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Abstract—Surface tension effects can dominate multi-phase
flows when the length scales of the problem are small. The
resulting Capillary forces at a phase interface between two
immiscible fluids are proportional to the local curvature of the
flow and try to minimize the interfacial area. A more complex
situation occurs when three phases are in contact or when two
phases are in contact with a wall. The simulation of the contact
line at a wall is still a challenging task since the motion of the
contact line is contradictory to the no-slip assumption at walls.

In this work we present a multi-phase SPH method considering
surface tension effects that is capable of simulating contact line
problems. Based on previous works [4] we revisit our finite-width
interface model and introduce a new stress boundary condition
at the wall.

I. INTRODUCTION

SPH [5] offers a powerful framework to model complex
multi-phase phenomena due to its Lagrangian formulation.
Using particles as discretization points and advecting them
with the flow it is straightforward to introduce multiple types
of particles of different phases and include phase interactions
such as surface tension forces. By the nature of the method
no interface capturing is required and the method is mass and
momentum conservative (note, we use the mass conserving
density summation form).

Morris [6] proposed a multi-phase SPH model based on
the continuum surface force model (CSF) [1] to account for
surface tension effects. He applied this model to isolated
drops and analysed capillary waves. But this method does
not conserve momentum and the calculation of the curvature
is cumbersome.

Another approach to model the surface-tension effects
on a macroscopic scale without the need of calculating the
curvature is presented in Hu and Adams [4]. There, a stress
tensor is calculated from the color-index gradients and the
resulting surface tension forces conserve linear momentum.
They showed that this method captures the dynamics of
isolated drops in shear flows and presented a three-phase
interaction with triple junction. Fundamentally different,
Nugent and Posch [8] model the surface-tension effect with
microscopic inter-phase attractive potentials. This method is
appealing since simple pair-wise interactions are introduced
without the need of a color-index gradient calculation. But
on the other hand the remaining parameter in the model have
to be calibrated as there is no analytical relation between the

resulting surface tension coefficient and the model parameter.
Tartakovsky and Meaking [9] proposed a similar method
and studied the influence of contact angles on flows through
bifurcations. Recently, Das and Das [2] used SPH to simulate
equilibrium shapes and contact angles of sessile drops. They
used a CSF model and adjusted the position of the wall-nearest
SPH particles according to the static contact angle as found
from the Young-Laplace equation to impose the equilibrium
contact angle. Furthermore they showed that their results
could be improved with a diffuse-interface approximation.
But consequently, the thickness of the transition region along
the interface is doubled and it is not clear how this method
performs in dynamic situations since static equilibrium angles
are imposed at the contact line.

In this work we propose an extension of the original method
of Hu and Adams [4] to simulate contact angle problems.
Using the original formulation to simulate the equilibrium
contact angle and shape of a drop on a flat surface we
achieved already physically reasonable results. That means
the wetting or non-wetting behaviour of the fluid on the wall
was represented correctly according to the surface-tension
coefficients. But analysing the equilibrium state we found
comparably strong spurious currents close to the triple point
(in two dimensions the triple line or contact line reduce to a
triple point or contact point, respectively), see Fig. 1.

Fig. 1. Velocity vectors showing spurious currents at triple point.

Particles close the triple line are continuously accelerated
since the stress singularity is not discretized correctly and
consequently the kinetic energy does not decrease. To solve
this problem we introduced a new stress boundary condition
at the wall that requires only a simple extrapolation of the
nearest adjacent phase. Then, the stress at an interface particle
is calculated based on its real neighbour particles and its
interpolated image particles. With this new approach we are
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able to decrease the kinetic energy in the equilibrium system
by almost three orders of magnitude.

II. GOVERNING EQUATIONS

In our multi-phase SPH model we use the mass conserving
density summation form

ρi = mi

∑
j

Wij (1)

to calculate the density of a particle i during the simulation.
Following the weakly-compressible approach we introduce an
equation-of-state to relate the pressure to the density

p = p0

[(
ρ

ρ0

)γ
− 1

]
+ χ , (2)

where p0 and χ are the reference pressure and background
pressure, respectively. When simulating fluids we use the
exponent γ = 7. The background pressure is required in our
surface-tension model to avoid negative pressures that might
occur due to the pressure drop at the phase interface. The
acceleration of each particle follows from the incompressible
Navier-Stokes equation

d~v

dt
= ~g +

1

ρ

(
−∇p+ η∆~v + F(s)

)
, (3)

where ~g is the body force, η the dynamic viscosity and F(s)

the surface tension force. For each phase we define a color
index C that is equal to one if a particle belongs to this phase
and zero otherwise

Csi =

{
1, if particle i belongs to phase s
0, else.

(4)

For each particle i of phase k we can then calculate the
gradient of the color-index function for the interface k − l
using all neighbouring particles j that belong to the phase l

∇Ckli =
1

Vi

∑
j

(
V 2
i C

l
i + V 2

j C
l
j

)
∇Wij , l 6= k . (5)

Using the normalized color-index gradient as normal direction
at the interface and

∣∣∇Ckl∣∣ as approximation of the surface-
delta function between the phases k and l the interfacial stress
tensor Π is obtained from

Π =
∑
l

αkl
(

1

d
I
∣∣∇Ckl∣∣2 −∇Ckl∇Ckl) , l 6= k . (6)

This stress tensor is used in the continuum surface stress (CSS)
model to calculate the surface tension force

F(s) = ∇ ·Π . (7)

The pressure and viscous term in the Navier-Stokes equation
are discretized using a standard SPH approximation, see [4]
for the details. The magnitude of the sound speed, reference
pressure and the timestep criteria are chosen according to
Morris et al. [7] in order to limit the density variation in the

system to an admissible level. For the smoothing kernel we
use a quintic spline function with a cutoff of rc = 3h and
the smoothing length h is equal to the initial particle distance
∆x. We evolve the governing equations for the fluid particles
in time using a velocity-verlet timestepping scheme.

III. CONTACT LINE DISCRETIZATION

We consider a three-phase contact line problem as shown in
Fig. 2(a). The two liquid phases and the solid wall phase are
represented by the bold markers +, ∆ and ©, respectively.
This setup produces comparably strong spurious currents close
to the triple line because the force balance for interface parti-
cles at the wall is not in equilibrium. We propose to mimick
a symmetry boundary condition at the wall for the surface
stress that resolves this imbalance. Therefore we extrapolate
the phase type of each particle to its nearest neighbor of
different type, see Fig. 2(b) for the image phase types of the
particles. Although this procedure does not reproduce exactly

(a) Real SPH particles

(b) Extrapolated image phase types at the real
particle positions.

Fig. 2. Schematic view of a contact line problem with three different types
of particles (©: wall particles, +: fluid ’1’, ∆: fluid ’2’)

a symmetry condition, it is very simple and applicable to
arbitrarily shaped fluid-solid interfaces. In the surface tension
model we now simply include also the phase interactions
between real particles and particles where the image phase
type is different, e.g. interactions between fluid particles of
type + and solid particles with the image type ’∆’ are
included when calculating the color-index gradient between
the two phases + and ∆.

IV. NUMERICAL EXAMPLES

In this section we show several test cases of the modified
multi-phase model that demonstrate the improvement of the
scheme regarding the decrease of the spurious motion close
the triple point. At first, we place a rectangular patch of fluid
on a flat surface and look at the equilibrium contact angle
after a circular drop has developed. The second case shows
the spreading effect of a drop due to gravity.
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A. Static contact angle

We consider the evolution of a rectangular patch of fluid on
a flat wall and monitor the shape and kinetic energy over time.
In the absence of gravity the final contact angle θ between the
three-phase line is given by the Young-Laplace law

cos θ =
σ1w − σ2w

σ12
. (8)

Here, σ1w and σ2w denote the surface tension coefficient
between the fluid phases ’1’ and ’2’ and the solid wall phase
’w’. The fluid-fluid coefficient is given by σ12. As a reference,
we simulate the drop on a wall with the original method [4]
and set the wall-interaction to zero, i.e. σ1w and σ2w are
both equal to zero. The drop liquid is initially placed in a
rectangular box of size Lx = 1 and Ly = 0.5 and we set
the surface tension to σ12 = 1. The initial particle distance is
3∆x = 0.1, thus a total of 450 particles is used to discretize
the bubble phase. Due to surface-tension effects the interfacial
energy is minimized and a circular cap shape develops. Fig. 3
shows a snapshot at T=5 of the particles colored with the phase
index. Additionally, velocity vectors show the instantaneous
motion of the particles. In agreement with theory the surface

Fig. 3. Reference result using the original method [4]: snapshot of drop
particles (blue) and solid wall particles (red) with velocity vectors showing
the instantaneous velocity field.

stress at the triple point leads to a contact angle of θ = 90◦.
But there occurs a non-vanishing spurious motion close to the
three-phase interface. Looking at the color-index gradients at
these particles it occurs that due to the lack of fluid particles on
the solid side the effective fluid interface is not perpendicular
to the wall. Consequently, the divergence of the stress tensor
results also in a tangential force component that continuously
accelerates fluid particles towards the contact point and induce
these small vortices.

The result of this simulation using our new approach is
shown in Fig. 4. Again, the contact angle between the drop
and the surrounding phase at the wall is θ = 90◦. But now
the vortices close the wall disappeared and a steady particle
configuration is achieved. In Fig. 5 we compare the kinetic
energy of the drop phase for the reference simulation and the
new result. The red curve denotes the temporal evolution of
the reference case. Initially, particles settle to the macroscopic

Fig. 4. Snapshot of drop particles (blue) and solid wall particles (red)
with velocity vectors showing the instantaneous velocity field using our new
approach.

equilibrium shape and the kinetic energy decreases. After this
transient period the drop shape does not change anymore and
the spurious vortices keep the kinetic energy at an almost
constant level. Contrarily, the blue curve shows the result
for the same case but using our modified multi-phase model.
At early times up to T ≈ 5 the two curves almost match.
Then, due to the balanced surface-stress condition at the triple
point the system tends to reach a global equilibrium state
and the kinetic energy decreases. We compared this result
with the decay of the kinetic energy of a pure drop in an
ambient phase when using one symmetry at the drop center,
see the black curve in Fig. 5. This case is equivalent to the
drop on a wall where the wall surface-tension coefficients are
zero. The energy evolution shows a very similar tendency
and the absolute energy level differs by about three orders
of magnitude compared to the original method.
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Fig. 5. Comparison of the kinetic energy for the drop on a solid wall with
θ = 90◦.

In the following we briefly demonstrate the validity of our
method for non-zero wall surface stresses. Exemplarily we
show two cases for a wetting and a non-wetting wall. In
the first case, the surface-tension coefficients are σ12 = 1,
σ1w = 1 and σ2w = 0.5. Here, phase ’1’ denotes the
droplet phase and ’2’ the continuous matrix phase. Due to
the different wall surface stresses the drop phase exhibits
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non-wetting behaviour and a contact angle larger than 90◦

develops. Conversely, exchanging the parameter for the wall
surface stress gives a wetting surface that results in a contact
angle smaller than 90◦. Fig. 6 shows a particle snapshot for the
two cases. A simple estimation of the contact angle using the
wall closest interface particles agree with the Young-Laplace
law within an error of 5%.

(a) Particle snapshot for the non-wetting example (σ12 = 1,
σ1w = 1 and σ2w = 0.5).

(b) Particle snapshot for the wetting example (σ12 = 1, σ1w =
0.5 and σ2w = 1).

Fig. 6. results

B. Spreading effect due to gravity

We place a semicircle drop on a flat wall with initial contact
angle of θS = 90◦. Due to gravity the drop flattens while
maintaining the contact angle with the wall. A measure for
the effect of the gravity is the Eotvos number

Eo =
ρLgR

2
0

σ
, (9)

that relates the surface tension force to the gravitational force.
Here, ρL and R2

0 denote the reference density of the liquid
and the radius of the initial drop circle, respectively. For small
Eotvos numbers (Eo � 1) the surface tension dominates the
problem and the shape of the drop is a circular cap with
the contact angle θs. In this regime the height of the drop
is obtained by

e0 = R0 (1− cos θs)

√
π

2 (θs − sin θs cos θs)
. (10)

With increasing influence of gravity (Eo� 1) the thickness
of the liquid is proportional to the capillary length

e∞ = 2

√
σ

ρLg
sin

(
θs
2

)
. (11)

We simulated this problem for Eotvos numbers in the range
of 0.001 to 20. The semicircular drop with initial radius of
R0 = 1 is discretized with liquid particles with an initial
particle distance of 3∆x = 0.1 and the size of the surrounding
channel is Lx = 8 Ly = 2. The surface tension coefficients
between the fluids and the wall are all set to one, thus the
static contact angle is θs = 90◦. Fig. 7 shows the non-
dimensional height of the drop e/e0 for increasing Eotvos
number. Also, the two dashed curves show the two regimes
of surface tension dominated spreading (eq. (10)) and gravity
dominated spreading of a drop on a wall (eq. (11)). Our
simulation results agree well with the asymptotic solutions
and are comparable to the results of Dupont et al. [3], who
simulated this case using a volume-of-fluid method.
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Fig. 7. Influence of the Eotvos number on the non-dimensional thickness
e = e/e0 of a drop on a wall.

Figs. 8-10 show exemplary the final equilibrium shape of
the settled drop for Eo = 0, Eo = 2 and Eo = 20. Without
gravity (Eo = 0), the semicircular drop maintains its initial
shape and the non-dimensional height of the drop is e = 1.
With increasing body force the drop spreads on the wall and
its circular shape flattens. The phase interface at the contact
line moves outwards due to the liquid settling under gravity
and reaches the new steady state while preserving the initial
contact angle.

V. CONCLUSION

We have presented an improved multi-phase model to sim-
ulate contact line problems with SPH. We simply modified the
classical color-index gradient calculation to impose the correct
stress boundary condition at the contact line and achieved
a strong decrease of the spurious motion at the equilibrium
state. We compared the spreading of a drop under gravity with
analytical asymptotic solutions and found good agreement.
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Fig. 8. Particle snapshot of the drop spreading at Eo=0.

Fig. 9. Particle snapshot of the drop spreading at Eo=2.

Fig. 10. Particle snapshot of the drop spreading at Eo=20.

Currently, we study the capabilities of this method to handle
complex moving contact lines where the classical no-slip
condition as wall boundary condition is violated and apply our
method to realistic problems that are dominated by contact-
line dynamics as e.g. drop impacts on walls.
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