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Abstract

Upon the emergence of general-purpose FE-codes in the 1980s, 3D solid modeling became

widely available and can by now be considered as a standard approach in the mechanical

design verification of stationary structures. With regard to rotordynamics, however, im-

plementation of FEM is lagging behind, and beam-element models are still widely in use.

Beam-models are compact and come at reasonable computational costs, yet they are afflicted

with a number of limitations, making them insufficient for the analysis of more complex rotor

systems.

The current thesis investigates the question of whether general-purpose FE-codes currently

offer sufficient capabilities to perform challenging rotordynamic analyses. The research is

carried out on a special industrial diamond coring system acting as an application example.

It is a two-level rotor system in which the inner subsystem is not only spinning around its

axis of rotation, but, in addition, performs an overlayed tumbling motion to increase drilling

performance. Due to the complex mechanical design, nonlinear characteristics and the fact

that it is operated hand-held, the coring system already provides a challenge with regard to

rotordynamics in its serial configuration. For the purpose of academic research, the system

is further modified to intentionally exceed the clamping force in the force-locked connection

between core bit and driving shaft when running-up the system through a bending resonance.

Exceeding the clamping force during operation results in strong nonlinear effects and finally

produces a mode-locking phenomenon in which the core bit performs a relative motion inside

the supporting chuck in order to stay in resonance, even if the rotational speed no longer

matches the original frequency of the bending resonance. Due to the complex geometry of

the interacting parts, such a system cannot be represented by beam-element models, but

rather requires 3D solid modeling.

ABAQUS is used as a representative example for a general purpose FE-code to construct a

flexible multi-body simulation using 3D solid finite elements. Extensive experimental inves-

tigations provide the basis to validate and update the model. The comparison to simulation

results show good consistency, and even the mode-locking phenomenon is well represented

by the model.
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1 Introduction

1.1 Motivation

Across all industries, engineers experience increasing pressure to shorten development time,

while product complexity simultaneously increases due to customers demanding innovation

or as a consequence of variant diversity accompanying a global, multi-market strategy. Un-

der such circumstances, verification of the mechanical design purely by building physical

prototypes and testing them for lifetime in a so-called “make & break” approach is out of

the question, as it costs too much time and money. With the rise of computer-aided engi-

neering (CAE), nowadays significant parts of the verification process can be done in a virtual

environment before going into hardware. Many companies share a common vision in which

only one physical prototype is needed at the end of the development process, with the sole

objective of confirming the design obtained in previous virtual loops. Accurate and efficient

CAE techniques are the prerequisites for this vision to come true.

At present, the finite element method (FEM) is the most accepted and widely used virtual

prototyping tool [155]. Since its development in the 1950s, FEM has become a standard

procedure for solving practical engineering problems in virtually every field of engineer-

ing analysis [6]. With regard to structural dynamics, FEM offers systematic rules for the

discretization of geometrically complex structures and for the solution of the underlying

differential equations. In many industries, FEM has developed into a key indispensable

technology for the modeling and simulation of mechanical systems [87].

With regard to rotordynamcis, however, the implementation of FEM is lagging behind the

progression in other fields [113]. While today stationary structures are usually modeled using

3D continuum finite elements, the standard approach in rotordynamics still consists of using

beam-element models [37], referred to by some authors as shaft-line models [33]. This is

a linearized, 1D approach in which the rotor system is separated into a “shaft”, which is

represented by finite beam-elements, and into one or more “disks”, which are considered rigid

and which are represented in the model as point masses with inertia properties to account for

the gyroscopic effects. The name arises from the process of generating the mesh by placing

nodes along the shaft line. Spring elements and joints can be attached to the nodes to account

for elastic bearing or stator behavior. Such models represent a great improvement compared

to classical Jeffcott rotor models, which simply divide a rotor system into a massless, elastic

shaft and a (single) rigid disk.
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1 Introduction

For a rough estimation in the early conceptual design phase, shaft-line models might be suf-

ficient, providing the advantages of intuitive geometric interpretation and low computational

costs. The necessary simplifications, however, render such models unfit for final verification

of the mechanical design in the case of most real-world rotor systems. Limitations of shaft-

line models will be discussed more detailed in Chapter 2.3 of the current thesis. In brief,

shaft-line models are afflicted by the following shortcomings:

• Lack of accuracy in mathematical model representation: Regardless of the underlying

beam theory, finite beam elements assume the shaft’s cross-section to remain fixed and

plain in deformed configuration. This assumption is violated at sections with sudden

changes in diameter, such as bearing seats [119, 128, 142].

• Lack of physical model representation: First, it is a 1D approach, therefore it does not

couple the lateral with the torsional and axial behavior of the rotor. It is well known,

that large bending vibrations lead to torsional excitation [90], while, on the other

hand, fluctuation in the driving torque can cause lateral instability of the rotor [100].

Second, the stiffening effect of the disk on the shaft and vice versa is ignored. Gen-

erally, representing a rotor system as an elastic shaft with attached rigid disks is an

oversimplification that cannot correctly describe many real-world rotors. Third, the

approach represents a partial linearization that cannot represent centrifugal stiffening

or spin-softening effects [41, 98, 99].

• High effort generating the model: Virtual prototyping is based on three-dimensional

CAD-data. One of the main advantages of 3D solid FE-models is the fact that already

existing geometric models can be reused for generating the mesh. This is in contrast

to shaft-line models, in which the model needs to be created manually by representing

the different axial sections of a rotor by finite beam-elements that correctly describe

its length and diameter, or the shape of the cross-section, respectively. Over the years,

beam-elements have been developed for typical shapes, i.e. circular, conical, hollow

or rectangular. At rotor sections corresponding exactly to such “standard” shapes,

model generation is straightforward. Real-world rotors, however, will always contain

sections that do not resemble such simple geometric forms. For instance, these sections

can be found at feather key connections to enable torque transfer to mounting parts,

at interfaces to adjacent parts or at gear wheels. Here, the real geometry needs to

be approximated by a standard form. For instance, a section containing a keyway

in an otherwise circular cross-section can be represented by beam-elements with a

purely circular cross-section in which the diameter is reduced until the bending stiffness

2



1.2 Current State of Knowledge

is correctly met. Adjusting the model typically requires specific and labor-intensive

computations that are not easily automated [41].

In an environment of high labor costs and time being a crucial factor, it is especially the

last of the aforementioned drawbacks that counts against a shaft-line model. The effort

of manual model creation and adjustment should not be underestimated. When dealing

with more complex systems, it might become necessary to set up a detailed 3D solid FE

model with the sole purpose of validating the shaft-line model in non-rotating condition,

i.e. [5, 56, 86, 92]. On the other hand, in many cases a 3D model is required anyway to

perform a lifetime calculation, which cannot be delivered by a shaft-line model. Either way,

it leads to a situation in which two different models of the same rotor system are created.

Figure 1.1 visualizes the interaction of the two models described in what follows: The major

purpose of the shaft-line model is to ensure functionality of the rotor system. Typically, one

is interested in critical rotor speeds, bearing forces and the maximal deflection of the rotor to

make sure there is no contact to the stator in any operational condition. Generally speaking,

the focus of interest lies on the global behavior of the rotor system. Apart from ensuring

functionality, design verification also contains lifetime prediction. This is done under the use

of a 3D solid FE model, in which the focus of interest lies on local stress distribution instead

of global behavior. The 3D model does not contain the actual rotation of the rotor system,

but receives the necessary load cases from the shaft-line model in order to perform a static

calculation. If one of the two models indicates a necessary design change, both models need

to be updated, the shaft line model needs to be validated anew, and the procedure starts over

again. Since the two models are usually implemented using two different software programs,

often operated by different persons, the whole procedure is not only very time consuming,

but also prone to errors. This gives rise to the question, why not use a single model for

each task, functionality and lifetime? This would have to be the 3D model, since a shaft-

line model is unable to deliver the local stress distribution needed for lifetime prediction of

complex real-world geometries.

1.2 Current State of Knowledge

The following section presents a brief overview of the current state of knowledge regarding

the use of 3D solid FE-models for rotordynamics. The topic will be discussed more in-depth

in the theory part of the current thesis.

In the 1980s, 3D solid modeling became generally available by the emergence of commercial,

3
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Design of Rotating 
Machinery

Structural 
Dynamics

Other Design 
Aspekts

Other Design 
Aspekts

Ensure Lifetime

FE-Simulation
- 3D solid model
- not rotating
- local stress

Ensure Functionality

Multi-Body Simulation
- beam model
- rotating
- global behavior

finished

yes yes nono

design change design change

Figure 1.1: Flow chart of interaction between FEM and MBS in the design process of rotating
machinery

general purpose FE-codes such as ANSYS, ABAQUS and NASTRAN [88, 126]. The reasons

why 3D solid modeling has not yet prevailed in rotordynamcis are multilayered and range

from limited computational resources to a lack of adequate computational solution techniques

and mathematical element formulations. In general, rotordynamic problems can be solved

in the time or in the frequency domain, depending on the specific problem. Through direct

time integration of the underlying equations of force equilibrium, a model consisting of

3D continuum finite elements is automatically capable of taking into account rotordynamic

effects, such as gyroscopic coupling, stress stiffening due to centrifugal forces or even non-

axial symmetry of the rotating parts. When solving the equation of motion in the frequency

domain, those effects need to be accounted for by additions to the finite element formulations.

When direct time integration was first used to solve FE-models of rotating systems in the

1970s, researches where surprised of the downright ridiculous small time steps necessary

to ensure numerical stability [65, 66, 72, 73]. One of the reasons for this is that the used

integration schemes did not contain artificial numerical damping, therefore the number of

elements dictate the critical time step. Typically, such a determined upper border is several

orders smaller in magnitude than would be expected from the frequency range of interest,

thereby significantly slowing down the solution procedure [17]. Moreover, those early models
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did not even contain 3D finite elements, but rather consisted of axisymmetric, massless

beam-elements and corresponding lumped masses. Still, the lack in computational power

limited the number of elements down to no more than a few dozen until even the nineties.

Therefore, the use of 3D solid models for rotordynamic problems that require a solution

through direct time integration was long out of question, and most research was directed

on solutions in the frequency domain and on model reduction, or more generally speaking,

on solutions with lower computational costs [145]. Since the first steps in using direct time

integration for rotordynamic problems, however, things have changed significantly: First,

the reasons for numerical instabilities of rotating systems are much better understood [111],

and general purpose FE-codes are nowadays equipped with efficiently implemented time-

integration algorithms that provide the necessary numerical damping, such as the Hilber-

Hughes-Taylor method (HHT method) [55] and the so-called Generalized-α method [18].

Second, in accordance with Moore’s Law [120], computational power has grown exponentially

over the last decades and by now rates several dimensions higher than in the early years

of noteworthy computers. Nevertheless, the process of automatic mesh generation from

three-dimensional CAD geometry as described above, leads to a large number of degrees of

freedom (DOFs) even when measured with todays standards. Whether a model with a mesh

fine enough to accurately predict local stress for life time calculation can also be used for a

rotordynamic analysis remains to be seen in the further course of this thesis.

When solving the equations of motions of a rotating system in the frequency domain, the

effects of gyroscopic couples are introduced in terms of a gyroscopic matrix when using a

stationary coordinate system, and in terms of a matrix containing coriolis forces when using

a co-rotating coordinate system. Although FEM dates back to the 1950s, it was not before

1976 that a gyroscopic matrix was first developed for finite beam elements by Nelson and

McVaugh [102]. Since then, a large number of finite beam-elements fit for rotordynamic

analysis have been developed based on different types of beam theory. It comes as no

surprise that developing the necessary formulations for 3D finite elements is significantly

more difficult, and it took until the beginning of the new millennium for the first steps to be

laid by Nandi and Neogy [99]. Given the fact that for almost thirty years 3D solid modeling

has been sought as the (metaphorically speaking) “Holy Grail of rotordynamics” [40], the

number of publications following the pioneering works described above is surprisingly small.

Considerable progress, however, can be observed in the rotordynamic capabilities of general

purpose FE-codes. First, the necessary additions for rotordynamics were implemented in a

rotating frame, since this turned out to be significantly less complex than in a stationary

reference frame. The capabilities for using a stationary coordinate system have been added
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1 Introduction

only in the last couple of years, therefore the number of applications is still limited.

1.3 Objectives and Structure of this Thesis

The main objective is to investigate, whether general purpose FE-codes at present are capable

of performing demanding rotordynamic analyses using a 3D solid modeling approach. The

investigation is carried out on a special industrial diamond coring system which acts as an

application example throughout the whole thesis. The diamond coring system is unique

due to its kinematics that superimpose a tumbling movement on the spinning motion of

the core bit in order to increase drilling performance. With regard to rotordynamics, this

coring system already represents a challenge in its serial condition, since it contains complex

mechanical design and shows highly non-linear system behavior. Within the underlying

research, it has been strongly modified in order to create certain dynamic effects such as

mode-locking that require the use of 3D solid modeling and cannot be addressed accurately

by a shaft-line model. However, it must be clear that the effects outlined in the further

course of this thesis are the result of heavy modifications to the serial product in order to

provide the opportunity for academic research and do in no way occur in normal operation.

The structure of the thesis is as follows:

The theory part in Chapter 2 first outlines how rotordynamic effects are represented in

the equations of motion, and in turn, how this affects the requirements with regard to

computational solution techniques. This is followed by an overview of the current state

of knowledge regarding the use of FEM for rotordynamics and the capabilities of common

general purpose FE-codes.

Chapter 3 outlines the diamond coring system which provides the application example of

the current thesis. The focus of interest will be the crossing of a bending resonance when

running up the tool, meaning transient behavior with regard to rotordynamics. The force-

locked connection between the core bit and the actual power tool is of particular importance.

For the purpose of academic research, the coring system will be modified (with regard to

rotordynamics: intentionally “worsened”), i.e. by artificially increasing the imbalance of the

core bit or by reducing the clamping force of the afore mentioned force-locked connection.

The goal is to exceed the clamping force during run-up. This creates strong non-linear

behavior and results in a mode-locking phenomenon, in which the core bit performs a relative

motion inside its supporting chuck during run-up in order to stay in resonance, even if the

rotational speed no longer matches the original frequency of the bending resonance. Another
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challenge for simulation arises from the fact that the diamond coring system is operated

hand-held, requiring one to represent the human operator in an adequate way.

Extensive experimental data provides the basis for evaluating the quality of the simulation

model. Chapter 4 explains the experimental setup and selected post-processing operations.

Chapter 5 introduces the simulation model of the diamond coring system. Although it is

a comparatively small tool fit for hand-held operation, the mechanical complexity should

not be underestimated, since it contains more than one-thousand individual parts. While in

theory it is possible to fully represent every single part and the corresponding interactions in

an FE-model, the modeling effort and the computational solution costs are neither acceptable

nor necessary. With regard to the focus of interest being a run-up through the first bending

resonance, the model approach chosen makes use of the multi-body capabilities of modern

general purpose FE-codes: Parts that undergo elastic deformation during run-up are fully

represented by a 3D solid FE-approach, while other parts that behave rigidly are considered

lumped masses. The model is implemented in ABAQUS, which is not a special rotordynamic

software but rather a general purpose FE-code. ABAQUS is chosen because it offers extensive

multi-body capabilities as well as excellent contact algorithms. The latter are necessary to

describe the relative motion of the core bit inside the force-locked chuck when the clamping

force is intentionally exceeded during run-up to provoke mode-locking as described above.

Chapter 6 explains how experimental modal analysis (EMA) is used to validate and update

the model representation of single components. EMA at non-rotating condition is also used

to validate the model of the rotor system as a whole and to identify certain parameters such

as damping introduced by the bearings or by the human operator.

Eventually, Chapter 7 compares the simulation results of the run-up to measurement data.

First, the global dynamic system behavior of the diamond coring system is introduced by

using experimental data. This data provides the basis for identifying certain parameters

that could not be acquired by measurements at non-rotating condition, as described in

Chapter 6. The actual evaluation of the quality of the model is then performed regarding

two cases: Initially for normal operation in which the clamping force of the force-locked

chuck is sufficient to hold the core bit in place during run-up. The subsequent section deals

with the case in which the clamping force is intentionally exceeded by reducing the pre-load,

while at the same time artificially increasing the imbalance of the core bit or increasing the

amount of the additional tumbling movement. When the clamping force is exceeded during

run-up, the core bit performs a relative movement inside the chuck that is a combination

of sliding and rolling, permanently changing the contact situation in the interface. The
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experimentally observed mode-locking effect can only be represented by the model by taking

into account the exact geometry of the interface between the chuck and the connecting end

of the core bit, thereby requiring the use of 3D solid modeling.

1.4 Normalization of Data

The diamond coring system providing the basic hardware to act as an application example

within this thesis is a serial product from an industrial manufacturer. The kinematics that

superimpose a tumbling movement on the spinning motion of the core bit are unique on the

market and create unrivaled drilling performance. To protect the manufacturer’s expertise

in this field, all data presented in this thesis are normalized towards certain reference values.

The abbreviations used are shown in Table 1.1.

Table 1.1: Symbols of normalized quantities

symbol normalized quantity

[a] acceleration

[d] displacement

[f ] frequency

[F ] force

[r] rotational speed

[T ] torque
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The current chapter first outlines how rotordynamic effects are represented in the equations

of motion, and, in turn, how this affects the requirements with regard to computational

solution techniques. This is followed by an overview of the current state of knowledge

regarding the use of FEM for rotordynamics and the capabilities of common general purpose

FE-codes.

2.1 Equation of Motion

In rotordynamics, the equation of motion can be written in a stationary (inertial) coordinate

system that is not rotating, or in a rotating coordinate system that is fixed to the spinning

object. The choice between inertial and rotating frame depends on the properties of the

rotor and its foundation, as will be explained in what follows when discussing the system

matrices.

In the inertial frame, the equation of motion describing a discretized model of a rotor can

be expressed in the following general form (i.e. [35, 37, 76, 90]):

Mq̈ + [D + G(Ω)] q̇ + [K + N(Ω)] q = F (2.1)

where M is the mass matrix, D is the damping matrix, K stands for the stiffness matrix.

The influence of the gyroscopic forces are considered in matrix G; matrix N represents

the circulatory Matrix. Vector F describes the time-varying external forces, while vector q

contains the translational displacements and (depending on the type of model) rotations of

the generalized coordinates in reference to an inertial frame. With regard to Equation (2.1)

one speaks of a representation in configuration-space, wherein the generalized coordinates

define the configuration of a system, mathematically expressed by a system of n coupled

second-order differential equations. This is in contrast to a state-space representation, which

will be introduced in chapter 2.2.1, and wherein the configuration of a system is defined by

a set of input, output and state variables, forming a set of of 2n first-order differential

equations [91].

In the rotating frame, Equation (2.1) becomes:

M′q̈′ + [D′ + C(Ω)] q̇′ + [K′ + N′(Ω)] q′ = F′ (2.2)

9
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where C stands for the matrix containing the forces due to coriolis acceleration.

While the matrices M , D and K are fundamental to describe the dynamics of any oscillatory

system, the circulatory matrix N and especially the gyroscopic matrix G, or C respectively,

are a characteristic of a rotating system. In the further course of this chapter the system

matrices will be described in order to point out some peculiarities that arise from rotation.

Furthermore, the influence of certain physical parameters of the rotor system on the mis-

cellaneous system matrices will be discussed. This is done, on the one hand, to explain

the necessary capabilities that a general purpose FE-program must be able to provide in

order to solve rotordynamic problems. On the other hand, the goal lies in evaluating the

mathematical effort necessary when solving the equation of motion.

The discussion begins with the stiffness matrix K, which describes not only the stiffness of

the rotor itself, but also that of the rotor support, consisting of the stator and the bearings.

From a mathematical point of view, it is crucial to distinguish between the isotropic and

anisotropic stiffness behavior of these three components forming the rotor system. Under

the premise of isotropic material behavior, the stiffness characteristic of the rotor depends

on whether it is axially symmetrical or not. If it is not, the lateral stiffness of the rotor

in one plane will differ from the stiffness in other planes [33]. In that case, the use of an

inertial (non-rotating) frame will result in stiffness coefficients that vary sinusoidally due to

the rotation of the rotor, and therefore lead to a periodic coefficient differential equation [37].

This can be avoided if the equation of motion is written in a rotating coordinate system. In

the case of an isotropic rotor support, the use of a rotating frame on an asymmetric rotor

will lead to differential equations with coefficients that are constant in time. However, if

the rotor is asymmetric and the support is anisotropic, the differential equation will have

periodically varying coefficients in both the inertial and the rotating frame, which produces

a parametric excitation. In that case, Floquet theory or other approximate techniques can

be used to assess stability by looking at perturbations from the steady-state solution.

The presence of a circulatory matrix N is not restricted to rotating systems. However,

in the field of rotordynamics, the circulatory matrix is one possibility to take into account

the stiffness behavior of fluid-film bearings, if the rotor should be equipped with such kind

of bearings. Fluid-film bearings can be described as a spring-damper system, but due to the

pressure distribution within the lubrication gap of the bearing, the rotor displacement and

the returning force of the bearing do not appear in the same direction [76]. This may lead to

instabilities at higher rotational speed, and more generally speaking, to different resonance

behavior when compared to a rotor with rigid bearings.
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2.1 Equation of Motion

From a mathematical point of view, the circulatory matrix N contains non-conservative

forces that depend on the position and the rotational speed of the rotor, rendering the

matrix skew-symmetric:

N = N(Ω) with nij = −nji , nii = 0 (2.3)

Since the examples that will be presented within the current thesis do not contain fluid-film

bearings, the circulatory matrix will not be discussed in more detail. Further reading can

be found, amongst others, in [35].

The damping matrix D plays an important role for the stability of a system. Usually, the

presence of damping in an oscillatory system is quite desired, as it reduces the amplitude in

the case of resonance. On the other hand, if the goal is to isolate the vibrations of parts of

the system, damping can be counterproductive. In rotordynamics, damping plays a likewise

ambivalent role. Many rotor systems are operated supercritically, meaning at a rotational

speed that lies above the (first) critical speed. Consequently, a resonance needs to be crossed

during run-up. When crossing the critical speed, damping is highly appreciated, while in

the supercritical area it can turn the system unstable. In this respect, it is important

to distinguish between external and internal mechanical damping - which, in the case of

rotation, is the equivalent of differentiating between non-rotating and rotating damping.

External damping “is related to energy dissipation due to material crystalline and/or surface

friction or micro-stick-slip friction occurring in stationary elements (like in rotor supports)

and/or between stationary and rotating elements” [96]. Internal damping refers to the

rotating parts and is caused by material damping as well as structural damping in the case

of a conglomerated rotor, resulting from friction between the interfaces of the various rotor

parts. The impact of internal and external damping on the rotor is very different and will

be explained with the help of Figure 2.1, visualizing the effects of the different damping

mechanisms. If the rotor is standing still, both damping mechanisms work in the opposite

direction of the movement. If, however, the rotor is spinning, external damping causes forces

that are dependent on the absolute velocity of the rotor, while in the case of internal damping,

the forces are dependent on the relative velocity in a co-rotating coordinate system [26, 35].

In the case of imbalance excitation, the rotor bends in the direction of the imbalance and

spins around in the deformed configuration [27]. Since there is no relative movement of the

rotor (except for the spinning motion), internal damping does not contribute at all to the

restoring forces, while external damping fully adds to the restoring forces.

With regard to stability, external damping usually has a stabilizing effect in the whole
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(a) non-rotating damping (b) rotating damping

Figure 2.1: Models to explain the effect of rotating and non-rotating damping
(from [35] with permission of Springer Nature)

working range of a machine [37], whereas internal damping must be considered carefully. At

critical speeds, internal damping contributes to the overall damping and has a stabilizing

effect. Above critical speed, on the one hand, internal damping can cause instability by

transferring energy from the rotation into the lateral oscillation of the rotor. This is a very

critical process, as the kinetic energy stored in the rotation is usually vastly larger than the

elastic energy the rotor can endure before failing. A detailed review on rotor instability due

to internal damping can be found in [64]. On the other hand, apart from destabilizing the

rotor system, the work of [52] indicates that damping can stabilize a former unstable system

in which the instability arises from nonconservative terms of a circulatory matrix - depending

on the structure of the damping matrix that arises from internal and external damping.

Regarding the structure of the damping matrix, with the presence of discrete damping ele-

ments, for example, such as the bearings, matrix D is typically not symmetric. Of course, it

is possible to assume mass or stiffness-proportional damping to enforce a symmetrical shape

of the matrix to allow for easier solving of the equation of motion by modal computations in

the configuration space. Apart from being unphysical in probably most cases, the assump-

tion of proportional damping also takes away the important distinction between internal and

external damping. An unsymmetrical damping matrix, however, requires the transformation

of the equation of motion from configuration space into state space, as will be explained in

Chapter 2.2.1. Since the gyroscopic matrix is generally unsymmetrical, this is unavoidable

anyhow, as will be shown in what follows.

The gyroscopic matrix G describes forces that arise when the rotor performs rotational

movement normal to its axis of rotation. Apart from movement of the rotor support, normal

rotation to the spinning axis can also occur when the rotor is experiencing lateral bending
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2.1 Equation of Motion

due to external forces or due to imbalance excitation. The presence of the gyroscopic forces

can be explained by using the principle of conservation of angular momentum:

T =
dL

dt
= I · Ω̇ + Ω × (I · Ω) (2.4)

where L is the angular momentum, I is the inertia tensor, Ω is the vector of the angular

velocity and T stands for the external moments acting on the rotating body. Equation (2.4) is

formulated in the inertial frame and, without limiting the generality, it is rather complicated

because of the fully populated inertia tensor. Due to the nonlinearity of Equation (2.4),

it cannot directly be used to calculate the coefficients gij for Equation (2.1), even when

considering such a simple system as a single, rotating rigid body. However, things become

significantly simpler, if the same assumptions can be applied to the rotor system that are

used to derive Euler’s equation of motion:

T c1 = Ic1Ω̇1 − Ω2Ω3(Ic2 − Ic3)

T c2 = Ic2Ω̇2 − Ω3Ω1(Ic3 − Ic1)

T c3 = Ic3Ω̇3 − Ω1Ω2(Ic1 − Ic2)

(2.5)

Euler transforms Equation (2.4) to a coordinate system (~e1, ~e2, ~e3) that is fixed to the rotating

body and in which the coordinate axes fall on the body’s central principal axes of inertia

(superscript c stands for the reference to the center of gravity). By doing so, the products of

inertia in the inertia tensor Ic vanish and allow one to represent Equation (2.4) in the much

reduced form of Equation (2.5). Yet, for modeling a rotor system and being able to use

Equation (2.1), this means that the rotor must have a well-defined axis of rotation, which

in addition must coincide with one of the baricentrical principal axes of inertia [37]. This

condition is only fulfilled if the rotor is perfectly balanced, which, in practice, is never the

case. Yet, if the amount of imbalance is small, it can be treated as a disturbance that acts

on the rotor as an external force F , as will be shown later. But even if the rotor’s spinning

axis matches a principal axis of inertia, writing the equation of motion in a stationary

reference frame will result in similar problems discussed with regard to anisotropic stiffness

behavior: If the rotor is not axially symmetrical, the use of a stationary reference frame

will lead to periodically varying coefficients gij in the gyroscopic matrix. Furthermore, since

Equation (2.5) is still nonlinear in the rotational speed ~Ω, its use for Equation (2.1) requires

linearization and therefore the assumption of small displacements and rotations, except

for the rotation about the spinning axis. If all three conditions of small imbalance, axial
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symmetry and small rotations are met, the gyroscopic matrix will have constant coefficients.

Matrix G is skew-symmetric and dependent on the rotational speed:

G = G(Ω) with gij = −gji , gii = 0 (2.6)

At first glance, matrix G resembles the damping matrix D, since the gyroscopic forces Gq̇ are

speed proportional, like in the case of viscous damping. Some authors even call the gyroscopic

matrix G a pseudo-damping matrix [19, 46]. One must be aware, however, that, in contrast

to the damping forces, the gyroscopic forces do not contribute to the balance of energy of the

system. The gyroscopic forces do not perform mechanical work and are therefore no damping

terms [90]. A gyroscopic system can still be conservative in the absence of damping forces

and without non-conservative terms in the circulatory matrix [154].

Vector F contains all force functions that act on the rotor. The excitation by the imbalance

of the rotor is of special interest. As mentioned above, the existence of an imbalance means

that the rotor is in fact not rotating around a baricentrical principal axis of inertia. In that

case, the requirements that allow for the principal axes transformation, which have been

discussed in regard to the gyroscopic matrix, are not fulfilled and the fully populated inertia

tensor has to be used to calculate the gyroscopic forces of the rotor. Keeping the inertial

frame leads to position-dependent system matrices and, in combination with a constant

spinning speed Ω of the rotor, to time-dependent system matrices. However, if the imbalance

is small, it can be treated as an external force U that acts on the rotor in the form:

U = meεΩ
2
0



cos(Ω0t)

sin(Ω0t)

0


 (2.7)

where me stands for the mass of the rotor, which is considered to be a point mass, and e de-

scribes the lateral distance between imbalance mass m and the axis of rotation. A stationary

coordinate system has been assumed in which the first two axes are orientated perpendicular

to the axis of rotation, while the third axis falls together with the spin axis of the rotor. The

cosine and sine terms cause the imbalance force to rotate at spin speed Ω0 in the stationary

frame.

The approach of treating the imbalance as an external force can represent a strong simplifica-

tion. In the real world, any rotor is nonlinear to a greater or lesser extent. When considering

bending resonances, the imbalance force will cause the rotor’s center of gravity to displace
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even further from the axis of rotation, thereby increasing the imbalance. This geometrical

nonlinearity is not accounted for in the approach described above, as the imbalance force is

considered to be a function of time

U = U(t) , but not of displacement U = U(t, q) . (2.8)

Depending on the rotor system to be analyzed, the assumption of a small imbalance may

or may not be be appropriate. In many cases, the rotor is well balanced or the lateral

displacement is limited by the housing or adjacent parts. In other cases, like in the rotor

system presented in Chapter 3, it is essential to incorporate the geometrical nonlinearity

caused by lateral displacement due to the imbalance force.

2.2 Computational Solution Techniques

A non-problem-specific summary of solution techniques for Equations (2.1) and (2.2) can

be found in [144]. Generally speaking, it is important to distinguish between solving the

analysis in the time domain by direct integration of the equilibrium equations or by solving

the problem in the frequency domain, for example, by using modal computations [37]. In

what follows, the two different approaches will be outlined briefly with regard to peculiarities

that arise from rotation.

2.2.1 Solution in the Frequency Domain

A frequency solution is only possible when the system matrices are time-independent. Sum-

marizing the previous section, this is only true if the following assumptions are met:

• the rotor has a well defined axis of rotation,

• the rotor is rotating at a constant spin speed Ω0 (steady-state),

• all rotations and displacements are small except for the rotation about the axis of

rotation,

• the imbalance of the rotor is small,

• either the rotor or the supports show isotropic stiffness behavior,

• in an inertial reference frame, the rotor needs to be axial symmetric.

In other words, a solution in the frequency domain is only possible with linear systems (or

at least linearized systems) operating in a steady state.

15



2 Selected Theoretical Foundations of Rotordynamics

Most frequency domain approaches use the eigenvalues and mode shapes to calculate the

free and the forced vibrations of a rotor system. The eigenvalues (λ) and mode shapes (ϕR)

are obtained by solving the characteristic polynomial of Equations (2.1) and (2.2), which is

in the inertial frame:

[
λ2M + λ (D + G(Ω)) + (K + N(Ω))

]
ϕR = 0 (2.9)

Equation 2.9 describes a quadratic eigenvalue problem that is difficult to solve directly. One

solution is to transform the equation of motion from the configuration space into a state-

space representation, thereby converting the system of n coupled second-order differential

equations into a set of 2n first-order differential equations [91]:

Aż + Bz = R (2.10)

with

z =

[
q

q̇

]
, R =

[
F

0

]
(2.11)

and

A =

[
D + G(Ω) M

M 0

]
, B =

[
K + N(Ω) 0

0 −M

]
(2.12)

The characteristic polynomial to calculate the eigenvalues (λs) and mode shapes (ψR) be-

comes accordingly:

[λsA + B]ψR = 0 (2.13)

Due to the non-symmetrical system matrices, which are a special characteristic of rotordy-

namic analyses, the eigenvalues and mode shapes appear in conjugate complex pairs. Solv-

ing Equation (2.13) therefore requires a complex eigensolver, which is nowadays available in

many but not necessarily in all programs.

A common alternative to converting the problem description into a state-space representation

is to use the subspace-projection method in order to extract the complex eigenvalues and

complex mode shapes (see i.e. [1, 23, 105]). Here, in a first step, the symmetric eigenvalue

problem is solved by ignoring matrices D and G in Equations (2.1), respectively, matrix C in

Equation (2.2), as well as any unsymmetric contributions to the stiffness matrix K. In doing

so, the eigenvalues λr of the reduced system become purely imaginary numbers λr = iω, in
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which ω stands for the undamped natural frequencies, and the eigenvalue problem is now:

(
−ω2M + K

)
ϕr = 0 (2.14)

In the next step, the following transformation prescription is used to project the original

matrices on the subspace spanned by the real eigenvectors ϕr of the reduced system:

Mr = [ϕr,1,ϕr,2, ...,ϕr,n]T M [ϕr,1,ϕr,2, ...,ϕr,n]

Dr = [ϕr,1,ϕr,2, ...,ϕr,n]T D [ϕr,1,ϕr,2, ...,ϕr,n]

Kr = [ϕr,1,ϕr,2, ...,ϕr,n]T K [ϕr,1,ϕr,2, ...,ϕr,n]

Gr(Ω) = [ϕr,1,ϕr,2, ...,ϕr,n]T G(Ω) [ϕr,1,ϕr,2, ...,ϕr,n]

Nr(Ω) = [ϕr,1,ϕr,2, ...,ϕr,n]T N(Ω) [ϕr,1,ϕr,2, ...,ϕr,n]

(2.15)

Now, the projected eigenvalue problem can be expressed in the following form:

[
λ2
rMr + λr (Dr + Gr(Ω)) + (Kr + Nr(Ω))

]
φRr = 0 (2.16)

Since rotordynamics is typically interested in the lower vibration modes, high-frequency

modes can be ignored, thereby reducing the problem size. “Typically, the number of eigen-

vectors is relatively small; a few hundred is common” [23]. This reduction method is called

Rayleigh-Ritz condensation by some authors [19]. Equation (2.16) can be solved by using

the QZ algorithm, which is a solution method for a generalized unsymmetrical eigenvalue

problem [93]. The such obtained complex eigenvalues λr of the projected system are an ap-

proximation of the eigenvalues λ of the original system in Equation (2.9). The eigenvectors

of the original system are approximated likewise by:

ϕRk = [ϕr,1,ϕr,2, ...,ϕr,n]φRr,k (2.17)

where ϕRk is the approximation of the k-th eigenvector of the original system.

2.2.2 Solution through Direct Time Integration

The previous chapter summed up the requirements that need to be fulfilled, or rather the

simplifications that need to be acceptable, when performing the rotordynamic analysis in

the frequency domain. In the case of a nonlinear system or in a transient analysis, the

solution must be obtained through direct time integration. Since the equation of motion of
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a rotating system contains matrices that depend on the spin-speed, and, in general, contains

additional matrices compared to a structure at rest, this is computationally very costly, but

is sometimes unavoidable.

The most commonly used numerical integration algorithms for rotordynamics are the New-

mark family methods and the Wilson-θ method [14]. The former is widely used for implicit

integration in terms of the average acceleration method, as well as for explicit integration in

terms of the central difference method.

2.3 The Finite Element Method in Rotordynamics

The current FE approaches used for rotordynamic problems can be classified into three

different categories:

• 1D beam-element models,

• 2D axisymmetric elements,

• 3D solid modeling.

In what follows, the development history of the different approaches will be briefly outlined,

together with their capabilities and limitations.

2.3.1 1D Beam-Element Models

1D beam-element models intellectually divide a rotor system into a shaft, which is repre-

sented by finite beam-elements, and into rigid “disks”, which are represented as point masses

with lateral and rotational inertia to account for gyroscopic moments. Spring elements can

be added to account for bearing compliance. The accuracy of these types of models strongly

depends, on the one hand, on the suitability of the finite beam-elements used. The works

of Jones [63], Rao [113] and Nandi [98, 99] contain detailed information about the develop-

ment history as well as a critical assessment of the capabilities of finite beam-elements for

rotordynamic problems. Therefore, only pioneering discoveries will be repeated here.

It was not until 1972 that the finite element method was established for rotordynamic anal-

ysis by Ruhl and Booker [118], providing an FE-model of a turbo-rotor system based on

Euler-Bernoulli beam theory, representing the blade ring as a rigid disk. This first approach

neglected the effects of rotary inertia, gyroscopic moments and axial loads, which was up-

graded in 1976 by Nelson and McVaugh [102] using cubic shape functions to develop the
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2.3 The Finite Element Method in Rotordynamics

gyroscopic element matrices. The authors first used Rayleigh beam theory, thereby neglect-

ing the influence of shear deformation. Later, Nelson [101] developed, amongst others, a

finite beam-element using Timoshenko beam theory and, in doing so, also accounting for

shear deformation.

In 1985, Genta [36] demonstrated that taking into account shear deformation has a strong

influence on the calculation of critical speeds of a rotor: While rotary inertia increases critical

speeds, the effect of shear deformation is in the opposite direction, thereby exceeding the

effect of rotary inertia in magnitude. As a consequence, models that account for rotary

inertia but ignore shear deformation are less accurate than models ignoring both effects.

Until today, a large number of finite beam-elements has been proposed, taking into account,

on the one hand, typical rotor geometries such as hollow or conical cross-sections, and, on

the other hand, accounting for various effects such as internal viscous or hysteretic damping,

axial or torsional loads and the important influence of shear deformation (i.e. [39, 48, 116]

in addition to the afore mentioned sources).

When creating a shaft-line model, the procedure provides a representation of the different

sections of a shaft with finite beam-elements that correctly describe length and diameter or

cross-section, respectively, of the specific sections. Most real-world rotors, however, contain

abrupt changes in diameter, i.e. at the position of bearing seats, or contain changes in the

form of their cross-section, for instance, at key flats to enable torque transfer to mounting

parts. At these positions, all beam-models derived from classical beam theory are inaccurate,

as they assume plain cross-sections to remain plain during bending deformation [119, 128,

142]. This assumption is valid for a uniform shaft, but is violated at stepped diameter changes

or at changes in cross-section where distortions occur and bending stress is no longer linear

to the radius. These distortions in bending stress lead to a decrease in lateral stiffness, and

since beam-models do not account for this effect, their model representation of the rotor

tends to be too stiff. In 1989, Stephenson, Rouch and Arora demonstrate on a laboratory

rotor with three disks taken over from [141] that the error in calculating natural frequencies

using classical beam-elements can easily reach more than ten percent within the first five

modes [128]. A possible solution was suggested in 1990 by Vest and Darlow [142], who

proposed a method to use the governing equations of a conical beam-element and locally

alter the Young’s modulus to improve the effective beam stiffness. A detailed 3D solid

FE-model is used to update the modulus-corrected beam-model.

With regard to the capabilities of beam-element models, it can be noticed that the approach

offers a structured model generation and intuitive representation of the geometry. The pro-
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cedure results in a model that can be solved with reasonable computational effort. However,

this comes at the price of a number of disadvantages, which can be divided into limitations

in mathematical model accuracy and in limitations in physical model representation. As al-

ready addressed in the introduction of the current thesis, apart from limitations in accuracy,

the most significant drawback of beam-element models from today’s point of view is the

fact that shaft-line models need to be generated by hand in a time consuming and tedious

process without the possibility to reuse CAD-data.

A tabular overview of limitations in the mathematical model accuracy resulting from the

choice of beam-elements to represent the shaft of a rotor is given by Nandi in [98] and is

repeated in Table A.1 of Appendix A. Mainly two things are still solved only unsatisfactorily:

Beam-elements with reasonable effort of implementation are, on the one hand, inaccurate

at positions with abrupt change in cross-section, and, on the other hand, require axial

symmetry. Theoretically, both problems can be solved by using modulus-corrected beam-

elements as described above. Practically, the effort to update single elements by yet another

detailed 3D FE-model of the rotor is unrealistically high, which is probably the reason why

the approach by Vest and Darlow [142] has not prevailed until today.

However, even when leaving aside the problems in mathematical model accuracy, beam-

element models are still a linearized, one-dimensional approach with significant limitations

in physical model representation. By representing disks as rigid, the approach uncouples the

behavior of the shaft from the dynamic behavior of the disk. Representing attachments to

the rotor, such as blade rings of turbo-systems, as rigid disks neglects:

• the stiffening effect of the disk on the shaft and vice versa,

• the effect of centrifugal stiffening of the disk,

• interaction between axial, lateral and torsional behavior of shaft and disk.

Especially in the field of turbo machinery, it is well known that the flexibility of a blade

ring (“disk”) can have a strong influence on the natural frequencies of lateral bending of the

whole system [12, 60]. For an accurate prediction of critical speeds in the early phase of

the design process, a coupled model is needed that cannot be delivered by 1D beam-element

models. With advances in computational power and progress in FEM, 2D axisymmetric

finite elements have been proposed as an alternative. This will be discussed briefly in the

next section, before changing to true 3D solid modeling.
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2.3 The Finite Element Method in Rotordynamics

2.3.2 2D Axisymmetric Elements

This approach exploits the fact that many rotors are axially symmetric, which allows for the

use of a Fourier series method as described, amongst others, in [20]. The first publication

on using axisymmetric finite elements for rotordynamic problems was probably presented in

1984 by Geradin and Kill [45]. The authors formulate the kinetic and strain energy in the

rotating as well as in the inertial frame and use Hamilton’s principal to derive the equations of

motion. With regard to finite element discretization, the authors use cylindrical coordinates

(r,θ,z) and Fourier expansion of the displacement field in the circumferential direction of the

following form:

qr =
∞∑

n=0

1∑

m=0

qn,mr cos
(
nθ +m

π

2

)

qθ =
∞∑

n=0

1∑

m=0

qn,mθ sin
(
nθ +m

π

2

)

qz =
∞∑

n=0

1∑

m=0

qn,mz cos
(
nθ +m

π

2

)

(2.18)

“With this approach, the model is only required to represent the r-z plane, and the cir-

cumferential variation is cared for in the element itself. The 2D form of the element can

be thought of as a complete ring in its mathematical representation. The three-dimensional

problem is converted into a two-dimensional problem, with all of the geometry effects in

the cross-section retained” [128]. This reduction of the mathematical problem dimension,

however, comes at the price of exchanging a single, three-dimensional problem for a series

of two-dimensional problems: Each term of Equation (2.18) is calculated in a separate anal-

ysis and the final solution is obtained by superimposing the successive harmonics. Still, the

exchange is usually worthwhile with regard to computational costs [20]. Since the use of 2D

axisymmetric finite elements leads to equations with a significantly larger number of DOFs

than classical beam-element models, Geradin and Kill introduce a system reduction in the

form of the classical component mode method. Therefore, the rotor model is split into a

number of substructures.

With regard to the importance of the subject, less work than could be expected was pub-

lished on using 2D axisymmetric finite elements for rotor dynamic problems [41]. It is also

noticeable that the focus lays more on techniques to reduce the number of system equa-

tions than to improve the functionality of FE approaches, which is understandable taking
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into account the limited computational resources of those times. In 1993, Stephenson and

Rouch [127, 128] adopted the approach of using Fourier expansion to generate axisymmetric

elements, but suggested the Guyan reduction technique as an alternative method to reduce

the system’s degrees of freedom. In 1996 and 1997, Genta and Tonali suggested a so-called

11
2
D-approach by combining finite beam-elemts to model the shaft with 2D axissymetric

elements to account for the flexibility of disks [42] and blade arrays [43]. The authors use

complex coordinates to reduce the number of DOFs [38].

Although 2D axisymmetric finite elements, in comparison to classical beam-element mod-

els, are capable of taking disk flexibility into account, their angular shape is still a strong

simplification that does not fulfill the modeling requirements of many real-world rotor sys-

tems. In the field of turbo machines, researchers tend towards 3D solid modeling and try

to make use of the cyclic symmetry of blade rings in order to obtain models of smaller

size [12, 13, 60, 138, 139]. “However, the axisymmetric and cyclic assumptions usually fail

to model the response of bladed rotor systems with unsymmetric loading scenarios due to

system imbalance, fluid-structural interactions, and blade-out scenarios, and cannot repre-

sent structures that do not have that specific geometry to exploit” [145]. Complex geometries

or non-axisymmetric rotors require the use of true 3D solid modeling [41].

2.3.3 3D Solid Modeling

Although 3D solid modeling became generally available in the 1980s with the emergence of

(commercial) general purpose FE-codes [126], the computers of those times lacked the power

to solve rotordynamic models through direct time integration, thereby automatically taking

into account rotordynamic effects, such as gyroscopic coupling, stress stiffening or even non-

axial symmetry of the rotating parts. Therefore, research was directed on solutions in the

frequency domain and on model reduction, or more generally speaking, on solutions with

lower computational costs. A recent overview on model reduction methods in rotordynamics

is presented by Wagner et al. in [145].

One of the first works on 3D solid finite elements for rotordynamics was presented in 2001 by

Nandi and Neogy [99]. The authors develop the necessary kinematic equations to describe

the virtual work due to elastic deformation and due to inertia forces. The formulation of

the gyroscopic effects requires the shaft cross-section to have two axes of symmetry. The

effect of a deformed cross-section due to bending, which causes the centrifugal forces to

create a torque further affecting the bending, is taken into account. From the principal of

virtual work, the authors develop finite element equations for 3D solid 20-node elements
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in the rotating frame but not in the inertial frame, which is significantly more difficult to

implement. In 2003, Nandi upgrades the afore mentioned approach by including the effect

of centrifugal stiffening, which causes natural frequencies to increase due to in-plane stress

caused by the centrifugal forces [98]. Instead of modifying the governing equations (writing

the centrifugal force on the right side of the equation of motion), Nandi suggests solving the

equations of motion in the deformed configuration.

Other early works on using 3D solid modeling in rotordynamics were published by Rao et al.,

reporting a strong centrifugal softening or spin softening effect [113–115]. The spin-softening

effect is typically overcompensated by the centrifugal stiffening effect so that the natural

frequencies increase likewise with increasing rotational speed [41]. In disk-like axisymmetric

rotors, the spin softening effect is mathematically stronger than the centrifugal stiffening

only at non-physically high rotational speeds.

The use of 3D solid modeling is capable of including geometric nonlinearities, centrifugal

stiffening and spin softening. Therefore, Equation (2.1) is extended to the following form

(see i.e. [41]) in the inertial frame:

Mq̈ + [D + ΩG] q̇ +
[
K + Ω2KΩ + Ω2KS + ΩN

]
q = F + Ω2FΩ (2.19)

where KΩ is the geometric stiffness matrix accounting for the effect of stress stiffening due

to the centrifugal forces, KS (negatively defined) contains the aforementioned spin-softening

effect due to centrifugal forces, and FΩ describes the vector of the centrifugal loads.

In the rotating frame, Equation (2.2) is extended likewise (see i.e. [19]):

M′q̈′ + [D′ + ΩC] q̇′ +
[
K′ + Ω2K′Ω + Ω2K′S + ΩN′

]
q′ = F′ + Ω2F′Ω (2.20)

where K′S is the centrifugal (negative) stiffness.

The corresponding element matrices are calculated using energy methods. A comprehen-

sive overview of different rotor configurations (i.e. unsymmetric, axial symmetric, cyclic

symmetry) is presented in [71].

Given the importance of 3D solid modeling for accurate rotordynamics, the number of pub-

lications following the pioneering works described above is surprisingly small. Considerable

progress, however, can be observed in the rotordynamic capabilities of general purpose FE-

codes, which will be described in the subsequent chapter.
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2.4 Using General-Purpose FE-Programs for Rotordynamic Problems

With regard to 3D solid modeling, general-purpose FE-programs nowadays offer mainly three

different approaches with regard to solving rotordynamic problems:

• solution in the frequency domain in the rotating frame,

• solution in the frequency domain in the inertial frame,

• solution in the time domain by direct integration in an arbitrary coordinate system.

The different approaches will be outlined in what follows.

2.4.1 Solution in the Frequency Domain in the Rotating Frame

As mentioned above, implementing finite element equations of 3D continuum elements is

significantly more difficult in the inertial reference frame than in the rotating frame [99].

Therefore it is no wonder that rotordynamic capabilities of general purpose FE-programs

were first established in the rotating frame.

Calculating the eigenvalues and eigenvectors of Equation (2.20) typically consists of three

subsequent steps: First, the eigenvalues and eigenvectors of the undamped system are calcu-

lated when the system is at rest, causing all speed-dependent matrices to vanish and leaving

only the stiffness matrix K and the mass matrix M . In the second step, the centrifugal force

and the coriolis force are applied as volume forces in a nonlinear static analysis, thereby

deriving the other system matrices. To apply the volume forces, an axis of rotation and a

(constant) spin speed has to be defined. Step three is a complex eigenvalue extraction that

requires a corresponding complex eigensolver. ABAQUS, for instance, uses the subspace pro-

jection method described in Chapter 2.2.1 and the QZ-algorithm to solve Equation (2.16).

In a rotating coordinate system, the rotor does not necessarily need to be axial symmetric

or isotropic. If it is not, however, the user has to make sure that the non-rotating part of

the rotor system has isotropic stiffness behavior, as described in Chapter 2.1.
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2.4.2 Solution in the Frequency Domain in the Inertial Frame

Implementing the finite element formulations of a rotating system in the inertial frame is

significantly more difficult than in the rotating frame. Most general purpose FE-codes have

acquired this capability only very recently. For example,

• ANSYS started to offer rotordynamic capabilities for 3D solid finite elements (SOLID 185-

187) in the inertial frame with release 11.0 in the year 2007 [103],

• ABAQUS followed with release 6.12 in 2012 [22],

• MSC NASTRAN implemented full 3D solid modeling capabilities with release 2016 [94].

The modeling limitations are the same as described in Chapter 2.2.1, which consist in a

linearization of the problem around a constant spin-speed and the prerequisites of the rotor

being axial symetric and having a well defined axis of rotation.

2.4.3 Solution through Direct Time Integration

High-fidelity FE-models possess a large number of modes in the high-frequency range that

have no physical meaning. These high-frequency components can experience excitation either

by nonlinearities (i.e. rotor-stator contact, or chattering due to bearing-play) that transfer

energy from the low-frequency into the high-frequency range, thereby hindering conversion.

Another source of excitation in the high-frequency range results from the fact that acceler-

ation is derived by numerical differentiation, thereby often creating unacceptable numerical

noise [57]. Most general purpose FE-codes have implemented extensions of the standard

Newmark-β method that are capable of providing numerical damping that does not strongly

affect the physically meaningful “low” frequency range, but removes content from the phys-

ically unreasonable high-frequency range. These algorithms are namely the Hilber-Hughes-

Taylor method (HHT method) [55] and the so-called Generalized-α method [18].
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3 Outlined Rotor System

A special diamond coring system provides the fundamental hardware to test and validate

the modeling approach in this thesis. The system is rather complex, both in the sense of

mechanical design and in the sense of rotordynamics. The diamond coring system is a serial

product of an industrial manufacturer. Within the underlying research, it has been strongly

modified in order to create certain dynamic effects, which the simulation model should be

able to represent in an appropriate way. However, it must be clear, that the effects that will

be outlined in the further course of this thesis are the result of heavy modifications to the

serial product in order to provide the opportunity for academic research, and do in no way

occur in normal operation.

In the following, Chapter 3.1 provides a general description of the diamond coring system

as well as its purpose and main application. Chapter 3.2 focuses on the rotordynamic

perspective and goes into the relevant details of the mechanical design.

3.1 General Description

The diamond coring system Hilti DD-30-W provides the fundamental hardware that is used

for the experiments in the further course of this thesis. The DD-30-W is an electric power

tool, designed to drill through-holes or blind-holes for anchor setting into undergrounds like

steel-reinforced concrete, stone or marble. The actual drill bit is hollow and the cutting

edges are made out of industrial diamonds embedded in a supporting matrix. With regard

to anchor setting, the main advantage of diamond coring over conventional hammer drilling

is the ability to drill accurate anchor holes even into steel-reinforced concrete. This feature

is especially important when installing the facade of a building in which the anchors need to

be positioned exactly and must be fully loadable. Furthermore, diamond coring is impact

free, which plays an important role when drilling holes into stone or marble, or when drilling

holes close to an edge, like when installing a handrail on a balcony. Also, the emission of

structure-borne sound is reduced by several dimensions compared to hammer drilling, which

is important in the case of renovation work in hospital, commercial and residential buildings.

A picture of the system is presented in Figure 3.1. The tool allows for hand-held operation as

well as the use of a supporting stand. During drilling operation, water streams through the

inside of the tool and the hollow core bit for cooling and to flush away excavated material.

The water is collected when streaming back out to the surface and is either discharged or
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core bit

water 
collector
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(a) the tool

Presentation title | Month 00, 201X 1

diamond crown connecting end

(b) the diamond core bit (here diameter = 25 mm)

Figure 3.1: The diamond coring system acting as an application example
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recycled. The tool is designed to hold core bits with diameters between 8 mm and 35 mm.

When using core bits within this rather small diameter range for anchor setting (which

means drilling blind-holes), the drill core usually brakes off and then remains inside the core

bit. Due to the small diameter, the weight of the drill core is not sufficient to simply shake

it out of the core bit. To remove the core from the bit, the latter needs to be detached

from the drilling machine. Since professional users need to detach and reattach the core bit

up to several hundred times during a single working shift, the system is equipped with a

quick-release chuck, which allows for a fast and key-less exchange of core bits. The chuck is

force-locked and can be operated easily by hand with a lever fixed to the machine, providing

an ease of use that is unrivaled on the market.

What makes the Hilti DD-30-W so special in the sense of rotordynamics, and the reason

why it was chosen to function as a test example for the modeling approach in Chapter 5

is its top-spin technology : The core bit not only rotates around its axis of rotation, but in

addition performs a tumbling movement, as will be explained in detail in Chapter 3.2. The

top-spin technology is unique and creates an unrivaled drilling performance that is two to

three times higher than that of conventional coring systems. With regard to rotordynamics,

this overlying tumbling movement has the potential to create remarkable dynamic effects,

especially in combination with the previously described force-locked chuck, which holds the

core bit.

3.2 Rotordynamic Perspective

This chapter outlines the mechanical design of the diamond coring system by first explaining

the overall kinematics in a global manner. After that, some components are discussed in

more detail. The focus then lies on the force-locked chuck, which plays an important role

for the dynamic system behavior.

3.2.1 Global Description and Kinematics

To start with a global description, Figure 3.2 shows a sectional view of the underlying CAD-

model. Figure 3.3 includes a schematic diagram, which is more clearly arranged.

The core bit is connected to a rotating shaft by a force-locked chuck. These three components,

core bit, chuck and shaft form a subsystem, which will be referenced as the drive shaft, and

can be considered as a slender, overhung rotor. The shaft is supported by deep-groove
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chuck shaft tumble sleeve

shaft of electric engine

water swivel

Figure 3.2: Sectional CAD-view of the outlined rotor system

Figure 3.3: Schematic diagram of the outlined rotor system
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ball bearings inside a hollow sleeve, which also rotates. The bore of the sleeve in which the

shaft rotates is not coaxial to the sleeve’s axis of rotation, but has an offset and is twisted

by an angle ϕ. This causes the drive shaft not only to rotate around its own spinning-axis,

but, in addition, to perform a tumbling movement around the sleeve’s axis of rotation. The

sleeve is supported by deep-groove ball bearings in the housing of the machine. Both the

shaft and the sleeve are driven by the same electric motor via belt transmissions. The ratio

between the turning speed of the shaft (Ω1) and the sleeve (Ω2) is fixed, while the turning

speed of the shaft is faster:

Ω1

Ω2

= n, Ω1 > Ω2 (3.1)

The shaft, chuck and core bit are hollow, and water is flushed through the drive shaft to cool

the system and to wash away excavated material. Since the relative movement between the

shaft and the housing of the machine is not only a rotation but also a tumbling movement,

a sealing concept is required that allows for relative movement in all six DOFs between

the shaft and the housing. The problem is solved by using a mechanical seal, as shown

in Figure 3.4, which contains three sealing points. The sealing between the shaft and the

housing is provided by two sliding rings. The stationary ring on the housing side is axially

movable and preloaded by a spring, thereby accommodating any axial movement between

shaft and housing. The sealing between this ring and the housing is provided by a simple

o-ring gasket. The rotating sliding ring on the shaft side is resiliently mounted in a holder,

which in turn is press-fitted to the end of the shaft. The resilient mount of the rotating

sliding ring accommodates any perpendicular relative movement. Aside of being able to

compensate for relative movement between rotor and stator, a mechanical sealing offers the

advantage of low friction and thereby of low power losses.

3.2.2 Power Train

Next, the focus is directed on the power train, explaining the torque transfer from the rotor

of the electric engine to the different rotating parts. Figures 3.5 and 3.6 show the rotating

parts of the power train. In Figure 3.5 the single parts have different colors to be able to

separate them, while in Figure 3.6 the parts rotating at the same rotational speed are colored

in the same way.

The rotor of the electric engine drives the tumble sleeve via a toothed belt. The toothed

belt disk on the tumble sleeve side is firmly attached to it. There is no problem here, since
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Figure 3.4: Schematic diagram of the mechanical sealing

the outside of the sleeve is coaxial to its spinning axis and the tumble sleeve simply rotates.

In contrast, the torque transfer to the drive shaft is more complicated and involves more

parts than just another toothed belt disk. The major problem in the torque transfer arises

from the fact that the shaft not only spins around its own axis of rotation, but, in addition,

performs a tumbling movement around the axis of rotation of the tumble sleeve. Since the

rotor of the electric drive rotates parallel to the spinning axis of the tumble sleeve, the

tumbling movement of the shaft must somehow be compensated in the driving elements.

This is done by an elastic rubber joint. First, the electric rotor drives another toothed

belt disk, which is also fitted to the tumble sleeve but is not firmly mounted; rather it is

supported on roller bearings. These bearings experience the difference in rotational speed

between the tumble sleeve and the shaft, but since the outside of the tumble sleeve is coaxial

to its spinning axis, which in turn is parallel to the spinning axis of the electric engine,

there is no other relative movement that needs to be compensated. For the further torque

transfer to the shaft, the rubber joint comes into play: It connects the toothed belt disk to a

slip-clutch that is mounted on the shaft. Thereby the rubber joint compensates the relative

movement between the shaft and the sleeve in the radial direction and in the rotational

DOFs perpendicular to the spinning axis of the tumble sleeve. The difference in rotational

speed is compensated by the roller bearings on which the toothed belt disk is mounted on

the tumble sleeve.

As previously explained, the rubber joint is not directly connected the shaft, but rather
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of chuck

slip clutch tumble sleeve shaft

driving belt shaft

driving belt
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Figure 3.5: Sectional CAD-view of the rotating parts

Figure 3.6: Sectional CAD-view of the rotating assembly groups (color according to rota-
tional speed)
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through a slip-clutch. This slip-clutch is an important safety feature, but in the context

of this thesis, its functionality is not activated so it does not have a large influence on the

dynamic system behavior, except for its mass and added stiffness to the shaft. For the sake

of completeness, its role in the torque transfer will be outlined briefly. The purpose of the

slip-clutch is to protect the operator in the case of a sudden deadlock of the core bit in the

drilling hole, by separating the electric engine from the drive shaft. The working principal

is that of a friction disk clutch, in which half of the disks have a form-locking connection to

the shaft and are frictionally engaged with the other half of the disks, which in turn have

a form-locking connection to the housing of the slip clutch. A pre-stressed spring ensures

that there is enough friction between the disks to transfer the torque of normal operation,

but allows slipping if the core bit should jam during drilling operation. The housing of the

clutch is mounted to the shaft on roller bearings. In normal operation, the slip-clutch is

rotating together with the shaft, and there is almost no relative movement, except for some

play in the bearings and in the form-locking connection between the disks and the shaft.

Yet, if the core bit jams and the clutch is slipping, the housing of the clutch will continue to

rotate with the translated speed of the electric engine, while the whole drive shaft will come

to a sudden halt. Without the slip-clutch the machine could be ripped out of the hands of

the operator, due to the high torque and rotational inertia of the drive.

3.2.3 Force-Locked Chuck

The force-locked chuck, which connects the core bit to the shaft, has a strong influence on

the dynamic system behavior and will be discussed in detail. Figure 3.7 presents a sectional

CAD-view of the chuck equipped with a 25 mm core bit.

The chuck consists of an inner and an outer part, which are pressed axially together by a

pre-loaded disk spring pack, thereby clamping the core bit at its connecting end in-between.

The inner piece of the chuck is formed like a stepped hollow cylinder and is connected to the

shaft with a thread. The mechanical connection of the core bit to the chuck is based on the

circular connecting end, which slides axially into the chuck, and three connecting pins on the

bit which have their corresponding sockets on the inner piece of the chuck. The outer piece

of the chuck has three corresponding clips, which grab the connecting pins and pull them

towards the sockets. To dismount the core bit, a lever mechanism presses the outer piece of

the chuck axially “forward” against the pre-loaded spring. Doing this creates enough axial

play at the connecting pins for the operator to lift the core bit out of the sockets, turn it by

60 degrees and then pull it out between the clips of the outer piece of the chuck.
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Figure 3.7: Sectional view of the two-piece chuck

Although not visible in Figure 3.7, the circular connecting end of the core bit is a little

smaller in the outer diameter than the corresponding bore of the inner part of the chuck.

With regard to rotordynamics, a transition fit between the connecting end of the core bit

and the chuck would be desirable, with as little clearance as possible. However, such a

solution would never be rugged enough for operation on a construction site: The slightest

dirt, corrosion, or a small dent on the connecting end would make it impossible to mount

the core bit by hand. Figure 3.8 shows some pictures that were taken on a job-site visit

where the coring system is used hand-held to drill holes in railway sleepers to fasten the

rails of a tram. When the tool is not used for drilling, the operators literally drop it in

the dirt. Customers expect the system to work under conditions like that, which requires a

robust design – meaning in the case of an interface between core bit and chuck – to provide

some radial clearance. Apart from the circular connecting end, the connection between the

core bit and the chuck is obtained by the three connecting pins and their counterparts, the

sockets on the inner part of the chuck. In normal operation, the pins only have contact

in the axial direction to the sockets, not in the tangential direction. The purpose of the

chamfers on the sockets is to help the user guiding the pins into the sockets, thereby aligning

the core bit in the right angular position for the clips of the outer part of the chuck to grab

the pins and pull them towards the sockets. The chamfers are not intended to function as

a positive connection towards the pins in order to transfer torque. The torque transfer is

ensured purely by friction. The sockets are a little wider in the tangential direction than the

corresponding pins, which leads to tangential play between chuck and core bit.

In the previously described design of the chuck, it is important to notice that, due to the

kind of tripod design, a lateral force on the core bit will result in an axial force on the
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3 Outlined Rotor System

Drilling anchor holes to fasten tram rails using a drill template

Dirts and dents at the interface between core bit and chuck

Figure 3.8: Harsh conditions on a jobsite (pictures show predecessor model DD-EC-1)

connecting pins. Without regarding forces that result from drilling operation, lateral forces

occur due to the natural imbalance of the core bit and from inertia forces that result from

the tumbling movement. The pre-loaded disk spring pack in the two-piece chuck supplies the

axial clamping forces that hold the core bit in place. Yet, if the clamping force is exceeded,

the radial and tangential play in the chuck allows the core bit to tilt and slip inside the chuck.

This means that the lateral stiffness of the drive shaft is strongly linked to the axial stiffness

of the chuck. Furthermore, since the clamping spring is highly pre-stressed, the axial stiffness

of the chuck will decrease significantly if the pre-load of the spring is exceeded; thus leading

to a decrease in the drive shaft’s lateral stiffness as well. In conjunction with rotation,

this regressing stiffness characteristic causes strong nonlinear system behavior, leading to

interesting dynamic effects like mode-locking, as will be shown in Chapter 7.4. It should be

mentioned though, that within the unmodified serial product, the pre-load of the clamping-

spring is sufficient to safely hold the core bit and cannot be exceeded. In the context of

the underlying research, the imbalance of the core bit as well as tumble angle ϕ have been
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3.2 Rotordynamic Perspective

significantly increased, while, at the same time, the pre-load of the clamping spring has been

considerably reduced in order to provoke the rotordynamic effects mentioned above.
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4 Experimental Setup

The following chapter describes the main experimental setup that is used to gain the nec-

essary information about the dynamic behavior of the rotor system in order to evaluate the

quality and the capabilities of the simulation approach outlined in Chapter 5.

At first, Chapter 4.1 focuses on the type of sensors and how they are applied. Two different

setups are developed: One allows hand-held operation, the other supports the machine on a

stand. The stand-based setup turned out to be necessary out of safety reasons when study-

ing effects that create large displacement amplitudes, or large reaction forces, respectively.

Subsequently, Chapter 4.2 describes the way operational measurements and experimental

modal analysis is conducted in the current case. Finally, Chapter 4.3 deals with selected

post-processing operations. On the one hand, these are necessary, since due to the sensor

concept for measuring the rotational speed, the rpm-signals need to be corrected in an offline

procedure. On the other hand, post-processing in the form of a vibrational order analysis is

a powerful tool to gain a deeper understanding of the dynamic behavior of the rotor system.

4.1 Measurement Setup

The objective of the experimental setup is to study the dynamic behavior of the rotor system

and to validate the simulation model outlined in Chapter 5. The focus of interest lies on the

movement of the core bit relative to the machine. To study this, two different experimental

setups have been used during the course of the underlying work. At first, an additional rig

has been attached to the machine, which is able to support displacement sensors to measure

the relative movement of the core bit during hand-held operation. Of special interest is the

case, when the clamping force in the chuck is exceeded by either increasing the imbalance of

the core bit or by increasing the tumble angle of the sleeve. If at the same time the clamping

force is reduced, the core bit will tilt inside of the chuck, resulting in large displacement

amplitudes. In fact, the amplitudes turned out to be so large, that a human operator can

no longer safely hold the tool. Therefore, another experimental setup has been developed

in which the machine is held by a stand. In the following, the two different setups will be

described.
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4 Experimental Setup

4.1.1 Hand-held with Additional Sensor Support Rig

Figure 4.1 shows the measurement setup with the additional rig to support the displacement

sensors for the core bit. The rig consists mainly of two tubes that are connected with a bridge

at their machine-sided end. To attach the rig to the machine, the telescopic bars supporting

the water collector, which can be seen in Figure 3.1, are removed. The former interface of

the telescopic bars allows for a very rigid connection with the machine. To further stiffen

the rig, the bridge is attached with additional bars to rigid screw connections at the housing.

The rig is designed in such a way, that its first local mode is located in a frequency range

that is well above the maximal rotational frequency of both the tumble sleeve and the drive

shaft. As will be shown later, the rig can be considered as almost rigid in respect to the

housing.

shaft: front shaft: rearsleeve: rearsleeve: front rpm
sleeve

core bit: front

rpm shaft

3D accelerometers

core bit: rear

sensor support rig

“tool 3”

Figure 4.1: Measurement setup with additional rig for hand-held operation

Four triangulation lasers measure the displacement of the core bit relative to the rig, or to

the housing, respectively. The lasers are mounted on two plates that are attached to the

tubes of the rig and that can be moved alongside the tubes. The two plates carry two lasers

each, one for the vertical x-direction and one for the horizontal y-direction. This allows one

to track at two axial positions the motion of the core bit in the two directions perpendicular

to its spinning axis. However, the use of a single-spot laser to track the motion of an object

with a curved surface creates a certain measurement error: A movement of the object that is

lateral to the measurement direction of the laser wrongfully creates a signal, indicating that

there is also a movement in the direction of the laser, as shown in Figure 4.2a. The dimension

of the error depends on the curvature of the object and the amount of lateral movement.

In the underlying work, a core bit of the largest possible diameter is used to minimize the
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4.1 Measurement Setup

error. Theoretically, a laser line fork light barrier would be a better sensor concept. The

working principle is shown in Figure 4.2b; examples for its use on rotor systems can be found

in [85, 130]. In the current case, the necessary sensor hardware is too bulky and too heavy

to mount it on the rig for hand-held operation. The selected triangulation lasers are more

than ten times lighter, which is the main reason they have been selected for the measurement

task. Another reason is budget limitations, as the triangulation lasers are significantly less

costly.

triangulation
laser
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(a) error when using a single-spot laser

Laser Line Fork Light Barrier

Laser Receiver Laser Emitter

m
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entdirection

(b) alternative sensor concept

Figure 4.2: Measuring the lateral movement of a curved object

For measuring the displacement of the shaft and the tumble sleeve, basically the same concept

as for the core bit is used, which means spanning a plane perpendicular to the axis of rotation

at two different axial positions with two sensors each. With the sole difference that here

inductive displacement sensors are applied instead of triangulation lasers. Since the shaft

rotates inside the hollow tumble sleeve, it is accessible only at its ends. Figure 4.3 shows the

position of the inductive sensors. The “front” side of the shaft is measured at the housing of

the slip clutch. The movement at the “rear” end is tracked at the swivel of the water intake.

Therefore parts of the swivel that rotate with the shaft are replaced with a steel cylinder to

provide a good signal. The tumble sleeve is accessible only within a short range of its total

length at positions that are close to the bearings. For both the shaft and the sleeve, the

machine design does not allow the sensor to be oriented parallel to the coordinate axes, as

in the case of the triangulation lasers. Instead, the inductive sensors are mounted under an

angle of 45 degrees with respect to the xz-plane.

In preparation of the measurement setup, a modal analysis revealed that, within the fre-

quency range of the rotational speed, the housing of the machine has no structural modes

and mainly performs a rigid body motion. Therefore it is possible to measure the movement

of the machine with acceptable precision by using accelerometers. Six triaxial accelerometers
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shaft: front sleeve: front shaft: rearsleeve: frontrpm
sleeve

Figure 4.3: Position of the inductive displacement sensors

cover the movement of the housing, while another two triaxial sensors monitor the move-

ment of the rig at the two mounting plates of the triangulation lasers. For modal testing at

non-rotating condition, additional accelerometers are used on the core bit and on the chuck.

The rotational speed of the shaft and the tumble sleeve is recorded by the use of optical

sensors in combination with striped tape, so-called “zebra tape”, which is wrapped around

the rotating bodies. The major advantage of this measurement method, compared to an

incremental encoder, is the ease of application on any part that is optically accessible. Also,

there is virtually no weight added to the rotating parts and no extra space is needed. On the

other hand, at the joint of the zebra tape there is always one stripe that is larger (or smaller)

than the other stripes, which are evenly distributed. In the underlying work, the larger stripe

is used to determine the rotor’s absolute angular position. However, the somewhat larger

stripe also represents a discontinuity, which creates an artificial fluctuation in the signal of

the rotational speed. Partly, this fluctuation can be averaged out with a post-processing

algorithm, but not completely. While the tumble sleeve is accessible by drilling a hole in the

housing, access to the shaft is more restricted. Therefore the rotational speed of the shaft is

taken at the outer piece of the chuck, which rotates at the same speed as the shaft.

On the hardware side, data acquisition is done with a frontend of type SCADAS Lab from

manufacturer LMS, using up to 60 measurement channels. The data is then post-processed

and analyzed with LMS Test.Lab and Matlab.
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4.2 Test Setup

4.1.2 Stand Based

Exceeding the clamping force of the chuck during rotation results in large reaction forces

that need to be compensated by the human operator. This might easily lead to dangerous

situations. Therefore, another test setup has been developed, in which the machine is held

by a stand and the displacement sensors for the core bit are placed on the ground. A

picture of the setup is shown in Figure 4.4. The stand holds the machine at the screw

connections for the side handle, which are available on both sides since the side handle can

be mounted either for left or right-handers. Rubber-bonded-to-metal components are used

for the connection. At the rear end, the machine is supported by a mount of elastic material,

which has been formed by the rear handle in a casting operation. The challenge is to support

the machine rigidly enough to ensure safe operation, while, at the same time, keeping the

rigid body resonances of the machine in the support low enough in frequency to allow a clear

separation between support and structural resonances. The displacement of the core bit is

again tracked by triangulation lasers – this time fixed to the stand, therefore measuring in

an absolute coordinate system. This is in contrast to the hand-held measurement setup in

Chapter 4.1.1, in which the lasers are attached to the machine via the additional rig, and

therefore reference a local, machine-based coordinate system.

Figure 4.4: Measurement setup in which the machine is supported by a stand

4.2 Test Setup

While in the previous section the experimental setup was described with respect to the

applied sensor systems, here the focus lies on how the actual measurements are performed

and how the data is post-processed to aggregate the obtained information.
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4.2.1 Operational Measurements

One of the main objectives of the underlying research is to study the dynamic system behavior

when crossing a bending resonance during run-up and run-down. The tests are performed

without a drilling operation, which means that the core bit can rotate freely without any

contact with the underground. As a matter of protection, a kind of bunker contains the core

bit when the tool is running. Although a person of average physical strength is able to safely

hold the tool including the extra weight of rig and sensors, additional elastic cords support

the weight of the system in order to relieve the operator during hand-held measurements.

Figure 4.5 shows the corresponding test setup. For stand-based measurements, the setup

corresponds to that in Figure 4.4.

Figure 4.5: Test setup for hand-held measurements

During tests, the rotational speed is indirectly controlled through the voltage supply of

the electric drive. To run up the tool, voltage is ramped-up in a linear manner. The

same applies accordingly for a run-down. However, even if there is no external load on the

core bit, the rotational speed cannot be perfectly controlled through the voltage supply.

When crossing the critical speed of the resonance, part of the energy that is fed to the

electric drive is transfered into the lateral bending motion, instead of further accelerating

the spinning motion. This phenomena is known as the Sommerfeld-Effect [28], named after

Arnold Sommerfeld (1868 - 1951), and will be discussed in Chapter 7.4.3.
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4.2.2 Experimental Modal Analysis (EMA)

Experimental modal analysis (EMA) is a powerful tool to study the dynamic behavior of

a vibrating system and to validate and update theoretical models. Nowadays, it can be

considered a standard approach in research and in the industry. The procedure is described

in many textbooks and will not be repeated here. The works of Ewins [31] and of Maia and

Silva [89] are well accepted and frequently cited. In the underlying research, EMA is used

to analyze single parts of the rotor system, certain assembly groups, as well as the complete

test setup as a whole. This chapter describes, how the FRFs have been measured and how

they have been analyzed. Chapter 6 discusses the results of the modal analysis.

EMA generally consists of two steps: First, FRFs need to be measured in decent quality

at sufficient positions of the structure to geometrically resolve the mode shapes within the

frequency range of interest. In a second step, the modal parameters are extracted by using

the appropriate identification methods. In the underlying thesis, the single components are

measured in free boundary conditions as described in Chapter 4.2.2. The so-called PolyMAX

algorithm is then used to estimate the modal parameters. PolyMAX is a polyreference

least-squares complex frequency-domain method that was introduced in [50] and can be

considered a benchmark in modal parameter estimation [108, 109]. One of the advantages

of the algorithm is the fact that it allows one to separate closely spaced modes. This fact

comes in handy with rotordynamic problems, in which, due to the more or less symmetric

geometry of typical rotors, double modes are the rule and not the exception.

Single components are measured with free boundary conditions, which is also the most

common approach [31, 110]. Figure 4.6 shows, as an example, the test setup for FRF mea-

surements on the shaft. The roving hammer technique is applied, using two accelerometers

(two references) to identify the double modes of an (almost) axial symmetric object.

Figure 4.6: Test setup for FRF measurements on the shaft in free boundary conditions

Impact testing is also applied to measure FRFs on the system as a whole. The focus of

interest lies on the first bending mode, which is a global mode, as will be shown later. The
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roving-hammer method is used to identify the bending mode, as well as to study the dynamic

behavior of the housing and the hand-grips of the machine in detail. In total, 156 points are

measured. The measurements are performed at a standstill with free boundaries conditions,

when the system is simply supported by the elastic cords mentioned before.

In addition, measurements are performed while a human operator holds the tool to catch

the influence of the user on the modal parameters. Therefore, an operator grips the tool at

first just at the rear handle, then just at the side handle, and, finally, applies a grip at both

handles. The measurements are repeated for different amounts of gripping force. To avoid

repeating the FRF measurements for all cases at all 156 points, the results of the detailed

EMA are first evaluated: The system shows no other modes in the frequency range of interest

other than the bending mode mentioned before. That means that the previously described

sensor setup for operational measurements allows one to identify the bending mode with a

single excitation point. Good excitation points turned out to be the front end of the core

bit and the top side of the rear handle.

4.3 Post-Processing of Operational Measurement Data

4.3.1 Deriving the RPM-Signal

Gaining an accurate signal of the rotational speed is essential and also provides the base for

any further analysis. In the current project, two optical incremental encoders are used to

record the rpm signal of the shaft and of the tumble sleeve. Tape with equidistantly-spaced

black and white stripes – so called zebra tape – is wrapped around the outer piece of the

chuck and around the tumble sleeve. During rotation, the tape acts as a coder: An optical

probe detects the passing of the black and white stripes, transferring it into a square wave

signal, thereby creating a pulse train, as in Figure 4.7. In a post-processing operation, the

pulse train is transferred into a rpm signal by simply dividing the rotational angle that

corresponds to one stripe by the time needed to pass the optical sensor. Since the encoder

creates several pulses per revolution, this method generates a signal of sufficient accuracy.

Zebra tape is straightforward to install, but has one major disadvantage that needs to be

taken care of. At the location where the two endings of the tape come together, it is inevitable

to create a stripe that is either slightly smaller or larger than the other stripes. When this

so called butt-joint passes the optical sensor, it will introduce a discontinuity in the pulse

train and thereby also in the rpm signal. This results in two errors. The obvious thing

that happens, is the fact that even at constant rotational speed, the butt-joint will have a
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Figure 4.7: [Meas]1Error in the rpm signal due to the butt-joint effect and its correction

different passing time than the other stripes, which is misinterpreted as a fluctuation in the

rpm signal. The second error results from the assumption that, in a tape with equidistantly

spaced stripes, the peripheral angle corresponding to a single stripe can be calculated by

simply dividing 360 degree (respectively 6.28 rad) by the total number of stripes. If one

stripe is larger than the others, this assumption is violated because that actually means that

all other stripes are in fact smaller than in the calculation just mentioned, leading to an error

in which the rpm is calculated as too high. If the butt-joint is smaller than the rest of the

stripes, it is the other way around, meaning that the rpm value is wrongfully calculated as

too slow. In the underlying thesis, the rpm signal is corrected in a post-processing operation

as described in [61]. The method allows one to eliminate both errors as can be seen in

Figure 4.7.

The butt-joint issue is, however, not only a nuisance. The discontinuity created by the

butt-joint provides information about the absolute position of the corresponding rotor. This

way, the optical encoder measures not only the rotational speed, but also allows one to

calculate the angular position by dead reckoning after the passing of the butt-joint. This

information is essential for determining the imbalance of the drive shaft, as will be described

in Chapter 7.2.1.

1In the further course of the thesis, captions of result plots will be marked by either [Meas] to indicate
measurement data, or by [Sim] to indicate simulation results.
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4.3.2 Order Analysis

When dealing with a vibrational problem, measurement data is usually analyzed in time and

in frequency domain. In rotordynamics, significant dynamic events might repeat with each

revolution and at a specific angle, like in the case of an imbalance excitation. Therefore,

the time signal, and more importantly, the frequency content of the signal, depends on

the rotational speed of the rotor, making it difficult to assign the dynamic response of the

structure to a certain excitation mechanism. A helpful instrument in this case can be a

so-called (vibrational) order analysis. In rotordynamics, orders are considered harmonics

of the rotational speed, so the terminus first order refers to a sinusoidal vibration with the

same frequency as the rotational frequency of the corresponding rotor. When analyzing the

vibrational response of a structure, an order analysis allows one to determine the amount of

vibration that is related to the different orders at varying rotational speeds, thereby creating

a better understanding of the structural response to the different excitation mechanisms.

A vibrational order analysis usually requires one to record the signal at constant increments

of shaft angles. Alternatively, software algorithms can be used to resample data that has

been recorded at uniform time intervals ∆t to data at constant angular increments [9, 11].

However, both methods require a high-resolution rotary encoder which is not available in

the current measurement setup. Therefore, a different approach is used: First, the data is

recorded at uniform time intervals. Then, in a post-processing operation, a tracking algo-

rithm determines the instants of time at which the rotor(s) run at a certain rotational speed.

Uniform rpm-increments (decrements during run-down) are used, i.e. every 10 rpm. After

that, a time interval around the relevant instant of time is cut out of the measurement data

and transformed into the frequency domain. Finally, the frequency content corresponding

to the order of interest is evaluated.

The applicability of the afore mentioned approach depends very much on the slope of the

rpm-curve and on the length of the time interval that is cut out at each rpm-increment to

be transformed in the frequency domain. If the slope is very steep and/or the time interval

is long, the time blocks will overlap each other and will thereby smooth out peaks in the

order-signal. The length of the time interval depends on the desired frequency resolution,

which in turn depends on the maximum order of interest. In the current case, the focus of

interest lies on the first orders of the three rotors, the drive shaft, the tumble sleeve and

the electric engine, as will be shown in Chapter 7.1. Therefore, the necessary length of the

time interval can be kept rather short, making the approach described above suitable for the

current problem.

48



5 Simulation Model

The current section outlines the simulation model of the diamond coring system. Starting

from a description of the general approach, further explanations consecutively go into mod-

eling details of the rolling element bearings, the force-locked chuck, power train, mechanical

sealing and conclude with the model representation of the human operator.

5.1 General Model Approach

Within this thesis, a diamond coring system acts as an application example to demonstrate

the capabilities and the need for 3D solid modeling in rotordynamics. In contrast to an

academic rotor test stand, the diamond coring system outlined in Chapter 3 is a real-world

machine with a rather complex mechanical design consisting of more than one-thousand

individual parts. This makes it hardly possible to model each single component and its

interaction with surrounding parts in detail. When it comes to generating a model to study

the dynamic behavior of such a complex system, certain assumptions and simplifications

need to be made. Therefore, it is essential to first define the purpose and system boundaries

of the model in order to determine the level of refinement necessary to achieve the objects.

Within this thesis, the focus of interest lies on a bending resonance of the rotor system

that occurs during operation. The purpose of the model is to correctly describe the global

dynamic behavior of the rotor system during run-up and run-down when the machine is

either hand-held or supported by a test stand. The research is limited to the case in which

the core bit has no contact with the underground. The system boundaries are drawn around

the actual power tool including the core bit, but excluding the supporting rig from Figure 3.1.

In the sense of modeling abstraction, the diamond coring system can be regarded as a

system of interconnected bodies, parts of which undergo rather large elastic deformations,

what makes it fall under the discipline of flexible multibody dynamics [44]. One thing that

makes this rotor system special is the fact that one of the two rotor sub-systems – the drive

shaft – consists of an assembly group comprising several parts. Within this assembly group,

the core bit is connected to the shaft via a force-locked chuck. If the clamping force of that

chuck is exceeded during operation, the core bit will perform movement relative to the chuck

and the shaft. The model is supposed to correctly describe the dynamic behavior even in the

latter case. Due to the complex geometry of the two-piece chuck as well as the connecting

end of the core bit, correct interaction between these parts can only be achieved by using 3D

solid modeling. This is one of the reasons, why a nonlinear finite element approach is chosen
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to model the rotor system. Other reasons to use 3D solid finite elements in rotordynamics

are named in Chapter 2.

One of the advantages of 3D solid finite elements is the possibility to directly use the CAD-

geometry of the parts, thereby reducing the modeling effort. Still, it is virtually impossible

to include every part of the diamond coring system in full detail. The effort for meshing

would be too high and the computational costs would render the simulation model unsolvable

within reasonable limits. Since the focus of interest lies on the bending resonance and with

the help of experimental results from Chapter 4.2.2, detailed modeling can be restricted to

those components that undergo elastic deformation in the first bending mode. The result

of the modeling process is shown schematically in Figure 5.1 and will be described in what

follows. First, a general overview of the model is given, followed by a look into certain

specifics, as described in the survey at the beginning of this chapter.

X

YZ

Figure 5.1: Sectional view of the FE-model

On a certain level of abstraction, the components of a rotor system can simply be divided

into rotor, stator, bearings and supports. As one can imagine and as will be shown in

Chapter 7.1, almost all rotating parts undergo elastic deformation in the bending resonance

and are therefore modeled in detail. The way to deal with the interaction between the core

bit and the force-locked chuck, as well as the connection between the shaft and the chuck,

will be described in Chapter 5.2.3. In the frequency range of interest, the stator – consisting

of the casing and generally of all parts that do not rotate – can be regarded as rigid. It

is therefore modeled as a point mass with moments of inertia. The sensor rig has been

50



5.2 Modeling Certain Components and Implementation in ABAQUS

deliberately designed to behave rigidly in the frequency range of interest and is therefore

also represented as a point mass with corresponding moments of inertia. The rolling element

bearings turn out to play an important role in the mechanical behavior of the whole system.

They are modeled as a spring-damper system with nonlinear stiffness characteristics, as will

be explained in detail in Chapter 5.2.2. The fact that the simulation model is supposed

to include the boundary conditions provided by a human operator holding the machine

in his hands has the potential to cause headaches. However, in this thesis, the operator

is represented as a simple spring-damper system with linear characteristics. Why this is

justified in the current case will be explained in Chapters 5.2.6 and 6.2.3.

5.2 Modeling Certain Components and Implementation in ABAQUS

Subsequent chapters use visualizations of the finalized FE-model to describe the modeling

of certain mechanical details, as of the force-locked chuck or the bearings. Prior to that, the

current section deals with the implementation of the model.

The simulation model is implemented in ABAQUS, which is a commercial general-purpose

FE-code. ABAQUS offers, amongst other things, superb 3D solid modeling capabilities and

all functionalities necessary to deal with nonlinear flexible multibody dynamics, such as, for

instance, formulations for joints and contacts.

5.2.1 General Overview

The single components of the rotating subsystems are modeled in full detail, with only

small simplifications regarding their geometry, such as ignoring small chamfers and alike.

Figure 5.2 shows some sketches of the rotating parts and how they are represented in the

FE-model. Regarding mesh and element type: The mesh is structured where reasonable, and

it is made mostly out of 20-node brick elements with quadratic shape functions (C3D20).

In order to keep a structured mesh, some 15-node quadratic triangular prisms (“wedges”,

C3D15) are necessary. The use of quadratic elements initially increases the number of nodes,

and seemingly with it, the computational effort. However, when compared to linear elements,

convergence is much improved, especially in regions with contact to neighboring parts, and

a lesser amount of total element numbers is needed. With quadratic elements, for instance,

a single layer of elements over the thickness of a hollow pipe-like object is sufficient to ade-

quately represent the lower structural modes. Therefore, the overall computational costs are

lower under the use of quadratic elements. Regarding mesh size, it becomes evident that the
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mesh in Figure 5.2 is too coarse to evaluate local stress or include plastic material behavior.

The primary objective is to accurately describe the global system behavior during run-up

and run-down of the rotor system. Therefore, a coarse mesh is used to save computation time

in the beginning. Once this is achieved, a finer mesh could be used to correctly compute the

local stress distribution, e.g. for lifetime analysis (which is beyond the scope of this thesis).

tumble sleeveshaftchuckcore bit

inner piece of chuckouter piece of chuck

Figure 5.2: Sketches of the rotating parts in the FE-model

The single components of the rotating parts are held together by:

• a clamping mechanism (connection between core bit and two-piece chuck),

• a thread (connection between inner piece of the chuck and shaft),

• and by deep-groove ball bearings (connection between shaft and sleeve as well as be-

tween sleeve and housing).

In addition, the drive train contains elastic elements, such as the rubber joint or the two

toothed belts. And after all, a human operator needs to be somehow taken into account. In

ABAQUS,

• contacts,

• ties,

• multi-point constraints

• and connectors

are used to represent these features, as will be described in detail in the subsequent chapters.
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5.2.2 Deep-Groove Ball Bearings

The following sections describe the model approach for the deep-groove ball bearings, the

way the load-displacement curves are calculated, and how the damping is estimated.

5.2.2.1 Model Approach

When it comes to modeling bearings in a rotordynamic analysis, one can observe different

levels of detail, which will be described in what follows.

In its simplest form, rolling element bearings are described as perfectly rigid boundary

conditions for the shaft. This approach is often used to explain the fundamentals of rotor

dynamics, for instance, with the help of a Jeffcott rotor model, which assumes the shaft to

be flexible and the bearing behavior to be perfectly rigid, as it can be found amongst others

in [76]. However, in the real world, all bearings are flexible to a greater or lesser extent,

and it is a matter of the stiffness relation between the rotating parts and the bearings,

whether the later need to be modeled as flexible or can be considered as rigid. If the

stiffness of the bearings is larger by at least one order of magnitude than the stiffness of

the shaft, the simplification of rigid bearings can be justified according to [35]. Although at

first glance, rigid bearing behavior seems to be easier to account for in the model, a large

difference in magnitude between the shaft and the bearing stiffness might result in numerical

difficulties [33], and therefore might slow down convergence in an FE-approach.

In many cases, the assumption of rigid behavior is inappropriate, and the bearings are usu-

ally described as spring-damper systems. A vast quantity of research has been conducted

on how to calculate or measure the dynamic parameters of rolling element bearings, as will

be outlined briefly in the next section. For now, a more basic issue of the modeling ap-

proach shall be addressed: In many works, rolling element bearings are regarded as purely

translational stiffness elements, having no angular stiffness, commonly called short bear-

ings [33]. The question is whether such a simple approach is sufficient in the current case.

The diamond coring system regarded here is equipped with deep-groove ball bearings. These

bearings come naturally with a certain amount of tilting play, which might justify treating

the tilting stiffness as zero. However, preliminary experiments have revealed that the system

– modified with additional imbalance and reduced clamping force in the chuck – undergoes

considerable displacement amplitudes within the bending resonance, most certainly exceed-

ing the tilting play in the bearings. Experiments had also revealed that the bearings play an

important role in the global dynamic behavior of the system. Using the same bearing type
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but from different manufacturers results in significant differences with regard to core bit tip

displacement during run-up and run-down. Therefore, the approach of using short bearings

is dropped. This requires one to evaluate the tilting stiffness of the bearings, which can

be quite challenging, as seen in the next chapter. First, the implementation of the bearing

model in ABAQUS is outlined.

When using beam-elements to represent shafts of a rotating system, implementing the bear-

ings is straight-forward: First, a node is placed at the position of the bearing seat along the

shaft. Then, this node is connected to the stator with a spring element. In the case of 3D

solid modeling, things are a little more complicated, since the bearing seat is not represented

by a single node or element. The solution involves using multi-point constraints (MPCs).

First, a so-called master node is created, which single-handedly represents a bearing seat

on the shaft. Subsequently, this node is linked to an equivalent node of the stator - or, in

the current case, to an equivalent node of the (hollow) tumble sleeve. In ABAQUS, the

surface, coupling and connector functionality is used to represent the bearings, as shown in

Figure 5.3. First, a surface is defined at the position of the bearing seats. In the center of the

bearing seat, a reference point is defined, acting as the master node mentioned above. Then,

the DOFs of the surface nodes are linked to the master node, using the coupling function,

which formulates the necessary kinematic constraints. In turn, the two reference nodes that

belong to a corresponding couple of an inner and outer bearing ring (or rather bearing ring

seat) are linked by a connector element, which represents the spring-damper system. In this

approach, the bearing itself does not appear as a solid body in the model. The mass and ro-

tary inertia can be distributed on the two master nodes forming a bearing. The two reference

points are positioned at exactly the same geometric position (in undeformed configuration);

it is just for better visualization that they have been separated in Figure 5.3.

rotor

stator

MPC

surface

reference
point connector

Figure 5.3: Schematic diagram of the bearing model

Going back once more to the coupling function, which creates kinematic constraints between
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nodes: Different ways of enforcing the corresponding constraints can be chosen. In ABAQUS,

the terminus “kinematic coupling” refers to rigid constraints between the master and the

coupling nodes, which would turn parts of the shaft and the stator into rigid bodies, therefore

increasing the stiffness significantly, depending on the axial length of the defined surface, or

the bearing seat, respectively. As an alternative, ABAQUS offers “distributed couplings” in

which the constraints are enforced in an average sense and weighting factors provide control

of the load transmission. In the current thesis, distributed couplings are chosen to model the

bearings. This still creates a stiffening effect, which, in the end, is well appreciated, since it

allows one to take the added stiffness resulting from the press fit of the bearing rings into

account.

5.2.2.2 Calculating the Load-Displacement Curves

The dynamic parameters of the spring-damper system representing the bearings can either

be identified by experiments or by using theoretical or numerical models. Here, the latter

approach is taken. A vast quantity of research has been conducted on how to calculate

the dynamic parameters of rolling element bearings. Literature by Harris [54], Jones [62],

Palmgren [107] and Eschmann [30] on theoretical models is considered to be well accepted

by a number of authors. The origins of these works range back to a time without computers

or with limited computational resources, resulting in models that can be solved analytically

or with manageable numerical or graphical effort. However, this comes at the price of

several simplifications in geometry and in assumptions of the contact situation between

rolling elements and bearing races. While the models are able to calculate the translational

stiffnesses, they lack the capability to accurately estimate the tilting stiffness and the cross-

coupling between the different DOFs of a bearing.

The focus of early models lay more on lifetime considerations and in providing boundary con-

ditions in rotordynamic analyses. Current research is often driven by the wish to monitor a

machine’s condition by analyzing, for instance, structural-born sound on the casing. For that

purpose, more refined bearing models are needed that are able to explain the transfer of vi-

bration from the rotating parts onto the housing. This resulted in the widely accepted model

by Lim and Singh [81–84], which was later improved by Liew and Lim [80]. The authors

realized that to correctly describe vibration transmission through rolling element bearings,

the model needs not only to include the tilting stiffness, but also the cross-coupling between

the different DOFs of a bearing. The result of their works is a model that provides a fully

populated [6x6] linearized stiffness matrix (while the line and the column of the DOF of
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the spinning axis are zero). An example of the successful application of the approach on a

real-world problem can be found in [53]. However, the approach by Liew, Lim and Singh

has two major disadvantages with regard to the current problem: First, it cannot take into

account some geometric data of the bearing rings, which are known to significantly influence

the bearing stiffness [51]. The preliminary experiments described above (using the same

bearing type but from different manufactures), had already shown that the diamond coring

system reacts very sensitively to the bearing geometry, obviously requiring one to take the

exact geometry into account. The second major setback is the fact that the model delivers

only a linearized stiffness matrix. With the system being so reactive to the bearing’s stiffness

characteristic, a nonlinear approach is desired. In the end, none of the abovementioned theo-

retical models is used. Instead, the load-displacement curves are derived by using substitute

3D solid models of the bearings and performing static load simulations. To determine the

exact geometry, the bearings are dissembled and the single parts are measured on a highly

precise tactile 3D coordinate measurement machine. This approach even allows one to con-

sider wear on the bearings, as the race curvature does not need to be of circular shape but

can in fact have any form.

Once the precise geometry of the bearings is known, the calculation of the load-displacement

curves can begin. The analysis consists of three steps:

1. Step one calculates the static stiffness of the machine casing which supports the tumble

sleeve.

2. Step two calculates the deformation of the bearing rings due to the press fit.

3. In the third step, a static load is applied and the relative displacement between inner

and outer bearing ring is evaluated. For the bearings supporting the tumble sleeve,

the outer bearing ring is supported by a spring that is given the stiffness evaluated in

step one.

Step one: Calculating the stiffness of the machine casing

The stiffness of the casing is evaluated using a substitute 3D solid FE-model in ABAQUS,

as shown in Figure 5.4. The simulation is limited to the part of the casing that actually

supports the tumble sleeve. In the model, this part of the casing is rigidly supported at the

connecting points to the rest of the machine, consisting mainly of 4 screw domes. The surface

of the bearing seats are then linked to a single master node using the coupling function,

as previously described in Chapter 5.2.2.1. The only difference is the way to enforce the
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distributed couplings that link the DOFs of surface nodes of the bearing ring seat to the

single master node. Here, kinematic constraints are used, assuming rigid behavior of the

outer bearing rings. The compliance of the bearing rings is taken into account in step two of

the simulation. Finally, a static force is applied to the master node and the displacement is

evaluated. This is done sequentially for all 5 DOFs and for both bearings. Since the geometry

is rather complex, tetrahedral elements of type C3D10 are used to mesh the casing.

fixed boundary conditions
at screw domes

reference node

fixed boundary conditions at stud mount

bearing seat
fixed bearing

bearing seat
floating bearing

MPC

F

Figure 5.4: FEM sub-model to calculate the stiffness of the machine casing

Step two: Calculating the deformation of the bearing rings due to the press fit

Internal bearing clearance has a crucial influence on the load-displacement curves. However,

what really matters is the operating clearance of the bearings and not the clearance in

undeformed configuration. The press fit of the bearing rings will cause the outer ring to

narrow down, while the inner ring will be widened by the shaft. With common fittings for

the bearing seats, the installation clearance is much lower than the internal bearing clearance

in undeformed configuration. This must be taken into account when calculating the load

displacement curves. In operation, internal bearing clearance can be further reduced if there

is a recognizable difference in temperature between the inner and the outer bearing ring.

Such a temperature difference might occur if the machine has not yet reached a steady state

operating temperature or when the cooling concept produces a nonuniform temperature

distribution. In the current case, the latter is not unlikely, since, for example, the shaft

is flushed by cooling water, while the rest of the machine is air cooled in an open circuit.

However, all experimental tests are performed without cooling water and with the machine

well warmed up. Therefore a potential temperature influence on the operating clearance of
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the bearings is ignored.

The deformation of the bearing rings due to the press fit can either be calculated by an

analytical approach or by another FEM substitute model. To save computational effort,

this time an analytical approach comes into play. Often, bearing seats consist of the same

material as the bearing ring itself, allowing one to use simple formulas or empirical values as

provided from certain bearing manufacturers. In the current case, things are a little more

complicated, since the casing is made out of a magnesium-aluminum alloy, which has different

material properties than the bearing rings. Harris offers an appropriate approximation by

using thick ring theory; the following formulas are taken from [54]. A declaration of the

variables succeeds the equations.

The contraction ∆h of the bore of the outer bearing ring due to a press fit can be approxi-

mated with

∆h =
2I Dh
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If the bearing outer ring is pressed into a housing of the same material (as is the case with

the bearings of the shaft, which are pressed into the tumble sleeve), Equation (5.1) simplifies

to

∆h = I
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The increase ∆s of the bearing inner ring mounted on a shaft can be approximated with

∆s =
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If the bearing inner ring and shaft are made out of the same material, Equation (5.3)

simplifies to

∆s = I

(
D1

Ds

)

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(
Ds
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− 1
(
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D2
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− 1


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In the equations above, the variables have the following meaning:
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∆h clearance reduction due to press-fitting of bearing in housing,

∆s clearance reduction due to press-fitting of bearing on shaft,

ξ Poisson’s ratio (subscripts: b for bearing ring, h for housing, s for shaft),

D1 outside diameter of outer ring,

D2 inside diameter of inner ring,

Dh basic housing bore,

Ds basic shaft diameter,

E modulus of elasticity (subscripts: b for bearing ring, h for housing, s for shaft),

I interference.

If a bearing has a radial clearance of Pd before mounting, the reduction of the clearance ∆Pd

due to the mounting is given by

∆Pd = −∆s − ∆h (5.5)

Step three: Calculating the load-displacement curves of the bearings

Based on the geometry information obtained by using a highly precise tactile 3D coordinate

measurement machine, an FE-model of the inner and outer bearing ring and of the steel

balls is set up. The cage and the sealings are ignored. Contact formulations are established

between the steel balls and the bearing rings. The mesh consists of 20-node brick elements

with quadratic shape functions (C3D20). Although the mesh is quite refined, it is still too

coarse to correctly calculate the local stress distribution needed for a lifetime calculation.

For computing the relative displacement between the inner and outer bearing ring, the

mesh is well suitable, however. Next, MPCs are applied to the nodes of the inner surface

of the inner bearing ring and to the nodes of the outer surface of the outer ring. These

surfaces are referenced on a single master node each, as described in Chapter 5.2.2.1 and

illustrated in Figure 5.3. The two master nodes can now be used to apply loads and boundary

conditions to calculate the desired nonlinear load-displacement curves. In the case of the

shaft bearings, the master node of the outer bearing ring is fixated, while the force, or the

torque, respectively, is applied to the master node of the inner ring. For the bearings of the

tumble sleeve, the master node for the outer bearing ring is attached to a linear spring with

the stiffness of the housing, which was calculated in step one of the analysis.

Figure 5.5 shows the FE sub-model in the form of a stress distribution due to a lateral force

and a moment. The plot in Figure 5.6 contains the load-displacement curves of different

59



5 Simulation Model

specimens of bearings of the tumble sleeve: Two of the curves are derived from the same

standardized type of bearing, but from two different manufactures. The difference between

these two curves is quite noteworthy. The global or local standards, such as i.e. DIN 625

for deep-groove ball bearings, more or less only specify the outer dimensions of a bearing.

Parameters like the exact curvature of the raceways or even the diameter of the steel balls

is left to the manufacturers. This can create quite some difference in the load-displacement

curves, as can be seen here. The third curve in Figure 5.6 belongs to a bearing with increased

clearance. Again, the difference is quite noticeable.

It has been known since the 1950s that the compliance of rolling element bearings will vary

during operation, depending on the number of rolling elements under load [131]. This means

that, due to the limited number of rolling elements, even bearings under constant load

will parametrically generate vibrations, no matter how perfectly they are manufactured.

This parametric excitation plays an important role in the field of acoustics and machine

diagnosis [132]. In the current case, however, the parametric excitation due to the bearings

lies in a frequency range that is more than a dimension higher than the frequency range

of interest. In addition, the difference in compliance resulting from different load angles is

small enough to be neglected for the current problem. Therefore, the dependency of the

load-displacement curves on the load angle is ignored, and the curves are calculated from

the load case, as indicated in Figure 5.5.

Attentive readers will notice that the load-displacement curves show no jump-behavior at

the zero crossing, as should be expected since the bearings contain internal clearance. In a

real-world bearing, the reaction force to a load might be very small, but will never be zero.

This is due to friction between the steel balls and the cage or due to friction at the sealings,

thereby smoothing out the jump at the zero crossing. At the same time, the discontinuity

at the zero crossing in form of a jump is numerically quite problematic and significantly

slows down the simulation. Therefore, in the current work, the inner and outer bearing

ring are connected with a very soft spring in order to prevent the jump behavior in the

load-displacement curves. For the physical behavior of the bearings, the additional stiffness

of the artificial spring is neglectable, and the load-stiffness curves still correctly describe

the nonlinear load-displacement curves. The only reason to introduce the additional spring-

stiffness is to prevent numerical difficulties in a model that is already challenging in the sense

of computational effort.
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FM

Figure 5.5: FEM sub-model to calculate the load-displacement curves of the bearings
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Figure 5.6: Nonlinear load-displacement curves of different bearings

5.2.2.3 Estimating the Damping

The damping of the bearings is an important parameter for the dynamic behavior of a rotor

system, as indicated in Chapter 2. In the case of rolling element bearings, damping usually

has a stabilizing effect [37], while in the case of lubricated journal bearings, damping can

have a destabilizing effect in the overcritical speed range known as “oil whirl and whip” [35].

The danger of this latter phenomenon is most likely the reason why the damping of journal

bearings is researched quite well and explains the existence of numerous works on theoretical

damping models. A review can be found in [24], which is about tilting pad bearing theories in

general, but also contains stability considerations of journal bearings with fixed geometry. In

comparison, hardly any theoretical models on the damping of rolling element bearings exist.

Most of the available research focuses on experimentally identifying the damping values. A

summary and review of relevant works is presented by Tiwari, Lees and Friswell in [137].
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Some authors, i.e. [37, 76], consider the damping of roller element bearings to be rather small

in general. However, experimental research on the topic by Walford and Stone showed a

much higher damping of the bearings than expected [146, 147]. The authors concluded, and

later confirmed in [148], that the damping occurring due to the interaction of the bearing

rings with the housing and the shaft is significantly larger than the damping in the bearing

itself. They also found out, that the damping due to the tilting movement is larger than

that of the radial movement. This might be an important thing to consider with regard to

the working example of this thesis: The focus of the research is a bending resonance, which

might cause significant tilting movement in the bearings.

Since no suitable theoretical model seems to exist, viscous damping is assumed for the trans-

lational and for the tilting movement of the bearings. The damping coefficients are deter-

mined experimentally by performing FRF measurements at the core bit tip when the system

is at rest, as will be described in Chapter 6.2.2. Before doing so, the drive shaft assembly

is updated with the results of EMA in free-free conditions. This so called in situ approach

offers the advantage of taking into account the damping that occurs due to the interaction

of the bearing races with the housing and the shaft, as described above. However, according

to Kraus et al., the damping of roller element bearings depends strongly on the rotational

speed and decreases with higher speed [77]. Therefore, the bearing damping in the current

thesis is probably overestimated, since it is evaluated at standstill condition. Furthermore,

a possible dependency of the damping from the load condition of the bearing is ignored. Or

more precisely, the damping is evaluated at “no load”. In the bending resonance, the load

on the bearings will be significantly higher. According to the experimental results of [148]

and [77], the damping of a rolling element bearing decreases with an increasing preload.

Thus, ignoring the load-dependent damping characteristic might also lead to overestimating

the damping.

Until now, the damping behavior has been discussed only for the translational and the tilting

movement. With regard to instationary rotational speed and with regard to the torsional

behavior of the rotor system, the damping and friction of the bearings in the spinning

direction is of importance. A review of relevant methods on how to calculate the drag torque

of rolling element bearings is presented, amongst others, by Fritz [34]. According to that,

the widely used approaches by manufactures like INA/FAG or SKF are based on the work

of Palmgren, published in 1957 in [106]. Based on experimental data, Palmgren developed a

rather simple-to-use formula that phenomenologically describes the drag torque. The main

finding is, that the overall torque can be described as a combination of a part that is purely
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dependent on rotational speed, and another part that is purely load-dependent. This is due

to the fact that the effects of friction in the rather complicated interaction within a rolling

element bearing can range from pure Coulomb friction [21] to hydrodynamic friction, as

expressed by Stribeck [59]. Recent approaches by bearing manufactures are more refined

and set up different mathematical terms for moments resulting from rolling and from sliding

of the rolling elements, as well as moments resulting from friction due to contacting seals

and from flow losses in the lubrication medium. Even in these more refined approaches, it

is possible to distinguish between moments that depend purely on the rotational speed and

moments that are speed-independent, since they depend on the bearing load. The problem

with these recent approaches is the fact that they are still partly phenomenological and

use bearing type specific coefficients that are derived by experiments or by experience. For

most standard bearings, these coefficients are available in the catalogs published by the

manufactures, such as, for example, in [32, 125]. Unfortunately, the diamond coring system

regarded in this thesis is not equipped with standard bearings, which makes it difficult

to apply the abovementioned formulas. Having the necessary coefficients measured by a

third party is out of the scope of this thesis. However, instead of estimating the necessary

coefficients, a different approach is adopted. The idea is to derive the overall drag torque

Td from a run-down of the system. Once the drag torque is known, it is approximated by

a combination of a speed-dependent term TΩ and a load-dependent term TC , as described

above:

Td = TΩ + TC (5.6)

Since it is hardly possible to do the run down with different loads, the load-dependent term

TC is replaced by a constant frictional torque (which is independent of the rotational speed):

TC = c , with c = const. (5.7)

For the sake of simplicity, Td is assumed to be linear in the rotational speed:

TΩ = b · Ω , with b = const. (5.8)

The overall drag torque in the machine is not only caused by the friction of the bearings, but

also by losses in the driving belts and by friction in the water swivel. The influence of the

later is assessed by simply repeating the run-down without a swivel mounted. Evaluating the

losses of the driving belts, however, is not so straightforward. To keep the effort reasonable,

the losses in the belts are charged on the bearings. Once the drag torque resulting from the
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bearings is known, and therefore the constants b and c in Equations 5.7 and 5.8, constant c is

distributed evenly on the eight rolling element bearings (two each for the electric drive, the

shaft, the tumble sleeve and finally the toothed belt disk that drives the shaft). Constant b

is distributed on the eight bearings according to their speed ratio. The implementation of

this approach follows in Chapter 7.2.2.

5.2.3 Force-Locked Chuck

Chapter 3.2.3 illustrated the mechanical setup of the force-locked chuck. The current section

deals with the way the chuck is represented in the simulation model. Three things need to

be considered here:

• The thread that connects the inner piece of the chuck to the shaft.

• The contact between the connecting end of the core bit and the two-piece chuck.

• The clamping spring in the force-locked chuck.

5.2.3.1 Connection Between Chuck and Shaft

The inner piece of the chuck is connected to the shaft with a screw thread. The representation

of a bolted connection in an FE-model can range from modeling every single detail of the

thread and the contact situation, requiring hundreds of thousands of DOFs, to simply tying

the two pieces together at the contact zone. With regard to computational costs, the latter

method is clearly in favor. If a tie constraint is to be used on the contact zone, the question

that needs to be answered is how much of this area needs to be included in the constraint.

This depends on the ratio between pre-tension due to the bold load, compared to stress

inflicted by external loads acting on the rotor systems during operation. At areas of the

contact zone, which stay pre-stressed at all times, the nonlinear contact behavior can be

ignored and a tie constraint can be seen as a justified simplification. At areas where the

two objects diverge due to bending deformation at the rim of the circular contact zone, a

tie constraint would mean a stiffer joint in the model than in the physical object. When

representing bolted connections with tie constraints, in industrial practice, usually the area of

the contact zone is tied, that lies within the pressure cone of the bolts. The diameter of these

pressure cones can be calculated by the following analytical formula (ignoring macroscopic

64



5.2 Modeling Certain Components and Implementation in ABAQUS

relative movement) [152]:

dres = dw +
lk
a

and Ares =
π

4
·
[(

dw +
lk
a

)2

− dh
2

]
(5.9)

in which the variables have the following meaning:

dres substitutive diameter of the pressure cone (area to enforce tie constraint upon),

dw head contact diameter of the bolt,

lk clamped depth of the two parts,

a material specific constant,

dh diameter of through hole,

Ares substitutive area of the pressure cone (area to enforce tie constraint upon).

In the current case, the contact zone between the shaft and the inner piece of the chuck is

rather small. As can be expected, Equation 5.9 comes to the conclusion that the diameter

of the contact zone is actually smaller than the substitutive diameter of a pressure cone,

as it would manifest in a wide-spread area of support. Therefore, modeling the connection

between shaft and chuck using tie constraints might be justified. However, Equation 5.9 as-

sumes a bolting connection with standard machine elements. The current geometry, though,

is different: The shaft is hollow to allow water to flush through, and the tightening torque

prescribed by the manufacturer is different from a standard thread of this diameter. To be

on the safe side, the connection between shaft and chuck was first modeled using contact

and taking into account the pre-tension of the screw-thread. Once it became clear that the

two parts do not diverge during operation, the model approach was simplified to just tying

the two parts together.

The more refined modeling approach uses contacts, couplings (distributed constraints) and

the connector function to represent the connection between shaft and chuck in ABAQUS.

Figure 5.7 shows a schematic diagram of the approach. The geometry of the thread itself

is not explicitly modeled. Instead, both parts have a circular cross-shape with the nominal

diameter of the thread in the relevant region. Now, surfaces are defined on both the chuck

and the shaft to represent the thread, as well as for the contact zone. For the latter, contact

is enabled but not for the two surfaces belonging to the thread. A detailed description of the

contact formulations follows in the next chapter and is not elaborated here. Finally, couplings

and the connector function represent the “clamping” mechanism of the screw thread. The
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procedure is the same as for the ball bearings in Chapter 5.2.2: For each surface, the coupling

function links the DOFs of the surface nodes to a single master-node. A connector element

then links the two master-nodes, allowing one to apply a clamping force in the axial direction

of the thread. The following analytical formula approximates the amount of the clamping

force FVM according to the tightening torque TA [152]:

FVM =
TA

d2
2
· tan (α + σ′) + µk · dk2

(5.10)

in which the other variables have the following meaning:

d2 thread pitch diameter,

α thread pitch angle,

σ′ thread angle of friction (depending on surface conditions and lubrification),

µk coefficient of friction of the support area,

dk effective diameter of friction in the screw head pad.

The simplified modeling approach does not use the contact, coupling and connector, but

merely ties the two surfaces used for the contact.

Figure 5.7: Schematic diagram of the interfaces between chuck and shaft
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5.2.3.2 Contact Between Core Bit and Chuck

Figure 5.8 contains a sectional view of the region around the chuck. For the interaction

between the connecting end of the core bit and the two-piece chuck, contacts are defined

at the relevant areas of the different components, as indicated in Figure 5.8, and in a more

detailed way in Figure 5.9.

Contacts are defined between

• the outer piece of the chuck and the connecting pins of the core bit,

• the connecting pins of the core bit and the sockets of the inner piece of the chuck,

• and between the outer diameter of the connecting end of the core bit and the bore of

the inner piece of the chuck. (In undeformed configuration there is radial clearance

between these two contact partners).

pre-loaded spring

radial clearance

contact

Figure 5.8: Sectional view of the FE-model of the force-locked chuck

Selecting the surfaces that are involved in a contact formulation is a crucial task with re-

gard to the performance of a model. Enforcing contacts and constraints causes significant

computational effort. ABAQUS automatically creates internal nodes for the necessary cal-

culations. Depending on the problem, the number of these internally generated nodes can

easily exceed the number of nodes defined by the user, thereby boosting the total number of

variables in the simulation and thus the computational costs to solve it. From a performance

point of view, the contact surfaces should be as small as possible. However, in the example

at hand, one must bear in mind that if the clamping force in the chuck is exceeded, the

contact partners will undergo large relative motion during a dynamic analysis. Therefore,

it is necessary to define the contact surfaces larger than the actual areas of the parts that
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Figure 5.9: Corresponding contact surfaces in the force-locked chuck

touch each other in undeformed configuration. Any surfaces that could come into contact

during a possible relative motion need to be included in the contact formulations. Other-

wise, the contact situation might be wrongly represented in the model, causing the contact

partners to penetrate each other without resistance. Another typical error that might occur

when specifying the contact surfaces too small, is that nodes of one of the surfaces “hang”

over the rim of the other surface, causing no or only slow convergence. In the current case,

the surfaces engaged in contact formulation are selected as small as possible but as large as

necessary.

ABAQUS offers a wide range of contact formulations, which provides different choices for

• the way of contact discretization,

• the contact tracking approach,

• and the assignment of master and slave roles to the contact surfaces.
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The simulation model of the example at hand uses

• solely surface-to-surface contact discretization,

• finite sliding as a tracking approach,

• and an assignment of master-slave contact pairs as shown in Figure 5.9.

Another important issue to consider when dealing with contacts in FE-simulations is the

method that enforces the contact constraints. Here, for both normal and tangential behavior,

a penalty method is selected. In the normal direction, the pressure-overclosure relationship

is regarded as a “hard” contact, enforced by a linear penalty method. The tangential be-

havior contains friction in which the friction coefficient is taken from [152] according to the

combination of materials. In addition to the friction, a small amount of damping is added

to the contact behavior. It is only a small value to represent a physical damping effect. The

presence of damping significantly increases the convergence.

5.2.3.3 Clamping Mechanism

As described in Chapter 3.2.3, a set of disk springs ensures the clamping force that holds

the core bit in the chuck. In the simulation model, the clamping mechanism is represented

with basically the same methods as the ball bearings from Chapter 5.2.2.1. Figure 5.7 offers

a schematic diagram. A connector element stands for the set of disk springs that are not

explicitly modeled as a 3D solid object. In reality, a spanner flat at the rear end of the

chuck with a clearance fit between the inner and the outer piece allows axial movement,

but constrains translational movement perpendicular to the spinning axis of the drive shaft,

as well as torsional movement. Therefore, in the model, the connector has a DOF in the

axial direction of the drive shaft and in the 2 rotational DOFs perpendicular to the spinning

axis. All other DOFs, however, are constrained. The mass of the disk spring is considered

as a point mass with moments of inertia and is placed at one of the reference points of

the connector. Distributed couplings link the reference points of the connector with the

inner and with the outer piece of the chuck. The pre-load of the spring is measured in a

compression-tension machine according to Figure 5.10. In the model, the load-displacement

curve is idealized to represent an elastic spring connected to perfectly rigid adjacent bodies.

As can be seen, the ratio between displacement and the reaction force will change significantly

once the pre-load is exceeded, creating strong nonlinear behavior. This characteristic of the

force-locked chuck and the consequences for the overall dynamics will be discussed in-depth

in Chapter 7.4.1.
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(a) measurement setup

0
0

displacement [d]

lo
ad

[F
]

measurement
model representation

(b) load-displacement curves

Figure 5.10: Measured and idealized load-displacement curve of the force-locked chuck

5.2.4 Power Train

The power train contains components that need to be addressed in the model because of

their elastic behavior, as well as components that are important because of their mass and

inertia properties.

The two toothed belts elastically interconnect the three rotors of the system. This inter-

connection contains a torsional as well as a translational component. The tensile stiffness of

the belts is measured externally by the manufacturer in a static procedure according to the

setup in Figure 5.11. Apart from a slightly nonlinear behavior at low forces, the belts show

an almost perfectly linear stiffness behavior up to the breaking point. Since the belts are

pretensioned in the machine, the small nonlinearity is ignored and the belts are represented

as linear springs in the model. The connector function allows one to consider the pretension

of the belts.

Despite – or, more precisely, because – the purpose of the model is to study a bending

resonance during run-up, the torsional behavior of the system is just as important as the

bending. In rotor dynamics, there are several effects that couple the torsional and lateral

movement of a rotor: Large bending vibrations might excite torsional vibrations [100], while,

the other way around, a fluctuating drive torque could lead to lateral instability [90]. In the

current simulation model, in addition to a model representation as lateral springs, the belts

are represented as elastic torsion springs, using the connector functionality of ABAQUS. The

torsional stiffness is calculated from the tensile stiffness of the belts, which is measured as

described above.
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Figure 5.11: Setup to measure the stiffness of the belts

The rubber joint that compensates the tumbling movement while transferring the torque

to the drive shaft is represented in the model as an elastic spring-damper system for both

the lateral and the torsional direction. The stiffness and damping values are measured in a

static substitute test.

The slip clutch and the two toothed belt disks show no local modes in the frequency

range of interest and can be considered rigid bodies. In contrast to the components forming

the drive shaft and the tumble sleeve, the slip clutch and the belt disks are not represented in

the model using 3D solid modeling. Instead, they are taken into account by introducing point

masses with inertia properties. MPCs interconnect these point masses to their corresponding

mounting positions. The MPCs are applied at the surface of the corresponding bearing seats

of the slip clutch and the belt disks, thereby taking into account the stiffening effect resulting

from the press fit between shaft and bearing ring. The stiffness of the ball bearings themselves

is ignored in this case, as it is more than a dimensions higher than the bending stiffness of

the drive shaft or of the tumble sleeve.

The electric engine has to be considered in a double manner. First, with regard to its

mechanical stiffness and mass parameters, and, second, with regard to the torsional stiffness

of the magnetic field between rotor and stator. The latter might become important in a

transient run-up or run-down when the vibration amplitudes grow large while crossing the

bending resonance. With regard to the mechanical properties of the drive, one has to be

aware that the electric engine is designed so that it is operated subcritically, meaning well

below its first bending resonance. Therefore and to save simulation effort, it is represented

in the simulation model as a point mass with inertia properties.
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When directing one’s attention towards modeling the torsional behavior of an electric engine,

one can distinguish between three levels of model refinement:

1. On the simplest level, energy is transferred to the drive by applying kinematic boundary

conditions to the rotor of the electric engine.

2. In a more advanced model approach, a drive torque acts on the rotor, which is, however,

not influenced by the response of the mechanic system.

3. On level three, the electric engine is part of the mechanical model, taking into account

the response of the system to the drive torque.

As described in Chapter 4.2.1, in the experiment, the supply voltage of the electric engine is

ramped-up linearly, resulting in an almost linear run-up slope of the rotational speed of the

rotor system. Accordingly, the most convenient and intuitive way to realize the run-up in

the simulation would be to choose model level one, which means applying a corresponding

displacement, or more precisely, a velocity boundary condition, to the electric drive. This

very simplified modeling approach, however, strongly influences the dynamic behavior of the

simulation model, as it causes two effects: First, it treats the stiffness of the magnetic field

between rotor and stator as rigid, causing the dynamic system to lose one degree of freedom,

which might be important, as large bending resonances also mean a torsional excitation of a

rotor system, as described above. Second, in terms of energy balance, modeling the drive as

a simple velocity boundary condition means supplying an energy source of unlimited power.

Doing so could result in severely disturbing the energy balance, creating higher bending

amplitudes in the model than in the real-world system.

A model approach from level two could be realized by recording the current consumption

during the experiments and calculating the torque of the electric engine from it. Therefore,

the magnetic constant km must be known [129]. Unfortunately, the electric engine of the

machine acting as a working example does not operate on its natural characteristic, but is

software controlled, thereby preventing a simple calculation of the effective moment. For

safety reasons, the controller could not be deactivated completely for the current research.

One option would be to chose a model approach from level three, which means to include the

electric engine and the controller in the model. Theoretically, this is possible in ABAQUS,

using customized user subroutines [23]. Practically, however, the effort of such an approach

is out of the scope of this thesis.

The good thing about the controller being active is the fact that in normal operating con-

ditions, as described in Chapters 7.1 and 7.3, the rotational velocity is almost perfectly
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proportional to the supply voltage. In this case, there is nothing wrong with simply ap-

plying a velocity boundary condition to the electric engine in the model (level one). Only

when the bending amplitudes grow large very suddenly is the power of the electric engine

insufficient to keep up the linear ramp-up of the rotational velocity. This happens if the

clamping force is exceeded, as shown in Chapter 7.4, accompanied by a Sommerfeld-Effect,

as described above. In this case, a velocity boundary condition would partly prevent the

occurrence of the effect in the model. Therefore, the model approach for applying the drive

torque is chosen so that the velocity boundary condition is not applied directly on the rotor

of the electric engine, but rather to the open side of a torsional spring, which, in turn, is

attached to the rotor. This way, the model is still capable of representing the relevant dy-

namic effects, such as the mode-locking in Chapter 7.4.3, without the need of an expensive

model approach from level three.

5.2.5 Mechanical Sealing

Due to the mechanical sealing described in Chapter 3.2.1, the shaft is in permanent contact

with a non-rotating part fixed to the housing of the machine. In rotordynamics, any rotor-to-

stator contact should be eyed very carefully. The effects can range anywhere from negligible

to malfunction all the way to catastrophic failure due to self-excited vibrations. Thorough

information on the topic can be found, amongst others, in [7, 8, 15, 16, 29, 95, 97, 124, 153].

In the current case, the friction of the mechanical sealing as well as the overall stiffness is

smaller by dimensions than the bending stiffness of the shaft. Furthermore, the sealing is

positioned directly next to a bearing. In this case, no significant influence of the sealing

can be expected. Experiments with and without the presence of the mechanical sealing

revealed no significant influence, neither on the vibrational amplitudes, nor on the drag

torque represented in the time for coasting-down. Therefore, the mechanical sealing is simply

ignored in the simulation model. It should be mentioned, though, that if the seal showed

a significant influence, the chosen modeling approach would be well suited to deal with the

effect. The seal could be represented in a pragmatic way as a connector element containing a

(nonlinear) friction load to speed relationship. In the most refined model approach, the seal

could be represented including contact formulations for the two rings. This would, however,

be very costly in the sense of computational effort.
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5.2.6 Human Hand-Arm System (Operator)

Since most measurements are performed while the power tool is hand-held, the simulation

model must be able to adequately represent the influence of the human operator on the

dynamic system behavior; a task that primarily requires one to somehow model the bio-

dynamic characteristics of the human hand–arm system. In the literature, a vast amount

of research is available that deals with hand–arm vibrations. An overview of models for

applications to hand-held power tools can be found in [112] and more recently in [2]. To

characterize the dynamic response and energy absorption of the human hand-arm system,

these modeling approaches consist of lumped-parameter models or of continuous models

based on beam theory. Lumped parameter models even found their way into industrial

standards, as in ISO 10068 [58] and DIN 45677 [25]. Even today, research is still ongoing

to experimentally derive stiffness, mass and damping parameters in order to improve these

models [68–70, 75, 150]. More recent approaches regard the human hand-arm system as

a non-uniform, nonlinear, anisotropic and composite system that requires FE modeling for

reliable identification of the resonant frequencies and mode shapes [3].

Although a large number of different model approaches and research exists, the usefulness

of the models mentioned previously for the simulation task of the underlying thesis is rather

limited. The primary purpose of the models described above is not to provide boundary

conditions in dynamic analyses of hand-held tools, but rather to study the injurious effects of

hand-transmitted vibrations, causing vascular, sensorineural and musculoskeletal disorders,

known as Raynaud’s phenomena or more generally as hand-arm vibration syndrome [10, 135].

Openly available models with reasonable effort of implementation provide only translational

DOFs, neglecting the rotational stiffness and moments of inertia of the hand-arm system.

Most electric power tools designed for drilling operations are equipped with a main handle

positioned in the symmetry plane and a side-handle positioned outside of the symmetry plane

to compensate the drilling torque. Neglecting the rotational stiffness of the operator’s hands,

the model can never correctly describe the reaction of the tool to excitation forces resulting

from the drilling process, or simply from rotational forces during a free run-up, which is the

main focus of interest of this thesis. Furthermore, any passive mechanical model neglects the

human control behavior, which consists of changing the stiffness characteristics of the hand-

arm system as well as applying forces to correct or hold the position of the power tool. For

instance, when applying Model 1 of ISO 10068 to the test setup described in Chapter 4.2.1

and in Figure 4.5, the tool would hang down in a skewed 30 degree angle due to gravity, while

an operator of average constitution is able to easily hold the tool horizontally by applying
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correctional forces.

In general, the challenge in modeling the hand-arm system consists of adequately represent-

ing the stiffness, mass and damping effect over a wide frequency range, as the mechanical

impedance of the human hand-arm system strongly depends on the frequency. The main

task of the model developed in this thesis is to correctly describe the dynamic system be-

havior when crossing a bending resonance during run-up or run-down. As a consequence,

the frequency range of interest is rather limited. In this case, the hand-arm system can be

modeled as a simple spring-damper system with added mass, in which the parameters are

accordingly tuned. However, one must be aware that the model will yield accurate results

only in the frequency range of interest and that the error, especially at very low frequencies,

can be significant. Since the latter is acceptable in the current case, the hand-arm system

is represented as a spring damper-system in this thesis. Modal measurements, as described

in Chapter 4.2.2, are performed at non-rotating condition to identify the stiffness, mass and

damping parameters. In theory, the approach would allow one to identify the relevant pa-

rameters in all 6 DOFs for each of the two hands. In total, this would add up to 36 unknown

parameters that need to be identified. However, since the underlying mechanical system is

mechanically rather complicated and therefore the model already contains quite some as-

sumptions and uncertainties, the quality of the results can be doubted. Therefore, instead of

identifying the parameters for each hand separately, the added mass of the hand-arm system

is simply surcharged to the mass and inertia parameters of the machine, while the stiffness

and damping parameters of the two hands are combined to a single spring-damper system

which acts on the center of gravity of the rotor system.
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Modal Analysis

As mentioned at the beginning of the previous section, model development starts with the

definition of the focus of interest, followed by the creation of a conceptual model. The

next steps consists of the parameter identification of the necessary model parameters and

implementation of the computer model. Before the model can be used to predict the dynamic

behavior of the rotor system, verification and validation is needed. Although there seems to

be no common understanding of the terminology in the area of verification and validation [74],

a number of authors, i.e. [104, 117, 136], adopt the definitions used in an AIAA Guide from

1998 [4]:

• Verification is the process of determining that a model implementation accurately

represents the developer’s conceptual description of the model and the solution to the

model.

• Validation is the process of determining the degree to which a model is an accurate

representation of the real world from the perspective of the intended use of the model.

When it comes to verification of the computer model, according to [104], two different types

of actions should be recognized: Code verification focuses on how correctly the numerical

algorithms are implemented in the code, while the primary goal of solution verification is

to estimate the numerical accuracy of a given solution, involving, amongst others, studies

of the spatial or temporal convergence rate. Once the simulation model is verified, it still

needs validation, which means an assessment of the accuracy of the simulation by comparing

the outcomes to experimental data. The following sections describe the verification and

validation strategy of the current work.

In the underlying application example, the focus of interest is on the dynamic behavior of

the rotor system when crossing a bending resonance during run-up or run-down. The model

approach described in Chapter 5 is that of an elastic multi-body simulation in which the

rotating parts are represented as elastic 3D solid models. They are interconnected either by

spring-damper systems with non-linear stiffness characteristics, as in the case of the bearings,

or by contact definitions, as in the case of the force-locked chuck. The non-rotating parts, like

the machine housing as well as the sensor rig, are considered rigid bodies that are represented

as lumped masses.

Implementing this computer model requires the identification of a large number of parame-
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ters. For example, the decision to represent the driving-belts of the shaft and of the tumble

sleeve as elastic lateral and torsional springs requires one to identify the stiffness of these

springs. This is done in a substitute experiment as described in Chapter 5.2.4. To give an-

other example: Modeling the rotating parts as elastic bodies requires information regarding

the geometric and material properties. While the latter is from the literature, the former

makes use of the CAD model. The fact that the geometry can be taken directly from ex-

isting CAD-data is one of the major advantages of the current model approach over using

beam-element models.

Once the model parameters are identified and the model is implemented, it needs to be

verified and validated. As described above, verification consists of code and solution ver-

ification. In the underlying thesis, ABAQUS is used to implement the simulation model.

The current model solely uses available standard finite elements formulations and program

functions, such as MPCs, contact definitions, or the connector function, which have been

intensively verified and documented in [23]. Therefore, no further activities are triggered to

verify the code. With regard to solution verification and validation of the model, one must

be aware, that the model is quite complex and contains a large number of parameters and

components. Validating the model could, for example, mean comparing the outcomes of the

simulation to experimental data acquired during a run-up, as described in Chapter 4.2.1.

Due to the size and complexity of the model, it will most certainly be difficult to trace back

a possible deviation between simulation and experiment on the responsible subcomponent

of the model. In addition, even if the simulation model matched the experimental results

upon the first try, the possibility cannot be ruled out that the model contains more than

one error, which by chance compensate each other. In that case, the model might be able

to correctly describe the given experiment, but still it is not able to correctly predict any

changes to the rotor system. Thus, a model of the given complexity should be verified and

validated from the bottom up, meaning to start with single components instead of the whole

simulation model at once.

A powerful tool to verify and validate the model is to perform modal analysis. The following

sections describe how modal analysis is performed first on single components and thereafter

on the whole system. The goal is to verify, validate and update the model in non-rotating

condition, as well as to identify certain parameters, such as the damping of the bearings

and the dynamic parameters of the human operator. Since not all missing parameters can

be identified in non-rotating condition, Chapter 7.2 deals with the procedure to identify the

overall drag torque and the imbalance of the core bit from operational measurements.

78



6.1 Single Components

6.1 Single Components

In what follows, the steps to verify, validate and update the model representation of the

diamond core bit will be described as an example of the rotating components modeled as

elastic bodies.

On the one hand, the diamond core bit appears to be a rather simple structure in the sense of

structural dynamics, consisting mainly of a hollow tube. On the other hand, the geometry

at the connecting end towards the chuck is rather complex, and the whole component is

made out of four different materials. The very tip is made out of a sinter metal, containing

the industrial diamonds as cutting material, the actual tube is made out of steel, and the

connecting end consist of aluminum which is mounted around the steel tube in a casting

process. For a 3D solid modeling approach, none of the before mentioned things is imposing

a real challenge. The core bit is decomposed into different sections and the corresponding

material parameters are applied. At the boundaries between the different sections, tie con-

straints are introduced, while at the same time the mesh is setup such, that the nodes are

congruent within the joint patches as far as possible.

6.1.1 Mesh-Grid Convergence Study

To verify the numerical solution, a mesh-grid convergence study is performed using the

natural frequencies of the first ten modes in free boundary conditions as a criterion to

evaluate the error. The study starts with a very coarse mesh, which is refined in subsequent

steps until the numerical solution converges. Important parameters for the mesh refinement

are the element size and the number of elements per corner arc. Since the lower modes are

completely dominated by the tube-like part of the core bit and since the connecting end

needs a much finer mesh anyway due to the contact formulations with the chuck, the mesh

is changed only on the tube. Table 6.1 contains an overview of the results, while Figure 6.1

shows different levels of mesh refinement as well as pictures of typical mode shapes.

The first ten modes contain four different types of modes: Bending modes, ovalization modes,

which are typical for a hollow structure, and finally a torsional and even a longitudinal mode.

Both the bending and the ovalization modes appear as double modes due to the (cyclic)

symmetry of the structure. The largest influence of refining the mesh shows itself in the

ovalization modes, while other mode types are less affected. After the fifth iteration, there

are no more recognizable changes in the natural frequencies and the solution has converged.

79



6 Model-Updating in Non-Rotating Condition Using Modal Analysis

T
ab

le
6.

1:
M

o
d
el

-u
p

d
at

in
g

of
th

e
co

re
b
it

m
o
d

e
sh

a
p

e
a
n

d
n

a
tu

ra
l

fr
e
q
u

e
n

ci
e
s

1
st

1s
t

2n
d

2
n

d
3r

d
1s

t
4t

h
5t

h
3
rd

1s
t

b
e
n

d
in

g
ov

al
iz

at
io

n
ov

al
iz

at
io

n
b

e
n

d
in

g
ov

al
iz

at
io

n
to

rs
io

n
ov

al
iz

at
io

n
ov

al
iz

at
io

n
b

e
n

d
in

g
lo

n
gi

tu
d
in

al

m
e
a
su

re
m

e
n
t

n
at

u
ra

l
fr

eq
u
en

cy
[H

z]
4
0
8

96
0

10
54

1
1
1
5

12
60

12
93

14
54

17
67

2
0
6
5

21
45

d
am

p
in

g
ξ i

%
0
.0

8
0.

1
0.

08
0
.0

8
0.

05
-

0.
05

0.
06

0
.0

7
-

si
m

u
la

ti
o
n

s

1
el

em
en

t
si

ze
n
.

el
em

en
ts

p
.

co
rn

er
ar

c:
2

[H
z]

4
1
4

10
26

11
20

1
1
2
8

13
23

13
00

15
09

18
42

2
0
8
6

21
57

re
l.

er
ro

r
%

1
.4

6.
9

6.
3

1
.1

5.
0

0.
5

3.
8

4.
3

1
.0

0.
6

2
el

em
en

t
si

ze
n
/2

.
el

em
en

ts
p
.

co
rn

er
ar

c:
3

[H
z]

4
1
4

10
06

10
99

1
1
2
8

12
98

13
01

14
82

18
11

2
0
8
7

21
58

re
l.

er
ro

r
%

1
.4

4.
8

4.
3

1
.2

3.
0

0.
6

2.
0

2.
5

1
.1

0.
6

ch
an

ge
s

to
p
ri

or
so

lu
ti

on
%

0
.1

-2
.0

-1
.9

0
.1

-1
.9

0.
1

-1
.8

-1
.7

0
.1

0.
0

3
el

em
en

t
si

ze
n
/4

.
el

em
en

ts
p
.

co
rn

er
ar

c:
4

[H
z]

4
1
4

10
02

10
95

1
1
2
8

12
92

13
01

14
75

18
02

2
0
8
7

21
58

re
l.

er
ro

r
in

%
1
.4

4.
4

3.
9

1
.2

2.
5

0.
6

1.
5

2.
0

1
.1

0.
6

ch
an

ge
s

to
p
ri

or
so

lu
ti

on
%

0
.0

-0
.4

-0
.4

0
.0

-0
.5

0.
0

-0
.5

-0
.5

0
.0

0.
0

4
el

em
en

t
si

ze
n
/8

.
el

em
en

ts
p
.

co
rn

er
ar

c:
8

[H
z]

4
1
4

99
9

10
91

1
1
2
8

12
88

13
01

14
70

17
95

2
0
8
6

21
57

re
l.

er
ro

r
in

%
1
.4

4.
1

3.
5

1
.2

2.
2

0.
6

1.
2

1.
6

1
.0

0.
6

ch
an

ge
s

to
p
ri

or
so

lu
ti

on
%

0
.0

-0
.3

-0
.3

0
.0

-0
.3

0.
0

-0
.3

-0
.4

0
.0

0.
0

5
el

em
en

t
si

ze
n
/1

6.
el

em
en

ts
p
.

co
rn

er
ar

c:
12

[H
z]

4
1
4

99
9

10
91

1
1
2
8

12
87

13
01

14
70

17
95

2
0
8
6

21
57

re
l.

er
ro

r
%

1
.4

4.
1

3.
5

1
.2

2.
2

0.
6

1.
1

1.
6

1
.0

0.
6

ch
an

ge
s

to
p
ri

or
so

lu
ti

on
%

0
.0

0.
0

0.
0

0
.0

0.
0

0.
0

0.
0

0.
0

0
.0

0.
0

6
sa

m
e

as
#

3.
u
p

d
at

ed
ou

te
r

d
ia

m
et

er
[H

z]
4
1
3

96
6

10
61

1
1
2
7

12
61

12
95

14
44

17
78

2
0
8
6

21
49

re
l.

er
ro

r
%

1
.2

0.
6

0.
7

1
.1

0.
1

0.
2

-0
.7

0.
7

1
.0

0.
2

7
sa

m
e

as
#

6.
E

-m
o
d
u
le

re
d
u
ce

d
b
y

1.
4

%
[H

z]
4
1
0

95
9

10
54

1
1
1
9

12
52

12
86

14
34

17
66

2
0
7
1

21
33

re
l.

er
ro

r
%

0
.5

-0
.1

0.
0

0
.4

-0
.6

-0
.6

-1
.3

0.
0

0
.3

-0
.5

80



6.1 Single Components

(a) simulation #1 (b) simulation #5

(c) 1st bending mode (d) 1st ovalization mode

(e) 1st torsional mode (f) 1st longitudinal mode

Figure 6.1: Varying mesh grid and mode types of the core bit
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6 Model-Updating in Non-Rotating Condition Using Modal Analysis

In the further course of this thesis, model #3 is used to simulate the run-up of the rotor

system.

The next section will discuss validating and updating the simulation model.

6.1.2 Model-Updating Using EMA

Table 6.1 also contains the results of a validation experiment in the form of EMA, performed

according to Chapter 4.2.2. A comparison to iteration #5 of the simulations reveals that

although the numerical solution has converged, there are still deviations of more than four

percent between simulation and experiment. The model quality might profit from analyzing

and possibly eliminating the causes of variance.

Taking a closer look at the results of the mesh-grid convergence above reveals that the

natural frequencies of all ten modes are higher in the simulation than in the experiment,

regardless of mesh refinement. This is an indication that the cause of the deviation most

likely lies in global parameters, such as geometric or material properties. At the same time,

the magnitude of deviation is not the same over the four different mode types. In ovalization

modes, the deviation is significantly higher than with the other mode types. Taken together,

the two findings imply that the discrepancies between simulation and experiment are most

likely caused by deviations in more than one global parameter. A straightforward way to

validate an FE-model intended for dynamic analysis, is to check the mass. In this case, the

comparison between the model and the physical component of the core bit revealed, that

the model shows a slightly higher mass. The next step consists of checking the geometric

dimensions of the physical core bit. The outer diameter of the steel tube turns out to be a

few hundreds of a millimeter smaller than the nominal value used to build up the model, still

being within the specified manufacturing tolerance, though. While the deviation is minimal,

in such a slender cross-section as that of the steel tube, it has a noticeable influence on the

natural frequencies. Simulation #6 contains the updated geometry and already shows a good

improvement when compared to #3 and even in comparison to #5. A method to include

uncertainty in geometric parameters in the calculation of natural frequencies is presented in

[123] using a bladed rotor as an application example.

The correlation between experiment and simulation can be further improved by adapting

the Young’s modulus of the steel tube. In simulation #7, the Young’s modulus is changed

by approximately 1.4 % from 210 GPa to 207 GPa, resulting in an almost perfect match

compared to the experimental data. According to Langer et al. [78, 79], 1.4 % deviation in
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6.1 Single Components

the Young’s modulus is a reasonable range of uncertainty.

Another important parameter to validate is the damping. The current simulation model

considers damping in the form of material damping and discrete viscous dampers, as in

the model approach of the bearings (see Chapter 5.2.2.1), or to account for the influence

of the human operator (see Chapter 5.2.6). Besides the natural frequencies, Table 6.1 also

contains experimentally identified modal damping ratios ξi, expressed as a fraction of crit-

ical damping. In the following discussion, one should keep in mind, however that impact

testing is not known to produce very accurate results with regard to modal damping. The

nominal difference between the values, ranging from 0.05 % to 0.1 %, should therefore not

be overestimated. A careful assessment comes to the conclusion, that the damping does not

differ much between the different modes, and is in good agreement with generally accepted

values [49, 152], stating a material damping of 0.1 % for steel as well as for aluminum.

ABAQUS offers several possibilities to consider material damping. In the current case,

it makes most sense to assume Rayleigh damping, which treats the overall damping as a

combination of mass proportional (low frequency range) and stiffness proportional (high

frequency range) damping. This approach requires one to specify two Rayleigh damping

factors, αR for mass proportional damping and βR for stiffness proportional damping. The

modal damping ratios and the two damping factors stand in the following relationship [122]:

ξi =
1

2

[
αR
ωi

+ βRωi

]
(6.1)

in which ωi stands for the natural (circular) frequencies. Once the modal damping ratios ξi

are known from EMA, the two damping factors αR and βR can be identified by solving the

overdetermined system of equations by using a least-square-error method.

As an interim summary, what can be noted is that modal analysis is a powerful tool to

verify and validate the model representation of single components. Analyzing the cause

of possible deviations and updating model parameters where necessary can significantly

increase the confidence in the model. Verifying and validating the model from the bottom

up, significantly reduces the sources of possible deviations when now turning to the full

model.
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6 Model-Updating in Non-Rotating Condition Using Modal Analysis

6.2 Whole System

Modal measurements at non-rotating condition of the rotor system as a whole provide the

reference for validating and updating the simulation model. First, the hypothesis needs

to be validated, according to which the non-rotating parts of the machine, such as the

housing and the additional sensor rig, can be considered rigid within the frequency range

of interest, thereby allowing one to represent these parts as lumped masses in the model.

This is the content of the next section, while subsequent chapters deal with how to use

FRF measurements to identify the damping coefficients of the bearings and the dynamic

parameters of the human operator.

6.2.1 Results of EMA

When all sensors are implemented for operational measurements, the setup lends itself to

modal impact testing using the roving hammer method. This method allows one to measure

a large number of DOFs with acceptable effort, without running into mass-loading effects by

changing the position of the sensors during the measurements. In the model, the added mass

by the sensors installed for operational measurements is accounted for. Figure 6.2 shows the

average sum of all measured FRFs, both for the vertical direction (x-direction) and the

horizontal direction (y-direction). In total, more than 150 DOFs have been measured. The

mode shapes identified by EMA can be animated and thereby studied in detail using a wire-

frame model created out of the geometry of the measured points. In a static picture, the

only way of presentation possible within this thesis, a wire-frame presentations is not very

comprehensible, however. Therefore, Figure 6.3 uses the results of the simulation model

instead to represent selected mode shapes.

The first global structural mode is a vertical bending that occurs at 33 (normalized) Hertz.

As can be seen from Figure 6.3 a), the non-rotating parts behave as a rigid body, and the

mode shape consists of a counter-phase movement between the drive shaft and the rest of

the rotor system. As indicated by the sectional view in Figure 6.3 c), most of the compliance

comes from the shaft itself, while the chuck, the core-bit and the tumble sleeve are much

stiffer in comparison and perform mainly a rigid body motion. The horizontal bending occurs

at a slightly higher frequency of 34 [Hz], while for the mode shape, the same applies, as has

been said for the vertical mode: It is a counter-phase movement between the drive shaft and

the rest of the machine.

The next mode is a vertical bending of the sensor support rig at 97 [Hz], as indicated by
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Figure 6.2: Sum-FRF of the whole rotor system including sensor support rig

Figure 6.3 d). The corresponding horizontal bending occurs at 130 [Hz]. Since the natural

frequency of the rig-bending is three times higher then the bending mode of the drive shaft,

the rig can be considered rigid in the model within the given maximum operational speed.

Both, the natural frequency of the vertical and the horizontal rig-bending mode are located

well above the range of the operational speed of the tool and are not excited during operation.

At 153 [Hz] for the vertical direction, respectively at 163 [Hz] for the horizontal direction,

the second bending of the drive shaft occurs. Here, the housing deforms elastically and can

no longer be considered rigid in the model. However, the natural frequency of the second

bending of the drive shaft occurs way above the maximum operational frequency of the rotor

system and is not excited during operation. The measurement shows further local and global

modes at higher frequencies, but since they are out of interest within the current problem,

they are not discussed further.

As an interim summary, one can state that the EMA of the whole system provides good

information about the modal behavior that can act as a reference when updating the model.

The sensor rig has been designed that it shows no local modes within the operational range
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6 Model-Updating in Non-Rotating Condition Using Modal Analysis
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Figure 6.3: Selected mode shapes of the whole rotor system
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6.2 Whole System

of the rotor system. The measurements confirm the computational design of the rig. The

approach to represent the sensor rig and the non-rotating parts of the tool as rigid bodies

is confirmed by the measurement data. In the next step, the results of the EMA will be

compared to simulation data.

6.2.2 Model-Updating

The previous section showed good results from the EMA of the rotor system as a whole. In

the chain of validating the model, the next logical step would be to perform a modal analysis

in the simulation model and to compare the results. This comparison, however, is not as

straightforward as it may seem at the first glance.

The deep-groove ball bearings and the force-locked chuck provide a nonlinear stiffness charac-

teristic, which is represented likewise in the simulation model, as described in Chapter 5.2.2.

As a consequence of the nonlinear stiffness behavior, the dynamic response of the rotor sys-

tem to hammer excitation during EMA depends on the amount of force that is used. The

experimental result can be interpreted as a kind of physical linearization around the working

point. If the simulation model is not linearized around the same working point, the results

are not comparable. In ABAQUS, the bearing stiffness is defined in a look-up table that does

not directly contain stiffness values, but rather consists of a matrix that associates discrete

values of displacement with corresponding levels of returning force. In a linear computation

like a modal analysis, ABAQUS uses by default (like most FEM programs do) the first pair

of values, which results in a stiffness that is zero or is at least close to it, since it represents

the bearing play. Without corrective measures, the natural frequencies out of the simulation

would be way to low when compared to those identified by measurements.

Regarding the nonlinear behavior of the force-locked chuck: In the simulation, the contact

is considered “closed” in the modal simulation step by default, meaning that the surfaces in

contact are tied together. In the measurements, it depends on the amount of excitation force,

whether the clamping force between chuck and drill bit is exceeded or not. Chapter 7.4.1 will

deal in detail with the nonlinear behavior of the force-locked chuck and its effect on FRFs.

The measurement results discussed in the current chapter, however, have been obtained by

using a core bit that has been soldered to the chuck, thereby eliminating the force-locked

connection.

To compare and update the simulation model with the experimental results, there are now

two options: Either to linearize the simulation model around the working point, or to simu-
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6 Model-Updating in Non-Rotating Condition Using Modal Analysis

late the response to a hammer impact using direct time integration, which allows for nonlin-

ear system behavior. In the current thesis, both methods are used to update the model. In

a first step, a set of linear stiffness parameters is identified, but instead of using linearization

techniques, the parameters are obtained in an optimization process controlled by OPTIMUS.

With these results, the mode shapes are checked. Alternatively, the linearization could be

achieved by use of the harmonic balancing method, which is the most popular method for

nonlinear problems [143, 149]. In a second step, FRFs are computed by applying the mea-

sured time history of the hammer force signal at the core bit tip to the model and solving

it through implicit time integration. A comparison between simulation and measurements

is shown in combination with the human hand-arm system in Figure 6.4 of the subsequent

chapter.

6.2.3 Dynamic Parameters of the Human Operator

As described in Chapter 5.2.6, the human hand-arm system is modeled as a spring-damper

system, while the added mass is surcharged to the inertial mass parameters of the machine.

The stiffness and damping parameters, as well as the added mass is identified by performing

FRF measurements of the whole rotor system at stand-still condition. In the first mea-

surement, no operator is present and the tool is suspended in elastic strings to simulate free

boundary conditions. The measurement is then repeated with the operator gripping only the

side handle, then only the rear handle, and finally both handles. Since the parameters of the

hand-arm system strongly depend on the gripping force of the operator, the measurement is

repeated once more with the operator gripping both handles and applying excessive gripping

force. Figure 6.4 shows the influence of the operator on the driving point FRFs taken at the

tip of the core bit in both the vertical direction (x-direction) and in the horizontal direction

(y-direction). At the time when these measurements were performed, the sensor support rig

was not yet manufactured and therefore not mounted. Accelerometers at the core bit tip

replace the triangulation sensors to measure the response to hammer impacts. Due to the

reduced mass and moment of inertia when the sensor rig is missing, the resonance frequencies

reported in Figure 6.4 are higher than those of Figure 6.2. This does not affect, however,

the identification of dynamic parameters of the human operator.

The experimental results show a differentiated influence of the human hand-arm system over

the frequency range as well as with regard to the directionality (vertically vs. horizontally).

In the frequency range of the first bending resonance, the presence of the human operator

has a noticeable influence on the dynamic behavior of the rotor system both in terms of
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support rig is not mounted)
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6 Model-Updating in Non-Rotating Condition Using Modal Analysis

damping as well as in terms of mass and stiffness. The influence, however, is different in the

vertical and in the horizontal direction, as will be discussed in the subsequent paragraph. In

the frequency range above the first bending resonance, the dynamic influence of the operator

is far less significant.

With regard to the first vertical bending resonance, there is no considerable influence on

the frequency, while the damping is significantly increased by the presence of the operator’s

hands. The hand at the side handle seems to increase the damping by roughly the same

amount than the hand at the rear handle. In the horizontal direction, however, the hand-arm

system has a considerable influence on the frequency of the first bending resonance, while

the damping effect of the hand arm-system is even stronger pronounced than in the vertical

direction. In contrast to the previous results, the increase in damping in the horizontal

direction is mainly caused by the operator’s grip at the side handle, while the influence on

the natural frequency is mainly the result of the hand at the rear handle.

Generally speaking, these results are in accordance with the works of Kinne [68–70] and

Adewusi et al. [2, 3], insofar as the dynamic parameters of the left and right hand are not

the same, but depend on the posture. However, the difference in the dynamic parameters

between the two directions perpendicular to the forearm (x- and y-direction in the current

tool coordinate system) seem to be larger than in most models, i.e. Kinne or ISO 10068.

This becomes visible, when regarding the influence of the hand at the rear handle, which

significantly changes the natural frequency of the horizontal bending resonance, but leaves

the frequency of the vertical resonance completely unchanged.

In the next steps, the results of the modal analysis must be transferred into setting the

parameters of the spring-damper system, which represents the human hand-arm system in

the model. Focus of interest is the first bending mode. So far, the results have been discussed

with regard to the influence on the natural frequency and damping of that mode. To transfer

these results to the model, the influence of the hand-arm system on this bending mode needs

to be discussed in terms of added stiffness, mass and damping.

Extracting the stiffness parameters: Without any further knowledge, the fact that the pres-

ence of the operator does not influence the natural frequency in vertical direction could be

interpreted in two ways: Either there is no significant mass or stiffness effect from the hand-

arm system at this frequency range at all, or the influence of the added stiffness and mass

are mutually compensating each other. However, the reason why the natural frequency of

the bending mode is so much higher than the rigid body modes is simply due to the fact

that the bending stiffness is higher by dimension than the stiffness provided by any of the
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6.2 Whole System

hand-arm models mentioned in Chapter 5.2.6. This also means that the added stiffness of

the human hand-arm system can be regarded as irrelevant on the bending mode. Therefore,

the stiffness in the simulation model is defined in such a way that the system acts stable

during the start-up phase of a run-up: To save simulation time, the system is run-up rather

fast at the very beginning, as will be explained in Chapter 7.3. This creates a high torque

reaction, which must be compensated by the operator. In the real world, the operator ap-

plies corrective forces and torque, to bring the tool back to its neutral position. Since openly

available hand-arm models are purely passive mechanical systems, they lack this active con-

trol behavior, resulting in unrealistically large (rigid body) motion during the start-up phase.

Therefore, the stiffness is defined rather high to keep the motion in a reasonable range.

Extracting the mass parameters: Experimental research presented amongst others in ISO 10068

show that the apparent hand-mass strongly decreases towards higher frequencies in which

the bending mode is located. According to these references, the apparent hand mass is

different in the xh and the yh direction of the hand-coordinate system. Since the presence

of the operator’s grip shows no influence on the natural frequency of the vertical bending

mode, the added mass of the hand-arm system is ignored in the vertical direction and in the

moment of inertia around the y-axis. In contrast, the added mass in the horizontal direction

cannot be neglected. To represent it in the model, the moment of inertia of the machine

around the y-axis is increased until the simulated natural frequency of the bending mode

matches the measured frequency for the case in which the operator grips both handles.

Extracting the damping parameters: The presence of the hand-arm system shows a strong

dampening effect on the first bending mode. In the model, this effect is represented as

a damper with a viscous damping constant. The constant is adapted to match the FRF

measurements at the tip of the core bit. Research has shown, however, that the dampening

effect of the hand-arm system decreases towards higher frequencies. In the model, the

damping constant is set so that the simulated FRFs resemble the measurements within the

frequency range around the first bending mode.

Along with measurement data, Figure 6.4 also contains the results of the simulation model.

Updating the model parameters as described above creates an almost perfect match between

simulation and measurement within the whole frequency range that is excited during a run-

up of the rotor system. At higher frequencies, however, there are significant discrepancies

in the resonance frequencies as well as in the amplitudes. The difference in the resonance

frequencies is a result of assuming the housing of the machine rigid, which is perfectly valid

in the frequency range of interest, but not in the higher frequency range. The difference in
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6 Model-Updating in Non-Rotating Condition Using Modal Analysis

amplitude is a consequence of assuming viscous damping of the hand-arm system and by

tuning the damping constant for the first bending frequency. This leads to an over-damping

in the higher frequency range, which is totally acceptable in the current case.

92



7 Simulation and Experimental Results

The current chapter evaluates the quality of the simulation model, its capabilities and its

limitations. At the beginning, the global dynamic system behavior during run-up and run-

down is described by means of experimental data. This is necessary to understand the

identification process of two missing parameters, namely the drag torque of the system and

the imbalance of the core bit. The actual discussion of simulation results and a comparison

to measurements is split up in two different cases: First, for so-called “normal” operating

conditions in which the clamping force of the force-locked chuck is sufficient to hold the

core bit in place during run-up. This is followed by the case in which the clamping force is

intentionally exceeded by reducing the pre-load and by additionally increasing the imbalance

of the core bit or the tumble angle of the sleeve. In the latter case, mode-locking is observed

in the experiments, which can only be represented accurately in the simulation model by the

use of 3D solid modeling, as shall be seen in what follows.

7.1 Global Dynamic System Behavior

To predict the dynamic behavior of a system, it is necessary to look at the natural properties

like eigenfrequencies, mode shapes and damping, as well as at the excitation forces.

Starting the discussion with the excitation forces, one can state that the current rotor system

contains three rotating subsystems: the drive shaft, the tumble sleeve and the electric engine.

An obvious excitation mechanism is the natural imbalance of each rotor, which creates speed-

dependent excitation forces. However, since the electric engine is precisely balanced and

operates sub-critically, the main excitation mechanisms can be expected to arise from the

natural imbalance of the drive shaft and from the tumbling movement forced by the sleeve.

Turning now to the natural behavior of the rotor system: In Chapter 5, the natural behavior

of the system was evaluated in non-rotating condition. At rest, the system has a vertical (in

the xz-plane) and a horizontal (in the yz-plane) bending mode in which the natural frequen-

cies are located well within the range of rotational speed of the three spinning subsystems

mentioned above. Therefore it can be expected that when the rotational frequency of one

of the rotors matches the natural frequency of one of the bending modes, a resonance will

occur, leading to large amplitudes. However, in a rotating system, the natural frequencies

usually depend, to a smaller or larger extent, on the rotational speed. This means that

the resonance frequencies during operation do not necessarily have to match the natural fre-

quencies measured or calculated at non-rotating condition. The speed dependency of natural
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7 Simulation and Experimental Results

frequencies depends on the ratio between the polar and the diametral moment of inertia of

the rotors. In the current case, the rotating components of the diamond coring systems are

relatively slender; so no large speed dependency is to be expected.

According to the results in Chapter 6.2, the mode shape of the first bending mode(s) is

mainly a bending of the drive shaft against the rest of the tool, which performs an almost

rigid body motion. Therefore, during operation, the largest displacement amplitudes in the

case of a resonance can be expected at the tip of the core bit or at the rear handle. Figure 7.1

shows the time signal of the displacement amplitude of the core bit tip in vertical direction

(x-direction) relative to the housing during a slow run-up and run-down of the system. The

same plot also contains the time signals of the rotational speed of the drive shaft and the

tumble sleeve. The signals are recorded according to the experimental setup described in

Chapter 4.
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Figure 7.1: [Meas] Vertical displacement of core bit tip relative to housing during slow run-up
and run-down

The plot shows two major resonance phenomena during run-up and run-down. The first, and

in this case smaller peak, is caused when the rotational frequency of the drive shaft matches

the natural frequency of the first bending mode. The second resonance peak occurs, when

the rotational frequency of the tumble sleeve matches the natural frequency of the bending

mode. Looking closely at the resonance peaks, one can see that each of them shows a smaller

side peak caused by the excitation of the horizontal bending mode. The unwanted, yet in the

current case unavoidable, cross-sensitivity of the triangulation lasers causes a “cross-talking”

between the horizontal and vertical channels, as discussed in Chapter 4.1.1 and visualized
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7.1 Global Dynamic System Behavior

in Figure 4.2a. Since the horizontal bending mode has a slightly higher natural frequency,

the corresponding resonance during operation appears a little delayed in time during run-up,

or at a slightly higher rotational speed, respectively. During run-down it is the other way

round.

Assigning the resonance peaks to a certain excitation mechanism becomes easier by plot-

ting the data (i.e. displacement or acceleration) over rotational speed instead of time. In

Figure 7.2, a vibration order analysis according to Chapter 4.3.2 has been performed to

calculate the overall displacement level, as well as the share that can be assigned to the first

order of the drive-shaft, the tumble sleeve and the electric engine. Since the ratio of the

rotational speeds between the three different rotating subsystems is fixed, one of them can

arbitrarily be chosen to act as a reference and the other two can be expressed as multiples

of the reference. For example, the first order of the drive-shaft can be considered as the n-th

order of the sleeve, according to Equation 3.1. This allows for the plotting of all three orders

on the same scaling of the x-axis. In Figure 7.2, the tumble sleeve acts as a reference. Since

no torsional oscillations between shaft and tumble sleeve could be observed in any experi-

ment performed within the current work, the signal of the rotational speed of the core bit is

simply a multiple of the signal obtained from the tumble sleeve, and is therefore redundant

information. As a consequence, all further plots will present information about rotational

speed using the signal of the tumble sleeve instead of using both tacho signals.
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Figure 7.2: [Meas] Overall-level and order-plot of vertical displacement of core bit tip relative
to housing during slow run-up
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Comparing the share of the orders to the overall displacement level indicates the following

with regard to the three different main excitation mechanisms :

• The first resonance occurring during run up is excited almost solely by the natural

imbalance of the drive shaft.

• The second resonance is caused almost completely by the excitation through the tumble

movement.

• The excitation by the first order of the electric engine (imbalance) can be neglected

with regard to the dynamic displacement of the core bit.

The two resonances appear to be well separated, meaning that each resonance is dominated

by only one of the excitation mechanisms, the imbalance of the drive shaft and the forced

tumbling movement by the sleeve. This is confirmed when regarding the corresponding

Campbell diagram in Figure 7.3: The relevant frequency of the first bending mode is clearly

dominated by the two excitation mechanisms described above. The two resonances appear

at the same frequency, and – interestingly – at the same frequencies as the natural bending

frequencies (first vertical and horizontal bending) when the system is not rotating. This is

a double indication of the fact that the natural frequencies of the first bending mode are

not influenced by the rotational speeds of the rotors. The reason for this is the fact that

the rotors are very slender, meaning that the polar moment of inertia is significantly smaller

than the diametral one.
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Figure 7.3: [Meas] Campbell diagram of vertical displacement of core bit tip relative to hous-
ing during slow run-up

Chapter 6.2 deals with the modal behavior of the whole system, pointing out that the

first global bending mode is mainly a counter-phase movement of the core bit against the
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7.2 Updating the Model in Rotating Condition

rest of the system. In the experimental setup for operational measurements outlined in

Chapter 4.1.1, the measurement position at the tip of the core bit and at the rear handle

(“tool 3”) mark the two extreme positions of the moving bodies with a vibration node

between them. Therefore it comes as no surprise that, in a run-up, the signal of the two

sensor positions may have different amplitudes due to different modal effective masses of

the corresponding bodies, but, qualitatively, they show the same curves, as indicated by

Figure 7.4 in the form of the overall level.
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Figure 7.4: [Meas] Comparison between vertical displacement of core bit and of sensor posi-
tion “tool 3” during slow run-up

7.2 Updating the Model in Rotating Condition

Not all input parameters for the simulation model can be acquired from measurements at

non-rotating condition. These include the drag torque of the system and the imbalance of

the core bit, which need to be identified from operational measurements, as will be explained

in what follows.

7.2.1 Identifying the Imbalance of the Core Bit

As discussed above, the core bit shows a significant imbalance during operation that needs to

be accounted for in the model. Identifying the imbalance of rotating systems is a task that

is firmly established in industrial manufacturing processes. In the current case, however,

identifying the imbalance of the core bit is not easily done.

The core bit consists mainly of a tube with a diamond crown on the drilling side and a

connecting end on the other side. The imbalance, however, does not arise from an asymmetric
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mass concentration, but is mainly the result of an angular misalignment between the axis

of symmetry and the axis of rotation that arises at the connection between the chuck and

the connecting end of the core bit. This can easily be shown by attaching the core bit to

the chuck in its three possible inserting positions and performing a measurement in each

position. Figure 7.5 shows the displacement of the core bit tip during run-up for all three

positions. Due to a different angular misalignment in each inserting position, the resonance

amplitude caused by the imbalance of the core bit varies significantly over the different

inserting positions, while the resonance caused by the tumble movement remains almost

unchanged. The later is another confirmation, that the two resonances, caused by the two

different excitation mechanisms, are two well-separated effects.
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Figure 7.5: [Meas] Overall-level of vertical displacement of core bit tip in different insert
positions

In the simulation model, the imbalance resulting from a misalignment of interconnected

rotating parts can be represented in two different ways. The first possibility is to actually

represent the misalignment in the model. However, a rotor that is not rotating around

a principal axis of inertia opposes serious difficulties in the case of modal computations,

as explained in Chapter 2.1. In the current case, this is of secondary importance since

the drive shaft performs an additional tumbling movement anyway in addition to spinning

around its axis of rotation. Furthermore, the dynamic response of the system is computed

by using implicit time integration because of the transient rotor speed during run-up and

the nonlinear stiffness behavior, which will be outlined in detail in Chapter 7.4. The second

option to account for the imbalance of the core bit is to model it perfectly symmetrically

to its spinning axis and add an according imbalance mass that is eccentrically placed with

regard to the axis of rotation. In the current case, the extra mass is added as a point mass

at the outer rim of the diamond crown at the tip of the core bit. In ABAQUS, the point
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7.2 Updating the Model in Rotating Condition

mass is attached to the nodes of the diamond crown using MPCs. This is of course a very

simple way of representing the imbalance in the model, but, as shall be seen in what follows,

it turns out to be sufficient.

So far, the cause of the imbalance of the core bit has been discussed, as well as the way of

representing it in the model. What remains to be done is to identify the amount of imbalance

as an input for the simulation. The preferred way would be to directly measure the imbalance

with the help of an appropriate balancing machine. In the past, dozens of different procedures

and devices have been developed to accomplish such a task. In the literature, an overview

of balancing technology can be found, amongst others, in [121]. In the current case, the

proprietary connecting end opposes a difficulty, as it requires the manufacturing of a special

adapter that allows one to connect the core bit and the chuck to a balancing machine. To

circumvent this problem, the balancing is done insitu by simply adding balancing weights

at the core bit tip until the first resonance during the run-up disappears. The amount of

extra mass necessary to completely balance the core bit multiplied by the radial distance

to the centerline is then equal to its original imbalance. The procedure is straightforward;

the only problem is determining the angular position to which the balancing weights need

to be added. In the given measurement setup, the rotational speed is acquired by using an

optical probe in combination with a striped tape as described in Chapter 4.1. The so-called

zebra tape has a butt-joint where the two ends come together, providing a reference for an

absolute position in addition to the rotational speed (see Chapter 4.3.1). Following the model

approach of considering the imbalance as a point mass at the tip of the core bit, this reference

allows one to identify the angular position of the existing imbalance. By attaching small

weights with known masses at the opposite side, the core bit can be perfectly balanced, while

simultaneously identifying the imbalance needed as an input parameter for the simulation

model. The green curve in Figure 7.5 shows the results of such an experiment. Insert

position 2 is chosen as a starting point because it contains the smallest natural imbalance of

all three position and therefore requires the least amount of balancing weights. As can be

seen, the first resonance peak during run-up completely disappears with the right amount

of balancing weights. However, the balancing as well as the amount of identified imbalance

is valid only for this one inserting position. The navy blue curve in Figure 7.5 shows the

results for putting the core bit back to insert position 1 after balancing it in position 2: Now

the resonance peak is even higher than in the first place. This means that to identify the

imbalance of the insert positions other than position 2, the extra weights need to be removed

and the procedure needs to start anew.
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In the current thesis, the extra weights are removed for further measurements once the

amount and the angular position of the imbalance is identified. Another option would be to

leave them on, meaning to start with a perfectly balanced core bit and add another extra

weight at a specific angular position of interest.

7.2.2 Run-Down to Identify the Drag Torque

An important parameter with regard to transient rotational speed and with regard to the

torsional behavior of the rotor system is the drag torque. Chapter 5.2.2.3 describes the

considerations and the modeling approach. The idea is now to derive the overall drag torque

experimentally from a run-down of the system and to approximate it by a combination of a

speed-dependent term and a constant frictional torque, as described in Equations 5.6 to 5.8.

The corresponding experiment consists of running up the rotor system, holding it at maxi-

mum speed for a few seconds to stabilize, then shutting off the power supply and letting the

system coast down. Figure 7.6 shows the measurements of the rotational speed, also indicat-

ing the part of the signal that is used for the identification of the drag torque. Based on the

rotational speed Ω, the rotational acceleration Ω̇ is computed by numerical differentiation.

Due to the imperfect butt-joint correction in the rpm-signal described in Chapter 4.3.1 and

due to general noise in the measurements, the signal of Ω̇ requires some smoothing before

further processing can continue. Once Ω̇ is known, the drag torque can be computed with

the following formula,

Td = Θt · Ω̇ (7.1)

in which Θt stands for the moment of inertia of the whole rotor system, transformed on the

rotor at which the rotational speed is measured.

In the next step, a curve-fitting operation is used to approximate the parameters of the drag

torque out of the measured data. According to the assumption mentioned above, in which

the overall drag torque consists of a combination of a constant frictional torque and a part

that linearly depends on rotational speed, the fitting function is simply

Td = bΩ + c . (7.2)

Figure 7.6 shows a plot over time of the run-down, containing the overall drag torque recon-

structed out of the measurements as well as the fitted drag torque, and finally the frictional

and speed-dependent part of the fit. The simple assumption of a constant and a linearly
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speed-dependent component in the drag torque seems to be confirmed, as the correlation

between the fit result and the measured value is very close.
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Figure 7.6: Run-down to identify the drag torque
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Figure 7.7: Measured and synthesized drag torque

In the next step, parameters b and c need to be translated into values that can be used in the

ABAQUS model. According to Chapter 5.2.2.3, the energy dissipation caused by the drive

belts is ignored; their share of damping is surcharged on the bearings. In total, there are eight

ball bearings. Constant c, which represents the friction independent from rotational speed,

is distributed evenly on the eight rolling bearings (two each for the electric drive, the shaft,

the tumble sleeve, and finally the toothed belt disk that drives the shaft, see Figure 3.2).

Constant b, which describes the speed-dependent part of the drag torque, is distributed on

the eight bearings according to their speed ratio. In a more refined approach, one could think

of using the diameter of the bearings, or the diameter of their rolling elements, as a weighting

factor when it comes to distributing the global coefficients b and c. In the current case, this

is not necessary, however. In addition to the measured rotational speed, Figure 7.6 contains

the results of a simulated run-down, showing almost perfect correlation and confirming the
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simplified approach described above.

7.3 Comparing Simulation Results to Experimental Data in Normal

Operation

In the current section, experimental data will be compared to simulation results. The data

that has been discussed so far shows the system during “normal operation”, referring to a

setup of the rotor system in which the clamping force of the force-locked chuck is sufficient

to safely hold the core bit during run-up and run-down. It is possible to exceed the clamping

force by either increasing the imbalance of the core bit, by increasing the tumble angle of

the sleeve or by reducing the clamping force itself. If the clamping force is exceeded, the

system shows strong nonlinear behavior leading to interesting dynamic effects that will be

discussed in-depth in Chapter 7.4.

The comparison between simulation results and experimental data is carried out on the basis

of the dynamic behavior when running up the rotor system. The run-up and run-down in

Figure 7.1 has been performed in a very slow way in order to make the main effects directly

visible in the time signal without any further post-processing. Since the simulation model

uses implicit time-integration to solve the underlying equations of motion, the computational

effort is directly related to the length of the physical event that is to be simulated. Simulating

a run-up over 30 to 40 seconds would take weeks in real time. This is not feasible while the

model might still need updating in operational condition. Moreover, the unmodified serial

machine runs up much faster than shown in Figure 7.1. Therefore, the comparison between

experimental data and simulation results, shown in Figure 7.8 uses a shorter run-up time.

In addition, the system is run-up a little faster in the simulation at the beginning to save

computational time. In the beginning of the run-up, the frequency of excitation falls on

a quasi-static range of the system and no significant effects occur that need to be covered

by the model. The measurements are performed with a different core bit than the one

used beforehand. The current core bit has, by chance, a larger imbalance; however, it is a

coincidence that in the experiment from Figure 7.8, the first resonance peak, which is caused

by the natural imbalance of the core bit, has almost the same amplitude as the second

resonance peak, which is caused by the forced tumbling movement of the sleeve.

The comparison between simulation and experiment shows good consistency. Significant

effort was spent beforehand when setting up the model, i.e. to gain the non-linear stiffness

characteristic of the deep-groove ball bearings and to identify the imbalance of the core bit.
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Figure 7.8: Comparison between simulation and experimental results at the core bit tip

This effort is now paying out. The frequency of the bending resonance is well met by the

simulation model without any further updating. At this point, it is helpful that the shaft

provides the largest compliance in the elastic system, therefore reducing the effects of errors

in modeling the bearing stiffness that provide possibly the largest uncertainty in the model.

The damping of the hand-arm system that has been identified at non-rotating condition,

proved to be too high at the beginning and had to be reduced. Figure 7.8 shows the results

after the updating process. One can easily imagine that the damping of the hand-arm

system could depend on the vibration amplitude at the handles, thereby explaining why

modal measurements with comparably low amplitudes show different results than operational
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measurements, in which the amplitudes are higher by at least a dimension. This is, however,

not further investigated in the current thesis. Generally, it might be a good idea to identify

parameters of the human hand-arm system in operational measurements at realistic loads,

instead of using artificial excitation. This requires a model-based identification approach,

though, for which the given diamond coring systems is too complicated and opposes too

many uncertainties of other parameters than the damping of the hand-arm system.

The fact that the resonance peak caused by the imbalance of the core bit and the peak of the

tumble movement are equally well met in amplitude after updating the damping indicates

that the imbalance of the core bit has been identified correctly by the insitu approach

described in Chapter 7.2.1. It also proves the applicability of the hypothesis to consider the

imbalance as a single point mass at the tip of the core bit.

7.4 Nonlinear System Behavior due to Nonlinear Stiffness

Characteristic

As described in Chapter 3.2.3, the mechanical design concept of the chuck that connects

the core bit to the power-tool is that of a force-locked coupling. In the real-world series

product, the pre-load of the clamping-spring is, in any case, sufficient to safely hold the core

bit and cannot be exceeded in any operational condition. For the sake of the underlying

research, the system has been heavily modified – in the sense of rotordynamics, the system

is intentionally “worsened” by increasing the imbalance or the tumble angle, while at the

same time reducing the clamping force – to intentionally overcome the clamping mechanism

in the chuck during operation to study the rotordynamic effects that will be outlined in this

chapter.

Once the clamping force of the chuck mechanism is exceeded during operation, the immanent

radial play in the chuck allows the core bit to tilt and slip inside the chuck. If this happens

while the system is rotating, both the natural system behavior as well as the excitation show

strong nonlinear characteristics. With regard to the natural system behavior, one has to

keep in mind that the clamping force is generated by a pre-loaded spring. If the spring’s pre-

load is overcome, the stiffness of the system will change abruptly. More generally speaking,

the core bit will be able to perform relative motion with regard to the shaft and chuck,

thereby changing the natural system behavior by adding additional degrees of freedom. This

nonlinear stiffness characteristic of the force-locked chuck will be described in Chapter 7.4.1.

However, exceeding the clamping force of the chuck not only affects the system’s response
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to a given excitation, but also affects the excitation itself. Once the core bit is tilting inside

the chuck, the out-of-balance forces will increase significantly. Therefore, the overall system

behavior will depend on the exact relative motion of the core bit inside the chuck. To be

able to simulate this particular relative motion, it is mandatory to represent the precise

geometry and the exact contact situation of the relevant components in the model, which

is only possible by using 3D solid modeling. This will become even more evident, when

discussing the relative motion of the core bit in the chuck in Chapter 7.4.2.

As a result of the afore mentioned changes in the natural behavior and on out-of-balance

forces when exceeding the clamping force during run-up, a phenomenon could be observed

in which the operational deflection shape adapts to the excitation, or to the rotational

speed, respectively, in order to stay in resonance. This can be described as a mode-locking

effect. Preliminary results have been published in [67]. Essential facts will be repeated in

Chapter 7.4.3, complemented by additional information.

7.4.1 Nonlinear Stiffness Characteristic of Force-Locked Chuck

As described above, the force-locked chuck has the potential to create nonlinear system

behavior. If the pre-load of the clamping spring is exceeded, the axial and the bending

stiffness will decrease significantly. The effect becomes visible by performing the following

virtual experiment in the simulation model at non-rotating condition: A linearly increasing

static force is applied to the tip of the core bit, while providing fixed boundary conditions to

the inner piece of the chuck in the connecting area to the shaft. The simulation is carried out

twice: first with realistic, meaning elastic, material properties, and a second time using an

unrealistically high Young’s modulus to simulate stiffened component behavior in order to

separate elastic effects from the kinematic influence. Figure 7.9 shows the contact situation

inside of the chuck at the end of the experiment, meaning at high lateral forces. Figure 7.10

contains the corresponding load-displacement curves that will be explained in what follows.

The load-displacement curve of the elastic simulation in Figure 7.10 shows two discontinuities

and can be classified as “preloaded piecewise-linear” [47]. The cause for the curve progression

can be explained as follows: In the outlined load case, the rotor is positioned as indicated in

Figure 3.7, meaning that one pin is standing upright above the middle axis of the drive shaft,

while the two other pins are positioned below the middle axis; all three pins together form

a tripod. If a lateral force is now applied on the core bit tip in the direction as indicated by

Figure 7.9, the topmost pin is pulled axially away from the socket in the inner piece of the

chuck, therefore reducing the normal force in the contact. The two lower pins experience
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Figure 7.10: [Sim] Lateral stiffness of core bit inside the chuck (load-displacement curve)

quite the opposite, as they are pressed stronger on the sockets of the inner piece of the chuck.

When the lateral force on the core bit grows large enough, at a certain point, the axially

clamping force can no longer hold the topmost pin, and it is lifted off from the socket, causing

the core bit and its connecting end to tilt inside the chuck. The excess of the clamping force

creates the first discontinuity in the load-displacement curves. With a further increase of the

lateral force, the tilting goes on until the upper rear end of the connecting end of the core bit

makes contact with the inner piece of the chuck. Figure 7.9 shows the corresponding contact

situation and also the stress distribution in the case of the elastic simulation. As the force

increases further, the rotor will slip radially (“downward”) inside the chuck until the radial

clearance is used up and the lower front of the core bit’s connecting end comes into contact

with the inner piece of the chuck. The radial slipping creates the second discontinuity in the

load displacement curves. In the curve of the stiffened simulation, the slipping can be seen
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more clearly than in the elastic simulation. After that, the stiffness level is back to almost the

same level as at the very beginning, as the overall stiffness is then dominated by the bending

stiffness of the tube-like part of the core bit. To compute the load-displacement curves in

Figure 7.10, fixed boundary conditions are applied to the chuck, neglecting the compliance

of the rest of system, especially that of the shaft. By taking into account the elasticity of the

whole system, the discontinuities in the presented load-displacement curve will be softened

significantly, depending on the stiffness relation. However, at this point, it is important to

notice that the difference between the stiffened and the realistic load-displacement curves

is not only caused by the bending stiffness of the core bit and the single components of

the chuck, but is rather caused by the three-dimensional interaction of the whole clamping

mechanism, including slipping.

Thinking in terms of a beam-element model: If the core bit would only tilt inside the chuck,

it would be conceivable to represent the force-locked chuck as an elastic link with a nonlin-

ear stiffness characteristic. However, due to the “tripod-kinematics”, the resulting stiffness

depends on the angle relative to the three connecting pins under which the (lateral) load

acts on the core bit. This increases the necessary effort to derive the stiffness formulations

to an unrealistically high level. Furthermore, each time the core bit slips in the chuck, the

kinematics change, leaving it virtually impossible to cover all possible contact situations dur-

ing operation. Therefore, the connection between core bit and chuck cannot be represented

by a beam-model, but rather requires 3D solid modeling due to the complex geometry and

kinematics. The model approach chosen in this thesis allows one to correctly represent even

large and complicated relative movement, as will be seen in subsequent sections.

So far, the nonlinear stiffness characteristic has been discussed under the use of a purely

statical virtual experiment. Another way to research nonlinear behavior in the current case

is to perform a linearity test using i.e. hammer excitation while the system is not rotating.

Figure 7.11 shows accelerance FRFs taken at the core bit tip using different levels of impact

force. Applying increasing force levels to the tip of the core bit results in splitting up a former

single resonance peak into two peaks, one at a higher and one at a lower frequency than the

original peak. The corresponding mode shapes of the two peaks are identical and do not

differ from the shape at a very small force. This dynamic behavior matches the nonlinear

but piecewise-linear lateral stiffness characteristic of the chuck-rotor-subsystem well, which

is reported in Figure 7.10.
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Figure 7.11: [Sim] Accelerance FRFs taken at the rotor tip with varying levels of excitation
force

7.4.2 Nonlinear System Behavior Due to Relative Motion of the Core Bit in the

Chuck During Operation

The previous section deals with the nonlinear stiffness characteristic of the force-locked chuck

in general and shows that the core bit can tilt inside of the chuck under the presence of lateral

forces, thereby creating a significant misalignment between the axis of rotation and the center

line of mass distribution. So far, the discussion was limited to non-rotating conditions. The

current chapter addresses the question of what will happen, if the clamping force is exceeded

and the tilting occurs while the system is undergoing a run-up, or more generally speaking,

while the system is under rotation.

As already discussed in Chapter 2.1, any lateral displacement with regard to the spinning

axis of a rotor will even further increase the out-of-balance forces. This means that any

real-world rotor is nonlinear to a greater or lesser extent. What makes the current rotor

system so special is the strongly nonlinear stiffness characteristic in the lateral direction,

which can result in a tilting movement of the core bit, thereby causing a “jump” in the

lateral displacement and, at the same time, in the out-of-balance forces. To provoke the

tilting of the core bit in the chuck, the pre-load and the stiffness of the disk spring pack is

significantly reduced. By doing so, this also reduces the amount of a lateral force needed to

overcome the axial clamping force on the connecting pins of the core bit. The lateral force

can now be tuned by increasing the tumble angle ϕ of the sleeve or by adding additional

imbalance-mass at the tip of the core bit. For the following experiment, the latter was done.

Figure 7.12a shows the results of a slow run-up by plotting in the upper graph time signals
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of the vertical displacement of the rotor tip relative to the housing, as well as the rotational

speed of the drive shaft. The corresponding orbit plot (as seen from the housing towards

the core bit) for the marked time window is presented in Figure 7.12b.
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Figure 7.12: [Meas] Vertical displacement of core bit tip relative to housing during slow run-
up with additional imbalance mass at tip

The course of events is as follows: The machine is started and held at low rpm, meaning well

beneath the first critical speed. The rotational speed is held constant for a few seconds until

the rotor system has stabilized. Then, the actual (slow) run-up starts. As can be expected,

the displacement amplitude at the core bit tip increases with increasing rpm as a result of

the imbalance excitation. At a certain rotational speed, the imbalance force, acting laterally

on the core bit, has reached a level at which the clamping mechanism can no longer hold

the core bit in place. It tilts until the radial clearance is used up. The tilting occurs very

109



7 Simulation and Experimental Results

abruptly; the whole event takes place in only two rotations, as can be seen in the orbit plot.

The result of the tilting event is a massive increase in the displacement amplitude of the core

bit tip; the increase is roughly around the factor of four. When comparing the displacement

of the core bit tip to the acceleration at the rear handle, it becomes evident that the increase

in amplitude of the core bit is not due to kinematics, but rather is the system’s response to

a significant increase in the out-of-balance forces, as the acceleration amplitude at the rear

handle increases by the same amount as that of the core bit. After the tilting occurred, the

rpm is further increased, leading to an increase in amplitude, as can be expected from an

imbalance excitation. The system does not return to its original configuration and the run-

up needs to be aborted because the amplitudes grow too large and endanger the structural

integrity.

Before looking at further experimental or simulation results of the current rotor system, the

effects of such a discontinuity in the lateral displacement shall be discussed on a more abstract

level by using the model representation of a flexible jeffcott rotor exposed to imbalance

excitation while running up through a bending resonance. For the sake of simplicity, the

jeffcott rotor is supposed to show no gyroscopic behavior.

As outlined in Chapter 2.1, a small imbalance can be treated under certain circumstances

as an external force in which the amplitude is equal to the amount of imbalance times the

square of the rotational speed. The rotor response to an arbitrarily chosen imbalance Û0

is represented by the blue curve in Figure 7.13. In a rotor with linear stiffness, ten times

the amount of imbalance Û0 would simply result in a response that is ten times higher,

represented by the dashed red curve. If, however, the lateral stiffness of the jeffcott rotor

contained a similar discontinuity as the current working example of the diamond coring

system, the radial displacement would suddenly increase when reaching the corresponding

rotational speed. To keep a linear model representation, the simplest way of dealing with

the sudden shift in radial displacement is to interpret it as an increase in imbalance. In

Figure 7.13, the dotted red line marks the corresponding rotor response curve, assuming

that the initial imbalance of ten times Û0 doubles due to the shift in radial displacement. As

a result, a rotor with imbalance 10 · Û0 would start the run-up on the corresponding curve

(dashed red) and would jump to the response curve of a rotor with 20 · Û0 (dotted red) when

reaching the threshold in lateral stiffness. The combined response curve is represented by the

solid red line. In this specific case, the rotor would never return to its original configuration

once the radial shift (or tilting) has occurred, because even in the overcritical speed range

where self-centering occurs, the resulting displacement and therefore the out-of-balance forces
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7.4 Nonlinear System Behavior due to Nonlinear Stiffness Characteristic

are still above the threshold line of the returning forces. This is exactly what happened in

the experiment presented in Figure 7.12, in which the run-up had to be aborted in order not

to endanger the structural integrity of the rotor system.

The idea for further experiments on the diamond coring system is to tune the lateral forces

so, that during the resonance-crossing, the clamping force of the chuck is exceeded and, at the

same time, stays within a reasonable range of elastic bending to ensure the safety of the tool

and the human operator. Furthermore, in the overcritical range, the out-of-balance forces

shall fall below the threshold line, as indicated by the green and teal curves in Figure 7.13.

The question is how the core bit will behave in such a case and whether it will return to

its original configuration in the chuck. Even more important than that are the questions of

whether the simulation model is capable to correctly represent this strong nonlinear dynamic

behavior and whether a commercial standard FEM code is capable of dealing with the rather

complex contact situation under rotation. This will be the focus of the next section. As

can be expected, the behavior of the real-world diamond-coring system is a little more

complicated than the theoretical considerations made above.
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Figure 7.13: Theoretical imbalance response of a Jeffcott rotor with nonlinear lateral stiffness

7.4.3 Mode-Locking Effect

For the following experiments, either the imbalance of the core bit or the tumbling angle of

the sleeve, as well as the stiffness and pre-load of the chuck’s clamping spring, have been
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carefully tuned in such a way that the pre-load will be exceeded upon crossing the first

critical rpm, causing the core bit to tilt inside the chuck, as described above. But when

leaving the critical speed, the axial force on the chuck is meant to fall below the pre-load

of the clamping spring, allowing the chuck to “close” again, thereby returning the core bit

to its original position. The idea behind the experiment is to create strong nonlinearities

that cause jump-behavior, as described in previous sections, that can act as a test case for

the simulation approach. However, it turned out that the core bit “refuses” to return to

its original position once the tilting occurred and instead performs a certain relative motion

inside the chuck, which allows it to stay in resonance even if the rotational speed no longer

matches the natural frequency of the system. This is a phenomenon known only in nonlinear

rotordynamics, and which some authors call mode-locking [140]. As will be seen, the 3D solid

modeling approach is even capable of correctly representing both effects, the tilting of the

core bit and the mode-locking. However, before discussing the results, the next paragraph

describes a necessary change in the experimental setup.

When deliberately exceeding the clamping force in the chuck during run-up, the line between

creating the intended effect and turning the system unstable is very thin. The presence of

the sensor support rig constitutes another problem in this context, as it limits the available

space for the core bit to deflect laterally. If the core bit touches the rig during operation, the

result is a catastrophic failure of the rotor system. Therefore, the measurement setup with

the sensor support rig is considered too dangerous for experiments with increased imbalance

or increased tumble angles ϕ. As a consequence, the sensor support rig is removed and

the tool is no longer hand-held during the run-up, but is held by a mechanical support, as

shown in Figure 4.4 of Chapter 4.1.2. The lasers that measure the core bit motion are placed

“on the ground”, allowing for a larger distance to the rotating core bit. As a consequence,

the lasers now measure the displacement in the inertial reference, instead of the machine

coordinate system. Of course, one could always transfer the results into each other, as the

movement of the machine is synchronously measured by several accelerometers. However,

using absolute coordinates has the advantage that the mode-locking effect shows a better

visual appearance in the data, as shall be seen.

7.4.3.1 Mode-Locking Effect Due to Increased imbalance

Figure 7.14 shows, in the familiar plot shape, the relative displacement of the core bit when

running through the first critical speed with an added imbalance mass at the core bit tip.

Crossing the resonance influences both, the displacement amplitude as well as the rotational
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7.4 Nonlinear System Behavior due to Nonlinear Stiffness Characteristic

speed of the rotor system. With the help of the simulation model, the data can be interpreted

as follows: When the pre-load is exceeded at a certain rotational speed, the rotor is tilting

inside the inner piece of the chuck until the radial clearance is used up. The discontinuity in

the lateral stiffness, in combination with the sudden increase of rotor imbalance due to the

now heavily misaligned core bit, causes a jump in the displacement of the rotor, leading to

a large increase in amplitude. Although the electric engine driving the machine is relatively

stiff, the sudden rise of the drive shaft’s moment of inertia causes the rotational speed to drop

significantly due to the principle of conservation of angular momentum. Since the voltage

of the electric engine is linearly increased during the run-up, the rotational speed stabilizes

and starts to increase again. When the rotational speed is about to exit the resonance area

around the critical rpm, the displacement of the rotor slowly starts to decrease and then

suddenly collapses, followed by a modulation that slowly dies out with a further increase

of the rotational speed. The decreasing lateral rotor displacement leads to a decrease in

the moment of inertia, causing the rotational speed to overshoot. The phenomenon of the

fluctuating rotational speed during the crossing of a bending resonance is known as the

Sommerfeld Effect [28] and is caused by the principal of conservation of angular momentum

in combination with a nonrigid electric engine. In the case outlined here, the effect is

amplified by the tilting of the core bit and by the return into its original position. The

sudden collapse of the displacement amplitude happens as planned when the axial force on

the connecting pins of the core bit once again becomes small enough for the clamping force

to pull it back to its original position. However, the appearance of the modulation is quite

surprising and calls for further discussion.

At first glance, the modulation in Figure 7.14 reminds of a known beating phenomenon

that occurs when a rotor with gyroscopic behavior is run up through the first critical speed.

Figure 7.15 shows the results of an academic example. “The beating phenomenon arises

because the gyroscopic effects cause the lowest pair of resonances to split. In steady state,

the imbalance excites only the forward-whirling mode; however, during the run-up, the steady

state is never achieved, so both modes are excited” [33]. Disregarding the Sommerfeld-Effect,

which is neglected in the academic example, the two Figures 7.14 and 7.15 appear to be quite

similar, at least in a qualitative way. However, the modulation of the rotor system regarded

in the underlying thesis is not caused by mode-splitting but has a different origin.

Due to the tilting, one connecting pin of the core bit is lifted off from its socket in the inner

peace of the chuck, as shown in Figure 7.9 for a statical situation. Which of the three pins

gets lifted off during operation depends on the angular position of the (artificially increased)
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Figure 7.14: [Meas] Vertical displacement of rotor tip relative to housing during slow run-up
with additional imbalance mass at core bit tip
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6.8.2 An Iterative Approach

When the system matrices arc not independent o[ speed, the direct method can

not he used tu determine the critical speeds and must 1w replaced hy an iterative
search. In this method, the first eritical specd is csiimated as ‘Ehen, K(Q°>),

S2°G C(Q°), and M(Q°) arc determined and thc eigenvalues s1 arc computcd
[rom Equation (5.113). We now ohtain a new estimate ul‘ the (irst criticai speed
as = Z(si). The process is repeated with this ncw estimate of the lirst crilical

speed, until satisl‘actory convergence is ohtaincd. ‘I‘he Camphell diagrarn rnay
he used 10 choose initial estimates of the critical speeds and 10 ensure that no criticai
speeds were missed. The ileralive procedure relines these estimates. Example 6.8.1
illustrates this process in action and convergence is gcneraily very fast. Fligher crit
ical speeds arc ohtaincd hy chousing thc ilnaginary parts of the higher eigenvalues
as a hetter approximation 10 the critical specd al cach iteration.

6.8.3 Features of Critical Speeds

The critical speeds ui rotating systems have a numher ui irnportanl features, many
ofwhich arc similar to the t‘eatures of natura! frequencies descrihed in Section 5.8.1;
therefore, they arc not repeated here. In a cyclicafly symmetrical rotor with isutrupic
support characteristics, the criticaL speeds occur in pairs, each corresponding tu a
set of four eigenvalues. These critical speeds separate due to hearing and support
anisotropy and gyroscopic effects. Often, when engineers discuss the firs! eritical

speed of a machine, they arc relerring to a pair ol‘ criticai speeds, correspunding tu

l‘our roots of the characteristic equation.
In Example 6.3.1., the rotational speed causcd changes in the calculated natura!

frequencies of the System. ‘l‘hese changes arise hecause gyroscopic couples incrcase
the resunance frequencies ol‘ the forward-whiriing mudes of the machine and the
same gyroscopic couples reduce the frequencies uL the backward-whirling modes.
In general, rotating mach ines have severai et‘i‘ects (hat can cause system matrices tu

depend on speed, as descrihed in Chapter 5. These features arc now demonstrated
using an example.

EXAMPLE 6.8.1. Consider the mode! ei a simple uverhung rotor, 1.5 n long with
hearings at 0.() m and 1 Dm, and shown in Figure 6.49. The hearings arc short
in that they present insigniiicant angular stitTness tu the shaft, hut they prescnt
(inite transiational stiffness. The shaft is 25 mm in diamcter and thc disk at the
overhung end is 250 mm in diameter and 40mm thick. The shaft and disk arc

Stiffness (MN/m) Damping (kNs/m)

(‘ase k,, k, c,, c,,

1 10 10 0 0
2 10 20 0 0
3 ID 20 6D 60
4 10 20 400 400
5 0.2 0.4 0 0

made ofsteel, and a mass density p = 7,8lOkg/m3,a modulus ofelasticity E =

211 GPa, and a Poisson‘s ratio of 0.3 arc assumed. Several different variants
of this system arc considered in which the differences lie in the hearing (and
hearing-support) properties, shown in Table 6.3, and the steady rotational speed
of the shaft. Calculate the eigenvalues for various rotor spin speeds and estimate
the critical speeds for unhalance excitation.

Solution. Comhining the geometrie and material properties of the shaft gives
EI = 4,046Nm2,GA = 39.84MN, and pA = 3.83kg/m. The disk has a mass
of rn = 15.3 kg, a polar inertia of 1,., = 0.120 kg m2, and a diametral inertia of
1,, = 0.062 kg m2. The shaft is split into six equal-length elements, giving a model
with seven nodes and 28 degrees of freedom. Tahle 6.4 lists the characteristic
roots for a selection of hearing characteristics and rotor spin speeds.

The damping in the hearings is sufficiently large in hearing cases 3 and 4
such that some pureiy real characteristic roots exist. Whenever the right-hearing
characteristics arc set to those of case 3, two real roots at approximately —169
and —340 arc found. Whenever the right-hearing characteristics arc set 10 those
of case 4, the two real roots change 10 approximately —25 and —50. These real
roots arc not listed in Tahle 6.4.

Tahle 6.4 illustrates the important points ahout the eigenvalues of a rotating
machine discussed previously and in Section 5.8.1. The effect of the support

Pair of Roots (rad/s)
Speed
(rev/min) Left Right First Second Third Fourth

0 1 i 0 ± 44.28, 0 ± 44.28, 0 ± 397.6,‘ 0 ± 397.6,‘
0 2 2 0 ± 44.281 0 ± 44.36, 0 ± 397.6j 0 ± 400.2,‘
0 2 3 —0.038±44.291 —O.OIO±44.36j —1.220±400.6, —0.851 ±401.2,
0 2 4 —0.066±44.39, —0.038±44.40, —0.211 ±401.1, —0.209±401.9,
0 5 5 0±5.983,, O±6.465j 0±36.01j O±44.86j

1,000 1 1 0±42.22,‘ 0±46.35,‘ O±389.9j
1,000 2 3 —0.020±42.26, —O.O28±46.40j —0.619±392.0, —1.358±406.6,‘
2,000 2 3 —0.017±40.22, —0.033±48.47,‘ —O.l9O±Y77.9j —1.605±410.3,‘
3,000 2 3 —0.139 ± 38.23, —0.039 ± 5D.5lj —0.0004 ± 357.3j —1.786 ±4l3.Oj
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1.0 m 0.5m j

Figure 6.49. The overhung rotor (Example 6.8.1).

6.8 COMPUTING CRITICAL SPEEDS 279

Tahle 6.3. The bearing and support characteristicsfor
tue rn‘erhung rotor (Exaniple 6.8.1) (All cross terrns
arc zero)

1

Table 6.4. Characierisüc roots coniputed for a number ofconfigurations (Example 6.8.1)

Note: The IeFt/right eolumns refer to the bearing eharacteristics in Table 6.3; real eigenvalues are not
Iisted.
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Figure 6.58. Maximum response. II. as a function of runup acccleration. ‚ tor ß = 0, 0.2,
and 0.4, and with = 0.

(Hz/Hz). Then, if the shaft is accclerating at 10 Hz/s, the System resonance is mov
ing upward at 2 Hz/s and the effective acceleration is approximately 8 Hz/s. Thus,
11w effective acceleratiun might be delined as 11w rate at which the gap hetween
System resonance and shaft speed is changing.

Consider the symmetrical rigid rotor on flexible supports in Equation (6.69).
Suppose that near the critical speed, the natural frequency may he approximated as

a linear function of rotor speed, so

= (w — flW(. + fl)) (6.74)

where v1 is the critical speed, w,, is the speed-depcndcnt natural frcquency. and fl is
the siope of the Camphell diagram at the critical speed. Substituting this mb Equa

tion (6.70) and assuming a constant rotor acccleration given hy Equation (6.71), the
transformed equation of motion equivalent tu Equalion (6.72) is

+2 + (1
— ß +&ßt)2=(2r2 — ‚&) ej2 (6.75)

t = Wt and = - (6.76)
(t)

Figure 6.58 shows the variation of peak response atlained as a fund Ion ol runup

aceeleration, c, for ß = 0, 0.2, and 0.4, with zero damping. The prcvious argument
suggests that the effective & is

etf (1
— ß) (6.77)

and Figure 6.58 shows [hat this is a reasonahle approximation.

For cornplicated rotor systems, it is possihle tu integrale the equations ol motion
tu ohtain the tirne response in much the same way as tor 11w simple system shown in
Figure 6.56. Speed-dependcnl bearing properties arc casily incurporated hy chang

ing the linear stiffness and damping matrices as the shatt speed varies. Flowever,
even for models of small size ur for large models reduced in sizc, the numeiical
integration hecomes computationally expensive.

Time (s)

Figure 6.59. The runup through the lirst resonance for the overhung rotor (Example 6.11.1)
with a = 0.10 Hz/s.

For very large machines (e.g., power-station turhines), the runup or rundown
is very slow, typically taking of the order of 20 minutes. With such a slow runup or
rundown, the unhalance response may he taken as the steady-state response, defined
as the quasi sleady stute, which may he computed efficiently in the frequency domain.

Gasch et al. (1979) show that the effect of the torsional flexihility of the shaft on
the lateral vibration during runup is negligihle. Genta and Delprete (1995) consider
the effect of the variable rotor spin speed on the model of the machine. Goodwin
et al. (1984) and Wauer and Suherman (1998) consider using a variable support
stiffness tu suppress the vihrations of flexible rotor Systems passung through critical
speeds.

EXAMPLE 6.11.1. Consider the overhung rotor of Example 6.8.1, with hearing
characteristics given hy case 4 in Tahle 6.3 and an unbalance of magnitude
i0 kg m on the disk. Caiculate the response as the machine is run up through
the first critical speed with constant acceleration for the two cases a = 0.10 Hz/s
and = 0.40 Hz/s.

Solution. The machine has 28 degrees of freedom and only the lower-frequency
dynamics hecome excited hy the unbalance force. However, the time step
must he determined hy the highest natural frequency of the machine (see Sec
tion 2.6.1). Thus, a larger step size may he used if the model is reduced and only
the lower frequency modes arc retained. This also has the advantage that the
size of the model matrices is reduced. Hence, the 28 degrees of freedom is re
duced to four degrees of freedom using a transformation based on the lowest
four modes ohtained by neglecting damping and gyroscopic effects (see Sec
tion 2.5). Figures 6.59 and 6.60 show the response at the disk for u = 0.10 and
0.40 Hz/s, respectively, starting at a rotor Spin speed of 4Hz, or 240 rev/min.
Clearly, the response is reduced hy running through the critical speed more
quickly. The heating phenomenon arises hecause the gyroscopic effects cause
the lowest pair of resonances 10 split. In steady state, the unhalance excites only
the forward-whirling mode; however, during the runup, the steady state is never
achieved, so hoth modes arc excited.

rotor and bearing parameters
shaft diameter 25 mm mass density 7810 kg/m3

disk diameter 250 mm modulus of elasticity 211 GPa
disk thickness 40 mm Poisson’s ratio 0.3
imbalance 10−3 kg·m vertical bearing stiffness 10 MN/m
run-up speed 10 Hz/s horizontal bearing stiffness 20 MN/m

bearing damping 400 kNs/m

Figure 7.15: Academic example of a beating phenomenon during run-up of an overhung rotor
on anisotropic supports (from [33] with permission of Cambridge University
Press)
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7.4 Nonlinear System Behavior due to Nonlinear Stiffness Characteristic

imbalance. Due to the imbalance excitation, the rotor is in forward whirling motion when

approaching the critical rpm, the whirling frequency being equal to the rotational frequency

of the drive shaft. During the forward whirling, the drive shaft does not see alternating

bending cycles. This means that in a coordinate system that is rotating with the shaft,

an observer would see a purely statical bending. The gap between the lifted off connecting

pin and its corresponding socket, is not breathing. One could also say, that the whirling

frequency of the drive shaft is the same over its entire length. This is changed at a certain

rotational speed, marked by the occurrence of the modulation in Figure 7.14, at which the

core bit suddenly starts to perform a relative movement inside of the chuck. In a coordinate

system that is fixed to the chuck, the core bit starts to perform a backward-whirling motion.

This relative motion consist of an elastic bending of the core bit, but also includes a rolling

motion of the connecting end inside of the chuck. During that relative backward-whirling,

the gap between connecting pin and socket travels tangentially from one pin to the next,

in opposite direction of the sense of rotation of shaft and chuck. However, the core bit

is not twisting against the chuck. The relative backward-whirling motion of the core bit

creates a situation, at which all components of the drive shaft are still rotating at the same

rotational speed, but the whirling frequency is no longer the same over the entire length.

Shaft and chuck perform a forward-whirling motion with a whirling frequency that is equal

to the rotational frequency. In an inertial coordinate system, the motion of the core bit is a

combination of the forward-whirling forced by the chuck and the relative backward-whirling

inside of the chuck. The relative backward whirling of the core bit appears at a much lower

frequency than the forward whirling of shaft and chuck. As a result, the overall motion of

the core bit in the inertial frame is still forward-whirling, but at a lower speed than the

whirling frequency of shaft and chuck, which is equal to the rotational speed of the drive

shaft. In fact, it turns out that the backward-whirling frequency of the core bit relative to

the chuck is equal to the difference between the variable rotational frequency of the shaft and

the constant natural bending frequency of the whole rotor system. This means that the core

bit is still moving with the resonance frequency of the rotor system, although the rotational

speed has already increased to a higher level. The combination of the two movements – the

rotation of the chuck and the relative backward-whirling motion of the core bit within the

chuck – allows the rotor system to stay in resonance, even if the spin speed of the shaft

no longer matches the natural bending frequency. The two different whirling frequencies of

the different components are the cause for the beating phenomenon, or modulation, as it

is called above. In other words: the operational deflection shape adapts to the excitation

frequency to stay in resonance. As mentioned before, this phenomenon can be called a
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mode-locking effect [140]. The modulation frequency is given by the difference between the

constant whirling frequency of the core bit (in the inertial reference) and the increasing

rotational frequency of shaft and chuck, therefore increasing likewise. The mode-locking

effect is best observable in a Campbell diagram. Figure 7.16 provides the relevant plot of

the rotor displacement (measured data), showing the resonance staying on, even when the

rotational speed no longer matches the natural frequency of the first bending mode.

mode-locking
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Figure 7.16: [Meas] Campbell diagram of vertical displacement of rotor tip (absolut) during
slow run-up with additional imbalance mass at rotor tip

7.4.3.2 Mode-locking effect due to increased tumble angle ϕ

For the occurrence of the mode-locking effect, it is essential to temporarily exceed the clamp-

ing force in the force-locked chuck. In the previous section, the mode-locking effect has been

provoked by using an additional imbalance mass at the tip of the core bit. Apart from adding

an imbalance to the core bit tip, the clamping force can also be exceeded by increasing the

tumble angle ϕ of the sleeve. As will be seen, this leads to basically the same effect as

described in the previous section.

Figure 7.17 shows the results of the experiment in the form of a Campbell diagram, yet

as mentioned in the previous paragraph, there are two important differences compared to

Figure 7.3. First, the measurements in the current experiment are carried out without

the additional sensor test rig. Therefore, the mass and the moment of inertia of the non-

rotating part of the system is smaller, resulting in a higher natural frequency of the first

bending mode. The second difference to the experiment in Chapter 7.1 is the following:

While Figure 7.3 shows the displacement of the rotor tip relative to the housing of the
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machine, the displacement in Figure 7.17 is measured in an absolute coordinate system.

This makes the visual appearance of the mode-locking effect much clearer. If the mode-

locking effect occurs during run-up, the system stays in resonance, even if the excitation

frequency – in this case, the rotational speed of the tumble sleeve – no longer matches the

natural bending frequency. In an absolute coordinate system, this effect appears as a vertical

line in the Campbell diagram, as can be clearly seen in Figure 7.17. Once the mode-locking

occurs and the spin speed is further increased, the speed of the backward-whirling increases

likewise – making the backward-whirling frequency the difference between the spin speed

of the tumble sleeve and the natural bending frequency of the whole rotor system. The

backward-whirling frequency is supposed to appear at the top left of the Campbell diagram

as a line parallel to the first order of the sleeve, but with an rpm offset equal to the critical

rpm. In Figure 7.17, one can only imagine the line of the backward-whirling, because it is

overlaid by low frequency motion resulting from rigid body movement of the machine inside

of the support.

Speaking about the influence of the changed support conditions of the machine: Figure 7.17

shows a resonance at around 17 (normalized) Hertz that was not present while the tool was

hand-held. This is a resonance of the machine on the mechanical support. The reason why

no support resonances have shown up in the Campbell diagram so far, while the system was

operated hand-held, is the following: The machine’s electric engine cannot operate stably at

very low rotational speed, which can also be seen in Figure 7.1. The support resonances of

the hand-held machine are below the stable minimum operational speed and are therefore

crossed rather fast, whereby no large resonance amplitudes occur. This is why they have not

shown up in the Campbell diagram so far. But with the stiffened support, the frequency of a

rigid body mode lies close to the stable minimum operational speed, causing comparatively

large amplitudes, which can be seen in the lower left of Figure 7.17. However, the structural

resonances – caused by the imbalance of the core bit and by the tumbling movement – are

left almost unaffected by the changed support conditions, since they are more then two times

higher in frequency.

7.4.4 Evaluation of the 3D FE-Simulation

Representing the mode-locking effect and the relative motion between the connecting end of

the core bit and the chuck in the simulation model presents a challenge in many ways. First

of all, the model must be able to correctly describe the global dynamic system behavior,

which is confirmed in Chapter 7.3.
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Figure 7.17: [Meas] Campbell diagram of vertical displacement (absolute) of rotor tip during
run-up with increased tumble angle ϕ

Second, an adequate model approach must be found for the connection between chuck and

core bit. In the current case, the model of the chuck consists of a mixed approach that

contains 3D solid parts of the inner and outer piece, while the disk spring pack is represented

by lumped masses and a massless spring using the connector functionality in ABAQUS.

Contact definitions are established between the two-piece chuck and the connecting end of the

core bit. Implementing the model requires the correct identification of several parameters,

like the pre-tension force of the disk spring pack as well as the friction coefficients and

damping values in the contact definition.

The third challenge arises from the immense computational effort resulting from the contact

algorithms: When the clamping force is exceeded and the core bit performs a relative move-

ment inside the chuck, the real time needed to solve the model for a single run-up almost

doubles. This creates a problem insofar as it limits the number of computational cycles that

can reasonably be used to improve the quality of the results by updating the model with

data obtained in operational measurements.

Especially because of the last point, the model has been developed from the bottom up,

meaning that the model representation of single parameters, components or sub-systems

have been validated individually to minimize the uncertainty in the model. This rather

elaborate approach has now paid off, as the simulation results represent the mode-locking

effect well and enables one to study the phenomenon in a detailed way, which would not be

possible with solely experimental data. This is due to the fact that the rather small size of

the chuck and its high rotational speed during operation simply do not allow one to place
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7.4 Nonlinear System Behavior due to Nonlinear Stiffness Characteristic

enough and adequate sensors to catch the exact relative movement between the two-piece

chuck and the connecting end of the core bit – at least not without changing the system

behavior due to the added mass. Due to these limitations in experimental observability

of the relative movement between core bit and chuck during the mode-locking effect, a

final quality assessment of the simulation model is not a simple task. However, the global

behavior – expressed by the displacement of the tip of the core bit, for example – seems to

be represented quite well by the model, as will be described in what follows.

Figure 7.18 offers a comparison between the simulation and experiments for the case in

which the clamping force is exceeded by added imbalance at the core bit tip. The plot

compares rotational speed and the (vertical) displacement of the core bit tip relative to the

housing during a run-up with increased imbalance. The simulation model represents the

effects that are observable in the measurements well. One criterion to evaluate the quality of

the simulation model is the rotational speed at which the pre-load of the chuck is exceeded

and the core bit starts to tilt inside the chuck. The tilting in the simulation occurs at the

same rotational speed as in the measurements and the modulation in displacement of the

core bit due to the relative backward whirling motion is well addressed by the model.
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Figure 7.18: Comparison between simulation and experimental results at the core bit tip
with additional imbalance mass

However, there are some minor differences between simulation and experiment: The reso-

nance amplitudes are slightly larger in the simulation and the tilting of the core bit occurs

more abruptly. The most obvious explanation lies in the model simplification of the pre-

loaded disk-spring pack providing the axial clamping force of the chuck. In the model,
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7 Simulation and Experimental Results

the load-displacement curve is idealized by representation in the form of a linear elastic,

pre-loaded spring connected to perfectly rigid adjacent bodies. This creates a linear load-

displacement curve with a vertical offset in the amount of the pre-load. In reality, how-

ever, such a sharp edge in the load-displacement curve does not exist, as indicated for the

case of the axial stiffness of the chuck by Figure 5.10, which contains measurements on a

compression-tension machine. More uncertainty arises from the friction coefficients, which

are taken from the literature according to the combination of materials.

Another reason for discrepancies might be the fact that the FE-model is based on the nominal

geometry, while the real-world parts are subjected to tolerance variations. A small variation

in either the inner diameter of the inner piece of the chuck or in the outer diameter of the

connecting end influences the radial play between the two parts. Due to the nonlinearity

of the system, small changes in the range of a few hundreds of a millimeter could lead to

observable changes in amplitude.

Other than adding imbalance mass to the core bit, an increase of the tumble angle of the

sleeve can also lead to exceeding the clamping force of the chuck. In this case, it makes sense

to perform the comparison between simulation and experiments in the frequency domain by

using a Campbell diagram. Figure 7.19 shows the simulation results corresponding to the

measurement data in Figure 7.17. The plotted physical quantity is the vertical displacement

of the core bit tip – this time measured in an absolute coordinate system. Since the simulation

is run-up faster at the beginning due to computational resources, the resonances of the

supporting stand are crossed so fast that no recognizable amplitudes occur. Apart from

that, the simulation results are again in good accordance with the measurements and the

mode-locking effect is clearly visible. Differences are a result of the fact that after crossing

the resonance, which is caused by the tumble excitation, the amplitudes in the simulation

are higher than in the measurements, but the mode-locking fades out faster and terminates

at lower rotational speed. Tolerance variations in the geometry of the real parts compared

to the nominal shape in the model could be part of the explanation, as mentioned above.

Another source for discrepancies could be the friction coefficient used for the contact between

the connecting end of the core bit and the coupling, which was taken from the literature

according to the combination of materials.

Confidence in the simulation model is further increased when certain marks at the connecting

end of the core bit are analyzed after experiments in which mode-looking occurred. During

the relative backward-whirling motion, the pins of the connecting end of the core bit are

lifted off from the inner piece of the chuck and returned back, according to the whirling. In
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Figure 7.19: [Sim] Campbell diagram of vertical displacement (absolute) of rotor tip during
run-up with increased tumble angle ϕ

doing so and in accordance to the simulation, the pins can eventually hit the chuck during

the backward whirling as indicated in Figure 7.20, in which the edge of the pin makes contact

with the skew surface of the corresponding socket of the chuck. After the experiment, marks

were found at the rotor pins that can only result from the described contact situation. This

is a strong indication that the simulation appears to correctly describe the overall system

dynamics during the mode-locking effect.

Figure 7.20: Contact situation between core bit and chuck during relative backward whirling

Apart from minor differences between experimental data and simulation, the fact that the
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7 Simulation and Experimental Results

simulation model is capable of describing the relative backward-whirling motion of the core

bit inside of the chuck during the mode-locking effect proves the real value of 3D solid

modeling against using classical beam models. In the latter, the interface between core bit

and chuck needs to be formulated as a three-dimensional joint. The geometry of the parts

involved (the connecting end of the core bit and the two-piece chuck), however, is rather

complicated, containing lots of slants and chamfers, while, at the same time, the relative

motion is a mixture of rolling and sliding, continuously changing the contact situation and

constituting highly nonlinear system behavior. This makes it virtually impossible to derive

the stiffness and damping matrices describing the interface as a three-dimensional joint in a

beam-model in a sufficiently precise manner.

The material behavior in the current simulation model is purely elastic, but could be ex-

tended to plastic material behavior at the expense of higher computational costs. A finer

mesh at the contact zone would then also be necessary, further increasing computational

costs. However, even at the current state, the model is able to represent the complete loss of

the core bit during a run-up due to excessively added imbalance or increased tumble angle,

thereby creating reacting forces that the system cannot handle anymore. A beam model

would not be able to represent this amount of nonlinear behavior. Generally speaking, the

stability of the contact algorithms turns out to be astonishing. This creates the possibility

to evaluate different variants of interface between core bit and chuck with regard to “fail-safe

design” [151] in a fully virtual design loop, using 3D solid modeling.

While the 3D model is capable of representing the nonlinear system behavior between chuck

and core bit in the first place, the accompanying effort is quite high. This statement does not

only refer to the computational effort that increases dramatically as soon as the clamping

force of the chuck is exceeded and relative motion occurs. Since the key to correctly describing

the overall system behavior during the mode-locking effect lies in an appropriate model

representation of the contact situation between chuck and core bit, the geometry of the parts

involved need to be represented with high geometric accuracy. Small slants and chamfers

that are usually ignored in the model need to be taken into account in full-scale, thereby

significantly increasing the effort of adequately meshing the geometry. Theoretically, it

is possible to combine the calculation of the system response and the stress distribution

needed for lifetime-calculation into a single simulation run. Practically, the computational

effort needed for the current application example is near or maybe even over the edge of

what is currently possible with regard to computational resources.
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The starting point of the present thesis is the fact that validating the mechanical design of

rotating machinery typically requires the creation of two different models to fulfill various

tasks: A shaft-line model is still the most common approach to ensure functionality, while

lifetime prediction requires a 3D solid FE-model. The current research investigates the

question of whether current general purpose FE-codes are capable of performing demanding

rotordynamic analyses using a 3D solid modeling approach. The idea behind it is to save the

cumbersome creation of an additional shaft-line model and, at the same time, to overcome

its limitations in accurate representation of complex rotor geometries in a dynamic analysis.

An industrial diamond coring system acts as an application example, providing sophisticated

mechanical design and strongly nonlinear behavior. The course of investigation and major

findings will be summarized in what follows.

Chapter 2 outlines how rotordynamic effects are represented in the equations of motion

and what the impacts are on the computational solution techniques. Generally speaking,

rotordynamic analyses can be performed in the frequency and in the time domain. A solution

in the frequency domain requires time-independent system matrices and is only possible

with linear or linearized systems operating in steady state. Depending on the reference

frame, rotordynamic effects are represented by a gyroscopic matrix or by a matrix containing

coriolis forces. Since both matrices are unsymmetrical, extracting the eigenvalues and mode

shapes requires a complex eigensolver. When solving the equations of motion through direct

time integration, efficient algorithms are required containing numerical damping to suppress

unphysical high-frequency content in order to keep a reasonably large time increment and to

ensure numerical stability. Chapter 2 also addressed the current state of knowledge regarding

the use of FEM for rotordynamics, ranging from 1D shaft-line models to 2D axisymmetric

elements and full 3D solid modeling. The conclusion is that only 3D solid modeling is capable

of accurately representing complex geometry and providing a fully coupled rotordynamic

analysis, including geometric nonlinearities such as centrifugal stiffening or spin-softening.

General purpose FE-codes nowadays offer extended rotordynamic capabilities by having the

necessary element formulations in combination with complex eigensolvers for solutions in

the frequency domain, as well as efficient and numerically stable integration schemes for

solutions in the time domain. Most programs, however, have acquired those capabilities

only quite recently within the last few years, which is the reason why applications are still

very limited.
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Chapter 3 introduces the industrial diamond coring system, which provides the fundamental

hardware to act as an application example within the current research. With regard to

rotordynamic analysis, the coring system presents a number of challenges. First, it contains

a rather sophisticated mechanical design with complex geometry and many interacting parts

involved. It is a two-level rotor system, in which the drive shaft is supported within a

hollow sleeve that also rotates. The bore of the sleeve is inclined to its own axis of rotation,

forcing the shaft and the core bit not only to perform a spinning motion, but to overlay a

tumbling motion to increase drilling performance. Another challenge arises from the fact

that the chuck connecting the core bit to the drive shaft is force-locked, allowing for relative

movement of the core bit inside the chuck when the clamping force is exceeded during

operation. While this cannot happen in the serial configuration of the tool, for the purpose

of academic research the system is modified by reducing the clamping-force and by either

artificially increasing the imbalance of the core bit or by increasing the amount of tumbling

movement. The goal was to intentionally exceed the clamping force during run-up through a

bending resonance, which results in strong nonlinear system behavior and, finally, in a mode-

locking phenomenon. Further challenges arise from the nonlinear stiffness characteristics of

the rolling element bearings and from the fact that the tool is operated hand-held, requiring

one to somehow represent the human operator within the model.

Chapter 4 explains the experimental setup to acquire measurement data in order to vali-

date the simulation model. Several three-axial accelerometers record the movement of the

tool, while the elastic deformation of the shaft and the tumble sleeve relative to the tool is

monitored by inductive sensors. To track the motion of the core bit, the water collector is

replaced by a rig supporting four triangulation lasers. When measuring a curved object like

the core bit, single spot lasers show relatively strong cross-sensitivity regarding movement

perpendicular to their measurement direction. Laser line fork light barriers would be the

preferred choice to measure the lateral movement of the core bit, but in the current case they

are significantly too heavy for the hand-held measurement setup. The rotational speeds of

the different rotor subsystems is recorded by optical encoders in combination with striped

tape that is wrapped around the rotating bodies. The main advantage in the current case

is that virtually no weight is added to the relatively lightweight rotors and no extra space

is needed. The unavoidable measurement error resulting from the discontinuity at the joint

of the tape can be corrected in a post-processing operation. In total, up to 60 channels are

used, providing a good insight into the dynamic behavior of the diamond coring system.

Chapter 5 introduces the simulation model implemented in ABAQUS. The general approach
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is a flexible MBS using 3D solid finite elements for elastic components, point masses con-

taining inertia properties for components behaving rigidly in the frequency range of interest,

and elastic joints to represent certain connecting elements. Since high fidelity rotordynamic

models are a challenge with regard to computational costs, this approach offers the chance

for significant model reduction, while, at the same time, maintaining accuracy where needed.

In the current work, only those parts are fully represented by 3D solid finite elements that

undergo noteworthy elastic deformation. This includes most of the rotating parts, while the

non-rotating parts are represented as point masses with inertia properties. The interaction

between certain components is addressed in different levels of detail. In the case of the

force-locked chuck, interaction between the connecting end of the core bit and the two-piece

chuck is taken into account by fully including the exact geometry in the FE model and by

establishing contact definitions between the relevant surfaces. With regard to the disk-spring

pack that provides the clamping force, however, there is no need to represent the exact con-

tact situation in full detail. Therefore, it is simply modeled as a discrete pre-loaded spring,

where pre-load and spring stiffness are obtained from a static experiment. The same proce-

dure is used for components of the drive train, such as the toothed belts. The deep grove

ball bearings are represented likewise as elastic joints, with the difference being that deriving

the nonlinear stiffness characteristics is far more complex. First, the compliance of the ma-

chine casing supporting the bearings of the tumble sleeve is calculated from a high fidelity

FE-sub-model. Next, the exact geometry, such as diameter and curvature of the raceways, is

determined on a highly precise tactile measurement machine and another substitute model

of the ball bearings is established, including contact between rolling elements and raceways.

The geometry is updated by taking into account the deformation of the bearing rings due to

the press fit by analytic formulas based on thick ring theory. Finally, the nonlinear stiffness

characteristic is calculated by successively applying static loads in all relevant DOFs. This

quite elaborate approach allows one to accurately determine the tilting stiffness of the bear-

ings, which presents a challenge for openly available analytical methods. In the current case,

the tilting stiffness of the bearings is of increased importance due to the uncommonly high

lateral displacement resulting, for instance, from artificially increasing the imbalance of the

core bit. Apart from modeling the diamond coring system itself, the simulation must also

be capable of representing the human operator holding the tool. Although a vast amount

of research and models is available that address the hand-arm system, their use to act as

a boundary condition in a simulation like this is rather limited. Openly available models

are too soft and neglect the human control behavior. Since the frequency range of interest,

the bending resonance occurring during run-up, lies significantly higher than the frequency
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range that is strongly affected by added mass and stiffness of the hand-arm system, the

human operator is represented by a simple spring-damper system. The parameters are ob-

tained through modal measurements at non-rotating condition, resulting in a model that

yields accurate results in the frequency range of interest, but might show significant errors

elsewhere, especially at low frequencies. In the current case, this is totally acceptable.

Chapter 6 goes into the details of validating and updating the simulation model in non-

rotating condition using the results from modal analysis or FRFs as a criterion for cor-

relation. The model is established from the bottom up, meaning that each component is

validated separately in free boundary conditions before assembly. The validation process first

consists of a mesh-grid convergence study followed by a comparison to the results of EMA.

Geometric and material properties are used to update the model. When components contain

very slender geometry, such as the tube of the core bit, small deviations from the nominal

geometry might play an important role, even if they are within the specified manufacturing

tolerance. Verifying and validating the model from the bottom up significantly reduces the

sources of possible deviations when assembling the single components to the whole system.

In the further course of validating and updating the model, EMA on the rotor system as

a whole is used to identify the damping parameters of the bearings as well as the dynamic

properties of the human operator. For the latter, measurements without the operator are

compared to measurements when the operator is successively gripping just one of the two

handles and, finally, both handles. In general, the results are in good accordance with ex-

isting research: The dynamic properties of the human hand-arm system strongly depend on

both the frequency range and the specific posture of the operator. Here, the dynamic prop-

erties are set so that they match the behavior in the frequency range of interest. Since direct

time integration in a high fidelity rotordynamic simulation is computationally very costly,

using EMA and FRF-measurements at non-rotating condition can achieve significant cost

and time savings in contrast to directly comparing simulation results to operational mea-

surements. One major disadvantage of using EMA or FRF-measurements is that artificially

applied excitation forces are typically smaller than operational forces, resulting in possible

errors when the system shows nonlinear, or more generally speaking, amplitude-dependent

behavior. In such a case, updating the model with operational data might still be necessary.

Chapter 7 finally evaluates the quality of the simulation model by comparing the results of a

run-up to measurement data. The diamond coring system has a natural bending mode that

needs to be crossed during run-up. The relevant excitation mechanisms are the imbalance

of the core bit and the tumbling motion generated by the tumble sleeve. Both excitations
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are speed-dependent, and since their rotational speeds stand in a fixed ratio, they cross

the bending mode one after the other, creating two resonances when running the tool up

or down. Due to the fact that the rotating subsystems are relatively slender, there is no

detectable influence of rotation on the natural frequency of the bending mode. Before starting

the comparison between simulation and measurements, two more parameters need to be

identified to update the model. One is the imbalance of the core bit that arises mainly from

misalignment towards the chuck and not from asymmetric mass concentration in the core bit

itself, thereby complicating the measurement process on a standard balancing machine. As

a consequence, the imbalance is determined insitu by adding appropriate balancing weights

to the core bit, whereby the correct position can be identified from the large amount of

available sensor data. The second parameter obtained from operational measurement data

is the drag torque of the bearings, which is identified from coast-down tests. The updated

model is then evaluated in two different operational cases: First, in “normal” condition, in

which the clamping force is sufficient to hold the core bit in place during run-up, and, second,

when the clamping force is intentionally exceeded by reducing the pre-load of the disk-spring

pack and by either artificially increasing the imbalance of the core bit or by increasing the

amount of tumbling movement. In both cases, the simulation model is capable of accurately

representing the dynamic behavior: The resonances occur at the same rotational speeds

and with the same amplitudes. In the case in which the clamping force is exceeded, strong

nonlinear behavior occurs, resulting in a mode-locking phenomenon, in which the core bit

performs a relative motion inside the supporting chuck in order to stay in resonance, even

if the rotational speed no longer matches the original frequency of the bending resonance.

This creates a situation in which all components of the inner rotor subsystem still rotate at

the same rotational speed, but the whirling frequency is no longer the same over the entire

axial length. The relative motion between core bit and chuck is a combination of sliding and

rolling, permanently changing the contact situation. Such a complex interaction with several

parts involved requires one to take into account the exact geometry of the interfaces and

can only be represented correctly by using 3D solid modeling. The stability of the contact

algorithms turns out to be astonishing in this context. However, while the model is capable

of representing the nonlinear system behavior between chuck and the core bit in the first

place, this comes at the price of significantly increased computational costs and modeling

effort when meshing the exact geometry of the interfaces.

Taken together, the considerations above and the good consistency between experimental

data and simulation results with regard to the application example lead to the conclusion

that general purpose FE codes at their current state are capable of performing challenging
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rotordynamic analyses using 3D solid modeling. Today’s extended MBS capabilities of such

programs offer the chance for significant model reduction, while, at the same, maintaining

accuracy where needed. Thus, limitations of classical beam-element models, such as lack

of accuracy in mathematical and physical model representation, can be overcome. In the

current case, a precise representation of the mode-locking effect and the corresponding inter-

actions within the multi-piece rotor system is simply not possible by using shaft-line models.

Another important, if not decisive, advantage of 3D solid modeling is the reuse of already

existing CAD-data instead of creating a further model in a manual and cumbersome process.

In connection with the current application example, quite a vast number of substitute mod-

els was necessary to derive certain parameters. Most of those auxiliary calculations could be

performed with the same model that was used for the actual rotordynamic analysis.

Besides investigating the suitability of general purpose FE-codes for rotordynamic analyses,

the current thesis was also motivated by the question of whether a 3D solid model can be

used to ensure the functionality of a rotor system, while, at the same time, applying a mesh

fine enough for accurately calculating the stress distribution as an input for lifetime calcu-

lation. In this context, the current work demonstrated limitations of the approach. High

fidelity models in rotordynamic simulations generate enormous computational costs when

nonlinear characteristics or transient behavior require a solution through direct time inte-

gration. With regard to the current application example, using one and the same mesh for a

rotordynamic analysis and a lifetime calculation will reach the limit of what is computation-

ally possible at the moment. This would make the approach unsuitable for parameter studies

or optimization procedures. As a consequence, it still appears more reasonable to calculate

the local stress in an extra (static) analysis. However, when using 3D solid modeling for

rotordynamics analyses, performing a lifetime calculation simply requires remeshing and is

thus more effective than the classical procedure that needs to set up two different types of

models.

Although one can safely assume that computing power will continue to increase in the

future, it is still worth thinking about techniques to reduce the model size. An interesting

strategy was recently proposed by Tannous et al. in [133, 134]. The authors investigate

rotor-stator contact in turbines, which requires 3D solid modeling to gain accurate results.

The simulation starts with a linear 1D beam-element model and is switched to a nonlinear

3D solid representation once the contact occurs – or slightly before, to be precise, in order

to exclude non-linearity. The general idea of switching the model at a certain event could

possibly be adapted for the current problem, where exceedance of the clamping force in
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the chuck would mark the switching point. However, one should keep in mind the special

kinematics of the diamond coring system presented here as an application example: It is a

two-level rotor system in which the inner subsystem does not rotate about a principal axis

of inertia. This prevents model representation by finite beam-elements, even for operational

conditions in which the clamping force is not exceeded. For the same reason, it is out of the

question to use a hybrid model in which the rotating parts are represented by beam-elements

and only the interface between core bit and chuck is addressed in full detail by 3D continuum

finite elements. So, instead of switching from a 1D to a 3D model, in the current case, it

might still be possible to start with a model in which the contact definitions are replaced by

tie constraints, thereby significantly reducing the number of DOFs.

In the end, it is computational resources that set the limits when using 3D solid modeling

for rotordynamic problems. And as computing power has increased significantly since the

first use of FEM, so has the problem size and, hence, the demand for it. Today, 3D solid

modeling in combination with direct time integration of the underlying force equilibrium

equations can solve astonishingly complex problems – but sometimes the process is still

“painfully slow” [17].

129



130



References

[1] AbuBakar, A.R., Ouyang, H.: Complex eigenvalue analysis and dynamic transient
analysis in predicting disc brake squeal. International Journal of Vehicle Noise and
Vibration, 2(2):143–155, 2006

[2] Adewusi, S., Rakheja, S., Marcotte, P.: Biomechanical models of the human hand-
arm to simulate distributed biodynamic responses for different postures. International
Journal of Industrial Ergonomics , 42(2):249–260, 2012

[3] Adewusi, S., Thomas, M., Vu, V., Li, W.: Modal parameters of the human hand-
arm using finite element and operational modal analysis. Mechanics and Industry ,
15(6):541, 2014

[4] AIAA: Guide for the Verification and Validation of Computational Fluid Dynamics
Simulations. Technical Report AIAA-G-077-1998, American Institute of Aeronautics
and Astronautics, Reston, VA, USA, 1998

[5] Bachschmid, N., Pennacchi, P., Tanzi, E., Audebert, S.: Transverse crack modeling
and validation in rotor systems, including thermal effects. International Journal of
Rotating Machinery , 9(2):113–126, 2003

[6] Bathe, K.J.: Finite Element Procedures . K.J. Bathe, Watertown, MA, 2nd edition,
2014

[7] Bently, D.E., Goldman, P., Yu, J.J.: Full annular rub in mechanical seals, Part II:
Analytical study. International Journal of Rotating Machinery , 8(5):329–336, 2002

[8] Bently, D.E., Yu, J.J., Goldman, P., Muszynska, A.: Full annular rub in mechani-
cal seals, Part I: Experimental results. International Journal of Rotating Machinery ,
8(5):319–328, 2002

[9] Blough, J.R.: A survey of DSP methods for rotating machinery analysis, what is
needed, what is available. Journal of Sound and Vibration, 262(3):707–720, 2003

[10] Bovenzi, M.: Exposure-response relationship in the hand-arm vibration syndrome: An
overview of current epidemiology research. International Archives of Occupational and
Environmental Health, 71(8):509–519, 1998

[11] Brandt, A., Lago, T., Ahlin, K., Tuma, J.: Main principles and limitations of current
order tracking methods. Journal of Sound and Vibration, 39(3):19–22, 2005

[12] Chatelet, E., D’Ambrosio, F., Jacquet-Richardet, G.: Toward global modelling ap-
proaches for dynamic analyses of rotating assemblies of turbomachines. Journal of
Sound and Vibration, 282(1):163–178, 2005

[13] Chatelet, E., Lornage, D., Jacquet-Richardet, G.: A three dimensional modeling of the
dynamic behavior of composite rotors. International Journal of Rotating Machinery ,
8(3):185–192, 2002

[14] Chen, W.J.: Practical Rotordynamics and Fluid Film Bearing Design. Trafford Pub-
lishing, 2015

131



References

[15] Chen, Y., Yao, G., Jiang, J.: The forward and the backward full annular rubbing
dynamics of a coupled rotor-casing/foundation system. International Journal of Dy-
namics and Control , 1(2):116–128, 2013

[16] Childs, D.W.: Rub-induced parametric excitation in rotors. Journal of Mechanical
Design, 101(4):640–644, 1979

[17] Childs, D.W.: Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis .
John Wiley & Sons, New York, 1993

[18] Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with
improved numerical dissipation: The generalized-α method. Journal of Applied Me-
chanics , 60(2):371–375, 1993

[19] Combescure, D., Lazarus, A.: Refined finite element modelling for the vibration anal-
ysis of large rotating machines: Application to the gas turbine modular helium reactor
power conversion unit. Journal of Sound and Vibration, 318(4):1262–1280, 2008

[20] Cook, R., Malkus, D.S., Plesha, M.E., Witt, R.J.: Concepts and Applications of Finite
Element Analysis . John Wiley & Sons, New York, 4th edition, 2007
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