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Abstract

This thesis addresses di�erent topics of dependence modeling in derivative pricing.

It covers a new stochastic volatility model for asset price returns, multi-dimensional

generalizations of popular univariate jump-di�usion models, and a model-free approach

to identify extremal cases of bilateral credit valuation adjustments (BCVA). Based

on joint subordination, dependent multi-dimensional compound Poisson processes are

constructed. The presented approach allows to introduce dependence between the

components of the multivariate processes, without altering the marginal laws. This

is a very convenient feature e.g. for sequentially calibrating multi-dimensional models.

Moreover, the two-dimensional time-changed compound Poisson process is used to

extend the popular BNS model by partly decoupling the volatility jumps from the

asset price returns. Finally, worst-case dependence structures between portfolio values

and the default times of the contractual parties to a derivative transaction, which lead

to extremal wrong-way risk (WWR), are established. This is achieved by solving a

mass-transportation problem. The tight bounds for the BCVA, which are produced by

our model-free methodology, are useful measures for the model risk of WWR models.



Zusammenfassung

Diese Arbeit beschäftigt sich mit verschiedenen Themen der Abhängigkeitsmodel-

lierung in der Derivatebewertung. Sie behandelt ein neues stochastisches Volatil-

itätsmodell, mehrdimensionale Erweiterungen von bekannten eindimensionalen Sprung-

Di�usions-Modellen für Preisprozesse und einen modellfreien Ansatz um Extremfälle

von BCVA zu ermitteln. Basierend auf gemeinsamer Subordination werden mehrdi-

mensionale zusammengesetzte Poissonprozesse konstruiert. Die vorgelegte Methode

erlaubt es, Abhängigkeit zwischen den Komponenten des mehrdimensionalen Prozesses

einzuführen, ohne die Randverteilungen zu verändern. Dies ist eine sehr praktis-

che Eigenschaft, beispielsweise für die sequentielle Kalibrierung von mehrdimension-

alen Modellen. Zudem wird der zweidimensionale zusammengesetzte Poissonprozess

verwendet um das bekannte BNS Modell, durch teilweises Entkoppeln der Volatil-

itätssprünge von den Preissprüngen, zu erweitern. Abschlieÿend werden Worst-Case

Abhängigkeitsstrukturen zwischen dem Portfoliowert und den Ausfallszeiten der Ver-

tragspartner einer Derivatetransaktion ermittelt, die zu extremen WWR führen. Dies

wird durch das Lösen eines Transportproblems erreicht. Die Schranken für das BCVA,

welche durch unseren modellfreien Ansatz erzeugt werden, stellen nützliche Maÿe für

das Modellrisiko von WWR-Modellen dar.
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1 Introduction

Modeling �nancial assets and pricing derivatives are tasks having faced a drastic change

over the last decades. Since pricing and risk managing of complex products increasingly

came into focus, more and more stylized facts of time series of asset prices are sup-

posed to be captured by �nancial models. This naturally results in more sophisticated,

but also more complex, models. Seeding in the groundbreaking works of Samuelson

[1965] and Black and Scholes [1973], where the asset price follows a geometric Brow-

nian motion, many extensions and variants of the popular Black�Scholes model have

been proposed. For example, Merton [1973] weakened the constant volatility assump-

tion, resulting in a time dependent volatility. Later extensions model the volatility as a

stochastic process, e.g. the local volatility model class, where the volatility is a function

of time and current spot price. A popular example of that class is the model by Cox and

Ross [1976]. Other proposals, like Merton [1976], add jumps to the asset price dynam-

ics to explain sudden market movements. A wave of further enhancement followed,

resulting in a zoo of models. One of those approaches, which combines both, price

jumps and stochastic volatility dynamics, has been proposed by Barndor�-Nielsen and

Shephard [2001]. Their model, which we will call Barndor�-Nielsen�Shepard model,

or short BNS model, plays a prominent role throughout the present thesis. Such uni-

variate models, describing one asset only, have also been generalized to sound multi-

dimensional model frameworks incorporating dependencies between di�erent assets.

This is achieved by linking the stochastic drivers of the marginal asset processes. This

is a straightforward task for Brownian motions, but becomes challenging for jump-

driven price dynamics. Those multivariate models, however, are essential for pricing

�nancial derivatives, which rely on more than only one underlying price process. At

the latest since the collapse of Lehman Brothers in 2008 it became inevitable to rec-

ognize counterparty default risk as integral part of the valuation process of �nancial

derivatives, which changed the classical view on derivative pricing. Doing so alters the

risk neutral price by adjustments accounting for a possible loss in case of a default of

one contractual party.
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1 Introduction

In derivatives pricing, stochastic dependencies can play a crucial role. Basically, there

are three areas where modeling dependence might have a huge impact on the resulting

derivative values. First, dependence can occur directly as model parameter in univari-

ate models for �nancial assets. For example, Heston [1993] proposed a di�usion-type

model with stochastic volatility. Both, the asset value and its variance process are

driven by a Brownian motion each, which do not necessarily coincide, but are stochas-

tically dependent. Obviously, the correlation between the two Brownian motions rep-

resents one out of six parameters of the Heston model. Another popular example is the

model by Stein and Stein [1991]. Their model dynamics also depend on the correlation

of two Brownian motions.1 Secondly, in multi-dimensional models, stochastic depen-

dence is essential to recognize interactions between assets and to model similar (or

converse) movements. Pricing multi-underlying derivatives therefore relies on sensible

joint modeling of their ingredients, which can be, for example, stock prices, interest

rates, foreign exchange rates, or default times. Some derivatives rely only on underly-

ing of the same kind, like basket options (stocks) or collateral debt obligations (survival

processes).2 Pricing those derivatives therefore necessitates a multivariate framework

with similar marginal processes. On the contrary, a cross-asset model is required to

price derivatives like quanto options (FX-equity).3 Thirdly, price adjustments due to

the possibility of default events can heavily be a�ected by the dependence between the

value of the derivative and the credit worthiness of the contractual parties. In these

cases, we speak of wrong-way risk (WWR). So, valuing WWR also requires a sound

multivariate setup for modeling the underlying processes of the derivatives and the

default times of the two counterparts to a derivative transaction.

In the present thesis, we contribute new approaches to all of those three �elds. First, we

introduce a new model, the so-called weak-link Γ-OU-BNS model, which generalizes the

popular univariate Γ-OU-BNS model4 by introducing a new parameter, which drives

the dependence between asset price jumps and volatility jumps. The BNS model class

1Many other univariate models exist having parameter representing the dependence between stochas-

tic drivers, e.g. extensions of Heston's model, like Schöbel and Zhu [1999].
2A bunch of models exist in the literature for pricing those derivatives. Just to give a few examples,

Milevsky and Posner [1998] and Brooks et al. [1994] among others price basket options in a multi-

dimensional Black-Scholes framework. Vasicek [1987] proposed a multivariate generalization of

Merton's structural model (Merton [1974]), which can be used to value collateral debt obligations.
3Again, a vast number of model proposals exist for cross-asset derivatives, for example Derman et al.

[1990] use a two-dimensional Black�Scholes model for Quanto option pricing, whereas Dimitro�

et al. [2009] propose a multi-dimensional Heston model.
4A tractable example of the BNS model class, which we will present in Section 4.1.
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imposes a Lévy subordinator driven Ornstein�Uhlenbeck structure for the squared

volatility process. Furthermore, in the extended notion according to Nicolato and

Venardos [2003], upward jumps in the squared volatility process are accompanied by

downward jumps in the asset price. There is, however, empirical evidence (e.g. Jacod

and Todorov [2010]) that asset prices and volatility do not always jump together,

but there are separate jumps in both processes, which cannot be captured by the

classical BNS model class. We therefore extend the BNS model class in a generic way,

accounting for jumps in the asset price as well as the squared volatility process which

do not necessarily have to occur simultaneously. We employ a two-dimensional Lévy

process to account for the jumps in the squared volatility process and the asset price

process, where the coordinate processes can have any possible dependence structure.

One tractable example of this model class is the weak-link Γ-OU-BNS model. Here,

the jumps are driven by dependent compound Poisson processes constructed by a

time-change construction. For this model, the characteristic function of the log price

process can be calculated in closed form, which is essential for fast derivatives pricing

via Fourier methods.

Secondly, new tractable multi-dimensional jump-di�usion models based on univariate

models by Kou [2002], Bannör and Scherer [2013], and the Γ-OU-BNS model are

presented. Here, we use a bottom-up approach. That means, we start with d univariate

models and merge them to one multivariate model by adding a certain dependence

structure. This is achieved by introducing dependence to the univariate jump processes

in a way that does not alter the marginal laws; a very convenient feature e.g. for a

sequential calibration of the model's parameters to market quotes. Usually, the number

of parameters in multi-dimensional models is very high, which is often the bottleneck

of these models when it comes to practical applications, since it is di�cult to capture

so many model parameters from market quotes. In our model framework, we aim at

keeping the number of parameters, which cannot be calibrated to market prices of

plain vanilla options data, as low as possible to ensure practical tractability.

Thirdly, we investigate extremal cases of wrong-way risk by detecting worst-case depen-

dence structures between derivative prices and default times, leading to maximal and

minimal bilateral credit valuation adjustments (BCVA). In order to calculate BCVA

recognizing wrong-way risk, a sound model for the dependence structure between three

quantities is required. In particular, the crucial building blocks are: the default times

of the two contractual parties to the derivative transaction and the derivative value

at the �rst of the two default times. In the literature, there exist various proposals
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1 Introduction

on how this dependence structure should be modeled. However, no market consensus

emerged. In practice, independence between all three, or at least two of the quantities

is still a popular choice, although it is a over-simpli�cation and completely misses the

root of WWR. Moreover, many WWR methodologies depend strongly on the marginal

models for the default times and the model for the underlying of the derivative. In

any case, specifying the dependence structure imposes one to model risk. Even within

some parametric model one typically obtains a considerable interval of BCVA values

when the dependence parameters are taken to the extremes. Here, we present an ap-

proach to identify model-free bounds for BCVA. These tight bounds can be used as

some model risk measure on how �exible a given parametric model is with respect to

explaining the range of possible adjustments.

The remainder of the thesis is structured as follows: The foundation for the studies is

laid in Chapter 2, which addresses the mathematical background and introduces the

notation used throughout the thesis. Chapter 3 presents a new useful construction of

dependent compound Poisson processes with exponentially distributed jump sizes. We

investigate the implied dependence structure and point out, why this construction is

a tractable tool for modeling dependent asset price jumps. Chapter 4 and Chapter 5

utilize this construction extensively. In Chapter 4 we present the weak-link Γ-OU-BNS

model, a new stochastic volatility model with decoupled jumps. Chapter 5 addresses

multi-dimensional versions of popular univariate jump-di�usion models. Chapter 6

elaborates the investigation of extremal dependence structures within wrong-way risk

models for BCVA calculations. Finally, Chapter 7 summarizes the main results of the

present thesis. The four main chapters (3 to 6) are structured likewise. Each starts

with an introductory section on some fundamentals and concludes with a section on

applications. If not stated otherwise, we claim the content of these chapters, excluding

the fundamental sections, to be our own work based on four peer-reviewed articles

published prior to this thesis, namely:

[Bannör et al., 2015] Bannör, K. F., Scherer, M., and Schulz, T. (2015). A two-

sided BNS model for multicurrency FX markets. In Glau, K., Scherer, M., and

Zagst, R., editors, Innovations in Quantitative Risk Management, pages 93�107.

Springer International Publishing, Cham.

[Hofmann and Schulz, 2016] Hofmann, K. F. and Schulz, T. (2016). A general

Ornstein-Uhlenbeck stochastic volatility model with Lévy jumps. International

Journal of Theoretical and Applied Finance, 19(08):1�23.
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[Mai et al., 2014] Mai, J.-F., Scherer, M., and Schulz, T. (2014). Sequential

modeling of dependent jump processes. Wilmott Magazine, 2014(70):54�63.

[Scherer and Schulz, 2016] Scherer, M. and Schulz, T. (2016). Extremal de-

pendence for bilateral credit valuation adjustments. International Journal of

Theoretical and Applied Finance, 19(07):1�21

In particular, Chapter 3 contains results from Mai et al. [2014], Chapter 4 from Hof-

mann and Schulz [2016], Chapter 5 from Bannör et al. [2015] and Mai et al. [2014],

and Chapter 6 from Scherer and Schulz [2016].
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2 Mathematical prerequisites

In this preliminary chapter we provide an overview of the nomenclature and a brief

introduction of the underlying mathematical theory required by our study. We start

with some basic distributions and the de�nition of the Laplace and Fourier trans-

form, followed by an introduction to Lévy processes with focus on compound Poisson

processes, and a brief introduction on copula theory.

De�nition 2.1 (Normal distribution)

Let µ ∈ R, σ2 ∈ R+, and let X be a random variable with density of the form

f(x) =
1√

2π σ2
e−

(x−µ)2

2σ2 , ∀x ∈ R.

Then, the law of X is called normal distribution with mean µ and variance σ2, abbre-

viated by X ∼ N
(
µ, σ2

)
.

For µ ∈ Rd, d ∈ N, and a positive de�nite matrix Σ ∈ Rd×d+ , we call the law of an

Rd-valued random variable X with density of the form

f(x) =
1√

(2π)d det(Σ)
e−

1
2

(x−µ)>Σ−1(x−µ), ∀x ∈ Rd,

a d-dimensional normal distribution with mean µ and covariance matrix Σ.

De�nition 2.2 (Exponential distribution)

Let η > 0 and let X be a nonnegative random variable with density of the form

f(x) = η e−η x for all x ≥ 0. Then, the law of X is called exponential distribution with

parameter η, abbreviated by X ∼ Exp(η).

De�nition 2.3 (Erlang distribution)

Let d ∈ N and X1, X2, . . . , Xd be mutually independent Exp(η)-distributed ran-

dom variables. Then, it follows directly by applying d − 1 times the convolution
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2 Mathematical prerequisites

formula on the density of an exponential distribution that the density of the sum of

X1, X2, . . . , Xd is given by

f(x) =
ηd xd−1 e−η x

(d− 1)!
, ∀x ∈ R.

This law is called Erlang distribution, abbreviated by Erlang(d, η).

While the normal distribution is used to describe di�usion-type price movements, we

utilize the exponential distribution to describe jump magnitudes of stochastic pro-

cesses, e.g. jumps in stock price process. The sum of several jumps is hence Erlang-

distributed. The number of jumps in a �nite time interval can be modeled by a Poisson

distribution.

De�nition 2.4 (Poisson distribution)

Let c ≥ 0 and let N be an N0-valued random variable ful�lling P(N = n) = e−c c
n

n!

for all n ∈ N0. Then, the law of N is called Poisson distribution with parameter c,

abbreviated by N ∼ Poi(c).

The Geometric distribution is the discrete analogue to the exponential law and can

be interpreted as the number of failures of a repeated Bernoulli experiment before the

�rst success.

De�nition 2.5 (Geometric distribution)

Let 0 < p ≤ 1 and let N be an N0-valued random variable ful�lling P(N = n) =

p (1− p)n for all n ∈ N0. Then, the law of N is called geometric distribution with

parameter p, abbreviated by N ∼ Geo(p).

The parameter p of the geometric distribution coincides with the success probability of

the constructing Bernoulli experiment. The expectations of the presented distributions

provide a natural interpretation of their parameters.

Theorem 2.6 (First moments of some basic distributions)

(i) Let X ∼ N
(
µ, σ2

)
. Then,

E [X] = µ, E
[
X2
]

= µ2 + σ2, Var [X] = σ2.
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(ii) Let X ∼ Exp(η). Then,

E [X] =
1

η
, E

[
X2
]

=
2

η2
, Var [X] =

1

η2
.

(iii) Let N ∼ Poi(c). Then,

E [N ] = c, E
[
N2
]

= c2 + c, Var [N ] = c.

(iv) Let N ∼ Geo(p). Then,

E [N ] =
1− p
p

, E
[
N2
]

=
(1− p)2 + 1− p

p2
, Var [N ] =

1− p
p2

.

Proof

The �rst two moments of these basic distributions can easily be calculated, as it is

stated in standard textbooks on probability theory like Billingsley [1995], Kallenberg

[2002], or Klenke [2007]. �

Alternatively, these moments can be derived from the derivatives of their moment

generating function (cf. Theorem 2.8 (iv)), which is de�ned in the sequel.

De�nition 2.7 (Characteristic function and Laplace transform)

The characteristic function ϕX of an Rd-valued random variable X, d ∈ N, is de�ned
by

ϕX(u) := E[eiu>X ]

for any u ∈ Rd.
Moreover, for any R+-valued random variable X, the Laplace transform1 ϕ̃X is de�ned

by

ϕ̃X(u) := E[e−uX ]

for any u ∈ R+.

1In general, for an R-valued random variables X, the function f(u) := E[euX ], u ∈ R is called

moment generating function. Note that in contrast to that function, the Laplace transform, which

we only consider for non-negative random variables, always exists.
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2 Mathematical prerequisites

In some textbooks, the characteristic function is also called Fourier transform. The

next theorem lists some useful properties of Fourier and Laplace transforms.

Theorem 2.8 (Properties of Fourier and Laplace transforms)

(i) The law of a random variableX on Rd is uniquely determined by its characteristic

function ϕX .

(ii) The law of a random variable X on R+ is uniquely determined by its Laplace

transform ϕ̃X .

(iii) Let ϕ̃X : R+ → [0, 1] be the Laplace transform of an R+-valued random variable

X. If an explicit expression for ϕ̃X : u 7→ ϕ̃X(u) is given, which is analytic2 on

the set C+ := {w : Re(w) ≥ 0}, then the function ϕ̃X can be continued on C+

and it holds that E[e−wX ] = ϕ̃X(w), ∀w ∈ C+. In particular, ϕX(u) = ϕ̃X(−iu).

(iv) Let ϕ̃X be the Laplace transform of X and let n ≥ 1. Then, X has a �nite n-th

moment if and only if ϕ̃(n)
X (0) exists, where ϕ̃(n)

X denotes the n-th derivative of

ϕ̃X . Moreover, it holds that

E [Xn] = (−1)n ϕ̃
(n)
X (0).

Proof

(i) See, for example, [Klenke, 2007, Theorem 15.8].

(ii) See, for example, [Sato, 1999, Proposition 2.6].

(iii) This statement can be shown by using the uniqueness theorem for analytic func-

tions, as it is done, for example, in the proof of [Sato, 1999, Theorem 24.11].

(iv) See, for example, [Feller, 1971, XIII.2(ii)]. �

Example 2.9 (Transforms of some basic distributions)

(i) Let G ∼ N
(
µ, σ2

)
. Then, ϕG(u) = eiuµ− 1

2
σ2 u2 . In general, a d-dimensional

normal distributed random variable G with mean µ and covariance matrix Σ is

given by ϕG(u) = eiu>µ− 1
2
u>Σu2 .

(ii) Let X ∼ Exp(η). Then, ϕ̃X(u) = η
η+u .

2A function is called analytic on a region C if it is complex di�erentiable in every point in C.
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(iii) Let N ∼ Poi(c). Then, ϕ̃N (u) = exp (c (e−u − 1)).

(iv) Let M ∼ Geo(p). Then, ϕ̃M (u) = p
1−(1−p)e−u .

For a proof, see for example, [Klenke, 2007, Theorem 15.12]. Note that these ex-

pressions for the Laplace transforms of X, N , and M are analytic on C+. Thus,

using Theorem 2.8 (iii)), the characteristic functions are given by ϕX(u) = ϕ̃X(−iu),

ϕN (u) = ϕ̃N (−iu), and ϕM (u) = ϕ̃M (−iu). As mentioned above, the moments can

now be calculated by computing the derivatives of the Laplace transforms and using

Theorem 2.8 (iv).

Now, we go over from random variables to stochastic processes, which are families of

random variables. Stochastic processes can be used to describe the random behavior of

asset prices over time. We assume that the stochastic processes live on a �ltered com-

plete probability space (Ω,F ,F,P), where the �ltration F ful�lls the usual hypothesis.3

A �ltration is a family of σ-algebras F = (Ft)t≥0 that is increasing, i.e., Fs ⊂ Ft ⊂ F
if s ≤ t.

De�nition 2.10 (Stochastic process)

(i) A family of random variables X = {Xt}t≥0 on a probability space (Ω, F , P) with

values in Rd, d ∈ N, is called (d-dimensional) stochastic process.

(ii) For every ω ∈ Ω, we say that the mapping [0,∞) → R, t 7→ Xt(ω) is a path of

X.

(iii) A stochastic process X is called F-adapted w.r.t. a �ltration F = (Ft)t≥0 if Xt is

Ft-measurable for all t ≥ 0.

(iv) An F-adapted stochastic process with E[|Xt|] < ∞ for all t ≥ 0 is called F-
martingale if

E[Xt|Fs] = Xs for all 0 ≤ s ≤ t.

In the following we introduce several types of stochastic processes. Firstly, we have

a look at the Brownian motion, a di�usion-type process, and at the Poisson process,

which is an increasing counting process taking only natural numbers.

3For detailed information on this setup, we refer to Protter [2005].
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2 Mathematical prerequisites

De�nition 2.11 (Brownian motion)

An F-adapted stochastic process B = (Bt)0≤t≤∞ with a.s. continuous paths taking

values in Rd and starting in zero is called a d-dimensional Brownian motion with

correlation matrix Σ if

(i) for 0 ≤ s < t <∞, Bt −Bs is independent of Fs,

(ii) for 0 < s < t, Bt−Bs is a normally distributed random variable with mean zero

and covariance matrix equal to (t− s)Σ, where Σ ∈ [−1, 1]d×d denotes a positive

semide�nite correlation matrix.

De�nition 2.12 (Poisson process)

An N0-valued stochastic process N ful�lling

(i) N0 = 0 P-a.s.,

(ii) the paths of N are P-a.s. càdlàg, i.e. right-continuous with existing left limits,

(iii) for any n ∈ N and for any 0 = t0 < t1 < · · · < tn the family {Nti −Nti−1}i=1,...,n

is independent.

(iv) Nt −Ns ∼ Poi(c (t− s)), for any t > s ≥ 0,

is called Poisson process with intensity c ≥ 0.

De�nition 2.12 seems a bit technical on �rst sight. However, the next theorem yields

an intuitive characterization of Poisson processes and shows how such a process can

be constructed.

Theorem 2.13 (Construction of a Poisson process)

(i) Let c > 0 and E1, E2, . . . be a sequence of independent Exp(c)-distributed ran-

dom variables. De�ne

Tn =
n∑
i=1

Ei, ∀n ≥ 1. (2.1)

Then, the stochastic process de�ned by

Nt = # {n ≥ 1 : Tn ≤ t} , t ≥ 0, (2.2)

is a Poisson process with intensity c.
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(ii) Let N be a Poisson process with intensity c. Then, N ful�lls Equation (2.2) with

T1, T2, . . . given by Equation (2.1), where E1, E2, . . . is a sequence of indepen-

dent Exp(c)-distributed random variables.

Proof

See, for example, [Mikosch, 2009, Theorem 2.1.6]. �

The random variables T1, T2, . . . are called arrival times or jump times of the Poisson

process. Hence, a Poisson process can be seen as a sequence of stochastic arrivals and

the waiting time between two consecutive arrival times is exponentially distributed.

By mapping independent and identically distributed random variables to each arrival

time, we can construct a compound Poisson process, which has, in contrast to a Poisson

process, stochastic increments.

De�nition 2.14 (Compound Poisson process)

Let N be a Poisson process with intensity c and let J1, J2, . . . be a sequence of inde-

pendent and identically distributed random variables for some distribution D on Rd.
Assume that N and {Ji}i∈N are independent. Then, the stochastic process Z de�ned

by

Zt =

Nt∑
i=1

Ji, for all t ≥ 0,

is called compound Poisson process with intensity c and jump size distribution D.

In the special case of Exp(η)-distributed random variables J1, J2, . . . for some η > 0,

we use the notation Z ∼ CPPExp(c, η) or we say Z is a CPPExp(c, η).

The sum of N i.i.d. random variables with N ∼ Poi follows a compound Poisson dis-

tribution. Therefore, a compound Poisson process N = {Nt}t≥0 is compound Poisson

distributed for all t > 0. Compound Poisson processes are used throughout the thesis

to model jumps in asset price processes. In Chapter 3, we present a comprehensive

overview of typical �elds of applications. Brownian motions, Poisson processes, and

also compound Poisson processes belong to a broader class of stochastic processes, the

class of so-called Lévy processes.
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2 Mathematical prerequisites

De�nition 2.15 (Lévy process)

An Rd-valued stochastic process X ful�lling

(i) X0 = 0 P-a.s.,

(ii) the paths of X are P-a.s. càdlàg,

(iii) for any n ∈ N and for any 0 = t0 < t1 < · · · < tn the family {Xti −Xti−1}i=1,...,n

is independent.

(iv) Nt −Ns
d
=Nt−s, for any t > s ≥ 0,

(v) for all t ≥ 0 and ε > 0, lim
s→t

P (||Xt −Xs|| > ε) = 0,

is called (d-dimensional) Lévy process.4

Obviously, each compound Poisson process is a Lévy process. The next theorem char-

acterizes this subclass of Lévy processes.

Theorem 2.16 (Lévy processes with piecewise constant paths)

A stochastic process is a compound Poisson process if and only if it is a Lévy process

and its paths are piece-wise constant.

Proof

See, for example, [Tankov, 2004, Proposition 3.3]. �

Remark 2.17 (Components of a Lévy process)

(i) Let X be a d-dimensional Lévy process and let M be an n× d matrix. Then Y ,

de�ned by Yt = M Xt for all t ≥ 0, is a Lévy process on Rn, cf. [Tankov, 2004,
Theorem 4.1]. In particular, each component of a d-dimensional Lévy process is

a one-dimensional Lévy process.

(ii) Let X1, . . . , Xd be d independent one-dimensional Lévy processes. Then, it is

easy to see, that the process X := (X1, . . . , Xd) is a d-dimensional Lévy process.

(iii) A d-dimensional Lévy process with each component being a one-dimensional

compound Poisson process is a d-dimensional compound Poisson process by The-

orem 2.16.
4By || · ||, we denote the Euclidean norm.

22



De�nition 2.18 (Lévy subordinator)

A one-dimensional Lévy process with P-a.s. non-negative paths is called Lévy subordi-

nator.

Naturally, every Poisson process is a Lévy subordinator and every compound Poisson

process with non-negative jump size distribution is a Lévy subordinator as well. For

example, a CPPExp is a Lévy subordinator.

Theorem 2.19 (Characteristic functions and Lévy processes)

Let X be a Lévy process on Rd and let ϕX1 be the characteristic function of X1. Then,

the following statements hold.

(i) The characteristic function of Xt is given by ϕXt = (ϕX1)t for all t > 0. If X is

a Lévy subordinator, then the Laplace transform of Xt is given by ϕ̃Xt = (ϕ̃X1)t

for all t > 0.

(ii) Let u ∈ Rd. Then the characteristic function of X1 can uniquely be represented

by.

ϕX1(u) = exp

(
−1

2
u>Au+ i γ>u+

∫
Rd

(
eiu>x − 1− iu>x1{|x|≤1}

)
ν(dx)

)
,

where A is a symmetric non-negative-de�nite d×d matrix, ν is a measure on Rd

ful�lling ν({0}) = 0 and
∫
Rd
(
|x|2 ∧ 1

)
ν(dx) <∞, and γ ∈ Rd.

If the additional condition
∫
|x|≤1 |x| ν(dx) <∞ holds, then ϕX1 can uniquely be

represented by

ϕX1(u) = exp

(
−1

2
u>Au+ i γ>0 u+

∫
Rd

(
eiu>x − 1

)
ν(dx)

)
, (2.3)

where γ0 ∈ Rd.

(iii) Let d = 1. Then, X is a Lévy subordinator, if and only if the unique repre-

sentation (2.3) satis�es A = 0,
∫ 0
−∞ ν(dx) = 0,

∫ 1
0 x ν(dx) < ∞, and γ0 ≥ 0.

Moreover, the Laplace transform of X1 is given by

ϕ̃X1(u) = exp

(∫ ∞
0

(
e−ux − 1

)
ν(dx)− γ0 u

)
, for u ≥ 0.

Proof

(i) See, for example, [Sato, 1999, Theorem 7.10].
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2 Mathematical prerequisites

(ii) See, for example, [Sato, 1999, Theorem 8.1].

(iii) See, for example, [Sato, 1999, Theorem 21.5]. �

Theorem 2.19 (i) points out a nice property of Lévy processes. Since the characteristic

function of a random variable uniquely determines their distribution, the distribution

of Xt for some arbitrary t > 0 already de�nes the law of the whole process. This

combined with the fact that the characteristic function is of exponential form, moti-

vates De�nition 2.20 of the characteristic exponent, respectively the Laplace exponent

in case of Lévy subordinators. The formula for the characteristic function of Lévy

processes in Theorem 2.19 (ii) is called Lévy�Khintchine formula and the measure ν

is called Lévy measure. In a nutshell, ν measures the mean amount of jumps. Partic-

ularly, for a set B ⊆ R, ν(B) gives the average number of jumps with jump size in B

within a unit time interval. Note that for a compound Poisson processes it holds that

ν(R) <∞, i.e. in a bounded time interval the number of jumps of a compound Poisson

process is a.s. �nite. Lévy processes ful�lling that property are called Lévy processes

with �nite activity. Let us have a closer look at the Lévy�Khintchine formula. The �rst

part exp
(
−1

2 u
>Au+ i γ>u

)
is the characteristic function of a d-dimensional normal

distribution. Hence, each Lévy process can be decomposed into a Brownian motion

with drift and a pure jump process. A Lévy process is therefore characterized by its

so-called Lévy triplet (γ, A, ν). By Theorem 2.19 (iii) we hence know, that Lévy sub-

ordinators have no Brownian part, they rather consist only of a deterministic drift and

a pure jump process with positive jump sizes.

De�nition 2.20 (Characteristic exponent and Laplace exponent)

The characteristic exponent ψX of a d-dimensional Lévy process X, d ∈ N, is de�ned
by

ψX(u) := log (ϕX1(u))

for any u ∈ Rd. If X is a Lévy subordinator, then the Laplace exponent ψ̃X of X is

de�ned by

ψ̃X(−u) := log (ϕ̃X1(u))

for any u ∈ R+.
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Remark 2.21 (On the characteristic exponent and Laplace exponent)

By Theorem 2.8 and Theorem 2.19(i), the distribution of a Lévy process is uniquely

determined by its characteristic exponent. Furthermore, the distribution of a Lévy

subordinator is uniquely determined by its Laplace exponent.

Similar to the continuation theorem of the Laplace transform (cf. 2.8 (iii)), the char-

acteristic exponent and the Laplace exponent can be continued, which we state in the

next theorem.

Theorem 2.22 (Continuation of characteristic and Laplace exponents)

(i) Let X be a Lévy process on Rd with Lévy measure ν. De�ne

C :=
{
z = (z1, . . . , zd) ∈ Cd : Im(zi) ≥ 0, ∀ 1 ≤ i ≤ d

}
. (2.4)

Furthermore, assume an explicit expression for the characteristic exponent ψX :

Rd → C to be given, which is analytic on C. Then the function ψX can be

continued on C and it ful�lls E
[
ei z>X1

]
= eψ(z) for all z ∈ C.

(ii) Let X be a Lévy subordinator. Assume an explicit expression for the Laplace

exponent ψ̃X : R− → [0, 1] to be given, which is analytic on the set C− :=

{z : Re(z) ≤ 0}, then the function ψ̃X can be continued on C− and it holds that

E[e−z Xt ] = et ψ̃(−z), for all z ∈ C+ := {z : Re(z) ≥ 0}.

Proof

(i) See, for example, [Sato, 1999, Theorem 25.17]. They proof an even more general

statement for a larger set C. However, in the present thesis it is enough to

consider C as in Equation (2.4).

(ii) The second statement then follows from Theorem 2.8(iii). �

Remark 2.23 (On analytical characteristic exponents)

The expression for the characteristic exponent in Theorem 2.19(ii) is always analytic

on C (cf. [Sato, 1999, Theorem 25.17]), and can therefore be continued on C.

The following theorem presents the characteristic exponent of a compound Poisson

process, which can easily be computed knowing the characteristic function of the jump

size distribution.
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2 Mathematical prerequisites

Theorem 2.24 (Characteristic exponent of a compound Poisson process)

Let Z be a compound Poisson process with intensity c and jump size distribution D.

Then, the characteristic exponent of Z for all u ∈ Rd is given by

ψZ(u) = c (ϕD(u)− 1) ,

where ϕD denotes the characteristic function of a D-distributed random variable.

Moreover, if Z is a compound Poisson process with non-negative jump size distribution

on R+, then, the Laplace exponent of Z for all u ∈ R+ is given by

ψ̃Z(−u) = c (ϕ̃D(u)− 1) ,

where ϕ̃D denotes the Laplace transform of a D-distributed random variable.

Proof

See for example [Tankov, 2004, Proposition 3.4]. �

The next theorem investigates the resulting process of a subordinated Lévy process,

i.e. a time-changed Lévy proces. This theorem plays a prominent role in our thesis,

because it is applied to construct dependent compound Poisson processes, which are

then used to model dependent jumps in asset price processes.

Theorem 2.25 (Subordination of Lévy processes)

Let Y be a Lévy process with characteristic exponent ψY and let T be a Lévy subor-

dinator with Laplace exponent ψ̃T . Assume, Y and T to be independent. Then, the

process Z = {Zt}t≥0 := {YTt}t≥0 is a Lévy process with characteristic exponent ψZ
given by

ψZ(u) = ψ̃T
(
ψY (u)

)
, u ∈ Rd.

In particular, if Y is a one-dimensional Lévy subordinator with Laplace exponent ψ̃Y ,

then, Z is a Lévy subordinator with Laplace exponent ψ̃Z given by

ψ̃Z(−u) = ψ̃T
(
ψ̃Y (−u)

)
, u ≥ 0.

Proof

See, for example, [Sato, 1999, Theorem 30.4] and [Sato, 1999, Theorem 30.1]. �
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We now present a nice formula on the characteristic function of integrals with respect

to Lévy integrators. For a general introduction on stochastic integration we refer to

standard textbooks like Applebaum [2004].

Theorem 2.26 (Characteristic exponent of Lévy integrals)

Let t > 0, let X be a d-dimensional Lévy process with characteristic exponent ψX and

let f : R+ → Cd be a left-continuous function with limits from the right, such that

ψX(f(s)) exists with E
[
ei f(s)>X1

]
= eψX(f(s)) for all 0 ≤ s ≤ t, (2.5)

there exists an M > 0 such that Re (ψX(f(s))) < M for all 0 ≤ s ≤ t, (2.6)

Then,

E
[
exp

(∫ t

0
i f(s) dXs

)]
= exp

(∫ t

0
ψX(f(s)) ds

)
. (2.7)

Proof

The proof we present is a straightforward multivariate adaption of [Eberlein and Raible,

1999, Lemma 3.1]. For any partition 0 = t0 < · · · < tN+1 = t of the interval [0, t] we

get by the independence of increments of X and the de�nition of the characteristic

exponent

E

[
exp

(
N∑
k=0

i f(tk)
(
Xtk+1

−Xtk

))]
=

N∏
k=0

E
[
exp

(
i f(tk)

(
Xtk+1

−Xtk

))]
=

N∏
k=0

exp (ψX(f(tk)) (tk+1 − tk))

= exp

(
N∑
k=0

ψX(f(tk)) (tk+1 − tk)

)
. (2.8)

If the mesh5 of the partition goes to zero, exp
(∑N

k=0 ψX(f(tk)) (tk+1 − tk)
)
converges

to exp
(∫ t

0 ψX(f(s)) ds
)
. Thus, to show Equation (2.7), we have to make sure that

E

[
exp

(
N∑
k=0

i f(tk)
(
Xtk+1

−Xtk

))]
converges to E

[
exp

(∫ t

0
i f(s) dXs

)]
,

5The mesh of a partition is the length of the longest subinterval.
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2 Mathematical prerequisites

i.e. that

exp

(
N∑
k=0

i f(tk)
(
Xtk+1

−Xtk

))
converges in L1 to exp

(∫ t

0
i f(s) dXs

)
.

Since f is left continuous and has limits from the right,
∑N

k=0 i f(tk)
(
Xtk+1

−Xtk

)
converges in measure6 to

∫ t
0 i f(s) dXs by the construction of stochastic integrals (cf.

[Jacod and Shiryaev, 2003, Proposition I.4.44]). Continuous transformations preserve

convergence in measure, and hence

exp

(
N∑
k=0

i f(tk)
(
Xtk+1

−Xtk

))
converges in measure to exp

(∫ t

0
i f(s) dXs

)
. (2.9)

By Equation (2.8) and Assumption (2.6), the approximating sequence in Equation (2.9)

is uniformly integrable.7 Therefore, convergence in measure implies convergence in L1,

(cf. [Klenke, 2007, Theorem 6.25]) and we get

E
[
exp

(∫ t

0
i f(s) dXs

)]
= exp

(∫ t

0
ψX(f(s)) ds

)
. �

We conclude this preliminary chapter with a brief introduction to copulas. For a

general presentation of the copulas theory, we refer to the book by Nelsen [2006].

De�nition 2.27 (Copula)

A d-dimensional copula C is the distribution function of a random vector (U1, . . . , Ud),

where (Uk)k=1,...,d are uniformly distributed on [0, 1].

If (X1, X2, . . . , Xd) is a random vector with continuous marginal distribution functions

Fk(t) = P(Xk ≤ t) for all = 1, . . . , d, then the distribution function of the vector(
F1(X1), F2(X2), . . . , Fd(Xd)

)
is a copula, called the copula of (X1, X2, . . . , Xd). For

example, the copula of a d-dimensional normal distribution is called Gaussian copula.

The fundamental theorem in the copula theory is Sklar's theorem. In particular, it

states that every dependence structure can be characterized by a copula.

6A sequence of random variables X1, X2, . . . converges in measure to a random variable X if ∀ε > 0

limn→∞ P(|X −Xn| > ε) = 0.
7A familiy H of random variables with �nite expectation is said to be uniformly integrable if

limc→∞ supX∈HE
[
1{|X|≥c}|X|

]
= 0.
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Theorem 2.28 (Sklar's Theorem)

Let F be a joint distribution function with continuous margins F1, F2, . . . , Fd of the

random vector (X1, X2, . . . , Xd).

Then, there exists a Copula C : [0, 1]d → [0, 1] such that for all x1, x2, . . . , xd ∈
[−∞,∞],

F (x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . ..., Fd(xd)).

Proof

See, for example, [McNeil et al., 2005, p.186 (Theorem 5.3)]. �

Note that Sklar's theorem also holds for discontinuous marginals. A proof can be

found, for example, in Schweizer and Sklar [1983]. For continuous margins, however,

the copula is even uniquely determined.
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3 Compound Poisson processes with

exponentially distributed jumps

A compound Poisson process is a stochastic process with piece-wise constant paths,

random jump times, and random jump magnitudes. Such a process is build by a

sum of independent and identically distributed random variables, where the number of

variables to be added up to time t is given by a Poisson process. In the previous chapter

on mathematical preliminaries, we already introduced the mathematical de�nition,

and we have seen that compound Poisson processes are Lévy processes. Furthermore,

these are the only Lévy processes having a.s. piece-wise constant paths. Compound

Poisson processes are therefore commonly used for modeling random arrivals of random

amounts. Thus, some typical �elds of applications are the modeling of claim sizes

and claim arrival times in non-life insurance mathematics, queuing systems (customer

arrivals with required service time), or the modeling of jumps in �nancial market

models.1 In the present thesis, we will concentrate on the latter and have a look at

a speci�c subclass of compound Poisson processes, where the jump magnitudes are

exponentially distributed. As de�ned in the previous chapter, we call such a process

CPPExp (cf. De�nition 2.14).

In this chapter we aim at constructing multi-dimensional compound Poisson processes

with each component following a CPPExp. Obviously, a vector of one-dimensional in-

dependent CPPExp is a multi-dimensional compound Poisson process by Remark 2.17.

To obtain dependence between the components one needs more sophisticated ap-

proaches. In general, dependence between the components can be created by several

construction principles. Deelstra and Petkovic [2010] summarize three possibilities to

construct multi-dimensional Lévy processes out of one-dimensional independent Lévy

processes:

1For a general introduction to these typical usages of compound Poisson processes, we refer to

Mikosch [2009] for insurance, to Baccelli and Bremaud [2003] for queuing theory, and Cont and

Tankov [2004] for �nancial modeling.
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3 Compound Poisson processes with exponentially distributed jumps

(i) Linear combination: Let n, d ∈ N, M be a d×n matrix and let X be a vector of

n independent one-dimensional Lévy processes. Then, Zt := M Xt for all t ≥ 0

is a d-dimensional Lévy process by Remark 2.17.

(ii) Joint time change: Let d ∈ N, let Y be a Lévy subordinator, and let X be a

vector of d independent one-dimensional Lévy processes. Assume X and Y to

be independent. Then, Zt := XYt for all t ≥ 0 is a d-dimensional Lévy process

by Theorem 2.25.2

(iii) Linking the Lévy measures by a Lévy copula.3

Obviously, other constructions are possible to create a dependent multi-dimensional

Lévy process (as, e.g., a direct construction from a multi-dimensional in�nitely divisi-

ble law4), but the above construction principles provide �exible instruments, where one

starts with independent Lévy processes and ends up with dependent ones. These con-

struction principles applied to compound Poisson processes may be possible choices

to introduce dependence between CPPExp. Let us have a closer look on each ap-

proach. A linear combination of independent compound Poisson processes yields a

multi-dimensional compound Poisson process. The jump size distributions of the pro-

cesses X(1), . . . , X(n) have to be chosen in a bespoke way to guarantee that each

component follows a CPPExp. When it comes to the dependence between jump sizes

at joint jump times of some components, the construction by linear combination of

independent processes does not provide a �exible dependence structure. Indeed, joint

jumps of at least two components are triggered by the same process X(i) for some

1 ≤ i ≤ n, and jump sizes are therefore only multiples of the jump size of X(i). Thus,

one shortcoming of construction by linear combination is that the jump sizes at joint

jumps are always comonotone, which is only one reason for us not considering this

approach any further. Another reason is, for example, the large number of parameters

one needs to introduce dependence (n times d).

2More generally, a d-dimensional Lévy process Y can be used as time-change process. Each compo-

nent of Y must be a subordinator, and serves as individual time change process for one component

of X. For example, Semeraro [2008] introduced dependence via a multivariate time change process.
3The concept of Lévy copulas support a linking of Lévy measures instead of probability measures.

As Lévy copulas do not play an important role in the present thesis, we omit their mathematical

introduction and recommend Tankov [2004] for more details.
4A probability distribution D is in�nitely divisible if, for every n ∈ N, there exist n i.i.d. ran-

dom variables whose sum follows distribution D. There is a vivid 1-to-1 mapping between those

distributions and Lévy processes, see for example [Sato, 1999, Ch. 2]
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Constructing a multi-dimensional compound Poisson process by a joint time change

with desired marginals is not an obvious task. On �rst sight, it is not clear, how to

choose the processes X(1), . . . , X(n) and the subordinator Y . Nevertheless, we present

a way to construct such a multi-dimensional process via subordination of compound

Poisson processes in Section 3.2. This construction will be the main tool in Chapter 4

and Chapter 5. Our approach has some striking features we discuss later on within

this chapter, and we point out why we choose the time change construction principle

to introduce dependence to various univariate CPPExp.

Theoretically, linking the Lévy measures of each component by a Lévy copula appears

to be the most elegant and �exible way to introduce dependence, because, based on

Sklar's theorem for Lévy copulas, cf. [Kallsen and Tankov, 2006, Theorem 3.6], ev-

ery joint Lévy measure of the multi-dimensional process can be generated by means

of that ansatz. However, Lévy copulas can be cumbersome objects when it comes

to practical applications. For example, simulation of Lévy copulas might be quite

involved. In contrast to general Lévy processes, the dependence structure of multi-

variate compound Poisson processes can also be described by usual copulas instead of

Lévy copulas. This is achieved by linking the jump size distributions in case of joint

defaults. More precisely, every single component of the multivariate process can be

separated into individual jumps and common jumps with other components. Jump

sizes at common jump times are linked by a copula. Each part of that decomposition is

again a compound Poisson process. Hence, for compound Poisson processes, it might

be more convenient to work with classical copulas instead of Lévy copulas. Moreover,

this separation leads to a very intuitive representation of a multi-dimensional com-

pound Poisson process, especially in low dimensions. In Section 3.5 we examine that

pragmatic characterization of our time change construction, which is introduced in the

sequel.

Before discussing the multivariate process we �rst study some distributional proper-

ties of a CPPExp in Section 3.1. Section 3.2 presents the time change construction

of multi-dimensional compound Poisson processes with CPPExp in each component.

In Section 3.3, we investigate the implied dependence structure between the resulting

processes. Afterwards, we characterize the time-change construction as multidimen-

sional compound Poisson process in Section 3.4. The separation into individual and

common jump parts, as discussed above, is examined in Section 3.5. The features

making this construction a useful tool for tractable multivariate modeling of �nancial

markets are highlighted in Section 3.6, which concludes the chapter by an outlook on
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3 Compound Poisson processes with exponentially distributed jumps

possible applications. This chapter contains some results, which have already been

published in Mai et al. [2014], prior to this thesis.

3.1 Fundamentals: The univariate process

Each component of our multivariate construction shall be a CPPExp to remain with

the univariate case. In this section, we calculate the Laplace exponent of a CPPExp,

as well as the �rst moments. The results will be used throughout the whole chapter.

The �rst subgraph in Figure 3.1 shows typical CPPExp-paths.

Theorem 3.1 (Laplace exponent of a CPPExp)

The Laplace exponent of Z ∼ CPPExp(c, η) is given by

ψ̃Z(−u) =
−c u
η + u

, u ≥ 0. (3.1)

Proof

The claim follows directly by applying Theorem 2.24 and Example 2.9. Since Equa-

tion (3.1) is a crucial formula in this chapter and is often used throughout the whole

thesis, we provide a detailed calculation in the following. Let u ≥ 0, then the Laplace

transform of Z1 is given by

ϕ̃Z1(u) = E
[
e−uZ1

]
= E

[
exp

(
−u

N1∑
i=1

Ji

)]

=
∞∑
n=0

E

[
exp

(
−u

N1∑
i=1

Ji

)∣∣∣∣∣N1 = n

]
P(N1 = n)

=

∞∑
n=0

E

[
n∏
i=1

e−uJi

]
P(N1 = n).

J1, J2, . . . is a sequence of independent random variables. Hence,

ϕ̃Z1(u) =

∞∑
n=0

n∏
i=1

E
[
e−uJi

]
P(N1 = n) =

∞∑
n=0

n∏
i=1

ϕ̃Ji(u)P(N1 = n).
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3.1 Fundamentals: The univariate process

Using that J1, J2, . . . are identically Exp(η)-distributed and knowing that the Laplace

transform of an Exp(η)-distributed random variable is given by ϕ̃J1(u) = η
η+u (cf.

Example 2.9), we get

ϕ̃Z1(u) =

∞∑
n=0

n∏
i=1

η

η + u
P(N1 = n).

Note, that N1 ∼ Poi(c). Therefore,

ϕ̃Z1(u) =
∞∑
n=0

(
η

η + u

)n
e−c

cn

n!
= e−c

∞∑
n=0

(
c η

η + u

)n 1

n!
,

and the power series representation of the exponential function yields

ϕ̃Z1(u) = e−c e
c η
η+u = e

− c u
η+u .

Finally, the Laplace exponent of Z is given by

ψ̃Z(−u) = log (ϕ̃Z1(u)) =
−c u
η + u

. �

According to Equation (3.1) the Laplace transform of a CPPExp has a simple represen-

tation. In Remark 2.21, we have seen that the Laplace exponent uniquely determines

the distribution of a Lévy subordinator, i.e. any Lévy subordinator having a Laplace

exponent like in Equation (3.1) is a CPPExp. By di�erentiation of the Laplace trans-

form, the �rst moments are obtained in the next theorem. Here, it is helpful that the

Laplace exponent takes such a simple form.

Theorem 3.2 (Moments of a CPPExp)

Let Z ∼ CPPExp(c, η). Then, it holds that

E[Zt] =
c t

η
, E[Z2

t ] =
2 c t+ c2 t2

η2
, Var[Zt] =

2 c t

η2
.

Proof

From Theorem 2.8(iv), we know that

E[Zt] = −ϕ̃′Zt(0) and E[Z2
t ] = ϕ̃

′′
Zt(0), (3.2)
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3 Compound Poisson processes with exponentially distributed jumps

where ϕ̃Zt denotes the Laplace transform of Zt. Let ψ̃Z be the Laplace exponent of Z

and let u ∈ R+. Then, Theorem 2.19(i) and Theorem 3.1 yield

ϕ̃Zt(u) = (ϕ̃Z1(u))t =
(

exp
(
ψ̃Z(−u)

))t
= exp

(
−c u t
η + u

)
.

Hence,

ϕ̃
′
Zt(u) =

−c t η
(η + u)2

exp

(
−c u t
η + u

)
,

and

ϕ̃
′′
Zt(u) =

2 c t η

(η + u)3
exp

(
−c u t
η + u

)
+

c2 t2 η2

(η + u)4
exp

(
−c u t
η + u

)
=

2 c t η (η + u) + c2 t2 η2

(η + u)4
exp

(
−c u t
η + u

)
.

Finally, Equation (3.2) gives

E[Zt] = −ϕ̃′Zt(0) =
c t

η
and E[Z2

t ] = ϕ̃
′′
Zt(0) =

2 c t+ c2 t2

η2
.

Moreover,

Var[Zt] = E[Z2
t ]− E[Zt]

2 =
2 c t

η2
. �

The �rst moments can alternatively be calculated without knowing the Laplace trans-

form by conditioning of the realization on the number of jumps, as it is usually done

in textbooks. More precisely, Wald's formula (cf. [Klenke, 2007, Theorem 5.5]) implies

that for square integrable i.i.d. random variables J1, J2, . . . and an independent square

integrable random variable N ∈ N0 we have

E

[
N∑
k=1

Jk

]
= E [N ] E [J1] and Var

[
N∑
k=1

Jk

]
= E [N ] Var [J1] + Var [N ]

(
E [J1]

)2
.

(3.3)

Knowing the moments of the basic distributions (cf. Theorem 2.6), the claim follows

directly.
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3.2 Construction of a multi-dimensional process

3.2 Construction of a multi-dimensional process

This section presents the idea how one can construct a multi-dimensional compound

Poisson process with each component being a CPPExp. As already mentioned, this is

achieved by a bespoke time change and it is based on subordination of a CPPExp by

another independent CPPExp. The result is again a CPPExp, as it is shown in the next

theorem.

Theorem 3.3 (Subordination of two independent CPPExp)

Suppose one is given cT , ηT , cY , ηY > 0. Let Y = {Yt}t≥0 be a CPPExp (cY , ηY ) and

let T = {Tt}t≥0 be a CPPExp (cT , ηT ). Assume that Y and T are independent.

Then, the process Z = {Zt}t≥0 := {YTt}t≥0 is a CPPExp

(
cT cY
ηT+cY

, ηT ηY
ηT+cY

)
.

Proof

The Laplace exponent of a CPPExp is computed in Theorem 3.1. Hence, for all u ≥ 0,

ψ̃Y (−u) =
−cY u
ηY + u

, ψ̃T (−u) =
−cT u
ηT + u

.

By Theorem 2.25, the process Z is again a Lévy subordinator with Laplace exponent

ψ̃Z(−u) = ψ̃T
(
ψ̃Y (−u)

)
=
−cT cY u

ηY +u

ηT + cY u
ηY +u

=
−cT cY u

ηT (ηY + u) + cY u
=
− cT cY
ηT+cY

u
ηT ηY
ηT+cY

+ u
. (3.4)

The Laplace exponent uniquely determines the distribution of a Lévy subordinator

(cf. Remark 2.21). Therefore, Theorem 3.1 and Equation (3.4) yield that the process

Z must be a CPPExp

(
cT cY
ηT+cY

, ηT ηY
ηT+cY

)
. �

Note, that a process generated by subordination of two Lévy subordinator of the

same kind is in general not of that kind anymore. To the best of our knowledge,

compound Poisson processes with exponentially distributed jump sizes is the only

class of Lévy subordinators where this property is indeed ful�lled. The next corollary

tells us how one has to choose the parameters cY and ηY to end up with a process

Z ∼ CPPExp(cZ , ηZ) with bespoke cZ and ηZ for �xed parameters cT and ηT . This is

the basis for our multivariate construction in De�nition 3.5.

37



3 Compound Poisson processes with exponentially distributed jumps

Corollary 3.4 (Generating a CPPExp by subordination)

Suppose one is given cT , ηT , ηZ > 0, and cZ ∈ (0, cT ). Let Y = {Yt}t≥0 be a

CPPExp

(
cZ ηT
cT−cZ ,

cT ηZ
cT−cZ

)
and let T = {Tt}t≥0 be a CPPExp (cT , ηT ). Assume that

Y and T are independent.

Then, the process Z = {Zt}t≥0 := {YTt}t≥0 is a CPPExp (cZ , ηZ).

Proof

De�ne cY := cZ ηT
cT−cZ and ηY := cT ηZ

cT−cZ .

Then, Theorem 3.3 implies that Z ∼ CPPExp

(
cT cY
ηT+cY

, ηT ηY
ηT+cY

)
. Hence,

cT cY
ηT + cY

=
cT

cZ ηT
cT−cZ

ηT + cZ ηT
cT−cZ

=
cT cZ ηT

ηT (cT − cZ) + cZ ηT
= cZ ,

and

ηT ηY
ηT + cY

=
ηT

cT ηZ
cT−cZ

ηT + cZ ηT
cT−cZ

=
ηT cT ηZ

ηT (cT − cZ) + cZ ηT
= ηZ ,

concludes the proof. �

By means of Corollary 3.4 we can introduce dependence to d CPPExp. Starting with

d independent processes, they can be linked by a joint subordination. We call the

resulting process a time-changed CPPExp and give a mathematical de�nition.

De�nition 3.5 (Time-changed CPPExp)

Assume, cT , η1, η2, . . . , ηd > 0 and c1, c2, . . . , cd ∈ (0, cT ). Let d + 1 mutually inde-

pendent compound Poisson processes be given by Y (i) ∼ CPPExp

(
ci

cT−ci ,
cT ηi
cT−ci

)
, for

all 1 ≤ i ≤ d, and T ∼ CPPExp(cT , 1).

Then, we call the d-dimensional processes Z de�ned by

Z =
{(
Z

(1)
t , Z

(2)
t , . . . , Z

(d)
t

)}
t≥0

:=
{(
Y

(1)
Tt
, Y

(2)
Tt
, . . . , Y

(d)
Tt

)}
t≥0

d-dimensional time-changed CPPExp with intensities c1, c2, . . . , cd, jump size param-

eter η1, η2, . . . , ηd, and dependence parameter κ, where κ := 1
cT

max
1≤i≤d

{ci} ∈ (0, 1).
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3.2 Construction of a multi-dimensional process
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Figure 3.1 The above graph shows paths of three independent compound Poisson

processes. The middle graph shows the subordinator T , which serves as

joint time transformation. The graph below gives the resulting processes

in our construction.

Remark 3.6 (On the construction of time-changed CPPExp)

(i) A d-dimensional time-changed CPPExp Z is a d-dimensional Lévy process, since

the subordination of the d-dimensional Lévy process
(
Y

(1)
t , Y

(2)
t , . . . , Y

(d)
t

)
is

by Theorem 2.25 again a Lévy process. By Corollary 3.4, every component

of Z is a CPPExp with Z(i) ∼ CPPExp(ci, ηi), for all 1 ≤ i ≤ d. Hence, a d-
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3 Compound Poisson processes with exponentially distributed jumps

dimensional time-changed CPPExp is a d-dimensional compound Poisson process

(cf. Remark 2.17(iii)).

(ii) Obviously, the components of a d-dimensional time-changed CPPExp are depen-

dent, the dependence is driven by the time-change process T , which is solely

determined by the intensity cT , respectively by the dependence parameter κ.

Therefore, we call κ dependence parameter.

(iii) In Corollary 3.4, the time-change process T has Exp(ηT )-distributed jumps. In

De�nition 3.5, however, we �xed the jump size parameter to 1. On �rst sight, this

seems a bit arbitrary. Actually, every other choice for ηT instead of 1 would lead

to the same dependence structure between the components of the d-dimensional

time-changed CPPExp. This is proven in Theorem 3.7, where we calculate the

characteristic exponent of Z.

Dependence to d compound Poisson processes Z(1), . . . , Z(d) with intensities c1, . . . , cd

and jump size distributions Exp(η1), . . . ,Exp(ηd) is introduced by taking the same

underlying process T as joint time transformation. We have seen that by choosing

the parameters of the original processes Y (1), . . . , Y (d) in the right way, the processes

Z(1), . . . , Z(d) are dependent and have the desired parameters. In the next section, we

investigate this construction with speci�c focus on the dependence structure implied

by this construction. Figure 3.1 illustrates the construction of a time-changed CPPExp

by showing typical sample path of a three-dimensional construction. We observe that

they often jump at the same point in time. Moreover, the jump magnitudes at such

events are dependent. We see that the dependence structure is quite �exible in the

sense that single jumps of just one component, joint jumps of two components, and

joint jumps of all components are possible.

3.3 Implied dependence structure

In this section, we further investigate the distributional properties of our multivari-

ate construction of compound Poisson processes with focus on the implied depen-

dence structure. Since we know that a d-dimensional time-changed CPPExp is a

d-dimensional compound Poisson process, the joint distribution of a time-changed

CPPExp is determined by its characteristic exponent, which is calculated in the next
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3.3 Implied dependence structure

theorem. As mentioned in Remark 3.6, we allow the subordinator T to follow a CPPExp

with arbitrarily chosen average jump size. We will see that the characteristic exponent,

and therefore the implied dependence structure, does not depend on the actual choice

of the average jump size of T . This justi�es the choice we made in De�nition 3.5 by

�xing the average jump size to 1.

Theorem 3.7 (Characteristic exponent of a time-changed CPPExp)

Let a d-dimensional time-changed CPPExp Z =
(
Z(1), Z(2), . . . , Z(d)

)
be given as

de�ned in De�nition 3.5 with the exception that T ∼ CPPExp(cT , ηT ) rather than

T ∼ CPPExp(cT , 1) for some ηT > 0. Then, the characteristic exponent of Z is given

by

ψZ(u) =

∑d
k=1

i cT ck uk
cT ηk−iuk (cT−ck)

1−
∑d

k=1
i ck uk

cT ηk−iuk (cT−ck)

. (3.5)

In particular, for every t ≥ 0 the joint distribution of
(
Z

(1)
t , Z

(2)
t , . . . , Z

(d)
t

)
is not

a�ected by the choice of the parameter ηT .

Proof

The claim is shown by a multivariate adaption of the proof of Theorem 3.3. Let

u = (u1, u2, . . . , ud) ∈ Rd. By Theorem 2.25 we know that

ψZ(u) = ψ̃T
(
ψY (u)

)
(3.6)

We thus start with the calculation of the characteristic exponent of Y .

ψY (u) = log
(
E
[
eiu>Y1

])
= log

(
E

[
d∏

k=1

eiuk Y
(k)
1

])
.

Since Y (1), . . . , Y (d) are independent, we get

ψY (u) = log

(
d∏

k=1

E
[
eiuk Y

(k)
1

])
=

d∑
k=1

log
(
E
[
eiuk Y

(k)
1

])
=

d∑
k=1

ψY (k)(uk) (3.7)

For all 1 ≤ k ≤ d, u ≥ 0, the Laplace exponent of Y (k) is given by

ψ̃Y (k)(−u) =
− ck ηT
cT−ck u

cT ηk
cT−ck + u

, (3.8)
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3 Compound Poisson processes with exponentially distributed jumps

which was computed in Theorem 3.1. Since the right side in Equation (3.8) is analytic

on C−, Theorem 2.22 yields an expression for the characteristic exponent of Y (k),

namely

ψY (k)(uk) = ψ̃Y (k)(iuk) =

ck ηT
cT−ck iuk
cT ηk
cT−ck − i uk

.

Plugging this into Equation (3.7) gives

ψY (u) =

d∑
k=1

ck ηT
cT−ck iuk
cT ηk
cT−ck − iuk

=

d∑
k=1

i ck ηT uk
cT ηk − iuk (cT − ck)

. (3.9)

Again, by using Theorem 3.1, we know that ψ̃T (−u) = −cT u
ηT+u , and by Theorem 2.22 it

is allowed to combine Equations (3.6) and (3.9), which yields

ψZ(u) =
cT
∑d

k=1
i ck ηT uk

cT ηk−iuk (cT−ck)

ηT −
∑d

k=1
i ck ηT uk

cT ηk−iuk (cT−ck)

=

∑d
k=1

i cT ck uk
cT ηk−iuk (cT−ck)

1−
∑d

k=1
i ck uk

cT ηk−iuk (cT−ck)

. �

The characteristic exponent is indeed independent of the choice of ηT . Hence, any

choice leads to the same dependence structure between the components. We �xed it

therefore in the �rst place.

Remark 3.8 (On the characteristic exponent of a time-changed CPPExp)

Let z = (z1, . . . , zd) ∈ C :=
{
z = (z1, . . . , zd) ∈ Cd : Im(zi) ≥ 0, ∀ 1 ≤ i ≤ d

}
. Since

cT > ck > 0, we get

Re

(
i ck zk

cT ηk − i zk (cT − ck)

)
=
−z2

k ck (cT − ck)− Im(zk) cT ηk ck
c2
T η

2
k + z2

k (cT − ck)2
≤ 0, ∀ 1 ≤ k ≤ d.

(3.10)

Moreover, note that for a complex number x with negative real part, it holds that

Re

(
x

1− x

)
= Re

(
1

1− Re(x)− i Im(x)

)
− 1 =

1− Re(x)

(1− Re(x))2 + (Im(x))2
− 1

≤ 1

1− Re(x)
− 1 ≤ 0.

Hence, by setting x :=
∑d

k=1
i ck zk

cT ηk−i zk (cT−ck) and using Equations (3.10) and (3.5), we

get Re (ψZ(z)) < 0 for all z ∈ C.
Thus, the expression for the characteristic exponent in Equation (3.5) is analytic on

C and its real part is negative. Theorem 2.22 therefore ensures that the characteristic

exponent of a time-changed CPPExp can be continued on C.
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3.3 Implied dependence structure

Although the characteristic exponent uniquely determines the dependence structure, it

does not provide any intuition about the dependence. In the next theorem we therefore

calculate the correlation coe�cient between two arbitrarily chosen components within

our construction to get a better understanding of the implied dependence.

Theorem 3.9 (Correlation between time-changed CPPExp)

Let a d-dimensional time-changed CPPExp Z =
(
Z(1), Z(2), . . . , Z(d)

)
be given as

de�ned in De�nition 3.5. For arbitrary 1 ≤ i, j ≤ d, i 6= j, the correlation of Z(i)
t and

Z
(j)
t is given by

Corr
[
Z

(i)
t , Z

(j)
t

]
= κ

√
ci cj

cmax
,

where cmax := max
1≤i≤d

{ci}.

Proof

Let us recall the notation of Z(k)
t , for all 1 ≤ k ≤ d,

Z
(k)
t = Y

(k)
Tt

=

N
(k)
Tt∑
l=1

J
(k)
l ,

where T ∼ CPPExp(cT , 1), N (k) is a Poisson process with intensity ck
cT−ck for all 1 ≤ k ≤

d, and J (k)
1 , J

(k)
2 , . . . are Exp( cT ηk

cT−ck )-distributed random variables for all 1 ≤ k ≤ d.

All quantities are mutually independent.

By conditioning on Tt, the random variables Z(i)
t and Z(j)

t become independent. Hence,

E
[
Z

(i)
t Z

(j)
t

]
= E

[
E
[
Z

(i)
t Z

(j)
t

∣∣∣Tt]] = E
[
E
[
Z

(i)
t

∣∣∣Tt] E [Z(j)
t

∣∣∣Tt]] . (3.11)

By Wald's formula (see Equality (3.3)), we get

E
[
Z

(i)
t

∣∣∣Tt] = E

N
(i)
Tt∑
l=1

J
(i)
l

∣∣∣∣∣∣∣Tt
 = E

[
N

(i)
Tt

∣∣∣Tt] E [J (i)
1

∣∣∣Tt]

= E
[
N

(i)
Tt

∣∣∣Tt] E [J (i)
1

∣∣∣Tt] =
Tt ci
cT − ci

cT − ci
cT ηi

=
Tt ci
cT ηi

, (3.12)
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3 Compound Poisson processes with exponentially distributed jumps

where we used, that the expectation of an Exp(η)-distributed random variable is given

by 1
η and the expectation of a Poi(c)-distributed random variable by c. Analogous

calculations yield

E
[
Z

(j)
t

∣∣∣Tt] =
Tt cj
cT ηj

. (3.13)

By combining Equations (3.11), (3.12), and (3.13), we get

E
[
Z

(i)
t Z

(j)
t

]
=

ci cj
ηi ηj c2

T

E
[
T 2
t

]
=

ci cj
ηi ηj c2

T

E
[
T 2
t

]
=
ci cj
ηi ηj

(
2 t

cT
+ t2

)
, (3.14)

where we used, that E
[
T 2
t

]
= 2 t cT + cT t

2 as computed in Theorem 3.2. By means

of Equation (3.14) and Theorem 3.2 we can calculate the correlation between Z(i)
t and

Z
(j)
t , namely

Corr
[
Z

(i)
t , Z

(j)
t

]
=

E
[
Z

(i)
t Z

(j)
t

]
− E

[
Z

(i)
t

]
E
[
Z

(j)
t

]
√

Var
[
Z

(i)
t

]
Var

[
Z

(j)
t

] =

ci cj
ηi ηj

(
2 t
cT

+ t2
)
− ci t

ηi

cj t
ηj√

2 ci t
η2i

2 cj t

η2j

=

√
ci cj

cT
= κ

√
ci cj

cmax
, �

Remark 3.10 (On the correlation between time-changed CPPExp)

The correlation parameter κ determines the level of correlation and linearly interpo-

lates between the minimal and maximal possible correlation. In particular, correlation

coe�cients ranging from zero (κ↘ 0) to
√
c1c2
cmax

(κ↗ 1) are possible, and the correla-

tion is independent of t.

3.4 Characterization as multi-dimensional compound

Poisson process

Although we know from Remark 3.6 that a time-changed CPPExp is a d-dimensional

compound Poisson process, so far, we do not know its explicit representation in accor-

dance with De�nition 2.14. In this section we take care of that explicit representation

and start with looking at a single component of our construction from a new perspec-

tive.
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3.4 Characterization as multi-dimensional compound Poisson process

Let Ẑ be one component of a d-dimensional time-changed CPPExp, as de�ned in Def-

inition 3.5, i.e.

Ẑt =

NTt∑
k=1

Jk, for all t ≥ 0,

where J1, J2, . . . is a sequence of independent Exp( cT ηcT−c)-distributed random variables,

N is a Poisson process with intensity c
cT−c , and T ∼ CPPExp(cT , 1). All quantities are

mutually independent. As stated in Remark 3.6, Ẑ turns out to be a CPPExp(c, η).

This representation of Ẑ implies that Ẑ jumps at time t if and only if NT jumps at

time t. In particular, Ẑ jumps at time t only if T jumps at time t. Let τ be a jump

time of T . Then, Ẑ jumps at τ if and only if NTτ −NTτ− ≥ 1, i.e. Ẑ jumps at time τ

if and only if the jump size of T triggers a jump of NT . Therefore, Ẑ can alternatively

be seen as a compound Poisson process with intensity cT , instead of c, and modi�ed

jump size distribution satisfying positive probability for jump magnitudes of size 0.

Thus, it makes sense to examine the process NT in detail, which is done in the next

theorem.

Theorem 3.11 (Link to geometric law)

Let N be a Poisson process with intensity c
cT−c and T ∼ CPPExp(cT , 1). Assume, N

and T are independent. Then, the process NT = {NTt}t≥0 is a compound Poisson

process with intensity cT and Geo
(

1− c
cT

)
-distributed jump sizes.

Proof

Let u ∈ R+. From Example 2.9 we know that the Laplace exponent of a Geo
(

1− c
cT

)
-

distributed random variable X is given by

ϕ̃X(u) =
1− c

cT

1− c
cT
e−u

=
cT − c

cT − c e−u
.

Theorem 2.24 yields that the Laplace exponent of a compound Poisson process Z with

intensity cT and Geo
(

1− c
cT

)
-distributed jump sizes is given by

ψ̃Z(−u) = cT (ϕ̃X(u)− 1) = cT

(
cT − c

cT − c e−u
− 1

)
=
cT c (e−u − 1)

cT − c e−u
.

By Theorem 2.25, the process NT is a Lévy subordinator. Since the Laplace exponent

uniquely determines the distribution of a Lévy subordinator (cf. Remark 2.21), it is
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3 Compound Poisson processes with exponentially distributed jumps

left to show that the Laplace exponent of NT is given by

ψ̃NT (−u) =
−cT c (1− e−u)

cT − c e−u
.

Using Theorem 2.25, we get

ψ̃NT (−u) = ψ̃T
(
ψ̃N (−u)

)
= ψ̃T

(
log (ϕ̃N1(u))

)
.

Note that N1 ∼ Poi
(

c
cT−c

)
. Hence, Example 2.9 and Theorem 3.1 yield

ψ̃NT (−u) = ψ̃T

(
−c (1− e−u)

cT − c

)
=
−cT

c(1−e−u)
cT−c

1 + c(1−e−u)
cT−c

=
−cT c (1− e−u)

cT − c e−u
.

Therefore, NT is a compound Poisson process with intensity cT and Geo
(

1− c
cT

)
-

distributed jump sizes. �

Remark 3.12 (On the proof of Theorem 3.11)

The proof of Theorem 3.11 is based on the clever guess that the jump size distribution of

NT is Geo
(

1− c
cT

)
. However, this distribution can be calculated in a more elementary

way, such that this guess can be derived from these constructive calculations. In the

following, it is shown how one can circumvent such a guess.

Proof (Alternative proof of Theorem 3.11)

Instead of guessing the jump size distribution of NT , it can be calculated. To do so,

let τ := inf
{
t ≥ 0

∣∣Tt 6= 0
}
, i.e. τ is the �rst jump time of NT . Hence, the random

variable NTτ describes the jump size of NT at time τ and Tτ represents the magnitude

of the �rst jump of T . Using Tτ ∼ Exp(1) and Nt ∼ Poi( c t
cT−c), ∀t ∈ R+, we get for

all k ∈ N0 that

P (NTτ = k) =

∞∫
0

P (NTτ = k |Tτ = t) e−t dt =

∞∫
0

P (Nt = k) e−t dt

=

∞∫
0

1

k!

(
c t

cT − c

)k
e
− c t
cT−c e−t dt =

∞∫
0

1

k!

ck

(cT − c)k
tk e
−t cT

cT−c dt. (3.15)

The integration by parts formula yields
∞∫

0

1

k!

ck

(cT − c)k
tk e
−t cT

cT−c dt =

[
− 1

k!

ck

(cT − c)k−1 cT
tk e
−t cT

cT−c

]t=∞
t=0
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3.4 Characterization as multi-dimensional compound Poisson process

+

∞∫
0

1

(k − 1)!

ck

(cT − c)k−1 cT
tk−1 e

−t cT
cT−c dt. (3.16)

By multiple application of l'Hôpital's rule we know that[
− 1

k!

ck

(cT − c)k−1 cT
tk e
−t cT

cT−c

]t=∞
t=0

= 0,

Hence, Equation (3.16) simpli�es to

∞∫
0

1

k!

ck

(cT − c)k
tk e
−t cT

cT−c dt =

∞∫
0

1

(k − 1)!

ck

(cT − c)k−1 cT
tk−1 e

−t cT
cT−c dt,

and by iterative application of the integration by parts formula we get

∞∫
0

1

k!

ck

(cT − c)k
tk e
−t cT

cT−c dt = · · · =
∞∫

0

(
c

cT

)k
e
−t cT

cT−c dt

=

[
−cT − c

cT

(
c

cT

)k
e
−t cT

cT−c

]t=∞
t=0

=
cT − c
cT

(
c

cT

)k
.

Therefore, Equation (3.15) boils down to

P (NTτ = k) =

(
c

cT

)k (
1− c

cT

)
,

which shows that NTτ ∼ Geo
(

1− c
cT

)
. �

Theorem 3.11 also motivates an intuitive representation of a d-dimensional time-

changed CPPExp Z =
(
Z(1), . . . , Z(d)

)
with intensities c1, . . . , cd, jump size parameters

η1, . . . , ηd, and correlation parameter κ ∈ (0, 1):

Potential jump times of Z(1), . . . , Z(d) are given by a Poisson process with intensity

cT = κ max
1≤i≤d

{ci}. The jump size of Z(i) at a potential jump time τ is a sum of in-

dependent Exp
(
cT ηi
cT−ci

)
-distributed random variables. The number of added random

variables is given by the jump size of N (i)
T at τ , which is Geo

(
1− ci

cT

)
-distributed.

Note that P
(
N

(i)
Tτ

= 0
)

= 1 − ci
cT

> 0, and, hence, a potential jump time need not

necessarily lead to an actual jump of Z(i). Moreover, the jump sizes of N (1)
T , . . . , N

(d)
T

are dependent. The joint distribution is investigated in the next theorem.
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3 Compound Poisson processes with exponentially distributed jumps

Theorem 3.13 (Link to a multivariate geometric law)

Let T ∼ CPPExp(cT , 1) and N (1), . . . , N (d) be d independent Poisson processes with

intensities given by c1
cT−c1 , . . . ,

cd
cT−cd . Assume, T to be independent of N (1), . . . , N (d).

Let τ := inf
{
t ≥ 0

∣∣Tt 6= 0
}
. Then, the joint distribution of the random variables

N
(1)
Tτ
, . . . , N

(d)
Tτ

is given by

P
(
N

(1)
Tτ

= k1, . . . , N
(d)
Tτ

= kd

)
=

k!∏d
i=1 ki!

(
1 +

d∑
i=1

ci
cT − ci

)−k−1 d∏
i=1

(
ci

cT − ci

)ki
,

where k1, . . . , kd ∈ N0 and k =
d∑
i=1

ki.

Moreover,
(
N

(1)
T , . . . , N

(d)
T

)
is a d-dimensional compound Poisson process.

Proof

The d-dimensional process
(
N

(1)
T , . . . , N

(d)
T

)
is a d-dimensional Lévy process, since

the subordination of the d-dimensional Lévy process
(
N

(1)
t , . . . , N

(d)
t

)
is again a Lévy

process by Theorem 2.25. Using Theorem 3.11, every component of
(
N

(1)
T , . . . , N

(d)
T

)
is a compound Poisson process. Hence,

(
N

(1)
T , . . . , N

(d)
T

)
is a d-dimensional compound

Poisson process (cf. Remark 2.17(iii)). Its jump size distribution can be calculated by

a multivariate adaptation of the alternative proof of Theorem 3.11. Using Tτ ∼ Exp(1)

we get

P
(
N

(1)
Tτ

= k1, . . . , N
(d)
Tτ

= kd

)
=

∞∫
0

P
(
N

(1)
Tτ

= k1, . . . , N
(d)
Tτ

= kd

∣∣∣Tτ = t
)
e−t dt

=

∞∫
0

P
(
N

(1)
t = k1, . . . , N

(d)
t = kd

)
e−t dt

The independence between the processes N (1), . . . , N (d) and the fact that N (i)
t ∼

Poi( ci t
cT−ci ) ∀1 ≤ i ≤ d, ∀t ∈ R+ yield

P
(
N

(1)
Tτ

= k1, . . . , N
(d)
Tτ

= kd

)
=

∞∫
0

d∏
i=1

P
(
N

(i)
t = ki

)
e−t dt

=

∞∫
0

d∏
i=1

1

ki!

(
ci t

cT − ci

)ki
e
− ci t

cT−ci e−t dt
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3.4 Characterization as multi-dimensional compound Poisson process

=

∞∫
0

tk exp

(
−t

(
1 +

d∑
i=1

ci
cT − ci

))
dt

d∏
i=1

1

ki!

(
ci

cT − ci

)ki
. (3.17)

The integration by parts formula yields
∞∫

0

tk exp

(
−t

(
1 +

d∑
i=1

ci
cT − ci

))
(3.18)

=

−tk exp
(
−t
(

1 +
∑d

i=1
ci

cT−ci

))
1 +

∑d
i=1

ci
cT−ci

t=∞
t=0

+

∞∫
0

k tk−1
exp

(
−t
(

1 +
∑d

i=1
ci

cT−ci

))
1 +

∑d
i=1

ci
cT−ci

dt.

By multiple application of l'Hôpital's rule we know that−tk exp
(
−t
(

1 +
∑d

i=1
ci

cT−ci

))
1 +

∑d
i=1

ci
cT−ci

t=∞
t=0

= 0,

Hence, Equation (3.18) simpli�es to

∞∫
0

tk exp

(
−t

(
1 +

d∑
i=1

ci
cT − ci

))
=

∞∫
0

k tk−1
exp

(
−t
(

1 +
∑d

i=1
ci

cT−ci

))
1 +

∑d
i=1

ci
cT−ci

dt,

and by iterative application of the integration by parts formula we get

∞∫
0

tk exp

(
−t

(
1 +

d∑
i=1

ci
cT − ci

))
= · · · =

∞∫
0

k!
exp

(
−t
(

1 +
∑d

i=1
ci

cT−ci

))
(

1 +
∑d

i=1
ci

cT−ci

)k dt,

=

−k!
exp

(
−t
(

1 +
∑d

i=1
ci

cT−ci

))
(

1 +
∑d

i=1
ci

cT−ci

)k+1


t=∞

t=0

=
k!(

1 +
∑d

i=1
ci

cT−ci

)k+1
.

Therefore, Equation (3.17) boils down to

P
(
N

(1)
Tτ

= k1, . . . , N
(d)
Tτ

= kd

)
=

k!(
1 +

∑d
i=1

ci
cT−ci

)k+1

d∏
i=1

1

ki!

(
ci

cT − ci

)ki

=
k!∏d
i=1 ki!

(
1 +

d∑
i=1

ci
cT − ci

)−k−1 d∏
i=1

(
ci

cT − ci

)ki
.

And the claim is shown. �
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3 Compound Poisson processes with exponentially distributed jumps

Remark 3.14 (On the multivariate geometric law in Theorem 3.13)

The distribution in Theorem 3.13 is a multivariate geometric distribution in the sense

of Srivastava and Bagchi [1985], which was further characterized by Sreehari and Va-

sudeva [2012]. In particular, they say, a random variable X = (X1, . . . , Xd) taking

values in Nd0 has a multivariate geometric distribution if

P(X = (k1, . . . , kd)) =
k!∏d
i=1 ki!

p0

d∏
i=1

pkii ∀(k1, . . . , kd) ∈ Nd0, k :=

d∑
i=1

ki,

where 0 < pi < 1 for all 0 ≤ i ≤ d and
∑d

i=0 pi = 1.

Indeed, it coincides with the law presented in Theorem 3.13 by choosing

p0 =

(
1 +

d∑
i=1

ci
cT − ci

)−1

, pi =
p0 ci
cT − ci

, ∀1 ≤ i ≤ d.

In Remark 3.6 we have seen that a time-changed CPPExp is a d-dimensional compound

Poisson process with each component being a CPPExp. By means of Theorem 3.13 a

characterization of a time-changed CPPExp as d-dimensional compound Poisson pro-

cess can be established in the following way.

Remark 3.15 (Characterization of a time-changed CPPExp)

Let Z =
(
Z(1), . . . , Z(d)

)
be a d-dimensional time-changed CPPExp, i.e. for all 1 ≤ i ≤

d,

Y
(i)
t =

N
(i)
t∑

j=1

J
(i)
j , Tt =

NT
t∑

j=1

JTj , Z
(i)
t = Y

(i)
Tt
,

whereNT is a Poisson process with intensity cT , N (i) is a Poisson process with intensity
ci

cT−ci for all 1 ≤ i ≤ d, JT1 , J
T
2 , . . . are Exp(1)-distributed random variables, and

J
(i)
1 , J

(i)
2 , . . . are Exp( cT ηi

cT−ci )-distributed random variables for all 1 ≤ i ≤ d. All

quantities are mutually independent. Let τ1, τ2, . . . be the arrival times of T and set

τ0 = 0.

Then, Z can be represented by

Zt =

NT
t∑

k=1

Ek, for all t ≥ 0, (3.19)

50



3.5 Linear jump decomposition

where E1 =
(
E

(1)
1 , . . . , E

(d)
1

)
, E2 =

(
E

(1)
2 , . . . , E

(d)
2

)
, . . . is a sequence of indepen-

dent and identically distributed Rd+-valued random variables given by

E
(i)
j :=

N
(i)
Tτj∑

k=1+N
(i)
Tτj−1

J
(i)
k for all 1 ≤ i ≤ d, and for all j ≥ 1.

Equation (3.19) is a characterization of our time change constructed process Z as

d-dimensional compound Poisson process in accordance with De�nition 2.14. The

intensity of Z is given by the intensity ofNT , namely cT . The jump sizes E1, E2, . . . are

d-dimensional random variables having a sum of independent Exp( cT ηi
cT−ci )-distributed

random variables in each component. The number of summed variables is given by the

jump heights of N (1)
T , . . . , N

(d)
T , whose distribution is computed in Theorem 3.13.

3.5 Linear jump decomposition

As mentioned in the introduction of this chapter, there is a vivid way of representing

multivariate compound Poisson processes by splitting each component into individual

and common parts, and linking the common parts by copulas. This characterization is

intuitive, particularly in low dimensions. Following [Cont and Tankov, 2004, Chapter

5.5], the decomposition of a d-dimensional time-changed CPPExp Z =
(
Z(1), . . . , Z(d)

)
can be obtained by splitting into individual and common jump parts. Using the

representation of Z in Equation (3.19), i.e.

Z
(i)
t =

NT
t∑

k=1

E
(i)
k , ∀1 ≤ i ≤ d,

each component of the time-changed CPPExp Z can be separated in the following

way:

Z
(i)
t =

NT
t∑

k=1

E
(i)
k


d∏
j=1
j 6=i

1{E(j)
k =0} +

∑
{}6=A⊆{1,..., d}\{i}

∏
j∈A

1{E(j)
k >0}

∏
l /∈A
l 6=i
l 6=i

1{E(l)
k =0}


= I

(i)
t +

∑
{}6=A⊆{1,..., d}\{i}

C
(i,A)
t , ∀1 ≤ i ≤ d, ∀t ≥ 0, (3.20)
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3 Compound Poisson processes with exponentially distributed jumps

where

I
(i)
t :=

NT
t∑

k=1

d∏
j=1
j 6=i

1{E(j)
k =0}E

(i)
k , ∀1 ≤ i ≤ d, ∀t ≥ 0, (3.21)

C
(i,A)
t :=

NT
t∑

k=1

∏
j∈A

1{E(j)
k >0}

∏
l /∈A
l 6=i

1{E(l)
k =0}E

(i)
k , ∀1 ≤ i ≤ d, ∀t ≥ 0. (3.22)

Note that the term inside the parentheses in Equation (3.20) boils down to one. The

process I(i) consists of all individual jumps of Z(i), i.e. there exists no other component

Z(j), i 6= j, sharing a jump time with I(i). The process C(i,A) represents all jumps of

Z(i), which occur simultaneously with jumps in all components of Z that are given by

the set A. Since
(
E

(1)
1 , . . . , E

(d)
1

)
,
(
E

(1)
2 , . . . , E

(d)
2

)
, . . . is a sequence of independent

and identically distributed random variables (cf. Remark (3.19)),

d∏
j=1
j 6=i

1{E(j)
1 =0}E

(i)
1 ,

d∏
j=1
j 6=i

1{E(j)
2 =0}E

(i)
2 , . . . and

∏
j∈A

1{E(j)
1 >0}

∏
l /∈A
l 6=i

1{E(l)
1 =0}E

(i)
1 ,

∏
j∈A

1{E(j)
2 >0}

∏
l /∈A
l 6=i

1{E(l)
2 =0}E

(i)
2 , . . .

are also sequences of independent and identically distributed random variables for all

1 ≤ i ≤ d. Furthermore, these sequences are independent of the process NT . Hence,

∀1 ≤ i ≤ d, A ⊆ {1, . . . , d}\{i}, A 6= {} the processes I(i) and C(i,A) are compound

Poisson processes by construction. The intensities and jump size distributions of these

compound Poisson processes can be computed by means of Theorem 3.13.

To illustrate the decomposition, let us have a look at the three-dimensional case. For

d = 3, we get

Z(1) = I(1) + C(1,{2}) + C(1,{3}) + C(1,{2, 3}),

Z(2) = I(2) + C(2,{1}) + C(2,{3}) + C(2,{1, 3}),

Z(3) = I(3) + C(3,{1}) + C(3,{2}) + C(3,{1, 2}).

As we can see, to characterize a three-dimensional compound Poisson process by means

of that representation, one has to determine

• 7 intensities (Note that C(1,{2}) and C(2,{1}) share the same intensity, also C(2,{3})

and C(3,{2}), C(1,{3}) and C(3,{1}), and C(1,{2, 3}), C(2,{1, 3}) and C(3,{1, 2}).),
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3.5 Linear jump decomposition

• 12 jump size distributions,

• 3 two-dimensional copulas to link the jump size distributions of C(1,{2}) and

C(2,{1}), C(2,{3}) and C(3,{2}), and C(1,{3}) and C(3,{1}), and

• one three-dimensional copula to link the jump size distributions of C(1,{2, 3}),

C(2,{1, 3}) and C(3,{1, 2}).

Obviously, such a representation is way too involved for dimension d > 2 to suit as a

useful characterization. Note, that in general we need 2d− 1 intensities, d 2(d−1) jump

size distributions, and 2d − d− 1 copulas. Hence, the idea to characterize the compo-

nents of a d-dimensional compound Poisson process by sums of dependent compound

Poisson processes is reasonable for d = 2 only. Therefore, in the sequel we concentrate

on the bivariate case.

Let Z =
(
Z(1), Z(2)

)
be a two-dimensional time-changed CPPExp with intensities

c1, c2, jump size parameter η1, η2, and correlation parameter κ. Denote by cT =
1
κ max{c1, c2} the intensity of the subordinator within the construction of Z. The

decomposition is then given by

Z(1) = I(1) + C(1,{2}), and Z(2) = I(2) + C(2,{1}), (3.23)

where I(1), I(2), C(1,{2}), and C(2,{1}) are compound Poisson processes. C(1,{2}) and

C(2,{1}) are dependent, all other processes are mutually independent. C(1,{2}) and

C(2,{1}) have the same intensity, they jump at the same time and have dependent

jump sizes. In the following theorem, we investigate the distributions of the compound

Poisson processes I(1), I(2), C(1,{2}), and C(2,{1}).

Theorem 3.16 (Decomposition of a bivariate time-changed CPPExp)

Let the processes I(1), I(2), C(1,{2}), and C(2,{1}) be de�ned as in Equation (3.23).

Then,

(i) I(1) ∼ CPPExp

(
c1 (cT−c2)2

c2T−c1 c2
,

c2T η1
c2T−c1c2

)
,

(ii) I(2) ∼ CPPExp

(
c2 (cT−c1)2

c2T−c1 c2
,

c2T η2
c2T−c1c2

)
,

(iii) C(1,{2}) and C(2,{1}) are compound Poisson processes with identical jump times

arriving with intensity c1 c2 (2 cT−c1−c2)
c2T−c1 c2

. The distribution function of the jump
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3 Compound Poisson processes with exponentially distributed jumps

sizes of C(1,{2}) is given by

1−
c2
T − c1 c2

c2 (2 cT − c1 − c2)
e−η1 x +

(cT − c2)2

c2 (2 cT − c1 − c2)
e
− c2T η1

c2
T
−c1 c2

x
, x ≥ 0.

The distribution function of the jump sizes of C(2,{1}) is given by

1−
c2
T − c1 c2

c1 (2 cT − c1 − c2)
e−η2 x +

(cT − c1)2

c1 (2 cT − c1 − c2)
e
− c2T η2

c2
T
−c1 c2

x
, x ≥ 0.

Proof

Let us recall the de�nition of the compound Poisson processes I(1) and C(1,{2}) (cf.

Equation (3.21) and Equation (3.19)),

I
(1)
t =

NT
t∑

k=1

1{E(2)
k =0}E

(1)
k , C

(1,{2})
t =

NT
t∑

k=1

1{E(2)
k >0}E

(1)
k

where

E
(i)
k =

N
(i)
Tτk∑

j=1+N
(i)
Tτk−1

J
(i)
j for all 1 ≤ i ≤ 2, and for all k ≥ 1.

Here, N (1) is a Poisson process with intensity c1, N (2) is a Poisson process with intensity

c2, T ∼ CPPExp(cT , 1). We denote by τ1, τ2, . . . the arrival times of T and NT is the

corresponding Poisson process, τ0 := 0. J
(1)
1 , J

(1)
2 , . . . is a sequence of independent

Exp(η1)-distributed random variables, and J (2)
1 , J

(2)
2 , . . . is a sequence of independent

Exp(η2)-distributed random variables. All quantities are mutually independent.

We start with proving (i) and derive the jump size distribution of I(1)
t by computing

the distribution function of 1{E(2)
1 =0}E

(1)
1 . Note �rst that

E
(2)
1 = 0⇔

N
(2)
Tτ1∑
j=1

J
(2)
j = 0⇔ N

(2)
Tτ1

= 0.

Hence, for some x ∈ R+

P
(
1{E(2)

1 =0}E
(1)
1 > x

)
= P

N
(1)
Tτ1∑
j=1

J
(1)
j > x, N

(2)
Tτ1

= 0


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3.5 Linear jump decomposition

=
∞∑
k=1

P

 k∑
j=1

J
(1)
j > x, N

(1)
Tτ1

= k, N
(2)
Tτ1

= 0


=
∞∑
k=1

P

 k∑
j=1

J
(1)
j > x

P
(
N

(1)
Tτ1

= k, N
(2)
Tτ1

= 0
)
, (3.24)

because the sequence J (1)
1 , J

(1)
2 , . . . is independent of the processes N (1), N (2), and T .

Theorem 3.13 yields

P
(
N

(1)
Tτ1

= k, N
(2)
Tτ1

= 0
)

=

(
1

1 +
∑2

i=1
ci

cT−ci

)k+1(
c1

cT − c1

)k
=

(
(cT − c1) (cT − c2)

(cT − c1) (cT − c2) + c1 (cT − c2) + c2 (cT − c1)

)k+1( c1

cT − c1

)k
=

(
(cT − c1) (cT − c2)

c2
T − c1 c2

)k+1( c1

cT − c1

)k
=

(cT − c1) (cT − c2)

c2
T − c1 c2

(
c1 (cT − c2)

c2
T − c1 c2

)k
. (3.25)

A sum of independent and identically exponential distributed random variables follows

an Erlang distribution, cf. De�nition 2.3. Hence,

P

 k∑
j=1

J
(1)
j > x

 =
k−1∑
n=0

1

n!

(
cT η1

cT − c1

)n
xn e

− cT η1
cT−c1

x
. (3.26)

Putting together Equations (3.24), (3.25), and (3.26) yields

P
(
1{E(2)

1 =0}E
(1)
1 > x

)
=
∞∑
k=1

k−1∑
n=0

1

n!

(
cT η1

cT − c1

)n
xn e

− cT η1
cT−c1

x (cT − c1) (cT − c2)

c2
T − c1 c2

(
c1 (cT − c2)

c2
T − c1 c2

)k
,

and rearranging summation gives

P
(
1{E(2)

1 =0}E
(1)
1 > x

)
=e
− cT η1
cT−c1

x (cT − c1) (cT − c2)

c2
T − c1 c2

∞∑
n=0

1

n!

(
cT η1

cT − c1

)n
xn

∞∑
k=n+1

(
c1 (cT − c2)

c2
T − c1 c2

)k
. (3.27)
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3 Compound Poisson processes with exponentially distributed jumps

Recall the formula for a geometric sum, i.e.
∑∞

k=n+1 α
k = αn+1

1−α , if |α| < 1. Note that

0 < c1(cT−c2)
c2T−c1 c2

< 1, because cT > c1 and cT > c2. Therefore,

∞∑
k=n+1

(
c1 (cT − c2)

c2
T − c1 c2

)k
=

(
c1(cT−c2)
c2T−c1 c2

)n+1

1− c1(cT−c2)
c2T−c1 c2

=
c1 (cT − c2)

(
c1(cT−c2)
c2T−c1 c2

)n
c2
T − c1 c2 − c1 (cT − c2)

=
c1 (cT − c2)

cT (cT − c1)

(
c1 (cT − c2)

c2
T − c1 c2

)n
. (3.28)

Combining Equation (3.27) and Equation (3.28) yields

P
(
1{E(2)

1 =0}E
(1)
1 > x

)
=e
− cT η1
cT−c1

x c1 (cT − c2)2

c3
T − cT c1 c2

∞∑
n=0

1

n!

(
cT η1

cT − c1

)n
xn
(
c1 (cT − c2)

c2
T − c1 c2

)n
.

Finally, by the series expansion of the exponential function, we obtain

P
(
1{E(2)

1 =0}E
(1)
1 > x

)
= e
− cT η1
cT−c1

x c1 (cT − c2)2

c3
T − cT c1 c2

e
cT η1
cT−c1

x
c1(cT−c2)
c2
T
−c1 c2

=
c1 (cT − c2)2

c3
T − cT c1 c2

e
cT η1
cT−c1

x

(
c1(cT−c2)
c2
T
−c1 c2

−1

)

=
c1 (cT − c2)2

c3
T − cT c1 c2

e
− c2T η1

c2
T
−c1 c2

x
.

Overall, we know that I(1)
t is a compound Poisson process with intensity cT and the

jump sizes follow the distribution function

P
(
1{E(2)

1 =0}E
(1)
1 ≤ x

)
= 1− c1 (cT − c2)2

c3
T − cT c1 c2

e
− c2T η1

c2
T
−c1 c2

x
. (3.29)

To see that

I(1) ∼ CPPExp

(
c1 (cT − c2)2

c2
T − c1 c2

,
c2
T η1

c2
T − c1c2

)
,

one has to erase the zero jumps from the jump size distribution, which we do in the

sequel.

Note �rst, that given a compound Poisson process Z with intensity c and non-negative

jump size distribution D with mass on zero, this process can be reformulated without

jumps of height zero. More precisely, let FD be the distribution function of D. Then,
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3.5 Linear jump decomposition

Z is also a compound Poisson process with intensity c (1− FD(0)) and the jump size

distribution is given by the distribution function FD(x)−FD(0)
1−FD(0) , x ≥ 0. This statement

follows immediately from the formula for the Laplace exponent ψ̃Z of the process Z

(cf. Theorem 2.24). Let u ∈ R+, then

ψ̃Z(−u) = c (ϕ̃D(u)− 1) = c

 ∞∫
0

e−ux FD(dx)− 1

 .

Now, let Ẑ be a compound Poisson process with intensity c (1−FD(0)) and jump size

distribution function F given by F (x) = FD(x)−FD(0)
1−FD(0) , x ≥ 0 and F (x) = 0, x < 0.

Then

ψ̃Ẑ(−u) = c (1− FD(0))

 ∞∫
0

e−ux F (dx)− 1


= c (1− FD(0))

 ∞∫
0

1

1− FD(0)
e−ux F (dx)− FD(0)

1− FD(0)
− 1


= c

 ∞∫
0

e−ux FD(dx)− 1

 = ψ̃Z(−u).

Since the Laplace exponent uniquely determines the distribution of a Lévy process,

both processes, Z and Ẑ, have the same distribution.

Let us come back to the process I(1). Its jump size distribution (cf. Equation (3.29))

also obtains zero jumps with probability

P
(
1{E(2)

1 =0}E
(1)
1 = 0

)
= 1− c1 (cT − c2)2

c3
T − cT c1 c2

.

Hence, I(1) can alternatively be described as a compound Poisson process with intensity

cT

(
1− P

(
1{E(2)

1 =0}E
(1)
1

))
=
c1 (cT − c2)2

c2
T − c1 c2

and the jump sizes follow the distribution function

P
(
1{E(2)

1 =0}E
(1)
1 ≤ x

)
− P

(
1{E(2)

1 =0}E
(1)
1 = 0

)
1− P

(
1{E(2)

1 =0}E
(1)
1 = 0

)
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3 Compound Poisson processes with exponentially distributed jumps

=
1− c1(cT−c2)2

c3T−cT c1 c2
e
− c2T η1

c2
T
−c1 c2

x
−
(

1− c1(cT−c2)2

c3T−cT c1 c2

)
c1(cT−c2)2

c3T−cT c1 c2

=1− e
− c2T η1

c2
T
−c1 c2

x
.

Hence,

I(1) ∼ CPPExp

(
c1 (cT − c2)2

c2
T − c1 c2

,
c2
T η1

c2
T − c1c2

)
,

and (i) is ful�lled. Similar to (i), we get (ii), namely

I(2) ∼ CPPExp

(
c2 (cT − c1)2

c2
T − c1 c2

,
c2
T η2

c2
T − c1c2

)
.

It is left to prove (iii). Again, we start with computing the jump size distribution of

C
(1,{2})
t by calculating the distribution function of 1{E(2)

1 >0}E
(1)
1 . Here, we can use the

results from (i). Note �rst that for some x ∈ R+, we get

P
(
1{E(2)

1 >0}E
(1)
1 > x

)
= P

(
E

(1)
1 > x, E

(2)
1 > 0

)
= P

(
E

(1)
1 > x

)
− P

(
E

(1)
1 > x, E

(2)
1 = 0

)
= P

(
E

(1)
1 > x

)
− P

(
1{E(2)

1 =0}E
(1)
1 > x

)
. (3.30)

Equation (3.26) yields

P
(
E

(1)
1 > x

)
= P

N
(1)
Tτ1∑
j=1

J
(1)
j > x

 =
∞∑
k=1

P

 k∑
j=1

J
(1)
j > x, N

(1)
Tτ1

= k


=
∞∑
k=1

P

 k∑
j=1

J
(1)
j > x

P
(
N

(1)
Tτ1

= k
)
. (3.31)

By Theorem 3.11, we know that N (1)
Tτ1
∼ Geo

(
1− c1

cT

)
. Hence

P
(
N

(1)
Tτ1

= k
)

=

(
c1

cT

)k (
1− c1

cT

)
. (3.32)

Combining Equations (3.26), (3.31), and (3.27), we get

P
(
E

(1)
1 > x

)
=

∞∑
k=1

k−1∑
n=0

1

n!

(
cT η1

cT − c1

)n
xn e

− cT η1
cT−c1

x
(
c1

cT

)k (
1− c1

cT

)
,
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3.5 Linear jump decomposition

and rearranging summation gives

P
(
E

(1)
1 > x

)
= e
− cT η1
cT−c1

x
(

1− c1

cT

) ∞∑
n=0

1

n!

(
cT η1

cT − c1

)n
xn

∞∑
k=n+1

(
c1

cT

)k
.

Again, the formula for the geometric sum yields

P
(
E

(1)
1 > x

)
= e
− cT η1
cT−c1

x
(

1− c1

cT

) ∞∑
n=0

1

n!

(
cT η1

cT − c1

)n
xn

(
c1
cT

)n+1

1− c1
cT

= e
− cT η1
cT−c1

x c1

cT

∞∑
n=0

1

n!

(
c1 η1

cT − c1

)n
xn

=
c1

cT
e−η1 x. (3.33)

By combing Equations (3.30), (3.33), and (3.29), we obtain

P
(
1{E(2)

1 >0}E
(1)
1 > x

)
=
c1

cT
e−η1 x − c1 (cT − c2)2

c3
T − cT c1 c2

e
− c2T η1

c2
T
−c1 c2

x
.

Overall, we know that C(1,{2})
t is a compound Poisson process with intensity cT and

the jump sizes follow the distribution function

P
(
1{E(2)

1 >0}E
(1)
1 ≤ x

)
= 1− c1

cT
e−η1 x +

c1 (cT − c2)2

c3
T − cT c1 c2

e
− c2T η1

c2
T
−c1 c2

x
. (3.34)

Note, that

P
(
1{E(2)

1 >0}E
(1)
1 = 0

)
= 1− c1

cT
+
c1 (cT − c2)2

c3
T − cT c1 c2

.

Therefore, by killing the zero jumps from the jumps size distribution, C(1,{2})
t can be

seen as a compound Poisson process with intensity

cT

(
1− P

(
1{E(2)

1 >0}E
(1)
1 = 0

))
= c1 −

c1 (cT − c2)2

c2
T − c1 c2

=
c1 c2 (2 cT − c1 − c2)

c2
T − c1 c2

and jump size distribution function

P
(
1{E(2)

1 >0}E
(1)
1 ≤ x

)
− P

(
1{E(2)

1 >0}E
(1)
1 = 0

)
1− P

(
1{E(2)

1 >0}E
(1)
1 = 0

)
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3 Compound Poisson processes with exponentially distributed jumps

=
1− c1

cT
e−η1 x + c1(cT−c2)2

c3T−cT c1 c2
e
− c2T η1

c2
T
−c1 c2

x
−
(

1− c1
cT

+ c1(cT−c2)2

c3T−cT c1 c2

)
c1 c2(2 cT−c1−c2)

c3T−cT c1 c2

=

c1
cT

(1− e−η1 x)− c1(cT−c2)2

c3T−cT c1 c2

(
1− e

− c2T η1

c2
T
−c1 c2

x
)

c1 c2(2 cT−c1−c2)
c3T−cT c1 c2

=

(
c2
T − c1 c2

)
(1− e−η1 x)− (cT − c2)2

(
1− e

− c2T η1

c2
T
−c1 c2

x
)

c2 (2 cT − c1 − c2)

=1−
c2
T − c1 c2

c2 (2 cT − c1 − c2)
e−η1 x +

(cT − c2)2

c2 (2 cT − c1 − c2)
e
− c2T η1

c2
T
−c1 c2

x
. (3.35)

Analogously, the jump size distribution function of C(2,{1})
t is given by

= 1−
c2
T − c1 c2

c1 (2 cT − c1 − c2)
e−η2 x +

(cT − c1)2

c1 (2 cT − c1 − c2)
e
− c2T η2

c2
T
−c1 c2

x
.

Hence, (iii) is shown. �

Remark 3.17 (Jump size distribution of the common parts)

In Theorem 3.16 (iii), the distribution function of the jump magnitudes of C(1,{2})
t

turned out to be

F (x) := 1−
c2
T − c1 c2

c2 (2 cT − c1 − c2)
e−η1 x +

(cT − c2)2

c2 (2 cT − c1 − c2)
e
− c2T η1

c2
T
−c1 c2

x
.

Indeed, this distribution function F is a linear combination of two exponential dis-

tribution functions. Let X ∼ Exp (η1), and Y ∼ Exp
(

c2T η1
c2T−c1 c2

)
and denote by FX ,

respectively FY , their distribution functions. Then,

F (x) = pFX(x) + (1− p)FY (x) with p =
c2
T − c1 c2

c2 (2 cT − c1 − c2)
.

On �rst sight, F looks like a two-dimensional hyperexponential distribution, which

is de�ned by a convex combination of exponential distribution functions. A two-

dimensional hyperexponentially distributed random variable can be constructed by

an independent Bernoulli-distributed decision variable. Conditioned on the result of

the Bernoulli experiment one of the two exponentially distributed random variables
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3.5 Linear jump decomposition

is chosen. Here, however, we do not face a convex combination, since p > 1, due to

cT > c2. Hence, the jump sizes of C(1,{2})
t are not hyperexponentially distributed. For

more information on that distribution we refer to Nelson [1995]. Note, that the alter-

native representation for the jump size distribution of C(1,{2})
t including zero jumps

(cf. Equation (3.34)), is a linear combination of these two exponential distributions

and the so-called degenerate distribution function, which jumps from zero to one at

one.

A construction by means of a Bernoulli distributed decision variable can be obtained

for the jump sizes of the overall process Z(1). Every time a jump occurs, a Bernoulli dis-

tributed random variable decides whether it is an individual Exp
(

c2T η1
c2T−c1 c2

)
-distributed

jump or a common jump with distribution given by F . The probability for an individ-

ual jump is the ratio of the intensities of I(1) and Z(1), namely (cT−c2)2

c2T−c1 c2
. The convex

combination of the distribution function turns out to be an Exp(η1)-distribution func-

tion.

All statements in Remark 3.17 with respect to the process C(1,{2})
t are also valid for

the process C(2,{1})
t with slightly changed parameters. Theorem 3.16 tells us how the

marginal distributions of the decomposed processes look like. To characterize a two-

dimensional CPPExp completely, we have to investigate the copula of the jump size

distribution of C(1,{2}) and C(2,{1}). Theoretically, the copula can be obtained from

the joint distribution function of C(1,{2}) and C(2,{1}), which can be calculated by

means of Theorem 3.13. Unfortunately, there is not a closed form expression for the

joint distribution of the jump sizes. It can only be expressed by an in�nite sum, what

makes a further investigation of the copula meaningless. Nevertheless, it is possible to

compute the correlation of the jump sizes which does not characterize the dependence

but provides a useful measure of association.

Theorem 3.18 (Correlation between joint jump sizes)

Let the processes C(1,{2}) and C(2,{1}) with the parameters cT > c1, c2 > 0 be de�ned

as in Equation (3.23). De�ne a := min{c1, c2}
max{c1, c2} and κ := max{c1, c2}

cT
. Then

Corr
(
C(1,{2})
π , C(2,{1})

π

)
=

κ2 a
(
3− 2κ (1 + a) + κ2 a

)√
(f(κ, a) + κ (4− 3κ− 2 a κ+ a κ3)) (f(κ, a) + a κ (4− 3 a κ− 2κ+ a2 κ3))

,

with f(κ, a) :=
(
1− a κ2

)
(2− κ− a κ)2 and π := inf

{
t ≥ 0

∣∣C(1,{2})
t 6= 0

}
.
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3 Compound Poisson processes with exponentially distributed jumps

Proof

The covariance between C(1,{2})
t and C(2,{1})

t can be derived from the covariance be-

tween the jump size distributions of C(1,{2}) and C(2,{1}), for all t ≥ 0, due to the

same jump times. More precisely, let a two-dimensional compound Poisson process

Z̃ =
(
Z̃(1), Z̃(2)

)
=
∑Ñt

i=1 J̃i be given, where J̃1 =
(
J̃

(1)
1 , J̃

(2)
1

)
, J̃2 =

(
J̃

(1)
2 , J̃

(2)
2

)
, . . .

is a sequence of independent and identically distributed random variables. Then, con-

ditioning on Ñt yields

E
[
Z̃

(1)
t Z̃

(2)
t

]
=
∞∑
n=0

P
(
Ñt = n

)
E

 n∑
i=1

J̃
(1)
i

n∑
j=1

J̃
(2)
j


=
∞∑
n=0

P
(
Ñt = n

) n∑
i=1

n∑
j=1

E
[
J̃

(1)
i J̃

(2)
j

]
=

∞∑
n=0

P
(
Ñt = n

)(
nE

[
J̃

(1)
1 J̃

(2)
1

]
+
(
n2 − n

)
E
[
J̃

(1)
1

]
E
[
J̃

(2)
1

])
= E

[
Ñt

]
E
[
J̃

(1)
1 J̃

(2)
1

]
+ E

[
Ñ2
t − Ñt

]
E
[
J̃

(1)
1

]
E
[
J̃

(2)
1

]
= E

[
Ñt

]
E
[
J̃

(1)
1 J̃

(2)
1

]
+ E

[
Ñt

]2
E
[
J̃

(1)
1

]
E
[
J̃

(2)
1

]
= E

[
Ñt

]
E
[
J̃

(1)
1 J̃

(2)
1

]
+ E

[
Z̃

(1)
t

]
E
[
Z̃

(2)
t

]
,

where we used that E
[
Ñ2
t − Ñt

]
= E

[
Ñt

]2
, which holds for all Poisson processes (cf.

Theorem 2.6). Hence, we get

Cov
(
Z̃

(1)
t , Z̃

(2)
t

)
= E

[
Ñt

]
E
[
J̃

(1)
1 J̃

(2)
1

]
. (3.36)

In the proof of Theorem 3.16 we have seen two di�erent ways to represent the common

part C(1,{2}): on the one hand, a compound Poisson processes with intensity cT and

jump size distribution given by Equation (3.34), and on the other hand, a compound

Poisson processes with intensity c1 c2 (2 cT−c1−c2)
c2T−c1 c2

and jump size distribution given by

Equation (3.35). The same holds true for the process C(2,{1}) with slightly changed

parameters. Hence, Equation (3.36) yields two possible ways to express the covariance

of C(1,{2})
t and C(2,{1})

t , namely

Cov
(
C

(1,{2})
t C

(2,{1})
t

)
= cT tE

[
1{E(2)

1 >0}E
(1)
1 1{E(1)

1 >0}E
(2)
1

]
= cT tE

[
E

(1)
1 E

(2)
1

]
,

and

Cov
(
C

(1,{2})
t C

(2,{1})
t

)
=
c1 c2 (2 cT − c1 − c2)

c2
T − c1 c2

tE
[
C(1,{2})
π C(2,{1})

π

]
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3.5 Linear jump decomposition

where π := inf
{
t ≥ 0

∣∣C(1,{2})
t 6= 0

}
. Therefore, by comparing these two expression,

we get

E
[
C(1,{2})
π C(2,{1})

π

]
=

c3
T − cT c1 c2

c1 c2 (2 cT − c1 − c2)
E
[
E

(1)
1 E

(2)
1

]
. (3.37)

By de�nition (cf. Equation (3.19)), E(1)
1 =

∑N
(1)
Tτ1

j=1 J
(1)
j and E(2)

1 =
∑N

(2)
Tτ1

j=1 J
(2)
j become

independent by conditioning on Tτ1 . Wald's formula (see Equation (3.3)) implies

E
[
E

(1)
1 E

(2)
1

]
=E

[
E
[
E

(1)
1

∣∣∣Tτ1] E [E(2)
1

∣∣∣Tτ1]]
=E

[
E
[
J

(1)
1

]
E
[
N

(1)
Tτ1

∣∣∣Tτ1] E [J (2)
1

]
E
[
N

(2)
Tτ1

∣∣∣Tτ1]] . (3.38)

Note that, J (1)
1 ∼ Exp( cT η1

cT−c1 ), J (2)
1 ∼ Exp( cT η2

cT−c2 ), Tτ1 ∼ Exp(1), and N (1) and N (2)

are Poisson processes with intensities c1
cT−c1 , respectively

c2
cT−c2 . All quantities appear-

ing in Equation (3.38) are therefore known and stated in Chapter 1. Hence

E
[
E

(1)
1 E

(2)
1

]
=E

[
cT − c1

cT η1

c1

cT − c1
Tτ1

cT − c2

cT η2

c2

cT − c2
Tτ1

]
=

c1 c2

c2
T η1 η2

E
[
T 2
τ1

]
=

2 c1 c2

c2
T η1 η2

. (3.39)

Plugging in Equation (3.39) in Equation (3.37) yields

E
[
C(1,{2})
π C(2,{1})

π

]
=

c3
T − cT c1 c2

c1 c2 (2 cT − c1 − c2)

2 c1 c2

c2
T η1 η2

=
2(c2

T − c1 c2)

(2 cT − c1 − c2) cT η1 η2
.

(3.40)

Due to the fact that the density of C(1,{2})
π is a linear combination of exponential

densities (see Remark 3.17), the expectation and the variance of C(1,{2})
π is easy to

compute. Thus, by de�ning p :=
c2T−c1 c2

c2(2 cT−c1−c2) , we get

E
[
C(1,{2})
π

]
= p

1

η1
+ (1− p)

c2
T − c1 c2

c2
T η1

=
c2
T − (1− p) c1 c2

c2
T η1

=
c2
T − (1− p) c1 c2

c2
T η1

,

(3.41)

and

E
[(
C(1,{2})
π

)2
]

= p
2

η2
1

+ (1− p)
2
(
c2
T − c1 c2

)2
c4
T η

2
1

=
2 p c4

T + 2 (1− p)
(
c4
T − 2 c2

T c1 c2 + c2
1 c

2
2

)
c4
T η

2
1
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=
2 c4

T + 2 (1− p) c1 c2

(
−2 c2

T + c1 c2

)
c4
T η

2
1

,

and therefore,

Var
[
C(1,{2})
π

]
= E

[(
C(1,{2})
π

)2
]
− E

[
C(1,{2})
π

]2

=
2 c4

T + 2 (1− p) c1 c2

(
−2 c2

T + c1 c2

)
c4
T η

2
1

−
(
c2
T − (1− p) c1 c2

c2
T η1

)2

=
c4
T − 2 (1− p) c2

T c1 c2 +
(

2− 2p− (1− p)2
)
c2

1 c
2
2

c4
T η

2
1

=
c4
T − 2 (1− p) c2

T c1 c2 +
(
1− p2

)
c2

1 c
2
2

c4
T η

2
1

=
c4
T − 2 c2

T c1 c2 + c2
1 c

2
2 + 2 p c2

T c1 c2 − p2 c2
1 c

2
2

c4
T η

2
1

=

(
c2
T − c1 c2

)2
c4
T η

2
1

+
2 c2

T c1 c
2
2

(
c2
T − c1 c2

)
(2 cT − c1 − c2)−

(
c2
T − c1 c2

)2
c2

1 c
2
2

c4
T η

2
1 c

2
2 (2 cT − c1 − c2)2

=

(
c2
T − c1 c2

)2
c4
T η

2
1

+
c1

(
c2
T − c1 c2

) (
2 c2

T (2 cT − c1 − c2)−
(
c2
T − c1 c2

)
c1

)
c4
T η

2
1 (2 cT − c1 − c2)2

=

(
c2
T − c1 c2

)2
c4
T η

2
1

+
c1

(
c2
T − c1 c2

) (
4 c3

T − 3 c2
T c1 − 2 c2

T c2 + c2
1 c2

)
c4
T η

2
1 (2 cT − c1 − c2)2

=

(
c2
T − c1 c2

)
A1

c4
T η

2
1 (2 cT − c1 − c2)2 , (3.42)

where A1 :=
(
c2
T − c1 c2

)
(2 cT − c1 − c2)2 + c1

(
4 c3

T − 3 c2
T c1 − 2 c2

T c2 + c2
1 c2

)
.

Analogously, we get

Var
[
C(2,{1})
π

]
=

(
c2
T − c1 c2

)
A2

c4
T η

2
2 (2 cT − c1 − c2)2 , (3.43)

where A2 :=
(
c2
T − c1 c2

)
(2 cT − c1 − c2)2 + c2

(
4 c3

T − 3 c2
T c2 − 2 c2

T c1 + c1 c
2
2

)
.

Moreover, by using the de�nition of p, Equation (3.41) boils down to

E
[
C(1,{2})
π

]
=
c2
T − (1− c2T−c1 c2

c2(2 cT−c1−c2)) c1 c2

c2
T η1

=
c2
T c2 (2 cT − c1 − c2)− (c2 (2 cT − c1 − c2)− c2

T + c1 c2) c1 c2

c2
T c2 (2 cT − c1 − c2) η1

=
c2
T (2 cT − c1 − c2) + (cT − c2)2 c1

c2
T (2 cT − c1 − c2) η1

. (3.44)
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3.5 Linear jump decomposition

Analogously, we get

E
[
C(2,{1})
π

]
=
c2
T (2 cT − c1 − c2) + (cT − c1)2 c2

c2
T (2 cT − c1 − c2) η2

. (3.45)

Now, the covariation of C(1,{2})
π and C

(2,{1})
π can be computed by putting together

Equations (3.40), (3.44) and (3.45).

Cov
(
C(1,{2})
π , C(2,{1})

π

)
=

2(c2
T − c1 c2)

(2 cT − c1 − c2) cT η1 η2

−
c2
T (2 cT − c1 − c2) + (cT − c2)2 c1

c2
T (2 cT − c1 − c2) η1

c2
T (2 cT − c1 − c2) + (cT − c1)2 c2

c2
T (2 cT − c1 − c2) η2

=
2(c2

T − c1 c2) (2 cT − c1 − c2) c3
T − (cT − c2)2 (cT − c1)2 c1 c2

c4
T (2 cT − c1 − c2)2 η1 η2

−
c2
T (2 cT − c1 − c2)

(
c2
T (2 cT − c1 − c2) + (cT − c2)2 c1 + (cT − c1)2 c2

)
c4
T (2 cT − c1 − c2)2 η1 η2

=
2(c2

T − c1 c2) (2 cT − c1 − c2) c3
T − (cT − c2)2 (cT − c1)2 c1 c2

c4
T (2 cT − c1 − c2)2 η1 η2

−
c2
T (2 cT − c1 − c2)

(
2 c3

T − 4 cT c1 c2 + c1 c2 (c1 + c2)
)

c4
T (2 cT − c1 − c2)2 η1 η2

=
c2
T (2 cT − c1 − c2) (2 cT c1 c2 − c1 c2 (c1 + c2))− (cT − c2)2 (cT − c1)2 c1 c2

c4
T (2 cT − c1 − c2)2 η1 η2

=
c1 c2

(
c2
T (2 cT − c1 − c2)2 − (cT − c2)2 (cT − c1)2

)
c4
T (2 cT − c1 − c2)2 η1 η2

=
c1 c2

(
c2
T − c1 c2

) (
3 c2

T − 2 cT (c1 + c2) + c1 c2

)
c4
T (2 cT − c1 − c2)2 η1 η2

(3.46)

The correlation can be calculated using Equations (3.42), (3.43), and (3.46), namely

Corr
(
C(1,{2})
π , C(2,{1})

π

)
=

Cov
(
C

(1,{2})
π , C

(2,{1})
π

)
√

Var
[
C

(1,{2})
π

]
Var

[
C

(2,{1})
π

]
=
c1 c2

(
3 c2

T − 2 cT (c1 + c2) + c1 c2

)
√
A1A2
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3 Compound Poisson processes with exponentially distributed jumps

Finally, using the transformations a = min{c1, c2}
max{c1, c2} and κ = max{c1, c2}

cT
yields

Corr
(
C(1,{2})
π , C(2,{1})

π

)
=
c1 c2

(
3 c2

T − 2 cT (c1 + c2) + c1 c2

)
√
A1A2

=
c4
T κ

2 a
(
3− 2κ (1 + a) + κ2 a

)
√
A1A2

,

and by de�ning f(κ, a) :=
(
1− a κ2

)
(2− κ− a κ)2, we have

A1A2

=c8
T

(
f(κ, a) + κ

(
4− 3κ− 2 a κ+ a κ3

)) (
f(κ, a) + a κ

(
4− 3 a κ− 2κ+ a2 κ3

))
.

Hence,

Corr
(
C(1,{2})
π , C(2,{1})

π

)
=

κ2 a
(
3− 2κ (1 + a) + κ2 a

)√
(f(κ, a) + κ (4− 3κ− 2 a κ+ a κ3)) (f(κ, a) + a κ (4− 3 a κ− 2κ+ a2 κ3))

,

which concludes the proof. �

The correlation function in Theorem 3.18 seems a bit cumbersome on �rst sight. There-

fore, we have a look at the limiting cases of the parameters a and κ to get a better

intuition about the formula. Note �rst, that the correlation does not dependent on

the actual choice of the jump size parameters η1 and η2. Indeed, it only depends on

the ratio of the time change intensity and the larger of the two marginal intensity (κ)

and the ratio of the two marginal intensities (a).

Remark 3.19 (On the correlation between joint jump sizes)

The limit behavior of the correlation function in Theorem 3.18 is given by the following

expressions:

(i) Cases with vanishing correlation,

lim
κ↘0

Corr
(
C(1,{2})
π , C(2,{1})

π

)
= 0, lim

a↘0
Corr

(
C(1,{2})
π , C(2,{1})

π

)
= 0.

(ii) Maximal correlation for �xed marginal intensities c1 and c2,

lim
κ↗1

Corr
(
C(1,{2})
π , C(2,{1})

π

)
=

a (1− a)√
((1− a)3 + (1− a)) ((1− a)3 + a (2− 3 a+ a2))
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3.5 Linear jump decomposition

=
a√

((1− a)2 + 1) ((1− a)2 + a (2− a))

=
a√

2− 2 a+ a2
=

a√
1− (1− a)2

.

(iii) Correlation, if c1 = c2,

lim
a↗1

Corr
(
C(1,{2})
π , C(2,{1})

π

)
=

κ2
(
3− 4κ+ κ2

)
(1− κ2) (2− 2κ)2 + κ (4− 5κ+ κ3)

=
κ2 (3− κ)

4 (1− κ2) (1− κ) + κ (4− κ− κ2)

=
κ2 (3− κ)

4− 5κ2 + 3κ3
.

(iv) Maximal correlation is obtained by lim
κ↗1

lim
a↗1

Corr
(
C

(1,{2})
π , C

(2,{1})
π

)
= 1.

Figure 3.2 illustrates this correlation coe�cient. To obtain a signi�cant jump size

correlation at common jump times, cT , c1, c2 must be of similar size.
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Figure 3.2 Correlation coe�cient of the jump sizes at common jump times as a func-

tion of a and κ.
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3 Compound Poisson processes with exponentially distributed jumps

3.6 Application: Dependent jump modeling

The time-change construction of dependent CPPExp, which we presented and thor-

oughly investigated in this chapter has some striking features making it a useful tool

in �nancial engineering. In this section, we motivate some possible applications in the

area of dependent jump modeling in derivative pricing and we give links to the follow-

ing topics of this thesis. First of all, note that a time-changed CPPExp can easily be

simulated due to its simple construction principle. An e�cient algorithm to simulate

paths of d-dimensional time-changed CPPExp is essential, e.g. for derivatives pricing

via Monte Carlo simulation. Therefore, the next algorithm shows how such paths can

be obtained.

Algorithm 3.20 (Path simulation of time-changed CPPExp)

Suppose the following parameters to be given: parameters for the univariate processes

Z(1), . . . , Z(d), i.e. c1, . . . , cd and η1, . . . , ηd, the dependence parameter κ, and the

maturity t∗ > 0.

(1) De�ne cT := 1
κ max1≤i≤d{ci} and simulate N ∼ Poi(cT t

∗).

(2) Draw N independent and Uniform[0, t∗]-distributed random variables and sort

them in ascending order, resulting in 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τN ≤ t∗.

(3) Draw N independent and Exp(1)-distributed random variables E1, . . . , EN .

(4) For each 1 ≤ i ≤ d do

For each 1 ≤ j ≤ N do

(a) Draw a Poi
(
Ej

ci
cT−ci

)
-distributed random variables M (i)

j .

(b) Draw an Erlang
(
M

(i)
j , cT ηi

cT−ci

)
-distributed random variable J (i)

j .

(c) Compute Z(i)
j =

∑j
k=1 J

(i)
k .

(5) Return (τ1, . . . , τN ) and
(
Z(1), . . . , Z(d)

)
, with Z(i) :=

(
Z

(i)
1 , . . . , Z

(i)
N

)
for all

1 ≤ i ≤ d.

Let us have a closer look at the algorithm. The random variable N represents the

number of jumps of the subordinator T until time t∗. The points in time τ1 ≤ τ2 ≤
· · · ≤ τN serve as the jump times of T and, moreover, as possible jump times of
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3.6 Application: Dependent jump modeling

Z(1), . . . , Z(d). An alternative, and maybe more natural, way to simulate those jump

times can be achieved by adding up exponentially distributed random variables until

the sum reaches t∗ (cf. the construction of Poisson processes in Theorem 2.13). Here,

we used that the conditional distribution of the jump times of a Poisson process given

the number of jumps N in [0, t∗] coincides with the distribution of the order statistics

of N samples obtained from a uniform distribution on [0, t∗].5 In situations with high

expected numbers of jumps of the process T , the classical method becomes faster,

because the ordering in Step (2) gets time-consuming, and the classical drawing of

jump times is the method of choice. However, for small numbers of N the presented

method is more e�cient, which will be the case in our practical examples throughout

the thesis. The random variable Ej yields the jump size of T at the j-th jump time. In

step (4), we use them to determine the parameter of the Erlang distribution, which then

gives the actual jump sizes of our resulting processes. Actually, the return variables

Z
(i)
1 , . . . , Z

(i)
N represent the i-th component of the time-change CPPExp at the possible

jump times τ1, . . . , τN .

Besides the easy-to-simulate setup, another nice property of our construction is that

only one parameter, namely κ, su�ces to model a quite �exible dependence structure.

Note that, for example, individual jumps of only one component, joint jumps of all

components, and also joint jumps of an arbitrary subset of marginal processes can

be generated by a time-changed CPPExp. Furthermore, the jump magnitudes are

dependent. Given that we only use one dependence parameter, there are situations

where the construction reaches its limits. For example, imagine the following situation.

Assume, a time-changed CPPExp be given, whose components can be separated into

two sets. One set consisting of one-dimensional processes having huge intensities ch > 0

and the other set having small intensities cs, ch � cs > 0. Then, by the results of

Section 3.3 the components with small intensities behave like independent processes

and our construction principle can not explain much dependence between them. In

particular, e.g. from Theorem 3.9, we know, that the correlation between two processes

with intensity ch equals κ and can therefore take all values in (0, 1). The correlation

between a process with huge intensity ch and one with a small one cs is given by κ
√

cs
ch
,

which is very small even for κ↗ 1. That is still �ne, since these two processes behave

very diverse by de�nition. The problem arises for two processes with small intensity.

Then, the correlation vanishes. Similar deductions can be made by using the pragmatic

jump decomposition in Section 3.5. Therefore, the construction by subordination as

5see, for example, [Sato, 1999, Proposition 3.4] for a reference
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3 Compound Poisson processes with exponentially distributed jumps

presented in the previous sections might not be suited in some situations, which is not

surprising, since the dependence structure is driven by one parameter only, even in high

dimensions. To �x the problem, one could come up with two separate subordinations,

i.e. in the above mentioned setup, each set of similar processes are subordinated with

an individual CPPExp. The two time-change processes can be dependent as well. On

the one hand, such a construction solves the issue, on the other hand, we end up with

at least two dependence parameter. Hence, it is a trade-o� between �exibility and

complexity. All in all, if the intensities are of same order, the dependence structure

implied by our construction is quite �exible and we found a handy tool for modeling

dependent jump processes. In the following, we give an overview of some possible

applications.

A time-changed CPPExp can be applied to model dependence for pricing derivatives

and serves as a useful tool in all three situations presented in Chapter 1. Actually, the

construction is helpful if two or more processes of �nancial terms have to be modeled

dependently, whereas the marginal processes are driven by at least one CPPExp. Exam-

ples for such processes are asset prices, volatilities, interest rates, exchange rates, and

(cumulative) hazard rates. First, in Chapter 4 we model dependence between stock

prices and their volatility processes, ending up with a generalization of the popular

Γ-OU-BNS model. Here, both, the log prices and the volatility is driven by a CPPExp.

We will use a two-dimensional time-changed CPPExp as stochastic driver. This extends

the parameter space by one parameter modeling the dependence between log-price and

volatility, which will be the jump dependence parameter κ of the time change construc-

tion. A striking advantage of introducing dependence among the jumps in this manner

is that the time-changed processes remain in the class of compound Poisson processes

with exponential jump heights, which ensures that the marginal processes maintain a

tractable structure. A useful property of the Γ-OU-BNS model is its closed form solu-

tion of the characteristic function of the log prices, which is essential for a fast model

calibration by means of Fourier pricing methods. Our construction by subordination

preserves this desirable feature, i.e. there exists also an analytic expression for the

characteristic function of the log price in the generalized model. Secondly, Chapter 5

presents multivariate jump di�usion models. Time-changed CPPExp are used to intro-

duce dependence between two or more processes of the same kind, building tractable

multivariate models. We show multi-dimensional versions of the Γ-OU-BNS-model,

the Kou-model (cf. Kou [2002]), and a two-sided extension of the BNS-model. The

multivariate models are constructed via a bottom-up approach, which means we start
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3.6 Application: Dependent jump modeling

with several one-dimensional models and link them by adding dependence in a second

step. This is a striking feature when it comes to calibration. Since the subordination

construction ensures that the resulting process stays in the same class of CPPExp,

the univariate log-price processes of the extended models still follow the classical one-

dimensional model of that kind and the parameters of the univariate processes may

be calibrated separately to univariate derivative prices. The dependence parameters

can be calibrated separately afterwards without altering the already �xed marginal

distributions. This simpli�es the model calibration and is a convenient feature for

practical purposes, because it automatically ensures that univariate derivative prices

are �tted to the multivariate model. Furthermore, it keeps the number of parameters

which cannot be caught from vanilla option price data limited. Thirdly, time-changed

CPPExp could be useful as well for modeling wrong way risk in credit valuation ad-

justment by combining credit risk modeling via hazard rates driven by a CPPExp and

asset price modeling. From a mathematical perspective such an credit-equity ansatz

is quite similar to the methods presented in Chapters 4 and 5. Therefore, we attack

the problem of calculating wrong way risk from a di�erent angle, namely a model-free

ansatz in Chapter 6.
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4 Decoupling of volatility jumps and

asset jumps in the BNS model

For derivatives valuation, the Black�Scholes model, presented in the seminal papers

Samuelson [1965] and Black and Scholes [1973], generated a wave of stochastic mod-

els for the description of stock-prices. Since the assumptions of the Black�Scholes

model (normally distributed log-returns, independent returns) cannot be observed in

neither time series of stock-prices nor option markets (implicitly expressed in terms

of the volatility surface), several alternative models have been developed trying to

overcome these assumptions. One approach to extend the Black�Scholes model is the

incorporation of jumps into the asset price process, inspired by market shocks caus-

ing the asset price to jump. These jumps are driven by Lévy processes, e.g. Merton

[1976]; Kou [2002] use a compound Poisson process as jump driver, Madan and Sen-

ata [1990] a Variance Gamma process, or Barndor�-Nielsen [1997] a normal inverse

Gaussian process. Another generalization is achieved by substituting the constant

Black�Scholes volatility by a stochastic process, leading to di�usion-style stochastic

volatility models as in, e.g., Stein and Stein [1991]; Heston [1993], also enhanced by

independent jumps in the asset price process by Bates [1996]; Du�e et al. [2000]. An-

other approach combining stochastic volatility and jumps in both volatility and asset

price process is available with the Barndor�-Nielsen�Shephard (BNS) model class, pre-

sented in Barndor�-Nielsen and Shephard [2001] and extended in several papers (e.g.

Nicolato and Venardos [2003]).

In this chapter, which is based on our published article Hofmann and Schulz [2016], we

present an extension of the BNS model class, mitigating the strong link between asset

price jumps and jumps in volatility. Before presenting this generalization in Section 4.2,

we give a short introduction to the BNS model class and present one popular member

of that class, the so-called Γ-OU-BNS model in Section 4.1. The model is tractable in

the sense that the characteristic function of the log-price can be expressed in closed

form. This ensures quick and convenient valuation of plain vanilla derivatives (e.g.
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4 Decoupling of volatility jumps and asset jumps in the BNS model

for calibration purposes) because Fourier pricing methods like FFT pricing (e.g. Carr

and Madan [1999]; Raible [2000]) or the COS method described in Fang and Osterlee

[2008] can e�ciently be used. The construction of a time-changed CPPExp, which

was discussed in Chapter 3, is applied in Section 4.3 to build a generalization of the

Γ-OU-BNS model, which we call weak-link Γ-OU-BNS model. As usual, we conclude

the chapter by an application in Section 4.4. Particularly, we investigate the model

dynamics of the weak-link Γ-OU-BNS model and employ a calibration exercise.

4.1 Fundamentals: The Barndor�-Nielsen�Shephard

model class

In the seminal paper Barndor�-Nielsen and Shephard [2001], a tractable stochastic

volatility model class was presented. The variance process σ2 = {σ2
t }t≥0 in the BNS

model class is given by a non-Gaussian Ornstein�Uhlenbeck (OU) process, driven by a

Lévy subordinator. Furthermore, the same Lévy subordinator adds jumps to the asset

price process S = {St}t≥0, linking jumps in volatility and jumps in the asset price.

Indeed, the dynamics of the log-price X = {Xt}t≥0 := {log(St)}t≥0 and the volatility

are governed by the SDEs

dXt =
(
µ+ β σ2

t

)
dt+ σt dWt + ρ dZt, (4.1)

dσ2
t = −λσ2

t dt+ dZt, (4.2)

where W = {Wt}t≥0 is a Brownian motion, Z = {Zt}t≥0 a Lévy subordinator (in-

dependent of W ), ρ ≤ 0, σ2
0, λ > 0 and the drift coe�cients µ, β are given by the

martingale drift condition.1 Since the so-called leverage parameter ρ is negative, up-

ward jumps in the volatility are always accompanied by downward jumps in the asset

price process, which accounts for modeling the leverage e�ect, a well documented sta-

tistical observation. A solution to Equation (4.2) is given by the OU-process

σ2
t = e−λ t σ2

0 + e−λt
∫ t

0
eλs dZs, (4.3)

1In many formulations of BNS-type models, an additional time change t 7→ λt is employed to the

process (Zt)t≥0, which is mainly for mathematical reasons. From a modeling point of view, the

formulation without time change is equivalent.
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which can be shown by using the product rule of Itô calculus applied to d(eλ t σ2
t ),

plugging in the SDE (4.2), and integrating from 0 to t. Particularly,

d
(
eλ t σ2

t

)
= eλ t dσ2

t + λ eλ t σ2
t dt = eλ t dZt

⇔ eλ t σ2
t − σ2

0 =

t∫
0

eλ s dZs ⇔ σ2
t = e−λ t σ2

0 + e−λt
∫ t

0
eλs dZs

Thus, the squared volatility process σ2 increases by jumps and declines exponentially

between any two consecutive jumps. The rate of decay is set by the slow-down param-

eter λ > 0. Figure 4.1 illustrates the joint behavior of the asset price process and the

volatility process.

One of the most popular choices for the Lévy driver is a CPPExp, resulting in the

Γ-OU-BNS model.

De�nition 4.1 (Γ-OU-BNS model)

Assume the price dynamic follows the SDEs in Equations (4.1) and (4.2) with {Zt}t≥0

being a CPPExp(c, η). Due to the exponential jump sizes, the stationary distribution

of σ2 follows a Gamma law (cf. Barndor�-Nielsen and Shephard [2001]). Thus, we call

the variance process (σ2
t )t≥0 a Γ-Ornstein�Uhlenbeck process and the BNS model with

Lévy driver Z a Γ-OU-BNS model.

Under a risk-neutral martingale measure, the drift components of the Γ-OU-BNS model

have to satisfy

µ = r − cρ

η − ρ
, β = −1

2
, (4.4)

where r denotes the constant risk-free interest rate. For more details on the choice of

the risk neutral measure2 within this model setup, we refer to Nicolato and Venardos

[2003]. A striking feature of this model is the existence of a closed-form expression for

the characteristic function of the log-price process X, as stated in the next theorem.

Besides the Γ-OU-BNS model there is only one other model speci�cation known with

2Heuristically, the risk neutral measure is a probability measure such that the asset price coincides

with the discounted expectation of the future asset price under this measure. A rigorous mathe-

matical de�nition can be found in standard textbooks on �nancial derivative pricing, like Shreve

[2004].
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Figure 4.1 The above graph shows the asset price process S, the middle graph shows

the volatility process σ, and the graph below the daily log-returns ∆X.

A negative jump in the asset value process appears with a simultaneous

increase in the volatility, which is a quite realistic stylized fact and can

be seen as a market shock. Right after such a shock there is a great

nervousness and thus a high volatility. As time goes by the volatility

calms down until the next jump occurs. This volatility clustering can be

detected in the last graph.

the property of a closed-form characteristic function, namely the so-called IG-OU-BNS

model, where the stationary distribution of the variance process is inverse Gaussian

(cf. Barndor�-Nielsen et al. [2002]).
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4.2 The BNS model with decoupled jumps

Theorem 4.2 (Characteristic function in the Γ-OU-BNS model)

Let S = {St}t≥0 follow a Γ-OU-BNS model, then the characteristic function of Xt =

log(St) is given by

E
[
eiuXt

]
= exp

(
iu (X0 + µ t)− g h σ2

0 +
c

η − f2

(
η

λ
log

η − f1

η − iu ρ
+ f2 t

))
,

with

g :=
u2 − 2β iu

2
, h :=

1− exp(−λ t)
λ

, f1 := iu ρ− g h, f2 := iu ρ− g

λ
.

Proof

See Nicolato and Venardos [2003]. �

4.2 The BNS model with decoupled jumps

The BNS model, as described in the previous section, incorporates the leverage e�ect

in a rather restrictive manner: Every jump in the volatility process is accompanied

by a jump in the stock price and vice versa. Obviously, this strong link can seriously

be doubted. On the one hand, a sudden jump in the stock price may trigger several

limit and stop orders. Hence, from an economic perspective, it makes sense that rising

volatility can be a side e�ect of asset prices jumps. On the other hand, suddenly

changing volatility can have manifold reasons; some reasons are presented in, e.g.,

Shiller [1988]. Furthermore, performing a statistical analysis, Jacod and Todorov [2010]

scrutinize the jump behavior of the S&P 500 and its volatility process and obtain

strong evidence for the existence of separate and joint jumps in both the asset price

and its volatility. Thus, a model establishing di�erent levels of dependence between

asset price jumps and volatility jumps could provide a more realistic behavior of the

stylized facts of asset price dynamics than the classical BNS model. In this section,

we mitigate the strong link between asset price jumps and jumps in the volatility and

present the BNS model with decoupled jumps, which incorporates a stochastic variance

process following a Lévy-subordinator-driven Ornstein-Uhlenbeck process, Lévy jumps

in the log-price process, and �exible dependence between log-price process jumps and

volatility process jumps.
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4 Decoupling of volatility jumps and asset jumps in the BNS model

De�nition 4.3 (BNS model with decoupled jumps)

We say that a positive asset price process S = (St)t≥0 follows a BNS model with

decoupled jumps, if the log-price process X = {Xt}t≥0 = {logSt}t≥0 has the dynamics

dXt = (µ+ β σ2
t ) dt+ σt dWt + dYt, (4.5)

dσ2
t = −λσ2

t dt+ dZt, (4.6)

where W = {Wt}t≥0 is a Brownian motion, (Y,Z) = {(Yt, Zt)}t≥0 is a 2-dimensional

pure jump Lévy process, i.e. the process has no Brownian component. Furthermore, Z

is a subordinator, µ, β ∈ R, and σ2
0, λ > 0, and we require that Y and Z are mutually

independent of the Brownian motion W .

The main di�erence between the classical BNS model and the BNS model with de-

coupled jumps lies, as the name says, in the (weaker, and more �exible) relation-

ship between volatility and asset jumps: In the classical BNS model, every (upward)

volatility jump is accompanied by a downward jump in the asset price process, while

the parameter ρ steers the magnitude of the asset price process jump. Conversely,

in the decoupled model, this one-to-one relationship does not hold anymore: Similar

to the development of the Cox�Ingersoll�Ross-type stochastic volatility models from

Heston [1993] over Bates [1996] to Du�e et al. [2000], the dependence of volatility

and asset prices becomes more sophisticated, since we only assume to have some de-

pendence structure preserving the two-dimensional Lévy structure of Y and Z. Some

suggestions how to construct dependent Lévy processes are elaborated in Deelstra and

Petkovic [2010], which we already discussed in Chapter 3 for the case of compound

Poisson processes. We start with stating one special subclass, which is constructed by

linear dependence.

Example 4.4 (General linear dependence BNS model)

Let Z = (Z1
t , . . . , Z

n
t )t≥0 be an n-dimensional Lévy subordinator with independent

coordinate processes and let ρ ∈ Rn. Furthermore, let ξ ∈ {0, 1}n with at least one

ξj = 1, j = 1, . . . , n. Then the model following the dynamics

dXt = (µ+ βσ2
t ) dt+ σt dWt + ρ′dZt,

dσ2
t = −λσ2

t dt+ ξ′dZt,

is called the general linear dependence BNS model.
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4.2 The BNS model with decoupled jumps

Choosing n = 1, ξ = 1, and ρ = (ρ) with ρ ≤ 0, the linear dependence model

boils down to the �classical� BNS model. Choosing n = 2, ξ = (1, 1)′, and ρ =

(ρ−, ρ+) with ρ− ≤ 0 ≤ ρ+, the linear dependence model reduces to the two-sided BNS

model of Bannör and Scherer [2013], which we introduce in more detail in Section 5.1.

Furthermore, the construction principle in the model described in De�nition 4.3 is

very �exible and easily extends several models existing in the literature as, e.g., OU-

stochastic volatility versions of jump-di�usion models described in Merton [1976] or

Kou [2002].

Besides the linear construction, dependent Lévy processes can also be constructed by

a joint time change. When introducing dependence by joint time change between

independent Lévy processes, the link between the jumps in the volatility and asset

price process becomes weaker and more blurry. Joint time change of two independent

Lévy processes causes the probability of joint jumps to rise due to �common clocking�,

but does not necessarily imply simultaneous jumps (as discussed above). In this setup,

time change is not employed to model some kind of business time (as, e.g., in Luciano

and Schoutens [2006]), but the time change construction is solely used as a technical

aid to establish a weak type of dependence between the Lévy processes, causing both

joint and separate jumps to occur in a stochastic manner.

As described in Deelstra and Petkovic [2010], a third possibility to construct depen-

dent Lévy processes can be obtained by linking the respective Lévy measures by Lévy

copulas, which was promoted by Tankov [2004] and Kallsen and Tankov [2006]. Analo-

gously to linking marginal distributions by a copula (as described in Nelsen [2006]), one

may link univariate, independent Lévy measures by a Lévy copula. Lévy copulas are

functions ful�lling some regularity conditions linking the tail integrals w.r.t. the Lévy

measures. Sklar's theorem for Lévy copulas (cf. [Kallsen and Tankov, 2006, Theorem

3.6]) states that this construction principle is a universal one, i.e. every dependence

structure in multidimensional Lévy processes can be constructed from independent

Lévy processes, linked by some suitable Lévy copula. From a purely mathematics

point of view, the universal concept of Lévy copulas makes the above mentioned con-

structions redundant. But for pricing purposes, a closed-form characteristic function

of (integrated) variance and asset price process is typically helpful. Furthermore,

a tractable simulation scheme for Monte Carlo simulation is essential. With linear

combination and joint time change of independent Lévy processes, the characteristic

function of the factors can be calculated at least in a semi-closed form and a simulation

scheme is immediately provided, while linking independent Lévy processes with Lévy
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4 Decoupling of volatility jumps and asset jumps in the BNS model

copulas typically exhibits di�culties concerning these issues. Therefore, our focus is

on linear combination and on time change constructions.

The next theorem derives the �nite-dimensional distribution of the log-price process

in the BNS model with decoupled jumps, which is done by calculating the joint char-

acteristic function of the log-price process at �nitely many points in time. As an

immediate corollary we get a semi-closed form solution for the characteristic function

of log-prices. In some cases, the characteristic function boils down further admitting

a closed form solution, which is essential for fast option pricing via Fourier methods.

One speci�cation with closed form characteristic function is the so-called weak-link

Γ-OU-BNS model, which we de�ne in the next section. Theorem 4.5 is also used to

deduce convergence results for that model.

Theorem 4.5 (Finite-dimensional distribution of the log-price process)

Let the logarithmic price process {Xt}t≥0 follow Equation (4.5) and denote by ψ(Y, Z)

the characteristic exponent of the two-dimensional process (Y, Z). Assume, that ψ(Y, Z)

is analytic on C :=
{
z = (z1, . . . , zd) ∈ Cd : Im(zi) ≥ 0, ∀ 1 ≤ i ≤ d

}
. Set n ∈ N,

0 = t0 ≤ t1 < · · · < tn, and u1, . . . , un ∈ R. De�ne for all 1 ≤ j ≤ n,

ũj :=
n∑
k=j

uk, ε(s, t) := 1− eλ (s−t), f(u) :=
1

λ

(
iuβ − u2

2

)

aj(t) := −i f(ũj) ε(t, tj)− i

n∑
k=j+1

f(ũk) ε(tk−1, tk) e
λ (t−tk−1) .

Assume, ∀1 ≤ j ≤ n, there exists an M > 0, such that Re
(
ψ(Y, Z) (ũj , aj(t))

)
< M ,

∀tj−1 ≤ t ≤ tj . Then,

E

exp

 n∑
j=1

iuj Xtj

 = exp

i ũ1Xt0 +

n∑
j=1

 tj∫
tj−1

ψ(Y, Z) (ũj , aj(s)) ds+Aj


 ,

where Aj := f (ũj) ε (tj−1, tj) e
−λ tj−1 σ2

0 + iµ ũj (tj − tj−1).

Proof

For the proof we adapt the calculation of the characteristic function of the classical

BNS model, cf. Nicolato and Venardos [2003]. Using Equation (4.5) yields

E

exp

 n∑
j=1

iuj Xtj


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4.2 The BNS model with decoupled jumps

=E

exp

i ũ1Xt0 +
n∑
j=1

i ũj
(
Xtj −Xtj−1

)
=E

exp

i ũ1Xt0 +
n∑
j=1

i ũj

 tj∫
tj−1

(
µ+ β σ2

t

)
dt+

tj∫
tj−1

σt dWt + Ytj − Ytj−1





=E

exp

 n∑
j=1

i ũj

 tj∫
tj−1

β σ2
t dt+

tj∫
tj−1

σt dWt + Ytj − Ytj−1



 (4.7)

× exp

i ũ1Xt0 + iµ
n∑
j=1

ũj (tj − tj−1)

 .

By conditioning on the trajectory of Z, the squared volatility σ2 becomes determin-

istic and
∫ tj
tj−1

σt dWt becomes independent of the process Y . Moreover, we know

from the theory of stochastic integration with respect to Brownian motion, that∫ tj
tj−1

σt dWt follows a normal distribution with zero mean and variance
∫ tj
tj−1

σ2
t dt.

Note that the characteristic function of a N (0, σ2)-distributed random variable is given

by ϕN (0,σ2)(u) = exp
(
−σ2 u2

2

)
, cf. Example 2.9. Hence,

E

[
exp

(
i ũj

∫ tj

tj−1

σt dWt

)∣∣∣∣∣Z
]

= exp

(
−1

2
ũ2
j

∫ tj

tj−1

σ2
t dt

)
. (4.8)

Therefore, by conditioning on the trajectories of Z, we get

E

exp

 n∑
j=1

i ũj

 tj∫
tj−1

β σ2
t dt+

tj∫
tj−1

σt dWt + Ytj − Ytj−1





=E

exp

 n∑
j=1

(
iβ ũj −

1

2
ũ2
j

) tj∫
tj−1

σ2
t dt+

n∑
j=1

iũj
(
Ytj − Ytj−1

)
 . (4.9)

Note, that by the de�nition of the squared volatility process in Equation (4.6), we get

for all 1 ≤ j ≤ n,

dσ2
t = −λσ2

t dt+ dZt

⇔ σ2
tj − σ

2
tj−1

= −
tj−1∫
tj

λσ2
t dt+ Ztj − Ztj−1
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4 Decoupling of volatility jumps and asset jumps in the BNS model

⇔
tj−1∫
tj

σ2
t dt =

1

λ

(
−σ2

tj + σ2
tj−1

+ Ztj − Ztj−1

)

⇔
tj∫

tj−1

σ2
t dt =

e−λ tj−1 − e−λ tj
λ

σ2
0 +

tj−1∫
0

eλ s dZs

− e−λ tj

λ

tj∫
tj−1

eλ s dZs

+
1

λ

(
Ztj − Ztj−1

)
=
e−λ tj−1

(
1− eλ(tj−1−tj)

)
λ

σ2
0 +

tj−1∫
0

eλ s dZs


+

tj∫
tj−1

1− eλ (s−tj)

λ
dZs

=
e−λ tj−1 ε (tj−1, tj)

λ

σ2
0 +

tj−1∫
0

eλ s dZs

+

tj∫
tj−1

ε (s, tj)

λ
dZs,

where we used that σ2
t = e−λ t σ2

0 + e−λ t
∫ t

0 e
λ s dZs, cf. Equation (4.3). Hence,

n∑
j=1

(
iβ ũj −

1

2
ũ2
j

) tj∫
tj−1

σ2
t dt

=

n∑
j=1

f (ũj) ε (tj−1, tj) e
−λ tj−1 σ2

0 +

n∑
j=1

tj−1∫
0

f (ũj) ε (tj−1, tj) e
λ (s−tj−1) dZs (4.10)

+
n∑
j=1

tj∫
tj−1

f (ũj) ε (s, tj) dZs .

Rearranging of summands yields

n∑
j=1

tj−1∫
0

f(ũj) ε(tj−1, tj) e
λ (t−tj−1) dZt

=
n∑
j=1

j−1∑
k=1

tk∫
tk−1

f(ũj) ε(tj−1, tj) e
λ (t−tj−1) dZt

=
n−1∑
k=1

tk∫
tk−1

n∑
j=k+1

f(ũk) ε(tj−1, tj) e
λ (t−tj−1) dZt . (4.11)
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By combining Equations (4.9), (4.10), and (4.11), we obtain

E

exp

 n∑
j=1

i ũj

 tj∫
tj−1

β σ2
t dt+

tj∫
tj−1

σt dWt + Ytj − Ytj−1





=E

exp

n−1∑
k=1

tk∫
tk−1

n∑
j=k+1

f(ũk) ε(tj−1, tj) e
λ (t−tj−1) dZt +

n∑
j=1

iũj
(
Ytj − Ytj−1

)
tk∫

tk−1

+
n∑
j=1

tj∫
tj−1

f (ũj) ε (s, tj) dZs


 exp

 n∑
j=1

f (ũj) ε (tj−1, tj) e
−λ tj−1 σ2

0



=E

exp

 n∑
j=1

tj∫
tj−1

i aj(s) dZt +
n∑
j=1

iũj
(
Ytj − Ytj−1

)


× exp

 n∑
j=1

f (ũj) ε (tj−1, tj) e
−λ tj−1 σ2

0

 .

=
n∏
j=1

E

exp

 tj∫
tj−1

i aj(s) dZt + iũj
(
Ytj − Ytj−1

)


× exp

 n∑
j=1

f (ũj) ε (tj−1, tj) e
−λ tj−1 σ2

0

 ,

where the latter step follows from the fact that the 2-dimensional Lévy process (Y, Z)

has independent increments. Note, that the imaginary part of aj(t) is positive for all

1 ≤ j ≤ d and all t ∈ R+. Therefore, aj(t) ∈ C and the characteristic exponent ψ(Y, Z)

can by continued by Theorem 2.22. Hence, we can apply Theorem 2.26, which gives

E

exp

 n∑
j=1

i ũj

 tj∫
tj−1

β σ2
t dt+

tj∫
tj−1

σt dWt + Ytj − Ytj−1





=

n∏
j=1

exp

 tj∫
tj−1

ψ(Y, Z) (ũj , aj(s)) ds+ f (ũj) ε (tj−1, tj) e
−λ tj−1 σ2

0

 . (4.12)
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4 Decoupling of volatility jumps and asset jumps in the BNS model

Combining Equations (4.7) and (4.12), we get the �nal result,

E

exp

 n∑
j=1

iuj Xtj

 = exp

i ũ1Xt0 +
n∑
j=1

 tj∫
tj−1

ψ(Y, Z) (ũj , aj(s)) ds+Aj


 ,

where Aj := f (ũj) ε (tj−1, tj) e
−λ tj−1 σ2

0 + iµ ũj (tj − tj−1). �

Note that, if the characteristic exponent ψ(Y, Z) is given by the expression in Theo-

rem 2.19(ii), then ψ(Y, Z) is always analytic and one of the two assumptions in Theo-

rem 4.5 is ful�lled, cf. Remark 2.23. As an immediate corollary of Theorem 4.5, we

obtain a semi-closed form for the characteristic function of the logarithmic price.

Remark 4.6 (Characteristic function of the logarithmic price process)

Let the logarithmic price process (Xt)t≥0 follow Equation (4.5). With the assumptions

and abbreviations de�ned in Theorem 4.5, we have

ϕXt(u) = exp

iuX0 + iuµ t+ f(u) ε(0, t)σ2
0 +

t∫
0

ψ(Y, Z) (u, −i f(u) ε(s, t)) ds

 ,

(4.13)

denoting by ψ(Y, Z) the characteristic exponent of the two-dimensional Lévy process

(Y, Z).

It is crucial for practical purposes that the integral appearing in Equation (4.13) is

solvable. This depends on the choice of the two-dimensional Lévy process (Y, Z). In

case (Y, Z) is constructed by jointly time-changing two independent Lévy processes,

the joint characteristic exponent can easily be expressed as a function of the marginal

characteristic exponents. In particular, if the two-dimensional Lévy process (Y,Z) =

(Yt, Zt)t≥0 is constructed by jointly time-changing two independent Lévy processes

U = (Ut)t≥0, V = (Vt)t≥0, i.e. it exists a Lévy subordinator T = (Tt)t≥0 such that

Yt = UTt and Zt = VTt a.s. for all t > 0, then the joint characteristic function of (Yt, Zt)

can be calculated by conditioning on Tt and

E [exp (i (uUTt + v VTt))] =E [exp ((ψU (u) + ψV (v))Tt)]

= exp
(
t ψ̃T (ψU (u) + ψV (v))

)
,
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4.3 The weak-link Γ-OU-BNS model

where ψU , ψV are the corresponding characteristic exponents of U , V , and ψ̃T is the

Laplace exponent of T . A nice example, which falls into that construction principle

is the two-dimensional time-changed CPPExp. It even supports a closed-form solution

of that integral appearing in Equation (4.13). By using this process, the model boils

down to the weak-link Γ-OU-BNS model, which we introduce in the next section.

4.3 The weak-link Γ-OU-BNS model

A new model �tting in the model class is the weak-link Γ-OU-BNS model, which em-

ploys the time change dependence structure between CPPExp presented in Chapter 3.

For this model, we will see that the characteristic function of the log-prices can be

calculated in closed-form.

Example 4.7 (Weak-link Γ-OU-BNS model)

Let X = (Xt)t≥0 follow the dynamics

dXt = (µ+ βσ2
t ) dt+ σt dWt − dYt,

dσ2
t = −λσ2

t dt+ dZt,

with µ, β ∈ R, λ > 0, W = {Wt}t≥0 being a Brownian motion, and (Y, Z) =

{(Yt, Zt)}t≥0 being a time-changed CPPExp with intensities cY , cZ , jump size pa-

rameters ηY , ηZ , and dependence parameter κ, i.e. there exist independent compound

Poisson processes T = {Tt}t≥0, U = {Ut}t≥0, V = {Vt}t≥0 with respective intensities

cT ,
cY

cT−cY ,
cZ

cT−cZ ful�lling cY , cZ > 0, cT = 1
κ max{cY , cZ} and respective jump size

distributions Exp(1),Exp( cT ηY
cT−cY ),Exp( cT ηZ

cT−cZ ), ηY , ηZ > 0, such that Y and Z can

be represented as the T -time-change of the processes U and V , i.e. Yt := UTt and

Zt := VTt a.s. for all t ≥ 0.

Figure 4.2 shows simulated paths for the classical Γ-OU BNS model and the weak-link

Γ-OU-BNS model. The graphs in the upper row show typical asset price paths of the

two models. Corresponding to these paths, the graphs beneath exhibit the volatility

process and the daily log-returns. On the left side, the jump correlation parameter of

the weak-link Γ-OU-BNS model is set to be 80%, on the right side, this parameter is

20%. Thus, we have a strong dependence between the asset price jumps and jumps in

the volatility on the left side and a weak dependence on the right side. For the sake
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4 Decoupling of volatility jumps and asset jumps in the BNS model

of comparability, the Brownian motions and the asset jump processes of both models

coincide within one dependence con�guration. Therefore, the di�erence between the

two models is determined solely by the jumps in the volatility process. Moreover, the

compound Poisson processes driving the volatility are identically distributed. One can

easily see that the volatility jumps are uncoupled from the asset price jumps in the

weak-link Γ-OU-BNS model, i.e. there exist asset price jumps without simultaneous

volatility jumps and, on the other hand, there are volatility rises without negative asset

price jumps. The higher the jump dependence correlation parameter in the weak-link

Γ-OU-BNS model, the higher seems the resemblance to the classical BNS model. This

impression is con�rmed by a mathematical proof in Theorem 4.11.

For the weak-link Γ-OU-BNS model, we immediately obtain an explicit expression for

the joint Laplace exponent. Since the joint Laplace exponent of a two-dimensional

Lévy process (which appears in the expressions in Theorem 4.5 and Remark 4.6) may

be a cumbersome object, we calculate it for the special case of dependence arising from

joint time change. The corresponding calculations for dependence arising from linear

dependence are straightforward, therefore, we omit them here.

Remark 4.8 (Characteristic exponent for the weak-link Γ-OU-BNS model)

Let (−Y, Z) be the two dimensional jump process in a weak-link Γ-OU-BNS model,

i.e. (Y, Z) is a a two-dimensional time-changed CPPExp with intensities cY , cZ , jump

size parameter ηY , ηZ , and correlation parameter κ. Thus, the time change inten-

sity is given by cT = max{cY , cZ}. Then, the characteristic exponent of (−Y, Z)

can be expressed by the characteristic exponent of (Y, Z), which was calculated in

Theorem 3.7,

ψ(−Y, Z)(uY , uZ) = ψ(Y, Z)(−uY , uZ) =
− i cT cY uY
cT ηY +iuY (cT−cY ) + i cT cZ uZ

cT ηZ−iuZ (cT−cZ)

1 + i cY uY
cT ηY +iuY (cT−cY ) −

i cZ uZ
cT ηZ−iuZ (cT−cZ)

.

As we have seen in Remark 3.8, this expression is continuable on the set C :={
(uY , uZ) ∈ Cd : Im(uY ) ≤ 0, Im(uZ) ≥ 0

}
and its real part is negative.

Alternatively to the weak-link Γ-OU-BNS model, one could employ a weak-link also

by a one-sided time-change construction.
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Figure 4.2 Sample paths of the asset price process, the volatility process, and the

daily log-returns for the classical BNS model and the weak-link Γ-OU-

BNS model. Left: κ = 80%, right: κ = 20%.
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4 Decoupling of volatility jumps and asset jumps in the BNS model

Remark 4.9 (Char. exponent of a one-sided time-change construction)

If the two-dimensional Lévy process (Y,Z) = (Yt, UYt)t≥0 is constructed by two inde-

pendent processes Y and U with Y ∼ CPPExp(cY , ηY ) and U ∼ CPPExp(cU , ηU ), then

their joint Laplace exponent is given by

ψ(Y,Z)(uY , uZ) = log
(
E
[
eiuY Y1+iuZ UY1

])
= log

(
E
[
E
[
eiuY Y1

]
E
[
eiuZ UY1

∣∣Y1

]])
= ψ̃Y

(
iuY + ψ̃U (iuZ)

)
= ψ̃Y

(
iuY +

i cU uZ
ηU − iuZ

)

=
cY

(
iuY + i cU uZ

ηU−iuZ

)
ηY − iuY − i cU uZ

ηU−iuZ

= cY
iuY (ηU − iuZ) + i cU uZ

(ηY − iuY ) (ηU − iuZ)− i cU uZ
.

This construction is slightly simpler, but less �exible than the weak-link construction.

In particular, a one-sided time-change construction only allows for separate jumps in

one component, while the jumps in the other component always occur jointly. Later,

we show that a model resulting from such a time change construction can be obtained

as limit of the weak-link Γ-OU-BNS model (cf. Theorem 4.11).

Theorem 4.10 (Characteristic function of the weak-link Γ-OU-BNS model)

Let X = {Xt}t≥0 be the log-price process following a weak-link Γ-OU-BNS model (cf.

Example 4.7) and let u ∈ R+. Then the characteristic function of X can be calculated

in closed form and is given by

logϕXt(u) = iu (X0 + µ t) + f(u) ε(0, t)σ2
0 −

cT
λ
α(u) log (γ(u)) + cT δ(u) t ,

with the following abbreviations

f(u) :=
1

λ

(
iuβ − u2

2

)
,

ε(s, t) := 1− eλ (s−t) ,

α(u) :=
cT cZ ηZ (cT ηY + iu (cT − cY ))2

f(u)
(
c2
T ηY + iu (c2

T − cY cZ)
)2 − c2

T ηZ (ηY + iu)
(
c2
T ηY + iu (c2

T − cY cZ)
) ,

δ(u) :=
f(u) (cT cZ ηY + iu cY (cT − cZ) + iu cZ (cT − cY ))− iu cT cY ηZ

−f(u)
(
c2
T ηY + iu (c2

T − cY cZ)
)

+ c2
T ηZ (ηY + iu)

,

γ(u) :=
c2
T ηZ (ηY + iu)

c2
T ηZ (ηY + iu)− f(u) ε(0, t)

(
c2
T ηY + iu (c2

T − cY cZ)
) .
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4.3 The weak-link Γ-OU-BNS model

Proof

Since

Im(−i f(u) ε(s, t)) =
u2

2λ
ε(s, t) > 0,

Remark 4.8 yields that ψ(−Y, Z)(u, −i f(u) ε(s, t)) exists for all u ∈ R and all 0 ≤ s ≤ t,
and is given by

ψ(−Y, Z)(u, −i f(u) ε(s, t)) =
− i cT cY u
cT ηY +iu (cT−cY ) + cT cZ f(u) ε(s,t)

cT ηZ−f(u) ε(s,t) (cT−cZ)

1 + i cY u
cT ηY +iu (cT−cY ) −

cZ f(u) ε(s,t)
cT ηZ−f(u) ε(s,t) (cT−cZ)

. (4.14)

Furthermore, we know from Remark 4.8, that

Re
(
ψ(−Y, Z)(u, −i f(u) ε(s, t))

)
< 0, ∀u ∈ R, ∀ 0 ≤ s ≤ t.

The characteristic function of the log-price process can therefore be expressed by (cf.

Remark 4.6)

ϕXt(u) = exp

iuX0 + iuµ t+ f(u) ε(0, t)σ2
0 +

t∫
0

ψ(−Y, Z) (u, −i f(u) ε(s, t)) ds

 .

The only thing left to show is that

t∫
0

ψ̃(−Y,Z) (iu, f(u) ε(s, t)) ds = −cT
λ
α(u) log(γ(u)) + cT δ(u) t . (4.15)

Using Equation (4.14)) and the abbreviations A1 := cT ηY + iu (cT − cY ) and A2 :=

cT ηZ − f(u) ε(s, t) (cT − cZ), we obtain

ψ(−Y, Z)(u, −i f(u) ε(s, t)) =
−i cT cY uA2 + cT cZ f(u) ε(s, t)A1

A1A2 + i cY uA2 − cZ f(u) ε(s, t)A1
. (4.16)

Note that

− i cT cY uA2 + cT cZ f(u) ε(s, t)A1

=f(u) ε(s, t) (cT cZ A1 + i cT cY u (cT − cZ))− i c2
T cY u ηZ

=f(u) ε(s, t) (cT cZ ηY + iu cY (cT − cZ) + iu cZ (cT − cY )) cT − i c2
T cY u ηZ ,

and

A1A2 + i cY uA2 − cZ f(u) ε(s, t)A1
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4 Decoupling of volatility jumps and asset jumps in the BNS model

=− f(u) ε(s, t) (A1 (cT − cZ) + i cY u (cT − cZ) + cZ A1) +A1 cT ηZ + i cY u cT ηZ

=− f(u) ε(s, t) (A1 cT + i cY u (cT − cZ)) + c2
T ηZ (ηY + iu)

=− f(u) ε(s, t)
(
c2
T ηY + iu (c2

T − cY cZ)
)

+ c2
T ηZ (ηY + iu).

Therefore, Equation (4.16) boils down to

ψ(−Y, Z)(u, −i f(u) ε(s, t))

=cT
f(u) ε(s, t) (cT cZ ηY + iu cY (cT − cZ) + iu cZ (cT − cY ))− i cT cY u ηZ

−f(u) ε(s, t)
(
c2
T ηY + iu (c2

T − cY cZ)
)

+ c2
T ηZ (ηY + iu)

=cT
x eλ s + y

z eλ s + w
,

with

x :=− f(u) (cT cZ ηY + iu cY (cT − cZ) + iu cZ (cT − cY )) e−λ t,

y :=f(u) (cT cZ ηY + iu cY (cT − cZ) + iu cZ (cT − cY ))− iu cT cY ηZ ,

z :=f(u)
(
c2
T ηY + iu (c2

T − cY cZ)
)
e−λ t,

w :=− f(u)
(
c2
T ηY + iu (c2

T − cY cZ)
)

+ c2
T ηZ (ηY + iu).

To solve the following integral,

t∫
0

ψ(−Y, Z)(u, −i f(u) ε(s, t)) ds =

t∫
0

cT
x eλ s + y

z eλ s + w
ds, (4.17)

we remark that for arbitrary x, y, z, w ∈ C with z exp(λs)+w, z, w 6= 0 for all s ∈ [0, t],

the derivative of the function

ζ(s) :=
1

λ

(x
z
− y

w

)
log
(
z eλ s + w

)
+
y

w
s, s ∈ [0, t],

turns out to be

ζ ′(s) =
1

λ

(x
z
− y

w

) z λ eλ s

z eλ s + w
+
y

w
=

(w x− y z) eλ s + y
(
z eλ s + w

)
w z eλ s + w2

=
xeλ s + y

zeλ s + w

for all s ∈ [0, t]. Hence, Equation (4.17) boils down to

t∫
0

ψ(−Y, Z)(u, −i f(u) ε(s, t)) ds =cT (ζ(t)− ζ(0))
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4.3 The weak-link Γ-OU-BNS model

=
cT
λ

(x
z
− y

w

)
log

(
z eλ t + w

z + w

)
+
cT y t

w
. (4.18)

Note that

x

z
= −cT cZ ηY + iu cY (cT − cZ) + iu cZ (cT − cY )

c2
T ηY + iu (c2

T − cY cZ)
, (4.19)

y

w
=
f(u) (cT cZ ηY + iu cY (cT − cZ) + iu cZ (cT − cY ))− iu cT cY ηZ

−f(u)
(
c2
T ηY + iu (c2

T − cY cZ)
)

+ c2
T ηZ (ηY + iu)

= δ(u),

(4.20)

z eλ t + w

z + w
=

c2
T ηZ (ηY + iu)

c2
T ηZ (ηY + iu)− f(u) ε(0, t)

(
c2
T ηY + iu (c2

T − cY cZ)
) = γ(u), (4.21)

and

x

z
− y

w

=−
(cT cZ ηY + iu cY (cT − cZ) + iu cZ (cT − cY )) c2

T ηZ (ηY + iu)

f(u)
(
c2
T ηY + iu (c2

T − cY cZ)
)2 − c2

T ηZ (ηY + iu)
(
c2
T ηY + iu (c2

T − cY cZ)
)

+
iu cT cY ηZ

(
c2
T ηY + iu (c2

T − cY cZ)
)

f(u)
(
c2
T ηY + iu (c2

T − cY cZ)
)2 − c2

T ηZ (ηY + iu)
(
c2
T ηY + iu (c2

T − cY cZ)
)

=−
(
cT cZ η

2
Y + iu ηY (cT cY − 2 cY cZ + 2 cT cZ)− u2 (cT cY − 2 cY cZ + cT cZ)

)
c2
T ηZ

f(u)
(
c2
T ηY + iu (c2

T − cY cZ)
)2 − c2

T ηZ (ηY + iu)
(
c2
T ηY + iu (c2

T − cY cZ)
)

+
cT cY ηZ

(
iu c2

T ηY − u2 (c2
T − cY cZ)

)
f(u)

(
c2
T ηY + iu (c2

T − cY cZ)
)2 − c2

T ηZ (ηY + iu)
(
c2
T ηY + iu (c2

T − cY cZ)
)

=−
cT cZ ηZ

(
c2
T η

2
Y + 2 iu ηY cT (cT − cY )− u2

(
c2
T cY − 2 cY cT + c2

Y

))
f(u)

(
c2
T ηY + iu (c2

T − cY cZ)
)2 − c2

T ηZ (ηY + iu)
(
c2
T ηY + iu (c2

T − cY cZ)
)

=− cT cZ ηZ (cT ηY + iu (cT − cY ))2

f(u)
(
c2
T ηY + iu (c2

T − cY cZ)
)2 − c2

T ηZ (ηY + iu)
(
c2
T ηY + iu (c2

T − cY cZ)
)

=− α(u). (4.22)

Combining Equations (4.18), (4.20), (4.21), and (4.22) yields

t∫
0

ψ̃(−Y,Z) (iu, f(u) ε(s, t)) ds = −cT
λ
α(u) log(γ(u)) + cT δ(u) t ,

which is the desired expression from Equation (4.15), and concludes the proof of the

theorem. �
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4 Decoupling of volatility jumps and asset jumps in the BNS model

Obviously, the time-change construction in the weak-link Γ-OU-BNS model always

establishes nonlinear dependence between the asset price and the squared volatility

process. Therefore, the weak-link Γ-OU-BNS model is not a true extension of the

classical Γ-OU-BNS model. But we can show that the classical Γ-OU-BNS model

occurs as a limiting case as motivated in Figure 4.2. Thus, the weak-link Γ-OU-BNS

model can be considered as an extension where the Γ-OU-BNS model occurs as a

limiting case. Dependent on the setting, a dependence structure resulting from a one-

sided time change construction (cf. Remark 4.9) occurs as limiting case. Theorem 4.11

investigates the limit behavior of the weak-link Γ-OU-BNS model.

Theorem 4.11 (Limit of the weak-link Γ-OU-BNS model)

Let the logarithmic price processXκ of a weak-link Γ-OU-BNS model, with κ being the

respective jump dependence parameter, cY , cZ the intensities, and ηY , ηZ the jump

size parameters of the driving two-dimensional time-changed CPPExp (Y,Z). Then,

the �nite dimensional distribution of Xκ converges in law to the �nite dimensional

distribution of the limit process X for κ↗ 1, i.e. (Xκ
t1 , X

κ
t2 , . . . , X

κ
tn) converges in law

to (Xt1 , Xt2 , . . . , Xtn) for all n ∈ N, 0 ≤ t1 < · · · < tn.3. The structure of the limiting

process X depends on the intensities cZ and cY in the following way:

• cY > cZ :

X can be represented by a construction as described in Remark 4.9, i.e. by

the two-dimensional Lévy process (−Ỹt, Z̃t)t≥0 = (−Ỹt, ŨỸt)t≥0, where Ỹ ∼
CPPExp(cY , ηY ) and Ũ ∼ CPPExp( cZ ηY

cY −cZ ,
cY ηZ
cY −cZ ) are independent.

• cZ > cY :

Again, X is given by the construction as described in Remark 4.9, i.e. by

the two-dimensional Lévy process (−Ỹt, Z̃t)t≥0 = (−ŨZ̃t , Z̃t)t≥0, where Z̃ ∼
CPPExp(cZ , ηZ) and Ũ ∼ CPPExp( cY ηZ

cZ−cY ,
cZ ηY
cZ−cY ) are independent.

• cY = cZ :

X is given by a classical Γ-OU-BNS model, i.e. by the two-dimensional Lévy

process (ρZ̃t, Z̃t)t≥0, where ρ = −ηY
ηZ

and Z̃ is a CPPExp(cZ , ηZ).

3This type of convergence is called �nite-dimensional convergence along R+, cf. [Jacod and Shiryaev,

2003, IV.3.13].
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Proof

Using Theorem 4.5, the problem boils down to showing that the characteristic exponent

of (Y κ, Zκ) converges pointwise to the characteristic exponent of (Ỹ , Z̃).

By Remark 3.7, we know

ψ(Y κ,Zκ)(uY , uZ) =

i cT cY uY
cT ηY −iuY (cT−cY ) + i cT cZ uZ

cT ηZ−iuZ (cT−cZ)

1− i cT cY uY
cT ηY −iuY (cT−cY ) −

i cT cZ uZ
cT ηZ−iuZ (cT−cZ)

.

Consider cY > cZ , then

lim
κ↗1

ψ(Y κ,Zκ)(uY , uZ) = lim
cT↘cY

ψ(Y κ,Zκ)(uY , uZ)

=cY

iuY
ηY

+ i cZ uZ
cY ηZ−iuZ (cY −cZ)

1− iuY
ηY
− i cZ uZ

cY ηZ−iuZ (cY −cZ)

=cY

iuY
ηY

(cY ηZ − iuZ (cY − cZ)) + i cZ uZ(
1− iuY

ηY

)
(cY ηZ − iuZ (cY − cZ))− i cZ uZ

=cY
iuY

(
cY ηZ
cY −cZ − iuZ

)
+ i cZ ηY

cY −cZ uZ

(ηY − iuY )
(
cY ηZ
cY −cZ − iuZ

)
− i cZ ηYcY −cZ uZ

,

which coincides with the characteristic exponent of a one-sided construction with

claimed parameters, cf. Remark 4.9.

In case of cY < cZ , we get the result analogously.

Now assume cY = cZ , then

lim
κ↗1

ψ(Y κ,Zκ)(uY , uZ) = lim
cT↘cY

ψ(Y κ,Zκ)(uY , uZ) = cZ
iuY + iuZ

ηY
ηZ

ηY − iuY − iuZ
ηY
ηZ

,

which coincides with the joint characteristic function of Z̃ and ρZ̃. �

4.4 Application: The weak-link Γ-OU-BNS model in

action

In the previous section, we have shown that the weak-link Γ-OU-BNS model class

truly generalizes the classical BNS model and still preserves tractability concerning

numerical treatment in the sense of rapid calibration via Fourier pricing methods.

Hence, we think that the model is an interesting candidate to serve for derivatives
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4 Decoupling of volatility jumps and asset jumps in the BNS model

pricing. In this section, we have a closer look on the calibration to market prices of

plain vanilla options and scrutinize the sensitivity of the model-implied volatility skew

to changes in the parameters. Furthermore, we point out an example (down-and-in

call options) where the weak-link property leads to tremendously di�erent valuation

results compared to the classical BNS model.

We begin with a calibration exercise and benchmark the calibration results of the weak-

link Γ-OU-BNS model with the results from a classical BNS model. We calibrate both

models to intraday quotes of put and call options on the Dow Jones Industrial index

as of 2015-Feb-12 provided by Thomson Reuters. The maturities range in between

one week and three years with strikes from 6000 to 25000. The spot price is 17895.

We performed the calibration exercise with 363 European call and put options.4 US

treasury rates serve as risk-less interest rate approximation. Options are priced via the

risk-neutral approach, i.e. we assume the dynamics presented in the previous chapters

are given with respect to a martingale measure. Then, the risk-neutral drift parameters

in the classical Γ-OU-BNS model have to ful�ll (cf. Equation (4.4))

µ = r − cY ρ

ηZ − ρ
= r − cY

ηY − 1
, β = −1

2
,

where r is the risk-less interest rate. Note, that the parameter ρ of the classical Γ-OU-

BNS model can be expressed consistently with the notation of the weak-link model by

ρ = ηZ
ηY

. The risk-neutral drift conditions for µ and β in the weak-link Γ-OU-BNS are

the same as in the classical one. As objective function for the optimization procedure

in the calibration, we employ the mean absolute error (MAE) on the implied volatilities

of the options.

The results from the calibration exercise are shown in Table 4.1. We can see that, as

one would expect, the weak-link Γ-OU-BNS model observes a slightly better calibration

performance than the classical Γ-OU-BNS model with strictly coupled jumps. As one

can read from the calibrated parameters, this primarily stems from the model feature

to allow for more volatility jumps than asset price jumps. Moreover, a two-sided

decoupling property of the model (i.e. a jump correlation parameter κ < 1) cannot be

observed in the plain vanilla option prices. In our calibrated model, every downward

asset price jump is accompanied by a sudden volatility jump, but not vice versa, i.e.

there exist sudden rises in volatility without any immediate downward asset price. This

4If there are put and call options with the same strike and same maturity, we select the respective

option, which was more liquidly traded.
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Model MAE σ0 cY cZ ηY ηZ λ κ

�Classical� Γ-OU-BNS 0.94 0.114 0.59 0.59 9.47 6.17 2.37 −
Weak-link Γ-OU-BNS 0.81 0.108 0.84 0.35 10.86 3.60 2.42 0.999

Table 4.1 The calibration performance of the weak-link Γ-OU-BNS model compared

to the classical one. The calibration error (MAE) denotes the mean abso-

lute error per option in volatility points.

is actually in line with the arguments of Shiller [1988], where multiple reasons for rising

volatility are described. On the other hand, the volatility hikes being accompanied by

sudden asset price deterioration may be interpreted as materialization of the leverage

e�ect, where deteriorating asset prices cause higher volatility due to higher leverage

on the balance sheet of the respective companies.

Sensitivity of the implied volatility skew

To obtain better intuition for the weak-link model, we observe the impact of the

newly introduced parameters on the implied volatility skew. Since the classical Γ-

OU-BNS model is solely enhanced by the separate volatility jump intensity as well as

the jump correlation parameter, we focus our analysis on the sensitivity towards these

parameters.

We start analyzing the impact of the jump correlation parameter κ: As we can see

in Figure 4.3, throughout the di�erent maturities, the jump correlation parameter

somehow (similar to the asset jump height) controls for the skewness of the plain

vanilla prices: Complete independence of volatility and asset price jumps results into

a more symmetric volatility skew, while higher jump correlation parameter result in

relatively higher put prices and lower call prices. This phenomenon can be explained

by the ATM peak of an option's vega. Hence, OTM put prices value joint downward

jumps in the asset price and upward jumps in the volatility higher than OTM call

prices (the �vanna�, i.e. the second order cross derivative w.r.t. implied volatility and

the spot price, is negative for OTM puts, while it is positive for OTM calls). But the

impact of the jump correlation parameter is far weaker than the impact of the asset

price jump height, which drives the skewness much more direct via the respective

option's delta.
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Figure 4.3 Volatility smiles in the Weak-link Γ-OU-BNS model with calibrated pa-

rameters of the Γ-OU-BNS model (σ0 = 0.114, cY = cZ = 0.59, ηZ =

6.17, λ = 2.37, ηY = 9.47) for di�erent levels of dependence (jump corre-

lation parameter κ). By moneyness, we actually mean the call moneyness,

i.e. strike/spot.

We continue by analyzing the impact of the volatility jump intensity on the skewness by

assuming constant average expected volatility: As one can see in Figure 4.4, the implied

volatilities in the wings rise with more occasional, but sharper upward jumps (low jump

intensity, accompanied by higher jumps), while the ATM volatilities become �atter.

Overall, the parameter cY controls for the pronouncedness of the smile (compared to

the jump correlation parameter, controlling the skew).

Jump into the money - where the weak-link property matters

At �rst sight, the weak-link property of the model does not seem to provide tremendous

added value: We observed that �tting the model to a surface of European options

does not provide a tremendously better �tting of the observed prices compared to the

classical Γ-OU-BNS model. Moreover, particularly the jump correlation parameter κ
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Figure 4.4 Volatility smiles in the Weak-link Γ-OU-BNS model with calibrated pa-

rameters of the Γ-OU-BNS model (σ0 = 0.114, λ = 2.37, cY = 0.59, ηY =

9.47, κ = 1) for di�erent volatility jump intensities (cZ). To keep the av-

erage level of volatility comparable, we adjust the jump sizes accordingly

such that the average jump impact on the expected volatility remains

constant.

seems to be di�cult to obtain from quoted European options. We suppose that this is

due to the payo� structure of a European option: European call options (which su�ce

to look at due to put-call parity) solely consider the terminal asset price value to be

important. Thus, only the average price �uctuation (concerning volatility and jumps)

determines the payo�. But when moving to path-dependent options, the coupling

degree of jumps and volatility becomes more important.

Consider a down-and-in call option5 with a payo� 1{{mint∈[0,T ] St<BS0}}(ST −KS0)+,

i.e. a relative strike value K > 0, maturity T > 0, and a relative barrier level B < 1

activating the payo� of the option when crossed downwards.

5Due to the �barrier parity relationship�, we could similarly look at a down-and-out call option,

which may be slightly more popular in derivatives markets. We stick to the knock-in option, since

we think that it provides more intuition about the weak link feature of the model.
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Figure 4.5 Option prices for di�erent levels of jump correlation parameters κ. The

maturity of the option is �xed by T = 0.2, the spot is S0 = 17985, and

the interest rate is assumed to be zero. The left sub�gure shows prices of

plain vanilla call options, the other two sub�gures illustrate prices of down-

and-in call options. The sensitivity w.r.t. the jump correlation parameter

becomes particularly high for options that are already in-the-money, but

yet deactivated.

In comparison to a plain vanilla European call option, the down-and-in call option is

much more sensitive to the coupling of asset and volatility jumps: A downward jump

causes the option payo� to be activated, while rising volatility enhances the value of

the activated European option. Vice versa, rising volatility may enhance the overall

value of the barrier option, but in case of a non-activated option, its value is limited

in spot regions that are far above the activation barrier. To price these down-and-in

call options, we obtained the model parameters from a calibration to market quotes

of European options for �xed values of κ. Moreover, we considered a subclass of the

weak-link Γ-OU-BNS model class by setting cY = cZ . This ensures, that the prices for

κ ↗ 1 showed in Figure 4.5 correspond to the classical Γ-OU-BNS model, as shown
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4.4 Application: The weak-link Γ-OU-BNS model in action

in Theorem 4.11. As you can see in Figure 4.5, for a set of model choices (by varying

the parameter κ) we get, on the one hand, same vanilla prices (by construction), but

on the other hand, totally di�erent down-and-in calls. In particular, when the option

is in-the-money, but not activated yet, the jump correlation sensitivity is particularly

high. The pricing of the down-and-in-call option is done via Monte Carlo simulation

and an Euler discretization scheme. We used 100 steps and and 1 000 000 scenarios.
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5 Sequential modeling of multivariate

�nancial markets

In this chapter, we present a new methodology to generalize univariate models to the

multivariate case. Jump di�usion models, whose jump part is driven by a compound

Poisson process with exponentially distributed jumps, are considered. Particularly,

time-changed CPPExp are used to construct multivariate extensions of three univariate

jump di�usion models: the Γ-OU-BNS model � the model which we already introduced

in Section 4.1, Kou's model (cf. Kou [2002]) � a model with constant volatility and

two-sided exponentially distributed jumps, and the two-sided Γ-OU-BNS model � a

combination of the Γ-OU-BNS model and Kou's model. A multivariate extension of the

BNS model class employing matrix subordinators is designed in Pigorsch and Stelzer

[2008] and pricing in this model is scrutinized in Muhle-Karbe et al. [2012]. Unlike

these models, we use a bottom-up approach. That means, we start with d univariate

models and merge these to one multivariate model by introducing a certain dependence

structure. The most appealing feature of our ansatz is the separability of the marginal

distributions from the dependence structure, rendering our multivariate models quite

handy. We can divide the model parameters into two sets: the parameters deter-

mining the marginal distribution of each one-dimensional model and the parameters

determining the dependence structure. This separation feature provides convenient

e�ects in terms of practical issues. For example, a calibration can be carried out in

two subsequent steps: �rst, the univariate models can be calibrated to market quotes

of options on single assets, second, one can set the dependence parameters without

a�ecting the already �xed marginal distributions, which we will see in the concluding

Section 5.5 on some applications. But �rst, we shortly introduce the one-dimensional

models in this chapter's fundamental Section 5.1 and present the multi-dimensional

versions in Sections 5.2, 5.3, and 5.4. The theoretical results within this chapter, as

well as the calibration exercises, are also published in Mai et al. [2014] and Bannör

et al. [2015].
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5 Sequential modeling of multivariate �nancial markets

5.1 Fundamentals: One-dimensional models

This section is dedicated to introduce the univariate models, which are generalized later

in this chapter. Since we already investigated the Γ-OU-BNS model in Section 4.1, we

only introduce Kou's model and the two-sided Γ-OU-BNS model. All of these models

support the striking feature of a closed-form solution for the characteristic function of

the log-price process.

Kou's model (cf. Kou [2002]) is an exponential jump di�usion model with constant

and deterministic volatility. It supports positive and negative jumps, driven by two

independent CPPExp.

De�nition 5.1 (Kou's model)

The asset value process S = {St}t≥0 in Kou's model is given by St = S0 exp(Xt),

where

Xt = µ t+ σWt + Z+
t − Z

−
t ,

with S0 > 0 and σ > 0. Z+ = {Z+
t }t≥0 ∼ CPPExp (c+, η+), η+ > 1, Z− = {Z−t }t≥0 ∼

CPPExp (c−, η−), and W = {Wt}t≥0 is a standard Brownian motion. All processes

are mutually independent.

Under an equivalent martingale measure, the drift has to satisfy

µ = r − σ2

2
− c+

η+ − 1
+

c−

η− + 1
,

where r denotes the constant risk free interest rate. The drift is similar to the drift

in the Γ-OU-BNS model, however, the volatility component is now constant and,

additionally, there is a compensation for negative jumps. Relevant for the pricing of

options via Fourier inversion methods is the closed-form solution of the characteristic

function of Xt, namely

E
[
eiuXt

]
= exp

(
iuXt + t

(
iuµ− 1

2
σ2 u2 +

c+ iu

η+ − iu
− c− iu

η− + iu

))
, t ≥ 0. (5.1)

This formula follows directly from Example 2.9 and the assumption on the indepen-

dence of W , Z+, and Z−.
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5.1 Fundamentals: One-dimensional models

In contrast to the BNS model, the log-price processX in Kou's model is a Lévy process.

Thus, it is not surprising that the characteristic function of Xt is of exponential shape

(cf. Theorem 2.19). The BNS model class was extended by Bannör and Scherer [2013]

to incorporate two-sided jumps in the asset price process. In the following we de�ne

one representative of that class, the two-sided Γ-OU-BNS model, which combines

the stochastic volatility from the BNS model with the two-sided jumps from Kou's

model.

De�nition 5.2 (Two-sided Γ-OU-BNS model)

We say that a stochastic process {St}t≥0 follows a two-sided Γ-OU-BNS model, if the

log-price Xt := logSt follows the dynamics of the SDEs

dXt = (µ + β σ2
t ) dt+ σt dWt + ρ+ dZ+

t + ρ− dZ−t ,

dσ2
t = −λσ2

t dt+ dZ+
t + dZ−t ,

with independent processes Z+ = {Z+
t }t≥0 ∼ CPPExp (c+, η+), Z− = {Z−t }t≥0 ∼

CPPExp (c−, η−), andW = {Wt}t≥0 being a Brownian motion independent of Z+ and

Z−, µ ∈ R, λ > 0, ρ+ > 0, ρ− < 0.1

Under a risk neutral martingale measure, the drift has to satisfy

µ = r − c+ ρ+

η+ − ρ+
+

c− ρ−

η− + ρ−
, β = −1

2
,

where r denotes the risk-neutral drift.

Theorem 5.3 (Characteristic function in a two-sided Γ-OU-BNS model)

Let S = {St}t≥0 follow a two-sided Γ-OU-BNS model, then the characteristic function

of Xt = log(St) is given by

E
[
eiuXt

]
= exp

(
iu (X0 + µ t)− g h σ2

0 +
c+

η+ − f+
2

(
η+

λ
log

η+ − f+
1

η+ − iu ρ+
+ f+

2 t

)
+

c−

η− − f−2

(
η−

λ
log

η− − f−1
η− − iu ρ−

+ f−2 t

))
,

1Compared to the original formulation of the model in Bannör and Scherer [2013] and the original

BNS model from Nicolato and Venardos [2003], we do not change the clock of the subordinators to

t 7→ λt. This formulation is equivalent and more handy in the upcoming multivariate construction.
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5 Sequential modeling of multivariate �nancial markets

with

g :=
u2 − 2β i u

2
, h :=

1− exp(−λ t)
λ

,

f∗1 := i u ρ∗ − g h, f∗2 := i u ρ∗ − g

λ
, ∗ ∈ {+,−}.

Proof

See Bannör and Scherer [2013]. �

5.2 A multivariate BNS-Γ-OU model

We model a portfolio of d assets, each represented by a one-dimensional BNS-Γ-OU

model. The dependence between the di�usion components is treated as in the standard

market models living in a Brownian world. The jump components driving the volatility

processes, however, are made dependent via the construction of time-changed CPPExp

from Chapter 3, making it possible for two or more assets to jump simultaneously,

and introducing dependence to the stochastic volatility processes. The induced depen-

dence between the jump components is determined by the dependence parameter κ.

Independently of the choice of κ, the marginal distributions remain the same. We are

thus able to describe the portfolio model by two separated sets of parameters:

(1) The parameters determining the marginal distributions of the assets: a Γ-OU-

process with leverage under an equivalent martingale measure is determined by

�ve parameters: one parameter for the jump intensity, one parameter for the

jump sizes, one slow down parameter for the stochastic volatility, one leverage

parameter, and one initial value for the volatility process.

(2) One set of parameters for the dependence structure of the assets: a correlation

matrix Σ for the Brownian parts and the coe�cient κ ∈ (0, 1) for the jump parts.

The construction works as follows. We consider a probability space (Ω,F ,P), on which

we de�ne the following processes.

(a) The processW =
(
W (1), . . . ,W (d)

)
, which is a d-dimensional standard Brownian

motion with correlation matrix Σ.
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5.2 A multivariate BNS-Γ-OU model

(b) Independently of the process in (a), we de�ne a d-dimensional time-changed

CPPExp, i.e. we have independent Poisson processes N (1), . . . , N (d) with inten-

sities c1
cT−c1 , . . . ,

cd
cT−cd . Moreover, for each i = 1, . . . , d we let {J (i)

j }j∈N be a

sequence of i.i.d. random variables with J
(i)
1 ∼ Exp

(
cT ηi
cT−ci

)
, independently of

the previous processes. We suppose the jump size parameters η1, . . . , ηd > 0 and

the intensities c1, . . . , cd > 0 to be given and we set cT := 1
κ max1≤i≤d{ci}.

(c) Independently of the processes in (a) and (b), let T = {Tt}t≥0 ∼ CPPExp(cT , 1).

De�nition 5.4 (Multivariate BNS-Γ-OU model)

Having de�ned these processes on our probability space, for each i = 1, . . . , d, we

describe asset i in the multivariate BNS-Γ-OU model by a one-dimensional BNS-Γ-

OU model, i.e. S(i)
t = S

(i)
0 exp

(
X

(i)
t

)
, where

dX
(i)
t =

(
r − ci ρi

ηi − ρi
− 1

2

(
σ

(i)
t

)2
)

dt+ σ
(i)
t dW

(i)
t + ρi dZ

(i)
t , (5.2)

d
(
σ

(i)
t

)2
= −λi

(
σ

(i)
t

)2
dt+ dZ

(i)
t , (5.3)

with Z =
(
Z(1), . . . , Z(d)

)
being a d-dimensional time-changed CPPExp.

For pricing multi asset options by Fourier methods, a simple expression for the joint

characteristic function ofX(1), . . . , X(d) is useful. In our multivariate BNS-Γ-OUmodel

we can at least calculate it in closed form within the special case of independent

Brownian motions. This is done in the next theorem.

Theorem 5.5 (Joint characteristic function in the multivariate BNS model)

Assume that W (1), . . . ,W (d) are independent. De�ne for all 0 ≤ s ≤ t, 1 ≤ k ≤ d, and
�xed u = u1, . . . , ud ∈ Cd,

fk(s;uk) =
uk − iu2

k

2λk

(
eλk(s−t) − 1

)
+ uk ρk.

Then, the joint characteristic function ϕXt of Xt =
(
X

(1)
t , . . . , X

(d)
t

)
is given by

log (ϕXt(u)) =

d∑
k=1

iuk t

(
r − ck ρk

ηk − ρk

)
+

iuk + u2
k

2λk

(
e−λk t − 1

)(
σ

(k)
0

)2
− cT t
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+

t∫
0

cT

(
1−

d∑
k=1

i ck fk(s;uk)

cT ηk − i fk(s;uk) (cT − ck)

)−1

ds.

Proof

By using the model Equation (5.2), we get

ϕXt(u) = E

[
d∏

k=1

eiukX
(k)
t

]

=E

[
d∏

k=1

exp

(
iuk

(
r t− ck ρk

ηk − ρk
t− 1

2

∫ t

0

(
σ(k)
s

)2
ds+

∫ t

0
σ(k)
s dW (k)

s + ρk Z
(k)
t

))]
.

(5.4)

Conditioned on the trajectory of Z(k), the volatility process σ(k) is deterministic for

all 1 ≤ k ≤ d. Therefore, with a same argument like in Equation (4.8), we get

E
[

exp

(∫ t

0
iuk σ

(k)
s dW (k)

s

)∣∣∣∣ (Z(k)
u

)
u≤t

]
= exp

(
−
u2
k

2

∫ t

0

(
σ(k)
s

)2
ds

)
.

Hence, by conditioning on the trajectories of Z(1), . . . , Z(d), Equation (5.4) boils down

to

ϕXt(u) =E

[
d∏

k=1

exp

(
−1

2

(
iuk + u2

k

) ∫ t

0

(
σ(k)
s

)2
ds+ iuk ρk Z

(k)
t

)]

exp

(
d∑

k=1

iuk t

(
r − ck ρk

ηk − ρk

))
, (5.5)

Using Equation (5.3), the integrated variance process can be simpli�ed for all 1 ≤ k ≤
d, namely

d
(
σ

(k)
t

)2
= −λk

(
σ

(k)
t

)2
dt+ dZ

(k)
t

⇔
(
σ

(k)
t

)2
−
(
σ

(k)
0

)2
= −

t∫
0

λk

(
σ(k)
s

)2
ds+ Z

(k)
t

⇔
t∫

0

(
σ

(k)
t

)2
ds =

1

λk

(
−
(
σ

(k)
t

)2
+
(
σ

(k)
0

)2
+ Z

(k)
t

)
.
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5.2 A multivariate BNS-Γ-OU model

Combined with Equation (5.5), we get

ϕXt(u) =E

[
d∏

k=1

exp

(
iuk + u2

k

2λk

((
σ

(k)
t

)2
−
(
σ

(k)
0

)2
− Z(k)

t

)
+ iuk ρk Z

(k)
t

)]

exp

(
d∑

k=1

iuk t

(
r − ck ρk

ηk − ρk

))
,

and Equation (4.3) yields

ϕXt(u) =E

[
d∏

k=1

exp

(∫ t

0

(
iuk + u2

k

2λk

(
eλk(s−t) − 1

)
+ iuk ρk

)
dZ(k)

s

)]

exp

(
d∑

k=1

iuk t

(
r − ck ρk

ηk − ρk

)
+

iuk + u2
k

2λk

(
e−λk t − 1

)(
σ

(k)
0

)2
)
. (5.6)

De�ne for all 0 ≤ s ≤ t, 1 ≤ k ≤ d,

fk(s;uk) =
uk − iu2

k

2λk

(
eλk(s−t) − 1

)
+ uk ρk,

and note that f(s) := (f1(s;u1), . . . , fd(s;ud)) is continuous. Furthermore, as cal-

culated in Theorem 3.7, the characteristic exponent of the time-changed CPPExp

Z =
(
Z(1), . . . , Z(d)

)
is given by the expression

ψZ(v) =

∑d
k=1

i cT ck vk
cT ηk−i vk (cT−ck)

1−
∑d

k=1
i ck vk

cT ηk−i vk (cT−ck)

, ∀v ∈ Rd. (5.7)

Remark 3.8 states that this expression is analytic and can be continued on C :={
z = (z1, . . . , zd) ∈ Cd : Im(zi) ≥ 0, ∀ 1 ≤ i ≤ d

}
with E

[
ei z>Z

]
= eψZ(z) for all z ∈

C. We intend to apply Theorem 2.26 on Equation (5.6). Thus, we must ensure that

f(s) ∈ C and Re(ψZ(f(s)) ≤ 0 for all 0 ≤ s ≤ t. By the de�nition of f ,

Im(fk(s;uk)) =
u2
k

2λk

(
1− eλk(s−t)

)
> 0, ∀0 ≤ s ≤ t, 1 ≤ k ≤ d,

and hence, f(s) ∈ C for all 0 ≤ s ≤ t. Moreover, by Remark 3.8, we know that

ψZ(z) ≤ 0 for all z ∈ C. Thus Re(ψZ(f(s)) ≤ 0 for all 0 ≤ s ≤ t. By using

Theorem 2.26 and Equation (5.7), Equation (5.6) boils down to

ϕXt(u) = exp

 t∫
0

cT

(
1−

d∑
k=1

i ck fk(s;uk)

cT ηk − i fk(s;uk) (cT − ck)

)−1

ds

 exp (−cT t)
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exp

(
d∑

k=1

iuk t

(
r − ck ρk

ηk − ρk

)
+

iuk + u2
k

2λk

(
e−λk t − 1

)(
σ

(k)
0

)2
)
.

And the claim follows. �

To price path-dependent multi-asset derivatives, it is important to have a fast simula-

tion scheme for the price process. This can be achieved due to the e�cient simulation

of a time-changed CPPExp (cf. Algorithm 3.20). In the following, we give a simplistic

scheme how to simulate path in the multivariate BNS-Γ-OU model.

Algorithm 5.6 (Paths of the asset values in the multivariate BNS model)

Suppose the following parameters to be given: the initial values and initial volatilities

for each asset, i.e. S
(1)
0 , . . . , S

(d)
0 and (σ

(1)
0 )2, . . . , (σ

(d)
0 )2, jump parameters for the

processes Z(1), . . . , Z(d), i.e. c1, . . . , cd and η1, . . . , ηd, the slow-down parameters of

the volatility processes λ1, . . . , λd, the leverage parameters ρ1, . . . , ρd, the maturity t∗,

the correlation matrix Σ of the d-dimensional Brownian motion (W (1), . . . ,W (d)), the

dependence parameter κ for the jump parts, and the constant interest rate r.

(1) Perform Algorithm 3.20 and receive a d-dimensional time-changed CPPExp Z =(
Z(1), . . . , Z(d)

)
(2) De�ne a partition 0 = t0 < t1 < · · · < tM = t∗ on [0, t∗].

(3) For each 1 ≤ i ≤M do

(a) Draw a d-dimensional normally distributed vector B =
(
B(1), . . . , B(d)

)
with mean 0 and covariance matrix given by Σ.

(b) For each 1 ≤ j ≤ d do

X
(j)
ti

=X
(j)
ti−1

+

(
r − cj ρj

ηj − ρj
− 1

2

(
σ

(j)
ti−1

)2
)

(ti − ti−1)

+ σ
(j)
ti−1

√
ti − ti−1B

(j) + ρj

(
Z

(j)
ti
− Z

(j)
ti−1

)
(
σ

(j)
ti

)2
=
(
σ

(j)
ti−1

)2
(1− λj (ti − ti−1)) + Z

(j)
ti
− Z

(j)
ti−1

(4) Return S(j)
0 exp(X

(j)
ti

) for all 1 ≤ j ≤ d, 0 ≤ i ≤M .
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5.2 A multivariate BNS-Γ-OU model

This algorithm reuses Algorithm 3.20 to draw the dependent jump parts and performs

a simple Euler discretization of the SDEs (5.2) and (5.3). A more accurate simulation

might be achieved by more sophisticated discretization schemes. For example, one

could merge the partition, which is generated in step (2), with the jump times to get

a more realistic handling of the jump process. Or, discretizing Equation (4.3) rather

than Equation (5.3) gives more accuracy in the simulation of the volatility process

and thus also of the log-price process. If the asset value at one point in time is of

interest only, the simulation scheme can be further improved, which we investigate in

the following. Algorithm 5.8 does not simulate the whole path. The idea is to use

the jump times of T = {Tt}t≥0 as grid points for the simulation. Then, the volatility

process becomes deterministic between any two consecutive jump times. To account

for the change in the asset value process between two consecutive jump times τ1 and

τ2 of Z(i), one has to add a the random variable Ri given by

Ri =

(
r − ci ρi

ηi − ρi

)
(τ2 − τ1)− 1

2

τ2∫
τ1

(
σ

(i)
t

)2
dt+

τ2∫
τ1

σ
(i)
t dWt.

Equation 4.3 implies for all t ∈ [τ1, τ2)(
σ

(i)
t

)2
= e−λi (t−τ1)

(
σ(i)
τ1

)2
,

and therefore, we get

τ2∫
τ1

(
σ

(i)
t

)2
dt =

τ2∫
τ1

e−λi (t−τ1)
(
σ(i)
τ1

)2
dt =

1

λi

(
σ(i)
τ1

)2 (
1− e−λi (τ2−τ1)

)
.

Hence,

Ri ∼ N
((

r − ci ρi
ηi − ρi

)
(τ2 − τ1)− 1

2
ν(i)
τ1,τ2 , ν

(i)
τ1,τ2

)
, (5.8)

where ν(i)
τ1,τ2 =

1

λi

(
σ(i)
τ1

)2 (
1− e−λi (τ2−τ1)

)
.

Left to determine is the correlation of (Ri)1≤i≤d, which is done in Lemma 5.7. All

combined, the asset prices at time τ2 are given as

X(i)
τ2 = X(i)

τ1 +Ri + ρ
(
Z(i)
τ2 − Z

(i)
τ1

)
.
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Lemma 5.7

For all 1 ≤ i ≤ d, let Ri be de�ned as in (5.8) and assume that Corr
(
W

(i)
t , W

(j)
t

)
=

Σij , then

Corr(Ri , Rj) = 2 Σij

√
λi λj

λi + λj

1− e−
1
2

(λi+λj) (τ2−τ1)√(
1− e−λi (τ2−τ1)

) (
1− e−λj (τ2−τ1)

) ,
for all 1 ≤ i, j ≤ d, i 6= j.

Proof

Corr(Ri , Rj) = Corr

 τ2∫
τ1

σ
(i)
t dW

(i)
t ,

τ2∫
τ1

σ
(j)
t dW

(j)
t


= Corr

 τ2∫
τ1

e−λi (t−τ1)
(
σ(i)
τ1

)2
dW

(i)
t ,

τ2∫
τ1

e−λj (t−τ1)
(
σ(j)
τ1

)2
dW

(j)
t


= Σij

∫ τ2−τ1
0 σ

(i)
τ1 σ

(j)
τ1 e

− 1
2

(λi+λj)t dt√
ν

(i)
τ1,τ2 ν

(j)
τ1,τ2

= 2 Σij

√
λi λj

λi + λj

1− e−
1
2

(λi+λj) (τ2−τ1)√(
1− e−λi (τ2−τ1)

) (
1− e−λj (τ2−τ1)

) . �

Now, we are ready to present the algorithm for computing the �nal values in the

multivariate BNS-Γ-OU model, which is useful, e.g. for pricing multi-asset European

options. Note that in contrast to Algorithm 5.8, the simulation of the �nal value is

unbiased.

Algorithm 5.8 (Final asset values in the multivariate BNS model)

Suppose the same parameters to be given as in Algorithm 5.6.

(1) Perform Algorithm 3.20 and get dependent processes Z(1), . . . , Z(d) and their

jump times 0 =: τ0 < τ1 < · · · < τN < τN+1 := t∗.

(2) For each 1 ≤ i ≤ N + 1 do

(a) Draw a d-dimensional normally distributed vector B =
(
B(1), . . . , B(d)

)
with mean 0 and covariance matrix given by the correlation matrix given

by Lemma 5.7.
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(b) For each 1 ≤ j ≤ d do

σ̂2 =
1

λj

(
σ(j)
τi−1

)2 (
1− e−λj (τi−τi−1)

)
X(j)
τi =X(j)

τi−1
+

(
r − cj ρj

ηj − ρj

)
(τi − τi−1)− 1

2
σ̂2 + σ̂ B(j)

+ ρj

(
Z(j)
τi − Z(j)

τi−1

)
(
σ(j)
τi

)2
=
(
σ(j)
τi−1

)2
(1− λj (τi − τi−1)) + Z(j)

τi − Z(j)
τi−1

(3) Return S(j)
0 exp(X

(j)
τN+1) for all 1 ≤ j ≤ d.

5.3 A multivariate Kou Model

Like in the multivariate BNS model, we model a portfolio of d assets. But now, each

component follows a one-dimensional Kou model. In contrast to the BNS framework,

the volatility is constant, but the asset price jump magnitudes are drawn from a double-

exponential distribution. The dependence between the di�usion components is treated

as before, i.e. we consider d correlated Brownian motions W (1), . . . ,W (d). The jumps

are subdivided into positive and negative components, modeled by two independent

CPPExp. Jumps of di�erent assets are made dependent via the construction of time-

changed CPPExp from Section 3, allowing two or more assets to jump simultaneously.

The induced dependence between the positive jump components is determined by

the parameter κ+ ∈ (0, 1), and the negative ones by κ− ∈ (0, 1). Independently

of the choice of those dependence parameters, the marginal distributions, which are

equivalent to the ones in the univariate Kou model, remain the same. We are thus

able to describe the portfolio model by two separated sets of parameters:

(1) The parameters determining the marginal distributions of the assets: one pa-

rameter for the di�usion volatility, as well as two parameters for the intensities

of the jumps and two parameters determining the average jump sizes.

(2) One set of parameters for the dependence structure of the assets: a correlation

matrix Σ for the di�usion parts and the coe�cients κ+ and κ− for the jump

parts.

The construction works as follows. We consider a probability space (Ω,F ,P), on which

we de�ne the following processes.
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5 Sequential modeling of multivariate �nancial markets

(a) For i = 1, . . . , d, the processes µit + σiW
(i)
t , where W = (W (1), . . . ,W (d)) is a

d-dimensional standard Brownian motion with correlation matrix Σ, µi denotes

the risk neutral drift, and σi represents the volatility of the di�usion part.

(b) Independently of the processes in (a), we de�ne two independent time-changed

CPPExp, i.e we de�ne independent Poisson processes N (1), . . . , N (d) with intensi-

ties
c1η

+
T

c+T−c1
, . . . ,

cdη
+
T

c+T−cd
, and N (−1), . . . , N (−d) with intensities

c−1η
−
T

c−T−c−1
, . . . ,

c−dη
−
T

c−T−c−d
.

Moreover, for each i = 1, . . . , d we let {J (i)
j }j∈N and {J (−i)

j }j∈N be sequences

of i.i.d. random variables with J (i)
1 ∼ Exp

(
c+T ηi

c+T−ci

)
and J (−i)

1 ∼ Exp
(
c−T η−i

c−T−c−i

)
,

independently of the previous processes. Here, we suppose we have given inten-

sities c1, . . . , cd > 0 and c−1, . . . , c−d > 0, and we set c+
T := max1≤i≤d{ci} 1

κ+
and

c−T := max1≤i≤d{c−i} 1
κ− .

(c) Independently of the processes in (a) and (b) we let T+ = {T+
t }t≥0 and T− =

{T−t }t≥0 be compound Poisson processes with intensities c+
T and c−T and jump

size distributions Exp
(
η+
T

)
and Exp

(
η−T
)
.

De�nition 5.9 (Multivariate Kou model)

Having de�ned these processes on our probability space, for each i = 1, . . . , d, we

describe asset i in the multivariate Kou model by a one-dimensional Kou model, i.e.

S
(i)
t = S

(i)
0 exp

(
X

(i)
t

)
, where

X
(i)
t = µi t+ σiW

(i)
t + Z

(i)
t − Z

(−i)
t , (5.9)

with Z
(i)
t =

N
(i)

T+
t∑

j=1

J
(i)
j and Z

(−i)
t =

N
(−i)
T−t∑
j=1

J
(−i)
j ,

i.e.
(
Z(1), . . . , Z(d)

)
and

(
Z(−1), . . . , Z(−d)

)
are two independent d-dimensional time-

changed CPPExp.

For pricing multi asset options by Fourier methods we need the joint characteristic

function of X(1), . . . , X(d). The following theorem presents a closed form expression of

this joint characteristic function in our multivariate Kou model.
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5.3 A multivariate Kou Model

Theorem 5.10 (Joint char. function in the multivariate Kou model)

For all u = (u1, . . . , ud) ∈ Cd, de�ne

α+(u) :=

d∑
k=1

ck iuk

c+
T ηk − iuk

(
c+
T − ck

) and α−(u) :=

d∑
k=1

c−k iuk

c−T η−k + iuk
(
c−T − c−k

) .
Then, the joint characteristic function of Xt = (X

(1)
t , . . . , X

(d)
t ) is given by

ϕXt(u) = exp

(
t

(
i u>µ− 1

2
u>Σ̂u+

c+
T α

+(u)

1− α+(u)
−

c−T α
−(u)

1 + α−(u)

))
,

where Σ̂ denotes the covariance matrix of (σ1W
(1)
1 , . . . , σdW

(d)
1 ), i.e. Σ̂ = σ>Σσ.

Proof

ϕXt(u) = E

[
d∏

k=1

eiukX
(k)
t

]
= E

[
d∏

k=1

e
iuk

(
µk t+σkW

(k)
t +Z

(k)
t −Z

(−k)
t

)]

= exp

(
d∑

k=1

iuk µk t

)
E

[
d∏

k=1

eiuk σkW
(k)
t

]
E

[
d∏

k=1

eiuk Z
(k)
t

]
E

[
d∏

k=1

e−iuk Z
(−k)
t

]
.

(5.10)

Note that E
[∏d

k=1 e
iuk σkW

(k)
t

]
is the characteristic function of a multivariate normal

distributed random variable (cf. Example 2.9), and, hence

E

[
d∏

k=1

eiuk σkW
(k)
t

]
= exp

(
−1

2
u>Σ̂u t

)
. (5.11)

By conditioning on T+
t , the processes Z

(1)
t , . . . , Z

(d)
t become independent and Z(i)

t |T
+
t

is a compound Poisson distributed random variable with expected number of jumps
T+
t ci

c+T−ci
and jump size distribution Exp

(
c+T ηi

c+T−ci

)
for all 1 ≤ i ≤ d. Furthermore, using

similar calculations like in the proof of Theorem 3.1, we get for all 1 ≤ i ≤ d

E
[
eiuk Z

(k)
t

∣∣∣T+
t

]
= exp

 T+
t ck

c+T−ck
iuk

c+T ηk

c+T−ck
− iuk

 = exp

(
i ck uk

c+
T ηk − iuk

(
c+
T − ck

) T+
t

)
.

Hence, using the de�nition α+(u) :=
∑d

k=1
ck iuk

c+T ηk−iuk(c+T−ck)
, we get

E

[
d∏

k=1

eiuk Z
(k)
t

]
= E

[
d∏

k=1

E
[
eiuk Z

(k)
t

∣∣∣T+
t

]]
= E

[
eα

+(u)T+
t

]
. (5.12)
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Furthermore, Re(α+(u)) < 0, because

Re
(
α+(u)

)
= Re

(
d∑

k=1

ck iuk

c+
T ηk − iuk

(
c+
T − ck

)) = −
d∑

k=1

ck u
2
k

(
c+
T − ck

)
(c+
T )2 η2

k + u2
k

(
c+
T − ck

)2 < 0.

Thus, Theorem 2.22 can be applied on E
[
eα

+(u)T+
t

]
, which yields

E
[
eα

+(u)T+
t

]
= exp

(
c+
T α

+(u)

1− α+(u)
t

)
, (5.13)

where we used Theorem 3.1, which states that the Laplace exponent of T+ is given by

ψ̃T+(−u) =
−c+T u
1+u . Combining Equations (5.12) and (5.13) gives

E

[
d∏

k=1

eiuk Z
(k)
t

]
= exp

(
c+
T α

+(u)

1− α+(u)
t

)
. (5.14)

In a quite similar way we get

E

[
d∏

k=1

e−iuk Z
(−k)
t

]
= exp

(
−
c−T α

−(u)

1 + α−(u)
t

)
. (5.15)

Plugging in Equations (5.11), (5.14), and (5.15) into Equation (5.10) yields

ϕXt(u) = exp

(
t

(
iu>µ− 1

2
u>Σ̂u+

c+
T α

+(u)

1− α+(u)
−

c−T α
−(u)

1 + α−(u)

))
,

which concludes the proof. �

Algorithm 5.11 (Paths of the asset values in the multivariate Kou model)

Suppose the following parameters to be given: the initial values S(1)
0 , . . . , S

(d)
0 for

each asset, the constant volatilities σ1, . . . , σd for each asset, parameters for the jump

processes Z(1), . . . , Z(d), i.e. c1, . . . , cd and η1, . . . , ηd, parameters for the jump processes

Z(−1), . . . , Z(−d), i.e. c−1, . . . , c−d and η−1, . . . , η−d, the maturity t∗, the correlation

matrix Σ of the d-dimensional Brownian motion (W (1), . . . ,W (d)), the dependence

parameters κ+, κ− for the jump parts, and the constant interest rate r.

(1) Generate a d-dimensional time-changed CPPExp

(
Z(1), . . . , Z(d)

)
by performing

Algorithm 3.20.

(2) Generate a d-dimensional time-changed CPPExp

(
Z(−1), . . . , Z(−d)

)
by perform-

ing Algorithm 3.20.
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5.4 A multivariate two-sided BNS-Γ-OU model

(3) De�ne a partition 0 = t0 < t1 < · · · < tM = t∗ on [0, t∗].

(4) For each 1 ≤ i ≤M do

(a) Draw a d-dimensional normally distributed vector B =
(
B(1), . . . , B(d)

)
with mean 0 and covariance matrix given by Σ.

(b) For each 1 ≤ j ≤ d do

X
(j)
ti

=X
(j)
ti−1

+

(
r − cj

ηj − 1
+

c−j
η−j − 1

−
σ2
j

2

)
(ti − ti−1)

+ σj
√
ti − ti−1B

(j) + Z
(j)
ti
− Z

(j)
ti−1
− Z(−j)

ti
+ Z

(−j)
ti−1

(5) Return S(j)
0 exp(X

(j)
ti

) for all 1 ≤ j ≤ d, 0 ≤ i ≤M .

Like for the multivariate BNS-model, we present an e�cient and unbiased Algorithm,

which simulates the �nal value of d asset price processes at a �xed time t∗.

Algorithm 5.12 (Final asset values in the multivariate Kou model)

Suppose the same parameters to be given as in Algorithm 5.11.

(1) Perform Algorithm 3.20 and get
(
Z(1), . . . , Z(d)

)
.

(2) Perform Algorithm 3.20 and get
(
Z(−1), . . . , Z(−d)

)
.

(3) For each 1 ≤ i ≤ d draw a random variable

Ri ∼ N
(
t∗
(
r − σ2

i

2
− ci
ηi − 1

+
c−i

η−i + 1

)
, t∗ σ2

i

)
.

The correlations of R1, . . . , Rd are given by the correlation matrix Σ.

(4) Return for each 1 ≤ i ≤ n: S(i)
0 exp(X

(i)
t∗ ) = S

(i)
0 exp(Ri + Z

(i)
t∗ − Z

(−i)
t∗ ).

5.4 A multivariate two-sided BNS-Γ-OU model

Now, we mimic the approach to generate multivariate models from the last two sections

and apply it to the two-sided BNS-Γ-OU model which combines the BNS-Γ-OU model

and the Kou model.
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5 Sequential modeling of multivariate �nancial markets

De�nition 5.13 (Multivariate two-sided Γ-OU-BNS model)

A d-dimensional stochastic process {St}t≥0 with St = (S
(1)
t , . . . , S

(d)
t ) follows a mul-

tivariate two-sided Γ-OU-BNS model, if the dynamics of the log-price vector Xt =

(X
(1)
t , . . . , X

(d)
t ) = (logS

(1)
t , . . . , logS

(d)
t ) are governed by the following SDEs:

dX
(j)
t =

(
µj + βj

(
σ

(j)
t

)2
)

dt+ σ
(j)
t dW

(j)
t + ρ

(j)
+ dZ

+(j)
t + ρ

(j)
− dZ

−(j)
t ,

d
(
σ

(j)
t

)2
= −λj

(
σ

(j)
t

)2
dt+ dZ

+(j)
t + dZ

−(j)
t ,

with (W (1), . . . ,W (d)) being correlated Brownian motions with correlation matrix Σ

and for all 1 ≤ j ≤ d, µj , βj ∈ R, ρ(j)
+ > 0, ρ

(j)
− < 0, λj > 0, and (Z+(1), Z−(1)), . . . ,

(Z+(d), Z−(d)) are pairs of CPPExp. Furthermore, the 2d-dimensional Lévy process

(Z+(1), Z−(1), . . . , Z+(d), Z−(d)) splits up in two d-dimensional time-changed CPPExp.

At �rst glance, De�nition 5.13 looks cumbersome, but it is necessary to capture all

combinations of possible dependence. As a simplifying example, one might think

about introducing dependence between (Z+(1), . . . , Z+(d)) on the one hand and be-

tween (Z−(1), . . . , Z−(d)) on the other hand, which coincides with the dependence

structure between positive and negative jumps of the multivariate Kou model. In

this case, positive jumps of the processes are mutually dependent and negative jumps

are mutually dependent, but positive jumps occur independently of negative jumps.

A closer examination of how to establish the dependence structure between the time-

change-dependent compound Poisson processes is made in the following section, since

dependence between the jumps has to be introduced in a sound economic manner. In

general, positive jumps in one process could occur simultaneously with negative jumps

of another process. The multivariate Kou model could easily be extended to also

support such a generic structure of joint jumps by adopting the notion of the jump

components of the two-sided Γ-OU-BNS model. Like in the multivariate Γ-OU-BNS

model, in general, the joint characteristic function cannot be expressed in a closed form

solution, only in case of uncorrelated Brownian motions. We therefore omit the calcu-

lation of the joint characteristic function and conclude this chapter with the following

section on some calibration exercises.
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5.5 Application: Calibration exercises

A calibration of the presented multivariate models can be carried out in two separate

steps. Due to the fact that the marginal distributions can be separated from the de-

pendence structure within our models, it is possible to keep the parameters governing

the dependence separated from the parameters governing the marginal distributions.

Therefore, in a �rst step we calibrate independently each univariate model and in a

second step the dependence parameters can be set without altering the already �xed

marginal distributions. Since there is little market data of multi-asset options, this

two step method is very appealing: we can disintegrate one big calibration problem in

two smaller ones. The univariate models can be calibrated to prices of plain vanilla

options, which can easily be carried out.

In a �rst example, we consider a two-dimensional model of two equity indexes, the

DAX and the ESTX 50 Net Return. As described above, we employ the two-step

calibration approach. Thus, we �rst �t the univariate models of Kou and BNS type to

market quotes. We use market data of European call and put options on the indexes.

All market quotes are closing prices of March 30, 2012. Actually, implied volatilities

of bid and ask prices of put and call options are given2. The expiry dates of these

options range from one month to one year. For each maturity, we consider various

strikes. Option prices with a wide bid ask spread are withdrawn. If there is a put

option and a call option with the same strike and maturity, we use the option having

a smaller bid ask spread, which is usually the out-of-the-money option.

After thinning out the implied volatility quotes3, we calibrate the univariate models to

the mid implied volatilities via minimizing the absolute distance of the model implied

volatilities to market implied volatilities, with equal weights on every option. Here,

option prices in the univariate Kou models and in the univariate BNS models are ob-

tained via Fourier inversion by means of the analytic expression for the characteristic

function of the log prices (see Theorem 4.2 and Equation (5.1)).

The calibration of the parameters governing the dependence could be done in a quite

similar way. We calibrate the multivariate model with already �xed univariate parame-

ters to market quotes of European multi-asset options, e.g. best-of-two options. Again,

prices in the multivariate Kou model can be obtained via Fourier methods. Here we

2Initially, implied volatilities of the ESTX 50 (price index) are given. Therefore we transform the

strike prices to the ESTX 50 Net Return (performance index) and assume the implied volatilities

of these indexes to be equal for this calibration exercise.
3The cleansing results in 187 mid implied volatilities for ESTX, 328 for DAX.
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S0 σ0 c η λ ρ

DAX 6946.8 0.16 1.2426 7.0068 2.8025 −0.5398

ESTX 4210.0 0.1755 0.6506 4.2776 1.7224 −0.4620

Table 5.1 Calibrated parameters in the univariate BNS models.

have to use a multi-dimensional extension of the one-dimensional Fourier method (cf.

Eberlein et al. [2010]). Prices in the multivariate BNS model have to be computed

via Monte Carlo simulation, because the joint characteristic function of the log prices

cannot be expressed in an analytic and fast-to-calculate form. In the bivariate case one

has to calibrate only two dependence parameters: the correlation of the two Brownian

motions and the parameter κ driving the dependence of the jump parts. Unfortunately,

we have not enough market data of multi-asset options to get sensible calibration re-

sults. Time series analysis of historical index series may put things right here. This is

what practitioners usually do in those situations. Note, that from a theoretical point

of view, this yields to a mismatch between the historical measure and the risk-neutral

measure. However, due to the lag of data, one could calibrate the marginal models

to option data and determine the dependence parameter through a time series anal-

ysis. Then, one assumes, that the dependence structure would not change much by

a measure change from the historical pricing measure to the risk-neutral measure. In

this thesis, we will not elaborate on such historical calibrations. Table 5.1 presents

the calibrated parameters of the univariate BNS model and Figure 5.1 shows simu-

lated paths of the bivariate model using the calibrated univariate parameters and �xed

dependence parameters.

Analogously, we �t the Kou model to the same set of plain vanilla option quotes.

The resulting univariate parameters are presented in Table 5.2. We observe that the

intensity for positive jumps is 0, i.e. the option data implies zero probability of upwards

jumps. This is not completely surprising in stock price dynamics, which are calibrated

to option prices, see for example the empirical studies by Bakshi et al. [1997] and

Eraker [2004]). Usually, option prices in the market can be well explained without

positive jumps in the model, which underpins once more the tractability of the BNS

model. Figure 5.2 shows simulated paths of the bivariate Kou model with calibrated

univariate parameters and �xed dependence parameters. In contrast to the BNS model,

the volatility stays at the same level. That missing �exibility of volatility clustering
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Figure 5.1 The left graphs show simulated paths of the DAX and ESTX with cali-

brated parameters in the multivariate BNS model. The right graphs show

the corresponding daily log returns. We observe one joint jump within

this time interval, as well as some individual jumps. Here, the correlation

of the Brownian motions is set to 0.5 and κ = 0.7.

S0 σ c− c+ η−

DAX 6946.8 0.1673 0.2729 0 3.8953

ESTX 4210.0 0.1816 0.1641 0 2.8379

Table 5.2 Calibrated parameters in the univariate Kou models.

might be the reason for the extreme jump magnitudes in the Kou model.

In the absence of positive jumps in the calibrated bivariate Kou model (c+ = 0),

dependence is driven by only two parameters, like in the multivariate BNS model,

namely the correlation between the Brownian motions and the dependence parameter

for the negative jumps. The calibrated models can then be used to price multi-asset

options. As an example, we consider an option with the following payo� at maturity,

which is one year:

max
{
K −max

{
eX

DAX
1 , eX

ESTX
1

}
, 0
}
,

i.e. we consider a put option with strike K > 0 on the maximum of the two normalized
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Figure 5.2 The left graphs show simulated paths of the DAX and ESTX with cali-

brated parameters in the multivariate Kou model with a �ve years time

horizon. The right graphs show the corresponding daily log returns. We

observe one joint jump within this time interval. Here, the correlation of

the Brownian motions is set to 0.5 and κ = 0.7.

indexes. This option can be used as an insurance against a global market crash, because

one gets a payo� if the relative performance of both indexes is smaller than K. Here,

XDAX and XESTX represent the log price processes and we set K = 0.9. Figure 5.3

shows model prices of this put option as a function of the dependence parameters.

The valuation of the multi-asset option is done via Monte Carlo pricing. Note that

in the multi-dimensional Kou model it is also possible to use fast Fourier pricing

techniques, because the joint characteristic function of the log-price processes is given

as closed form expression, which was shown in Theorem 5.10. The pricing in the

multi-dimensional BNS model relies on the Monte Carlo method, unless there is no

correlation between the Brownian components, cf. Theorem 5.5.

So far, we just applied two of the three multi-dimensional models we discussed in

this chapter. The remaining one, the two-sided Γ-OU-model, combines the stochastic

volatility of the BNS model and the two-sided jumps of the Kou model. Using the same

market quotes of plain vanilla option prices to �t a bivariate two-sided Γ-OU-model

results in the same model dynamics like in the bivariate (one-sided) Γ-OU-model. That
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Figure 5.3 The left graph shows option prices in the bivariate Kou model, the right

graph shows option prices in the bivariate BNS model. The prices are

given in basis points as a function of the two dependence parameters: the

correlation of the Brownian motions and the parameter κ for the jump

dependence.

is no surprise, since we have seen that the market data does not imply any positive

jumps in the Kou model and it is the same in the two-sided Γ-OU-model. In the absence

of positive jumps the two-sided model just boils down to a one-sided model. As pointed

out above, this is quite common for equity modeling. When modeling other price

processes, di�erent from equities, modeling both, negative and positive jumps may be

inevitable. In the remainder of this chapter, we therefore present a bivariate exchange

rate model based on the two-sided Γ-OU-model presented in the previous section. The

symmetry in exchange rates naturally calls for two-sided jumps. By symmetry, we

mean the fact that the reciprocal of an exchange rate is again an exchange rate. Jumps

in FX rates are mainly driven by unanticipated macroeconomic events (e.g. interest-

rate decisions of some central bank) in one of the monetary areas. If we consider a

multivariate model with one common currency, e.g. modeling the EUR-USD and the

EUR-CHF exchange rates, it is likely that jumps caused by macroeconomic events in

the common currency monetary area have an impact on all exchange rates, e.g. the

debt crisis of Eurozone countries should a�ect both the EUR-USD as well as the EUR-
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5 Sequential modeling of multivariate �nancial markets

CHF exchange rate. Hence, dependence of the jump processes seem to be a desirable

feature of a multivariate model for FX rates with common currency.

To ensure familiarity with the FX markets wording, we recall that an FX rate is the

exchange rate between two currencies, expressed as a fraction. The currency in the

numerator of the fraction is called (by de�nition) domestic currency, while the currency

in the denominator of the fraction is called foreign currency.4 The role each currency

plays in an FX rate is de�ned by market conventions and is often due to historic reasons,

so economic interpretations are not necessarily helpful. A more detailed discussion of

market conventions of FX rates and derivatives is provided in Reiswich and Wystup

[2012], a standard textbook on FX rates modeling is Lipton [2001]. Since we want

to model dependence between the jumps in di�erent FX rates, we have to choose the

coupling of the compound Poisson drivers carefully and in a way to capture economic

intuition. We concentrate on the case of two currency pairs, which illustrates the

problems of choosing the jump dependence structure best. When modeling two FX

rates, we may want to establish an adequate kind of dependence between the di�erent

drivers, accounting separately for positive and negative jumps in the respective FX

rate. Depending on which currency is foreign or domestic in the two currency pairs of

the FX rates, dependence may be introduced in a di�erent manner to result in sound

economic situations. Hence, we can distinguish between the following combinations

that may occur for two di�erent FX rates:

1. There are no common currencies, e.g. in the case of EUR-CHF and USD-JPY.

2. In both FX rates the common currency is the foreign currency, e.g. EUR-USD

and EUR-CHF.

3. In both FX rates the common currency is the domestic currency, e.g. EUR-CHF

and USD-CHF.

4. The common currency is the domestic currency in one FX rate and the foreign

currency in the other FX rate, e.g. EUR-USD and USD-CHF.

In each of those situations, one may argue for di�erent kind of dependence structures

regarding the compound Poisson drivers. Our suggestions are the following:

4The wording �foreign� and �domestic� currency does not necessarily re�ect whether the currency is

foreign or domestic from the point of view of a market participant. The currency EUR, e.g., is

always foreign currency by market convention. Sometimes, the foreign currency is called underlying

currency, while the domestic currency is called accounting or base currency.
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1. In case of no common currencies, one may doubt to introduce dependence be-

tween jumps due to the missing strong link coming from macroeconomic events.

In case that there are no strong ties between the monetary areas (e.g. neither in-

tensive trade relations nor political involvement), this independence assumption

may be a realistic choice. In case of strong economic ties like, e.g., between the

Eurozone (EUR) and the Czech Republic (CZK), one may employ dependence

in the jumps nevertheless, treating the two di�erent currencies similarly as in

the common currency case.

2. In case of a common foreign currency, a sudden macroeconomic event strength-

ening (resp. weakening) the common currency should result in an upward (resp.

downward) jump of both FX rates. Hence, it may be a sensible choice to cou-

ple the drivers for the positive jumps and to separately couple the drivers for

the negative jumps respectively, to ensure the occurrence of joint upward and

downward jumps.

3. In case of a common domestic currency, a sudden macroeconomic event strength-

ening (resp. weakening) the common currency should result in a downward (resp.

upward) jump of both FX rates. Hence, coupling (as in 2.) the drivers for positive

jumps and separately coupling the drivers for negative jumps yields occurring

joint upward and downward jumps.

4. In the last case, a sudden macroeconomic event strengthening (resp. weakening)

the common currency should result in an upward (resp. downward) jump of the

FX rate where the common currency is the foreign currency, but in a downward

(resp. upward) jump of the FX rate where the common currency is the domestic

currency. Hence, cross-coupling the driver for positive jumps in the one FX rate

with the driver for negative jumps in the other FX rate (and vice versa, respec-

tively) ensures upward jumps in one FX rate being occasionally accompanied by

downward jumps in the other FX rate and vice versa.

Summarizing, assuming the currencies CCY1,. . . ,CCY4 to be pairwise di�erent and

denoting by Z+(j) (resp. Z−(j)) the Lévy driver for the positive (resp. negative) jumps

of the jth FX rate, j = 1, 2, we suggest to introduce dependence for the jumps along

Table 5.3.
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5 Sequential modeling of multivariate �nancial markets

Foreign 1 Domestic 1 Foreign 2 Domestic 2 Z̃ Ẑ

CCY1 CCY2 CCY3 CCY4 no dependence no dependence

CCY1 CCY2 CCY1 CCY3 {Z+(1), Z+(2)} {Z−(1), Z−(2)}
CCY2 CCY1 CCY3 CCY1 {Z+(1), Z+(2)} {Z−(1), Z−(2)}
CCY1 CCY2 CCY3 CCY1 {Z+(1), Z−(2)} {Z−(1), Z+(2)}

Table 5.3 Suggested dependence structures for di�erent currency combinations.

When two FX rates are modeled and among the two rates there is a common cur-

rency, this bivariate model always implicitly de�nes a model for the missing currency

pair which is not modeled directly, e.g. when modeling EUR-USD and EUR-CHF

exchange rates simultaneously, the quotient process automatically implies a model

for the USD-CHF exchange rate. Similar to the bivariate Garman�Kohlhagen model

(cf. Garman and Kohlhagen [1983]), modeling two FX rates directly by a bivariate

two-sided BNS model does not necessarily imply a model for the quotient or prod-

uct process from the same family, but the main structure of a jump-di�usion-type

model is maintained. Namely, given two asset-price processes {S(1)
t }t≥0 and {S(2)

t }t≥0

modeled by multivariate two-sided Γ-OU-BNS models, the product and quotient pro-

cesses {S(1)
t S

(2)
t }t≥0 resp. {S(1)

t /S
(2)
t }t≥0 are both of jump-di�usion type, which follows

directly from log(S
(1)
t S

(2)
t ) = X

(1)
t +X

(2)
t and log(S

(1)
t /S

(2)
t ) = X

(1)
t −X

(2)
t .

The implied model for the third missing FX rate can be used to calibrate the param-

eters steering the dependence, namely, the correlation between the Brownian motions

as well as the jump dependence parameters. Additionally, the calibration performance

of the implied model to plain vanilla options yields a plausibility check whether the bi-

variate model may be useful for the evaluation of true bivariate options, e.g. best-of-two

options or spread options.

In the following, we give an example of modeling the FX spot process by the two-

sided Γ-OU-BNS dynamics. Alternative approaches model FX forward rates to get

a model setup suited for pricing cross-currency derivatives depending on FX forward

rates, as for example cross-currency swaps. Multicurrency models built upon FX

forward rates (see e.g. Eberlein and Koval [2006]) on the one hand support �exibility

to price such derivatives, on the other hand, however, these models do not provide the

crucial property of separating the dependence structure from the univariate models,

which makes it extremely di�cult to calibrate such a multivariate model in a sound

manner.
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As input data for the second calibration exercise we use option data on exchange rates

concerning the three currencies EUR, USD, and SEK. Since the EUR-USD exchange

rate can be regarded as an implied exchange rate, i.e.

USD

EUR
=

SEK
EUR
SEK
USD

,

we model the two exchange rates EUR-SEK and USD-SEK directly with two-sided

Γ-OU-BNS models. For each currency pair EUR-SEK, USD-SEK, and EUR-USD,

we have implied volatilities of 204 di�erent plain vanilla options (di�erent maturities,

di�erent moneyness). The option data is as of August 13, 2012, and was provided by

Thomson Reuters.

We consider a market with two traded assets, namely {exp(rUSD t)S
USDSEK
t }t≥0 and

{exp(rEUR t)S
EURSEK
t }t≥0, where SUSDSEK

t , SEURSEK
t denote the exchange rates at

time t and rUSD, rEUR, rSEK denote the risk free interest rates in the corresponding

monetary areas. These assets can be seen as the future value of a unit of the respective

foreign currency (in this case USD or EUR), valued in the domestic currency (which

is SEK). Assume a risk-neutral measure QSEK to be given with numéraire process

{exp(rSEK t)}t≥0, i.e.

{exp((rUSD − rSEK) t)SUSDSEK
t }t≥0 and {exp((rEUR − rSEK) t)SEURSEK

t }t≥0

are martingales with respect to QSEK, governed by the SDEs

dX? SEK
t =

(
rSEK − r? −

(
σ? SEK
t

)2
2

−
c+
? SEK ρ

+
? SEK

η+
? SEK − ρ

+
? SEK

+
c−?SEK ρ

−
?SEK

η−? SEK + ρ−? SEK

)
dt

+ σ? SEK
t dW ?SEK

t + ρ+
?SEK dZ+? SEK

t − ρ−? SEK dZ−? SEK
t ,

dσ2
t
? SEK

=− λ?SEK σ
2
t
? SEK

dt+ dZ+? SEK
t + dZ−?SEK

t ,

for λ? SEK, ρ
+
? SEK, ρ

−
?SEK > 0, ? ∈ {EUR,USD}, {WEURSEK

t ,WUSDSEK
t }t≥0 being a

two-dimensional Brownian motion with correlation r ∈ [−1, 1], and {Z+ EURSEK
t ,

Z+ USDSEK
t }t≥0 and {Z−EURSEK

t , Z−USDSEK
t }t≥0 being (independent) two-dimensional

time-changed CPPExp with parameters(
c+

EURSEK, c
+
USDSEK, η

+
EURSEK, η

+
USDSEK, κ

+
)

and
(
c−EURSEK, c

−
USDSEK, η

−
EURSEK, η

−
USDSEK, κ

−) ,
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5 Sequential modeling of multivariate �nancial markets

where κ+ and κ− are the jump dependence parameters. Hence, the EUR-SEK, EUR-

USD exchange rates follow a bivariate SBNS model. The implied exchange rate process

SEURUSD is given by

{
SEURUSD
t

}
t≥0

=

{
SEURSEK
t

SUSDSEK
t

}
t≥0

.

Due to the change-of-numéraire formula for exchange rates (cf. Pelsser [2003]), the pro-

cess {exp((rEUR − rUSD) t)SEURUSD
t }t≥0 is a martingale with respect to QUSD, where

QUSD is determined by the Radon�Nikodým derivative

dQUSD

dQSEK

∣∣∣∣
t

=
SUSDSEK
t exp(rUSD t)

SUSDSEK
0 exp(rSEK t)

.

For calibration purposes, we use the volatility surfaces of the EUR-SEK and USD-SEK

exchange rates to �t the univariate parameters. Due to the consistency relationships

which have to hold between the exchange rates, we can calibrate the dependence

parameters by �tting them to the volatility surface of EUR-USD. Even in presence of

other �bivariate options� (e.g. best-of-two options), we argue that European options

on the quotient exchange rate currently provide the most liquid and reliable data for

a calibration.

The calibration of the presented multivariate model is done in two steps. Again, due to

the fact that the marginal distributions can be separated from the dependence structure

within our models, it is possible to keep the parameters governing the dependence

separated from the parameters governing the marginal distributions. Therefore, in a

�rst step we independently calibrate both univariate models for the EUR-SEK and

USD-SEK exchange rates. In a second step we calibrate the parameters driving the

dependence structure. In doing so, the �xed univariate parameters are not a�ected by

the second step. Since there is little market data of multi-currency options, this two

step method is very appealing: we can disintegrate one big calibration problem in two

smaller ones. The univariate models are calibrated to volatility surfaces of the EUR-

SEK and USD-SEK exchange rates via minimizing the relative distance of the model

implied option prices to market prices, with equal weights on every option. Option

prices in the univariate two-sided BNS models are obtained via Fourier inversion (cf.

Carr and Madan [1999], Raible [2000]) by means of the characteristic function of the

log-prices.

Table 5.4 gives an overview of the calibration results of the two univariate models.
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? S?SEK
0 σ?SEK

0 c? SEK η? SEK λ? SEK ρ?SEK #options error

EUR 8.229 0.074 0.71 62.13 3.25 1.66 204 1.08%

USD 6.664 0.078 1.15 40.81 2.19 1.22 204 3.17%

Table 5.4 Calibrated parameters in the two univariate FX models.

To reduce the number of parameters, we use symmetric two-sided Γ-OU-BNS models,

i.e. jump parameters of the positive and the negative part coincide. That means, in

average the number of upwards jumps equals the number of downwards jumps and the

expected absolute jump magnitudes are the same. Furthermore, we assume that the

time-change correlation parameters κ+ and κ− coincide; maintaining the symmetric

structure. The relative error in model prices with respect to market prices of the 204

options can be seen as calibration error. The average relative error in the EUR-SEK-

model is about one percent, and in the USD-SEK-model it is around three percent.

Hence, the univariate models �t the FX market reasonably well.
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Figure 5.4 The best matching correlation between the two Brownian motions is 0.52

and the optimal time-change dependence parameter is κ = 0.96.
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The calibration of the parameters governing the dependence is done by means of the

third implied exchange rate, namely by the volatility surface of EUR-USD. Model

prices of EUR-USD-options with payout function f at time t can be obtained by a

Monte Carlo simulation of the following expected value:

EQUSD

[
f(SEURUSD

t ) exp
(
−rUSD t

)]
=

EQSEK

[
f

(
SEURSEK
t

SUSDSEK
t

)
SUSDSEK
t

SUSDSEK
0

exp(−rSEK t)

]
(5.16)

Here, we used 100 000 simulations to calibrate the dependence parameters. The cali-

bration error of the dependence parameters in terms of average relative error is roughly

nine percent, which is still a good result giving consideration to the fact that we try to

�t 204 market prices by means of just two parameters in an implicitly speci�ed model.

A more complex model, obtained by relaxing the condition that κ+ and κ− coincide,

leads to even smaller calibration errors. However, we keep the model as simple as

possible to maintain tractability. Figure 5.4 illustrates the calibration error of this

second step depending on di�erent choices of the dependence parameters. Eventually,

the whole model is �xed and could now be used for pricing multi-currency options, for

instance a best-of-two call option or spread options.
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6 Extremal wrong way risk

In this chapter, we investigate the in�uence of stochastic dependencies in calculating

adjusted derivative prices, recognizing the possibility of default of a contractual party.

As motivated in the introductory Chapter 1, we present a model-free approach to

compute the bilateral credit valuation adjustment (BCVA) including wrong way risk

(WWR) and we derive bounds for extremal cases of wrong way risk, respectively right

way risk. This study has already been published in Scherer and Schulz [2016]. In this

chapter's fundamental section (Section 6.1) we de�ne the notion of BCVA and WWR

and give a broad literature overview of WWR models. In Section 6.2 we present the

model-free ansatz, followed by the optimization of the BCVA in Section 6.3. Section 6.4

concludes with a numerical case study. We calculate the model-free BCVA bounds for

di�erent portfolio situations and compare our results to the popular Hull�White model

(cf. Hull and White [2012]) and to the BCVA optimization results obtained by Helmers

et al. [2016].

6.1 Fundamentals: Credit valuation adjustments and

wrong way risk

Recognizing counterparty default risk as integral part of the valuation process of �nan-

cial derivatives has changed the classical view on option pricing. We will �rst de�ne in

rigorous terms, what we mean mathematically when we speak of CVA, DVA, BCVA,

and WWR. Pragmatically spoken, the CVA is the expected positive portfolio value in

case the counterparty to a derivative transaction defaults �rst. On the contrary, the

DVA is the expected negative portfolio value at someone's own default event, but only

if the counterparty is still alive. The BCVA is simply the sum of CVA and DVA. One

of the earliest articles proposing price adjustments due to potential default events was

published long before the Lehman collapse by Cooper and Mello [1991]. Sorensen and

Bollier [1994] were among the �rst considering a bilateral modi�cation of risk neutral
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prices. It is not easy to understand how a realistic dependence structure ultimately

should look like, how it is parameterized, and how it is estimated. The BCVA cal-

culation becomes even more di�cult if the portfolio value is a�ected by the credit

worthiness of the two parties. In such a case, there is WWR. Classically, one only rec-

ognizes WWR, if the dependence structure is positive, i.e. the dependency is in such an

extend that high portfolio values imply higher default probabilities of the counterparty.

Note that someone's wrong-way risk is the counterparty's right-way risk (negative de-

pendence), and vice versa. Throughout the present thesis, we simply speak of WWR,

if the portfolio value and the default times are not stochastically independent. Thus,

calculating WWR requires a sound model for the dependence structure between the

default times of the two contractual parties and the derivative/portfolio value at the

�rst of the two default times. There exist many proposals, but no market consensus,

on how this dependence structure should be modeled to soundly recognize WWR. One

of the seminal models taking WWR into account was presented by Du�e and Huang

[1996].

In practice, one typically has expertise in using models that explain the marginal laws

of the involved default times on the one hand, and stochastic models for the evolution

of the underlying to the considered derivative transaction (or portfolios of derivatives)

on the other hand. Hence, a variety of WWR models exist generalizing these univari-

ate models. Since the models for the underlying dynamics vary depending on asset

classes and type of derivative, it is not surprising that a similar distinction for WWR

models exists. Popular WWR models with focus on some speci�c asset classes are, for

example: Interest rate derivatives (Brigo and Pallavicini [2007], Brigo and Pallavicini

[2008]), equity derivatives (Brigo and Masetti [2005], Brigo et al. [2011]), products

on commodities (Brigo and Bakkar [2009]), or CDS (Brigo and Chourdakis [2008],

Leung and Kwok [2005], Hull and While [2001], Walker [2006], Bielecki et al. [2012],

Blanchet-Scalliet and Patras [2011], Lipton and Sepp [2009], Brigo et al. [2014]).

In contrast to models dedicated for speci�c asset classes or bespoke types of derivatives,

here are also general WWR models which can be used for arbitrary asset classes. This

universality is achieved by introducing the dependence structure in a second step after

�xing the marginal models, see, for example, Hull and White [2012], or the so called

exposure sampling approaches Sokol [2010], Cespedes et al. [2010], and Rosen and

Saunders [2012]. Our methodology follows the very same two-step approach. In most

situations market data to estimate/calibrate such univariate models is available, e.g.

CDS spreads for the calibration of the default models. With respect to the time
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evolution of the underlying processes, or on a higher level the fair portfolio value, it is

often an economic scenario generator creating sample paths to be used later on. Much

less obvious than specifying the marginal laws, and hence prone to model risk, is the

choice of dependence model that is subsequently �pulled upon� the marginal models

in use.

Particularly, we aim at maximizing, respectively minimizing, the BCVA across all

multivariate distributions whose projections on the marginal laws are consistent with

the model of choice for the marginal default times and the portfolio process. The

marginal laws are speci�ed in the �rst place. From a mathematical perspective, we

work on a discrete probability space and exploit the machinery of mass-transportation

problems. The canonical formulation of this problem is straightforward, see (6.2), but

computationally very ine�cient. However, it is observed that some information about

the dependence structure can be disregarded without changing the optimal solution,

which leads to an equivalent reformulation (6.3) of the problem that tremendously

reduces the calculation time.

Other studies, like Turnbull [2005] and Cherubini [2013], already investigated upper

bounds for valuation adjustments. Yet, the resulting bounds are not necessarily at-

tained by a joint distribution, so they are not tight. Moreover, they only considered

the case of unilateral CVA. Closest to our work is Helmers et al. [2016], where the

dependence structure between the default times is explained using some �xed copula

and it is the dependence to the derivative exposure that is left as a source of model

risk. Clearly, this conveniently simpli�es the problem from a computational point of

view, but it falls short in explaining the full degree of model risk; even though the

bivariate Gaussian copula used exemplarily interpolates from counter-monotonicity to

co-monotonicity. Glasserman and Yang [2016] use a similar ansatz to derive bounds

for the unilateral CVA. Both approaches assume a discrete-time framework and a �-

nite set of portfolio paths coming either from an economic scenario generator or from

Monte Carlo samples of a �nancial market model. There is also active research (see,

for example, Puccetti and Rüschendorf [2013], Embrechts et al. [2013]) based on the

seminal work by Rüschendorf [1982] and Makarov [1981] in the somewhat related prob-

lem of identifying upper and lower bounds for the portfolio value-at-risk (VaR). The

extremal portfolio VaR might be derived by the so-called rearrangement algorithm,

which optimizes the VaR of a sum of random variables whose marginal laws are �xed,

but the dependence structure can freely be chosen.
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6.2 Model-free approach

Consistent with a typical IT infrastructure, we assume the time between the valuation

date and the considered maturity to be discretized in (not necessarily equidistant)

bins. The two considered default times are thus discrete random variables taking

values within these bins � their (marginal) probabilities are calibrated to market data

(single name CDS, bond spreads, etc.). We assume to work with M trajectories of

the (portfolio or individual derivative) value of the considered transaction, produced

either by an economic scenario generator or approximating a �nancial market model

by means of a Monte Carlo simulation. Thus, we consider the discrete event space

Ω = V × D ×D equipped with the power set P(Ω) as σ-algebra, where

V :=
{
v(1), v(2), . . . , v(M)

}
, v(i) ∈ RK ∀i ∈ {1, 2, . . . ,M}, K,M ∈ N,

D := {1, 2, . . . ,K + 1}.

One state ω = (v, dA, dB) ∈ Ω describes a tuple consisting of a trajectory of the

portfolio value v := {vj}1≤j≤K , a realization of a default time dA of party A, and

a default time dB of party B. Then, the canonical projections V : ω 7→ v, DA :

ω 7→ dA, DB : ω 7→ dB represent the three crucial random variables in a BCVA

calculation. As each trajectory of the portfolio value represents a result from an

economic scenario engine, a discrete-time setup is used. Thus, the set {1, 2, . . . ,K}
denotes the grid points of the portfolio value simulation. Furthermore, the set D
represents the possible default times of each of the two contractual parties, whereby

the stateK+1 describes a default occurring after the last considered grid pointK. The

number of grid pointsK, the simulated time interval, the distribution of the grid points

within the simulated time interval, and the number of simulated scenarios M vary

depending on the application.1 We assume that the value path v already incorporates

discounting, such that vj times the respective loss given default ratio can be seen as the

discounted value that is lost in case of a default of one party within the time bucket j.

Let us denote the loss given default ratios by LA and LB. The portfolio value trajectory

V and the default times DA, DB induce three marginal probability spaces, namely

(V, P(V), PV ), (D, P(D), PA), (D, P(D), PB). As a standing assumption throughout

1Typically, banks use 50 to 100 grid points for a CVA calculation. The simulated time horizon is �xed

and ranges, depending on the considered application, between one year and 50 years. The location

of the grid points is usually non-equidistant, s.t. there are more grid point in the short-term as

there are in the long-term. The number of simulations M typically exceeds 1.000.
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6.2 Model-free approach

this work, we assume the marginal distributions PV , PA, PB to be known, whereas the

joint distribution P on the product space (Ω,P(Ω)) is considered unknown.

Remark 6.1 (Valuation of the BCVA)

De�ne for each ω = (v, dA, dB) ∈ Ω the state-dependent BCVA (from the perspective

of party A) by

BCVAstate(ω) :=


max{0, vdB}LBdB if dA > dB, (loss if party B defaults �rst)

min{0, vdA}LAdA if dA < dB, (loss if party A defaults �rst)

ξ(v, dA) if dA = dB. (loss in case of a joint default)

(6.1)

Note that there are di�erent possible ways on how to deal with the event of a joint

default. Therefore, in case of a joint default we express the payo� with the auxiliary

function ξ within the above formula to have a �exible setup. Actually, as we are in a

discrete-time setup, a joint default in this framework means that both parties default

between (the same) two consecutive grid points. In the next section we make clear

what this term turns out to be within the prudent best-case/worst-case optimization.

Hence, the expected BCVA from the perspective of party A is then given by

BCVA =
∑
ω∈Ω

BCVAstate(ω)P(ω)

=
∑
v∈V

∑
dA∈D

∑
dB∈D

BCVAstate((v, dA, dB))P((v, dA, dB)). (6.2)

As the portfolio value paths result from an economic scenario engine, all paths v ∈ V
have the identical probability, i.e. PV (v) = 1/M, ∀v ∈ V.2 Thus, by conditioning on

the portfolio value path and using rules for conditional probabilities, Equation (6.2)

boils down to

BCVA =
1

M

∑
v∈V

∑
(dA, dB)∈D×D

BCVAstate((v, dA, dB))P (DA = dA, DB = dB |V = v )

=
1

M

∑
v∈V

K∑
k=1

(
max{0, vk}P (k = DB < DA |V = v )LBk (6.3)

+ min{0, vk}P (k = DA < DB |V = v )LAk

2If non-identical weights are assigned to the generated paths, this simply corresponds to a di�erent

condition (6) in Problem 3.1.
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6 Extremal wrong way risk

+ ξ(v, k)P (k = DA = DB |V = v )
)
.

In the last step, we plugged in Equation (6.1). The three terms within the big paren-

theses in Equation (6.3) have a nice interpretation: By summing up the �rst part over

all k and v, we get the loss party A faces in case the counterparty defaults �rst, the

summed up second part represents the gain (negative loss) if party A defaults �rst,

and the third part describes the loss or gain in the case of simultaneous defaults of

both parties. Equation (6.3) is the starting point in our optimization procedure in

Section 6.3.

This discrete-time ansatz of modeling the random evolution of some underlying, some

derived risk-neutral portfolio value, or even a full portfolio containing the netted value

of all outstanding positions against the considered counterpart is market practice to

overcome the big modeling and implementation challenges �nancial institutions are

imposed to. There is not much academic literature on how such scenarios are ultimately

generated. Our considerations, however, are completely generic and thus independent

of the choice of a speci�c scenario engine. Moreover, one can also include the typical

math �nance view on �nancial markets by starting out with one's favorite model for

the stochastic process describing the underlying of a derivative and drawing a sample

of M trajectories from derived value.

6.3 BCVA optimization

In this section, we aim at maximizing, resp. minimizing, the BCVA in Equation (6.3).

Using the notation from the previous section, we de�ne cnij := BCVAstate(v
(n), i, j)

and pnij := P(v(n), i, j), ∀1 ≤ n ≤M,∀1 ≤ i, j ≤ K + 1. Note that the values cnij can

be precomputed due to Equation (6.1). By Equation (6.2), the BCVA is then given

by

BCVA =

M∑
n=1

K+1∑
i=1

K+1∑
j=1

cnij pnij .

In order to optimize this expression over all possible joint distributions P on Ω pre-

serving the pre-speci�ed marginal laws, one has to �nd an optimal solution for the

atomic probabilities (pnij)1≤n≤M, 1≤i,j≤K+1 of each state ω ∈ Ω. Furthermore, since
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6.3 BCVA optimization

the marginal distributions PV , PA, and PB need to be preserved, one obtains con-

straints to characterize all feasible distributions. Hence, the following optimization

problem maximizes the BCVA.

Optimization problem 6.2 (Maximizing BCVA � brute force)

max
M∑
n=1

K+1∑
i=1

K+1∑
j=1

cnij pnij

subject to the constraints

M∑
n=1

K+1∑
i=1

pnij = PB(j), ∀1 ≤ j ≤ K + 1, (6.4)

M∑
n=1

K+1∑
j=1

pnij = PA(i), ∀1 ≤ i ≤ K + 1, (6.5)

K+1∑
i=1

K+1∑
j=1

pnij = PV (n) =
1

M
, ∀1 ≤ n ≤M, (6.6)

0 ≤ pnij , ∀1 ≤ n ≤M,∀1 ≤ i, j ≤ K + 1. (6.7)

Optimization problem 6.2 is a classic three-dimensional axial transportation problem,

which can be solved e�ciently, see for example Sharma [1977]. In a framework real-

istic for the present problem, however, it is almost impossible to solve Optimization

problem 6.2 due to the large number of variables. Note that in order to arrive at

an optimal solution, one has to �nd MK2 atomic probabilities. As mentioned in the

previous section, typical values for K and M can easily lead to more than 10 million

variables. Due to memory issues and an extremely long computation time, this prob-

lem is not tractable anymore.

Helmers et al. [2016] presented within a less general but related model setup a sim-

pli�cation of Optimization problem 6.2 by �xing the dependence structure between

the default times of the two parties A and B. Hence, the space of possible joint dis-

tributions is reduced by one dimension, corresponding to stricter constraints. On the

one hand, this simpli�es the optimization problem tremendously. On the other hand,

the number of variables is still of order MK2. Hence, the problem can be solved in

less time, as long as no memory issues occur. Nevertheless, the space of possible joint

distributions is restricted, such that the BCVA resulting from that simpli�ed problem
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6 Extremal wrong way risk

is only an optimal solution within a speci�c subclass of joint probability distributions.

In the following we present an optimization problem with order of complexity MK,

which maximizes the BCVA over all possible joint distributions. The idea is to use the

conditional formula in Equation (6.3) instead of Equation (6.2). To do so, we de�ne

abbreviations for the ingredients of Equation (6.3). Thus, for all k ≤ K+1, n ≤M ,

v+(n, k) := max
{

0, v
(n)
k

}
LBk , v−(n, k) := min

{
0, v

(n)
k

}
LAk ,

dA(n, k) := P
(
k = DA

∣∣∣V = v(n)
)
, dB(n, k) := P

(
k = DB

∣∣∣V = v(n)
)
,

cA(n, k) := P
(
k = DA < DB

∣∣∣V = v(n)
)
, cB(n, k) := P

(
k = DB < DA

∣∣∣V = v(n)
)
,

cJ(n, k) := P
(
k = DA = DB

∣∣∣V = v(n)
)
.

Hence, the BCVA is given by

BCVA =
1

M

M∑
n=1

K∑
k=1

v+(n, k)cB(n, k)︸ ︷︷ ︸
B defaults �rst, at k

+ v−(n, k)cA(n, k)︸ ︷︷ ︸
A defaults �rst, at k

+ ξ(v(n), k)cJ(n, k)︸ ︷︷ ︸
A and B default at k

 .

(6.8)

Figure 6.1 Illustration of the variables of the optimization problems for K = M = 5.

On the left, we visualize Optimization problem 6.2, and on the right,

Optimization problem 6.3. For example, the highlighted square on the left

corresponds to p125, the highlighted rectangle on the right corresponds to∑6
j=3 p12j = P(2 = DA < DB, V = v(1)) = P(2 = DA < DB|V =

v(1))P(V = v(1)) = cA(1, 2)/5.
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6.3 BCVA optimization

In comparison to Optimization problem 6.2, where MK2 variables have to be set by

the optimizer as illustrated in the left part in Figure 6.1, signi�cantly fewer variables

are needed in Equation (6.8). This reduction of complexity is visualized in the right

part in Figure 6.1. Hence, Equation (6.8) can be used as objective function for a

more advanced optimization to maximize the BCVA, which is done in Optimization

problem 6.3. Compared to the naïve optimization problem, the constraints become

more evolved. Theorem 6.4 shows that the constraints, as stated in Optimization

problem 6.3, are chosen in the right way.

Optimization problem 6.3 (Maximizing BCVA � sophisticated approach)

max
1

M

M∑
n=1

K∑
k=1

(
v+(n, k)cB(n, k) + v−(n, k)cA(n, k) + ξ(v(n), k)cJ(n, k)

)
subject to the constraints

0 ≤ cA(n, k), 0 ≤ cB(n, k), ∀1 ≤ n ≤M, ∀1 ≤ k ≤ K,

(6.9)

0 ≤ cJ(n, k), ∀1 ≤ n ≤M,∀1 ≤ k ≤ K + 1

(6.10)

cA(n, k) + cJ(n, k) ≤ dA(n, k), ∀1 ≤ n ≤M,∀1 ≤ k ≤ K,
(6.11)

cB(n, k) + cJ(n, k) ≤ dB(n, k), ∀1 ≤ n ≤M,∀1 ≤ k ≤ K,
(6.12)

K+1∑
k=1

dA(n, k) = 1,

K+1∑
k=1

dB(n, k) = 1, ∀1 ≤ n ≤M, (6.13)

M∑
n=1

dA(n, k) = MPA(k),
M∑
n=1

dB(n, k) = MPB(k), ∀1 ≤ k ≤ K + 1, (6.14)

K∑
k=1

(cA(n, k) + cB(n, k)) +
K+1∑
k=1

cJ(n, k) = 1, ∀1 ≤ n ≤M, (6.15)

k∑
i=1

(dA(n, i)− cJ(n, i)− cA(n, i)) ≤
k−1∑
i=1

cB(n, i), ∀1 ≤ n ≤M,∀1 ≤ k ≤ K,

(6.16)

137



6 Extremal wrong way risk

k∑
i=1

(dB(n, i)− cJ(n, i)− cB(n, i)) ≤
k−1∑
i=1

cA(n, i), ∀1 ≤ n ≤M,∀1 ≤ k ≤ K.

(6.17)

Theorem 6.4 (The optimal values agree)

A solution of Optimization problem 6.3 maximizes the BCVA. Hence, solving the more

tractable Problem 6.3 instead of Problem 6.2 is possible.

Proof

As the objective function coincides with Equation (6.3), there are two steps to prove:

(i) Every joint distribution P with marginal distributions PV , PA, PB ful�lls the

Constraints (6.9)�(6.17).

(ii) For each feasible solution dA(n, k), dB(n, k), cA(n, k), cB(n, k), cJ(n, k),∀1 ≤
n ≤M,∀1 ≤ k ≤ K + 1, there is a joint distribution P = (pnij)1≤n≤M,1≤i,j≤K+1

with marginal distributions PV , PA, PB.

In order to prove (i), we choose pnij = P(v(n), i, j), ∀1 ≤ n ≤ M,∀1 ≤ i, j ≤ K + 1

arbitrarily. Then, the variables in Optimization problem 6.3 are given by:

dA(n, k) = M
K+1∑
i=1

pnki, dB(n, k) = M
K+1∑
i=1

pnik,

cA(n, k) = M

K+1∑
i=k+1

pnki, cB(n, k) = M

K+1∑
i=k+1

pnik,

cJ(n, k) = Mpnkk.

Since pnij ≥ 0, ∀1 ≤ n ≤ M,∀1 ≤ i, j ≤ K + 1, Conditions (6.9)�(6.12) are trivial.

The Constraints (6.13)�(6.15) are also ful�lled, because P is the joint distribution with

marginals PV , PA, PB, and PV is the discrete uniform distribution on {1, . . . , M}. To
check Condition (6.16), we plug in the de�nitions and get

k∑
i=1

(dA(n, i)− cJ(n, i)− cA(n, i)) = M
k∑
i=1

i−1∑
j=1

pnij = M
k−1∑
j=1

k∑
i=j+1

pnij

≤M
k−1∑
j=1

K+1∑
i=j+1

pnij =
k−1∑
j=1

cB(n, j).
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6.3 BCVA optimization

Constraint (6.17) follows analogously.

To prove (ii), let a feasible distribution be given. Me must now construct a joint

distribution pnij = P(v(n), i, j), ∀1 ≤ n ≤M,∀1 ≤ i, j ≤ K + 1, ful�lling the following

four conditions (cf. the constraints in Optimization problem 6.2),

(A) 0 ≤ pnij , ∀1 ≤ n ≤M,∀1 ≤ i, j ≤ K + 1,

(B)
∑M

n=1

∑K+1
i=1 pnij = PB(j), ∀1 ≤ j ≤ K + 1,

(C)
∑M

n=1

∑K+1
j=1 pnij = PA(i), ∀1 ≤ i ≤ K + 1,

(D)
∑K+1

i=1

∑K+1
j=1 pnij = PV (n) = 1

M , ∀1 ≤ n ≤M.

We construct the joint distribution P in a recursive scheme ∀1 ≤ n ≤M by

∀1 ≤ i ≤ K + 1, pnii :=
cJ(n, i)

M
,

∀1 ≤ i < j ≤ K + 1,

pnij :=

(
1
M cA(n, i)−

∑j−1
k=i+1 pnik

)
(dB(n, j)− cB(n, j)− cJ(n, j))∑j−1

k=1 (cA(n, k) + cB(n, k) + cJ(n, k)− dB(n, k))
,

∀1 ≤ j < i ≤ K + 1,

pnij :=

(
1
M cB(n, j)−

∑i−1
k=j+1 pnkj

)
(dA(n, i)− cA(n, i)− cJ(n, i))∑i−1

k=1 (cA(n, k) + cB(n, k) + cJ(n, k)− dA(n, k))
,

where, for sake of simplicity, we de�ne ∀1 ≤ n ≤M , cA(n,K+1) := 0 =: cB(n,K+1).

This recursive construction may seem a little cumbersome on the �rst sight. The idea

is, however, quite simple. The �rst step is to cut the three dimensions into slices for

each 1 ≤ n ≤ M , as illustrated in the right part of Figure 6.1. Second, the diagonal

entries in each plane are given by cJ . Next, the secondary diagonals are set dependent

on the probability mass which is available and not yet �xed in earlier steps. The re-

cursive scheme goes on with the third-rate diagonals, and all the rest of it.

It is left to show that Conditions (A)�(D) are valid for this joint distribution P. Let

us consider (A) �rst. It follows directly from Constraint (6.10) that 0 ≤ pnii, ∀1 ≤
n ≤M,∀1 ≤ i ≤ K + 1. Note, that ∀1 ≤ n ≤M , ∀1 ≤ j ≤ K it holds by Constraints

(6.17) and (6.12) that

j−1∑
k=1

(cA(n, k) + cB(n, k) + cJ(n, k)− dB(n, k)) ≥ dB(n, j)− cB(n, j)− cJ(n, k) ≥ 0,
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6 Extremal wrong way risk

and by Constraints (6.13) and (6.15) that

K∑
k=1

(cA(n, k) + cB(n, k) + cJ(n, k)− dB(n, k)) = dB(n,K + 1)− cJ(n,K + 1).

Therefore, we know that ∀1 ≤ n ≤M , ∀1 ≤ i < j ≤ K + 1,

pnij ≤
1

M
cA(n, i)−

j−1∑
k=i+1

pnik, (6.18)

and

pnij ≥ 0⇔ 1

M
cA(n, i) ≥

j−1∑
k=i+1

pnik. (6.19)

Equations (6.18) and (6.19) yield that pnij ≥ 0, ∀1 ≤ n ≤M , ∀1 ≤ i < j− 1 < K + 1.

Constraint (6.9) and (6.19) yield that pnij ≥ 0, ∀1 ≤ n ≤M , ∀1 ≤ i = j − 1 < K + 1.

Altogether, pnij ≥ 0, ∀1 ≤ n ≤M , ∀1 ≤ i < j ≤ K + 1.

Analogously, by using Constraints (6.11) and (6.16) instead of Constraints (6.12) and

(6.17), we get pnij ≥ 0, ∀1 ≤ n ≤ M , ∀1 ≤ j < i ≤ K + 1. Hence, Condition (A) is

ful�lled.

To check Condition (B), we will use the following auxiliary statements:

(a)
∑j−1

i=1 pnij = (dB(n, j)− cB(n, j)− cJ(n, j)) 1
M , ∀1 ≤ n ≤M , ∀1 < j ≤ K + 1,

(b)
∑K+1

i=j+1 pnij = cB(n, j) 1
M , ∀1 ≤ n ≤M , ∀1 ≤ j < K + 1.

Statement (a) is shown via induction.

Base case (j = 2): The de�nition of pn12 gives

pn12 =
1
M cA(n, 1) (dB(n, 2)− cB(n, 2)− cJ(n, 2))

cA(n, 1) + cB(n, 1) + cJ(n, 1)− dB(n, 1)
.

Constraints (6.12) and (6.17) yield that

cB(n, 1) + cJ(n, 1)− dB(n, 1) = 0. (6.20)

Hence, the base case is ful�lled.

Inductive Step (2, . . . , j − 1 7→ j): By de�nition of pnij , we get

j−1∑
i=1

pnij =

j−1∑
i=1

(
1
M cA(n, i)−

∑j−1
k=i+1 pnik

)
(dB(n, j)− cB(n, j)− cJ(n, j))∑j−1

k=1 (cA(n, k) + cB(n, k) + cJ(n, k)− dB(n, k))
. (6.21)
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Note, that the induction hypothesis yields

j−1∑
i=1

j−1∑
k=i+1

pnik =

j−1∑
k=1

k−1∑
i=1

pnik =

j−1∑
k=1

1

M
(dB(n, k)− cB(n, k)− cJ(n, k)) . (6.22)

The combination of Equations (6.21) and (6.22) concludes the inductive step.

To prove Statement (b), we consider the de�nition of pn(K+1)j , namely

pn(K+1)j =

(
1
M cB(n, j)−

∑K
k=j+1 pnkj

)
(dA(n,K + 1)− cJ(n,K + 1))∑K

k=1 (cA(n, k) + cB(n, k) + cJ(n, k)− dA(n, k))
.

Combining Constraints (6.13) and (6.15) gives

K∑
k=1

(cA(n, k) + cB(n, k) + cJ(n, k)− dA(n, k)) = dA(n,K + 1)− cJ(n,K + 1)),

and therefore,

pn(K+1)j =
1

M
cB(n, j)−

K∑
k=j+1

pnkj ⇔
K+1∑
k=j+1

pnkj =
1

M
cB(n, j),

and Statement (b) is shown.

Now, we are ready to check Condition (B). By using Statements (a) and (b), we can

conclude for all 1 ≤ n ≤M , and 1 < j ≤ K + 1 that

K+1∑
i=1

pnij =

j−1∑
i=1

pnij + pnjj +
K+1∑
i=j+1

pnij =
1

M
dB(n, j). (6.23)

Moreover, Statement (b) and Equation (6.20) yield

K+1∑
i=1

pni1 = pn11 +

K+1∑
i=2

pnij =
1

M
cJ(n, 1) +

1

M
cB(n, 1) =

1

M
dB(n, 1). (6.24)

Combining Constraint (6.14), Equation (6.23), and Equation (6.24) shows Condition

(B).

Condition (C) follows analogously to Condition (B) by using Constraints (6.11) and

(6.16) instead of Constraints (6.12) and (6.17).

Finally, Condition (D) follows from Constraint (6.13), Equation (6.23), and Equa-

tion (6.24). This concludes the proof of Step (ii) and therefore the proof of this

theorem. �
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6 Extremal wrong way risk

Remark 6.5 (Solutions to Optimization problem 6.3)

As illustrated in Figure 6.1, an optimal solution to Optimization problem 6.3 does

not carry all information about the joint distribution P. In fact, only the information

needed for the BCVA calculation is available. However, the proof of Theorem 6.4

gives one possible way on how to construct a joint distribution out of this incomplete

information.

Remark 6.6 (Joint defaults)

So far, we did not specify the function ξ in Equation (6.1). This function de�nes how

joint defaults of both parties are handled. A joint default means that both parties

default within the same interval between two consecutive grid points. In order to opti-

mize the BCVA and search for truly conservative extremes, our choice of this function

is as follows: For a BCVA maximization, one treats joint defaults as counterparty

defaults, i.e. one assumes that the counterparty defaults �rst, and vice versa in case of

a BCVA minimization. However, other ways of handling joint defaults are imaginable

and �t into our setup.

Remark 6.7 (Increase in e�ciency)

Using Optimization problem 6.3 has two main advantages over using Optimization

problem 6.2, because of the reduced complexity: First, it can be solved in less time.

Second, problems with higher values for the number of simulationsM and the number

of grid points K are solvable.

In the next chapter, we have a look at some examples. We consider a setup with

M = 1.000 and K = 84. In contrast to Optimization problem 6.2, Optimization

problem 6.2 is not solvable on a personal computer (with 4 GB RAM) for such high

values of M and K, due to memory issues. For simpler problems, where Optimization

problem 6.2 is still solvable (e.g. M = 500 and K = 84), the run time of Problem 6.2

(544 seconds) is roughly ten times higher than the run time of Problem 6.3 (51 seconds).

6.4 Application: Model-free BCVA bounds

In this numerical case study, we perform the BCVA optimization procedure from

Section 6.3. In order to calculate the BCVA for a portfolio of �nancial derivatives,

banks usually de�ne a set of risk factors (like interest rates, exchange rates, stock
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prices, credit factors, etc.), which are relevant for the portfolio valuation. A scenario

generator simulates paths of the risk factors on which the portfolio is repriced resulting

in a set of portfolio value paths. The models we presented in the previous sections,

for example, could be used to generate those path. Here, we optimize the BCVA

for three interest-rate swaps: one in-the-money, one at-the-money, and one out-of-

the-money. For each swap we have M = 1.000 trajectories of the discounted values

on a non-equidistant (84 grid points) discretization of time. These are generated by

an economic-scenario engine and visualized in Figure 6.3. The BCVA is calculated

from the bank's perspective. Recovery rates are �xed at 40 percent. Besides the

portfolio values, we need the default probability distributions of the two parties, which

are extracted from a hazard rate model calibrated to CDS spreads and illustrated in

Figure 6.2. It is important to mention that in this example the default probability of

the counterparty is always higher than the bank's default probability. Since a BCVA-

minimization can be seen as a BCVA-maximization from the counterparty's view, we

can evaluate the impact of WWR for two basic situation, namely a counterparty with

better credit quality than the bank and a counterparty with worse credit rating.

Distribution functions of the default times

Bank
Counterparty

2015−04−30 2015−10−30 2016−05−25 2017−01−20 2017−09−17 2018−04−30 2018−11−11 2019−07−08 2020−03−05

0
0.

02
0.

04
0.

06
0.

08
0.

1
0.

12

Figure 6.2 Cumulative distribution functions of bank and counterparty.

Note that our setup is �exible enough to optimize a whole portfolio at once. However,

for having a better intuition about the results we restrict this numerical example to

single products. Obviously, the BCVA can be seen as the sum of CVA (solely driven by

the positive part of the portfolio value and the event where the counterparty defaults
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6 Extremal wrong way risk
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Interest rate swap (OTM, 5 years, long position, values in 1.000)
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Figure 6.3 The �rst 250 scenarios of the three products; one in-the-money swap,

one at-the-money swap, and one out-of-the-money swap, generated by an

economic-scenario engine. For the case study we used 1.000 paths.
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6.4 Application: Model-free BCVA bounds

�rst) and DVA (solely driven by the negative part and a �rst default by the bank). Let

us have a look at an extremal case: Assume that every path is positive at each point

in time (which is almost true for the considered ITM swap). Then, the DVA vanishes

and the BCVA coincides with the CVA. Hence, one can easily construct dependence

structures between the default times leading to the maximal BCVA by ensuring that

the counterparty defaults before the bank as often as possible. Co-monotonicity or

counter-monotonicity between the default times are typical candidates, as we will see

within the examples below. Therefore, the overall structure of the portfolio path is

very important. We choose three kinds of swaps to cover di�erent situations: (1) the

symmetric case (ATM swap) and the two cases where the majority of the paths are

either (2) positive or (3) negative (ITM swap and OTM swap). This provides a sound

insight into the functioning of the optimizing procedure.

In Figure 6.4 the results of the model-free BCVA bounds are given. For a comparison,

we calculated the BCVA in case of no WWR, i.e. under the assumption of independence

between the portfolio value and the default times. Furthermore, we implemented the

very popular WWR-model by Hull and White [2012]. Within this model, one special

dependence structure is induced. By taking the parameters to their extremes, one

ends up with an interval of possible Hull�White BCVA values. Here, we adopt the

model speci�cations and the calibration procedure presented in the appendix of Hull

and White [2012], which also starts with given trajectories of the portfolio value and a

discrete-time setup. The hazard rate directly depends on the portfolio value, and the

dependence is driven by one parameter, called b. By letting b go to the extremes, we end

up with an interval of Hull�White BCVA values. The maximal and minimal values are

also shown in this �gure. These values can be seen as the maximal and minimal BCVA

coming from an optimization over all dependence structures �tting into the Hull�White

WWR-model. Furthermore, by assuming one special joint distribution between the

default times of the two parties, one obtains an optimization over a subclass of possible

dependence structures which is exactly the setup of Helmers et al. [2016]. Here, we

exemplarily chose a Gaussian copula to describe the dependence between the default

times. We have a look at di�erent choices of the dependence parameter ρ, namely:

ρ = 1 (co-monotonicity between the defaults), ρ = 0 (independence between the

defaults), ρ = −1 (counter-monotonicity between the defaults), ρ = 0.5 (interpolation

between co-monotonicity and independence), and ρ = −0.5 (interpolation between

counter-monotonicity and independence).
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−2290 15400Model-free boundsModel-free bounds
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−478 7088Hull�White modelHull�White model
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−7085 2240Gaussian copula (ρ = −0.5)Gaussian copula (ρ = −0.5)

−7092 2244Counter-monotone defaultsCounter-monotone defaults

Figure 6.4 BCVA bounds in the respective WWR models. The dashed line in the

middle of the illustration corresponds to the BCVA value without WWR.

By going to the right side we meet WWR, which is increasing to the

maximal possible WWR. Going to the left side results into WWR from

the counterparty's perspective. The model-free bounds are the results of

the optimization procedure presented in Section 6.3.
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Discussion of the optimization results

By studying the results in Figure 6.4 some natural questions arise, which we answer

in the following:

• Can co-monotonicity between the default times always explain maxi-

mal BCVA values?

In general, no. In many practical situations, however, it is true. It actually de-

pends on the two marginal default distributions. In case the distribution function

of the counterparty's default time lies always above the default distribution func-

tion of the bank, i.e. P(DA ≤ t) < P(DB ≤ t) for all t ∈ (0, T ],3 co-monotonicity

between the default times implies that the counterparty always defaults �rst.

Hence, co-monotonicity can lead to maximal CVA values, whereas the DVA van-

ishes, because the bank never defaults �rst. Therefore, the maximal BCVA can

be produced by co-monotonicity. In the case where P(DA ≤ t) > P(DB ≤ t) for
all t ∈ (0, T ], the DVA can be maximized, and the CVA vanishes. For this rea-

son, co-monotonicity leads to the lower BCVA bound. In every other situation,

i.e. the two distribution functions have at least one intersection point in (0, T ],

co-monotonicity is not necessarily able to explain the BCVA bounds. Neverthe-

less, it is quite realistic in real-world situations that the distribution functions

have no intersection points. In our example, the default distribution function of

the counterparty lies above the distribution function of the bank's default time,

as one can see in Figure 6.2. Hence, the maximal BCVA can be generated by

co-monotonicity between the default times due to the special constellation of the

default probabilities.

• Why is the co-monotone-interval for the OTM swap so tiny?

As we have seen in the answer to the previous question, co-monotonicity ensures

that either the CVA or the DVA vanishes, as long as one default time distribution

function is greater than the other within the whole interval (0, T ]. In our case,

the DVA vanishes and therefore, the BCVA is always positive, even in situation

where the majority of the portfolio paths is negative. This explains the relatively

small interval for the OTM Swap.

• Why does counter-monotonicity lead to the maximal BCVA for the

ITM swap and the ATM swap but not for the OTM swap?

3T is the point in time corresponding to the last considered grid point K.
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6 Extremal wrong way risk

Again, this phenomenon can be explained by the default probabilities of the two

parties. As long as P(DA ≤ T ) +P(DB ≤ T ) < 1, counter-monotonicity guaran-

tees that every default event is a �rst default, no matter whether it is a default of

the bank or the counterparty. The reason is that the counter-monotonicity cop-

ula maps early bank defaults to late counterparty defaults, and late bank defaults

to early counterparty defaults. Hence, if P(DA ≤ T ) +P(DB ≤ T ) < 1, bank de-

faults occurring before time T are mapped to counterparty defaults after T , and

vice versa. In order to maximize the BCVA, the optimizer can map the counter-

party default events to the maximal portfolio values and the bank default events

can be mapped to portfolio paths with non-negative values. This pragmatic rule

leads to the upper BCVA bound as long as there are enough �non-negative� paths,

which is the case for the ITM swap and the ATM swap, but not for the OTM

swap, as one can see in Figure 6.3. The condition P(DA ≤ T ) + P(DB ≤ T ) < 1

is usually ful�lled, as long as T does not take extremely large values or the

companies are very risky.

• Why are the intervals similarly large for totally di�erent dependence

structures between the defaults?

It is striking that the counter-monotonicity copula and the independence copula

lead to similarly large intervals. In the previous question, we already answered

why the interval is so large in case of counter-monotonicity. If we assume the

default times to be independent, it is very unlikely that a default of one party

is not a �rst default due to the small overall default probability in (0, T ] (see

Figure 6.2). Hence, in comparison to counter-monotonicity, not all defaults are

�rst defaults, but most of them are. This explains why the independence-interval

is slightly smaller than the counter-monotonicity-interval. Furthermore, it is not

surprising that the interval of the Gaussian copula with ρ = −0.5 is larger than

independence, but smaller than counter-monotonicity, as the Gaussian copula

interpolates between these extremal dependencies.

• Independence between the default times seems to be �exible enough

to lead to a huge BCVA-interval. Is it recommendable to use?

It is right that the independence copula (between the default times) combined

with a worst-case dependence to the portfolio values can explain a large interval

of possible BCVA values. From this regard, it seems acceptable to use it. In

reality, however, it is widely accepted that default times are not independent.

Hence, it might be an unrealistic assumption and is therefore not recommended.
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6.4 Application: Model-free BCVA bounds

Moreover, in order to achieve extreme BCVA values under independent default

times the remaining dependence to the underlying must be degenerate.

• Are the considered dependence structures between the default times

realistic?

In practice, one usually faces positive dependence between the default times.

There are di�erent ways how to characterize positive dependence. A positive

correlation coe�cient between the default times could be one possible choice.

Other dependence measures, as the concept of positive quadrant dependence,

are also possible. In the special case of a Gaussian copula, one speaks of positive

dependence whenever ρ > 0. Restricting oneself to positive dependence clearly

rules out counter-monotonicity. We implemented it anyway to get a better un-

derstanding how the optimization procedure works. The Gaussian copula with

positive parameter ρ is, however, just one possible choice and can lead to small

intervals, as one can see in the case of an OTM swap. Thus, the model risk is

quite high. There might be other positive dependence structures leading to much

larger intervals, as we will see in the answer to the next question.

• Are the worst-case dependence structures leading to the BCVA bounds

realistic?

As we already mentioned, a negative dependence between the default times is

quite unrealistic. Thus, it is justi�able to ask to what extent the model-free

BCVA bounds are meaningful. One might assume that these bounds can only be

produced by extremely unrealistic dependence structures. First, we should men-

tion that the purpose of the present work is not to present realistic WWR-models.

The idea is rather to answer the following question: How bad can WWR be?

Second, in our perspective, it is hard to decide, if a given dependence structure

between the default times and the portfolio paths is realistic. Nevertheless, it is

reasonable to force the bivariate dependence between the default times to be non-

negative. This can be achieved, for example, by adding the following constraint

to Optimization problem 6.3: P (DA < t)P (DB < t) ≤ P (DA < t,DB < t) for

all t ∈ [0, T ]. This constraint can be seen as a weak PQD4 condition and can

be interpreted as the following: The probability that both parties default before

a �xed time t is higher than the probability that both parties default before a

�xed time t in case of independence. Hence, dependence structures ful�lling this

4The classical de�nition for positive quadrant dependence (PQD) is given by P (DA < tA)P (DB <

tB) ≤ P (DA < tA, DB < tB) for all tA, tB ∈ [0, T ]
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6 Extremal wrong way risk

condition can be seen as non-negative dependence structures. The results coming

from the optimizing procedure including this additional condition are astonish-

ing: the model-free BCVA bounds do not change. This means that by optimizing

over a subclass of dependence structures, namely over all dependencies ful�lling

the above mentioned constraint, the extremal BCVA coincides with the BCVA

bounds. Hence, the BCVA bounds in our examples can even be explained in

presence positive dependencies between the default times. To summarize, the

extremal BCVA values can stem from reasonable dependence structures among

the default times.
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7 Conclusion

In this thesis, we presented new approaches for tractable modeling of dependencies be-

tween the stochastic drivers in �nancial models. Particularly, a new stochastic volatil-

ity model, which generalized the popular model by Barndor�-Nielsen and Shephard

[2001] to allow for decoupled jumps in the volatility process and jumps in the asset

price process, has been proposed. We thoroughly investigated the model dynamics

and showed some exemplary products, where the dependency between the jump com-

ponents has a crucial impact. The dependent two-dimensional jump process is con-

structed by a time-change procedure, which ensures fast pricing and calibrating via

Fourier-inversion methods, since the characteristic function of the log-price dynamics

of the newly created model can be expressed in closed form.

In the d-dimensional case, the time-change construction of dependent jump processes

has also been utilized to construct multi-dimensional versions of well-known univariate

models. The easy-to-simulate jump processes ful�ll a nice separation property, which

allows a tractable sequential calibration procedure. First of all, marginal asset price

processes can be calibrated to plain vanilla option prices. Afterwards, the dependence

parameters between the assets can be speci�ed in a second step. We emphasized the

practicality of this multivariate model in a calibration exercise with real market data.

Last but not least, we presented a model-free approach and formalized an optimization

problem that allows to maximize (or minimize) bilateral credit valuation adjustments.

We calculated the BCVA considering extremal dependence structures leading to the

maximal WWR. These tight BCVA bounds have been compared to the popular WWR

model by Hull and White [2012]. Furthermore, we related the results to the BCVA

bounds by Helmers et al. [2016], which correspond to subclasses of possible dependence

structures between the portfolio value and the default times. In a numerical case

study, we have seen that WWR is essential and can lead to exorbitant BCVA values.

Furthermore, WWR plays a bigger role than the dependence structure between the

default times. The bounds coming from our model-free approach can be used as an
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7 Conclusion

indicator for model risk for existing WWR models in the sense that the �exibility in

explaining various BCVA values can be put in relation to the model-free bounds. This

sheds some light on the amount of model risk market participants are exposed to, when

committing oneself to one speci�c parametric WWR model.
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