
TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Informatik
Lehrstuhl für Echtzeitsysteme und Robotik

System Level

Periodic Thermal Management for

Hard Real-Time Systems

Long Cheng

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende/-r: ……Prof. Dr. Uwe Baumgarten……………………………….

Prüfende/-r der Dissertation:
1. Prof. Dr.-Ing. habil. Alois Knoll
2. Prof. Dr. Kai Huang, Sun Yat-Sen University, China

Die Dissertation wurde am 20.06.2017 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 15.11.2017 angenommen.

Abstract

As the VLSI technology is scaling to deep sub-micron domain, more
and more transistors are integrated into microprocessors. As a conse-
quence, the power density is rapidly increased, resulting in the rising
temperature on microprocessors. High temperature poses serious chal-
lenges to designers of hard real-time systems since it severely hampers
the reliability and performance of the system. Temperature has become
an emerging issue of high importance for real-time systems. Therefore,
developing thermal managements is a fundamental aspect in the design
of real-time systems. The role of a real-time thermal management is
twofold. On one hand, it should correctly and accurately model the tim-
ing characteristics and non-determinisms of real-time tasks so that one
can tightly bound the demanded system resources. On the other hand, it
must perform thermal optimization actions, e.g., reducing the peak tem-
perature, minimizing thermal gradients, etc., under the aforementioned
hard real-time constraints.

In this thesis, we focus on developing the system level dynamic thermal
management technique, i.e., periodic thermal management, for real-time
systems with single and multi-core architectures. To handle general
event arrivals with non-determinisms, the theory of real-time calculus
is adopted as the task model. The main contributions of this thesis can
be listed as the following:

• An offline thermal management, termed as periodic thermal man-
agement, is presented for single core real-time systems.

• Periodic thermal management is extended to pipelined multi-core
systems by reversely utilizing the pay-burst-only-once principle.

• An online adaptive periodic thermal management that can capture

i

the variations in event arrivals and executions is proposed.

• A thermal framework which can evaluate various thermal manage-
ments in a fast manner is presented.

ii

Zusammenfassung

Aufgrund der Entwicklung von VLSI hin zu einer deep sub-micron
Domäne, werden immer mehr Transistoren auf Mikroprozessoren in-
tegriert. Als Folge davon nimmt die Leistungsdichte immer mehr zu,
was zu erhöhten Temperaturen dieser Prozessoren führt. Hohe Tem-
peraturen stellen Entwickler von Echtzeitsystemen vor große Heraus-
forderungen, da diese die Zuverlässigkeit und Leistung dieser Systeme
beeinträchtigt. Temperatur entwickelt sich daher zunehmend zu einem
Problem von hoher Bedeutung für Echtzeitsysteme. Aufgrund dessen
ist die Entwicklung von Thermomanagement ein fundamentaler Aspekt
beim Design von Echtzeitsystemen. Ein Thermomanagementsystem hat
zwei Aufgaben. Zum einen soll es die Timing-Eigenschaften und den
Nichtdeterminismus von Echtzeitaufgaben korrekt modellieren, sodass
man möglichst gute Vorhersagen bezüglich der benötigten Ressourcen
des Systems treffen kann. Zum anderen muss es thermale Optimierungsak-
tionen unter den zuvor genannten harten Echtzeitbeschränkungen
durchführen, wie zum Beispiel die Reduzierung der Höchsttempera-
turen, die Minimierung des Temperaturgradients, usw. Der Fokus dieser
Arbeit liegt auf der Entwicklung einer auf Systemlevel dynamischen
Thermomanagementmethode, d.h. einem periodischen Thermomanage-
mentsystem für Echtzeitsysteme mit Ein- oder Mehrkernarchitekturen.
Um eintreffende, nichtdeterministische Ereignisse handhaben zu können,
wird auf die Theorie von Echtzeit-Differentialrechnung zurückgegriffen.
Die Hauptanteile dieser Arbeit können wie folgt aufgelistet werden:

• ein offline Thermomanagementsystem, bezeichnet als periodisches
Thermomanagementsystem wird für Einkern-Echtzeitsysteme vorgestellt.

• das periodische Thermomanagementsystem wird erweitert, um
Mehrkernsysteme zu unterstützen, indem das ”pay-burst-only-once”-

iii

Prinzip angewandt wird.

• ein online anpassbares periodisches Thermomanagementsystem,
welches die Variation von eintreffenden Ereignissen einfangen kann
wird vorgeschlagen.

• ein Thermo-Framework, welches verschiedene Thermomanagementsys-
teme schnell evaluieren kann wird vorgestellt.

iv

Acknowledgements

First of all, I would like to express my sincere gratitude to Prof. Dr. habil.
Alois C. Knoll for offering the opportunity for studying in Technical
University of Munich and constantly patiently supervising my research.
Without his support, this thesis would have not been possible.

I would like to thank Prof. Dr. Kai Huang for being my coexaminer in
this thesis and providing me valuable suggestions about my research in
my Ph.D. life.

I would also like to thank: Assoc. Prof. Dr. Gang Chen, Dr. Guang Chen
and Dr. Biao Hu for the fruitful research cooperation; Zhenshan Bing for
the nice collaboration in the snake robot project; Mingchuan Zhou for
the exciting cooperation in the research of thermal management; Xiebing
Wang and Zhuangyi Jiang for their supports and proofreading my thesis;
Dipl. Inf. Brian Jensen and Alexander Perzylo for their kind help in the
beginning of my Ph.D. life. Furthermore, I would like to thank all my
former and current colleagues of the whole Robotics and Embedded
System chair for their company and support.

My sincere thanks also goes to my friends: Xiang Lu, Zhu Liu, Zhen
Yao, Di Xu and Yao Xiao for all the times we had in the last four years.

Finally, my dearest thanks go to my family for their love and support
throughout all these years of my Ph.D. study.

The work presented in this thesis was supported by the China Scholar-
ship Council (grant number: 201306120019). This support is gratefully
acknowledged.

To my wife, Shanshan.

vi

Contents

Contents vii

List of Figures xi

List of Tables xiv

1 Introduction 1
1.1 The Emerging Thermal Issues 1

1.1.1 The Increasing Power Density 2
1.1.2 The Influence of High Temperature 3
1.1.3 Thermal Management Methods 5

1.2 State of the Art Thermal Managements 6
1.2.1 Overview . 6
1.2.2 Hard Real-Time System Requirements 9

1.3 Thesis Outline and Contributions 10
1.3.1 Chapter 2: Single Core Thermal Management . . . 11
1.3.2 Chapter 3: Pipelined System Thermal Management 11
1.3.3 Chapter 4: Adaptive Periodic Thermal Management 12
1.3.4 Chapter 5: Multi-core Fast Thermal Prototyping

Framework . 13

2 Single Core Thermal Management 15
2.1 Overview . 16
2.2 Related Work . 17
2.3 Introduction to Real-Time Calculus 19

2.3.1 Models for Event Stream 19
2.3.2 Service Model . 20
2.3.3 Basic Results . 22

vii

Contents

2.4 System Model and Problem Statement 23
2.4.1 Hardware Model . 23
2.4.2 Power Model . 24
2.4.3 Thermal Model . 25
2.4.4 Problem Statement 26

2.5 Peak Temperature Analysis 28
2.6 Real-Time Calculus Routine 31

2.6.1 Service Bound of PTM 31
2.6.2 Principles of our Algorithms 32
2.6.3 Feasible Region of to f f 33
2.6.4 Obtaining the minimal ton 33

2.7 PTM Algorithms . 36
2.7.1 Algorithm PMPT . 36
2.7.2 Algorithm AMPT . 37
2.7.3 Case Studies . 39

2.8 Summary . 44

3 Pipelined System Thermal Management 47
3.1 Overview . 48
3.2 Related work . 49
3.3 system model . 51

3.3.1 Hardware Model . 51
3.3.2 Application Model 52
3.3.3 Thermal Model . 52

3.4 Real-Time Calculus Background 56
3.4.1 Wide Sense Increasing Functions 56
3.4.2 Basic Mathematical Results 57
3.4.3 Pay Burst Only Once 57

3.5 Motivation and Problem statement 59
3.5.1 Motivation Example 59
3.5.2 Problem Statement 61

3.6 Calculating Peak Temperature 62
3.6.1 Peak Temperature Analysis 62
3.6.2 Peak Temperature Calculating Algorithms 66

3.7 Real-time Analysis and Problem Formulations 71
3.7.1 Real-time analysis . 71
3.7.2 Formulation and transformation of the Optimiza-

tion Problem . 73
3.7.3 Overall algorithm to minimize peak temperature . 74

3.8 Solving the sub-problem . 74
3.8.1 Algorithm FBGD to solve the FBPT based sub-problem 75

viii

Contents

3.8.2 Algorithm ANSA to solve the ANPT based sub-
problem . 76

3.9 Case Studies . 79
3.9.1 Setup . 79
3.9.2 Results . 80

3.10 Summary . 85

4 Adaptive Periodic Thermal Management 87
4.1 Overview . 88
4.2 Related works . 89
4.3 system model . 91

4.3.1 Hardware and Thermal Model 91
4.3.2 Adaptive Periodic Thermal Management 91
4.3.3 Problem Statement 92

4.4 Motivation of Our Work . 93
4.5 Utilizing the Two Slacks . 95

4.5.1 Demanded Service Of Unfinished Events 95
4.5.2 Arrival Curve of Future Events α f u(t, ∆) 96

4.6 Proposed Approach . 96
4.6.1 System Transformation 97
4.6.2 Real-Time Constraints 97
4.6.3 APTM constraint set 101

4.7 Online Part . 102
4.7.1 Feasible Stages for APTM 102
4.7.2 APTM schemes for APTM-feasible stages 104
4.7.3 Summary of the algorithms 109

4.8 Offline Part Algorithms . 111
4.9 Simulation Evaluation . 111

4.9.1 Setup . 112
4.9.2 Effectiveness at different execution-time factors . . 113
4.9.3 Effectiveness at different adaption periods 114
4.9.4 Efficiency regarding stage number 115

4.10 Summary . 117

5 Multi-core Fast Thermal Prototyping Framework 119
5.1 Overview . 120
5.2 Related Work . 122
5.3 Background . 123

5.3.1 Workload Model . 124
5.3.2 Review of Thermal Management Policies 124
5.3.3 Advanced Configuration and Power Interface . . . 125

ix

Contents

5.4 Challenges and Design Approach 127
5.5 Configuration Manipulation Interface 129

5.5.1 Power Management 130
5.5.2 Job Scheduling and Task Migration 131
5.5.3 Dynamic Information and Task Allocation 132
5.5.4 Registration Interface 132

5.6 Multi-core Fast Thermal Prototyping Framework 133
5.6.1 Dispatcher . 134
5.6.2 Thermal Management Policy 134
5.6.3 Temperature Watcher 135
5.6.4 Power Manager . 135
5.6.5 Worker . 136

5.7 Portable Implementation with POSIX 136
5.7.1 Implementation Requirements 137
5.7.2 Multi-thread Implementation 138
5.7.3 Power Management Implementation 138
5.7.4 Task Preemption Implementation 139

5.8 Experimental Evaluation . 139
5.8.1 Temperature Experiments 139
5.8.2 Efficiency Experiments 143

5.9 Summary . 146

6 Conclusion 147
6.1 Main Results . 147
6.2 Future Perspectives . 148

Bibliography 151

List of Publications 165

x

List of Figures

1.1 A plot of power density against critical dimensions 2

2.1 An example of the cumulative function 19
2.2 Three examples of arrival curves 21
2.3 The delay bound and deadline condition 23
2.4 Hardware model of a single-core processor 24
2.5 Execution of jobs in policy WC, DT and PTM. 27
2.6 Temperature evolution in policy WC, DT and PTM. 28
2.7 Example of temperature varying with PTM 30
2.8 Obtaining the approximate minimal ton 35
2.9 The relationship between the peak temperature and to f f . . . 37
2.10 Case studies results for single event stream scenarios 40
2.11 Case studies results for randomly selected four-events stream

scenarios . 41
2.12 Case studies results for randomly selected five-events stream

scenarios . 43
2.13 Case studies results for ten-events stream scenarios 43
2.14 Computing time at four-events stream scenarios 44
2.15 Computing time at ten-events stream scenarios 45

3.1 H.263 decoder on pipelined hardware architecture. 52
3.2 Examples of thermal model . 53
3.3 The impulse response between two nodes 55
3.4 Motivation example of Pay Burst Only Once 60
3.5 Examples of Tconv

ij and Ti varying with time 63
3.6 An example of neighbor nodes and the thermal influence be-

tween two nodes . 69
3.7 Introduction of bounded delay function 72

xi

List of Figures

3.8 Peak temperature obtained by FBPT and ANPT 78
3.9 Peak Temperature obtained with step size being 4ms on plat-

form ARM . 81
3.10 Peak Temperature obtained with step size being 2ms on plat-

form ARM . 82
3.11 Peak Temperature obtained with step size being 4ms on plat-

form SCC . 82
3.12 Peak Temperature obtained with step size being 2ms on plat-

form SCC . 83
3.13 The results of the four approaches on ARM from 2-to 8- stage. 84
3.14 The best peak temperature generated by the four approaches

on SCC from 2 to 24 stages. 84
3.15 The time expense of the four approaches on SCC from 2 to 24

stages. 84

4.1 The adaptive periodic thermal management schemes after
two adaption instants. 92

4.2 The temperature of the first core in the ARM 3-stage platform
when the two methods are applied to manage it. 94

4.3 An example of the transformation of a 3-stage pipelined multi-
core system . 97

4.4 An example of warming curves 106
4.5 An example of cooling curves 108
4.6 The valid part of the linear model of the cooling curve . . . 109
4.7 The peak temperature with different execution-time factors . 114
4.8 The peak temperature with different adaption periods 115
4.9 Temperature and time expense results on IntelSCC platform . 116

5.1 P-states and C-states of processors 127
5.2 Examples of mechanisms to manage the temperature of multi-

core processors. 129
5.3 An example of McFTP controlling the power states of a core . 131
5.4 The proposed Multi-core Fast Thermal Prototyping Framework.134
5.5 The operation semantics for Power Manager and Worker en-

tities . 136
5.6 The temperature evolutions of the processor cores when state

table Tab. 5.2 is applied to them. 141
5.7 The temperatures of the cores when a hot task τA and a cool

task τB are executed on different cores. 142
5.8 The temperatures of APTM, PBOO and BWS for the bench-

mark set. 143

xii

List of Figures

5.9 McFTP overhead in different scenarios on two platforms hav-
ing different computing capabilities. 145

5.10 Checkpoints overhead for different platforms. 146

xiii

List of Tables

2.1 The concrete event trace adopted in the example. 27
2.2 Thermal and hardware model parameters 39
2.3 Event stream setting . 40

3.1 WCETs of the applications in 3-stage and 4-stage scenarios . . 80

4.1 Parameter configuration of HotSpot 113

5.1 The state table in CMI . 130
5.2 The state table applied in the experiment 141

xiv

Chapter 1

Introduction

As predicted by the Moore’s law, more and more transistors have been
integrated in modern microprocessors. Hence the power density is
rapidly increasing, which consequently raises the temperature of mi-
croprocessors. High temperature seriously hampers the reliability and
performance of microprocessors. Real-time systems, in which tasks
must finish before their deadlines, have additional requirements with
respect to reliability and performance stability. Therefore, high temper-
ature poses challenges to designers of real-time systems. This thesis
presents a set of novel thermal management technologies for real-time
systems. In particular, we focus on solutions for optimizing temperature
under hard real-time constraints by adopting dynamic power manage-
ment technology. Section 1.1 introduces the thermal issue of micropro-
cessors. Section 1.2 surveys the state-of-art thermal management tech-
nologies. Section 1.3 draws the outline and summaries the contributions
of this thesis.

1.1 The Emerging Thermal Issues

Temperature is a fundamental parameter associated with the perfor-
mance and reliability of electronic equipments [77]. In the past several
years, thermal-related issues have become especially important for mi-
croprocessor design [54]. In this section, we explain the causes behind
the emerging thermal issues in three aspects: the increasing power den-
sity (Section 1.1.1), negative effects of high temperature (Section 1.1.2),
and thermal management methods (Section 1.1.3).

1

1. Introduction

Figure 1.1: A plot of power density against critical dimensions [94]. The
logarithmic vertical scale indicates exponential growth of power density.

1.1.1 The Increasing Power Density

Most of the energy consumed by a microprocessor is ultimately dissi-
pated in form of heat because of the resistive behaviour of the processor
circuits. Temperature is a measurement of how much heat has been
produced and thus directly determined by the power density, which de-
notes the power consumed per unit area of the chip. The transistors
in microprocessors have continued to shrink in size since the very first
microprocessor. This scaling has significant impacts on the temperature,
which is illustrated below by the relationship between the scaling and
power density.

Now, we study this relationship according to the Scaling Theory [35].
The length of the transistor is shrunk by every successive technology
generation to a constant fraction of previous length. The fraction can be
denoted by a scaling factor s and is typically about 1/

√
2 [84]. One can

conclude that the area of transistors scales proportional to s2, i.e., about
1/2. The power consumption of the transistors can be approximately
given by formula CV2 f , where C is the intrinsic capacity, V denotes the
supply voltage, and f is the clock frequency. If we consider the same
microarchitecture, then the scaling of C is linear to s. Assuming the
ideal scaling is applied to V and f , i.e., V scales down and f scale up
linearly to s, we have the power dissipation is scaled down by factor
s2, indicating the power density keeps constant. However, in reality, it’s
impossible to continuously scale the supply voltage by a scalar. The
reason is that for a clock frequency f , a minimal supply voltage which
is approximately linear to f is required by the processor. This causes
the supply voltage is not able to scale further. Therefore, for the past

2

1.1. The Emerging Thermal Issues

several decades, the power density of microprocessors increases expo-
nentially every generation [84]. A plot of CPU power density against
critical dimensions is displayed in Fig. 1.1.

The exponentially growth of power density is the main driving force
of the continuously increasing temperature of modern microprocessors.
Now, the questions are (1) What is the influence of high temperature to
microprocessors? (2) Do we really need to lower the increasing temper-
ature? Next section discusses both questions.

1.1.2 The Influence of High Temperature

People have put significant efforts into removing the heat from the die
surface of modern processors, i.e., developing sophisticated physical de-
vices such as liquid cooling systems. The reason is that high tempera-
ture is undesirable for microprocessors due to its negative influence in
several aspects such as reliability, stability and performance. Next, we
list several microprocessors failure mechanisms that can be affected by
temperature [57].

Electro-migration

Electro-migration is a failure mechanism referring to the transport of
mass in metals caused by the gradual movement of the ions in a conduc-
tor due to the momentum transfer between conducting electrons and
diffusing metal atoms (AI, Cu), leading to voids in the metal lines [13].
High temperature increases the mobility of carriers and thus accelerates
the rate of Electro-migration, decreasing the Mean Time To Failure of
microprocessors [4].

High Temperature Stress Migration

This failure mechanism is not caused by the current flow during electro-
migration, but the high temperature induced stress which causes the
Al metal lines to open up, resulting in open-circuit failure. This failure
usually happens when the metal line width is about or less than 2-3 µm.
Since there is a trend towards reduction in Al metallization width, this
failure mechanism is non-negligible.

3

1. Introduction

Mechanical stresses induced by differential thermal expansion of mate-
rials

Microprocessors are constructed from silicon, metal, plastic encapsula-
tion and epoxy resin used in the construction of a plastic package. These
materials have different thermal coefficients of expansion (TCE). The
TCE describes how the size of an object changes with a change in tem-
perature. When a microprocessor is subjected to wide-range thermal cy-
cling or shocking, the mismatch in TCEs of different materials bounded
together inside the processor leads to mechanical stresses, which could
cause the passivation cracks in the device.

Iconic Effect

• Hot Carriers. The term hot carrier here refers to the additional
electrons produced when electrons collide with the atoms in the
crystal lattice. Because of their high kinetic energy, hot carriers
can cause problems in memory devices and logic circuits leading
to malfunctioning and failure [31]. This failure mechanism is espe-
cially enhanced by high temperature.

• Ionic Contamination. Ionic contaminants are typically flux residues
or harmful materials that are picked up or left behind during the
process. They contain molecules or atoms that are conductive
when in solution which can disassociate into either positively or
negatively charged species and increase the overall conductivity of
the solution. Their mobility gets higher in the presence of high
electric fields and at high temperatures and thus further degrades
the reliability of the electronic components and increases the risk
of corrosion [92].

In additional to above mechanisms, high temperature can also accelerate
other several failure mechanisms such as solder joint failures, bond-wire
fatigue, electrical overstress, and PCB stress [57]. For most of these fail-
ure mechanisms, the Mean Time To Failure (MTTF) can be empirically
described using the well-known Arrhenius Equation given by:

MTTF = Ae
Ea
kT (1.1)

where A is an empirical constant, T denotes the temperature, and Ea is
the activation energy of the failure mechanism. Although this equation
does not capture all features (thermal cycling, thermal shocking, etc.), it

4

1.1. The Emerging Thermal Issues

is a useful expression for first-order estimation. From (1.1), the MTTF
decreases exponentially with respect to the temperature, which indicates
high temperature significantly reduces the reliability of microprocessors.
For example, according to [77], the mission life of a microprocessor is
about 2× 105 hours (22.83 years) at temperature 38◦C. However, it drops
to 1× 104 hours (1.14 years) when the temperature is increased to 93◦C.

Transistors still consume power even when they are idle or not switching.
This kind of power is termed as the leakage power or static power. It is
directly influenced by the temperature and grows exponentially as the
temperature increases. Moreover, since temperature strongly depends
on the power dissipation, there is a circular dependency between them.
In extreme cases, this can lead to a self-reinforcing positive feedback
loop that cause thermal runaway. Thus, high temperature results in
higher leakage power consumption.

High temperature can also affect the performance of a microprocessor.
The time parameters, such as frequency, of components like transistors,
clock, oscillators, etc., drift due to the effect of temperature [57]. Al-
though the drift in parameters by itself may not lead to a failure, it can
cause system malfunctions, instability, etc., which seriously hampers the
performance of microprocessors.

In conclusion, high temperature has several negative effects on micro-
processors. First, the Mean Time To Failure, i.e., the reliability, can be
exponentially reduced by high temperature. Second, higher tempera-
ture leads to more leakage power consumption, which, in turn, raises
the temperature and may cause thermal runaway in extreme cases. Last
but not the least, the performance of the microprocessor like speed and
stability can be hampered by high temperature. Therefore, temperature
has become a first-class design constraint in microprocessor develop-
ment akin to performance [84]. Proper thermal management methods
are required to control the temperature varies in a certain range. Inad-
equate thermal control can lead to complete failure, as several recent
products have shown [95, 99].

1.1.3 Thermal Management Methods

The traditional way to control temperature of microprocessors is using
physical heat-removing systems, such as air cooling devices and liquid
cooling systems. It’s a significant challenge for mechanical engineers to
design heat-removing systems for modern microprocessors with afford-

5

1. Introduction

able cost since the temperature is ever rising while the cost increases
exponentially with temperature. For high performance microprocessors,
the costs of cooling solutions are rising at $1–3 or more per watt of dis-
sipated power [14, 41], and could reach over 35% of electricity costs [90].
Apart from the disadvantage in cost, physical cooling systems may also
require additional space and power to install and run itself, which limit
the application in portable and hand-held devices. In other words, tra-
ditional physical cooling systems have below limitations.

• cooling package cost increases exponentially with respect to power
dissipation.

• need additional space to install.

• may consume additional power to run devices such as fans.

To cope with aforementioned limitations of traditional thermal manage-
ment methods, alternative technologies that reduce the temperature by
putting microprocessors into lower power consumption states have been
widely adopted. Such technologies can be generally termed as Dynamic
Thermal Management (DTM) techniques [15]. Most DTM technologies
can be implemented in system-level with basic hardware supports such
as temperature sensors, hardware-timers, etc. DTM technologies can
remarkably reduce the expense in terms of packing cost, space.

In summary, temperature has become the first-class design concern for
microprocessors due to the ever-increasing temperature and its signif-
icant impacts on the reliability, performance and power consumption.
The Dynamic Thermal Management technologies are promising approaches
to control the temperature due to their advantages in cost, space, etc..

1.2 State of the Art Thermal Managements

In this section, we discuss the state of the art thermal managements
for microprocessors with single and multi-core architectures. Firstly, we
briefly overview the representative existing works. Then, we summary
the special requirements that are not completely fulfilled for hard real-
time systems by existing works.

1.2.1 Overview

In this section, we briefly review the state of art thermal managements
for microprocessors with single and multi-core architectures. Note that

6

1.2. State of the Art Thermal Managements

only a representative subset of related works is discussed due to their
vast amount.

A thermal management is developed usually for one or more of the
following objectives: (1) minimizing the peak temperature; (2) minimiz-
ing the thermal gradients on the microprocessor; (3) maintaining the
temperature under certain threshold. To control temperature or ther-
mal gradients, most thermal managements adopt task scheduling and
power controlling techniques. Temperature can be influenced by the
workload as different workloads utilize different processing components
inside the microprocessor, which is the main motivation of thermal man-
agements based on task scheduling. Temperature can also be reduced
via power controlling mechanisms. Thermal managements based on
power controlling mainly follow two main mechanisms, i.e., Dynamic
Voltage Frequency Scaling (DVFS), and Dynamic Power Management
(DPM). Now, we categorize existing thermal managements according to
the temperature-control mechanism adopted by them.

Task scheduling Thermal-aware task scheduling techniques consider
spatial and temporal correlations between cores or functional units through
balancing the workloads. Thidapat et al. [21] address the problem of
assigning and scheduling tasks on MPSOC (Multiprocessor System-on-
Chip). They presented a mixed-integer linear programming (MILP) for-
mulation of the problem and then gave an optimal solution as well as
a flexible heuristic framework for the MILP formulation. Due to the
thermal analysis difficulties, this approach examines only steady-state
temperatures without considering the transient behavior. Cox et al. pro-
posed a fast thermal-aware approach for streaming applications based
on a 3D MPSoC model under the throughput constraints in [32]. This
approach assumes periodic task model and also does not consider the
transient temperature. A task scheduling policy that considers tempo-
ral correlations is presented in [108]. This work focuses on choosing
the right task to execute while maintaining the temperature under given
threshold. No real-time guarantee is provided in this work.

DVFS DVFS techniques adjust the supply voltage or clock frequency
of a microprocessor and thus can control the dynamic power dissipa-
tion. Since dynamic power dominates the total power consumption of
early microprocessors, DVFS has been widely studied by researchers.
In [6], the authors address the speed scaling problem and proposed two
algorithms, an online one and an offline one, to solve the optimization
problem under temperature and deadline thresholds, respectively. The

7

1. Introduction

relationship between leakage power dissipation and temperature, how-
ever, is not considered for the simplicity of analysis. In [111], two DVFS
algorithms, a pseudo-polynomial one and a fully polynomial time ap-
proximation one, are presented to optimally improve the system perfor-
mance for a set of periodic tasks under given temperature constraints.
Jian-Jia Chen et al. proposed two algorithms in [25] to optimize the re-
sponse time and temperature respectively. Chantem et al. [20] made an
observation about maximizing the workload under thermal constraints.
The authors demonstrated that while working with proactive schedul-
ing, the scheduler which maximizes the workload under given peak
temperature must be a periodic one [2]. Yong and et al. [39] presented a
feedback thermal control framework named Real-Time Multicore Ther-
mal Control which dynamically enforces both the desired temperature
and the CPU utilization bounds for multicore real-time systems, through
DVFS. All aforementioned researches assume simple task models such
as periodic task model and cannot handle general event arrivals. More
DVFS-based thermal managements can be found in [102, 104, 8, 70, 112].

DPM The leakage power dissipation can be reduced by adopting
DPM techniques, which put microprocessors into deeper power saving
states by decreasing or even cutting off the supply voltage of some por-
tion of the microprocessor. DPM techniques can also be applied on pe-
ripheral devices such as memories, interconnects, etc. Kumar et al. [56]
developed a thermally optimal stop-go scheduling called JUst Sufficient
Throttling (JUST) to minimize peak temperature within given makespan
constraints. This scheduling is designed only for static order tasks and
is not applicable for non-deterministic tasks. A framework and mech-
anisms for thermal stress analysis in real-time systems are proposed
in [44] to meet the challenge of determining the real-time guarantees in
the presence of unpredictable dynamic environmental conditions. Buy-
oung [110] addressed the problem of avoiding thermal hotspot on a
multi-core chip by employing a runtime thermal aware scheduler (TAS)
using job-migration and power-gating techniques. Adopting thermal-
aware periodic resources, Masud Ahmed et al. [2] proposed an offline al-
gorithm which minimizes the peak temperature for sporadic tasks sched-
uled by earliest-deadline first (EDF) while guaranteeing all their dead-
lines. To simplify the complexity of timing analysis, aforementioned
works all assumed simple task models, i.e., either periodic or sporadic
task model.

8

1.2. State of the Art Thermal Managements

1.2.2 Hard Real-Time System Requirements

In previous section, the state of the art thermal managements are briefly
reviewed. While having made significant contributions to this field,
most existing thermal managements have just partly solved the chal-
lenge of optimizing the temperature of hard real-time systems in sys-
tem level. Compared to general-purpose systems, real-time systems
have additional requirements with respect to timing correctness, relia-
bility and stability. Thermal managements in real-time systems not only
need to reduce the temperature , but also should tackle the additional
requirements posed by real-time system characteristics. Specifically, the
following requirements are not completely met in existing thermal man-
agements.

• providing hard real-time guarantees. The tasks in hard real-time
systems have deadline constraints. Every task should complete
and produce result before its deadline. Many existing works fail
to provide hard real-time guarantees or even do not consider dead-
line constraints [34, 108, 72, 64, 63, 3, 32, 111, 20, 79, 70, 104, 112, 69].

• handling non-deterministic event arrivals. In reality, event arrivals
contain non-determinism such as jitter. Modelling such event ar-
rivals by simple task models under hard real-time constraints may
cause the problem of over-estimation and result in high temper-
ature. Thus, thermal managements should be able to properly
handle events arrivals with non-determinism. Existing works [38,
100, 32, 45, 44, 110, 39, 102, 2, 20, 103] adopt simple task models
such as periodic, or sporadic models, and thus cannot meet this
requirement.

• modelling temperature behaviours with high accuracy. To find the
correct thermal management scheme, the temperature behaviours
should be modelled with high accuracy. The temperature accuracy
can be remarkably hampered by the bad-established thermal mod-
els and incorrect parameters. Thermal managements [64, 34, 63, 70,
6] do not consider the correlation between leakage power and tem-
perature for simplicity. Moreover, the transient thermal behaviour
is also ignored in [21, 32].

• identifying the exact peak temperature quickly. In order to effi-
ciently explore the design space of multi-core architecture real-
time systems for optimal thermal management, one should cal-
culate the exact peak temperature quickly. Majority of existing

9

1. Introduction

works [26, 36, 88, 67, 81, 66, 71] adopts thermal simulation tool-
boxes to find the peak temperature, which is computation costly
and slow. There are also several works [100, 81] directly utilize the
steady-state temperature as the peak temperature, which could be
incorrect due to spatial and temporal thermal fluctuations.

In this thesis, we aim to tackle these challenges by adopting system-
level Periodic Thermal Management for hard real-time systems. Peri-
odic Thermal Management periodically switches microprocessor cores
to sleep state to reduce the temperature. By fully utilizing such timing
feature, we proposed a closed-form solution and two numerical calcu-
lating algorithms to quickly determine the peak temperature of single
core and multi-core architectures, respectively. Thus, we fulfill the afore-
mentioned last requirement. For the third requirement, based on the
well-known Fourier equation and HotSpot model, we construct thermal
models with high accuracy where heat flow between different thermal
blocks, transient thermal behaviors and the leakage current dependency
on temperature are all considered.

The Real-Time Calculus (RTC) theory is adopted in our work to model
the event arrivals and system resources. The benefits of using RTC are
twofold: first, the concepts of arrival curve is introduced as task model.
The arrival curve is an abstract model and can model arbitrary event
arrivals containing non-determinism. Second, with the existing results
of service curve, constraints on the demanded system resources can be
derived to provide hard real-time guarantees. Therefore, the aforemen-
tioned first two requirements can be met.

In conclusion, the Periodic Thermal Management presented in this the-
sis enables hard real-time system designers to quickly find the optimal
system resource management scheme which minimizes the peak temper-
ature under deadline constraints for event arrivals with non-determinism.

1.3 Thesis Outline and Contributions

This thesis focuses on how to optimize temperature for both single-core
and multi-core architectures hard real-time systems. In particular, we
aim to lower the peak temperature for general event arrivals under dead-
line constraints by adopting static and adaptive DPM techniques. In the
following, we summarize the content and individual contributions of
every following chapter of this thesis.

10

1.3. Thesis Outline and Contributions

1.3.1 Chapter 2: Single Core Thermal Management

In Chapter 2, we present the Periodic Thermal Management (PTM) for
single-core real-time systems to optimize the peak temperature. The
PTM is a static method and requires negligible run-time computation
effort and is suitable for single-core processors having little computing
power. The real-time calculus [96] interface is adopted to model general
event arrivals and ensure the deadline constraints can be satisfied. A
close-form solution of the peak temperature is given as a criterion of
the optimal solution. We also present two algorithms which can com-
pute the optimal PTM scheme in different levels of accuracy and speed.
Specifically, the contributions of this chapter are:

• Based on the well-known Fourier’s law thermal model, a closed-
form solution of the peak temperature with respect to the periodic
thermal management is developed.

• Two PTM algorithms that can derive periodic on/off schemes with
a trade-off between accuracy and efficiency are developed. One
offers precise solution by making thorough searches and the other
is a fast approximation based on bounded-delay function.

• The effectiveness and efficiency of our algorithms are studied by
comparison to two related work [2, 55] in the literature. Single-
event streams and multi-event streams scheduled by Earliest Dead-
line First (EDF) are tested in the case studies.

1.3.2 Chapter 3: Pipelined System Thermal Management

In Chapter 3, we investigate how to apply Periodic Thermal Manage-
ment on real-time multi-core systems. The processor handles the appli-
cations that can be divided into sub-tasks which are executed on the
cores concurrently. By reversely using the Pay Burst Only Once prin-
ciple, we can calculate the aggregate service demand bound instead of
the individual bound for each stage to obtain feasible PTM schemes for
the cores. In this way, we benefit from the advantages from two do-
mains: On one hand, the burst in the event arrivals is accounted only
once and thus leads to a lower peak temperature. On the other hand, the
complexity of the problem is significantly reduced, which makes our ap-
proach scalable with respect to the number of cores. We also perform
a comprehensive analysis on the peak temperature of multi-core proces-
sors under PTM, the results of which enable the fast computation of the
peak temperature. In summary, the contributions of Chapter 3 are:

11

1. Introduction

• Based on the well-known HotSpot model, a peak temperature rep-
resentation for a multi-core processor under Periodic Thermal Man-
agement (PTM) is given, where the heat flow among cores and the
leakage current dependency on temperature (LDT) are considered.

• To overcome the inefficiency produced by the strictly accurate method
of calculating the peak temperature, two algorithms with different
levels of accuracy and complexity are proposed to offer good ap-
proximations of the peak temperature.

• By reversely using the Pay Burst Only Once principle, the opti-
mization problem is transformed into a set of sub-problems. We
formulate the sub-problems and solve them by two fast heuristic
algorithms corresponding to the two peak temperature methods.

• Based on two real life platforms: a homogeneous ARM multi-
processor and the Intel Single-chip Cloud Computer (SCC), we
evaluate the effectiveness and efficiency of our approaches by com-
paring them with two brutally searching approaches, one with
PBOO and one without PBOO.

1.3.3 Chapter 4: Adaptive Periodic Thermal Management

While Chapter 2 and Chapter 3 focus on the analysis of static PTM ap-
proaches which search the solution in design phase, in Chapter 4 we
propose a novel dynamic thermal optimize method termed as Adaptive
Periodic Thermal Management (APTM). Specifically, APTM is an offline
and online combined approach. The offline learned thermal properties
are adopted in online adaption to optimize the calculated solutions. Two
thermal curves, i.e., the warming curve and the cooling curve are pro-
posed to model the thermal properties of each stage in different sce-
narios. To effectively exploit the dynamic slacks in event arrivals, the
Dynamic Counter technique is adopted to give history-aware event pre-
dictions. Moreover, the dynamic state information of the processor are
also collected to reflect the real execution of jobs. The following contri-
butions are contained in Chapter 4:

• We present a sufficient condition of guaranteeing deadline con-
straints of unfinished and future events for pipelined systems un-
der APTM schemes. The condition can be easily utilized to derive
APTM schemes that satisfy real-time constraints at adaption in-
stants.

12

1.3. Thesis Outline and Contributions

• Several lightweight algorithms are presented to compute APTM
schemes in runtime efficiently according to the unique thermal
properties of the stages. The obtained APTM schemes can effec-
tively reduce the peak temperature under real-time constraints for
the pipelined system with negligible online overheads.

• The effectiveness and efficiency of our proposed approach for re-
ducing temperature are evaluated by comparing it with two exist-
ing approaches with two real-life hardware platforms.

1.3.4 Chapter 5: Multi-core Fast Thermal Prototyping
Framework

In this chapter, we present a multi-core thermal framework named Multi-
core Fast Thermal Prototyping (McFTP). McFTP is designed to be a gen-
eral framework and can evaluate different thermal management policies
on actual hardware platforms in an efficient and reliable manner. It is
a re-configurable thermal framework running in the user-space and en-
ables multi-core system designers to validate any resource distribution
decision in design phase on the target architecture. McFTP can not only
implement a thermal management policy at high-level of abstraction,
but also execute real or user-defined task-set. The specific contributions
can be summarized as:

• To allow the implementation of customized thermal management
policies with minimal effort, an intermediate interface named Con-
figuration Manipulation Interface (CMI) is defined to isolate ther-
mal management policies from the low-level implementations.

• A set of commonly used temperature control mechanisms, includ-
ing, DVFS, DPM, job scheduling and task migration, is imple-
mented as a library which can be accessed via CMI.

• We implement McFTP on the top of Linux with the API defined
in POSIX standard. Comprehensive experiments are conducted to
investigate the effectiveness and efficiency of the implementation.

13

Chapter 2

Single Core Thermal
Management

Single core processor is the traditional and classical architecture adopted
in real-time systems. For example, the microcontroller architecture has
been widely used in the filed of control-dominant field having real-time
requirements. It’s estimated that more than half of all CPUs sold world-
wide are microcontrollers [61]. Compared to that in multi-core architec-
ture, the worst-case execution time of a task in single-core processors is
more predictable because there is no interference between cores, which
can cause delay spikes as high as 600% in industry benchmarks [87].
This feature makes single core architecture suitable for hard real-time
systems, which have additional requirements with respect to reliability,
and real-time behaviour [91].

To meet these requirements, real-time system designers need to consider
an important factor, the temperature of the processor, which plays a key
role in determining the allowable execution speed [2], as aforementioned
in Chapter 1. The traditional way to control temperature of the proces-
sor, using hardware cooling devices, suffers the cost, energy and space
disadvantages. The alternative technologies termed as Dynamic Ther-
mal Management (DTM) have been widely adopted. In Chapter 1, we
show that DTM techniques follow two main mechanisms, i.e., Dynamic
Voltage Frequency Scaling (DVFS) and Dynamic Power Management
(DPM). The DPM technologies are demonstrated to be more effective to
optimize the temperature on modern processors due to leakage power
dominates the total power consumption of 32 nm or more advanced pro-
cessors.

15

2. Single Core Thermal Management

The main issue of using DPM technologies to control the temperature is
when and how long one should turn the processor to the sleep state [11].
It’s obvious that dynamically switching the processor into ‘sleep’ mode
according to the event arrivals and their relative deadlines is an effective
way to minimize the peak temperature. However, single-core processors
adopted in real-time systems usually has little computation ability. Dy-
namical switching methods can be hardly implemented in this scenario.
Further, the additional computation in online manner also incurs power
overhead, which, in turn, elevates the temperature. Therefore, an inter-
esting research topic is designing a DPM technique for single core hard
real-time system which can:

1. guarantee all events complete within their deadlines.

2. minimize the peak temperature of the processor

3. introduce little running overhead in terms of time and energy.

4. be easily implemented with basic hardware features.

2.1 Overview

In this chapter, we propose the periodic thermal management (PTM),
which holds the aforementioned properties, to optimize the peak tem-
perature for general events arrivals while the deadlines are guaranteed.

The single core processor has two power dissipation modes, ‘active’ and
‘sleep’ mode, with different power consumptions. The peak temperature
is controlled by periodically switching the processor to ‘sleep’ mode ac-
cording to the event stream model and thermal properties of the proces-
sor. To meet the deadline constraints, real-time calculus [96] interface is
employed to model the non-deterministic event arrivals and service pro-
vided by the processor in the time interval domain. Combining event
timing model and the relative deadline, a service bound is derived to de-
termine PTM schemes that can provide hard real-time guarantee. The
applied PTM scheme is calculated in offline manner and thus requires
negligible run-time computation effort, which makes our approach suit-
able to real-time systems having little computation resource. A closed-
form solution of the peak temperature with respect to the periodic ther-
mal management is developed as a criterion of the optimal PTM scheme.

It’s worth noting that how long should the processor stay in ‘sleep’ and
‘active’ mode, i.e., the switching frequency, needs careful consideration.

16

2.2. Related Work

On the one hand, the length of ‘sleep’ time interval should be long
enough such that fewer switching operation is performed and thus less
switching overhead is incurred. On the other hand, due to real-time con-
straints, longer ‘sleep’ interval leads to longer ‘active’ interval, which
cause higher temperature peaks at the end and thus higher temperature.
To resolve these concerns, two PTM algorithms that can derive periodic
on/off schemes with a trade-off between accuracy and efficiency are de-
veloped. One offers precise solution by making thorough searches and
the other is a fast approximation based on bounded-delay function.

The rest of this chapter is organized as follows. The related work is intro-
duced in the next section. Section 2.4 presents system models, including
hardware model, power model and thermal model, and the problem
definition. Section 2.5 derives the closed-form solutions of the peak tem-
perature. The real-time analysis is presented in Section 2.6. Section 2.7
presents our PTM algorithms. Several cases are studied in Section 2.7.3
and Section 2.8 concludes this chapter.

2.2 Related Work

The thermal behaviour of a processor is directly influenced by the power
consumption. Thus researchers in previous work on thermal-aware
scheduling have followed two main approaches: DVFS and DPM, which
have already been widely exploited in power-aware scheduling. In this
section, we overview previous work for thermal-aware scheduling that
based on DVFS and DPM.

Sushu Zhang et al. [111] proposed two DVFS approaches: a pseudo-
polynomial optimal algorithm and a fully polynomial time approxima-
tion one. These two approaches can optimally and approximately im-
prove the system performance for a set of periodic tasks under ther-
mal constraints, respectively. Jian-Jia Chen et al. [25] presented two ap-
proaches to schedule periodic real-time tasks under DVFS while the re-
sponse time and temperature constraints are satisfied respectively. Chantem
et al. [20] made an observation about maximizing the workload under
thermal constraints. The authors demonstrated that while working with
proactive scheduling, the scheduler which maximizes the workload un-
der given peak temperature must be a periodic one [2]. According to
this observation, a speed schedule was proposed to maximize the work-
load based on DVFS with discrete speeds and transition overhead un-
der given temperature constraints. S. Wang et al. [102] presented a re-

17

2. Single Core Thermal Management

active speed control algorithm for tasks that have the same period to
minimize temperature and performed several schedulability tests. The
aforementioned work, however, based on either a simplified workload
model, such as periodic tasks, or the processor feature of keeping the
‘ideal’ speed, which may not be found in recent top-of-the-line micro-
processors [2]. The periodic thermal management (PTM) proposed in
this chapter can handle general event arrival patterns by adopting real-
time calculus [96]. Moreover, lower power state, which is a basic power
management feature, can be conveniently utilized to implement PTM.

There are also several researches that utilize DPM to minimize the peak
temperature under deadline constraints. Kumar et al. [56] developed
a thermally optimal stop-go scheduling called JUst Sufficient Throttling
(JUST) to minimize peak temperature within given makespan constraints.
This scheduling is designed only for static order tasks and is not applica-
ble for non-deterministic tasks. To address the challenge of determining
the real-time guarantees in the presence of unpredictable dynamic en-
vironmental conditions, Hettiarachchi and et al. [44] proposed a frame-
work and mechanisms for thermal stress analysis in real-time systems.
Adopting thermal-aware periodic resources, Masud Ahmed et al. [2] pro-
posed an offline algorithm which minimizes the peak temperature for
sporadic tasks scheduled by earliest-deadline first (EDF) while guaran-
teeing all their deadlines can be met. The workload models of the afore-
mentioned work are also simplified and lead to pessimistic results, that
is, higher peak temperature since they cannot exhibit non-determinism
like jitter or burst arrivals of the workload. These shortcomings can also
be overcome in PTM since it work with general event arrival patterns, as
mentioned above. In [55], a Cool Shaper is studied to minimize the peak
temperature by delaying the execution of workload for general events
arrivals. It is an online/offline-combined approach, where the param-
eters of the shaper are offline computed and the workload is runtime
orchestrated with the pre-computed shaper. Besides the online moni-
toring overhead which can result in a higher temperature, determining
the parameters of the shaper according to the system specification also
requires considerable calculation effort. In this chapter, a closed form
of the peak temperature is derived such that our PTM can easily obtain
the peak temperature offline instead of simulating the online evolution
of the temperature, which saves great quantity of calculation.

18

2.3. Introduction to Real-Time Calculus

0 1 4 5 8 111213 1617 20
t/ms

0

1

2

3

4

5

6

E
v
en
t
N
u
m
er

R(t)

Figure 2.1: An example of the cumulative function R(t).

2.3 Introduction to Real-Time Calculus

This section presents the basic concepts and results of the Real-Time
Calculus framework, i.e., the arrival curve, the service curve, and the
deadline bound. We also elaborate how to use these results to analyze
the timing properties of a system.

2.3.1 Models for Event Stream

Basically, the event streams to a system can be specified by means of
the cumulative function R(t), which indicates the number of events that
arrive the system in time interval [0, t]. The function R(t) is always a
wide-sense increasing function. Moreover, It is a discontinuous function
since it has a smallest granularity, that is, one event. By convention, we
take R(0) = 0 in the whole scope of this dissertation unless otherwise
specified. An example of R(t) is displayed in Fig. 2.1.

Note that the function R(t) specifies a concrete event stream. To ana-
lyze timing properties of the system, an abstract model which provides
guarantees to the event streams is required. This is done by using the
concept of arrival curve [60], which is defined below.

Definition 2.1 (Arrival Curve) For an event stream R and a 2-tuple wide-
sense increasing functions α(∆) = [αu(∆), αl(∆)] defined for ∆ >= 0, we
say R has αu(∆) and αl(∆) as upper arrival curve and lower arrival curve,

19

2. Single Core Thermal Management

respectively, if and only if for all s ≥ t:

αl(s− t) ≤ R(s)− R(t) ≤ αu(s− t) (2.1)

with αu(0) = αl(0) = 0.

It’s worth noting that the condition must hold for any time interval with
length ∆ = s− t.

As Def. 2.1 indicates, arrival curves αu(∆) and αl(∆) actually upper and
lower bound the number of events arriving in any time interval with
length ∆. For instance, consider the example trace in Fig. 2.1, we can
derive its upper arrival curve αu(∆) satisfies αu(1) ≥ 1 since there is
one event arrival in time interval [0, 1]ms, if we set the time unit as
millisecond. Similarly, we have αl(6) = 0 since no event arrives in time
interval [5, 11]ms.

Arrival curves substantially generalize classical event timing models
such as periodic, sporadic, periodic with jitter or other event models
including non-determinism timing behavior. Thus, they are well suited
to representing the complex event streams in hard real-time systems.
For example, a periodic event stream can be abstracted by a set of step
function where αu(∆) = b∆

p c + 1 and αl(∆) = b∆
p c. A sporadic event

stream can also be modeled by αu(∆) = b∆
p c+ 1, αl(∆) = b ∆

p′ c, where p
and p′ are the minimal and maximal inter arrival distance of the event
stream, respectively. Moreover, for an event stream which can be speci-
fied by a period p, jitter j and minimal inter arrival distance d, the upper
arrival curve is αu(∆) = min{d∆+j

p e, d∆
d e}. Fig. 2.2 demonstrates the

arrival curves of different event timing models.

We consider not only single event streams but also multi-event streams.
For multi-event scenarios, N event streams are supposed in the input
source, where N ≥ 2. We order the event streams S1, S2, · · · , SN ac-
cording to their relative deadlines, where Di, the relative deadline of
event stream Si, is smaller than that of Sj when i < j. Thus, the in-
put event model of our processor can be depicted by the tuple EM(N)
= (α(∆)1, c1, D1, · · · , α(∆)N, cN, DN), where α(∆)i denotes the arrival
curve tuple of event stream Si.

2.3.2 Service Model

The general model arrival curve abstract the cumulative function R(t)
for the worst-case and best-case event arrivals. Similarly, the service

20

2.3. Introduction to Real-Time Calculus

0 5 10 15 20
∆/ms

0

1

2

3

4

E
v
en
t
N
u
m
er

α
u(∆)

α
l(∆)

(a)

0 5 10 15 20
∆/ms

0
1
2
3
4
5

E
v
en
t
N
u
m
er

α
u(∆)

α
l(∆)

(b)

0 5 10 15 20
∆/ms

0
1
2
3
4
5

E
v
en
t
N
u
m
er

α
u(∆)

α
l(∆)

(c)

Figure 2.2: Example arrival curves for (a) periodic event streams with
period 5ms, (b) event streams with period 5ms and jitter j = 3ms, (c)
event streams with period 5ms, jitter j = 3ms and minimal inter-arrival
distance d = 4ms.

providing ability of the system can also be described by a cumulative
function C(t) and then modeled by the service curve. The function C(t)
is defined as the amount of total time slots provided by the system to
handle workloads in time interval [0, t]. It’s also a wide-sense increas-
ing and discontinuous function. In the same way, the service curve is
defined as:

Definition 2.2 (Service Curve) For a system C and a 2-tuple wide-sense in-
creasing functions β(∆) = [βu(∆), βl(∆)] defined for ∆ >= 0, we say C has
βu(∆) and βl(∆) as upper service curve and lower service curve, respectively,
if and only if for all s ≥ t:

βl(s− t) ≤ C(s)− C(t) ≤ βu(s− t) (2.2)

with βu(0) = βl(0) = 0.

Service curve is also an abstract model and can generalize traditional
resource models such as Time Division Multiple Access (TDMA) and
periodic model [89]. For example, consider a bus with bandwidth B
that implements TDMA model, then a slot can be represented by service
curves: βl(∆) = B ·min{d∆/le, ∆ − b∆/lc(l − si)} and βu(∆) = B ·
max{d∆/le, ∆− b∆/lc(l − si)}, where si is the length of the slot and l
denotes the TDMA cycle length.

Note that the arrival curves α(∆) is event-based and specifies the up-
per and lower bounds of the number of input events in any time in-
terval ∆, while the service curve β(∆) is time-based and specifies the
upper and lower bounds of the amount of available execution time in
any time interval ∆. Thus, operations involving both of them cannot be

21

2. Single Core Thermal Management

performed directly. The event-based arrival curve is transformed to the
time-based arrival curve ᾱ(∆) for correct operation results. Suppose that
the worst-case execution time of one event in arrival stream is c, then the
arrival curve transformation can be performed as ᾱu(∆) = c× αu(∆) and
ᾱl(∆) = c× αl(∆) [50].

For brevity, in the following of this chapter, the time-based arrival is also
termed as arrival curve, denoted by ᾱ(∆).

2.3.3 Basic Results

In this section we discuss the main basic real-time calculus result pre-
sented in [60] which is useful to analyze how to guarantee deadline
constraints for hard real-time systems.

Theorem 2.3 (Delay Bound) Consider an event stream, constrained by up-
per arrival curve ᾱu(∆), is processed by a system that offers a lower service
curve βl(∆). Then the maximal possible delay d(t) experienced by any event
arriving at time t satisfies the following condition if the events arriving before
it are handled before it.

d(t) ≤ h(ᾱu, βl) (2.3)

where h(α, β) denotes the supremum of horizontal deviations between α and β
and is defined as:

h(α, β) = sup {δ(s) : δ(s) = inf {τ ≥ 0 : α(s) ≤ β(s + τ)}} (2.4)

The conclusion of Thm. 2.3 is intuitive. It indicates the delay experi-
enced by any event is upper bounded by the supremum of horizontal
deviations between upper arrival curve and lower service curve. An ex-
ample is shown in Fig. 2.3. The figure also graphically demonstrates the
condition of meeting deadline constraints for a hard real-time system,
which is given below.

Theorem 2.4 (Deadline Condition) Given an event stream with relative dead-
line D which is constrained by upper arrival curve ᾱu(∆), a system can guar-
antee the delay of any event is no larger than D if its lower service curve meets
following condition.

βl(∆) ≥ ᾱu(∆− D) (2.5)

Proof Thm. 2.4 is actually a reverse representation of Thm. 2.3. We
prove it by contradiction. Suppose the delay of one or more event is
larger than D while (2.5) holds. From Thm. 2.3, it’s clear that h(ᾱu, βl) >

22

2.4. System Model and Problem Statement

0 10 20 30 40 50 60 70 80
0

2

4

6

8

Figure 2.3: The delay bound and deadline condition for an event stream
with relative deadline D, constrained by ᾱu(∆), when it is served by a
system offering βl(∆).

D holds, that is, there exists at least one δ(s) > D. Since δ(s) is the
infimum of τ that satisfies ᾱ(s) ≤ β(s + τ), one can derive that ᾱ(s) >
β(s + D) for all s > 0, which contradicts the condition (2.5). �

2.4 System Model and Problem Statement

2.4.1 Hardware Model

A single core processor that has two power dissipation modes, i.e., ‘ac-
tive’ and ‘sleep’ mode, is adopted in this chapter. The processor must be
in ‘active’ mode with a fixed speed to process coming event streams and
can be turned to ‘sleep’ mode with a lower power consumption when
there is no event to handle.

We consider the time and power overheads during model-switching.
Let to f f and ton denote the time units required to switch the processor
from ‘active’ mode to ‘sleep’ mode and back, respectively. During mode
switching, the power dissipation equals that in ‘active’ mode but the
processor does not tackle any coming event. The time and power over-
heads during mode switching have nontrivial impacts on the resource
providing capability and thermal evolution of the processor. For exam-
ple, suppose the processor is switched to ‘active’ mode first and then ton

time units later it is turned to ‘sleep’ mode and stays at this mode for
to f f time units. As shown in Fig. 2.4, in this (ton + to f f) units time inter-
val, the length of the overall time slots in which the processor can handle
coming events is ton − tswon, which is less than ton. In other words, each

23

2. Single Core Thermal Management

t

PaPaPa Pa

Ps

Pa

ton toff ton

tact tslp

tinv tvld
tswon

tswoff tswon

Figure 2.4: Hardware model of a single-core processor. The power con-
sumptions in ‘active’ and ‘sleep’ modes are considered to be constant
and are denoted as Pa and Ps, respectively.

mode-switching from ‘sleep’ to ‘active’ makes the valid serving time in-
terval tswon shorter. Similarly, in this (ton + to f f) units time interval, the
time interval during which the processor consumes power equals that in
‘sleep’ mode is to f f − tswo f f . Again, each mode-switching from ‘active’ to
‘sleep’ incurs an energy overhead and makes the sleep power consump-
tion time interval tswo f f shorter. In conclusion, the mode-switching over-
head leads to a higher temperature and a weaker resource providing
capability. The quantitative impacts will be investigated later. Moreover,
as shown in Fig. 2.4, to cover the mode-switching overhead, the time
lengths for which the processor is switched to ‘active’ and ’sleep’ mode
must be larger than tswon and tswo f f , respectively:

to f f > tswo f f (2.6)
ton > tswon (2.7)

2.4.2 Power Model

We consider the total power dissipation at time t, denoted by P(t), is
composed of two parts: (1) the dynamic power Pd due to dynamic cur-
rent and (2) the leakage power Pl due to leakage current [43, 81].

Dynamic power Pd is consumed when the transistors inside a processor
are active, i.e., switching between different states. It can be calculated
by the following equation.

Pd ∝ a ·Vdd
2 f (2.8)

where a is a constant coefficient mainly depending on the wire length,
Vdd is the supply voltage, and f is the clock frequency. From this equa-
tion, one can conclude that the dynamic power is primarily determined

24

2.4. System Model and Problem Statement

by Vdd and f . Therefore, we consider Pd keeps constant in each power
mode, i.e., Pa and Ps, in the ‘active’ and ‘sleep’ mode, respectively.

The leakage power mainly comes from the leakage current of the tran-
sistors which is influenced by the temperature and the clock frequency.
The dependency relationship between the leakage power and the tem-
perature can be closely approximated by a linear function of the pro-
cessor temperature, which has been widely adopted [42, 97, 43, 68, 86]:

Pl(t) =
{

ϕ · T(t) + va if in active mode
ϕ · T(t) + vs if in sleep mode (2.9)

where w, va and vs are constant coefficients, T(t) is the temperature of
the processor at time t.

In summary, the total power consumption can be represented as:

P(t) =
{

ϕ · T(t) + θa if in active mode
ϕ · T(t) + θs if in sleep mode (2.10)

where θa = va + Pa and θs = vs + Ps.

2.4.3 Thermal Model

In this section, we introduce the thermal model of the processor, which
is based on the well-known Fourier law of heating [80], which can be
described by the following equation:

C
dT
dt

= P(t)− G(T − Tamb) (2.11)

where T, C, and G denote the temperature, thermal capacitance, and
thermal conductance of the processor, respectively. Tamb indicates the
ambient temperature. In addition, the absolute temperature (Kelvin, K)
is set as the unit of all temperature variables.

From (2.10) we have P(t) = ϕT(t) + θ when the processor stays in one
power mode. Rewriting (2.11), we have

dT
dt

= −mT(t) + n (2.12)

where m = G−ϕ
C , n = θ+GTamb

C . Since m and n are constants, a closed-
form solution of the temperature yields:

T(t) = T∞ + (Tinit − T∞) · e−m·t (2.13)

25

2. Single Core Thermal Management

where Tinit indicates the initiate temperature, and T∞ is the steady-state
temperature of currently power mode, which can be obtained by solving
dT
dt = 0.

T∞ =
n
m

(2.14)

Then, combining (2.10) and (2.14), the coefficient for (2.13) are given
as [80, 55]:

ma =
G− ϕa

C
, ms =

G− ϕs

C
(2.15)

T∞
a =

θa + GTamb
G− ϕa

, T∞
s =

θs + GTamb
G− ϕs

In addition, we also regulate the thermal model by these following cir-
cumstances.

• ma > 0 and ms > 0.

• The steady-state temperature in ‘active’ mode is non-smaller than
the one in ‘sleep’ mode, that is, T∞

a ≥ T∞
s .

• The initial temperature Tinit = Tamb ≤ T∞
s .

Finally, the thermal mode of the processor in this chapter is character-
ized by the tuple TM = (T∞

a , ma, T∞
s , ms).

2.4.4 Problem Statement

Dynamically switching the processor into ‘sleep’ mode according to the
event arrivals is an effective way to minimize the peak temperature.
However, this needs vast calculating efforts, which hampers the effi-
ciency. Periodic thermal management (PTM), a trade-off between effect
and efficiency, is adopted in this chapter to minimize the peak temper-
ature by periodically putting the system into ‘active’ and ‘sleep’ modes.
In each period, the processor stays at ‘active’ mode and ‘sleep’ mode for
ton and to f f time units, respectively. In addition, tp = ton + to f f denotes
the length of the period.

We illustrate our approach with an example in which three thermal man-
agement policies are adopted: (a) a work conserving (WC) execution
that with no DTM policy, which means that the processor stays at ‘active’
mode to process events if there is (at least) one event in the ready queue,
(b) an online DPM policy called Cool Shaper (CS) which dynamically

26

2.4. System Model and Problem Statement

Item value
period 200ms

jitter 50ms
minimal inter-arrival distance 1ms

execution time 110ms
relative deadline 320ms

event arriving times (0, 150, 350, 550)ms

Table 2.1: The concrete event trace adopted in the example.

WC

CS

PTM

Figure 2.5: Execution of jobs in policy WC, DT and PTM.

transits the processor into ‘sleep’ mode according to the event arrivals,
and (c) periodic thermal management (PTM). The thermal and hard-
ware parameters are described in Tab. 2.2. A concrete trace of events is
adopted in this example. The parameters specifying the concrete trace
are list in Tab. 2.1.

Fig. 2.5 and Fig. 2.6 show the execution of events and the temperature
evolution for the three policies, respectively. As shown in Fig. 2.6, the
peak temperature in policy PTM is slimly higher than the one in policy
CS and they are both about 9 K less than the one in policy WC. This
indicates that PTM policy can achieve close results to CS policy in terms
of peak temperature and they are both effective compared to WC pol-
icy. From Fig. 2.5, we find that PTM can be seen as an approximate
policy of CS, this interprets why the peak temperature of PTM is slimly
higher. Despite of this, PTM requires less resources for computation
with acceptable results and is very convenient to implement.

This chapter considers the temperature varying in a time interval L,
where L >> t and L/t is an integer. Due to the model-switching over-
head, ton and to f f cannot be directly utilized into thermal mode and
service curve. Before giving the revised solutions, we first define some
notations. From Fig. 2.4, tact and tslp denote the time interval that the

27

2. Single Core Thermal Management

0 0.2 0.4 0.6 0.8
300

320

340

360

380

time / s

T
em

pe
ra

tu
re

 /
K

CS
PTM
WC

Figure 2.6: Temperature evolution in policy WC, DT and PTM.

processor consumes power Pa and Ps in one period, respectively. Analo-
gously, tvld denotes the time interval that the processor can tackle com-
ing events in one period and tinv represents the rest. Based on hardware
model, we formulate them as:

tact = ton + tswo f f , tslp = to f f − tswo f f (2.16)

tvld = ton − tswon, tinv = to f f + tswon (2.17)

With these definitions, one can use tact and tslp to derive the peak tem-
perature and tvld and tinv to calculate the service curve of the processor;
meanwhile, the time and power overhead of mode-switching are consid-
ered.

Now we define our problem as follows:
Given a system characterized by the power model and the thermal model TM
described in the preceding pages, task streams that are modeled by EM(N), our
goal is to derive a periodic thermal management depicted by ton and to f f such
that the peak temperature is minimized while all the events complete within
their deadlines.

2.5 Peak Temperature Analysis

In this section, we derive the formula of the peak temperature in PTM
such that our algorithm can utilize it as a criterion of the optimal pair of
< ton, to f f >.

Since PTM periodically transits the system between two power modes,
the values of the parameters in the temperature model (2.13) change pe-

28

2.5. Peak Temperature Analysis

riodically, which causes the general solution of the transient temperature
T very complicated. Therefore, instead of utilizing the general solution,
we derive the formula of the peak temperature based on some basic
lemmas, which are obtained from close observations of the temperature
evolution and are presented in the following.

Lemma 2.5 With a periodic thermal management PTM (ton, to f f), the tem-
perature of the processor ceaselessly rises in the opening few periods and then
rises in tact and descends in tslp in every following period.

Proof As mentioned before, the very initial temperature Tinit = Tamb ≤
T∞

s ≤ T∞
a . Based on (2.12), inequality dT

dt ≥ 0 holds in the beginning sev-
eral periods when T(t) ≤ T∞

s . Therefore, temperature T(t) continuously
rises and then reaches T∞

s . It’s worth noting that T(t) will never surpass
T∞

a unless the initial temperature is higher than T∞
a , as T∞

a is the steady-
state temperature of the ‘active’ mode. Since T(t) has already passed
T∞

s , it also will never drop back below T∞
s until the processor being com-

pletely shut down. Therefore, one can summarize the temperature T(t)
under PTM will keep changing between T∞

s and T∞
a once T passes T∞

s ,
that is:

T∞
s ≤ T(t) ≤ T∞

a . (2.18)

Now, assume the processor switches to ‘active’ mode at time t̄ in one
PTM period. Note that the Tinit in (2.13) is actually T(t̄). Then, we have:

dT
dt

= −ma(T(t̄)− T∞
a)e−ma·t > 0 (2.19)

Furthermore, One can easily derive dT
dt < 0 following the similar deriva-

tion. �

Based on Lem. 2.5, in the jth period, the temperature T reaches its local
maximum Tj at the end of the time interval tact. Therefore, we can define
the peak temperature of the processor.

Definition 2.6 (Peak Temperature) For a single-core processor under PTM,
the peak temperature T? in a time interval L can be defined as the maximum of
all the Tj:

T? = max(T1, · · · , TL
t
). (2.20)

As shown in Fig. 2.7, the local maximum increases in the beginning
and then stays at a stable value in the rest time. This reveals that the
peak temperature can be obtained based on the difference between two
consecutive local maximums, which is depicted in the following lemma.

29

2. Single Core Thermal Management

0 0.2 0.4 0.6 0.8 1
300

310

320

330

340

350

Time/s

T
em

p
er
at
u
re
/K

Figure 2.7: Example of temperature varying with PTM(ton =
0.02s, to f f = 0.1s) while the model-switching overhead is not considered.
The thermal and hardware parameters are described in Tab. 2.2.

Lemma 2.7 Denoting the local maximal temperature in the jth period as Tj,
the temperature difference between two consecutive local maximums, Tj+1− Tj,
can be formulated as:

Tj+1 − Tj =(1− e−matact)T∞
a + e−matact(1− e−mstslp)T∞

s

− [1− e−matact−mstslp]Tj (2.21)

where tact and tslp are from (2.16).

Proof With Tj, tslp and (2.13), we first derive tslp
j , which is the tempera-

ture at the end of time interval tslp in the jth period. From (2.13), one
can get tslp

j = Ts + (Tj − Ts)e−mstslp
. Then, combining tact, Ta and tslp

j ,
(2.13) generates the following equation:

Tj+1 =(1− e−matact)T∞
a + e−matact(1− e−mstslp)T∞

s + (2.22)

e−matact−mstslp
Tj.

Subtracting Tj from both sides yields (2.21). �

With above lemmas, the first main result of this chapter is presented as
the theorem below:

Theorem 2.8 Given a system as stated above and a periodic thermal manage-
ment PTM (ton, to f f), the peak temperature of the processor is a linear combi-
nation of T∞

a and T∞
s , which is given as:

T? = λT∞
a + (1− λ)T∞

s , (2.23)

30

2.6. Real-Time Calculus Routine

where

λ =
1− e−matact

1− e−matact−mstslp .

Proof We prove Thm. 2.8 by contradiction. For brevity, polynomial ex-
pression λT∞

a + (1− λ)T∞
s is denoted as T�.

First, suppose that the peak temperature T? is reached in the ith period
and T? < T�. Since Lem. 2.5 indicates the local peak temperature in a
period is reached at the end of tact, we have Ti = T? < T�. Rewriting
(2.21) yields that Ti+1 − Ti > 0, which contradicts the presumption that
Ti is the peak temperature of the processor.

Similarly, assume that the peak temperature T? is reached in jth period
and Tj = T? > T�. Therefore we have:

Tj − Tj−1 > T� − Tj−1 (2.25)

According to Lem. 2.7:

Tj − Tj−1 = (1− e−matact−mstslp
)[λT∞

a + (1− λ)T∞
s − Tj−1]

= (1− e−matact−mstslp
)(T� − Tj−1).

Since (1− e−mt) < 1, the following inequality yields:

Tj − Tj−1 < T� − Tj−1 (2.26)

which is in conflict with (2.25). In conclusion, T? = T�. �

Next, the boundaries of ton and to f f are explored, then two approaches
are proposed to minimize T∗.

2.6 Real-Time Calculus Routine

In this section, real-time analysis is first presented to give deadline con-
straints on the PTM scheme. Then, two algorithms are presented to
compute the solution of the PTM scheme with different levels of accu-
racy and speed.

2.6.1 Service Bound of PTM

Real-time interface is employed in this chapter to analyze how to ensure
all events complete within their deadlines. With the hardware model

31

2. Single Core Thermal Management

described before and a given PTM (ton,to f f), the lower service curve of
the processor is written as:

βR(∆) = max
(⌊∆

t

⌋
· tvld, ∆−

⌈∆
t

⌉
· tinv

)
, (2.27)

where t is the period, tvld and tinv are obtained from (2.17). According
to Thm. 2.4, to satisfy the deadline constraints, the lower service curve
of the processor βR(∆) should satisfy the following inequality:

βR(∆) ≥ βB(∆), ∀∆ ≥ 0, (2.28)

where βB(∆) is the service bound for the workload modeled by EM(N).

For a single event stream (N = 1), βB(∆) can be simply formulated as:

βB(∆) = ᾱu(∆− D) (2.29)

For multi-event streams (N ≥ 2), the service bound βB(∆) in (2.28)
should be computed based on the scheduling policy. Note that only the
service bound βB(∆) has to be revised. The other parts of our algorithms
can remain untouched. Suppose the scheduling policy of earliest dead-
line first (EDF) is adopted, the service bound for the N event streams
is [50]:

βB(∆) =
N

∑
i=1

ᾱu
i (∆− Di). (2.30)

It’s worth noting that EDF is not necessarily the only one scheduling pol-
icy can be adopted here. For example, when fixed priority (FP) schedul-
ing is employed, the service bound can be calculated according to an-
other formula [51] and fits in with our algorithms as suitable as EDF.

2.6.2 Principles of our Algorithms

In this chapter, our goal is to find the optimal < ton, to f f > under
the deadline constraints. Apparently brutal searching the whole two-
dimensional space is the least efficient way to find the solution and thus
is not adopted in our approach.

Based on (2.23), one can find that the derivative of T? with respect to ton

is:

dT?

dton = (T∞
a − T∞

s)
mae−ma(ton+tswo f f)[1− e−ms(to f f−tswo f f)]

[1− e−matact−mstslp
]2

> 0 (2.31)

32

2.6. Real-Time Calculus Routine

Therefore, for a given to f f , T? can be minimized by searching the mini-
mal ton under the service curve constraint, (2.28). Based on this feature,
we can design algorithms searching the best solution of PTM based on
below two principles:

1. For a given to f f , the optimal ton which leads to he minimal peak
temperature is the minimum of the tons satisfying the real-time
constraint (2.28).

2. The best pair of < ton, to f f > can be found by searching to f f in its
feasible region while following above principle to obtain ton.

2.6.3 Feasible Region of to f f

In order to discover the minimal ton, the feasible region of to f f should be
determined first such that one can assure the solution to the minimal ton

exists. For example, when the input is a single event stream and to f f =
D, coming events in worst-case will miss their deadlines before they are
processed, considering additional tswon time units are required to switch
the processor on. According to the hardware model, we directly know
that to f f has to be no less than tswo f f to cover the timing overhead of
model-switching. To avoid situations similar to the example, to f f must
be bounded by an upper bound, which is calculated according to the
maximum service curve in [50]:

to f f
max = max

{
to f f : β>R (∆) ≥ βB(∆), ∀∆ ≥ 0

}
, (2.32)

where β>R (∆) can be formulated as follows when we take tswon into ac-
count:

β>R (∆) = max{0, ∆− to f f − tswon} (2.33)

Moreover, from Section 2.4.1, to f f should be larger than the mode-switching
overhead to f f > tswo f f . Finally, the feasible region of to f f can be depicted
as to f f ∈ [tswo f f , to f f

max].

2.6.4 Obtaining the minimal ton

Precise Solution

Based on the constraint (2.28), when to f f is fixed, the precise solution of
minimal ton can be calculated.

33

2. Single Core Thermal Management

Definition 2.9 (Precise ton) Given to f f , the precise ton which not only sat-
isfies real-time constraint (2.28) but also is thermal optimal can be given as:

ton
prc = min

{
ton : βR(∆) ≥ βB(∆), ∀∆ ≥ 0

}
. (2.34)

This solution can be found by testing the tons starting from tswon with
step ε until the minimal ton satisfying (2.28) is discovered. By this
method, the minimum of ton can be obtained with high accurateness
while the time consumption is significant. To reduce the computational
overhead, another method which can find an approximated solution ef-
ficiently is presented below.

Approximated Solution

In this section, an fast method is proposed to compute the minimum
of ton. The basic idea of this method is adopting the bounded-delay
function [22, 50] to calculate an approximate minimal ton.

Definition 2.10 (Bounded-Delay Function) A bounded-delay function for
interval length ∆ is defined by the slope η and the bounded-delay to f f :

bd f (∆, η, to f f) = max[0, η(∆− to f f)] (2.35)

Now, given a to f f , the proposed method first finds the bounded-delay
function defined by to f f and the slope η(to f f) which is given as:

η(to f f) = inf{ρ : ρ(∆− to f f) ≥ βB(∆), ∀∆ ≥ 0} (2.36)

An example of this bounded-delay function is shown in Fig. 2.8 in red
color dashed lines. Then, the approximation of minimal ton can be cal-
culated by solving ton

ton+to f f = η(to f f).

The advantage of this method is twofold: (1) the slope η(to f f) can be ob-
tained by using bisection method, which is highly efficient and require
little computational effort, (2) the peak temperature of the processor
controlled by PTM calculated in this method is a unimodal function of
to f f , which makes the golden-section method feasible for searching best
to f f . Utilizing both advantages, we can get the solution of < ton, to f f >
efficiently.

When the mode-switching overhead is ignored, the approximate mini-

mal ton can be calculated as ton
apx = η(to f f)·to f f

1−η(to f f)
(Refer to Fig. 2.8 for the

34

2.6. Real-Time Calculus Routine

0

4

8

12

16

20

0 4 8 12 16 20 24 28

∆/s

of events

βB(∆) = au(∆−D)
toff

ton
bdf(∆, η(toff), toff)

Figure 2.8: Obtaining the approximate minimal ton based on the
bounded-delay function when the mode-switching overhead is not con-
sidered.

derivation). Since we take the time overhead into account, this equation

is revised as tvld
apx = η(tinv)·tinv

1−η(tinv)
. Based on (2.17), the revised approximate

ton is denoted as:

ton
apx = tvld

apx + tswon (2.37)

=
η(to f f + tswon)

1− η(to f f + tswon)
· (to f f + tswon) + tswon

=
η(to f f + tswon)

1− η(to f f + tswon)
· to f f +

tswon

1− η(to f f + tswon)

=
η(tinv)

1− η(tinv)
· to f f +

tswon

1− η(tinv)

Definition 2.11 A linear function termed as RVT(η, t1, t2) is defined as:

RVT(η, t1, t2) =
η · t1

1− η
+

t2

1− η

Definition 2.12 (Approximated ton) Given to f f , the approximated ton which
not only satisfies real-time constraint (2.28) but also is thermal sub-optimal can
be given as:

ton
apx = RVT(η(to f f + tswon), to f f , tswon) (2.39)

Example 2.13 Consider an periodic event stream with period being 100ms.
The WCET and the relative deadline of the events are given as 10ms and 120ms,
respectively. Suppose the mode-switching overheads are tswon = tswo f f =

35

2. Single Core Thermal Management

5ms. Then, given a to f f = 55ms, we can first calculate the slope η(tinv) =
10

120−55−5 = 1
6 . Further, the valid time interval tvld = 12ms, which is given

by tvld

tvld+tinv = η(tinv) = 1
6 . Finally, we have the approximated solution ton =

tvld + tswon = 17ms, which is identical with RVT(η(tinv), to f f , tswon);

2.7 PTM Algorithms

Based on the precise and the approximated solutions of minimal ton, two
algorithms with different levels of accuracy and efficiency are presented
to minimize T?, namely PMPT (precisely minimizes the peak tempera-
ture) and AMPT (approximately minimizes the peak temperature).

2.7.1 Algorithm PMPT

For a given to f f , the corresponding thermal-optimal ton in this algorithm
is calculated based on (2.34), which derives a precise solution. With ton

prc,
the corresponding peak temperatures T? of all the tested to f f s can be
computed from Thm. 2.8, then corresponding to f f of the minimal T? in
all the tested points is the optimal solution.

Note that the function T?(to f f) is irregular and has several local minima
in the domain of to f f . As shown in Fig. 2.9. Therefore, a thorough search
with a fixed step ε in the feasible region of to f f is implemented to find
the global minimal T?.

Algo. 1 outlines the pseudo-code of algorithm PMPT. It takes as input
the thermal model TM, the input event model EM(N), the time over-
heads of mode-switching and the accuracy coefficients ε and ξ. The
service bound is obtained based on the input and scheduling policy
(line 1) and then the upper bound of to f f is generated (line 2). Then
the optimal solution and minimal T? are initialized in line 3. Lines 4-13
iteratively discover the ton

prc and calculate the peak temperature T? for all
to f f s in the feasible region with a step ε. The tinv is computed by (2.17)
to derive the lower service curve (line 5). Then ton

prc is found by exam-
ining every candidate of ton from the lower bound, tswon, with a step S
(line 6). Afterwards, ton

prc and to f f are revised based on (2.16) to derive
the peak temperature (line 7). The peak temperature is calculated based
on Thm. 2.8 (line 8) and then compared to T?

min. If the newly derived
one is lower, the corresponding < ton, to f f > and T? are assigned to the
optimal solution and T?

min, respectively (lines 9-12).

36

2.7. PTM Algorithms

Algorithm 1 PMPT

Input: TM, EM(N), tswon, tswo f f , ε, ξ

Output: ton
opt, to f f

opt
1: calculate βB(∆) based on EM(N) and the scheduling policy
2: get to f f

max from (2.32)
3: T?

min = T∞
a , ton

opt = 0, to f f
opt = 0

4: for to f f = tswo f f to to f f
max with step ε do

5: get tinv = to f f + tswon from (2.17)
6: find ton by testing (2.34) with step ξ
7: compute tact and tslp by (2.16)
8: T?(tact, tslp) = λ(tact

min, tslp)T∞
a + [1− λ(tact, tslp)]T∞

s
9: if T?(tact, tslp) < T?

min then
10: ton

opt ← ton, to f f
opt ← to f f

11: T?
min ← T?(tact, tslp)

12: end if
13: end for

10 30 50 70 90 110 130 150 170
toff/ms

330

340

350

360

370

Pe
ak

 T
em

pe
ra

tu
re

 /
K PMPT

AMPT

Figure 2.9: The relationship between the peak temperature and to f f

when the corresponding ton is calculated based on the precise and ap-
proximated methods.

2.7.2 Algorithm AMPT

In this algorithm, the minimal ton is obtained directly from the approxi-
mation in (2.34) with less computation. Then according to Thm. 2.8, the

37

2. Single Core Thermal Management

peak temperature can be formulated as a function of to f f :

T? = PT(to f f) (2.40)

= T∞
s +

1− a · e
−matswon

1−η · e
−maη
1−η to f f

1− b · e
−matswon

1−η · e(ms−−maη
1−η)to f f

(T∞
a − T∞

s)

where a = e−matswo f f
, b = e(ms−ma)tswo f f

and η = η(to f f + tswon). Based
on a set of systemic experiments (the details are included in appendix),
we conjecture that PT(to f f) is a unimodal function which has only one
minimum in the feasible region of to f f . Therefore the gold section search
can be utilized to find the optimal to f f instead of searching all to f f s
exhaustively. The pseudo-code is detailed in Algo. 2.

Algorithm 2 AMPT

Input: TM, EM(N), tswon, tswo f f , ε

Output: ton
opt, to f f

opt
1: calculate βB(∆) based on EM(N) and the scheduling policy
2: get to f f

max from (2.32)
3: to f f

s ← tswo f f , to f f
e ← to f f

max
4: define function: f1(x, y) = x + 0.312(y− x)
5: define function: f2(x, y) = x + 0.618(y− x)
6: to f f

a ← f1(t
o f f
s , to f f

e), to f f
b ← f2(t

o f f
s , to f f

e) . Two tested points
selected by gold section

7: T?
1 ← PT(to f f

a), T?
2 ← PT(to f f

b)

8: while to f f
b − to f f

a > ε do
9: if T?

1 > T?
2 then

10: to f f
2 ← to f f

b , to f f
s ← to f f

a , to f f
a ← to f f

b

11: to f f
b ← f2(t

o f f
s , to f f

e), T?
1 ← T?

2 , T?
2 ← PT(to f f

b)
12: else
13: to f f

2 ← to f f
a , to f f

e ← to f f
b , to f f

b ← to f f
a

14: to f f
a ← f1(t

o f f
s , to f f

e), T?
2 ← T?

1 , T?
1 ← PT(to f f

a)
15: end if
16: end while

Algo. 2 has the same input as Algo. 1 except the accuracy coefficients ξ.
The service bound and the upper bound of to f f are first derived (lines 1-
2). Then the two endpoints of golden section selection are initialized as

38

2.7. PTM Algorithms

Table 2.2: Thermal and hardware model parameters

G C ϕi = ϕa θi θa Tamb tswon = tswo f f

0.3 W
K 0.03 J

K 0.1 W
K -25 W -11 W 300 K 0.1 ms

the lower and upper bounds of the feasible region of to f f (line 3). Based
on the two setting functions defined in line 4 and line 5, the initial two
tested points and their peak temperatures are calculated in line 6 and
line 7. Lines 8 to 16 purely do the golden section selection to discover
the optimal to f f such that PT(to f f) reaches its minimum. Since golden
section selection is a well known algorithm, the details are not addressed
herein.

2.7.3 Case Studies

In this section, we study the viability and efficiency of our algorithms
and compare them with two approaches in [2, 55]. The simulations are
implemented in Matlab (32 bit) using RTC-toolbox. All the results are
obtained from a simulation platform with an Intel i7 4770 processor and
16 GB memory.

System Description

The thermal and power parameters are set as described in Tab. 2.2 [55,
80]. The task streams set studied in [101, 50] is used for our case studies
and the parameters are summarized in Tab. 2.3. Earliest deadline first
(EDF) is adopted as the scheduling policy for multi-event scenarios. The
(p, j, d, c) event model is adopted to specified an input stream Si by its
period p, jitter j, minimal inter-arrival distance d of the stream and the
worst-case execution time c. Note that other common timing models of
event streams can also be employed in our case studies with the concept
of arrival curve. We choose the (p, j, d, c) model because it is a commonly
used model and the arrival curve can be easily generated by an existing
formula. The relative deadline Di is defined as Di = χ ∗ pi and varies
according to the deadline factor χ.

The online approach cool shaper (CS) studied in [55], which relies on
not only the upper arrival curve but also the actual arrivals of the com-
ing events to dynamically shut down the processor, and the approach
TAPR (thermal-aware periodic resources) studied in [2] are adopted for
the comparison. The input event model used in TAPR is sporadic task

39

2. Single Core Thermal Management

Table 2.3: Event stream setting

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
p (msec) 198 102 283 354 239 194 148 114 313 119
j (msec) 387 70 269 387 222 260 91 13 302 187
d (msec) 48 45 58 17 65 32 78 - 86 89
c (msec) 12 7 7 11 8 5 13 14 5 6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

N
or
m
ai
li
ze
d
R
el
at
iv
e
P
ea
k
T
em

p
er
at
u
re

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CS
PMPT
AMPT
TAPR

Figure 2.10: Normalized Relative Peak Temperature produced by the
tested approaches for single event stream scenarios with χ = 1. The
right Y axis indicates the NRPT of approach TAPR.

(c, D, P), which is characterized by a worst-case execution time c, a
(relative) deadline D and a minimum inter-arrival separation P. This
model does not contain all the information of our (p, j, d, c) event model.
Therefore, we revised P in a sporadic task as max[(p− j), d] to satisfy
the worst-case deadline constraints. With these setups, Our algorithms
are compared for both single and multi-event scenarios.

Simulation Results

First, we compare the minimal peak temperature derived by the four
approaches. It is worth noting that the differences between the numer-
ical values of those minimal peak temperature are hard to distinguish
compared to their much larger absolute values. Thus the Normalized
Relative Peak Temperature (NRPT), which is defined in the following,

40

2.7. PTM Algorithms

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42
N
or
m
ai
li
ze
d
R
el
at
iv
e
P
ea
k
T
em

p
er
at
u
re

S(6,3,8,7)

S(6,1,7,4)

S(2,10,8,9)

S(5,2,1,7)

S(5,4,10,1)

S(7,4,8,2)

S(9,2,1,6)

S(1,5,7,3)

S(6,10,5,3)

S(8,4,9,1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
CS
PMPT
AMPT
TAPR

Figure 2.11: Normalized Relative Peak Temperature produced by the
tested approaches for ten sets of randomly selected four-events stream
scenarios with χ = 1 by applying EDF scheduling. The right Y axis
indicates the NRPT of approach TAPR.

is employed as the index to evaluate the approaches:

NRPTA =
T?

A − T∞
s

T∞
a − T∞

s
(2.41)

where NRPTA and T?
A is the Normalized Relative Peak Temperature and

the minimal peak temperature produced by approach ‘A’, respectively.
From its definition, a smaller NRPT indicates that the approach can
better minimize the peak temperature.

Fig. 2.10 describes the NRPT for all the single event streams. Fig. 2.11
to Fig. 2.12 reveal the results for four-events and five-events scenarios,
respectively. Fig. 2.13 shows the derived minimal peak temperature
w.r.t. different relative deadlines for the four approaches while taking all
streams as input. Since the results of TAPR are much higher than those
of the other three approaches, we display the results of TAPR with an-
other Y axis in these four figures. Note that in multi-event scenarios,
the arrival curves in CS must be approximated for EDF scheduling. Oth-
erwise, the arrive curves will be too complicated and cause memory
overflow for the JVM in Matlab [1].

From Fig. 2.10 to Fig. 2.13, we state below observations. (1) In all these
cases, approach PMPT generates better or no worse results than ap-
proach AMPT, this is expected because PMPT brutally searches all the

41

2. Single Core Thermal Management

possible solutions to get the precise ton while AMPT relies on the ap-
proximate ton to minimize the peak temperature. (2) For algorithms
PMPT and AMPT, the minimized peak temperatures in four-events and
five-event scenarios are much higher (NRPTs stay inside [0.2, 0.45]) com-
pared to single event scenarios (NRPTs stay inside [0.04, 0.16]). This is
caused by the fact that the processor has to handle more workload in
multi-event scenarios and thence generates more heat. (3) As shown
in Fig. 2.13, the peak temperature decreases as the relative deadline in-
creases, since the processor can stay at sleep mode longer for each mode
switch. The peak temperature however will not further decrease after
certain threshold is reached. (4) The minimal peak temperature in CS is
generally the lowest in single event stream scenarios as CS works online
and can dynamically turn off the processor according to actual work-
load. It’s worth noting that since the heat generated by online calculat-
ing and monitoring of CS is not considered in our simulation, the peak
temperature in CS will be higher when it comes to practical application.
Moreover, CS approach also has to pay high penalty of the offline com-
putation time while PMPT and AMPT approaches can achieve similar
effect with much lower computation expense, which we will show later.
In multi streams scenarios, however, CS yields higher peak temperature
than PMPT and AMPT, which is resulted from the approximation of
input arrival curves. We have made better approximations to improve
the results but with trivial feedback. (5) By and large, the peak temper-
ature derived by TAPR is the highest. The reason is the limitation of its
event model where the non-determinism of pjd pattern cannot be prop-
erly modeled and the modified P = max[(p − j), d] overestimates the
incoming workload. As shown in Fig. 2.10, there exists an extraordinary
point, which is the NRPT of task S4. The reason is that S4 has the largest
jitter j and the second smallest minimal inter-arrival distance d, which
exacerbates the effect of the event model unsuitableness. Consequently,
we can see that the peak temperature generated by TAPR reaches the
upper bound in the multi-event cases as long as S4 is involved in input
streams.

We also report the timing overhead of deriving a PTM scheme. Since
our PTM approaches are offline computed and need negligible runtime
overhead, only the offline computing part of CS is taken into account.
We adopt the computation time for finding the optimal Wunit, which
is the critical parameter for CS, as the computational overhead of CS.
Fig. 2.14 shows the computation expense of the four approaches for ten
sets of randomly selected four-event streams and Fig. 2.15 demonstrates

42

2.7. PTM Algorithms

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

0.41

0.43

0.45

0.47
N
or
m
ai
li
ze
d
R
el
at
iv
e
P
ea
k
T
em

p
er
at
u
re

S(2,10,4,5,3)

S(8,9,2,10,3)

S(6,1,9,4,10)

S(9,2,5,3,10)

S(3,7,1,9,8)

S(4,1,9,8,7)

S(10,3,5,4,2)

S(1,6,5,8,3)

S(2,4,9,1,7)

S(2,10,9,7,8)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

CS
PMPT
AMPT
TAPR

Figure 2.12: Normalized Relative Peak Temperature produced by the
tested approaches for ten sets of randomly selected five-events stream
scenarios with χ = 1 by applying EDF scheduling. The right Y axis
indicates the NRPT of approach TAPR.

0.7 0.9 1.1 1.3 1.5 1.7 1.9
360

364

368

372

376

380

384

388

392

396

T
⋆
/K

Deadline factor

0.7 0.9 1.1 1.3 1.5 1.7 1.9
355

360

365

370

375

380

385

390

395

400

PMPT
AMPT
CS
TAPR

Figure 2.13: Peak Temperature generated by the tested approaches w.r.t.
different relative deadlines for ten-events stream scenario with EDF
scheduling.

how the computation expense in ten-event stream scenario varies as the
relative deadline factor changes. We make below observations: (1) The
computation overhead of cool shaper is the highest, which is about one
up to four orders of magnitude larger than that of our PTM approaches.
(2) In the second figure, the computation overhead of PMPT increases

43

2. Single Core Thermal Management

10
−1

10
0

10
1

10
2

10
3

S(6,3,8,7)

S(6,1,7,4)

S(2,10,8,9)

S(5,2,1,7)

S(5,4,10,1)

S(7,4,8,2)

S(9,2,1,6)

S(1,5,7,3)

S(6,10,5,3)

S(8,4,9,1)

C
om

pu
tin

g
T

im
e

/ s

CS
PMPT
AMPT
TAPR

Figure 2.14: Computing time of the tested approaches for randomly se-
lected four-events stream scenarios with χ = 1 by applying EDF schedul-
ing.

w.r.t. the relative deadline. The reason is that the number of the tested
points of to f f and ton increases as the relative deadline increases when
ε and ξ are fixed. (3) The time consumptions of AMPT are always the
lowest and stable, which are within half a second. (4) Compared to
PMPT, the timing overhead of AMPT is about one or two orders of
magnitude lower. In conclusion, our PTM algorithms are much faster in
terms of computation overhead but generate peak temperatures close to
or even better than the ones of CS online approach.

2.8 Summary

In this section, we present Periodic Thermal Management to minimize
the peak naı̈ve temperature for a single-core hard real-time system in
which the input event streams are characterized by arrival curves. The
temperature of the system is controlled by applying dynamic power
management techniques. The proposed PTM approach periodically switches
the system to low power-consumption state according to pre-computed
scheme. With the worst case deadline constraint, we propose one al-
gorithm that can provide precise solutions and one approach to yield
approximated solutions with lower computation time. To verify the ef-
fectiveness and efficiency, we present several implementations of our
approaches with single event and multi-event streams. Experimental re-

44

2.8. Summary

0.7 0.9 1.1 1.3 1.5 1.7 1.9
10

−1

10
0

10
1

10
2

10
3

Deadline factor

C
om

pu
tin

g
T

im
e

/ s

PMPT
AMPT
CS
TAPR

Figure 2.15: Computing time of the tested approaches w.r.t. different
relative deadlines for ten-events stream scenario with EDF scheduling.

sults show that our algorithms can derive periodic thermal management
schemes with negligible runtime overheads while the peak temperature
can be constrained to similar or even better level of online approach in
the literature.

Our PTM scheme requires negligible runtime overhead since the scheme
is pre-computed in design phase, making itself suitable for real-time
system having little computation power. Moreover, PTM can be easily
implemented on a processor by simply using a hardware timer. In next
chapter, we will investigate how to implement our PTM to pipelined
multi-core systems by reversely using the Pay Burst Only Once princi-
ple.

45

Chapter 3

Pipelined System Thermal
Management

With the ever-increasing demand of computational performance, multi-
core architecture is now widely adopted by major chip manufacturers.
To date, processors having 64 or more cores are available in the market.
The architecture with such a high degree of parallelism poses designers
a challenge: how to extract and exploit parallelism from applications
efficiently.

Pipelined computing, which can increase the throughput of a stream ap-
plication, is a promising paradigm for real-time systems. The pipelined
computing model connects a set of processing units in series, where
the output of one unit is the input of the next one, and executes the
sub-tasks of the stream application. By this way, the sub-tasks can be ex-
ecuted simultaneously, that is, parallel processing is performed. There-
fore, pipelined computing can exploit the hardware performance advan-
tage of multi-core processor efficiently and increase the throughput of
the application.

For real-time pipelined systems, especially for hard real-time systems,
ensuring the latency bounded by a specific constraint is crucial for the
the system correctness. However, as power density is increasing expo-
nentially under Moore’s Law, the peak temperature on modern proces-
sors is rapidly elevated, which seriously threats the reliability and per-
formance of the system. It is studied that a 10 − 15◦C difference in
operating temperature can result in a 2× difference in the lifespan of a
device [21]. Since reducing the temperature usually requires less power
consumption, which means lower performance and larger latency, the

47

3. Pipelined System Thermal Management

trade-off between real-time performance and temperature constraints
should be carefully analyzed. Therefore, it’s an important and challeng-
ing task to design a scheduling policy for a pipelined real-time system
on a multi-core processor such that the peak temperature is minimized
and the end-to-end deadline constraint is satisfied.

3.1 Overview

This chapter focuses on the aforementioned issue and addresses the op-
timization problem by reversely using the Pay-Burst-Only-Once (PBOO)
principle. Our work is inspired by the work of Chen et al. [23], which
minimizes the total power consumption for pipelined stage systems.
However, their work cannot be directly transplanted to temperature op-
timization, due to the reasons: (1) although temperature is a strong func-
tion of power, power management techniques that are effective for en-
ergy saving may not be suitable for temperature managing [111], which
has already been theoretically proved by [7]. (2) The quadratic program-
ming formulation of the power problem cannot be reused, since the peak
temperature is calculated based on convolution operation while energy
consumption is computed based on integral operation. Therefore, the
problem of temperature minimization demands new analysis and opti-
mization techniques.

We consider a multi-core processor which tackles applications which
can be divided into sub-tasks. The sub-tasks can be mapped and exe-
cuted on different cores which communicate with each other via FIFOs
(First-In-First-Out). Every core has two power consumption states, ‘ac-
tive’ and ‘sleep’. To model general event arrivals, the concept of arrival
curve [96, 60, 98] is adopted as the input task application model. The
leakage power dependence on temperature is considered and simpli-
fied by a precise linear approximation [42]. We adopt the well known
HotSpot thermal model and the RC thermal network to model our sys-
tem as a Linear Time Invariant (LTI) system. The power gating technol-
ogy is employed to control the temperature and PTM investigated in pre-
vious chapter is adopted to minimize the peak temperature. A compre-
hensive analysis on the peak temperature of the processor under PTM is
presented. Based on the analysis results, two algorithms are proposed to
calculate the peak temperature in different levels of accuracy and speed.
The optimization problem of searching the PTM schemes is transformed
into a set of sub-problems which are easier to solve. Two algorithms are
proposed to solve the sub-problem for different peak temperature calcu-

48

3.2. Related work

lation methods. One algorithm is an approximated one and based on the
gradient descend method. The other one is based on the simulated an-
nealing algorithm and offers more accurate results. We investigate the
effectiveness and efficiency of our approach by implementing on two
real life platforms: a homogeneous ARM multi-processor and the Intel
Single-chip Cloud Computer (SCC). The scalability of our approach is
demonstrated by testing our approach in systems with up to 24 cores.

The rest of this chapter is organized as follows: Section 3.2 gives a brief
introduction of related work. Our system models are introduced in Sec-
tion 3.3 and Section 3.5 shows a motivation example and presents the
problem statement. We analyze the peak temperature and give algo-
rithms to calculate it in Section 3.6 and Section 3.6.2, respectively. Sec-
tion 3.7 discusses real-time analysis and formalizes our optimization
problem which is transformed into a set of sub-problems. Section 3.8
presents algorithms to solve the sub-problem. Section 3.9 details the
case studies and Section 3.10 concludes this chapter.

3.2 Related work

In this section, we review previous work on thermal-aware system schedul-
ing policies for pipelined systems and multi-core processors.

At first, we briefly introduce the important work on studying the mech-
anism of thermal management and thermal modelling. Brooks and
Martonosi [15] introduced the dynamic thermal management (DTM)
and presented policies and mechanisms for implementing DTM for cur-
rent and future CPUs. To accurately evaluate the thermal profile for the
micro-architectures, Skadron et al. [93, 52] proposed a compact architectural-
level thermal-modeling methodology, named HotSpot. Hotspot enables
designers to consider the thermal impacts on interconnects during early
design stages as it includes a high-level on-chip interconnect self-heating
power and thermal model. They also developed an homonymic toolbox
which can set up the thermal model based on the input processor floor-
plan and parameters.

Now, the related work is categorized based on if it is intended for
pipelined computing

Pipelined Computing Chen and et al. [23] utilized PBOO principle
and presented an approach to optimize the power consumption of a
pipelined system under the deadline constraint. A quadratic program-

49

3. Pipelined System Thermal Management

ming formulation of the problem is proposed and two methods are stud-
ied to solve the problem. As stated in Section 3.1, a power optimal
approach may not be thermal optimal. Therefore, a new approach is
needed for the problem of peak temperature minimization. There exist
several thermal management approaches for pipelined systems. How-
ever, previous work on this topic either considers no hard deadline con-
straints [3, 32] or just reduces the deadline misses percentage into a
lower range [72]. Our approach can give the hard real-time guarantee
by ensuring the end-to-end delay is under the hard deadline constraint.

Multi-core Processors There has been significant work on thermal
management for multi-core processors and we inspect the work that is
closely related to our topic. Aiming to minimize the chip peak tempera-
ture while satisfy the hard real-time constraints of an MPSOC (Multipro-
cessor System-on-Chip), Thidapat and et al. [21] addressed the problem
of assigning and scheduling tasks on the MPSOC. They presented a
mixed-integer linear programming (MILP) formulation of the problem
and then gave an optimal solution as well as a flexible heuristic frame-
work for the MILP formulation. Due to the thermal analysis difficulties,
this approach examines only steady-state temperatures without consid-
ering the transient behavior. In this chapter, we provide a peak temper-
ature formulation which considers the transient temperature. Jungseob
and Nam [63, 64] studied how to optimize and improve the through-
put of a power- and thermal-constrained multi-core processor. Their re-
search didn’t provide any hard real-time guarantee, therefore cannot be
applied to hard real-time systems directly. We consider the task deadline
constraints in this chapter and ensure that the peak temperature is min-
imized under the constraints. Yong and et al. [39] presented a feedback
thermal control framework named Real-Time Multicore Thermal Con-
trol which dynamically enforces both the desired temperature and the
CPU utilization bounds for multicore real-time systems, through DVFS.
Buyoung [110] addressed the problem of avoiding thermal hotspot on a
multi-core chip by employing a runtime thermal aware scheduler (TAS)
using job-migration and power-gating techniques. In [45], Pradeep ex-
tended the concept of Thermal-Resiliency to multi-core architecture and
then adopted a control-theoretic framework to ensure hard-real-time
deadlines in a dynamic thermal environment while maintaining the ther-
mal constraints. However, to simplify the complexity of timing analysis,
above work all assumed simple task models, i.e., either periodic or spo-
radic task model. In this chapter, the task streams are modeled by a
more general concept, the arrival curve, therefore we can preserve more

50

3.3. system model

information such as the non-determinism of the event arrivals in the
model.

In summary, compared to related work, our work achieves the following
improvements:

• providing hard real-time guarantee. Compared to: [34], [72] , [64],
and [63]

• handling non-deterministic event arrivals. Compared to: [38], [100],
[32], [45], [44], [110], and [39]

• considering leakage power dependency on temperature. Compared
to: [64], [34], and [63]

• considering transient thermal behavior. Compared to: [21], and [32]

• thermal optimization. Compared to: [23], [19], and [53]

3.3 system model

Notation: In this chapter, all matrices and vectors are denoted by bold
characters.

Definition 3.1 For two m× n matrices A and B, we consider A ≥ B if Aij ≥
Bij holds for all 0 ≤ i ≤ m and 0 ≤ j ≤ n.

3.3.1 Hardware Model

In this chapter, a multi-core processor which can handle partitioned ap-
plications is considered. The sub-tasks of a partitioned application can
be mapped and executed on different cores which communicate with
each other via FIFOs (First-In-First-Out). An example of pipelined archi-
tecture can be found in Fig. 3.1. Without loss of generality, we denote
the stage or the core number as n. Each core has two power dissipa-
tion modes, namely ‘active’ and ‘sleep’ mode. In ‘active’ mode, the
cores work with higher power consumption and tackles input events
in a fixed frequency. The cores can be switched to ‘sleep’ state for a
lower power consumption when there is no workload to handle. We
also consider the mode-switching overhead. To switch the core i from
‘active’ mode to ‘sleep’ mode and back, tswo f f

i and tswon
i time units are

required, respectively. During mode-switching, the power consump-
tion equals that in ‘active’ mode. Moreover, no coming event can be

51

3. Pipelined System Thermal Management

handled in mode-switching or ‘sleep’ mode. Due to time overhead in
mode-switching, the time length for which a core is switched to ‘active’
(‘sleep’) mode must be larger than tswon (tswo f f), that is, to f f

i > tswo f f
i and

ton
i > tswon

i . For brevity, we define tswoff = (tswo f f
1 , tswo f f

2 , · · · , tswo f f
n) and

tswon = (tswon
1 , tswon

2 , · · · , tswon
n) for an n-core processor.

Processor1

PD1 FIFO

Processor2

deQ FIFO

Processor3

IDCT FIFO

Processor4

MC

Figure 3.1: H.263 decoder on pipelined hardware architecture.

3.3.2 Application Model

We study the streaming applications which can be split into several sub-
tasks. Then, the worst-case execution times (WCET) of the sub-tasks on
all stages are represented by c = {c1, c2, · · · , cn}, where ci denotes the
WCET of the sub-task executed on ith stage. The end-to-end relative
deadline of the application is denoted as D.

To model general task arrivals and available resources in any time inter-
val ∆, the event-based arrival curve [αu(∆), αl(∆)] and the time-based
service curve [βu(∆), βl(∆)] investigated in Chapter 2 are adopted. Note
that instead of transforming an event-based arrival curve to a time-based
one, which is adopted in Chapter 2, we transform the time-based service
curve to event-based formation, since the smallest granularity of the ap-
plication stream between two stages is one event. Similarly, The trans-
formation can be done as β̄u(∆) = bβu(∆)/cc and β̄l(∆) =

⌊
βl(∆)/c

⌋
.

3.3.3 Thermal Model

The well established thermal model HotSpot is employed to model the
multi-core processor [52]. The vertical layout of the processor is mod-
eled by four layers, which are the heat sink, heat spreader, thermal
interface, and silicon die layers. Each layer is divided into a number
of blocks according to the processing components on the die. The to-
tal number of the thermal blocks of a processor with n components is
N = 4n + 12, including the extra eight and four blocks on the heat sink
and heat spreader layers, respectively. Moreover, the thermal blocks are

52

3.3. system model

b

T1

P1
C11

K11

b

T2

P2
K11

C11

b

T3

P3

K11

C11

(a)

G12 = G21

G
1
3
=

G
3
1

G
3
2

=
G
2
3

(b)

b P

silicon
die layer

thermal
interface layer

heat
spreader layer

heat
sink layer

environment

Figure 3.2: (a) The equivalent RC circuit of the silicon layer for a floor-
plan with three processing components, and (b) The vertical layout
model.

ordered in a way that all the processing components occupy the begin-
ning part of the order list. To predict the temperature evolution, we
take the advantage of the well-known electro-thermal analogy, i.e., the
RC thermal network. Every thermal block is mapped onto a node of
the thermal circuit. An example of the model can be found in Fig. 3.2.
Finally, the temperature vector T(t) can be determined by a set of first-
order differential equations [97]:

C · dT(t)
dt

= (P(t) + K · Tamb)− (G + K) · T(t) (3.1)

where C is the thermal capacitance matrix, P is the power dissipation
vector, K is the thermal ground conductance matrix, G is the thermal
conductance matrix and Tamb is the ambient temperature vector which
is defined as Tamb = Tamb · [1, · · · , 1]′, where Tamb is the ambient tem-
perature.

We assume the total power consumption P is the sum of the power Pd

due to dynamic current and the power Pl due to leakage current [43, 81].
Dynamic power Pd is assumed to be constant in each power mode, i.e.,
Pa and Ps, in the ‘active’ and ‘sleep’ mode, respectively. The depen-
dency relationship between the leakage power and the temperature can
be closely approximated by a linear function of the processor tempera-

53

3. Pipelined System Thermal Management

ture, which has been widely adopted [42, 97, 43, 68, 86]:

Pl = W · T(t) + V (3.2)

where W is a diagonal matrix with constant coefficients and V is a vector
with constant coefficients. Therefore, P can be represented as:

P(t) =
{

W · T(t) + Va if in active mode
W · T(t) + vs. if in sleep mode (3.3)

where Va = V + Pa and vs. = V + Ps. Rewriting (3.1) with the power
formulation (3.3), we can obtain the state space representation of the
thermal model:

dT(t)
dt

= A · T(t) + B · u(t) (3.4)

where A = −C−1 · (G+K−W), B = C−1, and u(t) is the input vector. If
component j is in active mode or mode-switching, uj(t) = Va

j +Kjj ·Tamb,

otherwise uj(t) = vs.j + Kjj · Tamb. Since A and B are constant, the
thermal model is a first order linear time invariant system and the closed-
form representation of the temperature is:

T(t) = eA·t · T0 +
∫ ∞

−∞
H(ξ) · u(t− ξ)dξ (3.5)

where T0 is the initial temperature vector and H(t) = eA·t · B is the
matrix describing the impulse response between any two nodes in the
thermal model. Fig. 3.3 shows two examples of the impulse response
between two nodes. The self-impulse response Hii(t) is a non-negative
decreasing function, as shown in Fig. 3.3. Regarding Hij(t) where i 6= j,
we adopt the conjecture proposed in [97] that Hij(t) is a non-negative
unimodal function 1. Since our thermal system is a physical system,
it is straightforward that Hij(t) = ui(t) = 0 when t ≤ 0. Denoting
Tinit(t) = eA·t · T0, the temperature of node i yields:

Ti(t) = Tinit
i (t) +

N

∑
j=1

Tconv
ij (t). (3.6)

where Tconv
ij (t) is the convolution between Hij(t) and uj(t),

Tconv
ij (t) = Hij(t)⊗ uj(t) =

∫ t

0
Hij(ξ) · uj(t− ξ)dξ (3.7)

54

3.3. system model

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

tzeroii Hii ≈ 0

time/s

H
ii

(a)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

tzeroij Hij ≈ 0

time/s

H
ii

(b)

Figure 3.3: The impulse response from node j to node i, when (a) i =
j = 1, (b) i = 1, j = 2. The thermal model comes from the three-core
ARM model in [97] and the tzero points are determined when Hii or Hij

is less than 2× 10−4.

Due to the temporal and spatial variation in temperature, calculating the
peak temperature presents significant difficulties. After closely examin-
ing the model, we make two observations that scale down the exploring
space in temporal and spatial dimensions:

1. The outputs of the thermal system, i.e., the temperatures of all the
nodes, are bounded by the active state steady temperatures, which
indicates our system is BIBO (bounded-input, bounded-output)
stable [109, 40]. An LTI system is said to be BIBO stable if it pro-
duces a bounded-output:

|y(t)| < V1 < ∞ (3.8)

when the system has a bounded-input:

|x(t)| < V2 < ∞ (3.9)

where V1 and V2 are constants. It’s also proven in [40] that BIBO
stability is assured if and only if

∫ ∞
−∞ |H(t)|dt < ∞. Since Hij(t)

is a non-negative function, one can prove that Hij(t) will finally
equals zero as t increases. An intuition explanation is shown in
Fig. 3.3, where Hij(t) ≈ 0 after a certain time instance tzero

ij , which is
determined by system properties as well as the accuracy tolerance.
Besides, as Tinit(t) = H(t) ·C ·T0, one can easily prove that Tinit

i (t)
1 In this chapter, function f (x) is a unimodal function if for some value m, it is

non-increasing for x ≤ m and non-decreasing for x ≥ m.

55

3. Pipelined System Thermal Management

has the same property, too. Therefore, in the following of this
chapter, we adopt Hij(t) = 0 and Tinit

i (t) = 0 when t is sufficiently
large.

2. The peak temperature can only occur on the processing component
nodes. The intuition is that according to Second law of thermody-
namics, in our thermal model, heat can only flow from a hotter
node to a colder one. Since heat are generated from the processing
components, the temperature on them will be higher. Therefore,
to get the peak temperature of our system, only the temperature
of processing component nodes should be calculated.

Moreover, the thermal model is regulated by following circumstances.

• The ambient temperature vector Tamb is assumed to be constant.

• Denote the sleep state steady temperature as Tsleep, we let the ini-
tial temperature T0 = Tsleep.

With the system described above, we show a motivation example and
the problem statement in next section.

3.4 Real-Time Calculus Background

In this section, we introduce the basic definitions and theorems adopted
in real-time calculus which are needed in the following of this chapter.
We simply present the results that are useful and omit the detailed math-
ematical derivation. The details of results below can be found in [60].

3.4.1 Wide Sense Increasing Functions

A function f (t) is wide-sense increasing if and only if f (s) ≤ f (t) for all
s ≤ t. We denote by F the set of wide-sense increasing functions such
that f (t) = 0 for t ≤ 0. The parameter t is a real number and is continu-
ous. By convention, we consider the function f (t) is left-continuous. An
example of function belonging to F is listed below.

Definition 3.2 (Affine functions) An affine function is defined by r ≥ 0
(the ‘rate’) and b ≥ 0 (the ‘burst’), which can be given as:

γr,b(t) =
{

rt + b if t > 0
0 otherwise (3.10)

56

3.4. Real-Time Calculus Background

Definition 3.3 (Rate-latency functions) A rate-latency function is defined
by R ≥ 0 (the ‘rate’) and L ≥ 0 (the ‘latency’), which can be given as:

βR,L(t) =
{

R(t− L) if t > L
0 otherwise (3.11)

3.4.2 Basic Mathematical Results

Firstly, we recall the concept of infimum and supremum. Let S be a
nonempty subset of R. If there exist a number M such that s ≥ M for
all s ∈ S , S is termed as a lower bounded set. The completeness axiom
states that every nonempty subset S of R that is bounded from below
has a greatest lower bound. Then, the infimum of S is defined as this
greatest lower bound and is denoted by infS . Similarly, the supremum
of of nonempty subset S of R that is bounded from up is the lowest
upper bound can is denoted by supS .

Now, we introduce the basic operations defined in Real-Time Calculus.

Definition 3.4 (Min-Plus Convolution) Let f (t) and g(t) be two functions
belonging to F , then the min-plus convolution of f (t) and g(t) is defined as:

(f ⊗ g)(t) = inf
0≤s≤t

{ f (t− s) + g(s)}. (3.12)

Moreover, if t < 0, (f ⊗ g)(t) = 0.

Definition 3.5 (Min-plus Deconvolution) Let f (t) and g(t) be two func-
tions belonging to F , then the min-plus deconvolution of f (t) and g(t) is
defined as:

(f � g)(t) = sup
u≥0
{ f (t + u)− g(u)}. (3.13)

Theorem 3.6 (Output stream) Assume an event stream, constrained by ar-
rival curve α(∆), traverses a system offering service curve β(∆), then the out-
put stream is constrained by the arrival curve α̂(∆) = α� β.

3.4.3 Pay Burst Only Once

Suppose an event flow with arrival curve α traverses two computation
system S1 and S2 in sequence. To obtain the end-to-end delay bound
on the systems, a straightforward method is calculating the isolated de-
lay bounds in each system and then summing them up. However, the
following theorem offers another way to calculate the bound.

57

3. Pipelined System Thermal Management

Theorem 3.7 (Concatenation of Nodes) Assume a workload flow traverses
system S1 and S2 in sequence. Assume that Si offers a service curve of βi,
i = 1, 2 to the flow. Then the concatenation of the two systems offers a service
curve of β1 ⊗ β2 to the flow, where ⊗ is the min-plus convolution.

With Thm. 3.7, the phenomenon of Pay Burst Only Once is illustrated
by an example.

Example 3.8 Consider an event stream constrained by affine arrival curve γr,b
is handled by the concatenation of two nodes each of which offers a rate-latency
service curve βRi,Li(∆), i = 1, 2. We assume r < R1 and r < R2. Now we
compare the delay bounds calculated by two methods described below.

1. the method applying Thm. 3.7.

2. the aforementioned sum-all method.

From Thm. 3.7, the aggregate service curve is βagg = βR0,L0 , where R0 =

mini(Ri) and L0 = ∑Li
i . Then from Thm. 2.3, we have the delay bound:

D0 =
b

R0
+ L0 (3.14)

Now the second method is applied. The delay bound at first node is:

D1 =
b

R1
+ L1 (3.15)

From Thm. 3.6, the event stream to the second node , i.e., the output of the first
node, is constrained by arrival curve α2 = b + r × (t + L1). Then the delay
bound at second node is:

D1 =
b + rL1

R2
+ L2 (3.16)

One can easily derive that D0 < D1 + D2, that is, the method considering the
aggregate service curve offers better delay bound than the method considering
the service curve of each node in isolation does. The reason is the second method
considers the burst b in the original event stream more than once, i.e, twice,
while the former method consider the burst only once, which is termed as pay
burst only once.

58

3.5. Motivation and Problem statement

3.5 Motivation and Problem statement

With Thm. 3.7 and Pay Burst Only Once principle, a pipelined system
composed of n stages each of which offers service curve βi can be con-
sidered as a black-box system which offers an aggregate service curve
of β = β1 ⊗ β2, · · · , βn. Then, the end-to-end delay bound can be cal-
culated sequentially. The Pay-Burst-Only-Once principle points out that
the result derived from Thm. 3.7 better bounds the real end-to-end delay
than the straightforward method does.

In this chapter, our goal is to calculate the lower service curve with given
end-to-end deadline instead of to obtain the end-to-end delay with given
service curve. Therefore, Thm. 3.7 and PBOO principle can be used
reversely to get a better approximated lower service curve to the actual
service curve demanded for the given end-to-end deadline. Since better
approximation indicates lower service curve, lower peak temperature
for the system is expected, which is the motivation of our work.

In our work, the bounded delay function is widely used to simply the
analysis and thus is worth introducing.

Definition 3.9 (Bounded delay function) A Bounded delay function (BDF)
specified by constants ρ and b is defined as:

bd f (∆) = max [0, ρ(∆− b)]. (3.17)

3.5.1 Motivation Example

In this chapter, we deploy Periodic Thermal Management to manage the
temperature of the chip by periodically switching each stage between
two power consumption modes with an individual pair of (ton, to f f).
Therefore, two vectors, toff = (to f f

1 , to f f
2 , · · · , to f f

n) and ton = (ton
1 , ton

2 , · · · , ton
n),

should be determined offline to specify the PTMs deployed on the sys-
tem. For the details of PTM, we refer to [1]. Now, we present a moti-
vation example to illustrate the advantages of applying Pay-Burst-Only-
Once for thermal optimization. For comparison, the PTM schemes are
derived from two approaches: the PBOO based approach (PBOO) and
the one which partitions the end-to-end deadline into sub-stage dead-
lines for each stage, namely SDP (Sub-Deadline Partition).

In this example, an event stream with arrival curve α = 0.15∆ + 2 and
deadline D = 35ms passes through a two-stage pipelined system. For
simplicity, the worst-case execution times of the event stream in first and

59

3. Pipelined System Thermal Management

0

1

2

3

4

0 4 8 12 16 20 24 28 32 36 40 44 48
∆/ms

SDP

α

α̂

t1off

5

t1on = 3.3

t2off = 13 t2on = 3.7

β1

β2 = α̂(∆ − 25)
ρ1 = 0.4 ρ2 = 0.225

0

1

2

3

0 4 8 12 16 20 24 28 32 36 40 44 48
∆/ms

PBOO

α

btot = 20

βtot = α(∆ − 35)

ρtot = 0.15

t1off

5

t1on = 0.9

t2off = 13 t2on = 2.3

Figure 3.4: An example of calculating PTM schemes by methods SDP
and PBOO.

second stage are set as c1 = c2 = 1ms, respectively. We discuss the case
that toff = (5, 13)ms and compare tons generated by the two methods.
Fig. 3.4 graphically illustrates the derivation process corresponding to
the two methods.

Let’s first examine the strategy of Sub-Deadline Partition. We divide the
deadline D into two sub-deadlines, D1 = 10ms and D2 = 25ms, in this
case.

To simplify the process of calculating ton, we adopt the bounded-delay
function as an assistant service curve. For instance, for the first stage,
with the deadline D1 = 10ms, the service demand should be β1 = α(∆−
10). Denote the service curve provided by first state as βtdma

1 , which is
is a TDMA curve specified by to f f

1 and ton
1 . We can guarantee βtdma

1 ≥
β1, if βtdma

1 ≥ bd f1 ≥ β1. Since to f f
1 = 5ms, the b in bd f1 is set as

b1 = to f f
1 = 5ms. Then, bd f1 ≥ β1 yields the minimal slope of bd f1 as

ρ1 = (2− 0)/(10− 5) = 0.4 and finally we have ton
1 = 3.3ms, which is

60

3.5. Motivation and Problem statement

derived from ton
1

ton
1 +to f f

1

= c1 ∗ ρ1 = 0.4 to ensure βtdma
1 ≥ bd f1. To derive

the service demand for the second stage, the output arrive curve α̂ from
the first stage is needed. From Thm. 3.6,

α̂ = α� βtdma
1 = 0.15∆ + 2.7 (3.18)

In the same way, we have the slope of the BDF in second stage as ρ2 =
0.225 and finally ton

2 = 3.7ms.

Now, the PBOO method is utilized to get ton. Unlike the procedure in
SDP, the total service demand is first obtained as βtot = α(∆− 35) and
then a BDF bd ftot = max [0, ρ(∆− b)] should be determined such that
the deadline constraint can be met as long as βsrv

1 ⊗ βsrv
2 ≥ bd ftot ≥

αu(∆−D). From the analysis discussed in Section 3.7, we can set btot as
its minimum: btot = to f f

1 + to f f
2 + c1 + c2 = 20ms, then the slope of bd ftot

can be determined: ρtot = 0.15, which is much smaller than ρ1 and ρ2,
therefore, resulting in smaller ton

1 = 0.9ms and ton
2 = 2.3ms.

The pessimism in the SDP method comes from paying an additional
burst and delay when α̂ is calculated for the second stage, as PBOO
principle points out [60]. Moreover, as the stage number increases, this
effect is accumulated and then causes more pessimistic results. On the
other hand, method PBOO directly calculates the total service demand
and then retrieves ton for every stage, which pays the burst only once
and gets better results. Since lower partition of ton means lower temper-
ature of the processor, it is expected that employing PBOO will achieve
lower peak temperature than using SDP. Therefore, by reversely using
PBOO principle, we can avoid paying the burst repeatedly and therefore
better optimize the peak temperature for pipelined systems, especially
for which having large number of stages.

3.5.2 Problem Statement

Now our problem is defined as follows:
Given an n-stage pipelined platform specified by the above hardware and ther-
mal models, an event stream with end-to-end deadline D, and the WCETs
c = (c1, c2, · · · , cn), our goal is to find the PTM schemes characterized by
toff and ton such that the peak temperature is minimized while the deadline
constraint is satisfied.

To deal with this problem, the first question is how to get the peak
temperature with known Periodic Thermal Management, which is dis-
cussed in next section.

61

3. Pipelined System Thermal Management

3.6 Calculating Peak Temperature

In this section, we discuss how to get the peak temperature of a multi-
core system which adopts PTM. It is straightforward that one can get
the peak temperature by simulating a sufficient long trace of the tem-
perature with the help of any thermal simulation toolbox, for example,
the HotSpot toolbox. However, this method doesn’t utilize the feature of
PTM schemes at all and thus is ineffective for our optimization problem.
Therefore, the peak temperature for PTM schemes is worth discussing
such that high efficiency is achieved. Firstly, we analyze how the temper-
atures of the nodes evolve under PTM and present a formulation of the
peak temperature. Then, based on the formulation, two algorithms are
proposed to calculate the peak temperature of our system with different
levels of accuracy and speed.

3.6.1 Peak Temperature Analysis

Based on the first observation in the thermal model, some notations are
first defined. Let (1) tzero

ij and tinit
k denote the certain time point after

which Hij(t) and Tinit
k (t) can be approximated as zero, respectively, and

(2) n and N indicate the numbers of total processing components and
thermal blocks in thermal model, respectively. Now some basic lemmas
are shown for further analysis.

Lemma 3.10 For any 0 ≤ i, j ≤ N and t ≥ tzero
ij , Tconv

ij (t) is either a periodic
function in the domain of t, if j ≤ n, or a constant function, if n < j ≤ N.

Proof Since Hij(t) = 0 for t ≥ tzero
ij , one can easily prove that Tconv

ij (t) =∫ tzero
ij

0 Hij(ξ) · uj(t− ξ)dξ when t ≥ tzero
ij . Then, we discuss case by case.

• case j ≤ n. Denote the period of the input for component j as tp
j ,

we have uj(t) = uj(t + tp
j) for t ≥ 0. Therefore, when t ≥ tzero

ij we
have:

Tconv
ij (t) =

∫ tzero
ij

0
Hij(ξ) · uj(t + tp

j − ξ)dξ = Tconv
ij (t + tp

j) (3.19)

which proving Tconv
ij (t) is a periodic function of t and the funda-

mental period is tp
j .

• case n < j ≤ N. In this case, node j is not a processing node
and thus uj(t) = KjjTamb is constant. When t ≥ tzero

ij , Tconv
ij (t) =

62

3.6. Calculating Peak Temperature

0 2 4 6 8 10 12 14 16 18 20
−4

−2

0

2

4

time/s

T
co

n
v

ij
/K

(a) Tconv
ij changes periodically after certain

time instance

0 2 4 6 8 10 12 14 16 18 20
310

320

330

340

350

360

370

tplcm

time/s

T
i/
K

(b) Ti changes periodically after certain
time instance

Figure 3.5: Examples of Tconv
ij and Ti varying with time, where i = 1, j =

2 in the figures. The thermal model comes from the three-core ARM
model in [97] and toff = [0.16, 0.4, 0.2]s while ton = [0.2, 0.2, 0.2]s.

∫ tzero
ij

0 Hij(ξ) · uj(t− ξ)dξ, which is a definite integral and therefore
constant. �

Lemma 3.11 When t ≥ tend, the temperature of node i, Ti(t), is a periodic
function whose period tplcm is the least common multiple of tp

1 , tp
2 , · · · , tp

n,
where tend = max

1≤i,j≤N
{tinit

i , tzero
ij }.

Proof According to the first observation in thermal model, Tinit
i in (3.6)

is approximated as 0 when t ≥ tend. Then, the temperature of node i is
Ti(t) = ∑N

j=1 Tconv
ij (t). From Lem. 3.10, if t ≥ tend, Tconv

ij (t) is either a pe-
riodic function or a constant function. In other words, temperature Ti(t)
is the sum of a set of periodic and constant functions. For real implemen-
tation, the periods of the PTM schemes should be rational numbers that
rounded to certain unit, for example, 0.1ms. Consequently, the ratios of
the periods of the individual scheme are ratios of integers. Therefore,
we conclude that Ti(t) is a period function and its period, tplcm, is the
least common multiple of the periods of all the PTM schemes. �

For clear demonstration, Fig. 3.5 shows examples of Tconv
ij and Ti. It

is worth noting that the i, j, and the thermal model are the same with
those in Fig. 3.3. We find that after tzero

ij , which is shown in Fig. 3.3 and
is around 14s, Tconv

ij changes periodically according to the period of the
second PTM. In addition, it can be observed that the period of Ti in
Fig. 3.5b is about 3.6s, which agrees with the result calculated from the

63

3. Pipelined System Thermal Management

periods of PTM schemes. Next, more lemmas about peak temperature
analysis are given.

Lemma 3.12 T(t) < T(t + tplcm) when t < tend and T(t) = T(t + tplcm) for
t ≥ tend.

Proof Since tplcm is the least common multiple of tp
1 , tp

2 , · · · , tp
n, it is clear

that u(t + tplcm) = u(t). For brevity, let t2 = t + tplcm and t1 = t. From
(3.5), we have:

T(t2)− T(t1) = eA·t2 · T0 +
∫ t2

0
H(ξ) · u(t2 − ξ)dξ −

eA·t1 · T0 −
∫ t1

0
H(ξ) · u(t2 − ξ)dξ (3.20)

= (eA·t2 − eA·t1) · T0 +∫ t2

t1

H(ξ) · u(t2 − ξ)dξ (3.21)

When t1 ≥ tend, the matrix H is considered as a zero matrix, as demon-
strated in Section 3.3.3. Since H(t) = eA·t · B, one can prove that eA·t2

and eA·t1 are zero matrices, too. Therefore, we have T(t2)− T(t1) = 0,
that is, T(t) = T(t + tplcm).

When t1 < tend, denote us as the input vector in the case that all nodes
stay in sleep state. It is clear that

∫ t2
t1

H(ξ) ·u(t2− ξ)dξ >
∫ t2

t1
H(ξ) ·usdξ

because H(t1) is positive and u(t2 − ξ) > us (As the concept of ‘period’
is used, we do not consider the scenario that u = us). In addition,
since the sleep state steady temperature Tsleep is obtained from (3.4) by
making dT(t)

dt = 0, one can derive that

B · us = −A · Tsleep (3.22)

64

3.6. Calculating Peak Temperature

Now, replacing H(ξ) in (3.21) with eA·ξ · B yields:

T(t2)− T(t1) > (eA·t2 − eA·t1) · T0 +
∫ t2

t1

eA·ξ · B · usdξ

= (eA·t2 − eA·t1) · T0 + A−1 · eA·t2 · B · us −
A−1 · eA·t1 · B · us

= (eA·t2 − eA·t1) · T0 −A−1 · eA·t2 ·A · Tsleep +

A−1 · eA·t1 ·A · Tsleep

= (eA·t2 − eA·t1) · T0 − eA−1·A·t2·A · Tsleep +

eA−1·A·t1·A · Tsleep

= (eA·t2 − eA·t1) · T0 − eA·t2 · Tsleep + eA·t1 · Tsleep

= (eA·t2 − eA·t1) · (T0 − Tsleep)

= 0 (3.23)

which proves that T(t2) > T(t1). �

Lemma 3.13 For node i, the peak temperature T?
i equals the maximal temper-

ature which is reached after tend.

Proof We prove this lemma by contradiction. Let tpeak
i denote the time

slot when the peak temperature T?
i is reached. Suppose that tpeak

i ≤
tend. From Lem. 3.12, one can find another time slot t2 ≥ tend such
that the temperature at t2 is higher than T?

i , which conflicts with the
assumption that T?

i is the peak temperature. Therefore, we conclude
that the peak temperature T?

i is reached after tend and thus equals the
maximal temperature reached after tend. �

Lemma 3.14 The peak temperature of node i is:

T?
i = max

tend≤t≤tend+tplcm

n

∑
j=1

Tconv
ij (t) + Tconst

i (3.24)

where Tconst
i is a constant indicating the sum of influence from all non-processing

nodes to node i when t ≥ tend, which is defined as,

Tconst
i =

N

∑
j=n+1

Tconv
ij (tend) =

N

∑
j=n+1

∫ tend

0
Hij(ξ) · us

jdξ. (3.25)

65

3. Pipelined System Thermal Management

Proof From Lem. 3.13, we can know that T?
i can be obtained by finding

the maximum of Ti(t) for t ≥ tend. According to Lem. 3.11, when t ≥ tend,
T?

i is a periodic function and its period is tplcm. Therefore the maximum
of Ti(t) is the local maximum in any period when t ≥ tend and can be
formulated as,

T?
i = max

tend≤t≤tend+tplcm

N

∑
j=1

Tconv
ij (t) (3.26)

From Lem. 3.10, Tconv
ij (t) is a constant number when n + 1 ≤ j ≤ N.

Therefore, the peak temperature of node i can be formulated as (3.24).�

Based on above lemmas and definitions, we present our first important
result in the following theorem.

Theorem 3.15 For a multi-core processor with hardware and thermal models
described above, when the PTM schemes characterized by toff and ton are ap-
plied, the peak temperature of the processor can be formulated as:

T? = max {T?
1 , T?

2 , · · · , T?
n} (3.27)

where T?
i is formulated according to Lem. 3.14.

Proof Based on the second observation of thermal model, the peak tem-
perature of the processor must be the peak temperature of the process-
ing component nodes, which are the first n nodes in the model. There-
fore, we have T? = max {T?

1 , T?
2 , · · · , T?

n}. �

Next, two algorithms are presented to calculate the peak temperature
with different accuracies based on the analysis results obtained in this
section.

3.6.2 Peak Temperature Calculating Algorithms

In this section, we present two algorithms, namely Accurate Neighbors
Peak Temperature (ANPT) and Fast Bounding Peak Temperature (FBPT),
to calculate the peak temperature of our system with different accuracies
and speeds.

From Lem. 3.14, it is clear that to obtain the accurate maximum of Ti(t),
one should calculate the evaluation of Ti(t) for at least one period, tplcm.
However, in the worst-case, for example, when the PTM periods are co-
prime numbers, tplcm probably grows exponentially as the stage number
n increases, which seriously prohibits the speed as well as the scalabil-
ity of our approach. Therefore, we propose two algorithms ANPT and

66

3.6. Calculating Peak Temperature

FBPT that calculate the peak temperature with different levels of ap-
proximation. Algorithm ANPT offers a relatively accurate result with
the expense of computing power is bounded while FBPT gives a less
accurate peak temperature but requires much less computation.

Pre-Computing Matrices and Variables

One can get the peak temperature of the system based on the basic re-
sults in Section 3.6. However, it’s worth noting that the matrices and
variables that only depend on system inherent properties need to be
pre-computed to avoid calculating them repeatedly in subsequent cal-
culations. According to the peak temperature analysis, matrices and
variables {tend, ua, us, H = {H(t) : 0 ≤ t ≤ tend}, and Tconst} should
be pre-computed. For clarity, we denote them by symbol TM in the fol-
lowing of this chapter. Next, we discuss the fast and simple algorithm
FBPT.

Fast Bounding Peak Temperature Algorithm

Denoting the maximum of Tconv
ij (t) as Tmaxp

ij when t ≥ tend, we have
following inequality from Lem. 3.14.

T?
i = max

tend≤t≤tend+tplcm

{ n

∑
j=1

Tconv
ij (t)

}
+Tconst

i ≤
n

∑
j=1

{
max

tend≤t≤tend+tplcm
Tconv

ij (t)
}
+Tconst

i

(3.28)
For brevity, denote T̄?

i = ∑n
j=1 Tmaxp

ij + Tconst
i . Inequality (3.28) indicates

T̄?
i safely bounds the peak temperature of node i. From a set of system-

atic experiments, we observe that T̄?
i is close to the real maximum of

Ti(t) in value. The reason of this phenomenon is: due to heat transfer
delay between two nodes, the oscillation amplitude of Tconv

ij (t) is consid-

erably weak compared to the magnitude of Tconv
ii (t) when t ≥ tend, es-

pecially for the scenario that nodes i and j are far away from each other
on the floorplan of the processor. Therefore the error caused by Tmaxp

ij
is acceptable, making T̄?

i be a good approximation of the actual result.
Adopting this approximation has two advantages: first, the calculation
of T̄?

i , as shown in (3.29), can be performed quickly since the element
operation, that is, computing Tmaxp

ij , requires little resource according to
its definition; second, we conjecture that the peak temperature offered
by this method has only one minimum based on a set of systematic ex-
periments, thus the gradient-descent-search can be utilized to find the

67

3. Pipelined System Thermal Management

Algorithm 3 Fast Bounding Peak Temperature Computation

Input: TM, toff, ton, tswoff, and tswon

Output: The peak temperature of the system T?

1: tp ← toff + ton, tact ← ton + tswoff,
2: tslp ← toff − tswoff, T? ← −∞
3: for each processing component node i ≤ n do
4: T?

i ← 0
5: for each processing component node j ≤ n do
6: tmax

ij ← tend + periodsj
7: construct input trace Ptrace from t = 0s to t = tmax

ij
8: thermal trace Tconv

ij ← IFFT{FFT{Hij} ∗ FFT{Ptrace}}
9: Tmaxp

ij ← max
tend≤t≤tmax

ij

Tconv
ij (t)

10: T?
i ← T?

i + Tmaxp
ij

11: end for
12: T?

i ← T?
i + Tconst

i
13: end for
14: T? ← max {T?

1 , T?
2 , · · · , T?

n}

optimal solution. By adopting this definition, our approach significantly
reduces the storage space requirement and time expense.

Tmaxp
ij = max

tend≤t≤tend+tp
j

Tconv
ij (t) (3.29)

The pseudo-code is profiled in Algo. 3. It is worth noting that the input
toff and ton are revised to tslp and tact to comprise the mode-switching
overhead. Then the peak temperature of all the processing nodes are
computed (lines 3 to 12) and the highest one is assigned to the peak
temperature T? (line 14). In the implementation, convolution (3.7), that
is, Tconv

ij (t), is actually a discrete convolution, thus can be converted
to a circular convolution which is implemented with the Fast Fourier
Transform(FFT) to reduce the complexity(line 8).

Accurate Neighbors Peak Temperature

Algorithm FBPT is suitable for the scenario that don’t require high result
accuracy. However, when high accuracy is desired, Algorithm FBPT fails
to meet the requirement. Therefore, to give a relatively accurate peak

68

3.6. Calculating Peak Temperature

1(neighbor
of 1)

2 (neighbor
of 1)

3(neighbor
of 1)

4

5 6

7 8

(a)

0 3 6 9 12 15 18 21 24 27 30
−4

−2

0

2

2
.1
7
K

time/s

T
co

n
v

1
2

/K

0 3 6 9 12 15 18 21 24 27 30
−1.5

−1

−0.5

0

0.5

time/s

T
co

n
v

1
8

/K

0
.0
9
K

(b)

Figure 3.6: (a): An example of neighbor nodes on a block mapping of the
silicon die layer in an Octa-processing-component model. (b): Thermal
influence form node 2 and node 8 to node 1 in left sub-figure. The PTM
schemes on node 2 and node 8 are the same: to f f = 100ms, ton = 100ms.

temperature, we propose another algorithm, ANPT, in this section. Be-
fore the algorithm is presented, the concept of ‘neighbor’ is introduced.

Definition 3.16 (Neighbors) For a node i in the thermal model, its neighbors
are the same-layer-nodes which have common boundary with it. Note that we
also consider the node itself as its neighbor in this chapter.

An example is shown in Fig. 3.6a, where nodes 1 to 3 are the neighbors
of node 1 according to the definition.

The basic idea of ANPT originates from the observation that the oscil-
lation of the thermal influence from non-neighbor nodes is much less
than that from neighbor nodes. Fig. 3.6b displays Tconv

12 and Tconv
18 , which

are the thermal influence form node 2 and node 8 to node 1 in Fig. 3.6a.
As shown in the figure, when the same to f f and ton are adopted, the
oscillation amplitude of Tconv

18 is less than 0.1K, which is around 4% of
that of Tconv

12 . This is caused by the heat transfer delay, as mentioned
in previous section. Therefore, to calculate T?

i , the influence from non-
neighbor nodes can still be approximated by FBPT to save computing
effort because they have little impact on T?

i . Meanwhile, the calculation
accuracy of T?

i can be significantly improved by calculating the very real
thermal influence from its neighbor nodes. It is worth noting that in this
way, ANPT achieves the scalability since the number of neighbor nodes

69

3. Pipelined System Thermal Management

Algorithm 4 Accurate Neighbors Peak Temperature Computation

Input: TM, toff, ton, tswoff, and tswon

Output: The peak temperature of the system T?

1: periods← toff + ton, tact ← ton + tswoff

2: tslp ← toff − tswoff, T? ← −∞
3: for each processing component node i ≤ n do
4: T?

i ← 0
5: NBS← ∅
6: NBS T← ∅
7: for each processing component node j ≤ n do
8: tmax

ij ← tend + periodsj
9: construct input trace Ptrace from t = 0s to t = tmax

ij
10: temperature trace Tconv

ij ← IFFT{FFT{Hij} ∗ FFT{Ptrace}}
11: if node j is a neighbor of node i then
12: NBS← NBS

⋃
j

13: NBS T← NBS T
⋃{Tconv

ij : tend ≤ t ≤ tmax
ij }

14: else
15: Tmaxp

ij = max
tend≤t≤tmax

ij

Tconv
ij (t)

16: T?
i = T?

i + Tmaxp
ij

17: end if
18: end for
19: tplcm

i ← the least common multiple of {tp
j |j ∈ NBS}

20: SUM← 0
21: for each processing component node j ∈ NBS do
22: get exTconv

ij by extending Tconv
ij of j in NBS T to length tplcm

i
23: SUM← SUM + exTconv

ij
24: end for
25: T?

i = T?
i + max(SUM) + Tconst

i
26: end for
27: T? ← max {T?

1 , T?
2 , · · · , T?

n}

is limited. For instance, in Fig. 3.6, a node can have at most 4 neigh-
bor nodes, including itself. The pseudo code of ANPT is presented in
Algo. 4.

Algo. 4 requires the same input as Algo. 3. For any processing node
i, when calculating the thermal influence from any processing node j,
the algorithm checks if node j is a neighbor of node i (line 11). If

70

3.7. Real-time Analysis and Problem Formulations

so, node j and the corresponding thermal trace are put into the set
NEIGHBORS and NEIGHBORS TRACE (lines 12- 13) for calculation
in lines 19-24. Otherwise, Tmaxp

ij is directly added to T?
i to reduce the

time cost (lines 16). After traversing all the nodes (line 18), the algorithm
tackles the nodes in NEIGHBORS and find their maximal thermal influ-
ence to node i by extending the Tconv

ij s in NEIGHBORS TRACE to the
LCM length and calculating their summation (lines 19-24). Finally T?

i
is obtained and the highest one is assigned to the peak temperature T?

(line 27).

3.7 Real-time Analysis and Problem Formula-
tions

In this section, we first analyze how to guarantee the deadline con-
straints. Then, the formulation of our optimization problem is presented.
The formulation is broken down by a set of sub-problems easier to solve.
Finally, the overall algorithm is given to solve the thermal optimization
problem. How to solve the sub-problem is discussed in next section.

3.7.1 Real-time analysis

Before formulating the optimization problem, we first present the timing
property analysis to ensure all tasks are finished before their deadlines.
For an n-stage pipelined processor that employs PTM schemes charac-
terized by toff and ton, we define

R = {R1, · · · , Rn}, Ri =
ton
i

ton
i + to f f

i

(3.30)

Then, suppose an application with arrival curve α is processed by the
n pipelined stages, the deadline D can be guaranteed if the following
condition holds:

m⊗
i=1

β̄i ≥ αu(∆− D) (3.31)

where β̄i is the event-based service curve provide by stage i and is de-
fined as β̄i =

⌊ βi
ci

⌋
, as mentioned in Section 3.3. Before further analysis,

a lemma is presented.

71

3. Pipelined System Thermal Management

0

4

8

12

16

20

0 4 8 12 16 20 24 28

∆/s

of events

βB(∆) = au(∆−D)
toff

ton
bdf(∆, η(toff), toff)

(a)

0

2

4

6

8

10

0 4 8 12 16 20 24 28 32

∆/s

of events

au(∆−D)bdf1 = 1
6 (∆− 4)

bdf2 = 0.5(∆− 12)

(b)

Figure 3.7: (a) The corresponding bounded delay function for a given
PTM service curve. The x-axis indicates any time interval with length
∆. (b) A service curve demand au(∆ − D) is upper bounded by two
bounded delay functions with different b and ρ.

Lemma 3.17

n⊗
i=1

β̄i ≥
n

min
i=1

(
Ri

ci
)[∆−

n

∑
i=1

(to f f
i + ci)] (3.32)

Proof It is worth noting that this lemma is already proved in [23] with
the assumption that ton

i is a positive multiple of ci. Now we prove
Lem. 3.17 for general cases where ton

i is a real number.

The lower service curve provided by any stage i controlled by PTM
(to f f

i , ton
i) is formulated as βi(∆) = max

(⌊ ∆
to f f
i +ton

i

⌋
· ton

i , ∆ −
⌈ ∆

to f f
i +ton

i

⌉
·

to f f
i
)

[50], which is a TDMA curve as shown in Fig. 3.7a. Then we can
generate a corresponding bounded delay function bd fi = max[0, Ri(∆−
to f f
i)] which satisfies,

βi ≥ bd fi (3.33)

Therefore β̄i =
⌊ βi

ci

⌋
≥
⌊ bd fi

ci

⌋
≥
⌊Ri

ci
(∆− to f f

i)
⌋
. Since

⌊
a
⌋
≥ a− 1, we

have,

β̄i ≥
Ri

ci
(∆− to f f

i)− 1 =
Ri

ci
(∆− to f f

i − ci) (3.34)

According to the rule of min-plus convolution of rate-latency service
curve βR1,T1

⊗
βR2,T2 = βmin(R1,R2),T1+T2

in [60], we have,

n⊗
i=1

β̄i ≥
n⊗

i=1

Ri

ci
(∆− to f f

i − ci) =
n

min
i=1

(
Ri

ci
)[∆−

n

∑
i=1

(to f f
i + ci)] (3.35)

72

3.7. Real-time Analysis and Problem Formulations

To consider the effect of mode-switching to the QoS of our system, the
ton
i and to f f

i in (3.30) and (3.32) should be revised as ton
i = ton

i − tswon
i and

to f f
i = to f f

i + tswon
i , respectively. Then, we state the next theorem as the

real-time analysis result.

Theorem 3.18 (Guarantee of Deadline) Assume an input event stream char-
acterised by arrival curve α traverses an n-stage pipelined system which is con-
trolled by PTM schemes depicted by toff and ton, the end-to-end deadline D can
be guaranteed if the following inequality holds,

n
min
i=1

(
Ri

ci
)[∆−

n

∑
i=1

(to f f
i + tswon

i + ci)] ≥ αu(∆− D) (3.36)

where Ri =
ton
i −tswon

i

ton
i +to f f

i

Proof From Lem. 3.17, we have
⊗m

i=1 β̄i ≥ αu(∆ − D) if (3.36) holds,
which ensures taht the deadline is satisfied. �

3.7.2 Formulation and transformation of the Optimiza-
tion Problem

According to Thm. 3.18, our problem is transformed into an optimiza-
tion problem.

minimize T?(R, toff)

subject to
n

min
i=1

(
Ri

ci
)[∆−

n

∑
i=1

(to f f
i + tswon

i + ci)] ≥ αu(∆− D)(3.37)

0 ≤ R ≤ 1, toff ≥ tswoff, ton ≥ tswon

Handling this problem directly presents significant difficulty as the ex-
ploring space is hard to determine. Therefore, we transform it into a set
sub-problems, which is discussed below.

The right side of the inequality (3.36) can be upper-bounded by a set
of minimum bounded-delay functions bd fmin(∆) = max [0, ρ(∆− b)], as
shown in Fig. 3.7b. For a given b, the bounded-delay functions is deter-
mined by calculating the corresponding ρ:

ρ(b) = inf{ρ : ρ(∆− b) ≥ αu(∆− D), ∀∆ ≥ 0} (3.38)

73

3. Pipelined System Thermal Management

Then, for every individual function bd fmin(∆) ≥ αu(∆−D), the deadline
D is satisfied when the following inequity holds:

n
min
i=1

(
Ri

ci
)[∆−

n

∑
i=1

(to f f
i + tswon

i + ci)] ≥ bd fmin(∆, ρ, b) (3.39)

which is equivalent to:

n
min
i=1

(
Ri

ci
) ≥ ρ &

n

∑
i=1

(to f f
i + tswon

i + ci) ≤ b (3.40)

Finally, for every individual pair of b and ρ, problem (3.37) is trans-
formed to the following sub-problem:

minimize T?(R, toff)

subject to
n

min
i=1

(
Ri

ci
) ≥ ρ

n

∑
i=1

(to f f
i + tswon

i + ci) ≤ b (3.41)

0 ≤ R ≤ 1, toff ≥ tswoff, ton ≥ tswon

3.7.3 Overall algorithm to minimize peak temperature

With formulation (3.41), Algo. 5 provides the pseudo-code of our ap-
proach. It’s worth noting that b should vary in a feasible region [bmin, bmax],
where bmin = ∑n

i=1 (t
swo f f
i + tswon

i + ci) since to f f
i is lower bounded by

tswo f f
i , and bmax = max

{
b : max(0, ∆− b) ≥ αu(∆−D), ∀∆ ≥ 0

}
, which

is obtained from [1].

3.8 Solving the sub-problem

This section presents two algorithms to solve the sub-problem (3.41).
Each algorithm can be called individually by Algo. 5 to minimize the
peak temperature and find the optimal PTM schemes.

Lemma 3.19 For problem (3.41), Ri can be obtained safely by the following
equation:

Ri = ciρ (3.42)

74

3.8. Solving the sub-problem

Algorithm 5 Peak Temperature Optimization

Input: TM, α, D, n, c, tswon,tswoff, search step η
Output: T?

min, ton, toff

1: calculate [bmin, bmax]
2: T?

min ← ∞, R← 0, toff ← 0
3: for each b = bmin to bmax with step η do
4: get corresponding ρ from (3.38)
5: solve sub-problem (3.41) and get
6: T?, R�, toff�
7: if T? < T?

min then
8: T?

min ← T?, R← R�,
9: toff ← toff�

10: end if
11: end for
12: calculate ton with ton

i = (Rit
o f f
i + tswon

i)/(1− Ri)

Proof From the definition of Ri, one can derive ton
i = (Rit

o f f
i + tswon

i)/(1−
Ri). Then, we have dton

i
dRi

> 0, which means a larger Ri results in a higher
partition of ton

i , that is, a higher peak temperature. Therefore Ri should
equal its lower bound ciρ such that the peak temperature won’t be ele-
vated unnecessarily. �

From Lem. 3.19, T?(R, toff) in (3.41) can be transformed to a function of
toff , T?(c · ρ, toff), with the constraint:

n

∑
i=1

(to f f
i + tswon

i + ci) ≤ b (3.43)

Next we present two fast algorithms to solve the sub-problem (3.41)
corresponding to the two peak temperature algorithms proposed in Sec-
tion 3.6.2.

3.8.1 Algorithm FBGD to solve the FBPT based sub-
problem

In this case, T?(R, toff) is calculated with the FBPT algorithm. Intuitively,
one can brutally search the whole exploring space to find the optimal
solution. However, as the stage number n increases, the exploring space
expends (approximated) exponentially and this approach will finally be

75

3. Pipelined System Thermal Management

infeasible. For example, if n = 8 and every to f f has 50 candidates in the
exploring space, there will be 508 = 3.90625× 1013 combinations in total.
The brutally searching algorithm needs more than 120 years to finish if
the computer can check 10000 combinations per second. Therefore, a
more clever algorithm is needed to solve sub-problem (3.41). We first
introduce the following conjecture obtained from a set of systematic
experiments.

Conjecture 3.20 (Unimodal Peak Temperature) Given ρ and R = c · ρ,
the peak temperature calculated by FBPT is a unimodal function of to f f

i in the
feasible region of to f f

i .

An example is shown in Fig. 3.8, the obtained peak temperature first
decrease and then increase as to f f

i varies from its lower bound to upper
bound while other to f f s stay constant.

From Conjecture 3.20, the local minima is also the global minima of the
peak temperature. Therefore, inspired by the gradient descent method,
we propose an Fast-Bounding-based adaptive-step-Gradient-Descent(FBGD)
algorithm to find the optimal toff in the exploring space.

Algo. 6 outlines the pseudo-code of the algorithm. It takes the thermal
model, the stage number, mode-switching overhead vectors, b, ρ, c, a
initial step size ξ, and a minimal step size ξmin as input. The iteration
starts at the initial point tswoff (line 3). In every iteration, it first checks
whether feeding one current step size ξ to toff will violate the limit of
b (line 5). If so, the current step size should shrink to a smaller value
which satisfies constraint 3.43. In this algorithm, the golden section scale
is utilized to obtain the new step size ξ (line 6). Then all the possible
directions are checked (line 11) to find the direction which leads to the
current steepest descent. If the the minimal gradient results in a lower
peak temperature, the corresponding direction will be selected to update
toff by adding ξ to toff (line 16). Otherwise, we adapt the step to a smaller
size which is also determined by the golden section rule (line 18). the
algorithm executes the iteration until the minimal step size is reached
(line 8).

3.8.2 Algorithm ANSA to solve the ANPT based sub-
problem

Obtained from algorithm ANPT, the peak temperature varies irregularly
in the space of toff. As shown in Fig. 3.8, there exist several cliffs as to f f

i

76

3.8. Solving the sub-problem

Algorithm 6 FBGD: solve the FBPT based sub-problem with given b and
ρ

Input: TM, n, b, ρ, c, tswon, tswoff, initial step size ξ, minimal step size
ξmin

Output: T?, R�, toff�
1: e1 ← (1, 0, · · · , 0), e2 ← (0, 1, · · · , 0), en ← (0, 0, · · · , 1), g← 01,n
2: R← ρ · c, toff ← tswoff

3: T?
last ← T?(R, toff) calculated by Algo. 3

4: while true do
5: if ∑n

i=1 (t
o f f
i + tswon

i + ci) + ξ > b then
6: ξ ← 0.618 ∗ (b−∑n

i=1 (t
o f f
i + tswon

i + ci))
7: end if
8: if ξ ≤ ξmin then
9: break

10: end if
11: for each 1 ≤ i ≤ n do
12: gi ← (T?(R, toff + ξei)− T?

last)
13: end for
14: if min{g} < 0 then
15: find i where g == min{g}, toff ← toff + ξei,
16: T?

last ← T?
last + min{g}

17: else
18: ξ ← 0.618 ∗ ξ
19: end if
20: end while
21: T? ← T?

last, R� ← R,toff� ← toff

increases, indicating the gradient descent method is not suitable any
more. Therefore, we determine to deploy an heuristic algorithm to find
the sub-optimal solution of sub-problem (3.41) rather than the global
minimum, which can only be safely discovered by the brutally search-
ing method. The well-known Simulated Annealing (SA) algorithm is
adopted to solve (3.41) in our approach and is denoted as ANSA. Note
that the typical SA algorithm searches in the space of toff without linear
constraints. Therefore, the section of updating a new candidate in the
SA algorithm needs to be revised to guarantee the new candidate meets
the linear constraints in (3.41). Algo. 7 presents the pseudo code of the
revised section.

Algo. 7 uses the current toff, b, n, c, tswon, the current simulated an-

77

3. Pipelined System Thermal Management

0 50 100 150 200 250 300
377

378

379

380

381

382

toffi /ms

P
ea
k
T
em

p
er
at
u
re

/
K

FBPT
ANPT

Figure 3.8: Peak temperature obtained by FBPT and ANPT change as
to f f
i increases, while other to f f s keep constant.

Algorithm 7 Update toff with linear constraint (3.40) for SA

Input: toff, b, n, c, tswon, Current SA Temperature TSA, Initial SA Tem-
perature TSA

init,
1: lower bound bdl, upper bound bdu

Output: toff

2: if ∑n
i=1 (t

o f f
i + tswon

i + ci) ≥ b then
3: toff ← bdl

4: return
5: end if
6: k← an uniformly distributed random integer between 1 and n
7: temp upper bound bd† ← min[bdu

k , b−∑n
i=1 (t

o f f
i + tswon

i + ci)+ to f f
k]

8: step← an uniformly distributed random number between −1 and 1
9: η ← TSA

k /TSA
init

10: to f f
k ← to f f

k + η ∗ (bd† − bdl
k) ∗ step

11: toff ← max[toff, bdl], toff ← min[toff, bdu]

78

3.9. Case Studies

nealing temperature TSA, the initial SA temperature, and the lower and
upper bounds of toff to update the new candidate. bdl and bdu are the
strict constraints that toff must not violate, which can be set as tswoff and
(b − ∑n

i=1 (t
swo f f
i + tswon

i + ci)) · [1, · · · , 1]′, respectively. The algorithm
first check if the current toff satisfies the constraint (3.43) (line 2). If
(3.43) is violated, toff will be assigned to its lower bound, indicating an
error toff is given (line 3). Otherwise, a to f f

i in toff is chosen randomly
to be updated by adding a random number between −η ∗ (tbd − bdl

k)

and η ∗ (tbd− bdl
k) to it (line 10). η is a control coefficient to ensure the

convergence of the algorithm. Finally, the new toff is checked with bdl

and bdu and revised to the safe region if necessary (line 11).

3.9 Case Studies

We evaluate the effectiveness and feasibility of our proposed approaches
in this section. Four approaches are compared: (1) our FBPT based
adaptive-step Gradient-Descent algorithm (FBGD), (2) the ANPT based
Simulated Annealing algorithm (ANSA) (3) Brutally Searching based
PBOO algorithm (BS), and (4) the brutally searching Sub-Deadline Parti-
tions algorithm introduced in Section 3.5 (SDP).

3.9.1 Setup

The algorithm BS is adopted to validate the effectiveness of FBGD. It
solves the sub-problem by brutally checking all the candidates of toff

in the exploring space with a given fixed step and returns the best one.
For fair comparison, BS also uses FBPT to calculate the peak temper-
ature, same with FBGD. The algorithm SDP brutally examines all the
possible sub-deadline partitions and returns the one yielding the lowest
peak temperature. It adopts ANPT to get the peak temperature for a
fair competition with PBOO based algorithms. Approach ANSA termi-
nates its iteration once the change in best peak temperature is less than
1× 10−3K or the iteration number reaches the upper bound 2500× n.
Moreover, the initial point in ANSA is set as the optimal solution given
by FBGD to eliminate bad solutions.

We implement the approaches on two simulated platforms: (1) a homo-
geneous multi-processor ARM platform with eight cores (ARM), (2) the
Single-Chip Cloud Computer (SCC), a processor created by Intel that
has 48 distinct physical cores [46]. The power and thermal parameters

79

3. Pipelined System Thermal Management

Table 3.1: WCETs of the applications in 3-stage and 4-stage scenarios
(unit: ms)

Application 3-stage 4-stage
H263 [8.5 , 5.4 , 2.2] [1.3 , 7.2 , 5.4 , 2.2]
MP3 [12.6 , 8.1 , 4.59] [1.8 , 10.8 , 8.1 , 4.59]
MADplayer [7.4 , 5.1 , 6.8] [3.4 , 4.4 , 5.1 , 6.8]

of the two platforms come from [97, 83] and parameter calibration. The
processor floor-plan of SCC is obtained from [46] and the thermal matri-
ces G, C and K are obtained from the HotSpot toolbox. All the simula-
tions are performed on a computer with an Intel i7-4770 processor and
16GB memory. Regarding determining the layout of activated cores, we
select and activate the n cores whose locations are close to core #1 and
the remaining cores stay in ‘sleep’ state.

Our simulation runs the peak temperature optimization for three par-
titioned applications: (1) the H.263 decoder application modeled by
four tasks [75], (2) the MP3 decoder application which can be split into
five tasks [75], and (3) the MADplayer application that consists of five
tasks [106]. Their worst-case execution times are determined and scaled
from [75] and [106], which are listed in Tab. 3.1. All the mode-switching
overheads are set as tswoff = tswon = (1, · · · , 1)ms. The activation peri-
ods of the three applications are set as 55ms, 60ms and 30ms, respectively.
The relative deadline D is determined by deadline factor δ: D = δ× p,
where p is the activation period.

3.9.2 Results

The three applications are executed with deadline factor δ = 1 on the
two platforms. The generated peak temperature are examined for three-
and four- stage scenarios with different step sizes. Fig. 3.9 and Fig. 3.10
provide results on ARM platform while Fig. 3.11 and Fig. 3.12 show
those from SCC platform. From the figures we can see that: (1) In
all cases, the peak temperatures obtained from approaches ANSA and
FBGD are less than those from SDP approach. (2) For the two platforms,
the temperature difference between our PBOO based algorithms and
algorithm SDP gets bigger when stage number increases. The tempera-
ture difference between sdp and FBGD is around 15K for the application
MADplayer in 4-stage scenario, as shown in Fig. 3.10b. The above two
observations can be explained by that SDP pays burst for more times

80

3.9. Case Studies

when stage number increases and therefore returns higher peak tem-
peratures. (3) The temperature differences between ANSA and FBGD
are minor in value, or in other words, unnoticeable, in most cases. The
reason is that the error of method FBGD to real peak temperature is
trivial due to that the activated stages are few. As demonstrated in
Fig. 3.13b and Fig. 3.14, ANSA delivers lower peak temperature in large
stage-number cases. (4) Approach FBGD offers lower peak temperature
than those from BS, especially when larger step size is adopted, which
proves the effectiveness of FBGD. This is due to that FBGD uses the
adaptive step size and thus can control the error of the solution while
BS searches the best solution with a fixed step and returns an inaccu-
rate solution. The error of approach BS is considerably large when the
search is coarse-grained. We notice that the temperature of BS on ARM
platform is even higher than that from SDP for application H.263 in 3-
stage scenario. (5) Compared to ARM, the peak temperature and the
gaps between different approaches on SCC platform are much lower,
which is owed to (a) the difference in the thermal parameter, such as
chip thickness, heat sink size. (b) SCC has 48 cores, only turning on
three or four cores won’t warm the whole chip sufficiently, therefore the
heat can be conducted to the environment faster and results in lower
peak temperature.

340

345

350

355

360

365

P
ea
k
te
m
p
er
at
u
re

/
K

H.263 MP3 MADplayer

ANSA
BS
SDP
FBGD

(a) ARM: 3-stage and step size: 4ms

345

355

365

375

385

P
ea
k
te
m
p
er
at
u
re

/
K

H.263 MP3 MADplayer

ANSA
BS
SDP
FBGD

(b) ARM: 4-stage and step size: 4ms

Figure 3.9: Peak Temperature produced by the tested approaches with
δ = 1 and step size is 4ms when the three applications are executed on
platform ARM with different stage numbers.

To further confirm the effectiveness and feasibility of our approaches,
we simulate a randomly generated application on the two platforms and
then increase the stage number n from 2 up to 8 on ARM and to 24 on
SCC, respectively. The WCETs of the sub-tasks are randomly generated

81

3. Pipelined System Thermal Management

340

345

350

355

360
P
ea
k
te
m
p
er
at
u
re

/
K

H.263 MP3 MADplayer

ANSA
BS
SDP
FBGD

(a) ARM: 3-stage and step size: 2ms

345

355

365

375

P
ea
k
te
m
p
er
at
u
re

/
K

H.263 MP3 MADplayer

ANSA
BS
SDP
FBGD

(b) ARM: 4-stage and step size: 2ms

Figure 3.10: Peak Temperature produced by the tested approaches with
δ = 1 and step size is 2ms when the three applications are executed on
platform ARM with different stage numbers.

329

330

331

332

P
ea
k
te
m
p
er
at
u
re

/
K

H.263 MP3 MADplayer

ANSA
BS
SDP
FBGD

(a) Intel SCC: 3-stage and step size: 4ms

329

330

331

332

333

334

335

336

337

P
ea
k
te
m
p
er
at
u
re

/
K

H.263 MP3 MADplayer

ANSA
BS
SDP
FBGD

(b) Intel SCC: 4-stage and step size: 4ms

Figure 3.11: Peak Temperature produced by the tested approaches with
δ = 1 and step size is 4ms when the three applications are executed on
platform SCC with different stage numbers.

between [4.2, 5.6]ms and the application is activated every 100ms. The
deadline D is set as D = 40 + 5× n to comprise the WCET consumed
in the new deployed stage. The results, including the time expense and
the peak temperature, are shown in figures from 3.13 to 3.15. Due to
that SDP and BS suffer from exploring space explosion as stage num-
ber increases, we terminate their simulation when n reached 7 and 11,
respectively.

We first examine the computing time required by the four approaches,
as shown in Fig. 3.13a and Fig. 3.15. Observe that the time required
by FBGD is generally the least and the curve is nearly flat as n in-
creases, which indicates FBGD is feasible for pipelined systems with
many stages. We note that the cost of ANSA varies in a certain range

82

3.9. Case Studies

329

330

331

332

P
ea
k
te
m
p
er
at
u
re

/
K

H.263 MP3 MADplayer

ANSA
BS
SDP
FBGD

(a) Intel SCC: 3-stage and step size: 2ms

329

330

331

332

333

334

335

P
ea
k
te
m
p
er
at
u
re

/
K

H.263 MP3 MADplayer

ANSA
BS
SDP
FBGD

(b) Intel SCC: 4-stage and step size: 2ms

Figure 3.12: Peak Temperature produced by the tested approaches with
δ = 1 and step size is 2ms when the three applications are executed on
platform SCC with different stage numbers.

and is about two-magnitude larger than that of FBGD in most cases. It
is expected since ANSA calculates the peak temperature by algorithm
ANPT, which is more accurate and computation expensive. The figures
also show that the computing time consumed by SDP grows exponen-
tially as stage number grows and becomes the highest one when n ≥ 6.
This is because SDP examines all the possible deadline partitions, the
amount of which increases exponentially as the stage number increases.
Moreover, computing the service demand for every following stage re-
quires numerical min-plus convolution, which incurs significant compu-
tation and memory overhead. Similarly, we find that the time overhead
of BS grows exponentially as stage number increases. Therefore, we can
say that SDP and \are not scalable with the stage number regarding the
requirement for computing resource.

Then, we discuss the results of the four approaches in peak temperature.
(1) Fig. 3.13b and Fig. 3.14 demonstrate that SDP offers the highest tem-
perature in all the cases. Similarly the temperature difference between
SDP and our approaches widens as stage number increases, which is ex-
pected because SDP pays burst more times and therefore generates PTM
schemes having larger ton partition. (2) We can clearly see that the peak
temperatures generated by FBGD are always lower that from BS, which
further strengthes the effectiveness of FBGD. (3) Approach ANSA gives
better results than FBGD when the stage number is larger than 6, oth-
erwise it offers almost the same result with FBGD. Therefore it can be
concluded that ANSA is more suitable for large stage number scenarios
while FBGD is optimal in small stage number cases. (4) Again, notice
that the peak temperature gap between different approaches is bigger

83

3. Pipelined System Thermal Management

2 3 4 5 6 7 8
10

0

10
2

10
4

10
6

Stage number

C
om

pu
tin

g
tim

e
/ s

ANSA BS SDP FBGD

(a) Time expense

2 3 4 5 6 7 8
320

340

360

380

400

Stage number

Pe
ak

 te
m

pe
ra

tu
re

 /
K

ANSA
BS
SDP
FBGD

(b) The best peak temperature

Figure 3.13: The results of the four approaches on ARM from 2-to 8-
stage.

2 3 4 5 6 7 8 9 10 11

325

330

335

340

345

Stage number

Pe
ak

 te
m

pe
ra

tu
re

 /
K

ANSA
BS
SDP
FBGD

(a) 2- to 11- stage cases

12 13 14 15 16 17 18 19 20 21 22 23 24
340

345

350

355

360

365

Stage number

Pe
ak

 te
m

pe
ra

tu
re

 /
K

ANSA
FBGD

(b) 12- to 24- stage cases

Figure 3.14: The best peak temperature generated by the four ap-
proaches on SCC from 2 to 24 stages.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
10

0

10
2

10
4

10
6

Stage number

C
om

pu
tin

g
tim

e
/ s

ANSA BS SDP FBGD

Figure 3.15: The time expense of the four approaches on SCC from 2 to
24 stages.

on platform ARM than SCC, as explained above.

In conclusion, compared to SDP, the proposed approaches FBGD and
ANSA can generate much lower peak temperature. Moreover,compared

84

3.10. Summary

to approach FBGD, ANSA reduces the peak temperature up to 6.5K on
the 8-stage ARM platform as well as nearly 2K on SCC platform. FBGD
and ANSA are also proved to be scalable with the stage number.

3.10 Summary

In this chapter we have proposed a new approach to minimize the peak
temperature of a pipelined hard real-time system by reversely utilizing
the Pay-Burst-Only-Once principle. Two algorithms, FBPT and ANPT,
are presented to calculate the peak temperature with different levels
of accuracy and complexity. Then, our problem is transformed to an
optimization problem which is broken down by a set of sub-problems.
Based on the two peak temperature methods, two algorithms are pro-
posed to solve the problem: the FBPT based one offers an approximated
solution but is faster while the ANPT based one is timing expensive
but gives a more accurate solution. We conduct simulations of our ap-
proaches on two actual platforms for real life applications and the re-
sults show that our approaches can reduce the peak temperature more
efficiently than the approach without PBOO, especially for many-stage
scenarios. It is also shown that the time expenses of our two algorithms
grow slowly as the stage number increases, which indicates the algo-
rithms are scalable with the number of stages.

In next chapter, we will discuss an adaptive thermal management ap-
proach which controls the execution of events according to the real event
arrivals and execution times instead of the worst-case assumptions.

85

Chapter 4

Adaptive Periodic Thermal
Management

The thermal management approaches investigated in previous chapters
have one common feature: they are all static methods, i.e, the optimal
PTM schemes are calculated in design phase. To provide hard real-time
guarantee, the static PTM approaches make worst-case assumptions in
below aspects.

• The execution time of the events.

• The arrival pattern of the events.

In other words, the static approaches consider the events arrive strictly
in accordance with the upper arrival curve and each event requires the
worst-case execution time to finish. These worst-case scenarios, however,
rarely happen in real world. Thus they could offer pessimistic results
due to those conservative assumptions. Therefore, to effectively opti-
mize the peak temperature of real-time systems, new approach should
consider the runtime variabilities of event arrivals and execution time.
Such approach is recognized as an adaptive approach.

The challenges of designing an adaptive thermal approach are how to ef-
fectively extract the runtime variabilities of events and then adopt them
to reduce the peak temperature. To overcome these challenges, three ba-
sic questions should be answered: (1) what kind of information about the
system and events should be gathered such that the runtime variabilities
can be adequately represented? (2) in what pattern the system behaves
between two adaption instants? (3) how to use the gathered information
to derive thermal management schemes at each adaption instant such

87

4. Adaptive Periodic Thermal Management

that the deadline constraints can be met while the peak temperature is
optimized? Note that the efficiency is also important since the approach
works in online manner and thus introduces overhead, which hampers
the final effectiveness.

4.1 Overview

In this chapter, we address the aforementioned concerns and propose
the Adaptive Periodic Thermal Management (APTM) to optimize the
peak temperature of pipelined multi-core systems under real-time con-
straints. The concepts of arrival curve and service curve [96, 60, 98] are
adopted as the workload and service model such that our approach can
handle general event arrivals. Our approach APTM is an online and
offline combined approach. With the thermal property knowledge of
the processor obtained from offline simulation, APTM works in online
manner to manage the stages at each adaption instant.

The considered system handles applications can be split into sub-tasks.
Each core has three power consumption modes, namely, ‘active’, ‘idle’,
and ‘sleep’. At each adaption instant, an APTM scheme is applied
to each core in the pipeline until next adaption instant. Each APTM
scheme is specified by a pair of parameters (ton

i , to f f
i). Given an APTM

scheme, the core first switches to ‘sleep’ state and stay for to f f time
units, whichever state it is currently at. Then it switches on and off pe-
riodically to control the temperature according to the scheme until next
adaption. When the core is in ‘active’ mode but has no event to handle,
it automatically switches to ‘idle’ state to save energy.

At each adaption instant, the dynamic counter technique [59] is adopted
to give precise prediction of future event arrivals based on arrival his-
tory. The states of the FIFO (First In First Output) buffers between
cores, which reflect actual event executions, are also collected and uti-
lized in our approach. The gathered dynamic information is then uti-
lized to derive the APTM schemes. According to the information, our
approach first determines which stages can adopt APTM schemes and
which should be always turned on until next adaption such that the real-
time constraints are satisfied. Then, the APTM schemes for the feasible
stages are calculated. Moreover, to minimize the peak temperature, the
unique thermal properties of the stages are also used during the cal-
culation. Two thermal curves, i.e., the warming curve and the cooling

curve are proposed to model the thermal properties of each stage in

88

4.2. Related works

different scenarios. Several light-weight algorithms are presented to de-
termine APTM schemes at online adaption instants. Moreover, an offline
algorithm is also given to search the key parameter of online adaption.

The rest of this chapter is organized as follows: The related work is
briefly introduced in section 4.2. Section 4.3 describes our system mod-
els and presents problem statement. A motivation example is presented
in section 4.4. Section 4.5 presents backgrounds of our approach. Then,
the real-time constraints are analyzed in section Section 4.6. The heuris-
tic scheme is discussed in section 4.7 and section 4.8. Section 4.9 presents
the evaluation of APTM. Section 4.10 concludes.

4.2 Related works

Pipelined multi-core architecture has been widely adopted for high per-
formance. Several approaches can be found on thermal optimization
of pipelined systems. Cox et al. proposed a fast thermal-aware ap-
proach for streaming applications based on a 3D MPSoC model under
the throughput constraints in [32]. The mapping of the multiple appli-
cations is determined at design time such that the peak temperature is
minimized under throughput constraints. This approach is based on
task-mapping technology and assumes periodic task model. Cheng et
al. presented an offline approach to minimize the peak temperature
of pipelined systems under real-time constraints in [2]. The approach
computes a PTM scheme for each stage to determine the switch on/off
pattern during design phase. The above two approaches search the op-
timal solution that minimizes the peak temperature in offline manner,
considering the worst-case execution time and worst-case event arrivals,
which rarely happen in real systems. Thus their results could be pes-
simistic due to the runtime variability of event arrivals and execution
time. There are also several approaches on this topic. However, they
either don’t consider hard deadline constraints [3] or just reduce the
deadline miss percentage into a low range [72]. Designed for hard real-
time systems, our approach can guarantee the worst-case delay is no
larger than the deadlines of the tasks.

Chen et al. explored how to apply dynamic power management in adap-
tive manner to optimize leakage power consumption for pipelined multi-
core systems under deadline constraints in [24]. As aforementioned, an
effective power management may not be suitable for thermal manage-
ment. In addition, the proposed approach has one major drawback.

89

4. Adaptive Periodic Thermal Management

At each adaption instant, the approach computes a set of time lengths
for which the stages are allowed to sleep. After adaption, the stages
sleep for the corresponding time length, and then stay active until next
adaption instant. This simplifies the real-time analysis during online ex-
ecution. However, this method demands a high adaption frequency, in
other words, short adaption intervals. Otherwise, the results get worse
very quickly since the stages could be active unnecessarily between two
adaption instants. In our approach, the PTM schemes are adopted to the
stages during adaption such that the results is much less influenced by
the adaption period. Therefore, our approach can still offer acceptable
results with large adaption periods.

There has been significant work on thermal management of multi-core
architectures. The concept of Thermal-Resiliency is extended to multi-
core systems by Pradeep et al. in [45]. Combining a control-theoretic
framework, they proposed an approach which can maintain thermal con-
straints and provide hard real-time guarantees. In [103], Wang et al. ad-
dressed the problem of minimizing the peak temperature of a real-time
application executed on multi-core platforms. Three computationally
efficient algorithms are presented for deploying applications to individ-
ual devices. Above two approaches both assumed simple task models,
i.e., either periodic tasks or sporadic task model. The authors of [79] ad-
dressed the DVS scheduling problem on multicore systems under both
temperature and energy constraints. Since the problem is NP-hard, two
algorithms, an accurate one and an approximated one, are proposed to
give results in different levels of accuracy. A stochastic thermal control
approach is proposed in [69] to reduce the chip-wide temperature gradi-
ent of a multi-core processor handling multiple stochastic real-time task
streams. The technique of job migration among active and passive cores
of the stream is adopted to reduce the chip-wide temperature gradient.
While making great contributions to the field, the above two approaches
cannot provide hard real-time guarantees.

To model general event arrivals, Real Time Calculus [96] are proposed
to abstract task arrivals in time domain into arrival curve. In [78],
Perathoner et al. presented an adaptive scheme for the scheduling of
arbitrary event streams by combining optimistic and pessimistic DVFS
scheduling. Adaptive online power managements have also been pro-
posed in [49, 59] to adaptively reduce the power consumption of the
processor by procrastinating the processing of arrived events as late as
possible. The above approaches, unfortunately, are designed for single
core processors and cannot be applied to multi-core architectures. Au-

90

4.3. system model

thors of [58] introduced an online DVFS management scheme for multi-
core processors running hard real-time tasks. The technique in [59] is
adopted to predict future event arrivals based on the arrival history.
Although aiming at minimizing the temperature, the online DVFS ap-
proach doesn’t consider any temperature feedback or thermal property
of the cores, which can help to reduce the temperature further. In con-
trast, our approach implements Dynamic Power Management to man-
age temperature utilizes the sampled temperature and the unique ther-
mal properties of each core in determining PTM schemes to obtain lower
peak temperature.

The related work is briefly introduced in this section. In next section,
the definitions and notations that are used in this chapter are presented.

4.3 system model

Notation: In this chapter, matrices and vectors are represented by bold
characters.

4.3.1 Hardware and Thermal Model

In this chapter, we consider the pipelined multi-core system adopted
in Chapter 3. Therefore, we also have the following constraint due to
mode-switching overhead.

to f f > tswo f f (4.1)

In addition to the hardware model, the thermal and power models in
Chapter 3 are also used to get the temperature evolution.

It is worth noting that the implementation our approach is not limited by
such thermal and power models. In runtime, our approach only needs
the temperature of the stages to make scheduling decisions. For proces-
sors with physical thermal sensors, the temperature can be obtained by
reading the sensors. For processors without hardware thermal sensors
on each core, soft thermal sensors [62] can be employed to estimate the
temperature of a single core.

4.3.2 Adaptive Periodic Thermal Management

In this chapter, we study how to minimize the peak temperature for
coarse-grained pipelined multi-core processors. An online approach

91

4. Adaptive Periodic Thermal Management

t

PaPaPa Pa

Ps

Pa

ton toff ton

tact tslp

tinv tvld
tswon

tswoff tswon

Figure 4.1: The adaptive periodic thermal management schemes after
two adaption instants.

named Adaptive Periodic Thermal Management is proposed to adap-
tively switch the cores to ‘sleep’ in the run time.

At each adaption instant, an APTM scheme is applied to each core in
the pipeline and is updated at the next adaption instant. The APTM
scheme applied to the stage Pi is specified by a pair of parameters (ton

i ,
to f f
i). The period is calculated as tprd

i = ton
i + to f f

i . For brevity, ton and toff

denote the vectors [ton
1 , ton

2 , · · · , ton
n] and [to f f

1 , to f f
2 , · · · , to f f

n], respectively.
Given an APTM scheme, whichever state it is currently at, stage Pi first
switches to ‘sleep’ state and stays for to f f

i time units. Then, it switches
to ‘active’ or ‘idle’ state and keeps for ton

i time units. This procedure
repeats until the next adaption instant. An example of APTM scheme is
demonstrated in Fig. 4.1. Note that due to the switching overhead, the
valid/invalid time interval in each period for handling workload should
be revised as:

tvld = ton − tswon (4.2)
tinv = to f f + tswon (4.3)

In addition, we define the valid partition as:

Kvld = tvld/tprd (4.4)

4.3.3 Problem Statement

At each online adaption instant, our approach should offer an APTM
(ton

i , to f f
i) scheme to each stage Pi in the pipelined system. The val-

ues of ton
i and to f f

i should be chosen prudently. First, it’s clear that
the peak temperature can be reduced by increasing the sleep interval

92

4.4. Motivation of Our Work

or decreasing the active interval. However, this action should be done
carefully, otherwise the deadline constraint of current or future events
may be violated. Moreover, the sleep intervals for all stages are not in-
dependent with each other due to deadline constraints. The influence
of such interaction between two stages on the temperature distribution
should be handled carefully. Finally, increasing the sleep interval length
under real-time constraints causes the active interval to increase simul-
taneously. Thus, setting a large to f f

i results in a large ton
i , which may

raise the peak temperature. Therefore, at each adaption instant, for each
stage, our approach should (1) calculate the real-time constraints to ton

and toff; (2) properly select and balance ton
i and to f f

i for all stages under
the real-time constraints so that the peak temperature can be minimized.

In conclusion, the problem can be formally defined as: For a given n-
stage pipelined platform modeled in Section 4.3, a real-time application specified
by TASK, at each adaption instant during runtime we should determine the
APTM schemes applied to all stages so that the peak peak temperature of the
processor is minimized and the worst-case end-to-end delay of any task is less
than the deadline D.

4.4 Motivation of Our Work

In this section, the motivation of our approach is presented by compar-
ing it with an offline approach in a concrete example.

In contrast to the approach Offline Pay-Burst-Only-Once (O-PBOO) in
Chapter 3, which searches the optimal (toff, ton) in offline manner and
then applies them to the system, APTM adaptively applies ton and toff to
the stages according to the current workload and the states of processors.
Compared to O-PBOO, APTM utilizes the following two facts to reduce
the temperature.

Dynamic slack An offline approach analyzes the pipelined system
by considering the worst-case pattern of event arrivals, i.e., the upper
bound αu(∆) and the lower bound αl(∆), which represent the maximal
and minimal number of event arrivals in any time interval with length ∆,
respectively. However, the worst-case scenarios rarely happen. In reality,
events arrive with a variable delay bounded by the arrival curve α(∆).
For example, consider a task specified by period p = 50 ms and jitter j =
50 ms. The worst-case event arrival is a burst with two events released
at the same time. However, in reality, for example, events may arrive at

93

4. Adaptive Periodic Thermal Management

0 50 100 150 200 250
time/ms

310

315

320

T
em

pe
ra

tu
re

 /
K

O-PBOO
APTM

Figure 4.2: The temperature of the first core in the ARM 3-stage platform
when the two methods are applied to manage it.

time [0, 40, 110, 150, 210, 230] ms. We term the difference between the
worst-case and real event arrivals as the dynamic slack.

Execution slack When performing offline analysis, static approaches
used the worst-case execution time (WCET) to bound the execution time
of a task on the target system. However, due to the inherent variability
of execution time, most events, in reality, finishes before their WCETs.
The fact is termed as execution slack, which occurs as a result of the
difference between the real execution time and WCET of an event.

By recording the history of event arrivals and monitoring the filling
level of FIFOs between stages, APTM can effectively utilize above slacks
and achieve significant temperature reduction compared to offline ap-
proaches. Now, we show the advantage of APTM by a concrete exam-
ple.

In the example, O-PBOO and APTM are applied to manage the temper-
ature of a pipelined system with three stages. The task is specified by
period p = 50 ms and jitter j = 50 ms. The worst-case execution times on
all stages are c = [4, 4, 4] ms. We assume the deadline of the task equals
its period. Events are released at time [0, 0, 50, 100, 150, 200, 250] ms.
The real execution times of the events on three stages are set as the ran-
dom numbers between 1.6 ms and 4 ms. The adaption periods of APTM
is set as 50 ms.

We run the two approaches for the task trace and obtain the temperature
evolutions. The temperature of the first stage is depicted in Fig. 4.2. For
a clean figure, we consider the power dissipations in ‘idle’ state and ‘ac-
tive’ are the same in the simulation. Since we only want to compare
the relative performance of the two approaches, this simplification is ac-
ceptable. As displayed, APTM offers the lowest temperature after three

94

4.5. Utilizing the Two Slacks

adapts at time t = 100 ms. The higher temperature given by O-PBOO is
caused by considering the worst-case task timing parameters in design
phase. In other words, O-PBOO must ensure the end-to-end deadlines
are met with the assumption that all events require WCET to finish and
the event arrival burst may happen at anytime during real execution.
We also extend the task trace to 60 seconds and run both approaches
again. The final peak temperatures of O-PBOO and APTM are 391 K
and 375 K, respectively. This further strengthens our observation.

In summary, utilizing and managing aforementioned slacks, APTM can
significantly reduce the peak temperature, which is the main motivation
of our work. In the next section, we discuss how the dynamic slack and
execution slack are explicitly utilized and managed by our approach.

4.5 Utilizing the Two Slacks

In Section 4.4, we investigated the facts of dynamic slack and execution

slack. In this section, we present how to effectively utilize them in
APTM.

4.5.1 Demanded Service Of Unfinished Events

Our approach utilizes execution slack by monitoring the numbers of
unfinished events in the FIFOs as well as the states of the ongoing job
in each stage. With the obtained dynamic information, we get the de-
manded service of unfinished events.

Unfinished events could be stored in FIFOs or the core processing it at an
adaption instant. Let ETi(t) represent the union set of events stored in
FIFOi and the core on stage Pi at time t. The number of events in ETi(t)
is denoted as |ETi(t)|. It is worth noting that, although the absolute
deadlines for events in ETi(t) do not change, their relative deadlines
should be revised according to the relative distances between absolute
deadlines and time t. Assume events in ETi(t) are ordered from the
earliest absolute deadline to the latest. Then the event stored in the core
should be the front of the queue. Moreover, its unfinished part can be
upper bounded by:

δi(t) =
ci − texe

i (t)
ci

. (4.5)

where ci is the WCET of the job on stage Pi and texe
i (t) is the time length

for which the event has already been executed. We represent the de-

95

4. Adaptive Periodic Thermal Management

manded service curve of set ETi(t) by notation αdm
i (t, ∆), which denotes

the event-based service demanded by ETi(t) in time interval [t, t + ∆] to
meet their deadlines. Then, αdm

i (t, ∆) of ETi(t) can be given as:

αdm
i (t, ∆) =

{
j− 1 + δi(t), Di,j ≤ t + ∆ ≤ Di,j+1
|ETi(t)| − 1 + δi(t), t + ∆ > Di,|ETi(t)|

(4.6)

where Di,j is the absolute deadline of the jth event in ETi(t).

Note that the value of texe
i (t) can be obtained from the execution time

monitoring ability of the system. Such functionality is already com-
monly available on many real-time platforms [10].

4.5.2 Arrival Curve of Future Events α f u(t, ∆)

To effectively exploit the dynamic slack, the dynamic counter proposed
in [59] is adopted to predict future event arrivals. According to [59], at
time t, the number of event arrivals in time interval [t, t + ∆] can be
bounded by α f u(t, ∆), which is calculated based on the original arrival
curve α(∆) and the event arrival history upon t. It’s worth noting that
dynamic counter can be easily implemented as part of the hardware
with negligible overhead [48, 59].

4.6 Proposed Approach

In this section, we present our adaptive periodic thermal management
approach to reduce the peak temperature of pipelined multi-core pro-
cessors. At one adaption instant for decisions, APTM should compute
ton and toff that guarantee the timing constraints of unfinished events as
well as future events. To model the system containing unfinished events,
we first transform it to a multi-stream system in which the unfinished
events in each stage are modeled as a separate stream. With the trans-
formed system, the end-to-end service provided to each stream by the
system under APTM can be calculated based on the extended pay-burst-
only-once principle. Then a set of constraints is applied to ton and toff

to satisfy the deadlines of unfinished events as well as future events. Fi-
nally, we present a heuristic scheme to solve the thermal optimization
problem. Several lightweight algorithms are proposed to computes ton

and toff which minimize the peak temperature of the pipelined system.

96

4.6. Proposed Approach

αha(t,∆)

+
FIFO1

+τ1
Core1

S1

FIFO2
+τ2

Core2

S2

FIFO3
+τ3

Core3

S3

Figure 4.3: An example of the transformation of a 3-stage pipelined
multi-core system

4.6.1 System Transformation

At each adaption instant, our approach must offer APTM schemes sat-
isfying the end-to-end deadline constraints of new arriving events and
the unfinished events stored in the system. For an offline approach,
the Pay-Burst-Only-Once principle can be adopted in real-time analysis.
However, as pointed in [37], the unfinished events prevent our approach
from utilizing the Pay-Burst-Only-Once principle directly during online
adaption. As already demonstrated in [2, 23], approaches without using
Pay-Burst-Only-Once account for the burst in the original stream more
than once and requires lots of computation, thus leading to pessimistic
results. In this chapter, we transform the system to an alternative for-
mation with which the time properties of the system can be analyzed
effectively.

For an n-stage pipelined multi-core system, the transformation is done
by modelling the unfinished events ETi(t) in stage Pi as an individual
input stream Si with demand curve αdm

i (t, ∆) passing through the fol-
lowing stages, indexed by Ji = {i, i + 1, · · · , n}. Specifically, the input
stream of first stage comprises the new arriving events and unfinished
set ET1(t). An example of transformation is shown in Fig. 4.3. Moreover,
let set Ji,k(k > i) = {k, k + 1, · · · , n} represent all the stages that are tra-
versed both by stream Si and Sk. Finally, notation zi = {i + 1, · · · , n}
denotes the indexes of streams that are interferenced by stream Si. For
instance, considering the example in Fig. 4.3, we have J1 = {1, 2, 3},
J1,2 = {2, 3} and z1 = {2, 3}.

4.6.2 Real-Time Constraints

Now, we analyze how to guarantee the deadline requirements for un-
finished as well as future events at each adaption instant. It’s worth
noting that the service-providing-ability of the pipelined system is di-
rectly determined by tvlds and tinvs, instead of tons and to f f s. Thus, we

97

4. Adaptive Periodic Thermal Management

use tvlds and tinvs in following analysis and then retrieve back to f f s and
tons according to (4.2) and (4.3).

For the aforementioned system transformation, the EPBOO principle
in [37] and the theory in [24] can calculate the aggregate service curve
provided for stream Si for scenarios in which every stage provides a
service curve in rate-latency format. However, under APTM, the service
curve of each stage is no longer rate-latency. In addition, the time over-
head of mode-switching is also not considered in their work. Therefore,
the results in [37, 24] cannot be utilized in our work. In this section,
we present a new theorem which lower bounds the end-to-end service
curve for stream Si in the transformed system under APTM.

Lemma 4.1 At an adaption point, suppose the APTM schemes specified by
(ton, toff) are applied to the system. Denote the end-to-end service curve pro-
vided to a stream Si as βete

i , if the valid time length in each period tvld
i is positive

integer times of ci, we have

βete
i (∆) ≥ κi(∆−

n

∑
j=i

(tinv
j + cj)−

n

∑
j=i+1

Wj + δj(t)
κj

) (4.7)

where κi = minj∈Ji(K
vld
i /ci), Wi is the number of events stored in FIFOi, and

δi(t) is calculated from (4.5).

Proof From the existing result presented in [37] 1, one can obtain (4.8)
for the stream of interest Si with any time instants satisfying t1 ≤ t2 ≤
· · · tn+1.

Rn+1
i (tn+1)− R1

i (t1) ≥ ∑
j∈Ji

βl
j(tj+1 − tj)− ∑

k∈zi

∑
j∈Ji,k

(Rj+1
k (tj+1)− Rj

k(tj))

where Rj
i(t) is the workload function of Si at jth stage and denotes the

number of events in stream Si that arrive at the jth stage in time interval
[0, t). Specifically, Rn+1

i (t) is the workload function of the output of
stream Si.

From the definition of zi and Ji,k, one can easily determine that:

∑
j∈Ji,k

(Rj+1
k (tj+1)− Rj

k(tj)) = Rn+1
k (tn+1)− Rk

k(tk) (4.8)

1See equation (14) in [37].

98

4.6. Proposed Approach

At each adaption instant, the right hand side of (4.8) can be safely
bounded by the number of unfinished events in FIFOk and Pk, i.e.,
Wk(t) + δk(t) as discussed in section 4.5.1. Therefore,

∑
j∈Ji,k

(Rj+1
k (tj+1)− Rj

k(tj)) ≤Wk(t) + δk(t) (4.9)

When tvld
i is positive integer times of ci, the stair-case service curve βl

i(∆)
of APTM can be lower bounded by a bounded-delay function [23]:

βl
i(∆) ≥ max(0,

Kvld
i
ci

(∆− (tinv
i + ci))) = [

Kvld
i
ci

(∆− (tinv
i + ci))]

+ (4.10)

where [z]+ = max(0, z). Let bd fi(∆) denote [Kvld
i /ci(∆− (tinv

i + ci))]
+.

Then, combining the definition of zi, equations (4.8), (4.9) and (4.10), we
finally have:

Rn+1
i (tn+1)− R1

i (t1) ≥ ∑
j∈Ji

bd f j(tj+1 − tj)−
n

∑
k=i+1

(Wk(t) + δk(t)) (4.11)

The bounded-delay function bd fi is actually in the rate-latency format.
Finally, following the derivation similar to that in [37], one can finally
have inequality (4.7). �

With Lem. 4.1, the sufficient condition for satisfying deadline constraints
for all tasks under Adaptive Periodic Thermal Management is given as
the following theorem.

Theorem 4.2 Consider an n-stage pipelined multi-core system modeled in Sec-
tion 4.3. At an adaption point, the system is transformed into an n-stream
system, and the APTM schemes specified by (ton, toff) are applied to it. Then,
the worst-case end-to-end delay of any task is guaranteed to be no larger than
its deadline D if the following conditions hold for any stream Si.

∀i ≤ j ≤ n, tvld
j = gj · cj, gj ∈N (4.12)

κi(∆−
n

∑
j=i

(tinv
j + cj)−

n

∑
j=i+1

Wj + δj(t)
κj

) ≥ βdmd
i (∆) (4.13)

where βdmd
i (∆) is the demanded end-to-end service curve of stream Si to meet

deadline constraint:

βdmd
i (∆) =

{
α f u(t, ∆− D) + αdm

1 (t, ∆) if i = 1
αdm

i (t, ∆) if i ≥ 2
(4.14)

99

4. Adaptive Periodic Thermal Management

Proof We first prove (4.14). For the case that i ≥ 2, it’s already proved
in section 4.5.1. When i = 1, the input workload comprises the new
arriving events as well as the unfinished events stored in the first FIFO
and stage. As studied in section 4.5.2, the new arriving tasks can be
tightly and safely bounded by the arrival curve α f u(t, ∆). Right shifting
α f u(t, ∆) by deadline D yields the demanded service curve of new ar-
riving tasks. Then, adding it with αdm

1 (t, ∆) gives the demanded service
curve for first stage.

Now, we prove the theorem. It is clear that the deadline constraints
can be met if the lower end-to-end service curve is no less than the
demanded service curve for every stream Si, i.e., βete

i (∆) ≥ βdmd
i (∆). Let

β�i denote the left side of (4.13). From Lem. 4.1, once conditions (4.12)
and (4.13) are satisfied, we have βete

i (∆) ≥ β�i ≥ βdmd
i (∆). Therefore, the

end-to-end delay of any event can be guaranteed to be no larger than its
deadline D. �

Now, let’s examine condition (4.13) closely. The left side of (4.13) is
actually a bounded-delay-function [1]. For a bounded-delay-function
bd f (∆) = [ρi(∆− bi)]

+, given bi, the minimal slope ρi satisfying (4.13) is
determined by:

ρi = min{ρ|[ρ(∆− bi)]
+ ≥ βdmd

i (∆)} (4.15)

where [z]+ = max(0, z). It’s worth noting that ρi can be obtained effi-
ciently by implementing a binary search. For a pair of bi and ρi obtained
from (4.15), it is intuitive that condition (4.13) is guaranteed if the follow-
ing two constraints hold simultaneously [2]:

κi =
n

min
j=i

(Kvld
i /ci) ≥ ρi (4.16)

n

∑
j=i

(tinv
j + cj) +

n

∑
j=i+1

Wi + δj(t)
κj

≤ bi (4.17)

Then, the remained problem is how to choose a proper pair of (bi, ρi).
This problem is equivalent to determining bi because ρi is given by (4.15).
In this chapter, we obtain a sub-optimal bi by:

bi = λbmax
i + (1− λ)bmin

i (4.18)

100

4.6. Proposed Approach

where λ is a positive real number less than 1, bmax
i and bmin

i are the upper
and lower bounds of bi for curve βdmd

i (∆):

bmax
i = max{b| 1

maxn
j=i(cj)

(∆− b) ≥ βdmd
i (∆)}

bmin
i =

n

∑
j=i

cj +
n

∑
j=i+1

{(n
max
k=j

cj)(Wj + δj(t))}

The key parameter λ can be determined by offline simulation and set
as the one yielding the lowest peak temperature, which is described in
algorithm 12. Although this method doesn’t offer the global optimal
solution, it introduces negligible overhead during online adaption and
thus is suitable for our approach. Finally, constraint (4.17) is revised as:

∑
j∈Ji

tinv
j ≤ b̄i = bi − (

n

∑
j=i

cj +
n

∑
j=i+1

Wi + δj(t)
ρ̄j

) (4.19)

For brevity, vector b̄ denotes the set {b̄1, b̄2, · · · , b̄n}. Then, the corre-
sponding slopes obtained from (4.15) are termed as ρ̄ = {ρ̄1, ρ̄1, · · · , ρ̄n}.

4.6.3 APTM constraint set

Now, the real-time constraint set for a stream Si has been derived. This
constraint set should hold for all streams in the system. Combining all
the real-time constraints and the hardware constraints (4.1), we present
the final constraint set for stage Pi as:

tvld
i = gi · ci, gi ∈N (4.20)

tinv
i > thdc

i (4.21)

Kvld
i ≥ Kmin

i =
i

max
j=1

(ρ̄j)ci (4.22)

∑
j∈Ji

tinv
j ≤ b̄i (4.23)

Where thdc
i = tswon

i + tswo f f
i is the hardware constraint of Pi. For brevity,

we name above constraints APTM constraint set and term it by ACi for
stage Pi. Moreover, the set {thdc

1 , thdc
2 , · · · , thdc

n } is denoted by thdc.

At an adaption instant ta, our approach should give the pipelined system
a set of APTM schemes which can minimize the peak temperature T? of

101

4. Adaptive Periodic Thermal Management

the processor under the APTM constraint sets of all stages, which can
be formatted as following problem.

minimize T?(ton, toff) = max
t≥ta
{max T(t)} (4.24)

subject to ACi, ∀i ∈ [1, 2, · · · , n]

The peak temperature T? can be computed by the algorithm proposed
in [2]. However, solving such an optimization problem requires sig-
nificant computation effort due to two reasons. First, calculating T?

incurs the costly convolution operation as we consider heat influence
between two blocks in the thermal model. Second, even with an ef-
ficient searching algorithm, exploring the n-dimension search space is
still heavy in computing. Therefore, it is infeasible to search the accu-
rate solution of such problem with online adaption. To address this
issue, one lightweight heuristic scheme is proposed in next section to
offer sub-optimal APTM schemes under hard real-time constraints.

4.7 Online Part

In this section, we present one heuristic scheme that determines APTM
schemes online by following the guidance of processor thermal prop-
erties obtained from offline experiments. In this way, the online com-
putation of exploring search space is significantly saved. The problem
is solved in two steps. First, our approach decides which stages are
feasible for APTM schemes. Then, the tinvs and tvlds of these stages
are determined according to the thermal properties obtained in offline
experiments.

4.7.1 Feasible Stages for APTM

At an adaption instant, it’s possible that some stages cannot adopt APTM
schemes, otherwise the real-time constraints will be violated. The rea-
son is that hardware-constraint (4.21) may conflict with real-time con-
straint (4.23). For example, consider a 4-stage pipelined system. As-
sume constraint (4.23) for stream S3 is already given as tinv

3 + tinv
4 ≤ 1.5.

Suppose the time-overheads of mode-switching, tswon and tswo f f , are all
0.5 ms. Therefore, constraint (4.21) for stream S3 is: tinv

3 + tinv
4 > 2 ms.

Then, it’s impossible to find APTM schemes for both stages P3 and P4
simultaneously. In this case, at least one or more stages should always
be ‘active’ or ‘idle’ state to meet constraints (4.21) and constraint (4.23).

102

4.7. Online Part

We call the stages in this case the always working stages. Besides, the
other stages that can adopt APTM schemes are called APTM-feasible

stages.

We propose algorithm 8 to find the APTM-feasible stages at an adap-
tion instant. It’s clear that adopting an APTM scheme outperforms stay-
ing at ‘active’ or ‘idle’ state in lowering the temperature. Therefore, our
approach assigns higher priority to stages having higher temperature in
adopting an APTM scheme. Basically, this algorithm follows two princi-
ples: (1) try to put as many stages to APTM-feasible stages as possible,
(2) a stage having higher temperature is assigned a higher priority in
adopting an APTM scheme. In this way, we can balance the tempera-
ture between stages and thus reduce the peak temperature.

Algorithm 8 takes the vector of current temperatures T(t) of all stages,
and the APTM constraint sets of all stages AC as input. It returns the
two sets of stages: FS stands for APTM-feasible stages while AWS
stands for always working stages. We first sort the temperatures of
stages in the descending order and get the sorted index vector (line 1).
We assume all the stages are always working stages in the beginning
(line 2). Note tdelay

i represents the required switching overhead to ‘ac-
tive’, tswon

i , if the corresponding stage is not in ‘active’ or ‘idle’ state at
the adaption instant, otherwise tdelay

i = 0. Then, from the stage with the
highest temperature, the hardware constraint (4.21) is checked with re-
spect to the real-time constraint (4.23) of previous stages to determine if
the stage is APTM-feasible (lines 4 and 5). Since the first checked stage
has the highest priority in adopting APTM, the current stage is put into
set FS if there is no conflict (line 6). If there is a conflict, it means the
stage certainly cannot adopt an APTM scheme, we put it in AWS and
set the corresponding tinv

i as tdelay
i (line 6).

Then, constraint (4.23) in APTM constraint set of stage Pi is revised as

∑
j∈Ji

⋂
FS

tinv
j ≤ b̄i − ∑

j∈Ji
⋂

AWS
tinv

j (4.25)

Let b̂i denote the right side of inequality (4.25). Note that for different
stages, the left side of constraint (4.25) can be same with each other. For
example, consider a 3-stage system, and set {P1, P3} is the APTM-feasible

stages while P2 is the always working stage. Then we can simplify
the total three inequalities into two inequalities tinv

1 + tinv
3 ≤ b̂1 and

tinv
3 ≤ min(b̂2, b̂3). In conclusion, constraints (4.25) for all the n stages

103

4. Adaptive Periodic Thermal Management

Algorithm 8 Determine APTM-feasible stages.

Input: T, AC = {AC1, AC2, · · · , ACn}
Output: FS, AWS

1: sort T in descending order, save the sorted indexes in I
2: tinv ← tdelay.
3: for i in vector I do
4: tinv

i ← thdc
i

5: feasible← whether ∑j∈Jk
tinv

j ≤ b̄k holds ∀k ∈ {1, 2, · · · , i}
6: feasible ? FS← FS

⋃
i : AWS← AWS

⋃
i & tinv

i ← tdelay
i

7: end for

can be simplified into n f inequalities:

∑
j∈FS(k)

tinv
j ≤ Θk, ∀k = 1, 2, · · · , n f (4.26)

where integer n f represents the number of total APTM-feasible stages,
FS(k) denotes the max k elements in the set FS, and constant Θk is
obtained from merging different b̂ks by min operation. For the above
example, we have n f = 2, FS = {1, 3}, FS(1) = {3} and FS(2) =

{1, 3}. Moreover, we have Θ1 = min(b̂2, b̂3) and Θ2 = b̂1. Finally, APTM
constraint sets (constraints (4.20) to (4.23)) for APTM-feasible stages

can be transformed into following constraints.

∑
j∈FS(k)

tinv
j ≤ Θk, ∀k = 1, 2, · · · , n f (4.27)

tvld
i = gi · ci, gi ∈N, ∀i ∈ FS (4.28)

tinv
i > thdc

i (t) and Kvld
i ≥ Kmin

i , ∀i ∈ FS (4.29)

4.7.2 APTM schemes for APTM-feasible stages

Now, we only need to consider the above constraints for APTM-feasible
stages. In this section, we study how to determine APTM schemes for
the APTM-feasible stages.

Let us examine constraints (4.27)–(4.29) carefully. One can observe that (4.28)
and (4.29) are simply a set of constraints for only one stage, while (4.27)
comprises n f inequalities and each of them involves the sleep intervals
of k stages. This indicates, as mentioned in Section 3.3, the sleep in-
tervals of the stages can be influenced by each other. Computing the

104

4.7. Online Part

APTM schemes for all stages in FS simultaneously under above inter-
related constraints is time consuming and complicated to analyze. To
simplify the problem, we calculate APTM schemes in a recursive man-
ner. Each iteration, we first find the minimal value, Θkmin, in the set of
Θi for the left stages in FS. Then we determine APTM schemes only for
the stages in FS(kmin). Since Θkmin is the minimal value, the other con-
straints in (4.27) are certainly satisfied and thus can be safely ignored.
The final step at each iteration is removing already determined stages
from the left stages in FS. The iteration continues until there is not
stages left in FS.

Let G denote the set of stages in FS(kmin) at each iteration. Next, we
investigate how to assign tinvs and tvlds for stages in G. The considered
constraints are:

∑
i∈G

tinv
i ≤ Θkmin (4.30)

∀i ∈ G : tinv
i > thdc

i (t), Kvld
i ≥ Kmin

i , tvld
i = gici, gi ∈N (4.31)

According to constraint (4.31), the valid time length tvld
i should be inte-

ger times of ci: tvld
i = gici. Suppose all the gi are already known, then,

it’s intuitive that the ideal solution for corresponding tinv
i is tinv

i = tidl
i =

tvld
i /Kmin

i − tvld
i , since this makes the valid partition Kvld

i equal its lower
bound Kmin

i , which means the lowest peak temperature for the same
tvld
i . However, the tinv

i s obtained by this method must meet the real-time
constraint (4.30), that is:

∑
i∈G

tinv
i = ∑

i∈G
gici(1/Kmin

i − 1) ≤ Θkmin (4.32)

As smaller gi means smaller left hand side of (4.32), we can get the
minimal value of the left hand side Smin = ∑i∈G ci(1/Kmin

i − 1), when
all valid time lengths equal their corresponding WCET, i.e., gi = 1, ∀i ∈
G. Then, we discuss the problem in two cases: (A) Smin ≤ Θkmin; (B)
Smin > Θkmin.

Case A

In this case, at least one set of gi can be found for each stage in G
such that the constraint (4.32) is met. Therefore, all tinvs can be set
as their ideal solutions for low peak temperature. Then, the problem
is solved once the set of gi is determined. Setting the set of gi must

105

4. Adaptive Periodic Thermal Management

0 50 100 150 200
tinv/ms

342

343

344

345

346

347

348

349

T
em

pe
ra

tu
re

 /
K

Stage 1 warming curve
Stage 2 warming curve
Stage 3 warming curve

Figure 4.4: The warming curves of the stages in a 3-stage pipelined sys-
tem. The active partition of all the stages are set as Kvld

i = 0.75.

be done carefully since very large or small values of gi can cause high
peak temperature. For very large values of gi, the ‘active’ or ‘idle’ state
lasts very long in each period, which may cause high temperature at the
end of valid time interval. On the other hand, smaller gi means higher
switching frequency, which involves more switching overheads and thus
also may cause high peak temperature. Thus, setting the set of gi must
be done carefully. In this case, we adopt the warming curve of the stages
as the guidance in determining the set of gi.

Definition 4.3 (warming curve) the warming curve of stage Pi with re-
spect to an active partition Kmin

i is defined as the relationship between peak
temperature Ti(tinv

i , Kmin
i) and the sleep interval tinv

i when, (1) the active parti-

tion Kvld
i = Kmin

i , that is, tvld
i =

Kmin
i

1−Kmin
i

tinv
i , and (2) other stages always stay

at ‘sleep’ state.

Generally, the warming curve models the individual influence of apply-
ing identical tinv on each stage to the peak temperature when Kvld satis-
fies certain conditions. An example of warming curve can be found in
Fig. 4.4. One can observe the curves of two stages could be different.
To save memory and calculation during online adaption, the piecewise
linear approximations of the warming curves are used by our approach.
Let Υi represent the linear approximations of the warming curve of Pi.
The set of Υi for stages in G is termed by R. Moreover, Υi(tinv

i) denotes
the value of Υi at point tinv

i .

106

4.7. Online Part

Algorithm 9 Assign APTM for G in case A

Input: G, thdc, c, Θk, Kmin = {Kmin
i |i ∈ G}, R = {Υi|i ∈ G}

Output: {(tvld
i , tinv

i)|i ∈ G}
1: step size τi ← ci(1/Kmin

i − 1), ∀i ∈ G
2: gi ← 1, tinv

i ← τi, ∀i ∈ G
3: while true do
4: valid set V← {i|∑i∈G tinv

i + τi ≤ Θk}.
5: V = ∅ ? break : goto next line

6: get increasing reward ωi ← Υi(tinv
i)−Υi(tinv

i +τi)
τi

, ∀i ∈ V
7: (∀i ∈ V, ωi ≤ 0) ? break : goto next line
8: find i where ωi = maxi∈V ωi
9: tinv

i ← tinv
i + τi, gi ← gi + 1.

10: end while
11: tvld

i ← gi × ci, ∀i ∈ G

Algorithm 9 presents the pseudo code of assigning tinvs for the stages
in G in this case. Firstly, we calculate the constant step size for tinv

i ,
which is the ideal solution when gi equals 1 (line 1). We also initialize
gi = 1 and tinv

i = τi because they are guaranteed to be feasible for con-
straints (4.30) and (4.31). Then, the values of tinv

i s are increased with
corresponding constant step sizes in a while loop until all of them can-
not be increased any more (line 5) or further enlarging any of them will
cause higher temperature (line 7). In each loop, we first find the valid
stages set, i.e., the tinv

i which can be added by one step size τi without
violating constraint (4.30). Then, the increasing reward ωi is derived
(line 6) according to Υi. The reward ωi normalizes the benefit of in-
creasing tinv

i in lowering the temperature of the system. Finally, we add
one step size to the tinv

i having the highest increasing reward ωi (lines 8
and 9), and update the corresponding gi. After the while loop, we can
directly get tvld

i = gi × ci (line 11).

Case B

In this case, it’s clear that all tinvs cannot be their ideal values simul-
taneously even all valid time lengths tvlds equal their corresponding c.
Therefore, the tvlds are set as their lower bound ci. Of course we can
set one or some tinvs as their ideal values in some scenarios, but the
other tinvs have to be smaller in value, which could cause severely un-
balanced thermal hot spots in the system. Then, according to the APTM

107

4. Adaptive Periodic Thermal Management

0 40 80 120 160 200
tinv/ms

310

320

330

340

350

T
em

pe
ra

tu
re

 /
K

Stage 1 cooling curve
Stage 2 cooling curve
Stage 3 cooling curve
Linear approximation

Figure 4.5: The cooling curves of the stages in a 3-stage pipelined sys-
tem. The valid times of the stages are {15.2, 10, 4.6}ms.

constraint set, we have tinv
i ≤ tidl

i = ci(1/Kmin
i − 1) for all stages in G.

Finally, the remained problem is how to properly assign tinv
i under (4.30)

Our approach assigns tinvs for APTM-feasible stages according to their
unique thermal properties. In this case, we adopt the linear approxima-
tion of cooling curve to model the different abilities of different stages
in cooling the system when they are assigned the same tinv.

Definition 4.4 (cooling curve) The cooling curve of stage Pi with respect
to an application TASK is defined as the relationship between peak temperature
Ti(tinv

i , ci) and tinv
i when, (1) tvld

i = ci, and other stages always stay at ‘sleep’
state.

Fig. 4.5 displays the cooling curves of the stages in a 3-stage pipelined
system. It can be observed that the cooling curves of the three stages are
different. Similarly, our approach utilizes the piecewise linear approxi-
mations of cooling curves. Note that we adopt only the valid part of
the linear model, i.e., the part in the domain tinv

i ≤ tidl
i , since tinv

i must
be less than its ideal value.

Now, we discuss the linear model of the cooling curve in details. Sup-
pose the valid part of piecewise linear model of the cooling curve of
stage Pi, denoted as Ωi, has qi curve segments, as shown in Fig. 4.6.
The slope of the yth segment is termed as ηi(y). In addition, one can
easily prove that |ηi(y)| > |ηi(y + 1)| as the original cooling curve is
a non-increasing function. We denote the set of Ωi for stages in G as
O = {Ωi|i ∈ G}.

108

4.7. Online Part

T

tinvi

tepi (1)

ηi(1)

ηi(2)

· · ·

tepi (q − 1)

ηi(q − 1)

tepi (q) = tidli

ηi(q)

Figure 4.6: The valid part of the linear model of the cooling curve of
stage Pi. Notation tep

i (y) denotes the tinv at end point of yth segment,
where i stands for ith stage Pi. of the linear model of the cooling curve

of ith stage Pi. Similarly, ηi(y) is the corresponding slope.

The pseudo code of assigning tinvs for the stages in G in the case Smin >
Θk is depicted in algorithm 10. The inputs are the set G, hardware-
constraint thdc and WCETs c of the stages, upper bound Θk, and Ω, the
set of linear model of cooling curves. The valid time length tvld

i directly
gets its best value, that is, ci, as aforementioned. We initialize tinv

i as the
corresponding hardware constraint thdc

i (line 1). In the algorithm, we
assume the initial value of tinv

i satisfies: thdc
i ≤ tep

i (1), i.e., the initial
tinv
i locates on the first segment in the linear model of cooling curve

(line 1). Then, the values of tinv
i s are increased in a while loop until

all of them reach their ideal solutions (line 4) or their sum equals Θk
(line 14). In each loop, we first find the stages that haven’t reached their
ideal solution (line 3). Only tinvs in this valid set V will be increased in
following steps. After V is obtained, the calculated step size is assigned
to valid tinv

i s by the process of weighting (lines 10 and 14). The weight of
each tinv

i is determined by the current cooling effect of stage Pi, which is
represented by the slope ηi in the linear cooling curve model Ωi (lines 5
and 6). The step size z is carefully calculated in each loop such that
after assignment, every tinv

i still locates on the segment where it locates
before the assignment (lines 7 and 8). Moreover, the step size is also
checked whether assigning it tinvs will violate Θk (line 9), and is revised
in necessary scenarios (line 13).

4.7.3 Summary of the algorithms

Based on the algorithms presented in previous sections, the online al-
gorithm of the Adaptive Periodic Thermal Management (APTM) is sum-
marized in algorithm 11. The algorithm computes thermal-aware APTM

109

4. Adaptive Periodic Thermal Management

Algorithm 10 Assign APTM for G in case A

Input: G, thdc, c, Θk, O
Output: {(tvld

i , tinv
i)|i ∈ G}

1: tvld
i ← ci, tinv

i ← thdc
i , yi ← 1, ∀i ∈ G

2: while true do
3: valid set V← {i|yi ≤ qi}.
4: V == ∅ ? break : goto next line
5: get the segment slope ηi at tinv

i from Ωi, ∀i ∈ V
6: assigning-weight ωi ← | ηi

∑i∈V ηi
|, ∀i ∈ V

7: next critical point τi ← tep
i (yi), ∀i ∈ V

8: step size z← mini∈V(
τi−tinv

i
ωi

)

9: if ∑i∈G tinv
i + z < Θk then

10: tinv
i ← tinv

i + z×ωi, ∀i ∈ V
11: yi ← yi + 1, ∀i ∈ V

⋂{i|tinv
i == tep

i (yi)}
12: else
13: z← Θk −∑i∈G tinv

i
14: tinv

i ← tinv
i + z×ωi, ∀i ∈ V, then break.

15: end if
16: end while

Algorithm 11 Adaptive Periodic Thermal Management

Input: Hardware constraint set thdc, WCET vector c, real-time constraint
set Kmin = {Kmin

i |1 ≤ i ≤ n} and b̄ = {b̄i|1 ≤ i ≤ n}, offline
learning results Υ = {Υi|1 ≤ i ≤ n} and Ω = {Ωi|1 ≤ i ≤ n}

Output: {(tvld
i , tinv

i)|i ∈ G}
1: determine APTM-feasible stages FS and always working stages

AWS with algorithm 8.
2: determine APTM schemes for FS with algorithms 9 and 10.
3: apply APTM schemes on stages in FS and switch on stages in AWS.

schemes for the n-stage pipelined system according to the APTM con-
straint set and the thermal property knowledge learned in offline experi-
ments. Our approach does not have any requirement on when and how
often should the adaption action is performed. The adaption can be im-
plemented periodically or in event-triggered manner, according to the
system designer.

110

4.8. Offline Part Algorithms

4.8 Offline Part Algorithms

So far, the online part of our approach has been elaborated. Our ap-
proach is an offline and online combined one for effective thermal opti-
mization and high efficiency. The offline part is discussed in this section.

The offline part includes three parts: (1) acquiring the warming curves

and (2) cooling curves of the system, and (3) finding the best parameter
λ used in online adaption for the application. The warming curves and
cooling curves of the system can be easily acquired by implementing
different PTM schemes on the system according to their definition and
then recording the peak temperature. Due to the simplicity, the detailed
algorithms are omitted for brevity.

The pseudo codes of finding λ are listed in algoithm 12. For a task
application TASK, the parameter λ determining bi is found by brutally
searching its feasible range (0, 1) with a constant step size ε (line 2). The
λ is set as the best one which leads to the minimal peak temperature
when the system running application TASK (line 6). To diminish the
influence from the variability in event arrivals and executions, the peak
temperature is calculated as the average values of Ns simulations (line 4).

Algorithm 12 find the parameter λ

Input: TASK, cooling curves Υ = {Υi|1 ≤ i ≤ n}, warming curves Ω =
{Ωi|1 ≤ i ≤ n}, step ε, simulation number Ns

Output: λ
1: Tbest ← ∞.
2: for λ̄ = ε to 1− ε with step ε do
3: simulate the application TASK Ns times with approach APTM

which uses λ̄ to determine bi in equation (4.18).
4: get the average peak temperature Tavg.
5: if Tavg ≤ Tbest then
6: Tbest ← Tavg, and λ← λ̄
7: end if
8: end for

4.9 Simulation Evaluation

We evaluate the effectiveness and feasibility of our proposed approach
APTM in this section. APTM is compared with two existing approaches

111

4. Adaptive Periodic Thermal Management

in our case studies, i.e., (1) the Balanced Workload Scheme (BWS) pro-
posed in [24]. (2) the Pay-Burst-Only-Once based offline approach (O-
PBOO) presented in [2]. BWS is an online energy-optimization approach
based on adaptive dynamic power management. O-PBOO is an offline
peak-temperature optimization approach which searches the optimal
pair of (toff, ton) in offline manner. The obtained (toff, ton) is then applied
to the system to periodically switch the stages to ‘sleep’ state. Note that
the offline search step of (O-PBOO) is set as the minimal step for a fair
comparison. The three approaches are implemented in MATLAB with
additional RTC-toolbox and RTS-toolbox. All the simulations are per-
formed on a computer with an Intel i7-4770 processor and 16GB mem-
ory.

4.9.1 Setup

In our case studies, the multi-core processor is modeled by the cele-
brated thermal model HotSpot [52]. The cooling and heating phenom-
ena is modeled by applying the well-known Fourier model. In order to
calculate thermal parameters, we take the advantage of the well-known
electro-thermal analogy [52, 97, 42, 43, 45, 76], i.e., the RC thermal net-
work. Regarding the power consumption, we consider the total power
dissipation contains two parts: dynamic power and leakage power. The
dynamic power depends on the supply voltage and running frequency
of the core. The leakage power, is mainly influenced by temperature.
The dependency relationship between the leakage power and tempera-
ture is closely approximated by a linear function of the processor tem-
perature

To investigate the effectiveness and efficiency of our approach on pipelined
architectures with different stage numbers, three real life platforms are
used in our case studies: homogeneous multi-processor ARM platforms
with three and eight cores, and the Single-Chip Cloud Computer (SCC),
a processor created by Intel that has 48 distinct physical cores [46]. The
power and thermal parameters of the platforms come from [97, 83] and
parameter calibration. Moreover, the well-known HotSpot toolbox is
adopted to construct the thermal model from the floorplan and thermal
parameters of the platform. The thermal parameters of the HotSpot are
summarized in Table 4.1. All the mode-switching overheads are set as
tswoff = tswon = (1, · · · , 1)ms. In most scenarios during case studies,
only part of the cores in the platform are activated while other cores
are switched off. The layout of the activated n cores is determined by

112

4.9. Simulation Evaluation

Table 4.1: Parameter configuration of HotSpot

parameter value
silicon thermal conductivity in W/(m · K) 100
silicon specific heat in J/(m3 · K) 1.75 · 106

chip thickness in m 0.00035
convection resistance in K/W 0.1
heatsink side in m 0.066
heatsink thickness in m 0.001
heatsink thermal conductivity in W/(m · K) 400
heatsink specific heat in J/(m3 · K) 3.55 · 106

interface material thermal conductivity in W/(m · K) 4.0
ambient temperature in kelvin 300

selecting the n cores whose locations are the closest to core #1 according
to the floorplan.

The adopted arrival curve in this work can model many common tim-
ing models of event stream, such as the sporadic event model and the
periodic event model. For clarity of demonstration, we adopt the event
stream modeled by the PJD timing model in case studies. The PJD tim-
ing model specifies an event stream by the period p, jitter j, and mini-
mal inter arrival distance d. The upper arrival curve of a stream in PJD
model is αu(∆) = min(d∆+j

p e, d∆
d e). The adopted input stream are set as:

p = 100ms, j = 150ms, and d = 0ms. The WCETs on the stages are ran-
domly chosen between 3ms and 15ms. The relative end-to-end deadline
of the application is set as 120ms. To sufficiently warm up the platforms,
the event trace length of the application is set as 15 seconds. The event
trace is generated by the RTS toolbox according to its arrival curve αu.
During simulation, the real execution time of a event is randomly cho-
sen from the range [eb, ew], where ew is the WCET of the event, and eb

is the best-case execution time and determined by the execution-time
factor fe: eb = fe × ew.

4.9.2 Effectiveness at different execution-time factors

We first report the effectiveness of our approach in utilizing the exe-
cution slacks to optimize the peak temperature. The simulations are
conducted on 3-stage and 8-stage ARM processors with the execution-
time factor varying from 0.1 to 1 with step 0.1. The adaption periods
of our approach APTM and BWS are set as 40ms and 18ms in the two

113

4. Adaptive Periodic Thermal Management

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Execution time factor

330

340

350

360

T
em

pe
ra

tu
re

 /
K APTM

BWS
O-PBOO

(a) 3-stage

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Execution time factor

360

365

370

T
em

pe
ra

tu
re

 /
K APTM

BWS
O-PBOO

(b) 8-stage

Figure 4.7: The peak temperature from three approaches with different
execution-time factors on the ARM processors with (a) three and (b)
eight cores.

platforms, respectively. Fig. 4.7a and Fig. 4.7b displays the results of
the three approaches obtained from the 3-stage and 8-stage platforms,
respectively.

From the figures we can make following observations: (1) In all the
cases, our approach APTM outperforms BWS and O-PBOO regarding
optimizing the peak temperature, which demonstrates the effectiveness
of our approach. (2) Generally, the peak temperatures from three ap-
proaches get higher as the execution factor increases. This is expected
because (a) the average execution slack gets smaller as fe increases,
thus leaving less time slots for the cores to sleep in. (b) for approach
O-PBOO, although same toff and ton are applied in different cases, the
time slots when the cores can switch to ‘idle’ state decreases in average,
thus causing higher peak temperature. (3) For the 8-stage platform, the
peak temperatures from BWS and APTM grows slower when fe ≥ 0.8
compared with the 3-stage platform. The reason is that the variety of
execution times of the events has smaller impact on the temperature
for 8-stage platform. (4) When there is no execution slack, i.e., fe = 1,
approach APTM still provides lower peak temperature than other two
approaches. This indicates APTM can also utilize the dynamic slack

effectively.

4.9.3 Effectiveness at different adaption periods

We also investigate the relationship between peak temperature and the
adaption periods. Similarly, the three approaches are implemented on
the 3-stage and 8-stage pipeline systems. Moreover, in order to study the
effectiveness of our approach in utilizing the workload slacks, we set the
execution factor as 1 in the case studies. We vary the adaption period

114

4.9. Simulation Evaluation

20 22 24 26 28 30 32 34 36 38 40
Adaption period / ms

340

350

360

370

T
em

pe
ra

tu
re

 /
K

APTM
BWS
O-PBOO

(a) 3-stage

16 18 20 22 24 26 28 30 32 34 36
Adaption period / ms

360

365

370

375

380

T
em

pe
ra

tu
re

 /
K

APTM
BWS
O-PBOO

(b) 8-stage

Figure 4.8: The peak temperature from three approaches with different
adaption periods on the ARM processor with (a) three and (b) eight
cores.

from 20ms to 40ms on the 3-stage platform, and from 16ms to 36ms on
the 8-stage platform. In addition, the simulation adopts same event trace
in different adaption-period scenarios. The results from the 3-stage and
8-stage platforms are plotted in Fig. 4.8a and Fig. 4.8b, respectively.

From the figures, one can observe that: (1) In general, the peak tempera-
tures obtained from APTM and BWS is elevated when the adaption pe-
riod increases. This result is intuitive as a longer adaption period means
less dynamic information is collected and more worst-case parameters
are considered. (2) The peak temperature from BWS strongly depends
on the adaption period and increases quickly as the period grows. For
large adaption periods, BWS even gives worse results than the offline ap-
proach O-PBOO. This is because BWS first sleeps the stages for a certain
time and then let them be active until next adaption instant. Therefore,
the stages will stay at unnecessary ‘active’ or ‘idle’ state longer between
adaption instants for a larger adaption period. (3) Compared to BWS,
the increase speed of peak temperature form APTM is much slower and
is still lower than that of O-PBOO with the largest adaption period. The
reason is that our approach adopts APTM schemes, which can work well
without fast adaption. (4) The peak temperature of O-PBOO is constant
regarding the adaption period since it is an offline approach and thus is
independent of the adaption period.

4.9.4 Efficiency regarding stage number

We also report the computing times of our approach with respect to the
stage number. Since our approach works in online manner, its efficiency
is also an important factor that should be considered. The 48-core Intel
SCC platform is used in this part. The three approaches are tested in

115

4. Adaptive Periodic Thermal Management

4 5 6 7 8 9 10 11 12 13 14 15 16
Stage Number

325

330

335

340

345

350
T

em
pe

ra
tu

re
 /

K

APTM
BWS
O-PBOO

(a) peak temperature

4 5 6 7 8 9 10 11 12 13 14 15 16
Stage Number

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

 T
im

e
E

xp
en

se
/m

s

APTM
BWS

(b) average time expense

Figure 4.9: (a) The peak temperature from three approaches and (b) the
average time expense of online adaption of APTM and BWS, on platform
IntelSCC with different active stage numbers.

scenarios from 4-stage up to 16-stage with the same stream time settings
with above simulations. The WCETs of each sub-tasks are randomly
generated in range [5, 9]ms. We set the deadline for n-stage scenarios as
(20 + 15n)ms, and set the adaption period as 5ms. Fig. 4.9b reports the
average computing times of approach APTM and BWS at different stage
numbers. Moreover, the peak temperatures in scenarios are also plotted
in Fig. 4.9a.

We first discuss the results in Fig. 4.9a. The peak temperature of the
three approaches grow as the stage number gets bigger. This is expected
because as more cores are activated, more heat is generated. Observe
that: (1) our approach APTM outperforms other two approaches in all
scenarios, which further strengthens the effectiveness of our approach
for pipeline architectures with different stage numbers and varied adap-
tion periods. (2) The temperature from APTM grows slowly while the
temperature from BWS increases faster, which demonstrates the scala-
bility of APTM with respect to the stage number. (3) The gaps between
temperatures of two approaches on Intel SCC are smaller than those on
the 3-stage and 8-stage ARM processors. The reason is platform Intel
SCC is not fully activated while other two platform are completely acti-
vated. Therefore, the temperatures as well as the gaps are lower on Intel
SCC.

Finally, let’s discuss the time expense of online adaption. As shown
in figure, the average time expenses of APTM are less than 0.5ms and
grow approximated linearly, which indicates the efficiency of our ap-
proach. We can also observe that the average time expenses of APTM
are higher than that of BWS, this is expected because APTM considers
the unique thermal property of the stages and thus requires more cal-
culations. However, as demonstrated above, our approach works better

116

4.10. Summary

than BWS, especially in scenarios having large adaption periods. There-
fore, the online time expense of APTM is acceptable considering the
achievement in lowering peak temperature.

4.10 Summary

We have presented a new Dynamic Power Management approach named
Adaptive Periodic Thermal Management to minimize the peak temper-
ature of pipelined hard real-time systems. Based on the proposed hard
real-time constraints, our approach computes adaptive APTM schemes
at each adaption instant to control the temperature, during which the
unique thermal properties of the stages are considered. Several lightweight
algorithms are given for online adaption and one algorithm is also pro-
posed to calculate the parameter used in online adaption. Case studies
results demonstrate our approach is scalable w.r.t the number of stages,
in terms of both temperature optimization and computation efficiency.

In the next chapter, we present a multi-core thermal framework which
can evaluate various thermal management policies on actual hardware
platforms in an efficient and reliable manner.

117

Chapter 5

Multi-core Fast Thermal
Prototyping Framework

As technology for microprocessors swifts in the nanometer regime, power
density is rapidly increased and has become one of the constraints to
higher performance, especially for multi-core processors. Hot temper-
ature, caused by high power density, severely hampers the reliability
and performance of microprocessors. The traditional thermal manage-
ments which are designed for typical thermal conditions, i.e., physical
cooling devices, are challenged by the significant spatial and temporal
variation of chip temperature, for the sake of cost-effectiveness [108].
To meet such challenges, Dynamic Thermal Management (DTM) tech-
niques have been proposed to control the temperature actively.

There have been plenty of DTM researches which are based on var-
ious temperature control mechanisms such as Dynamic Voltage and
Frequency Scaling (DVFS), Dynamic Power Management (DPM), job
scheduling and task migration. Designers need to select the proper
thermal management policy to manage the temperature on the target
platform under various constraints, e.g., peak temperature constraint or
real-time constraint. These policies are often evaluated by simulation
programs, which simulate the execution, power dissipation and tem-
perature evolution of the processor according to user-defined models.
The thermal management results obtained from simulation have little
credibility since the adopted processor power and thermal models are
usually simplified for efficiency. Moreover, when targeting commodity
setups, that is, systems with off-the-shelf hardware and software envi-
ronments, the timing behaviour of the system is influenced by the op-

119

5. Multi-core Fast Thermal Prototyping Framework

erating systems and the computer architecture. These concerns are of-
ten ignored in simulation programs. Nowadays, DTM researches show
a trend towards multi-core architectures in which multiple cores work
concurrently as a set of heat sources. Thermal management policies
must properly arrange the execution of different tasks on different cores
to optimize the temperature or performance while considering the heat
influence between different cores. This makes comparing and selecting
thermal management policy more complex.

We argue that validating the effectiveness of all selections in the early
design phase on the target architecture is essential to select the right
thermal management policy for commodity setups. These validating
procedures can be accomplished by prototyping the policies on real
hardware platforms with a high-level thermal framework. Such a frame-
work should enable the designers to prototype the policies in a fast and
efficient manner. To compare the performance of different policies, it
also should offer results that can reflect the real influences of thermal
policies to the temperature on the target platform. Specifically, such a
framework must

• realize basic thermal-aware controlling mechanisms, i.e., a temper-
ature control mechanisms library,

• allow the implementation of customized thermal management poli-
cies with minimal effort,

• evaluate thermal policies according to the temperature of real pro-
cessors,

• have minimal requirements on the hardware and underlying soft-
ware for better compatibility.

We study how to develop such a framework in this chapter.

5.1 Overview

The traditional frameworks of evaluating thermal management policies
either are based on the power and thermal simulators of a processor [74,
107, 105, 9, 5, 18] or utilize a customized version of one standard op-
erating system kernel to support the new thermal management tech-
nique [45, 72]. Therefore, these implementations either have little credi-
bility in validating the effectiveness of the policies on real platforms or
are difficult to maintain and place strict requirements on the hardware

120

5.1. Overview

and software environment. Moreover, some researchers implement their
work in user-space with a standard Linux kernel [39]. However, these
implementations are limited to the specified policies and can be hardly
re-used for validating other policies.

In this chapter, we propose the Multi-core Fast Thermal Prototyping
(McFTP) framework, which is a thermal framework meeting all the
aforementioned requirements. First, McFTP utilizes the physical pro-
cessors to execute real tasks or benchmarks. The temperatures of the
cores are obtained by reading hardware thermal sensors built inside
the processor instead of using thermal simulators. Second, McFTP
implements several basic thermal management mechanisms, including
frequency-scaling, sleep state switching, task-migration and job schedul-
ing. With such a thermal library, McFTP enables the comparison and
evaluation of a large set of thermal management policies. Third, McFTP
defines a Configuration Manipulation Interface (CMI), which separates
the policies from the detailed low-level implementations. CMI defines
a set of easy-to-use sub-interfaces to control the low-level execution of
workload on the physical cores. Thus, customized thermal management
policies can be quickly realized as the designer only needs to imple-
ment the high-level algorithms of the policies. Finally, McFTP has wide
compatibility as it resides in the user-space and has little interaction
to the kernel-space. In addition, McFTP has few requirements on the
hardware, i.e., only the Advanced Configuration and Power Interface
(ACPI) and hardware thermal sensors, which are common features of
modern processors. We also implement the proposed framework on the
top of POSIX-compliant operating systems targeting a Dell Core-i7 desk-
top platform and study its performance. The effectiveness of McFTP is
demonstrated by two existing thermal and power management policies
with 33 benchmarks. The efficiency of McFTP, i.e., the running over-
heads of proposed framework, is also investigated by experiments on
two platforms.

The rest of this chapter is organized as follows: The related work is
briefly introduced in section 5.2. Section 5.3 describes our system mod-
els and background knowledge. A motivation example is presented
in Section 5.4. Section 5.5 presents the configuration manipulation in-
terface. The overall structure of proposed framework is demonstrated
in Section 5.6. Section 5.7 presents the implementation of McFTP on
POSIX-compliant systems. Experiment results are investigated in Sec-
tion 5.8. Section 5.9 concludes.

121

5. Multi-core Fast Thermal Prototyping Framework

5.2 Related Work

Many researches have been proposed to evaluate multi-core thermal
management policies in different levels of accuracy and for different
applications. In this section, we briefly discuss the closest thermal eval-
uation frameworks.

The majority of thermal frameworks are programs that obtain the tem-
perature traces by simulating firstly the power dissipation and then the
temperature evolution of the target processor. In general, such frame-
works have three major components, namely the processor simulator,
the power simulator and the temperature simulator. The processor sim-
ulator does the logical simulation of the processor and provides access
and usage statistics to relevant architecture and microarchitecture blocks.
A famous one is the Gem5 [12], which encompasses system-level ar-
chitectures as well as processor microarchitectures. It supports vari-
ous commercial ISAs (Instruction Set Architecture), including Alpha,
ARM, SPARC, MIPS, POWER, RISC-V and x86 ISAs. It also supports
processors of homogeneous and heterogeneous multi-core architectures.
It performs cycle-accurate simulation and computes the number of ac-
cesses to all units during the execution of a benchmark. The second
component, i.e., the power simulator, computes the power dissipation
estimates of the processors and interconnect primitives. Wattch [16], a
framework for analyzing and optimizing microprocessor power dissipa-
tion, enables architecture-level power dissipation exploration through
a cycle-accurate model of a single-core processor. To accurately model
the power of multi-core architectures, a novel power, area and timing
modeling framework called McPAT [65] is proposed. Finally, the power
estimation of the processor is fed to the temperature simulator to com-
pute the temperature trace. A well-known thermal simulator is the
HotSpot [52]. It calculates temperature evolution based on an equivalent
circuit of thermal resistance and capacitance that correspond to microar-
chitecture floorplan blocks and essential aspects of the thermal package.
Combining the aforementioned or other similar tools, many simulators
and frameworks have been presented in literature. Typical examples
are [82, 47, 107, 29]. Although the above frameworks can accurately
simulate the logical behaviour w.r.t. thermal management policies, the
correctness of the temperature evolution strongly depends on and could
be limited by the power and thermal parameters, thermal model and
floorplan description. Thus, evaluating thermal management policies in
such methodology lacks evidence of the effectiveness of the policies.

122

5.3. Background

Instead of adopting software simulators to get the temperature, some
researchers validate their policies by implementing them on real plat-
forms based on a customized version of standard operation system ker-
nels. Zhu Changyun et al. implement the proposed ThermOS run-time
thermal management algorithms within the Linux 2.6.8 kernel in [112].
Several parts of the kernel, including performance-counter based power
modeling and power-thermal budgeting, have been modified in the im-
plementation. Similarly, Hettiarachchi et al. in [45] test their theoretical
results on an Intel i7-950 multi-core processor with modified Linux ker-
nel (2.6.33.7.2-rt30 PREEMPT RT). Compared to the thermal-simulator-
based methods, such implementations offer more evidence of the results.
Since these policies are integrated within the modified kernel, high tim-
ing accuracy is also provided. The downside of such implementations
is that it could be costly to extend them to new software platforms as
they have specified requirements to the operating system kernel. More-
over, some implementations run, at least partly, in the kernel-space and
could affect other functionalities of the system. There are also some
thermal-aware policies that have been tested in the user-space of a stan-
dard operating system. The examples could be the feedback thermal
controlling approach in [39] and the hierarchical power management
in [73]. The main drawback of these test beds as well as the aforemen-
tioned kernel-customizing implementations is that they are merely de-
signed for the proposed policies in their work. Thus, extending them
to new thermal management policies could be costly or even impossible
since it requires re-modification, re-verification and re-testing of the im-
plementations. The framework proposed in this chapter is designed to
be a general platform and can implement a large set of thermal policies
with little effort. To the best of our knowledge, this is the first user-
space thermal framework that evaluates different thermal management
policies by the temperature of processors on real hardware platforms.

5.3 Background

In general, thermal management policies regulate the temperature of
microprocessors via controlling the execution of the workloads. In this
section, we first discuss the workload model. Afterwards, we briefly
discuss thermal management policies and several common temperature
control techniques. Finally, the Advanced Configuration and Power In-
terface (ACPI) as well as power dissipation model is introduced.

123

5. Multi-core Fast Thermal Prototyping Framework

5.3.1 Workload Model

The basic unit of the workload model is a task τ. An instantiation of
a task is termed as a job. The jobs of a task can arrive with a period p
and a jitter j. Moreover, the execution times of the jobs are bounded
by the worst-case execution time Cwc and best-case execution time Cbc.
To cope with the definition of real-time systems, a job might have a
relative deadline D, which specifies the maximal allowed time between
its release and complete instants.

5.3.2 Review of Thermal Management Policies

Thermal management policies aim to find the optimal resource manage-
ment scheme which can effectively control the peak temperature, ther-
mal gradient and occurrence of hot spots on the chip. Based on when
such optimization procedure is performed, thermal management poli-
cies can be divided into two groups.

• Offline policy. Offline policies usually solve the resource manage-
ment problem in design time or compile time according to the
information of workloads and hardware platforms.

• Online policy. Online policies work online and adaptively manage
the hardware and software resources according to the current state
or the history of the system.

There have been plenty of temperature control techniques or mecha-
nisms. Examples could be clock gating, power gating, dynamic voltage
and frequency scaling, stop-go, job scheduling and task migration. Al-
though implemented in different hierarchical levels of the system, such
mechanisms share the same idea, i.e., controlling the power dissipation
characteristics of a microprocessor for lower temperature or smoother
heat distribution. Four temperature control mechanisms that have been
widely adopted in various thermal management policies can be listed
below.

• Dynamic voltage and frequency scaling (DVFS). This mechanism
dynamically scales the supple voltage or clock frequency of a mi-
croprocessor to reduce the dynamic power dissipation.

• Dynamic power management (DPM). This mechanism dynamically
switches a microprocessor to low power dissipation states in which
both dynamic and leakage power can be decreased. Note that no
workload can be handled in these states.

124

5.3. Background

• Thermal-aware job scheduling. The execution of the jobs can be
reordered via this mechanism to optimize the temporal variation
of the temperature.

• Thermal-aware task migration. This mechanism dynamically ad-
justs the task mapping on the microprocessor to balance the tem-
perature on different cores and thus reduces thermal gradient.

A thermal management policy is usually based on one or more of afore-
mention mechanisms. The proposed framework in this chapter imple-
ments all the above mechanisms and supports offline and online thermal
management policies that are based on any combination of these com-
mon mechanisms.

5.3.3 Advanced Configuration and Power Interface

Review of Power Dissipation

Temperature strongly depends on the power dissipation of microproces-
sors. Many existing thermal management policies control the tempera-
ture by lowering the total power dissipation. The power consumption of
a microprocessor consists of the dynamic switching power and the leak-
age power. The dynamic power can be calculated by below equation.

Pd = αCVdd
2 f (5.1)

where C is the load capacitance, Vdd is the supply voltage, f is the clock
frequency and α is the activity factor, i.e., the fraction of transistors that
switch each cycle on average [17]. The leakage power is caused by leak-
age current and can be given as:

Pl = IleakageVdd (5.2)

where Ileakage is the leakage current and is influenced by the tempera-
ture. There exist various technologies to reduce the dynamic and leak-
age power consumption. The typical one for reducing dynamic power
can be the Clock Gating, which removes the clock signal from a circuit
and thus cuts off the dynamic power of the gated section. The sup-
ply voltage can be lowered or removed to decrease the leakage power
consumption. Such technology is termed as Power Gating, which can
reduce the temperature more effectively since the leakage as well as the
dynamic power is lowered.

125

5. Multi-core Fast Thermal Prototyping Framework

Advanced Configuration and Power Interface

To enable robust operating system-directed motherboard device config-
uration and power management of both devices and entire system, the
Advanced Configuration and Power Interface (ACPI) [30] is developed
as the common industry interface. In ACPI, several power states are de-
fined for processors. These power states can be divided into two classes.

• Processor Performance States (P-states), which specify different
levels of performance of operating processors.

• Processor Power States (C-states), which define different power
saving levels of idle processors.

A graphical representation of the P-states and C-states are plotted in
Fig. 5.1.

P-states are typically implemented with the Dynamic Voltage and Fre-
quency Scaling technologies on microprocessors. When a microproces-
sor is in P0 state, it provides the maximal performance and may con-
sume the maximal power. A performance state Pj is termed as a higher
state than Pi if i < j. The microprocessor offers lower performance
when it is in a higher performance state. Consequently, the power con-
sumption is reduced. In Linux operating system, the P-states can be
controlled manually via the interface provided by ACPI.

Processor power states are designed at C0, C1, C2, C3, ..., Cn. In ACPI,
four standard C-states are defined, i.e., C0, C1, C2 and C3; The C0 power
state is an active power state where processor can executes instructions.
The performance level and power consumption at C0 are defined by the
current P-state. The C1 through Cn power states are the processor sleep-
ing states where the processor consumes less power and dissipates less
heat. Since the processor does not handle any workload when it’s in a
sleeping state, more aggressive power saving technologies such as power
gating of whole cores can be applied. Temperature can be significantly
lowered when a sleeping state is entered. However, exiting a C-state
to normal working state introduces a certain latency which depends on
the level of the C-state. Generally, the greater power saving when in the
C-state , the longer the latency [30]. In [85], the actual wake-up latencies
of C-states of several x86 processors are measured for various recover
frequencies. When the operating system expects a certain time span
before the next task, C-states will be used to save power. The specific C-
state is determined based on the trade-off between power saving effect
and the restore latency. Unlike P-states, C-states cannot be controlled

126

5.4. Challenges and Design Approach

P0

P1

P2

Pn

...

Lower

performance,

Lower power C0

C1

C2

C3

...

Additional C-states

Higher

Latency,

Lower

power

: No Latency

ACTIVE SLEEP

Figure 5.1: Processor P-states and C-states defined in ACPI. The power
of C0 state depends on the currently used P-state. The red blocks at the
curves connecting C0 and other C-states indicate the latency when the
processor returns back to C0. Note the empty red frame indicates no
latency.

directly in application level. However, they can be reached indirectly
by eliminating workloads on the core, e.g., the Dynamic Concurrency
Throttling [33] and the idle waiting policies.

5.4 Challenges and Design Approach

In this section, we discuss the challenges and the design approach of our
McFTP framework through a concrete example by adopting different
multi-core thermal management policies. Suppose we have a dual-core
processor executing two tasks, a hot task A and a cool task B. A task is
termed as hot when executing it leads to a higher temperature on the
core. Each core is associated with a buffer storing the waiting jobs. Now,
consider the case that the temperature of core 1 is significantly raised by
continuously executing jobs of task A while the temperature of core 2 is
still in normal range, as shown in Fig. 5.2a. The large thermal gradient
between two cores at this scenario hampers the stability and reliability
of the processor. Moreover, modern processors usually require the tem-
perature to be lower than certain threshold. Therefore, the temperature

127

5. Multi-core Fast Thermal Prototyping Framework

of core 1 should be decreased in this example.

To lower the temperature of a core in a multi-core processor, one may
propose to use power management techniques, such as DVFS and DPM,
as shown in Fig. 5.2a. The DVFS techniques could be utilized to lower
the frequency on the core such that the dynamic power is reduced. In
addition, the core can also be switched to C-states by using DPM tech-
niques such as power gating. Power management techniques reduce the
temperature at the expense of lowered performance. To maintain the
same level of performance, the job queue scheduling technique serves
as an alternative method to reduce the thermal gradient, as shown in
Fig. 5.2b. One may switch the positions of the two task A jobs at core
1 and the two task B jobs at core 2. In this way, core 1 will execute two
cool task jobs so that its temperature can be lowered. Moreover, one can
further preempt the current running job on core 1 with the cool task B
job in the waiting queue to reduce the temperature. It turns out that tem-
perature can be controlled by diverse types of mechanisms. Note that in
the example, we just consider online thermal policies that are based on
only one of such mechanisms, not to mention offline policies and hyper
policies combining two or more of these mechanisms. It’s not clear how
to implement these various thermal policies on top of a standard operat-
ing system nor how to abstract and extract their common characteristics
such that we can reuse one in another. We aim to solve these problems
with McFTP.

The objective of McFTP is to provide multi-core system designers a
tool which enables the fast evaluation of various type of thermal man-
agement policies, e.g., offline or online, DVFS-based or task migration-
based, or hyper ones combining two or more temperature control mech-
anisms, etc. The challenges in the design of McFTP, i.e., the implemen-
tation of various thermal management policies and the reuse of their
common characteristics, are met by introducing an intermediate inter-
face named configuration manipulation interface (CMI). Four basic ther-
mal controlling mechanisms mentioned in Section 5.3.2, DVFS, DPM,
job queue scheduling and task migration, are defined in CMI. Thermal
management policies can access these basic mechanisms via a set of
unified, pre-defined interfaces and do not need to handle the detailed
implementation of the mechanisms on physical cores and the potential
correlation between them. In this way, thermal management policies are
isolated from the implementations of low-level mechanisms, thus can be
evaluated in a fast and reliable manner.

128

5.5. Configuration Manipulation Interface

Job A Job BAAAB AAAB AABB AABB

Job queue Job queue
tt

fr
eq

u
en

cy
fr

eq
u

en
cy

Core 1 Core 2

OR

tt

p
o
w

er
p
o
w

er

sleep

active

(a) Lowering performance to reduce temperature

Job A Job B

AAAB AAAB

AAAA AAAA

Job queue

scheduling

Core 1 Core 2

BBAB BBAB

AABB AABB

(b) Job scheduling to balance temperature

Figure 5.2: Examples of mechanisms to manage the temperature of
multi-core processors.

This work does not concentrate on optimizing the temperature for dif-
ferent thermal management policies. Neither does this work claim that
the temperature results of this proof-of-concept implementation on any
(general purpose) operating systems are identical to those obtained from
lower-level implementations. The primary goal of this work is to decou-
ple the high-level description or principles of thermal management poli-
cies from the low-level implementations which depend on the system
specification. This framework enables system designers to gain deep
understanding of the thermal management policies with temperature
results from real hardware platforms instead of software simulation.

5.5 Configuration Manipulation Interface

In this section, the Configuration Manipulation Interface is introduced
in detail by discussing the sub-interfaces defined in it.

As shown in Section 5.4, many temperature control mechanisms are
available on multi-core processors to manage the temperature or heat
distribution of the cores. Based on these mechanisms, various thermal

129

5. Multi-core Fast Thermal Prototyping Framework

Table 5.1: The state table in CMI. Note that Si could be an arbitrary
state among the sleep state (0) and available frequencies. Li should be
a positive real number denoting the length of the state in pre-defined
time unit.

state length (microsecond)
S1 L1
S2 L2
· · · · · ·
Si Li
· · · · · ·

management policies can be proposed to optimize the temperature or
performance of multi-core processors. To implement a customized ther-
mal management policy in a fast manner with minimal effort, Config-
uration Manipulation Interface (CMI) is proposed as the intermediate
interface between high-level algorithms of the policies and the low-level
implementations of the basic temperature control mechanisms. CMI en-
ables easy and robust control or combination of these basic mechanisms
to manage temperature, hot spots and thermal gradient of multi-core
processors. Next, we introduce the sub-interfaces defined in CMI for de-
signers to access DVFS, DPM, job scheduling and task migration mech-
anisms.

5.5.1 Power Management

The evaluated thermal policy can control the power dissipation charac-
teristics of a core in the processor via this interface. The dynamic and
leakage power are managed through the DVFS and DPM mechanisms
defined in the ACPI of the processor, respectively. The policy needs to
provide a state table to specify how to control the power dissipation state
of a core.

A state table has two columns, as shown in Tab. 5.1. The system designer
can assign an individual state table to each core. The first column lists
the order of demanded states of the core. A zero means to pause the
execution of a job so that the core can switch to the sleep state. A
positive number specifies the running frequency of that core. Since the
available frequencies of a core in ACPI are defined by a set of discrete
points, the given frequency will be rounded to the nearest available one
if it does not equal any frequency in the set. The second column depicts

130

5.5. Configuration Manipulation Interface

tt

f3

P
o
w

er

st
at

e

P
o
w

er

st
at

e

sleep
f1

f2 f3

sleep
f1

f2 f3
f1

f2

state length
sleep

f1
f2
f3

29 ms

11.5 ms

19 ms
17 ms

State table 1

t1 t2

state length
sleep

f2
f1
f3

0 ms

13.5 ms

12.5 ms
27 ms

State table 2

Figure 5.3: An example of McFTP controlling the power states of a core
according to two state tables. We consider the core has three available
frequencies, which are f1, f2 and f3. State table 1 is applied at t1 and
repeated twice. Then, state table 2 is applied at t2.

the time length of the corresponding state. The start time of each state is
the end time of the previous state. Specifically, the first state is adopted
immediately once the state table is given. An example of the state table
is demonstrated in Fig. 5.3. It is worth noting that the state table will be
repeated continuously to control the power dissipation of the core until
a new state table is provide to replace the old one. With the state table,
the evaluated thermal policy can control not only the length each core
stays in each power dissipation state but also the order of the states.

5.5.2 Job Scheduling and Task Migration

We consider that upon arrival, the jobs of all tasks are inserted into a
set of queues associated with the cores and wait to be executed on the
corresponding core. In default, the queue behaves as a First-In-First-Out
(FIFO) buffer. New jobs are inserted at the back of the queue and the
job at the front of the queue will be executed firstly. Depending on the
temperature of the cores, a thermal management policy may need to
change the order of the job queue or move one job to another queue. In
CMI, the following actions are defined for thermal policies to perform
job queue scheduling.

• Advance. This action advances a job by a given number of job
positions in the same queue.

• Recede. Similarly, this action recedes a job by a given number of
job positions in the same queue.

131

5. Multi-core Fast Thermal Prototyping Framework

• Move. This action moves a job in one queue to the specified posi-
tion in another queue.

• Preempt. When the policy performs this action, the current run-
ning job, if exists, on the core connecting this queue will be pre-
empted by the front job in the queue. Then, the preempted job is
placed at the front of the job queue.

The above four actions can be accomplished by calling functions advanceJobInQueue,
recedeJobInQueue, moveJobToAnotherQueue and preemptCurrentJobOnCore,
respectively.

In addition to job queue scheduling, CMI also provides the interface
for task migration. Thermal management policies can migrate the cur-
rent running hot job from an overheated core to a cooler core to bal-
ance the temperature with such interface. Simply invoking the func-
tion taskMigrate with the source and target core indexes will make the
framework perform the task migration.

5.5.3 Dynamic Information and Task Allocation

In addition to thermal-aware interfaces, CMI also provides the interface
to collect dynamic information about the state of the cores as well as
the job queues. For each core, such information structure contains the
temperature, current power state, the on-going job, the length for which
the on-going job has been executed, etc. For each job queue, its dynamic
state is abstracted by a vector containing the pointers to the waiting jobs.
Thermal management policies can use the dynamic information to make
decisions during run-time.

A task allocation interface is also defined in CMI. When a new job ar-
rives, this interface is called to decide where the job should be instan-
tiated. This interface can be static, that is, defined by the designer in
design phase, or dynamic, i.e., determined by the evaluated policy on-
line according to the dynamic information of the cores. In default, CMI
creates a static allocator which allocates all the jobs evenly on the cores.
This default task allocator can be substituted by a customized one via
the registration interface discussed in the next section.

5.5.4 Registration Interface

As discussed in Section 5.3.2, thermal management policies can be clas-
sified into two categories, namely offline and online policies. These two

132

5.6. Multi-core Fast Thermal Prototyping Framework

types of policies work in different manners and phases. An offline policy
finds the optimal resource management scheme, e.g., the state table for
controlling power and/or the task mapping on the processor, in design
phase and applies the scheme at the beginning of the experiment. An
online policy may dynamically change the power state of the cores or
schedule the jobs according to the current state of the processor. To sup-
port the evaluation of both types of policies, CMI defines a registration
interface to register an offline (function setOfflineThermalPolicy) or
online policy (function setOnlineThermalPolicy) in design phase. The
registered policy will be invoked automatically based on its type. As
aforementioned in the previous section, CMI defines a task allocator to
determine on which core a new job should be executed. Designers can
also set the task allocator via this interface. To define a static allocator,
designers can call setTaskRunningCore to statically link the jobs of a
task to one specific core. In the same way, a dynamic task allocator can
be explicitly set by calling setTaskAllocator.

In this section, we have introduced five major sub-interfaces defined in
CMI. With them, our framework gains high flexibility in evaluating var-
ious thermal management policies working in different manners and
replying on different temperature control mechanisms. Note that it is
not necessary to cover all the details of CMI in this chapter. CMI also
defines a set of interfaces and functions for the convenience of imple-
mentation of the policies. They are omitted due to their simplicity.

5.6 Multi-core Fast Thermal Prototyping Frame-
work

After introducing the Configuration Manipulation Interface, we discuss
the overall structure of Multi-core Fast Thermal Prototyping Framework.
Fig. 5.4 graphically demonstrates the overall structure of McFTP. As
shown in the figure, McFTP can be divided into two parts by CMI, one
is composed of the functional components of the thermal management
policy and the other part consists of the low-level implementations for
executing the decisions of the policy on the actual processor. CMI iso-
lates two parts and thus enables a predictive behavior of thermal man-
agement policies. McFTP is composed of below components.

133

5. Multi-core Fast Thermal Prototyping Framework

Dispatcher

A

Worker

1

Worker

n
...

Configuration Manipulation Interfacce

A1A3B2 A1A3B2 A2A4B4 A2A4B4

Thermal

Management

Policy

new job

state tables,

schedule,

migrate

Temperature

Watcher

Core

1

Core

n

Power

Manager

Dispatcher

B

...

de/

activate

de/

activate

set

frequency

set

frequency
...

get

dynamic

info

: component

: evnet

: job queue

schedule schedule

read

temperature

update

state tables

invoke

dynamic task

allocator core

index

new job

finished

finished

Figure 5.4: The proposed Multi-core Fast Thermal Prototyping Frame-
work.

5.6.1 Dispatcher

A dispatcher is defined for each task. The dispatcher supports periodic,
periodic with jitter and sporadic task timing models. A dispatcher cre-
ates jobs of the task based on the task timing model. When a new job is
created, the dispatcher sends the job instance to CMI by calling addJob

instead of directly appending the job to one of the job queues. Then, if
the pre-defined task allocator is a static one, CMI directly gets the index
of the core on which the job should be executed from the allocator. Oth-
erwise, CMI invokes the dynamic task allocator defined in the thermal
management policy to determine the core index. Finally, the new job is
appended to the corresponding job queue.

5.6.2 Thermal Management Policy

This component is defined by the designer. It should contain full func-
tional descriptions of the policy such as calculating frequencies, deter-
mining the state tables for the cores, job scheduling policies, etc. For

134

5.6. Multi-core Fast Thermal Prototyping Framework

example, if the policy is online and based on DVFS, then the designer
should define the online adaption period of the policy and present the
routine to calculate the state table at each adaption instant. The com-
prehensive information about the processor can be obtained via the
dynamic information interface in CMI. Then, the thermal policy can
manage the resources on the processor via the power management, job
scheduling and task migration sub-interfaces. Moreover, the designer
may also define a dynamic task allocator in the policy to dynamically
assign new jobs to proper cores, as aforementioned in Section 5.5.4.

5.6.3 Temperature Watcher

This component periodically reads and saves the temperatures of all the
cores of a real processor. When the dynamic information interface in
CMI is invoked, the temperature watcher provides the latest tempera-
tures of the cores.

5.6.4 Power Manager

The power manager controls the frequencies and power states of all
cores according to the state tables obtained from CMI. It controls the
power states of the cores based on the clock frequency and C-states
switching mechanisms defined in ACPI. The operation semantics of a
power manager is outlined in Fig. 5.5a. After receiving one or more new
stable table from CMI, the power manager is in updating state. It saves
the stable table and then calculates the time instance when the next fre-
quency or power state transition happens. If the next action time instant
has not been reached, the power manager stays at idle state until the next
action time. Then, the power manager is in controlling state and takes
the corresponding action. After the action, the next action time instant
is also updated. For a frequency transition, a power manager simply
changes the core frequency via the interface provided by ACPI. In the
case of switching one core to sleep, it sends a deactivate event to suspend
the worker associated with that core. Then, the idle-waiting policy is
adopted to stop the worker occupying CPU times so that the core can
switch to sleep state, i.e., C-states. At the next action time, the power
manager first sends an activate event to wake up the worker from sleep
state and then switch the core to target state.

135

5. Multi-core Fast Thermal Prototyping Framework

idle updati

ng

controll

ing

[update state table] << CMI

{updating finished} &&

{not at the next action

time}

r
ea

c
h

 t
h

e
 n

e
x
t

a
c
ti

o
n

 t
im

e

{action completed} &&

{at the next action time}

{action completed} &&

{not at the next action time}

reach the next action time

[update state table] << CMI

[u
p

d
a
te sta

te
 ta

b
le] <

<
 C

M
I

(a) Power Manager

sleep idle

active

{h
a

s w
a

itin
g

 jo
b

}/fire
(){j

o
b

 f
in

is
h

e
d

}
&

&

{n
o

 w
a

it
in

g
 j

o
b

}/

[j
o

b
 f

in
is

h
e
d

]
>

>
 C

M
I

{job finished} &&

{has waiting job}/

[job finished] >> CMI

[deactivate] << power

manager

{[a
ctiv

a
te

] <
<

 p
o

w
er

m
a

n
a

g
e
r
} &

&

{h
a

s w
a

itin
g

 jo
b

}

[deactivate] <<

power manager

{[activate] << power

manager} &&

{no waiting job}

[p
r
e
em

p
t]

 <
<

C
M

I

(b) Worker

Figure 5.5: The operation semantics for Power Manager and Worker
entities. [e]<<s indicates receiving an event e from sender s. [e]>>r
refers to sending an event e to recipient r.

5.6.5 Worker

The operation semantics of a worker is depicted in Fig. 5.5b. For a n-core
processor, n workers are created to virtually represent the cores. Each
worker is associated with a job queue storing the waiting jobs. After
receiving a deactivate event from the power manager, a worker switches
to sleep, whichever state it is current in. When the power manager sends
an activate event to it, a worker switches to idle state if there is no on-
going job, otherwise it switches to active state to execute that job. If
current job is finished and the job queue is empty, a worker sends an
event to CMI to inform the job completion and then goes to the idle
state, waiting for new jobs. Moreover, to perform job preemption or
task migration, a worker can also be interrupted from active state by
CMI with a preempt event. After being preempted, a worker is in idle
state to load new jobs from the queue, if they exist. If the job queue
is not empty, a worker switches back from idle state to active state and
executes the first job in the queue by calling function fire.

5.7 Portable Implementation with POSIX

In previous sections, we defined Configuration Manipulation Interface
and presented the overall structure of McFTP framework. The abstract

136

5.7. Portable Implementation with POSIX

operation semantics of the power manager and worker was also de-
scribed. In this section, we discuss a specific implementation of McFTP
which utilizes the API provided by POSIX standard. The POSIX stan-
dard has been widely supported by operating system including many
variants of UNIX and Real-Time Operating System (RTOS).

The main goal of McFTP is to evaluate and compare the performance
of different thermal management policies on actual hardware platforms
in an efficient manner. The evaluation process should be fast, safe and
reasonable accurate. We implement McFTP in user-space level as we
argue that a user-space tool that can be accessed easily is the first choice
if the designer wants to compare different thermal management policies
in early design phase. The main concern is the relative thermal opti-
mization performance of the policies among each other, not the absolute
performance. Although implementations in kernel-space are more accu-
rate in timing and power consumption controlling, it may be infeasible
to prototype thermal management policies in early design phase when
the actual hardware and software environment has not been specified.
Moreover, the flexibility of McFTP for different operating systems is also
significantly limited if it modifies the kernel. Prototyping thermal man-
agement policies in user-space is more efficient and provides greater
interoperability.

5.7.1 Implementation Requirements

To implement McFTP, two basic features should be supported by the
hardware environment. First, the processor must support the Advanced
Configuration and Power Interface (ACPI) such that McFTP can control
the power dissipation by putting the processor in different P-states and
C-states. Second, the temperatures of different cores can be sampled by
sensors as the comparison criteria among thermal management policies.
In Linux environment, the sensors built inside processors can be read
via the tool lmsensors.

Besides the hardware environment, the operating system must support
several functionalities to realize the framework in user-space. First,
McFTP should have the access to the aforementioned ACPI and ther-
mal sensors. Second, the concurrent execution of multiple entities must
be provided for running the components in McFTP. Third, preemptive
priority scheduling of the concurrent execution should be supported. Fi-
nally, timers are necessary to support the time-triggered power manager.

137

5. Multi-core Fast Thermal Prototyping Framework

5.7.2 Multi-thread Implementation

Given a POSIX-compliant operating system, we implement McFTP by
a set of interacting threads that are assigned different priorities. The
priority-based scheduler in the kernel selects the thread with higher pri-
ority to execute on the cores. The thermal policy thread has the highest
priority p0. In this thesis, pi refers to a higher priority than pj if i < j.
The dispatcher is assigned priority p1 and the power manager has prior-
ity p2. Then, the temperature watcher gets the priority p3. For a n-core
processor, at most n worker threads can be created and each worker is
assigned to one core. We utilize the pthread setaffinity np function
in POSIX to assign the worker threads on specified cores. All the worker
threads have the same priority p4. Note that apart from worker threads,
the aforementioned threads can be attached to arbitrary cores in the pro-
cessor, which can be customized by designers. Moreover, these threads
work in a time-triggered manner. They execute their tasks at the pre-
determined time instant. When finishing their tasks, they update the
next time instant and then block themselves such that lower-priority
threads on the same core can get chance to execute.

5.7.3 Power Management Implementation

McFTP controls the frequency of each core via the ACPI interface pro-
vided in the operating system. Firstly, our framework tries to set userspace
as the Linux CPUFreq governor with the module modified from the tool
cpupower. Then, the scaling governor files in the kernel are dynami-
cally modified by the power manager thread according to the state tables
given by the thermal policy.

Switching a core to sleep state is accomplished by the idle-waiting pol-
icy with the POSIX semaphore library. A worker thread pauses its execu-
tion and blocks itself only corresponding to user-defined suspend check-
points when it receives a deactivate event from the power manager. When
reaching a suspend checkpoint, the worker thread first calls the function
sem trywait(&suspend). The value of semaphore suspend is initialized
as zero and can only be incremented by the power manager via sending
a deactivate event, i.e., calling sem post(&suspend). The worker thread
exits from the suspend checkpoint and performs normal functionalities
if the return value of function sem trywait(&suspend) indicates no deac-
tivate event has been detected. Otherwise, the worker thread blocks itself
by calling function sem wait(&resume). Similarly, the value of resume is
also initialized as zero and can only be incremented by the power man-

138

5.8. Experimental Evaluation

ager via invoking sem post(&resume), that is, sending an activate event.
The code of the suspend checkpoints is provided as a library to the de-
signer.

5.7.4 Task Preemption Implementation

The job scheduling and task migration interfaces defined in CMI both re-
quire that our framework can preempt the task currently executed by the
worker thread. To enable task preemption, we implement a specific class
named TaskLoad holding all the information related to task preemption.
Similar to the sleep mechanism mentioned in previous section, TaskLoad
defines the preempt checkpoints to stop the execution when CMI wants
to preempt the job. Another semaphore named stop is defined to check
whether CMI has notified a job preempt request. If so, the thread firstly
saves all the data related to the job execution and records the unique
identity of the checkpoint. Then, it stops the execution of the job. The
object of TaskLoad holding all the dynamic information is returned to
CMI for job scheduling. When this job is executed by a worker again,
the thread first jumps to the preempt checkpoint where the preemption
happens by checking the identities of the checkpoints. Then, it continues
the execution of the job with the saved data in the object.

5.8 Experimental Evaluation

In this section, the performance of proposed McFTP framework is eval-
uated. Firstly, we investigate the effectiveness of McFTP in managing
the temperature via the configuration manipulation interface. Then, we
implement three thermal managements in McFTP and compare their
results. Finally, we report the running overhead of McFTP on two plat-
forms that have different computing power abilities.

5.8.1 Temperature Experiments

In this section, we investigate the effectiveness of our framework by
reporting the temperature evolution of the cores when the frequency
scaling, sleep switching and task scheduling are utilized to manage the
temperature. We used a Dell Optiplex 9020 desktop personal computer
as the experiment hardware platform. It contains an Intel i7-4770k pro-
cessor with four physical cores. Each core has 15 available running fre-
quencies between 800MHz and 3.4GHz, when the ‘acpi-cpufreq’ driver

139

5. Multi-core Fast Thermal Prototyping Framework

is adopted. The C-states defined for every core are C0, POLL, C1, C3,
C6 and C7 if the CPUidle drive is ‘intel idle’. The cores can switch to
C-state C7 when they have no workload to handle. The Hyper Thread
feature of the processor is disabled in the BIOS (Basic Input/Output
System) of the computer. Three air cooling fans are built inside the com-
puter as the cooling system. The experiment ambient temperature is 20
◦C . All experiments are done in the 3.16.0-53-generic Linux kernel envi-
ronment. During the evaluations, the system runlevel of the operating
system is set to the lowest level 1 such that only essential system services
are running. Four worker threads are created and each one is attached
to one core. The other threads such as dispatcher, power manager are
evenly attached to all the cores. McFTP framework is implemented in
C++ language and compiled by G++ 4.8.4 with optimization level O3
turned on.

In the first experiment, we test the temperature evolution of the cores
when they execute jobs in different frequencies. The benchmark SQRT-RAND

are executed on all the four cores. For clear demonstration, the four
cores apply the same state-table, which is shown in Tab. 5.2. The tem-
perature evolutions of four cores are depicted in Fig. 5.6. From the figure,
we observe that (1) the temperature of the cores increases quickly from
the initial idle state-steady temperature (around 25 ◦C) to a temperature
about 65 ◦C . Then the temperature changes depending on the running
frequency. Note that when the cores switch to sleep state (2000 to 2500
second), the temperature deceases to the initial idle state-steady value
and is lower than that of 800MHz frequency state. (2) The increase in
temperature is not linear to the increase in frequency. For example, the
temperature is raised about 10 ◦C from 800 MHz to 2100 MHz while
a nearly 20 ◦C temperature increase is resulted by a frequency increase
from 2100 MHz to 3200 MHz. The reason is that the dynamic power
dissipation is linear to the square of the frequency, as we discussed in
Section 5.3. (3) We can also observe that although all the cores adopt the
same state table, the temperature of them are not identical. For instance,
when running in 800MHz and 2100MHz (500 to 1500 second), the tem-
peratures of core 1 and core 3 are higher than that of core 0 and core
2. This is expected because the cores are on different locations in the
processor floorplan. Thus, the heat removing capacity may be different
for different cores.

In the second experiment, we show the effect of task scheduling policy.
Two tasks, one is a hot task τA and the other is a cool task τB, are
adopted. We implement a simple task scheduling policy, which assigns

140

5.8. Experimental Evaluation

Table 5.2: The state table applied in the experiment. Note the zero fre-
quency means sleep state.

state (MHz) length (second)
3400 500
800 500
2100 500
3200 500

0 500
3400 500

0 5 10 15 20 25 30 35 40
25

35

45

55

65

(a) core 0

0 5 10 15 20 25 30 35 40
25

35

45

55

65

(b) core 1

0 5 10 15 20 25 30 35 40
25

35

45

55

65

(c) core 2

0 5 10 15 20 25 30 35 40
25

35

45

55

65

(d) core 3

Figure 5.6: The temperature evolutions of the processor cores when state
table Tab. 5.2 is applied to them.

the hot task τA to the cores dynamically according to the experiment
time. Similarly, the cool task is assigned to the next cores in a circular
manner. The temperature results are plotted in Fig. 5.7.

From this experiment, we can make some interesting observations. First,
the temperature of a core strongly depends on the workload it executes.
This validates that task migration and job queue scheduling can be ef-

141

5. Multi-core Fast Thermal Prototyping Framework

0 1000 2000 3000 4000 5000
20

25

30

35

40

45

50

55

core 0 core 1 core 2 core 3

Figure 5.7: The temperatures of the cores when a hot task τA and a cool
task τB are executed on different cores.

fective in controlling the temperature. Thermal management policies
can select proper tasks to the cores according to their temperatures for
thermal balance. Second, the temperature of a core is also influenced by
other cores. In the first 2000 seconds, core 2 and core 3 have no workload
but are both heated up by core 0 and core 1. Third, similar to previous
experiment, the temperature of different cores can be different even for
same workload. Fig. 5.7 shows that core 2 is less sensitive to the hot task
τA, compared to other cores.

In the third experiment, we implement three thermal-aware manage-
ment policies in McFTP with 33 benchmarks from the CPU stress tool
Stress-ng. The first two managements are those proposed in Chap-
ter 3 and Chapter 4, namely, O-PBOO and APTM. The third approach,
termed as BWS [24], is an online one and switches the core to sleep state
dynamically. For each policy, we run the benchmark for 100 seconds
and wait for 100 seconds before next benchmark to cool the processor.
The average temperatures of the four cores in different cases are shown
in Fig. 5.8. We can observe that APTM outperforms BWS and O-PBOO
in all cases. As seen in the figure, APTM achieves a maximal 8 K and
an average 5 K temperature reductions compared to BWS, respectively.
Another observation is the temperature of the processor changes when
different benchmarks are executed. This further strengthens the con-
clusion made in the second experiment that the temperature strongly
depends on the workload it executes.

142

5.8. Experimental Evaluation

ackerm
ann

bitops

corre
late

crc16
djb2a

euler
explog fft

fibonacci
float

fnv1a

35

40

45

50

55

60 APTM BWS O-PBOO

gcd

hamming

hyperbolic idct int
jenkin jmp ln2

loop

matrix
prod

nsqrt

35

40

45

50

55

60 APTM BWS O-PBOO

omega phi pi
pjw

prim
e psi

queens
sdbm sqrt trig union

35

40

45

50

55

60 APTM BWS O-PBOO

Figure 5.8: The temperatures of APTM, PBOO and BWS for the bench-
mark set.

5.8.2 Efficiency Experiments

In this section, we study the efficiency of McFTP by reporting the over-
head introduced by the framework in different scenarios. To study the
efficiency on platforms with different computing capacities, in addition
to the aforementioned Dell platform, we also use another embedded
environment, a Raspberry Pi (RPI) Model B v1.2 with a 1.2GHz 64-bit

143

5. Multi-core Fast Thermal Prototyping Framework

quad-core ARMv8 CPU running the Linux 4.1.19-v7 kernel. In this plat-
form, McFTP framework is compiled by G++ 5.4.0 with optimization
level O3 turned on.

McFTP has the following roles. The first one is to execute the user-
defined tasks. The second one is to run the thermal management policy,
if the policy works in run-time. Anything else can be considered as
overhead. Specifically, we consider the sum of the CPU times spent
by the power manager, temperature watcher, dispatchers and the check-
points in workers as the overhead of McFTP. The overhead is incurred
by creating and registering new jobs, reading thermal sensor interface,
managing job queues, parsing state tables, sending de/activate signals,
writing the frequency controlling interface and checking the state of the
checkpoints. Since the overhead of checkpoints depends on how the de-
signer programs the task code, i.e., the number of checkpoints, we first
study the overhead of McFTP without checkpoints and then report the
overhead of checkpoints separately.

In the first experiment, we do not consider the overhead of checkpoints.
Therefore, the total overhead is the sum of the CPU times spent by the
power manager, temperature watcher and dispatchers. We investigate
how the overhead varies when (1) the job arriving period changes and
(2) the power state switching frequency changes. For the first scenario,
we vary the arriving period of jobs from 30ms to 100ms. In the sec-
ond scenario, a two-state state table is used and the switching period
increases from 60ms to 480ms with step 6ms. In each scenario, 750 task-
sets are generated. Each task set contains five tasks with the same period.
The total utilization of the task set is set as 0.5. The execution times of
the tasks are randomly chosen between 1ms and the period. The ex-
periment run-time is set as 10 seconds. The overhead is measured using
the POSIX-CPU-timers for the power manager, temperature watcher and
dispatcher threads, normalized over the total run-time. Fig. 5.9 shows
the measured overheads plotted against the job arrival period and state
switching period, for both platforms. From the figure, we can make
following observations.

• Task period-dependence. The total overhead decreases when task pe-
riod increases. This is expected since less jobs are created and
managed.

• Power state switching period-dependence. Similar to the above obser-
vation, increasing the switching period mainly decreases the over-
head incurred by the power manager thread.

144

5.8. Experimental Evaluation

40 60 80 100
task period [ms]

0.1

0.12

0.14

0.16

0.18

0.2

to
ta

l o
ve

rh
ea

d
[%

]

(a) Desktop, task period

100 200 300 400
switching period [ms]

0.05

0.1

0.15

0.2

0.25

to
ta

l o
ve

rh
ea

d
[%

]
(b) Desktop, switching period

40 60 80 100
task period [ms]

0.2

0.3

0.4

0.5

0.6

to
ta

l o
ve

rh
ea

d
[%

]

(c) RPI, task period

100 200 300 400
switching period [ms]

0

0.2

0.4

0.6

0.8

to
ta

l o
ve

rh
ea

d
[%

]

(d) RPI, switching period

Figure 5.9: McFTP overhead in different scenarios on two platforms
having different computing capabilities.

• Platform-dependence. The overhead is higher (around 3×) on the
Raspberry Pi platform than the overhead on Dell desktop platform.
However, the overhead is still below 1% of the total run-time.

The second experiment investigates the overhead incurred by the check-
points in our framework. We study how the overhead changes when
the total number of checkpoints increases. The two types of checkpoints,
i.e., the suspend and preempt checkpoints, have same number in the ex-
periment. We vary the total number from 20000 to two million with step
20000 and repeat the experiment 50 times for each scenario. Again, we
adopt the POSIX-CPU-timers to measure the time spent by checkpoints.
Fig. 5.10 plots the overheads of different numbers of checkpoints. Fol-
lowing observations can be made from the figure.

145

5. Multi-core Fast Thermal Prototyping Framework

0 50 100 150 200
number of checkpoints [10000]

0

2000

4000

6000

8000

ov
er

he
ad

 [u
s]

(a) Desktop

0 50 100 150 200
number of checkpoints [10000]

0

5

10

15

ov
er

he
ad

 [u
s]

104

(b) RPI

Figure 5.10: Checkpoints overhead for different platforms.

• number-dependence. The overhead increases (approximately) lin-
early with respect to the total number of checkpoints, which is
straightforward as the framework has to check more states.

• Platform-dependence. On the Raspberry Pi platform, the overhead is
higher (around 10×) than that on Dell desktop platform.

5.9 Summary

In this chapter, we present the Multi-core Fast Thermal Prototyping
(McFTP) framework, a new thermal framework for evaluating general
thermal management policies. The variety of thermal management poli-
cies is supported by pre-implementing a set of widely used tempera-
ture control mechanisms and combining them freely. An intermediate
interface named configuration manipulation interface is defined to sep-
arate the thermal management policies from low-level implementations.
McFTP is designed in user-space and has little interaction to the kernel-
space, thus supporting a large variety of target platforms. We imple-
ment McFTP with four basic temperature control mechanisms on top of
POSIX-compliant operating systems. Its effectiveness is demonstrated
by implementing two existing two works on a Dell desktop platform
with a four-core Inter-I7 processor. We also investigate the efficiency of
McFTP by reporting its overheads on two platforms, i.e., the Dell plat-
form and a Raspberry Pi.

146

Chapter 6

Conclusion

This chapter summarizes the main results of this thesis and discusses
potential directions of future research.

6.1 Main Results

The aim of this thesis is to address the emerging thermal challenges
for hard real-time systems with the periodic thermal management. The
challenges are categorized into a few topics and the corresponding solu-
tions are provided. In summary, the main contributions are listed in the
following:

• We present the periodic thermal management (PTM) to minimize
the peak temperature for single-core real-time systems. We adopt
the well-known Fourier’s law to model the temperature evolution
and offer a closed-form solution of the peak temperature. To find
the optimal periodic thermal management scheme which can min-
imize the peak temperature under real-time constraints, two algo-
rithms with different accuracy levels are proposed. One searches
the optimal solution brutally in the exploration space. The other
one adopts the bounded delay function to calculate an approxi-
mated solution. The proposed thermal management can be imple-
mented easily on real-time systems having little computing power
by simply using a hardware timer.

• We investigate the offline implementation of the periodic thermal
management on pipelined hard real-time systems. To avoid ac-
counting the burst in the incoming stream more than once, the

147

6. Conclusion

principle pay-burst-only-once is adopted to obtain a tight bound
of the aggregate service service. We analyze and present theoret-
ical results for calculating the peak temperature of multi-core sys-
tems under periodic thermal managements. Two algorithms are
proposed to derive the peak temperature with different levels of
efficiency and accuracy. For each peak temperature algorithm, we
present an algorithm for determining PTM schemes, targeting re-
duction of the peak temperature under hard real-time constraints.

• We also study adopting online thermal managements to dynami-
cally adjust the periodic on/off patterns for pipelined multi-core
systems. Based on the extended pay-burst-only-once principle, we
present a sufficient real-time condition for online periodic thermal
managements to guarantee deadline constraints of current and fu-
ture events. With this condition, the online thermal management
is formalized as an optimization problem which is solved at each
online adaption instant. Under the guidance of the unique thermal
properties of the system, an heuristic scheme is proposed to solve
the problem online with negligible overhead.

• Finally, we investigate how to evaluate multi-core thermal manage-
ments that are based on different temperature control mechanisms
on real hardware platforms in an efficient manner. We present
a user-space thermal framework named Multi-core Fast Thermal
Prototyping, which can implement customized thermal manage-
ment with minimal effort. A set of common temperature control
mechanisms is implemented as a thermal library for users. To
isolate the thermal management policies and the low-level imple-
mentation on the target platform, we also defined an intermediate
interface termed as configuration manipulation interface.

6.2 Future Perspectives

The contributions presented in this thesis provide partial solutions for
a few thermal management challenges for hard real-time systems. Nev-
ertheless, there still exists potential for further extensions and improve-
ments. Several possible directions for future research are identified in
the following list.

• Multi-objective thermal management
There is a strong correlation between temperature and power be-
cause heat is the primary dissipation form of the consumed energy.

148

6.2. Future Perspectives

System performance can also be influenced indirectly by thermal
managements as the temperature is controlled via adjusting the
execution of workloads. In other words, energy, performance and
temperature are correlated with each other. Therefore, an promis-
ing research direction is the design of new thermal managements
which can optimize energy, performance and temperature simulta-
neously. Because of the overall complexity of such problem, evolu-
tionary algorithm would be a viable candidate as a starting point.

• Refining the timing model
The arrival and service curves are adopted to model workloads
and system resources in this thesis. They provide upper and lower
bounds on the non-determinism in the stream in any time interval
with specified length. While presenting high level of abstraction,
they also have an clear drawback: they cannot capture any timing
correlation between two streams. For instance, the timing offsets
and the PTM phase shifts between different cores in a multi-core
processor are completely ignored in the service curve. This severe
abstraction loss leads to conservative decisions when searching the
optimal PTM schemes under hard real-time constraints. Therefore,
refining the timing model such that the correlation between differ-
ent cores in the time domain are utilized would be high beneficial
to further lowering the temperature and improving system perfor-
mance.

• Coupling with other mechanisms
In this thesis, we focus on adopting dynamic power management
to reduce the power dissipation and thus control the temperature
of hard real-time systems. This coupling is intuitive since temper-
ature strongly depends on the power. However, there also exist
other temperature control mechanisms, e.g., job scheduling, task
migration, etc. One interesting topic would be combining two or
more of these mechanisms to optimize the temperature under real-
time constraints.

• Temperature estimation
In chapter 5, to reflect the real effectiveness of thermal manage-
ments, we utilize the temperatures obtained from the temperature
sensors built for each physical core as the criterion to evaluate dif-
ferent thermal managements. However, due to the limits of die
size, costs, etc., there are still processors that do not install tem-
perature sensor for all the cores. For these processors, soft tem-

149

6. Conclusion

perature estimators are a promising solution. Moreover, they can
also provide finer spatial and temporal granularities than physical
temperature sensors. Developing an efficient and accurate temper-
ature estimator for multi-core processors is a potential research
direction.

150

Bibliography

[1] Approximation of curves. http://www.mpa.ethz.ch/static/tutorial.html.

[2] Masud Ahmed, Nathan Fisher, Shengquan Wang, and Pradeep
Hettiarachchi. Minimizing peak temperature in embedded real-
time systems via thermal-aware periodic resources. Sustainable
Computing: Informatics and Systems, 1(3):226–240, 2011.

[3] Andrea Alimonda, Andrea Acquaviva, and Salvatore Carta. Tem-
perature and leakage aware power control for embedded stream-
ing applications. In 11th EUROMICRO Conference on Digital System
Design Architectures, Methods and Tools, pages 107–114. IEEE, 2008.

[4] EA Amerasekera and Farid N. Najm. Failure mechanisms in semi-
conductor devices. Wiley, 1997.

[5] David Atienza, Pablo Garcia Del Valle, Giacomo Paci, Francesco
Poletti, Luca Benini, Giovanni De Micheli, and Jose Manuel Men-
dias. A fast hw/sw fpga-based thermal emulation framework for
multi-processor system-on-chip. In 43rd ACM/IEEE Design Automa-
tion Conference, pages 618–623. IEEE, 2006.

[6] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to
manage energy and temperature. Journal of the ACM, 54(1):3, 2007.

[7] Nikhil Bansal and Kirk Pruhs. Speed scaling to manage tempera-
ture. In Annual Symposium on Theoretical Aspects of Computer Science,
pages 460–471. Springer, 2005.

151

Bibliography

[8] Min Bao, Alexandru Andrei, Petru Eles, and Zebo Peng.
Temperature-aware voltage selection for energy optimization. In
Proceedings of the conference on Design, automation and test in Europe,
pages 1083–1086. ACM, 2008.

[9] Andrea Bartolini, Matteo Cacciari, Andrea Tilli, Luca Benini, and
Matthias Gries. A virtual platform environment for exploring
power, thermal and reliability management control strategies in
high-performance multicores. In Proceedings of the 20th symposium
on Great lakes symposium on VLSI, pages 311–316. ACM, 2010.

[10] Sanjoy K Baruah, Alan Burns, and Robert I Davis. Response-time
analysis for mixed criticality systems. In 32nd Real-Time Systems
Symposium, pages 34–43. IEEE, 2011.

[11] Mark Benson. The Art of Software Thermal Management for Embedded
Systems. Springer, 2014.

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower,
Tushar Krishna, Somayeh Sardashti, et al. The gem5 simulator.
SIGARCH Computer Architecture News, 39(2):1–7, 2011.

[13] James R Black. Electromigration failure modes in aluminum
metallization for semiconductor devices. Proceedings of the IEEE,
57(9):1587–1594, 1969.

[14] Shekhar Borkar. Design challenges of technology scaling. IEEE
micro, 19(4):23–29, 1999.

[15] David Brooks and Margaret Martonosi. Dynamic thermal man-
agement for high-performance microprocessors. In The Seventh
International Symposium on High-Performance Computer Architecture,
pages 171–182. IEEE, 2001.

[16] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A
framework for architectural-level power analysis and optimizations, vol-
ume 28. ACM, 2000.

[17] J Adam Butts and Gurindar S Sohi. A static power model for
architects. In 33rd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 191–201. IEEE, 2000.

152

Bibliography

[18] Salvatore Carta, Andrea Acquaviva, Pablo G Del Valle, David
Atienza, Giovanni De Micheli, Fernando Rincon, Luca Benini, and
Jose M Mendias. Multi-processor operating system emulation
framework with thermal feedback for systems-on-chip. In Proceed-
ings of the 17th Great Lakes symposium on VLSI, pages 311–316. ACM,
2007.

[19] Salvatore Carta, Andrea Alimonda, Alessandro Pisano, Andrea
Acquaviva, and Luca Benini. A control theoretic approach to
energy-efficient pipelined computation in mpsocs. Transactions on
Embedded Computing Systems, 6(4):27, 2007.

[20] Thidapat Chantem, X Sharon Hu, and Robert P Dick. Online work
maximization under a peak temperature constraint. In Proceedings
of the ACM/IEEE international symposium on Low power electronics
and design, pages 105–110. ACM, 2009.

[21] Thidapat Chantem, X Sharon Hu, and Robert P Dick. Temperature-
aware scheduling and assignment for hard real-time applications
on mpsocs. Transactions on Very Large Scale Integration Systems,
19(10):1884–1897, 2011.

[22] Gang Chen, Kai Huang, Christian Buckl, and Alois Knoll. Energy
optimization with worst-case deadline guarantee for pipelined
multiprocessor systems. In Proceedings of the Conference on Design,
Automation and Test in Europe, pages 45–50. EDA Consortium, 2013.

[23] Gang Chen, Kai Huang, Christian Buckl, and Alois Knoll. Apply-
ing pay-burst-only-once principle for periodic power management
in hard real-time pipelined multiprocessor systems. Transactions
on Design Automation of Electronic Systems, 20(2):26, 2015.

[24] Gang Chen, Kai Huang, and Alois Knoll. Adaptive dynamic
power management for hard real-time pipelined multiprocessor
systems. In 20th International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 1–10. IEEE, 2014.

[25] Jian-Jia Chen, Shengquan Wang, and Lothar Thiele. Proactive
speed scheduling for real-time tasks under thermal constraints. In
15th Real-Time and Embedded Technology and Applications Symposium,
pages 141–150. IEEE, 2009.

153

Bibliography

[26] Renzhi Chen, Peter R Lewis, and Xin Yao. Temperature manage-
ment for heterogeneous multi-core fpgas using adaptive evolution-
ary multi-objective approaches. In International Conference on Evolv-
able Systems, pages 101–108. IEEE, 2014.

[27] Long Cheng, Kai Huang, Gang Chen, Biao Hu, and Alois Knoll.
Periodic thermal management for hard real-time systems. In 10th
International Symposium on Industrial Embedded Systems, pages 1–10.
IEEE, 2015.

[28] Long Cheng, Kai Huang, Gang Chen, Biao Hu, and Alois Knoll.
Minimizing peak temperature for pipelined hard real-time sys-
tems. In Design, Automation Test in Europe Conference Exhibition.
European Design and Automation Association, 2016.

[29] Simone Corbetta, Davide Zoni, and William Fornaciari. A tem-
perature and reliability oriented simulation framework for multi-
core architectures. In Computer Society Annual Symposium on VLSI,
pages 51–56. IEEE, 2012.

[30] Hewlett-Packard Corporation, Intel Corporation, Mi-
crosoft Corporation, Phoenix Technologies Ltd, and
Toshiba Corporation. Advanced configuration and
power interface specification. revision 5.0 errata a.
http://www.acpi.info/DOWNLOADS/ACPIspec50.pdf, 2013.

[31] Sony Semiconductor Solutions Corporation. Sony semiconductor
quality and reliability handbook. http://www.sony-semicon.co.

jp/products_en/quality/pdf/Handbook_e_201604.pdf, 2016.

[32] Marco Cox, Amit Kumar Singh, Ajit Kumar, and Henk Corporaal.
Thermal-aware mapping of streaming applications on 3d multi-
processor systems. In 11th Symposium on Embedded Systems for Real-
time Multimedia, pages 11–20. IEEE, 2013.

[33] Matthew Curtis-Maury, Karan Singh, Sally A McKee, Filip Blago-
jevic, Dimitrios S Nikolopoulos, Bronis R De Supinski, and Martin
Schulz. Identifying energy-efficient concurrency levels using ma-
chine learning. In International Conference on Cluster Computing,
pages 488–495. IEEE, 2007.

154

http://www.sony-semicon.co.jp/products_en/quality/pdf/Handbook_e_201604.pdf
http://www.sony-semicon.co.jp/products_en/quality/pdf/Handbook_e_201604.pdf

Bibliography

[34] Anup Das, Akash Kumar, and Bharadwaj Veeravalli. Temperature
aware energy-reliability trade-offs for mapping of throughput-
constrained applications on multimedia mpsocs. In Proceedings
of the conference on Design, Automation & Test in Europe, page 102.
European Design and Automation Association, 2014.

[35] Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bas-
sous, and Andre R LeBlanc. Design of ion-implanted mosfet’s
with very small physical dimensions. Journal of Solid-State Circuits,
9(5):256–268, 1974.

[36] Ahad Mozafari Fard, Mehdi Ghasemi, and Mehdi Kargahi.
Response-time minimization in soft real-time systems with
temperature-affected reliability constraint. In CSI Symposium on
Real-Time and Embedded Systems and Technologies, pages 1–8. IEEE,
2015.

[37] Markus Fidler. Extending the network calculus pay bursts only
once principle to aggregate scheduling. In International Work-
shop on Quality of Service in Multiservice IP Networks, pages 19–34.
Springer, 2003.

[38] Nathan Fisher, Jian-Jia Chen, Shengquan Wang, and Lothar Thiele.
Thermal-aware global real-time scheduling on multicore systems.
In 15th Real-Time and Embedded Technology and Applications Sympo-
sium, pages 131–140. IEEE, 2009.

[39] Yong Fu, Nicholas Kottenstette, Chenyang Lu, and Xenofon D
Koutsoukos. Feedback thermal control of real-time systems on
multicore processors. In Proceedings of the tenth international confer-
ence on Embedded software, pages 113–122. ACM, 2012.

[40] Dayan Adionel Guimaraes. Digital transmission: a simulation-aided
introduction with VisSim/Comm. Springer Science & Business Media,
2010.

[41] Stephen Gunther, Frank Binns, Douglas M Carmean, and
Jonathan C Hall. Managing the impact of increasing micropro-
cessor power consumption. Intel Technology Journal, 5(1):1–9, 2001.

[42] Vinay Hanumaiah and Sarma Vrudhula. Temperature-aware dvfs
for hard real-time applications on multicore processors. Transac-
tions on Computers, 61(10):1484–1494, 2012.

155

Bibliography

[43] Pradeep M Hettiarachchi, Nathan Fisher, Masud Ahmed, Le Yi
Wang, Shinan Wang, and Weisong Shi. The design and analysis of
thermal-resilient hard-real-time systems. In 18th Real-Time and Em-
bedded Technology and Applications Symposium, pages 67–76. IEEE,
2012.

[44] Pradeep M Hettiarachchi, Nathan Fisher, Masud Ahmed, Le Yi
Wang, Shinan Wang, and Weisong Shi. A design and analysis
framework for thermal-resilient hard real-time systems. Transac-
tions on Embedded Computing Systems, 13(5s):146, 2014.

[45] Pradeep M Hettiarachchi, Nathan Fisher, and Le Yi Wang. Achiev-
ing thermal-resiliency for multicore hard-real-time systems. In
25th Euromicro Conference on Real-Time Systems, pages 37–46. IEEE,
2013.

[46] John Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal,
David Finan, Gregory Ruhl, Devon Jenkins, Howard Wilson, Nitin
Borkar, Gerhard Schrom, et al. A 48-core ia-32 message-passing
processor with dvfs in 45nm cmos. In International Solid-State
Circuits Conference Digest of Technical Papers, pages 108–109. IEEE,
2010.

[47] Ming-yu Hsieh, Arun Rodrigues, Rolf Riesen, Kevin Thompson,
and William Song. A framework for architecture-level power, area,
and thermal simulation and its application to network-on-chip
design exploration. SIGMETRICS Performance Evaluation Review,
38(4):63–68, 2011.

[48] Kai Huang, Gang Chen, Christian Buckl, and Alois Knoll. Con-
forming the runtime inputs for hard real-time embedded sys-
tems. In Proceedings of the 49th Annual Design Automation Confer-
ence, pages 430–436. ACM, 2012.

[49] Kai Huang, Luca Santinelli, Jian-Jia Chen, Lothar Thiele, and Gior-
gio C Buttazzo. Adaptive dynamic power management for hard
real-time systems. In 30th Real-Time Systems Symposium, pages 23–
32. IEEE, 2009.

[50] Kai Huang, Luca Santinelli, Jian-Jia Chen, Lothar Thiele, and Gior-
gio C Buttazzo. Periodic power management schemes for real-time
event streams. In Proceedings of the 48th Conference on Decision and

156

Bibliography

Control, held jointly with the 28th Chinese Control Conference, pages
6224–6231. IEEE, 2009.

[51] Kai Huang, Luca Santinelli, Jian-Jia Chen, Lothar Thiele, and Gior-
gio C Buttazzo. Applying real-time interface and calculus for dy-
namic power management in hard real-time systems. Real-Time
Systems, 47(2):163–193, 2011.

[52] Wei Huang, Shougata Ghosh, Siva Velusamy, Karthik Sankara-
narayanan, Kevin Skadron, and Mircea R Stan. Hotspot: A com-
pact thermal modeling methodology for early-stage vlsi design.
Transactions on Very Large Scale Integration Systems, 14(5):501–513,
2006.

[53] Haris Javaid, Muhammad Shafique, Sri Parameswaran, and Jörg
Henkel. Low-power adaptive pipelined mpsocs for multimedia:
an h. 264 video encoder case study. In Proceedings of the 48th Design
Automation Conference, pages 1032–1037. ACM, 2011.

[54] Joonho Kong, Sung Woo Chung, and Kevin Skadron. Recent ther-
mal management techniques for microprocessors. ACM Computing
Surveys, 44(3):13, 2012.

[55] Pratyush Kumar and Lothar Thiele. Cool shapers: shaping real-
time tasks for improved thermal guarantees. In Proceedings of the
48th Design Automation Conference, pages 468–473. IEEE, 2011.

[56] Pratyush Kumar and Lothar Thiele. Thermally optimal stop-go
scheduling of task graphs with real-time constraints. In Asia and
South Pacific Design Automation Conference, pages 123–128. IEEE
Press, 2011.

[57] V Lakshminarayanan and N Sriraam. The effect of temperature on
the reliability of electronic components. In International Conference
on Electronics, Computing and Communication Technologies, pages 1–
6. IEEE, 2014.

[58] Kai Lampka et al. Keep it slow and in time: Online dvfs with
hard real-time workloads. In Proceedings of the Conference on Design,
Automation and Test in Europe, pages 385–390. IEEE, 2016.

157

Bibliography

[59] Kai Lampka, Kai Huang, and Jian-Jia Chen. Dynamic counters
and the efficient and effective online power management of em-
bedded real-time systems. In Proceedings of the seventh IEEE/ACM/I-
FIP international conference on Hardware/software codesign and system
synthesis, pages 267–276, 2011.

[60] Jean-Yves Le Boudec and Patrick Thiran. Network calculus: a theory
of deterministic queuing systems for the internet. Springer, 2001.

[61] Edward A Lee and Sanjit A Seshia. Introduction to embedded
systems. A Cyber-Physical, 2014.

[62] Jong Sung Lee, Kevin Skadron, and Sung Woo Chung. Predictive
temperature-aware dvfs. Transactions on Computers, 59(1):127–133,
2010.

[63] Jungseob Lee and Nam Sung Kim. Optimizing throughput of
power-and thermal-constrained multicore processors using dvfs
and per-core power-gating. In 46th ACM/IEEE Design Automation
Conference, pages 47–50. IEEE, 2009.

[64] Jungseob Lee and Nam Sung Kim. Analyzing potential through-
put improvement of power-and thermal-constrained multicore
processors by exploiting dvfs and pcpg. Transactions on Very Large
Scale Integration Systems, 20(2):225–235, 2012.

[65] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman,
Dean M Tullsen, and Norman P Jouppi. Mcpat: an integrated
power, area, and timing modeling framework for multicore and
manycore architectures. In 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 469–480. IEEE, 2009.

[66] Yingmin Li, K Skadron, D Brooks, and Zhigang Hu. Performance,
energy, and thermal considerations for smt and cmp architectures.
In 11th International Symposium on High-Performance Computer Ar-
chitecture, pages 71–82. IEEE, 2005.

[67] Chien-Hui Liao and Charles H-P Wen. Thermal-constrained
task scheduling on 3-d multicore processors for throughput-and-
energy optimization. Transactions on Very Large Scale Integration
Systems,, 23(11):2719–2723, 2015.

158

Bibliography

[68] Y. Liu, R. P. Dick, L. Shang, and H. Yang. Accurate temperature-
dependent integrated circuit leakage power estimation is easy. In
Design, Automation Test in Europe Conference Exhibition, pages 1–6,
April 2007.

[69] Morteza Mohaqeqi, Mehdi Kargahi, and Kazim Fouladi. Stochas-
tic thermal control of a multicore real-time system. In 24th Eu-
romicro International Conference on Parallel, Distributed, and Network-
Based Processing, pages 208–215. IEEE, 2016.

[70] Rajarshi Mukherjee and Seda Ogrenci Memik. Physical aware fre-
quency selection for dynamic thermal management in multi-core
systems. In Proceedings of the IEEE/ACM international conference on
Computer-aided design, pages 547–552. ACM, 2006.

[71] Rajarshi Mukherjee, Seda Ogrenci Memik, and Gokhan Memik.
Peak temperature control and leakage reduction during binding
in high level synthesis. In Proceedings of the International Symposium
on Low power electronics and design, pages 251–256. ACM, 2005.

[72] Fabrizio Mulas, David Atienza, Andrea Acquaviva, Salvatore
Carta, Luca Benini, and Giovanni De Micheli. Thermal balanc-
ing policy for multiprocessor stream computing platforms. Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
28(12):1870–1882, 2009.

[73] Thannirmalai Somu Muthukaruppan, Mihai Pricopi, Vanchi-
nathan Venkataramani, Tulika Mitra, and Sanjay Vishin. Hierarchi-
cal power management for asymmetric multi-core in dark silicon
era. In 50th ACM/EDAC/IEEE Design Automation Conference, pages
1–9. IEEE, 2013.

[74] Gergely Nagy and András Poppe. Simulation framework for mul-
tilevel power estimation and timing analysis of digital systems al-
lowing the consideration of thermal effects. In 13th Latin American
Test Workshop, pages 1–5. IEEE, 2012.

[75] Hyunok Oh and Soonhoi Ha. Hardware-software cosynthesis
of multi-mode multi-task embedded systems with real-time con-
straints. In Proceedings of the tenth international symposium on Hard-
ware/software codesign, pages 133–138. ACM, 2002.

159

Bibliography

[76] Santiago Pagani, Heba Khdr, Waqaas Munawar, Jian-Jia Chen,
Muhammad Shafique, Minming Li, and Jörg Henkel. Tsp: ther-
mal safe power: efficient power budgeting for many-core systems
in dark silicon. In Proceedings of the International Conference on Hard-
ware/Software Codesign and System Synthesis, page 10. ACM, 2014.

[77] Michael Pecht. The influence of temperature on microelectronic
device failure mechanisms. phase 2. Technical report, DTIC Docu-
ment, 1993.

[78] Simon Perathoner, Kai Lampka, Nikolay Stoimenov, Lothar Thiele,
and Jian-Jia Chen. Combining optimistic and pessimistic dvs
scheduling: An adaptive scheme and analysis. In Proceedings of
the International Conference on Computer-Aided Design, pages 131–
138. IEEE Press, 2010.

[79] Xiaoke Qin and Prabhat Mishra. Tecs: Temperature-and energy-
constrained scheduling for multicore systems. In 27th International
Conference on VLSI Design and 13th International Conference on Em-
bedded Systems, pages 216–221. IEEE, 2014.

[80] Devendra Rai, Hoeseok Yang, Iuliana Bacivarov, Jian-Jia Chen, and
Lothar Thiele. Worst-case temperature analysis for real-time sys-
tems. In Proceedings of the Conference on Design, Automation and Test
in Europe, pages 1–6. IEEE, 2011.

[81] Ravishankar Rao and Sarma Vrudhula. Fast and accurate predic-
tion of the steady-state throughput of multicore processors under
thermal constraints. Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 28(10):1559–1572, 2009.

[82] Jose Renau, Basilio Fraguela, James Tuck, Wei Liu, Milos
Prvulovic, Luis Ceze, Smruti Sarangi, Paul Sack, Karin Strauss,
and Pablo Montesinos. Sesc simulator, 2005.

[83] MohammadSadegh Sadri, Andrea Bartolini, and Luca Benini.
Single-chip cloud computer thermal model. In 17th International
Workshop on Thermal Investigations of ICs and Systems, pages 1–6.
IEEE, 2011.

[84] Karthik Sankaranarayanan. Thermal modeling and management of
microprocessors. PhD thesis, University of Virginia, 2009.

160

Bibliography

[85] Robert Schöne, Daniel Molka, and Michael Werner. Wake-up laten-
cies for processor idle states on current x86 processors. Computer
Science-Research and Development, 30(2):219–227, 2015.

[86] Lars Schor, Iuliana Bacivarov, Hoeseok Yang, and Lothar Thiele.
Worst-case temperature guarantees for real-time applications on
multi-core systems. In Real-Time and Embedded Technology and Ap-
plications Symposium, pages 87–96. IEEE, 2012.

[87] Lui Sha, Marco Caccamo, Renato Mancuso, Jung-Eun Kim, Man-
Ki Yoon, Rodolfo Pellizzoni, Heechul Yun, Russel Kegley, Den-
nis Perlman, Greg Arundale, et al. Single core equivalent virtual
machines for hard real—time computing on multicore processors.
Technical report, 2014.

[88] Hafiz Fahad Sheikh, Ishfaq Ahmad, and Dongrui Fan. An evolu-
tionary technique for performance-energy-temperature optimized
scheduling of parallel tasks on multi-core processors. Transactions
on Parallel and Distributed Systems, 27(3):668–681, 2016.

[89] Insik Shin and Insup Lee. Compositional real-time scheduling
framework. In 25th International Real-Time Systems Symposium,
pages 57–67. IEEE, 2004.

[90] SIA. International technology roadmap for semiconductors (itrs).
Semiconductor Industry Association, 2015.

[91] Fridtjof Siebert. Multicore systems–challenges for the real-time
software developer.

[92] SIXSIGMA. Ionic cleanliness testing. http://www.

sixsigmaservices.com/ioniccleanliness.asp, 2016.

[93] Kevin Skadron, Mircea R Stan, Wei Huang, Sivakumar Velusamy,
Karthik Sankaranarayanan, and David Tarjan. Temperature-aware
microarchitecture. SIGARCH Computer Architecture News, 31(2):2–
13, 2003.

[94] Greg Taylor. Energy efficient circuit design and the future of power
delivery. Electrical Performance of Electronic Packaging and Systems,
2009.

161

http://www.sixsigmaservices.com/ioniccleanliness.asp
http://www.sixsigmaservices.com/ioniccleanliness.asp

Bibliography

[95] ARS TECHNICA. Nvidia denies rumors of faulty chips, mass
gpu failures. http://arstechnica.com/hardware/news/2008/07/

nvidia-denies-rumors-of-mass-gpu-failures.ars, 2008.

[96] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-
time Calculus for Scheduling Hard Real-time Systems. Interna-
tional Symposium on Circuits and Systems, 4:101–104, 2000.

[97] Lothar Thiele, Lars Schor, Iuliana Bacivarov, and Hoeseok Yang.
Predictability for timing and temperature in multiprocessor
system-on-chip platforms. Transactions on Embedded Computing Sys-
tems, 12(1s):48, 2013.

[98] Lothar Thiele, Ernesto Wandeler, and Nikolay Stoimenov. Real-
time interfaces for composing real-time systems. In Proceedings of
the 6th ACM & IEEE International conference on Embedded software,
pages 34–43, 2006.

[99] EE TIMES. The truth about last year’s xbox 360 re-
call. http://www.eetimes.com/electronicsnews/4077187/

The-truth-about-last-year-s-Xbox-360-recall., 2008.

[100] Ivan Ukhov, Min Bao, Petru Eles, and Zebo Peng. Steady-state
dynamic temperature analysis and reliability optimization for em-
bedded multiprocessor systems. In Proceedings of the 49th Annual
Design Automation Conference, pages 197–204. ACM, 2012.

[101] Ernesto Wandeler and Lothar Thiele. Optimal tdma time slot and
cycle length allocation for hard real-time systems. In Asia and
South Pacific Design Automation Conference. IEEE, 2006.

[102] Shengquan Wang and Riccardo Bettati. Reactive speed control
in temperature-constrained real-time systems. Real-Time Systems,
39(1-3):73–95, 2008.

[103] Tianyi Wang, Ming Fan, Gang Quan, and Shangping Ren. Hetero-
geneity exploration for peak temperature reduction on multi-core
platforms. In Fifteenth International Symposium on Quality Electronic
Design, pages 107–114. IEEE, 2014.

[104] Jonathan A Winter and David H Albonesi. Addressing thermal
nonuniformity in smt workloads. Transactions on Architecture and
Code Optimization, 5(1):4, 2008.

162

http://arstechnica.com/hardware/news/2008/07/nvidia-denies-rumors-of-mass-gpu-failures.ars
http://arstechnica.com/hardware/news/2008/07/nvidia-denies-rumors-of-mass-gpu-failures.ars
http://www.eetimes.com/electronicsnews/4077187/The-truth-about-last-year-s-Xbox-360-recall.
http://www.eetimes.com/electronicsnews/4077187/The-truth-about-last-year-s-Xbox-360-recall.

Bibliography

[105] Yuan Xie and Wei-Lun Hung. Temperature-aware task allocation
and scheduling for embedded multiprocessor systems-on-chip
(mpsoc) design. The Journal of VLSI Signal Processing, 45(3):177–
189, 2006.

[106] Hoeseok Yang and Soonhoi Ha. Pipelined data parallel task map-
ping/scheduling technique for mpsoc. In Proceedings of the confer-
ence on Design, automation and test in Europe, pages 69–74. European
Design and Automation Association, 2009.

[107] Jianxun Yang and Shan Cao. An accurate power and temperature
simulation framework for network-on-chip. In International Con-
ference on Integrated Circuits and Microsystems, pages 166–171. IEEE,
2016.

[108] Jun Yang, Xiuyi Zhou, Marek Chrobak, Youtao Zhang, and Lin-
gling Jin. Dynamic thermal management through task scheduling.
In International Symposium on Performance Analysis of Systems and
software, pages 191–201. IEEE, 2008.

[109] Dante C Youla. Two observations regarding first-quadrant causal
bibo-stable digital filters. Proceedings of the IEEE, 78(4):598–603,
1990.

[110] Buyoung Yun, Kang G Shin, and Shige Wang. Thermal-aware
scheduling of critical applications using job migration and power-
gating on multi-core chips. In 10th International Conference on Trust,
Security and Privacy in Computing and Communications, pages 1083–
1090. IEEE, 2011.

[111] Sushu Zhang and Karam S Chatha. Approximation algorithm for
the temperature-aware scheduling problem. In Proceedings of the
international conference on Computer-Aided Design, pages 281–288.
IEEE, 2007.

[112] Changyun Zhu, Zhenyu Gu, Li Shang, Robert P Dick, and Russ
Joseph. Three-dimensional chip-multiprocessor run-time thermal
management. Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(8):1479–1492, 2008.

163

List of Publications

[1] Long Cheng, Kai Huang, Gang Chen, Biao Hu, and Alois Knoll.
Periodic thermal management for hard real-time systems. In 10th
IEEE International Symposium on Industrial Embedded Systems, pages
1–10. IEEE, 2015.

[2] Long Cheng, Kai Huang, Gang Chen, Biao Hu, and Alois Knoll.
Minimizing peak temperature for pipelined hard real-time systems.
In Design, Automation Test in Europe Conference Exhibition. European
Design and Automation Association, 2016.

[3] Long Cheng, Kai Huang, Gang Chen, Biao Hu, and Alois Knoll.
Mixed-criticality control system with performance and robustness
guarantees. In The 14th IEEE International Conference On Embedded
Software And Systems. IEEE, 2017.

[4] Long Cheng, Zhihao Zhao, Kai Huang, Gang Chen, and Alois
Knoll. Mcftp: A framework to explore and prototype multi-core
thermal managements on real processors. In The 14th IEEE Interna-
tional Conference On Embedded Software And Systems. IEEE, 2017.

[5] Long Cheng, Zhihao Zhao, Kai Huang, and Alois Knoll. Hyper-
periodic thermal management for hard real-time systems. In 12th
IEEE International Symposium on Industrial Embedded Systems. IEEE,
2017.

[6] Long Cheng, Zhenshan Bing, Alois Knoll, and Kai Huang. Biolog-
ically inspired spiking neural network for autonomous locomotion
control of snake-like robots. In International Journal of Biosensors &
Bioelectronics. MedCrave, 2017.

165

List of Publications

[7] Zhenshan Bing, Long Cheng, Kai Huang, Mingchuan Zhou, and
Alois Knoll. Smooth gait transition of body shape and locomotion
speed based on cpg control for snake-like robot. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), June 2017.

[8] Zhenshan Bing, Long Cheng, Guang Chen, Florian Röhrbein, Kai
Huang, and Alois Knoll. Towards autonomous locomotion: Cpg-
based control of smooth 3d slithering gait transition of a snake-like
robot. Bioinspiration & Biomimetics, 12(3):035001, 2017.

[9] Zhenshan Bing, Long Cheng, Anyang Zhong, Feihu Zhang, Kai
Huang, and Alois Knoll. Slope angle estimation based on multi-
sensor fusion for a snake-like robot. In 20th International Conference
on Information Fusion, Xi’an, P.R. China, July 2017.

[10] Guang Chen, Zhenshan Bing, Florian Rohrbein, Jorg Conradt, Kai
Huang, Long Cheng, Zhuangyi Jiang, and Alois Knoll. Towards
brain-inspired learning with the neuromorphic snake-like robot
and the neurorobotic platform. In IEEE Transactions on Cognitive
and Developmental Systems, June 2017. accepted.

[11] Biao Hu, Kai Huang, Gang Chen, Long Cheng, and Alois Knoll.
Online workload monitoring with the feedback of actual execution
time for real-time systems. In Design, Automation & Test in Europe
Conference & Exhibition, pages 764–769. IEEE, 2017.

[12] Biao Hu, Kai Huang, Gang Chen, Long Cheng, Dongkun Han, and
Alois Knoll. Schedulability analysis towards arbitrarily activated
tasks in mixed-criticality systems. Journal of Circuits, Systems and
Computers, 26(10):1750159, 2017.

[13] Gang Chen, Kai Huang, Long Cheng, Biao Hu, and Alois Knoll. Dy-
namic partitioned cache memory for real-time mpsocs with mixed
criticality. Journal of Circuits, Systems and Computers, 25(06):1650062,
2016.

[14] Biao Hu, Kai Huang, Gang Chen, Long Cheng, and Alois Knoll.
Adaptive workload management in mixed-criticality systems. In
ACM Transactions on Embedded Computing Systems, May 2016.

[15] Biao Hu, Kai Huang, Gang Chen, Long Cheng, and Alois Knoll.
Adaptive runtime shaping for mixed-criticality systems. In Interna-
tional Conference on Embedded Software, October 2015.

166

List of Publications

[16] Biao Hu, Kai Huang, Gang Chen, Long Cheng, and Alois Knoll.
Evaluation and improvements of runtime monitoring methods for
real-time event streams. In ACM Transactions on Embedded Comput-
ing Systems, Feb 2016.

167

	Contents
	List of Figures
	List of Tables
	Introduction
	The Emerging Thermal Issues
	The Increasing Power Density
	The Influence of High Temperature
	Thermal Management Methods

	State of the Art Thermal Managements
	Overview
	Hard Real-Time System Requirements

	Thesis Outline and Contributions
	Chapter 2: Single Core Thermal Management
	Chapter 3: Pipelined System Thermal Management
	Chapter 4: Adaptive Periodic Thermal Management
	Chapter 5: Multi-core Fast Thermal Prototyping Framework

	Single Core Thermal Management
	Overview
	Related Work
	Introduction to Real-Time Calculus
	Models for Event Stream
	Service Model
	Basic Results

	System Model and Problem Statement
	Hardware Model
	Power Model
	Thermal Model
	Problem Statement

	Peak Temperature Analysis
	Real-Time Calculus Routine
	Service Bound of PTM
	Principles of our Algorithms
	Feasible Region of toff
	Obtaining the minimal ton

	PTM Algorithms
	Algorithm PMPT
	Algorithm AMPT
	Case Studies

	Summary

	Pipelined System Thermal Management
	Overview
	Related work
	system model
	Hardware Model
	Application Model
	Thermal Model

	Real-Time Calculus Background
	Wide Sense Increasing Functions
	Basic Mathematical Results
	Pay Burst Only Once

	Motivation and Problem statement
	Motivation Example
	Problem Statement

	Calculating Peak Temperature
	Peak Temperature Analysis
	Peak Temperature Calculating Algorithms

	Real-time Analysis and Problem Formulations
	Real-time analysis
	Formulation and transformation of the Optimization Problem
	Overall algorithm to minimize peak temperature

	Solving the sub-problem
	Algorithm FBGD to solve the FBPT based sub-problem
	Algorithm ANSA to solve the ANPT based sub-problem

	Case Studies
	Setup
	Results

	Summary

	Adaptive Periodic Thermal Management
	Overview
	Related works
	system model
	Hardware and Thermal Model
	Adaptive Periodic Thermal Management
	Problem Statement

	Motivation of Our Work
	Utilizing the Two Slacks
	Demanded Service Of Unfinished Events
	Arrival Curve of Future Events fu(t,)

	Proposed Approach
	System Transformation
	Real-Time Constraints
	APTM constraint set

	Online Part
	Feasible Stages for APTM
	APTM schemes for APTM-feasible stages
	Summary of the algorithms

	Offline Part Algorithms
	Simulation Evaluation
	Setup
	Effectiveness at different execution-time factors
	Effectiveness at different adaption periods
	Efficiency regarding stage number

	Summary

	Multi-core Fast Thermal Prototyping Framework
	Overview
	Related Work
	Background
	Workload Model
	Review of Thermal Management Policies
	Advanced Configuration and Power Interface

	Challenges and Design Approach
	Configuration Manipulation Interface
	Power Management
	Job Scheduling and Task Migration
	Dynamic Information and Task Allocation
	Registration Interface

	Multi-core Fast Thermal Prototyping Framework
	Dispatcher
	Thermal Management Policy
	Temperature Watcher
	Power Manager
	Worker

	Portable Implementation with POSIX
	Implementation Requirements
	Multi-thread Implementation
	Power Management Implementation
	Task Preemption Implementation

	Experimental Evaluation
	Temperature Experiments
	Efficiency Experiments

	Summary

	Conclusion
	Main Results
	Future Perspectives

	Bibliography
	List of Publications

