0 TUTI

TECHNISCHE UNIVERSITAT MUNCHEN

Fakultét flir Informatik
Lehrstuhl fiir Echtzeitsysteme und Robotik

System Level
Periodic Thermal Management for

Hard Real-Time Systems

Long Cheng

Vollstindiger Abdruck der von der Fakultit fiir Informatik der Technischen
Universitit Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende/-r: Prof. Dr. Uwe Baumgarten..................ccoevvviiiinnnnn...

Priifende/-r der Dissertation:
1. Prof. Dr.-Ing. habil. Alois Knoll
2. Prof. Dr. Kai Huang, Sun Yat-Sen University, China

Die Dissertation wurde am 20.06.2017 bei der Technischen Universitdt Miinchen
eingereicht und durch die Fakultit fiir Informatik am 15.11.2017 angenommen.

Abstract

As the VLSI technology is scaling to deep sub-micron domain, more
and more transistors are integrated into microprocessors. As a conse-
quence, the power density is rapidly increased, resulting in the rising
temperature on microprocessors. High temperature poses serious chal-
lenges to designers of hard real-time systems since it severely hampers
the reliability and performance of the system. Temperature has become
an emerging issue of high importance for real-time systems. Therefore,
developing thermal managements is a fundamental aspect in the design
of real-time systems. The role of a real-time thermal management is
twofold. On one hand, it should correctly and accurately model the tim-
ing characteristics and non-determinisms of real-time tasks so that one
can tightly bound the demanded system resources. On the other hand, it
must perform thermal optimization actions, e.g., reducing the peak tem-
perature, minimizing thermal gradients, etc., under the aforementioned
hard real-time constraints.

In this thesis, we focus on developing the system level dynamic thermal
management technique, i.e., periodic thermal management, for real-time
systems with single and multi-core architectures. To handle general
event arrivals with non-determinisms, the theory of real-time calculus
is adopted as the task model. The main contributions of this thesis can
be listed as the following:

e An offline thermal management, termed as periodic thermal man-
agement, is presented for single core real-time systems.

e Periodic thermal management is extended to pipelined multi-core
systems by reversely utilizing the pay-burst-only-once principle.

¢ An online adaptive periodic thermal management that can capture

i

the variations in event arrivals and executions is proposed.

e A thermal framework which can evaluate various thermal manage-
ments in a fast manner is presented.

Zusammenfassung

Aufgrund der Entwicklung von VLSI hin zu einer deep sub-micron
Domine, werden immer mehr Transistoren auf Mikroprozessoren in-
tegriert. Als Folge davon nimmt die Leistungsdichte immer mehr zu,
was zu erhohten Temperaturen dieser Prozessoren fithrt. Hohe Tem-
peraturen stellen Entwickler von Echtzeitsystemen vor grofle Heraus-
forderungen, da diese die Zuverladssigkeit und Leistung dieser Systeme
beeintrachtigt. Temperatur entwickelt sich daher zunehmend zu einem
Problem von hoher Bedeutung fiir Echtzeitsysteme. Aufgrund dessen
ist die Entwicklung von Thermomanagement ein fundamentaler Aspekt
beim Design von Echtzeitsystemen. Ein Thermomanagementsystem hat
zwei Aufgaben. Zum einen soll es die Timing-Eigenschaften und den
Nichtdeterminismus von Echtzeitaufgaben korrekt modellieren, sodass
man moglichst gute Vorhersagen beziiglich der benétigten Ressourcen

des Systems treffen kann. Zum anderen muss es thermale Optimierungsak-

tionen unter den zuvor genannten harten Echtzeitbeschrankungen
durchfiihren, wie zum Beispiel die Reduzierung der Hochsttempera-
turen, die Minimierung des Temperaturgradients, usw. Der Fokus dieser
Arbeit liegt auf der Entwicklung einer auf Systemlevel dynamischen
Thermomanagementmethode, d.h. einem periodischen Thermomanage-
mentsystem fiir Echtzeitsysteme mit Ein- oder Mehrkernarchitekturen.
Um eintreffende, nichtdeterministische Ereignisse handhaben zu kénnen,
wird auf die Theorie von Echtzeit-Differentialrechnung zuriickgegriffen.
Die Hauptanteile dieser Arbeit konnen wie folgt aufgelistet werden:

e ein offline Thermomanagementsystem, bezeichnet als periodisches

Thermomanagementsystem wird fiir Einkern-Echtzeitsysteme vorgestellt.

e das periodische Thermomanagementsystem wird erweitert, um

Mehrkernsysteme zu unterstiitzen, indem das “pay-burst-only-once”-

1ii

iv

Prinzip angewandt wird.

e ein online anpassbares periodisches Thermomanagementsystem,
welches die Variation von eintreffenden Ereignissen einfangen kann
wird vorgeschlagen.

e ein Thermo-Framework, welches verschiedene Thermomanagementsys-
teme schnell evaluieren kann wird vorgestellt.

Acknowledgements

First of all, I would like to express my sincere gratitude to Prof. Dr. habil.
Alois C. Knoll for offering the opportunity for studying in Technical
University of Munich and constantly patiently supervising my research.
Without his support, this thesis would have not been possible.

I would like to thank Prof. Dr. Kai Huang for being my coexaminer in
this thesis and providing me valuable suggestions about my research in
my Ph.D. life.

I would also like to thank: Assoc. Prof. Dr. Gang Chen, Dr. Guang Chen
and Dr. Biao Hu for the fruitful research cooperation; Zhenshan Bing for
the nice collaboration in the snake robot project; Mingchuan Zhou for
the exciting cooperation in the research of thermal management; Xiebing
Wang and Zhuangyi Jiang for their supports and proofreading my thesis;
Dipl. Inf. Brian Jensen and Alexander Perzylo for their kind help in the
beginning of my Ph.D. life. Furthermore, I would like to thank all my
former and current colleagues of the whole Robotics and Embedded
System chair for their company and support.

My sincere thanks also goes to my friends: Xiang Lu, Zhu Liu, Zhen
Yao, Di Xu and Yao Xiao for all the times we had in the last four years.

Finally, my dearest thanks go to my family for their love and support
throughout all these years of my Ph.D. study.

The work presented in this thesis was supported by the China Scholar-
ship Council (grant number: 201306120019). This support is gratefully
acknowledged.

vi

To my wife, Shanshan.

Contents

Contents

List of Figures

List of Tables

1 Introduction

1.1

1.2

1.3

The Emerging Thermal Issues
1.1.1 The Increasing Power Density
1.1.2 The Influence of High Temperature
1.1.3 Thermal Management Methods
State of the Art Thermal Managements
121 Overview.
1.2.2 Hard Real-Time System Requirements
Thesis Outline and Contributions
1.3.1 Chapter 2: Single Core Thermal Management
1.3.2 Chapter 3: Pipelined System Thermal Management
1.3.3 Chapter 4: Adaptive Periodic Thermal Management
1.3.4 Chapter 5: Multi-core Fast Thermal Prototyping
Framework L.

2 Single Core Thermal Management

21
2.2
2.3

OVerview o e e e
Related Work
Introduction to Real-Time Calculus
2.3.1 Models for Event Stream
232 ServiceModel
233 BasicResults.

vii

xi

xiv

11
12

vii

CONTENTS

viii

2.4 System Model and Problem Statement 23
241 HardwareModel 23
242 PowerModel 24
243 ThermalModel 25
244 Problem Statement 26

2.5 Peak Temperature Analysis 28

2.6 Real-Time Calculus Routine 31
2.6.1 Service Boundof PTM 31
2.6.2 Principles of our Algorithms 32
2.6.3 Feasible Regionof tff 33
2.6.4 Obtaining the minimal t*" 33

27 PIM Algorithms. 36
271 Algorithm PMPT 36
272 Algorithm AMPT 37
273 CaseStudies 39

28 Summary 44

Pipelined System Thermal Management 47

31 Overviewo 48

32 Relatedwork 49

33 systemmodel, 51
3.3.1 Hardware Model 51
3.3.2 Application Model 52
333 ThermalModel 52

3.4 Real-Time Calculus Background 56
3.4.1 Wide Sense Increasing Functions 56
3.4.2 Basic Mathematical Results 57
343 PayBurstOnlyOnce 57

3.5 Motivation and Problem statement 59
3.5.1 Motivation Example 59
3.52 Problem Statement 61

3.6 Calculating Peak Temperature 62
3.6.1 Peak Temperature Analysis 62
3.6.2 Peak Temperature Calculating Algorithms 66

3.7 Real-time Analysis and Problem Formulations 71
3.71 Real-timeanalysis. 71
3.7.2 Formulation and transformation of the Optimiza-

tion Problem oL, 73
3.7.3 Overall algorithm to minimize peak temperature . 74
3.8 Solving the sub-problem 74

3.8.1 Algorithm FBGD to solve the FBPT based sub-problem 75

Contents

3.82 Algorithm ANSA to solve the ANPT based sub-

problem L 76

39 CaseStudies 79
391 Setup 79
392 Resultsol 80

310 Summary 85
Adaptive Periodic Thermal Management 87
41 Overview e 88
42 Relatedworks o o L 89
43 systemmodel 0. 91
43.1 Hardware and Thermal Model 91
43.2 Adaptive Periodic Thermal Management 91
43.3 Problem Statement 92

44 Motivation of Our Work 93
4.5 Utilizing the TwoSlacks 95
451 Demanded Service Of Unfinished Events 95
452 Arrival Curve of Future Events a/#(t, A) 96

4.6 Proposed Approach 96
4.6.1 System Transformation. 97
4.6.2 Real-Time Constraints 97
4.6.3 APTM constraintset 101

47 OnlinePart 102
4.7.1 Peasible Stages for APTM 102
4.7.2 APTM schemes for APTM-feasible stages 104
473 Summary of the algorithms 109

4.8 Offline Part Algorithms 111
49 Simulation Evaluation 111
491 Setup 112
49.2 Effectiveness at different execution-time factors . . 113
49.3 Effectiveness at different adaption periods 114
494 Efficiency regarding stage number 115

410 Summary 117
Multi-core Fast Thermal Prototyping Framework 119
51 Overview e 120
52 Related Work 122
53 Background o L. 123
53.1 Workload Model 124
5.3.2 Review of Thermal Management Policies 124
5.3.3 Advanced Configuration and Power Interface . .. 125

iX

CONTENTS

54
5.5

5.6

5.7

5.8

59

Challenges and Design Approach.
Configuration Manipulation Interface
55.1 Power Management
5.5.2 Job Scheduling and Task Migration
5.5.3 Dynamic Information and Task Allocation
5.5.4 Registration Interface
Multi-core Fast Thermal Prototyping Framework
56.1 Dispatcher
5.6.2 Thermal Management Policy
5.6.3 Temperature Watcher
564 PowerManager
565 Worker oo oo
Portable Implementation with POSIX
5.7.1 Implementation Requirements
5.7.2 Multi-thread Implementation
5.7.3 Power Management Implementation
574 Task Preemption Implementation.
Experimental Evaluation
5.8.1 Temperature Experiments
5.8.2 Efficiency Experiments
Summary

6 Conclusion

6.1 MainResults
6.2 Future Perspectives
Bibliography

List of Publications

List of Figures

1.1

21
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
211

212

2.13
2.14
2.15

3.1
3.2
3.3
34
3.5

3.6

3.7

A plot of power density against critical dimensions 2
An example of the cumulative function 19
Three examples of arrival curves 21
The delay bound and deadline condition 23
Hardware model of a single-core processor 24
Execution of jobs in policy WC, DT and PTM. 27
Temperature evolution in policy WC, DT and PTM. 28
Example of temperature varying withPTM 30
Obtaining the approximate minimal t* 35
The relationship between the peak temperature and t°f . . . 37
Case studies results for single event stream scenarios 40
Case studies results for randomly selected four-events stream

SCENATIOS 41
Case studies results for randomly selected five-events stream

SCENATIOS . . v v v v v i e e e e e e e e e e 43
Case studies results for ten-events stream scenarios 43
Computing time at four-events stream scenarios 44
Computing time at ten-events stream scenarios 45
H.263 decoder on pipelined hardware architecture. 52
Examples of thermal model 53
The impulse response between twonodes 55
Motivation example of Pay Burst Only Once 60
Examples of Tfj"”v and T; varying with time 63
An example of neighbor nodes and the thermal influence be-

tweentwonodes Lo oo L 69
Introduction of bounded delay function 72

xi

LisT OF FIGURES

xii

3.8 Peak temperature obtained by FBPT and ANPT
3.9 Peak Temperature obtained with step size being 4ms on plat-
form ARM
3.10 Peak Temperature obtained with step size being 2ms on plat-
form ARM
3.11 Peak Temperature obtained with step size being 4ms on plat-
form SCC.
3.12 Peak Temperature obtained with step size being 2ms on plat-
form SCC.

3.13 The results of the four approaches on ARM from 2-to 8- stage.

3.14 The best peak temperature generated by the four approaches
on SCC from2to24stages.
3.15 The time expense of the four approaches on SCC from 2 to 24

41 The adaptive periodic thermal management schemes after
two adaptioninstants. 0 0L

4.2 The temperature of the first core in the ARM 3-stage platform
when the two methods are applied to manageit.

4.3 Anexample of the transformation of a 3-stage pipelined multi-
coresystem.

44 An example of warming curves L.

4.5 An example of cooling curves

4.6 The valid part of the linear model of the cooling curve

4.7 The peak temperature with different execution-time factors

4.8 The peak temperature with different adaption periods

49 Temperature and time expense results on IntelSCC platform .

5.1 P-states and C-states of processors
5.2 Examples of mechanisms to manage the temperature of multi-

COTE PIOCESSOIS. . « . v v v vt ettt e e e e e
5.3 An example of McFTP controlling the power states of a core .

81

82

82

83
84

84

84

92

129
131

5.4 The proposed Multi-core Fast Thermal Prototyping Framework.134

5.5 The operation semantics for Power Manager and Worker en-
titieso
5.6 The temperature evolutions of the processor cores when state
table Tab. 5.2 is applied to them.
5.7 The temperatures of the cores when a hot task 7 and a cool
task T2 are executed on different cores.
5.8 The temperatures of APTM, PBOO and BWS for the bench-
markset. L L

List of Figures

5.9 MCcFTP overhead in different scenarios on two platforms hav-
ing different computing capabilities. 145
5.10 Checkpoints overhead for different platforms. 146

xiil

Xiv

List of Tables

2.1
2.2
2.3

3.1
4.1

51
52

The concrete event trace adopted in the example. 27
Thermal and hardware model parameters 39
Event stream setting 40

WCETs of the applications in 3-stage and 4-stage scenarios. . 80

Parameter configuration of HotSpot 113
The state tablein CMI 130
The state table applied in the experiment 141

Chapter 1

Introduction

As predicted by the Moore’s law, more and more transistors have been
integrated in modern microprocessors. Hence the power density is
rapidly increasing, which consequently raises the temperature of mi-
croprocessors. High temperature seriously hampers the reliability and
performance of microprocessors. Real-time systems, in which tasks
must finish before their deadlines, have additional requirements with
respect to reliability and performance stability. Therefore, high temper-
ature poses challenges to designers of real-time systems. This thesis
presents a set of novel thermal management technologies for real-time
systems. In particular, we focus on solutions for optimizing temperature
under hard real-time constraints by adopting dynamic power manage-
ment technology. Section 1.1 introduces the thermal issue of micropro-
cessors. Section 1.2 surveys the state-of-art thermal management tech-
nologies. Section 1.3 draws the outline and summaries the contributions
of this thesis.

1.1 The Emerging Thermal Issues

Temperature is a fundamental parameter associated with the perfor-
mance and reliability of electronic equipments [77]. In the past several
years, thermal-related issues have become especially important for mi-
croprocessor design [54]. In this section, we explain the causes behind
the emerging thermal issues in three aspects: the increasing power den-
sity (Section 1.1.1), negative effects of high temperature (Section 1.1.2),
and thermal management methods (Section 1.1.3).

1. INTRODUCTION

100

p
__~‘Pentium® 4 processor

Pentium® Il processor Pentium® Il processor

W/cm?2

¥ ‘Pentium® Pro processor
Pentium® processor
i486

. / i386

10 1 0.1 0.01
CD (um)

Figure 1.1: A plot of power density against critical dimensions [94]. The
logarithmic vertical scale indicates exponential growth of power density.

1.1.1 The Increasing Power Density

Most of the energy consumed by a microprocessor is ultimately dissi-
pated in form of heat because of the resistive behaviour of the processor
circuits. Temperature is a measurement of how much heat has been
produced and thus directly determined by the power density, which de-
notes the power consumed per unit area of the chip. The transistors
in microprocessors have continued to shrink in size since the very first
microprocessor. This scaling has significant impacts on the temperature,
which is illustrated below by the relationship between the scaling and
power density.

Now, we study this relationship according to the Scaling Theory [35].
The length of the transistor is shrunk by every successive technology
generation to a constant fraction of previous length. The fraction can be
denoted by a scaling factor s and is typically about 1/+/2 [84]. One can
conclude that the area of transistors scales proportional to s?, i.e., about
1/2. The power consumption of the transistors can be approximately
given by formula CV?2f, where C is the intrinsic capacity, V denotes the
supply voltage, and f is the clock frequency. If we consider the same
microarchitecture, then the scaling of C is linear to s. Assuming the
ideal scaling is applied to V and f, i.e.,, V scales down and f scale up
linearly to s, we have the power dissipation is scaled down by factor
s?, indicating the power density keeps constant. However, in reality, it’s
impossible to continuously scale the supply voltage by a scalar. The
reason is that for a clock frequency f, a minimal supply voltage which
is approximately linear to f is required by the processor. This causes
the supply voltage is not able to scale further. Therefore, for the past

1.1. The Emerging Thermal Issues

several decades, the power density of microprocessors increases expo-
nentially every generation [84]. A plot of CPU power density against
critical dimensions is displayed in Fig. 1.1.

The exponentially growth of power density is the main driving force
of the continuously increasing temperature of modern microprocessors.
Now, the questions are (1) What is the influence of high temperature to
microprocessors? (2) Do we really need to lower the increasing temper-
ature? Next section discusses both questions.

1.1.2 The Influence of High Temperature

People have put significant efforts into removing the heat from the die
surface of modern processors, i.e., developing sophisticated physical de-
vices such as liquid cooling systems. The reason is that high tempera-
ture is undesirable for microprocessors due to its negative influence in
several aspects such as reliability, stability and performance. Next, we
list several microprocessors failure mechanisms that can be affected by
temperature [57].

Electro-migration

Electro-migration is a failure mechanism referring to the transport of
mass in metals caused by the gradual movement of the ions in a conduc-
tor due to the momentum transfer between conducting electrons and
diffusing metal atoms (Al, Cu), leading to voids in the metal lines [13].
High temperature increases the mobility of carriers and thus accelerates
the rate of Electro-migration, decreasing the Mean Time To Failure of
microprocessors [4].

High Temperature Stress Migration

This failure mechanism is not caused by the current flow during electro-
migration, but the high temperature induced stress which causes the
Al metal lines to open up, resulting in open-circuit failure. This failure
usually happens when the metal line width is about or less than 2-3 um.
Since there is a trend towards reduction in Al metallization width, this
failure mechanism is non-negligible.

1. INTRODUCTION

Mechanical stresses induced by differential thermal expansion of mate-
rials

Microprocessors are constructed from silicon, metal, plastic encapsula-
tion and epoxy resin used in the construction of a plastic package. These
materials have different thermal coefficients of expansion (TCE). The
TCE describes how the size of an object changes with a change in tem-
perature. When a microprocessor is subjected to wide-range thermal cy-
cling or shocking, the mismatch in TCEs of different materials bounded
together inside the processor leads to mechanical stresses, which could
cause the passivation cracks in the device.

Iconic Effect

e Hot Carriers. The term hot carrier here refers to the additional
electrons produced when electrons collide with the atoms in the
crystal lattice. Because of their high kinetic energy, hot carriers
can cause problems in memory devices and logic circuits leading
to malfunctioning and failure [31]. This failure mechanism is espe-
cially enhanced by high temperature.

e Jonic Contamination. Ionic contaminants are typically flux residues
or harmful materials that are picked up or left behind during the
process. They contain molecules or atoms that are conductive
when in solution which can disassociate into either positively or
negatively charged species and increase the overall conductivity of
the solution. Their mobility gets higher in the presence of high
electric fields and at high temperatures and thus further degrades
the reliability of the electronic components and increases the risk
of corrosion [92].

In additional to above mechanisms, high temperature can also accelerate
other several failure mechanisms such as solder joint failures, bond-wire
fatigue, electrical overstress, and PCB stress [57]. For most of these fail-
ure mechanisms, the Mean Time To Failure (MTTF) can be empirically
described using the well-known Arrhenius Equation given by:

MTTE = Aeit (1.1)
where A is an empirical constant, T denotes the temperature, and E, is

the activation energy of the failure mechanism. Although this equation
does not capture all features (thermal cycling, thermal shocking, etc.), it

1.1. The Emerging Thermal Issues

is a useful expression for first-order estimation. From (1.1), the MTTF
decreases exponentially with respect to the temperature, which indicates
high temperature significantly reduces the reliability of microprocessors.
For example, according to [77], the mission life of a microprocessor is
about 2 x 10° hours (22.83 years) at temperature 38°C. However, it drops
to 1 x 10* hours (1.14 years) when the temperature is increased to 93°C.

Transistors still consume power even when they are idle or not switching.
This kind of power is termed as the leakage power or static power. It is
directly influenced by the temperature and grows exponentially as the
temperature increases. Moreover, since temperature strongly depends
on the power dissipation, there is a circular dependency between them.
In extreme cases, this can lead to a self-reinforcing positive feedback
loop that cause thermal runaway. Thus, high temperature results in
higher leakage power consumption.

High temperature can also affect the performance of a microprocessor.
The time parameters, such as frequency, of components like transistors,
clock, oscillators, etc., drift due to the effect of temperature [57]. Al-
though the drift in parameters by itself may not lead to a failure, it can
cause system malfunctions, instability, etc., which seriously hampers the
performance of microprocessors.

In conclusion, high temperature has several negative effects on micro-
processors. First, the Mean Time To Failure, i.e., the reliability, can be
exponentially reduced by high temperature. Second, higher tempera-
ture leads to more leakage power consumption, which, in turn, raises
the temperature and may cause thermal runaway in extreme cases. Last
but not the least, the performance of the microprocessor like speed and
stability can be hampered by high temperature. Therefore, temperature
has become a first-class design constraint in microprocessor develop-
ment akin to performance [84]. Proper thermal management methods
are required to control the temperature varies in a certain range. Inad-
equate thermal control can lead to complete failure, as several recent
products have shown [95, 99].

1.1.3 Thermal Management Methods

The traditional way to control temperature of microprocessors is using
physical heat-removing systems, such as air cooling devices and liquid
cooling systems. It’s a significant challenge for mechanical engineers to
design heat-removing systems for modern microprocessors with afford-

1. INTRODUCTION

able cost since the temperature is ever rising while the cost increases
exponentially with temperature. For high performance microprocessors,
the costs of cooling solutions are rising at $1-3 or more per watt of dis-
sipated power [14, 41], and could reach over 35% of electricity costs [90].
Apart from the disadvantage in cost, physical cooling systems may also
require additional space and power to install and run itself, which limit
the application in portable and hand-held devices. In other words, tra-
ditional physical cooling systems have below limitations.

e cooling package cost increases exponentially with respect to power
dissipation.

¢ need additional space to install.
e may consume additional power to run devices such as fans.

To cope with aforementioned limitations of traditional thermal manage-
ment methods, alternative technologies that reduce the temperature by
putting microprocessors into lower power consumption states have been
widely adopted. Such technologies can be generally termed as Dynamic
Thermal Management (DTM) techniques [15]. Most DTM technologies
can be implemented in system-level with basic hardware supports such
as temperature sensors, hardware-timers, etc. DTM technologies can
remarkably reduce the expense in terms of packing cost, space.

In summary, temperature has become the first-class design concern for
microprocessors due to the ever-increasing temperature and its signif-
icant impacts on the reliability, performance and power consumption.
The Dynamic Thermal Management technologies are promising approaches
to control the temperature due to their advantages in cost, space, etc..

1.2 State of the Art Thermal Managements

In this section, we discuss the state of the art thermal managements
for microprocessors with single and multi-core architectures. Firstly, we
briefly overview the representative existing works. Then, we summary
the special requirements that are not completely fulfilled for hard real-
time systems by existing works.

1.2.1 Overview

In this section, we briefly review the state of art thermal managements
for microprocessors with single and multi-core architectures. Note that

1.2. State of the Art Thermal Managements

only a representative subset of related works is discussed due to their
vast amount.

A thermal management is developed usually for one or more of the
following objectives: (1) minimizing the peak temperature; (2) minimiz-
ing the thermal gradients on the microprocessor; (3) maintaining the
temperature under certain threshold. To control temperature or ther-
mal gradients, most thermal managements adopt task scheduling and
power controlling techniques. Temperature can be influenced by the
workload as different workloads utilize different processing components
inside the microprocessor, which is the main motivation of thermal man-
agements based on task scheduling. Temperature can also be reduced
via power controlling mechanisms. Thermal managements based on
power controlling mainly follow two main mechanisms, i.e., Dynamic
Voltage Frequency Scaling (DVES), and Dynamic Power Management
(DPM). Now, we categorize existing thermal managements according to
the temperature-control mechanism adopted by them.

Task scheduling Thermal-aware task scheduling techniques consider
spatial and temporal correlations between cores or functional units through
balancing the workloads. Thidapat et al. [21] address the problem of
assigning and scheduling tasks on MPSOC (Multiprocessor System-on-
Chip). They presented a mixed-integer linear programming (MILP) for-
mulation of the problem and then gave an optimal solution as well as
a flexible heuristic framework for the MILP formulation. Due to the
thermal analysis difficulties, this approach examines only steady-state
temperatures without considering the transient behavior. Cox et al. pro-
posed a fast thermal-aware approach for streaming applications based
on a 3D MPSoC model under the throughput constraints in [32]. This
approach assumes periodic task model and also does not consider the
transient temperature. A task scheduling policy that considers tempo-
ral correlations is presented in [108]. This work focuses on choosing
the right task to execute while maintaining the temperature under given
threshold. No real-time guarantee is provided in this work.

DVES DVFEFS techniques adjust the supply voltage or clock frequency
of a microprocessor and thus can control the dynamic power dissipa-
tion. Since dynamic power dominates the total power consumption of
early microprocessors, DVFS has been widely studied by researchers.
In [6], the authors address the speed scaling problem and proposed two
algorithms, an online one and an offline one, to solve the optimization
problem under temperature and deadline thresholds, respectively. The

1. INTRODUCTION

relationship between leakage power dissipation and temperature, how-
ever, is not considered for the simplicity of analysis. In [111], two DVFS
algorithms, a pseudo-polynomial one and a fully polynomial time ap-
proximation one, are presented to optimally improve the system perfor-
mance for a set of periodic tasks under given temperature constraints.
Jian-Jia Chen et al. proposed two algorithms in [25] to optimize the re-
sponse time and temperature respectively. Chantem et al. [20] made an
observation about maximizing the workload under thermal constraints.
The authors demonstrated that while working with proactive schedul-
ing, the scheduler which maximizes the workload under given peak
temperature must be a periodic one [2]. Yong and et al. [39] presented a
feedback thermal control framework named Real-Time Multicore Ther-
mal Control which dynamically enforces both the desired temperature
and the CPU utilization bounds for multicore real-time systems, through
DVEFS. All aforementioned researches assume simple task models such
as periodic task model and cannot handle general event arrivals. More
DVES-based thermal managements can be found in [102, 104, 8, 70, 112].

DPM The leakage power dissipation can be reduced by adopting
DPM techniques, which put microprocessors into deeper power saving
states by decreasing or even cutting off the supply voltage of some por-
tion of the microprocessor. DPM techniques can also be applied on pe-
ripheral devices such as memories, interconnects, etc. Kumar et al. [56]
developed a thermally optimal stop-go scheduling called JUst Sufficient
Throttling (JUST) to minimize peak temperature within given makespan
constraints. This scheduling is designed only for static order tasks and
is not applicable for non-deterministic tasks. A framework and mech-
anisms for thermal stress analysis in real-time systems are proposed
in [44] to meet the challenge of determining the real-time guarantees in
the presence of unpredictable dynamic environmental conditions. Buy-
oung [110] addressed the problem of avoiding thermal hotspot on a
multi-core chip by employing a runtime thermal aware scheduler (TAS)
using job-migration and power-gating techniques. Adopting thermal-
aware periodic resources, Masud Ahmed et al. [2] proposed an offline al-
gorithm which minimizes the peak temperature for sporadic tasks sched-
uled by earliest-deadline first (EDF) while guaranteeing all their dead-
lines. To simplify the complexity of timing analysis, aforementioned
works all assumed simple task models, i.e., either periodic or sporadic
task model.

1.2. State of the Art Thermal Managements

1.2.2 Hard Real-Time System Requirements

In previous section, the state of the art thermal managements are briefly
reviewed. While having made significant contributions to this field,
most existing thermal managements have just partly solved the chal-
lenge of optimizing the temperature of hard real-time systems in sys-
tem level. Compared to general-purpose systems, real-time systems
have additional requirements with respect to timing correctness, relia-
bility and stability. Thermal managements in real-time systems not only
need to reduce the temperature , but also should tackle the additional
requirements posed by real-time system characteristics. Specifically, the
following requirements are not completely met in existing thermal man-
agements.

e providing hard real-time guarantees. The tasks in hard real-time
systems have deadline constraints. Every task should complete
and produce result before its deadline. Many existing works fail
to provide hard real-time guarantees or even do not consider dead-
line constraints [34, 108, 72, 64, 63, 3, 32,111, 20,79, 70, 104, 112, 69].

¢ handling non-deterministic event arrivals. In reality, event arrivals
contain non-determinism such as jitter. Modelling such event ar-
rivals by simple task models under hard real-time constraints may
cause the problem of over-estimation and result in high temper-
ature. Thus, thermal managements should be able to properly
handle events arrivals with non-determinism. Existing works [38,
100, 32, 45, 44, 110, 39, 102, 2, 20, 103] adopt simple task models
such as periodic, or sporadic models, and thus cannot meet this
requirement.

e modelling temperature behaviours with high accuracy. To find the
correct thermal management scheme, the temperature behaviours
should be modelled with high accuracy. The temperature accuracy
can be remarkably hampered by the bad-established thermal mod-
els and incorrect parameters. Thermal managements [64, 34, 63, 70,
6] do not consider the correlation between leakage power and tem-
perature for simplicity. Moreover, the transient thermal behaviour
is also ignored in [21, 32].

e identifying the exact peak temperature quickly. In order to effi-
ciently explore the design space of multi-core architecture real-
time systems for optimal thermal management, one should cal-
culate the exact peak temperature quickly. Majority of existing

1. INTRODUCTION

10

works [26, 36, 88, 67, 81, 66, 71] adopts thermal simulation tool-
boxes to find the peak temperature, which is computation costly
and slow. There are also several works [100, 81] directly utilize the
steady-state temperature as the peak temperature, which could be
incorrect due to spatial and temporal thermal fluctuations.

In this thesis, we aim to tackle these challenges by adopting system-
level Periodic Thermal Management for hard real-time systems. Peri-
odic Thermal Management periodically switches microprocessor cores
to sleep state to reduce the temperature. By fully utilizing such timing
feature, we proposed a closed-form solution and two numerical calcu-
lating algorithms to quickly determine the peak temperature of single
core and multi-core architectures, respectively. Thus, we fulfill the afore-
mentioned last requirement. For the third requirement, based on the
well-known Fourier equation and HotSpot model, we construct thermal
models with high accuracy where heat flow between different thermal
blocks, transient thermal behaviors and the leakage current dependency
on temperature are all considered.

The Real-Time Calculus (RTC) theory is adopted in our work to model
the event arrivals and system resources. The benefits of using RTC are
twofold: first, the concepts of arrival curve is introduced as task model.
The arrival curve is an abstract model and can model arbitrary event
arrivals containing non-determinism. Second, with the existing results
of service curve, constraints on the demanded system resources can be
derived to provide hard real-time guarantees. Therefore, the aforemen-
tioned first two requirements can be met.

In conclusion, the Periodic Thermal Management presented in this the-
sis enables hard real-time system designers to quickly find the optimal

system resource management scheme which minimizes the peak temper-
ature under deadline constraints for event arrivals with non-determinism.

1.3 Thesis Outline and Contributions

This thesis focuses on how to optimize temperature for both single-core
and multi-core architectures hard real-time systems. In particular, we
aim to lower the peak temperature for general event arrivals under dead-
line constraints by adopting static and adaptive DPM techniques. In the
following, we summarize the content and individual contributions of
every following chapter of this thesis.

1.3. Thesis Outline and Contributions

1.3.1 Chapter 2: Single Core Thermal Management

In Chapter 2, we present the Periodic Thermal Management (PTM) for
single-core real-time systems to optimize the peak temperature. The
PTM is a static method and requires negligible run-time computation
effort and is suitable for single-core processors having little computing
power. The real-time calculus [96] interface is adopted to model general
event arrivals and ensure the deadline constraints can be satisfied. A
close-form solution of the peak temperature is given as a criterion of
the optimal solution. We also present two algorithms which can com-
pute the optimal PTM scheme in different levels of accuracy and speed.
Specifically, the contributions of this chapter are:

e Based on the well-known Fourier’s law thermal model, a closed-
form solution of the peak temperature with respect to the periodic
thermal management is developed.

e Two PTM algorithms that can derive periodic on/off schemes with
a trade-off between accuracy and efficiency are developed. One
offers precise solution by making thorough searches and the other
is a fast approximation based on bounded-delay function.

e The effectiveness and efficiency of our algorithms are studied by
comparison to two related work [2, 55] in the literature. Single-
event streams and multi-event streams scheduled by Earliest Dead-
line First (EDF) are tested in the case studies.

1.3.2 Chapter 3: Pipelined System Thermal Management

In Chapter 3, we investigate how to apply Periodic Thermal Manage-
ment on real-time multi-core systems. The processor handles the appli-
cations that can be divided into sub-tasks which are executed on the
cores concurrently. By reversely using the Pay Burst Only Once prin-
ciple, we can calculate the aggregate service demand bound instead of
the individual bound for each stage to obtain feasible PTM schemes for
the cores. In this way, we benefit from the advantages from two do-
mains: On one hand, the burst in the event arrivals is accounted only
once and thus leads to a lower peak temperature. On the other hand, the
complexity of the problem is significantly reduced, which makes our ap-
proach scalable with respect to the number of cores. We also perform
a comprehensive analysis on the peak temperature of multi-core proces-
sors under PTM, the results of which enable the fast computation of the
peak temperature. In summary, the contributions of Chapter 3 are:

11

1. INTRODUCTION

e Based on the well-known HotSpot model, a peak temperature rep-
resentation for a multi-core processor under Periodic Thermal Man-
agement (PTM) is given, where the heat flow among cores and the
leakage current dependency on temperature (LDT) are considered.

e To overcome the inefficiency produced by the strictly accurate method
of calculating the peak temperature, two algorithms with different
levels of accuracy and complexity are proposed to offer good ap-
proximations of the peak temperature.

e By reversely using the Pay Burst Only Once principle, the opti-
mization problem is transformed into a set of sub-problems. We
formulate the sub-problems and solve them by two fast heuristic
algorithms corresponding to the two peak temperature methods.

e Based on two real life platforms: a homogeneous ARM multi-
processor and the Intel Single-chip Cloud Computer (SCC), we
evaluate the effectiveness and efficiency of our approaches by com-
paring them with two brutally searching approaches, one with
PBOO and one without PBOO.

1.3.3 Chapter 4: Adaptive Periodic Thermal Management

While Chapter 2 and Chapter 3 focus on the analysis of static PTM ap-
proaches which search the solution in design phase, in Chapter 4 we
propose a novel dynamic thermal optimize method termed as Adaptive
Periodic Thermal Management (APTM). Specifically, APTM is an offline
and online combined approach. The offline learned thermal properties
are adopted in online adaption to optimize the calculated solutions. Two
thermal curves, i.e., the warming curve and the cooling curve are pro-
posed to model the thermal properties of each stage in different sce-
narios. To effectively exploit the dynamic slacks in event arrivals, the
Dynamic Counter technique is adopted to give history-aware event pre-
dictions. Moreover, the dynamic state information of the processor are
also collected to reflect the real execution of jobs. The following contri-
butions are contained in Chapter 4:

e We present a sufficient condition of guaranteeing deadline con-
straints of unfinished and future events for pipelined systems un-
der APTM schemes. The condition can be easily utilized to derive
APTM schemes that satisfy real-time constraints at adaption in-
stants.

12

1.3. Thesis Outline and Contributions

e Several lightweight algorithms are presented to compute APTM
schemes in runtime efficiently according to the unique thermal
properties of the stages. The obtained APTM schemes can effec-
tively reduce the peak temperature under real-time constraints for
the pipelined system with negligible online overheads.

e The effectiveness and efficiency of our proposed approach for re-
ducing temperature are evaluated by comparing it with two exist-
ing approaches with two real-life hardware platforms.

1.3.4 Chapter 5: Multi-core Fast Thermal Prototyping
Framework

In this chapter, we present a multi-core thermal framework named Multi-
core Fast Thermal Prototyping (McFTP). McFTP is designed to be a gen-
eral framework and can evaluate different thermal management policies
on actual hardware platforms in an efficient and reliable manner. It is
a re-configurable thermal framework running in the user-space and en-
ables multi-core system designers to validate any resource distribution
decision in design phase on the target architecture. McFTP can not only
implement a thermal management policy at high-level of abstraction,
but also execute real or user-defined task-set. The specific contributions
can be summarized as:

e To allow the implementation of customized thermal management
policies with minimal effort, an intermediate interface named Con-
figuration Manipulation Interface (CMI) is defined to isolate ther-
mal management policies from the low-level implementations.

e A set of commonly used temperature control mechanisms, includ-
ing, DVFS, DPM, job scheduling and task migration, is imple-
mented as a library which can be accessed via CML

e We implement McFTP on the top of Linux with the API defined
in POSIX standard. Comprehensive experiments are conducted to
investigate the effectiveness and efficiency of the implementation.

13

Chapter 2

Single Core Thermal
Management

Single core processor is the traditional and classical architecture adopted
in real-time systems. For example, the microcontroller architecture has
been widely used in the filed of control-dominant field having real-time
requirements. It’s estimated that more than half of all CPUs sold world-
wide are microcontrollers [61]. Compared to that in multi-core architec-
ture, the worst-case execution time of a task in single-core processors is
more predictable because there is no interference between cores, which
can cause delay spikes as high as 600% in industry benchmarks [87].
This feature makes single core architecture suitable for hard real-time
systems, which have additional requirements with respect to reliability,
and real-time behaviour [91].

To meet these requirements, real-time system designers need to consider
an important factor, the temperature of the processor, which plays a key
role in determining the allowable execution speed [2], as aforementioned
in Chapter 1. The traditional way to control temperature of the proces-
sor, using hardware cooling devices, suffers the cost, energy and space
disadvantages. The alternative technologies termed as Dynamic Ther-
mal Management (DTM) have been widely adopted. In Chapter 1, we
show that DTM techniques follow two main mechanisms, i.e., Dynamic
Voltage Frequency Scaling (DVFS) and Dynamic Power Management
(DPM). The DPM technologies are demonstrated to be more effective to
optimize the temperature on modern processors due to leakage power
dominates the total power consumption of 32 nm or more advanced pro-
Cessors.

15

2. SINGLE CORE THERMAL MANAGEMENT

16

The main issue of using DPM technologies to control the temperature is
when and how long one should turn the processor to the sleep state [11].
It's obvious that dynamically switching the processor into ‘sleep” mode
according to the event arrivals and their relative deadlines is an effective
way to minimize the peak temperature. However, single-core processors
adopted in real-time systems usually has little computation ability. Dy-
namical switching methods can be hardly implemented in this scenario.
Further, the additional computation in online manner also incurs power
overhead, which, in turn, elevates the temperature. Therefore, an inter-
esting research topic is designing a DPM technique for single core hard
real-time system which can:

1. guarantee all events complete within their deadlines.

2. minimize the peak temperature of the processor

3. introduce little running overhead in terms of time and energy.
4

. be easily implemented with basic hardware features.

2.1 Overview

In this chapter, we propose the periodic thermal management (PTM),
which holds the aforementioned properties, to optimize the peak tem-
perature for general events arrivals while the deadlines are guaranteed.

The single core processor has two power dissipation modes, “active” and
‘sleep” mode, with different power consumptions. The peak temperature
is controlled by periodically switching the processor to ‘sleep” mode ac-
cording to the event stream model and thermal properties of the proces-
sor. To meet the deadline constraints, real-time calculus [96] interface is
employed to model the non-deterministic event arrivals and service pro-
vided by the processor in the time interval domain. Combining event
timing model and the relative deadline, a service bound is derived to de-
termine PTM schemes that can provide hard real-time guarantee. The
applied PTM scheme is calculated in offline manner and thus requires
negligible run-time computation effort, which makes our approach suit-
able to real-time systems having little computation resource. A closed-
form solution of the peak temperature with respect to the periodic ther-
mal management is developed as a criterion of the optimal PTM scheme.

It’s worth noting that how long should the processor stay in ‘sleep” and
‘active’ mode, i.e., the switching frequency, needs careful consideration.

2.2. Related Work

On the one hand, the length of ‘sleep” time interval should be long
enough such that fewer switching operation is performed and thus less
switching overhead is incurred. On the other hand, due to real-time con-
straints, longer ‘sleep” interval leads to longer ‘active’ interval, which
cause higher temperature peaks at the end and thus higher temperature.
To resolve these concerns, two PTM algorithms that can derive periodic
on/off schemes with a trade-off between accuracy and efficiency are de-
veloped. One offers precise solution by making thorough searches and
the other is a fast approximation based on bounded-delay function.

The rest of this chapter is organized as follows. The related work is intro-
duced in the next section. Section 2.4 presents system models, including
hardware model, power model and thermal model, and the problem
definition. Section 2.5 derives the closed-form solutions of the peak tem-
perature. The real-time analysis is presented in Section 2.6. Section 2.7
presents our PTM algorithms. Several cases are studied in Section 2.7.3
and Section 2.8 concludes this chapter.

2.2 Related Work

The thermal behaviour of a processor is directly influenced by the power
consumption. Thus researchers in previous work on thermal-aware
scheduling have followed two main approaches: DVFS and DPM, which
have already been widely exploited in power-aware scheduling. In this
section, we overview previous work for thermal-aware scheduling that
based on DVFS and DPM.

Sushu Zhang et al. [111] proposed two DVFS approaches: a pseudo-
polynomial optimal algorithm and a fully polynomial time approxima-
tion one. These two approaches can optimally and approximately im-
prove the system performance for a set of periodic tasks under ther-
mal constraints, respectively. Jian-Jia Chen et al. [25] presented two ap-
proaches to schedule periodic real-time tasks under DVFS while the re-
sponse time and temperature constraints are satisfied respectively. Chantem
et al. [20] made an observation about maximizing the workload under
thermal constraints. The authors demonstrated that while working with
proactive scheduling, the scheduler which maximizes the workload un-
der given peak temperature must be a periodic one [2]. According to
this observation, a speed schedule was proposed to maximize the work-
load based on DVEFS with discrete speeds and transition overhead un-
der given temperature constraints. S. Wang et al. [102] presented a re-

17

2. SINGLE CORE THERMAL MANAGEMENT

18

active speed control algorithm for tasks that have the same period to
minimize temperature and performed several schedulability tests. The
aforementioned work, however, based on either a simplified workload
model, such as periodic tasks, or the processor feature of keeping the
‘ideal” speed, which may not be found in recent top-of-the-line micro-
processors [2]. The periodic thermal management (PTM) proposed in
this chapter can handle general event arrival patterns by adopting real-
time calculus [96]. Moreover, lower power state, which is a basic power
management feature, can be conveniently utilized to implement PTM.

There are also several researches that utilize DPM to minimize the peak
temperature under deadline constraints. Kumar et al. [56] developed
a thermally optimal stop-go scheduling called JUst Sufficient Throttling
(JUST) to minimize peak temperature within given makespan constraints.
This scheduling is designed only for static order tasks and is not applica-
ble for non-deterministic tasks. To address the challenge of determining
the real-time guarantees in the presence of unpredictable dynamic en-
vironmental conditions, Hettiarachchi and et al. [44] proposed a frame-
work and mechanisms for thermal stress analysis in real-time systems.
Adopting thermal-aware periodic resources, Masud Ahmed et al. [2] pro-
posed an offline algorithm which minimizes the peak temperature for
sporadic tasks scheduled by earliest-deadline first (EDF) while guaran-
teeing all their deadlines can be met. The workload models of the afore-
mentioned work are also simplified and lead to pessimistic results, that
is, higher peak temperature since they cannot exhibit non-determinism
like jitter or burst arrivals of the workload. These shortcomings can also
be overcome in PTM since it work with general event arrival patterns, as
mentioned above. In [55], a Cool Shaper is studied to minimize the peak
temperature by delaying the execution of workload for general events
arrivals. It is an online/offline-combined approach, where the param-
eters of the shaper are offline computed and the workload is runtime
orchestrated with the pre-computed shaper. Besides the online moni-
toring overhead which can result in a higher temperature, determining
the parameters of the shaper according to the system specification also
requires considerable calculation effort. In this chapter, a closed form
of the peak temperature is derived such that our PTM can easily obtain
the peak temperature offline instead of simulating the online evolution
of the temperature, which saves great quantity of calculation.

2.3. Introduction to Real-Time Calculus

Event Numer

A

0

01 45 8 111213 1617 20
t/ms

Figure 2.1: An example of the cumulative function R(f).

2.3 Introduction to Real-Time Calculus

This section presents the basic concepts and results of the Real-Time
Calculus framework, i.e., the arrival curve, the service curve, and the
deadline bound. We also elaborate how to use these results to analyze
the timing properties of a system.

2.3.1 Models for Event Stream

Basically, the event streams to a system can be specified by means of
the cumulative function R(t), which indicates the number of events that
arrive the system in time interval [0, t]. The function R(t) is always a
wide-sense increasing function. Moreover, It is a discontinuous function
since it has a smallest granularity, that is, one event. By convention, we
take R(0) = 0 in the whole scope of this dissertation unless otherwise
specified. An example of R(t) is displayed in Fig. 2.1.

Note that the function R(t) specifies a concrete event stream. To ana-
lyze timing properties of the system, an abstract model which provides
guarantees to the event streams is required. This is done by using the
concept of arrival curve [60], which is defined below.

Definition 2.1 (Arrival Curve) For an event stream R and a 2-tuple wide-
sense increasing functions a(A) = [a*(A), «'(A)] defined for A >= 0, we
say R has a*(A) and o' (A) as upper arrival curve and lower arrival curve,

19

2. SINGLE CORE THERMAL MANAGEMENT

20

respectively, if and only if for all s > t:
al(s —t) <R(s) —R(t) < a“(s — 1) (2.1)
with a*(0) = a!(0) = 0.

It’s worth noting that the condition must hold for any time interval with
length A =s —t.

As Def. 2.1 indicates, arrival curves a*(A) and #!(A) actually upper and
lower bound the number of events arriving in any time interval with
length A. For instance, consider the example trace in Fig. 2.1, we can
derive its upper arrival curve a"(A) satisfies a*(1) > 1 since there is
one event arrival in time interval [0, 1]ms, if we set the time unit as
millisecond. Similarly, we have a/(6) = 0 since no event arrives in time
interval [5, 11]ms.

Arrival curves substantially generalize classical event timing models
such as periodic, sporadic, periodic with jitter or other event models
including non-determinism timing behavior. Thus, they are well suited
to representing the complex event streams in hard real-time systems.
For example, a periodic event stream can be abstracted by a set of step
function where a*(A) = L%J +1 and a/(A) = [%J. A sporadic event
stream can also be modeled by a*(A) = L%J +1, a/(A) = L%J, where p
and p’ are the minimal and maximal inter arrival distance of the event

stream, respectively. Moreover, for an event stream which can be speci-
fied by a period p, jitter j and minimal inter arrival distance d, the upper

arrival curve is a*(A) = min{ (ATJFJ.}, [%1} Fig. 2.2 demonstrates the

arrival curves of different event timing models.

We consider not only single event streams but also multi-event streams.
For multi-event scenarios, N event streams are supposed in the input
source, where N > 2. We order the event streams S1,5,,---,SN ac-
cording to their relative deadlines, where D;, the relative deadline of
event stream S;, is smaller than that of S; when i < j. Thus, the in-
put event model of our processor can be depicted by the tuple EM(N)
= (a(A)1, ¢1, Dy, - -+, a(A)N, cn, Dn), where a(A); denotes the arrival
curve tuple of event stream S;.

2.3.2 Service Model

The general model arrival curve abstract the cumulative function R(t)
for the worst-case and best-case event arrivals. Similarly, the service

2.3. Introduction to Real-Time Calculus

§ 4 ig 5 § 5
= 5 a'(A) 24 4
3 73 73
: ol(a) £2 £2
m1 =1 =1
0 0 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
A/ms A/ms A/ms

(a) (b) (©)

Figure 2.2: Example arrival curves for (a) periodic event streams with
period 5ms, (b) event streams with period 5ms and jitter j = 3ms, (c)
event streams with period 5ms, jitter j = 3ms and minimal inter-arrival
distance d = 4ms.

providing ability of the system can also be described by a cumulative
function C(t) and then modeled by the service curve. The function C(t)
is defined as the amount of total time slots provided by the system to
handle workloads in time interval [0,t]. It's also a wide-sense increas-
ing and discontinuous function. In the same way, the service curve is
defined as:

Definition 2.2 (Service Curve) For a system C and a 2-tuple wide-sense in-
creasing functions B(A) = [B*(A), B'(A)] defined for A >= 0, we say C has
B“(A) and B'(A) as upper service curve and lower service curove, respectively,
if and only if for all s > t:

Bl(s —1) < C(s) = C(t) < B(s — 1) (22)
with B*(0) = p'(0) = 0.

Service curve is also an abstract model and can generalize traditional
resource models such as Time Division Multiple Access (TDMA) and
periodic model [89]. For example, consider a bus with bandwidth B
that implements TDMA model, then a slot can be represented by service
curves: B'(A) = B-min{[A/I], A — |A/1|(I —s;)} and B*(A) = B-
max{[A/I], A— |A/I|(I —s;)}, where s; is the length of the slot and !
denotes the TDMA cycle length.

Note that the arrival curves a(A) is event-based and specifies the up-
per and lower bounds of the number of input events in any time in-
terval A, while the service curve B(A) is time-based and specifies the
upper and lower bounds of the amount of available execution time in
any time interval A. Thus, operations involving both of them cannot be

21

2. SINGLE CORE THERMAL MANAGEMENT

22

performed directly. The event-based arrival curve is transformed to the
time-based arrival curve &(A) for correct operation results. Suppose that
the worst-case execution time of one event in arrival stream is ¢, then the
arrival curve transformation can be performed as #*(A) = ¢ x a*(A) and
& (A) = c x al(A) [50].

For brevity, in the following of this chapter, the time-based arrival is also
termed as arrival curve, denoted by &(A).

2.3.3 Basic Results

In this section we discuss the main basic real-time calculus result pre-
sented in [60] which is useful to analyze how to guarantee deadline
constraints for hard real-time systems.

Theorem 2.3 (Delay Bound) Consider an event stream, constrained by up-
per arrival curve &*(A), is processed by a system that offers a lower service
curve B'(A). Then the maximal possible delay d(t) experienced by any event
arriving at time t satisfies the following condition if the events arriving before
it are handled before it.

d(t) < h(a", B') (2.3)

where h(w, B) denotes the supremum of horizontal deviations between « and p
and is defined as:

h(a, B) =sup{d(s) :6(s) =inf{t >0:a(s) <B(s+71)}} (2.4)

The conclusion of Thm. 2.3 is intuitive. It indicates the delay experi-
enced by any event is upper bounded by the supremum of horizontal
deviations between upper arrival curve and lower service curve. An ex-
ample is shown in Fig. 2.3. The figure also graphically demonstrates the
condition of meeting deadline constraints for a hard real-time system,
which is given below.

Theorem 2.4 (Deadline Condition) Given an event stream with relative dead-
line D which is constrained by upper arrival curve &*(A), a system can guar-
antee the delay of any event is no larger than D if its lower service curve meets
following condition.

B'(A) > a"(A - D) (2.5)

Proof Thm. 2.4 is actually a reverse representation of Thm. 2.3. We
prove it by contradiction. Suppose the delay of one or more event is
larger than D while (2.5) holds. From Thm. 2.3, it’s clear that h(a*, ,Bl) >

2.4. System Model and Problem Statement

Event Numer

iO 20 3;0 46 E;O éO %0 80

A/ms
Figure 2.3: The delay bound and deadline condition for an event stream
with relative deadline D, constrained by a*(A), when it is served by a
system offering B! (A).

D holds, that is, there exists at least one 6(s) > D. Since 6(s) is the
infimum of 7 that satisfies &(s) < B(s + 7), one can derive that &(s) >
B(s + D) for all s > 0, which contradicts the condition (2.5). 0

2.4 System Model and Problem Statement

2.4.1 Hardware Model

A single core processor that has two power dissipation modes, i.e., ‘ac-
tive” and ‘sleep’ mode, is adopted in this chapter. The processor must be
in ‘active’ mode with a fixed speed to process coming event streams and
can be turned to ‘sleep” mode with a lower power consumption when
there is no event to handle.

We consider the time and power overheads during model-switching.
Let t°// and t°" denote the time units required to switch the processor
from ‘active’ mode to ‘sleep” mode and back, respectively. During mode
switching, the power dissipation equals that in ‘active’ mode but the
processor does not tackle any coming event. The time and power over-
heads during mode switching have nontrivial impacts on the resource
providing capability and thermal evolution of the processor. For exam-
ple, suppose the processor is switched to ‘active’ mode first and then t°"
time units later it is turned to ‘sleep” mode and stays at this mode for
toff time units. As shown in Fig. 2.4, in this (t°" + tff) units time inter-
val, the length of the overall time slots in which the processor can handle
coming events is t"" — t*“", which is less than t°". In other words, each

23

2. SINGLE CORE THERMAL MANAGEMENT

24

Figure 2.4: Hardware model of a single-core processor. The power con-
sumptions in ‘active’ and ‘sleep” modes are considered to be constant
and are denoted as P, and P, respectively.

mode-switching from ‘sleep” to ‘active’ makes the valid serving time in-
terval t°“°" shorter. Similarly, in this (" + t°ff) units time interval, the
time interval during which the processor consumes power equals that in
‘sleep’ mode is t°ff — 159°ff . Again, each mode-switching from ‘active’ to
‘sleep” incurs an energy overhead and makes the sleep power consump-
tion time interval #*“°/f shorter. In conclusion, the mode-switching over-
head leads to a higher temperature and a weaker resource providing
capability. The quantitative impacts will be investigated later. Moreover,
as shown in Fig. 2.4, to cover the mode-switching overhead, the time
lengths for which the processor is switched to ‘active” and "sleep’ mode

must be larger than +*“°" and t5°/f, respectively:
toff > pswoff (2.6)
pon ~, yswon 2.7)

2.4.2 Power Model

We consider the total power dissipation at time t, denoted by P(t), is
composed of two parts: (1) the dynamic power P¥ due to dynamic cur-
rent and (2) the leakage power P' due to leakage current [43, 81].

Dynamic power P? is consumed when the transistors inside a processor
are active, i.e., switching between different states. It can be calculated
by the following equation.

Pd oca- Vddzf (2-8)

where a is a constant coefficient mainly depending on the wire length,
Va4 is the supply voltage, and f is the clock frequency. From this equa-
tion, one can conclude that the dynamic power is primarily determined

2.4. System Model and Problem Statement

by Vyy and f. Therefore, we consider P? keeps constant in each power
mode, i.e., P; and B, in the ‘active” and ‘sleep” mode, respectively.

The leakage power mainly comes from the leakage current of the tran-
sistors which is influenced by the temperature and the clock frequency.
The dependency relationship between the leakage power and the tem-
perature can be closely approximated by a linear function of the pro-
cessor temperature, which has been widely adopted [42, 97, 43, 68, 86]:

P(t) =

{ ¢-T(t)+v, if in active mode (2.9)

¢-T(t)+vs if in sleep mode

where w, v, and v are constant coefficients, T(t) is the temperature of
the processor at time ¢.

In summary, the total power consumption can be represented as:

P(t) =

{ ¢-T(t)+6, if in active mode (2.10)

¢-T(t)+6s ifin sleep mode
where 6, = v, + P, and 6; = vs + Ps.

2.4.3 Thermal Model

In this section, we introduce the thermal model of the processor, which
is based on the well-known Fourier law of heating [80], which can be
described by the following equation:

aT
C—r = P(t) = G(T — Tamp) (2.11)
where T, C, and G denote the temperature, thermal capacitance, and
thermal conductance of the processor, respectively. T,,,;, indicates the
ambient temperature. In addition, the absolute temperature (Kelvin, K)

is set as the unit of all temperature variables.

From (2.10) we have P(t) = ¢T(t) + 6 when the processor stays in one
power mode. Rewriting (2.11), we have

dT
== —mT(t) +n (2.12)
dt

where m = % SN = %. Since m and n are constants, a closed-

form solution of the temperature yields:

T(t) = T + (Tt — T®) - & (2.13)

25

2. SINGLE CORE THERMAL MANAGEMENT

26

where T;,;; indicates the initiate temperature, and T is the steady-state

temperature of currently power mode, which can be obtained by solving
aT

_— = 0.

dt

T® = — (2.14)

Then, combining (2.10) and (2.14), the coefficient for (2.13) are given
as [80, 55]:

m,; = G _Cq)ﬂ , Mg = G EGDS (215)
T® — 9a + GTumb T® — 95 + GTamb
a4 G—¢, '°° G — ¢s

In addition, we also regulate the thermal model by these following cir-
cumstances.

e m,; >0 and ms > 0.

e The steady-state temperature in ‘active’ mode is non-smaller than
the one in ‘sleep” mode, that is, T;> > T;°.

e The initial temperature T, = T < T5°.

Finally, the thermal mode of the processor in this chapter is character-
ized by the tuple TM = (T3°, m,, T, ms).

2.4.4 Problem Statement

Dynamically switching the processor into ‘sleep” mode according to the
event arrivals is an effective way to minimize the peak temperature.
However, this needs vast calculating efforts, which hampers the effi-
ciency. Periodic thermal management (PTM), a trade-off between effect
and efficiency, is adopted in this chapter to minimize the peak temper-
ature by periodically putting the system into ‘active” and ‘sleep” modes.
In each period, the processor stays at ‘active’ mode and ‘sleep” mode for
to" and t°/f time units, respectively. In addition, ¥ = t°" + t°ff denotes
the length of the period.

We illustrate our approach with an example in which three thermal man-
agement policies are adopted: (a) a work conserving (WC) execution
that with no DTM policy, which means that the processor stays at ‘active’
mode to process events if there is (at least) one event in the ready queue,
(b) an online DPM policy called Cool Shaper (CS) which dynamically

2.4. System Model and Problem Statement

Item wvalue

period 200ms
jitter 50ms
minimal inter-arrival distance 1ms
execution time 110ms
relative deadline 320ms
event arriving times (0, 150, 350, 550)ms

Table 2.1: The concrete event trace adopted in the example.

1 I T
QLTI

Figure 2.5: Execution of jobs in policy WC, DT and PTM.

transits the processor into ‘sleep” mode according to the event arrivals,
and (c) periodic thermal management (PTM). The thermal and hard-
ware parameters are described in Tab. 2.2. A concrete trace of events is
adopted in this example. The parameters specifying the concrete trace
are list in Tab. 2.1.

Fig. 2.5 and Fig. 2.6 show the execution of events and the temperature
evolution for the three policies, respectively. As shown in Fig. 2.6, the
peak temperature in policy PTM is slimly higher than the one in policy
CS and they are both about 9 K less than the one in policy WC. This
indicates that PTM policy can achieve close results to CS policy in terms
of peak temperature and they are both effective compared to WC pol-
icy. From Fig. 2.5, we find that PTM can be seen as an approximate
policy of CS, this interprets why the peak temperature of PTM is slimly
higher. Despite of this, PTM requires less resources for computation
with acceptable results and is very convenient to implement.

This chapter considers the temperature varying in a time interval L,
where L >> t and L/t is an integer. Due to the model-switching over-
head, t,, and ¢, ff cannot be directly utilized into thermal mode and
service curve. Before giving the revised solutions, we first define some
notations. From Fig. 2.4, t;; and tsip denote the time interval that the

2. SINGLE CORE THERMAL MANAGEMENT

28

380 ‘
A N\ 7\
« 360/
©
% 340
g
5 Cs
F 320¢ —PTM
—Wwe
300 0.2 0.4 0.6 0.8

time/s

Figure 2.6: Temperature evolution in policy WC, DT and PTM.

processor consumes power P, and Ps in one period, respectively. Analo-
gously, t,;; denotes the time interval that the processor can tackle com-
ing events in one period and ¢;,,;, represents the rest. Based on hardware
model, we formulate them as:

tact = ton + tswoff, tsip = toff — t5off (2.16)
totg = ton — ", tiny = topp + (2.17)

With these definitions, one can use t;; and tsip to derive the peak tem-
perature and t,;; and t;,, to calculate the service curve of the processor;
meanwhile, the time and power overhead of mode-switching are consid-
ered.

Now we define our problem as follows:

Given a system characterized by the power model and the thermal model TM
described in the preceding pages, task streams that are modeled by EM(N), our
goal is to derive a periodic thermal management depicted by t°" and t°ff such
that the peak temperature is minimized while all the events complete within
their deadlines.

2.5 Peak Temperature Analysis

In this section, we derive the formula of the peak temperature in PTM
such that our algorithm can utilize it as a criterion of the optimal pair of
< ton, toff >

Since PTM periodically transits the system between two power modes,
the values of the parameters in the temperature model (2.13) change pe-

2.5. Peak Temperature Analysis

riodically, which causes the general solution of the transient temperature
T very complicated. Therefore, instead of utilizing the general solution,
we derive the formula of the peak temperature based on some basic
lemmas, which are obtained from close observations of the temperature
evolution and are presented in the following.

Lemma 2.5 With a periodic thermal management PTM (t°", t°ff), the tem-
perature of the processor ceaselessly rises in the opening few periods and then
rises in t°! and descends in t°'F in every following period.

Proof As mentioned before, the very initial temperature Tj,;; = T,y <
Ts? < T;°. Based on (2.12), inequality ’2—:[> 0 holds in the beginning sev-
eral periods when T(t) < Tg°. Therefore, temperature T () continuously
rises and then reaches T°. It's worth noting that T(¢) will never surpass
T7° unless the initial temperature is higher than T;°, as T;° is the steady-
state temperature of the ‘active’ mode. Since T(t) has already passed
T3, it also will never drop back below Tg” until the processor being com-
pletely shut down. Therefore, one can summarize the temperature T(t)
under PTM will keep changing between T;° and T,> once T passes T;°,
that is:

TP < T(t) < T,°. (2.18)

Now, assume the processor switches to ‘active’ mode at time f in one
PTM period. Note that the Tj,;; in (2.13) is actually T(f). Then, we have:

T

T —my(T(F) — T®)e ™t > 0 (2.19)
Furthermore, One can easily derive ‘Z—f < 0 following the similar deriva-
tion. 4

Based on Lem. 2.5, in the jth period, the temperature T reaches its local
maximum T; at the end of the time interval t*t. Therefore, we can define
the peak temperature of the processor.

Definition 2.6 (Peak Temperature) For a single-core processor under PTM,
the peak temperature T* in a time interval L can be defined as the maximum of
all the T;:

T* = max(Ty,- -, T%). (2.20)

As shown in Fig. 2.7, the local maximum increases in the beginning
and then stays at a stable value in the rest time. This reveals that the
peak temperature can be obtained based on the difference between two
consecutive local maximums, which is depicted in the following lemma.

29

2. SINGLE CORE THERMAL MANAGEMENT

30

350

w W w
N W H
S & S

Temperature/K

w
fukcy
o

300 02 04 06 08 1

. Time/s .

Figure 2.7: Example of temperature varying with PTM(t" =
0.02s, toff = 0.1s) while the model-switching overhead is not considered.
The thermal and hardware parameters are described in Tab. 2.2.

Lemma 2.7 Denoting the local maximal temperature in the jth period as T;,
the temperature difference between two consecutive local maximums, Tj,1 — T,
can be formulated as:

’T].+1 _ ’I‘] :(1 _ e_matact)T;o + e_mﬂtact(l _ e_mstslp)T;o
_ [1 _ e_matact_mstslp]’rj (2.21)
where t°°t and t°!7 are from (2.16).

Proof With Tj, £5'7 and (2.13), we first derive tjs.lp , which is the tempera-
ture at the end of time interval t*/7 in the jth period. From (2.13), one
can get t;lp =T + (T] — Ts)e*mstsw. Then, combining %!, T, and t;lp,
(2.13) generates the following equation:

Tipq =(1— e Mateet) T2 4 o~ Matact (1 — g™ shatn) T (2.22)

—Mgtaer—Ms tslp T:
j*

Subtracting T; from both sides yields (2.21).]

e

With above lemmas, the first main result of this chapter is presented as
the theorem below:

Theorem 2.8 Given a system as stated above and a periodic thermal manage-
ment PTM (t°", t°ff), the peak temperature of the processor is a linear combi-
nation of T;° and Tg°, which is given as:

T" = AT® + (1 - A) TS, (2.23)

2.6. Real-Time Calculus Routine

where
1 . e_m“ tact

A=

1 . e_matuct_mstslp :
Proof We prove Thm. 2.8 by contradiction. For brevity, polynomial ex-
pression AT;° 4 (1 — A)T¢° is denoted as T°.

First, suppose that the peak temperature T* is reached in the ith period
and T* < T°. Since Lem. 2.5 indicates the local peak temperature in a
period is reached at the end of t*/, we have T; = T* < T°. Rewriting
(2.21) yields that T; ;1 — T; > 0, which contradicts the presumption that
T; is the peak temperature of the processor.

Similarly, assume that the peak temperature T* is reached in jth period
and T; = T* > T°. Therefore we have:

Ti—Ti_1>T°—Tj,4 (2.25)
According to Lem. 2.7:
Ty Ty = (1—e ™") AT 4+ (1 - V)T — Tj_y]
= (1 — ety (7o),
Since (1 — e~ ™) < 1, the following inequality yields:
T~ T <T° T4 (2.26)
which is in conflict with (2.25). In conclusion, T* = T°. U

Next, the boundaries of t" and t°/f are explored, then two approaches
are proposed to minimize T*.

2.6 Real-Time Calculus Routine

In this section, real-time analysis is first presented to give deadline con-
straints on the PTM scheme. Then, two algorithms are presented to
compute the solution of the PTM scheme with different levels of accu-
racy and speed.

2.6.1 Service Bound of PTM

Real-time interface is employed in this chapter to analyze how to ensure
all events complete within their deadlines. With the hardware model

31

2. SINGLE CORE THERMAL MANAGEMENT

32

described before and a given PTM (ton,1°ff), the lower service curve of
the processor is written as:

Br(A) = max (ﬁj A [%}), (2.27)

where ¢ is the period, t9ld and " are obtained from (2.17). According
to Thm. 2.4, to satisfy the deadline constraints, the lower service curve
of the processor Br(A) should satisfy the following inequality:

Br(A) > Bp(A), YA >0, (2.28)
where Bp(A) is the service bound for the workload modeled by EM(N).

For a single event stream (N = 1), B5(A) can be simply formulated as:

ps(A) = a"(A—D) (2.29)

For multi-event streams (N > 2), the service bound Bg(A) in (2.28)
should be computed based on the scheduling policy. Note that only the
service bound Bp(A) has to be revised. The other parts of our algorithms
can remain untouched. Suppose the scheduling policy of earliest dead-
line first (EDF) is adopted, the service bound for the N event streams

is [50]:
N

Br(A) =) &f(A—D;). (2.30)

i=1

It's worth noting that EDF is not necessarily the only one scheduling pol-
icy can be adopted here. For example, when fixed priority (FP) schedul-
ing is employed, the service bound can be calculated according to an-
other formula [51] and fits in with our algorithms as suitable as EDF.

2.6.2 Principles of our Algorithms

In this chapter, our goal is to find the optimal < t°", t°/f > under
the deadline constraints. Apparently brutal searching the whole two-
dimensional space is the least efficient way to find the solution and thus
is not adopted in our approach.

Based on (2.23), one can find that the derivative of T* with respect to t°"
is:

dT* B (Too - Too) mae_m“(ton+tswgff) [1 _ e_ms(toff_tswoff)]
dton - a S

[1 _e—mat”Ct—msiSlp]2 >0 (231)

2.6. Real-Time Calculus Routine

Therefore, for a given toff , T* can be minimized by searching the mini-
mal t°" under the service curve constraint, (2.28). Based on this feature,
we can design algorithms searching the best solution of PTM based on
below two principles:

1. For a given t°/f, the optimal t°" which leads to he minimal peak
temperature is the minimum of the s satisfying the real-time
constraint (2.28).

2. The best pair of < t°", t°/f > can be found by searching t°/f in its
feasible region while following above principle to obtain t°".

2.6.3 Feasible Region of t°f/

In order to discover the minimal t°", the feasible region of t°/f should be
determined first such that one can assure the solution to the minimal ¢°"
exists. For example, when the input is a single event stream and t°/f =
D, coming events in worst-case will miss their deadlines before they are
processed, considering additional t*°" time units are required to switch
the processor on. According to the hardware model, we directly know
that t°/f has to be no less than +*“°ff to cover the timing overhead of
model-switching. To avoid situations similar to the example, t°/f must
be bounded by an upper bound, which is calculated according to the
maximum service curve in [50]:

£rf = max {t°F : BR(A) > Ba(A), VA >0}, (2.32)

where B3 (A) can be formulated as follows when we take #“°" into ac-
count:

B (A) = max{0, A — toff — pswony (2.33)

Moreover, from Section 2.4.1, t°/f should be larger than the mode-switching
overhead t°/f > t“°ff_ Finally, the feasible region of t°/f can be depicted
as toff € [pswoff | (91).

max

2.6.4 Obtaining the minimal "
Precise Solution

Based on the constraint (2.28), when t°// is fixed, the precise solution of
minimal " can be calculated.

33

2. SINGLE CORE THERMAL MANAGEMENT

34

Definition 2.9 (Precise t°*) Given t°ff, the precise t°" which not only sat-
isfies real-time constraint (2.28) but also is thermal optimal can be given as:

thre = min {t": Br(A) > Bp(A), VA > 0}. (2.34)
This solution can be found by testing the t°"'s starting from #*“°" with
step e until the minimal t° satisfying (2.28) is discovered. By this
method, the minimum of t°"* can be obtained with high accurateness
while the time consumption is significant. To reduce the computational
overhead, another method which can find an approximated solution ef-
ficiently is presented below.

Approximated Solution

In this section, an fast method is proposed to compute the minimum
of t°". The basic idea of this method is adopting the bounded-delay
function [22, 50] to calculate an approximate minimal #°".

Definition 2.10 (Bounded-Delay Function) A bounded-delay function for
interval length A is defined by the slope 1 and the bounded-delay t°ff:

bdf (A, n,t°7f) = max[0, (A — t°7F)] (2.35)

Now, given a t°/f, the proposed method first finds the bounded-delay
function defined by t°// and the slope 7 (t°/f) which is given as:

n(t°41) = inf{p : p(A — t°7F) > B(A), VA > 0} (2.36)

An example of this bounded-delay function is shown in Fig. 2.8 in red
color dashed lines. Then, the approximation of minimal " can be cal-

culated by solving toniﬁ = n(t°ff).

The advantage of this method is twofold: (1) the slope 7 (t°/f) can be ob-
tained by using bisection method, which is highly efficient and require
little computational effort, (2) the peak temperature of the processor
controlled by PTM calculated in this method is a unimodal function of
t°ff, which makes the golden-section method feasible for searching best
toff. Utilizing both advantages, we can get the solution of < ", t°ff >
efficiently.

When the mode-switching overhead is ignored, the approximate mini-

mal " can be calculated as f7;, = % (Refer to Fig. 2.8 for the

2.6. Real-Time Calculus Routine

20 | # of events
16 B // -
12 | df(AaU(toff)atoff) ////
8 tO’I’L // -
. (t_off //_/_J__,__J
Iy 25 5p(A) = a*(A - D)
//. : .A/S

O L L L L
0 4 8 12 16 20 24 28
Figure 2.8: Obtaining the approximate minimal t°" based on the

bounded-delay function when the mode-switching overhead is not con-
sidered.

derivation). Since we take the time overhead into account, this equation

is revised as t;’é,‘i = % Based on (2.17), the revised approximate

t°" is denoted as:

on
tapx

tvld + gswon (2.37)

apx
ﬂ(toff + tswon) of f swon swon
= - (t t t
1_17(toff_|_tswon) (+)+
_ ﬂ(toff 4+ tswon) . tOff N pswon
1_;7(toff_|_tswon) 1_;7(t0ff_|_tswon)
n (tinv) of f pswon
= o
Ty Ty ()

Definition 2.11 A linear function termed as RVT (1, t1,t2) is defined as:

n-t)
1—;7+1—17

RVT(Ij, i’l, tz) =

Definition 2.12 (Approximated t°") Given t°/f, the approximated t°" which
not only satisfies real-time constraint (2.28) but also is thermal sub-optimal can

be given as:
tOI’l
apx

= RVT(y(toff 4 gswony, off, yswon) (2.39)

Example 2.13 Consider an periodic event stream with period being 100ms.
The WCET and the relative deadline of the events are given as 10ms and 120ms,
respectively. Suppose the mode-switching overheads are t°" = tswoff —

35

2. SINGLE CORE THERMAL MANAGEMENT

36

5ms. Then, given a t°/f = 55ms, we can first calculate the slope 1(t") =

ﬁ = %. Further, the valid time interval t°!9 = 12ms, which is given
by % = n(t") = %. Finally, we have the approximated solution t" =

told 1 pswon — 17ms, which is identical with RVT (5 (£"), t°ff, tswon;

2.7 PTM Algorithms

Based on the precise and the approximated solutions of minimal ", two
algorithms with different levels of accuracy and efficiency are presented
to minimize T*, namely PMPT (precisely minimizes the peak tempera-
ture) and AMPT (approximately minimizes the peak temperature).

2.7.1 Algorithm PMPT

For a given t°/f, the corresponding thermal-optimal " in this algorithm
is calculated based on (2.34), which derives a precise solution. With £},

the corresponding peak temperatures T* of all the tested t°/fs can be
computed from Thm. 2.8, then corresponding t°ff of the minimal T* in
all the tested points is the optimal solution.

Note that the function T*(t°/f) is irregular and has several local minima
in the domain of °/f. As shown in Fig. 2.9. Therefore, a thorough search
with a fixed step ¢ in the feasible region of t°// is implemented to find
the global minimal T*.

Algo. 1 outlines the pseudo-code of algorithm PMPT. It takes as input
the thermal model TM, the input event model EM(N), the time over-
heads of mode-switching and the accuracy coefficients ¢ and ¢. The
service bound is obtained based on the input and scheduling policy
(line 1) and then the upper bound of t°/f is generated (line 2). Then
the optimal solution and minimal T* are initialized in line 3. Lines 4-13
iteratively discover the £}, and calculate the peak temperature T* for all

t°ffs in the feasible region with a step e. The +" is computed by (2.17)
to derive the lower service curve (line 5). Then tJ!. is found by exam-
ining every candidate of t°" from the lower bound, t*°", with a step S
(line 6). Afterwards, t;. and t°ff are revised based on (2.16) to derive
the peak temperature (line 7). The peak temperature is calculated based
on Thm. 2.8 (line 8) and then compared to T}, . If the newly derived
one is lower, the corresponding < t°", t°/f > and T* are assigned to the

optimal solution and T, , respectively (lines 9-12).

2.7. PTM Algorithms

Algorithm 1 PMPT

Input: TM, EM(N), t5won t5woff ¢ &

Output: 12,, t2/)
1: calculate Bp(A) based on EM(N) and the scheduling policy
2: get t%{; from (2.32)

3 T+ =T, ton =0, 17 =0

min opt — opt
4: for toff = tswoff to t%{; with step ¢ do
5: get Y = toff 4 pswon from (2.17)

6: find t°" by testing (2.34) with step ¢

7. compute t*! and #** by (2.16)

8 Tt #IP) = A(t IPYTS + [1 — A9, 1P| T
9: if T*(t",#!P) < T*. then

10: 191, 17, (o] o 1off

I

11: Tk, < T*(t, 15'P)
12: end if
13: end for

370 T T T T T T T T

w
B
o

Peak Temperature / K

1

330 1 1 1 1 1 1 1
10 30 50 70 90 110 130 150 170

t(,ff/ms

Figure 2.9: The relationship between the peak temperature and t°/f
when the corresponding t°" is calculated based on the precise and ap-
proximated methods.

2.7.2 Algorithm AMPT

In this algorithm, the minimal t°" is obtained directly from the approxi-
mation in (2.34) with less computation. Then according to Thm. 2.8, the

37

2. SINGLE CORE THERMAL MANAGEMENT

peak temperature can be formulated as a function of t°//:

T = PT(t°Ff) (2.40)
7mutSZUOVl Mtoff
o l—a-e 1 .el o~ ~
= Ty + g t5won (T;° = T;)

R
where q = e~"t™ p = o(ms=ma)tI ang gy = p(toff 4 pswon) Based
on a set of systemic experiments (the details are included in appendix),
we conjecture that PT(t°/f) is a unimodal function which has only one
minimum in the feasible region of t°/f. Therefore the gold section search
can be utilized to find the optimal t°/f instead of searching all t°/fs
exhaustively. The pseudo-code is detailed in Algo. 2.

Algorithm 2 AMPT

Input: TM, EM(N), t500", tswoff ¢

Output: 127, t7/]

calculate Bg(A) based on EM(N) and the scheduling policy
get t%zfx from (2.32)

oIS pswoff off oIt
define function: f1(x,y) = x +0.312(y — x)

define function: f>(x,y) = x + 0.618(y — x)

2 fl(tgf Ul), tzf f e f2(tgf ! rr) > Two tested points
selected by gold section

Ty « PT(t/), Ty « PT(8))

8: while tsz — thf > ¢ do

9: if T} > T; then

AU R o e

N

10: (5 07, I I ol

11: I (T, T« T, T PT(E)
12: else

13: (7 b, 1T ol ol

14: T (8, Ty Tr, T« PT(E)
15: end if

16: end while

Algo. 2 has the same input as Algo. 1 except the accuracy coefficients ¢.
The service bound and the upper bound of t°/f are first derived (lines 1-
2). Then the two endpoints of golden section selection are initialized as

38

2.7. PTM Algorithms

Table 2.2: Thermal and hardware model parameters

G C @i = Pa 0; 2 Tamp | tswon = tswoff
03%W 0031 | 01 %W [-25W [-11W | 300K 0.1 ms

the lower and upper bounds of the feasible region of t°/f (line 3). Based
on the two setting functions defined in line 4 and line 5, the initial two
tested points and their peak temperatures are calculated in line 6 and
line 7. Lines 8 to 16 purely do the golden section selection to discover
the optimal t°/f such that PT(t°//) reaches its minimum. Since golden
section selection is a well known algorithm, the details are not addressed
herein.

2.7.3 Case Studies

In this section, we study the viability and efficiency of our algorithms
and compare them with two approaches in [2, 55]. The simulations are
implemented in Matlab (32 bit) using RTC-toolbox. All the results are
obtained from a simulation platform with an Intel i7 4770 processor and
16 GB memory.

System Description

The thermal and power parameters are set as described in Tab. 2.2 [55,
80]. The task streams set studied in [101, 50] is used for our case studies
and the parameters are summarized in Tab. 2.3. Earliest deadline first
(EDF) is adopted as the scheduling policy for multi-event scenarios. The
(p, j, d, ¢) event model is adopted to specified an input stream S; by its
period p, jitter j, minimal inter-arrival distance d of the stream and the
worst-case execution time c. Note that other common timing models of
event streams can also be employed in our case studies with the concept
of arrival curve. We choose the (p, j, d, c) model because it is a commonly
used model and the arrival curve can be easily generated by an existing
formula. The relative deadline D; is defined as D; = x * p; and varies
according to the deadline factor x.

The online approach cool shaper (CS) studied in [55], which relies on
not only the upper arrival curve but also the actual arrivals of the com-
ing events to dynamically shut down the processor, and the approach
TAPR (thermal-aware periodic resources) studied in [2] are adopted for
the comparison. The input event model used in TAPR is sporadic task

39

2. SINGLE CORE THERMAL MANAGEMENT

40

Table 2.3: Event stream setting

St | S2 | S3 | S4 | S5 | Se | S7 | Ss | S9 | Sio
p (msec) || 198 | 102 | 283 | 354 | 239 | 194 | 148 | 114 | 313 | 119
j (msec) | 387 | 70 | 269 | 387 | 222 | 260 | 91 | 13 | 302 | 187
d(msec) || 48 | 45 | 58 | 17 | 65 | 32 | 78 - 86 | 89
¢ (msec) 12 7 7 11 8 5 13 | 14 5 6

) 0.2 T T 1
2 I Cs

2 0L [pupr |09
£0.16- I AMPT 0.8
5 ° TAPR

& 0.14F ° 0.7
4

Qa:} 0.12f 10.6
£ 01 {05
= 008t 104
~ 006 {03
[}

= 0.041 10.2
E

£ 002 {0.1
“ 0

0

S1 SZ S3 S4 SS SG S7 SS SQ S10

Figure 2.10: Normalized Relative Peak Temperature produced by the
tested approaches for single event stream scenarios with x = 1. The
right Y axis indicates the NRPT of approach TAPR.

(¢, D, P), which is characterized by a worst-case execution time ¢, a
(relative) deadline D and a minimum inter-arrival separation P. This
model does not contain all the information of our (p, j, 4, ¢) event model.
Therefore, we revised P in a sporadic task as max[(p — j), d] to satisfy
the worst-case deadline constraints. With these setups, Our algorithms
are compared for both single and multi-event scenarios.

Simulation Results

First, we compare the minimal peak temperature derived by the four
approaches. It is worth noting that the differences between the numer-
ical values of those minimal peak temperature are hard to distinguish
compared to their much larger absolute values. Thus the Normalized
Relative Peak Temperature (NRPT), which is defined in the following,

2.7. PTM Algorithms

g 042 T T T T T T ll
2 o04f ° Elics e
5 | PMPT |
5 0.38 — N 0.9
& 0.361 e TAPR -10.8
4 0.34F 10.7
&)
%D 0.32 H0.6
% 0.3F o 105
g 0.28F : 10.4
< 0.26F ‘ 10.3
N
= 0.24f 10.2
<
=]
£ 022+ 10.1
]
Z 02] 0
6‘ Yo, Y5 s > sz N7
: g ; 0o 27 4 08 > 104 29
<S> <) 6) 3) 6‘3) ")

Figure 2.11: Normalized Relative Peak Temperature produced by the
tested approaches for ten sets of randomly selected four-events stream
scenarios with x = 1 by applying EDF scheduling. The right Y axis
indicates the NRPT of approach TAPR.

is employed as the index to evaluate the approaches:

T — T

NRPTy, = 24—+
AT Te T

(2.41)

where NRPT, and T} is the Normalized Relative Peak Temperature and
the minimal peak temperature produced by approach “A’, respectively.
From its definition, a smaller NRPT indicates that the approach can
better minimize the peak temperature.

Fig. 2.10 describes the NRPT for all the single event streams. Fig. 2.11
to Fig. 2.12 reveal the results for four-events and five-events scenarios,
respectively. Fig. 2.13 shows the derived minimal peak temperature
w.r.t. different relative deadlines for the four approaches while taking all
streams as input. Since the results of TAPR are much higher than those
of the other three approaches, we display the results of TAPR with an-
other Y axis in these four figures. Note that in multi-event scenarios,
the arrival curves in CS must be approximated for EDF scheduling. Oth-
erwise, the arrive curves will be too complicated and cause memory
overflow for the JVM in Matlab [1].

From Fig. 2.10 to Fig. 2.13, we state below observations. (1) In all these
cases, approach PMPT generates better or no worse results than ap-
proach AMPT, this is expected because PMPT brutally searches all the

41

2. SINGLE CORE THERMAL MANAGEMENT

42

possible solutions to get the precise t,, while AMPT relies on the ap-
proximate t,, to minimize the peak temperature. (2) For algorithms
PMPT and AMPT, the minimized peak temperatures in four-events and
five-event scenarios are much higher (NRPTs stay inside [0.2, 0.45]) com-
pared to single event scenarios (NRPTs stay inside [0.04, 0.16]). This is
caused by the fact that the processor has to handle more workload in
multi-event scenarios and thence generates more heat. (3) As shown
in Fig. 2.13, the peak temperature decreases as the relative deadline in-
creases, since the processor can stay at sleep mode longer for each mode
switch. The peak temperature however will not further decrease after
certain threshold is reached. (4) The minimal peak temperature in CS is
generally the lowest in single event stream scenarios as CS works online
and can dynamically turn off the processor according to actual work-
load. It's worth noting that since the heat generated by online calculat-
ing and monitoring of CS is not considered in our simulation, the peak
temperature in CS will be higher when it comes to practical application.
Moreover, CS approach also has to pay high penalty of the offline com-
putation time while PMPT and AMPT approaches can achieve similar
effect with much lower computation expense, which we will show later.
In multi streams scenarios, however, CS yields higher peak temperature
than PMPT and AMPT, which is resulted from the approximation of
input arrival curves. We have made better approximations to improve
the results but with trivial feedback. (5) By and large, the peak temper-
ature derived by TAPR is the highest. The reason is the limitation of its
event model where the non-determinism of pjd pattern cannot be prop-
erly modeled and the modified P = max[(p — j), d| overestimates the
incoming workload. As shown in Fig. 2.10, there exists an extraordinary
point, which is the NRPT of task S4. The reason is that S4 has the largest
jitter j and the second smallest minimal inter-arrival distance d, which
exacerbates the effect of the event model unsuitableness. Consequently,
we can see that the peak temperature generated by TAPR reaches the
upper bound in the multi-event cases as long as Sy is involved in input
streams.

We also report the timing overhead of deriving a PTM scheme. Since
our PTM approaches are offline computed and need negligible runtime
overhead, only the offline computing part of CS is taken into account.
We adopt the computation time for finding the optimal W,,,;;, which
is the critical parameter for CS, as the computational overhead of CS.
Fig. 2.14 shows the computation expense of the four approaches for ten
sets of randomly selected four-event streams and Fig. 2.15 demonstrates

2.7. PTM Algorithms

g 047 : : : 11
Z045f @ ° ° 11
éi 043} |[EEEcCS , , 10,9
g0 |EIPMPT | 108
» B AMPT
£ 039 | e TAPR 107
05 0.37f 0.6
% 0.35 {05
< 0.33f 10.4
T 031 103
= 0.20} 10.2
£ 0271 I 101
02 Yo 9 ¥ Yo 0
10 225,192, Y2 65 S
g0 92 35,98, Q9
5@ N 4\’@ %22, '69 ‘99 RENE "0 28

Figure 2.12: Normalized Relative Peak Temperature produced by the
tested approaches for ten sets of randomly selected five-events stream
scenarios with x = 1 by applying EDF scheduling. The right Y axis
indicates the NRPT of approach TAPR.

396 T T T T T T T 400
388 -©-PMPT | 4390
3841 1385

x4 3801 -1380

>

&~ 3761 ~4375
372f +4370
3681 1365
3641 -1360
360 1 1 1 1 1 1 1 355

0.7 0.9 11 13 15 17 19
Deadline factor

Figure 2.13: Peak Temperature generated by the tested approaches w.r.t.

different relative deadlines for ten-events stream scenario with EDF
scheduling.

how the computation expense in ten-event stream scenario varies as the
relative deadline factor changes. We make below observations: (1) The
computation overhead of cool shaper is the highest, which is about one

up to four orders of magnitude larger than that of our PTM approaches.

(2) In the second figure, the computation overhead of PMPT increases

43

2. SINGLE CORE THERMAL MANAGEMENT

Computing Time /' s
= [
Q Q

=
OO

-1

10

6 -5 S Se - Se_ So S-S S5 .S
[6:‘?,@[6:1,)QJO (6:9,1 (6:11 ()'1(9(9'9,1 Q’@P@JOS@?Q
%9 08922 "0, 1920 5 08 5] 9
Figure 2.14: Computing time of the tested approaches for randomly se-

lected four-events stream scenarios with x = 1 by applying EDF schedul-
ing.

w.r.t. the relative deadline. The reason is that the number of the tested
points of f,¢¢ and t,, increases as the relative deadline increases when
e and ¢ are fixed. (3) The time consumptions of AMPT are always the
lowest and stable, which are within half a second. (4) Compared to
PMPT, the timing overhead of AMPT is about one or two orders of
magnitude lower. In conclusion, our PTM algorithms are much faster in
terms of computation overhead but generate peak temperatures close to
or even better than the ones of CS online approach.

2.8 Summary

In this section, we present Periodic Thermal Management to minimize
the peak naive temperature for a single-core hard real-time system in
which the input event streams are characterized by arrival curves. The
temperature of the system is controlled by applying dynamic power
management techniques. The proposed PTM approach periodically switches
the system to low power-consumption state according to pre-computed
scheme. With the worst case deadline constraint, we propose one al-
gorithm that can provide precise solutions and one approach to yield
approximated solutions with lower computation time. To verify the ef-
fectiveness and efficiency, we present several implementations of our
approaches with single event and multi-event streams. Experimental re-

44

2.8. Summary

10° ¢ 5 :

[Eny
Q,

(N

Computing Time /' s
=
(@]

(=]

[Eny
Q

T

O

(2]

i

TAPR

10 : :
0.7 0.9 1.1 13 1.5 1.7 19

Deadline factor
Figure 2.15: Computing time of the tested approaches w.r.t. different
relative deadlines for ten-events stream scenario with EDF scheduling.

sults show that our algorithms can derive periodic thermal management
schemes with negligible runtime overheads while the peak temperature
can be constrained to similar or even better level of online approach in
the literature.

Our PTM scheme requires negligible runtime overhead since the scheme
is pre-computed in design phase, making itself suitable for real-time
system having little computation power. Moreover, PTM can be easily
implemented on a processor by simply using a hardware timer. In next
chapter, we will investigate how to implement our PTM to pipelined
multi-core systems by reversely using the Pay Burst Only Once princi-

ple.

45

Chapter 3

Pipelined System Thermal
Management

With the ever-increasing demand of computational performance, multi-
core architecture is now widely adopted by major chip manufacturers.
To date, processors having 64 or more cores are available in the market.
The architecture with such a high degree of parallelism poses designers
a challenge: how to extract and exploit parallelism from applications
efficiently.

Pipelined computing, which can increase the throughput of a stream ap-
plication, is a promising paradigm for real-time systems. The pipelined
computing model connects a set of processing units in series, where
the output of one unit is the input of the next one, and executes the
sub-tasks of the stream application. By this way, the sub-tasks can be ex-
ecuted simultaneously, that is, parallel processing is performed. There-
fore, pipelined computing can exploit the hardware performance advan-
tage of multi-core processor efficiently and increase the throughput of
the application.

For real-time pipelined systems, especially for hard real-time systems,
ensuring the latency bounded by a specific constraint is crucial for the
the system correctness. However, as power density is increasing expo-
nentially under Moore’s Law, the peak temperature on modern proces-
sors is rapidly elevated, which seriously threats the reliability and per-
formance of the system. It is studied that a 10 — 15°C difference in
operating temperature can result in a 2x difference in the lifespan of a
device [21]. Since reducing the temperature usually requires less power
consumption, which means lower performance and larger latency, the

47

3. PIPELINED SYSTEM THERMAL MANAGEMENT

48

trade-off between real-time performance and temperature constraints
should be carefully analyzed. Therefore, it’s an important and challeng-
ing task to design a scheduling policy for a pipelined real-time system
on a multi-core processor such that the peak temperature is minimized
and the end-to-end deadline constraint is satisfied.

3.1 Overview

This chapter focuses on the aforementioned issue and addresses the op-
timization problem by reversely using the Pay-Burst-Only-Once (PBOO)
principle. Our work is inspired by the work of Chen et al. [23], which
minimizes the total power consumption for pipelined stage systems.
However, their work cannot be directly transplanted to temperature op-
timization, due to the reasons: (1) although temperature is a strong func-
tion of power, power management techniques that are effective for en-
ergy saving may not be suitable for temperature managing [111], which
has already been theoretically proved by [7]. (2) The quadratic program-
ming formulation of the power problem cannot be reused, since the peak
temperature is calculated based on convolution operation while energy
consumption is computed based on integral operation. Therefore, the
problem of temperature minimization demands new analysis and opti-
mization techniques.

We consider a multi-core processor which tackles applications which
can be divided into sub-tasks. The sub-tasks can be mapped and exe-
cuted on different cores which communicate with each other via FIFOs
(First-In-First-Out). Every core has two power consumption states, ‘ac-
tive” and ‘sleep’. To model general event arrivals, the concept of arrival
curve [96, 60, 98] is adopted as the input task application model. The
leakage power dependence on temperature is considered and simpli-
fied by a precise linear approximation [42]. We adopt the well known
HotSpot thermal model and the RC thermal network to model our sys-
tem as a Linear Time Invariant (LTI) system. The power gating technol-
ogy is employed to control the temperature and PTM investigated in pre-
vious chapter is adopted to minimize the peak temperature. A compre-
hensive analysis on the peak temperature of the processor under PTM is
presented. Based on the analysis results, two algorithms are proposed to
calculate the peak temperature in different levels of accuracy and speed.
The optimization problem of searching the PTM schemes is transformed
into a set of sub-problems which are easier to solve. Two algorithms are
proposed to solve the sub-problem for different peak temperature calcu-

3.2. Related work

lation methods. One algorithm is an approximated one and based on the
gradient descend method. The other one is based on the simulated an-
nealing algorithm and offers more accurate results. We investigate the
effectiveness and efficiency of our approach by implementing on two
real life platforms: a homogeneous ARM multi-processor and the Intel
Single-chip Cloud Computer (SCC). The scalability of our approach is
demonstrated by testing our approach in systems with up to 24 cores.

The rest of this chapter is organized as follows: Section 3.2 gives a brief
introduction of related work. Our system models are introduced in Sec-
tion 3.3 and Section 3.5 shows a motivation example and presents the
problem statement. We analyze the peak temperature and give algo-
rithms to calculate it in Section 3.6 and Section 3.6.2, respectively. Sec-
tion 3.7 discusses real-time analysis and formalizes our optimization
problem which is transformed into a set of sub-problems. Section 3.8
presents algorithms to solve the sub-problem. Section 3.9 details the
case studies and Section 3.10 concludes this chapter.

3.2 Related work

In this section, we review previous work on thermal-aware system schedul-
ing policies for pipelined systems and multi-core processors.

At first, we briefly introduce the important work on studying the mech-
anism of thermal management and thermal modelling. Brooks and
Martonosi [15] introduced the dynamic thermal management (DTM)
and presented policies and mechanisms for implementing DTM for cur-
rent and future CPUs. To accurately evaluate the thermal profile for the
micro-architectures, Skadron et al. [93, 52] proposed a compact architectural-
level thermal-modeling methodology, named HotSpot. Hotspot enables
designers to consider the thermal impacts on interconnects during early
design stages as it includes a high-level on-chip interconnect self-heating
power and thermal model. They also developed an homonymic toolbox
which can set up the thermal model based on the input processor floor-
plan and parameters.

Now, the related work is categorized based on if it is intended for
pipelined computing

Pipelined Computing Chen and et al. [23] utilized PBOO principle
and presented an approach to optimize the power consumption of a
pipelined system under the deadline constraint. A quadratic program-

49

3. PIPELINED SYSTEM THERMAL MANAGEMENT

50

ming formulation of the problem is proposed and two methods are stud-
ied to solve the problem. As stated in Section 3.1, a power optimal
approach may not be thermal optimal. Therefore, a new approach is
needed for the problem of peak temperature minimization. There exist
several thermal management approaches for pipelined systems. How-
ever, previous work on this topic either considers no hard deadline con-
straints [3, 32] or just reduces the deadline misses percentage into a
lower range [72]. Our approach can give the hard real-time guarantee
by ensuring the end-to-end delay is under the hard deadline constraint.

Multi-core Processors There has been significant work on thermal
management for multi-core processors and we inspect the work that is
closely related to our topic. Aiming to minimize the chip peak tempera-
ture while satisfy the hard real-time constraints of an MPSOC (Multipro-
cessor System-on-Chip), Thidapat and et al. [21] addressed the problem
of assigning and scheduling tasks on the MPSOC. They presented a
mixed-integer linear programming (MILP) formulation of the problem
and then gave an optimal solution as well as a flexible heuristic frame-
work for the MILP formulation. Due to the thermal analysis difficulties,
this approach examines only steady-state temperatures without consid-
ering the transient behavior. In this chapter, we provide a peak temper-
ature formulation which considers the transient temperature. Jungseob
and Nam [63, 64] studied how to optimize and improve the through-
put of a power- and thermal-constrained multi-core processor. Their re-
search didn’t provide any hard real-time guarantee, therefore cannot be
applied to hard real-time systems directly. We consider the task deadline
constraints in this chapter and ensure that the peak temperature is min-
imized under the constraints. Yong and et al. [39] presented a feedback
thermal control framework named Real-Time Multicore Thermal Con-
trol which dynamically enforces both the desired temperature and the
CPU utilization bounds for multicore real-time systems, through DVEFS.
Buyoung [110] addressed the problem of avoiding thermal hotspot on a
multi-core chip by employing a runtime thermal aware scheduler (TAS)
using job-migration and power-gating techniques. In [45], Pradeep ex-
tended the concept of Thermal-Resiliency to multi-core architecture and
then adopted a control-theoretic framework to ensure hard-real-time
deadlines in a dynamic thermal environment while maintaining the ther-
mal constraints. However, to simplify the complexity of timing analysis,
above work all assumed simple task models, i.e., either periodic or spo-
radic task model. In this chapter, the task streams are modeled by a
more general concept, the arrival curve, therefore we can preserve more

3.3. system model

information such as the non-determinism of the event arrivals in the
model.

In summary, compared to related work, our work achieves the following
improvements:

e providing hard real-time guarantee. Compared to: [34], [72] , [64],
and [63]

¢ handling non-deterministic event arrivals. Compared to: [38], [100],
[32], [45], [44], [110], and [39]

e considering leakage power dependency on temperature. Compared
to: [64], [34], and [63]

e considering transient thermal behavior. Compared to: [21], and [32]

e thermal optimization. Compared to: [23], [19], and [53]

3.3 system model

Notation: In this chapter, all matrices and vectors are denoted by bold
characters.

Definition 3.1 For two m X n matrices A and B, we consider A > B if A;; >
B;; holds for all 0 <i <mand 0 <j <n.

3.3.1 Hardware Model

In this chapter, a multi-core processor which can handle partitioned ap-
plications is considered. The sub-tasks of a partitioned application can
be mapped and executed on different cores which communicate with
each other via FIFOs (First-In-First-Out). An example of pipelined archi-
tecture can be found in Fig. 3.1. Without loss of generality, we denote
the stage or the core number as n. Each core has two power dissipa-
tion modes, namely ‘active” and ‘sleep” mode. In ‘active’ mode, the
cores work with higher power consumption and tackles input events
in a fixed frequency. The cores can be switched to ‘sleep’ state for a
lower power consumption when there is no workload to handle. We
also consider the mode-switching overhead. To switch the core i from

swoff

‘active’” mode to ‘sleep” mode and back, t; and ;" time units are
required, respectively. During mode-switching, the power consump-
tion equals that in ‘active’ mode. Moreover, no coming event can be

51

3. PIPELINED SYSTEM THERMAL MANAGEMENT

52

handled in mode-switching or ‘sleep” mode. Due to time overhead in
mode-switching, the time length for which a core is switched to ‘active’

(‘sleep’) mode must be larger than 5“°" (t50off), that is, t?f fs tfwof S and

t9" > 7", For brevity, we define gswoff — (tiwof f , t;wof f L, tf,wof f) and
gswon — (Swon yswon -, .. $SWON) for gn n-core processor.
1 2 n p

FIFO | (geq) | FIFO FIFO @
- - -

Processorl Processor2 Processor3 Processor4d

Figure 3.1: H.263 decoder on pipelined hardware architecture.

3.3.2 Application Model

We study the streaming applications which can be split into several sub-
tasks. Then, the worst-case execution times (WCET) of the sub-tasks on
all stages are represented by ¢ = {c1, c2, - -+, cn}, where ¢; denotes the
WCET of the sub-task executed on ith stage. The end-to-end relative
deadline of the application is denoted as D.

To model general task arrivals and available resource