.12.1 Blocking Attack

In a blocking attack, an attacker blocks or disables the transmission of the

touch interaction data to the server in order to not get recognized as another

(malicious) user accessing the legitimate user’s account. This may be real-

ized by tampering with the JavaScript touch interaction hooks responsible

for recording and sending the touch interaction data. The attack may be

launched on the attacker’s device or on the legitimate user’s device (e.g.,

7Less so when also taking advantage of WiFi connections.

112 CHAPTER 5. CONTINUOUS TOUCHSCREEN-BASED AUTHENTICATION

the attacker steals the device). In the first case, the attacker first has to

circumvent the usual security measures employed by the server (e.g., PIN

entry) to access the user account. In the second case, this might not be

necessary as the legitimate user might still be logged into some accounts

(active sessions).

However, the server is able to detect that even though there occurs user

interaction on the website (e.g., HTTP requests for a bank transfer), there

is no expected corresponding touch interaction data available—which con-

sequently means that this likely constitutes an attack.

5.12.2 Imitation Attack

In an imitation attack, an attacker tries to impersonate a legitimate user by

physically imitating the user’s touch interaction behavior. The attacker may

use direct observation techniques such as shoulder surfing [95] and camera-

based recording to examine the user behavior. As with a blocking attack,

this may either be done on the user’s device (e.g., stolen device—possibly

with active sessions) or the attacker’s device.

In both cases, the difficulty is that the attacker is required to imitate the

legitimate user’s individual behavior patterns with high precision. However,

research has shown that this is very hard to achieve [14]. We note that a

sophisticated attacker may still be able to carry out the imitation in an auto-

mated manner though. Such an attack could involve, say, a high-resolution

camera recording the user’s touchscreen interaction, then inferring the ex-

act corresponding touch event data, and finally using this data in a replay

attack as described in the following.

5.12.3 Replay Attack

A replay attack is similar to an imitation attack in that an attacker tries

to impersonate a legitimate user by imitating the user’s touch interaction

behavior. However, in contrast to an imitation attack, the attacker does

not try to physically imitate the behavior patterns but rather (re)uses touch

interaction data intercepted from the legitimate user while he was accessing

his account. In the following, we will discuss several attack vectors.

Network Attack

The attacker intercepts the network communication between the user’s de-

vice and the server in order to extract the touch interaction data required

for the replay attack. However, we require that the communication between

5.12. SECURITY ANALYSIS 113

the client and server is secured (cf. Section 5.5) by complementary tech-

niques such as Secure Sockets Layer (SSL) [57], Transport Layer Security

(TLS) [36], and HTTPS [139], respectively. In particular, this provides a pri-

vate and authenticated connection between the user’s device and the server,

which prevents the interception of the user’s touch interaction data.

Malicious Website Attack

The attacker operates a malicious website containing JavaScript code to

record the user’s touch interaction required for the replay attack. The at-

tacker may trap the user to visit the website by employing additional tech-

niques such as phishing [136]. A possible countermeasure is to have the

user’s device only accept and execute JavaScript code—in particular, code

containing critical event listeners for touchstart , touchmove , touchend ,

and devicemotion (cf. Section 5.9)—from trustworthy websites identified

by a valid server certificate. The level of protection against such attacks also

depends on the mechanisms provided by the mobile operating system and

browser on the user’s device. The fact that it is possible for an arbitrary

website to employ JavaScript code capable of recording touch interactions

and device sensor data from the user without requesting permission first8 is

regarded by us as a general security and privacy issue of the affected oper-

ating systems and browsers. In fact, recent research builds upon this issue

and demonstrates how user security can be compromised using sensor data

gathered through malicious JavaScript code [104].

Local Device Attack

The attacker gains physical access to the legitimate user’s device and tries

to acquire the user’s touch interaction data required for the replay attack.

However, we deliberately never store the recorded (and forwarded) touch in-

teraction data from previous sessions on the device. Therefore, the attacker

has to compromise the device before the touch interactions get recorded.

This may be done by first installing malicious software capable of stealthily

logging the user’s touch interactions, then returning the compromised device,

and finally receiving the logged data over the internet—possibly through a

covert channel. This shows that the attack requires a relatively high effort

as well as physical proximity to the user, but it still may be feasible. As

a possible countermeasure, the server could check if the touch interaction

data (being replayed by the attacker) has already been used before (by the

8Tested on Android and iOS with various web browsers (cf. Section 5.9).

114 CHAPTER 5. CONTINUOUS TOUCHSCREEN-BASED AUTHENTICATION

legitimate user), possibly using some sort of heuristics in order to recognize

slightly altered replayed data. Another possible countermeasure involves

comparing the actions of the attacker on the website (e.g., actions for ini-

tiating a bank transfer) with the replayed data to determine whether they

match up in a plausible way. However, realizing such countermeasures in a

reliable manner is a non-trivial task and out of the scope of this work.

Remote Device Attack

This attack is similar to a local device attack but this time the attacker

does not have physical access to the device but rather tries to remotely

compromise the device to acquire the user’s touch interaction data. This

is usually done by exploiting a vulnerability in the device’s software or by

tricking the user into installing a malicious app.

In the first case, the attacker may control a malicious website containing

code for exploiting a web browser vulnerability of the user’s device. However,

depending on the browser, the attacker may has to circumvent additional se-

curity measures such as Chrome’s sandboxing mechanism [6] which prevents

one browser process (one “browser tab”) from eavesdropping what happens

in another browser process or manipulating data of the other process. An

attack launched through such a malicious website does therefore not neces-

sarily entail that one compromised browser process allows access to touch

interaction data generated in another browser process. In general, mobile

operating systems often follow the principle of least privilege [149] in order

to mitigate similar exploitation.

In the second case, the attacker may trick the user into installing a

malicious app provided, say, through the Google Playstore [65] or F-Droid

[68], which records touch interactions and forwards them to the attacker.

However, the app sandboxing mechanisms employed by modern mobile op-

erating systems (e.g., Android’s Application Sandbox [64] and iOS’s App

Sandboxing [2]) prevent the malicious app from having access to the touch

interaction data of the browser app.

5.13 Related Work

The field of biometric authentication is usually divided into two categories:

physiological and behavioral biometrics. Physiological biometrics consider

static physical attributes like human fingerprints, facial features, or DNA.

Behavioral biometrics distinguish user behavior such as speaking, walking,

or typing. We focus on behavioral biometrics.

5.13. RELATED WORK 115

Early work considers how users interact with computer peripherals like

mice and keyboards. In [113], Monrose et al. combine keyboard typing

patterns with the user’s password to generate a hardened password. In more

recent work [143], Roth et al. analyze the user’s keyboard typing behavior

as observed by a webcam pointing toward the keyboard. Zheng et al. [190]

and Feher et al. [50] verify user identities according to characteristics of their

interaction with a computer mouse.

The focus of recent research has shifted towards analyzing the interaction

behavior with modern touch devices like smartphones and tablets. In [191],

Zheng et al. build a user verification system based on tapping behaviors to

increase the security when entering a PIN. Kolly et al. [85] programmed

and published a quiz game to collect and analyze tap interaction data. The

extracted features include pressure dynamics such as time of the pressure

peak and gradients of the pressure. De Luca et al. [34] and Angulo et al. [1]

analyze how patterns are drawn on a device’s touchscreen in order to enhance

smartphone lock patterns. We do not include tap dynamics for classification

as in web contexts discriminative tap features (e.g., finger pressure) cannot

be obtained at all or only with low precision.

In addition to touchscreens, modern smartphones are equipped with a

wide variety of sensors including accelerometers and gyroscopes. While the

data obtained from these sensors is a useful resource for inferring rather

harmless information about users (e.g., recognizing user activities [86]), such

sensor data can also be used to infer security and privacy critical user infor-

mation. Owusu et al. [121] exploit accelerometer readings as a side channel

to extract sequences of entered text on smartphone touchscreen keyboards,

allowing them to break passwords. The recent work in [161] shows practical

defense mechanisms against such kind of inertial sensor attacks by introduc-

ing artificial sensory noise. In [109], Miluzzo et al. identify tap locations on

the screen to infer passwords based on accelerometer and gyroscope data.

Neverova et al. [118], Mantyjarvi et al. [100], and Kumar et al. [87] explore

how to identify users based on natural human kinetics, gait patterns, and

arm movement patterns, respectively. While those scenarios are different

from ours, the same hooking technique used in our work could be utilized

by an attacker to capture accelerometer data over the web. In fact, in work

developed parallel to ours, Bojinov et al. [15] exploit this technique in order

to de-anonymize mobile devices as they connect to web sites.

The following work combines touch behavior with device sensor data

to verify users and is closest to our research. Zhu et al. [192] construct

a behavior model based on user gestures and device sensor data from ac-

celerometers, gyroscopes, and magnetometers. Their prototype allows them

116 CHAPTER 5. CONTINUOUS TOUCHSCREEN-BASED AUTHENTICATION

to identify smartphone owners and non-owners. In [56], Frank et al. examine

basic navigation maneuvers such as scroll gestures and analyze the effective-

ness of various features. Bo et al. [14] analyze user classification based on

tap and scroll gestures along with the device’s feedback (accelerometer and

gyroscope) to these actions. Both [56] and [14] improve the classification

accuracy by inspecting multiple, consecutive observations. This approach is

similar to ours, however, we calculate a confidence value based on additional

parameters like the minimum required length of observations and different

weights for the certainty scores of individual gestures.

Google’s recent research Project Abacus [118, 158] demonstrates that

human kinematics convey necessary information about person identity and

therefore can be useful for user authentication on mobile devices. They

suggest to augment and improve the results by additionally analyzing user

touch patterns (along with other relevant characteristics) as done in this

chapter.

In this thesis, and in contrast to other work, we present a framework that

does not require any special software or privileges on the user’s smartphone.

We rather take advantage of standard mobile web browser capabilities to

remotely capture and analyze touchscreen interactions in order to continu-

ously verify user identities.

5.14 Summary

We have presented a framework that allows us to continuously verify user

identities from remote servers by analyzing user interaction behavior with

smartphone touchscreens. This enables us to protect user accounts by dis-

abling critical functionality and enforcing a reauthentication in case of sus-

picious behavior. In particular, this allows us to improve the security of the

system we developed in the previous chapters by continuously authenticat-

ing users and system administrators. Our solution is widely applicable on

everyday smartphones and does not require any special software or privi-

leges on the device, and is completely transparent for the user. We have

shown how to successfully classify users even on the basis of limited and

imprecise touch interaction data. This is achieved by constructing a touch

behavior model of the user and only selecting features that possess sufficient

precision and are available on all touch devices, operating systems, and web

browsers. For user classification based on only a single scroll gesture, we are

able to achieve FAR and FRR of 23% and 22%, respectively. We show how

to significantly improve the classification accuracy by considering sequences

of observations instead of only single touch interactions. This technique is

5.14. SUMMARY 117

used in the calculation of a confidence value that allows for a more stable

and reliable assessment of whether the current smartphone user is indeed

the legitimate user. The final performance evaluation of our framework im-

plementation shows that both FAR and FRR can be as low as < 1% after

collecting a sequence of about 14 scroll gestures.

118 CHAPTER 5. CONTINUOUS TOUCHSCREEN-BASED AUTHENTICATION

Chapter 6

Conclusion and Future Work

In this thesis, we have developed methods for improving system security

based on a combination of using a TPM, virtualization, and continuous user

authentication. A TPM can be used to securely store integrity measure-

ments and protect them from manipulation. However, currently it is not

possible to adequately combine a TPM and virtualization without lower-

ing the security level provided by the TPM. Virtualization can be used to

monitor critical operations and to take integrity measurements of multiple,

isolated VMs from outside of the VMs. However, attackers may be able to

evade monitoring by attacking special hooks placed inside the VMs which are

responsible for bridging the semantic gap introduced by the virtualization

layer. Computer systems secured through both a TPM and virtualization,

can often still be exploited through compromised user accounts, in partic-

ular, critical accounts like system administrator accounts. Therefore, it is

crucial to continuously authenticate users in order to detect and disable com-

promised accounts, thus further enhancing the overall system security. The

work in this thesis has attempted to solve these problems by storing and mul-

tiplexing integrity measurements directly in the hardware TPM, monitoring

VMs through a filesystem-based monitoring approach with secured hooks,

and protecting accounts through continuous user authentication based on

behavioral biometrics.

We have explored novel mechanisms to multiplex integrity measurements

originating from arbitrarily many VMs in a secure and privacy-aware man-

ner in a hardware TPM, thus achieving a higher level of security compared to

existing approaches emulating PCRs in software. We have taken advantage

of virtualization to develop a system that enables us to monitor multiple op-

erating systems from “outside of the box”, take integrity measurements on a

per-VM basis and securely store them in a hardware TPM, and to detect and

120 CHAPTER 6. CONCLUSION AND FUTURE WORK

prevent critical file operations through policy-based access control mecha-

nisms. We have shown new ways of utilizing continuous user authentication

based on user interaction behavior with smartphone touchscreens in order

to better protect user accounts such that lost, stolen, or compromised user

devices do not lead to compromised user accounts and systems. Finally, the

proposed concepts have been implemented and evaluated as proof of con-

cepts. This has enabled us to demonstrate the practicality of the concepts

proposed in this thesis.

6.1 Contributions

In the following, we describe our contributions in detail. In Chapter 3, we

have shown how to multiplex integrity measurements originating from ar-

bitrarily many VMs with just a single standard TPM and only requiring

one PCR. In contrast to existing work that emulate PCRs in software, our

approach achieves a higher level of security since measurements, along with

the mapping to their respective VMs, will always be stored in the hardware-

protected PCRs of the TPM. We have presented a remote attestation pro-

tocol for attesting the integrity of individual VMs. A crucial problem we

had to solve in this context, was that our approach of sharing PCRs among

VMs, inherently requires the disclosure of all measurements of all VMs in

order to retain the security guarantees of the TPM. This entails security

and privacy issues as even a legitimate challenger in the remote attestation

protocol is then able to determine exactly which software is running in all

other VMs. This information might then, for example, be used to exploit

(known) vulnerabilities of that software. We have solved the problem by a

novel approach for concealing and storing measurements and their associ-

ated VM-IDs in the PCR that allows us to only reveal certain measurements

of the hash chain stored in the PCR without degrading the security guar-

antees of the TPM. However, this approach inherently poses the risk of a

MITM launching blinding attacks where the measurements and VM-IDs will

be substituted with their corresponding concealed pairs in order to hide cer-

tain measurements of the attested VM. Therefore, we have conducted an

exhaustive analysis of blinding attacks and have shown that our integrity

validation algorithm protects against all of them. We have implemented a

proof of concept to take and multiplex integrity measurements by utilizing

the QEMU emulator and extending IMA, and evaluated the performance

for different numbers of virtual machines.

In Chapter 4, we have explored a virtualization-based architecture that

allows for “outside of the box” file integrity monitoring. In contrast to exist-

6.1. CONTRIBUTIONS 121

ing work, our approach has the advantage that hooks placed inside the VMs,

for detecting and preventing file operations, are protected against manipu-

lation by malware. We have achieved this through relocating a supervised

VM’s entire filesystem into the isolated realm of the host. The only way of

accessing and manipulating the VM’s filesystem is by communicating with

a privileged component located at the hypervisor-level which has exclusive

access to the VM’s filesystem. We have demonstrated that this makes it im-

possible for attackers to manipulate files without being detected. Building

upon this work, we have presented a policy-based access control mechanism

for enforcing file protection. In this context, we have shown how to mitigate

the problem of too restricting and inflexible policy rules by enabling VM

users to autonomously install, remove, upgrade, and downgrade software

packages in a secure and controlled manner, without the need of requiring

the intervention of the administrator of the physical system. We have im-

plemented and evaluated a proof of concept using a minimalist native Linux

KVM virtualization solution, the virtio framework, and the paravirtualized

Plan 9 filesystem protocol.

In Chapter 5, we have developed a framework that allows us to continu-

ously verify a user’s identity by remotely analyzing the user’s touch behavior

using machine learning classification techniques. This enables us to improve

the security of computer systems and to protect user accounts by disabling

critical functionality and enforcing a reauthentication in case of suspicious

behavior. We have shown that our solution is widely applicable on every-

day smartphones since, in contrast to existing work, we do not require any

special software, prior setup, or special privileges on the user’s smartphone.

We have rather taken advantage of standard mobile web browser capabil-

ities to remotely capture and analyze touchscreen interactions in order to

continuously verify user identities. In contrast to existing work, we do not

have direct access to the API of the touch device’s operating system. In this

context, we have shown how to successfully classify users even on the basis

of limited and imprecise touch interaction data. This has been achieved

by constructing a touch behavior model of the user and only selecting fea-

tures that possess sufficient precision and are available on all touch devices,

operating systems, and web browsers. We have demonstrated how to sig-

nificantly improve the classification accuracy by considering sequences of

observations instead of only single touch interactions. This technique has

been used in the calculation of a confidence value that allows for a more

stable and reliable assessment of whether the current smartphone user is

indeed the legitimate user. We have implemented a proof of concept using

the JavaScript Touch Event API, the scikit-learn open source machine learn-

122 CHAPTER 6. CONCLUSION AND FUTURE WORK

ing library, and Breiman’s random forest algorithm. We have evaluated the

user classification accuracy and conducted several experiments to evaluate

the CPU overhead, network traffic overhead, and battery life.

6.2 Future Research

The research in this thesis has led to new methods for improving system

security based on a combination of using a TPM, virtualization, and con-

tinuous user authentication. In the following, we outline possible future

research directions.

In Chapter 3, we have shown how to multiplex integrity measurements

of VMs in a single PCR of a hardware TPM, thus achieving a higher level

of security than existing approaches like vTPM. It would be interesting to

examine whether additional functionality provided by a vTPM could be

transferred and realized directly in a hardware TPM instead. However, we

suspect this to predominantly be the case in rather special circumstances

and use cases because of the TPM’s hardware restrictions. Therefore, fu-

ture research could explore how to combine the advantages of vTPMs, like

cryptographic key handling per VM, with our approach of multiplexing in-

tegrity measurements directly in a hardware TPM in order to combine the

advantages of both worlds.

In Chapter 4, we have taken advantage of the Plan 9 filesystem protocol

9P to relocate a guest VM’s filesystem to the host. Because 9P is de-

signed as a network protocol, future research could explore and evaluate the

performance of various distributed setups where VMs and their respective

filesystems are located at physically separated sites. Furthermore, we have

described our heuristic approach of detecting program execution of ELF files

under Linux based on a sequence of signature 9P requests. This approach

could be extended to other file formats and could also include the execution

of script files (e.g., shell scripts) to cover a broader range of executed files.

In Chapter 5, we have explained that a user’s finger pressure on a touch-

screen gives discriminative information for user classification but currently

suffers from two problems in web contexts: lack of precision and slow up-

date rate. Regarding the former, emerging technologies like Apple’s Force

Touch and 3D Touch, or Synaptics’ ClearForce might yield improved user

classification accuracy. Likewise, we assume improvements in user classi-

fication performance once the slow update rate of current web browsers

will be increased. For our touch behavior model, we have assumed that a

user utilizes an arbitrary but fixed touch device. In order to accommodate

for multiple heterogeneous groups of devices, operating systems, and web

6.2. FUTURE RESEARCH 123

browsers for a given user, further research may investigate how to best ap-

proach this challenge, for example, how to distinguish different devices and

how to maintain touch behavior sub-models. We have evaluated the user

classification accuracy based on touch interaction data sets of 45 users. It

would be interesting to examine how an increased number of users affects the

FAR because of the increased probability of different users exhibiting similar

gestures. Furthermore, we have evaluated the user classification accuracy

by using the de facto performance evaluation method for touch-based au-

thentication systems on smartphones and other touch input devices. Recent

research utilizing robotic attacks on touch-based authentication [157] may

act as a starting point for more sophisticated security benchmarking lead-

ing to improved and better protected touch-based authentication systems.

We have argued that the fact that it is possible for an arbitrary website to

employ JavaScript code capable of recording touch interactions and device

sensor data from the user without requesting permission first, is a general

security and privacy issue of current mobile web browsers as tested on An-

droid and iOS. Future research may complement the research in this thesis

by developing methods to better protect the user from such unintended and

potentially harmful JavaScript code.

124 CHAPTER 6. CONCLUSION AND FUTURE WORK

Bibliography

[1] Angulo J. and Wästlund E. Exploring Touch-Screen Biometrics for

User Identification on Smart Phones. In Privacy and Identity Man-

agement for Life, pages 130–143. Springer, 2012. (Cited on pages 93,

111, 115)

[2] Apple Inc. App Sandboxing. Apple Developer Documentation. https:

//developer.apple.com/app-sandboxing/. Last access: March 03,

2017. (Cited on page 114)

[3] Arthur W. and Challener D. A Practical Guide to TPM 2.0: Using the

Trusted Platform Module in the New Age of Security. Apress, Berkely,

CA, USA, 1st edition, 2015. ISBN 1430265833, 9781430265832. (Cited

on pages 2, 11)

[4] Azab A. M., Ning P., Sezer E. C., and Zhang X. HIMA: A Hypervisor-

Based Integrity Measurement Agent. In ACSAC, pages 461–470. IEEE

Computer Society, 2009. ISBN 978-0-7695-3919-5. (Cited on pages 3,

77, 79)

[5] Barham P., Dragovic B., Fraser K., Hand S., Harris T., Ho A., Neuge-

bauer R., Pratt I., and Warfield A. Xen and the Art of Virtualization.

In Proceedings of the nineteenth ACM symposium on Operating sys-

tems principles, SOSP ’03, pages 164–177, New York, NY, USA, 2003.

ACM. ISBN 1-58113-757-5. (Cited on page 16)

[6] Barth, A. and Jackson, C. and Reis, C. and Google Chrome Team.

The Security Architecture of the Chromium Browser. Journal Paper,

2008. (Cited on page 114)

[7] Behavioural Insights Team. Reducing Mobile Phone Theft and Im-

proving Security. International Crime and Policing Conference. Home

Office Research report, 2015. (Cited on pages 1, 4)

https://developer.apple.com/app-sandboxing/
https://developer.apple.com/app-sandboxing/

126 BIBLIOGRAPHY

[8] Bellard F. QEMU, a Fast and Portable Dynamic Translator. In Pro-

ceedings of the annual conference on USENIX Annual Technical Con-

ference, ATEC ’05, Berkeley, CA, USA, 2005. USENIX Association.

(Cited on pages 16, 42, 69)

[9] Berger S., Cáceres R., Goldman K. A., Perez R., Sailer R., and van

Doorn L. vTPM: Virtualizing the Trusted Platform Module. In Pro-

ceedings of the 15th conference on USENIX Security Symposium - Vol-

ume 15, USENIX-SS’06, Berkeley, CA, USA, 2006. USENIX Associa-

tion. (Cited on pages 3, 25, 44, 45)

[10] Berger S., Cáceres R., Pendarakis D., Sailer R., Valdez E., Perez R.,

Schildhauer W., and Srinivasan D. TVDc: Managing Security in the

Trusted Virtual Datacenter. ACM SIGOPS Operating Systems Re-

view, 42(1):40–47, 2008. (Cited on page 45)

[11] Bishop C. M. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,

USA, 2006. ISBN 0387310738. (Cited on pages 20, 21)

[12] Blink Rendering Engine for the Chromium Project. Project Page.

http://blog.chromium.org/2013/04/blink-rendering-engine-

for-chromium.html. Last access: March 03, 2017. (Cited on

page 109)

[13] Block S. and Popescu A. Device Orientation Event Specification. W3C

Working Draft, W3C, 2011. (Cited on page 95)

[14] Bo C., Zhang L., Li X.-Y., Huang Q., and Wang Y. SilentSense: Silent

User Identification via Touch and Movement Behavioral Biometrics.

In Proceedings of the 19th Annual International Conference on Mo-

bile Computing & Networking, pages 187–190. ACM, 2013. (Cited on

pages 83, 84, 85, 89, 92, 99, 111, 112, 116)

[15] Bojinov H., Michalevsky Y., Nakibly G., and Boneh D. Mo-

bile Device Identification via Sensor Fingerprinting. arXiv preprint

arXiv:1408.1416, 2014. (Cited on page 115)

[16] Bray R., Cid D., and Hay A. OSSEC Host-based Intrusion Detection

Guide. Syngress, 2008. (Cited on page 50)

[17] Breiman L. Random Forests. Machine Learning, 45(1):5–32, 2001.

ISSN 0885-6125. doi: 10.1023/A:1010933404324. (Cited on pages 21,

93, 96)

http://blog.chromium.org/2013/04/blink-rendering-engine-for-chromium.html
http://blog.chromium.org/2013/04/blink-rendering-engine-for-chromium.html

BIBLIOGRAPHY 127

[18] Brickell E., Camenisch J., and Chen L. Direct Anonymous Attestation.

In Proceedings of the 11th ACM conference on Computer and commu-

nications security, pages 132–145. ACM, 2004. (Cited on page 14)

[19] Broenink R. Using Browser Properties for Fingerprinting Purposes. In

16th biennial Twente Student Conference on IT, Enschede, Holanda,

2012. (Cited on page 85)

[20] Burg D. et al. US cybercrime: Rising risks, reduced readiness. Key

findings from the 2014 US State of Cybercrime Survey. Technical

Report, PricewaterhouseCoopers, 2014. (Cited on page 1)

[21] Cajucom E., Dacuno P., Aquino K., Aquilino B., Hilyati A., Jamaludin

S., Pilkey A., and Michael M. Threat Report 2015. Technical Report,

F-Secure Corporation, 2016. (Cited on page 1)

[22] Canonical Ltd. AppArmor (Application Armor) Security Project. Of-

ficial AppArmor Website. http://apparmor.net. Last access: March

03, 2017. (Cited on page 50)

[23] Chen C., Raj H., Saroiu S., and Wolman A. cTPM: A Cloud TPM

for Cross-Device Trusted Applications. In 11th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 14), 2014.

(Cited on page 45)

[24] Chen L., Landfermann R., Löhr H., Rohe M., Sadeghi A.-R., and

Stüble C. A Protocol for Property-based Attestation. In Proceedings

of the first ACM workshop on Scalable trusted computing, pages 7–16.

ACM, 2006. (Cited on page 14)

[25] Chen P. M. and Noble B. D. When Virtual is Better than Real.

In Hot Topics in Operating Systems, 2001. Proceedings of the Eighth

Workshop on, pages 133–138. IEEE, 2001. (Cited on pages 15, 51)

[26] Cheng W., Dailey S., Frosst D., Greve P., Hux T., et al. 2016 Threats

Report, June 2016. Technical Report, McAfee Labs and Intel Security,

2016. (Cited on page 1)

[27] Ciampa M. Security+ Guide to Network Security Fundamentals. Cen-

gage Learning, 2012. (Cited on page 61)

[28] Common Internet File System (CIFS) Protocol. Microsoft Tech-

Net Library. https://technet.microsoft.com/en-us/library/

cc939973.aspx. Last access: March 03, 2017. (Cited on page 53)

http://apparmor.net
https://technet.microsoft.com/en-us/library/cc939973.aspx
https://technet.microsoft.com/en-us/library/cc939973.aspx

128 BIBLIOGRAPHY

[29] Cortes C. and Vapnik V. Support-Vector Networks. Machine learning,

20(3):273–297, 1995. (Cited on page 21)

[30] Cover T. and Hart P. Nearest neighbor pattern classification. IEEE

transactions on information theory, 13(1):21–27, 1967. (Cited on

page 21)

[31] Cucurull J. and Guasch S. Virtual TPM for a Secure Cloud: Fallacy

or Reality? Universidad de Alicante, 2014. (Cited on page 45)

[32] Damopoulos D., Kambourakis G., and Gritzalis S. From Keyloggers

to Touchloggers: Take the Rough with the Smooth. Computers &

Security, 32:102–114, 2013. (Cited on page 83)

[33] Danev B., Masti R. J., Karame G. O., and Capkun S. Enabling Secure

VM-vTPM Migration in Private Clouds. In Proceedings of the 27th

Annual Computer Security Applications Conference, pages 187–196.

ACM, 2011. (Cited on page 45)

[34] De Luca A., Hang A., Brudy F., Lindner C., and Hussmann H. Touch

Me Once and I know it’s You!: Implicit Authentication Based on

Touch Screen Patterns. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, pages 987–996. ACM, 2012.

(Cited on pages 98, 111, 115)

[35] Denning D. E. An Intrusion-Detection Model. IEEE Transactions on

software engineering, (2):222–232, 1987. (Cited on page 2)

[36] Dierks, T. and Rescorla, E. The Transport Layer Security (TLS)

Protocol, Version 1.2. RFC 5246, 2008. (Cited on pages 88, 113)

[37] Dimensional Research. The Impact of Mobile Devices on Information

Security: A Survey of IT Professionals. Technical Report, Dimensional

Research, 2013. (Cited on pages 1, 4)

[38] Domingos P. A Few Useful Things to Know about Machine Learning.

Communications of the ACM, 55(10):78–87, 2012. (Cited on page 20)

[39] Dove, A. Fileless Malware – A Behavioural Analysis Of Kovter Per-

sistence. Reverse Engineering Blog Article, Airbus Defence & Space,

2016. http://blog.airbuscybersecurity.com/post/2016/03/FILELESS-

MALWARE—A-BEHAVIOURAL-ANALYSIS-OF-KOVTER-

PERSISTENCE. Last access: March 03, 2017. (Cited on page 76)

http://blog.airbuscybersecurity.com/post/2016/03/FILELESS-MALWARE-%E2%80%93-A-BEHAVIOURAL-ANALYSIS-OF-KOVTER-PERSISTENCE
http://blog.airbuscybersecurity.com/post/2016/03/FILELESS-MALWARE-%E2%80%93-A-BEHAVIOURAL-ANALYSIS-OF-KOVTER-PERSISTENCE
http://blog.airbuscybersecurity.com/post/2016/03/FILELESS-MALWARE-%E2%80%93-A-BEHAVIOURAL-ANALYSIS-OF-KOVTER-PERSISTENCE

BIBLIOGRAPHY 129

[40] Duda R. O., Hart P. E., and Stork D. G. Pattern Classification. John

Wiley & Sons, 2012. (Cited on page 21)

[41] Dunlap G. W., King S. T., Cinar S., Basrai M. A., and Chen P. M.

ReVirt: Enabling Intrusion Analysis through Virtual-Machine Log-

ging and Replay. ACM SIGOPS Operating Systems Review, 36(SI):

211–224, 2002. (Cited on pages 3, 78)

[42] Eckersley P. How Unique Is Your Web Browser? In Privacy Enhancing

Technologies, pages 1–18. Springer, 2010. (Cited on page 85)

[43] Eckert C. IT-Sicherheit: Konzepte - Verfahren - Protokolle. Olden-

bourg, 9th edition, 2014. (Cited on page 2)

[44] Elaine Barker and Allen Roginsky. Transitions: Recommendation for

Transitioning the Use of Cryptographic Algorithms and Key Lengths.

In Archived NIST Technical Series Publication, SP 800-131A. Na-

tional Institute of Standards and Technology, 2011. (Cited on pages 12,

32)

[45] Enberg, P. Native Linux KVM Tool. Project Page. https:

//github.com/penberg/linux-kvm. Last access: March 03, 2017.

(Cited on page 69)

[46] England P. and Loeser J. Para-Virtualized TPM Sharing. In Lipp P.,

Sadeghi A.-R., and Koch K.-M., editors, Trusted Computing - Chal-

lenges and Applications, volume 4968 of Lecture Notes in Computer

Science, pages 119–132. Springer Berlin / Heidelberg, 2008. ISBN

978-3-540-68978-2. (Cited on pages 3, 25, 44, 45)

[47] Ezirim K., Khoo W., Koumantaris G., Law R., and Perera I. M.

Trusted Platform Module–A Survey. The Graduate Center of The

City University of New York, 2012. (Cited on page 11)

[48] Fang K., Hanus D., and Zheng Y. Security of Google Chrome-

book. Massachutts Institute of Technology Cambridge, MA, 2139,

2010. (Cited on page 2)

[49] Federal Bureau of Investigation (FBI). 2015 Internet Crime Report.

Technical Report, Internet Crime Complaint Center, 2015. (Cited on

page 1)

[50] Feher C., Elovici Y., Moskovitch R., Rokach L., and Schclar A. User

Identity Verification via Mouse Dynamics. Information Sciences, 201:

19–36, 2012. (Cited on pages 83, 115)

https://github.com/penberg/linux-kvm
https://github.com/penberg/linux-kvm

130 BIBLIOGRAPHY

[51] Feller T., Malipatlolla S., Kasper M., and Huss S. dcTPM: A Generic

Architecture for Dynamic Context Management. In Reconfigurable

Computing and FPGAs (ReConFig), 2011 International Conference

on, pages 211 –216, 30 2011-dec. 2 2011. (Cited on pages 25, 44, 45)

[52] Feng T., Liu Z., Carbunar B., Boumber D., and Shi W. Contin-

uous remote mobile identity management using biometric integrated

touch-display. In Microarchitecture Workshops (MICROW), 2012 45th

Annual IEEE/ACM International Symposium on, pages 55–62. IEEE,

2012. (Cited on page 83)

[53] Feng T., Liu Z., Kwon K.-A., Shi W., Carbunar B., Jiang Y., and

Nguyen N. Continuous Mobile Authentication using Touchscreen Ges-

tures. In 2012 IEEE Conference on Technologies for Homeland Secu-

rity (HST), pages 451–456. IEEE, 2012. (Cited on pages 83, 93, 98)

[54] Feng T., Prakash V., and Shi W. Touch Panel with Integrated Finger-

print Sensors Based User Identity Management. In Technologies for

Homeland Security (HST), 2013 IEEE International Conference on,

pages 154–160. IEEE, 2013. (Cited on page 83)

[55] Ferguson N. AES-CBC+ Elephant Diffuser: A Disk Encryption Algo-

rithm for Windows Vista, 2006. (Cited on page 2)

[56] Frank M., Biedert R., Ma E., Martinovic I., and Song D. Touchalytics:

On the Applicability of Touchscreen Input as a Behavioral Biometric

for Continuous Authentication. Information Forensics and Security,

IEEE Transactions, 8(1):136–148, 2013. (Cited on pages 83, 84, 85,

111, 116)

[57] Freier, A. and Karlton, P. and Kocher, P. The Secure Sockets Layer

(SSL) Protocol, Version 3.0. RFC 6101, 2011. (Cited on pages 88,

113)

[58] Friedman J., Hastie T., and Tibshirani R. The Elements of Statistical

Learning, volume 1. Springer series in statistics, Springer, Berlin, 2001.

(Cited on page 20)

[59] Friedman N., Geiger D., and Goldszmidt M. Bayesian Network Clas-

sifiers. Machine learning, 29(2-3):131–163, 1997. (Cited on page 21)

[60] G Data. G Data Mobile Malware Report. Whitepaper, Threat Report

Q4/2015, G Data, 2016. (Cited on page 1)

BIBLIOGRAPHY 131

[61] Garfinkel T. and Rosenblum M. A Virtual Machine Introspection

Based Architecture for Intrusion Detection. In Proc. Network and

Distributed Systems Security Symposium, pages 191–206, 2003. (Cited

on pages 2, 3, 5, 15, 50, 51, 77)

[62] Garlick, J. Plan 9 – 9P2000.L Protocol. Project Page of Distributed

I/O Daemon 9P File Server. https://github.com/chaos/diod. Last

access: March 03, 2017. (Cited on pages 19, 57, 58)

[63] Google Inc. Android Debug Bridge. Android Open Source Project

Documentation, Google, 2016. http://developer.android.com/

tools/help/adb.html. Last access: March 03, 2017. (Cited on

pages 103, 106)

[64] Google Inc. Android Application Sandbox. Android Open

Source Project Documentation, Google, 2016. https:

//source.android.com/security/. Last access: March 03, 2017.

(Cited on page 114)

[65] Google Inc. Google Play Store. Project Page, Google, 2016. https:

//play.google.com/store. Last access: March 03, 2017. (Cited on

page 114)

[66] Gostev A., Unuchek R., Garnaeva M., Makrushin D., and Ivanov A.

IT Threat Evolution in Q1 2016. Technical Report, Kaspersky Lab,

2016. (Cited on page 1)

[67] Govindarajan S., Gasti P., and Balagani K. S. Secure Privacy-

Preserving Protocols for Outsourcing Continuous Authentication of

Smartphone Users with Touch Data. In Biometrics: Theory, Applica-

tions and Systems (BTAS), 2013 IEEE Sixth International Conference

on, pages 1–8. IEEE, 2013. (Cited on page 98)

[68] Gultnieks C. et al. F-Droid Installable Catalogue of Free and Open

Source Software Applications for the Android Platform. Project

Page. https://f-droid.org. Last access: March 03, 2017. (Cited

on page 114)

[69] Haldar V., Chandra D., and Franz M. Semantic Remote Attesta-

tion: A Virtual Machine Directed Approach to Trusted Computing.

In USENIX Virtual Machine Research and Technology Symposium,

volume 2004, 2004. (Cited on page 14)

https://github.com/chaos/diod
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
https://source.android.com/security/
https://source.android.com/security/
https://play.google.com/store
https://play.google.com/store
https://f-droid.org

132 BIBLIOGRAPHY

[70] Ho T. K. Random Decision Forests. In Document Analysis and Recog-

nition, 1995., Proceedings of the Third International Conference on,

volume 1, pages 278–282. IEEE, 1995. (Cited on page 21)

[71] Horsch J. and Wessel S. Transparent Page-Based Kernel and User

Space Execution Tracing from a Custom Minimal ARM Hypervisor.

In Trustcom/BigDataSE/ISPA, 2015 IEEE, volume 1, pages 408–417.

IEEE, 2015. (Cited on page 77)

[72] Hubbard D. and Sutton M. Top Threats to Cloud Computing. Tech-

nical Report, Cloud Security Alliance, 2010. (Cited on page 1)

[73] Huber M., Horsch J., Velten M., Weiss M., and Wessel S. A Secure

Architecture for Operating System-Level Virtualization on Mobile De-

vices. In International Conference on Information Security and Cryp-

tology, pages 430–450. Springer, 2015. (Cited on page 17)

[74] Hurd, D., Synaptics Inc. Synaptics ClearForce. Press Re-

lease, 2015. http://synaptics.com/company/news/clearforce-

for-smartphones. Last access: March 03, 2017. (Cited on page 104)

[75] Intel Security. The Top Five Network Attack Methods – An overview

of prevalent attack techniques and effective countermeasures. Techni-

cal Report, McAfee Labs and Intel Security, 2015. (Cited on page 1)

[76] Jaeger T. Easystroke Gesture Recognition Application. Project

Page. https://sourceforge.net/projects/easystroke/. Last ac-

cess: March 03, 2017. (Cited on page 92)

[77] Jajodia S., Samarati P., Sapino M. L., and Subrahmanian V. Flexible

Support for Multiple Access Control Policies. ACM Transactions on

Database Systems (TODS), 26(2):214–260, 2001. (Cited on page 61)

[78] Jaquith A. Security Metrics: Replacing Fear, Uncertainty, and Doubt.

Pearson Education, 2007. (Cited on page 2)

[79] Jiang X., Wang X., and Xu D. Stealthy Malware Detection through

VMM-based Out-of-the-Box Semantic View Reconstruction. In Pro-

ceedings of the 14th ACM conference on Computer and communica-

tions security, pages 128–138. ACM, 2007. (Cited on pages 3, 51,

78)

[80] Jones S. T., Arpaci-Dusseau A. C., and Arpaci-Dusseau R. H. VMM-

Based Hidden Process Detection and Identification using Lycosid. In

http://synaptics.com/company/news/clearforce-for-smartphones
http://synaptics.com/company/news/clearforce-for-smartphones
https://sourceforge.net/projects/easystroke/

BIBLIOGRAPHY 133

Proceedings of the fourth ACM SIGPLAN/SIGOPS international con-

ference on Virtual execution environments, pages 91–100. ACM, 2008.

(Cited on pages 3, 78)

[81] Joshi A., King S. T., Dunlap G. W., and Chen P. M. Detecting Past

and Present Intrusions Through Vulnerability-Specific Predicates. In

ACM SIGOPS Operating Systems Review, volume 39, pages 91–104.

ACM, 2005. (Cited on pages 3, 78)

[82] Kim G. H. and Spafford E. H. The Design and Implementation of

Tripwire: A File System Integrity Checker. In Proceedings of the 2nd

ACM Conference on Computer and Communications Security, pages

18–29. ACM, 1994. (Cited on pages 50, 77)

[83] King N., Kerr D., Herbst P., and Hotelling S. Electronic device hav-

ing display and surrounding touch sensitive bezel for user interface

and control. Google Patents, US Patent 9,047,009, 2015. (Cited on

page 104)

[84] Kivity A., Kamay Y., Laor D., Lublin U., and Liguori A. KVM: The

Linux Virtual Machine Monitor. In OLS ’07: Proceedings of the Linux

Symposium, volume 1, pages 225–230, June 2007. (Cited on pages 42,

69)

[85] Kolly S. M., Wattenhofer R., and Welten S. A Personal Touch: Rec-

ognizing Users based on Touch Screen Behavior. In Proceedings of

the Third International Workshop on Sensing Applications on Mobile

Phones, page 1. ACM, 2012. (Cited on pages 83, 84, 85, 86, 115)

[86] Kolosnjaji B. and Eckert C. Neural Network-Based User-Independent

Physical Activity Recognition for Mobile Devices. In International

Conference on Intelligent Data Engineering and Automated Learning,

pages 378–386. Springer, 2015. (Cited on page 115)

[87] Kumar R., Phoha V. V., and Raina R. Authenticating Users through

their Arm Movement Patterns. arXiv preprint arXiv:1603.02211,

2016. (Cited on page 115)

[88] Lauer T. The Risk of E-Voting. Electronic Journal of E-government,

2(3):177–186, 2004. (Cited on page 1)

[89] Linux Foundation. Xen Virtual Trusted Platform Module (vTPM)

Support. Project Page. http://wiki.xenproject.org/wiki/

http://wiki.xenproject.org/wiki/Virtual_Trusted_Platform_Module_(vTPM)
http://wiki.xenproject.org/wiki/Virtual_Trusted_Platform_Module_(vTPM)

134 BIBLIOGRAPHY

Virtual Trusted Platform Module (vTPM). Last access: March 03,

2017. (Cited on pages 3, 25, 45)

[90] Linux Kernel Organization. Linux Power Supply Class. Linux Ker-

nel Documentation, . https://www.kernel.org/doc/Documentation/

power/power supply class.txt. Last access: March 03, 2017. (Cited

on page 105)

[91] Linux Kernel Organization. v9fs: Plan 9 Resource Sharing for

Linux. Linux Kernel Documentation, . https://www.kernel.org/

doc/Documentation/filesystems/9p.txt. Last access: March 03,

2017. (Cited on pages 19, 69, 73)

[92] Litty L. and Lie D. Manitou: A Layer-Below Approach to Fighting

Malware. In Proceedings of the 1st workshop on Architectural and sys-

tem support for improving software dependability, pages 6–11. ACM,

2006. (Cited on page 79)

[93] Litty L., Lagar-Cavilla H. A., and Lie D. Hypervisor Support for

Identifying Covertly Executing Binaries. In Proceedings of the 17th

conference on Security symposium, SS’08, pages 243–258, Berkeley,

CA, USA, 2008. USENIX Association. (Cited on pages 77, 79)

[94] Liu D., Lee J., Jang J., Nepal S., and Zic J. A Cloud Architecture

of Virtual Trusted Platform Modules. In Embedded and Ubiquitous

Computing (EUC), 2010 IEEE/IFIP 8th International Conference on,

pages 804–811. IEEE, 2010. (Cited on page 45)

[95] Long J. No Tech Hacking: A Guide to Social Engineering, Dumpster

Diving, and Shoulder Surfing. Syngress, 2011. (Cited on page 112)

[96] MacNaught, S. Average User Picks up their Smartphone 221

Times a Day. Tecmark Survey, 2014. http://www.tecmark.co.uk/

smartphone-usage-data-uk-2014/. Last access: March 03, 2017.

(Cited on page 107)

[97] Madnick S. E. and Donovan J. J. Application and Analysis of the Vir-

tual Machine Approach to Information System Security and Isolation.

In Proceedings of the Workshop on Virtual Computer Systems, pages

210–224. ACM, 1973. (Cited on page 2)

[98] MalwareTech. Phase Bot - A Fileless Rootkit (Part 1). Web Ar-

ticle, MalwareTech, 2014. https://www.malwaretech.com/2014/12/

http://wiki.xenproject.org/wiki/Virtual_Trusted_Platform_Module_(vTPM)
http://wiki.xenproject.org/wiki/Virtual_Trusted_Platform_Module_(vTPM)
https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
https://www.kernel.org/doc/Documentation/filesystems/9p.txt
https://www.kernel.org/doc/Documentation/filesystems/9p.txt
http://www.tecmark.co.uk/smartphone-usage-data-uk-2014/
http://www.tecmark.co.uk/smartphone-usage-data-uk-2014/
https://www.malwaretech.com/2014/12/phase-bot-fileless-rootki.html
https://www.malwaretech.com/2014/12/phase-bot-fileless-rootki.html

BIBLIOGRAPHY 135

phase-bot-fileless-rootki.html. Last access: March 03, 2017.

(Cited on page 76)

[99] MalwareTech. Phase Bot - A Fileless Rootkit (Part 2). Web Article,

MalwareTech, 2014. http://www.malwaretech.com/2014/12/phase-

bot-fileless-rootkit-part-2.html. Last access: March 03, 2017.

(Cited on page 76)

[100] Mantyjarvi J., Lindholm M., Vildjiounaite E., Makela S.-M., and

Ailisto H. Identifying Users of Portable Devices from Gait Pattern

with Accelerometers. In Acoustics, Speech, and Signal Processing,

2005. Proceedings.(ICASSP’05). IEEE International Conference on,

volume 2, pages ii–973. IEEE, 2005. (Cited on page 115)

[101] Maydell P. QEMU Virtual Trusted Platform Module (vTPM) Sup-

port. Project Page. http://wiki.qemu.org/Features/TPM. Last ac-

cess: March 03, 2017. (Cited on pages 3, 25, 45)

[102] Mayer J. R. Any Person... a Pamphleteer: Internet Anonymity in the

Age of Web 2.0. Undergraduate Senior Thesis, Princeton University,

2009. (Cited on page 85)

[103] McGuire M. and Dowling S. Cyber Crime: A Review of the Evidence.

Summary of key findings and implications. Home Office Research re-

port, 75, 2013. (Cited on page 1)

[104] Mehrnezhad M., Toreini E., Shahandashti S. F., and Hao F. TouchSig-

natures: Identification of User Touch Actions and PINs based on Mo-

bile Sensor Data via JavaScript. Journal of Information Security and

Applications, 2016. (Cited on pages 85, 113)

[105] Mell P. and Grance T. The NIST Definition of Cloud Computing.

2011. (Cited on pages 24, 45)

[106] Menezes A. J., Van Oorschot P. C., and Vanstone S. A. Handbook of

Applied Cryptography. CRC press, 1996. (Cited on page 31)

[107] Meng Y., Wong D. S., Schlegel R., et al. Touch Gestures based Bio-

metric Authentication Scheme for Touchscreen Mobile Phones. In

Information Security and Cryptology, pages 331–350. Springer, 2012.

(Cited on pages 84, 85)

[108] Merkel D. Docker: Lightweight Linux Containers for Consistent De-

velopment and Deployment. Linux J., 2014(239), Mar. 2014. ISSN

1075-3583. (Cited on page 18)

https://www.malwaretech.com/2014/12/phase-bot-fileless-rootki.html
https://www.malwaretech.com/2014/12/phase-bot-fileless-rootki.html
http://www.malwaretech.com/2014/12/phase-bot-fileless-rootkit-part-2.html
http://www.malwaretech.com/2014/12/phase-bot-fileless-rootkit-part-2.html
http://wiki.qemu.org/Features/TPM

136 BIBLIOGRAPHY

[109] Miluzzo E., Varshavsky A., Balakrishnan S., and Choudhury R. R.

Tapprints: Your Finger Taps Have Fingerprints. In Proceedings of

the 10th international conference on Mobile systems, applications, and

services, pages 323–336. ACM, 2012. (Cited on pages 84, 85, 86, 115)

[110] Mironov I. et al. Hash Functions: Theory, Attacks, and Applications.

Microsoft Research, Silicon Valley Campus, 2005. (Cited on page 31)

[111] Mohri M., Rostamizadeh A., and Talwalker A. Foundations of Ma-

chine Learning (Adaptive Computation and Machine Learning Series),

2012. (Cited on pages 20, 21)

[112] Monkey Runner Testing Tool. Android Open Source Project

Documentation. http://developer.android.com/tools/help/

monkeyrunner concepts.html. Last access: March 03, 2017. (Cited

on page 102)

[113] Monrose F., Reiter M. K., and Wetzel S. Password Hardening Based on

Keystroke Dynamics. International Journal of Information Security,

1(2):69–83, 2002. (Cited on pages 83, 115)

[114] Monte M. Network Attacks and Exploitation: A Framework. John

Wiley & Sons, 2015. (Cited on page 1)

[115] Mowery K., Bogenreif D., Yilek S., and Shacham H. Fingerprinting

Information in JavaScript Implementations. Proceedings of W2SP, 2,

2011. (Cited on page 85)

[116] Murdock, I. Debian Package Management System (DPKG). Debian

Project. https://wiki.debian.org/Teams/Dpkg. Last access: March

03, 2017. (Cited on page 70)

[117] Nance K., Bishop M., and Hay B. Virtual Machine Introspection:

Observation or Interference? Security & Privacy, IEEE, 6(5):32–37,

2008. (Cited on pages 3, 50)

[118] Neverova N., Wolf C., Lacey G., Fridman L., Chandra D., Barbello

B., and Taylor G. Learning Human Identity from Motion Patterns.

arXiv preprint arXiv:1511.03908, 2015. (Cited on pages 115, 116)

[119] Nobel, A., SyNetDev. Stay Alive. Google Play Store

App. https://play.google.com/store/apps/details?id=

com.synetics.stay.alive. Last access: March 03, 2017. (Cited

on page 102)

http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
https://wiki.debian.org/Teams/Dpkg
https://play.google.com/store/apps/details?id=com.synetics.stay.alive
https://play.google.com/store/apps/details?id=com.synetics.stay.alive

BIBLIOGRAPHY 137

[120] NTT DATA Corporation. TOMOYO Linux – A Security Module for

System Analysis and Protection. Official TOMOYO Project Web-

site. http://tomoyo.osdn.jp. Last access: March 03, 2017. (Cited on

page 50)

[121] Owusu E., Han J., Das S., Perrig A., and Zhang J. Accessory: Pass-

word Inference using Accelerometers on Smartphones. In Proceedings

of the Twelfth Workshop on Mobile Computing Systems & Applica-

tions, page 9. ACM, 2012. (Cited on pages 83, 115)

[122] Patil S., Kashyap A., Sivathanu G., and Zadok E. I3FS: An In-Kernel

Integrity Checker and Intrusion Detection File System. In Proceedings

of the 18th Annual Large Installation System Administration Confer-

ence (LISA’04), 2004. (Cited on page 77)

[123] Payne B., de Carbone M., and Lee W. Secure and Flexible Moni-

toring of Virtual Machines. In Computer Security Applications Con-

ference, 2007. ACSAC 2007. Twenty-Third Annual, pages 385–397,

2007. (Cited on page 78)

[124] Payne B. D., Carbone M., Sharif M., and Lee W. Lares: An Archi-

tecture for Secure Active Monitoring using Virtualization. In Security

and Privacy, 2008. SP 2008. IEEE Symposium on, pages 233–247.

IEEE, 2008. (Cited on pages 51, 53, 78)

[125] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B.,

Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Van-

derplas J., Passos A., Cournapeau D., Brucher M., Perrot M., and

Duchesnay E. Scikit-learn: Machine Learning in Python. Journal of

Machine Learning Research, 12:2825–2830, 2011. (Cited on page 96)

[126] Peotta L., Holtz M. D., David B. M., Deus F. G., and de Sousa R. A

Formal Classification of Internet Banking Attacks and Vulnerabilities.

International Journal of Computer Science & Information Technology,

3(1):186–197, 2011. (Cited on page 1)

[127] Petroni Jr N. L. and Hicks M. Automated Detection of Persistent

Kernel Control-Flow Attacks. In Proceedings of the 14th ACM con-

ference on Computer and communications security, pages 103–115.

ACM, 2007. (Cited on page 51)

[128] Petroni Jr N. L., Fraser T., Molina J., and Arbaugh W. A. Copilot-

a Coprocessor-based Kernel Runtime Integrity Monitor. In USENIX

http://tomoyo.osdn.jp

138 BIBLIOGRAPHY

Security Symposium, pages 179–194. San Diego, USA, 2004. (Cited on

page 51)

[129] Popek G. J. and Goldberg R. P. Formal Requirements for Virtualizable

Third Generation Architectures. Communications of the ACM, 17(7):

412–421, 1974. (Cited on page 15)

[130] Primo A., Phoha V., Kumar R., and Serwadda A. Context-Aware Ac-

tive Authentication using Smartphone Accelerometer Measurements.

In Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition Workshops, pages 98–105, 2014. (Cited on pages 84,

85)

[131] Proskurin S., Weiss M., and Sigl G. seTPM: Towards Flexible Trusted

Computing on Mobile Devices Based on GlobalPlatform Secure Ele-

ments. In Revised Selected Papers of the 14th International Conference

on Smart Card Research and Advanced Applications - Volume 9514,

CARDIS 2015, pages 57–74, New York, NY, USA, 2016. (Cited on

page 46)

[132] Proudler G., Chen L., and Dalton C. Trusted Computing Platforms

- TPM2.0 in Context. Springer, 2014. ISBN 978-3-319-08743-6. doi:

10.1007/978-3-319-08744-3. (Cited on page 11)

[133] Purcher, J. Apple 3D Touch. Web Article, Patently Apple,

2015. http://www.patentlyapple.com/patently-apple/2015/

09/apples-reported-3d-force-touch-is-supported-by-a-

patent.html. Last access: March 03, 2017. (Cited on page 104)

[134] Quynh N. A. and Suzaki K. Xenprobes, a Lightweight User-Space

Probing Framework for Xen Virtual Machine. In USENIX Annual

Technical Conference Proceedings, 2007. (Cited on pages 51, 53, 78)

[135] Raj H., Saroiu S., Wolman A., Aigner R., Cox J., England P., Fenner

C., Kinshumann K., Loeser J., Mattoon D., Nystrom M., Robinson

D., Spiger R., Thom S., and Wooten D. fTPM: A Software-Only

Implementation of a TPM Chip. In 25th USENIX Security Symposium

(USENIX Security 16), pages 841–856, Austin, TX, 2016. USENIX

Association. (Cited on page 46)

[136] Ramzan Z. Phishing Attacks and Countermeasures. In Handbook of

Information and Communication Security, pages 433–448. Springer,

2010. (Cited on page 113)

http://www.patentlyapple.com/patently-apple/2015/09/apples-reported-3d-force-touch-is-supported-by-a-patent.html
http://www.patentlyapple.com/patently-apple/2015/09/apples-reported-3d-force-touch-is-supported-by-a-patent.html
http://www.patentlyapple.com/patently-apple/2015/09/apples-reported-3d-force-touch-is-supported-by-a-patent.html

BIBLIOGRAPHY 139

[137] Rascagnères, P. Poweliks: The Persistent Malware without a File. Blog

Article, G-Data, 2014. https://blog.gdatasoftware.com/2014/07/

23947-poweliks-the-persistent-malware-without-a-file. Last

access: March 03, 2017. (Cited on page 76)

[138] Rattani A. and Poh N. Biometric System Design under Zero and

Non-Zero Effort Attacks. In Biometrics (ICB), 2013 International

Conference on, pages 1–8. IEEE, 2013. (Cited on page 98)

[139] Rescorla, E. Hypertext Transfer Protocol (HTTP) Over TLS. RFC

2818, 2000. (Cited on page 113)

[140] Richardson R. CSI Computer Crime and Security Survey. Computer

Security Institute, 1:1–30, 2008. (Cited on page 1)

[141] Roberts J., Yaya L., and Manolis C. The Invisible Addiction: Cell-

phone Activities and Addiction Among Male and Female College Stu-

dents. Journal of behavioral addictions, 3(4):254–265, 2014. (Cited on

page 107)

[142] Rosenblum M. and Garfinkel T. Virtual machine monitors: Current

technology and future trends. Computer, 38(5):39–47, 2005. (Cited

on page 15)

[143] Roth J., Liu X., and Metaxas D. On Continuous User Authentication

via Typing Behavior. Image Processing, IEEE Transactions on, 23

(10):4611–4624, 2014. (Cited on page 115)

[144] RSA Security Inc. Minimizing the Identity Attack Vector with Con-

tinuous Authentication. RSA white paper, EMC Corporation, 2016.

(Cited on page 4)

[145] Russell R. virtio: Towards a de-facto Standard for Virtual I/O De-

vices. ACM SIGOPS Operating Systems Review, 42(5):95–103, 2008.

(Cited on pages 54, 69)

[146] Sadeghi A.-R., Stüble C., and Winandy M. Property-based TPM

Virtualization. In Information Security, pages 1–16. Springer, 2008.

(Cited on page 14)

[147] Saevanee H. and Bhatarakosol P. User Authentication Using Combi-

nation of Behavioral Biometrics over the Touchpad Acting Like Touch

Screen of Mobile Device. In Computer and Electrical Engineering,

2008. ICCEE 2008. International Conference on, pages 82–86. IEEE,

2008. (Cited on pages 84, 85, 87, 104)

https://blog.gdatasoftware.com/2014/07/23947-poweliks-the-persistent-malware-without-a-file
https://blog.gdatasoftware.com/2014/07/23947-poweliks-the-persistent-malware-without-a-file

140 BIBLIOGRAPHY

[148] Sailer R., Zhang X., Jaeger T., and van Doorn L. Design and Imple-

mentation of a TCG-based Integrity Measurement Architecture. In

Proceedings of the 13th conference on USENIX Security Symposium -

Volume 13, SSYM’04, Berkeley, CA, USA, 2004. USENIX Association.

(Cited on pages 2, 25, 28, 42, 59)

[149] Saltzer J. H. and Schroeder M. D. The Protection of Information in

Computer Systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

(Cited on page 114)

[150] Sandberg R., Goldberg D., Kleiman S., Walsh D., and Lyon B. Design

and Implementation of the Sun Network Filesystem. In Proceedings

of the Summer USENIX conference, pages 119–130, 1985. (Cited on

page 53)

[151] Santos N., Rodrigues R., Gummadi K. P., and Saroiu S. Policy-Sealed

Data: A New Abstraction for Building Trusted Cloud Services. In

Presented as part of the 21st USENIX Security Symposium (USENIX

Security 12), pages 175–188, 2012. (Cited on page 45)

[152] Schaufler, C. The Smack Project. Official Smack Project Website.

http://schaufler-ca.com. Last access: March 03, 2017. (Cited on

page 50)

[153] Schepers D., Brubeck M., Barstow A., and Moon S. Touch Events.

W3C Recommendation, W3C, 2013. (Cited on pages 95, 109)

[154] Schepers D., Moon S., Brubeck M., and Byers R. Touch Events Ex-

tensions. W3C Working Group Note, W3C, 2013. (Cited on page 95)

[155] Schneier B. Secrets and Lies: Digital Security in a Networked World.

John Wiley & Sons, 2011. (Cited on page 2)

[156] Schneier, B. Whitelisting vs. Blacklisting. Schneier on Security, Of-

ficial Blog, 2011. https://www.schneier.com/blog/archives/2011/

01/whitelisting vs.html. Last access: March 03, 2017. (Cited on

page 61)

[157] Serwadda A., Phoha V. V., Wang Z., Kumar R., and Shukla D. To-

ward Robotic Robbery on the Touch Screen. ACM Transactions on

Information and System Security (TISSEC), 18(4):14, 2016. (Cited

on pages 98, 123)

http://schaufler-ca.com
https://www.schneier.com/blog/archives/2011/01/whitelisting_vs.html
https://www.schneier.com/blog/archives/2011/01/whitelisting_vs.html

BIBLIOGRAPHY 141

[158] Shatilin I. Google Project Abacus. Official Kaspersky Lab

Blog, Kaspersky Lab, 2015. https://blog.kaspersky.com/

google-projects-soli-jacquard-vault-abacus/9135/. Last ac-

cess: March 03, 2017. (Cited on page 116)

[159] Shi W., Yang F., Jiang Y., Yang F., and Xiong Y. Senguard: Pas-

sive User Identification on Smartphones using Multiple Sensors. In

Wireless and Mobile Computing, Networking and Communications

(WiMob), 2011 IEEE 7th International Conference on, pages 141–

148. IEEE, 2011. (Cited on pages 84, 85)

[160] Shotton J., Sharp T., Kipman A., Fitzgibbon A., Finocchio M., Blake

A., Cook M., and Moore R. Real-Time Human Pose Recognition in

Parts from Single Depth Images. Communications of the ACM, 56(1):

116–124, 2013. (Cited on page 93)

[161] Shrestha P., Mohamed M., and Saxena N. Slogger: Smashing Motion-

based Touchstroke Logging with Transparent System Noise. In Pro-

ceedings of the 9th ACM Conference on Security & Privacy in Wireless

and Mobile Networks, pages 67–77. ACM, 2016. (Cited on page 115)

[162] Silberschatz A., Galvin P. B., Gagne G., and Silberschatz A. Operating

System Concepts, volume 4. Addison-wesley Reading, 1998. (Cited on

page 18)

[163] Smalley S., Vance C., and Salamon W. Implementing SELinux as

a Linux Security Module. NAI Labs Report, 1:43, 2001. (Cited on

page 50)

[164] Smith J. and Nair R. Virtual Machines: Versatile Platforms for Sys-

tems and Processes. Elsevier, 2005. (Cited on page 15)

[165] Stevens M., Bursztein E., Karpman P., Albertini A., Markov

Y., Bianco A. P., and Baisse C. Announcing the first SHA1

collision. Google Security Blog, CWI Amsterdam and Google,

2017. https://security.googleblog.com/2017/02/announcing-

first-sha1-collision.html. Last access: March 03, 2017. (Cited

on pages 12, 32)

[166] Stumpf F. and Eckert C. Enhancing Trusted Platform Modules with

Hardware-Based Virtualization Techniques. Emerging Security Infor-

mation, Systems, and Technologies, The International Conference on,

0:1–9, 2008. (Cited on pages 25, 44, 46)

https://blog.kaspersky.com/google-projects-soli-jacquard-vault-abacus/9135/
https://blog.kaspersky.com/google-projects-soli-jacquard-vault-abacus/9135/
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html

142 BIBLIOGRAPHY

[167] Symantec. Security Response. Kovter Malware Learns from poweliks

with Persistent Fileless Registry Update. Symantec Official Blog

Article, Symantec, 2015. http://www.symantec.com/connect/

blogs/kovter-malware-learns-poweliks-persistent-fileless-

registry-update. Last access: March 03, 2017. (Cited on page 76)

[168] Tangelder J. Hammer.js Open Source Gesture Recognition Library.

Project Page. https://hammerjs.github.io/. Last access: March 03,

2017. (Cited on page 86)

[169] The WebKit Open Source Web Browser Engine. Project Page. http:

//www.webkit.org/. Last access: March 03, 2017. (Cited on page 109)

[170] Tool Interface Standards Committee. Tool Interface Standard (TIS),

Executable and Linking Format (ELF) Specification. Version 1.2,

1995. (Cited on pages 65, 66)

[171] TrouSerS. The Open Source TCG Software Stack. TSS Project

Page. http://trousers.sourceforge.net. Last access: March 03,

2017. (Cited on page 42)

[172] Trusted Computing Group (TCG). TCG Project Page. https:

//www.trustedcomputinggroup.org/. Last access: March 03, 2017.

(Cited on pages 2, 11, 24)

[173] Trusted Platform Module (TPM) 1.2. Main Specification, Level 2,

Version 1.2, Revision 116, 2011. (Cited on pages 2, 11, 12, 13, 24, 26,

33, 57)

[174] Trusted Platform Module (TPM) 2.0. Library Specification, Family

2.0, Level 00, Revision 01.16, 2014. (Cited on pages 2, 11, 13, 24, 34,

36)

[175] Trusted Platform Module (TPM) 2.0. TCG TPM 2.0 Automotive Thin

Profile, Family 2.0, Level 00, Version 1.0, 2015. (Cited on pages 13,

26)

[176] Trusted Platform Module (TPM) 2.0. PC Client Platform TPM Profile

(PTP) Specification, Family 2.0, Level 00, Revision 00.43, 2015. (Cited

on pages 13, 26)

[177] United States Federal Government. Secure Hash Standard (SHA-1).

Federal Information Processing Standards (FIPS) Publication 180-

4, National Institute of Standards and Technology, 2015. (Cited on

page 32)

http://www.symantec.com/connect/blogs/kovter-malware-learns-poweliks-persistent-fileless-registry-update
http://www.symantec.com/connect/blogs/kovter-malware-learns-poweliks-persistent-fileless-registry-update
http://www.symantec.com/connect/blogs/kovter-malware-learns-poweliks-persistent-fileless-registry-update
https://hammerjs.github.io/
http://www.webkit.org/
http://www.webkit.org/
http://trousers.sourceforge.net
https://www.trustedcomputinggroup.org/
https://www.trustedcomputinggroup.org/

BIBLIOGRAPHY 143

[178] Van Hensbergen E. and Minnich R. Grave Robbers from Outer Space

using 9P2000 under Linux. In Proceedings of the annual conference on

USENIX Annual Technical Conference, ATEC ’05, page 45, Berkeley,

CA, USA, 2005. USENIX Association. (Cited on pages 19, 51, 53, 59)

[179] Velten M. and Stumpf F. Secure and Privacy-Aware Multiplexing

of Hardware-Protected TPM Integrity Measurements among Virtual

Machines. In 15th International Conference on Information Security

and Cryptology (ICISC 2012), Lecture Notes in Computer Science.

Springer, 2012. (Cited on page 24)

[180] Velten M., Wessel S., Stumpf F., and Eckert C. Active File Integrity

Monitoring Using Paravirtualized Filesystems. In 5th International

Conference on Trusted Systems (INTRUST 2013), Lecture Notes in

Computer Science. Springer, 2013. (Cited on page 50)

[181] Velten M., Schneider P., Wessel S., and Eckert C. User Identity Veri-

fication Based on Touchscreen Interaction Analysis in Web Contexts.

In 11th International Conference on Information Security Practice

and Experience (ISPEC 2015), Lecture Notes in Computer Science.

Springer, 2015. (Cited on page 82)

[182] Vogl S., Kilic F., Schneider C., and Eckert C. X-TIER: Kernel Mod-

ule Injection. In International Conference on Network and System

Security, pages 192–205. Springer, 2013. (Cited on page 51)

[183] Wallom D., Turilli M., Taylor G., Hargreaves N., Martin A., Raun

A., and McMoran A. myTrustedCloud: Trusted Cloud Infrastructure

for Security-Critical Computation and Data Managment. In Cloud

Computing Technology and Science (CloudCom), 2011 IEEE Third

International Conference on, pages 247–254. IEEE, 2011. (Cited on

page 45)

[184] Weaver R., Weaver D., and Farwood D. Guide to network defense and

countermeasures. Cengage Learning, 2013. (Cited on page 2)

[185] Wessel S. and Stumpf F. Page-based Runtime Integrity Protection of

User and Kernel Code. In 5th European Workshop on System Security,

2012. (Cited on pages 77, 79)

[186] White, B. Package Management Runtime Library libapt-pkg. Debian

Project. (Cited on page 70)

144 BIBLIOGRAPHY

[187] Wood P., Nahorney B., Chandrasekar K., Wallace S., and Haley K. In-

ternet Security Threat Report. Technical Report, Volume 21, Syman-

tec Corporation, 2016. (Cited on page 1)

[188] Xu H., Zhou Y., and Lyu M. R. Towards Continuous and Passive

Authentication via Touch Biometrics: An Experimental Study on

Smartphones. In Symposium On Usable Privacy and Security (SOUPS

2014). USENIX Association, 2014. (Cited on page 99)

[189] Zhao F., Jiang Y., Xiang G., Jin H., and Jiang W. VRFPS: A Novel

Virtual Machine-Based Real-time File Protection System. In Pro-

ceedings of the 2009 Seventh ACIS International Conference on Soft-

ware Engineering Research, Management and Applications, SERA ’09,

pages 217–224, Washington, DC, USA, 2009. ISBN 978-0-7695-3903-4.

doi: 10.1109/SERA.2009.23. (Cited on pages 51, 78)

[190] Zheng N., Paloski A., and Wang H. An Efficient User Verification

System via Mouse Movements. In Proceedings of the 18th ACM con-

ference on Computer and communications security, pages 139–150.

ACM, 2011. (Cited on pages 83, 115)

[191] Zheng N., Bai K., Huang H., and Wang H. You Are How You Touch:

User Verification on Smartphones via Tapping Behaviors. Technical

report, Tech. Rep. WM-CS-2012-06, 2012. (Cited on pages 83, 84, 85,

86, 111, 115)

[192] Zhu J., Wu P., Wang X., and Zhang J. Sensec: Mobile Security

through Passive Sensing. In Computing, Networking and Communi-

cations (ICNC), 2013 International Conference on, pages 1128–1133.

IEEE, 2013. (Cited on pages 83, 84, 85, 111, 115)

LIST OF ACRONYMS 145

List of Acronyms

AA Attestation Agent

ACE Access Control Entry

ACL Access Control List

ADB Android Debug Bridge

AES Advanced Encryption Standard

AIK Attestation Identity Key

AK Attestation Key

CAM Continuous Authentication Monitor

CIFS Common Internet File System

CMML Concealed Multiplexed Measurement List

CPVM Complementary Privileged Virtual Machine

CRTM Core Root of Trust for Measurement

DAA Direct Anonymous Attestation

DOM Document Object Model

EA Enhanced Authorization

ECC Elliptic Curve Cryptography

EDE Execution Detection Engine

EK Endorsement Key

ELF Executable and Linking Format

EPS Endorsement Primary Seed

FAR False Acceptance Rate

FOM File Operation Monitor

FPE File Protection Enforcer

FPGA Field-Programmable Gate Array

FRR False Rejection Rate

146 LIST OF ACRONYMS

HDD Hard Disk Drive

HIDS Host-based Intrusion Detection System

HMAC Hashed Message Authentication Code

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol over TLS

IMA Integrity Measurement Architecture

KVM Kernel-based Virtual Machine

LSM Linux Security Modules

MA Measurement Agent

MITM Man-in-the-Middle

MML Multiplexed Measurement List

MMU Memory Management Unit

MPA Multiplexing Agent

NFS Network File System

NLKVM Native Linux KVM Tool

OS Operating System

PCR Platform Configuration Register

PIN Personal Identification Number

PME Package Maintenance Engine

RAM Random Access Memory

RBAC Rule Based Access Control

SHA-1 Secure Hash Algorithm 1

SMB Server Message Block

SML Stored Measurement Log

SoC System on Chip

SSD Solid State Drive

SSL Secure Sockets Layer

SVM Support Vector Machine

TBV Touch Behavior Verifier

TCB Trusted Computing Base

TCG Trusted Computing Group

TLS Transport Layer Security

TPM Trusted Platform Module

LIST OF ACRONYMS 147

VLAN Virtual Local Area Network

VM Virtual Machine

VM-ID Virtual Machine Identifier

VMI Virtual Machine Introspection

VMM Virtual Machine Monitor

vTPM Virtual Trusted Platform Module

148 LIST OF ACRONYMS

LIST OF FIGURES 149

List of Figures

1.1 Main components explored in this thesis 7

2.1 Authenticated boot . 13

2.2 Comparison of type1 and type2 hypervisors 16

2.3 Comparison of paravirtualization and OS-level virtualization 17

2.4 Visual representation of binary classification 21

3.1 System architecture showing main components and workflow 29

3.2 Multiplexing remote attestation protocol 35

3.3 Average processing time of virtual machines 44

4.1 Filesystem relocation scenarios 54

4.2 Paravirtualized monitoring architecture 56

4.3 Installation and upgrading of packages via CPVM 67

4.4 Write performance for different environments 71

4.5 Read performance for different environments 72

4.6 Required time to read and write files over the network 74

5.1 System architecture with web server, TBV, and CAM 87

5.2 State diagram maintained by CAM 90

5.3 Vertical scroll gestures with pronounced curvatures 94

5.4 Vertical scroll gestures with predominantly straight lines . . . 95

5.5 Minimum, mean, and maximum of bounding box heights . . . 97

5.6 Minimum, mean, and maximum of bounding box widths . . . 98

5.7 Feature value comparison of scroll gestures by different users 99

5.8 FAR and FRR based on single scroll gesture 100

5.9 FAR and FRR based on sequences of scroll gestures 101

5.10 CPU load of enabled user identity verification 104

5.11 Battery usage of verification with WiFi and mobile data . . . 106

5.12 Relative battery usage comparison 107

5.13 Number of fired events of event listeners 109

150 LIST OF FIGURES

LIST OF TABLES 151

List of Tables

2.1 Comparison of TPM 1.2 and TPM 2.0 12

2.2 Set of 9P2000 operations . 19

3.1 Average processing time for measured files 43

4.1 Critical requests of the Plan 9 9P2000.L protocol 58

4.2 Critical requests mapped to policy checks using only predicates. 62

4.3 Policy example utilizing predicates and reference hash values 64

5.1 Tested devices and browsers supporting force attribute 105

5.2 Comparison of generated network traffic per browser 110

	Table of Contents
	Introduction
	Motivation
	Problem Statement
	Contributions
	Thesis Outline

	Background
	Trusted Computing
	Integrity Measurement
	Remote Attestation

	Virtualization
	Full Virtualization
	Paravirtualization
	Operating-System-Level Virtualization

	Distributed Filesystems
	9P Filesystem

	Machine Learning
	Classification

	Multiplexing TPM Integrity Measurements
	TPM Virtualization Challenges
	Requirements Analysis
	Attacker Model and Assumptions
	System Overview
	Multiplexed Storage and Attestation
	Measurement Concealment
	Multiplexed Measurement List

	Integrity Reporting
	Integrity Validation
	Security Analysis
	Discarding Measurements
	Substituting Measurements
	Substituting VM-IDs
	Blinding Measurements and VM-IDs

	Prototype Implementation
	Performance Evaluation
	Related Work
	Summary

	Integrity Monitoring using Paravirtualized Filesystems
	Virtualization-based Integrity Monitoring
	Attacker Model and Assumptions
	Monitoring of Guest VMs
	Filesystem Relocation Mechanism
	Relocation Scenarios

	System Overview
	File Operation Monitor
	Execution Detection Engine
	Package Maintenance Engine
	File Protection Enforcer

	Monitoring and Analyzing File Operation Requests
	Shadow Copy Write

	Secure Storage of Integrity Measurements
	Enforcing File Protection
	Policy Predicates and Request Mapping
	Package Policy Rules
	Policy Example

	Detecting Program Execution
	Autonomous Software Package Installation and Upgrade
	Signaling of Package Maintenance Request
	Checking Package Integrity and Permissions
	Executing Package Maintenance Request
	CPVM Rationale

	Prototype Implementation
	Installation and Upgrading of Packages

	Performance Evaluation
	Network-based Filesystem Relocation

	Security Analysis
	Persistent Malware
	Fileless Malware
	Persistent File Manipulations
	Software Package Manipulations
	Non-Persistent Manipulations

	Related Work
	Summary

	Continuous Authentication using Touchscreen Dynamics
	Behavioral Biometrics for Authentication
	Attacker Model and Assumptions
	Touch Interaction Selection in Web Contexts
	Touchscreen Gestures
	Device Sensor Data

	System Overview
	Touch Behavior Model Training
	User Identity Verification
	Feature Extraction
	Path Offsets
	Bounding Box
	Raster
	Velocity
	Curvature
	Acceleration

	Verification Strategy
	Subsequence Processing
	Confidence Value Calculation

	Framework Implementation
	Classification Evaluation
	Feature Suitability
	Classification Accuracy

	Performance Evaluation
	CPU Usage
	Battery Consumption
	Network Traffic Generation

	Security Analysis
	Blocking Attack
	Imitation Attack
	Replay Attack

	Related Work
	Summary

	Conclusion and Future Work
	Contributions
	Future Research

	Bibliography
	List of Acronyms
	List of Figures
	List of Tables

