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Abstract

This thesis addresses different topics of dependence modeling in derivative pricing.
It covers a new stochastic volatility model for asset price returns, multi-dimensional
generalizations of popular univariate jump-diffusion models, and a model-free approach
to identify extremal cases of bilateral credit valuation adjustments (BCVA). Based
on joint subordination, dependent multi-dimensional compound Poisson processes are
constructed. The presented approach allows to introduce dependence between the
components of the multivariate processes, without altering the marginal laws. This
is a very convenient feature e.g. for sequentially calibrating multi-dimensional models.
Moreover, the two-dimensional time-changed compound Poisson process is used to
extend the popular BNS model by partly decoupling the volatility jumps from the
agset price returns. Finally, worst-case dependence structures between portfolio values
and the default times of the contractual parties to a derivative transaction, which lead
to extremal wrong-way risk (WWR), are established. This is achieved by solving a
magss-transportation problem. The tight bounds for the BCVA, which are produced by

our model-free methodology, are useful measures for the model risk of WWR models.



Zusammenfassung

Diese Arbeit beschiftigt sich mit verschiedenen Themen der Abh#ngigkeitsmodel-
lierung in der Derivatebewertung. Sie behandelt ein neues stochastisches Volatil-
itdtsmodell, mehrdimensionale Erweiterungen von bekannten eindimensionalen Sprung-
Diffusions-Modellen fiir Preisprozesse und einen modellfreien Ansatz um Extremfille
von BCVA zu ermitteln. Basierend auf gemeinsamer Subordination werden mehrdi-
mensionale zusammengesetzte Poissonprozesse konstruiert. Die vorgelegte Methode
erlaubt es, Abh#ngigkeit zwischen den Komponenten des mehrdimensionalen Prozesses
einzufithren, ohne die Randverteilungen zu verindern. Dies ist eine sehr praktis-
che Eigenschaft, beispielsweise fiir die sequentielle Kalibrierung von mehrdimension-
alen Modellen. Zudem wird der zweidimensionale zusammengesetzte Poissonprozess
verwendet um das bekannte BNS Modell, durch teilweises Entkoppeln der Volatil-
itdtsspriinge von den Preisspriingen, zu erweitern. Abschlieftend werden Worst-Case
Abhéngigkeitsstrukturen zwischen dem Portfoliowert und den Ausfallszeiten der Ver-
tragspartner einer Derivatetransaktion ermittelt, die zu extremen WWR fithren. Dies
wird durch das Losen eines Transportproblems erreicht. Die Schranken fiir das BCVA,
welche durch unseren modellfreien Ansatz erzeugt werden, stellen niitzliche Mafe fiir
das Modellrisiko von WWR-Modellen dar.
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1 Introduction

Modeling financial assets and pricing derivatives are tasks having faced a drastic change
over the last decades. Since pricing and risk managing of complex products increasingly
came into focus, more and more stylized facts of time series of asset prices are sup-
posed to be captured by financial models. This naturally results in more sophisticated,
but also more complex, models. Seeding in the groundbreaking works of Samuelson
[1965] and Black and Scholes [1973|, where the asset price follows a geometric Brow-
nian motion, many extensions and variants of the popular Black—Scholes model have
been proposed. For example, Merton [1973] weakened the constant volatility assump-
tion, resulting in a time dependent volatility. Later extensions model the volatility as a
stochastic process, e.g. the local volatility model class, where the volatility is a function
of time and current spot price. A popular example of that class is the model by Cox and
Ross [1976]. Other proposals, like Merton [1976], add jumps to the asset price dynam-
ics to explain sudden market movements. A wave of further enhancement followed,
resulting in a zoo of models. One of those approaches, which combines both, price
jumps and stochastic volatility dynamics, has been proposed by Barndorff-Nielsen and
Shephard [2001]. Their model, which we will call Barndorff-Nielsen—Shepard model,
or short BNS model, plays a prominent role throughout the present thesis. Such uni-
variate models, describing one asset only, have also been generalized to sound multi-
dimensional model frameworks incorporating dependencies between different assets.
This is achieved by linking the stochastic drivers of the marginal asset processes. This
is a straightforward task for Brownian motions, but becomes challenging for jump-
driven price dynamics. Those multivariate models, however, are essential for pricing
financial derivatives, which rely on more than only one underlying price process. At
the latest since the collapse of Lehman Brothers in 2008 it became inevitable to rec-
ognize counterparty default risk as integral part of the valuation process of financial
derivatives, which changed the classical view on derivative pricing. Doing so alters the
risk neutral price by adjustments accounting for a possible loss in case of a default of

one contractual party.



1 Introduction

In derivatives pricing, stochastic dependencies can play a crucial role. Basically, there
are three areas where modeling dependence might have a huge impact on the resulting
derivative values. First, dependence can occur directly as model parameter in univari-
ate models for financial assets. For example, Heston [1993| proposed a diffusion-type
model with stochastic volatility. Both, the asset value and its variance process are
driven by a Brownian motion each, which do not necessarily coincide, but are stochas-
tically dependent. Obviously, the correlation between the two Brownian motions rep-
resents one out of six parameters of the Heston model. Another popular example is the
model by Stein and Stein [1991]. Their model dynamics also depend on the correlation
of two Brownian motions.® Secondly, in multi-dimensional models, stochastic depen-
dence is essential to recognize interactions between assets and to model similar (or
converse) movements. Pricing multi-underlying derivatives therefore relies on sensible
joint modeling of their ingredients, which can be, for example, stock prices, interest
rates, foreign exchange rates, or default times. Some derivatives rely only on underly-
ing of the same kind, like basket options (stocks) or collateral debt obligations (survival
processes).? Pricing those derivatives therefore necessitates a multivariate framework
with similar marginal processes. On the contrary, a cross-asset model is required to

3 Thirdly, price adjustments due to

price derivatives like quanto options (FX-equity).
the possibility of default events can heavily be affected by the dependence between the
value of the derivative and the credit worthiness of the contractual parties. In these
cases, we speak of wrong-way risk (WWR). So, valuing WWR also requires a sound
multivariate setup for modeling the underlying processes of the derivatives and the

default times of the two counterparts to a derivative transaction.

In the present thesis, we contribute new approaches to all of those three fields. First, we
introduce a new model, the so-called weak-link I'-OU-BNS model, which generalizes the
popular univariate I-OU-BNS model* by introducing a new parameter, which drives

the dependence between asset price jumps and volatility jumps. The BNS model class

!Many other univariate models exist having parameter representing the dependence between stochas-

tic drivers, e.g. extensions of Heston’s model, like Schobel and Zhu [1999].
2A bunch of models exist in the literature for pricing those derivatives. Just to give a few examples,

Milevsky and Posner [1998] and Brooks et al. [1994] among others price basket options in a multi-
dimensional Black-Scholes framework. Vasicek [1987] proposed a multivariate generalization of

Merton’s structural model (Merton [1974]), which can be used to value collateral debt obligations.
3 Again, a vast number of model proposals exist for cross-asset derivatives, for example Derman et al.

[1990] use a two-dimensional Black—Scholes model for Quanto option pricing, whereas Dimitroff

et al. [2009] propose a multi-dimensional Heston model.
4A tractable example of the BNS model class, which we will present in Section 4.1.
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imposes a Lévy subordinator driven Ornstein—Uhlenbeck structure for the squared
volatility process. Furthermore, in the extended notion according to Nicolato and
Venardos [2003], upward jumps in the squared volatility process are accompanied by
downward jumps in the asset price. There is, however, empirical evidence (e.g. Jacod
and Todorov [2010]) that asset prices and volatility do not always jump together,
but there are separate jumps in both processes, which cannot be captured by the
classical BNS model class. We therefore extend the BNS model class in a generic way,
accounting for jumps in the asset price as well as the squared volatility process which
do not necessarily have to occur simultaneously. We employ a two-dimensional Lévy
process to account for the jumps in the squared volatility process and the asset price
process, where the coordinate processes can have any possible dependence structure.
One tractable example of this model class is the weak-link I'-OU-BNS model. Here,
the jumps are driven by dependent compound Poisson processes constructed by a
time-change construction. For this model, the characteristic function of the log price
process can be calculated in closed form, which is essential for fast derivatives pricing

via Fourier methods.

Secondly, new tractable multi-dimensional jump-diffusion models based on univariate
models by Kou [2002|, Bannér and Scherer [2013], and the I'-OU-BNS model are
presented. Here, we use a bottom-up approach. That means, we start with d univariate
models and merge them to one multivariate model by adding a certain dependence
structure. This is achieved by introducing dependence to the univariate jump processes
in a way that does not alter the marginal laws; a very convenient feature e.g. for a
sequential calibration of the model’s parameters to market quotes. Usually, the number
of parameters in multi-dimensional models is very high, which is often the bottleneck
of these models when it comes to practical applications, since it is difficult to capture
so many model parameters from market quotes. In our model framework, we aim at
keeping the number of parameters, which cannot be calibrated to market prices of

plain vanilla options data, as low as possible to ensure practical tractability.

Thirdly, we investigate extremal cases of wrong-way risk by detecting worst-case depen-
dence structures between derivative prices and default times, leading to maximal and
minimal bilateral credit valuation adjustments (BCVA). In order to calculate BCVA
recognizing wrong-way risk, a sound model for the dependence structure between three
quantities is required. In particular, the crucial building blocks are: the default times
of the two contractual parties to the derivative transaction and the derivative value

at the first of the two default times. In the literature, there exist various proposals

11



1 Introduction

on how this dependence structure should be modeled. However, no market consensus
emerged. In practice, independence between all three, or at least two of the quantities
is still a popular choice, although it is a over-simplification and completely misses the
root of WWR. Moreover, many WWR methodologies depend strongly on the marginal
models for the default times and the model for the underlying of the derivative. In
any case, specifying the dependence structure imposes one to model risk. Even within
some parametric model one typically obtains a considerable interval of BCVA values
when the dependence parameters are taken to the extremes. Here, we present an ap-
proach to identify model-free bounds for BCVA. These tight bounds can be used as
some model risk measure on how flexible a given parametric model is with respect to

explaining the range of possible adjustments.

The remainder of the thesis is structured as follows: The foundation for the studies is
laid in Chapter 2, which addresses the mathematical background and introduces the
notation used throughout the thesis. Chapter 3 presents a new useful construction of
dependent compound Poisson processes with exponentially distributed jump sizes. We
investigate the implied dependence structure and point out, why this construction is
a tractable tool for modeling dependent asset price jumps. Chapter 4 and Chapter 5
utilize this construction extensively. In Chapter 4 we present the weak-link I'-OU-BNS
model, a new stochastic volatility model with decoupled jumps. Chapter 5 addresses
multi-dimensional versions of popular univariate jump-diffusion models. Chapter 6
elaborates the investigation of extremal dependence structures within wrong-way risk
models for BCVA calculations. Finally, Chapter 7 summarizes the main results of the
present thesis. The four main chapters (3 to 6) are structured likewise. Each starts
with an introductory section on some fundamentals and concludes with a section on
applications. If not stated otherwise, we claim the content of these chapters, excluding
the fundamental sections, to be our own work based on four peer-reviewed articles

published prior to this thesis, namely:

[Bannor et al., 2015] Bannor, K. F., Scherer, M., and Schulz, T. (2015). A two-
sided BNS model for multicurrency FX markets. In Glau, K., Scherer, M., and
Zagst, R., editors, Innovations in Quantitative Risk Management, pages 93—-107.
Springer International Publishing, Cham.

|[Hofmann and Schulz, 2016] Hofmann, K. F. and Schulz, T. (2016). A general
Ornstein-Uhlenbeck stochastic volatility model with Lévy jumps. International
Journal of Theoretical and Applied Finance, 19(08):1-23.

12



[Mai et al., 2014] Mai, J.-F., Scherer, M., and Schulz, T. (2014). Sequential
modeling of dependent jump processes. Wilmott Magazine, 2014(70):54-63.

[Scherer and Schulz, 2016] Scherer, M. and Schulz, T. (2016). Extremal de-
pendence for bilateral credit valuation adjustments. International Journal of
Theoretical and Applied Finance, 19(07):1-21

In particular, Chapter 3 contains results from Mai et al. [2014], Chapter 4 from Hof-
mann and Schulz [2016], Chapter 5 from Bannor et al. [2015] and Mai et al. [2014],
and Chapter 6 from Scherer and Schulz [2016].
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2 Mathematical prerequisites

In this preliminary chapter we provide an overview of the nomenclature and a brief
introduction of the underlying mathematical theory required by our study. We start
with some basic distributions and the definition of the Laplace and Fourier trans-
form, followed by an introduction to Lévy processes with focus on compound Poisson

processes, and a brief introduction on copula theory.

Definition 2.1 (Normal distribution)
Let p € R, 02 € Ry, and let X be a random variable with density of the form

f@)= g T, aeR
x) = e 22 |, Va }
V2mo?

Then, the law of X is called normal distribution with mean p and variance o2, abbre-
viated by X ~ N (u, o).
For 1 € R%, d € N, and a positive definite matrix ¥ € RiXd, we call the law of an

R?-valued random variable X with density of the form

f(@) = ! em2 @=W ET @) yy e RY,
27 det(D)

a d-dimensional normal distribution with mean p and covariance matriz X.

Definition 2.2 (Exponential distribution)

Let » > 0 and let X be a nonnegative random variable with density of the form
f(z) =ne "% for all > 0. Then, the law of X is called exponential distribution with
parameler n, abbreviated by X ~ Exp(n).

Definition 2.3 (Erlang distribution)
Let d € N and X, Xo, ..., Xy be mutually independent Exp(n)-distributed ran-
dom variables. Then, it follows directly by applying d — 1 times the convolution

15



2 Mathematical prerequisites

formula on the density of an exponential distribution that the density of the sum of
X1, Xo, ..., Xy is given by

d $d_1 e~ Nz

f(z) = ”(dﬁ, Vz € R.

This law is called Erlang distribution, abbreviated by Erlang(d, n).

While the normal distribution is used to describe diffusion-type price movements, we
utilize the exponential distribution to describe jump magnitudes of stochastic pro-
cesses, e.g. jumps in stock price process. The sum of several jumps is hence Erlang-
distributed. The number of jumps in a finite time interval can be modeled by a Poisson

distribution.

Definition 2.4 (Poisson distribution)
Let ¢ > 0 and let N be an Ny-valued random variable fulfilling P(N = n) = e ¢ %

for all n € Ng. Then, the law of N is called Poisson distribution with parameter c,
abbreviated by N ~ Poi(c).

The Geometric distribution is the discrete analogue to the exponential law and can
be interpreted as the number of failures of a repeated Bernoulli experiment before the

first success.

Definition 2.5 (Geometric distribution)

Let 0 < p < 1 and let N be an Np-valued random variable fulfilling P(N = n) =
p(1—p)" for all n € Ng. Then, the law of N is called geometric distribution with
parameter p, abbreviated by N ~ Geo(p).

The parameter p of the geometric distribution coincides with the success probability of
the constructing Bernoulli experiment. The expectations of the presented distributions

provide a natural interpretation of their parameters.

Theorem 2.6 (First moments of some basic distributions)
(i) Let X ~ N (p, 0?). Then,

EX]=p  E[X?)|=p*+0>  Var[X]=o"

16



(ii) Let X ~ Exp(n). Then,

(iii) Let N ~ Poi(c). Then,

E[Nl=¢, E[N?’]=c*+¢, Var[N]=c.

(iv) Let N ~ Geo(p). Then,

Proof

The first two moments of these basic distributions can easily be calculated, as it is
stated in standard textbooks on probability theory like Billingsley [1995], Kallenberg
[2002], or Klenke [2007]. O

Alternatively, these moments can be derived from the derivatives of their moment

generating function (cf. Theorem 2.8 (iv)), which is defined in the sequel.

Definition 2.7 (Characteristic function and Laplace transform)
The characteristic function @x of an R%valued random variable X, d € N, is defined
by

for any u € R%.
Moreover, for any R -valued random variable X, the Laplace transform' $x is defined
by

for any v € Ry.

'In general, for an R-valued random variables X, the function f(u) := E[e“~], u € R is called
moment generating function. Note that in contrast to that function, the Laplace transform, which

we only consider for non-negative random variables, always exists.

17



2 Mathematical prerequisites

In some textbooks, the characteristic function is also called Fourier transform. The

next theorem lists some useful properties of Fourier and Laplace transforms.

Theorem 2.8 (Properties of Fourier and Laplace transforms)
(i) The law of a random variable X on R? is uniquely determined by its characteristic

function ¢ x.

(ii) The law of a random variable X on R, is uniquely determined by its Laplace

transform @x.

(iii) Let ¢x : Ry — [0, 1] be the Laplace transform of an R -valued random variable
X. Tf an explicit expression for ¢x : u +— @x(u) is given, which is analytic? on
the set C4 := {w: Re(w) > 0}, then the function ¢x can be continued on C
and it holds that E[e=*¥] = ¢ x (w), Vw € C,. In particular, px(u) = ¢x(—iu).
(iv) Let ¢x be the Laplace transform of X and let » > 1. Then, X has a finite n-th
moment if and only if gZ)g?)(O) exists, where @g?) denotes the n-th derivative of

»x. Moreover, it holds that

E[X"] = (-1)" 4 (0).

Proof
(i) See, for example, [Klenke, 2007, Theorem 15.8].

(ii) See, for example, [Sato, 1999, Proposition 2.6].

(iii) This statement can be shown by using the uniqueness theorem for analytic func-

tions, as it is done, for example, in the proof of [Sato, 1999, Theorem 24.11|.

(iv) See, for example, |Feller, 1971, XIII.2(ii)]. O

Example 2.9 (Transforms of some basic distributions)
(i) Let G ~ N (p, 0%). Then, ¢g(u) = elun—zotu? Ip general, a d-dimensional
normal distributed random variable G with mean p and covariance matrix X is

given by pg(u) =e

iuTufé u! Tu?

(ii) Let X ~ Exp(n). Then, ¢x(u) = 1.

2A function is called analytic on a region C if it is complex differentiable in every point in C.

18



(iii) Let N ~ Poi(c). Then, ¢n(u) = exp (c(e™™ —1)).

‘ N . _
(iv) Let M ~ Geo(p). Then, ¢ (u) T (1—pe—v"

For a proof, see for example, [Klenke, 2007, Theorem 15.12]. Note that these ex-
pressions for the Laplace transforms of X, N, and M are analytic on C;,. Thus,
using Theorem 2.8 (iii)), the characteristic functions are given by ¢x(u) = ¢x(—iu),
on(u) = pn(—iu), and ppr(u) = @apr(—iu). As mentioned above, the moments can
now be calculated by computing the derivatives of the Laplace transforms and using
Theorem 2.8 (iv).

Now, we go over from random variables to stochastic processes, which are families of
random variables. Stochastic processes can be used to describe the random behavior of
asset prices over time. We assume that the stochastic processes live on a filtered com-
plete probability space (Q, F,F,P), where the filtration F fulfills the usual hypothesis.?
A filtration is a family of o-algebras F = (F;);>0 that is increasing, i.e., Fy C F; C F
if s <t

Definition 2.10 (Stochastic process)
(i) A family of random variables X = {X;}+>( on a probability space (2, F, P) with

values in R?, d € N, is called (d-dimensional) stochastic process.

(ii) For every w € ), we say that the mapping [0,00) — R, t — Xy(w) is a path of
X.

(iii) A stochastic process X is called F-adapted w.r.t. a filtration F = (F);>0 if X; is
JFi-measurable for all ¢ > 0.

(iv) An F-adapted stochastic process with E[|X;|] < oo for all ¢ > 0 is called F-
martingale if
E[X|Fs] = Xs for all 0 < s <t.

In the following we introduce several types of stochastic processes. Firstly, we have
a look at the Brownian motion, a diffusion-type process, and at the Poisson process,

which is an increasing counting process taking only natural numbers.

3For detailed information on this setup, we refer to Protter [2005].
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2 Mathematical prerequisites

Definition 2.11 (Brownian motion)
An F-adapted stochastic process B = (Bi)o<t<co With a.s. continuous paths taking
values in R? and starting in zero is called a d-dimensional Brownian motion with

correlation matriz X if
(i) for 0 < s <t < oo, By — By is independent of Fg,

(ii) for 0 < s < t, B, — By is a normally distributed random variable with mean zero
and covariance matrix equal to (t —s)3, where ¥ € [—1,1]%%¢ denotes a positive

semidefinite correlation matrix.

Definition 2.12 (Poisson process)

An Np-valued stochastic process N fulfilling
(i) No=0 P-as.,
(ii) the paths of N are P-a.s. cadlag, i.e. right-continuous with existing left limits,

(iii) for any n € N and for any 0 =tp < t; < --- < t,, the family {Ny, — Ny, | }i=1..m

is independent.
(iv) Ny — Ng ~ Poi(c(t — s)), for any t > s > 0,
is called Poisson process with intensity ¢ > 0.
Definition 2.12 seems a bit technical on first sight. However, the next theorem yields

an intuitive characterization of Poisson processes and shows how such a process can

be constructed.

Theorem 2.13 (Construction of a Poisson process)
(i) Let ¢ > 0 and Ej, Es,... be a sequence of independent Exp(c)-distributed ran-

dom variables. Define

n
T.=)Y Ei, Yn>1. (2.1)
=1

Then, the stochastic process defined by
Ny=#{n>1:T,<t}, t>0, (2.2)

is a Poisson process with intensity c.

20



(ii) Let N be a Poisson process with intensity ¢. Then, N fulfills Equation (2.2) with
Ty, Ty, ... given by Equation (2.1), where Fy, Es,... is a sequence of indepen-

dent Exp(c)-distributed random variables.

Proof
See, for example, [Mikosch, 2009, Theorem 2.1.6]. O
The random variables 11, 15, ... are called arrival times or jump times of the Poisson

process. Hence, a Poisson process can be seen as a sequence of stochastic arrivals and
the waiting time between two consecutive arrival times is exponentially distributed.
By mapping independent and identically distributed random variables to each arrival
time, we can construct a compound Poisson process, which has, in contrast to a Poisson

process, stochastic increments.

Definition 2.14 (Compound Poisson process)

Let N be a Poisson process with intensity ¢ and let Jp, Js,... be a sequence of inde-
pendent and identically distributed random variables for some distribution D on R<.
Assume that N and {J;};cn are independent. Then, the stochastic process Z defined
by

Ny
Zy=Y_Ji, forallt>0,
=1

is called compound Poisson process with intensity ¢ and jump size distribution D.
In the special case of Exp(n)-distributed random variables Ji, Ja, ... for some n > 0,
we use the notation Z ~ CPPgyp(c,n) or we say Z is a CPPgyy(c,n).

The sum of N i.i.d. random variables with N ~ Poi follows a compound Poisson dis-
tribution. Therefore, a compound Poisson process N = {N;}+>0 is compound Poisson
distributed for all ¢t > 0. Compound Poisson processes are used throughout the thesis
to model jumps in asset price processes. In Chapter 3, we present a comprehensive
overview of typical fields of applications. Brownian motions, Poisson processes, and
also compound Poisson processes belong to a broader class of stochastic processes, the

class of so-called Lévy processes.
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2 Mathematical prerequisites

Definition 2.15 (Lévy process)
An R?valued stochastic process X fulfilling

(i) Xo=0 P-as.,
(ii) the paths of X are P-a.s. cadlag,

(iii) for any n € N and for any 0 =ty < t; < --- < t,, the family {X;, — Xy, | }i=1,..n

is independent.
(iv) Ny — Ny 2 N,_,, for any t > s > 0,
(v) for all t > 0 and € > 0, lin%IP)(HXt — Xl >¢e)=0,
S—

is called (d-dimensional) Lévy process.*

Obviously, each compound Poisson process is a Lévy process. The next theorem char-

acterizes this subclass of Lévy processes.

Theorem 2.16 (Lévy processes with piecewise constant paths)
A stochastic process is a compound Poisson process if and only if it is a Lévy process

and its paths are piece-wise constant.

Proof
See, for example, [Tankov, 2004, Proposition 3.3|. O

Remark 2.17 (Components of a Lévy process)
(i) Let X be a d-dimensional Lévy process and let M be an n x d matrix. Then Y,
defined by ¥; = M X, for all ¢ > 0, is a Lévy process on R", cf. [Tankov, 2004,
Theorem 4.1]. In particular, each component of a d-dimensional Lévy process is

a one-dimensional Lévy process.

(ii) Let Xi,..., X4 be d independent one-dimensional Lévy processes. Then, it is

easy to see, that the process X := (Xi,..., Xy) is a d-dimensional Lévy process.

(iii) A d-dimensional Lévy process with each component being a one-dimensional
compound Poisson process is a d-dimensional compound Poisson process by The-

orem 2.16.

“By || - ||, we denote the Euclidean norm.
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Definition 2.18 (Lévy subordinator)

A one-dimensional Lévy process with P-a.s. non-negative paths is called Lévy subordi-

nator.

Naturally, every Poisson process is a Lévy subordinator and every compound Poisson

process with non-negative jump size distribution is a Lévy subordinator as well. For

example, a CPPgy, is a Lévy subordinator.

Theorem 2.19 (Characteristic functions and Lévy processes)

Let X be a Lévy process on R? and let ¢, be the characteristic function of X;. Then,

the following statements hold.

(1)

(i)

The characteristic function of X; is given by ¢x, = (¢x,)" for all t > 0. If X is
a Lévy subordinator, then the Laplace transform of X; is given by ¢x, = (¢x, )"
for all t > 0.

Let u € R% Then the characteristic function of X; can uniquely be represented
by.

1 .
ox,(u) = exp (—2 u'Au+iyTu+ / (e‘”T” —1—iu'z ]1{‘90|<1}) u(dx)) ,
Rd B

where A is a symmetric non-negative-definite d x d matrix, v is a measure on R¢
fulfilling v({0}) = 0 and [, (|z|?> A1) v(dz) < oo, and v € R%

If the additional condition fl
represented by

2l<1 |z| v(dz) < oo holds, then ¢x, can uniquely be

ox,(u) = exp <—1 u' Au+ingu +/ (ei”TI - 1) V(d.iU)) , (2.3)
2 Rd

where o € R

Let d = 1. Then, X is a Lévy subordinator, if and only if the unique repre-
sentation (2.3) satisfies A = 0, ffoo v(dz) = 0, folxu(dx) < oo, and 9 > 0.

Moreover, the Laplace transform of X; is given by

ox, (u) = exp </OOO (e™*® = 1) v(dz) — o u> , foru>0.

Proof

(i)

See, for example, [Sato, 1999, Theorem 7.10].
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2 Mathematical prerequisites

(ii) See, for example, [Sato, 1999, Theorem 8.1].

(iii) See, for example, [Sato, 1999, Theorem 21.5|. O

Theorem 2.19 (i) points out a nice property of Lévy processes. Since the characteristic
function of a random variable uniquely determines their distribution, the distribution
of X; for some arbitrary t > 0 already defines the law of the whole process. This
combined with the fact that the characteristic function is of exponential form, moti-
vates Definition 2.20 of the characteristic exponent, respectively the Laplace exponent
in case of Lévy subordinators. The formula for the characteristic function of Lévy
processes in Theorem 2.19 (ii) is called Lévy—Khintchine formula and the measure v
is called Lévy measure. In a nutshell, v measures the mean amount of jumps. Partic-
ularly, for a set B C R, v(B) gives the average number of jumps with jump size in B
within a unit time interval. Note that for a compound Poisson processes it holds that
v(R) < o0, i.e. in a bounded time interval the number of jumps of a compound Poisson
process is a.s. finite. Lévy processes fulfilling that property are called Lévy processes
with finite activity. Let us have a closer look at the Lévy—Khintchine formula. The first
part exp (—% ul Au+ inu) is the characteristic function of a d-dimensional normal
distribution. Hence, each Lévy process can be decomposed into a Brownian motion
with drift and a pure jump process. A Lévy process is therefore characterized by its
so-called Lévy triplet (v, A, v). By Theorem 2.19 (iii) we hence know, that Lévy sub-
ordinators have no Brownian part, they rather consist only of a deterministic drift and

a pure jump process with positive jump sizes.

Definition 2.20 (Characteristic exponent and Laplace exponent)
The characteristic exponent Y x of a d-dimensional Lévy process X, d € N, is defined
by

Yx (u) := log (px, (u))

for any u € R%. If X is a Lévy subordinator, then the Laplace exponent 1;)( of X is
defined by

¥x(—u) == log (¢x, (u))

for any u € Ry.
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Remark 2.21 (On the characteristic exponent and Laplace exponent)
By Theorem 2.8 and Theorem 2.19(i), the distribution of a Lévy process is uniquely
determined by its characteristic exponent. Furthermore, the distribution of a Lévy

subordinator is uniquely determined by its Laplace exponent.

Similar to the continuation theorem of the Laplace transform (cf. 2.8 (iii)), the char-
acteristic exponent and the Laplace exponent can be continued, which we state in the

next theorem.

Theorem 2.22 (Continuation of characteristic and Laplace exponents)
(i) Let X be a Lévy process on R? with Lévy measure v. Define

C = {z:(zl,...,zd)e(Cd:Im(zi)20,V1§z‘§d}. (2.4)

Furthermore, assume an explicit expression for the characteristic exponent ¥x :
R? — C to be given, which is analytic on C. Then the function ¥x can be
continued on C' and it fulfills E [eiZTxl} = ¢e%®) for all z € C.

(ii) Let X be a Lévy subordinator. Assume an explicit expression for the Laplace
exponent ¥y : R_ — [0,1] to be given, which is analytic on the set C_ :=
{z: Re(z) < 0}, then the function 9)x can be continued on C_ and it holds that
Ele=*Xt] = et P(=2) for all z € Ct :={z: Re(z) > 0}.

Proof
(i) See, for example, [Sato, 1999, Theorem 25.17|. They proof an even more general
statement for a larger set C'. However, in the present thesis it is enough to

consider C' as in Equation (2.4).

(ii) The second statement then follows from Theorem 2.8(iii). O

Remark 2.23 (On analytical characteristic exponents)
The expression for the characteristic exponent in Theorem 2.19(ii) is always analytic
on C (cf. [Sato, 1999, Theorem 25.17]), and can therefore be continued on C.

The following theorem presents the characteristic exponent of a compound Poisson

process, which can easily be computed knowing the characteristic function of the jump

size distribution.
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2 Mathematical prerequisites

Theorem 2.24 (Characteristic exponent of a compound Poisson process)
Let Z be a compound Poisson process with intensity ¢ and jump size distribution D.

Then, the characteristic exponent of Z for all u € R? is given by

Yz(u) =c(pp(u) —1),

where ¢p denotes the characteristic function of a D-distributed random variable.
Moreover, if Z is a compound Poisson process with non-negative jump size distribution

on R, then, the Laplace exponent of Z for all v € R, is given by

VYz(—u) = c(¢p(u) — 1),

where ¢p denotes the Laplace transform of a D-distributed random variable.

Proof
See for example [Tankov, 2004, Proposition 3.4]. O

The next theorem investigates the resulting process of a subordinated Lévy process,
i.e. a time-changed Lévy proces. This theorem plays a prominent role in our thesis,
because it is applied to construct dependent compound Poisson processes, which are

then used to model dependent jumps in asset price processes.

Theorem 2.25 (Subordination of Lévy processes)

Let Y be a Lévy process with characteristic exponent vy and let T" be a Lévy subor-
dinator with Laplace exponent @T. Assume, Y and T to be independent. Then, the
process Z = {Zi}1>0 := {Yn, }+>0 is a Lévy process with characteristic exponent 1z

given by

bz (u) = dr(Yy(u), ueR™

In particular, if Y is a one-dimensional Lévy subordinator with Laplace exponent 1;)/,

then, Z is a Lévy subordinator with Laplace exponent Uy given by

Proof
See, for example, [Sato, 1999, Theorem 30.4] and [Sato, 1999, Theorem 30.1]. O
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We now present a nice formula on the characteristic function of integrals with respect
to Lévy integrators. For a general introduction on stochastic integration we refer to
standard textbooks like Applebaum [2004].

Theorem 2.26 (Characteristic exponent of Lévy integrals)
Let t > 0, let X be a d-dimensional Lévy process with characteristic exponent ¢ x and

let f: R, — C? be a left-continuous function with limits from the right, such that
Yx(f(s)) exists with E [eif(S)TXl} = e?"xU6) forall 0 < s < ¢, (2.5)

there exists an M > 0 such that Re (¢¥x(f(s))) < M for all 0 < s <, (2.6)

E [exp </0tif(s) dXsﬂ = exp </Ot wx(f(s))d:;) . (2.7)

Then,

Proof

The proof we present is a straightforward multivariate adaption of [Eberlein and Raible,
1999, Lemma 3.1]. For any partition 0 = ¢y < --- < tny41 = ¢ of the interval [0, ¢] we
get by the independence of increments of X and the definition of the characteristic

exponent

N N
exp (Zif(tk) (Xt — Xty )] H [exp (i f (t) (X — Xui))]
k=0

N
= H exp (Vx (f(tr)) (trsr1 — tr))

=exp <Z Vx (f(tr)) (tkr1 — tk)) (2.8)

E

If the mesh® of the partition goes to zero, exp (Zivzo Ux (f(tr)) (the1 — tk)) converges
to exp <f0t Uvx(f(s)) ds). Thus, to show Equation (2.7), we have to make sure that

E

exp (iif(tk) (Xtpy — th)>] converges to E [exp (/Otif(s) dXSﬂ :

k=0

5The mesh of a partition is the length of the longest subinterval.
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2 Mathematical prerequisites

i.e. that

N
exp <Zif(tk) (Xtpy — th)> converges in L' to  exp </tif(s) dXs) .
0

k=0

Since f is left continuous and has limits from the right, Z]kvzoif(tk) (th+1 — th)
converges in measure® to fgif(s) dX; by the construction of stochastic integrals (cf.
[Jacod and Shiryaev, 2003, Proposition 1.4.44]). Continuous transformations preserve

convergence in measure, and hence

N t
exp (Zif(tk) (Xtps — th)> converges in measure to exp (/ if(s) dXS> . (2.9)
k=0 0

By Equation (2.8) and Assumption (2.6), the approximating sequence in Equation (2.9)
is uniformly integrable.” Therefore, convergence in measure implies convergence in L',
(cf. |Klenke, 2007, Theorem 6.25]) and we get

oo ([ i 7(s) ax.) | =ew (| Cox( Fo)ds). n

We conclude this preliminary chapter with a brief introduction to copulas. For a

general presentation of the copulas theory, we refer to the book by Nelsen [2006].

Definition 2.27 (Copula)

A d-dimensional copula C is the distribution function of a random vector (Uy,...,Uy),
where (Uk)g=1,... 4 are uniformly distributed on [0, 1].

If (X1, Xo,..., Xg)is arandom vector with continuous marginal distribution functions
Fi(t) = P(X < t) for all = 1,...,d, then the distribution function of the vector
(Fl(Xl), Fy(Xs), ..., Fd(Xd)) is a copula, called the copula of (X1, Xo,..., X4). For

example, the copula of a d-dimensional normal distribution is called Gaussian copula.

The fundamental theorem in the copula theory is Sklar’s theorem. In particular, it

states that every dependence structure can be characterized by a copula.

5A sequence of random variables X, Xo,... converges in measure to a random variable X if Ve > 0
limp, 00 P(| X — Xn| >¢) =0.
TA familiy H of random variables with finite expectation is said to be uniformly integrable if

limeoo SUP x gy B [L1x|>c}|X|] = 0.
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Theorem 2.28 (Sklar’s Theorem)

Let F' be a joint distribution function with continuous margins Fy, F», ..., Fy of the
random vector (X1, Xa,..., Xg).
Then, there exists a Copula C : [0,1]¢ — [0,1] such that for all zy, z2,..., zq €
[—OO, OO],

F(.’L’l, Ly ooy :Ed) = C(Fl(l'l), FQ(J?Q), e eenay Fd(xd))
Proof
See, for example, [McNeil et al., 2005, p.186 (Theorem 5.3)]. O

Note that Sklar’s theorem also holds for discontinuous marginals. A proof can be
found, for example, in Schweizer and Sklar [1983]. For continuous margins, however,

the copula is even uniquely determined.
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3 Compound Poisson processes with

exponentially distributed jumps

A compound Poisson process is a stochastic process with piece-wise constant paths,
random jump times, and random jump magnitudes. Such a process is build by a
sum of independent and identically distributed random variables, where the number of
variables to be added up to time ¢ is given by a Poisson process. In the previous chapter
on mathematical preliminaries, we already introduced the mathematical definition,
and we have seen that compound Poisson processes are Lévy processes. Furthermore,
these are the only Lévy processes having a.s. piece-wise constant paths. Compound
Poisson processes are therefore commonly used for modeling random arrivals of random
amounts. Thus, some typical fields of applications are the modeling of claim sizes
and claim arrival times in non-life insurance mathematics, queuing systems (customer
arrivals with required service time), or the modeling of jumps in financial market
models." In the present thesis, we will concentrate on the latter and have a look at
a specific subclass of compound Poisson processes, where the jump magnitudes are
exponentially distributed. As defined in the previous chapter, we call such a process
CPPgyp (cf. Definition 2.14).

In this chapter we aim at constructing multi-dimensional compound Poisson processes
with each component following a CPPgy,. Obviously, a vector of one-dimensional in-
dependent CPPgyy, is a multi-dimensional compound Poisson process by Remark 2.17.
To obtain dependence between the components one needs more sophisticated ap-
proaches. In general, dependence between the components can be created by several
construction principles. Deelstra and Petkovic [2010] summarize three possibilities to
construct multi-dimensional Lévy processes out of one-dimensional independent Lévy

processes:

'For a general introduction to these typical usages of compound Poisson processes, we refer to
Mikosch [2009] for insurance, to Baccelli and Bremaud [2003] for queuing theory, and Cont and
Tankov [2004] for financial modeling.
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3 Compound Poisson processes with exponentially distributed jumps

(i) Linear combination: Let n,d € N, M be a d x n matrix and let X be a vector of
n independent one-dimensional Lévy processes. Then, Z; := M Xy for all t > 0

is a d-dimensional Lévy process by Remark 2.17.

(ii) Joint time change: Let d € N, let Y be a Lévy subordinator, and let X be a
vector of d independent one-dimensional Lévy processes. Assume X and Y to
be independent. Then, Z; := Xy, for all t > 0 is a d-dimensional Lévy process
by Theorem 2.25.2

(iii) Linking the Lévy measures by a Lévy copula.?

Obviously, other constructions are possible to create a dependent multi-dimensional
Lévy process (as, e.g., a direct construction from a multi-dimensional infinitely divisi-
ble law*), but the above construction principles provide flexible instruments, where one
starts with independent Lévy processes and ends up with dependent ones. These con-
struction principles applied to compound Poisson processes may be possible choices
to introduce dependence between CPPgy,. Let us have a closer look on each ap-
proach. A linear combination of independent compound Poisson processes yields a
multi-dimensional compound Poisson process. The jump size distributions of the pro-
cesses XM ..., X have to be chosen in a bespoke way to guarantee that each
component follows a CPPgy,. When it comes to the dependence between jump sizes
at joint jump times of some components, the construction by linear combination of
independent processes does not provide a flexible dependence structure. Indeed, joint
jumps of at least two components are triggered by the same process X @) for some
1 < i < n, and jump sizes are therefore only multiples of the jump size of X@. Thus,
one shortcoming of construction by linear combination is that the jump sizes at joint
jumps are always comonotone, which is only one reason for us not considering this
approach any further. Another reason is, for example, the large number of parameters

one needs to introduce dependence (n times d).

2More generally, a d-dimensional Lévy process Y can be used as time-change process. Each compo-
nent of Y must be a subordinator, and serves as individual time change process for one component
of X. For example, Semeraro [2008] introduced dependence via a multivariate time change process.

3The concept of Lévy copulas support a linking of Lévy measures instead of probability measures.
As Lévy copulas do not play an important role in the present thesis, we omit their mathematical
introduction and recommend Tankov [2004] for more details.

1A probability distribution D is infinitely divisible if, for every n € N, there exist n ii.d. ran-
dom variables whose sum follows distribution D. There is a vivid 1-to-1 mapping between those
distributions and Lévy processes, see for example [Sato, 1999, Ch. 2]
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Constructing a multi-dimensional compound Poisson process by a joint time change
with desired marginals is not an obvious task. On first sight, it is not clear, how to
choose the processes X, ..., X and the subordinator Y. Nevertheless, we present
a way to construct such a multi-dimensional process via subordination of compound
Poisson processes in Section 3.2. This construction will be the main tool in Chapter 4
and Chapter 5. Our approach has some striking features we discuss later on within
this chapter, and we point out why we choose the time change construction principle

to introduce dependence to various univariate CPPgyp.

Theoretically, linking the Lévy measures of each component by a Lévy copula appears
to be the most elegant and flexible way to introduce dependence, because, based on
Sklar’s theorem for Lévy copulas, cf. [Kallsen and Tankov, 2006, Theorem 3.6, ev-
ery joint Lévy measure of the multi-dimensional process can be generated by means
of that ansatz. However, Lévy copulas can be cumbersome objects when it comes
to practical applications. For example, simulation of Lévy copulas might be quite
involved. In contrast to general Lévy processes, the dependence structure of multi-
variate compound Poisson processes can also be described by usual copulas instead of
Lévy copulas. This is achieved by linking the jump size distributions in case of joint
defaults. More precisely, every single component of the multivariate process can be
separated into individual jumps and common jumps with other components. Jump
sizes at common jump times are linked by a copula. Each part of that decomposition is
again a compound Poisson process. Hence, for compound Poisson processes, it might
be more convenient to work with classical copulas instead of Lévy copulas. Moreover,
this separation leads to a very intuitive representation of a multi-dimensional com-
pound Poisson process, especially in low dimensions. In Section 3.5 we examine that
pragmatic characterization of our time change construction, which is introduced in the

sequel.

Before discussing the multivariate process we first study some distributional proper-
ties of a CPPgyp, in Section 3.1. Section 3.2 presents the time change construction
of multi-dimensional compound Poisson processes with CPPgy, in each component.
In Section 3.3, we investigate the implied dependence structure between the resulting
processes. Afterwards, we characterize the time-change construction as multidimen-
sional compound Poisson process in Section 3.4. The separation into individual and
common jump parts, as discussed above, is examined in Section 3.5. The features
making this construction a useful tool for tractable multivariate modeling of financial

markets are highlighted in Section 3.6, which concludes the chapter by an outlook on
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3 Compound Poisson processes with exponentially distributed jumps

possible applications. This chapter contains some results, which have already been
published in Mai et al. [2014], prior to this thesis.

3.1 Fundamentals: The univariate process

Each component of our multivariate construction shall be a CPPgy, to remain with
the univariate case. In this section, we calculate the Laplace exponent of a CPPpyp,
as well as the first moments. The results will be used throughout the whole chapter.

The first subgraph in Figure 3.1 shows typical CPPgp,-paths.

Theorem 3.1 (Laplace exponent of a CPPgyp)
The Laplace exponent of Z ~ CPPgyp(c,n) is given by

~ —cu
¢Z(—U) = 7”]—|-U,’

u> 0. (3.1)

Proof

The claim follows directly by applying Theorem 2.24 and Example 2.9. Since Equa-
tion (3.1) is a crucial formula in this chapter and is often used throughout the whole
thesis, we provide a detailed calculation in the following. Let u > 0, then the Laplace

transform of Z; is given by
N1
¢z, (u) =E [6_“21] =E [exp (—u ZJ’>]
i=1
o0 N1
= ZE exp (—u ZJZ>
n=0 =1
— ZE He“Ji] P(N, = n).
n=0

=1

Ny = n] P(Ny = n)

J1, Ja, ... is a sequence of independent random variables. Hence,

Bz (w) =D [[E[e™"] P(N1 =n) => [ &1 w) P(N1 =n).

n=0i=1 n=0i=1
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3.1 Fundamentals: The univariate process

Using that Jq, Jo, ... are identically Exp(n)-distributed and knowing that the Laplace

transform of an Exp(n)-distributed random variable is given by ¢z, (u) = niu (cf

Example 2.9), we get

o0 n
~ n N
QDZ1( ) 7;:0 P n+u ( 1 )

Note, that N ~ Poi(c). Therefore,

> n \" _.c" =/ en \"1
~ _ —Cc -  __ —C _
<PZ1(U)—Z<U+U> T Z(n—i—u) n!’

and the power series representation of the exponential function yields

cu

£n_ —
@Zl(u) = e Cen-‘ru = e ntu,

Finally, the Laplace exponent of Z is given by

~ —Cu

VYz(—u) = log (¢z,(u)) = m—ryl

According to Equation (3.1) the Laplace transform of a CPPgyp, has a simple represen-
tation. In Remark 2.21, we have seen that the Laplace exponent uniquely determines
the distribution of a Lévy subordinator, i.e. any Lévy subordinator having a Laplace
exponent like in Equation (3.1) is a CPPgyp,. By differentiation of the Laplace trans-
form, the first moments are obtained in the next theorem. Here, it is helpful that the

Laplace exponent takes such a simple form.

Theorem 3.2 (Moments of a CPPgyp)
Let Z ~ CPPgxp(c,n). Then, it holds that

ct 9 2ct+ 2t 2ct
E[Zt] = ;, E[Zt] = T, Var[Zt] = F
Proof
From Theorem 2.8(iv), we know that
E[Z)] = ~¢7(0) and  E[Z}] = §y,(0), (32)
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3 Compound Poisson processes with exponentially distributed jumps

where ¢z, denotes the Laplace transform of Z;. Let ¥z be the Laplace exponent of Z
and let w € Ry. Then, Theorem 2.19(i) and Theorem 3.1 yield

paatu) = (P ) = (oxp (90 ) =exp (511 ).

Hence,

_ _ —ctn —cut
@Zt(u) - ( €xp ’

N+ u)? n+u

and

1 2ctn —cut At n? —cut
0 = oo = (S50) + e oo (555)
2ctn(n+u)+c2t2n? —cut
N (n+u)?! eXp<n+u>'

Finally, Equation (3.2) gives

! ct "z 2@t+62t2
E(Z)] = ¢ (0) = o and  E[Z7] = ¢, (0) = g
Moreover,
2 2 2ct
Var[Z] = E[Z] - E[Z]" = —5-. O

The first moments can alternatively be calculated without knowing the Laplace trans-
form by conditioning of the realization on the number of jumps, as it is usually done
in textbooks. More precisely, Wald’s formula (cf. [Klenke, 2007, Theorem 5.5]) implies
that for square integrable i.i.d. random variables Ji, Js, ... and an independent square

integrable random variable N € Ny we have

N

>

k=1

N

>

k=1

E =E[N]E[/;] and Var — E[N] Var[}] + Var [N] (E[4])°.

(3.3)

Knowing the moments of the basic distributions (cf. Theorem 2.6), the claim follows

directly.
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3.2 Construction of a multi-dimensional process

3.2 Construction of a multi-dimensional process

This section presents the idea how one can construct a multi-dimensional compound
Poisson process with each component being a CPPgy,. As already mentioned, this is
achieved by a bespoke time change and it is based on subordination of a CPPgy, by
another independent CPPg,;,. The result is again a CPPgyp, as it is shown in the next

theorem.

Theorem 3.3 (Subordination of two independent CPPgyp)

Suppose one is given cr, nr, ¢y, ny > 0. Let Y = {Y; }4>0 be a CPPgyyp, (cy, ny) and
let T = {T};}1>0 be a CPPgyp, (¢, nr). Assume that Y and 7" are independent.
Then, the process Z = {Z; }1>0 := {Y1, }+>0 is a CPPgyp ( CT oy IT Ty )

nr+cy’ nr+cy

Proof
The Laplace exponent of a CPPgy, is computed in Theorem 3.1. Hence, for all v > 0,

~ —Cy U ~ —CTU
—Uu) = ) —Uu) = .
vy (~u) ny +u vr(=u) nr+u

By Theorem 2.25, the process Z is again a Lévy subordinator with Laplace exponent

—Cr e CrCy U — e
7 T —rey nr+cy
Vz(—u) = Yr(vy(—u)) = = = . (34)
( ) nr+ X nr(y tu)fevu RS 4w

The Laplace exponent uniquely determines the distribution of a Lévy subordinator
(cf. Remark 2.21). Therefore, Theorem 3.1 and Equation (3.4) yield that the process
Z must be a CPPry, (o, Iric ). 0

nr+cy ' nr+cy

Note, that a process generated by subordination of two Lévy subordinator of the
same kind is in general not of that kind anymore. To the best of our knowledge,
compound Poisson processes with exponentially distributed jump sizes is the only
class of Lévy subordinators where this property is indeed fulfilled. The next corollary
tells us how one has to choose the parameters cy and ny to end up with a process
Z ~ CPPgxp(cz, nz) with bespoke cz and nz for fixed parameters cr and np. This is

the basis for our multivariate construction in Definition 3.5.
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3 Compound Poisson processes with exponentially distributed jumps

Corollary 3.4 (Generating a CPPgyp by subordination)
Suppose one is given cr, nr, nz > 0, and ¢z € (0,cr). Let Y = {Yi}i>0 be a
CPPgyp (CCTZ_WCTZ, %) and let T = {T;}+>0 be a CPPgxp, (cr, nr). Assume that

Y and T are independent.
Then, the process Z = {Z; }1>0 := {Y1, }+>0 is a CPPgyp (cz, nz).

Proof

Define cy 1= 21T

cr—Cz

crnz
cr—cz’

Then, Theorem 3.3 implies that Z ~ CPPryp (ﬂ M) Hence,

nr+cy’ nr+cy

and ny =

cznr

crey CT o1 =¢, _ cr cz nr — ¢y
nrteoy e+ 2 nr(er —cz)+eznr ’
and
nrny T e _ nrcrnz _ oy
nr+ey o+ 2L nr(er —cz) +eznr ’
concludes the proof. O

By means of Corollary 3.4 we can introduce dependence to d CPPgy,,. Starting with
d independent processes, they can be linked by a joint subordination. We call the

resulting process a time-changed CPPgy, and give a mathematical definition.

Definition 3.5 (Time-changed CPPgyyp)
Assume, ¢, M1, N2, -+, Mg > 0 and ¢, ¢2, ..., ¢g € (0,¢7). Let d + 1 mutually inde-

pendent compound Poisson processes be given by Y () ~ CPPgy, (CTCjCi, CCTT_WCZ), for
all 1 <14 <d, and T' ~ CPPgyp(cr, 1).

Then, we call the d-dimensional processes Z defined by

2= (020 A = (A )

d-dimensional time-changed CPPgy, with intensities c1, c2, ..., ¢4, jump size param-
eter n1, N2, ..., ng, and dependence parameter x, where k := é lrgaé(d{ci} € (0,1).
_Z_
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3.2 Construction of a multi-dimensional process
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Figure 3.1 The above graph shows paths of three independent compound Poisson
processes. The middle graph shows the subordinator T', which serves as
joint time transformation. The graph below gives the resulting processes

In our construction.

Remark 3.6 (On the construction of time-changed CPPgyyp)

(i) A d-dimensional time-changed CPPgy, Z is a d-dimensional Lévy process, since
the subordination of the d-dimensional Lévy process (Yt(n, Ylt(z)7 ...,Yt(d)) is
by Theorem 2.25 again a Lévy process. By Corollary 3.4, every component
of Z is a CPPpyp with Z0) ~ CPPgxp(ci, i), for all 1 <4 < d. Hence, a d-
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3 Compound Poisson processes with exponentially distributed jumps

dimensional time-changed CPPgy,;, is a d-dimensional compound Poisson process
(cf. Remark 2.17(iii)).

(ii) Obviously, the components of a d-dimensional time-changed CPPgy;, are depen-
dent, the dependence is driven by the time-change process T', which is solely
determined by the intensity cr, respectively by the dependence parameter k.

Therefore, we call k dependence parameter.

(iii) In Corollary 3.4, the time-change process T has Exp(nr)-distributed jumps. In
Definition 3.5, however, we fixed the jump size parameter to 1. On first sight, this
seems a bit arbitrary. Actually, every other choice for iy instead of 1 would lead
to the same dependence structure between the components of the d-dimensional
time-changed CPPgyp. This is proven in Theorem 3.7, where we calculate the

characteristic exponent of Z.

Dependence to d compound Poisson processes Z(M ... Z@ with intensities c1, ..., cq
and jump size distributions Exp(n1),...,Exp(ng) is introduced by taking the same
underlying process T as joint time transformation. We have seen that by choosing
the parameters of the original processes YU ... Y@ in the right way, the processes
ZW ..., Z@ are dependent and have the desired parameters. In the next section, we
investigate this construction with specific focus on the dependence structure implied
by this construction. Figure 3.1 illustrates the construction of a time-changed CPPgyp,
by showing typical sample path of a three-dimensional construction. We observe that
they often jump at the same point in time. Moreover, the jump magnitudes at such
events are dependent. We see that the dependence structure is quite flexible in the
sense that single jumps of just one component, joint jumps of two components, and

joint jumps of all components are possible.

3.3 Implied dependence structure

In this section, we further investigate the distributional properties of our multivari-
ate construction of compound Poisson processes with focus on the implied depen-
dence structure. Since we know that a d-dimensional time-changed CPPpy, is a
d-dimensional compound Poisson process, the joint distribution of a time-changed

CPPgyp is determined by its characteristic exponent, which is calculated in the next
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3.3 Implied dependence structure

theorem. As mentioned in Remark 3.6, we allow the subordinator 1" to follow a CPPgyp
with arbitrarily chosen average jump size. We will see that the characteristic exponent,
and therefore the implied dependence structure, does not depend on the actual choice
of the average jump size of T'. This justifies the choice we made in Definition 3.5 by

fixing the average jump size to 1.

Theorem 3.7 (Characteristic exponent of a time-changed CPPgyp)

Let a d-dimensional time-changed CPPgy, Z = (Z(l), AN ...,Z(d)) be given as
defined in Definition 3.5 with the exception that T' ~ CPPgyp(cr, n7) rather than
T ~ CPPgxp(cr, 1) for some ny > 0. Then, the characteristic exponent of Z is given
by

Zd icp e ug
k=1 cpnp—iug (cr—ck)

Vz(u) (3.5)

= . d icg ug
1=k er Mk —iuk (er—ck)

In particular, for every ¢t > 0 the joint distribution of (Zt(l), Zt(z), ...,ng)) is not
affected by the choice of the parameter nr.

Proof
The claim is shown by a multivariate adaption of the proof of Theorem 3.3. Let
u = (uy, ug, ..., ug) € R By Theorem 2.25 we know that

Vz(u) = ¥r (Vy (v)) (3.6)

We thus start with the calculation of the characteristic exponent of Y.

Yy (u) = log (E [ei“T“D = log (E ﬁ el Yl(k)]) .
k=1

Since Y, ..., Y@ are independent, we get
d ) d cun v (® d
Yy (u) = log H E [e””v 1 } = Zlog <IE [e”““ 1 D = wak) (ug) — (3.7)
k=1 k=1 k=1
For all 1 < k < d, v > 0, the Laplace exponent of Y (*) is given by
B _ Sk NT
Yy (—u) = %7 (3.8)
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3 Compound Poisson processes with exponentially distributed jumps

which was computed in Theorem 3.1. Since the right side in Equation (3.8) is analytic

on C_, Theorem 2.22 yields an expression for the characteristic exponent of y k),

namely
) CROT
. CcT—C,
Yy (ur) = Yy (Lug) = W
e — g,

Plugging this into Equation (3.7) gives

d CEeNT iug

d
o cr—cg 1 Cr T Uk
¢Y(’U1> - Z CT Mk Z er . (39)

— —1uy — Nk — iug (cp — cx)

Again, by using Theorem 3.1, we know that ¢y (—u) = ;Tciz, and by Theorem 2.22 it

is allowed to combine Equations (3.6) and (3.9), which yields

d icy T ug 1CT C U
_‘r Zk:l er n—iug (ecr—ck) Zk:l cr np—iug (cr—cg) 0
z/)z(u) = d T = d . .

o 1CE T U _ 1Ck Uk
nr Zk:l cr g —iug (CT—Ck) 1 Zk:l cr M—iug (cT—Ck)

The characteristic exponent is indeed independent of the choice of nr. Hence, any
choice leads to the same dependence structure between the components. We fixed it

therefore in the first place.

Remark 3.8 (On the characteristic exponent of a time-changed CPPgyp)
Let z = (21,..., 2a) € C 1= {2 =(21,..., 24) € C?: Im(z;) > 0, V1 < i < d}. Since
cr > ¢ > 0, we get

<0

— )

. 2 _ _
Re( iy 2 > _ ZFick(er — o) — Im(zp) er g o V1<k<d.

erk —1izk (e — ck) 02T 77,% + z,% (er — cx)?
(3.10)

Moreover, note that for a complex number x with negative real part, it holds that

fte (H) e (1 o e Im<x>> “Tas Relm_)?e—ﬁx()m(x»? !

< ——-1L0.
~ 1 —Re(x) -
Hence, by setting x := Zizl m and using Equations (3.10) and (3.5), we

get Re (¢z(z)) <0 forall z € C.
Thus, the expression for the characteristic exponent in Equation (3.5) is analytic on
C and its real part is negative. Theorem 2.22 therefore ensures that the characteristic

exponent of a time-changed CPPgy;, can be continued on C.
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3.3 Implied dependence structure

Although the characteristic exponent uniquely determines the dependence structure, it
does not provide any intuition about the dependence. In the next theorem we therefore
calculate the correlation coefficient between two arbitrarily chosen components within

our construction to get a better understanding of the implied dependence.

Theorem 3.9 (Correlation between time-changed CPPgyp)

Let a d-dimensional time-changed CPPgy, Z = (Z(l), AN ...,Z(d)) be given as
defined in Definition 3.5. For arbitrary 1 <4,j <d, ¢ # j, the correlation of Zt(i) and
Zt(j) is given by

Corr [Zt(i), Zt(j)} ]

Cmazx

9

where ¢ = max {c;}.
1<i<d

Proof
Let us recall the notation of Zt(k), forall 1 <k <d,

N
k k k
Zlf ) :ngt) _ Z‘]l( )’
=1

where T' ~ CPPgyp(cr, 1), N N®) i a Poisson process with 1nten81ty for alll <k <
d, and J(k) JQ(k), ... are Exp( Lk ) distributed random varlables for all 1 < k < d.

All quantities are mutually 1ndependent.

By conditioning on T}, the random variables Zt(i) and Zt(j ) become independent. Hence,

E [Zt(“ Zt(”} —E [E {Zt@ Zt(j)‘TtH —E [IE: [Zt(i) ] E [Z@ ‘TtH . (3.11)
By Wald’s formula (see Equality (3.3)), we get
N
E|z”|T| =E ZJl n| =[Ny | 7] B[/ |1
DR UL EEIE= I T
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3 Compound Poisson processes with exponentially distributed jumps

where we used, that the expectation of an Exp(n)-distributed random variable is given
by % and the expectation of a Poi(c)-distributed random variable by ¢. Analogous

calculations yield

E [Zt(j) (Tt} N (3.13)

By combining Equations (3.11), (3.12), and (3.13), we get

2

@) ()] _ GG 91 GG 91 Gicj (2t 2)
E|z® zUW| = E[72] = E[12] = &5 1t 3.14
[ L } ninj o 7] i nj 7] mnj( (3.14)

where we used, that E [Tf] = 2tcp + cpt? as computed in Theorem 3.2. By means
of Equation (3.14) and Theorem 3.2 we can calculate the correlation between Zt(z) and

Zt(j), namely

Corr 27, 20| = sz 20) E[ar] e [Zm]:;%(% —”f W

\/Var[z” ar[ } e

_«/Cicj:/{«/icj 0

= ,
cr Cmazx

Remark 3.10 (On the correlation between time-changed CPPgyp)
The correlation parameter k determines the level of correlation and linearly interpo-

lates between the minimal and maximal possible correlation. In particular, correlation

VAL (g 1)

are possible, and the correla-
Cmax

coefficients ranging from zero (k N\, 0) to

tion is independent of t.

3.4 Characterization as multi-dimensional compound

Poisson process

Although we know from Remark 3.6 that a time-changed CPPgyy, is a d-dimensional
compound Poisson process, so far, we do not know its explicit representation in accor-
dance with Definition 2.14. In this section we take care of that explicit representation
and start with looking at a single component of our construction from a new perspec-

tive.
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3.4 Characterization as multi-dimensional compound Poisson process

Let Z be one component of a d-dimensional time-changed CPPgyy,, as defined in Def-
inition 3.5, i.e.
Nr,
Zy =Y Jp,  forallt>0,
k=1

cTn
cT—C

CTiC, and T' ~ CPPgyp(cr, 1). All quantities are
mutually independent. As stated in Remark 3.6, Z turns out to be a CPPryp(c, 1).

where J1, Ja, . .. is a sequence of independent Exp( )-distributed random variables,

N is a Poisson process with intensity

This representation of Z implies that Z jumps at time ¢ if and only if N7 jumps at
time ¢. In particular, Z jumps at time t only if 7" jumps at time ¢. Let 7 be a jump
time of T'. Then, Z jumps at 7 if and only if Ny, — Np. > 1, ie. Z jumps at time 7
if and only if the jump size of T triggers a jump of Np. Therefore, Z can alternatively
be seen as a compound Poisson process with intensity cr, instead of ¢, and modified
jump size distribution satisfying positive probability for jump magnitudes of size 0.
Thus, it makes sense to examine the process N in detail, which is done in the next

theorem.

Theorem 3.11 (Link to geometric law)

Let N be a Poisson process with intensity —“— and 7'~ CPPgyp(cr, 1). Assume, N

cr
and T are independent. Then, the process Ny = {Nr,},~, is a compound Poisson

process with intensity ¢y and Geo (1 — é)—distributed jump sizes.

Proof
Let w € Ry. From Example 2.9 we know that the Laplace exponent of a Geo (1 . L)—

cr
distributed random variable X is given by

_ <
~ cr

cr —c
Px(u)

= _ € o—u _ —u’
1 o € cr —ce

Theorem 2.24 yields that the Laplace exponent of a compound Poisson process Z with

intensity ¢ and Geo (1 — é)—distributed jump sizes is given by

Ba) = er (px(u) = 1) = ep (T2 1) =T

By Theorem 2.25, the process Np is a Lévy subordinator. Since the Laplace exponent

uniquely determines the distribution of a Lévy subordinator (cf. Remark 2.21), it is
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3 Compound Poisson processes with exponentially distributed jumps

left to show that the Laplace exponent of N is given by

. (—u) = —cre(l— e*U).

cr—ce ¥
Using Theorem 2.25, we get

Uy (—u) = dr (Y (—u)) = dr(log (n, (u)) ).

Note that N; ~ Poi (CTC_C>. Hence, Example 2.9 and Theorem 3.1 yield

c(l—e‘“)) _ —CTC(Z;_CU) B —cTc(l—e_“)'

cr—c 1+M_ cr —ce U

’ZZJNT(_’U’) =4 (-

Therefore, N is a compound Poisson process with intensity ¢y and Geo (1 — é)—

distributed jump sizes. O

Remark 3.12 (On the proof of Theorem 3.11)

The proof of Theorem 3.11 is based on the clever guess that the jump size distribution of
Nr is Geo <1 — é) However, this distribution can be calculated in a more elementary
way, such that this guess can be derived from these constructive calculations. In the

following, it is shown how one can circumvent such a guess.

Proof (Alternative proof of Theorem 3.11)

Instead of guessing the jump size distribution of Nr, it can be calculated. To do so,
let 7 := inf {t >0 ‘ T # 0}, i.e. 7 is the first jump time of Np. Hence, the random
variable N7 describes the jump size of Nt at time 7 and T represents the magnitude
of the first jump of T. Using T, ~ Exp(1) and N; ~ P01( L), Vt € Ry, we get for
all k € Ny that

o0 o0

P (Ny. :k):/IP’(NTT :k]TT:t)e_tdt:/]P’(Nt:k)e_tdt
0

T t \* 71
c —t ck ik —t 2L
= | = e e cetdt= | — e cr—cdt. (3.15)
/k:! <c —c) /k;' —c
J T / (er

The integration by parts formula yields

oo

1 ck R 1 ck _per ]
k! (¢r —¢) '(c =0

46



3.4 Characterization as multi-dimensional compound Poisson process

[ c* k-1 —to
+/( e g e T (3.16)
0

By multiple application of ’'Hopital’s rule we know that

t=o00
1 Ck k —t °T :|
_—  the er—c¢ = 0
[ k! (er —c)fLer =0 ’

Hence, Equation (3.16) simplifies to

o0 o0 k
1 — c _p_eT
/ ke Vere dt = / . th=1 e or=c g,
k! (er —c)k '(ep —e)Flep
0 0

and by iterative application of the integration by parts formula we get

oo1 k - k
—t L T
/Ctke tCT_Cdt:...:/ c =
k! (CT—c)k cr
0 0

k t=o00 k
!cT—c<c> _tCT_] CT—C<C)
= | — —_— e cr—c¢ = —_— .
cr cr -0 cr cr
Therefore, Equation (3.15) boils down to
c\* c
v - (2 -2).
cTr cr
which shows that Nz, ~ Geo (1 - é) O

Theorem 3.11 also motivates an intuitive representation of a d-dimensional time-
changed CPPgy, Z = (Z(l) . Z(d)) with intensities ¢y, . . ., cg, jump size parameters
M,---,7N4, and correlation parameter x € (0, 1):

Potential jump times of ZW) ... Z(@ are given by a Poisson process with intensity

cr =k 1n<1ax {¢;}. The jump size of Z®) at a potential jump time 7 is a sum of in-
dependent Exp ( STTi ) distributed random variables. The number of added random
variables is given by the jump size of N%) at 7, which is Geo (1 — C%)—distributed.
Note that P (N}? = 0) =1- CC—; > 0, and, hence, a potential jump time need not

necessarily lead to an actual jump of Z(). Moreover, the jump sizes of N. (1), ceey N}d)

are dependent. The joint distribution is investigated in the next theorem.
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3 Compound Poisson processes with exponentially distributed jumps

Theorem 3.13 (Link to a multivariate geometric law)
Let T' ~ CPPgxp(cr, 1) and N . N@ be d independent Poisson processes with
intensities given by —* .., =% Assume, T to be independent of N ... N

T—C1’" "7 cr—cq

Let 7 := inf {t >0 ’ T # 0}. Then, the joint distribution of the random variables

N, ..., N is given by
(1) (d) k! A AN
IP’(lek:,...,N :k):% 1+ : < : > ,
b MO =) - ( o) (.
d
where k1,..., kg € Ngand k = ) k;.
i=1
Moreover, (N:(Fl), . ,N}d)> is a d-dimensional compound Poisson process.
Proof
The d-dimensional process (Nq(}), .. .,N}d)> is a d-dimensional Lévy process, since

the subordination of the d-dimensional Lévy process (Nt(l), e ,Nt(d)) is again a Lévy
process by Theorem 2.25. Using Theorem 3.11, every component of (Nq(}), ceey N}d)>

is a compound Poisson process. Hence, (N}l), . ,Nj(qd)> is a d-dimensional compound
Poisson process (cf. Remark 2.17(iii)). Its jump size distribution can be calculated by
a multivariate adaptation of the alternative proof of Theorem 3.11. Using T ~ Exp(1)
we get

p(N;? — k1., N :kd> —[p

N :kl,...,N}j’):kd‘TT:t)e—tdt
t

/ ( (1)

0

/IP’ (N“) = k..., N9 = kd> et dt

0

The independence between the processes N, ... N@ and the fact that Nt(i) ~
Poi(-41 ) V1 <i < d, Vt € R, yield

CT—C4

P (NG = ki, NP = k)
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3.4 Characterization as multi-dimensional compound Poisson process

©0 d d ks
k C; 1 C; v
_ _ Z | |7 . 1
/t exp( t<1—|—.: CT_q))dt' oy <CT_Ci> (3.17)

The integration by parts formula yields

7tk exp ( (1 + Z p— C)) (3.18)

0

[ per (i) tw+/°°ktklexp< (rEhiat))

1+Zz 1CT ci 1+Zz lcT ci

By multiple application of ’'Hopital’s rule we know that

_tkeXp< (14‘21 1 op— cz>> tOO:O

1+Z7, lcT ¢

Hence, Equation (3.18) simplifies to

Jeom(ce( Bt - [ g

0

t=0 0

)

t=0

and by iterative application of the integration by parts formula we get

?t’“ exp( <1+Z T_q)) .../Ook!eXp(( f;fl 1CT>kcl)>dt,

0 0 cr—c;

—k! eXp( ( o gt C)) N

k+1
(1+ 25 o)
k!

k+1°
(1 + Zz—l cr— Cz)

t=0

Therefore, Equation (3.17) boils down to

W (@) it Th(- )
IP(NTT =ki,..., Ny, :kd>: o\ HM(M)
G i=1

And the claim is shown. O
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3 Compound Poisson processes with exponentially distributed jumps

Remark 3.14 (On the multivariate geometric law in Theorem 3.13)

The distribution in Theorem 3.13 is a multivariate geometric distribution in the sense
of Srivastava and Bagchi [1985], which was further characterized by Sreehari and Va-
sudeva [2012|. In particular, they say, a random variable X = (Xy,..., X4) taking

values in Ng has a multivariate geometric distribution if

d d

k! g

POC = (ke k) = g [T V(b k) €06 k= 3
i=1 i~ i=1 i=1

where 0 < p; < 1for all 0 <i <d and Z?:opi =1.

Indeed, it coincides with the law presented in Theorem 3.13 by choosing

d -1
& Po G .
po=<1+§: : ) ) pi:cT—Zci’ V1 <i < d.

In Remark 3.6 we have seen that a time-changed CPPgy,, is a d-dimensional compound
Poisson process with each component being a CPPgy,. By means of Theorem 3.13 a
characterization of a time-changed CPPgy,, as d-dimensional compound Poisson pro-

cess can be established in the following way.

Remark 3.15 (Characterization of a time-changed CPPgyp)
Let Z = (Z(l), ce Z(d)) be a d-dimensional time-changed CPPgyp, 1.e. for all 1 < <
d,

N N/ _ A
}/;(1’) = Z J](Z) ) ]_'t == Z Jf? Zt(l) = YY(',:) )
i=1 i=1

where N7 is a Poisson process with intensity e, N is a Poisson process with intensity

ﬁ for all 1 < i < d, JI, JI,... are Exp(1)-distributed random variables, and
Jl(i), éi),... are Exp(_~)-distributed random variables for all 1 < i < d. All
quantities are mutually independent. Let 7, 79,... be the arrival times of T and set
70 = 0.

Then, Z can be represented by

N{
Zy=> Ey, forallt>0, (3.19)
k=1
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3.5 Linear jump decomposition

where F = (Efl), ey Egd)) , By = (Eél), ey Egd)> ,... I8 a sequence of indepen-
dent and identically distributed Ri—valued random variables given by

NO
EV = Y JY foralll<i<d, andforall j> 1.
k=1+N§) )

Equation (3.19) is a characterization of our time change constructed process Z as
d-dimensional compound Poisson process in accordance with Definition 2.14. The

intensity of Z is given by the intensity of N7, namely c¢p. The jump sizes E1, Es, ... are

d-dimensional random variables having a sum of independent Exp( e ) distributed
random variables in each component. The number of summed Varlables is given by the

jump heights of N(l), ey Nq(ﬂd), whose distribution is computed in Theorem 3.13.

3.5 Linear jump decomposition

As mentioned in the introduction of this chapter, there is a vivid way of representing
multivariate compound Poisson processes by splitting each component into individual
and common parts, and linking the common parts by copulas. This characterization is
intuitive, particularly in low dimensions. Following [Cont and Tankov, 2004, Chapter
5.5|, the decomposition of a d-dimensional time-changed CPPgy, Z = (Z(l), ey Z(d))
can be obtained by splitting into individual and common jump parts. Using the

representation of Z in Equation (3.19), i.e

=SB, vi<i<d,

each component of the time-changed CPPgy, Z can be separated in the following

way:

NT d
(&) _ (4)
Zy’ = ZEk H ]l{E}j):o} Z H ]l{E(J)>0} H ]l{E(l) =0}
k=1 j=1 (AL, d)\[i} jEA
J#i l#
1#1
=19+ 3 c wi<i<d vt>0, (3.20)

{3#ACLL,. d}\{i}
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3 Compound Poisson processes with exponentially distributed jumps

where
N{ 4
@) ._ () -
LV=>" H Loy B »  V1<i<d, ¥e>0, (3.21)
k=1j5=1
G
N
=Y 11 1 o950y 11 Lgo_ B, V1<i<d vt>0. (3.22)
k=1j€A

Note that the term inside the parentheses in Equation (3.20) boils down to one. The
process 19 consists of all individual jumps of Z(®), i.e. there exists no other component
ZU), i # j, sharing a jump time with I(®). The process C(»4) represents all jumps of
Z® | which occur simultaneously with jumps in all components of Z that are given by
the set A. Since (Efl), ey Efd)) , (Egl), ceey Eéd)) ,... is a sequence of independent
and identically distributed random variables (cf. Remark (3.19)),

d d
; @) _ (i)
H H{E§-7):O}E1 ) H H{Eé”:O}E? Y and
j=1 j=1
i J#i
: (@) | (0)
I Yp0>0) 1 Lo B 11 Lispso) 11 Ligo_gy B’
jeA %;EA JEA %;éA
v 1

are also sequences of independent and identically distributed random variables for all
1 < i < d. Furthermore, these sequences are independent of the process N7. Hence,
Vi<i<d, AC{l,...,d}\{i}, A# {} the processes I®) and C>4) are compound
Poisson processes by construction. The intensities and jump size distributions of these
compound Poisson processes can be computed by means of Theorem 3.13.

To illustrate the decomposition, let us have a look at the three-dimensional case. For

d =3, we get
ZzW = 1) 4 002D 4 o8 4 o(42.3D)
7@ = 1@ 4 o@D 4 o8B 4 o138,
ZB) = 16) 4 B 4 oBA2Y 4 oBAL2})

As we can see, to characterize a three-dimensional compound Poisson process by means

of that representation, one has to determine

e 7intensities (Note that C112}) and C({1}) share the same intensity, also C(>{3})
and CG{2h) c(LBY and ¢GAN | and 014230 C@A{L3Y ang 0GAL2D ),
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3.5 Linear jump decomposition

e 12 jump size distributions,

e 3 two-dimensional copulas to link the jump size distributions of C(:{2}) and
Cch ¢@B) and ¢GA2D and LB and G and

e one three-dimensional copula to link the jump size distributions of C'(1:{2:3})
C2A{1,3}) and ¢GAL2})

Obviously, such a representation is way too involved for dimension d > 2 to suit as a
useful characterization. Note, that in general we need 2% — 1 intensities, d 2(4~) jump
size distributions, and 2% — d — 1 copulas. Hence, the idea to characterize the compo-
nents of a d-dimensional compound Poisson process by sums of dependent compound
Poisson processes is reasonable for d = 2 only. Therefore, in the sequel we concentrate
on the bivariate case.

Let Z = (Z(l), Z(Z)) be a two-dimensional time-changed CPPpy, with intensities

c1, 2, jump size parameter 7, 72, and correlation parameter x. Denote by cpr =

1
K

decomposition is then given by

max{ci, ca} the intensity of the subordinator within the construction of Z. The

70 Z [0 L o2 g Z® = (@) 4 o), (3.23)

where I, 1) ¢A2D  and ¢ are compound Poisson processes. C'1{ZH and
C@{1Y) are dependent, all other processes are mutually independent. C{2}) and
C@{1}) have the same intensity, they jump at the same time and have dependent

jump sizes. In the following theorem, we investigate the distributions of the compound
Poisson processes IV, 1) c(A2) and ¢,

Theorem 3.16 (Decomposition of a bivariate time-changed CPPgyp)
Let the processes 1M, 1) Cc@A2D and 21D be defined as in Equation (3.23).
Then,

(i) IV ~ CPPpy, (CI gchch 26%771 ) ;

ch—crea ) ch—cico

(ii) 72 ~ CPPExp <C2 gcT—cl)Q7 20%7;2 >’

Cp—C1C2 cp—Ccic2

(iii) ¢(12) and ¢ are compound Poisson processes with identical jump times

arriving with intensity %ﬁ_g_@) The distribution function of the jump
T
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3 Compound Poisson processes with exponentially distributed jumps

sizes of C(L{2}) is given by

2 _ C%m
e”Me 4 (er —¢) e T2 g >0
C2 (QCT—Cl—CQ) C2 <2CT—01—02) ’ -

2
1— Cp —C1C2

The distribution function of the jump sizes of C'2{1}) ig given by

__Fm

2
AR D) , T Z 0

2
1— Cp —C1C2

2
e T 4 (CT — cl)
C1 (QCT—Cl—Cg) C1 (QCT—Cl—Cg)

Proof
Let us recall the definition of the compound Poisson processes I and C1:AZ (cf.
Equation (3.21) and Equation (3.19)),

T
t
N _ 1) (1 {2h) _ )
= Z H{Eg):o} E.7, Z 1 E(2>>0}
k=1
where
( )
EIE-Z) = Z J]@ for all 1 <7< 2, and for all £ > 1.
I= 1+N(1)k 1

Here, N is a Poisson process with intensity ¢1, N is a Poisson process with intensity

c2, T ~ CPPgxp(cr, 1). We denote by 71, 79, ... the arrival times of 7" and NT is the

corresponding Poisson process, 79 := 0. Jl(l), JQ(I), ... is a sequence of independent
(2)

Exp(m )-distributed random variables, and J;™, J2(2), ... is a sequence of independent

Exp(n2)-distributed random variables. All quantities are mutually independent.

We start with proving (i) and derive the jump size distribution of It(l)

E{l). Note first that

by computing
the distribution function of ]1{E§2):0}
(2)
P =0e Z I O@N() 0.
) =
7j=1

Hence, for some z € Ry

N
TT1

(1) _ 1) (2) _
P (1{E§2>20} EW > x) —Pp z; IO >z, N =0
j:
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3.5 Linear jump decomposition

Jj(1)>x,N()_k N() 0

M T
TSR

-

Il
—

M) N o -
T > ]P’( =k, N ) (3.24)

B
Il
—

J

because the sequence Jl(l), J2(1), ... is independent of the processes NV, N and T.

Theorem 3.13 yields

P (N}li =k, NY) = 0)

k+1
1 ( c1 )’“
1+Zz 1 ‘r—a

- <(CT — 1) (er —(Z)_{%EZ - 3 +;:2 (er — cl)>k+1 <cTC—1 q)k
() (o)

_ (cr —c1) (e — ¢2) (C(l; (er — C2)>k ) (3.25)

2 2
CT—0102 T_CICQ

A sum of independent and identically exponential distributed random variables follows

an Erlang distribution, cf. Definition 2.3. Hence,

k k-1 1 crn n cT M
N R 1 O s
j=1 0

cr —C1
n=

Putting together Equations (3.24), (3.25), and (3.26) yields

P (11 =0y EW > m)

k—1
iz < crm )n 0~ g (e —c1) (er — c2) <Cl(CT_C2)>k
= e cr—ci 5 5
c

—C — —C1C
kan cr 1 Cp —C1C2 T 1C2

and rearranging summation gives

P (]l{Ef):O} E%l) > 95)

_rm 4 (cp —cC CT — C2 > 1 crm " n - Cl(CT_CQ) ’
e | 21)( )Zn'< > Y <c2 . (3.27)

Cr—C1C cr —C —C1C
T 162 n—0 T 1 j— T 162
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3 Compound Poisson processes with exponentially distributed jumps

Recall the formula for a geometric sum, i.e. 32, .4 aF = %, if o] < 1. Note that

0< CCIQ(C—TicchZQ) < 1, because ¢y > ¢ and ¢ > cy. Therefore,
T

00 c(c—c)nJrl c1(er—ea) \"
5 (sler—eny () oo (452)

2 - — 2
[t Cp —C1C2 1— % Cp—CC—C (CT — 62)
n
ci (e —c c (e —c
_aler—o) < 12( T 2)) . (3.28)
cr(er —c1) \ ¢ —cie

Combining Equation (3.27) and Equation (3.28) yields
1
P (]l{Ef):O} E§ ) > a:)

—STm ¢ (cT—02)2 =1 ( crm >n n<61 (cT—02)>"
—=e T 1 _— J— x - - @ =7
3 Zn! 2
0

Cr —CrcCiC2 CcT — C1 Cp —C1C2

Finally, by the series expansion of the exponential function, we obtain

- 2 epm  ciler—co)

_crm — —t— s
P (ﬂ @) Eil) > CU) =¢ v’ aler=ca (or = c) eT 1" cp—cien
{£77=0} ch —cr ey e

2 cerm C1(CT—C2)_1
_ciler— o)’ (e

3
CT — Cr C1 C

2
T M

2
_aler—a) -z55

3
CT — CT C1 C2

Overall, we know that It(l) is a compound Poisson process with intensity ¢y and the

jump sizes follow the distribution function

C2
P (11 o BV < x) _y_alr—a) —ghige (3.29)
{E)7=0y 71 = C% —CTC1C

To see that

RY 2
™ ~ CPPgy, (%CT I ] >

» 2
Cp—C1Cy  Cp—C1C

one has to erase the zero jumps from the jump size distribution, which we do in the

sequel.

Note first, that given a compound Poisson process Z with intensity ¢ and non-negative
jump size distribution D with mass on zero, this process can be reformulated without

jumps of height zero. More precisely, let Fp be the distribution function of D. Then,
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3.5 Linear jump decomposition

Z is also a compound Poisson process with intensity ¢ (1 — Fp(0)) and the jump size

distribution is given by the distribution function %DF(’OD)@, x > 0. This statement

follows immediately from the formula for the Laplace exponent 15 of the process Z
(cf. Theorem 2.24). Let u € R, then

(e}

Dp(—u) = c(@pu) — 1) = ¢ /e—w Fp(da) — 1

0

Now, let Z be a compound Poisson process with intensity ¢ (1—Fp(0)) and jump size
distribution function F' given by F(x) = Ep@-Fp©) 7 > 0 and F(z) =0,z <0.

1-Fp(0)
Then
by (—u) = ¢(1 - Fp(0)) / e P(da) — 1

0

— = FoO) | [ g ) - o0
0

=c /e—uxFD(dx)_l :ﬁz(—u).

0

Since the Laplace exponent uniquely determines the distribution of a Lévy process,

both processes, Z and Z, have the same distribution.

Let us come back to the process I(M). Its jump size distribution (cf. Equation (3.29))

also obtains zero jumps with probability

2
c1(er — c2)
P(1 BV —0) =1- 520
{E{Y=0} 1 ch—crere
Hence, I(V) can alternatively be described as a compound Poisson process with intensity

and the jump sizes follow the distribution function

P (L Bl < w) ~ P (1w B =0)
1-P(1 BV =0)

{E{V =0}
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3 Compound Poisson processes with exponentially distributed jumps

2
cp

1— c1(er—ca)? 6_ Z,—cq ca z _ (1 _ Cl(CT_CQ)2>

C%*CT C1C2 C%*CT c1 C2

- 2
c1(cr—ca)
c%—cT c1 ¢

2

,;T#

:1 _ e CT—Cl C2

Hence,

2 2
I ~ CPPgy, (Cl er —c2)” - crm )

2 » 2
Cp—C1Cy  Cp—C1C

and (i) is fulfilled. Similar to (i), we get (ii), namely

N2 2
I® ~ CPPgy, (CQECT e )

A —ciey | A — e

It is left to prove (iii). Again, we start with computing the jump size distribution of

Ct(l’{z}) by calculating the distribution function of ]l{E(2)>0} E%l). Here, we can use the
1

results from (i). Note first that for some z € R, we get

P (1, p5gy B > z) =P (B > 2 B >0)
(5" > 3:) —P (Eﬁ” >z, BV = 0)

P
—P (B >2)-P(1

=0y EY > a;) : (3.30)
Equation (3.26) yields
(1)
Try oo k
P(EY >a) =P | > aV>a| =S P> sV > a0 N =k
j=1 k=1 7j=1
) k
=S P(Y Vs |p (Ngj = k:) . (3.31)
k=1 j=1

By Theorem 3.11, we know that Nﬁz ~ Geo (1 — c%) Hence

P (Nﬁz - k) - (2)k (1 - 2) . (3.32)

Combining Equations (3.26), (3.31), and (3.27), we get

P(E(1)>x):§:kz_:l1 cr M ”xne—%x a k o
1 n! \er — 1 cr cr )’

k=1 n=0
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3.5 Linear jump decomposition

and rearranging summation gives

P(E(1)>m):€7%x 1- & il T n:r” i a '
1 er On! cr — ¢l cr

n=| k=n+1

Again, the formula for the geometric sum yields

- o n+1
(1) _—frmg c1 1 crm " (E)
]P(El >x)—e Tl 1—— ZE E— l’nl_T

T cr — ¢ =
(0@ n

_°crm c 1 c

—e e < 1M > "
cr = n! \er — ¢

c1
= _—e M7 (3.33)

cr

By combing Equations (3.30), (3.33), and (3.29), we obtain

o

1) & s Cler—e)” —=f—

P(1,, 0. BV >a)=Leme ST ZR Tgoag
{E;7 >0} cr Cp —Crci1c

xT

Overall, we know that Cf’p}) is a compound Poisson process with intensity cr and
the jump sizes follow the distribution function
(1) cl c1 (er — ca)? S L
IP’<]1 E <x):1——6_"1$+7e Feres 3.34
{E§2) >0} 1 = er C;} — ¢y Co ( )

Note, that

2
c o (er—c2)
P(]l E(”:o):1—f aler=c)
(B >0} 1 cr + c‘} —crcel e

Therefore, by killing the zero jumps from the jumps size distribution, Ct(l’{z}) can be

seen as a compound Poisson process with intensity

2
C1 (CT —02) C1 C2 (26T — C1 —02)
1-1@(]1 E(l):O)): - -
er ( (EP >0y 1 “ ca—ci e 2 —ci e

and jump size distribution function

P (1) B <) ~P (10 B =0)

W _
1-P (1{E§2>>0} BV =0)
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3 Compound Poisson processes with exponentially distributed jumps

2
cp

c%fcl co z _ 1 _ca _|_ CI(CT_C2)2
cr

c%ch c1ca

2 J—
— cil\cr—¢:
|- g eme el
T —CT C1C2

c1c2(2er—ci—c2)
c%—cT c1co

) __chm
o] - emey - glermeal [ o Goae
cT

cp—crcrce

c1c2(2er—ci—c2)
c%—cT c1co

__°frm
(G 1) (1 - %) - (or —c2)? (1 X )

(&) (26T — C1 — 02)

2 2 c% 1

ch—cic cr — ¢ D R

=1- VA e Mm* 4 er = cs) e rerer (3.35)
c2(2cr —c1 — ¢2) c2(2cp —c1 — ¢2)
Analogously, the jump size distribution function of C’t(z’{l}) is given by
2 2 C% 12
— 1 _ CT —ac 6777290 + (CT - C]-) 67 c%—cl cQ
c1(2cp —c1 — c2) c1(2er —c1 — c2)

Hence, (iii) is shown. O

Remark 3.17 (Jump size distribution of the common parts)

In Theorem 3.16 (iii), the distribution function of the jump magnitudes of Ct(l’{Q})

turned out to be

2
(CT _ 02)2 e_c;Tinl

2
cp — 16 T e

F(x):=1- e M* 4

C2 (2CT—61—62) C2 (QCT—Cl—CQ)

Indeed, this distribution function F' is a linear combination of two exponential dis-
2

tribution functions. Let X ~ Exp (n1), and ¥ ~ Exp( T > and denote by Fy,

2 _ .
cp—ci1c2

respectively Fy, their distribution functions. Then,

2
CT — C1 C2

Fz) =pFx(e)+ 1 —p) Fy(z)  with — p=" (2er —c1 =)

On first sight, F' looks like a two-dimensional hyperexponential distribution, which
is defined by a convex combination of exponential distribution functions. A two-
dimensional hyperexponentially distributed random variable can be constructed by
an independent Bernoulli-distributed decision variable. Conditioned on the result of

the Bernoulli experiment one of the two exponentially distributed random variables
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3.5 Linear jump decomposition

is chosen. Here, however, we do not face a convex combination, since p > 1, due to

-2

cr > co. Hence, the jump sizes of are not hyperexponentially distributed. For

more information on that distribution we refer to Nelson [1995]. Note, that the alter-

)

native representation for the jump size distribution of C’t(l’{Q} including zero jumps
(cf. Equation (3.34)), is a linear combination of these two exponential distributions
and the so-called degenerate distribution function, which jumps from zero to one at
one.

A construction by means of a Bernoulli distributed decision variable can be obtained
for the jump sizes of the overall process Z(1). Every time a jump occurs, a Bernoulli dis-

2
tributed random variable decides whether it is an individual Exp (Cch:llcz )—distributed
T

jump or a common jump with distribution given by F'. The probability for an individ-

N2
(er=c2)” " The convex
cp—c1c2

combination of the distribution function turns out to be an Exp(n;)-distribution func-

ual jump is the ratio of the intensities of I and Z(), namely

tion.

All statements in Remark 3.17 with respect to the process Ct(L{z}) are also valid for
the process Ct(Q’{l}) with slightly changed parameters. Theorem 3.16 tells us how the
marginal distributions of the decomposed processes look like. To characterize a two-
dimensional CPPgy, completely, we have to investigate the copula of the jump size
distribution of C{2}) and C'21) . Theoretically, the copula can be obtained from
the joint distribution function of C({2) and €211 which can be calculated by
means of Theorem 3.13. Unfortunately, there is not a closed form expression for the
joint distribution of the jump sizes. It can only be expressed by an infinite sum, what
makes a further investigation of the copula meaningless. Nevertheless, it is possible to
compute the correlation of the jump sizes which does not characterize the dependence

but provides a useful measure of association.

Theorem 3.18 (Correlation between joint jump sizes)
Let the processes C1{2D and A1) with the parameters e > ¢1, ¢ > 0 be defined

as in Equation (3.23). Define a := % and Kk 1= %Tl”} Then

Corr (Cfrl’{Q}), C7(r2’{1})>
2a(3-2k(1+a)+rK%a)
_\/(f(/f,a) +rk(A—=3k—2ar+ar) (f(k,a)+ar(d—3ar —2k+a2k3))

with f(k,a) == (1 —ar?) (2— K — ak)? and 7 := inf {t>0] C£17{2}) #0}.
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3 Compound Poisson processes with exponentially distributed jumps

Proof

The covariance between Ct(l’m}) and Ct@’{l}) can be derived from the covariance be-
tween the jump size distributions of C(:{Z) and ¢ for all t > 0, due to the
same jump times. More precisely, let a two-dimensional compound Poisson process
Z = (Z(l), Z(Z)> = 25\21 J; be given, where Ji = (jl(l), ij)) , Jo = (jél), jQ(Q)) Yo
is a sequence of independent and identically distributed random variables. Then, con-

ditioning on N, yields

B[4 27] = p (=n)m |30 S
n=0 i=1 j=1

_ ip (M =n) Zn: Zn: E |70 TP
n=0 i=1 j=1

= SR (R =) (nE [J I + (22— ) E [30] B[]

M - ~ 12
where we used that E | N? — Nt] =E [Nt} , which holds for all Poisson processes (cf.
Theorem 2.6). Hence, we get

Cov <Z§1), Z§2)) —E [Nt} E [jl“) j{”} . (3.36)

In the proof of Theorem 3.16 we have seen two different ways to represent the common

part C({2D: on the one hand, a compound Poisson processes with intensity ¢y and

jump size distribution given by Equation (3.34), and on the other hand, a compound
c1c2(2er—ci—c2)

Poisson processes with intensity S and jump size distribution given by
T

Equation (3.35). The same holds true for the process C(>{1}) with slightly changed
parameters. Hence, Equation (3.36) yields two possible ways to express the covariance
of C’t(l’{Q}) and C’f’{l}), namely

1,{2 2.{1 1 2 1) (2
Cov (C{HV V) — oriE [H{E;%O} BV g ES | =ertE B EP,

and

Cov (Ct(l,{z}) Cﬁ(z,{l})) _ac (2ch —a-o) .. [079,{2}) Cﬁz,{l})}
Cp — C1C2
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3.5 Linear jump decomposition

where 7 := inf {t >0 ‘ Ct(l’{Q}) #* 0}. Therefore, by comparing these two expression,

we get

3
(L{2) c0p] - __Cr—crac (1) 5)
E [cH) ¢ )] s Tarn 1 BV BP]. (3.37)

N N@
i : 1 (1 2 (2

By definition (cf. Equation (3.19)), E§ ) = Zj:Tll J]( ) and E§ ) = Zj:Tll J]( ) become

independent by conditioning on 7,. Wald’s formula (see Equation (3.3)) implies

E [EP EP] _E [E [Eﬂ Tﬁ} E [EP‘ TﬁH

—E [E /"] E [N}Q‘Tﬁ} E[77] E [Ngz‘Tﬁ” . (3.38)

Note that, Jl(l) ~ Exp(=L1-) 1(2) ~ Exp(<Z2) T, ~ Exp(1), and NV and N

cr—c1 cr—C2

are Poisson processes with intensities —%— respectively

cr—cy’?
ing in Equation (3.38) are therefore known and stated in Chapter 1. Hence

E [E(l) E(2)] —E cr — C1 C1 T cr —C2 C2 T
! ! crm cr—aQa " crn2 Cr — C2 n

All quantities appear-

Cc2
cr—c2

2

=12 g[12] = 522 (3.39)
Ggmm - Gmne
T T
Plugging in Equation (3.39) in Equation (3.37) yields
E [Cf(rl’{z}) C7(72,{1})] _ ¢h —creic 2¢c162 2(ct —ac2) .
crea(2er—c1— ) Gqmne (2er —c1 — @) ermn

(3.40)

Due to the fact that the density of Cfrl’{2}) is a linear combination of exponential

densities (see Remark 3.17), the expectation and the variance of o)

c2—cic2
c2(2er—ci—c2)

is easy to

compute. Thus, by defining p := , we get

Y

1 2 —ci e 02—1—p c1C c2—1—p c1Co
E[Cﬁl’{%)}zpf-i-(l—p) T2 _‘r (2 ) _‘r (2 )
m crm crm crm

(3.41)

and

2 2
B [(Q(TL{Z})Y} _ p% T (1-p) 2(cf —crer)”

Uh C4T77%
_ 2pch+2(1—p) (cf —2chcico+c 3)
e
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3 Compound Poisson processes with exponentially distributed jumps

B 204T+2(1—p)clcg (—20%4—0102)

4 .2
CrMm

9

and therefore,

Var [07(37{2})} ) [(CT(rl’{Q}))1 _E [07(r1,{2})]2

2¢p+2(1—p)aca (265 + i) B <62T— (1-p)a 02>2

cr & m
h—2(1—p)chcica+ <2—2p— (1 —p)2) cic3
- I
_c§—2(1 —p)cheica+ (1—p?) i3
- Pt
ch—2ckciea+ A3+ 2pcterco —p? el
- i
B (c% —c 02)2 20% c1¢3 (c% —c 02) (2cr —c1 —c2) — (02T —c1 02)2 cc3
cp i Antc(2er — 1 — o)’
(c2T —c 02)2 c1 (c% —c 02) (2 02T (2¢r —c1 —c2) — (02T —c1 CQ) cl)
N crm A (2er — 1 — )’
(CZT - 02)2 c1 (62T - 02) (40% — 30% c1 — 20% co + c% 02)
- C4T77% c%n% (2¢er — —62)2
(& —c1e2) Ay 7 (3.42)

C4T n% (2cr —c1 — 62)2

where A; = (c% - 62) (2¢p —c1 — 02)2 + (40% — 362T01 — 262T02 —1—6%02).
Analogously, we get

2 - A

Var [07(3,{1})] . (ZcT c1 cg) Ag 5 (3.43)
crns (2er — 1 — c2)

where Ay := (c% — cz) (2cp —c1 — 02)2 + co (46% — 30%02 — 20%01 + cg)

Moreover, by using the definition of p, Equation (3.41) boils down to

2

2 cH—cC1 C2
E [0(17{2})} _ cp—(1- m) C1C2
" CQT m

C%CQ (2cr —c1—c2) —(c2(2ep — 1 — ¢2) —CQT—i—clcg)clcz
cdey(2er —a —c2)m
2 (2cr —c1 —c2) + (ep — ) o

= . 3.44
C2T (2cr —c1 —ca)m ( )
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3.5 Linear jump decomposition

Analogously, we get

E |:07(r27{1}):| _ C?r (2 cr —C1 — CQ) + (CT — 01)2 CQ.

3.45
2 (2cr—c1—c2)mp ( )

Now, the covariation of C7(r1’{2}) and C7(T2’{1}) can be computed by putting together
Equations (3.40), (3.44) and (3.45).

Cov (C§17{2}>, Cgﬂ}))

2(0% —c102)

(2cr —c1—c2)ermne
c% (2cp —c1 —c2) + (ep — 02)2 c1 c% (2cr —c1 —c2) + (e — 61)2 c
& (2er —c1—c)m & (2er —c1—c2)mo
C2(ch —c1e) 2er — a1 — o) & — (ep — ) (cr —c1)? crea

B A (2er —c1— )’ mmp

& (2cr —c1 — ) (c% (2er —c1—c2) + (er — e2)* e1 + (er — 1)’ C2)

A (2er —c1 —ca)® mimp
72(0% —c162) (2ep —c1 — ) cg’p — (ep — 62)2 (cr — 61)2 c1 ¢
A (2er —c1—ca)’ mmp

G R2er—a-—c) (2 —deraatac(ata))

A (2er —c1—c2)® mme
_02T (2er—c1—c2) (2ercrea —crea(er+c2)) — (er — 02)2 (e — 01)2 c1 ¢y

A (2er —c1 =)’ mmp

c1C2 (c% (2cr —c1 — (:2)2 — (er — 62)2 (cr — 01)2)

A (2er —c1—ca)’ mmp
e (c2T —c 02) (3 c% —2cr(c1+c2)+a 02)

(3.46)
&t (2er —c1 — c2)? mma

The correlation can be calculated using Equations (3.42), (3.43), and (3.46), namely

Cov (€MD, )

\/Var [0,9’{2})} Var [CS’“”}

e (3C2T —2cr(c1+c2)+a 02)

N VA A

Corr (C’T(rl’{Q}), C7(r2’{1})> =
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3 Compound Poisson processes with exponentially distributed jumps

min{cy, c2} and Kk — max{ci1, c2}

Finally, using the transformations a = —— (orca] o

yields

2
wep eap) ez (3cq —2cer(a+e)+ac)
Corr ({29, C1D) VAL
7C%I€2a(3—2li(1 +a) —|—/<;2a)
VAL Ay ’

and by defining f(x,a) := (1 —ar?) (2— Kk — ak)?, we have

A1 Ag
=& (f(/ﬁ,a)+/£(4—3/<c—2a/£+a/<;3)) (f(m,a)+a/<;(4—3a/£—2/1+a2/<;3)).

Hence,

Corr (M2, C2:411)
k*a(3—2k(1+a)+Kr*a)
_\/(f(/{,a)—|—/-i(4—3/-i—2aﬁ+a/-i3))(f(/{,a)—|—a1~€(4—3a;@—2/{+a2/{3))’

which concludes the proof. O

The correlation function in Theorem 3.18 seems a bit cumbersome on first sight. There-
fore, we have a look at the limiting cases of the parameters a and x to get a better
intuition about the formula. Note first, that the correlation does not dependent on
the actual choice of the jump size parameters 71 and 72. Indeed, it only depends on
the ratio of the time change intensity and the larger of the two marginal intensity (k)

and the ratio of the two marginal intensities (a).

Remark 3.19 (On the correlation between joint jump sizes)
The limit behavior of the correlation function in Theorem 3.18 is given by the following

expressions:

(i) Cases with vanishing correlation,

lim Corr (va{?}% 0531{1})) —=0, limCorr (079’{2}), 07(3:{1”) ~0.
a0

K\ 0

(ii) Maximal correlation for fixed marginal intensities ¢; and cg,

(1—a)

lim Corr (C’T(rl’{Q})7 CT(F2’{1})) _

V(A —a)PP+(1-a)((1-aP+a(2—-3a+a?))

K,/
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3.5 Linear jump decomposition

a

V(0 =a?+1)((1-a)?+a2-a)

a a

V2—2a+a> J1-(1-a)2

(iii) Correlation, if ¢; = co,

K2 (3—4/—@+/{2)

lim Corr (C’T(rl’{Z})7 CT(F2,{1})> _

a1 (1-k2)(2—2kK)?+K(4—5kK+ k)
B K% (3 — k)
41 -kK2)(1— K)+ k(4 — K — K2)
k% (3 — k)
T 4-5r2+ 3%

(iv) Maximal correlation is obtained by lim lim Corr (CS’{Q}), C7(T2’{1})) =1.

Sla M

Figure 3.2 illustrates this correlation coefficient. To obtain a significant jump size

correlation at common jump times, cr, c1, ca must be of similar size.

correlation

Figure 3.2 Correlation coefficient of the jump sizes at common jump times as a func-

tion of @ and k.
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3 Compound Poisson processes with exponentially distributed jumps

3.6 Application: Dependent jump modeling

The time-change construction of dependent CPPgyp,, which we presented and thor-
oughly investigated in this chapter has some striking features making it a useful tool
in financial engineering. In this section, we motivate some possible applications in the
area of dependent jump modeling in derivative pricing and we give links to the follow-
ing topics of this thesis. First of all, note that a time-changed CPPgy;, can easily be
simulated due to its simple construction principle. An efficient algorithm to simulate
paths of d-dimensional time-changed CPPgy, is essential, e.g. for derivatives pricing
via Monte Carlo simulation. Therefore, the next algorithm shows how such paths can
be obtained.

Algorithm 3.20 (Path simulation of time-changed CPPgyp)

Suppose the following parameters to be given: parameters for the univariate processes
ZW, ., Z@ e ¢p,..., cq and M,..., N4, the dependence parameter x, and the
maturity t* > 0.

(1) Define c¢p := 1 maxj<;<q{c;} and simulate N ~ Poi(cp t*).

(2) Draw N independent and Uniform[0, ¢*]-distributed random variables and sort

them in ascending order, resulting in 0 <73 <719 <. <7y < .
(3) Draw N independent and Exp(1)-distributed random variables Ey, ..., Ex.
(4) For each 1 <i<ddo
Foreach 1 <j < N do

(a) Draw a Poi (Ej )—distributed random variables M ](7)

Ci
CT—C4

(b) Draw an Erlang (M]@, S )—distributed random variable JJ@.

CT—C;
(¢) Compute Z](-i) = i:l J,Ei).

(5) Return (7q,..., 7nv) and (Z(l),..., Z(d)), with Z(0) .= (Z{i),..., Z](\?) for all
1 <i<d.

Let us have a closer look at the algorithm. The random variable N represents the
number of jumps of the subordinator T until time ¢t*. The points in time 71 < 75 <

- < 7y serve as the jump times of T' and, moreover, as possible jump times of

68
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ZW ..., Z@_  An alternative, and maybe more natural, way to simulate those jump
times can be achieved by adding up exponentially distributed random variables until
the sum reaches t* (cf. the construction of Poisson processes in Theorem 2.13). Here,
we used that the conditional distribution of the jump times of a Poisson process given
the number of jumps N in [0, t*] coincides with the distribution of the order statistics
of N samples obtained from a uniform distribution on [0,#*].° In situations with high
expected numbers of jumps of the process T, the classical method becomes faster,
because the ordering in Step (2) gets time-consuming, and the classical drawing of
jump times is the method of choice. However, for small numbers of N the presented
method is more efficient, which will be the case in our practical examples throughout
the thesis. The random variable F; yields the jump size of 7" at the j-th jump time. In
step (4), we use them to determine the parameter of the Erlang distribution, which then

gives the actual jump sizes of our resulting processes. Actually, the return variables

ZY), cee Z](\? represent the i-th component of the time-change CPPpy, at the possible
jump times 7,..., TN.

Besides the easy-to-simulate setup, another nice property of our construction is that
only one parameter, namely k, suffices to model a quite flexible dependence structure.
Note that, for example, individual jumps of only one component, joint jumps of all
components, and also joint jumps of an arbitrary subset of marginal processes can
be generated by a time-changed CPPgy,. Furthermore, the jump magnitudes are
dependent. Given that we only use one dependence parameter, there are situations
where the construction reaches its limits. For example, imagine the following situation.
Assume, a time-changed CPPgy;, be given, whose components can be separated into
two sets. One set consisting of one-dimensional processes having huge intensities ¢;, > 0
and the other set having small intensities cs, ¢, > ¢; > 0. Then, by the results of
Section 3.3 the components with small intensities behave like independent processes
and our construction principle can not explain much dependence between them. In
particular, e.g. from Theorem 3.9, we know, that the correlation between two processes
with intensity ¢;, equals xk and can therefore take all values in (0, 1). The correlation
between a process with huge intensity ¢, and one with a small one ¢, is given by & \/g ,
which is very small even for k 1. That is still fine, since these two processes behave
very diverse by definition. The problem arises for two processes with small intensity.
Then, the correlation vanishes. Similar deductions can be made by using the pragmatic

jump decomposition in Section 3.5. Therefore, the construction by subordination as

®see, for example, [Sato, 1999, Proposition 3.4] for a reference
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3 Compound Poisson processes with exponentially distributed jumps

presented in the previous sections might not be suited in some situations, which is not
surprising, since the dependence structure is driven by one parameter only, even in high
dimensions. To fix the problem, one could come up with two separate subordinations,
i.e. in the above mentioned setup, each set of similar processes are subordinated with
an individual CPPgyp,. The two time-change processes can be dependent as well. On
the one hand, such a construction solves the issue, on the other hand, we end up with
at least two dependence parameter. Hence, it is a trade-off between flexibility and
complexity. All in all, if the intensities are of same order, the dependence structure
implied by our construction is quite flexible and we found a handy tool for modeling
dependent jump processes. In the following, we give an overview of some possible

applications.

A time-changed CPPgy, can be applied to model dependence for pricing derivatives
and serves as a useful tool in all three situations presented in Chapter 1. Actually, the
construction is helpful if two or more processes of financial terms have to be modeled
dependently, whereas the marginal processes are driven by at least one CPPpy;,. Exam-
ples for such processes are asset prices, volatilities, interest rates, exchange rates, and
(cumulative) hazard rates. First, in Chapter 4 we model dependence between stock
prices and their volatility processes, ending up with a generalization of the popular
I'-OU-BNS model. Here, both, the log prices and the volatility is driven by a CPPpyy,.
We will use a two-dimensional time-changed CPPry;, as stochastic driver. This extends
the parameter space by one parameter modeling the dependence between log-price and
volatility, which will be the jump dependence parameter k of the time change construc-
tion. A striking advantage of introducing dependence among the jumps in this manner
is that the time-changed processes remain in the class of compound Poisson processes
with exponential jump heights, which ensures that the marginal processes maintain a
tractable structure. A useful property of the ['-OU-BNS model is its closed form solu-
tion of the characteristic function of the log prices, which is essential for a fast model
calibration by means of Fourier pricing methods. Our construction by subordination
preserves this desirable feature, i.e. there exists also an analytic expression for the
characteristic function of the log price in the generalized model. Secondly, Chapter 5
presents multivariate jump diffusion models. Time-changed CPPpy,, are used to intro-
duce dependence between two or more processes of the same kind, building tractable
multivariate models. We show multi-dimensional versions of the I'-OU-BNS-model,
the Kou-model (cf. Kou [2002]), and a two-sided extension of the BNS-model. The

multivariate models are constructed via a bottom-up approach, which means we start
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3.6 Application: Dependent jump modeling

with several one-dimensional models and link them by adding dependence in a second
step. This is a striking feature when it comes to calibration. Since the subordination
construction ensures that the resulting process stays in the same class of CPPgyp,
the univariate log-price processes of the extended models still follow the classical one-
dimensional model of that kind and the parameters of the univariate processes may
be calibrated separately to univariate derivative prices. The dependence parameters
can be calibrated separately afterwards without altering the already fixed marginal
distributions. This simplifies the model calibration and is a convenient feature for
practical purposes, because it automatically ensures that univariate derivative prices
are fitted to the multivariate model. Furthermore, it keeps the number of parameters
which cannot be caught from vanilla option price data limited. Thirdly, time-changed
CPPgxp could be useful as well for modeling wrong way risk in credit valuation ad-
justment by combining credit risk modeling via hazard rates driven by a CPPgy, and
asset price modeling. From a mathematical perspective such an credit-equity ansatz
is quite similar to the methods presented in Chapters 4 and 5. Therefore, we attack
the problem of calculating wrong way risk from a different angle, namely a model-free

ansatz in Chapter 6.
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4 Decoupling of volatility jumps and
asset jumps in the BNS model

For derivatives valuation, the Black—Scholes model, presented in the seminal papers
Samuelson [1965] and Black and Scholes [1973], generated a wave of stochastic mod-
els for the description of stock-prices. Since the assumptions of the Black—Scholes
model (normally distributed log-returns, independent returns) cannot be observed in
neither time series of stock-prices nor option markets (implicitly expressed in terms
of the volatility surface), several alternative models have been developed trying to
overcome these assumptions. One approach to extend the Black—Scholes model is the
incorporation of jumps into the asset price process, inspired by market shocks caus-
ing the asset price to jump. These jumps are driven by Lévy processes, e.g. Merton
[1976]; Kou [2002] use a compound Poisson process as jump driver, Madan and Sen-
ata [1990] a Variance Gamma process, or Barndorff-Nielsen [1997] a normal inverse
Gaussian process. Another generalization is achieved by substituting the constant
Black—Scholes volatility by a stochastic process, leading to diffusion-style stochastic
volatility models as in, e.g., Stein and Stein [1991]; Heston [1993], also enhanced by
independent jumps in the asset price process by Bates [1996]; Duffie et al. [2000]. An-
other approach combining stochastic volatility and jumps in both volatility and asset
price process is available with the Barndorff-Nielsen—Shephard (BNS) model class, pre-
sented in Barndorff-Nielsen and Shephard [2001] and extended in several papers (e.g.
Nicolato and Venardos [2003]).

In this chapter, which is based on our published article Hofmann and Schulz [2016], we
present an extension of the BNS model class, mitigating the strong link between asset
price jumps and jumps in volatility. Before presenting this generalization in Section 4.2,
we give a short introduction to the BNS model class and present one popular member
of that class, the so-called I'-OU-BNS model in Section 4.1. The model is tractable in
the sense that the characteristic function of the log-price can be expressed in closed

form. This ensures quick and convenient valuation of plain vanilla derivatives (e.g.
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4 Decoupling of volatility jumps and asset jumps in the BNS model

for calibration purposes) because Fourier pricing methods like FFT pricing (e.g. Carr
and Madan [1999]; Raible [2000]) or the COS method described in Fang and Osterlee
[2008] can efficiently be used. The construction of a time-changed CPPgyp, which
was discussed in Chapter 3, is applied in Section 4.3 to build a generalization of the
I'-OU-BNS model, which we call weak-link I-OU-BNS model. As usual, we conclude
the chapter by an application in Section 4.4. Particularly, we investigate the model

dynamics of the weak-link I'-OU-BNS model and employ a calibration exercise.

4.1 Fundamentals: The Barndorff-Nielsen—Shephard

model class

In the seminal paper Barndorff-Nielsen and Shephard [2001], a tractable stochastic
volatility model class was presented. The variance process o2 = {07 }:>0 in the BNS
model class is given by a non-Gaussian Ornstein—Uhlenbeck (OU) process, driven by a
Lévy subordinator. Furthermore, the same Lévy subordinator adds jumps to the asset
price process S = {S¢}+>0, linking jumps in volatility and jumps in the asset price.
Indeed, the dynamics of the log-price X = {X;}+>0 := {log(S¢) }+>0 and the volatility
are governed by the SDEs

dX; = (M+50t2) dt + o, dWy + pd Zs, (4'1)
do? = —\o?dt + dZ, (4.2)

where W = {W;}4>0 is a Brownian motion, Z = {Z;}+>0 a Lévy subordinator (in-
dependent of W), p < 0, ag,)\ > 0 and the drift coefficients u, 8 are given by the
martingale drift condition.! Since the so-called leverage parameter p is negative, up-
ward jumps in the volatility are always accompanied by downward jumps in the asset
price process, which accounts for modeling the leverage effect, a well documented sta-

tistical observation. A solution to Equation (4.2) is given by the OU-process

t
o2 =e Mol 4 e_/\t/ e dZ,, (4.3)
0

'In many formulations of BNS-type models, an additional time change ¢ — At is employed to the
process (Z:)¢>0, which is mainly for mathematical reasons. From a modeling point of view, the

formulation without time change is equivalent.
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which can be shown by using the product rule of It6 calculus applied to d(e’\taf),

plugging in the SDE (4.2), and integrating from 0 to ¢t. Particularly,

d (e)‘t 0?) =eMdo? + NeMoldt =M dz,

t
t
oMol ol = /e)‘s dZ, & o =e Mop + e_At/ e dZ,
0
0

Thus, the squared volatility process o2

increases by jumps and declines exponentially
between any two consecutive jumps. The rate of decay is set by the slow-down param-
eter A > 0. Figure 4.1 illustrates the joint behavior of the asset price process and the

volatility process.

One of the most popular choices for the Lévy driver is a CPPgyp, resulting in the
I-OU-BNS model.

Definition 4.1 (I'~OU-BNS model)

Assume the price dynamic follows the SDEs in Equations (4.1) and (4.2) with {Z;}:>0
being a CPPpyp(c, 7). Due to the exponential jump sizes, the stationary distribution
of o2 follows a Gamma law (cf. Barndorff-Nielsen and Shephard [2001]). Thus, we call
the variance process (07)¢>0 a [-Ornstein—Uhlenbeck process and the BNS model with
Lévy driver Z a I'-OU-BNS model.

Under a risk-neutral martingale measure, the drift components of the I'-OU-BNS model
have to satisfy

cp
n—p

p=r— B=-3 (4.4)

where r denotes the constant risk-free interest rate. For more details on the choice of
the risk neutral measure? within this model setup, we refer to Nicolato and Venardos
[2003]. A striking feature of this model is the existence of a closed-form expression for
the characteristic function of the log-price process X, as stated in the next theorem.

Besides the I'-OU-BNS model there is only one other model specification known with

2Heuristically, the risk neutral measure is a probability measure such that the asset price coincides
with the discounted expectation of the future asset price under this measure. A rigorous mathe-
matical definition can be found in standard textbooks on financial derivative pricing, like Shreve
[2004].
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Asset price

0 0.2 0.4 0.6 0.8 1 12 14 1.6 18 2
Volatility

0.5 :
0.4 -
0.3 |
0.2 -
0.1 | | | | | | | | |

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Asset log-returns

Figure 4.1 The above graph shows the asset price process S, the middle graph shows
the volatility process o, and the graph below the daily log-returns AX.
A negative jump in the asset value process appears with a simultaneous
increase in the volatility, which is a quite realistic stylized fact and can
be seen as a market shock. Right after such a shock there is a great
nervousness and thus a high volatility. As time goes by the volatility
calms down until the next jump occurs. This volatility clustering can be

detected in the last graph.

the property of a closed-form characteristic function, namely the so-called IG-OU-BNS
model, where the stationary distribution of the variance process is inverse Gaussian
(cf. Barndorff-Nielsen et al. [2002]).

76
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Theorem 4.2 (Characteristic function in the I'-OU-BNS model)
Let S = {S;}+>0 follow a I'-OU-BNS model, then the characteristic function of X; =
log(S;) is given by

E "X = exp (iu(Xo+ put) — gho? 4+ — (Trog 1=IL 4 f,4
e ] eXP(lU( otut)—g ao+n_f2 Y ogn_iuerfz ;
with
2 _2pi 1— —At
9= 251u7 = exi( ), fii=iup—gh, f2::iup—§-
Proof
See Nicolato and Venardos [2003]. O

4.2 The BNS model with decoupled jumps

The BNS model, as described in the previous section, incorporates the leverage effect
in a rather restrictive manner: Fwvery jump in the volatility process is accompanied
by a jump in the stock price and vice versa. Obviously, this strong link can seriously
be doubted. On the one hand, a sudden jump in the stock price may trigger several
limit and stop orders. Hence, from an economic perspective, it makes sense that rising
volatility can be a side effect of asset prices jumps. On the other hand, suddenly
changing volatility can have manifold reasons; some reasons are presented in, e.g.,
Shiller [1988]. Furthermore, performing a statistical analysis, Jacod and Todorov [2010]
scrutinize the jump behavior of the S&P 500 and its volatility process and obtain
strong evidence for the existence of separate and joint jumps in both the asset price
and its volatility. Thus, a model establishing different levels of dependence between
agset price jumps and volatility jumps could provide a more realistic behavior of the
stylized facts of asset price dynamics than the classical BNS model. In this section,
we mitigate the strong link between asset price jumps and jumps in the volatility and
present the BNS model with decoupled jumps, which incorporates a stochastic variance
process following a Lévy-subordinator-driven Ornstein-Uhlenbeck process, Lévy jumps
in the log-price process, and flexible dependence between log-price process jumps and

volatility process jumps.
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4 Decoupling of volatility jumps and asset jumps in the BNS model

Definition 4.3 (BNS model with decoupled jumps)
We say that a positive asset price process S = (S;)¢>o follows a BNS model with
decoupled jumps, if the log-price process X = {X;},5( = {log St};>( has the dynamics

dX; = (u+ Bo?)dt + oy dW; + dY;, (4.5)
do? = —\o2dt +dz;, (4.6)

where W = {W,;},-, is a Brownian motion, (Y, Z) = {(¥%, Zi)};>( is a 2-dimensional
pure jump Lévy process, i.e. the process has no Brownian component. Furthermore, Z
is a subordinator, i, 8 € R, and 08, A > 0, and we require that Y and Z are mutually

independent of the Brownian motion W.

The main difference between the classical BNS model and the BNS model with de-
coupled jumps lies, as the name says, in the (weaker, and more flexible) relation-
ship between volatility and asset jumps: In the classical BNS model, every (upward)
volatility jump is accompanied by a downward jump in the asset price process, while
the parameter p steers the magnitude of the asset price process jump. Conversely,
in the decoupled model, this one-to-one relationship does not hold anymore: Similar
to the development of the Cox—Ingersoll-Ross-type stochastic volatility models from
Heston [1993] over Bates [1996] to Duffie et al. [2000], the dependence of volatility
and asset prices becomes more sophisticated, since we only assume to have some de-
pendence structure preserving the two-dimensional Lévy structure of Y and Z. Some
suggestions how to construct dependent Lévy processes are elaborated in Deelstra and
Petkovic [2010], which we already discussed in Chapter 3 for the case of compound
Poisson processes. We start with stating one special subclass, which is constructed by

linear dependence.

Example 4.4 (General linear dependence BNS model)
Let Z = (Z},...,Z")>0 be an n-dimensional Lévy subordinator with independent
coordinate processes and let p € R™. Furthermore, let £ € {0,1}" with at least one

§ =1,7=1,...,n. Then the model following the dynamics

dX; = (u+ Bo?) dt + oy AW, + p/'dZs,
do? = —\o? dt + ¢'dZ,

is called the general linear dependence BNS model.
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Choosing n = 1, & = 1, and p = (p) with p < 0, the linear dependence model
boils down to the “classical” BNS model. Choosing n = 2, € = (1,1), and p =
(p—, p+) with p_ <0 < p4, the linear dependence model reduces to the two-sided BNS
model of Bannér and Scherer [2013], which we introduce in more detail in Section 5.1.
Furthermore, the construction principle in the model described in Definition 4.3 is
very flexible and easily extends several models existing in the literature as, e.g., OU-
stochastic volatility versions of jump-diffusion models described in Merton [1976] or
Kou [2002].

Besides the linear construction, dependent Lévy processes can also be constructed by
a joint time change. When introducing dependence by joint time change between
independent Lévy processes, the link between the jumps in the volatility and asset
price process becomes weaker and more blurry. Joint time change of two independent
Lévy processes causes the probability of joint jumps to rise due to “common clocking”,
but does not necessarily imply simultaneous jumps (as discussed above). In this setup,
time change is not employed to model some kind of business time (as, e.g., in Luciano
and Schoutens [2006]), but the time change construction is solely used as a technical
aid to establish a weak type of dependence between the Lévy processes, causing both

joint and separate jumps to occur in a stochastic manner.

As described in Deelstra and Petkovic [2010], a third possibility to construct depen-
dent Lévy processes can be obtained by linking the respective Lévy measures by Lévy
copulas, which was promoted by Tankov [2004]| and Kallsen and Tankov [2006]. Analo-
gously to linking marginal distributions by a copula (as described in Nelsen [2006]), one
may link univariate, independent Lévy measures by a Lévy copula. Lévy copulas are
functions fulfilling some regularity conditions linking the tail integrals w.r.t. the Lévy
measures. Sklar’s theorem for Lévy copulas (cf. [Kallsen and Tankov, 2006, Theorem
3.6]) states that this construction principle is a universal one, i.e. every dependence
structure in multidimensional Lévy processes can be constructed from independent
Lévy processes, linked by some suitable Lévy copula. From a purely mathematics
point of view, the universal concept of Lévy copulas makes the above mentioned con-
structions redundant. But for pricing purposes, a closed-form characteristic function
of (integrated) variance and asset price process is typically helpful. Furthermore,
a tractable simulation scheme for Monte Carlo simulation is essential. With linear
combination and joint time change of independent Lévy processes, the characteristic
function of the factors can be calculated at least in a semi-closed form and a simulation

scheme is immediately provided, while linking independent Lévy processes with Lévy
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4 Decoupling of volatility jumps and asset jumps in the BNS model

copulas typically exhibits difficulties concerning these issues. Therefore, our focus is

on linear combination and on time change constructions.

The next theorem derives the finite-dimensional distribution of the log-price process
in the BNS model with decoupled jumps, which is done by calculating the joint char-
acteristic function of the log-price process at finitely many points in time. As an
immediate corollary we get a semi-closed form solution for the characteristic function
of log-prices. In some cases, the characteristic function boils down further admitting
a closed form solution, which is essential for fast option pricing via Fourier methods.
One specification with closed form characteristic function is the so-called weak-link
I'-OU-BNS model, which we define in the next section. Theorem 4.5 is also used to

deduce convergence results for that model.

Theorem 4.5 (Finite-dimensional distribution of the log-price process)

Let the logarithmic price process {X;}>0 follow Equation (4.5) and denote by )y, z)
the characteristic exponent of the two-dimensional process (Y, Z). Assume, that Yy, 2)
is analytic on C = {z=(21,..., 29) € C?:Im(z) >0,V1<i<d}. Set n € N,
0=t <t1 <+ <ty,and uy,...,uy, € R. Define for all 1 < j <mn,

~ 1 _ A st) ._l ; _Qﬁ
U, .—Zuk, e(s,t) = e , f(u) = iup 5

a;(t) := —if(a;)e(t, t;) —1i Z f(ag) e(tp, tr) PN
k=j+1
Assume, V1 < j < n, there exists an M > 0, such that Re (¢(y, ) (@5, a;(t))) < M,
Vtj—1 <t <t;. Then,

n n

t
E |exp Ziuj Xy, =exp | iu1 Xy, + Z / Yy, z) (U, aj(s))ds + Aj ,
j=1 =\

where Aj = f (INL]) £ (tjfl, tj) e_)‘tj* 0'8 + i,uﬂj (tj — tjfl).

Proof
For the proof we adapt the calculation of the characteristic function of the classical

BNS model, cf. Nicolato and Venardos [2003]. Using Equation (4.5) yields

n

E [exp Zin Xt
j=1
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[ n
=E |exp | iu1 X¢, + Ziuj (Xt] thq)
_ =
[ N t] t]
=E |exp ileXtO—FZiij / (,u+50t2) dt + / o dWi+ Y, — Y,
J=1 i1 ti 1
i n t; t;
=E |exp | Y i / Bofdt+ / o dWi+Y;, — Yy, (4.7)
J=1 ti—1 ti—1

n
X exp iﬁl Xto + i,u Zﬂj (tj — tj_l)
j=1

By conditioning on the trajectory of Z, the squared volatility o2 becomes determin-
istic and j;tj_l o dW; becomes independent of the process Y. Moreover, we know
from the theory of stochastic integration with respect to Brownian motion, that
fti?;l o dW; follows a normal distribution with zero mean and variance fti?;l o?dt.

Note that the characteristic function of a A'(0, o2)-distributed random variable is given

by @ar(0,02) (1) = exp (_"; “2>, cf. Example 2.9. Hence,

t; 1 t;
exp | i / o AW, =exp | —5 i / ofdt | . (4.8)
ti—1 t

j—1
Therefore, by conditioning on the trajectories of Z, we get

E A

n t 2
E |exp Ziﬂj / Bo?dt+ / ordWy + Y, — Y4,
i J=1 i1 i1
- ) y )
=E |exp | Y (iﬁaj - ;q@) /afdt+2mj Y, =Y, ) || (49
j=1 i1 Jj=1

Note, that by the definition of the squared volatility process in Equation (4.6), we get
forall 1 <j <n,

do} = —Nofdt +dZ,
tji—1
& ol — 02,71 =— / Ao?dt + Zy; — Z;_,
t
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tjfl
1
& / of dt = A <_Ut21 + UtQjA + 2y — Zt"‘l)
tj
t; ti—1 b
—Atj_1 _ At M
& /detze by - Ung/eAsts —6T /eASdZ&
ti—1 0 v
1
T 2 (th thfl)
ti_
e—)\tj_l (]_ ek(tj—l_tj)) 2 i A
- X o+ / e’ dZs
0
tj 1 €>\($—tj)
L / —dz,
ti—1
—\t; ! /
_ec Jle/\(tj—L tj) 034_ / e dz, | + / E(s)’\tj)dzs,
ti—1

where we used that 07 = e ! 02 +e ! fg e*® dZ,, cf. Equation (4.3). Hence,

o~ 1.
Z <1Buj - 2u§) / o2 dt
Jj=1 tj_1
n n tj—1
=> fli)e(tj, ty)e Mitog+ ) / fig)e (b1, ty) 0 dz, (4.10)
j=1 j=1
+> [ rapetnaz.
]:1tj—1
Rearranging of summands yields
n tj—1
S [ st )i az,
Jj=1 0
n j—1 tr
=3 [ f@ett ) az
J=lk=14"
n—1 tr n
= > fig) ety ty) el dz, (4.11)
k=147 | g=k+1
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By combining Equations (4.9), (4.10), and (4.11), we obtain

t t
n
E |exp Ziﬁj /Batzdt—l—/atth-i-Y}j—Y}j_l
L J=1 ti—1 ti—1
- " )
=E |exp Z / Z flag)e j 1, t5) A(t_ti—l)dZt—i-Ziﬂj (}/tj_yt];l)
k=1, j=k+1 j=1
n t
+Z /f aj)e (s, t;)dZs | | exp Zf @) e (tj1, tj) e i1 gl
Jj= lt
=E |exp Z /1aJ dZt+Zlu] Y,5j71)
Jj= 1t

- 2
X exp Zf U] ] 15 ) fi- tog

= H E |[exp / iaj(s)dZ; + iu; (Ytj - }/2]'71)

j=1

At 2
X exp Efu] (tj—1, tj)e "oy |,

where the latter step follows from the fact that the 2-dimensional Lévy process (Y, Z)
has independent increments. Note, that the imaginary part of a;(t) is positive for all
1 <j <dandallt€R,. Therefore, a;(t) € C and the characteristic exponent 9y, z)
can by continued by Theorem 2.22. Hence, we can apply Theorem 2.26, which gives

tj

E |exp Zlu] /Batdt—k/atth%—YtJ Yi,

‘] 1 j 1 t] 1
=[] exp /w<y,z> (i1, a;j(s))ds + f (@) e (tj-1, t;) e 9 og | . (4.12)
j=1 ti—1
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Combining Equations (4.7) and (4.12), we get the final result,

ty
n n
E exXp Zlu] Xt]. = exp ile Xto + Z / 1/J(y’ Z) (12]-, aj(s)) ds + Aj s
Jj=1 J=1 i1
where Aj = f (fL]) € (tj—la t]’) e M1 0'(2) + 1,uﬂj (tj — tj—l)- O

Note that, if the characteristic exponent 9y, z) is given by the expression in Theo-
rem 2.19(ii), then 1y, 7y is always analytic and one of the two assumptions in Theo-
rem 4.5 is fulfilled, cf. Remark 2.23. As an immediate corollary of Theorem 4.5, we

obtain a semi-closed form for the characteristic function of the logarithmic price.

Remark 4.6 (Characteristic function of the logarithmic price process)
Let the logarithmic price process (X¢):>o follow Equation (4.5). With the assumptions

and abbreviations defined in Theorem 4.5, we have

t
ox,(u) =exp | iuXo+iupt+ f(u)e(0,t) US +/¢(Y,Z) (u, —i f(u)e(s,t))ds |,
0

(4.13)

denoting by vy, z) the characteristic exponent of the two-dimensional Lévy process
(Y, 2).

It is crucial for practical purposes that the integral appearing in Equation (4.13) is
solvable. This depends on the choice of the two-dimensional Lévy process (Y, Z). In
case (Y, Z) is constructed by jointly time-changing two independent Lévy processes,
the joint characteristic exponent can easily be expressed as a function of the marginal
characteristic exponents. In particular, if the two-dimensional Lévy process (Y, Z) =
(Yz, Zt)e>0 is constructed by jointly time-changing two independent Lévy processes
U = (Up)tz0, V = (Vi)r>0, i.e. it exists a Lévy subordinator T' = (T})¢>0 such that
Y, = Up, and Z; = V, a.s. for all ¢ > 0, then the joint characteristic function of (Y, Z;)

can be calculated by conditioning on 7} and

E [exp (i (uUr, +v V)] =E [exp (v (u) + v (v) T)]
—exp (tr (Yo (w) + v (v)) ),
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4.3 The weak-link I'-OU-BNS model

where Y7, ¥y are the corresponding characteristic exponents of U, V', and 1[17’ is the
Laplace exponent of T. A nice example, which falls into that construction principle
is the two-dimensional time-changed CPPgy,,. It even supports a closed-form solution
of that integral appearing in Equation (4.13). By using this process, the model boils

down to the weak-link I'-OU-BNS model, which we introduce in the next section.

4.3 The weak-link I'-OU-BNS model

A new model fitting in the model class is the weak-link I'-OU-BNS model, which em-
ploys the time change dependence structure between CPPgy, presented in Chapter 3.
For this model, we will see that the characteristic function of the log-prices can be

calculated in closed-form.

Example 4.7 (Weak-link I'-OU-BNS model)
Let X = (Xt)¢>0 follow the dynamics

dX; = (pu+ Bo?)dt + oy AW, — dY;,
do? = —\o? dt +dZ;,

with 4,8 € R, A > 0, W = {W;},5, being a Brownian motion, and (Y, Z) =
{(Y, Zt)}tzo being a time-changed CPPgy, with intensities cy, cz, jump size pa-
rameters ny, 1z, and dependence parameter k, i.e. there exist independent compound

Poisson processes T' = {1 },~q, U = {Ut};>0, V = {Vi},>( with respective intensities

cy cy L 1 . . .
G e fulfilling cy, ¢z > 0, cr = - max{cy, cz} and respective jump size

distributions Exp(l),Exp(%),Exp(%), ny,nz > 0, such that Y and Z can
be represented as the T-time-change of the processes U and V, ie. Y; := Ur, and

Zy:=Vr, as. forallt > 0.

Figure 4.2 shows simulated paths for the classical I'-OU BNS model and the weak-link
I-OU-BNS model. The graphs in the upper row show typical asset price paths of the
two models. Corresponding to these paths, the graphs beneath exhibit the volatility
process and the daily log-returns. On the left side, the jump correlation parameter of
the weak-link I'-OU-BNS model is set to be 80%, on the right side, this parameter is
20%. Thus, we have a strong dependence between the asset price jumps and jumps in

the volatility on the left side and a weak dependence on the right side. For the sake
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4 Decoupling of volatility jumps and asset jumps in the BNS model

of comparability, the Brownian motions and the asset jump processes of both models
coincide within one dependence configuration. Therefore, the difference between the
two models is determined solely by the jumps in the volatility process. Moreover, the
compound Poisson processes driving the volatility are identically distributed. One can
easily see that the volatility jumps are uncoupled from the asset price jumps in the
weak-link ['-OU-BNS model, i.e. there exist asset price jumps without simultaneous
volatility jumps and, on the other hand, there are volatility rises without negative asset
price jumps. The higher the jump dependence correlation parameter in the weak-link
I'-OU-BNS model, the higher seems the resemblance to the classical BNS model. This

impression is confirmed by a mathematical proof in Theorem 4.11.

For the weak-link I'-OU-BNS model, we immediately obtain an explicit expression for
the joint Laplace exponent. Since the joint Laplace exponent of a two-dimensional
Lévy process (which appears in the expressions in Theorem 4.5 and Remark 4.6) may
be a cumbersome object, we calculate it for the special case of dependence arising from
joint time change. The corresponding calculations for dependence arising from linear

dependence are straightforward, therefore, we omit them here.

Remark 4.8 (Characteristic exponent for the weak-link I'-OU-BNS model)
Let (=Y, Z) be the two dimensional jump process in a weak-link I'-OU-BNS model,
ie. (Y, Z) is a a two-dimensional time-changed CPPgy, with intensities ¢y, ¢z, jump
size parameter ny, 1z, and correlation parameter k. Thus, the time change inten-
sity is given by ¢r = max{cy, cz}. Then, the characteristic exponent of (—Y, Z)
can be expressed by the characteristic exponent of (Y, Z), which was calculated in
Theorem 3.7,

— icrcy uy + icrczuy
o o cr 77y+iuy (CT—Cy) cr nz—iuz (CT—Cz)
Yy, z)(uy, uz) =Y, z)(—uy, uz) = = " - ey,

CTT]y+iuy (Cchy) cT nzfiuz (Cchz)

As we have seen in Remark 3.8, this expression is continuable on the set C' :=

{(uy, uz) € C?: Im(uy) <0, Im(uz) > 0} and its real part is negative.

Alternatively to the weak-link I'-OU-BNS model, one could employ a weak-link also

by a one-sided time-change construction.
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Figure 4.2 Sample paths of the asset price process, the volatility process, and the
daily log-returns for the classical BNS model and the weak-link I'-OU-
BNS model. Left: x = 80%, right: x = 20%.
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4 Decoupling of volatility jumps and asset jumps in the BNS model

Remark 4.9 (Char. exponent of a one-sided time-change construction)
If the two-dimensional Lévy process (Y, Z) = (Y, Uy, )t>0 is constructed by two inde-
pendent processes Y and U with Y ~ CPPgxp(cy,ny) and U ~ CPPgyy(cr, nu), then

their joint Laplace exponent is given by
v ) = log (B [e1 Y1415 04 ]) = log (B [E [ 1] E [V | 7))

=y (iUY + @ZU(iUZ)) = Yy <iUY + ICUUZ>

nu —iug
o <IUY+WU—1“Z) . iuy (ny —iuz) +icyuz
N —i _ deyuz —iu —iuy) —icyuy
Ny —luy — 775, (ny y) (nu z) Uuz

This construction is slightly simpler, but less flexible than the weak-link construction.
In particular, a one-sided time-change construction only allows for separate jumps in
one component, while the jumps in the other component always occur jointly. Later,
we show that a model resulting from such a time change construction can be obtained
as limit of the weak-link I'-OU-BNS model (cf. Theorem 4.11).

Theorem 4.10 (Characteristic function of the weak-link I'-OU-BNS model)
Let X = {X;}+>0 be the log-price process following a weak-link I'-OU-BNS model (cf.
Example 4.7) and let u € Ry. Then the characteristic function of X can be calculated
in closed form and is given by

log ox, (u) = i (Xo + o) + J(u) £(0,1) 0 — S ) log (y(w) + e d(u)

with the following abbreviations

1 /. u?
)= (s =),
e(s,t) i =1—e 7D

. 2
o) = crezing gCTUY‘f‘lU(CT—CY)) ’
fw (cny +iu(d —ceycz))” —Enz (ny +iu)(Gny +iu(cd —cy cz))
5(u) = fuw)(erezny +iucy (ecp —cz) +iucy (ep —cy)) —iucpey nz
—f(w) (Gny +iu(ch — ey ez)) + gz (ny +iu)
nz (ny +iu)
c% nz (ny +iu) — f(u)e(0,t) (c% Ny —{—iu(c% —cy cZ)) ’

9

Y(u) =
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4.3 The weak-link I'-OU-BNS model

Proof

Since

w2
Im(—if(u)e(s,t)) = ﬂe(s,t) > 0,

Remark 4.8 yields that ¢y, zy(u, —i f(u)e(s,t)) exists for allu € Rand all 0 < s < ¢,

and is given by

— icr czz u ) + CTfC(Z )f(zi) f)(f:t) )
. c +iu(cr—c c —f(u s,t) (cr—c
d}(—Y, Z) (U, -1 f(u) 8(87 t)) = 14 T icyz r Tz e fi’u) E(S,S 2. (4:].4)

crny+iu(er—cy) ~ crnz—f(u)e(s;t) (cr—cz)

Furthermore, we know from Remark 4.8, that
Re (Y_y, z)(u, =i f(u)e(s,1))) <0, VueR,VO<s <t

The characteristic function of the log-price process can therefore be expressed by (cf.
Remark 4.6)

¢
ox,(u) = exp (iuXo +iupt + flu)e(0,t) of + /@Z)(_y’z) (u, if(u)e(s,t))ds) .
0

The only thing left to show is that

/1[)(_)/’2) (iu, f(u)e(s,t))ds = —CTT a(u) log(vy(u)) + erd(u)t. (4.15)
0

Using Equation (4.14)) and the abbreviations Ay := epny +1iu(epr — ¢y) and Ag :=
crnz — f(u)e(s,t) (er — cz), we obtain
—icpeyuAo +cercey f(u)e(s,t) Ay

¢(7Y, Z)(u7 —lf(U) 8(5,t)) = Al A2 +iCYUA2 — CZf(U)E:(S,t) Al' (416)

Note that

—iereyudy+erey f(u)e(s,t) Ar
=f(u)e(s,t)(crez Ay +icreyu(er —ez)) — ic%q/unz

=f(u)e(s,t) (crezny +iuvey (er —cz) +iueg (ep —cy)) er — ic%q/unz7
and

A1 As+icyuAs —cy f(u)e(s, t) Ay
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4 Decoupling of volatility jumps and asset jumps in the BNS model

=— f(u)e(s,t) (A1 (er —cz) +icyu(er —cz) +cez A1)+ Arernz +icyuerny
== f(u)e(s,t) (Arer +icy uler — cz)) + Gnz (ny +iu)
= — f(u)e(s,t) (chny +iu(ch — ey cz)) + chnz (ny +iu).

Therefore, Equation (4.16) boils down to

Vi—y, z)(u, =i f(u)e(s,t))

fw)e(s,t) (crezny +iucy (ep —cz) +iucy (ep —cy)) —icrey unz
) (5. ) (G i + 14 (G — ey 2) + Bz (y + 1)

rers ty

zers +w’

with

x:=— f(u) (erezny +ivey (er —cz) +iucy (e — 0y))e*)‘t,

y:=f(u) (ecrezny +iucy (er —cz) +iucy (cr —cy)) —iuercy ng,

z:=f(u) (Fny +iu(c} — ey cz)) e,
wi=— f(u) (G ny +iu(ct — ey ez)) + Gz (ny +iw).
To solve the following integral,
t t \
. et +uy
— d 4.1
/1/1(Y,Z)(Ua 1f(u) / T ers w0 (4.17)
0 0

we remark that for arbitrary z,y, z, w € C with z exp(As)+w, z,w # 0 for all s € [0, ¢],

the derivative of the function

((s) == 1 (E - g) log (ze)‘s—kw) +%s, s € 10,1,

z w

turns out to be

C,(S):l(x_y),z)\e’\s+y:(wac—yz)6)‘54-2/(,2'6“—i—w)
Az w/ zers+w  w wzers + w?

As

ze’® +y

ze s +w

for all s € [0,t]. Hence, Equation (4.17) boils down to

Uy, z)(u, =1 f(u)e(s, b)) ds =cr (((t) — €(0))

o _
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4.3 The weak-link I'-OU-BNS model

At
t
_or (f——y)log (Ze +w)+CTy . (418)
w

A \z  w z4+w
Note that
T _crezny +iuey (cr —cz)+iucy (ep —cy) (4.19)
z c%neriu(c%chcZ) ’ ’

y _ fw)(erezny +iucy (er —cz) +iucg(er —cy)) —iucrey ng — b(u)

w o —f(u) (C%ny+iu(czT—0ch))+c?[,nz(ny—|—iu)
(4.20)
zeM 4w 1z (ny +iu)
= - 5 — =(u), (4.21)
srw Bzl +iw) = F) (0,0 (G +iu(G — ey 7))
and
r_ v
z W

(crezmy +iucy (er —cz) +iucg (cr —ey)) Enz (ny +iu)
f(w) (Gny +iu(d — 0ycz))2 —cnz (ny +iv) (G gy +iu(cd —cycz))
iucrcyng (C%UY—Fiu(CQT —0ycz))
f(u) (c?pny —i—iu(c%, — cYcZ))2 — c?pnz (ny +1iu) (c%ny —i—iu(c% — 0ycz))
(crezn} +iuny (crey —2cy ez +2crcez) —u? (crey —2cy ez +creg)) chny
f(u) (Gny +iu(E —cy cz))2 —cnz (ny +iuv) (G ny +iu(cd —cy cz))

cr ey Nz (iucgp ny —u®(ck —cy CZ))

- f(w) (Gny +iu( —cy cZ))2 —cdnz (ny +iv) (G gy +iu(cd —cycz))
_ crezng (c%n%, +2iuny cr (er — cy) — u? (02T0y —2cy cr +c§,))
f(u) (c%ny —i—iu(c% —cy Cz))2 — c%nz (ny +iu) (02T77y + iu(cZT —cy cZ))
_ creznz (erny +iuler — cy))?
f(u) (Eny +iu(d —cy Cz))2 — &z (ny +iv) (Gny +iu(ck —cycz))
=— a(u). (4.22)

Combining Equations (4.18), (4.20), (4.21), and (4.22) yields

[ iz i Fwe(s, ) ds = = afw) log(r(w) + e (u)t
0

which is the desired expression from Equation (4.15), and concludes the proof of the

theorem. ]
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4 Decoupling of volatility jumps and asset jumps in the BNS model

Obviously, the time-change construction in the weak-link I'-OU-BNS model always
establishes nonlinear dependence between the asset price and the squared volatility
process. Therefore, the weak-link I'-OU-BNS model is not a true extension of the
classical I'-OU-BNS model. But we can show that the classical I'-OU-BNS model
occurs as a limiting case as motivated in Figure 4.2. Thus, the weak-link I'-OU-BNS
model can be considered as an extension where the I'-OU-BNS model occurs as a
limiting case. Dependent on the setting, a dependence structure resulting from a one-
sided time change construction (cf. Remark 4.9) occurs as limiting case. Theorem 4.11
investigates the limit behavior of the weak-link I'-OU-BNS model.

Theorem 4.11 (Limit of the weak-link I'-OU-BNS model)

Let the logarithmic price process X” of a weak-link I'-OU-BNS model, with  being the
respective jump dependence parameter, cy, cz the intensities, and 7y, nz the jump
size parameters of the driving two-dimensional time-changed CPPgy, (Y, Z). Then,
the finite dimensional distribution of X* converges in law to the finite dimensional
distribution of the limit process X for x 1, i.e. (X}, X{,.
to (X¢y, Xtgy--, Xy,) foralln € N, 0 <ty <--- <t,.2 The structure of the limiting

process X depends on the intensities ¢z and cy in the following way:

" .
.., X{) converges in law

® Cy > Cz:
X can be represented by a construction as described in Remark 4.9, i.e. by
the two-dimensional Lévy process (—17,57Zt)t20 = (—fft,Uﬁ)Qo, where Y ~
CPPryp(cy, ny) and U ~ CPPEXP(%, %) are independent.

® Cy > Cy:
Again, X is given by the construction as described in Remark 4.9, i.e. by
the two-dimensional Lévy process (—YQ,Z)QO = (_UZtvzt)tZ()? where Z ~
CPPryp(cz, nz) and U ~ CPPEXP(%, %) are independent.

e cy =cy:
X is given by a classical I'-OU-BNS model, i.e. by the two-dimensional Lévy

process (pZy, Zt)tzo, where p = _% and Z is a CPPrxp(cz, n2).

3This type of convergence is called finite-dimensional convergence along R, cf. [Jacod and Shiryaev,
2003, IV.3.13].
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Proof
Using Theorem 4.5, the problem boils down to showing that the characteristic exponent
of (Y*, Z*) converges pointwise to the characteristic exponent of (Y, Z).

By Remark 3.7, we know

icTCYuy + iCTCZUZ
W (uy,uz) = crny —iuy (er—cy) ' ermz—iuz(cr—cz)
(Yr,z=)\Uy, Uz . icrcey uy . icrczug
crny —iuy (er—cy)  ermnz—iuz (cr—cz)

Consider ¢y > ¢z, then

lim w(ynjzn)(uY,uz): lim w(ynjzn)(uY,uz)

K,/ er\ey
iuy + iczug

— Ny cy nz—iug (cy —cz)
_Yl_luY_ iCZ’lLZ

ny cy nz—iuz (cy —cz)

iu : :

77;/ (cynz —iug (cy —cz)) +iczuy
=Cy .

<1 — 1;‘5) (cynz —iug (cy —cz)) —iczuy

3 cy Nz _ ; s CZ Ny

11Uy (763/_02 1uz> + licy—cz Uy
:cY

. cy 1 . Al ’
(= uy) (222 —iuz) =10 uy
which coincides with the characteristic exponent of a one-sided construction with
claimed parameters, cf. Remark 4.9.
In case of ¢y < ¢z, we get the result analogously.

Now assume cy = cz, then

iuY—f—iuZZ—’Z’

im Yyw zny(uy,uz) = Um Yyw zn)(uy,uz) = cz

k1 cr \(Cy ny—iuY—iuan’

nz

which coincides with the joint characteristic function of Z and pZ. |

4.4 Application: The weak-link I'-OU-BNS model in

action

In the previous section, we have shown that the weak-link I'-OU-BNS model class
truly generalizes the classical BNS model and still preserves tractability concerning
numerical treatment in the sense of rapid calibration via Fourier pricing methods.

Hence, we think that the model is an interesting candidate to serve for derivatives
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4 Decoupling of volatility jumps and asset jumps in the BNS model

pricing. In this section, we have a closer look on the calibration to market prices of
plain vanilla options and scrutinize the sensitivity of the model-implied volatility skew
to changes in the parameters. Furthermore, we point out an example (down-and-in
call options) where the weak-link property leads to tremendously different valuation

results compared to the classical BNS model.

We begin with a calibration exercise and benchmark the calibration results of the weak-
link I'-OU-BNS model with the results from a classical BNS model. We calibrate both
models to intraday quotes of put and call options on the Dow Jones Industrial index
as of 2015-Feb-12 provided by Thomson Reuters. The maturities range in between
one week and three years with strikes from 6000 to 25000. The spot price is 17895.
We performed the calibration exercise with 363 European call and put options.* US
treasury rates serve as risk-less interest rate approximation. Options are priced via the
risk-neutral approach, i.e. we assume the dynamics presented in the previous chapters
are given with respect to a martingale measure. Then, the risk-neutral drift parameters
in the classical I'-OU-BNS model have to fulfill (cf. Equation (4.4))

Cy p Cy

H=T—= =T—- )
Nz —p ny —1

B=—=

where r is the risk-less interest rate. Note, that the parameter p of the classical ['-OU-
BNS model can be expressed consistently with the notation of the weak-link model by
p= Z—i The risk-neutral drift conditions for p and S in the weak-link I'-OU-BNS are
the same as in the classical one. As objective function for the optimization procedure
in the calibration, we employ the mean absolute error (MAE) on the implied volatilities

of the options.

The results from the calibration exercise are shown in Table 4.1. We can see that, as
one would expect, the weak-link I'-OU-BNS model observes a slightly better calibration
performance than the classical I'-OU-BNS model with strictly coupled jumps. As one
can read from the calibrated parameters, this primarily stems from the model feature
to allow for more volatility jumps than asset price jumps. Moreover, a two-sided
decoupling property of the model (i.e. a jump correlation parameter k < 1) cannot be
observed in the plain vanilla option prices. In our calibrated model, every downward
asset price jump is accompanied by a sudden volatility jump, but not vice versa, i.e.

there exist sudden rises in volatility without any immediate downward asset price. This

41f there are put and call options with the same strike and same maturity, we select the respective
option, which was more liquidly traded.
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Model ‘ MAE ‘ ) ‘ cy ‘ cz ‘ Ny ‘ Nz ‘ A ‘ K ‘
“Classical” T-OU-BNS | 0.94 | 0.114 | 0.59 | 0.59 | 9.47 | 6.17 | 2.37 —
Weak-link I'-OU-BNS | 0.81 | 0.108 | 0.84 | 0.35 | 10.86 | 3.60 | 2.42 | 0.999

Table 4.1 The calibration performance of the weak-link I'-OU-BNS model compared
to the classical one. The calibration error (MAE) denotes the mean abso-

lute error per option in volatility points.

is actually in line with the arguments of Shiller [1988|, where multiple reasons for rising
volatility are described. On the other hand, the volatility hikes being accompanied by
sudden asset price deterioration may be interpreted as materialization of the leverage
effect, where deteriorating asset prices cause higher volatility due to higher leverage

on the balance sheet of the respective companies.

Sensitivity of the implied volatility skew

To obtain better intuition for the weak-link model, we observe the impact of the
newly introduced parameters on the implied volatility skew. Since the classical I'-
OU-BNS model is solely enhanced by the separate volatility jump intensity as well as
the jump correlation parameter, we focus our analysis on the sensitivity towards these

parameters.

We start analyzing the impact of the jump correlation parameter x: As we can see
in Figure 4.3, throughout the different maturities, the jump correlation parameter
somehow (similar to the asset jump height) controls for the skewness of the plain
vanilla prices: Complete independence of volatility and asset price jumps results into
a more symmetric volatility skew, while higher jump correlation parameter result in
relatively higher put prices and lower call prices. This phenomenon can be explained
by the ATM peak of an option’s vega. Hence, OTM put prices value joint downward
jumps in the asset price and upward jumps in the volatility higher than OTM call
prices (the “vanna”, i.e. the second order cross derivative w.r.t. implied volatility and
the spot price, is negative for OTM puts, while it is positive for OTM calls). But the
impact of the jump correlation parameter is far weaker than the impact of the asset
price jump height, which drives the skewness much more direct via the respective

option’s delta.
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Figure 4.3 Volatility smiles in the Weak-link I'-OU-BNS model with calibrated pa-
rameters of the I'-OU-BNS model (o9 = 0.114, ¢y = ¢z = 0.59, ny =
6.17, A = 2.37, ny = 9.47) for different levels of dependence (jump corre-
lation parameter k). By moneyness, we actually mean the call moneyness,

i.e. strike/spot.

We continue by analyzing the impact of the volatility jump intensity on the skewness by
assuming constant average expected volatility: Asone can see in Figure 4.4, the implied
volatilities in the wings rise with more occasional, but sharper upward jumps (low jump
intensity, accompanied by higher jumps), while the ATM volatilities become flatter.
Overall, the parameter ¢y controls for the pronouncedness of the smile (compared to

the jump correlation parameter, controlling the skew).

Jump into the money - where the weak-link property matters

At first sight, the weak-link property of the model does not seem to provide tremendous
added value: We observed that fitting the model to a surface of European options
does not provide a tremendously better fitting of the observed prices compared to the

classical I'-OU-BNS model. Moreover, particularly the jump correlation parameter s
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Figure 4.4 Volatility smiles in the Weak-link I'-OU-BNS model with calibrated pa-
rameters of the I'~OU-BNS model (og = 0.114, A = 2.37, ¢y = 0.59, ny =
9.47, k = 1) for different volatility jump intensities (cz). To keep the av-
erage level of volatility comparable, we adjust the jump sizes accordingly
such that the average jump impact on the expected volatility remains

constant.

seems to be difficult to obtain from quoted European options. We suppose that this is
due to the payoff structure of a European option: European call options (which suffice
to look at due to put-call parity) solely consider the terminal asset price value to be
important. Thus, only the average price fluctuation (concerning volatility and jumps)
determines the payoff. But when moving to path-dependent options, the coupling

degree of jumps and volatility becomes more important.

Consider a down-and-in call option® with a payoff 1 fmingepory S,<BSo}} (ST — KSy)™,
i.e. a relative strike value K > 0, maturity T > 0, and a relative barrier level B < 1

activating the payoff of the option when crossed downwards.

’Due to the “barrier parity relationship”, we could similarly look at a down-and-out call option,
which may be slightly more popular in derivatives markets. We stick to the knock-in option, since
we think that it provides more intuition about the weak link feature of the model.
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4 Decoupling of volatility jumps and asset jumps in

the BNS model
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Figure 4.5 Option prices for different levels of jump correlation parameters x. The
maturity of the option is fixed by T' = 0.2, the spot is Sg = 17985, and

the interest rate is assumed to be zero. The left subfigure shows prices of

plain vanilla call options, the other two subfigures illustrate prices of down-

and-in call options. The sensitivity w.r.t. the jump correlation parameter

becomes particularly high for options that are already in-the-money, but

yet deactivated.

In comparison to a plain vanilla European call option, the down-and-in call option is

much more sensitive to the coupling of asset and volatility jumps: A downward jump

causes the option payoff to be activated, while rising volatility enhances the value of

the activated European option. Vice versa, rising volatility may enhance the overall

value of the barrier option, but in case of a non-activated option, its value is limited

in spot regions that are far above the activation barrier. To price these down-and-in

call options, we obtained the model parameters from a calibration to market quotes

of European options for fixed values of k. Moreover, we considered a subclass of the

weak-link I'-OU-BNS model class by setting ¢y = ¢z. This ensures, that the prices for

k 1 showed in Figure 4.5 correspond to the classical I'-OU-BNS model, as shown
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4.4 Application: The weak-link I'-OU-BNS model in action

in Theorem 4.11. As you can see in Figure 4.5, for a set of model choices (by varying
the parameter k) we get, on the one hand, same vanilla prices (by construction), but
on the other hand, totally different down-and-in calls. In particular, when the option
is in-the-money, but not activated yet, the jump correlation sensitivity is particularly
high. The pricing of the down-and-in-call option is done via Monte Carlo simulation

and an Fuler discretization scheme. We used 100 steps and and 1000 000 scenarios.
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5 Sequential modeling of multivariate

financial markets

In this chapter, we present a new methodology to generalize univariate models to the
multivariate case. Jump diffusion models, whose jump part is driven by a compound
Poisson process with exponentially distributed jumps, are considered. Particularly,
time-changed CPPgy;, are used to construct multivariate extensions of three univariate
jump diffusion models: the I'-OU-BNS model - the model which we already introduced
in Section 4.1, Kou’s model (cf. Kou [2002]) — a model with constant volatility and
two-sided exponentially distributed jumps, and the two-sided I'-OU-BNS model — a
combination of the '-OU-BNS model and Kou’s model. A multivariate extension of the
BNS model class employing matrix subordinators is designed in Pigorsch and Stelzer
[2008] and pricing in this model is scrutinized in Muhle-Karbe et al. [2012]. Unlike
these models, we use a bottom-up approach. That means, we start with d univariate
models and merge these to one multivariate model by introducing a certain dependence
structure. The most appealing feature of our ansatz is the separability of the marginal
distributions from the dependence structure, rendering our multivariate models quite
handy. We can divide the model parameters into two sets: the parameters deter-
mining the marginal distribution of each one-dimensional model and the parameters
determining the dependence structure. This separation feature provides convenient
effects in terms of practical issues. For example, a calibration can be carried out in
two subsequent steps: first, the univariate models can be calibrated to market quotes
of options on single assets, second, one can set the dependence parameters without
affecting the already fixed marginal distributions, which we will see in the concluding
Section 5.5 on some applications. But first, we shortly introduce the one-dimensional
models in this chapter’s fundamental Section 5.1 and present the multi-dimensional
versions in Sections 5.2, 5.3, and 5.4. The theoretical results within this chapter, as
well as the calibration exercises, are also published in Mai et al. [2014] and Bannor
et al. [2015].
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5 Sequential modeling of multivariate financial markets

5.1 Fundamentals: One-dimensional models

This section is dedicated to introduce the univariate models, which are generalized later
in this chapter. Since we already investigated the I'-OU-BNS model in Section 4.1, we
only introduce Kou’s model and the two-sided ['-OU-BNS model. All of these models
support the striking feature of a closed-form solution for the characteristic function of

the log-price process.

Kou’s model (cf. Kou [2002]) is an exponential jump diffusion model with constant
and deterministic volatility. It supports positive and negative jumps, driven by two
independent CPPgy.

Definition 5.1 (Kou’s model)
The asset value process S = {Si}+>0 in Kou’s model is given by S; = Spexp(Xy),

where
Xy =pt+oW+ 25— 7,

with Sp > 0and o > 0. ZT = {Z; }i>0 ~ CPPry, (¢T, nT), 0T > 1,27 = {Z; }1>0 ~
CPPgxp (¢7, n7), and W = {W;}4>0 is a standard Brownian motion. All processes

are mutually independent.

Under an equivalent martingale measure, the drift has to satisfy

2 + -

¢
M_r_?_n+—1+77_+1’

where r denotes the constant risk free interest rate. The drift is similar to the drift
in the I'-OU-BNS model, however, the volatility component is now constant and,
additionally, there is a compensation for negative jumps. Relevant for the pricing of
options via Fourier inversion methods is the closed-form solution of the characteristic

function of Xy, namely

: 1 i B

This formula follows directly from Example 2.9 and the assumption on the indepen-
dence of W, ZT, and Z~.
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5.1 Fundamentals: One-dimensional models

In contrast to the BNS model, the log-price process X in Kou’s model is a Lévy process.
Thus, it is not surprising that the characteristic function of X; is of exponential shape
(cf. Theorem 2.19). The BNS model class was extended by Bannér and Scherer [2013]
to incorporate two-sided jumps in the asset price process. In the following we define
one representative of that class, the two-sided I'-OU-BNS model, which combines
the stochastic volatility from the BNS model with the two-sided jumps from Kou’s

model.

Definition 5.2 (Two-sided I'-OU-BNS model)
We say that a stochastic process {S;}i>0 follows a two-sided I'-OU-BNS model, if the
log-price X; := log Sy follows the dynamics of the SDEs

dXe = (n +B07)dt+o0e AW, + py dZF + p-dZ;,
do? = —No?dt+dzt+dz;,

with independent processes ZT = {Z;'}is0 ~ CPPpxp (¢cT, n%), Z7 = {Z; }i>0 ~
CPPrxp (¢, n7), and W = {W; };>0 being a Brownian motion independent of Z* and
Z7,ueER A>0,p >0,p_<0.!

Under a risk neutral martingale measure, the drift has to satisfy

ot ot o

p - 1
P 62_77

H=Tr— + — —
nt—pt 0 +p 2

where r denotes the risk-neutral drift.

Theorem 5.3 (Characteristic function in a two-sided I'~-OU-BNS model)
Let S = {S¢}+>0 follow a two-sided I'-OU-BNS model, then the characteristic function
of X; =log(S;) is given by
+ + + +
iuX,] _ . 2 c n n—fi +
E[e t] _eXp<1u<X0+Mt>—gh00+Tl+_f2+()\ logm‘i‘fé t)

c n- n— ~
I e )
-~ <A n—iupm P

!Compared to the original formulation of the model in Bannér and Scherer [2013] and the original

BNS model from Nicolato and Venardos [2003], we do not change the clock of the subordinators to
t — At. This formulation is equivalent and more handy in the upcoming multivariate construction.
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5 Sequential modeling of multivariate financial markets

with
u?—-2fi0u 1 —exp(=At)
g = 2 ’ - A ’
T i=iup*—gh, fi5:=iup -3 x € {+,—}.
Proof
See Bannor and Scherer [2013]. O

5.2 A multivariate BNS-I'-OU model

We model a portfolio of d assets, each represented by a one-dimensional BNS-I'-OU
model. The dependence between the diffusion components is treated as in the standard
market models living in a Brownian world. The jump components driving the volatility
processes, however, are made dependent via the construction of time-changed CPPgyp,
from Chapter 3, making it possible for two or more assets to jump simultaneously,
and introducing dependence to the stochastic volatility processes. The induced depen-
dence between the jump components is determined by the dependence parameter k.
Independently of the choice of k, the marginal distributions remain the same. We are

thus able to describe the portfolio model by two separated sets of parameters:

(1) The parameters determining the marginal distributions of the assets: a I-OU-
process with leverage under an equivalent martingale measure is determined by
five parameters: one parameter for the jump intensity, one parameter for the
jump sizes, one slow down parameter for the stochastic volatility, one leverage

parameter, and one initial value for the volatility process.

(2) One set of parameters for the dependence structure of the assets: a correlation

matrix X for the Brownian parts and the coefficient x € (0, 1) for the jump parts.

The construction works as follows. We consider a probability space (€2, F,P), on which

we define the following processes.

(a) The process W = (W(l), R W(d)), which is a d-dimensional standard Brownian

motion with correlation matrix X.
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5.2 A multivariate BNS-I'-OU model

(b) Independently of the process in (a), we define a d-dimensional time-changed

CPPgyp, i-e. we have independent Poisson processes NO . N@ with inten-

C1 Cd

sities Y .
cr—cy cr—cyg

Moreover, for each i = 1,...,d we let {J]@}jeN be a

sequence of i.i.d. random variables with Jl(i) ~ Exp (%)’ independently of
the previous processes. We suppose the jump size parameters 1y, ..., ng > 0 and

the intensities ¢1,..., ¢g > 0 to be given and we set ¢y := %maxlggd{ci}.

(c) Independently of the processes in (a) and (b), let T = {1} }4>0 ~ CPPryxp(cr, 1).

Definition 5.4 (Multivariate BNS-I'-OU model)

Having defined these processes on our probability space, for each ¢ = 1,...,d, we
describe asset ¢ in the multivariate BNS-I'-OU model by a one-dimensional BNS-T'-
OU model, i.e. St(i) = S(()i) exp (Xt(i)), where

@) _ (,_ _CGPi 1 ) @) @ o 470
dXt = (T F— 5 (O't ) ) dt—l—ot th —|—pZdZt , (52)
0 2 ) 4
(CORREURIED "

with Z = (Z(l), cee Z(d)) being a d-dimensional time-changed CPPry.

For pricing multi asset options by Fourier methods, a simple expression for the joint
characteristic function of XM, ... X (4 is useful. In our multivariate BNS-I'-OU model
we can at least calculate it in closed form within the special case of independent

Brownian motions. This is done in the next theorem.

Theorem 5.5 (Joint characteristic function in the multivariate BNS model)
Assume that W(l), ey W) are independent. Define for all 0 < s <t,1 <k <d, and
fixed u = uq,...,uq € C%,

uk—iu%

T a (e/\’“(s_t) — 1) + ug k-

Ju(ssuk) =

Then, the joint characteristic function ¢x, of X; = (Xt(l), . ,Xt(d)> is given by

d . 2
. Ck Pk lug +ujp [ 5y (k))2
1 :§ t{r— Kt —crt
o8 (Px.(w) k:11Uk <T 771:—/%) o (e ) (UO ) r
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5 Sequential modeling of multivariate financial markets

¢ d

1
+/CT (1_2 icy fr(s;u) )) ds.

/ = cpnp — i fr(s;ur) (er — ck

Proof
By using the model Equation (5.2), we get

PXt (u) =E

d
IIe™ XE’“]
k=1
d Ch P 1 t 2 t k
—E | exp (iuk (rt— t— / (agk)) ds+/ o™ aw® + p, 2 )>> .
P m—rr 2 Jo 0

k)

Conditioned on the trajectory of Z(*). the volatility process ¢(*) is deterministic for

all 1 < k < d. Therefore, with a same argument like in Equation (4.8), we get

t R 2
E [exp </ iuyg agk) dWs(k)>' (quk)> } = exp <—k / (o@) ds> .
0 u<t 2 0

Hence, by conditioning on the trajectories of Z(), ..., Z(@ Equation (5.4) boils down

to

PXi (u) =E

d ' )
Hexp (—1 (iuk +u%)/ (agk)) ds +iug px Zt(k)>
k=1 2 0
a Ck Pk
ex iugt|r— ——— , 9.9
(S (520 &

k=1

Using Equation (5.3), the integrated variance process can be simplified for all 1 < k <

d, namely

(ogk)>2ds = )\1k (— (ng)y + (a(()k))Q + Zt(k)> .

106



5.2 A multivariate BNS-I'-OU model

Combined with Equation (5.5), we get

d . ,
exp (;iukt (7’ — mjk_PI;k> n 1u;; ;\Lkuk (ef’\’“t _ 1) (o(()k)>2>  656)

Define for all 0 < s <t, 1 <k <d,

uk—iui

fe(siug) = T h

(M= =1) + i,

and note that f(s) := (fi(s;u1),..., fa(s;ug)) is continuous. Furthermore, as cal-
culated in Theorem 3.7, the characteristic exponent of the time-changed CPPgyp
Z = (Z(l), ey Z(d)) is given by the expression
Skt e J
vz(v) = - - , YveR“ (5.7)
L= 2 k=1 rm—toy (er=en)

Remark 3.8 states that this expression is analytic and can be continued on C :=
{z = (21,...,29) €C%:Im(2)>0,V1<i< d} with E [eizTZ] = e¥%2(2) for all 2 €
C. We intend to apply Theorem 2.26 on Equation (5.6). Thus, we must ensure that
f(s) € C and Re(vz(f(s)) <0 for all 0 < s < t. By the definition of f,

u?
Im( fr(s;ug)) = -

- (1—eAk(S—t>>>o, VO<s<t 1<k<d,
2\

and hence, f(s) € C for all 0 < s < ¢t. Moreover, by Remark 3.8, we know that
Yz(z) < 0 for all z € C. Thus Re(¥z(f(s)) < 0 for all 0 < s < ¢. By using
Theorem 2.26 and Equation (5.7), Equation (5.6) boils down to

t d . ) —1
¢x,(u) =exp /CT (1—2 L Tl > ds | exp (—crt)

) = cr i — 1 fr(s;ur) (er — )
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i, ; _ Ck Pk +iuk—|—u% Mt (k) 2
exp iugt|r — A e o0 .

k=1

And the claim follows. O

To price path-dependent multi-asset derivatives, it is important to have a fast simula-
tion scheme for the price process. This can be achieved due to the efficient simulation
of a time-changed CPPgyp, (cf. Algorithm 3.20). In the following, we give a simplistic
scheme how to simulate path in the multivariate BNS-I'-OU model.

Algorithm 5.6 (Paths of the asset values in the multivariate BNS model)

Suppose the following parameters to be given: the initial values and initial volatilities

for each asset, i.e. S(()l),...,Séd) and (aél))Q,...,(a(()d))Q, jump parameters for the
processes ZM, ... ZW@W je. ¢1,...,cq and M,...,N4, the slow-down parameters of
the volatility processes A1, ..., Aq, the leverage parameters py, ..., pq, the maturity ¢*,
the correlation matrix ¥ of the d-dimensional Brownian motion (W) ... W(@) the

dependence parameter x for the jump parts, and the constant interest rate r.

(1) Perform Algorithm 3.20 and receive a d-dimensional time-changed CPPgy, Z =
(zW,..., ZD)

(2) Define a partition 0 =ty < t1 < --- < tpr =t* on [0, t*].
(3) Foreach 1 <i< M do

(a) Draw a d-dimensional normally distributed vector B = (B(l), e B(d))

with mean 0 and covariance matrix given by X.

(b) For each 1 < j <d do

() _ () _Gei LN,
Xti _Xti71 + (T‘ n; — pj 2 (UtFl) ) (tl tlfl)

b0l VBt B g, (20 20)

(O't(ij)>2 = (O't(JL)Q (=X (i~ i) + 2 = 27,

7

(4) Return Séj) exp(Xg)) forall 1 <j<d,0<i<M.
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5.2 A multivariate BNS-I'-OU model

This algorithm reuses Algorithm 3.20 to draw the dependent jump parts and performs
a simple Euler discretization of the SDEs (5.2) and (5.3). A more accurate simulation
might be achieved by more sophisticated discretization schemes. For example, one
could merge the partition, which is generated in step (2), with the jump times to get
a more realistic handling of the jump process. Or, discretizing Equation (4.3) rather
than Equation (5.3) gives more accuracy in the simulation of the volatility process
and thus also of the log-price process. If the asset value at one point in time is of
interest only, the simulation scheme can be further improved, which we investigate in
the following. Algorithm 5.8 does not simulate the whole path. The idea is to use
the jump times of T' = {7} };+>0 as grid points for the simulation. Then, the volatility
process becomes deterministic between any two consecutive jump times. To account
for the change in the asset value process between two consecutive jump times 71 and

5 of Z( one has to add a the random variable R; given by

T2

™
(e Cipi a1 (1) (i)
R, = <T‘ - Pz’) (19 —11) 5 /(at ) dt+ [ o’ dW;.

T1 T1

Equation 4.3 implies for all ¢ € [11,T2)

(o-t(i))Q — o Ni(t=m1) (0_7(—?)2’

and therefore, we get

T2 T2

/ ()" ar = / e (o) ar = % (e@)" (1 - eritmm).
Hence,
Ry~ N (<r - nc_pp> (o —11) — % VONS u&l’)ﬂ) , (5.8)
where () = % (e0)" (1 - e ).

Left to determine is the correlation of (R;)1<ij<q, which is done in Lemma 5.7. All

combined, the asset prices at time 79 are given as

X9 =X9D 4+ Ri+p (Z(i) - Z(")) .

T T2 T1
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Lemma 5.7
For all 1 <i < d, let R; be defined as in (5.8) and assume that Corr (Wt@, t(J)) =
Yij, then

Corr(R,. By) = 25, Y2 e s
orr(R;, Rj) =2%;; ’
J TN+ Aj \/(1 — e\ (7'2*7'1)) (1 — e (7'2_71))

forall 1 <4, j<d,i#j.

Proof
T2 T2
Corr(R;, Rj) = Corr /at@ th(Z), /05]) th(j)
T1 T1
T2 9 T2 9
= Corr /e_)‘i (t=71) (aﬁ?) th(z), /e_’\f (t=m1) (aﬁ?) th(J)
1 1
f0T2*Tl 0.7(_21) U*(rz) e—%()\q;+>\j)t dt

= i 0
7 J
Vriyro Vri 12

— 9. VA A 1 — e~ 3 Qi) (2=71) .
ij Ai + )\j \/(1 — e N (7’2771)) (1 Y (7_2_7_1)) .

Now, we are ready to present the algorithm for computing the final values in the
multivariate BNS-I'-OU model, which is useful, e.g. for pricing multi-asset European
options. Note that in contrast to Algorithm 5.8, the simulation of the final value is

unbiased.

Algorithm 5.8 (Final asset values in the multivariate BNS model)

Suppose the same parameters to be given as in Algorithm 5.6.

(1) Perform Algorithm 3.20 and get dependent processes Z(1, ..., Z(@ and their
jump times 0 =: 79 < 71 < -+ - < TN < TN41 =",

(2) Foreach 1 <i< N +1do

(a) Draw a d-dimensional normally distributed vector B = (B(l), e B(d))
with mean 0 and covariance matrix given by the correlation matrix given

by Lemma 5.7.
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5.3 A multivariate Kou Model

(b) Foreach 1 <j <ddo

= (o8) (1= e )

xU) :XQL ( _ CJ'OJ) (1, — Ti1) — 152 +6BU
’ Z N = Pj 2

.
+p; (29 - Zﬁﬁl)

(UQ)Q - (USL)Q (=X (i —7im0)) + 29 — 29

(3) Return Séj) exp(X(j)

TN+1

)forall 1 <j<d.

5.3 A multivariate Kou Model

Like in the multivariate BNS model, we model a portfolio of d assets. But now, each
component follows a one-dimensional Kou model. In contrast to the BNS framework,
the volatility is constant, but the asset price jump magnitudes are drawn from a double-
exponential distribution. The dependence between the diffusion components is treated
as before, i.e. we consider d correlated Brownian motions W ... W@ The jumps
are subdivided into positive and negative components, modeled by two independent
CPPgyp. Jumps of different assets are made dependent via the construction of time-
changed CPPgyp from Section 3, allowing two or more assets to jump simultaneously.
The induced dependence between the positive jump components is determined by
the parameter k™ € (0,1), and the negative ones by k= € (0,1). Independently
of the choice of those dependence parameters, the marginal distributions, which are
equivalent to the ones in the univariate Kou model, remain the same. We are thus

able to describe the portfolio model by two separated sets of parameters:

(1) The parameters determining the marginal distributions of the assets: one pa-
rameter for the diffusion volatility, as well as two parameters for the intensities

of the jumps and two parameters determining the average jump sizes.

(2) One set of parameters for the dependence structure of the assets: a correlation
matrix ¥ for the diffusion parts and the coefficients k™ and = for the jump

parts.

The construction works as follows. We consider a probability space (€2, F,P), on which

we define the following processes.
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5 Sequential modeling of multivariate financial markets

(a) For i = 1,...,d, the processes p;t + ath(i), where W = (WM, ... . W®) is a
d-dimensional standard Brownian motion with correlation matrix 3, u; denotes

the risk neutral drift, and o; represents the volatility of the diffusion part.

(b) Independently of the processes in (a), we define two independent time-changed

CPPgyp, i.e we define independent Poisson processes N M, ..., N9 with intensi-
ties S, S and NOU, L NCO with inensitios S, S0
Moreover, for each i = 1,...,d we let {JJ@}J‘EN and {J](fi)}jeN be sequences
of i.i.d. random variables with Jl(i) ~ Exp (%) and Jl(_i) ~ Exp (%),

independently of the previous processes. Here, we suppose we have given inten-
sities ¢1,...,¢g>0and c_1,...,c_g > 0, and we set c% = maxlgigd{ci}ﬁ%r and

C; = maxlsigd{c_i},%,.

(c) Independently of the processes in (a) and (b) we let T+ = {T;*};50 and T~ =
{T; }+>0 be compound Poisson processes with intensities c% and ¢ and jump

size distributions Exp (n; ) and Exp (n;)

Definition 5.9 (Multivariate Kou model)
Having defined these processes on our probability space, for each ¢ = 1,...,d, we

describe asset ¢ in the multivariate Kou model by a one-dimensional Kou model, i.e.
St(l) = Sél) exp (Xt(l)), where

X = pit+ oW + 2 — 777, (5.9)
(4) (—=1)
NG N
with Zt(l) = Z J]@ and Zt(_l) = Z J](_Z),
j=1 Jj=1

i.e. (Z(l), e Z(d)) and (Z(*l), el Z(*d)) are two independent d-dimensional time-
changed CPPgyp.

For pricing multi asset options by Fourier methods we need the joint characteristic
function of X ... X (4 The following theorem presents a closed form expression of

this joint characteristic function in our multivariate Kou model.
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5.3 A multivariate Kou Model

Theorem 5.10 (Joint char. function in the multivariate Kou model)
For all u = (uy, ..., uq) € C, define

d

d . .
Cr 11U _ C_lUug
= E - - ] and o (u):= E - :
=1

cTnk—luk(cT—ck kzlcTn,k+1uk(c;—c,k)'

Then, the joint characteristic function of X; = (Xt(l), cey Xt(d)) is given by

owio) = (w7 SuTS e S0 - FEEG).

where 3 denotes the covariance matrix of (O’1W1(1), .. ,adWI(d)), ie.S=0%o0.

Proof

d

H 1ukX ] [H (#kt+0kw(k)+z(k) Z( M)]
e
k=1
d
H 1ukZ()

k=1

SOXt

d

d
(k)
= exp (Zluk ,ukt> E [H etk ok W

k=1 k=1

E

i ]

k=1
(5.10)

: (k)7 . .- . . .
Note that E {ngl ek on Wit ] is the characteristic function of a multivariate normal
distributed random variable (cf. Example 2.9), and, hence

d

; (k) 1 -~
E Helukgkwﬁ = exp <—2 uTZut> . (5.11)
k=1
By conditioning on T;", the processes Zt(l), Cees Zt(d) become independent and Zt(i) |T,"

is a compound Poisson distributed random variable with expected number of jumps

T, ¢
+

1

similar calculations like in the proof of Theorem 3. 1, we get forall 1 <i<d

and jump size distribution Exp ( 1 ) for all 1 < ¢ < d. Furthermore, using

T o iug
. k +_ ]
E {emsz ) ‘Tﬂ —exp | L% | —exp . ICkUk+ ).
Cr Mk —iuk Cr Mk — 1Ug (CT_Ck)
c%—ck
. .. criug
Hence, using the definition o™ (u) := Zk e o (5 e we get
d (k) d (k) +
- i ’ +
E H ol Uk Z, ] — H E [eluk Z, ‘T{F} . o) [605 (u) T } ) (512)
k=1 k=1
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Furthermore, Re(a™(u)) < 0, because
d

. d
Re (o (u)) =Re (Z - (.:k1u(k+ ) Z o uk (7 _fk) 5 < 0.
o (

& i (e - ) i (- )

Thus, Theorem 2.22 can be applied on E [ )T, } which yields

E [eo‘+(“) Tﬂ = exp <m t> , (5.13)

where we used Theorem 3.1, which states that the Laplace exponent of T'F is given by
Vs (—u) = FT " Combining Equations (5.12) and (5.13) gives

d k chat(u
H el Uk Z,f )] = exp (1T—Oz+((u)) t) . (514)

k=1

In a quite similar way we get
E [ﬁ eiuk ka)] — exp <—W t) . (5.15)
P 14+ o (u) )
Plugging in Equations (5.11), (5.14), and (5.15) into Equation (5.10) yields

px,(u) = exp( <1u B % u'Su+t 16{0;1((73) B 1610;_—((12)» ’

which concludes the proof. O

Algorithm 5.11 (Paths of the asset values in the multivariate Kou model)
Suppose the following parameters to be given: the initial values S(()l), .. .,S((]d) for
each asset, the constant volatilities o1, ..., 04 for each asset, parameters for the jump
processes ZW .. Z@ e ¢q,... cqand n, ..., ng, parameters for the jump processes
ZCY 0 Z20D e e y,...,c_qand 1_1,...,1_g, the maturity t*, the correlation
matrix ¥ of the d-dimensional Brownian motion (WM, ... W) the dependence

+

parameters k™, k~ for the jump parts, and the constant interest rate r.

(1) Generate a d-dimensional time-changed CPPgy, (Z(l), cee Z(d)) by performing
Algorithm 3.20.

(2) Generate a d-dimensional time-changed CPPgy, (Z(*l), R Z(*d)) by perform-
ing Algorithm 3.20.
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5.4 A multivariate two-sided BNS-I'-OU model

(3) Define a partition 0 =tg < t; < --- <ty =t* on [0, t*].
(4) For each 1 <i < M do

(a) Draw a d-dimensional normally distributed vector B = (B(l), e B(d))

with mean 0 and covariance matrix given by 3.

(b) For each 1 < j <ddo

2
. . . . o“
X(]) :X(J) o Cj C—j _J t—
b o 77j_1+777j_1 5 | (ti—tie1)

toj it B+ 20— 20— 2{D v 2

i—1
(5) Return Séj) eXp(Xt(ij)) forall1<j<d, 0<i<M.

Like for the multivariate BNS-model, we present an efficient and unbiased Algorithm,

which simulates the final value of d asset price processes at a fixed time t*.

Algorithm 5.12 (Final asset values in the multivariate Kou model)

Suppose the same parameters to be given as in Algorithm 5.11.
(1) Perform Algorithm 3.20 and get (Z(l), e Z(d)).
(2) Perform Algorithm 3.20 and get (Z(_l), cee Z(_d)).

(3) For each 1 <14 < d draw a random variable

0'2 C; C_;
Ri~N(tF|r— 2t -~ J t*o? ).
J\/( ( g m—ﬁn_m)’ o

The correlations of Ry, ..., R4 are given by the correlation matrix 3.

(4) Return for each 1 <1i <mn: Séi) exp(Xt(f)) = S(()i) exp(R; + Z0 _ Zt(:i)).

5.4 A multivariate two-sided BNS-I-OU model

Now, we mimic the approach to generate multivariate models from the last two sections
and apply it to the two-sided BNS-I'-OU model which combines the BNS-I'-OU model
and the Kou model.
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5 Sequential modeling of multivariate financial markets

Definition 5.13 (Multivariate two-sided I'-OU-BNS model)

A d-dimensional stochastic process {S;}+>0 with Sy = (St(l), ce St(d)) follows a mul-
tivariate two-sided I'-OU-BNS model, if the dynamics of the log-price vector X; =
(Xt(l), e ,Xt(d)) = (log St(l), ...,log St(d)) are governed by the following SDEs:

dx = (M + 85 (o) ) dt + o aW ) 4 p9 4z 4 oDz, 0,

d (a§j>)2 Sy (at(j))Q dt +dz9 +az; Y,

with (WM, ... W) being correlated Brownian motions with correlation matrix ¥
and for all 1 < j < d, u;, 8 € R, p >0, p¥ <0, A, >0, and (2T®, 2-W) |

(ZHd),Z*(d)) are pairs of CPPgyp,. Furthermore, the 2d-dimensional Lévy process
(z+W, z=W . z+d) 7=D) gplits up in two d-dimensional time-changed CPPpyp.

At first glance, Definition 5.13 looks cumbersome, but it is necessary to capture all
combinations of possible dependence. As a simplifying example, one might think
about introducing dependence between (ZT(M, ... Z*t(@) on the one hand and be-
tween (Z-(W,...,Z7(4) on the other hand, which coincides with the dependence
structure between positive and negative jumps of the multivariate Kou model. In
this case, positive jumps of the processes are mutually dependent and negative jumps
are mutually dependent, but positive jumps occur independently of negative jumps.
A closer examination of how to establish the dependence structure between the time-
change-dependent compound Poisson processes is made in the following section, since
dependence between the jumps has to be introduced in a sound economic manner. In
general, positive jumps in one process could occur simultaneously with negative jumps
of another process. The multivariate Kou model could easily be extended to also
support such a generic structure of joint jumps by adopting the notion of the jump
components of the two-sided I'-OU-BNS model. Like in the multivariate I'-OU-BNS
model, in general, the joint characteristic function cannot be expressed in a closed form
solution, only in case of uncorrelated Brownian motions. We therefore omit the calcu-
lation of the joint characteristic function and conclude this chapter with the following

section on some calibration exercises.
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5.5 Application: Calibration exercises

A calibration of the presented multivariate models can be carried out in two separate
steps. Due to the fact that the marginal distributions can be separated from the de-
pendence structure within our models, it is possible to keep the parameters governing
the dependence separated from the parameters governing the marginal distributions.
Therefore, in a first step we calibrate independently each univariate model and in a
second step the dependence parameters can be set without altering the already fixed
marginal distributions. Since there is little market data of multi-asset options, this
two step method is very appealing: we can disintegrate one big calibration problem in
two smaller ones. The univariate models can be calibrated to prices of plain vanilla
options, which can easily be carried out.

In a first example, we consider a two-dimensional model of two equity indexes, the
DAX and the ESTX 50 Net Return. As described above, we employ the two-step
calibration approach. Thus, we first fit the univariate models of Kou and BNS type to
market quotes. We use market data of European call and put options on the indexes.
All market quotes are closing prices of March 30, 2012. Actually, implied volatilities

2. The expiry dates of these

of bid and ask prices of put and call options are given
options range from one month to one year. For each maturity, we consider various
strikes. Option prices with a wide bid ask spread are withdrawn. If there is a put
option and a call option with the same strike and maturity, we use the option having
a smaller bid ask spread, which is usually the out-of-the-money option.

After thinning out the implied volatility quotes®, we calibrate the univariate models to
the mid implied volatilities via minimizing the absolute distance of the model implied
volatilities to market implied volatilities, with equal weights on every option. Here,
option prices in the univariate Kou models and in the univariate BNS models are ob-
tained via Fourier inversion by means of the analytic expression for the characteristic
function of the log prices (see Theorem 4.2 and Equation (5.1)).

The calibration of the parameters governing the dependence could be done in a quite
similar way. We calibrate the multivariate model with already fixed univariate parame-
ters to market quotes of European multi-asset options, e.g. best-of-two options. Again,

prices in the multivariate Kou model can be obtained via Fourier methods. Here we

%Initially, implied volatilities of the ESTX 50 (price index) are given. Therefore we transform the
strike prices to the ESTX 50 Net Return (performance index) and assume the implied volatilities

of these indexes to be equal for this calibration exercise.
3The cleansing results in 187 mid implied volatilities for ESTX, 328 for DAX.
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So o) c n A p
DAX |6946.8 | 0.16 | 1.2426 | 7.0068 | 2.8025 | —0.5398
ESTX | 4210.0 | 0.1755 | 0.6506 | 4.2776 | 1.7224 | —0.4620

Table 5.1 Calibrated parameters in the univariate BNS models.

have to use a multi-dimensional extension of the one-dimensional Fourier method (cf.
Eberlein et al. [2010]). Prices in the multivariate BNS model have to be computed
via Monte Carlo simulation, because the joint characteristic function of the log prices
cannot be expressed in an analytic and fast-to-calculate form. In the bivariate case one
has to calibrate only two dependence parameters: the correlation of the two Brownian
motions and the parameter x driving the dependence of the jump parts. Unfortunately,
we have not enough market data of multi-asset options to get sensible calibration re-
sults. Time series analysis of historical index series may put things right here. This is
what practitioners usually do in those situations. Note, that from a theoretical point
of view, this yields to a mismatch between the historical measure and the risk-neutral
measure. However, due to the lag of data, one could calibrate the marginal models
to option data and determine the dependence parameter through a time series anal-
ysis. Then, one assumes, that the dependence structure would not change much by
a measure change from the historical pricing measure to the risk-neutral measure. In
this thesis, we will not elaborate on such historical calibrations. Table 5.1 presents
the calibrated parameters of the univariate BNS model and Figure 5.1 shows simu-
lated paths of the bivariate model using the calibrated univariate parameters and fixed

dependence parameters.

Analogously, we fit the Kou model to the same set of plain vanilla option quotes.
The resulting univariate parameters are presented in Table 5.2. We observe that the
intensity for positive jumps is 0, i.e. the option data implies zero probability of upwards
jumps. This is not completely surprising in stock price dynamics, which are calibrated
to option prices, see for example the empirical studies by Bakshi et al. [1997] and
Eraker [2004]). Usually, option prices in the market can be well explained without
positive jumps in the model, which underpins once more the tractability of the BNS
model. Figure 5.2 shows simulated paths of the bivariate Kou model with calibrated
univariate parameters and fixed dependence parameters. In contrast to the BNS model,

the volatility stays at the same level. That missing flexibility of volatility clustering
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Figure 5.1 The left graphs show simulated paths of the DAX and ESTX with cali-
brated parameters in the multivariate BNS model. The right graphs show
the corresponding daily log returns. We observe one joint jump within
this time interval, as well as some individual jumps. Here, the correlation

of the Brownian motions is set to 0.5 and x = 0.7.

So o c ct n-
DAX | 6946.8 | 0.1673 | 0.2729 | 0 | 3.8953
ESTX | 4210.0 | 0.1816 | 0.1641 | 0 | 2.8379

Table 5.2 Calibrated parameters in the univariate Kou models.

might be the reason for the extreme jump magnitudes in the Kou model.

In the absence of positive jumps in the calibrated bivariate Kou model (¢t = 0),
dependence is driven by only two parameters, like in the multivariate BNS model,
namely the correlation between the Brownian motions and the dependence parameter
for the negative jumps. The calibrated models can then be used to price multi-asset
options. As an example, we congider an option with the following payoff at maturity,

which is one year:
DAX ESTX
max{K—max{eXl , eXi }, 0},

i.e. we consider a put option with strike K > 0 on the maximum of the two normalized
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Figure 5.2 The left graphs show simulated paths of the DAX and ESTX with cali-
brated parameters in the multivariate Kou model with a five years time
horizon. The right graphs show the corresponding daily log returns. We
observe one joint jump within this time interval. Here, the correlation of

the Brownian motions is set to 0.5 and x = 0.7.

indexes. This option can be used as an insurance against a global market crash, because
one gets a payoff if the relative performance of both indexes is smaller than K. Here,
XDPAX and XESTX represent the log price processes and we set K = 0.9. Figure 5.3

shows model prices of this put option as a function of the dependence parameters.

The valuation of the multi-asset option is done via Monte Carlo pricing. Note that
in the multi-dimensional Kou model it is also possible to use fast Fourier pricing
techniques, because the joint characteristic function of the log-price processes is given
as closed form expression, which was shown in Theorem 5.10. The pricing in the
multi-dimensional BNS model relies on the Monte Carlo method, unless there is no

correlation between the Brownian components, cf. Theorem 5.5.

So far, we just applied two of the three multi-dimensional models we discussed in
this chapter. The remaining one, the two-sided I'-OU-model, combines the stochastic
volatility of the BNS model and the two-sided jumps of the Kou model. Using the same
market quotes of plain vanilla option prices to fit a bivariate two-sided I'-OU-model

results in the same model dynamics like in the bivariate (one-sided) I'-OU-model. That
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bivariate Kou model bivariate BNS model
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Figure 5.3 The left graph shows option prices in the bivariate Kou model, the right
graph shows option prices in the bivariate BNS model. The prices are
given in basis points as a function of the two dependence parameters: the
correlation of the Brownian motions and the parameter s for the jump

dependence.

is no surprise, since we have seen that the market data does not imply any positive
jumps in the Kou model and it is the same in the two-sided I'-OU-model. In the absence
of positive jumps the two-sided model just boils down to a one-sided model. As pointed
out above, this is quite common for equity modeling. When modeling other price
processes, different from equities, modeling both, negative and positive jumps may be
inevitable. In the remainder of this chapter, we therefore present a bivariate exchange
rate model based on the two-sided I'-OU-model presented in the previous section. The
symmetry in exchange rates naturally calls for two-sided jumps. By symmetry, we
mean the fact that the reciprocal of an exchange rate is again an exchange rate. Jumps
in FX rates are mainly driven by unanticipated macroeconomic events (e.g. interest-
rate decisions of some central bank) in one of the monetary areas. If we consider a
multivariate model with one common currency, e.g. modeling the EUR-USD and the
EUR-CHF exchange rates, it is likely that jumps caused by macroeconomic events in
the common currency monetary area have an impact on all exchange rates, e.g. the
debt crisis of Eurozone countries should affect both the EUR-USD as well as the EUR-
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5 Sequential modeling of multivariate financial markets

CHF exchange rate. Hence, dependence of the jump processes seem to be a desirable

feature of a multivariate model for FX rates with common currency.

To ensure familiarity with the FX markets wording, we recall that an FX rate is the
exchange rate between two currencies, expressed as a fraction. The currency in the
numerator of the fraction is called (by definition) domestic currency, while the currency
in the denominator of the fraction is called foreign currency.* The role each currency
plays in an FX rate is defined by market conventions and is often due to historic reasons,
80 economic interpretations are not necessarily helpful. A more detailed discussion of
market conventions of FX rates and derivatives is provided in Reiswich and Wystup
[2012], a standard textbook on FX rates modeling is Lipton [2001]. Since we want
to model dependence between the jumps in different FX rates, we have to choose the
coupling of the compound Poisson drivers carefully and in a way to capture economic
intuition. We concentrate on the case of two currency pairs, which illustrates the
problems of choosing the jump dependence structure best. When modeling two FX
rates, we may want to establish an adequate kind of dependence between the different
drivers, accounting separately for positive and negative jumps in the respective FX
rate. Depending on which currency is foreign or domestic in the two currency pairs of
the FX rates, dependence may be introduced in a different manner to result in sound
economic situations. Hence, we can distinguish between the following combinations

that may occur for two different FX rates:
1. There are no common currencies, e.g. in the case of EUR-CHF and USD-JPY.

2. In both FX rates the common currency is the foreign currency, e.g. EUR-USD
and EUR-CHF.

3. In both FX rates the common currency is the domestic currency, e.g. EUR-CHF
and USD-CHF.

4. The common currency is the domestic currency in one FX rate and the foreign
currency in the other FX rate, e.g. EUR-USD and USD-CHF.

In each of those situations, one may argue for different kind of dependence structures

regarding the compound Poisson drivers. Our suggestions are the following:

4The wording “foreign” and “domestic” currency does not necessarily reflect whether the currency is
foreign or domestic from the point of view of a market participant. The currency EUR, e.g., is
always foreign currency by market convention. Sometimes, the foreign currency is called underlying

currency, while the domestic currency is called accounting or base currency.
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1. In case of no common currencies, one may doubt to introduce dependence be-
tween jumps due to the missing strong link coming from macroeconomic events.
In case that there are no strong ties between the monetary areas (e.g. neither in-
tensive trade relations nor political involvement), this independence assumption
may be a realistic choice. In case of strong economic ties like, e.g., between the
Eurozone (EUR) and the Czech Republic (CZK), one may employ dependence
in the jumps nevertheless, treating the two different currencies similarly as in

the common currency case.

2. In case of a common foreign currency, a sudden macroeconomic event strength-
ening (resp. weakening) the common currency should result in an upward (resp.
downward) jump of both FX rates. Hence, it may be a sensible choice to cou-
ple the drivers for the positive jumps and to separately couple the drivers for
the negative jumps respectively, to ensure the occurrence of joint upward and

downward jumps.

3. In case of a common domestic currency, a sudden macroeconomic event strength-
ening (resp. weakening) the common currency should result in a downward (resp.
upward) jump of both FX rates. Hence, coupling (asin 2.) the drivers for positive
jumps and separately coupling the drivers for negative jumps yields occurring

joint upward and downward jumps.

4. In the last case, a sudden macroeconomic event strengthening (resp. weakening)
the common currency should result in an upward (resp. downward) jump of the
FX rate where the common currency is the foreign currency, but in a downward
(resp. upward) jump of the FX rate where the common currency is the domestic
currency. Hence, cross-coupling the driver for positive jumps in the one FX rate
with the driver for negative jumps in the other FX rate (and vice versa, respec-
tively) ensures upward jumps in one FX rate being occasionally accompanied by

downward jumps in the other FX rate and vice versa.

Summarizing, assuming the currencies CCY1,...,CCY4 to be pairwise different and
denoting by Z10) (resp. Z~(9)) the Lévy driver for the positive (resp. negative) jumps
of the jth FX rate, j = 1,2, we suggest to introduce dependence for the jumps along
Table 5.3.
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= ~

Foreign 1 | Domestic 1 | Foreign 2 | Domestic 2 Z Z

CCY1 CCY2 CCY3 CCY4 no dependence | no dependence
CCY1 CCY?2 CCY1 CCY3 {z+W) z+@} | (7= Zz-()
CCY?2 CCY1 CCY3 CCY1 {z+V) z+@}) | {Zz-D 7=
CCY1 CCY?2 CCY3 CCY1 {z+W), 7=y | {z-(D z+()}

Table 5.3 Suggested dependence structures for different currency combinations.

When two FX rates are modeled and among the two rates there is a common cur-
rency, this bivariate model always implicitly defines a model for the missing currency
pair which is not modeled directly, e.g. when modeling EUR-USD and EUR-CHF
exchange rates simultaneously, the quotient process automatically implies a model
for the USD-CHF exchange rate. Similar to the bivariate Garman—Kohlhagen model
(cf. Garman and Kohlhagen [1983]), modeling two FX rates directly by a bivariate
two-sided BNS model does not necessarily imply a model for the quotient or prod-
uct process from the same family, but the main structure of a jump-diffusion-type
model is maintained. Namely, given two asset-price processes {S,Fl)}tzo and {SéQ)}tZ()
modeled by multivariate two-sided I'-OU-BNS models, the product and quotient pro-
cesses {Sgl)St(z)}tzo resp. {St(l)/St(z)}tzo are both of jump-diffusion type, which follows
directly from log(St(l)St(z)) = Xt(l) + Xt(Q) and log(St(l)/St(z)) = Xt(l) - Xt(Q).

The implied model for the third missing FX rate can be used to calibrate the param-
eters steering the dependence, namely, the correlation between the Brownian motions
as well as the jump dependence parameters. Additionally, the calibration performance
of the implied model to plain vanilla options yields a plausibility check whether the bi-
variate model may be useful for the evaluation of true bivariate options, e.g. best-of-two

options or spread options.

In the following, we give an example of modeling the FX spot process by the two-
sided T-OU-BNS dynamics. Alternative approaches model FX forward rates to get
a model setup suited for pricing cross-currency derivatives depending on FX forward
rates, as for example cross-currency swaps. Multicurrency models built upon FX
forward rates (see e.g. Eberlein and Koval [2006]) on the one hand support flexibility
to price such derivatives, on the other hand, however, these models do not provide the
crucial property of separating the dependence structure from the univariate models,
which makes it extremely difficult to calibrate such a multivariate model in a sound

manner.
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As input data for the second calibration exercise we use option data on exchange rates
concerning the three currencies EUR, USD, and SEK. Since the EUR-USD exchange

rate can be regarded as an implied exchange rate, i.e.

SEK
SEK °
EUR 25

we model the two exchange rates EUR-SEK and USD-SEK directly with two-sided
I-OU-BNS models. For each currency pair EUR-SEK, USD-SEK, and EUR-USD,
we have implied volatilities of 204 different plain vanilla options (different maturities,
different moneyness). The option data is as of August 13, 2012, and was provided by

Thomson Reuters.

We consider a market with two traded assets, namely {exp(rysp t)SP P5EK},~ and
{exp(rgur t) SPVRSEK Y-, where SUSPSEK - GEURSEK denote the exchange rates at
time t and rysp, "EUR, "sEk denote the risk free interest rates in the corresponding
monetary areas. These assets can be seen as the future value of a unit of the respective
foreign currency (in this case USD or EUR), valued in the domestic currency (which

is SEK). Assume a risk-neutral measure Q5FK to be given with numéraire process

{exp(rsgx t) }+>0, i.e.

{exp((rusp — rsex) t) SYSPSEKY o and  {exp((rpur — rsEk) t) SEURSEKY S,

are martingales with respect to Q5P| governed by the SDEs

*SEK ) 2 + + - .

*SEK __ o (Ut ) __%SEK PxSEK €+ SEK Px SEK

dXt = | rsEK — Tx 5 = = + — = dt
MeSEK — P+SEK  TSEK T P+ SEK

SEK SEK SEK - —xSEK
+ op SER QW SER 4 o o dZ PR e d 2R,

*SEK *SEK -
do?™™" == Negpx o7 dt 4 dZ S 4z

for AvsEK, P spis Prspx > 0, * € {EUR,USD}, {WEURSEK Jy/USDSEKY, ) being a
two-dimensional Brownian motion with correlation 7 € [~1,1], and {Z;”FURSEK
z;7USDSERY ) and {7, BURSER 7= USDSEKY [ heing (independent) two-dimensional

time-changed CPPgy,, with parameters

+ + + + +
(CEURSEK’ CusSDSEK TEURSEK > TTUSDSEK: /¥ )

and (CEURSEKv CUSDSEK: TEURSEK "TUSDSEK "f) )
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where k™ and k~ are the jump dependence parameters. Hence, the EUR-SEK, EUR-
USD exchange rates follow a bivariate SBNS model. The implied exchange rate process

SEURUSD g aiven by

{ SEURUSD} _ SpPURSEK
t >0 SUSDSEK

Due to the change-of-numéraire formula for exchange rates (cf. Pelsser [2003]), the pro-
cess {exp((rgur — rusp) t) SFURUSPY S is a martingale with respect to QUSP, where

QUSP is determined by the Radon-Nikodym derivative

d QUSD
d QSEK .

_ SPUSPSER exp(rygp t)

exp(rsex t) '

~ QUSDSEK
SO

For calibration purposes, we use the volatility surfaces of the EUR-SEK and USD-SEK
exchange rates to fit the univariate parameters. Due to the consistency relationships
which have to hold between the exchange rates, we can calibrate the dependence
parameters by fitting them to the volatility surface of EUR-USD. Even in presence of
other “bivariate options” (e.g. best-of-two options), we argue that European options
on the quotient exchange rate currently provide the most liquid and reliable data for

a calibration.

The calibration of the presented multivariate model is done in two steps. Again, due to
the fact that the marginal distributions can be separated from the dependence structure
within our models, it is possible to keep the parameters governing the dependence
separated from the parameters governing the marginal distributions. Therefore, in a
first step we independently calibrate both univariate models for the EUR-SEK and
USD-SEK exchange rates. In a second step we calibrate the parameters driving the
dependence structure. In doing so, the fixed univariate parameters are not affected by
the second step. Since there is little market data of multi-currency options, this two
step method is very appealing: we can disintegrate one big calibration problem in two
smaller ones. The univariate models are calibrated to volatility surfaces of the EUR-
SEK and USD-SEK exchange rates via minimizing the relative distance of the model
implied option prices to market prices, with equal weights on every option. Option
prices in the univariate two-sided BNS models are obtained via Fourier inversion (cf.
Carr and Madan [1999], Raible [2000]) by means of the characteristic function of the
log-prices.

Table 5.4 gives an overview of the calibration results of the two univariate models.
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* Sa SEK 06 SEK c* SEK 77* SEK 2\* SEK p* SEK #options error
EUR | 8.229 0.074 0.71 62.13 3.25 1.66 204 1.08%
USD | 6.664 0.078 1.15 40.81 2.19 1.22 204 3.17%

Table 5.4 Calibrated parameters in the two univariate FX models.

To reduce the number of parameters, we use symmetric two-sided I'-OU-BNS models,

i.e. jump parameters of the positive and the negative part coincide. That means, in

average the number of upwards jumps equals the number of downwards jumps and the

expected absolute jump magnitudes are the same. Furthermore, we assume that the

time-change correlation parameters k™ and s~ coincide; maintaining the symmetric

structure. The relative error in model prices with respect to market prices of the 204

options can be seen as calibration error. The average relative error in the EUR-SEK-

model is about one percent, and in the USD-SEK-model it is around three percent.

Hence, the univariate models fit the FX market reasonably well.

calibration error
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Figure 5.4 The best matching correlation between the two Brownian motions is 0.52

and the optimal time-change dependence parameter is Kk = 0.96.
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5 Sequential modeling of multivariate financial markets

The calibration of the parameters governing the dependence is done by means of the
third implied exchange rate, namely by the volatility surface of EUR-USD. Model
prices of EUR-USD-options with payout function f at time ¢ can be obtained by a

Monte Carlo simulation of the following expected value:
Egusp [f(SFURUSPY exp (—rUSP¢)] =

GEURSEK \ gUSDSEK
Egsex [f ( SUSDSEK> GUSDSEK exp(—7seK t) (5.16)
¢ 0

Here, we used 100000 simulations to calibrate the dependence parameters. The cali-
bration error of the dependence parameters in terms of average relative error is roughly
nine percent, which is still a good result giving consideration to the fact that we try to
fit 204 market prices by means of just two parameters in an implicitly specified model.
A more complex model, obtained by relaxing the condition that k™ and x~ coincide,
leads to even smaller calibration errors. However, we keep the model as simple as
possible to maintain tractability. Figure 5.4 illustrates the calibration error of this
second step depending on different choices of the dependence parameters. Eventually,
the whole model is fixed and could now be used for pricing multi-currency options, for

instance a best-of-two call option or spread options.
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6 Extremal wrong way risk

In this chapter, we investigate the influence of stochastic dependencies in calculating
adjusted derivative prices, recognizing the possibility of default of a contractual party.
As motivated in the introductory Chapter 1, we present a model-free approach to
compute the bilateral credit valuation adjustment (BCVA) including wrong way risk
(WWR) and we derive bounds for extremal cases of wrong way risk, respectively right
way risk. This study has already been published in Scherer and Schulz [2016]. In this
chapter’s fundamental section (Section 6.1) we define the notion of BCVA and WWR
and give a broad literature overview of WWR models. In Section 6.2 we present the
model-free ansatz, followed by the optimization of the BCVA in Section 6.3. Section 6.4
concludes with a numerical case study. We calculate the model-free BCVA bounds for
different portfolio situations and compare our results to the popular Hull-White model
(cf. Hull and White [2012]) and to the BCVA optimization results obtained by Helmers
et al. [2016].

6.1 Fundamentals: Credit valuation adjustments and

wrong way risk

Recognizing counterparty default risk as integral part of the valuation process of finan-
cial derivatives has changed the classical view on option pricing. We will first define in
rigorous terms, what we mean mathematically when we speak of CVA, DVA, BCVA,
and WWR. Pragmatically spoken, the CVA is the expected positive portfolio value in
case the counterparty to a derivative transaction defaults first. On the contrary, the
DVA is the expected negative portfolio value at someone’s own default event, but only
if the counterparty is still alive. The BCVA is simply the sum of CVA and DVA. One
of the earliest articles proposing price adjustments due to potential default events was
published long before the Lehman collapse by Cooper and Mello [1991]. Sorensen and

Bollier [1994]| were among the first considering a bilateral modification of risk neutral
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6 Extremal wrong way risk

prices. It is not easy to understand how a realistic dependence structure ultimately
should look like, how it is parameterized, and how it is estimated. The BCVA cal-
culation becomes even more difficult if the portfolio value is affected by the credit
worthiness of the two parties. In such a case, there is WWR. Classically, one only rec-
ognizes WWR, if the dependence structure is positive, i.e. the dependency is in such an
extend that high portfolio values imply higher default probabilities of the counterparty.
Note that someone’s wrong-way risk is the counterparty’s right-way risk (negative de-
pendence), and vice versa. Throughout the present thesis, we simply speak of WWR,
if the portfolio value and the default times are not stochastically independent. Thus,
calculating WWR requires a sound model for the dependence structure between the
default times of the two contractual parties and the derivative/portfolio value at the
first of the two default times. There exist many proposals, but no market consensus,
on how this dependence structure should be modeled to soundly recognize WWR. One
of the seminal models taking WWR into account was presented by Duffie and Huang
[1996].

In practice, one typically has expertise in using models that explain the marginal laws
of the involved default times on the one hand, and stochastic models for the evolution
of the underlying to the considered derivative transaction (or portfolios of derivatives)
on the other hand. Hence, a variety of WWR models exist generalizing these univari-
ate models. Since the models for the underlying dynamics vary depending on asset
classes and type of derivative, it is not surprising that a similar distinction for WWR
models exists. Popular WWR models with focus on some specific asset classes are, for
example: Interest rate derivatives (Brigo and Pallavicini [2007], Brigo and Pallavicini
[2008]), equity derivatives (Brigo and Masetti [2005], Brigo et al. [2011]), products
on commodities (Brigo and Bakkar [2009]), or CDS (Brigo and Chourdakis [2008],
Leung and Kwok [2005]|, Hull and While [2001], Walker [2006], Bielecki et al. [2012],
Blanchet-Scalliet and Patras [2011], Lipton and Sepp [2009], Brigo et al. [2014]).

In contrast to models dedicated for specific asset classes or bespoke types of derivatives,
here are also general WWR models which can be used for arbitrary asset classes. This
universality is achieved by introducing the dependence structure in a second step after
fixing the marginal models, see, for example, Hull and White [2012], or the so called
exposure sampling approaches Sokol [2010], Cespedes et al. [2010], and Rosen and
Saunders [2012]. Our methodology follows the very same two-step approach. In most
situations market data to estimate/calibrate such univariate models is available, e.g.
CDS spreads for the calibration of the default models. With respect to the time

130



6.1 Fundamentals: Credit valuation adjustments and wrong way risk

evolution of the underlying processes, or on a higher level the fair portfolio value, it is
often an economic scenario generator creating sample paths to be used later on. Much
less obvious than specifying the marginal laws, and hence prone to model risk, is the
choice of dependence model that is subsequently “pulled upon” the marginal models

in use.

Particularly, we aim at maximizing, respectively minimizing, the BCVA across all
multivariate distributions whose projections on the marginal laws are consistent with
the model of choice for the marginal default times and the portfolio process. The
marginal laws are specified in the first place. From a mathematical perspective, we
work on a discrete probability space and exploit the machinery of mass-transportation
problems. The canonical formulation of this problem is straightforward, see (6.2), but
computationally very inefficient. However, it is observed that some information about
the dependence structure can be disregarded without changing the optimal solution,
which leads to an equivalent reformulation (6.3) of the problem that tremendously

reduces the calculation time.

Other studies, like Turnbull [2005] and Cherubini [2013], already investigated upper
bounds for valuation adjustments. Yet, the resulting bounds are not necessarily at-
tained by a joint distribution, so they are not tight. Moreover, they only considered
the case of unilateral CVA. Closest to our work is Helmers et al. [2016]|, where the
dependence structure between the default times is explained using some fixed copula
and it is the dependence to the derivative exposure that is left as a source of model
risk. Clearly, this conveniently simplifies the problem from a computational point of
view, but it falls short in explaining the full degree of model risk; even though the
bivariate Gaussian copula used exemplarily interpolates from counter-monotonicity to
co-monotonicity. Glasserman and Yang [2016] use a similar ansatz to derive bounds
for the unilateral CVA. Both approaches assume a discrete-time framework and a fi-
nite set of portfolio paths coming either from an economic scenario generator or from
Monte Carlo samples of a financial market model. There is also active research (see,
for example, Puccetti and Riischendorf [2013], Embrechts et al. [2013]) based on the
seminal work by Riischendorf [1982] and Makarov [1981] in the somewhat related prob-
lem of identifying upper and lower bounds for the portfolio value-at-risk (VaR). The
extremal portfolio VaR might be derived by the so-called rearrangement algorithm,
which optimizes the VaR of a sum of random variables whose marginal laws are fixed,

but the dependence structure can freely be chosen.
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6 Extremal wrong way risk

6.2 Model-free approach

Consistent with a typical IT infrastructure, we assume the time between the valuation
date and the considered maturity to be discretized in (not necessarily equidistant)
bins. The two considered default times are thus discrete random variables taking
values within these bins — their (marginal) probabilities are calibrated to market data
(single name CDS, bond spreads, etc.). We assume to work with M trajectories of
the (portfolio or individual derivative) value of the considered transaction, produced
either by an economic scenario generator or approximating a financial market model
by means of a Monte Carlo simulation. Thus, we consider the discrete event space

Q =V x D x D equipped with the power set P(2) as o-algebra, where

V = {v(l),v(g),...,’u(M)}, ’U(i)GRKWE{l,Z...,M}, K, M eN,
D = {1,2,...,K+1}.

One state w = (v, da, dp) € Q describes a tuple consisting of a trajectory of the
portfolio value v := {v;}1<j<Kk, a realization of a default time d4 of party A, and
a default time dp of party B. Then, the canonical projections V : w +— v, Dy :
w + da, D : w +— dp represent the three crucial random variables in a BCVA
calculation. As each trajectory of the portfolio value represents a result from an
economic scenario engine, a discrete-time setup is used. Thus, the set {1,2,..., K}
denotes the grid points of the portfolio value simulation. Furthermore, the set D
represents the possible default times of each of the two contractual parties, whereby
the state K41 describes a default occurring after the last considered grid point K. The
number of grid points K, the simulated time interval, the distribution of the grid points
within the simulated time interval, and the number of simulated scenarios M vary
depending on the application.! We assume that the value path v already incorporates
discounting, such that v; times the respective loss given default ratio can be seen as the
discounted value that is lost in case of a default of one party within the time bucket j.
Let us denote the loss given default ratios by L4 and LZ. The portfolio value trajectory
V and the default times D4, Dp induce three marginal probability spaces, namely
vV, P(V), Py), (D, P(D), Pa), (D, P(D), Pg). As a standing assumption throughout

! Typically, banks use 50 to 100 grid points for a CVA calculation. The simulated time horizon is fixed
and ranges, depending on the considered application, between one year and 50 years. The location
of the grid points is usually non-equidistant, s.t. there are more grid point in the short-term as
there are in the long-term. The number of simulations M typically exceeds 1.000.
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6.2 Model-free approach

this work, we assume the marginal distributions Py, P4, Pp to be known, whereas the

joint distribution P on the product space (2, P(€2)) is considered unknown.

Remark 6.1 (Valuation of the BCVA)
Define for each w = (v, d4, dg) € Q the state-dependent BCVA (from the perspective
of party A) by

max{O,vdB}LgB if da > dp, (loss if party B defaults first)

BCVAstate(w) == { min{0, vdA}LfA if da <dp, (loss if party A defaults first)

&(v,da) if dg = dp. (loss in case of a joint default)
(6.1)
Note that there are different possible ways on how to deal with the event of a joint
default. Therefore, in case of a joint default we express the payoff with the auxiliary
function £ within the above formula to have a flexible setup. Actually, as we are in a
discrete-time setup, a joint default in this framework means that both parties default
between (the same) two consecutive grid points. In the next section we make clear
what this term turns out to be within the prudent best-case/worst-case optimization.

Hence, the expected BCVA from the perspective of party A is then given by

BCVA = Z BCVAiate(w)P(w)

weN
=> > > BCVAuar((v, da, dp))P((v, da, dp)). (6.2)
veEVda€D dpeD

As the portfolio value paths result from an economic scenario engine, all paths v € V
have the identical probability, i.e. Py (v) = 1/M, Yv € V.2 Thus, by conditioning on
the portfolio value path and using rules for conditional probabilities, Equation (6.2)

boils down to

1
BCVA = MZ Z BCVAgiate((v, da, dp))P(Dg =da, D =dp|V =v)
vEV (da,dp)EDXxD

K
1
:MZZ(max{o,vk}P(k:DB<DA\V:v)LkB (6.3)
veY k=1

+ min{0,vx}P (k = Do < D |V =v) Li

2If non-identical weights are assigned to the generated paths, this simply corresponds to a different
condition (6) in Problem 3.1.
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6 Extremal wrong way risk

+£(v,k:)[P’(l<::DA:DB|V:v)>.

In the last step, we plugged in Equation (6.1). The three terms within the big paren-
theses in Equation (6.3) have a nice interpretation: By summing up the first part over
all £ and v, we get the loss party A faces in case the counterparty defaults first, the
summed up second part represents the gain (negative loss) if party A defaults first,
and the third part describes the loss or gain in the case of simultaneous defaults of
both parties. Equation (6.3) is the starting point in our optimization procedure in
Section 6.3.

This discrete-time ansatz of modeling the random evolution of some underlying, some
derived risk-neutral portfolio value, or even a full portfolio containing the netted value
of all outstanding positions against the considered counterpart is market practice to
overcome the big modeling and implementation challenges financial institutions are
imposed to. There is not much academic literature on how such scenarios are ultimately
generated. Our considerations, however, are completely generic and thus independent
of the choice of a specific scenario engine. Moreover, one can also include the typical
math finance view on financial markets by starting out with one’s favorite model for
the stochastic process describing the underlying of a derivative and drawing a sample

of M trajectories from derived value.

6.3 BCVA optimization

In this section, we aim at maximizing, resp. minimizing, the BCVA in Equation (6.3).
Using the notation from the previous section, we define c,;; = BCVAsmte(v(”),i, J)
and pri; = P(v(™,i,5), V1 <n < M,V1<i,j < K+ 1. Note that the values Cpij can
be precomputed due to Equation (6.1). By Equation (6.2), the BCVA is then given

by
K+1 K+1

M
BCVA = Z Z ij pnij-

n=1 i=1 j=1

In order to optimize this expression over all possible joint distributions P on €2 pre-
serving the pre-specified marginal laws, one has to find an optimal solution for the

atomic probabilities (Pnij);<,<us |<ij<K41 of each state w € €. Furthermore, since
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6.3 BCVA optimization

the marginal distributions Py, P4, and Pg need to be preserved, one obtains con-
straints to characterize all feasible distributions. Hence, the following optimization

problem maximizes the BCVA.

Optimization problem 6.2 (Maximizing BCVA — brute force)

M K+1K+1

m&XZ Z Z Cnij Pnij

n=1 i=1 j=1
subject to the constraints

M K+1
S pnij =Pr(j), VI<j<K+1, (6.4)

n=1 i=1
M K+1

> puig = Pali), V1<i<K+1, (6.5)
n=1 j=1
K+1 K+1

1
> D puij=Py(n) =1, Vi<n<M, (6.6)
i=1 j=1

0 < Pnijs VI<n<MV1<ij<K-+1. (6.7)

Optimization problem 6.2 is a classic three-dimensional axial transportation problem,
which can be solved efficiently, see for example Sharma [1977]. In a framework real-
istic for the present problem, however, it is almost impossible to solve Optimization
problem 6.2 due to the large number of variables. Note that in order to arrive at
an optimal solution, one has to find M K? atomic probabilities. As mentioned in the
previous section, typical values for K and M can easily lead to more than 10 million
variables. Due to memory issues and an extremely long computation time, this prob-
lem is not tractable anymore.

Helmers et al. [2016] presented within a less general but related model setup a sim-
plification of Optimization problem 6.2 by fixing the dependence structure between
the default times of the two parties A and B. Hence, the space of possible joint dis-
tributions is reduced by one dimension, corresponding to stricter constraints. On the
one hand, this simplifies the optimization problem tremendously. On the other hand,
the number of variables is still of order M K?. Hence, the problem can be solved in
less time, as long as no memory issues occur. Nevertheless, the space of possible joint

distributions is restricted, such that the BCVA resulting from that simplified problem
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6 Extremal wrong way risk

is only an optimal solution within a specific subclass of joint probability distributions.
In the following we present an optimization problem with order of complexity MK,
which maximizes the BCVA over all possible joint distributions. The idea is to use the
conditional formula in Equation (6.3) instead of Equation (6.2). To do so, we define
abbreviations for the ingredients of Equation (6.3). Thus, for all k < K+1, n < M,

v*(n, k) := max {o, v,(j)} LB, v~ (n, k) := min {0, vfj)} LA,

da(n, k) ::P(k:DA‘V:v(”)), dp(n, k) ::P(k:DB’V:v(")>,
caln, k) =P (k — D4 < Dp ‘V - v(")) . eplnk) =P (k: — Dp < Dy (V - v(")),
c(n, k) ::IP’(Z/.::DA:DB‘V:U(”)).

Hence, the BCVA is given by

M K
BCVA = ZZ (n,k)cg(n, k) +v~ (n, k‘)cA(n k) + (0™, k)es(n, k)

n=1k=1 B defaults first, at & A defaults first, at kK A and B default at &
(6.8)
T T T T T 1 T 1 1 1 1 1
T T T T T 1 1 1 1 1 1 1
e T T T T T 1 1 1 1 1 1 1
- T T T T T 1 1 1 1 1 1 1
_——_ 6 A 6 N
L 5 5
LI 4 4
= " DB - DB
Ll 3 n 3
n2aLIF 2 s LIF 2
n:?)_ e n:3_2 b
n=1 1 n=1 !
1 2 3 4 5 6 1 2 3 4 5 6
DA ! DA !

Figure 6.1 Illustration of the variables of the optimization problems for K = M = 5.
On the left, we visualize Optimization problem 6.2, and on the right,
Optimization problem 6.3. For example, the highlighted square on the left
corresponds to p1a95, the highlighted rectangle on the right corresponds to
S 4pi2j = P(2 = Dy < D,V =) = P2 = Dy < DplV =
VNPV = v1)) = ca(1,2)/5.
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6.3 BCVA optimization

In comparison to Optimization problem 6.2, where M K? variables have to be set by
the optimizer as illustrated in the left part in Figure 6.1, significantly fewer variables
are needed in Equation (6.8). This reduction of complexity is visualized in the right
part in Figure 6.1. Hence, Equation (6.8) can be used as objective function for a
more advanced optimization to maximize the BCVA, which is done in Optimization
problem 6.3. Compared to the naive optimization problem, the constraints become
more evolved. Theorem 6.4 shows that the constraints, as stated in Optimization

problem 6.3, are chosen in the right way.

Optimization problem 6.3 (Maximizing BCVA — sophisticated approach)

M K
max % > (U+(n, k)ep(n, k) + v (n, k)ea(n, k) + E™, k)es(n, k))
n=1k=1

subject to the constraints

0<ca(n,k), 0<ecp(nk), Vi<n<MV1I<Ek<K,
(6.9)
0 <cy(n,k), Vi<n<MVI<E<K+1
(6.10)
ca(n, k) +cy(n, k) <da(n, k), Vi<n<MV1I<Ek<K,
(6.11)
cg(n, k) +cy(n, k) < dg(n,k), Vi<n<MV1I<k<K,
(6.12)
K+1 K+1
D da(n,k)=1, Y dp(nk) =1, Vl<n< M, (6.13)
k=1 k=1
M M
> da(n,k) = MPa(k), Y dp(n,k)=MPp(k), VI<k<K+1, (6.14)
n=1 n=1
K+1
(ca(n,k) +ep(n, k) + ) es(n k) =1, Vl<n<M, (6.15)
k=1

k—1
(da(n,i) —cyj(n,i) —ca(n,i)) < cg(n,i), V1<n<MVI<k<K,
=1

M- 1

N
Il
i
-
Il
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6 Extremal wrong way risk

B

ZdB?’LZ—CJ(TLZ)—CBTL’L (n,i) Vi<n<MVI<Ek<K.

=1

||Mk

(6.17)

Theorem 6.4 (The optimal values agree)
A solution of Optimization problem 6.3 maximizes the BCVA. Hence, solving the more
tractable Problem 6.3 instead of Problem 6.2 is possible.

Proof

As the objective function coincides with Equation (6.3), there are two steps to prove:

(i) Every joint distribution P with marginal distributions Py, P4, Pp fulfills the
Constraints (6.9)—(6.17).

(ii) For each feasible solution da(n,k), dg(n,k), ca(n,k), cg(n, k), cy(n,k),v1l <
n < M,V1 <k < K +1, there is a joint distribution P = (pnij); <, </ I<ij<K41
with marginal distributions Py, P4, Pp.

In order to prove (i), we choose pyi; = ]P’(v(”),i,j), Vi<n<MV1I<ij<K-+1

arbitrarily. Then, the variables in Optimization problem 6.3 are given by:

K+1 K+1
=M pukis dp(n,k) =M puik,
=1 =1
K+1 K+1
=M D pukis cp(n, k) =M > pik;
i=k+1 i=k+1

ci(n, k) = Mpnir.

Since ppij > 0, V1 < n < M,V1 <4,j5 < K + 1, Conditions (6.9)-(6.12) are trivial.
The Constraints (6.13)—(6.15) are also fulfilled, because P is the joint distribution with
marginals Py, P4, Pp, and Py is the discrete uniform distribution on {1,..., M}. To
check Condition (6.16), we plug in the definitions and get

k k i—1
ZdAnZ—CJ(nZ)—CAnZ MZZP"U_MZZP"”
i=1 i=1 j=1 Jj=li=j+1
k-1 K+1 k—1
<M Z Pnij = cp(n, j).
j=1i=j+1 j=1
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6.3 BCVA optimization

Constraint (6.17) follows analogously.

To prove (ii), let a feasible distribution be given. Me must now construct a joint
distribution py;; = P(v™,i,5), V1 <n < M,V1 < i,j < K + 1, fulfilling the following

four conditions (cf. the constraints in Optimization problem 6.2),
0<pnij, V1<n<MVI<ij<K+1,
S S iy = Pp(j), VI<j< K41,
S S piy = Pa(i), VI<i<K+1,
e jK:JElpm'j =Py(n) =4, V1<n<M.
We construct the joint distribution P in a recursive scheme V1 <n < M by

cj(n,i)

VI<i<K+1, ppii:= W

Vi<i<j<K+1,

(ﬁCA(TL,Z') - Z?ﬂ;irl pnik:) (dB(na]) - CB(nvj) - Cj(n,j))
i;ll (ca(n, k) 4+ cg(n, k) + cy(n, k) —dp(n,k))

Pnij =

Vi<ji<i<K+1,
(ﬁCB(n,j) - Z;;ljﬂ pnk:j) (da(n,i) —ca(n,i) — c;(n,i))
2_:11 (ca(n, k) +cp(n,k) + cy(n, k) — da(n, k))

where, for sake of simplicity, we define V1 <n < M, ca(n, K+1) :=0 =: cg(n, K+1).

This recursive construction may seem a little cumbersome on the first sight. The idea

Pnij =

Y

is, however, quite simple. The first step is to cut the three dimensions into slices for
each 1 <n < M, as illustrated in the right part of Figure 6.1. Second, the diagonal
entries in each plane are given by c;. Next, the secondary diagonals are set dependent
on the probability mass which is available and not yet fixed in earlier steps. The re-

cursive scheme goes on with the third-rate diagonals, and all the rest of it.

It is left to show that Conditions (A)—(D) are valid for this joint distribution P. Let
us consider (A) first. It follows directly from Constraint (6.10) that 0 < pp, V1 <
n < M,V1 <i< K+ 1. Note, that V1 <n < M, V1 <j < K it holds by Constraints
(6.17) and (6.12) that

1

(ca(n, k) +cp(n, k) +cy(n, k) —dp(n,k)) > dp(n,j) —cg(n,j) —cs(n, k) >0,
1

<.
|

B
Il
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6 Extremal wrong way risk

and by Constraints (6.13) and (6.15) that

K
(ca(n, k) + cg(n, k) + cy(n, k) —dp(n, k) =dg(n, K + 1) —cj(n, K + 1).
k=1

Therefore, we know that V1 <n < M, V1 <i< j < K +1,

1 L=
Pij < grealni) = Z Pk (6.18)
k=i+1
and
1
Pnij >0 7CA n, Z Z Pnik- (619)
k=i+1

Equations (6.18) and (6.19) yield that pp;; >0,V1<n <M, VlI<i<j—-1<K+1.
Constraint (6.9) and (6.19) yield that pp;; >0,V1<n<M,Vl<i=j—-1<K+1.
Altogether, pn;; > 0,V1<n <M, Vli<i<j<K+1.

Analogously, by using Constraints (6.11) and (6.16) instead of Constraints (6.12) and
(6.17), we get ppij > 0, V1 <n < M, V1 <j <i< K+ 1. Hence, Condition (A) is
fulfilled.

To check Condition (B), we will use the following auxiliary statements:
(a) Zz;llpnzj = (dB(TL,]) - CB(nvj) - CJ(n>j)) ﬁ? Vl<n< M, V1 <] <K+ 17
(b) Zfiﬁrlpm} =cp(n,j)gp, V1<n<M,VI<j<K+1.

Statement (a) is shown via induction.

Base case (j = 2): The definition of py12 gives

irea(n, 1) (dp(n,2) — cp(n,2) — ¢s(n,2))
ca(n,1) +cp(n,1) +cy(n,1) —dp(n,1)

Constraints (6.12) and (6.17) yield that

Pni12 =

cg(n,1)+cy(n,1) —dg(n,1) = 0. (6.20)

Hence, the base case is fulfilled.

Inductive Step (2,...,7 — 1+ j): By definition of p,;;, we get

jzl ]Zl (ﬁ ( ) Zk i+1 pnzk> (dB(n’j) - CB(n’j) - CJ(n’j))
Dnij = '

- (6.21)
P Zi:l (ca(n, k) + cg(n, k) +cy(n, k) —dp(n, k))
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6.3 BCVA optimization

Note, that the induction hypothesis yields

j—1 j5—1 j—1k-1 7—1 1
Z Pnik = Z mek (dB(n k) - CB(n k) - CJ(n k)) (622)
=1 k=i+1 k=1 1=1 k= 1

The combination of Equations (6.21) and (6.22) concludes the inductive step.
To prove Statement (b), we consider the definition of p,(x1);, namely

(ﬁcB(nJ’) - Zf:j-q-l pnkj) (da(n, K +1) —cy(n, K+ 1))
S (caln k) + cp(n k) + cs(n. k) — da(n, k)

Combining Constraints (6.13) and (6.15) gives

Dn(r+1); =

K
Z ca(n, k) +ceg(n,k) +cyn,k) —da(n, k) =da(n, K +1) — cy(n, K + 1)),
k=1

and therefore,

K+1
Pn(K+1)j = 703 n j Z Pnkj < Z Pnkj = 703(” j)
k=j+1 k=j+1

and Statement (b) is shown.
Now, we are ready to check Condition (B). By using Statements (a) and (b), we can
conclude for all 1 <n < M, and 1 < j < K + 1 that

K+1 K+1
Z DPnij = meg + Pnjj + Z Pnij = (n ]) (623)
=1 i=j+1
Moreover, Statement (b) and Equation (6.20) yield
K+1 K+1 1 1 1
Z DPnil = Pni1 + Z; Pnij = MCJ(n» 1)+ MCB(”’ 1) = MdB(”a 1). (6.24)
1=

Combining Constraint (6.14), Equation (6.23), and Equation (6.24) shows Condition
(B).

Condition (C) follows analogously to Condition (B) by using Constraints (6.11) and
(6.16) instead of Constraints (6.12) and (6.17).

Finally, Condition (D) follows from Constraint (6.13), Equation (6.23), and Equa-
tion (6.24). This concludes the proof of Step (ii) and therefore the proof of this

theorem. ]
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6 Extremal wrong way risk

Remark 6.5 (Solutions to Optimization problem 6.3)

As illustrated in Figure 6.1, an optimal solution to Optimization problem 6.3 does
not carry all information about the joint distribution P. In fact, only the information
needed for the BCVA calculation is available. However, the proof of Theorem 6.4
gives one possible way on how to construct a joint distribution out of this incomplete

information.

Remark 6.6 (Joint defaults)

So far, we did not specify the function £ in Equation (6.1). This function defines how
joint defaults of both parties are handled. A joint default means that both parties
default within the same interval between two consecutive grid points. In order to opti-
mize the BCVA and search for truly conservative extremes, our choice of this function
is as follows: For a BCVA maximization, one treats joint defaults as counterparty
defaults, i.e. one assumes that the counterparty defaults first, and vice versa in case of
a BCVA minimization. However, other ways of handling joint defaults are imaginable

and fit into our setup.

Remark 6.7 (Increase in efficiency)

Using Optimization problem 6.3 has two main advantages over using Optimization
problem 6.2, because of the reduced complexity: First, it can be solved in less time.
Second, problems with higher values for the number of simulations M and the number
of grid points K are solvable.

In the next chapter, we have a look at some examples. We consider a setup with
M = 1.000 and K = 84. In contrast to Optimization problem 6.2, Optimization
problem 6.2 is not solvable on a personal computer (with 4 GB RAM) for such high
values of M and K, due to memory issues. For simpler problems, where Optimization
problem 6.2 is still solvable (e.g. M = 500 and K = 84), the run time of Problem 6.2
(544 seconds) is roughly ten times higher than the run time of Problem 6.3 (51 seconds).

6.4 Application: Model-free BCVA bounds

In this numerical case study, we perform the BCVA optimization procedure from
Section 6.3. In order to calculate the BCVA for a portfolio of financial derivatives,

banks usually define a set of risk factors (like interest rates, exchange rates, stock
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6.4 Application: Model-free BCVA bounds

prices, credit factors, etc.), which are relevant for the portfolio valuation. A scenario
generator simulates paths of the risk factors on which the portfolio is repriced resulting
in a set of portfolio value paths. The models we presented in the previous sections,
for example, could be used to generate those path. Here, we optimize the BCVA
for three interest-rate swaps: one in-the-money, one at-the-money, and one out-of-
the-money. For each swap we have M = 1.000 trajectories of the discounted values
on a non-equidistant (84 grid points) discretization of time. These are generated by
an economic-scenario engine and visualized in Figure 6.3. The BCVA is calculated
from the bank’s perspective. Recovery rates are fixed at 40 percent. Besides the
portfolio values, we need the default probability distributions of the two parties, which
are extracted from a hazard rate model calibrated to CDS spreads and illustrated in
Figure 6.2. It is important to mention that in this example the default probability of
the counterparty is always higher than the bank’s default probability. Since a BCVA-
minimization can be seen as a BCVA-maximization from the counterparty’s view, we
can evaluate the impact of WWR for two basic situation, namely a counterparty with

better credit quality than the bank and a counterparty with worse credit rating.

Distribution functions of the default times

= = Bank

= Counterparty
T T T T T T T T

2015-04-30 2015-10-30 2016-05-25 2017-01-20 2017-09-17 2018-04-30 2018-11-11 2019-07-08 2020-03-05

-
-
- - =
P

Figure 6.2 Cumulative distribution functions of bank and counterparty.

Note that our setup is flexible enough to optimize a whole portfolio at once. However,
for having a better intuition about the results we restrict this numerical example to
single products. Obviously, the BCVA can be seen as the sum of CVA (solely driven by

the positive part of the portfolio value and the event where the counterparty defaults
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Interest rate swap (ITM, 5 years, long position, values in 1.000)
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Figure 6.3 The first 250 scenarios of the three products; one in-the-money swap,

one at-the-money swap, and one out-of-the-money swap, generated by an

economic-scenario engine. For the case study we used 1.000 paths.
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first) and DVA (solely driven by the negative part and a first default by the bank). Let
us have a look at an extremal case: Assume that every path is positive at each point
in time (which is almost true for the considered I'TM swap). Then, the DVA vanishes
and the BCVA coincides with the CVA. Hence, one can easily construct dependence
structures between the default times leading to the maximal BCVA by ensuring that
the counterparty defaults before the bank as often as possible. Co-monotonicity or
counter-monotonicity between the default times are typical candidates, as we will see
within the examples below. Therefore, the overall structure of the portfolio path is
very important. We choose three kinds of swaps to cover different situations: (1) the
symmetric case (ATM swap) and the two cases where the majority of the paths are
either (2) positive or (3) negative (ITM swap and OTM swap). This provides a sound

insight into the functioning of the optimizing procedure.

In Figure 6.4 the results of the model-free BCVA bounds are given. For a comparison,
we calculated the BCVA in case of no WWR, i.e. under the assumption of independence
between the portfolio value and the default times. Furthermore, we implemented the
very popular WWR-model by Hull and White [2012]. Within this model, one special
dependence structure is induced. By taking the parameters to their extremes, one
ends up with an interval of possible Hull-White BCVA values. Here, we adopt the
model specifications and the calibration procedure presented in the appendix of Hull
and White [2012], which also starts with given trajectories of the portfolio value and a
discrete-time setup. The hazard rate directly depends on the portfolio value, and the
dependence is driven by one parameter, called b. By letting b go to the extremes, we end
up with an interval of Hull-White BCVA values. The maximal and minimal values are
also shown in this figure. These values can be seen as the maximal and minimal BCVA
coming from an optimization over all dependence structures fitting into the Hull-White
WWR-model. Furthermore, by assuming one special joint distribution between the
default times of the two parties, one obtains an optimization over a subclass of possible
dependence structures which is exactly the setup of Helmers et al. [2016]. Here, we
exemplarily chose a Gaussian copula to describe the dependence between the default

times. We have a look at different choices of the dependence parameter p, namely:

p = 1 (co-monotonicity between the defaults), p = 0 (independence between the
defaults), p = —1 (counter-monotonicity between the defaults), p = 0.5 (interpolation
between co-monotonicity and independence), and p = —0.5 (interpolation between

counter-monotonicity and independence).
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14k18 Co-monotone defaults 1541100
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Figure 6.4 BCVA bounds in the respective WWR models. The dashed line in the
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middle of the illustration corresponds to the BCVA value without WWR.
By going to the right side we meet WWR, which is increasing to the
maximal possible WWR. Going to the left side results into WWR from
the counterparty’s perspective. The model-free bounds are the results of

the optimization procedure presented in Section 6.3.



6.4 Application: Model-free BCVA bounds

Discussion of the optimization results

By studying the results in Figure 6.4 some natural questions arise, which we answer

in the following:

e Can co-monotonicity between the default times always explain maxi-
mal BCVA values?
In general, no. In many practical situations, however, it is true. It actually de-
pends on the two marginal default distributions. In case the distribution function
of the counterparty’s default time lies always above the default distribution func-
tion of the bank, i.e. P(Da < t) < P(Dp < t) for all t € (0,T],3 co-monotonicity
between the default times implies that the counterparty always defaults first.
Hence, co-monotonicity can lead to maximal CVA values, whereas the DVA van-
ishes, because the bank never defaults first. Therefore, the maximal BCVA can
be produced by co-monotonicity. In the case where P(D4 <t) > P(Dp <) for
all ¢ € (0,77, the DVA can be maximized, and the CVA vanishes. For this rea-
son, co-monotonicity leads to the lower BCVA bound. In every other situation,
i.e. the two distribution functions have at least one intersection point in (0,77,
co-monotonicity is not necessarily able to explain the BCVA bounds. Neverthe-
less, it is quite realistic in real-world situations that the distribution functions
have no intersection points. In our example, the default distribution function of
the counterparty lies above the distribution function of the bank’s default time,
as one can see in Figure 6.2. Hence, the maximal BCVA can be generated by
co-monotonicity between the default times due to the special constellation of the

default probabilities.

¢ Why is the co-monotone-interval for the OTM swap so tiny?
As we have seen in the answer to the previous question, co-monotonicity ensures
that either the CVA or the DVA vanishes, as long as one default time distribution
function is greater than the other within the whole interval (0,7]. In our case,
the DVA vanishes and therefore, the BCVA is always positive, even in situation
where the majority of the portfolio paths is negative. This explains the relatively
small interval for the OTM Swap.

¢ Why does counter-monotonicity lead to the maximal BCVA for the
ITM swap and the ATM swap but not for the OTM swap?

3T is the point in time corresponding to the last considered grid point K.
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Again, this phenomenon can be explained by the default probabilities of the two
parties. Aslong as P(D4 <T)+P(Dp <T) < 1, counter-monotonicity guaran-
tees that every default event is a first default, no matter whether it is a default of
the bank or the counterparty. The reason is that the counter-monotonicity cop-
ula maps early bank defaults to late counterparty defaults, and late bank defaults
to early counterparty defaults. Hence, if P(D4 < T)+P(Dp < T) < 1, bank de-
faults occurring before time 7" are mapped to counterparty defaults after 7', and
vice versa. In order to maximize the BCVA, the optimizer can map the counter-
party default events to the maximal portfolio values and the bank default events
can be mapped to portfolio paths with non-negative values. This pragmatic rule
leads to the upper BCVA bound as long as there are enough “non-negative” paths,
which is the case for the ITM swap and the ATM swap, but not for the OTM
swap, as one can see in Figure 6.3. The condition P(Dy <T)+P(Dp <T) <1
is usually fulfilled, as long as T does not take extremely large values or the

companies are very risky.

Why are the intervals similarly large for totally different dependence
structures between the defaults?

It is striking that the counter-monotonicity copula and the independence copula
lead to similarly large intervals. In the previous question, we already answered
why the interval is so large in case of counter-monotonicity. If we assume the
default times to be independent, it is very unlikely that a default of one party
is not a first default due to the small overall default probability in (0,7] (see
Figure 6.2). Hence, in comparison to counter-monotonicity, not all defaults are
first defaults, but most of them are. This explains why the independence-interval
is slightly smaller than the counter-monotonicity-interval. Furthermore, it is not
surprising that the interval of the Gaussian copula with p = —0.5 is larger than
independence, but smaller than counter-monotonicity, as the Gaussian copula

interpolates between these extremal dependencies.

Independence between the default times seems to be flexible enough
to lead to a huge BCVA-interval. Is it recommendable to use?

It is right that the independence copula (between the default times) combined
with a worst-case dependence to the portfolio values can explain a large interval
of possible BCVA values. From this regard, it seems acceptable to use it. In
reality, however, it is widely accepted that default times are not independent.

Hence, it might be an unrealistic assumption and is therefore not recommended.
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Moreover, in order to achieve extreme BCVA values under independent default

times the remaining dependence to the underlying must be degenerate.

e Are the considered dependence structures between the default times
realistic?
In practice, one usually faces positive dependence between the default times.
There are different ways how to characterize positive dependence. A positive
correlation coefficient between the default times could be one possible choice.
Other dependence measures, as the concept of positive quadrant dependence,
are also possible. In the special case of a Gaussian copula, one speaks of positive
dependence whenever p > 0. Restricting oneself to positive dependence clearly
rules out counter-monotonicity. We implemented it anyway to get a better un-
derstanding how the optimization procedure works. The Gaussian copula with
positive parameter p is, however, just one possible choice and can lead to small
intervals, as one can see in the case of an OTM swap. Thus, the model risk is
quite high. There might be other positive dependence structures leading to much

larger intervals, as we will see in the answer to the next question.

e Are the worst-case dependence structures leading to the BCVA bounds
realistic?
As we already mentioned, a negative dependence between the default times is
quite unrealistic. Thus, it is justifiable to ask to what extent the model-free
BCVA bounds are meaningful. One might assume that these bounds can only be
produced by extremely unrealistic dependence structures. First, we should men-
tion that the purpose of the present work is not to present realistic WWR-models.
The idea is rather to answer the following question: How bad can WWR be?
Second, in our perspective, it is hard to decide, if a given dependence structure
between the default times and the portfolio paths is realistic. Nevertheless, it is
reasonable to force the bivariate dependence between the default times to be non-
negative. This can be achieved, for example, by adding the following constraint
to Optimization problem 6.3: P(Dy < t)P(Dp <t) < P(Da < t,Dp < t) for
all t € [0,T]. This constraint can be seen as a weak PQD* condition and can
be interpreted as the following: The probability that both parties default before
a fixed time ¢ is higher than the probability that both parties default before a

fixed time ¢ in case of independence. Hence, dependence structures fulfilling this

“The classical definition for positive quadrant dependence (PQD) is given by P(Da < t4)P(Dp <
tg) < P(Da <ta,Dp <tg)forallta,ts€[0,T]
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condition can be seen as non-negative dependence structures. The results coming
from the optimizing procedure including this additional condition are astonish-
ing: the model-free BCVA bounds do not change. This means that by optimizing
over a subclass of dependence structures, namely over all dependencies fulfilling
the above mentioned constraint, the extremal BCVA coincides with the BCVA
bounds. Hence, the BCVA bounds in our examples can even be explained in
presence positive dependencies between the default times. To summarize, the
extremal BCVA values can stem from reasonable dependence structures among
the default times.



7 Conclusion

In this thesis, we presented new approaches for tractable modeling of dependencies be-
tween the stochastic drivers in financial models. Particularly, a new stochastic volatil-
ity model, which generalized the popular model by Barndorff-Nielsen and Shephard
[2001] to allow for decoupled jumps in the volatility process and jumps in the asset
price process, has been proposed. We thoroughly investigated the model dynamics
and showed some exemplary products, where the dependency between the jump com-
ponents has a crucial impact. The dependent two-dimensional jump process is con-
structed by a time-change procedure, which ensures fast pricing and calibrating via
Fourier-inversion methods, since the characteristic function of the log-price dynamics

of the newly created model can be expressed in closed form.

In the d-dimensional case, the time-change construction of dependent jump processes
has also been utilized to construct multi-dimensional versions of well-known univariate
models. The easy-to-simulate jump processes fulfill a nice separation property, which
allows a tractable sequential calibration procedure. First of all, marginal asset price
processes can be calibrated to plain vanilla option prices. Afterwards, the dependence
parameters between the assets can be specified in a second step. We emphasized the

practicality of this multivariate model in a calibration exercise with real market data.

Last but not least, we presented a model-free approach and formalized an optimization
problem that allows to maximize (or minimize) bilateral credit valuation adjustments.
We calculated the BCVA considering extremal dependence structures leading to the
maximal WWR. These tight BCVA bounds have been compared to the popular WWR
model by Hull and White [2012]. Furthermore, we related the results to the BCVA
bounds by Helmers et al. [2016], which correspond to subclasses of possible dependence
structures between the portfolio value and the default times. In a numerical case
study, we have seen that WWR is essential and can lead to exorbitant BCVA values.
Furthermore, WWR plays a bigger role than the dependence structure between the

default times. The bounds coming from our model-free approach can be used as an
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indicator for model risk for existing WWR models in the sense that the flexibility in
explaining various BCVA values can be put in relation to the model-free bounds. This
sheds some light on the amount of model risk market participants are exposed to, when

committing oneself to one specific parametric WWR model.
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