
Perspectives on the Connection
of Psychological Models of

Emotion and Intelligent
Machines

Johannes Feldmaier

Techische Universität München
Lehrstuhl für Datenverarbeitung

Perspectives on the Connection of Psychological
Models of Emotion and Intelligent Machines

Johannes Feldmaier

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzende: Prof. Dr.-Ing. Sandra Hirche

Prüfer der Dissertation:

1. Prof. Dr.-Ing. Klaus Diepold

2. Priv.-Doz. Dr. Felix Schönbrodt

Die Dissertation wurde am 08.06.2017 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 21.11.2017
angenommen.

Johannes Feldmaier. Perspectives on the Connection of Psychological Models of Emotion
and Intelligent Machines. Dissertation, Technische Universität München, Munich, Ger-
many, 2018.

c© 2018 Johannes Feldmaier

Institute for Data Processing, Technical University of Munich, 80290 Munich, Germany,
http://www.ldv.ei.tum.de.

This work is licenced under the Creative Commons Attribution 3.0 Germany License. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/3.0/de/ or send
a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California
94105, USA.

http://www.ldv.ei.tum.de

Abstract

Researchers from psychology and computer science consider artificial emotions as a miss-
ing component in cognitive systems. Such affective and cognitive systems are said to be
the ideal partners in shared environments where assistive systems and service robots
tightly work together with their human partners. The acceptance and tangibility of intelli-
gent systems increase by integrating psychological findings into state-of-the-art machine
learning algorithms. In current systems the cognitive component is central, and further
optimization of their decision making algorithms and environmental recognition techniques
often require huge effort, but deliver only few percent in the improvement on the general
performance. Different approaches which consider the learning component of such an in-
telligent system from new perspectives are rare. Currently, the activity in the research area
of affective computing increases. The idea of integrating psychological models into ma-
chine learning algorithms gives fresh impetus to the machine learning community. Gener-
ally, affective components in machine learning can be divided into the domains of emotion
recognition, artificial emotion generation, and the final rendering process to express them
in an appropriate way.

The focus of this dissertation lies on the first two aspects and sheds light on the answer to
the question if psychological theories and models for emotions can inform and enhance the
Human-Robot-Interaction. For this purpose, this general problem statement is subdivided
into three related issues.

First, potential methods to calculate representations for the evaluation of the current
performance and state of a machine learning process are considered. In three experi-
ments, psychologically grounded emotion models are implemented and used to evaluate
the performance of a learning agent. Besides the Zurich Model of Social Attachment and
Fear, also two appraisal models (a version of the Component Process Model and a di-
rect appraisal model) are implemented. The results show that quantitative figures and the
temporal behavior of a machine learning process can be appraised in terms of artificial
emotions and feelings by the developed algorithms. In a study, the expectations of human
users on artificial emotions expressed by a service robot were investigated. The findings
were compared to the simulated emotions of the developed algorithm, which revealed sig-
nificant similarities.

Secondly, the implicit control of policies learned by a Reinforcement Learning agent is
investigated. Therefore, the mechanism of reward shaping is considered and extended by
a definition of an additional state. This state represents an internal affective state of the
agent (e.g. an experience value) and is used to modify the weights of the reward functions.
In an experiment, it is shown that different goals or actions can be biased in relation to the

3

affective state. This kind of reinterpretation of reward shaping as a method to affectively
control Reinforcement Learning is the key contribution of this second part.

As a third contribution, the concept of Inverse Reinforcement Learning is modified to re-
trieve scalarization weights from multi-objective policies learned by a Reinforcement Learn-
ing agent. By comparing the retrieved weights with those intuitively set by a human de-
signer reveal potential human biases. Also counter-intuitive effects, which are introduced
through Reinforcement Learning can be detected with the developed algorithm.

Overall, the results show that the interpretation of psychological models in a way to de-
ploy them in the machine learning domain can extend the understanding of artificial agents
and foster the development of new approaches. Of course, there remain unanswered eth-
ical and philosophical questions regarding the need to make machines more human like.
However, this dissertation makes a step in affective computing in order to give answers to
these questions by presenting examples of connections between psychology and machine
learning.

The question is not whether intelligent machines can have any emotions, but whether
machines can be intelligent without any emotions.

Marvin Minsky, 1986

4

Danksagung

An dieser Stelle möchte ich mich bei allen bedanken die diese Dissertation begleitet
haben und sie letztendlich zu dem gemacht haben was sie nun ist.

Allen voran gilt mein Dank Professor Klaus Diepold, an dessen Lehrstuhl diese Arbeit
entstanden ist und ohne dessen Unterstützung und Rat dieses Vorhaben von vorneherein
zum Scheitern verurteilt gewesen wäre. An seinem Lehrstuhl für Datenverarbeitung habe
ich sehr viel gelernt – nicht nur fachlich, sondern auch in der Lehre und dem Umgang mit
Studierenden.

Ebenfalls danken möchte ich allen Kolleginnen und Kollegen des Lehrstuhls. Besonderer
Dank geht an Dominik Meyer, Martin Rothbucher, Martin Knopp und Philipp Paukner
die sich aktiv bei den Korrekturen sowie mit Rat und Tat an dieser Dissertation beteiligt
haben. Gerade zu Beginn der Promotion haben Martin Rothbucher, Julian und Tim Habigt
ebenfalls maßgeblich meine Arbeitsweise und Vorgehensweise am Lehrstuhl beeinflusst
– dafür ein extra Dankeschön! Ebenso möchte ich Ricarda Baumhoer danken, die einem
das Leben am Lehrstuhl mit ihrer konstruktiven Art und Weise deutlich erleichtert und
auch immer ein offenes Ohr für Problemchen hat.

Ein großer Dank gilt auch meinen Eltern die mir nicht nur das Studium ermöglicht haben,
sondern mir auch regelmäßig motivierenden Beistand geleistet haben.

Nicht zuletzt, sondern am meisten danke ich dem liebsten Menschen in meinem Leben,
Kathrin, die immer für mich da war und Motivationstiefs mit mir durchlebt hat und auch den
ein oder anderen hilfreichen Tipp für diese Dissertation hatte – wir sind zusammen das
beste Team.

5

Contents

1. Introduction 9
1.1. Motivation . 9
1.2. Research questions . 11
1.3. Contributions and Scope . 12

2. Background 15
2.1. Theories and Models of Affective Computing 15
2.2. Affect Generation . 20

2.2.1. Component Process Model . 20
2.2.2. Ortony, Clore & Collins Model of Emotions 24
2.2.3. Zurich Model of Social Attachment and Fear 27
2.2.4. Model Implementation . 30

2.3. Reinforcement Learning . 35
2.3.1. Elements of Reinforcement Learning 35
2.3.2. Multi-objective Reinforcement Learning 44
2.3.3. Reward shaping . 46
2.3.4. Human values . 49
2.3.5. Preferences . 50
2.3.6. Affective states in Reinforcement Learning 52

3. Affective Evaluation of Machine Learning Experiments 55
3.1. Bandit Simulation . 56

3.1.1. Multi-armed bandits . 56
3.1.2. Implementation . 57
3.1.3. Experiment . 60
3.1.4. Results . 61

3.2. Gridworld . 64
3.2.1. Implementation . 64
3.2.2. Core Affect . 65
3.2.3. Experiment and Results . 68

3.3. Simultaneous Localization and Mapping 71
3.3.1. SLEmotion . 72
3.3.2. Stimulus Evaluation Checks . 74
3.3.3. Categorization Module . 82
3.3.4. Experiment and Study . 84

7

Contents

3.3.5. Results . 87

4. Affective Control 91
4.1. Reinforcement Learning with Preferences 92
4.2. Experiment . 94
4.3. Results . 97

5. Human Value Retrieval 101
5.1. Inverse Reinforcement Learning for Human Value Retrieval 101

5.1.1. Inverse Reinforcement Learning . 102
5.1.2. Adaptation to Scalarized Multi-objective Reinforcement Learning . . 106

5.2. Simulations and Test Cases . 107
5.2.1. Environment Description . 108
5.2.2. Test Cases . 109

5.3. Results . 110

6. Conclusion 115
6.1. Summary . 115
6.2. Future perspectives . 117

List of Acronyms 122

A. Appendix 123
A.1. Published algorithms . 123
A.2. Questionnaire of the SLEmotion experiment 125
A.3. Derivation of the Block Matrix Form of the Inverse RL algorithm 129

Bibliography 143

8

1. Introduction

"The robots are coming for taking our jobs!" That is what often is written in economic pub-
lications and for many people this is a frightening scenario. As engineers we make steady
progress in building new applications and systems equipped with highly developed artifi-
cial intelligence. The purpose is often to automatize traditional jobs in order to increase
productivity. This automation process is not limited to specific sectors. Furthermore, the
classical scenario where robots work autonomously behind security fences starts to crum-
ble and new systems tightly working together with human co-workers are the current trend.
In such shared environments a mutual and natural understanding is essential. In the fol-
lowing, this scenario is further motivated and related research questions are formulated.

1.1. Motivation

The current vision of researchers in the field of robotics are service robots tightly working
together with humans in a real world environment. In this world, robots are able to sense
their environment in real time and they react to dynamic changes. The robots render
different services and the human users can give any command at any time. Depending
on the current environment and the human user the corresponding robots react differently.
Similar to humans, the service robots will have their own personality and show emotions
giving the users the feeling of interacting with an intelligent being.

Such cognitive and social enabled robots will have huge impact on our everyday life.
Intelligent systems will make decisions that might have a profound effect in our well-being.
They might replace social contacts, take care of our children and family members, and
support our health care. Similar to current smartphones, robotic agents will participate in
almost every aspect of our daily life. Obviously, this will introduce massive problems in
terms of acceptance and skepticism.

Therefore, research has to focus on aspects fostering the development of personality
in artificial intelligent systems. Recent results of a preliminary study of Kate Darling of
MIT (2017), reveal that assigning humans traits to robots increases the level of anthropo-
morphism of the machine. This simultaneously helps people to accept the machine and
increase their tolerance for malfunctions. Experiences made with hospital robots arriving
already dubbed with individual human names by the company show allegedly a higher tol-
erance of people in cases of errors or strange behavior as compared to the old, classical,
squared-shaped, and non-anthropomorphically designed machines. While only assigning
human names to machines looks like a shoddy trick, real personality relates to personal

9

1. Introduction

preferences, emotions, and individual decision making. Those additional factors of person-
ality are also key components of trust between people and supposedly between humans
and robots (Norman, 2013). Instead of simply imitating preferences and emotions, an au-
tonomous system should be able to equally participate and cooperate with humans. It
should be able to respond to gestures, body motions, the way (e.g. the speed, the force-
fulness, etc.) an activity is performed, as well as to human feelings and thoughts. For this,
emotions provide a convenient channel of communication to express the internal state of
a system towards the user, or vice versa by recognizing the current emotions of the user
to grasp her/his current mood. Additionally, emotions support the task of prioritizing goals
and sub tasks.

Currently, there is no general or fully accepted definition that clearly separates the terms
feeling, emotion, and mood from each other. In accordance to other definitions used in
the domain of affective computing, feelings are often defined as an additional feature of
the state representation (Marinier et al., 2009). Feelings use originally a task-independent
format to combine current emotions and past mood, and thus are more general than a
single emotion or the overall mood. There is always a limited set of distinct mood states,
emotions, and feelings differentiating them from other objective state representations
which can have an unlimited number of features and value ranges. The elicitation of
distinct emotions and subsequent changes in mood and feelings, however, are state and
task-dependent and involve previously made experiences. Feeling as an additional state
representation can be used to guide control and the behavior of an artificial agent, as well
as a simplification of the state representation. The influence of emotion, mood, and feeling
is well-investigated by human emotion theories. For example, effects on the cognitive
processing are investigated in the work of Forgas and George (2001) stating the pervasive
influences on decision making and judgment in organizations. Also Phelps (2006) reviews
the interaction of emotions with other cognitive processes of humans. She shows the
impact of emotions on five topics: Emotion and memory, emotion’s influence on attention
and perception, emotional learning, processing emotion in social stimuli, and changing
emotional responses. Her study clearly indicates that emotion and cognition appear to
be intertwined at all stages. Furthermore, Gross and John (2003) consider the effects of
emotions on the human coping behavior, and Frijda et al. (1989) investigate the affective
implications on the action tendencies.

With these implications of feelings and emotions to human behavior in mind, it seems rea-
sonable, that there is an evolutionary cause for human emotions. And yes, in literature it is
said that emotions and feelings have helped us to survive. They are the reason for react-
ing quickly in dangerous situations without consciously grasping the situation (see Antonio
Damasio, Joseph LeDoux, and Robert Trivers for extensive theories about emotions and
evolution). While said to be essential for the evolutionary survival of human beings, the
following question obviously arises: Are artificial emotions and feelings also beneficial in
machine learning algorithms of future robots? The use of artificial emotions in machine
learning algorithms could be as influential as the discovery of Slagle (1963), as he im-

10

1.2. Research questions

plemented a method for autonomously determining the priority and the order of solving
sub-problems in given symbolic integration problems.

This motivates investigations to further improve confidence and trust into autonomous
systems by developing mechanisms that tightly incorporate machine learning and emo-
tions. Those mechanisms can support new ways for intelligent systems to provide mean-
ingful status, give explanations of their behavior, and ask for assistance when necessary.
The key element in those algorithms might be an artificial emotion model and the effects
caused by the calculated emotions.

1.2. Research questions

Considering the familiar question of choosing what and where to eat when you decide to
go out for dinner, a typical decision making scenario unfolds. There will be a set of known
restaurants and maybe some new recommendations as well as your own experiences you
have made before. Furthermore, you cannot be sure if there are some changes in staff
and ownership.

Do you choose the restaurant based on your experience, preferences for the location,
style, or the people accompanying you? Or do you try out a new recommendation of your
colleague? Why not taking pot luck and try a completely new restaurant randomly chosen
while walking down the main street?

As one can see, a simple every-day question results in a dynamic decision making pro-
cess. Describing all factors involved in this dynamic process touches several psychological
and philosophical topics. People solve this questions a million times a day, but consider-
ing intelligent autonomous systems, the response on this well known question can be a
short standard answer like "Sorry, I cannot answer this question.", or the systems start a
time-consuming optimization process. While the optimization process tries to integrate all
available user information and additional information sources (e.g. online reviews, rank-
ings, facts), the calculated result may not be better than a random choice in the eyes of a
human user.

On the other side, we as humans often either decide intuitively in a few seconds, or pon-
der on the choices for a while, discuss them and come to a reasonable rational decision.
Those dynamics taking place during human decision making is a common research topic
in the behavioral science in psychology.

Considering the motivation, the example above, and stepping back mentally and taking a
broader view, this dissertation investigates how human decision dynamics can be trans-
ferred into machine learning. This problem statement can be further decomposed into the
following questions:

• How to model the interaction of emotion and decision making in agent architectures
so that artificial agents are capable of generating consistent emotional states and
displaying believable emotional behaviors?

11

1. Introduction

• Is there a mapping between a machine learning algorithm and a model of emotions
which intuitively improves the human grasp of the machine learning progress?

• Is it possible to model affectively controlled decision preferences within a machine
learning framework?

• Can we adjust a multi-objective machine learning algorithm without introducing un-
intended human biases?

To answer these questions, this dissertation demonstrates machine learning algorithms
which are extended with psychologically informed components. While the extensions not
always deliver optimal decision policies, they enable the artificial agent to act more anthro-
poid and thus more believable and trustworthy. It might be a nontraditional approach not
to calculate the optimal decision strategy. But as the human successfully has proven, also
partially sub-optimal solutions lead to proper strategies in the long run.

1.3. Contributions and Scope

In this dissertation, I propose three directions of combining human values with machine
learning algorithms in order to give necessary elements for the development of personality
in intelligent systems.

First, I investigate psychological models and foundations for the integration of artificial
emotions into technical systems. This results in simulations of machine learning agents
able to express artificial emotions. Second, I extend the classical Reinforcement Learning
framework with the ability to control it with an external affective state. This gives the learn-
ing agent the ability to develop specific preferences. Thirdly, the weighting for multiple
objectives during decision making is strongly influenced by human factors and I present a
method for retrieving these weights from human decision policies which implicitly preserve
those biases.

Overall, this dissertation can be set into the context of Affective Computing. Affective
Computing is an interdisciplinary endeavour between psychology, computer science, and
cognitive science in order to simulate empathy. This requires that the machine is able to
interpret the emotional state of humans and that it can respond to it accordingly by gener-
ating and expressing artificial emotions. In order to generate those artificial emotions the
agent has to evaluate its current state and potential actions not only in terms of optimality,
but also with artificial emotions. Therefore, in this dissertation several experiments are
performed in which an agent interacts with its environment in order to achieve a goal. A
popular learning algorithm which is widely used in computer science and engineering to
let robots interact with the real world is Reinforcement Learning. Also, in this dissertation
Reinforcement Learning (RL) was selected as the basis for most of the experiments, as

12

1.3. Contributions and Scope

it represents a learning strategy that is also used by humans. Human decision making
is generally a recursive process which (re-)evaluates changing external and internal deci-
sion variables. This principle of evaluating rewards which are basically external decision
variables is also the basis of Reinforcement Learning. Additionally, Reinforcement Learn-
ing incorporates several aspects which are implicitly contained in a particular reward or
value function. The value functions are used in RL to select optimal decisions (or actions)
in already observed states while using trial-and-error methods in unknown states to gain
experience. The decision variables are updated by rewards or punishments observed in
each state. With this, Reinforcement Learning is a powerful decision making framework
for artificial agents, delivering under certain circumstances optimal decision policies while
reflecting basic components of human decision making:

• Uncertainty is reduced through exploration,

• experience is gathered by approximating state and action values,

• and preferences can be introduced by multi-objective techniques.

In Figure 1.1 these components are drawn in relation to decision making and Affective
Computing. Decision making is related to the objectives, the experience, and uncertainty
of the current scenario. The outcome depends on the policy followed by the decision maker
and can be denoted as the extrinsic reward. Obviously, the perceived value of the reward

Affective Computing

Emotion
Generation & Expression

Emotion Recognition

Affective Factors

Models & Implementations

Decision Making

Policy
Objectives

(Desires & Needs)

UncertaintyExperience

Cognition

Intrinsic
Rewards

Extrinsic
Rewards

Values & Preferences

B
ias

U
p

d
at

e

Figure 1.1.: Connections between decision making, Affective Computing, and cognition. The af-
fective components are biasing the decision making process while outcomes are appraised and
used to update emotional experiences.

depends on the (subjective) preferences of the decision maker. That means, the values
and preferences for a decision outcome are related to both, internal and external factors.
Consequently, the result of appraising a set of possible choices during decision making is a

13

1. Introduction

preference order according to internal values. Since these internal values and weightings
for specific properties of a decision are the result of an affective process, the box Values
& Preferences in Figure 1.1 is split into two halves, representing in this way the affective
impact on this component. It is often assumed that humans are rational decision mak-
ers, however there is evidence that the human emotional system is biasing each decision
(De Martino et al., 2006; Kahneman and Tversky, 1979). Especially in cases of incomplete
information or uncertainty, people rely on heuristics and on learned rules of thumb. Those
heuristics are subjected to former experiences and their related emotions, e.g. losses
are correlated with aversive emotions while gains are associated with positive (appetitive)
emotions. This fast evaluation of situations, events, or persons in relation to resulting emo-
tions is often called affective appraisal in psychology. That means, emotions are a kind
of intrinsic reward assigned to previous actions and outcomes of decisions. In case of
Affective Computing, emotions are recognized or generated by an artificial agent during
the interaction with humans. On the one hand, recognition of emotions should improve the
agent’s interpretation of human actions, while on the other hand artificial emotion expres-
sion is intended to enhance the communication abilities of the machine. The synthesis
of artificial emotions and the interaction of cognitive and affective processes within artifi-
cial agents should replicate the intelligent behavior observed in humans and thus should
improve the quality and believability of their expressions. However, there is still a lack
in general architectures for the modeling and integration of emotion theories to technical
cognitive architectures (Rodríguez et al., 2016).

The topic of expressing emotions and using them as an indicator for the performance
of the underlying machine learning algorithm is part of this dissertation. In the follow-
ing, Chapter 2 first provides an introduction to related topics. Then, in Chapter 3, three
combinations of artificial emotion models with machine learning algorithms are presented.
Chapter 4 sheds light on a method for biasing decisions in Reinforcement Learning in re-
lation to an affective state. Finally, in Chapter 5 an algorithm to retrieve biased decision
weights from human policies is described.

14

2. Background

In Affective Computing, many research directions exist and they are related to other sci-
entific fields like psychology, computer science, and neuroscience. In this background
chapter, some basic directions of this still young field of research are introduced. Due to
the breadth of related topics only a limited sub-set will be addressed. The focus lies on
the affect generation and modeling aspect of affective preferences and biases. This fol-
lows the main functions of emotions as proposed in psychology: Humans use emotions for
communication, to adjust their motivations, and to guide attention-direction.

Affective Computing and sentiment analysis are inextricably bound to each other, and
the detection of human emotions in given audio, video, or text data is an essential method
for mutual communication in human-machine interaction. While this aspect of detecting
emotions and sentiments in data is not in the focus of this dissertation, however it is a rele-
vant and active research direction, and a comprehensive overview is provided in (Cambria,
2016).

As the development of affect-sensitive systems is intertwined with the century-long psy-
chological research on human emotions, an overview of basic emotion theories relevant
for Affective Computing is given. Besides the introduction of these emotion theories, three
system theoretic models of emotions are described. Next, an introduction to Reinforce-
ment Learning is given as almost all experiments in this dissertation are based on this
machine learning method. Reinforcement Learning was selected as it represents a learn-
ing technique which is inherently used by humans, and nowadays RL is also a standard
machine learning approach. The basic reward mechanism of the classical Reinforcement
Learning framework is then extended by the concept of multiple objectives and reward
shaping. Reward shaping is a method to guide learning and introduce preferences into the
learning process. Finally, the additional topics of preferences, human values, and affective
states in RL are briefly introduced.

2.1. Theories and Models of Affective Computing

Modeling of emotions is an interdisciplinary endeavor between psychology and computer
science (Picard, 1997). There are two goals for improving the models of emotions: achiev-
ing a better theoretical understanding of human emotions and the enrichment of artificial
agents with an affective core for understanding and generating human-like emotional ex-
pressions and reactions. The latter, the application of emotions in technical systems is a
primary focus for computer scientists and the first goal is more theoretical and is mainly

15

2. Background

investigated by psychologists (Broekens, 2010; Reisenzein et al., 2013). Both goals need
profound and faithful computational models of emotions. On both perspectives – psycho-
logical and technical – the best way to achieve a deep theoretical understanding of mental
processes is the attempt to simulate (or synthesize) them in artificial agents (Boden, 1988;
Rodríguez et al., 2016). This may also help to overcome a still existing problem in psychol-
ogy: It is difficult to unify a general accepted theory of human emotions. With simulations,
there exists a way to generate a lot of experimental data which may help to empirically
validate the models.

Today, we distinguish three main types of emotion theories (Fontaine, 2013). They are
the basis, except for a few specific cases for most of the existing computational models:

1. Discrete emotion theories base on the work of William McDougall and Charles
Darwin and were taken up in the 20th century by Paul Ekman (1992) and Robert
Plutchik (1991). The key assumption of this theory is that there exists a fixed num-
ber of discrete basic emotions, which are also recognized to some extent across
different cultures (Russell, 1991). These emotions are the response to mainly hard-
wired programs (often called affect programs) we have evolutionary learned. The
most-well known theory is that of Ekman, which describes the existence of seven
basic affective programs: happiness, surprise, contempt, sadness, fear, disgust, and
anger. These programs are activated by suitable perceptions or appraisals and gen-
erate appropriate physiological reaction patterns and particular bodily (e.g. facial)
expressions. Ekman’s theory was extended by allowing blends of basic emotions
(e.g. distress supports sadness), in order to support more complex emotions and
different intensity levels. In the course of this extension, also the definition of the af-
fect programs were modified allowing one affect program to modify the parameters
of another program. This was an important step, since emotions are subjected to
strong interplays, which could now be correctly taken into account. Since Ekman’s
and Plutchik’s first publications, there is still no strong and widely accepted empirical
evidence for their theory in psychology. However, basic emotions are often used and
have broad acceptance in computer science and engineering, and therefore more
and more evidence for this theory is gained in these domains.

2. Dimensional or constructivist theories represent the full spectrum of emotions
with a small number of continuous dimensions. A first model, which is basi-
cally still used in more modern models was formulated by Wilhelm Wundt (1897).
He has modeled the emotional experience of subjects with the dimensions plea-
sure–displeasure, arousal–calming, and tension–relaxation. The dimensional theo-
ries are often used in psychological studies, as the subjects can report their own af-
fective experiences on the given dimensions. The subsequent derivation of a model
gets simplified.

Russell and Mehrabian propose two very different dimensions in the affective space
(Russell, 1978; Russell and Mehrabian, 1977). The first bipolar dimension is valence

16

2.1. Theories and Models of Affective Computing

on which negative and positive emotions are counterparts (cf. Figure 2.1). Valence
is a measure for how content a person is, and high values indicate happiness or
gratification (pleasant emotions), while low values correspond to unpleasant emo-
tions like boredom and anger. On the other dimension low-arousal and high-arousal
affective experiences are opposed to each other. Arousal corresponds to the state
of how agitated or excited a person is, and the related intensity value is indepen-
dent of whether it is a positive or negative excitation. High values are results of rage
or surprise, while low values corresponds to boredom or well known situations. In
Figure 2.1 discrete emotion terms are placed on a circle around the origin in the
dimensional space.

Arousal

excited

happy

contented

relaxeddepressed

sad

distressed

nervous

V
alence

PleasureDispleasure

Figure 2.1.: Simplified Valence-Arousal space of Russell’s dimensional emotion model

Psychological constructionists integrate dimensional and basic emotion theories and
develop models assigning discrete emotion terms to specific combinations of basic
psychological ingredients (the underlying dimensions). There exist other dimen-
sional models sharing also two (or three) dimensions while using slightly different
dimension names, but assessing similar psychological phenomena. In most two di-
mensional models, the arousal dimension is common, but the valence dimension is
used interchangeable with the dimension of displeasure-pleasure. In this disserta-
tion, the Valence-Arousal space (VA-space) is used to describe affective phenomena
in two dimensions. Sometimes, the models include a third dimension, which relates
to power (dependency on someone else, also called potency, control, and domi-
nance (Mehrabian, 1996)). The dimension of power is often found in large studies
with large samples and a focus on interpersonal emotion terms, and is often not
obvious in studies investigating intrapersonal emotions.

17

2. Background

3. Appraisal theories assume that perceived events are either positive or negative.
This classification of events is the result of a comparison between the event’s con-
sequences and one’s desired goals. Hence, an event is either positive if it is goal-
congruent (fulfills a goal/desire) or it is negative if it is goal-incongruent. This kind
of personal appraisal process was first explicitly described by Lazarus (1966) and
has been kept up by succeeding appraisal theorists, e.g. Moors et al. (2013). In
those following theories, emotions are characterized as processes interacting with
each other and basic subsystems of human functioning (called components). Events
are classified according to their goal-conduciveness and are appraised in relation to
current motivational states. The most elaborated and systematic representatives of
the modern appraisal theories are the Component Process Model (CPM) which was
developed by Klaus Scherer (2010), and the OCC model (Ortony et al., 1990).

At a first sight, the different theories seem to be incompatible, and additionally, there is
some ongoing debate between the authors of the different theories. Therefore, in the
following their basic theory and weaknesses will be pointed out and their relevance from
an engineering perspective is stated.

The discrete emotion theory mainly ignores neural correlates of emotions in the brain,
and therefore the interrelation between different emotional states and mood is not well
represented in the theory. Furthermore, cultural differences in the contextual sensitiveness
causing the expression or suppression of particular emotions are not taken consistently
into account (Sauter et al., 2010; Ekman et al., 1969). Also, in applications based on dis-
crete emotion theory the contextual dependence of emotions is often neglected, resulting
in improper emotional reactions of the system or bad emotion recognition performance.
There is a general agreement, and findings of several studies show that at least four basic
emotions can be cross-culturally utilized: joy, sadness, anger, and fear (Sauter et al.,
2010; Pell et al., 2009; Scherer et al., 2001; Ekman et al., 1969). Depending on the final
application, this limited set of emotions can be seen as a constraint in the development of
cross-culturally accepted artificial agents.

In dimensional theories, the way a particular model is interpreted is crucial. Often a
model is seen bidirectionally, and distinct emotional expressions are mapped onto the
dimensions of the model and vice versa. Generally, the models are created in studies
where subjects rate their feelings on given scales, and a dimensional representation or
principal components are determined afterwards. In technical implementations, such
models are then used the other way round: The computational model calculates values for
each dimension and they are used together with a dimensional theory to translate them
into distinct emotional expressions. From an engineering perspective this is an elegant
and efficient way to map dimensional values to distinct emotion expressions, but often
psychological evidence and empirical studies are missing. Despite this missing link, in
Chapter 3, we will investigate such an approach and see the benefits of dimensional

18

2.1. Theories and Models of Affective Computing

emotion models in artificial systems.

Appraisal theories, however have been taken up by most approaches and demonstrators
of artificial emotions in technical systems. They have been used to investigate how emo-
tional cues can be generated and if they can be used to make an agent more socially
intelligent and believable. One remaining question of appraisal theories in the engineering
context is the detection and classification process of events and their elicited emotional
reactions. It is complex to describe and to concretize how an emotional reaction is caused
by an event. Often, there is a large space of different situations and related events causing
the same emotional reaction. The available techniques for processing and capturing real
world situations and creating suitable cues which cause appropriate emotional reactions
in a technical system are not sufficient. The following example, provides a brief impression
of this issue: A person reacts with joy on the arrival of a friend. The friend causes this
particular feeling of joy, e.g. when he/she arrives at the person’s home, but also, when
he/she calls you just after landing, or if the person just receives a message of someone
else, that the friend has arrived safely at the airport. In all of these examples, the situative
context and the way the message of the friend’s arrival is perceived or received by the
person is significantly different, but the elicited feeling of joy is comparable.

Concluding remarks on emotion theories: Basic and dimensional emotion theories
seem incompatible from a psychological viewpoint. But several components like the com-
ponent based appraisal of events, the mapping (dimensional reduction) to distinct dimen-
sions, and the expression of dimensional patterns with basic emotions provide necessary
foundations for a successful implementation. Most model descriptions are very clear on
the definitions of components, signals, and appraisal variables for the different emotions.
What is missing, however, are the formal definition of input signals and their formats. For
applying human models of emotions in technical system, a mapping between sensors and
system states as well as the inputs of the psychological models have to be defined. Such
a mapping is often called appraisal-derivation model.

19

2. Background

2.2. Affect Generation

Affect generation means the ability of an artificial agent to generate synthetic emotions,
and optionally to express them via verbal or nonverbal behaviors. In engineering, this topic
plays an important role in building so called Embodied Conversational Agents (ECAs).
ECAs can be software based systems (like virtual characters) or physical robot platforms
capable of expressing verbal or nonverbal emotions. The primary goal of development
is the enhancement of the human-robot/computer interaction. As already mentioned, the
artificial expression of emotions is not researched in this dissertation. Instead, it focuses
on the underlying models of emotions which are necessary to generate the signals for the
expression module of Embodied Conversational Agents. So, the structural relationship
describing the mapping between appraisal variables, motivational states, and specific dis-
crete emotions is investigated in the following. The result is a so called appraisal-derivation
model, which transforms state representations into appraisal variables.

As the appraisal theory is the most influential theory of emotion in Affective Computing
today, this section details the two prominent models: the Component Process Model (CPM)
and the OCC Model. Both models deliver descriptions about representing emotions with
formal languages and rules to manipulate them by well-defined operations. Additionally, in
Subsection 2.2.3 the Zurich model of attachment and fear is introduced, as it represents
a very well-defined and system theoretic oriented model of two basic feelings which are
strongly related to emotions.

2.2.1. Component Process Model

The Component Process Model as introduced by Klaus Scherer (2009, 2010) is the result
of his functional analysis of emotions in studies with individuals. It models the emotion
elicitation process of human emotions and can be used to predict human like emotions
for specific events. The dynamic and recursive model is based on appraisal theories in
psychology. That means a relevant event (and its potential consequences) is appraised
according to a set of criteria. Those criteria are not only considered simultaneously, rather
they are ordered in a multi-layer principle creating the concept of appraisal components.
There are four central appraisal objectives:

1. How relevant is the actual event for me?

2. What are the consequences/implications of this event and how do they affect my
personal well-being and/or future goals?

3. Can I cope with the consequences?

4. How significant is the event for my self-concept and does it breach social norms and
values?

20

2.2. Affect Generation

Event

Multi-level
appraisal

Relevancy

Consequences

Coping

Significance

Motivational
changes

Physiological
responses

Fusion to central
representation

Categorization
and observable

emotion generation

Component patterning module

Figure 2.2.: Basic flow diagram of the dynamic and recursive architecture of the Component Pro-
cess Model (CPM). A salient event is appraised and causes motivational and physiological re-
sponses which are finally expressed as emotions.

An evaluation for each objective is achieved by underlying Stimulus Evaluation Checks
(SECs). Depending on the particular check simple and fast or complex calculations are
performed to create consistent representations of incoming stimuli. These calculations can
additionally be grouped into different levels of processing. They range from low-level neural
circuits, like modulated brain functions (e.g. increased activity of the amygdala in case of
salient events) delivering unconscious cues for an event, to more complex considerations
which involve memories, associations, and knowledge (Scherer, 2010). It should be noted,
that the outcomes of the Stimulus Evaluation Checks are subjective as they base on the
individual’s inference which takes memories and knowledge into account. Furthermore,
SECs are influenced by mood states, cultural differences, and group pressures (Manstead
and Fischer, 2001). Therefore, in technical systems the simulated SECs should be seen as
one representation of many possible implementations. The implemented appraisal process
modeled with SECs is subject to the designer’s bias and often bases on empirical findings
which are not necessarily generally applicable.

The sum of the individual checks is the appraisal result and triggers changes in the
intrinsic motivations and physiological responses. In this step, specific reaction patterns
depending on the appraisal are simultaneously caused in different physiological and moti-
vational subsystems (component patterning module). A central integrated representation
is generated by taking together the appraisal results, the motivational changes, and the
physiological responses. This central representation becomes in parts conscious and is
assigned to fuzzy emotion categories. In Figure 2.2, the arrows indicate that all con-
secutive steps of the CPM recursively feed back their results and thereby influence the
upstream components. The individual SECs and some of the feedback loops are omitted
in the figure as they are not directly relevant for the practical implementation of the CPM.

From an engineer’s viewpoint, the CPM has the benefit that it can be implemented as a
decision tree and that computational resources can be optimized through the hierarchical

21

2. Background

order of the SECs. In cases where top level SECs calculate a result obviating the need
for further checks in deeper levels of processing, a speed up of the appraisal process can
be achieved. For example, if the relevancy check concludes that a stimulus is not goal
relevant, the remaining SECs are obsolete and not carried out. Additionally, the hierar-
chical structure of the Component Process Model allows the integration of it into more
complex cognitive architectures, such as a model of affect and cognition (cf. Section 3.2
and (Norman et al., 2003)).

In the following paragraphs two state-of-the-art implementations of the Component Pro-
cess Model are described. The descriptions should point out the general ideas and the
differences of the implementations. This supports and gives further understanding to the
design decisions made for the implementation of the CPM in Section 3.3 of this disserta-
tion.

WASABI In the Affect Simulation for Agents with Believable Interactivity (WASABI) ar-
chitecture (Becker-Asano and Wachsmuth, 2010), the central point is the mapping of
the appraisal outcome to the three-dimensional space of Pleasure, Arousal, and Domi-
nance (PAD). In this mapping, the dynamic of the three feelings is modeled so that a
continuously changing and self-rebalancing internal state of the artificial agent is gener-
ated. The input of the mapping step is the result of appraised internal or external events.

Generally comparing the WASABI architecture with the CPM, the appraisal process and
the categorization step is combined in the WASABI architecture. In the CPM, the ap-
praisal process consists of multi-level appraisals capable of doing very sophisticated and
detailed evaluations (the Stimulus Evaluation Checks). On the contrary, in the WASABI
architecture this is represented with a less complex belief-desire-intention (BDI) approach,
which models rational reasoning about possible events in the current situation. The BDI
approach follows the work of Rao and Georgeff (1991), but is limited in the way it evalu-
ates the normative significance of the events. It creates representations about the agent’s
goals and plans and evaluates current events and previous expectations in order to gen-
erate new expectations for achieving a desired goal. These expectations are used in the
reactive appraisal sub-module to assess an event’s intrinsic pleasantness by comparing
the event’s actual consequences with its calculated expectations. In a second sub-module
(cognitive appraisal), events are classified according to their goal conduciveness as well
as the agent’s abilities to control the possible events of the current situation. Finally, a
simple coping strategy is implemented in the cognitive reappraisal module, which lets the
agent leave if it gets very angry and come back after it has calmed down again. Basically,
with these appraisal checks the WASABI architecture addresses three of the four appraisal
objectives given in the original CPM (the normative significance check is missing).

These appraisal checks generate so called emotional impulses which are represented
in the PAD space and used to update the aware emotion of the agent in the subsequent
categorization module. The categorization module of the WASABI architecture simulates
emotion dynamics by shifting a reference point within the PAD space towards the newest

22

2.2. Affect Generation

emotional impulse. The strength of this shift depends on a simulated general mood state,
while simultaneously the reference point is pulled back to the origin of the PAD space with
the simulated dynamic of a spring-mass system. This simulated dynamic in the mapping
process of the WASABI architecture has no direct equivalent in the CPM, but covers some
features that are described by Scherer regarding the component patterning module and
the categorization module.

In summary, the WASABI architecture is psychologically well elaborated and implements
basic aspects of the Component Process Model. It has its restrictions and limitations in
the depth of the appraisal process, and the BDI approach has to be especially setup for
each domain.

PEACTIDM In contrast to most other computational emotion models, PEACTIDM con-
nects cognition and emotion and thus represents a more complete theory of cognitive
control in artificial systems (Marinier et al., 2009). The abbreviation stands for Perceive,
Encode, Attend, Comprehend, Tasking, Intend, Decode, and Motor (PEACTIDM) and in-
troduces a cycle consisting of these eight cognitive functions enabling the simulation of
cognition in artificial agents. These functions are implemented in a general architecture
for artificial agents called Soar (Laird, 2012). The Soar framework provides the basic
functions a cognitive agent needs: Memories (both long-term and short-term), process-
ing components that combine knowledge and perception, as well as motor systems (its
acronym Soar stands for the main components and functions namely State, Operator, Ap-
ply, Result). Together with the PEACTIDM cycle, the agent is able to calculate information
about goals, needs, relevance, and expectations for events and situations. By implement-
ing the appraisal checks as proposed by Scherer, the Soar/PEACTIDM architecture allows
the calculation of so called appraisal frames for each situation and instance of time. The
frames are subsequently segmented and assigned to categorical and linguistic emotion
labels. An intensity value is also calculated by combining the numeric dimensions of the
current appraisal frame using an intensity function. The intensity function is given by the
average of multiple appraisal dimensions weighted by a surprise factor. The surprise fac-
tor is the result between the discrepancy from its expectations about the probability of a
consequence of an event and the actual outcome. Furthermore, in the PEACTIDM ar-
chitecture the categorical emotion is defined as the current feeling of the agent and the
corresponding intensity value is called feeling intensity. Also the agent’s mood is modeled
by dynamically adjusting its dimensions according to the current emotion and a temporal
decrease towards a neutral mood.

Compared to the previously described BDI approach, the Soar/PEACTIDM architecture
allows a more general and extensible representation of the world (or domain) which, how-
ever, requires a complex description of the domain. The architecture also implements most
features of Scherer’s CPM and goes even further by integrating it to the cognition process
of an artificial agent, and by including a simple mood model. As the original CPM does
not provide sufficient details to implement all kinds of appraisals and a mood model, the

23

2. Background

PEACTIDM architecture introduces own constraints and assumptions leading to a slightly
different underlying appraisal model.

2.2.2. Ortony, Clore & Collins Model of Emotions

As one of the most influential model, the model of Ortony, Clore, Collins (OCC) repre-
sents a structural model of criteria (appraisal variables) distinguishing between different
emotions. The general structure of the model can be compared to a decision tree and
therefore is often implemented in this way. The original model was proposed with only
five positive and five negative types of emotions which could be classified according to a
relatively simple and fixed scheme of causes (e.g. something good happened→ reaction
joy, happiness). Later the causes were formalized into different types and the appraisal
mechanism got more detailed. In Figure 2.3 a shortened version of the extended model
is depicted. The decision tree starts at the top level with a distinction between events,

approve/disapprove

Valenced reaction to

Events Actions of
others

Object
features

pleased/displeased
approve/disapprove like/dislike

consequence
for others

consequence
for oneself

actor:
onself

actor:
other

good bad prospects
relevant

prospects
irrelevant

happy-for
resent

gloating
pity

fortunes of others

pride
shame

admire
reproach

attribution

joy
distress

well-being

hope
fear

prospect-
based

love
hate

attraction

Figure 2.3.: Illustration of the theory of emotions according to the findings of Ortony, Collins, and
Clark (OCC model). Events, actions, and objects are hierarchically appraised according to specific
categories in relation to goals and motivations (adapted from Ortony et al. (1990)).

actions, and objects. In these three main branches, the emotions are classified in terms of
(1) pleased or displeased events, (2) approved or not approved actions of others, and (3)
subjective aspects of objects (like or dislike a thing). This general distinction is then fur-
ther classified depending on the consequences for oneself or others, or in case of actions,
depending on the actor of an action. Finally, emotions result as positively or negatively va-
lenced reactions to one or another of these classifications. Altogether, including compound
emotions the model describes 22 types of emotions in this way.

24

2.2. Affect Generation

For this kind of emotion assignment, the agent needs a coherent and relatively stable
value system of its environment. That means, the agent has to constantly appraise events,
other agents or objects according to a (only slowly changing) system of goals, norms and
its personal taste. For example, if someone responds with terror on seeing a mouse in
his/her bedroom today, one generally expects that the person will also respond with terror
on the next day as well. The basis for such a comprehensible expectation is a consistent
system of values. Without such a consistent system of values that represents the basis of
the agent’s reaction, most of the resulting emotions and actions of the agents won’t make
sense to a human observer.

The definition of a consistent value system is not the only issue of the OCC model.
Ortony et al. describe their model as computational tractable and compared to other psy-
chologically informed models this account seems right. Attempting to implement the model
ad hoc quickly reveals ambiguities which require workarounds to solve them. For example,
the OCC model is often understood as an inheritance diagram by computer scientists and
thus implemented in this way by Steunebrink et al. (2009). A final categorized emotion
is then seen as a specialization of a parent type plus some subsequent child types (e.g.
distress is specialization of a displeased event plus a relevant consequence for oneself).
Steunebrink et al. also interpreted the OCC model in this way, but proposed a new logical
hierarchy with an additional temporal order of the elicited emotions. This temporal ordering
of the decision tree is new, and a corresponding description is missing in the original publi-
cation of the model. However, the results of Steunebrink et al. reveal that such a temporal
interpretation of the model improves its performance. Such heavily differing details in the
implementations of the OCC model are the main drawback of the original OCC model, as
they elude comparison of the various implementations.

The Fuzzy Logic Adaptive Model of Emotions (FLAME) developed by El-Nasr et al.
(2000), and A Layered Model of Affect (ALMA) developed by Gebhard (2005) are the
most popular implementations basing on the OCC model. As the structure of the OCC
model can be easily transferred to implementations, there exist quite a number of OCC-
inspired systems, e.g. EM, HAP, FearNot!, EMA, Oz, MAMID, and Greta (recent reviews
of those implementations were written by Calvo et al. (2015, pp. 101-104) and Marsella
et al. (2010). In the following, the basic principles of ALMA and FLAME are illustrated as
these two implementations are popular and show significant differences.

ALMA ALMA is a layered architecture of cognitive decision making that involves emo-
tions. It comprises three affect types which are distinguished according to their temporal
characteristics. Short-term reactions are expressed as emotions, a mood state represents
the medium-term-affects, and the personality of the artificial agent models long-term af-
fects. ALMA is mainly used in conversational agents in order to improve the dialogue by
adding non-verbal and verbal emotional cues. The core module modeling the affects is the
EmotionEngine which bases directly on the OCC model. The OCC model is additionally
combined with the five factor model of personality (McCrae and John, 1992). According

25

2. Background

to the theory of the OCC model, each of the 24 emotions is generated fulfilling a set of
specific emotion eliciting conditions (EECs). In case of ALMA, which is mainly focused
on dialogue systems the EECs are checked upon meta-information extracted out of the
current dialogue. But they can also extracted from observations and situational appraisals.

The developer can assign personality profiles to the model, which is in turn used by the
five component model of personality to alter the emotion intensities accordingly. Depend-
ing on the distance between the origin of the PAD space and a point corresponding to a
mood state, the intensity is represented. Similar to the WASABI architecture above, all ac-
tive emotions calculated by the EmotionEngine are used to drive the dynamic of the overall
mood state. The mood state is altered by an elicited emotion which is mapped into the PAD
space according to a fixed look-up table. The emotion represented as a point in the PAD
space is used to push and pull the combined mood state in a particular direction. In this
way, ALMA maps appraisal results to both, discrete emotion labels and to a dimensional
core affect. The discrete emotion label is outputted in each cycle. The label is a high level
representation of the internal appraisal result and can be used to drive non-verbal expres-
sions of the agent. Besides these short-term expressions, the mood state lasts longer and
is more stable and is thus used for more general behavior regulation (gazes, gestures, and
postures).

In summary, ALMA exploits the OCC theory in terms of a hierarchical appraisal process
and implements an additional dynamic mood model in order to simulate the temporal char-
acteristics of emotions. The main drawback of ALMA is the strong focus on conversational
agents, and the fact that subjective appraisal rules (EECs) for the characters have to be
(manually) provided. This limits the general applicability of the approach, especially in
scenarios where only implicit communication takes place.

FLAME The Fuzzy Logic Adaptive Model of Emotions (FLAME) bases on the OCC the-
ory, too, but is also influenced by Roseman et al.’s (1990) event-appraisal models, and
Bolles and Fanselow’s (1980) inhibition model. Furthermore, the model was extended
with a learning component which exploits inductive machine learning techniques like Rein-
forcement Learning to learn the impact of events, a probabilistic approach to learn action
patterns, and a heuristic approach to learn specific properties of actions.

The authors of FLAME mainly criticize the lack of a complete picture of the emotional
process in the existing appraisal models and their limited adaptability to dynamic situations.
Therefore, they use fuzzy logic to represent emotions as fuzzy sets and fuzzy rules to map
them to distinct emotions and behaviors. The use of fuzzy logic enables smooth transitions
between the calculated emotions and allows a mixture of triggered emotions, which is not
described in the original OCC theory. The elements of a fuzzy set are influenced by the
perceptions, the expectations and the emotional state of the artificial agent (El-Nasr et al.,
2000). Additionally, FLAME utilizes the aforementioned machine learning techniques to
learn connections and relationships between objects, events, and expectations to increase
the adaptability of the agent in dynamic environments.

26

2.2. Affect Generation

Besides the emotional and the learning component, the FLAME model also includes a
decision-making component which completes the architecture. By using these three major
components, the agent perceives an external event and simultaneously passes it to the
emotional and the learning component. In the emotional component, the appraisals are
calculated while also (newly) learned expectations and event-goal associations are taken
into account. Then the fuzzy rules are applied and a mixture of artificial emotions is out-
putted. A subsequent filtering step is applied to limit the emotionally influenced actions
and behavior according to current motivational states of the agent. The motivational states
in turn, are also influenced by the simulated emotions so that a motivational and emotion-
ally driven regulation of the actions and behavior can be achieved. For example, while an
agent is acting on fear it suppresses other motivational states (like charging the batteries)
and tries to reach a safer place. Afterwards at the safe place, the appraisal of the situation
changes accompanied by easing emotions and accordingly changing motivational states
(the agent starts to check the battery state regularly). Besides this action and behavior
regulation, also the calculated emotions are filtered using intensity based suppression of
weaker emotions (e.g. a strong feeling of sadness suppresses a light feeling of joy).

In their experiments, El-Nasr et al. show that the adaptability of the artificial agent is a
critical aspect of its believability during human interaction. In FLAME they use their learning
component to achieve greater adaptability, but learning still depends on predefined objects
and events which have to be recognizable by the agent. Also the necessary user feedback
which is used for the appraisal of user actions is predetermined. Furthermore, FLAME only
implicitly addresses personality through hand-tuned parameters and heuristics used in the
calculations. Incorporating personality into FLAME is difficult due to its structure, however
it is an essential and missing feature of the model. In spite of these weaknesses, FLAME is
currently one of the most elaborated emotion model, which bases on the appraisal theory
and incorporates memory, learning, and a temporal processing structure.

2.2.3. Zurich Model of Social Attachment and Fear

Besides the common emotion models (e.g. CPM or OCC) there exist different psychologi-
cal models which were derived from empirical studies. The German psychologist Norbert
Bischof proposed in his articles on the Zurich Model of Social Motivation (1989; 1975) a
model of the human motivational systems. It is one of the most applicable psychological
models of social motivation, since Bischof describes his model in a psychological manner
and in a system theoretic way. Three basic motivational systems can be distinguished
into (1) the security system, (2) the arousal system, and (3) the autonomy system. As
the systems are precisely described in a system theoretic way, the model qualifies for a
technical implementation. Basically, the structure of the model consists of three intercon-
nected feedback loops comparing internal set points with the actual motivation levels. The
simulation model receives its information about the surrounding environment through so
called detectors.

In the following, the basic concept of the Zurich model is described, while further im-

27

2. Background

plementation details are postponed to the experiment section (Section 3.1). As already
denoted, the general model structure consists of three subsystems. The first two systems
– the security and arousal subsystem – will be explicitly described in this dissertation, the
autonomy system is not considered in detail. Although the autonomy system plays a key
role in the Zurich model as it controls the set points of the security and arousal subsys-
tems, it was not simulated in the experiments and the set points were set manually to keep
exact control.

Based on empirical studies, the model describes the behavior and actions performed by
a child in the presence of surrounding objects. These objects could either be things like an
ordinary ball or other humans. The recognition and classification of these objects thereby
is not a part of the original model. Instead, so called detectors are assumed to assign two
values – relevancy R i and familiarity F i – to each object i . In addition to these two values
each object has a position z i . The complete Zurich model is drawn in Figure 2.4.

DetF

DetR

DetLoc

Iai

Isi

Pai

1-Fi

H(xi)

H'(xi)
xi

Pi

Fi

Ri

Fi

Ia

d

F

P

E

D

zi

yi

xi

Ma

Ms

Aa

As
Is

a s

Object
Features

1-F

(F i · P i)
P i

1 − (1 − Pi)

(I si)

(I ai)

(∆t)

xi

Figure 2.4.: Schematic realization of the Zurich model; the security value and activation is drawn
in red and the arousal value and its corresponding activation is drawn in blue.

Although there is no extensive description of implementation details of these detectors,
their characteristics are clearly defined in the original publications of Gubler and Bischof

28

2.2. Affect Generation

(1989; 1991). The relevancy detector (DetR) can be thought of as a sensor detecting the
actual relevance of an object or person with regard of oneself. It is a measure of the
potency of an object or person to be able to alter the situation. For example, in studies
people showed that this value is highest for mature adults, lower for less potent siblings,
and lowest for physical objects like a doll. In case of technical systems, the relevancy
detector can be represented as an image recognition system capable of distinguishing
adults, children, objects. Further, in more abstract examples like the simulated experiments
in this dissertation the relevancy detector can be implemented as a mechanism evaluating
the impact of an object or event on the situation. Large impacts result in high relevance
values and negligible events cause small relevance values. The potency of an event has
to be predetermined or learned with a suitable algorithm.

The familiarity detector (DetF) senses the familiarity of a given object. Its output value is
high if a lot of redundant information of an object are observed, but low if new features and
information of a object are perceived. Considering again a technical scenario, the famil-
iarity sensor can be implemented as a face recognition system with an attached database
to record the detected faces and the duration of interaction (a similar approach is also
possible with physical objects).

The third detector (DetLoc) senses the physical and psychological distance of persons
and objects. Generally, the distance measure corresponds to the physical distance be-
tween an object or other person and oneself, and is calculated e.g. by the Euclidean
distance measure. Additionally, the Zurich model supposes that the distance is biased by
psychological mechanisms, but does not deliver a concrete description of those mecha-
nisms. Therefore, in the current implemented models, the psychological bias is modeled
using hyperbolic functions H(x i) which let the proximity values exponentially decay.

Together, these three detectors create the security subsystem, which summarizes the
three outputs of the detectors to a variable s which monotonically increases with the value
of familiarity, relevance, and proximity (Gubler and Bischof, 1991). In the model, this is cal-
culated by weighting the familiarity value F i with a potency value P i which is calculated by
the relevance value multiplied by the distance. The arousal value a is determined by multi-
plying all potency values with the inverse familiarity values (1−F i). Further implementation
details are given in Section 3.1.

Both, the arousal and the security value are then compared with two set points, en-
terprise E and dependency D, respectively. The comparison is done by calculating the
difference between the actual value and the set point, which results in a discrepancy called
activation (As and Aa). Further, so called incentive vectors Isi and Iai are determined by a
scalar multiplication of the vectors pointing in the direction of arousal or security sources.
The incentive vectors are superimposed and weighted by the corresponding activation
values resulting in so called momenta, Ms and Ma. Finally, the security momentum and the
arousal momentum are combined and damped by factor d , which smooths the movement
vectors and increases the stability. The resulting movement vector points into a direction
where a security and arousal equilibrium can be achieved. By following the movement
vectors, a self-regulating feedback loop emerges altering all preceding values (since they

29

2. Background

depend on the positions) and finally converges to a position with the highest security value
and lowest arousal value.

In summary, compared with the appraisal theory based emotion models, the Zurich model
represents a very basic model of the two feelings security and arousal. The appraisal
results in the Zurich model strongly depend on the set points and the detectors where pre-
determined objects have to be defined. Simultaneously, the clear description of the model
and its detectors also allows the integration of the model to a wide range of applications
while keeping the complexity low. Modifying the set points allows an adjustment of the be-
havior of the implemented agent. Since the output of the model are two feelings, a suitable
mapping into emotion expressions (e.g. Borutta et al. (2009)) has to be found in order to
use the Zurich model in an Embodied Conversational Agent.

2.2.4. Model Implementation

In a technical system, the way of implementation and the system structure is a critical point
as the overall complexity often exponentially increases with each new feature, and stability
or security issues come to the fore. Humans have two systems of information processing:
A fast and unconscious system and a slower and reflective information processing mech-
anism (Norman et al., 2003; Kahneman, 2011). Often they are referred to as affect and
cognition. Human beings perceive their environment in a cognitive and an affective way.

Our cognitive information processing interprets, understands, makes sense, and reflects
our environment. It also remembers previous perceptions and stores new information. But
simultaneously, the system of affect which is a parallel and inseparable component of our
perception system rapidly assesses events according to their overall value. It categorizes
the events into good or bad, safe or dangerous, desirable or undesirable, hospitable or
harmful, and many more. Both systems can be neuroanatomically seen as distinct sys-
tems, but there is some evidence in neurology and psychology, that humans only function
optimally if both systems closely work together (Damásio, 1994). Additionally, Marvin Min-
sky, a pioneer in artificial intelligence suggests that both systems – affective and cognitive
– are essential in future smart systems (Minsky, 2006).

Norman et al. published a paper about affect and machine design describing a model
of affect and cognition. They propose a three-level theory of human behavior basically
applicable to the architecture of affective computer systems (Norman et al., 2003). The
three levels are the reaction level, the routine level, and the reflection level. These levels
enable a processing of the surrounding world in terms of affective evaluation and cognitive
interpretation of the environment.

Figure 2.5 depicts the three levels including different blocks at each level representing
abstract functions which are performed at the particular level. With increasing level, the
complexity increases and more abstracted data is processed. At the reflection level, the
most computational expensive algorithms and processes are grouped. As the level de-
creases, the complexity decreases and computations are performed faster allowing fast

30

2.2. Affect Generation

responses to external events. In the following, the general idea of each level is outlined
and set into context:

The lowest level – the reaction level – processes low level information, performs rapid
reactions to the current state (such as reflexes), and controls motor actions. In this level,
all processing steps and actions are fixed and no autonomous learning occurs. The pro-
cesses of the reaction level look like simple if-then rules and are directly executed on new
perceptions (e.g. raw sensor readings) of the agent. Executed rules are allowed to inter-
rupt ongoing processes and actions of higher levels.

In the routine level, routinized actions are performed. In human physi-
ology, the routine level is responsible for most motor skills, language gen-
eration, and other skilled and well-learned behaviors (Norman et al., 2003).

Interpretation

Assessment of Events

Immediate Reponses

Reflection Level

Routine Level

Reaction Level

In
cr

ea
si

ng
 d

ep
th

 o
f p

ro
ce

ss
in

g

Fa
st

er
 re

ac
tio

n
Understanding

Representation Reflection

Learning and Adaptation

Filtering and Focus

Valence and Value Assignment

Hardwired Reaction Rules

Interrupts for higher Levels

Figure 2.5.: Three level model of affect and
cognition as basis for the implementation of af-
fective artificial agents.

It has access to working memory and more
permanent memory to guide decisions and
update planning mechanisms. The routine
level receives the outputs of the reaction
level and the sensory system, but is also ad-
justed with inputs of the reflection level. With
some training, the reactions upon inputs of
the reaction level and its corresponding ac-
tions can be inhibited or reduced (e.g. get
used, at least to some degree to pain). It is
the routine level, where most of the appraisal
steps executed by an emotional model (e.g.
the OCC model or the CPM) can be found (or
should be implemented). The implemented
appraisal rules can be adjusted by a learn-
ing process, which is triggered in case of a
mismatch between expectation and observa-
tion. Such learning mechanisms are part of
the reflection level.

The highest level – the reflection level –
calculates the most computationally inten-
sive steps. Reflection is a meta-process involving all available data in order to create
own internal representations about the surrounding environment. It reasons about the en-
vironment and interprets the preprocessed sensory inputs of lower levels. The main task
of this level is planning, problem solving, and reasoning about facts. Thus, the reflection
level is the home of update functions for lower levels and contains learning and reasoning
techniques suitable for planning tasks to adjust goals and behaviors.

Keeping these three levels of affect and cognition in mind, there is some more evidence
that fast and hard-wired calculations are separated from more complex and slower ones
in the human brain. In the work of LeDoux (1998), neuroscientific results show that the
information processing in the brain is divided into the low road and the high road. The low

31

2. Background

road is a direct and fast pathway responsible for preconscious emotional processing and
enables reflexes to events and causes low level responses like fear. While the high road is
more indirect and involves more conscious and cognitive emotional processes. Compared
to the low road the high road is much slower and more appraisal steps are performed
until an emotional response is generated. Besides LeDoux’s neural view, Kahneman and
Tversky also propose a similar concept of two systems involved in our decision making
process while affected by emotions (Kahneman, 2011). In the prospect theory System 1
and System 2 correspond the the low road and high road, respectively. System 1 reacts
fast and without deeper cognitive processes while System 2 performs calculations and
reasons about facts.

Based on the above considerations, the following technical implications result and cre-
ate the basis for the three-layered model of affect. An affective artificial agent should be
able to simultaneously sense its own state of operation and the surrounding (dynamic)
environment. It should be able to compare system states and environmental changes ac-
cording to an internal representation and react in cases were the expectations are not met.
The reactions are indirect and cause automatic reconfiguration of appraisal and learning
processes. This enables the agent to be aware of the own system state while not blindly
following the most efficient way in achieving a goal. Such a supervision module should be
completely separated from underlying operational tasks and should remain in operation in
case of unexpected events. The priority of this module is more in the reliability than on fast
computations which ideally fits to the reflection level. The reflection level is thus the place
where a mood model and other mechanisms adjusting the setpoints of an emotion model
should be implemented.

In the routine and reaction level below, more immediate functions are located. The
routine level performs regular and complex calculations like updating models based on
new sensory information. It also uses knowledge bases stored in memory for detecting
known patterns in the sensory data. So, in the routine level the appraisal checks of the
CPM and the update of the decision tree in case of an OCC based model should be
implemented.

Finally, in the reaction level the most basic operations are hardwired to sensory inputs
and corresponding outputs. It is the home of the sensors’ preprocessing steps and pro-
vides functions for safely performing essential operations. Considering this level in the
context of a model of emotion, some fast and expressive reactions should be implemented
in this most prioritized level. Such reactions are e.g. pain and fear responses.

Concluding remarks on the state of the art of implemented affective models: In this
section, a comprehensive overview of existing models of emotions from an engineer’s per-
spective has been presented. Such an overview can never be complete and one might
miss one or another model. The selection of the proposed models was done according to
their impact on the current research topic of affective computing. One important model,
which was not extensively discussed above is the Belief, Desire and Intentions (BDI) soft-
ware model. BDI models are often used to implement emotion models, but the principles

32

2.2. Affect Generation

of BDI models are the research results of human practical reasoning (decision theory)
and are not related to any research results of emotion research. Although the presented
models (e.g. CPM, OCC) above can also be formulated as a BDI structure (Steunebrink
et al., 2012; Adam et al., 2006), such formulations unnecessarily increase complexity. In
case of the WASABI architecture, the underlying BDI software model is intertwined with
the corresponding Component Process Model which substantially increases the effort to
adapt the WASABI architecture to other scenarios. This is similar with PEACTIDM which is
integrated into Soar (Laird, 2012) and admittedly is an elegant way of connecting cognition
and emotions, but the accompanying increase in complexity is out of proportion. Addi-
tionally, a remaining issue of PEACTIDM are the predetermined appraisal values without
the possibility to dynamically adjust them. This problem is in turn addressed by FLAME,
which is able to learn new expectations and relations between objects. FLAME uses exter-
nal feedback to adapt its emotional reactions. This results in increased believability of the
agent and improves the overall communication capabilities of the system, but simultane-
ously requires user interaction giving feedback. Since external feedback is not available in
the considered scenarios of this dissertation, only models with a fixed appraisal structure
will be investigated according to their ability to improve the communication between the
agent and a human observer.
Comparing the CPM and OCC model with the Zurich model of social motivation, all three
describe a human appraisal process resulting in distinct emotion categories or values rep-
resenting artificial feelings. The models are all based on psychological studies and their
results were formalized in a way to create simulation models. The main weakness in all cur-
rent artificial emotion models is the interface to the real world. Necessary feature detectors
delivering the input data for the models either base on predetermined rules or vague defini-
tions. A remarkable exception is the Zurich model, which models two basic human feelings
as connected control loops, and defines the corresponding inputs in a way that technical
equivalents can be found (e.g. using image feature extraction algorithms). Another feature
inherently covered by the Zurich model is the temporal structure of the outputted artificial
feelings. In case of the CPM and the OCC model, temporal properties are not directly
included in the original model conceptions and therefore are individually addressed by the
authors of applications of the two models. As a consequence, the implemented emotional
agents often use hypotheses to fill gaps (like a missing temporal structure of a model or
the feature detectors), resulting in subjective interpretations of how particular details of an
emotion model work. There is no common solution except for performing psychological
studies on missing details to solve this issue. As an engineer, one has to keep in mind that
the replacement of missing parts of a psychological theory results in subjectively biased
models. In such cases, the authors should clearly state their modifications and refrain from
claiming the generality of their models.
As an extensive applicability and generality of implemented emotion models is still not pos-
sible due to the fact that there is no universally accepted theory of emotions, the artificial
intelligence designers are well-advised to implement their selected theories in a well struc-
tured manner and to ensure maintainability. For this purpose, the three levels of affect and

33

2. Background

cognition were presented in this section and thereby represent a structure for the technical
implementation of cognition in combination with affective elements. The structure ensures
the logical order of affective elements while remaining open for replacements of inevitably
used heuristics.

34

2.3. Reinforcement Learning

2.3. Reinforcement Learning

In this section, an introduction to Reinforcement Learning (RL) summarizes its basic ideas,
and outlines principle techniques. Basically, there are two tenets behind the main ideas
of Reinforcement Learning. One perspective is that Reinforcement Learning represents
a sampled version of Dynamic Programming (see below), the other is that RL is inspired
by behaviorist scientists. In behaviorism, the central foundation is classical and operant
conditioning. Classical conditioning is a learning process in which two stimuli are paired.
The first stimulus is an unconditioned stimulus which results in an unconditioned action
(often a natural action). The second stimulus is a neutral stimulus which originally results
in an unspecific action. Ivan Pavlov, a behavioral scientist, figured out that an uncon-
ditioned stimulus can be paired with a neutral stimulus. After the pairing, the originally
unconditioned stimulus becomes a conditioned stimulus which triggers a specific action
(often related to the neutral action). Pavlov and Anrep (2003) demonstrated this behavior
in an experiment with a dog. Each time food was given to the dog a bell sounded. After
a few repetitions the dog learned the pairing between the stimulus of the bell sound and
getting food. With the bell sound as conditioned stimulus, the sound itself caused that the
dog started to salivate. A similar relation, the operant conditioning was discovered by Bur-
rhus F. Skinner who was an American psychologist and behaviorist. He found out that rats
learn very efficiently in situations where they are rewarded or punished (Skinner, 1938).
So the difference between classical and operant conditioning is that in the classical case a
relationship between behavior and stimulus is learned, in contrast to operant conditioning
where a behavior is learned which is sensitive to or controlled by the consequence of this
behavior. Both classical and operant conditioning are the results of animal experiments.
However, behaviorists all over the world have found similar behavioral patterns in humans.

This basic idea of a learning algorithm that adapts its behavior in order to maximize
a reward signal from the environment was also used by Richard S. Sutton and Andrew
G. Barto to develop a computational approach to learning from interactions. They built
a framework in which an artificial agent learns to achieve a goal by only observing the
consequences of its actions in its surrounding environment. In other words Reinforcement
Learning corresponds to a learning process where actions are selected to maximize a
(numerical) reward signal (Sutton and Barto, 1998).

2.3.1. Elements of Reinforcement Learning

In the Reinforcement Learning framework, an agent interacts with its environment using a
finite set of actions at . Figure 2.6 depicts the learning process and shows the agent’s in-
teraction with the environment. At each instant of time t the performed action of the agent
causes a state transition to the next time instance t+1. This state transition is characterized
by the state description st and a corresponding reward signal rt . In the basic RL frame-
work, there exists a finite set of states and actions. Reinforcement Learning is classically
represented as a Markov Decision Process (MDP). MDPs are used for modelling sequen-

35

2. Background

state st

reward rt
Agent

action at

Environment

rt+1

st+1

state transition

Figure 2.6.: An agent interacts (action at) with the environment while observing state information
st and receiving a reward signal rt (adapted from Sutton and Barto (1998)).

tial decision making in deterministic or probabilistic environments, cf. Bellman (1957). In
the MDP setting the Markov property must be satisfied, which states that each transition
between one state to another state only depends on the agent’s action performed and the
current state. The decision problem is then formalized as a state transition of the envi-
ronment in consequence of the execution of an action determined by the intelligent agent.
Each such transition can be rewarded with the observation of a scalar reward. Scalar re-
ward signals are sufficient in most classic scenarios like simple robotic exploration tasks
or economic decisions. However, there exist more realistic scenarios where the artificial
agent has to consider multiple objectives at once, e.g.:

• Cooperation tasks where the agent can only achieve optimal results through coop-
eration while multiple possibly conflicting objectives have to be handled.

• Realistic exploration and exploitation tasks, where the agent has limited resources
to explore while simultaneously exploiting known resources.

• (Traffic) Network control tasks, where simultaneously the highest possible through-
put and minimal queue length shall be achieved.

• Reconfiguration problems e.g. in electric power systems, where reliability shall be
maximized while minimizing power loss and costs.

• Optimizing a technically motivated objective function while at the same time ensuring
that no ethical or subjective values are violated.

In order to state those decision scenarios formally, the following notation for finite Markov
Decision Processes with single objectives is introduced:

• s ∈ S is a finite set of states,

• a ∈ A(s) is a finite set of actions, available in a particular state s,

36

2.3. Reinforcement Learning

• transition probabilities Pa
ss′ = Pr{st+1 = s′|st = s, at = a} which denote the probabil-

ity that an action a in state s leads to the subsequent state s′ (also known as transfer
function),

• a reward function R : S → R, assigning a reward r to a state s,

• a deterministic policy π(s) = a controlling the agent’s actions in state s,

• a probability distribution µ : S → [0, 1] over initial states, and a discount factor
γ ∈ [0, 1), discounting preceding rewards,

• and the notation for different instances of time with a subscript t .

This problem formulation extends to multiple objectives as follows:

• A vectorial reward function R : S → Rq replacing the one dimensional reward
function with a vector of q different reward components, so that each entry relates
to one objective.

In this context, the agent tries to derive the policy π(s) such that in each state an action is
selected which maximizes the reward in the long run. Different policies can be valued using
the so called state-value function Vπ : S → R, which denotes the expected cumulative
discounted reward (the return) starting in state s and following the policy π. Assuming an
infinite time horizon, the state-value function (for scalar rewards) is generally a sum over
observed rewards

Vπ(s) = E
s′∼Pπ

ss′

[∞∑
k=0

γk r (st+k+1)|st = s

]
, (2.1)

where E
[
·
]

denotes the expected value given that the agent follows policy π and weights
future values with the discount factor γ. Another important function in RL is the action-
value function, assigning a value for each action in a particular state. Using the definition
of the state-value function, the action-value function Qπ(s, a) is defined as

Qπ(s, a) = E
s′∼Pπ

ss′

[
rt+1 + γVπ(st+1)|st = s, at = a

]
. (2.2)

Both functions, Vπ(s) and Qπ(s, a) can be approximated while an agent interacts with the
environment. In case of the value function given in Equation (2.1) that means, that the
agent has to infinitely often visit each state while maintaining an average for each state of
the actual return that has followed that state. These averages would ultimately converge
to the state’s value Vπ(s). Such averaging methods are often called Monte Carlo (MC)
methods as they average over many random samples of rewards until their value settles.
Obviously, in case of large state spaces such averaging methods would be impractical.
Therefore, in the action-value function Qπ(s, a) below, the so called Bellman optimality
equation was used to simplifiy the update (Sutton and Barto, 1998; Bellman, 1957). In

37

2. Background

the context of a MDP setting, the Bellman optimality equation describes the recursive rela-
tionship that the expected future discounted return in each state can be used to iteratively
estimate this value for preceding states. This fact is consequently used in RL algorithms
to approximate the state-value or action-value function in order to select the optimal action
in a given state. There exist different strategies of selecting an action or approximating the
value function. In the following paragraphs the most important techniques are presented.

Dynamic Programming

Dynamic Programming (DP) was introduced by Bellman (1957) and is still a state-of-the-
art method to solve optimal control problems in cases where a system model is available
and the Markov property is fulfilled. With the system model, the state transitions can be
described with specific probability functions. These state transition probabilities in turn can
be used to find the optimal policy for the given control problem. The available algorithms
can be coarsely divided into two types: Value or policy iteration based methods (Bertsekas,
2000). Basically, they differ in the way the optimal policy is determined.

In case of value iteration, the value function for each state is recursively calculated on
the basis of the given system model. With the converged value function, the optimal policy
can be found by selecting the action in each state which transitions into the state with the
highest subsequent value. Value iteration is intuitive and delivers optimal results, but it
has two weaknesses: Although, the resulting optimal policy does not change anymore,
the algorithm still improves the values for each state and therefore wastes time until it
finally converges. Besides this undirected optimzation process, the algorithm does only
implicitly calculate the optimal policy by first determining the utilities for each state and
then determining the optimal policy by selecting the highest expected utility values.

This time consuming calculation of the complete value function is overcome by policy
iteration algorithms, which directly determine the optimal policy. Policy iteration means,
that the algorithm iterates over policies. It starts with a random policy and computes the
utility of each state given that random policy. In the next step, these utilities are used to
determine a new optimal policy which is then used to compute the utilities again. This
approach directly improves the final policy at each iteration and converges if the policy
does not change anymore.

Both algorithms work fine and compute the optimal policy in given control problems as-
suming a sufficiently detailed model. In real world control problems, this assumption of a
complete model can not be fulfilled which limits the applicability of DP. Additionally, the
utility of DP is limited as the computational expense of the algorithms is quadratic in states
and actions, and increases with the complexity of the models. Overall, Dynamic Program-
ming provides the theoretical foundations for the understanding of classical Reinforcement
Learning algorithms, as RL can be seen as an approach to approximate the optimal policy
in cases where only an imperfect model is available or the models’ complexity grows very
rapidly.

38

2.3. Reinforcement Learning

Temporal Difference Learning

Temporal-Difference (TD) learning is a combination of Monte Carlo ideas and Dynamic
Programming ideas and the key to implement efficient RL methods. Basically, TD learning
is an unsupervised learning algorithm enabling the agent to learn to predict the value of
future states. In RL this idea is used to update the state-value function during the online
learning process after each state transition. The agent uses its observations to update
the value for the current state and to propagate a discounted value back to prior states.
With this, TD learning solves the problem of temporal credit assignment without waiting
for a final outcome (bootstrapping), and without the need of a complete system model (cf.
Dynamic Programming).

A classical example of TD learning demonstrating its principal method is the prediction
of a time of arrival (Sutton and Barto, 1998). At the beginning of the prediction all possible
events which may occur during the travel for which the time of arrival should be calculated
are considered and summed up. This is the initial estimate (or prediction). Then, after the
travel has begun and the situation changes by occurring events (e.g. arriving at a specific
intersection or waiting at railway crossing) the time of arrival is continuously being updated.
Each update is an estimate of the time left based on the actual state. Estimating the costs
or value of the successor state considering the actual state and the past experiences is
the core of TD learning and the main difference to MC methods which have to wait until
the terminal state is reached. As TD methods learn new estimates on the basis of past
estimates, they learn a guess from a guess – they bootstrap (Sutton and Barto, 1998).
With this, TD methods have the advantage over Monte Carlo methods that they can be
implemented in an online and incremental fashion and regarding Dynamic Programming
methods that they do not require models of the system or the environment.

The definition of the TD error is important to understand the concept of a TD update.
Generally, the TD error describes if things have gone better or worse than expected after
an action was performed. The one-step TD error is defined as

δt = rt+1 + γVt (st+1)− Vt (st), (2.3)

where Vt (s) is the value function at time t and γ is the discount factor. In the simplest case,
a one-step update of the value function is performed via the so-called TD(0) update

Vt+1(s) = Vt (s) + αδt , (2.4)

where α ∈ (0, 1) represents the learning rate and adjusts the step-size of the update. The
update is always performed after the agent has executed an action according to the current
policy and has received a new state observation.

A natural extension of this algorithm is the TD(λ) update. With λ the use of eligibility
traces is denoted. Eligibility traces are a temporal record (a type of memory) of the oc-
currence of events (such as the visit of states or taking an action). The basic idea behind
eligibility traces is that each occurrence of an event triggers a short-term memory process

39

2. Background

which gradually fades out afterwards. For this, a memory variable et (st) is associated with
each state st for a particular time t and decays in each iteration in case of a non visited
state by the factor of γλ. Hence, the eligibility trace et (S) is updated by

et (S) = γλet−1(S),∀S ∈ S, S 6= st , (2.5)

for non visited states, where γ is the discount rate and λ the trace-decay parameter. For
the actual visited state there exist different ways for updating the memory variable:

• Accumulating trace: Each time a specific state st is visited the memory variable
et (st) is incremented by 1.

• Replacing trace: Visiting a specific state st sets its eligibility trace variable et (st) to
the value of 1.

• Dutch traces: The Dutch trace is a mixture between replacing and accumulating
traces. The memory variable is updated by et (st) = (1 − α)et−1(st) + 1, where α is
the step-size parameter (van Seijen and Sutton, 2014).

With the definition of eligibility traces a complete online tabular based TD(λ) algorithm
can be formulated as given in Algorithm 1. Basically, the algorithm runs continuously until
a terminal state is recognized (e.g. a treasure is found). First, the agent has selected
an action at according to a given policy (for example it greedily selects the action with
the highest value), and performs it in the environment. After the execution it observes new

Algorithm 1 Basic implementation of tabular based online TD(λ) learning.
1: Select an action at .
2: while st is not the terminal state do
3: Take action at , observe reward rt+1 and next state st+1

4: δ ← rt+1 + γV (st+1)− V (st)
5: e(st)← e(st) + 1 . accumulating traces
6: or e(st)← 1 . replacing traces
7: or e(st)← (1− α)e(st) + 1 . Dutch traces
8: for all S ∈ S : do
9: V (S)← V (S) + αδe(S)

10: e(S)← γλe(S)
11: end for
12: Advance to next state: st ← st+1

13: end while

state information st+1 and a reward signal rt+1. Together with this new observations and the
actual value function it calculates the temporal difference error δ and updates the eligibility
trace e(st) of the last state. Next, it updates the value function with the actual TD error and
the eligibility traces for all states. Finally, the state variable is set to the new state.

40

2.3. Reinforcement Learning

Today, there exist modified versions of the TD update given in Equation 2.4, but the basic
idea is still unchanged and the research focuses more on efficient state representations
and function approximations for the value functions.

Q-Learning

Another popular group of Reinforcement Learning methods base on the update of the
aforementioned state-action based value function, meaning that a utility value for each
state-action pair is calculated online. Q-learning is such a model-free temporal difference
method computing such a state-action value function, and it has shown to converge to the
optimal policy for any given Markov Decision Process (Watkins and Dayan, 1992). Each
state-action value Q(st , at) is called Q-value and reflects the total discounted reward from
time t for a particular state-action pair as

rt + γrt+1 + γ2rt+2 + ... + γnrt+n, (2.6)

where r is the reward at time t , t + 1, ..., t + n and γ is the discount factor biasing the agent’s
total expected reward in favor of the present. The higher γ is, the more myopic the agent
is giving less weight to rewards in the far future. The Q-value of any state-action pair can
therefore be interpreted as a measure of how much total reward the agent can expect
from choosing a particular action in any given state. The solution to this problem was
remarkably simplified when Richard Bellman conceived the Bellman optimality equation
(Bellman, 1957). Principally, it proved the optimality to estimate the total expected reward
by recursively computing the value function from the immediate reward and the maximum
expected total reward of the next state. Applied to Q-learning, the Q-value-function can
thus be incrementally updated at every time step by the following rule

Q(st , at)← (1− αL)Q(st , at) + αL

[
R(st , at , st+1) + γmax

a
Q(st+1, a)

]
(2.7)

with st and at being the current state-action pair and st+1 denoting the state after taking
action at . R(st , at , st+1) is the received reward when transitioning from state st to st+1.
The discount factor is denoted by γ and the learning rate is denoted by αL. A fraction
1 − αL of the old Q-value for a given state-action pair is updated by a fraction αL of the
immediate transition reward and the maximum Q-value of the resulting new state. Even
if state transitions are probabilistic, such an update rule will yield an optimal estimation of
the expected total reward for any given state-action pair provided that Q(st , at) is updated
infinitely often for all states and actions. The learning rate αL determines the smoothness
of the updates, deciding how much weight will be given to the most recent experiences.
For non-episodic tasks the discount factor γ has to be sufficiently small (γ < 1) to prevent
Q-values from diverging.

Q-learning is an unsupervised Reinforcement Learning method and only receives feed-
back from the environment in terms of rewards. Because of that, the agent has to explore
the environment and occasionally take low-valued actions to explore the state space. The

41

2. Background

agent faces the trade-off between exploiting already existing knowledge and exploring un-
known terrain that could possibly yield higher rewards (see also next paragraph). The
most common approach is to follow an ε-greedy policy. The agent takes the action with
the highest Q-value, but with a probability of ε it selects a random action (Sutton and Barto,
1998).

For problems with moderately-sized discrete state and action spaces, look-up tables are
used to store the Q-values for every state-action pair. This method quickly becomes im-
practical for continuous multi-dimensional state and action spaces. Memory requirements
are too high and it takes too much time to visit all states often enough to derive a vi-
able policy, let alone an optimal one. As a solution to this problem, one can use function
approximation. Both, linear combinations of features and non-linear approximation tech-
niques such as neural networks can be used. The primary advantage is, that the agent
does not have to observe all states to take appropriate actions, but can infer from already
seen states to similar new ones.

Overall, Q-learning is a powerful iterative value-function method in Reinforcement Learn-
ing allowing for a simple problem formulation and the flexibility to be applied in a wide
variety of use-cases.

Planning

Dynamic Programming algorithms can be seen as planning steps in model based control
problems. They calculate a policy using the given system model. In case of TD learn-
ing and Q-learning such a system model does not exist but can be approximated during
learning from the system state transitions and actions. The state transitions and its corre-
sponding actions, as well as a possible achieved reward are saved in a table and can be
considered as a simple generative model. This generative model is then used in a subse-
quent step to sample random state transitions by selecting an arbitrary state and action in
order to subsequently update the actual value function. The update is done by calculating
the corresponding state values or Q-values, respectively, using the same update rule which
is used during learning. In case of Q-learning the combination of planning and learning
was introduced by Sutton (Sutton and Barto, 1998) and is called the Dyna-Q algorithm.

Overall, this kind of planning bases on looking ahead to future events and the compu-
tation of backed-up values which are then used to update an approximate value function.
This improves the performance of the learning algorithms in problems with a high num-
ber of states and a comparable small number of states assigning rewards by propagating
existing knowledge within the already learned model.

Action Selection

The introduced state-value or state-action-value function enables an efficient evaluation of
learning situations an artificial agent is confronted with. Especially, the online evaluation

42

2.3. Reinforcement Learning

of a state-action-value function (like those represented by Q-values) introduce an impor-
tant side issue in Reinforcement Learning which is not so evident in other kinds of ma-
chine learning algorithms – the exploration-exploitation dilemma (Sutton and Barto, 1998;
Macready and Wolpert, 1998; Axelrod and Chowdhary, 2015).

In Reinforcement Learning, there exist several methods for selecting the best action on
the basis of the state-action-value function. The action with the greatest expected utility
is called the greedy action, while taking another action with a lower estimated utility cor-
responds to an exploration step. Exploration steps are sub-optimal in consideration of the
current value function, but are necessary to gather new information about the environment
which in turn can add new alternatives to the value function. In contrast, just taking the
greedy action means to exploit the current knowledge contained in the value function with-
out further exploration of the environment. Therefore, the exploration-exploitation dilemma
unfolds as the designer or the agent itself has to decide how to adjust the fraction of ex-
ploration and exploitation steps. Only exploring the environment results in a near optimal
value function entirely representing the environment, but the overall outcome is poor. By
focusing on exploitation, which means only to select the greedy action, the overall out-
come could be high but is strongly dependent on the initial quality of the value function.
Intuitively, the agent should therefore first explore the environment and switch afterwards
to an exploitation phase. In practice, the adjustment of this trade-off is a challenging topic
and in Chapter 4 an approach on the basis of affective states is addressed.

Generally, in the RL domain the ε-greedy and soft-max action selection are the most
common used strategies. The ε-greedy action selection strategy selects greedy actions
most of the time, but occasionally it selects another random action. With the parameter ε
the probability for selecting a random action is adjusted. Smaller values of ε account for
less explorative behavior of the agent, while a high ε value frequently forces the agent to
choose a random action which increases the probability to discover new states. The overall
performance of the ε-greedy strategy depends on the task and the particular rewards. With
an increasing variance of rewards it generally takes longer to explore the reward structure.

On larger state space problems, the fixed ε-greedy method will take too long to find the
optimal policy, so instead a method interleaving exploration and exploitation is necessary.
A well known representative of such a method is Boltzmann or soft-max action selection. It
bases on Boltzmann distributions (Bridle, 1989; Salakhutdinov et al., 2007) for each action
in a particular state s expressing a probability

Ps(a) =
e

Qt (s,a)
T∑

b∈A∫ e
Qt (s,a)

T

(2.8)

for corresponding action values Qt (s, a). The temperature T controls the probability of
executing explorative actions. If T is high (or if all action values are equal), random actions
are generated by sampling over the distribution Ps(a). If T is low and the action values are
different, the fraction of a high action value is greater in the distribution than for smaller
action values. A dynamic exploration-exploitation behavior of the agent can be achieved

43

2. Background

by starting the learning process with a high temperature which afterwards decreases with
time. In case of an infinite time horizon, it can be shown that this method converges for
stationary environments to the optimal state-action value function, while picking greedily
the optimal action (Singh et al., 2000).

The above described two action selection strategies are most commonly used in the
RL domain. There exist more advanced alternatives and domain specific solutions for
the action selection step, but adapting them to new domains and the issue of finding the
right trade-off between exploration and exploitation are still highly active research topics.
In Chapter 4, the external control of RL with an affective state is described, which is an
additional strategy to cope with these issues.

2.3.2. Multi-objective Reinforcement Learning

With the general definition of a finite Markov Decision Process and its extension to a multi-
objective MDP, as introduced at the beginning of this section, the discounted sum of re-
wards for an infinite time horizon multi-objective Markov Decision Process is given by

Gt =
∞∑

k=0

γk R(st+k+1), (2.9)

where the actual reward vector at time step t is R(st). Generally, also undiscounted sums
of rewards are possible in case of finite time horizon Markov Decision Processes, but to
keep the learning framework as general as possible, an infinite time horizon is assumed
which requires discounted rewards to bound the sum. This difference in episode length
has to be kept in mind, as not all available algorithms can be applied in both domains (and
vice versa).

The policy π(s) determines the action an agent selects in each state and is going to be
learned by the agent. With a given stationary policy, the multi-objective value function of a
state can be formulated as

Vπ(s) = E
s′∼Pπ

ss′

[∞∑
k=0

γk R(st+k+1)|st = s

]
. (2.10)

In multi-objective environments, a policy is called dominating if the value in all dimensions
is at least as high as the value of all other policies and strictly greater in at least one dimen-
sion. The Pareto front, also known as Pareto curve or trade-off curve, represents the set of
multidimensional value functions VΠ for a set of policies Π , such that no other dominating
vector exists. It is used to evaluate optimal solutions in a multi-criteria optimization task. In
case of a Pareto dominating value function this is written as

Vπ � Vπ
′ ⇔ ∀i , Vπ

i ≥ Vπ′
i ∧ ∃i , Vπ

i ≥ Vπ′
i , (2.11)

where the policy π Pareto dominates another policy π′, when its value Vπ is at least as
high in all objectives and strictly higher in at least one objective (Roijers et al., 2014).

44

2.3. Reinforcement Learning

If the state transition probabilities of the environment are not known, solution techniques
such as Dynamic Programming cannot be applied anymore. Instead, approximate versions
which rely on sampling interactions with the environment have to be used. The most
prominent sample based algorithms are the above introduced TD learning and Q-learning
algorithm, however, they only work for the classical scalar reward setting.

In the multi-objective case, the learning algorithms can be additionally divided into two
classes: Single and multiple policy approaches (Roijers et al., 2013). From the algorith-
mic perspective both classes are very similar, but they differ in the decision and execution
phase. In case of a multiple policy algorithm, the agent calculates various policies based
on previous observations or a model in order to approximate the Pareto front. Afterwards,
the agent evaluates this set of calculated policies by comparing their values Vπ, and exe-
cutes the one which promises the best compromise solution. There exist hybrid algorithms,
first learning a transition or reward model which is then used afterwards for the calculation
of multiple policies, cf. the works of Lizotte et al. (2012), Roijers et al. (2014), and Van Mof-
faert and Nowé (2014).

The single policy algorithms calculate only a single policy according to predefined pref-
erences for the individual objectives. The preferences can be expressed in terms of spe-
cific weightings or as constraints for each objective. Single policy algorithms are typically
model-free algorithms, and used in environments where sample costs are very high. In
highly complex environments with a high number of objectives, also model-based single
policy algorithms are used. Model-based approaches allow planning and simulation steps
which speed up the learning process. In general, the following approaches for single policy
algorithms are differentiated:

• Known weights: If a weighting of the different objectives is known beforehand,
(linear) scalarization techniques can be used. Uniform and non-uniform weightings
require different learning algorithms and the scalarization step can be performed be-
fore or after the action selection step. In case of uniform weights and linear scalar-
ization the use of most classic RL techniques such as Q-learning or State-Action-
Reward-State-Action (SARSA)-learning is possible (Sutton and Barto, 1998). Non-
linear scalarization conflicts with the assumption that the rewards can be summed up
additively, which prohibits the usage of algorithms based on the Bellman equation.
More detailed surveys on scalarization algorithms can be found in the contributions
of Vamplew et al. (2008) and Roijers et al. (2013).

• Constrained objectives: In cases where the weighting is not explicitly given, con-
straints for each objective can be introduced. The constraints are used to create
a lexicographic ordering of the objectives which is then used to iteratively calculate
various policies until all constraints are fulfilled. Generally, this requires a lot of iter-
ations or a simulation model (Gábor et al., 1998).

• Unknown weights: In most real world applications, the weights for the individual
objectives are unknown or hard to set a priori (Mannor and Shimkin, 2004). The

45

2. Background

unknown weights scenario is an attractive research topic, as in most scenarios the
objective weights have to be optimized or adjusted while learning. Most approaches
are based on geometric approaches like the maximization of the hypervolume, which
is spanned by the outcomes of each objective. HB-MORL is such an algorithm and
maximizes the hypervolume while the user can still adjust the policy to achieve the
preferred compromise solution (Moffaert et al., 2013). A similar type of algorithm
uses samples in order to approximate the convex hull of the optimal Pareto set and
tries then to find the best trade-off solution (Barrett and Narayanan, 2008; Jin and
Sendhoff, 2008; Perny and Weng, 2010). Approximating the Pareto front normally
requires a large amount of samples or a simulation model.

In fact, finding policies which meet given constraints or reward target regions, or the task
of learning optimal scalarization weights remain the basic challenge in multi-objective Re-
inforcement Learning. The different scalarization weights w can be applied using the so
called scalarization function f (·) which modifies the calculation of the overall value function
by

Vπ
α (s) = f (Vπ(s), w), (2.12)

where Vπ is a vector value function. Selecting a good scalarization function depends
on the problem and the desired solution. In cases where the weights per objective are
already known, a single policy can be calculated. Using a strictly monotonically increasing
scalarization function for policies on the Pareto front results in efficient decisions (Roijers
et al., 2013). This fits in scenarios, where the rewards are related to monetary costs or
profits.

In many other scenarios, not related to economic problems, the optimization of a multi-
objective problem can only be achieved by adjusting the scalarization weights according
to given user preferences, which in turn introduces the sub-optimality of learning human
values, cf. Section 2.3.4. In order to analyze this sub-optimality in Chapter 5, an approach
for inversely learning the scalarization weights implicitly specified by a given policy is pro-
posed. In the following section, the process of reward shaping is introduced which can
basically be used to apply scalarization weights during Reinforcement Learning.

2.3.3. Reward shaping

The term shaping was first introduced to science by the psychologist Skinner (1953). It de-
scribes a technique to train animals in solving problems by dissecting the task into related
simpler sub-problems. These simpler problems are then solved first and rewarded sepa-
rately. In consecutive steps, the reward for the simpler sub-problem is now withheld, and
only sequences of correctly solved sub-problems are jointly rewarded at the end. With this
technique, complex tasks can be trained by successive approximations. As a side effect,
the well known temporal credit assignment problem of RL is reduced, as early phases of a
learning task can already be rewarded. Conventional RL algorithms deal with this problem
by employing delayed approaches which base on back-propagation. Such algorithms, like

46

2.3. Reinforcement Learning

Q-learning are comparatively time consuming in back propagating rewards within a high di-
mensional state space. In their paper, Gullapalli and Barto (1992) integrate the concept of
shaping into the training of artificial learning systems. They describe the approach of facil-
itating learning of complex tasks by introducing domain knowledge into the Reinforcement
Learning framework. The idea is to give additional (numerical) feedback to the agent in
order to improve the convergence rate. This feedback is extra information (domain knowl-
edge) and is incorporated by the designer of the learning agent. It can be used to steer the
learning into a specific direction as this extra reward is exploited by the agent. Simultane-
ously, it is an elegant way to introduce preferences (biases) to the learning process which
should be considered by the agent. To implement the concept of reward shaping, one way
is to modify the state-value function of the RL agent which can be, e.g., expressed by

Q(st , at)← Q(st , at) + α
[
r (st , at , st+1) + F (st , at , st+1) + γmax

a
Q(st+1, a)− Q(st , at)

]
,

(2.13)
in case of Q-learning, and where F (st , at , st+1) is an additional reward component (shaping
reward) that depends on the state transition. Ng et al. have formally analyzed the require-
ments on the shaping reward, and state that the optimal policy (in the model-free case)
can be found by classical RL algorithms if and only if the shaping reward is defined as a
difference of some potential function (Ng et al., 1999). The potential function is defined as
a state dependent function F : S ×A× S → R between a start state and a goal state. F
should have the form of a difference of potentials, like

F (s, a, s′) = γΦ(s′)− Φ(s), (2.14)

where Φ(s) is again state dependent (Φ : S → R) and fulfills

F (s1, a1, s2) + ... + F (sn−1, an−1, sn) + F (sn, an, s1) = 0 (2.15)

for following a policy circulating in the environment (starting and terminating in state s1).
With this definition of the potential function the optimal policy is preserved and potential os-
cillations are prevented. However, the constraints complicate the design or respectively the
autonomous learning of a suitable potential function. In most state of the art approaches,
an approximation of the potential function is done by computing a simpler abstraction of
the value function (Grześ and Kudenko, 2010). These approximations use sub-sampled
versions of the state space or aggregated state representations (e.g. clustering, approxi-
mation functions, neural networks are used in the work of Dean et al. (1997)).

Besides the approaches of generally calculating reward shaping functions as some kind
of approximation, they can also be manually designed using heuristics. For example,
such a heuristic rewards states in dependence to the physical distance to the goal state.
Obviously, the knowledge of the goal state’s position is required to implement this heuristic.
As the goal of reward shaping is to speed up learning by introducing domain knowledge
by an external trainer (in Reinforcement Learning also known as critic), this requirement
is admissible. In literature, this more directed way of learning is often called Informed

47

2. Background

state st

reward rt Agent
action at

Environment

rt+1

st+1

state transition

Judgment
Function

„Actor“

„Critic“

shaping
control
signal

external
knowledge

shaping
rewards

Figure 2.7.: Actor-critic architecture of an agent using reward shaping which is externally controlled
by a judgment function.

Reinforcement Learning and is used in environments with high dimensional state spaces
and limited training phases like dynamic environments or real world scenarios.

As in these particular cases, where reward shaping is used to reduce the state space
hierarchically by switching between levels of abstractions, a judgment function is used
to control the shaping process. The implementation can follow the actor-critic scheme,
according to Sutton and Barto (1998), with the extension of a judgment function. The prin-
cipal structure of this approach is depicted in Figure 2.7, where the shaping control signal
(e.g. basing on the TD error or a manually implemented heuristic) adjusts the impact of
the shaping rewards. Designing this central judgment function introduces another side is-
sue to reward shaping which is very similar to the well known exploration and exploitation
dilemma in basic Reinforcement Learning (see Section 2.3). In the exploration-exploitation
dilemma, the control between randomly exploring states and exploiting the greedy action
can be done via time-based functions, e.g. with ongoing time, the probability of explorative
actions is reduced. Similar concepts are also used for reward shaping, however in case
of high dimensional state spaces, the algorithms use more advanced methods like hier-
archical decomposition of the task (e.g. Feudal RL by Dayan and Hinton (1993)) or the
extraction of shaping rewards out of human policies (e.g. Griffith et al. (2013)). Especially,
the hierarchical approaches require a function to balance the trade of between already
mastered approximations of the tasks and the decision to switch to more complex state
representations. By switching too quickly to the next more complex approximations, the
overall learning progress can be slowed down.

Instead of time-based methods or approaches requiring external human feedback also
affective models of an experience state can be used to control the shaping rewards. As
described in Chapter 4, such an approach can introduce preferences into Reinforcement
Learning in an intuitive way.

48

2.3. Reinforcement Learning

2.3.4. Human values

Human values are situational and contextual dependent appraisals of a situation or action.
They relate to actual monetary or objective outcomes, but involve also affective values,
which are actually related to emotions. Nowadays, the term human-centered computing
is used to describe systems which consider those values in their calculations. According
to Schwartz (1994), human values serve people as a motivational construct to achieve
desirable goals while avoiding potentially adverse events. That is, they serve as standards
or criteria a human uses during decision making. Advanced behavioral patterns of humans
like morality base on the concept of human values as standards.

Introducing similar patterns into artificial agents means to design decision making agents
in a way to share human values. In fact, that implicates to assign corresponding human
values to individual decisions and consequently find out how to weight them during the
final decision making stage. But how can such a system be built, that decides in a way that
is in accordance with the general human understanding and its value system? Currently,
artificial intelligence designers or programmers develop machine learning algorithms and
systems by using general psychological and neurophysiological findings. This is usually
a complex and often not viable task and sometimes introduces unintended biases. Addi-
tionally, the models used for programming are based on studies, which may also contain
biases. Biases are natural tendencies of humans towards specific objectives or positions.
For example, Muehlhauser and Helm (2012) conclude in their psychological survey about
the ability of humans to write down their own values that they are not very accurate. Hence,
handcrafted solutions implemented by an Artificial Intelligence (AI) designer might deliver
sub-optimal solutions. For example, when one thinks of morality and tries to write down
situations in which morality counts and in which not, the stated situations will share in most
cases the same point of view and corresponding human values. However, there will also be
some outliers which are the result of a person’s background and current emotional state.
That implies, that each situation and the corresponding human values have to be carefully
investigated and modeled to create precise models. These resulting models might then be
used in a technical system to adjust a learning algorithm, so that it behaves in accordance
to human values. In general, however, such precise models do not exist.

A faster and more practical way would be to learn to imitate the behavior of a human in
specific situations. Direct imitation learning introduces limited generalization in new unob-
served situations. One solution, suggested by Ng and Russell (2000) is Inverse Reinforce-
ment Learning, which tries to overcome the weaknesses of imitation learning by using
the observed policies to recover the underlying (and mostly hidden or unknown) reward
function. The reward function is the most robust and compact way to describe intended
behaviors, but the reward function cannot be easily specified for most real world tasks.
Soares (2015) argues that specifying just goals that an agent has to achieve cannot cover
the real world complexity. On the contrary, describing the complexity of a decision scenario
with a large number of variables which have to be maximized often leads to a large number
of variables remaining unconstrained. Generally, those unconstrained variables are set to

49

2. Background

extreme values, which in turn can lead to undesirable solutions. Therefore, to improve the
policies of artificial agents towards more believable and human-like behaviors, it is nec-
essary to include additional factors like for example honesty, cooperativeness, or thought-
fulness. Those factors might be in contrast to the actual objective, and therefore reduce
the general performance of an agent but improves the social acceptance of an artificial
system (Livingston et al., 2008). Most of those factors are related to specific preferences
(see Section 2.3.5) of humans and depend on a cultural context. A method for learning
different preferences in a given task is described in Chapter 4 and bases on a combination
of neurophysiological findings, Prospect Theory, and the classic Reinforcement Learning
mechanism. The proposed framework is a multi-objective reward scalarization algorithm,
which is driven by an external experience signal. It was designed for scenarios where the
reward process gets unfold with increasing experience of the agent. The generation of this
experience signal and the design of the corresponding weighting functions is done manu-
ally and therefore subjected to be sub-optimal and biased by the designer’s value system
and intention. To overcome this issue, in Chapter 5 an Inverse RL framework is developed,
which enables to learn unknown scalarization weights for given policies.

2.3.5. Preferences

The term preference can be interpreted in several ways. For example, it can mean that an
alternative a is more liked by a person than another option b, it can be used to compare
an algorithm a that outperforms algorithm b on a certain problem task, or it can be used to
compare an event a, that is more beneficial for achieving a desired goal than an alternative
event b, etc. In all cases, a pairwise comparison between a and b results in a clear
preference for one alternative. This is roughly speaking the economic theory of preference,
which defines preferences as relations between alternatives and presumes a structure of
a complete pre-ordering.

The expected utility hypothesis is commonly used to model human’s decision making be-
havior in scenarios with uncertain outcomes, such as gambling. However, situations where
preferences of individuals among same choices are important, are not handled properly
by the classic expected utility theory of Bernoulli. The Prospect Theory (PT), proposed by
Kahneman and Tversky (1979) introduces the concept of a reference point to the expected
utility theory of Bernoulli. This reference point enables to model preferences of individuals
among same choices. That means, that an internal reference point for a specific decision
is essential to model the decision making behavior of people. A similar concept also plays
an important role in the psychological description of human behavior and its affect sys-
tem. The human affect system is responsible to regulate the perception and assessment
of events. It is able to rapidly assign emotions to occurring situations. The resulting affec-
tive representation of the situation is then used to influence the decision making process
(Gigerenzer et al., 2011). In the work of Damásio (1994), the authors hypothesize that this
affective representation is partly realized by so-called somatic markers in the brain. The so-
matic markers are specific patterns of affective states in the brain and are associated with

50

2.3. Reinforcement Learning

situations or events which the person has encountered. They encode past situations and
events according to their rewards or punishments, enabling the person to compare them
to the current situational appraisals. The comparison then causes a positive or negative
feeling for the currently faced situation biasing the decision making process towards the
most beneficial outcome. Keeping Damasio’s theory in mind, the design of an autonomous
agent requires both, an affective and cognitive component influencing the decision making.

The affective component in decision making is also related to subjective preferences
which are often adjusted by the current affective state (e.g. mood state). Preferences are
fundamental for the human choice behavior and an important component in learning. Over
time, specific situations and their past outcomes are associated with particular emotions
(and their corresponding bodily changes) and encoded with somatic markers in the brain.
During decision making, these emotion-situation pairs are used as physiological signals to
bias decision making towards certain policies while avoiding others. The whole set of so-
matic markers can therefore be seen as part of the (emotional) experience of a human and
is gathered during life. The impact of past experiences not only depends on the encoded
emotions, their individual components are also weighted by the current affective state or
more commonly, the mood. Different states of mood adjust the weightings of particular
goals and needs influencing their importance. This results in biases for specific options
according to the internal state of mood and past experiences. Regarding the development
of artificial life-long learning agents, such an emotional and experience based component
is essential but currently treated only as a side issue. Examples of currently existing hu-
man like agents basing on the above ideas can be found in the papers of Vernon et al.
(2007) and Velásquez (1998).

In machine learning, experience corresponds to past data, structured in a way fostering
the learning progress. Specifically, experience is related to the goal conduciveness of ac-
tions in a particular situation. Therefore, for a set of potential options in a specific situation,
the artificial agent has to build up a preference model over possible options. Consider-
ing Q-learning (see Section 2.3.1), experience is aggregated in the table of Q-values for
each state and action. The preference ordering is done via the temporal difference up-
date. Moreover, learning the order of choices corresponds to the technique of preference
learning (cf. Doyle (2004) and Hüllermeier et al. (2008)) where binary preference relations
between alternatives or a utility function for scoring alternatives are learned. Generally,
with preference learning the technique of automatic learning, discovery, and adaptation
of preferences is meant. A concrete approach combining RL with preference learning is
described by Fürnkranz et al. (2012). In their approach, preference learning is used for
learning a preference model from qualitative feedback in order to rank different policies of
the RL process. The main drawback of this approach is the qualitative feedback which
is used to evaluate already learned policies. This external qualitative feedback is given
by human experts and therefore is not generally available. Also, the learning process is
directly interrelated with the preference model and there is no possibility of control how
much the preference model affects the decision afterwards.

In this dissertation, this kind of preference learning is not further discussed, rather a

51

2. Background

concept of steering the RL process with an affective state is considered (see Chapter 4).
Accordingly, in the following sub-section related concepts of combining affective states with
Reinforcement Learning and basic neuroscientific findings are briefly outlined.

2.3.6. Affective states in Reinforcement Learning

First of all, the work of Doya (2002, 2008) describes neuromodulatory systems and the
signals that regulate the Reinforcement Learning mechanisms of the human brain. He
argues, that specific signals control and regulate the meta-parameters (like randomness,
action selection, reward prediction error, speed of memory update) for the RL process.
However, there is no clear hypothesis regarding the generation of these signals in the
human brain. It seems to be a process which is separated of the actual learning and
simultaneously runs in different brain areas. This suggests that the brain has the capability
of dynamically adjusting these meta-parameters towards new or dynamically changing
environments. More recent findings of Dayan and Niv (2008) show that several learning
strategies and neuromodulatory systems are simultaneously active in the human brain
such as model-free and model-based learning, which are generally considered separately
in machine learning. Although the results of cognitive neuroscience made by Dayan and
Niv (2008) and Behrens et al. (2007), give evidence that humans utilize Reinforcement
Learning, they also clearly suggest that the human brain simultaneously considers different
strategies which are intertwined and influenced by other subsystems.

Results of neuroscience have been and still are a relevant and important source for
the development of machine learning. Behavioral patterns and strategies discovered in
the brain of animals and humans are modeled and implemented in technical systems.
Besides neurophysiological findings, also behavioral science and economics influence the
development of learning algorithms. For example, Prospect Theory as mentioned above
shows the psychological influence of external and internal signals on the decision making
behavior of humans. In the PT, a value function is described which is sensitive to deviations
of the outcome (reward) according to a reference point in case of a risky choice. In such
cases, the reference point is set by the current decision problem and depends rather on
the losses and gains, than on the final net asset value. This is also the reason when
framing of a choice problem becomes critical. The framing of the problem results in an
external shift of the reference point which alters obviously the decision behavior (Tversky
and Kahneman, 1981; De Martino et al., 2006).

A concrete combination of Reinforcement Learning and Prospect Theory is described by
Ahn and Picard (2006). They have extended the conventional framework of RL for Markov
Decision Processes with PT-based subjective value functions to model experienced-utility
and predicted-utility functions. Furthermore, these functions vary dynamically according
to the affective state of the decision maker (agent). This enables the agent to choose an
action according to different risk attitudes and action tendencies on the basis of subjectively
evaluated previous outcomes of decisions. The performance of the algorithm appears to
be very good in the selected domains, however the results are difficult to reproduce due

52

2.3. Reinforcement Learning

to the strong parameter dependence (which were additionally optimized for each domain).
Moreover, the reference point of the PT value function is automatically set by the algorithm
and an external control is not intended. However, by considering the framing hypothesis
and the presented neurophysiological findings, both, the external control as well as a strict
separation of the reference point from the learning process seem to be essential.

In the work of Ahn and Picard, a kind of reward shaping is used to integrate the affective
reference point into the learning process. As described in Section 2.3.3, reward shaping
can steer Reinforcement Learning and thus is particularly suitable to integrate affective
constraints into it. This is also shown in the work of Babes et al. (2008), where social
accounts are integrated into RL by shaping the rewards accordingly. They present a multi-
agent scenario, where agents behave more efficiently while using social reward shaping.
The potential function for shaping the rewards was pre-calculated in this example and
cannot be biased online by an internal (affective) state of the agent. This results in a
limited dynamic of the proposed agents and the pre-calculated potential function is strongly
domain dependent.

Beside external (or monetary) rewards there is evidence that also social rewards bias
attention and preference for choices (Anderson, 2016). Social rewards provide an effi-
cient teaching signal that can modulate behavior, and additionally increase motivations
for correlated goals. In contrast, classical RL only maximizes the expected utility based
on the monetary outcome and the probability of occurrence, and is therefore unable to
incorporate affective or social aspects into the learning process in the basic setting. In
order to model more human like behavior, additional factors have to be integrated into
machine learning processes. For example, the study of Fehr and Camerer (2007) gives
insight into the neural circuitry involved in human decision making. They hypothesize that
many people exhibit social preferences in most decision scenarios. Social preferences in
their context mean that people prefer choices based on a positive concern for the welfare
of others, and on the assessment what other players might believe about them. With
this, the central question of how the brain does construct decision utilities when faced a
decision which is also governed by competing motives of others is formulated. The results
of their study show that social rewards activate neural circuitry overlapping with circuitry
that anticipate and represent general types of rewards like monetary outcomes. Hence,
it seems reasonable that for humans social rewards are equally important as individual
benefits. In contrast, in machine learning additional affective or social factors are not
incorporated by default. In case of Reinforcement Learning, affective or social rewards
can be integrated into learning by shaping the rewards accordingly (see Section 2.3.3).
Also specific preferences can be learned in this way. Chapter 4 introduces a basic concept
of learning policies biased with additional rewards and a method of controlling them by an
additional (affective) state.

Concluding remarks on Reinforcement Learning: Reinforcement Learning is a highly
active research topic to the time of this dissertation. Since Richard Sutton has introduced
the theoretic framework of RL to the broad audience of computer scientists and engi-

53

2. Background

neers, a lot of learning strategies, optimization techniques, and approximation methods
have been developed. A wide range of applications has been identified and successful
demonstrations were published. Also in real world scenarios, Reinforcement Learning
has successfully been implemented. Recently, with the introduction of deep neural net-
works the general applicability of RL in domains without predetermined features has been
proved (Mnih et al., 2015). This general applicability renders RL attractive to the domain
of robotics and artificial agents interacting in real world scenarios with human users. Less
studied directions of RL are sub-optimal trade-offs, which typically arise in real environ-
ments, as well as the efficient communication of the learning progress towards non-expert
users. The sub-optimal trade-offs are especially interesting in multiple-objective domains
and if specific preferences (of the user) should be incorporated into the learning process.
An efficient and intuitive communication of the learning progress gets important in human-
robot interaction scenarios where non-expert users are confronted with the trial-and-error
strategy of RL agents. Therefore, both topics are further investigated in the following, as
they could potentially provide a contribution to these two less studied directions of Rein-
forcement Learning.

54

3. Affective Evaluation of Machine Learning
Experiments

Nowadays, the complexity of machines and systems noticeably increases. Simple text
displays reporting the current system status show an overwhelming amount of information
and are often cryptic to read. Sometimes, the confusingly displayed quantitative figures
require experts’ knowledge to understand and interpret them. Therefore, alternative ways
of communicating system information to naive users have to be found and evaluated. One
of these possibilities are emotion aware systems, which are able to autonomously ap-
praise their internal state, aggregate it, and calculate a representation which can be easily
recognized by a human user.

Focusing on this aspect, this chapter tries to answer the question if an appraisal deriva-
tion model between a machine learning algorithm and a model of emotion can be found in
order to improve the human grasp of the current system status and the learning progress
of the machine. The appraisal derivation model is the layer between the technical ma-
chine learning algorithm and the psychological model of emotion. It translates figures of
the machine learning algorithm into appraisal variables such that the emotion model can
represent them as a general feeling or distinct emotion expression. In the following sub-
section, three examples of different machine learning scenarios are given and the corre-
sponding appraisal derivation model is described. In experiments, the affect generation is
shown and the results are discussed in respect to its contribution to increase the believabil-
ity of the agent. Explicit human-machine interaction experiments were not carried out, as
there is already evidence that non-verbal communication and interaction between robots
and humans significantly improve the communication efficiency (Hogan and Stubbs, 2003;
Cassell, 2000; Russell and Mehrabian, 1977). The implemented algorithms of this disser-
tation and their results have already been published at relevant conferences (Feldmaier
and Diepold, 2013, 2014; Feldmaier et al., 2017).

A large variety of decision problems can be modeled with so called multi-armed bandits.
Online advertising, news article selection, network routing, and medicinal trials, to name
a few, can be transformed into an equivalent multi-armed bandit structure. In the first
example, Section 3.1, an artificial agent interacts with a multi-armed bandit and appraises
the outcomes and its learning progress using the Zurich model of Social Motivation (cf.
Section 2.2.3).

In the next example, a robot navigates in a world represented by discrete tiles while
seeking a goal location. Generally, this scenario is known as the Gridworld navigation
task. In this Gridworld, the robot has no map for finding the treasure and is occasionally

55

3. Affective Evaluation of Machine Learning Experiments

confronted with obstacles during its search. A Reinforcement Learning based approach is
used to learn the optimal path to the goal while the developed appraisal derivation model
statistically evaluates the selected actions. The results are mapped into a dimensional
emotion model and are used in turn by RL to improve the affective behavior of the robot.

Finally, in the third experiment, the considered scenario and correspondingly the ma-
chine learning component gets more complex and a version of the Component Process
Model is implemented. The Stimulus Evaluation Checks of the CPM appraise a simula-
tion of a Simultaneous Localization and Mapping (SLAM) process. The SLAM process
represents the autonomous navigation and mapping of a robot which navigates through
an unknown environment. Typically, the current status of such SLAM algorithms can be
evaluated by co-variance measures and quantities of observed landmarks. The proposed
combination with the CPM enables the representation of the current localization status of
the robot in terms of artificial emotions.

In summary, this chapter introduces concepts for implementing psychologically informed
models to appraise machine learning algorithms in an intuitive way. This can reduce users’
annoyance and fosters an increased understanding of cyber-physical systems by average
users. In this way, the findings contribute to the domain of social robotics. Social robots
are defined inter alia as robotic systems acting in a way that can be intuitively understood
by humans.

3.1. Bandit Simulation

In this section, an experiment combining a general decision making simulation with the
Zurich model is presented. The objective is to investigate an approach which gives an
artificial agent the ability to appraise its internal decisions with human like senses (in this
particular case with the artificial feelings of security and arousal). First, the multi-armed
bandit simulation is introduced, followed by implementation details of the Zurich model and
the experiment description. Finally, the section ends with the results and first conclusions.

3.1.1. Multi-armed bandits

One-armed bandits are well known as slot machines and can be found in almost all casinos
around the world. Those slot machines pay a reward according to an unknown probability
distribution in each play. If a player is confronted with a row of slot machines and has
to decide which machine he/she likes to play, then he/she is confronted with the so called
multi-armed bandit problem. The Multi-Armed Bandit (MAB) research topic goes back until
1952 when Herbert Robbins considered his clinical trials as a bandit problem with more
than two arms (Robbins, 1952).

In a MAB experiment, several trials are played on the same bandit machine consisting
of more than one arm. Each arm has a specific probability distribution which determines
the success probability for winning. At each trial, the agent tries to maximize its reward by

56

3.1. Bandit Simulation

selecting the arm with the highest chance of success. During a game, the agent tries to
find out which arm has the highest success probability. Then, the agent will keep playing
this arm in order to maximize its reward. The optimal arm is found during the exploration
phase. In this phase, the agent checks out each arm several times in order to estimate
the success probability for winning. There is again an exploration-exploitation trade off, as
the agent has to decide when to stop the exploration and start to exploit the arm with the
highest success probability. Macready and Wolpert (1998) have investigated this dilemma
in the context of bandit problems.

The success of each play is traditionally evaluated in terms of cumulative reward and
the rate of optimal decisions. The performance of an agent (or learning algorithm) is eval-
uated in the long run by calculating the mean values of the cumulative reward and optimal
decision rate over several plays with several trials. These mean values are also used for
comparing different algorithms.

Besides many different learning algorithms for Multi-Armed Bandit problems, there are
also many variations of the MAB problem itself. Different decision problems are modeled
using specific numbers of arms. Bernoulli, Exponential or Poisson probability distributions
are used to model underlying reward structures, and methods for modifying these proba-
bility distributions as a function of previous actions were also introduced.

For the following experiment, the class of Bernoulli distributed bandit problems has been
chosen. This class represents decisions with only two possibilities (binary decisions) –
success or failure, both cases with a distinct probability. Decision problems or scenarios
with multiple choices or moves can be represented by extending the structure to multiple
Bernoulli distributions so that each alternative has a distinct probability to win or loose.
An efficient implementation of such multi-armed Bernoulli bandit problems and several
learning algorithms has been presented in the work of Kaufmann et al. (2012) and was
re-used in this dissertation for the conduction of the experiments.

3.1.2. Implementation

A four-armed Bernoulli bandit was implemented to represent a decision scenario with four
possible actions. The random variable of the Bernoulli distribution becomes 1 with a suc-
cess probability of p, and takes the value of 0 with a failure probability of p = 1 − p. To
learn an optimal policy in the setting of Bernoulli bandits, the Gittins index can be exploited
(Gittins, 1979). The Gittins index is an approximation for the expected reward under the
assumption of playing the optimal policy. An agent calculates the Gittins index for each arm
after every iteration and selects in the subsequent round the arm with the highest value.
As an interface between the agent and the Multi-Armed Bandit simulation only the number
of the selected arm and the corresponding reward is used. With these pairs of decision
and reward, the Zurich model as presented in Section 2.2.3 is updated. The Zurich model
also needs a geometric relationship between objects to calculate the security and arousal
value. Therefore, in order to represent the bandit arms in a two-dimensional space, each
arm gets a virtual position so that all arms are arranged on a circle around the agent (Fig-

57

3. Affective Evaluation of Machine Learning Experiments

Arm 1

Arm 3

Arm 2Arm 4
Agent

Figure 3.1.: Virtual positions of the bandit arms in relation to the agent.

ure 3.1). Besides the virtual position of an arm, the so called Detectors of the Zurich model
are necessary to detect the familiarity (DetF) and the relevance (DetR) of an arm. Both de-
tectors need to be individually adjusted to the corresponding machine learning scenario.
For the Multi-Armed Bandit scenario eligibility traces are used in order to calculate time-
dependent values for each arm. More specifically, the concept of accumulating traces are
used (cf. Section 2.3) so that the familiarity value F i

t for each arm i is updated at each time
step t by adding one to the trace of the actual selected arm. This can be expressed by

F i
t+1 =

{
λγF i

t + 1 if arm i was seleceted
λγF i

t if arm i was not seleceted
, (3.1)

where λ and γ define the decay of the trace. Similarly, the relevance value R i
t is calculated.

The difference is that the amount of reward of a corresponding arm is taken into account,
thus this is calculated by

R i
t+1 =

{
λγR i

t + r i
t if arm i was seleceted

λγR i
t if arm i was not seleceted

, (3.2)

where r i
t is the reward of the selected arm i . This results in high familiarity values for

regularly selected arms and a high relevancy for familiar arms with high rewards. For
the iterative simulation of this scenario, the agent selects in each round the arm with the
highest Gittins index and perceives the resulting reward. The performed action and the
obtained reward are presented to the detectors of the Zurich model. The model is then
updated with the new familiarity and relevance values. Due to the fixed virtual arm posi-
tions only the agent’s position influences the Zurich model. The agent’s position, however
is only changed by the Zurich model itself and therefore is directly dependent on the famil-
iarity and relevance values of the surrounding arms. With these positions, the security and
arousal system of the Zurich model (Figure 2.4) is updated resulting in the joint familiarity
value F and the potency value P. They are compared with the reference values D and E ,
resulting in a security value s and an arousal value a. The dependency value D and the en-
terprise value E is set according to the empirical findings of Bischof (1975). Generally, the

58

3.1. Bandit Simulation

dependency value determines the level of security someone needs in order to feel secure.
In humans, this value is highest in childhood and falls to its minimum with adolescence,
in order to rise again with age. The enterprise value is relatively high during infancy and
falls to its minimum during early childhood, in order to continuously increase with age. En-
terprise represents the initiative to undertake or try out something new, despite any risks.
The Zurich model needs only these two values, dependency and enterprise to adjust the

Table 3.1.: Parameter settings used for the Zurich model, the detectors and the Multi-Armed Ban-
dits.

Zurich Model Detectors Bandits

D = 0.75 λ · γ = 0.95 p1 = 0.1 p2 = 0.3
E = 0.8 p3 = 0.2 p4 = 0.8

agent’s personality. In the present experiment, the values are set to a combination appro-
priate for an individual, which is highly dependent on sources of security (D = 0.75) and
simultaneously receptive to changing situations (E = 0.8). Besides these two pre-defined
values, the decay parameter of the eligibility traces is set to a value so that the trace almost
vanishes after 50 iterations in order to represent a short term memory process. For the
four bandit arms the success probabilities pi are set arbitrarily, except that one arm has a
clear maximum (p4) which has to be found by the agent. All necessary parameters of the
simulation and the Zurich model are summarized in Table 3.1.

The calculated artificial feelings of security and arousal are subsequently mapped by
a heuristic to distinct emotional terms which are handier for describing the results. This
mapping is based on the textual description of the Zurich model (Gubler and Bischof, 1991;
Bischof, 1975), but should be further empirically evaluated. Both artificial feelings, security
and arousal have to be interpreted in relation to each other. In Table 3.2 such a heuristic is
given. It consists of relational operators, numerical gradient calculations (depicted with the
∇ operator), and Boolean operators comparing the values of arousal and security to each
other. All rules of the heuristic are evaluated in parallel, hence more than one emotional
term can be triggered. By way of example, the first rule compares the arousal and security
value with a threshold and outputs uncertainty if both values are below. The second rule
calculates the gradient of both values and compares their signs. In case of decreasing
security and rising arousal aversion is triggered. A triggered emotion term is visualized in
the results with a corresponding color mapping, which can be found in the first column of
Table 3.2. The color mapping is motivated by Plutchik’s wheel of emotions (Plutchik, 1991)
and was slightly modified to create a clearly perceptible color mapping of the results.

59

3. Affective Evaluation of Machine Learning Experiments

Table 3.2.: Decision rules determining which emotional term is triggered (a: arousal, s: security).
The color mapping in the first column is motivated by Plutchik’s wheel of emotions (Plutchik, 1991).

Color Emotion Rule

 uncertainty a < 0.15 ∧ s < 0.15
 aversion ∇s < 0 ∧∇a > 0
 anger (a > 0.85 ∧ s < 0.15) ∨ (|∇a| > 0.0075 ∧ s < 0.3)
 fear ∇a > 0 ∧∇s < 0 ∧ a > s
 anticipation ∇a < 0 ∧∇s > 0 ∧ a < s
 joy a < s ∧∇a ≤ 0
 trust a < s ∧ |∇a| < 0.0005

3.1.3. Experiment

With the described implementation, several bandit simulations are conducted and ap-
praised by the Zurich model. The learning policy is fixed and the resulting feelings of
security and arousal are used to map them into distinct emotion expressions as shown in
Figure 3.2 and 3.3. This mapping should show that a human appraisal model can be used
to evaluate the decisions of an artificial agent. Furthermore, the implementation fulfills the
requirement which has been stated in the introduction, that the core and the logic of the
original psychological model should remain untouched, and only the appraisal derivation
layer, in this case the detectors have to be adjusted in order to be compatible with the
scenario.

Two different settings of the experiment are conducted. In the first experiment, the learn-
ing process is modified in order to extend the different parts of a typical learning phase.
This helps to better visualize the results with the proposed heuristic. The experiment is
repeated 100 times, while each time 1500 interactions with the Multi-Armed Bandit were
done. In the first phase of the experiment, the agent is forced to select randomly an arm.
After 300 trials, Phase 2 starts and the agent is limited to select one of the two best arms.
This second phase corresponds to an extended training phase. This training phase is
manually ended after additional 300 trials and followed by a phase of optimal decisions
(Phase 3 between trial 600 and 900). At trial 900 a hidden disturbance of the Multi-Armed
Bandit occurs, so that the success probabilities of the arms get mixed up and the agent
has to relearn the optimal decision again. Until the end, between trial 1200 and 1500 the
agent is set to exploit the arm with the highest reward. The five different phases are tagged
in Figure 3.2.

In the second setting of the experiment, the agent uses the Gittins index to discover the
optimal arm and the learning process is not manually slowed down. This setting is also
repeated 100 times, each with 300 trials. After 100 trials the hidden disturbance of the first

60

3.1. Bandit Simulation

experiment also shuffles the success probabilities, such that the agent has to adjust its
policy.

3.1.4. Results

Figure 3.2 shows the resulting security and arousal values, as well as the overlaid emotions
for the first experimental setting. The five simulation phases are separated with dashed
lines. The first phase is characterized by uncertainty at the beginning followed by emotions
like aversion and fear. This corresponds to the expected result in this phase. In the second
phase, the amount of emotions like anticipation, joy, and trust increases but is still inter-
rupted by feelings of aversion. Compared to Phase 1 the arousal level in Phase 2 slightly
increases due to the changed situation, whereas the security level remarkably goes up as
the success probability has doubled. The heuristic based mapping of arousal and secu-
rity to emotional terms is inconsistent in these initial phases and changes frequently. In
Phase 3, the ideal case is reached, the agent only shows emotions like anticipation, joy,
and trust. The disturbance in Phase 4 triggers emotions like aversion and fear, but no
uncertainty due to the remaining amount of successful decisions. Finally, in the last phase
the decision process has been relearned and the agent regains its trust, along with a de-
creasing arousal value and high security values. These results of the first setting of the

0 500 1000 1500
Trial

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Em
ot

io
n

st
re

ng
th

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

arousal
security

uncertainty aversion anger fear anticipation joy trust

Figure 3.2.: Plot of the security and arousal feeling for the bandit experiment with prolonged learn-
ing phases and the overlaid emotional terms (color-coded according to Table 3.2).

MAB experiment show that an agent equipped with the Zurich model is able to appraise the
different phases of a typical learning scenario. In order to further evaluate this concept, in
the second setting the agent autonomously learns its actions using the Gittins index. The
Gittins index generally learns the optimal choice within a few samples and stores a kind
of experience as indexes for each arm. Therefore, frequent changes of the optimal choice
without resetting the indexes results in decreased learning performance. Such a scenario

61

3. Affective Evaluation of Machine Learning Experiments

was modeled with the second setting of the experiment. Figure 3.3 shows the results. At
the beginning, the standard learning progress is made and the agent learns the optimal
choice within a few trials. With the changed success probabilities at trial 100, learning
progress stops and relearning starts. Changing the success probabilities of the MAB pro-
cess is unusual and results in poor learning performance. Generally, the performance in
such a scenario would be evaluated according to figures like the cumulative reward which
has been plotted in the second half of Figure 3.3. In terms of the cumulative reward, the
changed learning progress can only be recognized by small changes in the slope of the
curve. In contrast, the Zurich model recognizes the changed arm configuration very clearly
and fast, as a kind of dynamic memory process is implicitly performed by calculating itera-
tively the relevance and familiarity values. After each change of the success probabilities
the security value drops while the arousal value increases. During the relearning phases
(after trial 100 and 200), the security value climbs up again and the arousal declines. In
the presented experiment, multiple changes of the arm configurations occur which addi-
tionally reduces the learning performance at each change. This behavior is recognized
by the detectors and processed by the Zurich model, hence after each additional change
the security value climbs up more slowly and the arousal declines slower. The reduced
security and higher arousal values are mapped more frequently to terms like uncertainty
and aversion, while constant phases of joy and trust are shorter.

0 50 100 150 200 250 300
Trial

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Em
ot

io
n

st
re

ng
th

arousal
security

0 50 100 150 200 250 300
0

50

100

150

C
um

ul
at

iv
e

re
w

ar
d

uncertainty aversion anger fear anticipation joy trustuncertainty aversion anger fear anticipation joy trust

Figure 3.3.: Emotional evaluation (upper part) of a multi-armed bandit problem using the Gittins in-
dex policy. The lower part depicts the cumulative reward of 300 trials averaged over 50 independent
trials.

Concluding remarks on the emotional evaluation of a bandit problem: In this first ex-
periment the principle approach to evaluate a machine learning algorithm with a psycho-
logical informed model was shown. The Zurich model has proven that it can be combined
with an arbitrary machine learning scenario by just adapting the appraisal derivation layer
(the detectors). In the experimental settings, the results show that the security and arousal
values represent the actual learning progress and changed conditions. The emotional

62

3.1. Bandit Simulation

terms can be mapped to more concrete emotional terms via a simple heuristic. Obvi-
ously, the same results might be generated by directly mapping the rewards to appropriate
emotional terms. However, such a direct mapping does not fulfill the requirement of an
extendable model. In case of the Zurich model, additional appraisals can be added by im-
plementing corresponding detectors while the essential dynamic and logical properties of
the Zurich model are maintained. In this way, a system can be developed which appraises
several internal states or variables in order to express them in terms of artificial emotional
expressions towards a human user.

63

3. Affective Evaluation of Machine Learning Experiments

3.2. Gridworld

In the previous section, a first approach of appraising the progress of a machine learn-
ing algorithm applying a psychological model was introduced. The presented Multi-Armed
Bandit scenario is often used to model decision scenarios with immediate rewards. How-
ever, MABs are not suited to model scenarios with an episodic reward. For example, clas-
sical path finding problems are difficult to model within the MAB framework and therefore
Markov Decision Processes (MDPs) are used. As stated in Section 2.3, MDPs model de-
cision problems, where each state transition only depends on the current state and on the
actions available in this state. Each state transition yields new state information and a pos-
sible reward. In this section, a canonical example of the Reinforcement Learning domain
– the Gridworld – is used to model a path finding problem, while the MDP properties are
essentially satisfied. The Gridworld is often used in the context of Reinforcement Learn-
ing to evaluate new learning algorithms. It is generally a rectangular maze consisting of
surrounding walls and some obstacles. The maze is discretized into equal sized quadratic
fields, and each field neither obstructed by a wall nor an obstacle corresponds to a state.
Figure 3.4 shows an example of a Gridworld with a size of 9 times 6 fields, three obstacles

S

G

actions at

left right

up

down

st
st+1

Figure 3.4.: An example of a Gridworld and the four possible actions at an agent can execute.
Each action at causes a state transition st → st+1 with a specific probability.

(dark grey), a start position S, and goal state G. A possible agent is then placed at the
start position and has to find the goal location by just using the predetermined actions. In
case of the example in Figure 3.4, the agent can only move into the Cartesian directions,
namely up, down, left, and right. Each action causes a state transition from state st to
state st+1 with a particular probability p(st+1|st , a). In general, assuming a deterministic
environment, the transition probabilities are set to one for each unobstructed move and
to zero in case of walls and obstacles. In this scenario, a Reinforcement Learning agent
should find the optimal path to the goal state, while simultaneously appraising its current
state with artificial emotions.

3.2.1. Implementation

A Q-learning agent, as described in Section 2.3, was implemented and a simula-
tion of the Gridworld as depicted in Figure 3.4 was created. The experiment is con-

64

3.2. Gridworld

ducted in episodes and the agent starts in the start state S. Each episode is ter-
minated after the agent has reached the goal state G. In the goal state, the agent
receives a high positive reward (r = 10), while all other states are rewarded with a
small negative reward (r = −1). The negative reward forces the agent to optimize
its path towards the shortest path to the goal. Action selection is done according to
the Q-values using an ε-greedy policy. Additionally, after each step the agent per-
forms additional planning to improve the Q-representation of the environment. Besides
the optional planning step, the RL process can be separated into several components.

Reflection Level

Routine Level

Reaction Level

Update Model

Update Q-Learning

Execute Actions

Check Direction

Planning Goal in Sight

Calculate Valence and Arousal

ε - Greedy Policy

Discretize State

Perceive Reward

Wall Detection Direction changes

Figure 3.5.: Components of Reinforce-
ment Learning (light blue) and a di-
mensional appraisal model (orange) inte-
grated into the three level model of affect
and cognition.

These components are then implemented accord-
ing to the three level architecture of Affective Com-
puting as proposed in Section 2.2.4. Therefore,
Q-learning is split into a discretization step, the ε-
greedy action selection, an updating function for
the Q-table, and a reward perception function.
In Figure 3.5, these sub-functions of RL are as-
signed to a corresponding level (light blue boxes).
Planning is assigned to the reflection level, as it is
an additional and optional step of RL and requires
some computational effort. In the routine level,
all necessary and periodic tasks, as the state dis-
cretization, action selection, and the Q-value up-
date are placed. The reward detection is imple-
mented as a fast and reactive function in the low-
est level of the architecture, as it is just triggered
in the goal state.

3.2.2. Core Affect

A dimensional model of emotions as introduced
in Section 2.1 is used to appraise the decisions
made by the Q-learning agent. Such a dimen-
sional representation of the core affect is often se-
lected in technical systems, as modeling the whole
core affect of a system with a single point in a
multi-dimensional space has some advantages (Russell and Barrett, 1999; Russell, 2003).
On the one hand, discrete events can be used to modify the position of this point, while
preserving a continuous change of the overall core affect. On the other hand, dimensional
models output just this single point for each time step combining all obtained appraisal re-
sults. This efficient method of combining appraisal results is also often used as a final step
in emotion models like the CPM or OCC model. Therefore, implementing a dimensional
model in order to continuously represent the overall affective state of a technical agent is

65

3. Affective Evaluation of Machine Learning Experiments

not only intuitive but also fulfills important requirements for creating believable models of
emotions.

Therefore, the three level architecture of Figure 3.5 is extended at the reflection level
with functions which calculate a valence and arousal value appraising the Reinforcement
Learning process. As calculating such an affective representation of the learning process
requires information of lower levels and additional reasoning steps, these components per-
fectly fit into the reflection level (orange boxes). While the reaction level monitors changes
in direction, collisions with walls, and obstacles, corresponding short term memory pro-
cesses for each type of event are triggered in the reflection level. Each memory process is
modeled by a variable corresponding to a frequency equivalent which models the rate of
occurrence of an event. This is in accordance to findings of neurophysiology, which pos-
tulate that neuron activity and appraisal results in the human brain are related (Grandjean
et al., 2008). That means, each frequency equivalent has a high value if the event occurs
frequently and decreases to zero, if the event does not occur anymore (this concept is
again similar to eligibility traces, however it uses a moving average function for calculating
the frequency equivalent). Thus, in the current scenario a collision (ct = 1) is reported to
the reflection level which uses this information to compute a frequency equivalent f col

t of
the collisions. This can be expressed by

f col
t =

{
f col
t−1 + (1− f col

t−1) · ν if ct = 1
f col
t−1 + (−1− f col

t−1) · ν otherwise
, (3.3)

which corresponds to a moving average filter, where ν describes the amount of residue that
is added or subtracted from the previous frequency value. The filter responds to a collision
in an exponential way. Its value does exponentially converge to one the more collisions
occur, and decreases to minus one if no repeated collisions are observed anymore. This
kind of representation is also used for the detection of changes in direction. The frequency
equivalent f dir

t is high, if the agent changes its direction in every step, and does decrease
to minus one if long straight moves are executed. The change in direction is detected by
comparing the previous action with the actual one. In case of a mismatch, the variable dt

is set to one, meaning that the agent must have changed its direction. A function in the
reflection level monitors this variable and triggers the update for the change in direction
frequency equivalent

f dir
t =

{
f dir
t−1 + (1− f dir

t−1) · θ if dt = 1
f dir
t−1 + (−1− f dir

t−1) · θ otherwise
, (3.4)

with θ determining the amount of f dir
t−1 added to or subtracted from the previous value.

These two monitor and update functions for the collision and the change in direction fre-
quency equivalent are subsumed in the Check Direction component in Figure 3.5. A third
frequency equivalent is regularly updated based on sightings of the goal state. Sighting
means that a Bresenham line algorithm is used to calculate a line of sight between the
agent and the goal state and if this line is unobstructed of a wall, the agent virtually sees

66

3.2. Gridworld

the goal state. Obviously, for this calculation the position of the goal is required, which
would violate the model free assumption of the Reinforcement Learning agent. But, as the
robot is just simulated in this experiment, the goal state detection would correspond to e.g.
a camera based object detection in case of a real robot. The detection algorithm outputs a
variable gt which equals to one if the goal state is in sight, and is zero if the agent cannot
directly observe the goal state. The frequency f goal

t of this event is calculated by

f goal
t =

{
f goal
t−1 + (1− f goal

t−1) · ζ if gt = 1
f goal
t−1 + (−1− f goal

t−1) · ζ otherwise
, (3.5)

where ζ specifies the amount of the residue that is added or subtracted from the previous
value.

These three frequency equivalents are the actual appraisal results of the events caused
by the RL process. They are used to calculate the arousal value At of the agent as a
weighted average At given by

At =
f dir
t + f col

t + gt ∗ f goal
t

2 + gt
, (3.6)

which can be further extended by averaging over additional appraisal variables. The va-
lence value Vt is calculated using f goal

t and the information if the distance between the
agent and the starting point increases. If the distance increases (e = 1), the agent as-
sumes to be on the right way, otherwise it assumes going the wrong way (e = −1). The
variable e is also used to calculate a frequency equivalent f right

t by

f right
t = f right

t−1 + (e − f right
t−1) · κ, (3.7)

where e sets the limit of the frequency value to which it converges to. The variable κ deter-
mines the slope. Similar to the arousal value, the valence component Vt is the (weighted)
average of the corresponding appraisal variables. As the frequency of goal sightings f goal

t

and the fact going further away from the starting point f right
t are the only indicators for the

valence in this environment, Vt is calculated by

Vt =
f goal
t + f right

t

2
. (3.8)

Both together, the arousal and the valence component represent the core affect of the
RL agent in this experiment. The individual core affect components are calculated by
weighting and averaging the appraisal variables, which base on features of the learning
process itself and observable external variables. Expressing the appraisal variables as
frequency equivalents enable smooth transitions between states. Overall, this approach
represents an appraisal model and a dimensional representation of the core affect of the
artificial agent and is implemented in the reflection level of the three level architecture of
affect and cognition.

67

3. Affective Evaluation of Machine Learning Experiments

Table 3.3.: Preset parameters used in the Gridworld Q-learning experiment.

Parameter Definition Value

n number of episodes 20
maxsteps maximum number of steps per episode 2000
p_steps number of planning steps 50
α step-size 0.01
γ discount-rate 0.95
ε probability for random action in ε-greedy policy 0.1

ν, θ, factor determining the slope of f col and f dir 0.15
ζ,κ factor determining the slope f goal and f right 0.2

3.2.3. Experiment and Results

The proposed RL agent with its extended affective architecture is evaluated in the depicted
Gridworld of Figure 3.4. All preset parameters used in this experiment for the residue fac-
tors and the Q-learning algorithm can be found in Table 3.3. The experiment was repeated
ten times in order to smooth the results, as Reinforcement Learning together with the ε-
greedy action selection produces slightly different results in each run. In each repetition of
the experiment, the agent is placed at the starting point and has then to find the goal loca-
tion. The Q-table is initialized with zeros for the first episode of each experiment. After the
goal location has been reached or a maximum number of steps (maxsteps) per episode
have been performed, the agent is reset to the start location. The already learned Q-table
is preserved and the agent uses it in the subsequent episode to achieve a better result.
After 20 consecutive episodes, the experiment is terminated. In Figure 3.6, the averaged
results of the ten repetitions of the experiment are plotted. On the left side (Figure 3.6a),
the resulting average per episode of the valence and arousal value is jointly plotted in the
valence and arousal space. Each red dot corresponds to the overall average of the va-
lence and arousal values of a complete episode. This average represents a measure for
the overall performance of the agent for a complete episode. At the beginning of the ex-
periment, during the first episodes (episodes 1 to 6) the overall valence value per episode
is negative, which can be mapped to feelings of distress and sadness. During the exper-
iment, the overall core affect per episode moves from quadrant Q4 towards Q2, where
valence is positive and arousal is low, which can correspondingly be mapped to feelings
of contentment and relaxation (cf. Section 2.1 and Figure 2.1). This movement of the core
affect can be compared with the learning curve of the agent. The corresponding learning
curve of this experiment is depicted in Figure 3.7. In contrast to this standard learning
curve, the core affect can be read without any expert knowledge (e.g. there is no need to
know how many steps are optimal) and therefore can be used to communicate the actual

68

3.2. Gridworld

-0.4 -0.2 0 0.2 0.4
Valence

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Ar
ou

sa
l

1

2
3

4
56

7
8

9
10

11

121314

15

16

17
18

19
20

Q4 Q1

Q2Q3

(a)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Valence

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Ar
ou

sa
l

excited

happy

relaxed

contented

nervous

distressed

depressed

sad

1

2
3

10
20S

(b)

Figure 3.6.: (a) Average core affect of twenty subsequent episodes. The agent gets more relaxed
with progress in learning. (b) Continuous core affect for five selected episodes. At very early
episodes (1, 2, 3), the agent is more negatively aroused and gets relaxed and contented in later
episodes (10, 20).

learning progress of this RL agent to average users. Additionally, the output of this ap-
praisal model can also be used to drive an emotion display, like EDDIE (Sosnowski et al.,
2006) or Kismet (Breazeal, 2003), which use arousal and valence values as a common
interface.

The second plot on the right side (Figure 3.6b) shows the core affect’s shift of complete
episodes. For a better readability, only episode 1, 2, 3, 10, and 20 where selected and
plotted. At the beginning of each episode, the frequency equivalents are also reset to
zero and with the first appraisal the core affect takes a value of V = −0.2 and A = −0.15
(denoted with S in Figure 3.6b), which is determined by the residues factors ν, θ, ζ, and κ.

2 4 6 8 10 12 14 16 18 20
Episode

0

100

200

300

400

500

600

St
ep

s

Figure 3.7.: Standard learning curve of 20 episodes of a Q-learning agent in the Gridworld sce-
nario.

69

3. Affective Evaluation of Machine Learning Experiments

In the first episode, the agent spends a lot of time in negatively valenced states as the goal
is not in sight and it explores the near environment of the starting location. The arousal
value keeps neutral, as only some collisions occur and direction changes occur randomly.
At the end of Episode 1 the agent gets more and more excited, as it is going into the
right direction and the goal comes into sight. In subsequent episodes, the valence values
already get positive after a few actions, as the agent can follow the policy determined by
the Q-table. Also the arousal values go down, as only a low number of collisions and
direction changes occur. The kink points just before the end in the graphs of episode 10
and 20 are caused by the necessary direction changes in order to avoid obstacles, and by
the sighting of the goal.

Concluding remarks on the emotional evaluation of a way finding task: Depending
on the application, both the average or the immediate core affect can be used to effi-
ciently and naturally communicate the current state of the Reinforcement Learning agent
towards users. The proposed dimensional appraisal model uses just a few basic features
of the learning process to calculate a joint representation of the agent’s state. By using the
valence-arousal space, the calculations of the valence and arousal values can be further
extended by external appraisal results in order to affectively appraise additional processes
of the agent. The mapping of the core affect into discrete emotion expressions is controver-
sially discussed, but it allows a natural understanding of the two values. On the one hand,
the discrete emotion expressions can be used to verbally express the current state of the
learning progress, but on the other hand they can also be used to drive an advanced non-
verbal emotion display which requires a continuous representation of the internal state.
Overall, the approach has shown, that an appraisal derivation model based on frequency
equivalents allows the appraisal of a canonical RL scenario and should therefore be appli-
cable to other examples in this domain.

70

3.3. Simultaneous Localization and Mapping

3.3. Simultaneous Localization and Mapping

Most autonomous robots are faced with the problem of orientation in unknown and mostly
dynamic environments. Normally, this problem is split into two sub-domains – localization
and mapping. For both topics there exist many approaches and technologies. There
are also algorithms combining both steps called Simultaneous Localization and Map-
ping (SLAM) algorithms. They are able to estimate the robot’s position and simultaneously
collect data to produce a representation of the environment. The results of those ap-
proaches are reasonable and can be quantitatively measured. Generally, the quality of
the results of a SLAM algorithm is evaluated in terms of position accuracy and number of
re-observed landmarks. However, in the following a way that enables the robot to mimic
human emotions while moving around and exploring is described and should replace the
classical cold and rational performance evaluation. In order to enable the robot to express
its current state, whether it feels safe or uncertain in its environment, the following section
describes another example of an appraisal derivation model which adapts the Component
Process Model to a SLAM algorithm. The previously introduced concept of frequency
equivalents is also used and extended.

SLAM algorithms are used for the navigation of mobile robot platforms. Especially, in in-
door environments generally no map of the environment exists and the robot has to acquire
mapping information in order to self localize. For this task, SLAM algorithms estimate a
map and a location within this map based on odometry sensors of the platform and on
landmarks, which are detected in the surrounding environment of the robot platform. In
most cases, the position of the landmarks are optically detected (camera or LIDAR based),
but also radio frequency beacons or similar techniques can be used. All of them deliver
noisy measurements of the environment and use probabilistic filters to estimate a map
and the ego position within this map. The probabilistic filters output position estimations
which are accompanied by corresponding uncertainty measurements. The probabilistic
filters used in SLAM algorithms can be coarsely categorized into Kalman Filters (KF), Par-
ticle Filters, Expectation Maximization techniques, and sparse extended information filters
(SEIFs) (Grisetti et al., 2007; Bailey and Durrant-Whyte, 2006; Guivant and Nebot, 2001).
Today, most state of the art SLAM algorithms base on Extended Kalman Filters (EKFs)
and fuse the positions of the landmarks with the data coming from the odometry sensors
(Haykin, 2001). The EKF tracks the position of the robot and calculates uncertainty values
for the robot’s position and the positions of the landmarks. Then, the robot attempts to
associate previously seen landmarks with actual detected landmarks. The re-observed
landmarks are then used to correct the robot’s position. The whole process is iteratively
executed and enables a mobile robot to build a map of an environment and simultaneously
use this map to estimate its location within this map. There exist many implementations
of EKF-SLAM with various alterations and modifications. They share the basic idea of
calculating a fully correlated posterior over the landmark map and the robot pose, but si-
multaneously suffer on the strong assumptions that have to be made on the sensor noise

71

3. Affective Evaluation of Machine Learning Experiments

and robot motion model during the implementation of the Extended Kalman Filter. Never-
theless, in this experiment, an EKF-SLAM simulator written by Tim Bailey and Juan Nieto1

is used. The framework provides a straightforward implementation of the algorithm and
permits quick access to a full SLAM simulator. The use of a simulation relaxes the nec-
essary model assumption and allows to focus on the appraisal derivation layer. Also, the
path planning of the robot is done manually, as the dynamic path planning is an additional
and complex task and is not an essential part in the SLAM simulation. The following de-
scription of the appraisal derivation model can be adapted to other SLAM algorithms as
well by identifying the corresponding uncertainty measurements of the used probabilistic
filter or model.

3.3.1. SLEmotion

In contrast to the previous experiment, where a direct mapping between appraisal deriva-
tion model and dimensional representation (categorization) space was used, in this exper-
iment an appraisal derivation model is implemented and the affective evaluation is done
according to the structure of the Component Process Model (CPM) as introduced in Sec-
tion 2.2.1. This takes account of the requirement to implement models following existing
principles and being reusable by other researchers. The appraisal of a way finding and
orientation task of a robot in an unknown environment in terms of emotions was selected
as scenario. The various sensor inputs and internal representations of the SLAM algo-
rithm are used to generate the corresponding stimuli for the CPM. In the present scenario,
the emotional process is restricted to the localization and mapping task of the robot and
does not consider any effects caused by external stimuli (like other agents, humans, or
general motivational changes of the agent). Also, the implemented component patterning
module is limited to the calculation of expressive emotions, and internal effects caused by
the simulated appraisals do not influence subsystems of the robot. The simplification of
the scenario corresponds to a situation in which the agent expresses its current emotional
state while exploring an unknown environment without being obviously observed or influ-
enced by anyone else. As motivational changes and physiological responses are omitted
in this technical scenario, the component patterning module and the categorization module
can be combined using the dimensional theory of a valence and arousal space to catego-
rize the emerging emotions. Such a combination overcomes the difficulties that still exist
in implementing a complete recursive and dynamic classification of the current appraisal
and the affective state of an agent. Similarly, this approach is also proposed by Scherer
(Scherer, 2004) and used in other implementations like the WASABI architecture (cf. Sec-
tion 2.2.1). Additionally, as already mentioned the two-dimensional representation is used
by other works as input for the visual (e.g. EDDIE (Sosnowski et al., 2006) or Kismet

1http://www-personal.acfr.usyd.edu.au/tbailey/software/slam_simulations.htm [Accessed
1st September 2016]

72

http://www-personal.acfr.usyd.edu.au/tbailey/ software/slam_simulations.htm

3.3. Simultaneous Localization and Mapping

V
alence

Arousal

excited

happy

contented

relaxeddepressed

sad

distressed

nervous

Categorization module

SLEmotion

Multi-level appraisal

Suddenness

Familiarity

Predictability

Relevance

Intrinsic
Pleasantness

Conduciveness

SLAM

z

Valence

Arousal

Figure 3.8.: Architecture of the Component Process Model (CPM) with its appraisal and categoriza-
tion module (SLEmotion). The appraisal module determines the values of the appraisal registers
based on the features of a Simultaneous Localization and Mapping (SLAM) process. The two-
dimensional output of valence and arousal can be used to drive an emotion display like EDDIE or
Kismet.

(Breazeal, 2003)) or behavioral (e.g. Bethel and Murphy (2008) and Miwa et al. (2003))
based rendering of the emerging emotions.

Figure 3.8 depicts the current CPM architecture, called SLEmotion, in the context of
the SLAM algorithm. The SLAM algorithm bases on landmark observations z ∈ Rn×2,
where n is the number of actual detected landmarks, and on the odometry sensor val-
ues x̂δ ∈ R1×2. With these input data, the agent calculates and updates a covariance
matrix Pa ∈ Rm×m of the m successfully detected and associated landmarks, and es-
timates its current position x̂v = (x̂v , ŷv) ∈ R1×2 and a map x̂a = (x̂a, ŷa) ∈ Rm×2 of
the environment. Observations and resulting estimations of the SLAM algorithm are the
input variables for the appraisal derivation module, which performs multi-level appraisals
on them – the so called Stimulus Evaluation Checks (SECs). The SECs are independent
modules, in which the agent does perform its subjective assessment of the situation on a
background of personal needs, goals, and values. In the original CPM several SECs are
grouped into four major types or classes of information concerning the following different
aspects: Relevance, implications, coping potential, normative significance. Coping poten-
tial and normative significance are not in the scope of the present scenario, as the SLAM
agent is externally controlled and any interaction with tasks and other agents or humans is
considered separately. Therefore, in the current implementation of SLEmotion the follow-
ing SECs appraise the overall situation of the agent and each occurring event during the
SLAM process:

• Suddenness: Measures the abruptness of onset of an event or a change in the
situation.

• Familiarity: Checks if an event or the situation is familiar. Generally, this is per-
formed by evaluating results of schema matching or the frequencies of occurrence.

73

3. Affective Evaluation of Machine Learning Experiments

• Predictability: Basing on past observations of regularities and probabilities for spe-
cific events the predictability is measured.

• Relevance: Evaluates the situation and events according to the agent’s goals and
needs. It depends on how many different goals are affected by an event and how
often it occurs.

• Intrinsic pleasantness: Assesses a stimulus according to the resulting feeling of
pain or well-being.

• Conduciveness: Evaluates the conduciveness of a situation or an event according
to the goals and needs of the agent.

The first four SECs, suddenness, familiarity, predictability, and relevance are associated
with the relevance group of the SECs, while intrinsic pleasantness and conduciveness are
in the group of implications. All results of these Stimulus Evaluation Checks are stored
in corresponding registers for each occurring event or situative context delivering a spe-
cific appraisal pattern at each time step. Each event and the environment is perceived by
the agent with specific stimuli. In case of the considered SLAM agent, these stimuli are
virtually restricted to the detection of new or already detected landmarks and changes of
the situation within the scenario. But, as the multi-level appraisal module bases on dis-
crete components for each SEC, the SLEmotion architecture can easily be extended to
cover additional events and situations. In the following, the corresponding Stimulus Eval-
uation Checks appraising the Simultaneous Localization and Mapping task are described
in detail.

3.3.2. Stimulus Evaluation Checks

The intuition of the Stimulus Evaluation Checks is defined in the model description by
Scherer (2010), but the exact computational details are missing there. Therefore, accord-
ing to the SEC descriptions of Scherer, a developer has to design a computational equiva-
lent for a register in the actual domain. A convenient way to validate these equivalents is to
compare the results with the expectations of humans (this is done in the results subsection
of this section). In the present experiment, the SECs are exemplary stated for the used
EKF-SLAM algorithm, and therefore represent one of many possible solutions for modeling
the appraisal process of a robot navigation task. However, the underlying concepts of each
SEC can be applied to other Simultaneous Localization and Mapping implementations by
identifying the corresponding uncertainty measures of the particular SLAM algorithm.

As already mentioned, the Stimulus Evaluation Checks are working independently, and
appraise both, single events and the whole situation. Therefore, the individual SECs are
internally divided into a check routine for a single event and a routine for appraising the
overall situation. As SLEmotion calls all SECs in parallel, in each iteration appraisal results
for the overall situation are produced regularly, while events are only appraised if they

74

3.3. Simultaneous Localization and Mapping

have occurred in the actual time step. For this reason, in the following the situative and
event-based component of each SEC is described separately. Basically, there exist more
situative stimuli and events occurring during the runtime of a robot, but to illustrate the
concept of integrating the SLAM task into the CPM architecture, these additional appraisals
are omitted in this experiment.

Unless otherwise stated, as most other existing appraisal models the individual SECs
compute values in a range between [0, 1] or [−1, 1] (e.g. Marinier et al. (2009); Gratch
and Marsella (2005)). The implication is that the absolute value indicates the strength of
a stimulus. That means, the "1"-end of the range is more intense than the "0"-start of the
range. And for other dimensions, a range of [−1, 1] is used to express a negative and a
positive intensity for the same type of stimulus, e.g. for conduciveness both ends of the
range are necessary. There are events and situations which can be highly conducive or
(+1, e.g. passing an exam) or other events causing a very unconducive (−1, failing in an
exam) stimulus.

Intrinsic pleasantness: The check for intrinsic pleasantness evaluates with respect to
the progress of achieving a goal, whether the current situation or a certain event will result
in future to negative or positive outcomes (result in pain or well-being). In case of the SLAM
scenario, the main goal of the agent is to achieve a stable and accurate localization in a
self-generated map. Therefore, the concept of local and global security was created and
represents the agent’s feeling of security in the global map, and at the current position,
respectively. Given the characterization of Scherer (2010) that pleasantness correlates
with attractive situations, while unpleasantness results in avoidance, the feeling of security
relates to this characterization. The agent aspires to feel globally and locally secure, while
it simultaneously tries to avoid uncertain situations.

Consequently, local security is a measure for the detection quality of the immediate
and actively observable environment, while global security evaluates the overall accuracy
of the current process in relation to the runtime. Global security secglobal is therefore
implemented by

secglobal =
[

amap

pdist
·
√
σ2

x̂v + σ2
ŷv

]1

−1
, (3.9)

where amap is the current map size, pdist the overall traveled distance of the agent, and√
σ2

x̂v + σ2
ŷv is the estimated standard deviation of the agent’s position (it is assumed that

the variances of the coordinate axis are stochastically independent). The standard devia-
tion is estimated by the EKF used in the SLAM algorithm and would linearly increase if the
update step repeatedly fails. The operator [·]ba limits the value of global security to a range
between [−1, 1], and is defined as

[x]ab =


a if x > a,
b if x ≤ b,
x otherwise.

(3.10)

75

3. Affective Evaluation of Machine Learning Experiments

This concept of global security neglects the fact that the agent never knows its absolute
position in the world, and therefore should never have the feeling of absolute security. Nev-
ertheless, in a controlled environment this simplification is acceptable. Further, it should
be noted that time dependence in the above and all following equations is omitted for a
better readability. Each variable, unless otherwise stated, is updated at each time step.

Local security bases on the detection accuracy of surrounding landmarks. As direct and
regular observation of landmarks increases the confidence in them, the correlation values
decrease correspondingly. This interrelation of landmarks is contained in the correlation
matrix Pa and regularly updated by the EKF on each detection. While the correlation
between two landmarks i and j with the estimated coordinates x̂a

i = (x̂i , ŷi) and x̂a
j = (x̂j , ŷj)

is defined by the mean correlation coefficient

corrij =
1
2

(
corr (x̂i , x̂j) + corr (ŷi , ŷj)

)
, (3.11)

where
corr (x̂i , x̂j) =

σx̂i ,x̂j

σx̂iσx̂j

, and corr (ŷi , ŷj) =
σŷi ,ŷj

σŷiσŷj

, (3.12)

respectively, are the correlation coefficients for each axis of coordinates. The standard
deviation for each coordinate component of a landmark is denoted with σx̂i or σŷi , and
the covariance between two landmarks is denoted with σx̂i ,x̂j or σŷi ,ŷj , respectively. These
pairwise interrelations are depicted in Figure 3.9a, where a black dot corresponds to a
landmark and the lines in between visualize the correlation coefficient. The darker the
color the stronger the correlation between both landmarks. In a subsequent step, a joint
representation of the correlation coefficients is calculated by creating a regular grid equal
to the area spanned by the detected landmarks. The present line representation is then
quantized into this grid, resulting in a matrix which contains the sum of correlation coef-
ficients at the positions of the sampling points of each line. This matrix is then circular
interpolated and filtered with a dilation kernel. An exemplary result is depicted in Figure
3.9b, where the darker colors correspond to higher joint correlation values. The local se-
curity value sec local is then derived by looking up the joint correlation value in this matrix
according to the agent’s current position, hence these calculations can be expressed as a
function of

sec local = f (x̂v , Pa). (3.13)

Finally, the global security value secglobal of Equation 3.9 is added to the local security
value by

intpsit =
[

1
2

(
secglobal +sec local)]1

−1
(3.14)

to calculate the intrinsic pleasantness value intpsit of the actual situation. The operator
[·]ba limits it to a range between [−1, 1]. As mentioned above, there exist additional stimuli
of the environment influencing the intrinsic pleasantness value of the overall situation and

76

3.3. Simultaneous Localization and Mapping

-2 0 2 4 6
x

0

2

4

6

8

10

12

14

y

(a) (b)

Figure 3.9.: Visual representation of the correlation coefficients between pairs of landmarks. In
subplot (a) the correlation value between two landmarks is represented as a line with a corre-
sponding color. The darker the color the higher the correlation coefficient. In subplot (b) the line
representation is converted into a lookup table for the combined correlation value at each position.

they can be added into the calculation at this point. But, for the current experiment, these
two variables were selected as they mainly influence the situation.

In contrast, the contribution of events to the intrinsic pleasantness value is primary in-
fluenced by the detection and re-detection of landmarks. Most SLAM algorithms depend
on precise sensor data and each new data sample improves the localization and map.
Therefore, a high detection rate of landmarks and the reduction of the localization error
is pleasant for the agent. A suitable modeling of this fact is again the correlation value
between the agent and a particular landmark. So, the intrinsic pleasantness intplm of a
detection or update of a landmark can be expressed as

intplm =

{
1
2

(
σx̂v ,x̂ lm

σx̂v ,x̂v σx̂ lm ,x̂ lm
+

σŷv ,ŷ lm

σŷv ,ŷv σŷ lm ,ŷ lm

)
, for updating a landmark lm;

1, in case of a new landmark.
(3.15)

In this equation, the correlation between the robot and a landmark expresses the precision

77

3. Affective Evaluation of Machine Learning Experiments

of the detection after each update. It is high if the agent’s position estimation and the
estimation of the landmark position is linear dependent, and low if the standard deviations
of the estimations increase. A newly detected landmark is always considered as a positive
event, and initially appraised with a fixed value of one. The correlation value might be an
oversimplification for appraising the detection quality of landmarks, but in the simulation it
delivers good results and can be extended in real world scenarios by confidence values of
the real sensors.

Certainly, there are a lot of more events on a real robot, which contribute to the intrinsic
pleasantness of the robot itself and the SLAM process, but as mentioned above, this ex-
periment should show the concept of combining these processes and might be extended
in future versions.

Conduciveness: In the Component Process Model, conduciveness is the appraisal
of the situation or events with regard to the goals and needs of a human. Events favorable
to achieve a desired goal or fulfilling a need have to be appraised positively while events
taking one away from a goal should be negatively assessed. Similarly, a situation is con-
ducive if the new situation feels subjectively safer than before, or if sub-goals are achieved
on the way to a goal. This conception can be used within SLEmotion to model the per-
ception of the situation by considering the change in local security in dependence to the
variance of the agent’s estimated position. Computationally, this can be expressed by

condsit
t =

1
2

(
stdv

t−1 − stdv
t

stdv
t−1

+
sec local

t−1 − sec local
t

sec local
t−1

)
, (3.16)

where the stdv
t corresponds the combined standard deviation of the agent at time step t ,

and t − 1 indicates that the value of the previous time step is taken. The second addend
adds the change of the local security value sec local at the agent’s current position to the
situative conduciveness value. Additional features could also be added, such as a measure
for the current map size, a frequency equivalent of re-detected landmarks, and similar
criteria that assess the increasing quality of the SLAM task.

Besides the overall situation, also single events can be appraised according to their
conduciveness. Since in this experiment the focus is on the SLAM process, the only oc-
curring events are the detection of landmarks. Therefore, each detection or re-detection
of a landmark is appraised according to its impact on the improvement of the mapping. A
suitable indicator of the utility of a detected landmark is the density of landmarks d lm within
a specific range. This can be approximated by

d lm =
N∑

j=1

exp
(
−‖x

lm − xj‖
τdensity

)
, (3.17)

where xlm is the position of the current (re-)detected landmark and xj the coordinates of
the N surrounding landmarks within an adjustable range. The distance between the actual

78

3.3. Simultaneous Localization and Mapping

landmark and its neighbors is calculated by the Euclidean norm ‖ · ‖ and shortened by an
exponential function with a decay constant τdensity . Then, all pairwise distances between
the landmarks are summed up, resulting in a density value. This density can be used as
conduciveness value cond lm for a (re-)detected landmark by

cond lm = 1− d lm, (3.18)

where d lm ideally is limited to a range of [0, 1] by setting τdensity and the calculation range
in relation to the scenario (an example is given below). The setting depends on the detec-
tion range of the sensors, and should be selected slightly smaller than the actual detection
range. In this way, the resulting conduciveness value is low in cases where a lot of land-
marks are in the calculation range, and high if only a few or no landmarks are in range.

Suddenness: Estimating the direction and distance in an environment without clearly
observable landmarks (like in a desert or a dark room), is only possible in relation to the
starting location by counting the steps and direction changes. In robotics, this type of
navigation which uses only internal motion sensors is called odometry. The odometry
based position estimation can be corrected in case of encountering a landmark. Small
deviations are common and are expected, but encountering an already known landmark
without expecting it, requires a large correction of the internally estimated position. This is
also the motivation for the in the following introduced calculation of the suddenness value.

As the SLAM algorithm uses an Extended Kalman Filter for predicting and correcting
the agent’s position, all building blocks are already in place. The odometry sensors of the
robot deliver a coarse estimation of the agent’s position and are corrected by the landmark
sightings. Comparing an assumed position x̂v ,a created by superimposing nodo subsequent
odometry sensor measurements with the estimated and corrected agent’s position as cal-
culated by the EKF, results in a good model for suddenness. The greater the deviation
between pure odometry based position estimation and SLAM based position estimation,
the larger the correction step δcorrection

t . A visualization of the approach for calculating the

agent

Figure 3.10.: Approach for calculating δcorrection
t which measures the probability of falsely associated

landmarks.

distance δcorrection
t is depicted in Figure 3.10. The distances δa are the results of the e.g.

nodo = 3 subsequent odometry based estimation steps, resulting in a position x̂v ,a
t . This

position is compared with the actual EKF based estimation by

δprediction
t = ‖x̂v

t − x̂v ,a
t ‖. (3.19)

79

3. Affective Evaluation of Machine Learning Experiments

The smaller this prediction error the smaller the expected deviations in the detected land-
marks, and the lower the astonishment created by falsely associated landmarks. This
relation can be used to calculate the overall suddenness value sudsit by

sudsit =
δprediction

t

‖x̂v ,a
t ‖ · sudsit ,max , (3.20)

where sudsit ,max is the overall maximum value of sudsit and is used to normalize the sud-
denness value in relation to its maximum value.

Apart from this overall situation dependent suddenness value, also event based sudden-
ness values are created for the sightings of landmarks. Landmarks can either be newly
detected or re-detected. Re-detection can occur in case of landmarks within the field of
view of the agent, or in case of already known landmarks which get associated again af-
ter coming into the field of view. As only new landmarks are surprising, the suddenness
values for them are highest, while the value for landmarks permanently in the field of view
is consequently lowest. The value for known landmarks coming again into view is neutral
for the case they get associated correctly, otherwise they are treated as new landmarks.
Hence, the suddenness value for the event of landmark sightings can be stated by

sud lm =


1, new landmark lm;
0, known and re-detected landmark;
−1, permanently visibile landmark.

(3.21)

This suddenness model uses fixed values for each landmark detection, which might be
a slightly coarse model. But as all event based calculations are averaged later on in the
component pattering module, this is sufficient.

Familiarity: This SEC appraises familiarity of events and the situation using schema
matching and frequencies of occurrence (Scherer, 1987). Familiarity depends on the fre-
quency and duration of visiting and staying at a particular place. There are similarities
between this definition and the pheromone trail of ants (Dorigo et al., 2006). The update
rule for each visited position xv of the agent according to the model of a pheromone trail
can be implemented by

ipath
t (xv) =

{
ipath,init
t (xv), t = tvisit

ipath
t−1 (xv)exp

(
−t
τpath

)
, t > tvisit , (3.22)

where τpath is the time constant of the trail. For each visited position the values are up-
dated at each iteration, while values below a one percent threshold of the original value
are removed from the trail. Additionally, neighboring positions of the trail positions are also
gradually initialized and updated with the pheromone value to continuously fade out the
trail. The pheromone values for each particular position are topped up in case of repet-
itive visits. As this model of a pheromone trail depends on both, duration and frequency

80

3.3. Simultaneous Localization and Mapping

of a visited location, the situative familiarity value can be modeled by taking the sum of
pheromone values at the agent’s current position. Thereof it follows for the final situative
familiarity value

famsit
t =

∑
ipath∈I(xv

t)

ipath, (3.23)

where I(xv
t) is a set of pheromone values still updated at a particular position xv

t . A
similar concept of gradually fading out a familiarity value is used for the update of detected
landmarks. Regularly detecting a landmark increases its familiarity value, while longer
observation pauses let the agent forget the landmark after a specific time. Therefore, the
familiarity register for each observed landmark is updated by

famlm
t =


famlm

t−1 + (1− famlm
t−1) · ηrise, during the time of regular detection,

famlm
t−1 + (−1− famlm

t−1) · ηdecay ,
while the landmark

lm is not directly observable,
(3.24)

where ηrise and ηdecay is the amount of residue added or subtracted respectively from the
previous value at each time step. Besides the detection of landmarks, additional event
based familiarity registers might be added to the Stimulus Evaluation Checks. There might
be event triggers for loop closings in the traveled path or triggers for achieving particular
thresholds of the correlation value. These additional events were omitted and subjected to
future extensions.

Predictability: The predictability register of the situation should represent the vague-
ness or predictability of the current environment. In the context of the SLAM task, the
environment would be predictable without noise and disturbances influencing the detec-
tion of landmarks and the odometry sensors. With increasing noise and unpredictable
disturbances, the uncertainty increases and the positions of landmarks can only be es-
timated. As the disturbances of a system are hard to predict, a more suitable way is to
compare them relatively to each other.

The standard deviation of the agent’s position stdv represents the impact of noise and
disturbances to the SLAM process. Therefore, using a running maximum of the standard
deviation stdv ,max and comparing it to the current value, results in a fair model for pre-
dictability. The comparison can be implemented by

predsit =
[

2 ·
(

stdv

stdv ,max

)
− 1
]1

−1
(3.25)

and is limited to a range of [−1, 1].
Predictability might be the most challenging register to implement it in a technical sys-

tem, as it appraises the ability to predict the environment. Generally, humans use their
experience to appraise events and situations in relation to their predictability, while an arti-
ficial agent lacks this pool of experience. Such a pool of experience can be represented in

81

3. Affective Evaluation of Machine Learning Experiments

a technical system with a set of memory variables. Therefore, in Equation 3.25 the expe-
rience is modeled by storing a running maximum of the standard deviation in a persistent
variable.

Also, the re-detection of a landmark can be appraised according to its predictability
and linearly depends on the standard deviation of the agent’s position. New landmarks
however, are not predictable and therefore should always be appraised with the lowest
possible value. Hence, the events triggered by observing landmarks are appraised with
regard to their predictability by the following function:

pred lm =
{

predsit , for actual observed landmarks
−1, in case of a new landmark lm.

(3.26)

Relevance: The relevance value is the most important register in regard to its impact
and is calculated with the highest priority at the beginning of each appraisal process. It
serves as a filter for checking the relevance of incoming stimuli. In case of the situation
appraisal, the relevance value depends on the current task, and is highest (= 1) for all
SECs related to the current task. Therefore, in the present scenario, the relevance register
relsit for the situation is set to one while the agent moves or observes its environment. It
is set to lower values for all situative SECs of the SLAM task while the agent performs
another task.

The relevance values for events triggered by a landmark detection depend on the nov-
elty of the landmark and therefore decrease with the duration of continuous observations.
This can be modeled by an exponentially decaying short term memory process, which is
expressed by

rel lm =

 1− exp
(

tobserved ,lm−t
τrel

)
, while a landmark lm is observed

exp
(

tobserved ,lm−t
τrel

)
, otherwise,

(3.27)

where tobserved ,lm is the time the landmark lm was observed for the first time, and τrel the
time constant for the decay of the relevance value of a landmark.

3.3.3. Categorization Module

The CPM postulates a recursive appraisal process constantly updating the appraisal re-
sults by evaluating or re-evaluating environmental changes. With these individual appraisal
results a joint representation of the core affect can be created by mapping the different
registers onto the two dimensional space of valence and arousal (see Section 2.1). The
mapping calculates a point in the two dimensional VA-space for each appraisal result. In
a subsequent step, all resulting points are combined with the previous core affect resulting
in a single point within the VA-space representing the actual core affect of the agent at a
specific time.

82

3.3. Simultaneous Localization and Mapping

Currently, in psychology there does not exist an extensive theory about the mapping
from appraisal results to emotions. The reasons for this are the lack of comprehensive
studies, as most researchers are focused on specific emotion components, and that cur-
rently most emotion research bases on self reports of subjects. Without such a theoretical
foundation of the mapping process, most technical approaches base on integration rules
using differential weighting of the various response components or in some cases non-
linear functions to fuse the components together. In SLEmotion the mapping from the
appraisal results to the valence and arousal dimensions is done by an averaging model.
Averaging models are commonly used in psychology to describe relations between stimuli
and measured responses (Anderson, 1989). Furthermore, Scherer (2009) suggests that
there exists a direct correlation between the dimension of valence and the appraisals of in-
trinsic pleasantness and goal conduciveness, as well as a correlation between the arousal
(activation) dimension and the appraisals related to relevance, familiarity, and suddenness.
These correlations together with the prototypical appraisal profiles of Scherer are the basis
for the following integration of the appraisal results. The combined valence value vt of an
appraised stimulus is calculated by

vt =
1

vsit + vlm
·
(

vsit ·
sintp intpsit

t + scondcondsit
t

sintp + scond
+ vlm ·

lintp intplm
t + lcondcond lm

t

lintp + lcond

)
, (3.28)

using the registers of intrinsic pleasantness and conduciveness. The factor vsit weights
the influence of the situation, while vlm weights the influence of the appraisals of landmark
events (in the remainder of this section constants are denoted with a subscript, except time
dependent variables which are denoted with a subscript t). Correspondingly, the arousal
value at combines the following registers

at =
1

asit + alm
·
(

asit ·
ssudsudsit

t + sfamfamsit
t + spredpredsit

t + srel relsit

ssud + sfam + spred + srel
+

alm ·
lsudsud lm

t + lfamfamlm
t + lpredpred lm

t + lrel rel lmt
lsud + lfam + lpred + lrel

)
,

(3.29)

where the factors asit and alm correspond to the arousal dimension. During the exper-
iments, an imbalance between the impact of the situation and the impact of appraised
landmark observations has been detected. Thus, the weight factors vsit , vlm, asit , and alm

had to be determined accordingly. Since landmark observations occur more frequently, the
impact of these stimuli must be damped in respect to the appraisal of the overall situation.
Calculating a running average of simultaneously observed landmarks could be used to ad-
just the weightings dynamically. For more deterministic results in simulations, an average
value can be calculated offline.

The factors denoted with sintp/cond/sud/fam/pred/rel and lintp/cond/sud/fam/pred/rel , respec-
tively, are used to fine-tune the individual registers during the integration (the default value
is 1). These values can be used to optimize the dynamic of the model by biasing specific
registers.

83

3. Affective Evaluation of Machine Learning Experiments

Each new stimulus (a situation check or an event) results in a new appraisal, which
is in turn mapped into the VA-space as a single point. Similar to the approaches of Miwa
et al. (2003) and of Becker-Asano and Wachsmuth (2010), the individual points are used to
dynamically shift the core affect of the agent, which is represented as a reference point in
the VA-space. In each iteration, the core affect is shifted in the direction of the most recent
appraisal result. The amount of each shift depends on the distance between the core affect
point and the stimulus point. It is additionally weighted by wv in the valence dimension
and wa in the arousal dimension. These two values mainly influence the dynamic and
smoothness of the resulting core affect course, and can be set almost arbitrarily as they
correspond to the personality values of the agent.

Obviously, the appraisal derivation model and its Stimulus Evaluation Checks contain
some hand-tuned parameters. However, they were reduced to a minimum, but some of
them have to be adjusted according to the sampling time of the simulation and to the
number of simulation steps, or according to the desired personality of the agent. In the
following experiment, the parameters were adjusted to support most of the situation the
agent is faced with during the experiment.

3.3.4. Experiment and Study

The proposed SLEmotion architecture is used in a simulation of a robot exploring an office
environment while calculating appraisals for events and the overall situation. The simulated
robot uses the EKF-SLAM algorithm and the described SLEmotion model to generate the
two artificial feelings of valence vt and arousal at , which represent the current core affect
of the robot at each time step t . Both feelings should be elicited at different intensity levels
in each room. The environment consists of a map with eight rooms (six are used during
the experiment) and a connecting hallway (Figure 3.11).

During the experiment, the agent visits six of these rooms on a predefined path (green
line). In each of these six rooms, the number of recognizable objects (landmarks) differs
significantly. The path was designed in a way that the robot encounters distinct situations.
For these situations, the following hypotheses which base on the underlying ideas of the
developed models for the individual Stimulus Evaluation Checks can be stated:

H1: In a situation with a high number of recognizable objects, the arousal value will be
lower, and the valence value will be higher than in a situation without objects.

H2: In a situation with an adequate number of objects for a safe navigation, the arousal
value will be higher and the valence value will be lower than in a situation with a lot
of objects.

H3: In a situation with an adequate number of objects for a safe navigation, the arousal
value will be lower and the valence value will be higher than in a situation without
recognizable objects.

84

3.3. Simultaneous Localization and Mapping

H4: Uncertain situations where no objects can be recognized will result in negative va-
lence values.

In order to evaluate these hypotheses with respect to the expectations of humans in
similar situations a survey was developed. The survey consists of a questionnaire and
was split into two parts. In the first part, the participants should assess three situations:
being in a dark room, coming home from a daily walk, and entering a familiar environment
after a longer period of absence (e.g. holiday). In the different textual descriptions of
the situations the number of familiar and recognizable objects was pointed out (the full
descriptions and the questionnaire can be found in the Appendix A.2). The participants

−15 −10 −5 0 5 10 15

0

5

10

15

20

25

x [m]

y
[m

]

R1

R2

R3R4

5R6R

Start
Finish

Walls
Landmarks
Trajectory

Walls
Landmarks
Trajectory

Figure 3.11.: Map used for the SLAM experiment with rooms R1 to R6, landmarks (red/ blue
rhombi), and the given trajectory (green line).

were asked to assess each situation by writing down an emotion or feeling they would
expect to have in such a situation. Additionally, they were asked to rate this feeling on
the Self-Assessment-Manikin (SAM) scale (Bradley and Lang, 1994), which is able to
directly quantify a feeling in the two dimensions of valence and arousal. This enables
to directly compare the human’s assessments with the simulated feelings of SLEmotion
independently of a specific type of emotion display. As the first part was primarily designed
to create self reports for the different situations and to prepare the participants for the
second part, they were asked in the second part to report on their expectations of artificial
feelings a service robot is supposed to express in similar environments. Unlike the textural
descriptions in the first part, in the second part of the survey the robot scenarios are
illustrated by plots of corresponding rooms which include a specific number of objects and
the trajectory of the robot. Compared to the map used for the simulation (Figure 3.11),
the illustrations for the questionnaire have a slightly increased level of detail (colored
boxes of varying sizes). Illustration S1 represents rooms with a lot of landmarks (similar

85

3. Affective Evaluation of Machine Learning Experiments

S1 S2 S3

Figure 3.12.: Illustrations of the three rooms the subjects had to evaluate in the survey to support
the hypotheses of the SLEmotion experiment. Colored boxes are objects and the robot’s trajectory
is plotted in green.

to R2, R3, R6 in in the simulation, Figure 3.11), S2 corresponds to a situation where no
landmarks can be detected (e.g. R4, R5), and S3 is an illustration of a hallway. During the
survey, the participants were asked to think about possible feelings a service robot would
experience in such a scenario. It was additionally told, that the robot’s navigation system
and path planning ability depends on the number of objects the robot can recognize in its
environment. The subjects should then write down their expectations on the robot’s feeling
in a text field and additionally rate them on the SAM scale. For the results, the mean
values and the standard deviations of the ratings on the SAM scale where calculated. The
given hypotheses were validated by performing an analysis of variance (ANOVA) and a
corresponding Bonferroni post hoc analysis.

To compare the results of the study with the experimental data of the SLEmotion model, the
model parameters are set to match the simulation environment and to adjust the dynamic
of the agent conservatively. The simulation time was set to T = 230 seconds and a
sampling rate of fs = 0.025 seconds resulting in 9.200 simulation steps. According to the
sampling rate the time constants τpath, τdensity , and τrel were set. The time constant for the
decay of the familiarity value of the visited locations (Equation (3.22)) was set to τpath =
100, which means, that the way-points’ impact vanishes (smaller than one percent of the
original value) after about 460 simulation steps. For the landmarks, the time constants
τdensity = τrel = 5 are comparatively small, as there are more simultaneous landmark events
and only the constantly observed landmarks should influence the current appraisal result.
The rise and fall times of the short term memory process, ηrise and ηdecay , respectively,
used in the calculation of the landmark familiarity register are adjusted to a rise time four
times faster than the decay time. Generally, a landmark is only appraised if it is within
the detection range dlm, which depends on the used sensors. In the present scenario,
the size of the simulated environment is approximately 25x25 meters while the sensors
can detect a landmark within a radius of dlm = 5 meters. With this detection range an

86

3.3. Simultaneous Localization and Mapping

Table 3.4.: Parameters adjusting the dynamic of the arousal and valence signals according to the
simulation time and desired agent behavior.

Parameter Description Value

T , fs simulation time, sampling time 230s, 0.025s
τpath time constant of the path decay 100
τdensity time constant of the decay of the density of landmarks 5
τrel time constant of the relevance decay 5
ηrise rise time for the short term memory process 0.04
ηdecay fall time of the short term memory process 0.01

dlm detection range of sensors 5m
vsit , asit weightings adjusting the impact of the situation 7
vlm, alm weightings adjusting the impact of landmark sightings 1

sfam weighting of the situational familiarity register 7
lintp weighting of the intrinsic pleasantness registers related to landmarks 2
wv amount of a valence appraisal added to the core affect per time step 1

10
wa amount of a arousal appraisal added to the core affect per time step 1

20

average number of seven detected landmarks per time step can be estimated. Therefore,
the weighting for the situation was set seven times higher, vsit = asit = 7, than for the
landmarks, vlm = alm = 1. These weights balance the impact of landmark appraisals and
the overall situation appraisal and similarly can be calculated with a running average of
simultaneously detected landmarks in an online scenario. To fine-tune the categorization
module, each register can be biased with a weight which is 1 by default. Currently, only
the familiarity register is biased with a factor of sfam = 7 and the intrinsic pleasantness
register of the landmarks has a gain factor of lintp = 2. These two values were set in order
to maximize the dynamic range of the simulation. Finally, the core affect is superimposed
by fractions of the individual appraisal results using the factors wv = 1

10 and wa = 1
20 .

All parameters, which have to be set manually are summarized in Table 3.4. Obviously,
most of them are hand-tuned and currently require some expert knowledge to adjust them.
However, most of these parameters can be replaced with variables calculated online as a
function of appraisal frequency and simulation time.

3.3.5. Results

Figure 3.13 depicts the simulated valence and arousal values for a trajectory of the robot
visiting the rooms R1 to R6. In rooms R1 and R3 the robot roams around to get more
familiar with the environment, these loops are denoted with R1loop and R3loop. At the

87

3. Affective Evaluation of Machine Learning Experiments

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
−1

−0.5

0

0.5

1
R1 R1 loop R2 R3 − 1 R3 loop R4 R3 − 2 R5 R6 R5

Simulation time [s]

va
le

nc
e

/ a
ro

us
al

valence
arousal

Figure 3.13.: Plot of the valence (red) and arousal (blue) values during the simultaneous localiza-
tion and mapping process. The labels R1 to R6 correspond to the visited rooms of the map in
Figure 3.11.

beginning, the initial values of valence and arousal are set to zero. From the starting point
towards room R1 the robot is able to detect only one landmark. This results in a bad
performance of the SLAM algorithm and the agent appraises its situation with a negative
feeling of valence (following hypothesis H4) and a high value of arousal. After roaming
around in room R1 the arousal decreases. Considering the dimensional theory of Russell
and Mehrabian (1977), such a combination of valence and arousal values (the core affect)
characterizes emotions like sadness and depression.

The accuracy of the SLAM algorithm increases when entering room R2 and R3 which
feature a higher number of landmarks. This higher number of landmarks and the increased
feeling of local security results in appraisal results shifting the core affect of the agent
towards the first quadrant of the core affect space (cf. Figure 2.1). This fulfills hypotheses
H1 and H2. Excitement and happiness are characteristic emotions of the first quadrant.

The situation changes drastically after the agent enters room R4 without any landmarks.
This results in a fast transition of the core affect towards the second quadrant, where
emotions of of fear and anxiety are located. Hypotheses H3 and H4 are underpinned in
this room. Leaving room R4 and directly re-entering room R3, which was already explored,
results in small detection errors but high correlation values. This in turn increases the
agent’s feeling of local and global security, pushing the core affect into the fourth quadrant,
that is characteristic for feelings of relaxation and contentment.

After leaving room R3 the agent travels along the hallway entering room R5. During
this travel, the agent is able to detect a sufficient number of landmarks resulting in a fair
accuracy of the SLAM algorithm and concomitant high values of valence. In contrast, the
arousal values steadily increase due to the newly detected landmarks. Entering room R5
reduces the valence values for a moment, as the room does not contain any landmark.
The transition to room R6 generates high valence values since there are many landmarks
for a safe navigation. Simultaneously, there are elicited high arousal values, since most of
the landmarks are newly detected. After leaving room R6 and R5 the simulation is ended.

Overall, the simulation results fulfill the model’s underlying design considerations and

88

3.3. Simultaneous Localization and Mapping

the extracted hypotheses H1 to H4. In the next step, these hypotheses will be verified
according to the expectations of humans. For this reason, in a study, 30 voluntary partic-
ipants (26 male, 4 female) mostly students in Electrical Engineering, ranging in age from
20 to 49 (MD = 27.0, SD = 5.2) were asked. They were divided randomly into three groups
and a questionnaire with a rotating order of the questions was assigned to each group to
avoid biases. For the following results only the ratings made on the SAM scale were used
and mapped linearly into a value range between−1 and 1 in order to match with the output
of SLEmotion. The additionally collected textual self reports for each surveyed situation
were used to detect possible misunderstandings of the questionnaire.

The first situation S1, which was evaluated by the agent and by the human participants
was a room with a lot of good recognizable objects. Rooms R2 and R3 were designed to
represent such a situation. SLEmotion calculates an average valence value of v = 0.293,
while the arousal values decay over time to lower values (R2, R3 on average a = −0.19).
In comparison, the human participants reported on the SAM scale an average of v = 0.45
(SD = 0.360) and a = −0.567 (SD = 0.469) for being in a similar situation, and an average
of v = 0.283 (SD = 0.468) and a = −0.267 (SD = 0.469) for their expectation on the
feeling a service robot would express.

In the second situation S2, no landmarks can be observed (R4 and R5). This results in
increasing uncertainties of the SLAM process and is evaluated by SLEmotion with (neg-
ative) valence values, relatively lower than the corresponding arousal values (R4 avg.
v = −0.144, a = 0.253). These values are characteristic for negative emotions like sad-
ness and fear. This is also in accordance with the self-reports of the participants, which
have evaluated a situation of being in a dark and unknown basement storage room with
an average of v = −0.383 (SD = 0.387) and a = 0.35 (SD = 0.397). Further, the average
values for the expected emotion of the service robot in a room without any landmarks were
v = −0.517 (SD = 0.404) and a = 0.25 (SD = 0.537).

The third situation S3, represents a standard situation with a sufficient number of land-
marks for a stable navigation. This is the case for almost all rooms and the hallway in
the simulation, except for R4 and R5. In those situations, SLEmotion calculates valence
values relatively higher than the arousal values. In the survey, the participants were asked
what they would expect of a service robot traveling along a hallway. The result was an
average of v = 0.133 (SD = 0.454) and a = −0.5 (SD = 0.347). In the simulation, similar
tendencies can be observed after the robot leaves a room.

Comparing the average values of the simulation have supported hypotheses H1 to
H4. For the experimental data of the second part of the survey, an analysis of vari-
ance (ANOVA) was performed. Additionally, pairwise tests (using the Bonferroni cor-
rection) between the three situations, S1 - lot of landmarks, S2 - no landmarks, S3 -
sufficient landmarks were performed. A significant main effect was found for arousal
(F [1, 29] = 16.30, p < 0.001) and valence (F [1, 29] = 41.87, p < 0.01). Pairwise compar-
isons support hypotheses H1 and H3 by a significantly (p < 0.001) lower arousal value
and a significantly higher valence value (p < 0.001) in S1 than in S2 (H1), respectively
in S3 than in S2 (H3). The differences between S1 and S3 were not significant, therefore

89

3. Affective Evaluation of Machine Learning Experiments

hypothesis H2 is not fully supported by the conducted field study. One reason might be
the misinterpretation of the robot’s path within the illustration. The subjects reported in
the closing interview that they were unsure how they should interpret the quirky kinks and
curves of the green paths in the illustrations (Figure 3.12). Finally, hypothesis H4 was
supported by a one-sample T-test revealing that the valence value in S2 is significantly
lower than 0; t(29) = −6.998, p < 0.001.

Concluding remarks on the emotional evaluation of a SLAM algorithm: The inten-
tion of this experiment was to extend the communication abilities of an artificial agent by
an emotional component. The developed emotional component uses the two dimensional
core affect to output the internal status of an underlying complex SLAM algorithm. In this
way, the status can be mapped to distinct emotional expressions. All calculated emotions
base on internal appraisal variables, which are calculated by utilizing only the decisions,
observations and previous appraisal variables of the agent. The underlying emotion model
is based on the Component Process Model which has proven to be implementable and
modular. The simulated valence and arousal values change according to the accuracy and
temporal behavior of the SLAM process and can be used to drive an appropriate emotion
display. The results were compared with the expectations of humans observing a service
robot in similar situations. The results support the idea that an artificial appraisal model
enables the fusion of numerical features to a coherent and extensible representation, ex-
pressing the state of an underlying process in terms of emotions. This helps to improve the
efficiency and intelligibility of communication of complex system states towards non-expert
users. Obviously, the simulated emotions are not intended to represent the full emotional
experience of the agent but can be seen as a component of the agent’s emotional and
cognitive architecture.

90

4. Affective Control

Up to this point, the described methods improve the communication ability of the agent
itself. By drawing on the concepts described in the background chapter, also the ability of
the agent to react to its artificial emotions would be essential. Taking the assumption that
an agent is able to calculate such artificial emotional states, this can not only enhance its
communication abilities, it can also be used to control several conditions in its behavior. In
the following, two scenarios where an emotion based assessment of the situation would
be useful are briefly outlined.

The aforementioned exploration-exploitation dilemma is currently either treated by time-
dependent or approximation procedures which reduce the percentage of exploration steps
or subsume equal states. Most of the classic algorithms favor exploration at the begin-
ning of the learning task and reduce exploration towards later stages of learning (Axel-
rod and Chowdhary, 2015). When the environment is non-stationary, like most real-world
scenarios, state-visitation index based methods, or open-loop ε-greedy strategies will fail.
One solution to change the agent’s behavior and adapting its exploration-exploitation bias
would be to utilize a meta-model on the expected change of the environment. In Section
3.3, a corresponding model for the assessment of the current environment (SLEmotion)
with emotions was proposed. In support of such a SLAM scenario the agent could use the
calculated core affect to control its behavior in an uncertain environment. For example, the
agent could change its exploration behavior according to the current core affect. Since the
valence value of a situation coarsely depends on the detection accuracy of the landmarks,
and the arousal value similarly depends on the number of occurring events, a programmer
of the agent could use these values to create control rules for the agent. These control
rules could, for example, serve to switch between different detection modes, or regulate the
approaching speed towards human users. In contrast to conventional control algorithms,
such control rules can be formulated in an intuitive way expressing preferences for actions
in specific regions of the core affect. Moreover, since the rules are defined according to
the core affect, the set of control rules and the appraisal model can be extended indepen-
dently of each other. In other words, implementing a meta-model such as the introduced
SLEmotion enables the artificial intelligence designer to formulate preferences of the agent
according to its intuitively understandable internal state.

In the second example, a virtual agent in the context of business intelligence is con-
sidered. The agent has no direct relation to the physical world and simulates its internal
representation of an emotional state in dependence on the interactions with other users or
virtual agents. The underlying decision logic of the agent bases on Reinforcement Learn-
ing and a cost signal is used as reward. By way of illustration, a negotiation between

91

4. Affective Control

several teams within a company is considered. Each team has different projects and cor-
responding goals to achieve, but they use similar machines to produce their goods. In
case a machine breaks down, each team tries do get a replacement part as fast as pos-
sible. Therefore, they have installed an automated system for each team in form of an
artificial virtual agent looking for necessary replacement parts. In the first instance, this
agent tries to obtain the part within the company while respecting its own objectives and
simultaneously the aims of the other teams. Like in the previous example, a meta-model
is used to appraise the own and the objectives of the other teams resulting in combined
and intuitively understandable appraisal results. That means, if the internal negotiations
between the project teams fail, the agent negatively appraises the overall situation – the
agent gets unhappy – and starts to look for the replacement part at external suppliers. In
this unhappy state, the agent’s preferences change, which is useful during the negotiations
with external supplies. External procurement of the spare part requires focus on price and
delivery time, while internal procurement requires to find the optimal trade-off between
all involved parties. As the agent uses Reinforcement Learning for selecting the optimal
action (the decision to externally order the part, or to use an internally available part at
the costs of another team) the calculated internal appraisal result can be used during the
action selection process in order to adjust the multiple objective weightings.

Considering both examples, this leads to the following two questions: First, how can
affective states be used to control Reinforcement Learning in case of non-stationary envi-
ronments? And second, why are intuitive representations like affective states beneficial to
control the learning process?

In the remainder of this chapter, these two questions will be treated by extending the
reward representation of Reinforcement Learning with a multi-dimensional signal which is
weighted on the basis of an additional state. This state is designed to be independent
from the RL process so that it can be controlled by a process simulating the knowledge
and experience of an agent while preserving all major properties of RL. Finally, numerical
experiments show that the proposed method is capable to learn different preferences in a
manner sensitive to the agent’s level of experience.

4.1. Reinforcement Learning with Preferences

Decisions are mostly influenced by personal preferences which are the result of past ex-
periences. In order to model preferences within the RL framework reward shaping is an
essential component (cf. Section 2.3.3). The different components of the reward signal can
then be shaped according to variable weights. This requires that the environment assigns
different components of reward rext to a goal and the ability of the agent to add internal
components rint to the reward signal. With this multi-dimensional reward signal, the agent
can learn to prefer specific reward components by assigning appropriate weights to it.
There are different options for selecting these weights. In multi-dimensional RL algorithms
it is tried to maximize the final reward by setting the weights to combinations resulting in

92

4.1. Reinforcement Learning with Preferences

Pareto-optimal solutions. In contrast to that, the weights can also be set to fulfill individ-
ual preferences of the agent by adjusting them according to internal states of the agent.
The problem lies in the definition of such internal states, and should consider the interre-
lations between the artificial emotional system, the preferences, and past experiences of
the agent. Unfortunately, the currently existing emotional models are incomplete and cover
only a subset of artificial emotions in the context of specific applications (cf. Chapter 3).
They are by far not sufficiently complete to define a state that controls preferences in a re-
ward weighting process of Reinforcement Learning in dependence to this state. Therefore,
this general definition is still a future topic of research and the following algorithm assumes
a proper definition of this affective state SA.

SA should intuitively represent a state, subsuming all underlying internal states of the
agent and thereby e.g. represents the level of experience, arousal, happiness, or curiosity
of the agent. Defined in this way, the state can be used to control the preference model
of a given task and to calculate the reward weightings accordingly. Basically, SA is the
argument of a weighting function and there exists a set of such functions for each individ-
ual reward component. The result of evaluating this set of functions is a multi-dimensional
weight vector in dependence to the affective state SA. Finally, this vector can be applied to
the multi-dimensional reward signal in order to weight the reward components according to
the preference model and SA. In Figure 4.1, the extended framework is depicted for such a

Agent

RL

affective state SA

preference
model

Environment

action at

state st reward rt

Figure 4.1.: Reinforcement Learning framework with an integrated preference model and affective
state regulation. The rewards are modified by the preference model which is controlled by the
affective state SA.

one-dimensional affective state. The RL process itself is retained and only the reward func-
tion is replaced by a multi-objective reward function. Each reward component represents
a specific property of the task. In the current setting, a one-dimensional affective state is
chosen to demonstrate the principle method, however it is possible to use multiple states
to control different properties of the task. As the affective state SA compactly summarizes
previous internal states and experiences of the agent, so that all state relevant information
is retained, it still fulfills the Markov property. Therefore, the environmental state signal

93

4. Affective Control

st , and the external reward rext
t which is given by the environment can be used to drive

RL algorithms. Reward scalarization as introduced by Vamplew et al. (2011), is used to
derive a scalar reward rt by weighting and summing up the individual reward components
assigned by the environment in each time step.

Algorithm 2 RL with preferences
1: procedure TASK(1)
2: Update SA continuously
3: end procedure

4: procedure TASK(2)
5: while st is not the terminal state do
6: Take action at , observe external reward rext

t+1 and new state st+1

7: Add internal reward components rint
t+1 to the reward signal

8: rt+1 =
[
wint (SA

t) wext (SA
t)
]
·
[
rint
t+1 rext

t+1

]T
. Calculate scalar reward using SA

t
9: Update value function V (st) with rt+1

10: Select next action at+1 using V (st+1)
11: Advance to next state: st ← st+1

12: end while
13: end procedure

In Algorithm 2, the corresponding weights for the internal and the external reward com-
ponents are denoted with wint (SA

t) and wext (SA
t), respectively. Note that these weights are

functions of the affective state SA, as they are dependent on the current affective state SA
t .

Similar to the basic idea of Prospect Theory, SA
t can be seen as a reference point of a

weighting function for a specific reward component. The correct choice of this weighting
function depends on the desired behavior of the agent and on the implemented model of
SA

t . A concrete example for a model of SA
t and the weighting function is shown in the

following experiment.

4.2. Experiment

In this basic experiment, the design of a preference model and a corresponding affective
state is shown. In contrast to the examples given at the beginning of the chapter, this ex-
periment considers the complete learning process of an RL agent in a new environment, in
which the agent additionally first has to learn how the reward process works. The following
two vivid examples further motivate the experiment:

Example 1: With the assumption that there is a brand-new cooking robot which gets the
order to cook fried eggs, the learning behavior can be described as follows. At the begin-
ning, the robot is a novice with basic cooking abilities and has access to the necessary

94

4.2. Experiment

equipment and ingredients, like eggs, a pan, and a flipper. The robot starts baking the
eggs until the score for comparing the result with a picture of a fried eggs exceeds a cer-
tain threshold. Then the fried eggs are served, the owner of the robot tastes them, and
tells the robot that it made indeed fried eggs, but that the yolk has to be cooked through.
Up to now, the robot in its inexperienced state only has judged the result according to the
appearance and basic recipe, but has not considered the new dimension which is now
added: the consistency of the yolk. Next time the robot is to cook fried eggs (with its in-
creased level of experience), it will take this new dimension into account and evaluate the
result accordingly (e.g. by using an additional sensor to measure the yolk temperature).

Example 2: This example is related to a more complex assessment and a special case
for machines: the taste of coffee. As a beginner in drinking coffee, one judges coffee
according to the overall taste of bitterness or sweetness and probably the temperature.
After drinking coffee regularly, one starts to taste different flavors within a specific kind of
coffee. Consequently, with increasing experience and regularity in drinking coffee, new
dimensions of possible rewards are added to one’s preference model. For the perfect
coffee experience, an expert chooses coffee according to a variety of different tastes and
ways of preparation. A similar concept of an unfolding reward space according to an
experience state is not considered in machine learning scenarios so far.

Keeping these two examples in mind, a more realistic reward process can be described by
the three following components:

1. A primary reward that is assigned for completing the task and that is independent of
the level of experience of the agent.

2. Additional reward components for the completion of sub-goals.

3. Subjective reward components that are internally generated by the agent according
to its current affective state and level of experience.

The first two components are the external rewards, denoted by rext
t , while the third compo-

nent subsumes the internal rewards r int
t . These internal rewards are only generated by the

agent at specific affective states (e.g. for being happy), or as a function of the current level
of experience. That means, the internal rewards are only perceived by the agent in case of
certain affective states, or in case the experience level exceeds a certain level so that the
weightings of an underlying preference model influence the overall reward. An exemplary
preference model which depends on SA

t is depicted in Figure 4.2. In this model, three
different weighting functions are assumed. The first one, wext ,1(SA

t) assigns a constant
weight of 1 to the first external reward component. This is also the default function, which
is always used to weight the reward for the primary goal. The remaining two functions,
wext ,2(SA

t) and wext ,3(SA
t), are applied to the second and third external reward component

and increase exponentially with an increasing value of SA
t towards their maxima. wext ,2(SA

t)

95

4. Affective Control

0 10.5

1

5

ExpertBeginner Intermediate
SA

t

W
ei

gh
t w

(S
A
) t

wext,1

wext,2
wext,3

Figure 4.2.: Weighting functions for three different shaping rewards in relation to the affective state
SA

t .

decreases in turn exponentially once a specific value of SA
t is reached. It is important to

note, that the agent does not perceive a reward component if the corresponding weight
is zero, thus in the example of Figure 4.2 the agent optimizes its learning behavior at the
beginning (SA

t = 0) only towards the first external reward component. The remaining com-
ponents are then taken into account by the agent relatively to the affective state SA

t and
the corresponding weighting function.

Thus, the reward function is a combination of externally and internally assigned rewards,
which are only perceived by the agent if a corresponding weight is greater than zero. As
the weighting functions depend on the affective state SA

t , specific reward components are
biased according to this state. In this first approach, SA

t is modeled as an experience
signal which increases over time according to a sigmoid shaped function. Sigmoid shaped
learning curves are often used to represent the gain in experience in non-trivial tasks which
require numerous repeated trials to master them, and also motor skill experience curves
take this shape (Leibowitz et al., 2010; Woodworth, 1938). The experience curve can be
divided into three phases: beginner, intermediate, and expert. In the first phase, the level
of experience increases exponentially, while slowing down in the intermediate phase, and
finally settle at the expert level. This model of experience signal also takes into account
that the experience level cannot decrease, which is on the one hand natural, but also
implies that forgetting effects have to be modeled by the weighting functions. This also
means, however, that new reward components can only be added to the reward signal and
can never be removed (this is also called the no-go-back-policy). The only way to dampen
the effect of a specific reward component after initially adding it to the reward signal is to
reduce its weight, which can be done by modeling the weighting function accordingly.

The experience signal generation or a similar signal representing the affective state of
the agent seems to be a substantial question. In fact, it is an extensive question and would
go beyond the scope of this dissertation. There are several solutions conceivable for inte-
grating the affective states, experiences of the agent, and externally given feedback into a
combined signal for shaping the rewards. Generally, the requirements on this control sig-
nal are the correlation between the learned actions and its outcomes, the internal affective
states, temporal effects, and external feedback. But as also neurophysiological findings
suggest that a clear separation of this control signal from the actual learning process is

96

4.3. Results

beneficial (LeDoux, 1998). Therefore, for the following modeling and the experiment, the
described simple approximation of a monotonically increasing and time dependent experi-
ence signal is used.

With this basic model for SA
t and the three weighting functions of Figure 4.2, a first

simulation of learning preferences within the RL framework can be performed. For the
simulation, a hypothetical decision problem of a three-armed bandit was chosen. The
return of each arm of the bandit was set to a Gaussian distribution with µj = 1 and σj = 1,
where j = 1, 2, 3. The simulation was run independently 100 times and in each run 300
trials were played. Afterwards, the results where averaged. Algorithm 2 was used to learn
the actions by updating the value function according to the Q-learning update rule (α = 0.8,
γ = 0.4), whereas the action selection was done by an ε-greedy strategy (ε = 0.05).

4.3. Results

The following results illustrate the principal feasibility of modeling preferences within the
classical RL framework by exploiting reward shaping. In order to show the basic idea of

5

5 1

− 5 1 5
0

0.2

0.4

P
ro

ba
bi

lit
y

− 5 1 5− 5 1 5
Reward bonus

Expert

Beginner

Intermediate+

. .
 .

. .
 .+

. .
 .

Figure 4.3.: The arising reward structure of a simulation with a preference model weighting the
reward process of a bandit problem with Gaussian reward distributions. Each weighting function of
the preference model is applied in relation to an additional external experience state. In the depicted
structure, the current reward preference in the corresponding level is highlighted (orange/yellow).

this extension of the reward process within the RL framework, the weighting functions are
concisely defined by

wext ,1(SA
t) = 1, and (4.1)

wext ,2/3(SA
t) =

1√
2πσ

e
(SA

t −ν2/3)2

2σ2 , (4.2)

where σ = 1
5
√

2π
sets the maximum weight. Respectively, ν2 = 0.5 and ν3 = 1, is the

value of SA
t where the maximum is reached. With these weighting functions the reward

structure of Figure 4.3 results. At the first level (beginner, 0 ≤ SA
t ≤ 0.35) the weightings

for the second and third reward component is zero, while the first component is weighted
by one (cf. Figure 4.2). With an intermediate level of experience (0.35 < SA

t ≤ 0.65), the

97

4. Affective Control

0 50 100 150 200 250 3000

0.5

1
Beginner Intermediate Expert

TrialLe
ve

lo
f

E
xp

er
ie

nc
e

S
A

0 50 100 150 200 250 300

a3

a2

a1

A
ct

io
n

Figure 4.4.: Learned policy for a simulated increasing level of experience. First, the agent acts
like a beginner and selects every action equally (the thickness of the bars corresponds to the
frequency of selection). At trial 98, the agent enters the intermediate state and can perceive an
additional reward model with a preference for the second action (a2). In the expert state, another
reward model is added with a preference for action three (a3).

second reward component is preferred and weighted highest by wext ,2(SA
t). In the expert

level (SA
t > 0.65), the second reward component gets less important, accompanied by an

increasing preference for the third reward component. The experience level is simulated
by

SA
t = 1− 1(

1 + t
(0.5·ntrials)

)1+e1 , (4.3)

where t is the sampled step in time, and ntrials is the overall number of considered time
steps. The resulting experience function is depicted in the lower part of Figure 4.4.

Learning on this reward structure using the given simulated experience signal results in
preferences for actions correlated with the maxima of the weighting functions and the cur-
rent value of SA

t . In case of the chosen bandit scenario, each action directly corresponds
to the respective reward component. In the upper part of Figure 4.4, the statistic of the
selected actions in relation to the experience signal (lower part) is plotted. At the begin-
ning (until trial 100), the agent is not able to differentiate the decisions and each action aj

is equally taken. After gaining some experience, in the intermediate phase, the second
reward component gets more and more weighted, and thus is perceived more intensive by
the agent. Now, the agent receives the first reward component of the bandit process and
an additional reward bonus (the second reward component) which is added to the actual
reward. As the weighting for the second reward component is remarkably higher than for
the first component, the agent prefers the action (a2) which maximizes the second reward
component. In Figure 4.4, this clear preference is depicted by an increased linewidth for
action a2, which represents the high selection frequency of this action.

98

4.3. Results

Finally, in the expert level (trial 200 to 300) the weighting for the second reward com-
ponent decreases again and the weighting function for the third component gets more
intense. As the weighting for the first component is comparably low, the agent prefers
only actions resulting in rewards for the second and third component. Interestingly, the
preference for the second reward component does not vanish in direct correlation to the
weighting function, as the RL process introduces a forgetting phase due to the back prop-
agation of the outcomes. This results in a smooth and natural transition between one
preference and another.

Given these results, the experiment shows that reward shaping in combination with an
additional state representing experiences or affective states can be used to steer a clas-
sical Reinforcement Learning process. Obviously, the desired preference depends on the
design of the control state and on the weighting functions. Since the goal of this chapter
was to introduce a method for affectively controlling an RL based agent by an independent
state, the considerations and results fulfill these requirements. The separation between
control signals and decision making is preserved in the above algorithm, and thus is in
accordance with the findings of neurophysiology.

The presented idea and the results were already published at a conference on Rein-
forcement Learning and Decision Making (Feldmaier et al., 2015) and discussed there
controversially.

Concluding remarks on affectively shaping multiple rewards: The difference between
the above framework and approaches for multi-dimensional or dynamic reward environ-
ments surfaces in scenarios, where the reward process is initially unknown and the agent
first has to learn how the process works. That means, instead of considering each reward
component right from the beginning, the agent weights the different components according
to an internal state. This enables to model a behavior that fulfills a primary goal first by ex-
ploiting the corresponding reward component and then advances by integrating additional
reward components in relation to the control state. The neurophysiologically inspired and
intuitive way of designing the required preference model is the advantage of the introduced
method. Obviously, further research on the properties of the weighting function and the
definition of the experience signal has to be done to complete the framework. More human
biases like framing effects have to be considered and modeled by corresponding weight-
ing functions and control signals. A major drawback of the described method is the lack
in controlling the order of selected actions to achieve a preferred and optimal combina-
tion of reward components. Such a strict action order can be introduced by an additional
action planning step which constrains the available actions in relation to the current state
of the environment. Overall, the study has shown that the combination of existing Rein-
forcement Learning mechanisms and their interpretation in a psychologically informed way
results in new model considerations. Those considerations are important in view of future
developments of affective systems.

99

5. Human Value Retrieval

In this chapter, a framework for combining inverse and multi-objective Reinforcement
Learning is presented. The framework enables to learn linear scalarization weights for
multiple reward signals. In multi-objective Reinforcement Learning scenarios, the weight-
ing of the different objectives is crucial. Generally, the weights are manually assigned by
the programmer which can introduce unintended biases. Inverse Reinforcement Learning
was originally developed for approximating unknown reward functions and is now applied
to learn hidden scalarization weights for given (expert) policies. The resulting weights can
be used for comparison and verification of hand-crafted policies. In this way, also unwanted
human biases inherently contained in hand-crafted policies can be detected. At the begin-
ning of this chapter, the algorithm is derived and the retrieval of scalarization weights is
described. Finally, results from simulations in a Gridworld scenario are presented.

5.1. Inverse Reinforcement Learning for Human Value Retrieval

In a setting where the reward function is not known, but an expert policy or several ex-
pert interactions with the system or the particular environment are available, so called
Inverse Reinforcement Learning can be applied. A distinctive feature of this approach,
compared to the manual design of a reward function, is that implicit human and animal
learning strategies can automatically be detected and encoded. Additionally, Inverse RL is
used for preference elicitation which tries to obtain a posterior distribution on the agent’s
preferences from observations (Rothkopf and Dimitrakakis, 2011). Numerous Inverse RL
algorithms exist (Ng and Russell, 2000; Abbeel and Ng, 2004; Ramachandran and Amir,
2007) and they have been proven to be robust in deriving underlying reward structures and
preferences. Therefore, it is a consequent step to extend the algorithm on multi-objective
scenarios, where missing weights for the scalarization have to be determined. In addi-
tion to the ability to detect unwanted human biases of hand-crafted policies, the approach
supports the creation of preference models as required by the algorithm of the previous
chapter.

A prerequisite of the following algorithm is that there exists a sequence of sample poli-
cies, or a complete policy which is a result of successful interactions with the considered
environment, and that this policy contains certain preferences. This means that the re-
quired policies should naturally express preferences of human or animal subjects for some
of the components of the vectorial reward. The final reward used for selecting a decision
and for updating value functions has a functional form related to the reward components.

101

5. Human Value Retrieval

It is also supposed that a policy to be analyzed contains the preferences a subject pursues
if it behaves almost optimal according to its preferences.

There exist different approaches for Inverse RL which are distinguished according to
the availability of training data. If the complete stationary policy for all states is given, the
reward function can either be learned in a tabular form (in finite state spaces) or approx-
imated as a linear function in the infinite state space. Hereby, a set of defined features
φ(s) ∈ Rq for each state is required. In contrast, if the policy is only partially observable
or can only be sampled, the unknown reward function must be approximated. The latter
case is assumed in this dissertation, as only a limited set of expert (human) policies is
given, so that a linear function approximation is used in the following. Instead of observ-
ing different features for states and approximating the complete missing reward function,
the existing multidimensional reward function of the environment is used together with the
given policies to learn the weighting of the individual reward components. Hence, scalar-
ization weights can be learned from observations and used for parametrization of learning
agents without additional manual tuning.

In the following subsection, first the Inverse RL algorithm is introduced by rewriting the
work of Ng and Russell (2000) using a more concise notation, while delivering a full and
comprehensible derivation of the approach. Critical steps are explicitly described which are
highly abstracted in the original and most other papers. Then the algorithm is extended to
multi-objective scenarios and the ability to learn scalarization weights is illustrated.

5.1.1. Inverse Reinforcement Learning

Before formulating the Inverse RL algorithm for linearized reward functions, a simpler, dis-
crete and finite state space version is derived. In the notation of the following algorithm,
the i-th component of a vector x will be denoted as x (i), and the individual (scalar) rewards
for each state R(s) are combined into a vector R̂ ∈ RN , where N is the number of states.
The goal of the Inverse RL is exactly to determine this unknown reward vector R̂. With this
reward vector, the value function is defined as

Vπ∗(s) = E

[∞∑
k=0

γk R̂(st+k+1)|π∗, st = s

]
, (5.1)

where the optimal policy is given by π∗(s) = a∗. The optimal policy states the optimal
action a∗ in state s. Using the above reward vector and the state transition probability
matrix Pa

ss′ ∈ RN×N , the well known Bellman equation is rewritten in vector form as

Vπ
∗

= R̂ + γPπ
∗

ss′V
π∗ . (5.2)

Straightforwardly, this can be rearranged to

(I− γPπ
∗

ss′)V
π∗ = R̂, (5.3)

102

5.1. Inverse Reinforcement Learning for Human Value Retrieval

where the matrix (I− γPπ
∗

ss′) is nonsingular. Hence, Equation (5.2) can be stated as

Vπ
∗

= (I− γPπ
∗

ss′)
−1R̂. (5.4)

Additionally, a so-called action-value function can be defined as

Qπ∗(s, a) = E

[∞∑
k=0

γk R(st+k+1)|π∗, st = s, at = a

]
, (5.5)

which gives the expected future discounted reward starting in state s and taking action
a, but following policy π∗ afterwards. Two important relations between the policy and the
action-value function as well as between the value function and the action-value function
can be stated. The first is that the optimal policy can be derived from the action-value
function by greedily selecting the next action due to the Bellman optimality condition, which
is equivalent to

a∗ = π∗(s) ∈ argmax
a∈A(s)

Qπ(s, a) ∀s ∈ S, (5.6)

and the second relation is the transformation between the two value functions which is
given by

Qπ∗(s, a) = R(s) + γ
∑

s′
Pa

s(s′)Vπ
∗
(s′), (5.7)

where Pa
s(s′) ∈ [0, 1] is the probability of transition to state s′ starting in state s and taking

action a.
Now, instead of Equation (5.6) the equivalent condition for optimality∑

s′
Pa∗

s (s′)Vπ(s′) ≥
∑

s′
Pa

s(s′)Vπ(s′), ∀s ∈ S, a ∈ A, (5.8)

can be compactly rewritten, as

Pa∗
ss′V

π � Pa
ss′V

π ∀a ∈ A\a∗, (5.9)

where � denotes entry-wise inequality of vectors, i.e. x � y ⇔ x (i) ≥ y (i)∀i . By recalling
the fact that Vπ

∗
= (I− γPa∗

ss′)
−1R̂, Equation (5.2) can be stated as

Pa∗
ss′(I− γPa∗

ss′)
−1R̂ � Pa

ss′(I− γPa∗
ss′)
−1R̂, ∀a ∈ A\a∗, (5.10)

which is equivalent to
(Pa∗

ss′ − Pa
ss′)(I− γPa∗

ss′)
−1R̂ � 0. (5.11)

The problem now lies therein, that the solution to Equation (5.11) can be trivial, i.e. R̂ = 0.
Additionally, there exists a multitude of valid solutions, from which the right one has to be
chosen. To avoid the trivial solution and to get a unique result, additional penalty terms are
introduced.

103

5. Human Value Retrieval

The demand that π should be optimal comes with a second imperative, namely that this
policy should be as much better as possible than the second best policy. This imperative
can be formulated as a maximization of∑

s∈S

(
Qπ∗(s, a∗)− max

a∈A\a∗
Qπ∗(s, a)

)
. (5.12)

Additionally, the simplest solution should be preferred. This means, the reward function,
that has as little nonzero entries as possible is preferable. Such behavior is achieved
with an additional `1-penalty. The `1- and `2-norm are commonly used as regularizers in
machine learning, especially when the difference between zero and non-zero elements
is very important. There values increase every time an element of the considered vector
moves away from 0.

The combined optimization problem is therefore formulated as

maximize
R̂

N∑
i=1

min
a∈A\a∗

{
(Pa∗

ss′(i)− Pa
ss′(i))(I− γPa∗

ss′R̂)−1
}
− λ‖R̂‖1

s.t. (Pa∗
ss′ − Pa

ss′)(I − γPa∗
ss′)
−1R̂ � 0 ∀a ∈ A(s)\a∗

R(i) ≤ Rmax, i = 1, ... , N,

(5.13)

where Pa
ss′(i) denotes the i-th row of the Pa

ss′ matrix. This means Pa∗
ss′(i)−Pa

ss′(i) quantifies
the same as written down in Equation (5.12).

In case of a non-deterministic system with a finite set of states, which can be stored in
a tabular way, function approximation can be employed to approximate the value function.
Function approximation is popular for describing the value functions itself, especially the
linear version, where each state is transformed by a feature transform φ : S → Rl . The
one-dimensional value function itself is then approximated via

Ṽπ(s) ≈ θθθ>φφφ(s), (5.14)

where θθθ denotes a parameter vector. This parameter vector θθθ is iteratively learned by the
approximation algorithm.

Keeping this scheme of approximating the value function in mind, the reward function
for each state can also be expressed as a mapping R : S → R, and therefore be approxi-
mated in a similar way by

R̃(s) = ααα>φφφ(s), (5.15)

with the parameter vector ααα ∈ Rl . In the following, φφφ(i)(s) denotes the i-th component of
the feature vector calculated for state s.

By the definition of the value function, and the fact that the approximation of the reward
function R̃ is also a linear combination of features, the value function approximation can
be stated as

Ṽπ(s) = E
s′∼Pπ

ss′

[∞∑
k=0

γk
l∑

i=0

ααα(i)φφφ(i)(st+k+1)|st = s

]
. (5.16)

104

5.1. Inverse Reinforcement Learning for Human Value Retrieval

Furthermore, by defining the specific value function Vπ
i , which would arise if the reward

was approximated by using only one feature as R(i)(s) = ααα(i)φφφ(i)(s), a single dimension of
the value function approximation can be derived by

Ṽπ
i (s) = E

s′∼Pπ(s)
ss′

[∞∑
k=0

γk R(i)(st+k+1)|st = s

]

= E
s′∼Pπ(s)

ss′

[∞∑
k=0

γkααα(i)φφφ(i)(st+k+1)|st = s

]
.

(5.17)

Rearranging Equation (5.16) and using Equation (5.17) together with the linearity of the
expectation gives

Ṽπ(s) = E
s′∼Pπ(s)

ss′

[∞∑
k=0

γk
l∑

i=0

ααα(i)φφφ(i)(st+k+1)|st = s

]

=
l∑

i=0

ααα(i) E
s′∼Pπ(s)

ss′

[∞∑
k=0

γkφφφ(i)(st+k+1)|st = s

]

=
l∑

i=0

ααα(i)Vπ
i (s),

(5.18)

where again ααα(i) represents the i-th component of a parameter vector. By using Equation
(5.9) the following inequality for all i can be stated:

Pa∗
ss′V

π
i � Pa

ss′V
π
i , ∀a ∈ A(s)\a∗. (5.19)

Then it is straightforward to replace the value function by its component-wise notation and
rewrite the inequality as

l∑
i=0

ααα(i)Pa∗
ss′V

π
i �

l∑
i=0

ααα(i)Pa
ss′V

π
i , ∀a ∈ A(s)\a∗, (5.20)

and finally by following Equation (5.18), it can be concluded that

Pa∗
ss′Ṽ

π(s′) � Pa
ss′Ṽ

π(s′), ∀s ∈ S, a ∈ A(s)\a∗, (5.21)

which is in parallel with the result of Equation (5.9), or entry-wise

E
s′∼Pa∗

ss′

[
Ṽπ(s′)

]
≥ E

s′∼Pa
ss′

[
Ṽπ(s′)

]
, ∀s ∈ S, a ∈ A(s)\a∗. (5.22)

Commonly, problems where linear function approximation is used have an infinitely sized
state space, and thus an infinite amount of constraints of the type of Equation (5.22) would

105

5. Human Value Retrieval

have to be satisfied. This problem can be tackled by only evaluating the constraints on a
large sampled subset of the states.

Also, since the true reward function might not exactly be representable by linear approx-
imation, the constraints have to be relaxed. The overall constraint set can therefore be
written down as

maximize
ααα

∑
s∈Ŝ

min
a∈A(s)\a∗

{
p(E

s′∼Pa∗
ss′

[
Ṽπ
∗
(s′)
]
− E

s′∼Pa
ss′

[
Ṽπ
∗
(s′)
]
)

}
s.t. |ααα(i)| ≤ 1, i = 1, ... , l ,

(5.23)

where Ŝ is the set of the sampled states and p is an additional penalty function to enforce
the required inequality constraints of Equation (5.22). In this case p is given by

p(x) =
{

x , x ≥ 0;
mx , otherwise.

(5.24)

The weight is set to m = 2, as experiments by Ng and Russell (2000) have shown that the
algorithms, starting from a value of 2, are insensitive to this parameter.

5.1.2. Adaptation to Scalarized Multi-objective Reinforcement Learning

In the multi-objective Reinforcement Learning setting, there are different ways of finding
the ideal trade-off between the different reward components (cf. Section 2.3.2). However,
scalarization of reward functions is mostly used. Therefore, the derivation of the following
Inverse RL algorithm is restricted to this type of reward function.

Recalling that ααα contains the parameters for the scalarization function f and Vπ is the
multi-objective value function containing the values for each objective (usually in vector
form), Vπ

α denotes the scalarized multi-objective value function of the problem. If certain
restrictions apply, like in the example of Roijers et al. (2013), the model can even be further
reduced. By additionally assuming a linearly scalarized multi-objective value function, the
value function is finally written as

Vπ
α = ααα>Vπ = ααα> · E

s∼Pπ
ss′

[∞∑
k=0

γk (R(st+k+1)

]
= E

s∼Pπ
ss′

[∞∑
k=0

γk (ααα>R(st+k+1)

]

= E
s∼Pπ

ss′

[∞∑
k=0

γk R̃(st+k+1)

]
= E

s∼Pπ
ss′

[
ααα>Vπ

i

]
,

(5.25)

where R̃ denotes the approximated reward and in this case ααα ∈ Rq is an appropriate
weight vector. As this scalarization is compatible with the above formulation, the linear
version of Inverse Reinforcement Learning can directly be applied to determine the weights

106

5.2. Simulations and Test Cases

of the linear scalarization in the multi-objective scenario by substituting the features with
the individual dimensions of the multi-objective reward R.

To solve the problem formulated in Equation (5.23), an off-the-shelf linear programming
package cannot directly be used, as it is not yet formulated in its corresponding block matrix
form. The detailed derivation of the block matrix form is stated in Appendix A.3. Using the
resulting block matrix form, the weights can be learned with the algorithm depicted in
Algorithm 3. In the following experiment, this algorithm is used and solved by a suitable
solver (in this dissertation the cvxopt Python package1 is used).

Algorithm 3 Inverse Reinforcement Learning for multi-objective RL

1: Result: Weight vector ααα
2: Initialization: Optimal policy π(s) = a∗ ∀s ∈ S
3: Select a set Ŝ of states from the environment.

4: Solve the linear program:

maximize
∑

s∈Ŝ mina∈A(s)\a∗

{
p(E

s′∼Pa∗
ss′

[∑q
i=0 α

(i)Vπ∗
i (s′)

]
− E

s′∼Pa
ss′

[∑q
i=0 α

(i)Vπ∗
i (s′)

]
)

}
s.t. |α(i)| ≤ 1, i = 1, ...

5.2. Simulations and Test Cases

In the following simulations, the extraction of scalarization weights from given policies using
the presented Inverse RL algorithm (Algorithm 3) is shown. For retrieving the scalarization
weights, the considered policy should be consistent and the objective should be reachable
in a replicable manner. These requirements are mandatory to ensure the convergence
of the algorithm. In this context, consistent means that the same action in neighboring
or similar states leads to similar subsequent states. For example in a Gridworld style
experiment, this means that the optimal action of a policy in neighboring states moves the
agent into the same or at least not into the opposite direction in the maze (see Figure
5.1). Therefore, retrieving scalarization weights from random or ambiguous policies is not
possible and must be preempted beforehand by the user. The necessary policy that is
entered into the linear program thus consists of contradiction free transition probabilities
and the corresponding rewards of the individual objectives for each state.

In the following, two experiments are conducted. The first one considers manually de-
signed policies for the Gridworld environment which directly reach the three different goals.
In the second experiment, a Q-learning agent with linear scalarization is used to learn a
policy. The learned policy is characterized by the weights defined by the programmer

1http://www.cvxopt.org/ [Accessed 18th January 2017]

107

http://www.cvxopt.org/

5. Human Value Retrieval

G G

Figure 5.1.: Example of a consistent (left side) and an inconsistent (right side) policy in a two-
dimensional Gridworld scenario. In case of an inconsistent policy, the optimal actions (small arrows)
of neighboring fields differ substantially and point for instance into the opposite directions.

beforehand. With this learned policy and the same environment, the Inverse Reinforce-
ment Learning algorithm is used to retrieve the programmer’s scalarization weights. Then,
these retrieved weights in turn are reused to learn a new policy in the same environment.
As a result, there exist two policies for each run of the experiments. In case of the first
experiment, there are the predefined manual policy and a learned policy. In the second
experiment, there are two learned policies of a Q-learning agent and additionally a set
of scalarization weights. In the result section, the policies and scalarization weights are
compared to evaluate the performance of the approach. The next section describes the
Gridworld environment and the considered test cases.

5.2.1. Environment Description

As a benchmark environment, a multi-objective version of the already known Gridworld (cf.
Section 3.2) is used. The agent starts out in the top left corner in state S of a 10 × 10
grid and is able to move according to the four cardinal directions (left, right, up, and down).
As can be seen in Figure 5.2, there exist three different reward points R(1) to R(3) in the
grid, and each of these points reflects one reward dimension. That means the vectorial
reward R = [R(1), R(2), R(3), R(4)]> will contain a 1 in the position that corresponds to the
goal that is reached. For example, if the agent reaches the terminal state 1 , the reward
components will contain R(1) = 1 and R(2) = R(3) = 0. There is also a fourth reward
dimension corresponding to a time penalty, which will always be set to R(4) = −1 for each
transition in Experiment 1 and to R(4) = −0.1 for each transition in Experiment 2.

The three reward points 1 to 3 , can be interpreted as three different objectives in
the environment between which the agent has to make a tradeoff. The fourth reward
dimension can be interpreted to be in terms of time. Hence, if a large weight is put on
the fourth dimension, the agent should prefer shorter paths in the environment taking less
steps.

108

5.2. Simulations and Test Cases

S 1

2 3

Figure 5.2.: Multi-objective Gridworld with three different goal states (1, 2 and 3) and the start
position S. The color gradient depicts the influence of each goal in a Q-learning scenario with
equal scalarization weights.

5.2.2. Test Cases

The first three deterministic test cases are characterized by the following three hand-
crafted policies:

D1 Always try to reach objective 1 . This is done by moving to the right, when the agent
is above the diagonal from the lower left to the upper right, and going up, when below
the diagonal.

D2 Always try to reach objective 2 by doing the opposite of policy D1: going left below
the diagonal and going down above the diagonal.

D3 Try to reach the objective 3 on the shortest path. The shortest path from any point
in the grid can again be characterized by a diagonal. This time the one from the
upper left to the lower right. Above the diagonal move downwards and below the
diagonal move to the right.

These manually designed policies are depicted in the upper row of Figure 5.3. Each red
arrow indicates the direction that should be chosen in the corresponding state. It is note-
worthy that by specifying the policies like this, the goal to reach a specific objective terminal
state is explicitly given, however there is no explicit specification concerning the fourth di-
mension, which constrains time.

For the second experiment, the policies are not explicitly specified, but the scalarization
weightsααα are set to specific values in a way how a typical designer (or programmer) would
preset them to achieve a certain goal. The test cases are:

L1 The weights in this case are set to ααα = [10, 0, 0, 1]>. This should encourage the
agent to learn a policy to reach objective terminal state 1 , while taking the least
steps possible, because of a positive weight on the fourth reward dimension.

109

5. Human Value Retrieval

L2 The second case is similar to the first one, namely ααα = [0, 10, 0, 1]>, just that the
agent should reach the second objective state.

L3 The third one is again analogous to the two first ones with ααα = [0, 0, 20, 1]>. The
difference in the third weight is motivated by the fact that the positive reward of 20 in
the third objective state should compensate for the longer path that has to be taken
to reach this state.

In the next section, the results of the two conducted experiments using the policies speci-
fied above are described.

5.3. Results

The learned and designed policies are plotted in Figure 5.3 and Figure 5.4, respectively,
and have to be interpreted in the following way: The shading of each square depicts how
often the state has been visited during the learning process. The more red the shading,
the more often this state was visited (similar to a heat map). The small arrows printed
over indicate the relative probability of choosing one of the four cardinal actions. A redder
shade and bigger arrow indicates that this action will be chosen more likely in this state,
as the size and color depend on the action selection probabilities given by the Q-values.

In the top row of Figure 5.3 the hand-crafted policies D1-D3 are depicted. By using these
hand-crafted policies, the Inverse Reinforcement Learning algorithm retrieved the following
weights:

αααD1 = [1.0000, 0.0000, 0.0000, 0.9847]>,

αααD2 = [0.0000, 1.0000, 0.0000, 0.9847]>, and

αααD3 = [0.0000, 0.0000, 1.0000, 0.0000]>.

The learned weights for the three policies support the hypothesis, that the scalarization
weights can be retrieved from given policies. As previously mentioned, the hand-crafted
policies make only an implicit assumption about the fourth reward component – the time.
In case of the first two policies D1 and D2, the time component plays a role, as there
exist sub-optimal paths between the start to the terminal state. By manually designing
policies D1 and D2, the human designer implicitly omits these sub-optimal and longer
paths. The weight retrieval algorithm however takes account of this circumstance and
assigns a weight of almost 1 to the fourth component. This forces the Q-learning algorithm
to learn the shortest path. In case of policy D3 an interesting detail of the approach is
revealed, as the scalarization weight of the time component is zero. The reason for this
counter-intuitive weighting is the so called Manhattan distance. In the experiment, only
steps into the cardinal directions are possible, thus each path in a squared maze divided
into an equally spaced grid has the same length. Therefore, it is not necessary to assign
a weight to the time component, as all possible paths have equal length by definition. This

110

5.3. Results

means in effect, that the proposed method for retrieving the scalarization weights reveals
special properties of the environment and the learning algorithm.

The bottom row of Figure 5.3 depicts the policies which were learned by Q-learning
with linear scalarization using the previously retrieved weights as stated above. For each
learning experiment 200 000 episodes were conducted while the learning rate was set to
β = 0.6, and the exploration parameter for the ε-greedy action selection was set to ε = 0.5.
The comparison of the resulting policies (bottom row) with the hand-crafted input policies
(top row) shows some deviations. In case of policies D1 and D2 this behavior can be
explained with the fact that in some cases, where the agent has collected an amount of
negative reward in the fourth reward dimension, it is better to take the shorter path to the
closest terminal state in order to end the episode, rather than to end the episode in the
terminal state denoted by the actual policy. As this behavior is a special property of the
Q-learning algorithm, it was not considered by the human-designer of the hand-crafted
policies, and therefore is not represented in the input policies. The Q-learning algorithm
always maximizes the expected utility, and as the reward in the intended objective state
would not compensate for taking the longer path, the agent learns to terminate sub-optimal
paths earlier instead of selecting a longer path to the desired goal. The difference between
the hand-crafted and the learned policy in the third case (D3) can again be explained
by the Manhattan distance. A human designer intuitively would require the algorithm to
learn a policy resulting in a diagonal movement direction. However while keeping the
characteristic of the Manhattan distance in mind, the paths learned in case D3 are not
longer with respect to reward dimension four than all the alternative paths in the original
policy D3. To explicitly force such a behavior to be learned, the reward structure of these
experiments is not expressive enough and can therefore not be retrieved by the Inverse
RL algorithm.

In Figure 5.4 the results for the second experiment are depicted. In the top row, the
policies learned by scalarized Q-learning are shown. The learning parameters were set to
ε = 0.4 for the ε-greedy action selection, and β = 0.3 for the learning rate. The algorithm
was run for 100 000 episodes. It can be seen that the initially learned policies on the
predefined weights already differ from the designer’s intentions for cases L1 and L2. Test
case L3 behaves as intended and a policy is learned that lets the agent move along the
diagonal direction towards the lower right terminal state. The reason why L1 and L2 learn
differently lies, once again, therein that in those cases a shorter path to a terminal state
impacts less negatively on the total reward than an alternative longer path towards the
desired terminal state. The longer path cannot be compensated by the relatively small
positive reward of the desired terminal state. This behavior might be counter-intuitive to
the human reward weight designer and therefore not intended. However, for case L3 the
behavior is clear, since the path to the objective state 3 is at the same time also the
longest path.

111

5. Human Value Retrieval

0 1 2 3 4 5 6 7 8 9

9

8

7

6

5

4

3

2

1

0 1.0

1.0 1.0

0 1 2 3 4 5 6 7 8 9

9

8

7

6

5

4

3

2

1

0 1.0

1.0 1.0

D1

0 1 2 3 4 5 6 7 8 9

9

8

7

6

5

4

3

2

1

0 1.0

1.0 1.0

0 1 2 3 4 5 6 7 8 9

9

8

7

6

5

4

3

2

1

0 1.0

1.0 1.0

D2

0 1 2 3 4 5 6 7 8 9

9

8

7

6

5

4

3

2

1

0 1.0

1.0 1.0

0 1 2 3 4 5 6 7 8 9

9

8

7

6

5

4

3

2

1

0 1.0

1.0 1.0

D3

Figure 5.3.: Resulting policies of the first experiment. Top row: Hand-crafted policies D1-D3.
Bottom row: Policies learned on retrieved weights.

When inspecting the retrieved weights,

αααL1 = [1.0000, 0.9182, 0.4653, 1.0000]>,

αααL2 = [0.2516, 1.0000, 0.2473, 0.0736]>, and

αααL3 = [0.4096, 0.0000, 1.0000, 0.0000]>,

which were calculated by averaging over the results of 10 independent runs, a relation to
the original weights of the policies L1 to L3 can be observed. The intended objective of
the original policy is represented by attaching a higher value to the corresponding reward
component in the retrieved weight vector. Additionally, implicit trade-offs are included in
the resulting scalarization vectors, which were chosen by the agent due to the problem
and reward structure. Another interesting observation is that for case L3, the Inverse RL
algorithm correctly discovers the fact that the number of steps does not play a big role in the
path finding, as it is the longest path through the Gridworld anyway (again the characteristic
of the Manhattan distance).

In general, it can be seen that the policies which were learned using the retrieved weights
are similar to the original ones, but also differ in some ways (comparison between the upper
and the bottom row of Figure 5.4). This reflects the hypothesis, that designed weights might
be subject to human biases. In case of the first experiment (D1 - D3), the hand-crafted
policies result in mostly intuitively comprehensible combinations of scalarization weights.
Using them in the subsequent step of the experiment, nevertheless results in different

112

5.3. Results

0 1 2 3 4 5 6 7 8 9

9

8

7

6

5

4

3

2

1

0 1.0

1.0 1.0

0 1 2 3 4 5 6 7 8 9

9

8

7

6

5

4

3

2

1

0 1.0

1.0 1.0

L1

0 1 2 3 4 5 6 7 8 9

9

8

7

6

5

4

3

2

1

0 1.0

1.0 1.0

0 1 2 3 4 5 6 7 8 9

9

8

7

6

5

4

3

2

1

0 1.0

1.0 1.0

L2

0 1 2 3 4 5 6 7 8 9

9

8

7

6

5

4

3

2

1

0 1.0

1.0 1.0

0 1 2 3 4 5 6 7 8 9

9

8

7

6

5

4

3

2

1

0 1.0

1.0 1.0

L3

Figure 5.4.: Results of the second experiment: In the top row, the policies learned on predefined
weights are depicted. Below, the policies are shown that have been learned from weights after
retrieving them from the policies in the top row.

behaviors than intended, as the fact that the Q-learning agent maximizes expected utilities
was not sufficiently considered by the human designer.

Overall, the described experiment and its results show that the developed inverse
learning algorithm can be used to precisely detect discrepancies between the designer’s
intention and the interpretation of these intentions by a linear scalarization Reinforcement
Learning approach. The formulated Inverse Reinforcement Learning framework can be
applied to every multi-objective scenario if the individual reward functions for each objec-
tive and the transition probabilities can explicitly be formulated.

Concluding remarks on retrieving human biases from given policies: In this chapter,
an approach for determining scalarization weights out of given policies was motivated by
describing the fact that a human designer introduces unintended biases. The results sup-
port the hypothesis that indeed such unintended biases are introduced by humans during
manually designing policies or scalarization weights. In the performed experiments, intu-
itively designed policies or scalarization vectors do not meet the expectations, or result
in differing policies accompanied by changed scalarization weights in the subsequent re-
trieval step. Although the presented experiment shows the results in a very simple and
theoretical domain, the derived algorithm is theoretically applicable to all multi-objective
Reinforcement Learning scenarios with linear reward scalarization. Currently, the precise
formulations for the requirements in the shape of the expert policies and the prerequisites

113

5. Human Value Retrieval

for the linear program are not fully stated. Additional theoretical analysis needs to be done
to verify the promising results of this first study and to explicitly state the requirements on
the non-contradictory policies (see Section 5.2). In sum, the framework is not only useful
for designing linear scalarization functions but also for researchers to verify new models.
For example, a psychologist can record human behaviors and input them as policies to
the algorithm in order to calculate scalarization weights. Afterwards, an RL agent can be
trained to reflect human behavior as close as possible, without manually designing the
scalarization weights beforehand.

114

6. Conclusion

This chapter concludes this work. Section 6.1 reviews the research questions and briefly
summarizes the answers provided in the various chapters of this work. Section 6.2 com-
pletes this chapter with an overview of open questions and avenues of future research.

6.1. Summary

In this dissertation, I have introduced three perspectives for connecting Reinforcement
Learning with mechanisms that are inspired by human emotions and preferences. Without
claiming general applicability, the presented algorithms are attempts to combine human
values like artificial emotions and preferences with the classical and evidentially optimal
Reinforcement Learning. The introduced models lower the pure performance of RL in
achieving an optimal policy, however they simultaneously open new dimensions and per-
spectives in the advancement of Reinforcement Learning. The three key aspects which
have been considered in this dissertation are:

• Artificial emotions as an intuitive and natural component of communication and their
use to evaluate the learning progress of artificial agents.

• Reward shaping as an established method to modify learned policies with additional
reward components and preferences.

• The application of Inverse RL to detect and analyse unwanted biases in given poli-
cies, and as a tool for determining scalarization weights.

The first two aspects improve the behavior of artificial agents towards human users, while
the third point represents a tool for the designers of artificial agents.

In case of the presented artificial emotion models of Chapter 3, I have emphasized the
relation of these models to existing psychological models and theories. Likewise, I have
verified in a field test that the calculated artificial appraisals meet the expectations of hu-
man users.

The developed algorithms use appraisal derivation models to calculate meta-data of the
underlying machine learning processes. These meta-data drive a subsequent appraisal
model which bases on psychological findings calculating the final artificial emotions or
feelings. The strict separation between appraisal derivation model and actual psycho-
logical appraisal model allows the adaption of the algorithms to new domains, without

115

6. Conclusion

touching the appraisal model and its logic itself. That means, in case of new domains
only the appraisal derivation models are subjected to changes, as there are certain limita-
tions concerning their generalisability. Primarily, the interfaces between the new learning
algorithm and the appraisal derivation models have to be adjusted. This design step is
supported and simplified by this dissertation as the variables which are calculated in the
appraisal derivation models have been clearly motivated and defined. Moreover, to avoid
a prevailing difficulty in the field of Affective Computing, the source code of all models and
experiments of this dissertation are published as open source (see Appendix A.1). This
should foster and s peed up new projects, and is a contribution to the field of Affective
Computing, as the source code of currently existing models is either kept under wraps
(e.g. EMA1, PEACTIDM2, FAtiMA3), or is part of a more complex system architecture and
cannot be simply reused standalone (e.g. ACT-R4).

Besides the fact that these artificial appraisals can be used to improve the way of com-
munication between a system and a human user, they can additionally be used to steer
decision making of the system itself. Therefore, in Chapter 4, I have researched possible
methods for introducing preferences into Reinforcement Learning. The result bases on
reward shaping, a technique to modify the reward function of scenarios with an additional
potential function which is externally controlled by a shaping signal and adds a bias to the
environmental reward. This external control signal and the interpretation of reward shaping
as a method to integrate preferences into Reinforcement Learning is a new perspective
in the Reinforcement Learning domain. In my experiment, the principle properties of the
algorithm are demonstrated and a model for the affective control state is propounded.

Finally, in Chapter 5, the retrieval of scalarization weights out of given policies is consid-
ered, which is the remaining aspect of the three-sided approach in my investigation of
connections between human emotions as well as biases and intelligent machines. The
presented Inverse Reinforcement Learning algorithm is able to calculate scalarization
weights out of previously created or recorded policies in order to analyze or compare
the policies themselves on the basis of scalarization weights, or to compare the retrieved
weights with those a human would intuitively set for certain problems. With this method,
a kind of tool was developed to qualitatively compare scalarization weights of a multi-
objective Reinforcement Learning process with those inherently contained in (human)
policies. This partly solves the existing problem of artificial intelligence designers to as-
sign certain weights to multiple objectives and it helps psychologists to analyze manually
recorded human policies. The comparison between scalarization weights that were calcu-
lated, e.g. by Pareto optimal algorithms, and those retrieved by my Inverse RL algorithms
helps to reveal human biases. Furthermore, the presented experiment and its results also

1cf. Marsella and Gratch (2009)
2cf. Marinier et al. (2009)
3cf. Dias et al. (2014)
4cf. Anderson et al. (2004)

116

6.2. Future perspectives

show that domain dependent properties (in the particular case the Manhattan distance)
and its side effects on the weights can be revealed by analyzing the scalarization weights
of hand-crafted policies.

I cannot render a final verdict on the benefit of the proposed extensions, as no generally
applicable model of artificial emotions exists, and since the possible ways of interpret-
ing the existing models for implementing them into artificial agents are nearly unlimited.
However, the given examples demonstrate what can be done today, and simultaneously il-
lustrate how young this field of research still is. Nevertheless, I have made some progress
in combining the field of Reinforcement Learning and SLAM with components of Affec-
tive Computing. Extending Reinforcement Learning and a SLAM process with the ability
to communicate the learning progress via a non-verbal channel increases the bandwidth
of communication between artificial agents and humans. The control of Reinforcement
Learning with an affective state extends the behavior of agents with preferences in order
to imitate human decision making which in turn could increase the acceptance of intelli-
gent systems in shared environments. Finally, to deeper understand policies created by
RL agents, the Inverse RL approach delivers an important algorithm to analyze them.

6.2. Future perspectives

In the domain of Affective Computing, a lot of problems still need to be solved until a
machine will be able to correctly interpret and process human emotions and additionally
is able to react appropriately. By increasing the abilities of machines to imitate and under-
stand humans, unanswered ethical and philosophical questions will come to the fore and
need to be handled. From an engineering perspective, the combination of existing psy-
chological models and machine learning algorithms is the basic groundwork to investigate
those unanswered questions – today and in future.

The presented experiments of this dissertation represent a further step into this direc-
tion and show how psychology can be used to modify machine learning. However, larger
human-in-the-loop studies are necessary to empirically verify the investigated algorithms.
Additional scenarios in different domains should shed light on the general applicability of
the introduced approaches. The implementation of the algorithms on physical hardware
platforms is definitively the next consequent step. A small two-wheeled robot with an ap-
propriate display, as depicted in Figure 6.1, has already been built and preliminary tests
with human subjects were performed. This end-to-end experiment is intended to verify the
results of the experiment in Chapter 3. End-to-end means that all effects, like the robot
type, its movements, and the experimental setup are taken into consideration. The goal
of this experiment is to show that the simulated emotions can be expressed with a low-
resolution display, while still being recognized by humans. Using such a low-resolution
display capable of visualizing dynamic color patterns, enables a broad area of application

117

6. Conclusion

in various domains. The displayed emotions should be recognized by children as well as
by elderly people, and they should be widely cultural independent. Currently, the design of
the dynamic light patterns makes progress, however the transition between two patterns
and different intensity levels are still open research questions.

Figure 6.1.: A small two-wheeled robot which was developed at the Chair for Data Processing.
The low-resolution led display on top is able to display basic emotions with dynamic light patterns
(photographed by Martin Knopp).

Another open task is the application of the proposed reward shaping algorithm, as
stated in Chapter 4, to solve the still open issue of finding the optimal trade-off between
exploration and exploitation. In humans, the drive of exploration is strongly related to their
mood, and the exploitation of situations is often controlled by short-term positive feelings.
Similar concepts are modeled in state-of-the-art machine learning algorithms, but a central
control of different learning and planning progresses using an affective signal within an
artificial agent is still missing. The approach of Chapter 4 provides the basic algorithm for
steering Reinforcement Learning with a centrally generated and affective state.

Lastly, as already mentioned, the algorithm of Chapter 5 gives the opportunity to analyze
RL policies. Up to now, the focus in machine learning lies in finding and tweaking the
optimal policy, but the essential behavior which is generated by an artificial agent and the
learned policy is often not reflected in a greater context. It is well known that a classical
RL agent maximizes the expected utility. A similar behavior was imputed to humans un-
til Prospect Theory was discovered, which introduces prospects and needs besides pure
maximization. More recent psychological findings add further dimensions to the behavior
of humans, explaining reasons for sub-optimal decisions typical for humans. The analysis
of policies, as presented in Chapter 5, is also the first step in order to understand poli-
cies generated by machine learning algorithms in greater depth, instead of over-optimizing
them. Over-optimization is a main reason for lowering the performance of an algorithm in
two ways: First, the generalization is bad, and secondly humans might get mistrustful and
anxious in case of nearly perfect acting machines (see also The uncanny valley by Mori
et al. (2012)).

118

6.2. Future perspectives

I became convinced you couldn’t build a truly intelligent computer without having
emotional capabilities like humans do.

Rosalind Picard, 2016

119

List of Acronyms

AI Artificial Intelligence. .49

ALMA A Layered Model of Affect . 25

BDI Belief, Desire and Intentions . 32

CPM Component Process Model . 18

DP Dynamic Programming . 38

ECA Embodied Conversational Agent . 20

EEC emotion eliciting condition . 26

EKF Extended Kalman Filter . 71

FLAME Fuzzy Logic Adaptive Model of Emotions . 25

MAB Multi-Armed Bandit . 56

MC Monte Carlo . 37

MDP Markov Decision Process . 35

OCC Ortony, Clore, Collins . 24

PAD Pleasure, Arousal, and Dominance . 22

PEACTIDM Perceive, Encode, Attend, Comprehend, Tasking, Intend, Decode, and Motor
23

PT Prospect Theory . 50

RL Reinforcement Learning. .12

SAM Self-Assessment-Manikin . 85

SARSA State-Action-Reward-State-Action. .45

SEC Stimulus Evaluation Check . 21

SLAM Simultaneous Localization and Mapping . 56

TD Temporal-Difference . 39

VA-space Valence-Arousal space . 17

WASABI Affect Simulation for Agents with Believable Interactivity . 22

121

A. Appendix

The following appendix contains supplementary material which was used to create this
dissertation.

A.1. Published algorithms

The developed algorithms and simulation tools presented in this dissertation have been
made publicly available on GitHub1. This enables interested researchers to simply clone
the repositories and reproduce the results shown in this work.

In the following, the different algorithms and repositories are listed according to the sec-
tions:

Bandit Simulation (Section 3.1): Implementation of a multi-armed
bandit simulation together with an affective evaluation component
which bases on the Zurich Model of Social Attachment and Fear.

https://github.com/jfeldmaier/emoBandit

Gridworld (Section 3.2): Simulation environment for arbitrary Grid-
world scenarios, and a Q-learning agent that learns to find the goal
state. The performed actions of the agent are evaluated using the
described appraisal model of Section 3.2.

https://github.com/jfeldmaier/pathEmotions

SLEmotion (Section 3.3): The modified EKF-SLAM simulation of
Tim Bailey and Juan Nieto with the implemented Component Process
Model.

https://github.com/jfeldmaier/SLEmotion

1https://github.com [Accessed 24st February 2017]

123

https://github.com/jfeldmaier/emoBandit
https://github.com/jfeldmaier/pathEmotions
https://github.com/jfeldmaier/SLEmotion
https://github.com

A. Appendix

Reinforcement Learning with Preferences (Section 4.1): A frame-
work for learning specific preferences according to an externally
controlled affective state in context of a bandit simulation.

https://github.com/jfeldmaier/prefRL

Inverse Reinforcement Learning for Human Value Retrieval
(Section 5.1): Multi-objective Reinforcement Learning Benchmark
Suite which additionally includes the developed inverse RL algorithm
for retrieving previously unknown scalarization weights out of existing
policies.

https://github.com/RL-LDV-TUM/morlbench

124

https://github.com/jfeldmaier/prefRL
https://github.com/RL-LDV-TUM/morlbench

A.2. Questionnaire of the SLEmotion experiment

A.2. Questionnaire of the SLEmotion experiment

A research project of the Chair for Data Processing investigates Affective Computing.
Affective Computing is a topic related to Artificial Intelligence and tries to add artificial
emotions and affect to the cognitive abilities of a robot.

In order to verify and to investigate the applicability of the results in shared environ-
ments we need your (human) feedback. We would be pleased if you carefully read
the following questionnaire and answer the questions. Overall, this will take about 10
minutes.

Your data will be anonymized and only used in aggregated form for the verification of
our developed models. The personal data will be kept secure and only the aggregated
data will be provided or otherwise made accessible to third parties. – Thank you for
participation.

First, let’s look which emotions are in your mind in the following three situations.
Try to get mentally into the situation, and think on the emotions you would feel in it.
There may be elicited just a single very strong feeling in your mind, but also several
overlapping feelings or emotions.

1. You are in a dark, unknown cellar. With your hands you can feel walls and there are
some larger pieces of furniture in this room. – You can only guess which additional
dangers are present in this cellar. Now, think on your feelings you would feel in this
situation and write the one that first comes to your mind in the following text box:

1.1. Please, try now to classify this feeling or emotion on the following two scales:

Scale 1:

(please check

one box)

Scale 2:

(please check

one box)

125

A. Appendix

2. You arrive at home after a long vacation and enter the living room of your apartment
or house. All your very familiar furniture and beloved things are on the right place –
just as always.

Again think on your feelings in such a situation and write down the emotion or feeling
that first comes to your mind in the following text box:

2.1. Please, try now to classify this feeling or emotion on the following two scales:

Scale 1:

(please check

one box)

Scale 2:

(please check

one box)

3. On a day off, you take a walk and choose your favorite trail or footpath. Think on your
feelings you would have after returning. Please write down the feeling or emotion
that first comes to your mind in the following text box:

3.1. Please, try now to classify this feeling or emotion on the following two scales:

Scale 1:

(please check

one box)

Scale 2:

(please check

one box)

126

A.2. Questionnaire of the SLEmotion experiment

In this second part of the questionnaire we would like to deal with the feelings you
would expect from a service robot in similar situations. Try to put yourself into each
situation like before, and indicate your expectations on the feelings a robot should
express in the particular situation. The service robot is able to express its feelings in
a suitable way (like on a display) and it has the ability to calculate artificial feelings
related to its situation.

In this part of the questionnaire, the individual scenarios are depicted as simpli-
fied sketches of rooms. Objects (such as furniture, plants, pictures) in the room are
represented by differently sized squares, which the robot can recognize and use for
navigation. The green line visualizes the path the robot moves within each room.
The longer the robot stays in the room observing the objects, the more familiar it
gets with its environment since the recognition rate of objects increases. A high
recognition rate is required for a stable navigation of the robot.

4. In this first scenario, the robot slowly moves on its path
through the room and along the objects to improve the
performance of its navigation algorithm. How do you think
does the robot feel in this room? Write down the first
emotion that comes to your mind in the following text box:

4.1 Please, try to classify this feeling or emotion on the following two scales:

Scale 1:

(please check

one box)

Scale 2:

(please check

one box)

127

A. Appendix

5. In this second scenario, the robot travels again on
its path (green line) through a room and uses the
objects for navigation. How do you think does the
robot feel in this room? Write down the first emo-
tion that comes to your mind in the following text box:

5.1 Please, try to classify this feeling or emotion on the following two scales:

Scale 1:

(please check

one box)

Scale 2:

(please check

one box)

6. In this third scenario, there is a room without any objects
detectable for the robot. The robot, however tries to detect
objects and moves along the green line. Think again on
the expressed feelings or emotions you would expect from
the robot in this situation. Write down the first emotion or
feeling that comes into your mind in the following text box:

6.1 Please, try to classify this feeling or emotion on the following two scales:

Scale 1:

(please check

one box)

Scale 2:

(please check

one box)

128

A.3. Derivation of the Block Matrix Form of the Inverse RL algorithm

A.3. Derivation of the Block Matrix Form of the Inverse RL
algorithm

As shown in Section 5.1.2, the problem of finding the weights for the multi-objective scalar-
ization boils down to solving the linear programming problem as stated in Equation (5.23),
but it cannot be implemented straightforwardly in a linear programming solver package.
In order to be able to use existing solver software, the formulation has to be rephrased
and stated in a standard block matrix form. This rephrasing step is often omitted in similar
studies, but is crucial for the verification of the results. The derivation will start out with the
original formulation and then traverse the upper line of

maximize
ααα

∑
s∈Ŝ

min
a∈A(s)\a∗

{
p

(
E

s′∼Pa∗
ss′

[
Vπ∗(s′)

]
− E

s′∼Pa
ss′

[
Vπ∗(s′)

])}
s.t. |ααα(i)| ≤ 1, i = 1, ... , q,

(A.1)

from the outside to the inside, while adding in each step an appropriate constraint.
In the first step, the summation over the minimum over the non-optimal actions is re-

placed with a new variable zs,a ∈ R|S|×|A|−1 for each state s ∈ Ŝ and action a ∈ A(s)\a∗.
In order to reflect the desired minimum for this variable, the additional constraint that this
variable has to be smaller than or equal to the inside of the curly brackets is added. After
this transformation, the problem reads as

maximize
ααα

∑
s∈Ŝ,a∈A(s)\a∗

zs,a

s.t. |ααα(i)| ≤ 1, i = 1, ... , q

zs,a ≤ p

(
E

s′∼Pa∗
ss′

[
Vπ∗(s′)

]
− E

s′∼Pa
ss′

[
Vπ∗(s′)

])
.

(A.2)

The next step is to reformulate the function p(·) in terms of two additional variables, in order
to account for the components greater or equal to zero and for the rest, respectively. It is
postulated that the sum of those two new variables ys,a ∈ R|S|×|A|−1 and xs,a ∈ R|S|×|A|−1

is equal to the argument of p(·). To ease notation, the individual quantities of this argument
can be denoted as the vectors

vs,a =


(vs,a)(1)

(vs,a)(1)

...
(vs,a)(q)

 =



E
s′∼Pa∗

ss′

[
Vπ∗

1 (s′)
]
− E

s′∼Pa
ss′

[
Vπ∗

1 (s′)
]

E
s′∼Pa∗

ss′

[
Vπ∗

2 (s′)
]
− E

s′∼Pa
ss′

[
Vπ∗

2 (s′)
]

...
E

s′∼Pa∗
ss′

[
Vπ∗

q (s′)
]
− E

s′∼Pa
ss′

[
Vπ∗

q (s′)
]


∈ Rq . (A.3)

129

A. Appendix

Additionally, to acquire the constraints imposed by p(·), the variables zs,a now lower bounds
the weighted sum of xs,a and ys,a. Herewith, the overall problem, can be stated as

maximize
ααα

∑
s∈Ŝ,a∈A(s)\a∗

zs,a

s.t. |ααα(i)| ≤ 1, i = 1, ... , q

zs,a ≤ ys,a + 2 · xs,a, s ∈ Ŝ, a ∈ A(s)\a∗

v>s,aα = xs,a + ys,a, s ∈ Ŝ, a ∈ A(s)\a∗.

(A.4)

Up to now, the conditions ys,a ≥ 0 and xs,a < 0 as required by p(·) are not in the formula-
tion. Also the bound on the absolute value of the weights αi is not properly reformulated
yet. Including these constraints, the optimization problem can be stated as follows:

maximize
ααα

∑
s∈Ŝ,a∈A(s)\a∗

zs,a

s.t. ααα(i) ≤ 1, i = 1, ... , q

ααα(i) ≥ −1, i = 1, ... , q

zs,a ≤ ys,a + 2 · xs,a, s ∈ Ŝ, a ∈ A(s)\a∗

v>s,aααα = xs,a + ys,a, s ∈ Ŝ, a ∈ A(s)\a∗

ys,a ≥ 0, s ∈ Ŝ, a ∈ A(s)\a∗

xs,a ≤ 0, s ∈ Ŝ, a ∈ A(s)\a∗.

(A.5)

This formulation can be directly rewritten in block matrix form as

maximize


1
0
0
0


>

z
y
x
ααα



s.t.
[
0 I I −v>

] 
z
y
x
ααα

 = 0,



0 0 0 I
0 0 0 −I
0 −I 0 0
0 0 I 0
Γ1 −Ξ1 −2Ξ1 0
Γ2 −Ξ2 −2Ξ2 0
...

...
...

...
Γ|S| −Ξ|S| −2Ξ|S| 0






z
y
x
ααα

 ≤


1
1
0
0
0

 ,

(A.6)

130

A.3. Derivation of the Block Matrix Form of the Inverse RL algorithm

where x, y, z and v are vectors that contain all xs,a, ys,a, zs,a and v>s,a stacked into column
vectors according to the same ordering, respectively. 1 and 0 denote vectors containing
only 1 or 0 of appropriate length, while correspondingly the matrices denoted with I and 0
represent square matrices of appropriate size only filled with 1 or 0, respectively. Addition-
ally, in the bottom block the matrix Γs is defined as

Γs =



|S|︷ ︸︸ ︷
0 ... 0 1 0 ... 0
0 ... 0 1 0 ... 0
...

...
...

...
...

0 ... 0 1 0 ... 0


 |A| − 1, (A.7)

which is a matrix consisting of zeros except for the s-th column. This column is filled
with ones on the position that implicitly selects the entries of z so that it corresponds to
a particular state s. The remaining matrix Ξ consists of small diagonal matrices for each
action except the optimal one starting from position s · (|A| − 1). The final matrix Ξ then
can be written down as

Ξs =



|S| × |A| − 1︷ ︸︸ ︷
0 ... 0 1 0 ... 0 0 ... 0
...

... 0 1
. . . 0

...
...

...
... 0

. 0
...

...
0 ... 0 ︸ ︷︷ ︸

|A| − 1

0 ... 0 1 0 ... 0


 |A| − 1. (A.8)

This concludes the derivation of the linear program in the block matrix form. By enter-
ing the above specified block matrices into appropriate solver packages (like the already
mentioned cvxopt Python package), a unique solution can be calculated.

131

Bibliography

P. Abbeel and A.Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the 21st International Conference on Machine Learning, pp. 1–8. 2004.

C. Adam, B. Gaudou, A. Herzig, and D. Longin. OCC’s emotions: A formalization in a
BDI logic. In J. Euzenat and J. Domingue (eds.), Artificial Intelligence: Methodology,
Systems, and Applications, volume 4183, pp. 24–32. Springer, Berlin, Germany, 2006.

H. Ahn and R.W. Picard. Affective-cognitive learning and decision making: The role of
emotions. In Proceedings of the 18th European Meeting on Cybernetics and Systems
Research. 2006.

B.A. Anderson. Social reward shapes attentional biases. In Cognitive Neuroscience, 7(1-
4), pp. 30–36, 2016.

J.R. Anderson, D. Bothell, M.D. Byrne, S. Douglass, C. Lebiere, and Y. Qin. An integrated
theory of the mind. In Psychological Review, 111(4), pp. 1036–1060, 2004.

N.H. Anderson. Information integration approach to emotions and their measurement. In
R. Plutchik and H. Kellerman (eds.), The measurement of emotion, volume 4, pp. 133–
186. Academic Press, New York, NY, USA, 1989.

A. Axelrod and G. Chowdhary. The explore–exploit dilemma in nonstationary decision
making under uncertainty. In L. Busoniu and L. Tamás (eds.), Handling Uncertainty
and Networked Structure in Robot Control, pp. 29–52. Springer International Publishing,
Cham, Switzerland, 2015.

M. Babes, E.M. De Cote, and M.L. Littman. Social reward shaping in the prisoner’s
dilemma. In Proceedings of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems, volume 3, pp. 1389–1392. 2008.

T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping (SLAM): Part II.
In IEEE Robotics & Automation Magazine, 13(3), pp. 108–117, 2006.

L. Barrett and S. Narayanan. Learning all optimal policies with multiple criteria. In Pro-
ceedings of the 25th International Conference on Machine learning, pp. 41–47. 2008.

C. Becker-Asano and I. Wachsmuth. Affective computing with primary and secondary
emotions in a virtual human. In Autonomous Agents and Multi-Agent Systems, 20(1),
pp. 32–49, 2010.

133

Bibliography

T.E.J. Behrens, M.W. Woolrich, M.E. Walton, and M.F.S. Rushworth. Learning the value of
information in an uncertain world. In Nature neuroscience, 10(9), pp. 1214–1221, 2007.

R.E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA,
1957.

D.P. Bertsekas. Dynamic Programming and Optimal Control. 2nd edition. Athena Scientific,
Belmont, MA, USA, 2000.

C.L. Bethel and R.R. Murphy. Survey of non-facial/non-verbal affective expressions for
appearance-constrained robots. In IEEE Transactions on Systems, Man, and Cybernet-
ics, Part C (Applications and Reviews), 38(1), pp. 83–92, 2008.

N. Bischof. A systems approach toward the functional connections of attachment and fear.
In Child Development, 46(4), pp. 801–817, 1975.

N. Bischof. Das Rätsel Ödipus. 5th edition. Piper, Munich, Germany, 1989.

M.A. Boden. Computer models of mind: Computational approaches in theoretical psychol-
ogy. Cambridge University Press, Cambridge, United Kingdom, 1988.

R.C. Bolles and M.S. Fanselow. A perceptual-defensive-recuperative model of fear and
pain. In The Behavioral and Brain Sciences, 3, pp. 291–301, 1980.

I. Borutta, S. Sosnowski, M. Zehetleitner, N. Bischof, and K. Kühnlenz. Generating artificial
smile variations based on a psychological system-theoretic approach. In Proceedings
of the 18th International Symposium on Robot and Human Interactive Communication,
pp. 245–250. 2009.

M.M. Bradley and P.J. Lang. Measuring emotion: The self-assessment manikin and the
semantic differential. In Journal of behavior therapy and experimental psychiatry, 25(1),
pp. 49–59, 1994.

C. Breazeal. Emotion and sociable humanoid robots. In International Journal of Human-
Computer Studies, 59(1), pp. 119–155, 2003.

J.S. Bridle. Training stochastic model recognition algorithms as networks can lead to max-
imum mutual information estimation of parameters. In Proceedings of the 1989 Confer-
ence on Advances in Neural Information Processing Systems, pp. 211–217. 1989.

J. Broekens. Modeling the experience of emotion. In International Journal of Synthetic
Emotions, 1(1), pp. 1–17, 2010.

R.A. Calvo, S.K. D’Mello, J. Gratch, and A. Kappas (eds.). The Oxford Handbook of Affec-
tive Computing. Oxford University Press, New York, NY, USA, 2015.

134

Bibliography

E. Cambria. Affective computing and sentiment analysis. In Intelligent Systems, 31(2), pp.
102–107, 2016.

J. Cassell. Embodied conversational interface agents. In Communications of the ACM,
43(4), pp. 70–78, 2000.

A. Damásio. Descartes’ Error: Emotion, Reason, and the Human Brain. Putnam Publish-
ing, Kirkwood, NY, USA, 1994.

K. Darling. ROBOT ETHICS 2.0, chapter “Who’s Johnny?” Anthropomorphic Framing in
Human-Robot Interaction, Integration, and Policy. Oxford University Press, New York,
USA, forthcoming 2017.

P. Dayan and G.E. Hinton. Feudal reinforcement learning. In Advances in Neural Informa-
tion Processing Systems, 5(1), pp. 271–278, 1993.

P. Dayan and Y. Niv. Reinforcement learning: The good, the bad and the ugly. In Current
Opinion in Neurobiology, 18(2), pp. 185–196, 2008.

B. De Martino, D. Kumaran, B. Seymour, and R.J. Dolan. Frames, biases, and rational
decision-making in the human brain. In Science, 313(5787), pp. 684–687, 2006.

T. Dean, R. Givan, and S. Leach. Model reduction techniques for computing approximately
optimal solutions for markov decision processes. In Proceedings of the 13th Conference
on Uncertainty in Artificial Intelligence, pp. 124–131. 1997.

J. Dias, S. Mascarenhas, and A. Paiva. FAtiMA modular: Towards an agent architecture
with a generic appraisal framework. In T. Bosse, J. Broekens, J. Dias, and J. van der
Zwaan (eds.), Emotion Modeling: Towards Pragmatic Computational Models of Affective
Processes, pp. 44–56. Springer International Publishing, Cham, Switzerland, 2014.

M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization. In IEEE Computational
Intelligence Magazine, 1(4), pp. 28–39, 2006.

K. Doya. Metalearning and neuromodulation. In Neural Networks, 15(4), pp. 495–506,
2002.

K. Doya. Modulators of decision making. In Nature Neuroscience, 11(4), pp. 410–416,
2008.

J. Doyle. Prospects for preferences. In Computational Intelligence, 20(2), pp. 111–136,
2004.

P. Ekman. An argument for basic emotions. In Cognition & Emotion, 6(3-4), pp. 169–200,
1992.

135

Bibliography

P. Ekman, R.E. Sorenson, and W.V. Friesen. Pan-cultural elements in facial displays of
emotion. In Science, 164(3875), pp. 86–88, 1969.

M.S. El-Nasr, J. Yen, and T.R. Ioerger. Flame – fuzzy logic adaptive model of emotions. In
Autonomous Agents and Multi-agent Systems, 3(3), pp. 219–257, 2000.

E. Fehr and C.F. Camerer. Social neuroeconomics: The neural circuitry of social prefer-
ences. In Trends in Cognitive Sciences, 11(10), pp. 419–427, 2007.

J. Feldmaier and K. Diepold. Emotional evaluation of bandit problems. In Proceedings
of the 22nd International Symposium on Robot and Human Interactive Communication,
pp. 149–154. IEEE, 2013.

J. Feldmaier and K. Diepold. Path-finding using reinforcement learning and affective states.
In Proceedings of the 23rd International Symposium on Robot and Human Interactive
Communication, pp. 543–548. IEEE, 2014.

J. Feldmaier, H. Shen, D. Meyer, and K. Diepold. Reinforcement learning with preferences.
In Proceedings of the 2nd Multidisciplinary Conference on Reinforcement Learning and
Decision Making. Edmonton, Alberta, Canada, 2015.

J. Feldmaier, M. Stimpfl, and K. Diepold. Development of an emotion-competent SLAM
agent. In Proceedings of the Companion of the 12th International Conference on
Human-Robot Interaction, pp. 1–9. ACM/IEEE, New York, NY, USA, 2017.

J.J.R. Fontaine. Dimensional, basic emotion, and componential approaches to meaning in
psychological emotion research. In J.J.R. Fontaine, K.R. Scherer, and C. Soriano (eds.),
Components of Emotional Meaning: A sourcebook. Oxford University Press, New York,
NY, USA, 2013.

J.P. Forgas and J.M. George. Affective influences on judgments and behavior in organi-
zations: An information processing perspective. In Organizational Behavior and Human
Decision Processes, 86(1), pp. 3–34, 2001.

N.H. Frijda, P. Kuipers, and E. ter Schure. Relations among emotion, appraisal, and emo-
tional action readiness. In Journal of Personality and Social Psychology, 57(2), pp.
212–228, 1989.

J. Fürnkranz, E. Hüllermeier, W. Cheng, and S.H. Park. Preference-based reinforcement
learning: A formal framework and a policy iteration algorithm. In Machine Learning,
89(1–2), pp. 123–156, 2012.

Z. Gábor, Z. Kalmár, and C. Szepesvári. Multi-criteria reinforcement learning. In Pro-
ceedings of the 15th International Conference on Machine Learning, volume 98, pp.
197–205. 1998.

136

Bibliography

P. Gebhard. ALMA: A layered model of affect. In Proceedings of the 4th International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 29–36. 2005.

G. Gigerenzer, R. Hertwig, and T. Pachur. Fast and Frugal Heuristics - Theory, Tests, and
Applications. Oxford University Press, New York, NY, USA, 2011.

J.C. Gittins. Bandit processes and dynamic allocation indices. In Journal of the Royal
Statistical Society. Series B (Methodological), 41(2), pp. 148–177, 1979.

D. Grandjean, D. Sander, and K.R. Scherer. Conscious emotional experience emerges as
a function of multilevel, appraisal-driven response synchronization. In Consciousness
and Cognition, 17(2), pp. 484–495, 2008.

J. Gratch and S. Marsella. Lessons from emotion psychology for the design of lifelike
characters. In Applied Artificial Intelligence, 19(3–4), pp. 215–233, 2005.

S. Griffith, K. Subramanian, J. Scholz, C. Isbell, and A.L. Thomaz. Policy shaping: Inte-
grating human feedback with reinforcement learning. In Advances in Neural Information
Processing Systems, 26(1), pp. 2625–2633, 2013.

G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid mapping with
rao-blackwellized particle filters. In IEEE Transactions on Robotics, 23(1), pp. 34–46,
2007.

J.J. Gross and O.P. John. Individual differences in two emotion regulation processes:
implications for affect, relationships, and well-being. In Journal of Personality and Social
Psychology, 85(2), pp. 348–362, 2003.

M. Grześ and D. Kudenko. Online learning of shaping rewards in reinforcement learning.
In Neural Networks, 23(4), pp. 541–550, 2010.

H. Gubler and N. Bischof. A systems theory perspective. In M.E. Lamb and H. Keller
(eds.), Infant development: Perspectives from German-speaking countries, pp. 35–66.
Lawrence Erlbaum Associates, Hillsdale, NJ, England, 1991.

J.E. Guivant and E.M. Nebot. Optimization of the simultaneous localization and map-
building algorithm for real-time implementation. In IEEE Transactions on Robotics and
Automation, 17(3), pp. 242–257, 2001.

V. Gullapalli and A.G. Barto. Shaping as a method for accelerating reinforcement learning.
In Proceedings of the IEEE International Symposium on Intelligent Control, pp. 554–559.
1992.

S.S. Haykin. Kalman filtering and neural networks. John Wiley & Sons, New York, NY,
USA, 2001.

137

Bibliography

K. Hogan and R. Stubbs. Can’t Get Through: Eight Barriers to Communication. Pelican
Publishing Company, Gretna, LA, USA, 2003.

E. Hüllermeier, J. Fürnkranz, W. Cheng, and K. Brinker. Label ranking by learning pairwise
preferences. In Artificial Intelligence, 172(16), pp. 1897–1916, 2008.

Y. Jin and B. Sendhoff. Pareto-based multiobjective machine learning: An overview and
case studies. In IEEE Transactions on Systems, Man, and Cybernetics, Part C: Appli-
cations and Reviews, 38(3), pp. 397–415, 2008.

D. Kahneman. Thinking, fast and slow. Farrar Straus & Giroux, New York, NY, USA, 2011.

D. Kahneman and A. Tversky. Prospect theory: An analysis of decision under risk. In
Econometrica, 47(2), pp. 263–291, 1979.

E. Kaufmann, O. Cappé, and A. Garivier. On bayesian upper confidence bounds for bandit
problems. In Proceedings of the International Conference on Artificial Intelligence and
Statistics, volume 22, pp. 592–600. 2012.

J.E. Laird. The Soar cognitive architecture. MIT Press, Cambridge, MA, USA, 2012.

R.S. Lazarus. Psychological stress and the coping process. McGraw-Hill, New York, NY,
USA, 1966.

J.E. LeDoux. The emotional brain: The mysterious underpinnings of emotional life. Simon
& Schuster, New York, NY, USA, 1998.

N. Leibowitz, B. Baum, G. Enden, and A. Karniel. The exponential learning equation as a
function of successful trials results in sigmoid performance. In Journal of Mathematical
Psychology, 54(3), pp. 338–340, 2010.

S. Livingston, J. Garvey, and I. Elhanany. On the broad implications of reinforcement
learning based AGI. In Proceedings of the 1st Artificial General Intelligence Conference,
pp. 478–483. 2008.

D.J. Lizotte, M. Bowling, and S.A. Murphy. Linear fitted-Q iteration with multiple reward
functions. In The Journal of Machine Learning Research, 13(1), pp. 3253–3295, 2012.

W.G. Macready and D.H. Wolpert. Bandit problems and the exploration/exploitation trade-
off. In IEEE Transactions on Evolutionary Computation, 2(1), pp. 2–22, 1998.

S. Mannor and N. Shimkin. A geometric approach to multi-criterion reinforcement learning.
In The Journal of Machine Learning Research, 5, pp. 325–360, 2004.

A.S.R. Manstead and A.H. Fischer. Social appraisal: The social world as object of and
influence on appraisal processes. In K.R. Scherer, A. Schorr, and T. Johnstone (eds.),
Appraisal processes in emotion: Theory, methods, research, pp. 221–232. Oxford Uni-
versity Press, New York, NY, USA, 2001.

138

Bibliography

R.P. Marinier, J.E. Laird, and R.L. Lewis. A computational unification of cognitive behavior
and emotion. In Cognitive Systems Research, 10(1), pp. 48–69, 2009.

S. Marsella, J. Gratch, and P. Petta. Computational models of emotion. In K.R. Scherer,
T. Bänziger, and R. Etienne (eds.), Blueprint for Affective Computing: A Sourcebook, pp.
21–46. Oxford University Press, New York, NY, USA, 2010.

S.C. Marsella and J. Gratch. Ema: A process model of appraisal dynamics. In Cognitive
Systems Research, 10(1), pp. 70–90, 2009.

R.R. McCrae and O.P. John. An introduction to the five-factor model and its applications.
In Journal of Personality, 60(2), pp. 175–215, 1992.

A. Mehrabian. Pleasure-arousal-dominance: A general framework for describing and mea-
suring individual differences in temperament. In Current Psychology, 14(4), pp. 261–
292, 1996.

M.L. Minsky. The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and
the Future of the Human Mind. Simon & Schuster, New York, NY, USA, 2006.

H. Miwa, T. Okuchi, K. Itoh, H. Takanobu, and A. Takanishi. A new mental model for hu-
manoid robots for human friendly communication introduction of learning system, mood
vector and second order equations of emotion. In Proceedings of the International Con-
ference on Robotics and Automation, volume 3, pp. 3588–3593. 2003.

V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves,
M. Riedmiller, A.K. Fidjeland, G. Ostrovski et al.. Human-level control through deep
reinforcement learning. In Nature, 518(7540), pp. 529–533, 2015.

K. Moffaert, M.M. Drugan, and A. Nowé. Hypervolume-based multi-objective reinforcement
learning. In Proceedings of the 7th International Conference on Evolutionary Multi-
Criterion Optimization, pp. 352–366. 2013.

A. Moors, P.C. Ellsworth, K.R. Scherer, and N.H. Frijda. Appraisal theories of emotion:
State of the art and future development. In Emotion Review, 5(2), pp. 119–124, 2013.

M. Mori, K.F. MacDorman, and N. Kageki. The uncanny valley. In IEEE Robotics & Au-
tomation Magazine, 19(2), pp. 98–100, 2012.

L. Muehlhauser and L. Helm. The singularity and machine ethics. In A.H. Eden, J.H.
Moor, J.H. Søraker, and E. Steinhart (eds.), Singularity Hypotheses: A Scientific and
Philosophical Assessment, pp. 101–126. Springer, Heidelberg, Germany, 2012.

A.Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: The-
ory and application to reward shaping. In Proceedings of the 16th International Confer-
ence on Machine Learning, volume 99, pp. 278–287. 1999.

139

Bibliography

A.Y. Ng and S.J. Russell. Algorithms for inverse reinforcement learning. In Proceedings of
the 17th International Conference on Machine Learning, pp. 663–670. 2000.

D.A. Norman, A. Ortony, and D.M. Russell. Affect and machine design: Lessons for the
development of autonomous machines. In IBM Systems Journal, 42(1), pp. 38–44,
2003.

D.A. Norman. The design of everyday things: Revised and expanded edition. Basic Books,
New York, NY, USA, 2013.

A. Ortony, G.L. Clore, and A. Collins. The cognitive structure of emotions. Cambridge
University Press, New York, NY, USA, 1990.

I.P. Pavlov and G.V. Anrep. Conditioned reflexes. Dover Publications, Mineloa, NY, USA,
2003.

M.D. Pell, L. Monetta, S. Paulmann, and S.A. Kotz. Recognizing emotions in a foreign
language. In Journal of Nonverbal Behavior, 33(2), pp. 107–120, 2009.

P. Perny and P. Weng. On finding compromise solutions in multiobjective markov decision
processes. In Proceedings of 19th European Conference on Artificial Intelligence, pp.
969–970. 2010.

E.A. Phelps. Emotion and cognition: Insights from studies of the human amygdala. In
Annual Review of Psychology, 57, pp. 27–53, 2006.

R. Picard. Affective computing. MIT Press, Cambridge, MA, USA, 1997.

R. Plutchik. The emotions. University Press of America, Lanham, MD, USA, 1991.

D. Ramachandran and E. Amir. Bayesian inverse reinforcement learning. In Proceedings of
the 20th International Joint Conference on Artificial Intelligence, pp. 2856–2591. 2007.

A.S. Rao and M.P. Georgeff. Modeling rational agents within a BDI-Architecture. In Pro-
ceedings of the International Conference on Principles of Knowledge Representation
and Planning, pp. 473–484. 1991.

R. Reisenzein, E. Hudlicka, M. Dastani, J. Gratch, K. Hindriks, E. Lorini, and J.J. Meyer.
Computational modeling of emotion: Toward improving the inter- and intradisciplinary
exchange. In IEEE Transactions on Affective Computing, 4(3), pp. 246–266, July 2013.

H. Robbins. Some aspects of the sequential design of experiments. In Bulletin of the
American Mathematical Society, 58(5), pp. 527–535, 1952.

L.F. Rodríguez, J.O. Gutierrez-Garcia, and F. Ramos. Modeling the interaction of emotion
and cognition in autonomous agents. In Biologically Inspired Cognitive Architectures,
17, pp. 57–70, 2016.

140

Bibliography

D. Roijers, J. Scharpff, M. Spaan, F. Oliehoek, M. de Weerdt, and S. Whiteson. Bounded
approximations for linear multi-objective planning under uncertainty. In Proceedings of
the 24th International Conference on Automated Planning and Scheduling, pp. 262–270.
2014.

D.M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley. A Survey of Multi-Objective Se-
quential Decision-Making. In Journal of Artificial Intelligence Research, 48, pp. 67–113,
2013.

I.J. Roseman, M.S. Spindel, and P.E. Jose. Appraisals of emotion-eliciting events: Testing
a theory of discrete emotions. In Journal of Personality and Social Psychology, 59(5),
pp. 899–915, 1990.

C.A. Rothkopf and C. Dimitrakakis. Preference elicitation and inverse reinforcement learn-
ing. In Proceedings of the European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 34–48. 2011.

J.A. Russell. Evidence of convergent validity on the dimensions of affect. In Journal of
Personality and Social Psychology, 36(10), pp. 1152–1168, 1978.

J.A. Russell. Culture and the categorization of emotions. In Psychological bulletin, 110(3),
pp. 426–450, 1991.

J.A. Russell. Core affect and the psychological construction of emotion. In Psychological
Review, 110(1), pp. 145–172, 2003.

J.A. Russell and L.F. Barrett. Core affect, prototypical emotional episodes, and other things
called emotion: dissecting the elephant. In Journal of Personality and Social Psychol-
ogy, 76(5), pp. 805–819, 1999.

J.A. Russell and A. Mehrabian. Evidence for a three-factor theory of emotions. In Journal
of research in Personality, 11(3), pp. 273–294, 1977.

R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for collaborative
filtering. In Proceedings of the 24th International Conference on Machine Learning, pp.
791–798. 2007.

D.A. Sauter, F. Eisner, P. Ekman, and S.K. Scott. Cross-cultural recognition of basic
emotions through nonverbal emotional vocalizations. In Proceedings of the National
Academy of Sciences of the United States of America, 107(6), pp. 2408–2412, 2010.

K.R. Scherer. Toward a dynamic theory of emotion. In Geneva studies in Emotion, 1, pp.
1–96, 1987.

K.R. Scherer. Feelings integrate the central representation of appraisal-driven response
organization in emotion. In A.S.R. Manstead, N. Frijda, and A. Fischer (eds.), Feelings

141

Bibliography

and Emotions: The Amsterdam Symposium, pp. 136–157. Cambridge University Press,
Cambridge, United Kingdom, 2004.

K.R. Scherer. The dynamic architecture of emotion: Evidence for the component process
model. In Cognition and emotion, 23(7), pp. 1307–1351, 2009.

K.R. Scherer. The component process model: Architecture for a comprehensive computa-
tional model of emergent emotion. In K.R. Scherer, T. Bänziger, and R. Etienne (eds.),
Blueprint for Affective Computing: A Sourcebook, pp. 47–70. Oxford University Press,
New York, NY, USA, 2010.

K.R. Scherer, R. Banse, and H.G. Wallbott. Emotion inferences from vocal expression
correlate across languages and cultures. In Journal of Cross-Cultural Psychology, 32(1),
pp. 76–92, 2001.

S.H. Schwartz. Are there universal aspects in the structure and contents of human values?
In Journal of social issues, 50(4), pp. 19–45, 1994.

H. van Seijen and R. Sutton. True online TD(lambda). In Proceedings of the 31st Interna-
tional Conference on Machine Learning, pp. 692–700. 2014.

S. Singh, T. Jaakkola, M.L. Littman, and C. Szepesvári. Convergence results for single-step
on-policy reinforcement-learning algorithms. In Machine Learning, 38(3), pp. 287–308,
2000.

B.F. Skinner. Science and Human Behavior. Macmillan, New York, NY, USA, 1953.

B.F. Skinner. The behavior of organisms: An experimental analysis. Appleton-Century,
New York, NY, USA, 1938.

J.R. Slagle. A heuristic program that solves symbolic integration problems in freshman
calculus. In Journal of the ACM, 10(4), pp. 507–520, 1963.

N. Soares. The value learning problem. Technical Report, Machine Intelligence Research
Institute, Berkeley, CA, USA, 2015.

S. Sosnowski, A. Bittermann, K. Kuhnlenz, and M. Buss. Design and evaluation of emotion-
display EDDIE. In IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 3113–3118. 2006.

B.R. Steunebrink, M. Dastani, and J.J.C. Meyer. The OCC model revisited. In Proceedings
of the 4th Workshop on Emotion and Computing, pp. 146–154. 2009.

B.R. Steunebrink, M. Dastani, and J.J.C. Meyer. A formal model of emotion triggers: An
approach for BDI agents. In Synthese, 185(1), pp. 83–129, 2012.

142

Bibliography

R. Sutton and A. Barto. Reinforcement Learning: An Introduction. 1st edition. MIT Press,
Cambridge, MA, USA, 1998.

A. Tversky and D. Kahneman. The framing of decisions and the psychology of choice. In
Science, 211(4481), pp. 453–458, 1981.

P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, and E. Dekker. Empirical evaluation meth-
ods for multiobjective reinforcement learning algorithms. In Machine Learning, 84(1–2),
pp. 51–80, 2011.

P. Vamplew, J. Yearwood, R. Dazeley, and A. Berry. On the limitations of scalarisation
for multi-objective reinforcement learning of pareto fronts. In W. Wobcke and M. Zhang
(eds.), Advances in Artificial Intelligence, pp. 372–378. Springer, Berlin, Germany, 2008.

K. Van Moffaert and A. Nowé. Multi-objective reinforcement learning using sets of pareto
dominating policies. In The Journal of Machine Learning Research, 15(1), pp. 3483–
3512, 2014.

J.D. Velásquez. When robots weep: Emotional memories and decision-making. In Pro-
ceedings of the 15th National Conference on Artificial Intelligence and Tenth Innovative
Applications of Artificial Intelligence Conference, pp. 70–75. 1998.

D. Vernon, G. Metta, and G. Sandini. A survey of artificial cognitive systems: Implications
for the autonomous development of mental capabilities in computational agents. In
Transactions on Evolutionary Computation, 11(2), pp. 151–180, 2007.

C.J.C.H. Watkins and P. Dayan. Technical note: Q-learning. In Machine Learning, 8(3),
pp. 279–292, 1992.

R.S. Woodworth. Experimental psychology. Holt, Rinehart and Winston, New York, NY,
USA, 1938.

W. Wundt. Outlines of psychology. Engelmann, Leipzig, Germany, 1897.

143

	Introduction
	Motivation
	Research questions
	Contributions and Scope

	Background
	Theories and Models of Affective Computing
	Affect Generation
	Component Process Model
	Ortony, Clore & Collins Model of Emotions
	Zurich Model of Social Attachment and Fear
	Model Implementation

	Reinforcement Learning
	Elements of Reinforcement Learning
	Multi-objective Reinforcement Learning
	Reward shaping
	Human values
	Preferences
	Affective states in Reinforcement Learning

	Affective Evaluation of Machine Learning Experiments
	Bandit Simulation
	Multi-armed bandits
	Implementation
	Experiment
	Results

	Gridworld
	Implementation
	Core Affect
	Experiment and Results

	Simultaneous Localization and Mapping
	SLEmotion
	Stimulus Evaluation Checks
	Categorization Module
	Experiment and Study
	Results

	Affective Control
	Reinforcement Learning with Preferences
	Experiment
	Results

	Human Value Retrieval
	Inverse Reinforcement Learning for Human Value Retrieval
	Inverse Reinforcement Learning
	Adaptation to Scalarized Multi-objective Reinforcement Learning

	Simulations and Test Cases
	Environment Description
	Test Cases

	Results

	Conclusion
	Summary
	Future perspectives

	List of Acronyms
	Appendix
	Published algorithms
	Questionnaire of the SLEmotion experiment
	Derivation of the Block Matrix Form of the Inverse RL algorithm

	Bibliography

