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1 Introduction

1.1 Dendritic Cells and response to pathogens

In mammals and other animals, the response to pathogens is organized in two

distinct but strictly interconnected components: an innate response, that arises

rapidly and with limited specificity following tissue damage or pathogen encounter,

directly in the affected tissue, and an adaptive response, which is organized in sec-

ondary lymphoid organs against specific antigens, in order to accurately remove

every last trace of the offending pathogen without causing damage to the host.

1.1.1 Innate and adaptive immunity

The innate immune response is mastered by a series of specialized cells and

soluble factors that are found both in the blood stream and within the tissues, and

exert different functions[1]: Macrophages are professional phagocytes, that are able

to actively remove pathogens from the site of infection, inactivate and process them,

and can also present antigens on major histocompatibility complex, class I (MHCI)

and II, contributing to the activation of effector T cells[2, 3]. Neutrophils (so called

because of their typical neutral staining with hematoxylin and eosin (H&E) histo-

logical or cytological preparations) are also effective phagocytes and kill internalized

bacteria and fungi, but differently from macrophages they are not able to present

antigens on MHC class II. Neutrophils are able to extrude their nuclear chromatin

in the form of neutrophil extracellular traps (NETs) upon encounter with pathogens,

thus physically trapping the microorganisms and limiting their spreading through

the organism[4]. The soluble factors are proteins that are able to non-specifically

bind and opsonize microorganisms and apoptotic cells, such as complement pro-
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1.1. Dendritic Cells and response to pathogens

teins[5], mannose binding protein (MBP)[6] and C-reactive protein (CRP)[7], as

well as chemokines and cytokines which attract and activate innate and adaptive

immune cells.

Adaptive immune responses are orchestrated in secondary lymphoid organs, and

require receptors that are selected for reactivity with specific antigens (T cell recep-

tors (TCRs) and B cell receptors (BCRs)). Antigens processed from the offending

pathogens are carried to lymph nodes (LNs) and spleen by antigen presenting cells

(APCs) and presented as peptides on MHC class I and II to naive T cells. T cells

that specifically recognize the presented antigen are then activated and differentiate

into effector T cells, acquiring the ability to directly kill infected cells (cluster of

differentiation (CD)8+ cytotoxic T lymphocytes (CTL)) or to help other effector T

and B cells in their function by producing cytokines and growth factors (CD4+ T

helper cells).

The connecting elements of these responses are several and still not fully eluci-

dated, but a major contribution is given by professional APCs, specialized cells that

are able to recognize pathogens and efficiently process and present specific antigens

to T and B cells, orchestrating the adaptive response.

1.1.2 Dendritic cells and subsets

Professional APCs include macrophages and dendritic cells (DCs), that of-

ten act in concert to present antigens and organize T cell responses[8]; however,

macrophage’s antigen presentation capacity is limited, while DCs possess highly

specialized structures and mechanisms for antigen acquisition, processing and pre-

sentation, and for regulating activation and function of effector cells, by means of

co-stimulatory molecules and cytokine production.

DCs were first identified in the 70s by Ralph Steinman [9–12]; their name is due

to the characteristic morphology they exhibited, with numerous dynamic dendrites

protruding from the cell body, continuously sampling the surrounding tissues. Since

the discovery, a number of phenotypically and functionally different DC subsets have

been identified, both in lymphoid and non-lymphoid tissues.

The human equivalents of all murine DC subpopulations have been identified.

They resemble closely their murine counterparts in ontogeny and function and also

2



1.1. Dendritic Cells and response to pathogens

share some but not all of the phenotypic markers of murine DC subsets. In this

chapter I will describe the murine DC subpopulations.

Lymphoid tissue DC subsets

DCs can be distinguished in two major subsets, with important phenotypic and

functional differences: the conventional DCs (cDCs), which comprise several other

subsets described in the next paragraphs, and the plasmacytoid DCs (pDCs), which

are described in detail in the next section.

All mature DCs in mouse are characterized by expression of the integrin CD11c

and of MHC class II; several other surface markers are used today to easily discrim-

inate the different subsets: CD8α, CD4, CD11b, CD103, DCIR2, CD205, XCR1 and

Sirpα.

In the spleen of wild type, healthy mice, where DCs were originally identified,

two major subsets can be found: the CD8+ CD205+ cDC1, localized in the marginal

zone and T cell zone of the follicles, in the white pulp[13], and the CD8- CD11b+

DCIR2+ cDC2 subset, residing in the red pulp. Functionally, these subsets are

distinguished in their ability to present antigens: CD8+ cDC1 are unique in their

ability to capture extracellular antigens and cross-present them to CD8+ T cells on

MHC class I, thus eliciting a CTL response. In contrast, CD8- cDC2 in the spleen

are more efficient in processing antigens and presenting them on MHCII, eliciting

CD4+ T cell responses[14].

In other lymphoid tissues, such as the lymph nodes, subsets equivalent to both

splenic CD8+ cDC1 and CD8- cDC2 can be found, expressing the same surface

markers[15]. In addition, lymph nodes continuously receive non-lymphoid resident

DCs (migratory) from peripheral tissues, through the afferent lymphatic vessels[16].

These cells are characterized by a higher MHCII and lower CD11c expression on the

surface.

Non-lymphoid tissue DC subsets

Langerhans cells (LCs) were identified in the skin long before their immuno-

genic properties were recognized in 1985[17]. These cells reside in the epidermal

layer of mammalian skin, continuously sampling the environment by extending and

3



1.1. Dendritic Cells and response to pathogens

retracting long processes (dendrites) between epidermal cells. They are thus able

to readily sense external pathogens breaching the protective skin layer, and quickly

acquire an activated DC morphology and functions, such as the ability to present

antigens on MHCII and activate T cells. In the steady state, LCs are characterized

by surface expression of intermediate levels of CD11c, low MHCII, and high levels

of Langerin. They also express CD11b and F4/80, but lack CX3CR1 expression[18].

In the dermis, two major DC subsets can be found: CD103+ CD11blow Langerin+

and CD103- CD11bhigh Langerin- DCs. While it has been reported that the first are

able to migrate to skin draining lymph nodes and cross-present antigens, and are

thus functional equivalents of cDC1s in lymphoid tissues, the functions of the latter

subset are not yet clear[19].

Three subsets of DCs have been identified in the intestine, distinguishable by

surface expression of CD103 and CD11b: CD103+ CD11b-, phenotypically and func-

tionally similar to lymphoid resident CD8α+ cDC1s and capable of cross-presentation;

CD103+ CD11b+ DCs, which can take up bacteria from the intestinal lumen and

transport them to mesenteric lymph nodes[20, 21]; and a CD103- CD11bhigh popula-

tion, which is heterogeneous and dependent on both Flt3L and M-CSFR for develop-

ment[22]. CD103+ CD11b- cDC1 and CD11b+ cDC2, and CD103- CD11bhigh cDC2,

can be also found in other non-lymphoid tissues such as lung, liver and kidney[22].

The two major branches of cDCs can also be distinguished by the mutually

exclusive expression of XCR1 (only on cDC1s) and Sirpα (only on cDC2s), in the

intestine[23] as well as in other lymphoid and non lymphoid organs[24].

Table 1.1 summarizes the surface phenotype of murine DC subsets.

cDC1s cDC2s LCs pDCs
Langerin+ CD4+ (LT) F4/80+ Siglec-H+

CD8α+ (LT) CD11b+ CD205+ Bst2+

CD103+ (NLT) XCR1- CD103- Ly6C+

CD205+ Sirpα+ Langerin+ B220+

CD24+ CD11b+ XCR1-

XCR1+ Sirpα+ Sirpα+

Clec9A+ XCR1- CD14+

Sirpα- CX3CR1+ CD45RA+

Table 1.1: Phenotype of dendritic cell subsets. LT, lymphoid tissue; NLT, non-
lymphoid tissue. Table adapted from Murphy et al., 2016[25].
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1.1. Dendritic Cells and response to pathogens

1.1.3 Plasmacytoid dendritic cells

All the DC subsets mentioned above make up the so called conventional den-

dritic cell (cDC) population. In 1989, Facchetti et al. [26] identified a novel type

of monocyte with plasmacytoid morphology in different human histopathological

samples. In parallel, natural interferon-producing cells were identified in peripheral

blood mononuclear cells by Fitzgerald-Bocarsly et al.[27] Later, these rare cells were

both characterized to be functionally very similar to DCs, presenting antigens and

producing inflammatory cytokines mainly in response to viral stimulation. Further

investigations confirmed that they were indeed a peculiar subset of DCs, with a

resting morphology resembling plasma cells, but upon activation by viral antigens

they would acquire a distinct dendritic phenotype, with a lower capacity to present

antigens and activate T cells, and a unique ability to produce vast amounts of Type

I interferons (IFNs) and therefore activate antiviral response pathways in bystander

cells, as well as orchestrate B cell activation and maturation[28].

Plasmacytoid dendritic cells (pDCs) are rare cells that can be found mainly

in murine bone marrow (BM), spleen and lymph nodes, and in low numbers in

peripheral blood and non-lymphoid tissues. They show a similar distribution in

humans, with a slightly higher percentage in the peripheral blood. They circulate

mainly through blood vessels, and can enter lymphoid organs via high endothelial

venules.

Morphologically, resting pDCs resemble antibody-producing plasma cells, with

oval shape, eccentric nucleus and abundant endoplasmic reticulum (ER). Upon acti-

vation, they acquire a canonical dendritic cell morphology, with dendrites protruding

from a central body and smaller nucleus and ER.

Phenotypically, murine pDCs can be distinguished from cDCs by their lower

expression of CD11c and MHCII, and by the expression of B220, Ly6C, sialic acid

binding Ig-like lectin H (Siglec-H) and bone marrow stromal antigen 2 (BST2) on the

surface. Other surface markers such as the CC-chemokine receptor 9 (CCR9), Ly49Q

and Sca-1 are expressed by the majority of pDCs in peripheral tissues, however they

can be used to distinguish functionally and developmentally different subsets in the

BM[29].

Functionally, plasmacytoid DCs are the most efficient type I IFN producers;

5



1.1. Dendritic Cells and response to pathogens

they express toll-like receptor (TLR)-7 and -9, which are activated by viral nu-

cleic acids, and this leads to secretion of primarily IFN-α and -β, initiating antiviral

responses in bystander cells. In addition, they produce interleukin (IL)-6, which,

together with the IFNs, contributes to differentiation of B cells into plasma cells[28].

They also produce other pro-inflammatory cytokines, such as tumor necrosis factor

(TNF)-α and IL-12, which contribute to their ability to induce T helper cell differen-

tiation[30]. Unlike cDCs, which stabilize peptide-MHCII complexes on their surface

for a longer time, pDCs can continuously form new peptide-MHCII complexes and

present endogenous and viral antigens following TLR9 activation[31]. Different sub-

sets of pDCs can be distinguished by additional surface markers, that also have

important functional differences: CCR9 was discovered to be highly expressed on

mature pDCs, and a subset of CCR9low pDC-like cells can be found in the BM and

in lymphoid tissues, that is able to respond to TLR stimulation, and produce higher

amounts of type I IFN than mature pDCs[32]. A CD9+ pDC subset was also iden-

tified in the BM that partially overlaps the CCR9low pDC-like cells in their higher

type I IFN production following TLR stimulation, while mature CCR9high pDCs

are CD9-[33]. Sca-1 is differentially expressed on CCR9high pDCs, distinguishing a

less mature Sca-1low subset that is more efficient at producing IFNα than Sca-1high

pDCs, and that gives rise to the latter following activation[34]. Ly49Q- pDCs are

characterized by a lower responsive capacity to RNA viruses than Ly49Q+ cells,

while they respond equally well to TLR9 stimulation and DNA viruses[35].

Given their central role in organizing immune responses, pDCs are associated

with immune tolerance as well as with immunity, both in humans and in mice.

For instance, pDCs are pivotal in maintaining tolerance during pregnancy[36] and

may directly control Treg proliferation and suppressive activity[37]. They induce

Treg mediated tolerance in tumor draining lymph nodes[38] and in experimental

autoimmune encephalomyelitis (EAE) models[39]. Alterations in their function are

associated with autoimmune diseases, such as psoriasis and systemic lupus erythe-

matosus. In these cases, patients show decreased numbers of pDCs in the circulation

and accumulation of IFN producing pDCs in the affected tissues[40].

pDCs produce type I interferon in response to nearly all enveloped viruses and

contribute to virus clearance. Their role in antiviral responses was elucidated by
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1.2. Origin of dendritic cells

studies on several systemic murine virus infection models[41] and in mucosal viral

infections[42]. In addition, specific depletion of pDCs using blood dendritic cell

antigen2-diphteria toxin receptor (BDCA2-DTR) transgenic mice led to reduced

early IFN-I production, as well as impaired survival and accumulation of CD8+

T cells in mouse cytomegalovirus (MCMV) and vesicular stomatitis virus (VSV)

infection[43]. pDCs are infected by human immunodeficiency virus (HIV)-1 and this

contributes to the constant immune activation observed in HIV patients, which is

associated with faster progression to acquired immune deficiency syndrome (AIDS)

and development of comorbidities[44].

1.2 Origin of dendritic cells

With the exception of Langerhans cells, which originate from self-renewing em-

brionic precursors that have migrated to the skin during early development[45], all

DC subsets are generated in vivo in the bone marrow from gradually committed

progenitors and precursors mainly of the myeloid lineage, although a contribution

from lymphoid progenitors to all DC subsets has also been reported[46].

The initiator of the myeloid lineage is the common myeloid progenitor (CMP),

characterized by lack of expression of lineage markers (Lin-) and of Sca-1, high

expression of the receptor tyrosine kinase KIT, also known as CD117, and expression

of CD34 and CD16/32 (FcγR III and IIb). The CMP gives rise to macrophage-DC

progenitors (MDPs), which can generate DCs and monocytes, but lose potential

to become neutrophils or other monocytes[47]. The MDPs differ from the CMPs

for their lower expression of CD16/32, and expression of the chemokine receptor

CX3CR1 and of the macrophage colony-stimulating factor receptor (M-CSFR), also

known as CD115. They also express FMS-like tyrosine kinase 3 (Flt3), also known

as CD135, which characterizes all the DC lineage downstream. From the MDPs

a committed monocyte progenitor (cMoP) (CD117+ CD115+ CD135- and Ly6C+)

and a common dendritic cell progenitor (CDP) are generated, the latter giving rise

to all and only the DC subsets through further sequential differentiation steps[48,

49]. The CDPs are defined as Lin-, CD117int/low, CD135+, CD115+.

cDCs are generated from intermediate precursors that exit the BM, circulate in
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1.2. Origin of dendritic cells

the blood and enter peripheral tissue where they complete differentiation. These so-

called pre-cDCs were initially identified as a dividing population expressing CD135

and CD11c, showing clonal heterogeneity for commitment to the cDC1 or cDC2

lineage, or both[49]. They arise directly from CDPs in the BM[50], and were shown

to migrate from BM in vivo and complete maturation in the periphery giving rise to

lymphoid CD8α+ cDC1s or CD11b+ cDC2s, and non-lymphoid CD103+ cDCs[22,

51].

Recent studies using single cell analysis provide evidence for early lineage com-

mitment in myelopoiesis, somewhat contradicting the stepwise branching model,

highlighting the intrinsic heterogeneity of the pre-DC population and the existence

within it of individual precursors directly committed to either cDC1 (CD8α+) or

cDC2 (CD4+ CD11b+) subsets[52]. These 2 committed pre-cDC subsets lack Siglec-

H expression, and can be discriminated by Ly6C surface staining (expressed only in

pre-cDC2s).

pDCs on the other hand complete maturation in the bone marrow and then

migrate to peripheral tissues. The recently identified CCR9- pDC-like cells already

possess the ability to migrate from the bone marrow to different peripheral tissues,

where they complete differentiation into pDCs and cDCs depending on the tissue

microenvironment.[32, 53].

Only a minority of the DCs found in peripheral tissues are of lymphoid origin,

with a prevalence of pDCs[46]. Nevertheless, pDC output from common lymphoid

progenitors (CLPs) can be augmented by a type I IFN-Flt3L signaling axis[54].

1.2.1 Cytokines and growth factors in DC differentiation

The development of pDCs and cDCs is dependent on several cytokines, among

which Flt3L has an essential role. Its receptor, Flt3, also known as CD135, is ex-

pressed early on in hematopoietic development, on many hematopoietic stem cells

(HSCs), on progenitors such as CLPs, CMPs, and on CDPs and MDPs[55]. Indeed,

a lineage tracing mouse model, that enabled direct assessment of differentiation

pathways in vivo, has shown that a Flt3+ stage marks non-self-renewing HSCs that

initiate all hematopoietic lineages[56]. CD135 expression is also maintained down-

stream of DC precursors, and on all DC subpopulations, while it is absent from
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other circulating and tissue-resident leucocytes[57]. Production of Flt3L has been

observed from endothelial cells, BM stromal cells and activated T cells[58].

Many studies have provided evidence for the pivotal role of Flt3 signaling in DC

development: mice lacking Flt3 or its ligand showed defective hematopoiesis, with

reduced numbers of HSCs, pDCs and cDCs[59]. On the other hand, in both mice and

humans, overexpression or in vivo treatment with Flt3L leads to increased numbers

of pDCs and cDCs in tissues as well as in the blood stream[60, 61]. In addition to

its role in DC differentiation, Flt3L is an important regulator of homeostatic DC

division in the periphery in vivo[62].

Another important cytokine for DC differentiation is granulocyte-macrophage

colony-stimulating factor (GM-CSF), which has different effects at different levels

of DC differentiation[63, 64]. Lack of GM-CSF in mice had little impact on the

number of DC precursors, but compound deficiency of GM-CSF and Flt3L caused a

further reduction of DC precursors, compared to Flt3L deficiency alone, suggesting

that GM-CSF is not totally redundant in regulating DC precursors[65]. It is the

main cytokine used for cDC generation in vitro, as it promotes differentiation of

total bone marrow cultures into myeloid subsets, including large numbers of DCs

that resemble splenic cDCs[66]. In concert with Flt3L, GM-CSF plays a critical role

in the differentiation of both DC subsets, but it generally favors cDC development

rather than pDCs, which are instead tightly regulated by Flt3L both in vivo and in

vitro[67].

Csf-1, also known as macrophage colony-stimulating factor (M-CSF), regulates

the survival and proliferation of macrophages. Its receptor (CD115) is expressed on

MDPs, monocytes and macrophages as well as on CDPs. A model of early progenitor

development hypothesizes that the balance of Flt3 versus M-CSF signaling might

drive the diversion of MDPs towards CDPs rather than monocyte-macrophages,

respectively[68]. CD115 is also expressed on precursor cells with clonogenic potential

to both the cDC and pDC fate[48], and its downregulation defines commitment to

the pDC lineage[69] Indeed, M-CSF can drive pDC and cDC development in vitro

from BM precursors independently of Flt3L. Administrated in vivo, it is able to

increase DC numbers in mice[70].

The observation of a different immune regulation in men and women has prompted
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investigation of the role of hormones in immune cells development and function, and

especially the role of estrogens in DC biology[71]. Estrogen receptor (ER)α is ex-

pressed in murine BM progenitor cells, including CLPs and myeloid progenitors,

as well as on most mature immune cells[72]. Estrogen-mediated ERα activation is

necessary for DC development in vitro in GM-CSF cultures, and its absence results

in reduced total numbers of DCs, mainly pDCs, in Flt3L-driven in vitro differenti-

ation[72, 73].

1.2.2 Transcriptional regulation of DC differentiation

Figure1.1 [25] details the main transcription factors (TFs) that regulate DC

development within the myeloid lineage. At earlier levels, the divergence between

lymphoid and myeloid lineages relies mainly on the protein levels of the TF spleen

focus forming virus (SFFV) proviral integration oncogene (PU.1), which are strictly

connected with the rate of cell cycling: fast dividing progenitors fail to accumulate

PU.1, and this leads towards the lymphoid (B cell) lineage. On the other hand,

a slower cell cycle leads to increased PU.1 protein, which drives myeloid lineage

differentiation[74].

The development of Flt3+ DC progenitors is dependent on runt related tran-

scription factor (Runx)1 activity and especially on its cofactor core binding factor

(Cbf)β: its deletion in hematopoietic lineages causes loss of DC progenitors and

erythroid progenitors, with increased granulocyte-macrophage progenitors (GMPs)

and a myeloproliferative disorder[75].

Interferon regulatory factor (Irf)8 is one of the major actors in the DC lineage:

its expression is initiated by PU.1 as early as in the CMPs, and it is necessary to

exclude granulocyte potential. Further downstream, it not only regulates MDP-

CDP transition and monocyte differentiation, but also controls survival of CD8+

cDCs and function of pDCs[76]. It is necessary for specification of the pre-cDC1

clonogenic progenitor, after which its autoactivation becomes dependent on the basic

leucine zipper transcription factor, ATF-like (Batf)3, thus allowing completion of

cDC1 development[50]. Irf8 downregulation is nevertheless necessary for terminal

differentiation of cDC2, which become dependent on Irf4.

The TF zinc finger and BTB domain containing (Zbtb)46, expressed in all
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Figure 1.1: Stages and transcription factors of DC development. A scheme
showing myeloid lineage development from the CMP, indicating transcription factors
required for particular transitions between stages. This scheme shows DC lineage
divergence from the CDP. Commitment to cDC1 and cDC2 branches of cDCs can
occur in the bone marrow. Adapted from Murphy et al., 2016[25]

pre-cDCs, is a marker of cDC lineage commitment, as highlighted by Zbtb46-GFP

reporter mouse studies. Nevertheless, its expression is not required for cDC differ-

entiation, and its ablation causes only minor alterations[77, 78].

CD8α+ DCs require expression of nuclear factor, interleukin 3, regulated (Nfil3),

a transcriptional repressor which controls expression of Batf3 and inhibitor of DNA

binding (Id)2[79]. The latter forms inactive heterodimers with target E proteins,

preventing their binding to the DNA[80]. One of such targets is transcription factor

(Tcf)4, also known as E2-2, an essential transcription factor for the pDC lineage[81].

E2-2 controls transcription of B cell CLL/lymphoma (zinc finger protein) (Bcl)

11A and Irf8, supporting pDC differentiation, and pDC-specific genes such as TLR7,

TLR9 and BDCA2 (in human). E2-2 is required for maintaining the cell fate in

mature pDCs[82]. The competition of E2-2 with Id2 takes part in the pDC/cDC

lineage divergence as early as at the CDP stage, although the complete mechanism

is not fully understood at present. For example, this competition does not explain

divergence of pDCs from cDC2s, as these cells do not require Id2 for development,

even though they express it at later stages of maturation.
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Recently, 2 other factors have been discovered supporting pDC differentiation,

by actively suppressing Id2 expression: the ETO family transcriptional cofactor

Mtg16[83], and the zinc finger E-box binding homeobox (Zeb)2 TF[84, 85]

1.2.3 pDC-specific transcription factor network

Although many TFs have been identified that specifically regulate pDC dif-

ferentiation distinguishing it from the cDC lineage, little is known about the fine

tuning of cell fate decisions in the intermediate steps that take a CDP to the mature

plasmacytoid DC.

While the identification of E2-2 expressing CCR9- pDC-like cells has added a

step to this process, suggesting heterogeneity of cell fate potential until later steps

of development, little is known about the factors that give identity to each and

every cell, and whether this ”conversion” potential observed is due to cell-intrinsic

plasticity, or cell to cell variations that imprint small subpopulations with different

lineage potentials.

Recent work from our lab defined a series of sequential steps in the in vitro

differentiation of pDCs from CDPs by means of continuous single cell imaging [86],

but this analysis is limited to surface markers and could not clarify the involvement

of TFs in this process.

In addition, very little is known about the effects that inflammation and in-

fection have on these processes, and whether they might actively shape the differ-

entiation potential of the committed DC precursors. Several reports have shown

expression of TLRs on many hematopoietic progenitors, and that their direct acti-

vation influences myelopoiesis (reviewed in Yáñez et al., 2013[87]). HSCs, as well as

lineage-restricted progenitors such as CLPs, CMPs and GMPs, express TLR4 and

TLR2, and in vitro stimulation with their ligands induces cell cycling and acquisi-

tion of myeloid markers[88]. CLPs also express TLR9, and its signaling primes these

cells to become DCs in vitro and in vivo[89]. Some TLRs are also expressed at the

CDP stage, and their stimulation leads to mobilization from the BM and migration

towards draining lymph nodes, where they give rise to mature DCs[90].
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2 Aims of the study

This project aimed at defining the transcriptional regulation of pDC differenti-

ation in the steady state, as well as the alterations that systemic TLR stimulation

induce on this pathway.

Recent research identified a series of step-wise phenotypic changes in Flt3L-

dependent DC-lineage bone marrow precursors that mark the stages of differentia-

tion of pDCs. These different stages can be discriminated by surface markers ex-

pression, and define a discrete number of cell types that are progressively committed

to a mature pDC fate. In addition, single cell RNA sequencing has highlighted the

heterogeneity of precursor populations, that is undetectable at the surface level.

The first aim of this project was therefore to define a strict and clear dis-

crimination of DC precursors in order to isolate and analyze the different stages

of DC subtype development. Moreover, these isolated populations could be chal-

lenged with TLR ligands, to assess their responsiveness to TLR stimulation and the

resulting changes in cell type specific gene expression signatures.

The second aim was to define the differentially expressed genes in the differ-

ent stages of steady state differentiation, and identify the network of factors that

regulates this transition. This could lead to the identification of specific targets that

have a pivotal role in cell fate determination. To do so, total mRNA sequencing was

performed on the populations freshly isolated from murine bone marrow.

The third aim was to assess the role of TLR stimulation in shaping the

differentiation process. I wanted to evaluate whether different stages of precursors

are able to directly respond to TLR ligands, and whether this response influences the

cell fate decisions. In addition, I wanted to identify the networks of TLR response,

comparing various differentiation stages.
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3 Materials and Methods

3.1 Materials

3.1.1 Reagents

Reagents

Reagent Provider

β-estradiol Sigma-Aldrich (Seelze, Germany)

β-mercaptoethanol Sigma-Aldrich (Seelze, Germany)

Biocoll Merck (Darmstadt, Germany)

CpG-A (ODN 2216) Eurofins Genomics (Ebersberg, Germany)

CpG-B (ODN 1826) Eurofins Genomics (Ebersberg, Germany)

CpG-C (ODN 2395) Eurofins Genomics (Ebersberg, Germany)

Dimethyl sulfoxide (DMSO) Sigma-Aldrich (Seelze, Germany)

dNTP mix (each 10mM) Promega (Mannheim, Germany)

Dulbecco’s Modified Eagle’s Medium

(DMEM)

Invitrogen (Karlsruhe, Germany)

EDTA (0.5M, pH 8.0) Invitrogen (Karlsruhe, Germany)

Fetal calf serum (FCS) PAA (Pasching, Austria)

Glutamax™-I (100x) Invitrogen (Karlsruhe, Germany)

Hexadimethrine bromide (Polybrene®) Sigma-Aldrich (Seelze, Germany)

Lipofectamine® 2000 Invitrogen (Karlsruhe, Germany)

Non-essential aminoacids (NEAA) Invitrogen (Karlsruhe, Germany)

Penicillin/Streptomicin (100x) Invitrogen (Karlsruhe, Germany)

Phosphate buffered saline (PBS) Invitrogen (Karlsruhe, Germany)

Phire Green Hot Start II PCR Master Mix Thermo Scientific (Karlsruhe, Germany)
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Table of reagents (continued)

Reagent Provider

R848 (Resiquimod) Sigma-Aldrich (Seelze, Germany)

Red blood cell lysis buffer Sigma-Aldrich (Seelze, Germany)

RNAse Inhibitor (NxGen® RI, 40U/ml) Lucigen (Middleton, WI, USA)

RPMI 1640 Biochrom (Berlin, Germany)

Sodium pyruvate (100x) Invitrogen (Karlsruhe, Germany)

SuperScript™ III Reverse Transcriptase Invitrogen (Karlsruhe, Germany)

3.1.2 Enzymes and recombinant cytokines

Recombinant proteins

Reagent Provider

Collagenase D Sigma-Aldrich (Seelze, Germany)

DNAse I Sigma-Aldrich (Seelze, Germany)

Flt3L Produced in house (as supernatant)

GM-CSF Produced in house (as supernatant)

murine IL-6 PeproTech (Hamburg, Germany)

murine IL-3 PeproTech (Hamburg, Germany)

murine SCF PeproTech (Hamburg, Germany)

3.1.3 Antibodies

Antibodies for flow cytometry

Antigen Clone Conjugate Manufacturer

B220 RA3-6B2 BrilliantViolet 605™ BioLegend

CCR9 CW-1.2 eFluor™ 450 eBioscience

CD3 145-2C11
FITC BioLegend

APC-eFluor™ 780 eBioscience

CD8α 53-6.7 PE BD Pharmigen

CD11b M1/70 PerCP-Cy5.5 eBioscience
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Antibodies for flow cytometry (continued)

Antigen Clone Conjugate Manufacturer

CD11c N418 PE-Cy7 eBioscience

CD19 1D3
FITC BD Pharmigen

APC-eFluor™ 780 eBioscience

CD86 GL1
PE eBioscience

BrilliantViolet 650™ BioLegend

CD90.1 (Thy1.1) OX-7 AlexaFluor® 700 BioLegend

CD135 (Flt3) A2F10 PE eBioscience

Foxp1 Rabbit polyclonal purified Cell Signaling

Ly6G 1A8
FITC

BioLegend
APC-Cy7

MHCII (I-A/I-E) M5/114.15.2
BrilliantViolet 650™ BioLegend

APC-eFluor™ 780 eBioscience

NK1.1 PK136
FITC BioLegend

APC-eFluor™ 780 eBioscience

Siglec-H 440c AlexaFluor® 647 Produced in house

Sirpα (CD172a) P84 PerCP-Cy5.5 BioLegend

Goat α-rabbit Poly4064 DyLight™ 649 BioLegend

Table 3.1: Table of Flow Cytometry Antibodies

3.1.4 Kits

MACS® cell isolation kits Miltenyi Biotech (Bergisch Gladbach, Germany)

RNeasy Plus Mini kit QIAGEN (Hilden, Germany)

Quick-RNA™ MicroPrep Zymo Research (Freiburg, Germany)

16



3.1. Materials

3.1.5 Taqman™ probes for qPCR

Gene Assay number Transcripts detected1

Foxo1 Mm00490671 m1 NM 019739.3

Foxo4 Mm00840140 g1 NM 018789.2

Foxp1 Mm00474848 m1 NM 001197321.1,

NM 001197322.1, NM 053202.2

Foxr1 Mm02600883 m1 NM 001033469.2

Foxr1 Mm02600884 g1 NM 001033469.2

Hprt (housekeeping) Mm03024075 m1 NM 013556.2

3.1.6 Media and buffers

Cell culture media

DC medium RPMI 1640

10% FCS

1% NEAA

1% Glutamax-I

1% Sodium Pyruvate

1% Pen/Strep

50µM β-mercaptoethanol

DMEM complete medium DMEM

for HEK293T cell culture and virus produc-

tion

10% FCS

1% NEAA

1% Glutamax

1% Sodium Pyruvate

1% Pen/Strep

50µM β-mercaptoethanol

1RefSeq transcript identifiers. Multiple values indicate isoforms.
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Growth medium DC medium

for Hoxb8 cell line generation 10ng/ml IL-3

20ng/ml IL-6

250ng/ml SCF

Progenitor outgrowth medium (POM) DC medium

for Hoxb8 stem cell line maintenance 1µM β-estradiol

7% Flt3L containing supernatant

Freezing medium 90% FCS

10% DMSO

Buffers

MACS buffer PBS (w/o Ca2+ or Mg2+)

2% FCS

2mM EDTA

Sorting buffer (for RNA extraction) PBS (w/o Ca2+ or Mg2+)

1% RNAse Inhibitor

3.1.7 Mice

All mice were bred under SPF conditions in our animal house. Mice were used

at age 6 to 15 weeks.

Strain Original source Application

C57BL/6J Harlan, Paderborn BM isolation for sorting

In vitro culture experiments

Id2eGFP/eGFP Gabrielle T. Belz, The Walter and

Eliza Hall Institute of Medical Re-

search, Melbourne, Australia[91]

In vitro culture experiments

In vivo CpG challenge
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Strain Original source Application

Foxp1flox/flox Jurgen Ruland, TUM, Munich,

Germany

In vitro culture experiments

Breeding

CD11c-Cre Boris Reizis, NYU Langone Medi-

cal Center, New York, USA

Breeding with Foxp1flox/flox

3.2 Methods

3.2.1 Cell culture

All cell cultures were maintained at 37°C with 5% CO2 in humidified incubator

with the appropriate media. FCS was heat inactivated at 56°C for 45 minutes prior

to use in media or buffers.

3.2.2 Cell isolation from primary tissues

For cell isolation, mice were sacrificed by cervical dislocation. Bone marrow

cells were isolated from the hind legs and hip bones; under a sterile hood, bone

extremities were cut and the BM flushed out with DC medium, using a 24G needle

and a 10 ml syringe. After flushing, the suspension was passed through the needle 2

or 3 times to disrupt clumps. The cell suspension was then passed through a 100 µm

cell strainer and centrifuged for 5 minutes at 450 x g. The pellet was resuspended in 1

ml of red blood cell (RBC) lysis buffer, incubated for 5 minutes at room temperature

and then washed with 20 ml of DC medium. After again centrifuging 5 minutes at

450 x g, cells were resuspended in MACS buffer and counted using Türk’s solution

to exclude left over RBCs and dead cells.

Splenocytes were isolated from freshly harvested spleens, that were injected

with 5 ml of DC medium containing DNAse I (100 µg/ml) and Collagenase D (500

µg/ml) using a syringe with a 24G needle, then cut in small pieces and incubated for
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30 minutes at 37°C. At the end of the incubation, the digested spleens were collected

and forced through a 100 µm cell strainer using a syringe plunger, then washed with

10 ml of DC medium. After centrifuging for 5 minutes at 450 x g, red blood cell

lysis and subsequent steps were performed as described above.

3.2.3 Lineage depletion

For sorting or in vitro stimulation experiments, BM cells were depleted of Lin-

eage positive cells using MACS microbeads following the manufacturer’s instruc-

tions. Briefly, the cell suspension was stained with FITC-conjugated lineage anti-

bodies (CD3, CD19, NK1.1 and Ly6G) at a 1:200 dilution each, incubated for 15

minutes on ice, then washed with 10 ml cold MACS buffer. After centrifugation (5

minutes at 450 x g), cells were resuspended in MACS buffer containing 1:10 diluted

anti-FITC microbeads and incubated again 15 minutes on ice. They were again

washed and centrifuged, and then resuspended in 1 ml MACS buffer and loaded

on a LS magnetic column supplied with 30 µm pre-filter, and passed through the

column by gravity. The column was then washed 3 times with 3 ml MACS buffer,

and the flow through collected, centrifuged and counted.

3.2.4 In vitro TLR stimulation

After lineage depletion cells were plated in 96 well plates at a concentration of

2×105 cells per well in 100 µl of DC medium. 100 µl of DC medium containing 2x

concentration of the appropriate stimulus was added to the respective wells. Cells

were incubated at 37°C with 5% CO2 in humidified incubator for up to 24 hours.

At each time point (0, 2, 4, 6, 12 and 24 hours), the cells were transferred to

FACS tubes, washed once with PBS and stained with the antibodies indicated in

table 3.2.

3.2.5 Flow cytometry and sorting

Surface staining

Single cell suspensions were stained with surface antibodies by incubating 20

minutes at 4°C in buffer containing the appropriate dilution of each antibody; the
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Antigen Clone Conjugate Dilution
CD3 145-2C11 FITC 1:200
CD19 1D3 FITC 1:200
NK1.1 PK136 FITC 1:200
Ly6G 1A8 FITC 1:200
CD86 GL1 PE 1:200
CD11c N418 PE-Cy7 1:200
Sirpα P84 PerCP-Cy5.5 1:100
Siglec-H 440c AlexaFluor647 1:200
MHCII M5/114.15.2 APC-eFluor780 1:200
B220 RA3-6B2 BV 605 1:200
CCR9 CW-1.2 eFluor450 1:200

Table 3.2: Antibodies used to stain in vitro stimulated BM

buffer consists of a supernatant from the ATCC® HB-19™ hybridoma producing the

2.4G2 antibody, a CD16/32 (FCγR III/II) blocking antibody, to prevent unspecific

staining. After incubation, cells were washed and resuspended in appropriate volume

of either MACS buffer (for Flow Cytometry) or DC medium (for sorting).

Intracellular staining

For intracellular staining of Foxp1 I used the eBioscience™Foxp3 / Transcription

Factor Staining Buffer Set according to manufacturer’s instructions. Briefly, after

staining of surface antigens (table 3.3), cells were washed and resuspended in Fixa-

tion/Permeabilization working solution, mixed well, and incubated for 30 minutes at

4°C in the dark. They were then washed with Permeabilization buffer, centrifuged

and resuspended in 100 µl of 1X Permeabilization buffer containing the appropriate

dilution (1:50) of rabbit anti-Foxp1 primary antibody, and incubated for 30 minutes

at 4°C. Cells were then washed with Permeabilization buffer, centrifuged and resus-

pended as before in buffer containing 1:100 of secondary antibody (DyLight™ 649

conjugated Goat α-rabbit). Finally, cells were washed and centrifuged once with

Permeabilization buffer and once with MACS buffer. They were resuspended in

MACS buffer for FACS analysis.

Sorting

Cells were sorted on a FACS Aria III (Becton Dickinson) in the Flow Cytometry

unit (Dr. Matthias Schiemann) of the Institute for Medical Microbiology, Immunol-
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Bone Marrow
Antigen Clone Conjugate Dilution
CD3 145-2C11 APC-eFluor780 1:200
CD19 1D3 APC-eFluor780 1:200
NK1.1 PK136 APC-eFluor780 1:200
Ly6G 1A8 APC-Cy7 1:200
CD135 A2F10 PE 1:100
CD11c N418 PE-Cy7 1:200
Sirpα P84 PerCP-Cy5.5 1:100
Siglec-H 440c AlexaFluor488 1:200
MHCII M5/114.15.2 BV 650 1:200
B220 RA3-6B2 BV 605 1:200
CCR9 CW-1.2 eFluor450 1:200

Spleen
Antigen Clone Conjugate Dilution
CD3 145-2C11 APC-eFluor780 1:200
CD8α 53-6.7 PE 1:200
CD11c N418 PE-Cy7 1:200
CD11b M1/70 PerCP-Cy5.5 1:200
Siglec-H 440c AlexaFluor488 1:200
MHCII M5/114.15.2 BV 650 1:200
B220 RA3-6B2 BV 605 1:200
CCR9 CW-1.2 eFluor450 1:200

Table 3.3: Antibodies used for surface staining of BM and spleen.

ogy and Hygene of the Technical University Munich (TUM). The staining panel

is indicated in table 3.4; sorting strategy is described in figure 4.1. Briefly, Lin-

CD135+ CD11c+ cells were discriminated by expression of Siglec-H, B220, CCR9,

MHCII and Sirpα into pre-DCs (Siglec-H- MHCII- Sirpα-), CCR9low cells (Siglec-H+

CCR9low B220low/int) and pDCs (Siglec-H+ CCR9hi B220hi). Cells were sorted to

high purity and deposited in DC medium. The purity of each sample was verified

at the end of each run.

FACS analysis

FACS analysis was performed with a Gallios (3 lasers, 10 colors) or a Cytoflex

S (4 lasers, 13 colors) flow cytometers (Beckman Coulter, Krefeld, Germany). Data

were analysed with FlowJo® Single Cell Analysis Software v10 (FlowJo LLC, Ash-

land, USA).
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Antigen Clone Conjugate Dilution
CD3 145-2C11 FITC 1:200
CD19 1D3 FITC 1:200
NK1.1 PK136 FITC 1:200
Ly6G 1A8 FITC 1:200
CD135 A2F10 PE 1:100
CD11c N418 PE-Cy7 1:200
Sirpα P84 PerCP-Cy5.5 1:100
Siglec-H 440c AlexaFluor647 1:200
MHCII M5/114.15.2 APC-eFluor780 1:200
B220 RA3-6B2 BV 605 1:200
CCR9 CW-1.2 eFluor450 1:200

Table 3.4: Antibodies used to stain murine BM for sorting

3.2.6 Stimulation of sorted cell populations

After sorting pre-DCs, CCR9low precursors and pDCs into DC medium, volume

was adjusted to 1 ml, and each population was divided into 10 equal aliquots (100µl)

in microcentrifuge tubes. One was left untreated, the rest were stimulated with

CpG-A or -C (0.5 µM) or R848 (3 µM) (3 each) by adding 100 µl of DC medium

containing 2x concentration of the respective ligand. Samples were incubated at

37°C with 5% CO2 in humidified incubator for up to 6 hours.

At each time point (0 hours for untreated control, 2, 4 or 6 hours for stimu-

lated samples), tubes were directly centrifuged at 800 x g for 5 minutes and the

supernatant removed, and RNA was isolated using the QIAGEN RNeasy Mini kit

according to the manufacturer’s instructions.

3.2.7 mRNA sequencing

mRNA sequencing libraries were prepared according to the Smart-seq2 proto-

col[92, 93] by Christoph Ziegenhein (Prof. Dr. Wolfgang Enard, Anthropology and

Human Genomics, LMU Munich, Planegg-Martinsried).

Briefly, purified RNA (maximum 9ng) was reversed transcribed using Super-

Script II (Invitrogen) with template switching oligonucleotides (TSOs), and the

cDNA pre-amplified with KAPA HiFi HotStart DNA polymerase (KAPA Biosys-

tems). The PCR was the purified with Agencourt Ampure XP beads (Beckman

Coulter), quantified and quality checked on a 2100 Bioanalyzer Instrument with

23



3.2. Methods

Agilent high-sensitivity DNA kit (Agilent Technologies). Tagmentation (maximum

1ng cDNA) was performed with the Nextera XT DNA sample preparation kit (Illu-

mina), the final product again purified with Ampure XP beads and quality verified

with a Bioanalyzer, high-sensitivity DNA kit.

Sequencing was performed on 4 lanes of an Illumina High output flow cell, for

a total of approximately 8×108 single end reads (50 bases long), corresponding to

approximately 9×106 reads per sample. After pre-processing and quality control

(figure 3.1), the reads were aligned with the UCSC mouse genome build GRCm38

(mm10), duplicates removed and the total raw counts normalized to transcripts per

million (TPM). Depending on the analysis software, either the TPM or the total

counts were used as input for the analyses.

Figure 3.1: Quality control of the sequencing results for all samples. Top: propor-
tion of reads correctly assigned to genes. Bottom: number of genes detected.
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3.2.8 Reverse transcription-quantitative PCR

For target validation on unstimulated cells, sorting was performed again as

described, adding a fourth population of Lin+ CD135- cells as control, and cells

deposited in PBS containing 1% RNAse Inhibitor (Sorting buffer).

In addition, four cell populations were sorted from the spleen (stained with the

panel in table 3.5): after gating out Lineage positive cells, and selecting all CD11c+

cells, pDCs were identified as Siglec-H+ B220high CCR9high. Within the Siglec-H-

population, cDC1s and cDC2s were discriminated as CD8α+ CD11b- and CD8α-

CD11b+, respectively. Lineage positive cells were sorted as positive control (mostly

T cells).

Antigen Clone Conjugate Dilution
CD3 145-2C11 FITC 1:200
CD19 1D3 FITC 1:200
NK1.1 PK136 FITC 1:200
Ly6G 1A8 FITC 1:200
CD8α 53-6.7 PE 1:200
CD11c N418 PE-Cy7 1:200
CD11b M1/70 PerCP-Cy5.5 1:200
Siglec-H 440c AlexaFluor647 1:200
MHCII M5/114.15.2 APC-eFluor780 1:200
B220 RA3-6B2 BV 605 1:200
CCR9 CW-1.2 eFluor450 1:200

Table 3.5: Antibodies used to stain murine spleen for sorting

After checking the purity (> 95%), sorted cells were centrifuged and the su-

pernatant discarded, and RNA extracted using Quick-RNA™ MicroPrep (Zymo Re-

search).

RNA was quantified using a SimpliNano™ spectrophotometer (Biochrom, Har-

vard Bioscience, USA). Complementary DNA (cDNA) was produced with the Su-

perScript™ III reverse transcriptase (Invitrogen), according to the manufacturer’s

instructions. The equivalent of 20ng of RNA were used for each quantitative PCR

(qPCR) reaction, which was performed with commercially available Taqman™ probes

(section 3.1.5) according to the manufacturer’s protocol, on a LightCycler® 480 In-

strument II (Roche).

Data were analyzed using the 2-ΔCt method. This method is equal to the better
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known 2-ΔΔCt method, with the exception that it does not normalize expression on

one of the samples, allowing comparison of expression levels in the absence of a

specific control sample to use as normalizer. Briefly, for each sample Ct values of

the housekeeping gene (Hprt) are subtracted from the Ct value of each target gene,

thus normalizing the latter for the sample’s baseline gene expression. The ΔCt value

obtained is then transformed to a negative power of two, obtaining values directly

correlated to gene abundance relative to the housekeeping gene.

3.2.9 Id2eGFP/eGFP mice and in vivo experiments

In vivo TLR stimulation was performed on female Id2eGFP/eGFP mice of 8 weeks

of age, which were injected subcutaneously in the right flank with 50 µg CpG-A

diluted in 200 µl of sterile PBS. Controls received PBS only. Mice were sacrificed at

16 or 72 hours post injection by cervical dislocation, and BM and spleen collected

for FACS analysis (staining panel in table 3.6).

Antigen Clone Conjugate Dilution
CD3 145-2C11 APC-eFluor780 1:200
CD19 1D3 APC-eFluor780 1:200
NK1.1 PK136 APC-eFluor780 1:200
Ly6G 1A8 APC-Cy7 1:200
CD135 A2F10 PE 1:100
CD11c N418 PE-Cy7 1:200
Sirpα P84 PerCP-Cy5.5 1:100
Siglec-H 440c AlexaFluor647 1:200
MHCII M5/114.15.2 BV 650 1:200
B220 RA3-6B2 BV 605 1:200
CCR9 CW-1.2 eFluor450 1:200

Table 3.6: Antibodies used for surface staining of Id2eGFP/eGFP BM and spleen.

In vitro BM stimulation

BM was isolated from 2 female Id2-eGFP/eGFP mice of 8 weeks of age, as described

above. Cells were plated in 6 well plates, 1.5×106 cells/ml in 3 ml of DC medium,

and stimulated with 0.5 µM CpG-A or -C, or 3 µM R848, or left untreated, and

incubated for 4 or 16 hours at 37°C with 5% CO2 in a humidified incubator. At

the end of the incubation period the cells were collected by gentle pipetting, washed

once with PBS and stained as described above.
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3.2.10 Hoxb8 progenitor cell lines

Hoxb8 progenitor cell lines were generated as described in Redecke et al.,

2013[94], from BM isolated from wt mice and from Foxp1fl/fl mice.

Virus production

The plasmid MSCV–ERHBD–HOXB8 (kindly provided by Dr. Hans Häcker,

St. Jude Children’s research Hospital, Memphis, USA) was co–transfected together

with the ecotropic packaging vector pCL–Eco (Addgene) into HEK293T cells using

Lipofectamine 2000 (Invitrogen). 18 hours after transfection, the supernatant was

replaced by fresh DMEM complete medium. After 24 hours virus–containing super-

natant was collected and stored at 4°C, and fresh medium was added to the cells.

After another 24 hours the supernatant was collected, pooled with the previous

collection, filtered (0.45 µm), aliquoted and stored at -80°C.

The same method was used for the plasmids pSuper-Cre-Thy1.1 (Cre-RV) and

pSuper-Thy1.1 (Mock-RV), both kindly provided by Prof. Vigo Heissmeyer, Insti-

tute for Immunology, LMU Munich, Germany.

Generation of the progenitor cell lines

Freshly isolated BM was washed once with DC medium, resuspended in 4 ml of

DC medium and loaded on 3 ml of Biocoll (Merck), then separated by centrifugation

for 30 minutes at 450 x g. The entire supernatant was collected and diluted with 45

ml PBS containing 1% FCS (final volume 50 ml), pelleted at 800 x g for 10 minutes,

then resuspended in 10 ml DC medium, centrifuged at 450 x g for 5 minutes and

finally resuspended at a concentration of 5×105 cells/ml in growth medium. After

two days of cell culture, cells were collected and resuspended in progenitor outgrowth

medium (POM). 2×105 cells were dispensed in 1 ml per well in a 12–well plate and

infected with MSCV vectors (diluted 1:2 with POM) by spin inoculation at 1500 x

g for 60 minutes in the presence of Lipofectamine (0.1%). After infection, cells were

diluted by adding 1.5 ml POM for 24 hours, followed by removal and replacement

of 2 ml of the cell culture medium. During the following cell culture period, cells

were dispensed every 3–4 days in fresh POM and transferred into new wells, until
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stably expanding.

Retroviral transduction of the Hoxb8 cell lines

The Foxp1fl/fl-Hoxb8 cell line was used for transfection with the Cre-RV, to

generate a Foxp1-/- line, and with the Mock-RV as control.

2.5×105 were seeded in each well of a 12-well plate, and infected with 1 ml

of RV-containing supernatant supplemented with 5 µM β-estradiol and 7% Flt3L-

containing supernatant, by spin inoculation at 1500 x g for 60 minutes in the presence

of 8 µg/ml polybrene (Sigma), followed by incubation at 37°C, 5% CO2. 2 hours

after spinoculation, supernatant was removed and replaced with fresh POM, and

cells were cultured normally in POM.

Cells were assessed for transduction efficiency on day 7 post infection, by surface

staining for CD90.1 (Thy1.1, reporter). Positive and negative cells (that have not

integrated the transcript, to use as controls) were FAC-sorted to over 99% purity

(figure 3.2).

33.8 52.4 Cre-Thy1.1 RV

Thy1.1-AlexaFluor700

Unstained control

Figure 3.2: Sorting of Cre-transduced Foxp1flox/flox-Hoxb8 cell line and
verification PCR. At day 7 after retroviral transduction cells were stained for
Thy1.1 (reporter gene) and a positive and negative fraction were sorted to high
purity (left panel). Cre-mediated recombination was verified by PCR in both pop-
ulations (right panel).

Effective recombination of the Foxp1 gene was verified by PCR (figure 3.2). The

negative fraction showed heterozygous genotype, indicating recombinatory events

happening without integration of the retrovirus, probably due to transient expression

after infection. This fraction was therefore excluded, and the Mock-RV transduced

line (also sorted for Thy1.1 positive cells) was used as control. This RV showed less

transduction efficiency (12% positive cells at day 7), but the sorted cells showed
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no difference in morphology or growth compared to the Cre-RV transduced or the

untransduced parent line.

PCR protocol for the verification of Foxp1 recombination

Reaction mix:

H2O 6µl

2x Phire PCR Master Mix 10µl

Forward primer 1µl

Reverse primer 1µl

DNA template 2µl

total 20µl

Primers:

Forward primer: CTG CAC AGC AGG GTA GTT AGT G

Reverse primer: ATG CTA GGC GGT ACT AAA TAG AAC

Protocol:

1 30” 98°C

2 5” 98°C

3 5” 65°C

4 15” 72°C

5 back to 2 (35 cycles)

6 1’ 72°C

hold 8°C

Amplicon sizes:

flox: 3135 bp

KO: 623 bp

3.2.11 Hoxb8 lines differentiation assay

For assessing differentiation, 3 Foxp1flox/flox-Hoxb8 cell lines (the parental line

without RV infection, Mock-RV transduced and Cre-RV transduced) were washed

twice in DC medium to remove all traces of β-estradiol, and seeded in 24 well plates,
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104 cells/well in 250 µl of DC medium, containing either: (A) 7% Flt3L containing

supernatant; (B) 15% Flt3L supernatant (high dose); (C) 7% Flt3L and 50 ng/ml

M-CSF; (D) 7% FLt3L and 1% GM-CSF containing supernatant. On day 3, 6

and 8, the volume was doubled with DC medium containing double amounts of the

respective cytokines. On day 1, 2, 4, 6, 8 and 10 cells were collected and analyzed

by flow cytometry (staining panel in table 3.7).

Antigen Clone Conjugate Dilution
Siglec-H 440c AlexaFluor488 1:200
CD11b M1/70 PerCP-Cy5.5 1:200
MHCII M5/114.15.2 APC-eFluor780 1:200
CCR9 CW-1.2 eFluor450 1:200
B220 RA3-6B2 BV 605 1:200
CD86 GL1 BV 650 1:200
CD135 A2F10 PE 1:100
CD11c N418 PE-Cy7 1:200

Table 3.7: Antibodies used for surface staining of Hoxb8 cell lines.

3.3 Statistical analysis

Standard statistical analysis was performed using GraphPad Prism (GraphPad

Software Inc., La Jolla, CA, USA). For pairwise comparisons, unpaired Student’s

t-test was used, with α = 0.05 (unless stated otherwise). For comparisons between

multiple samples, one-way ANOVA with Tukey’s multiple comparisons test between

all samples was used, unless stated otherwise.

RNA-seq data were analysed using the R software version 3.3.3[95]. The pack-

ages used for specific analyses are mentioned in the respective sections below.

qPCR data were analyzed using the 2-ΔCt method.

3.3.1 Exploratory analysis and data mining of the complete

data set

For the exploratory analysis of the complete data set, without selection of dif-

ferentially expressed genes, I acquired or generated lists of genes of interest, used

them to filter the data set and then generated clustered heatmaps to visualize the

data. Hierarchical clustering was performed using the function hclust with the

30



3.3. Statistical analysis

option dist = euclidean, meaning that euclidean distance was used as measure of

similarity to order and cluster the genes.

For each heatmap, the TPM values for each gene are scaled with the scale

function, which first centers the values by subtracting the mean, then scales it divid-

ing by the standard deviation. This standardizes the data in a normal distribution

centered on 0, thus allowing better visualization and reducing the impact of outliers.

Principal component analysis (PCA) was performed with the prcomp function,

with no additional parameters.

3.3.2 DESeq2 analysis on steady state populations

To analyze the steady state dataset I used the DESeq2[96] package, which takes

as input the un-normalized read counts, models them as a negative binomial distri-

bution, a widely accepted modeling method for RNA-seq data that accommodates

the overdispersion among biological replicate count data, and analyzes it by means

of a generalized linear model (GLM). It tests significance by means of Wald test

for pairwise comparisons, or in our case (3 samples) by likelihood ratio test (LRT),

which is conceptually similar to an analysis of variance (ANOVA) calculation in

linear regression, except that in the case of the negative binomial GLM, it uses

an analysis of deviance (ANODEV), where the deviance captures the difference in

likelihood between a full model, where all the variable elements are included, and a

reduced model, where some elements are removed. Threshold was set at α < 0.01.

The genes thus selected as differentially expressed were visualized on a heatmap

and hierarchically clustered (see previous section). Six clusters were assigned with

the cutree function. Each cluster was then functionally analyzed using GeneOverlap

and Cytoscape.

The full script can be found in Appendix A, script 1.

3.3.3 Weighted gene co-expression network analysis

The Weighted Gene Co-expression Network Analysis (WGCNA) algorithm[97,

98] is very effective for deriving groups of highly co-expressed genes, referred to as

co-expression modules, from large gene expression data sets. I used the WGCNA R

implementation[99, 100] to define modules in each cell type independently, as the
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large differences inherent in the different populations and independent of stimulation

would strongly skew the analysis without being of major interest (as they are already

analyzed independently, as described in the previous section).

A thorough description of the algorithm can found in Pandey et al. 2013[101].

Briefly, it starts with a matrix of the absolute values of Pearson correlation coef-

ficients between each gene pair (calculated from the log2 normalized and batch-

corrected TPM expression values), and converts this into an adjacency matrix using

a simple power function f(x) = xβ. The parameter β is determined in a way that

the resulting adjacency matrix is approximately scale-free, a widely accepted prop-

erty of biological networks (network topology is reviewed in Hu et al., 2016[102]).

The WGCNA package in R offers a function to facilitate choice of β (also called soft

thresholding power) by calculating, for a series of values of β, the fitting index R2

of the linear model that regresses log(p(k)) on log(k), with k being the connectivity

and p(k) the frequency distribution of connectivity. A perfect scale-free network

will have fitting index equal to 1. For network construction the smallest value of

β that gives the highest R2 can be chosen, usually above 0.8, corresponding to an

approximate scale-free network.

This way, I chose 5 for the pDC data set and 4 for the CCR9low cells. For the

pre-DC data set however, the fit index failed to reach values above 0.8 for reasonable

powers (less than 15). This is usually due to a strong driver in the data that makes

a subset of the samples globally different from the rest. The difference causes high

correlation among large groups of genes which invalidates the assumption of the

scale-free topology approximation.

The cause for this behavior in this experiment is likely due to the strong changes

between conditions caused by the time series of stimulated samples. Being this a

variable of interest that cannot be removed (i.e. adjust the data for it), an appro-

priate value of β is chosen based on the number of samples, which in this case (30

samples) is 8 (for details refer to the FAQ section of the WGCNA manual).

The adjacency matrix thus generated is converted into a Topological Overlap

Matrix (TOM) by the following formula:

TOM(i, j) =
lij + aij

min(ki, kj) + 1− aij
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where aij is the adjacency score between genes i and j (calculated as described

above), ki =
∑

u aiu (sum of adjacencies with neighboring genes) and lij =
∑

u aiuauj

(sum of the product of the adjacencies involving all common neighbors). The TOM

measures the strength of the association between two genes based on the ratio of

the similarity of their common neighborhood to the smaller of the individual neigh-

borhoods of the two genes. Using adjacency as input, this also gives higher weight

to genes that are already strongly associated.

The modules are then found by using average linkage hierarchical clustering on

the TOM, and applying a dynamic tree-cutting algorithm on the resulting dendro-

gram, that merges modules with more than 25% similarity (option mergeCutHeight,

default = 0.25).

I applied the WGCNA algorithm with a blockwise approach, meaning that the

analysis was performed individually on blocks of maximum 5000 genes (maxBlockSize

= 5000), and the modules found were merged at the end; minimum module size

(minModuleSize) was set to 30. All other parameters were used with default values.

See Langfelder and Horvath, 2008, for details on the parameters.

The complete script can be found in appendix A, script 2.

3.3.4 GeneOverlap: functional analysis of clusters and mod-

ules

To perform functional analysis on the clusters and modules I took advantage

of the Molecular Signature Database (MSigDB), a collection of annotated gene sets

developed by the Broad Institute for use with GSEA software[103]. The gene sets

are organized in 8 major collections and several sub-collections: for this project I

used the sub-collection c2 kegg, which contains 186 curated gene sets derived from

the KEGG pathway database; and the sub-collection c3 tft, containing 615 motif

gene sets, that include genes that share upstream cis-regulatory motifs which can

function as potential transcription factor binding sites[104].

Each cluster and module was compared to each gene set in the collections using

the GeneOverlap package[105], which uses Fisher’s exact test to calculate p value,

odds ratio and Jaccard index for the overlap of two lists over the background of

the complete library (in this case the 29353 genes detected). P values < 0.05 were
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considered significant.

I used the GeneOverlap package also in the signature-module analysis (section

5.5.2), where I evaluated how many of the detected modules of co-expressed genes

were enriched for each cell type specific signature (CDP, cDC, pDC), thus identifying

the most informative set of modules that indicate cell fate following stimulation.

The complete script can be found in Appendix A, script 3.

3.3.5 Cytoscape: network construction and visualization

Significant gene sets were visualized using Cytoscape[106–108], an open source

software platform for visualizing molecular interaction networks and biological path-

ways and integrating these networks with annotations, gene expression profiles and

other state data. Within Cytoscape I used the app EnrichmentMap[109], which al-

lows to visualize gene set enrichment results as a network: nodes represent gene-sets

and edges represent mutual overlap. In this way, highly redundant gene-sets are

grouped together in clusters, dramatically improving the capability to navigate and

interpret enrichment results. The software was used with the default settings; given

the redundancy of transcription factor motif gene sets, those matching the same TF

were merged in a single node.
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4 Results

4.1 Definition of DC precursor and pDC popula-

tions in murine bone marrow

The main aim of this project was to define the transcriptional regulation of

pDC differentiation from pluripotent progenitors, through the intermediate steps

of pre-DCs and CCR9low pDC-like cells. For this purpose, it was important to be

able to easily and clearly discriminate the populations of interest in the normal

mouse BM, in order to sort them to high purity and perform mRNA-sequencing

(RNA-seq). In addition, I wanted to evaluate the impact of direct TLR activation

on differentiation: it was therefore important to choose TLR ligands able to elicit

responses in the populations of interest at low doses and at early time points, in

order to evaluate primary responses and direct effects on the transcriptome.

4.1.1 Pre-DCs, CCR9low pDC-like cells and mature pDCs

are discrete and well defined populations in the murine

bone marrow

CCR9low pDC-like precursors were initially identified by gating BST2+ Siglec-

H+ CD11c+ cells in the bone marrow[32]. For this project, the aim was to isolate

CCR9high pDCs, CCR9low pDC-like precursors and pre-DCs to high purity, while

excluding all contaminant cells expressing similar markers, such as cDCs, B cells

and other myeloid cells. To this aim, I tested several combinations of markers (not

shown), and chose to use Siglec-H but not BST2, and added CD135 (Flt3), B220,

MHCII and Sirpα. To exclude other cell types, I used a lineage cocktail containing
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CD3, CD19, NK1.1 and Ly-6G (the full panel is presented in table 3.4). Exclusion

of CD11b+ cells was avoided as CD11b is also expressed at low levels on pDCs.

By staining lineage depleted BM cells (see methods section 4.2.3) with this

panel, it is possible to identify pre-DCs, CCR9low cells and pDCs as subsets of the

Lineage negative, CD135 (Flt3) and CD11c positive population (Fig. 4.1, P4), which

essentially contains all DC-lineage cells (expressing Flt3) downstream of the CDPs

(which do not yet express CD11c).

Pre-DCs, also called pre-cDCs, are a rare population of precursors with a promi-

nent commitment to the cDC fate[51]. As was recently demonstrated in our lab by

means of continuous live cell imaging[86], a pre-DC population arises at early time

points in vitro directly from CDPs following upregulation of CD11c but not Siglec-

H, that can also transition to Siglec-H+ CCR9low pDC-like precursors and then to

pDCs, in the presence of Flt3 ligand. Two recent publications[50, 52] showed that a

Siglec-H- B220- pre-DC subpopulation isolated ex vivo is committed to the cDC lin-

eage, and contains cells which are committed to give rise to cDC1 and cDC2. With

this panel, these cells can be found within the Siglec-H- B220- population (P5),

and are further characterized by the lack of expression of the maturation markers

MHC class II and Sirpα. Throughout this thesis I will refer to this population as

pre-DCs. They constitute approximately 0.1% of the total BM cells.

Gating on Siglec-H positive cells (P6), mature pDCs and CCR9low pDC-like cells

can then be distinguished by plotting CCR9 against B220. These markers show a

continuum rather than a clear separation of CCR9 negative (and B220 negative)

cells from mature pDCs. While the latter are CCR9high B220high, the CCR9low cells

also express lower levels of B220, with no clear separation between the two, suggest-

ing a sequence of differentiation from CCR9low B220low to CCR9lowB220int cells, to

CCR9high B220high mature pDCs. For clarity and to avoid cross-contamination dur-

ing sorting, only the CCR9low population was included (which contains B220low/int

cells), and will be referred to simply as CCR9low precursors. This population is

approximately 0.5% of the total BM cells, while mature pDCs constitute 1.5-2%.

Expression of the maturation markers MHCII and Sirpα in these three popu-

lations also suggests different degrees of differentiation, with CCR9low cells showing

an intermediate phenotype between pre-DCs and pDCs (bottom right panel).
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Figure 4.1: Example of staining and gating strategy to sort pre-DCs,
CCR9low precursors and pDCs from murine BM. Lineage depleted BM is used
to sort to high purity the populations of interest, by first gating on lymphocytes (P1)
and live cells (P2), and then on CD135 positive, Lineage negative cells (P3), followed
by CD11c positive cells (P4). The three populations can be then discriminated by
expression of the markers Siglec-H, B220, CCR9, Sirpα and MHC class II.

4.1.2 Pre-DCs, CCR9low cells and pDCs show diverse re-

sponsiveness to different stimuli

Next, several TLR ligands were tested to evaluate the responsiveness of the

different populations, and the kinetics of primary TLR activation in each of them,

to select the appropriate time points for the subsequent transcriptome analysis. To

this aim, I depleted freshly isolated BM of Lineage positive cells, and stimulated the

remaining Lineage negative cells with optimal concentrations of ligands for TLR7

(R848, Resiquimod, 3µM), TLR9 (CpG-A, ODN 2216, 0.5µM), and TLR3 (poly I:C,

1µM), and live VSV virus (106 IU/ml), which was shown to activate TLR7 in pDCs

and RIG-I in cDCs. Since in its wild-type form this virus suppresses type I IFN

production, limiting DC activation and antiviral responses, I also used the mutated

M51R variant (VSV-M) which lacks this protective mechanism[110]. Expression of

the costimulatory molecule CD86 was then analyzed in the different cell populations

by flow cytometry at 2, 4, 6, 12 and 24 hours.

As summarized in figure 4.2, TLR7 and -9 stimuli led to strong activation of
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pDCs and CCR9low precursors, and to a much lower extent of pre-DCs, as mea-

sured by upregulation of the activation marker CD86. Expression peaked at 6h

after stimulation and then declined. VSV, in both WT and mutated forms, led to

CD86 upregulation only at later time points, indicating delayed kinetics of activa-

tion, which can become confused with secondary activation of bystander cells by

cytokines, such as Type I IFNs. Poly I:C had little to no effect on any cell type

cDC
12.1

preDC
9.16

MHCII

S
irp
α

cDC
5.57

preDC
14.2

MHCII

S
irp
α

CCR9low

29.8

pDC
51.3

CCR9

B
22

0

CCR9low

24.0

pDC
41.2

CCR9

B
22

0

Lin-CD11c+SiglecH- Lin-CD11c+SiglecH+ Lin-CD11c+SiglecH- Lin-CD11c+SiglecH+

C

BA
N.S.

0h
N.S.
12h

cDC
Ctr

R848

CpG-A

VSV-wt

VSV-M

polyI:C

0h
2h
4h
6h

12h
24h

0h
2h
4h
6h

12h
24h

0h
2h
4h
6h

12h
24h

CD86

0h
2h
4h
6h

12h
24h

0h
2h
4h
6h

12h
24h

0h
2h
4h
6h

12h
24h

preDC CCR9low pDC

Figure 4.2: Evaluation of the responsiveness and kinetics of preDCs,
CCR9low precursors, pDCs and cDCs to different TLR ligands. Freshly
isolated bone marrow cells were depleted of lineage positive cells and stimulated
with different TLR ligands and VSV, and cell activation was evaluated at different
time points. A-B. Gating example showing the untreated sample at time 0 (A)
and time 12 hours (B). C. CD86 fluorescence of each population with the indicated
treatments. Bar graphs represent mean fluorescence intensity (MFI) of CD86-PE
staining. Representative results of 2 experiments are shown.
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compared to the medium control, suggesting a lack of expression of TLR3 in these

cell types. CDCs showed non-specific CD86 upregulation in all conditions, including

the unstimulated control, indicating that none of these treatments directly activates

them.

An important caveat of this analysis is that the activated cells might be lost

to cell death or downregulation of markers early on in the experiment. As it is

highlighted by panels A and B, already the untreated control shows a noticeable

reduction of all CD11c+ cells at 12h, with important changes also in the percentage

of mature cDCs (while the relative frequency of pDCs and CCR9low precursors is

unchanged).

Based on these results and observations, CpG-A and R848 were selected as

stimuli for the RNA-seq experiments, as they both achieved strong direct activation

at early time points. In addition, since CpG-A is a very strong IFN-α inducer but

a relatively poor inducer of IL-6 expression, a second TLR9 ligand, CpG-C (ODN

2395), was added, which has been described as a good activator of both pathways,

with similar kinetics to CpG-A[111]. Moreover, to limit the loss of cells of interest

and confounding factors such as indirect stimulation by cytokines, pre-DCs, CCR9low

precursors and pDCs were sorted previous to stimulation.

4.2 Transcriptome analysis of DC precursor and

pDC populations

Figure 4.3 summarizes the experiment layout that was chosen for the analysis

of the transcriptome of pre-DCs, CCR9low precursors and pDCs, in the steady state

and after TLR-7 and -9 stimulation. In each of three independent experiments,

each population was split immediately after sorting into 10 samples which were

incubated with the appropriate stimulus for the time indicated. The control sample

was directly lysed and the RNA isolated. At the end of the incubation time, total

RNA was isolated, and cDNA libraries were prepared and sequenced.

After alignment and batch correction, the data were analyzed using R statistical

software[95] and dedicated packages as described in the Methods.
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Cell type

Time

Stimulus

pre-DC CCR9low pDC

Ctr CpG-A

2

CpG-C R848

0 64 2 64 2 64

Ctr CpG-A

2

CpG-C R848

0 64 2 64 2 64

Ctr CpG-A

2

CpG-C R848

0 64 2 64 2 64

3x

RNA isolation

Library Prep
(SmartSeq2)

Illumina HiSeq
RNA sequencing

Figure 4.3: Scheme of the RNA sequencing experiment setup. Each cell
population was sorted to high purity from primary BM cells using a BD FACS
Aria III (Becton Dickinson), then divided in 10 experimental conditions and, at the
indicated time points, the total RNA was isolated and cDNA libraries were prepared
as described in the methods.

4.2.1 Type I IFN pathway genes are upregulated in re-

sponse to all stimuli in CCR9low precursors and pDCs

but not in pre-DCs

As a first step in the analysis of the RNA-seq data, I used the whole data

set, without selecting differentially expressed genes, to perform exploratory analysis

using known gene lists and correlated pathways to evaluate the intrinsic characteris-

tics of each cell type, their relations to each other and their changes following TLR

stimulation. A list of genes of interest was generated by searching the Gene Ontol-

ogy (GO) database (by means of the AmiGO tool v2.3[112]) for the string ”Type I

interferon pathway” (restricted to the organism Mus Musculus). This generated a

list of 104 genes that are annotated to be involved in the IFN-I signaling pathway,

including molecules involved in IFN induction and PRR signaling pathways, which

was then used to generate an expression heatmap of all conditions with hierarchical

clustering of the genes (by means of euclidean distance), to highlight clusters of

co-regulation (figure 4.4). This heatmap gives an immediate visual summary of the

responses to TLR stimulation in the three different populations.

In CCR9low cells and pDCs, all Ifna (IFNα) genes, together with many others in
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4.2. Transcriptome analysis of DC precursor and pDC populations

this pathway, are readily upregulated upon both TLR7 and -9 stimulation, already

at the 2 hours time point. Type I IFN induced genes followed at 4 and 6 hours

after stimulation in pDCs and CCR9low precursors. In contrast, pre-DCs do not

upregulate any Type I IFN specific genes, and the expression of other less specific

genes, e.g. Tlr4 and -8, is unchanged following stimulation. At later time points,

increased expression of a set of inflammatory genes (bottom part of the heatmap) was

observed in pre-DCs, including mostly type I IFN induced genes, such as interferon

regulatory factors (Irfs), Ddx58 (RIG-I) and Myd88; this could be due either to
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Figure 4.4: Analysis of the Type I IFN pathway genes reveals differences
and similarities in the steady state and following stimulation. Genes an-
notated with the GO term ”Type I interferon pathway”, clustered by means of
euclidean distance. Expression values are scaled for this specific selection, centered
on the average value (=0, black) and lowest and highest values as extremes (cyan
and red, respectively), to highlight differences within the selected set of genes.
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spontaneous activation in the culture, or to activation of a very small subset of cells

within the population, whose contribution is hardly detectable in the bulk analysis.

Taken together, these results suggest that most pre-DCs do not mount a Type

I IFN response to TLR7 and -9 stimuli, while CCR9low precursors and pDCs show a

very similar behavior and phenotype, indicating high functional similarity between

these two populations. In addition, in this analysis significant differences in the

responses to the TLR7 and TLR9 ligands were not observed, showing that R848,

CpG-A and CpG-C all activate strongly the Type I IFN pathway.

4.2.2 Pre-DCs express a different TLR repertoire

The reason for the lower responsiveness of pre-DCs to TLR7 and -9 stimulation

is to be found in their characteristic ”commitment” to the cDC lineage. This is

exemplified in the pattern of expression of the Tlr genes (figure 4.5): in the steady

state, pre-DCs express higher levels of Tlr1, -2, -3, -4, -6, -8, -11 and -13 compared

to the other populations, while expression of Tlr7 and -9 is lower (p value = 0.0003

and 0.0503, respectively). On the other hand, CCR9low precursors and pDCs share

a very similar pattern of expression, with Tlr7, -9 and -12 expressed at higher levels

than in pre-DCs, and all the other Tlrs expressed at markedly lower levels than in

pre-DCs. Upon stimulation, the expression of Tlrs in pre-DCs remained unchanged,

while CCR9low precursors upregulated Tlr7, -9, -3 and -12, thereby acquiring the

TLR expression pattern of pDCs. In pDCs the same Tlrs were upregulated, to a

lesser extent, suggesting a less mature phenotype in CCR9low precursors that could

be driven to maturation by the stimuli themselves.

Although there are no evident changes in pre-DCs following stimulation, it

−2 −1 0 1 2
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Figure 4.5: Toll-like receptors are differentially expressed in pre-DCs
compared to CCR9low precursors and pDCs. Expression of TLR genes in the
data set. Expression values are scaled for this selection (see caption of figure 4.4).
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cannot be excluded that a small subset of them does respond specifically to the

TLR ligands used, but their contribution is masked in the bulk population, becoming

undetectable with this type of analysis.

4.2.3 Principal component analysis highlights distinctions

between populations in the steady state, as well as

functional similarities following stimulation

Analysis of the whole data set generated by mRNA sequencing, without se-

lection of differentially expressed genes, reveals intrinsic characteristics of each cell

population, and how they compare to each other. Indeed, when analyzing steady

state populations alone by principal component analysis (PCA), pre-DCs and pDCs

are clustered at opposite sides of the plot, indicating major differences between the

two populations (figure 4.6A). CCR9low precursors are found relatively equidistant

from pre-DCs and pDCs, suggesting an intermediate phenotype with characteristics

of mature pDCs mixed with precursor-like features.

Including the stimulated samples in the analysis (Figure 4.6B-D) highlights the

functional differences between the populations: steady state pre-DCs are clearly

separated from CCR9low cells and pDCs, which now overlap in a single cluster. Fol-

lowing stimulation, pre-DCs do separate from the steady state, indicating changes

in their transcriptome, and remain separate from the other stimulated populations.

Nevertheless, the progression of changes is consistent with that of the more differ-

entiated cells, although not as pronounced, suggesting a specific activation pattern.

Indeed, with all stimuli both CCR9low precursors and pDCs are found at progres-

sively greater distance from their respective steady state counterparts with increas-

ing time, in line with a regulated process of activation with sequential changes in

gene expression.

Differences between the populations and the various stimuli will be discussed

in details in the WGCNA analysis section (Section 4.5).
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Figure 4.6: Principal component analysis of the steady state and stim-
ulated populations. The whole unfiltered data set was used for PCA. A. Con-
sidering only the steady state populations, CCR9low cells (green) are positioned at
relatively equal distances from pre-DCs (red) and pDCs (blue), suggesting an inter-
mediate phenotype, with mixed characteristics of precursor cells as well as mature
pDCs. B-D. Including the stimulated samples in the analysis, CCR9low cells and
pDCs appear to be more closely related and more distant from pre-DCs already at
steady state, and with similar behaviors after stimulation.

4.2.4 Independently generated cell-type specific signatures

characterize the different populations and are regu-

lated upon TLR activation

To categorize these cell types based on previous knowledge and population def-

initions, I took advantage of cell-type specific gene expression signatures generated

independently from the Immgen database. I used signatures for BM CDPs and

44



4.2. Transcriptome analysis of DC precursor and pDC populations

splenic (mature) pDCs previously generated in our lab[53], and for splenic cDCs

from Miller et al.[113]. All these signatures were generated by comparing the differ-

ent DC subsets in the steady state and extracting sets of population-specific genes,

upregulated only in the selected cell type relative to all other subsets.

After generating heatmaps for each of them from all of our populations, I com-

pared expression of these signature genes in the steady state as well as following

stimulation (figure 4.7).

As expected, steady state pDCs specifically express higher levels of all genes

of the pDC signature compared to the other populations, while they show lower

expression of most of the other two signatures. Pre-DCs on the other hand, express

much lower levels of pDC signature genes, but have higher expression of both CDP

and cDC signature genes, indicating their precursor nature as well as their commit-

ment to the cDC lineage. Interestingly, CCR9low precursors express almost all genes

of the pDC signature, although to a lower extent than pDCs, while also showing

high expression of most of the CDP signature genes, similar to pre-DCs, and a small

subset of the cDCs genes. This is in line with previous findings that these cells,

while phenotypically and functionally very similar to mature cells, still retain differ-

entiation potential and can switch to cDC phenotype under certain conditions[32,

53].

Following activation, pre-DCs and pDCs show very little changes in their signa-

tures, indicating lower responsiveness of the former and final commitment of pDCs,

while CCR9low cells readily downregulate both CDP and cDC specific genes, and

upregulate their pDC signature, suggesting a stimulus-induced differentiation. Sur-

prisingly, a small subset of cDC specific genes (top of the cDC signature heatmap)

are quickly upregulated upon stimulation in both CCR9low precursors and pDCs.

These genes include Cd83 and Cd86, which are important for antigen presentation

and are normally expressed at higher levels in cDCs than pDCs. Furthermore, Id2, a

lineage defining factor for cDCs, is upregulated by stimulation in CCR9low precursors

and in pDCs.

Focusing on TFs that are known to be differentially expressed in the different

DC subtypes (figure 4.8), in the steady pre-DCs showed higher expression of many

myeloid and cDC specific factors (top of the heatmap) and not of the factors highly
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Figure 4.7: Expression of DC subtype-specific signatures. Signatures were
generated from data retrieved from the Immgen database in our lab (CDP and
pDC)[53] or by Miller et al. (cDC)[113]. Values are scaled independently for each
heatmap (see caption of figure 4.4). For clarity, only R848 is shown for the stimulated
samples.
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expressed in pDCs (bottom). Interestingly, CCR9low precursors expressed the same

levels of pDC-specific factors (Tcf4, Bcl11a, Irf8 and others) than pDCs, as well

as some pre-DC-expressed genes (Klf4, Cbfb, Runx1). Upon stimulation, pre-DCs

showed little change in TFs expression, with limited upregulation of Stat3 and Relb.

Both pDCs and CCR9low cells however, upregulated a subset of cDC specific TFs,

including Id2, Bcl6 and Nfil3, as well as inflammatory TFs such as Nfkb1 and

Relb, and at later time points Irf2 and Notch2. Interestingly, pDCs showed more

downregulation of Runx2, Bcl11a and Irf4 compared to CCR9low precursors.

These results suggest the activation of an inflammatory program in response to

TLR7 and -9 stimuli that involves cDC-specific transcription factors.
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Figure 4.8: Expression of DC subtype-specific transcription factors. CDC
and pDC specific transcription factors are differently expressed in the different cell
populations, and are regulated upon stimulation.

4.2.5 Expression of Id2 is upregulated in CCR9low precur-

sors and pDCs by TLR stimulation

I was able to verify this finding by using an Id2 reporter mouse that was available

in our lab, which has an IRES-eGFP reporter cassette within the endogenous Id2

locus, resulting in a reliable reporter for Id2 expression, without loss of function [91].

Id2eGFP/eGFP mice were subcutaneously injected with CpG-A and Id2-eGFP
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expression was detected by flow cytometry in BM cells and splenocytes after 16 or

72 hours. Furthermore, BM cells from these mice were isolated and treated in vitro

with TLR ligands for 4 and 16 hours. Cells were gated as previously described,

and a cDC gate (Lin- CD135+ CD11c+ Siglec-H- MHCII+ Sirpα+/-) was included as

positive control.

In vivo (figure 4.9), unstimulated BM pDCs and CCR9low cells expressed very

low levels of Id2, while pre-DCs showed higher expression, although lower than

cDCs, as expected. Upon stimulation, both pre-DCs and cDCs transiently upreg-

ulated Id2 expression, which was back to normal expression levels 72 hours post

injection. Interestingly, CCR9low precursors showed upregulation already at 16h,

and maintained it at the later time point, while mature pDCs upregulated Id2 only

later, at 72h. Interestingly, in the unstimulated spleen expression of Id2 was higher

on both cDCs and CCR9low precursors. These two cell types also showed a similar

behavior upon stimulation, with strong transient upregulation of the protein, clearly

detectable at 16h. Pre-DCs, while expressing similar Id2 levels in the spleen as in the

BM at the steady state and at 16h, showed stronger upregulation at 72h. Moreover,

pDCs showed faster upregulation in the spleen than in the BM, with expression of

Id2-eGFP increasing already at 16h.

These results confirm at the protein level the upregulation of Id2 gene expression

which was detected by RNA sequencing.

Systemic TLR stimulation however causes a strong activation of many types of

cells, and may trigger migration of responding cells from hematopoietic tissues to

lymphoid organs, making the analysis of rare populations difficult.

Therefore, I isolated BM cells from untreated Id2-GFP mice and stimulated

them in vitro, in order to better follow activation of specific populations without

the risk of losing them to migration. Moreover, I also stimulated with CpG-C and

R848, in addition to CpG-A, to better compare to the RNA-seq results.

In this experiment, no effect was detectable after 4h, while at the 16h time

point all stimuli had induced upregulation of Id2 in all cell types, including cDCs

and pre-DCs (figure 4.10), confirming the results of the in vivo experiment.
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Figure 4.9: Id2 expression following stimulation in vivo. Id2-GFP reporter
mice were injected subcutaneously with CpG-A. At the indicated time points, mice
were sacrificed and spleen and BM were analyzed by flow cytometry. A. Example
of gating in BM (top) and spleen (bottom). B. Representative histograms and C.
quantification of GFP fluorescence in the indicated populations. n = 2 mice per
group.

49



4.3. Analysis of differentially expressed genes in steady state pre-DCs, CCR9low

precursors and pDCs

Taken together, these results validate the RNA-seq findings that Id2, a cDC-

specific transcriptional regulator, is upregulated upon TLR7 and -9 stimulation in

pDCs and pDC precursors, both at the mRNA and at the protein level.

NS

cDC

4h

A
preDC CCR9 pDC

CpG-A

CpG-C

R848

16h

NS

CpG-A

CpG-C

R848

Figure 4.10: Id2 expression following BM stimulation in vitro. BM cells
were isolated from Id2-eGFP reporter mice, and treated in vitro with TLR7 or -9 lig-
ands (3µM R848, 0.5µM CpG-C and 0.5µM CpG-A) or cultured with medium alone
(NS, non-stimulated), for 4 or 16 hours. Cell populations were gated as indicated in
figure 4.9A. Results of one representative experiment are shown (two experiments
with similar results were performed).

4.3 Analysis of differentially expressed genes in

steady state pre-DCs, CCR9low precursors and

pDCs

For statistical analysis of the RNA-seq data, separate analyses of the gene

expression patterns of the unstimulated and the stimulated populations were per-

formed (figure 4.11). This way, I could focus first on normal differentiation, in-

vestigating differential expression across untreated populations and searching for

regulators of pDC differentiation, and investigate the responses to TLR activation

as a second step.

The steady state data set is composed of 3 conditions, with 3 replicate samples

each. To identify clusters of co-regulated genes, I selected differentially expressed
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(DE) genes by means of an ANOVA-like test (likelihood ratio test, LRT), and per-

formed hierarchical clustering. The design of the TLR stimulation experiment was

more complex, with 3 cell types divided in 10 conditions each (for a total of 90 sam-

ples), with one independent variable (treatment) and one ordered variable (time).

To simplify the analysis and limit confounding factors, I divided this data set by

cell type and analyzed each independently using the Weighted Gene Co-expression

Network Analysis (WGCNA) algorithm. This analysis defines modules (equivalents

to clusters in LRT analysis) of co-expressed genes, which can then be analyzed for

functional significance. Comparisons of the WGCNA results for each population

highlights differences and similarities between the cell types.

For functional analysis, I calculated the overlap with gene sets from the MSigDB

collection 3, ”transcription factor targets” (c3 tft) and collection 2, ”KEGG path-

Steady state
3 conditions
3 replicates

DeSeq2
(ANOVA-like tests)

Love M, Huber W and Anders S,
Genome Biology 2014

Weighted Gene Co-Expression 
Network Analysis

Langfelder P and Horvath S,
BMC Bioinformatics 2008

Clustering

GeneOverlap

MSigDB
C3 collection 
(TF motifs)
C2 collection
(KEGG pathways)

TF binding sites
enrichment

=
possible regulators

Cytoscape

Network visualization

pre-DC
10 conditions
3 replicates

CCR9low

10 conditions
3 replicates

pDC
10 conditions
3 replicates

Figure 4.11: Analysis workflow for the RNA sequencing data. Given the
complexity of the experimental design, the steady state and the stimulated data sets
were analyzed separately, the latter separated into the three cell types. After the
differentially expressed genes were calculated and clustered as indicated, each co-
regulated cluster (or module) was screened for functional significance as well as for
transcription factor binding sites enrichment, in order to identify putative regulators.
Finally, Cytoscape was used to visualize the network of regulatory factors.
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ways” (c2 kegg, biological pathways from the KEGG repository), for each cluster

and module. The results of this analysis were merged and visualized using Cytoscape

to build network maps of regulatory factors and regulated pathways. The complete

analysis strategy is summarized in figure 4.11.

4.3.1 Genes differentially expressed during differentiation

are co-regulated in clusters and belong to functional

pathways for DCs

The likelihood ratio test (LRT) on the steady state data set identifies 2274

genes differentially expressed (DE) with p value < 0.01. These can be clustered

by means of euclidean distance into six main clusters of co-expression, of varying

size and expression patterns (figure 4.12). To understand the functional meaning

of each cluster, I used the R package GeneOverlap[105] to compare each one with

the MSigDB collection c2 kegg, which contains gene sets corresponding to KEGG

biological pathways. GeneOverlap works by comparing two lists of genes against a

genome background (the total of the expressed genes) in the form of an hypergeo-

metric distribution, using the Fisher’s exact test to calculate the probability of the

two lists overlapping by chance, and returning for each comparison a p value and

odds ratio, as well as a Jaccard index for similarity of the lists. For simplicity, here

I consider only the p value as a measure of significance of the overlap between each

cluster and the KEGG pathway gene sets.

Table 4.1 summarizes the results of the functional enrichment, clarifying for each

enriched KEGG pathway the most significantly DE genes in the cluster. Disease

pathways (e.g. Leishmania infection) are often highly redundant with physiological

pathways.

Cluster 1 contains 255 genes that are expressed at lower levels in CCR9low

precursors only, including many adhesion molecules (Itga8, Itgb2) and complement

proteins (C3, Cd55), enriched in pathways related to infection as well as innate

immunity and cell adhesion.

Cluster 2 contains 263 genes that are expressed at higher levels in pre-DCs

and at lower levels in the other 2 populations. These include several cytokines
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Figure 4.12: Differentially expressed genes in the steady state, and en-
richment for KEGG pathways. The 2274 differentially expressed genes identified
by likelihood ratio test (LRT) with p value < 0.01 were hierarchically clustered by
means of euclidean distance, and the 6 main clusters were compared with MSigDB
collection c2 kegg, identifying several pathways significantly enriched in each clus-
ter. The red line on the dendrogram indicates cutoff height for cluster assignment.
The bar graph represents the 5 most significantly enriched KEGG pathways in each
cluster (-log10[p value]).

(Il1b, Tnf) and chemokines (Ccl3, Cxcl16) and their receptors (Csf3r, Cxcr2, Ifngr1

and 2), as well as costimulatory molecules (Cd40) and activation markers (Cd80,

Cd86), belonging to inflammatory pathways. These genes are known to be expressed

at higher levels in conventional DCs in the steady state compared to pDCs, and

this is once again in line with previous results showing that Siglec-H- pre-DCs are

committed to the cDC lineage.

Cluster 3 contains 540 genes that are expressed at lower levels in pDCs only.
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These belong to pathways controlling DNA replication and cell cycle (cyclins and

Cdks such as Ccnb1 and 2, Cdc45, Cdk1 and more): indeed, mature pDCs in the

BM are slowly dividing cells[53], which is congruent with the downregulation of

proliferation genes, whereas pre-DCs and CCR9low cells are precursor populations

with higher proliferative capacity.

Cluster 4 contains 302 genes that are strongly expressed in pre-DCs, low in

CCR9low precursors and lowest in pDCs, including Id2, Itgam (CD11b), Spi1 (PU.1)

and Tlr2 and 3, and other cDC specific genes belonging to immune and inflammatory

pathways, that are indeed still expressed at low levels in CCR9low precursors.

Cluster 5 contains 883 genes that are low in pre-DCs, higher in CCR9low pre-

cursors and highest in pDCs, including genes that are necessary for antigen uptake

and processing (in the lysosomal pathway), adhesion and cell-cell communication;

not surprisingly, this cluster also contains most pDC-specific genes and transcription

factors, such as Ccr9, Siglech, Tcf4 (E2-2), Bcl11a and many others.

Cluster 6 contains only 31 genes that are higher in CCR9low cells compared to

the other 2 populations, including Cd27, Itgax (CD11c) and Il12a.

These results confirm the nature of pre-DCs as cDC-imprinted proliferating pre-

cursors. They also highlight the functional similarity between CCR9low precursors

and pDCs (Cluster 5) as well as their difference in terms of precursor potential, e.g.

considering proliferation (Cluster 3) and cDC potential (Cluster 4).

Cluster Pathway
Enrichment
p value

Pathway genes in clustera

1

Leishmania infection 1.38×10−12 C3, Ncf4, Irak4, Mapk13,
Jun +1

Cell adhesion molecules
(CAMs)

2.36×10−05 Itga8, Vcan, Itgb2, Ncam1,
Cldn15

Complement and coagula-
tion cascade

3.07×10−05 C3, F10, C5Ar1, F5, Cd55
+1

Systemic lupus erythemato-
sus

3.23×10−05 C3, Elane

Viral myocarditis 4.42×10−04 Cd55, Itgb2

2

Cytokine/Cytokine receptor
interaction

2.22×10−08 Il1b, Tnf, Ccr1, Tnfrsf21,
Csf3r +10

Toll-like receptor signaling
pathway

3.60×10−07 Il1b, Tnf, Cd14, Ccl3, Cd86
+5

Hematopoietic cell lineage 1.29×10−06 Il1b, Itga1, Tnf, Csf3r,
Cd14 +3

a Genes overlapping in the pathway gene set and the cluster. The 5 most significant for differential
expression are shown, numbers indicate remaining genes in the overlap.
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Cluster Pathway
Enrichment
p value

Pathway genes in clustera

Endocytosis 4.35×10−05 Rab31, Asap1, Hspa1a,
Rab11fip1, Hspa1b +5

Type I diabetes mellitus 4.54×10−05 Il1b, Tnf, Cd86, Cd80, Ica1

3

Cell cycle 3.60×10−31 Bub1b, Bub1, Cdk1, Cdc45,
Mcm3 +30

DNA replication 2.85×10−17 Lig1, Pola1, Pole, Mcm3,
Mcm5 +10

Oocyte meiosis 3.24×10−12 Bub1, Cdk1, Sgol1, Ccnb2,
Ccnb1 +13

Progesterone mediated
oocyte maturation

5.86×10−09 Bub1, Cdk1, Ccnb2,
Cdc25b, Ccna2 +8

p53 signaling pathway 4.95×10−08 Cdk1, Ccnb2, Ccnb1,
Ccne1, Pmaip1 +7

4

MAPK signaling pathway 2.35×10−05 Pak1, Dusp3, Dusp2, Flna,
Arrb1 +7

Chemokine signaling path-
way

2.98×10−05 Pak1, Hck, Ccr2, Arrb1,
Elmo1 +5

Leishmania infection 9.97×10−05 Ptgs2, Itgam, Tlr2, Mar-
cksl1, Mapk3 +1

Focal adhesion 0.001
Pak1, Met, Itga5, Flna,
Dock1 +3

Cytokine/Cytokine receptor
interaction

0.002
Met, Csf1r, Ccr2, Il13ra1,
Acvrl1 +4

5

Lysosome 1.33×10−07 Gns, Ctso, Sort1, Npc1,
Ap1m2 +12

Cell adhesion molecules
(CAMs)

2.83×10−06 Cd4, Sdc4, Sdc2, Cdh5,
Cd8a +7

Gap junction 2.86×10−06 Egfr, Prkcg, Prkcb, Tubb2b,
Adcy5 +8

Viral myocarditis 1.09×10−05 Ccnd1, Cd28, Fyn, Myh13,
Myh14 +3

N-glycan biosynthesis 6.06×10−05 Man2a2, Alg2, Man1a2,
St6gal1, Mgat1 +3

6

Primary immunodeficiency 6.82×10−06 Tnfrsf13c, Igll1, Lck
Cytokine/Cytokine receptor
interaction

0.003 Il12a, Tnfrsf13c, Cd27

Terpenoid backbone biosyn-
thesis

0.016 Idi1

Steroid biosynthesis 0.018 Cyp51
Allograft rejection 0.039 Il12a

Table 4.1: KEGG Pathways enriched in the clusters
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4.3.2 Enrichment for transcription factor target genes pro-

vides putative transcriptional regulators

One aim of this project was to identify regulatory networks of pDC differen-

tiation in the steady state, and find the TFs that contribute to this regulation.

To do so, I again used GeneOverlap to compare each cluster with the MSigDB

c3 tft collection, where each gene set is composed of genes with promoter regions

([-2kb,2kb] around transcription start site) containing a conserved motif sequence,

which is annotated as binding site for known or putative TFs (based on work by Xie

et al. 2005[104]). The TFs matching the enriched sets therefore represent possible

transcriptional regulators of the specific cluster.

The factors thus identified were visualized using the Cytoscape app Enrich-

mentMap[109], which generates a network of nodes (the enriched gene sets) and

edges (the overlap between gene sets) to highlight connections between regulators.

In addition, in post-analysis the generated network was overlaid with the enriched

KEGG pathways, thus visualizing networks of regulated pathways with their pu-

tative regulators. Given that an individual TF is often represented by several re-

dundant motifs in MSigDB, those mostly cluster together. For easier visualization,

these have been merged when possible, and only the individual TFs are shown.

The data were analyzed with the EnrichmentMap default settings (threshold p

value < 0.005).

Cluster 1 is enriched for 6 motifs, corresponding to only 3 different transcription

factors (Gata1, Jun and Cebpb) and a motif (GGGNNTTTCC) not matching any

known TF. These have no common targets, and therefore fail to form a network.

In cluster 2 (figure 4.13) 32 gene sets were found, corresponding to 21 TFs.

As already observed in the previous section, genes in this cluster are typical cDC

expressed genes, and this is reflected in the functional analysis: KEGG pathways

related to inflammation and innate immunity are regulated by canonical myeloid

transcription factors such as Cebpb and PU.1, or inflammatory TFs such as NFAT

or NF-κB.

Interestingly, in cluster 3 (figure 4.14), where 41 significant gene sets corre-

sponding to 10 known TFs are found, the most significant overlap is seen with
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Figure 4.13: Regulatory network of cluster 2. Transcription factors and
KEGG pathways significantly enriched in cluster 2. Circles represent TFs, triangles
KEGG pathways (nodes). Connecting lines (edges) indicate overlap between the
gene sets. Circle size is proportional to the overlap with the cluster. Thickness of
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indicates p values (blue = 0.005, red < 0.0001).

members of the E2 transcription factors family (21 gene sets), which are known reg-

ulators of DNA replication and cell cycle. Indeed, this cluster is enriched with genes

involved in cell cycle and DNA replication, which are highly expressed in pre-DCs

and downregulated in pDCs, but still expressed in CCR9low cells, in line with the

reduced proliferative capacity of mature cells compared to precursors. The TF genes

E2f7 and E2f8 themselves are found in this cluster, while E2f2 is found in cluster 4.

Cluster 4 (figure 4.15) is enriched for a high number of motifs (67 gene sets),

many of which are binding sites for inflammatory TFs (Stat3, Stat6, NFAT) or TFs

found in the myeloid lineage (PU.1, Cebpb), that indeed control expression of genes

expressed in the cDC lineage, and are here downregulated. Of interest in this cluster

are the Foxo4 and Foxf2 gene sets (right insert): these TFs are members of a family

of transcriptional repressors, and could play a role in specifically downregulating

cDC genes to favor pDC differentiation.
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In cluster 5 (figure 4.16) 93 gene sets were enriched, with high redundancy of

targets, creating a complex network of regulation and cooperation of several factors.

The pDC-specific genes that are contained in this cluster (Siglech, Ccr9, Tlr7 and
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others) are known to be regulated by factors such as Tcf4, Bcl11a, Spib and others.

These are not represented in the collection, and therefore not enriched in the network

as expected. However, other E-box binding proteins are highly enriched, such as

Tcf3 and Tfap4: these are basic helix-loop-helix (bHLH) factors belonging to the

same family as Tcf4, and binding motifs based on the E-box consensus sequence

(CANNTG). This is indicative of an enrichment in genes that can be regulated by

E-box binding proteins, such as Tcf4. Interestingly, several members of the Forkhead

box (Fox) family of transcription factors are central in this network (right insert),

suggesting a role for members of this family also in suppressing pDC specific genes

in the pre-DCs and to a lower extent in CCR9low precursors to maintain precursor

state and plasticity for differentiation into cDCs.
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Figure 4.16: Regulatory network of cluster 5. Transcription factors and
KEGG pathways significantly enriched in cluster 5. Circles represent TFs, triangles
KEGG pathways (nodes). Connecting lines (edges) indicate overlap between the
gene sets. Circle size is proportional to the overlap with the cluster. Thickness of
the edges is proportional to the overlap between nodes. Color scale of the nodes
indicates p values (blue = 0.005, red < 0.0001).

Cluster 6 is enriched for 7 gene sets corresponding to 5 known TFs (Pax4, Myc,

Usf2, Myb, FXR). Similarly to cluster 1, these are not related and fail to form a

network.

These results suggest a complex network of regulation of differentiation, with
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4.4. The role of Fox transcription factors for DC differentiation

reduction of cDC specific genes and proliferative capacity and induction of ”plasma-

cytoid” pathways. The prominent enrichment for members of the Fox family of TFs

was intriguing, as it is a large family with members playing different roles in the

immune system. Many proteins belonging to the Fox family have been identified as

regulators of T and B cell differentiation and function, for example Foxp1, which is

required for the maintenance of CD8+ T cell quiescence. Recent publications have

also highlighted their role in DC development, for example for Foxo1[114] (which

unfortunately is not directly represented in the MSigDB), but the importance in

DC development has not been studied systematically.

4.4 The role of Fox transcription factors for DC

differentiation

The murine family of Forkhead box (Fox) TFs consists of 43 members, most

of which have not been characterized with regard to their function and biological

significance. This limited knowledge is also reflected in the MSigDB, where only 8

of these TFs are represented, for which conserved binding motifs are known. These

motifs, although mapping to different Fox proteins, are similar and partly overlap-

ping, based on the core consensus sequence GTAAACA: it is therefore reasonable to

hypothesize that other members of the family, sharing the Forkhead DNA binding

domain, bind to the same or similar target sequences. Therefore, I explored the

whole family to look for factors that are differentially expressed in pDCs, in order

to find specific regulators of differentiation towards the pDC lineage.

Fox proteins which were found to be significantly upregulated with differentia-

tion in the RNA-seq data set were chosen as candidates for validation by qPCR and

other techniques.

4.4.1 Members of the Fox family of transcription factors are

differentially expressed during differentiation

Out of the 43 members of the Fox family of transcription factors, 14 were found

in our steady state data set with an expression value (TPM) > 0; of these, 5 were
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4.4. The role of Fox transcription factors for DC differentiation

differentially expressed during differentiation (figure 4.17).

Many targets of Fox family proteins are found in cluster 5, upregulated with

differentiation, including several pDC specific genes (Tcf4, Bcl11a, Siglec-H); this

suggests that some Fox proteins might actively repress pDC-lineage specific genes,

to drive cDC differentiation or to maintain pluripotency/precursor potential. This

might be the case for proteins such as Foxm1 and Foxn2, which are downregulated

in pDCs and found in cluster 3 and cluster 4, respectively.

Within this framework, it is reasonable to speculate that Fox proteins that show

high expression specifically in pDCs define this cell fate by suppressing other lineage

programs (exemplified by the Fox targets found in cluster 4, including among others

Id2 and Bcl6).

Therefore, I focused on those factors that are upregulated with progression to

mature pDCs, for these are more likely to actively and specifically shape the plas-

macytoid identity. These are Foxp1 and Foxr1, which also belong in cluster 5, with
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Figure 4.17: Expression of Fox proteins in the RNA-seq dataset. 14 out of
43 members of the Fox family of transcription factors are expressed in the RNA-seq
data set. *** = p value < 0.005
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the pDC-upregulated genes, and Foxo1, which is the only factor of this family that

was shown to regulate DC function. I also included Foxo4 in the analysis, although

its expression is very low and not significantly changed, as it is a central node in

the statistical analysis, and its known binding motif has a highly significant overlap

with both cluster 4 (p value = 5.85×10−07) and cluster 5 (p value = 7.77×10−07).

Foxo1 is a pro-apoptotic transcription factor controlled by the PI3K-Akt signal-

ing pathway, which regulates several aspects of T cell biology, such as activation[115,

116], homing and survival[117] and differentiation into memory cells[118]; it is also

an important factor in DC differentiation and function[114, 119].

Foxo4 is known as an anti-oncogenic factor, and has similar functions to Foxo1

in T cells[116, 117], but has not been extensively studied.

Foxp1 regulates early B cells development[113] and human plasma cells differ-

entiation and survival[120, 121], and counteracts Foxo1 proapoptotic activity in T

cells to promote survival and quiescence[122, 123]. It also plays a role in Tfh cells

differentiation[124].

Foxr1 has only been identified in lymphomas and other tumors as a pro-oncogenic

factor being activated following chromosomal aberrations[125, 126].

4.4.2 Fox family transcription factors are differentially ex-

pressed in pDC and cDC subpopulations

Taking advantage of the Immgen database, I looked for expression of these

targets among key immune populations (figure 4.18) and the different DC subtypes

(figure 4.19). As previously described, Foxo1 and Foxp1 are highly expressed in

T cells and B cells, where they contribute to maintenance of the quiescent state

in naive cells and control activation and function. Among DC subsets, Foxo1 and

Foxp1 both showed higher expression in pDCs compared to all other DC subsets.

Interestingly, Foxr1 was the most specific for pDCs, with higher expression when

compared to all other DC subtypes as well as to the key populations. However, it

must be noted that its expression in the database is very low in all samples, very

near the background (generally considered around 100 relative units).

These data show that Foxo1, Foxp1 and possibly Foxr1 are expressed in DCs,

and are higher in the plasmacytoid subset, making them optimal targets for valida-
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4.4. The role of Fox transcription factors for DC differentiation

tion as potential regulators of pDC differentiation.
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Figure 4.18: Expression of selected Fox proteins in the Immgen database
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Figure 4.19: Expression of selected Fox proteins in the Immgen database
(DC subsets). Empty bars highlight pDC populations.

4.4.3 qPCR analysis confirms differential expression of Foxo1

and Foxp1 in pDCs and CCR9low precursors

To validate the results of the RNA-seq analysis, all three populations (pre-

cDCs, CCR9low precursors and pDCs) were again sorted from murine BM cells
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4.4. The role of Fox transcription factors for DC differentiation

and qPCR was performed for Foxo1, Foxo4, Foxp1 and Foxr1, using commercially

available Taqman probes. As controls, Lineage positive cells were sorted from BM

cells (containing T and B cells), and pDCs, cDC1, cDC2 and Lineage positive cells

(comprising mostly T cells) were sorted from splenocytes.

Foxo1 was highly expressed in splenic Lin+ cells, as expected (figure 4.20), but

also relatively higher in pDCs in both organs when compared with the other cell

populations. Interestingly, Foxp1 was expressed at higher levels in pDCs of both BM

and spleen, compared to all other cell types, indicating a specific expression of Foxp1

mRNA in differentiated pDCs. As expected, Foxo4 showed very low expression in

all samples, just above the limit of detection. Unfortunately, Foxr1 mRNA was not

detectable in any sample, using two different primer/probe sets.
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Figure 4.20: Expression of Fox genes mRNA in DC precursors and sub-
populations measured by qPCR. Foxo1, Foxo4, Foxp1 and Foxr1 mRNA expres-
sion was quantified by RT-qPCR. Foxo1 and Foxp1 showed pDC specific expression
when compared to other DC subsets. Foxr1 was not detected in any sample. Mean
values and standard deviation of 3 independent experiments are shown.

Taken together, the RNA sequencing and qPCR results indicate a specific ex-

pression of the Foxp1 gene in mature pDCs. The expression pattern of Foxp1,

together with its known function as a transcriptional repressor and cell cycle reg-

ulator, and the availability of validated antibodies and of a conditional knock-out

mouse strain (Foxp1flox/flox), allowed further phenotypical validation and functional

investigation.

Foxp1 is a transcriptional repressor that acts as an oncogene in several tumors

by downregulating the expression of proapoptotic genes. In the hematopoietic sys-

tem, it controls survival of B cells[120, 122] by the same mechanism, and quiescence

of T cells[123, 127]

64



4.4. The role of Fox transcription factors for DC differentiation

4.4.4 Staining with Foxp1 antibody confirms expression in

pDCs at the protein level

Using a Foxp1 specific antibody, I evaluated its expression in the spleen and BM

of wild type mice. BM populations were gated as described above (figure 4.1) with

the addition of a Siglec-H- MHCII+ cDC population as control. Splenic DCs were

gated within CD3- CD11c+ cells as Siglec-H+ B220high pDCs and Siglec-H- B220-

cDCs. T and B cells were also included, the former as CD3+ cells, B cells gated as

CD3- CD11c- MHCII+ CD11b- and B220+.

Notably, in the spleen the protein was clearly detectable in B cells, and at lower

levels in T cells. In splenic pDCs Foxp1 was expressed at similarly high levels as in

B cells, while it was found at significantly lower levels in cDCs (figure 4.21). cDC

subsets (CD8α+ cDC1 and CD11b+ cDC2) showed no difference in Foxp1 expression,

and are therefore shown together.
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Figure 4.21: Mean Fluorescence Intensity (MFI) of Foxp1 staining in WT
spleen and BM. Foxp1 was stained intracellularly with a specific antibody. A.
exemplary histograms of the staining in spleen and BM. B. MFI is compared for
the populations indicated. Mean and SD, n = 3 mice.
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In the BM, Foxp1 protein was expressed at lower levels than in the spleen, but

was still detectable in pre-DCs, CCR9low precursors and pDCs at higher levels than

in cDCs.

These data confirm presence of the Foxp1 protein in pDCs and precursors, while

it is significantly lower in cDCs, in line with the expression pattern observed at the

mRNA level.

4.5 Analysis of the response to stimuli with WGCNA

As briefly explained in section 4.3, the dataset of stimulated populations was

analysed using the Weighted Gene Co-expression Network Analysis (WGCNA) al-

gorithm[98, 99], which uses a Topological Overlap Matrix to find modules of co-

expressed genes by average linkage hierarchical clustering, leading to more cohesive

and biologically meaningful modules from large gene expression data sets than other

clustering methods (see methods section 3.3.3 for detailed explanation of the algo-

rithm). Module eigengenes were then used to find correlations with traits of interest

(in this case Time and Treatment), and the significant modules were functionally

analyzed.

4.5.1 WGCNA highlights similarities between CCR9low cells

and pDCs in response to TLR ligands

For each population, I first analyzed the modules significantly correlated with

the traits (treatment and/or time; p value < 0.01), evaluating enrichment for KEGG

functional pathways using GeneOverlap. Correlation depends on the order of the

samples: with time (being naturally ordered), positive correlation indicates upreg-

ulation, negative indicates downregulation of the module’s genes. Treatments are

arbitrarily ordered as R848, CpG-C and CpG-A. Therefore, positive correlation

indicates expression in R848 < CpG-C < CpG-A, and negative correlation the op-

posite. A correlation p value is also calculated. The genes in the significant modules

are therefore differentially expressed due to the correlated variable(s), and not by

random, unspecific variations in the expression.

In line with the observations made earlier by principal component analysis,

66



4.5. Analysis of the response to stimuli with WGCNA

−0.15
(0.4)

−0.7
(2e−05)

−0.48
(0.008)

−0.32
(0.09)

0.35
(0.06)

0.55
(0.002)

0.18
(0.3)

−0.48
(0.007)

0.28
(0.1)

−0.59
(5e−04)

0.66
(8e−05)

−0.19
(0.3)

0.65
(1e−04)

−0.091
(0.6)

−0.051
(0.8)

0.81
(5e−08)

−0.6
(4e−04)

−0.31
(0.1)

−0.54
(0.002)

0.22
(0.2)

tre
at

m
en

t

tim
e

pDC
849

1118

42

191

472

3803

126

188

47

28

TLR signaling
Jak/Stat signaling

-
-

Bladder cancer
Peroxisome

Proteasome
CML

BCR signaling
Adipocytokine signaling

Lysosome
Cell Cycle

Ribosome
Pathogenic E.Coli infection

Snare interactions/vesicular transport
Nucleotide excision repair

Wnt signaling
Dorsoventral axis formation

RNA pol
Ub- mediated protelysis

mediumpurple2

maroon

coral

darkmagenta

sienna4

black

purple

mediumpurple1

saddlebrown

pink4

C

0.07
(0.7)

−0.75
(2e−06)

−0.088
(0.6)

−0.61
(4e−04)

0.66
(7e−05)

0.52
(0.004)

−0.32
(0.09)

−0.76
(1e−06)

0.49
(0.006)

0.48
(0.008)

0.47
(0.009)

0.55
(0.001)

0.49
(0.005)

0.28
(0.1)

−0.59
(6e−04)

−0.37
(0.04)

0.13
(0.5)

0.89
(8e−11)

−0.18
(0.3)

0.51
(0.004)

CCR9low

1315

710

51

23

1251

44

2867

33

229

324

Jak/Stat signaling
NOD-like receptor signaling

SLE
Glycerophospholipid metabolism

Leishmania infection
Ag processing/presentation

Arg, Pro metabolism
SLE

Cell cycle
DNA replication

Ag processing/presentation
Lysosome

Aa tRNA synthesis
mTOR signaling

-
-

-
-

Aa tRNA synthesis
Protein export

sienna4

lightcyan

thistle1

lightslateblue

mediumpurple3

pink

black

skyblue1

green

plum

B

preDC

Correlation
Coefficient
(p value)

Module
name

Module
size

KEGG pathways
enrichment

371

98

583

157

55

550

119

1527

1113
197

1190

Gluthathione metabolism
Nitrogen metabolism

Oxidative phosphporylation
Parkinsons disease

ABC transporters
MAPK signaling pathway

Val, Leu, Ile degradation
PI signaling system

DNA replication
Mismatch repair

Dorsoventral axis formation
MAPK signaling pathway

Aa tRNA biosynthesis
Proteasome

Aldosterone reg. Na reabsorption
Long term depression

Cytokine-Receptor interaction
Allograft rejection

Proteasome
Cytosolic DNA sensing

Ag processing/presentation
Ubiquitin related proteolysis

0.39
(0.03)

0.63
(2e−04)

0.51
(0.004)

0.52
(0.003)

0.51
(0.004)

0.63
(2e−04)

0.33
(0.07)

0.88
(1e−10)

0.35
(0.06)

0.61
(4e−04)

0.047
(0.8)

0.59
(6e−04)

−0.13
(0.5)

−0.53
(0.003)

−0.31
(0.1)

−0.78
(3e−07)

−0.25
(0.2)

−0.68
(3e−05)

−0.28
(0.1)

−0.89
(6e−11)

0.36
(0.05)

0.7
(1e−05)

magenta4

darkorange2

lightyellow

indianred4

lavenderblush2

paleturquoise

steelblue

lightcoral

antiquewhite4

green

darkgrey
A

Figure 4.22: Modules significantly correlated with treatment and/or
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CCR9low precursors and pDCs show high functional similarity (Figure 4.22B-C),

with upregulation of genes involved in TLR signaling (modules CCR9low green and

pDC mediumpurple1) and downregulation of metabolic and cell-cycle related genes

(modules CCR9low sienna4 and pDC sienna4) with all three stimuli. In both popu-

lations genes related to RNA synthesis show positive correlation with the treatments

(modules CCR9low thistle1 and pDC black), suggesting that CpG treatments

elicit more de novo transcription compared with R848. On the other hand, genes in-

volved in antigen processing and proteasome (modules CCR9low skyblue1 and pDC

pink4), as well as BCR and cytokine signaling (pDC module saddlebrown) were

expressed at higher levels in R848 stimulated samples than in CpG-A stimulated

samples, and did not change with time, suggesting a stronger effect of the TLR7

ligand on these pathways.

Pre-DCs on the other hand (figure 4.22A), while differing from the other cell

types, show a differential expression pattern in line with previous data suggesting

that they are indeed responsive to the given stimuli: they upregulate metabolic

pathways (module indianred4), antigen processing and proteasomal genes (mod-

ules darkgrey, paleturquoise and magenta4) and inflammatory genes (modules

paleturquoise and lavenderblush2). At the same time, they downregulate DNA

replication and cell cycle genes (module green), similarly to the other cell types,

suggesting also the onset of a differentiation program.

4.5.2 Modules enriched for DC specific signatures reveal

stimulus-induced cell fate decisions

To better evaluate the impact that TLR stimulation has on the cell fate of

each population, I calculated for each cell type which modules are enriched for the

specific CDP, cDC and pDC signatures used for the exploratory analysis (Section

4.2.4). Again, the R package GeneOverlap was used to calculate enrichment with

Fisher’s exact test. Table 4.2 shows the numbers of modules enriched for each

signature.

In pDCs (figure 4.23C), signature genes can be found in a total of 8 modules,

with one containing both CDP and cDC signature genes (coral2) and one containing

genes from all 3 signatures (sienna4); the only module with differential expression
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# Enriched modules
Cell Type # Modules CDP cDC pDC Any
pre-DC 95 4 6 4 10
CCR9low 101 2 7 4 8
pDC 101 4 4 3 8

Table 4.2: Number of modules enriched for the specific signatures. ”Any” indicates
the total number of modules enriched for any signature (as they are not mutually
exclusive).

(excluding sienna4, discussed later) is cyan (p value = 0.01, coefficient = 0.45),

enriched for cDC genes, such as Cd83 and Cd86, Il1b and Zbtb46: this confirms the

observations of the exploratory analysis (Section 4.2.4), where upregulation of the

same genes associated with DC maturation and cDC differentiation was observed in

pDCs and CCR9low cells following stimulation (Figure 4.7).

In pre-DCs (figure 4.23A), pDC signature genes are found in 4 modules, 2

of which are upregulated (magenta4 and paleturquoise, including mainly genes

involved in RNA synthesis and the proteasome, figure 4.22A), one downregulated

(lightcoral, including metabolic and PI signaling pathway genes, figure 4.22A)

and one unchanged (darkgreen). In the upregulated modules several inflammatory

genes (Ccr5, Ifi44, Tlr7) can be found. In the downregulated module, genes such

as Cd209d (DC-SIGN, known to be downregulated after DC stimulation), Erbb3

(activator of PI3K/Akt pathway) and Cdc14b (involved in DNA replication) can be

found, regulating cell adhesion and cell cycle/proliferation. At the same time, CDP

and cDC signature genes are found together in modules that are downregulated

(green and antiquewhite4, including mainly genes involved in DNA replication

and cell cycle, figure 4.22A) or unchanged (yellow, plum), and some DC maturation

genes (including Cd80, Cd83 and Cd86) are upregulated in module lavenderblush2.

This suggests that stimulation induces a DC activation and maturation program

in pre-DCs, at least in a small proportion of cells within the population, whose

contribution is now visible thanks to the high sensitivity and resistance to noise of

the WGCNA analysis.

In CCR9low cells (figure 4.23B), genes contained in cDC and CDP signatures

are downregulated (modules lighslateblue and sienna4, including mainly genes

involved in the cell cycle, figure 4.22B), while pDC genes are strongly upregulated

(module green), suggesting that indeed these cells respond strongly to TLR7 and
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-9 stimuli, and are driven to differentiate into pDCs.

The two sienna4 modules (in CCR9low cells and pDCs) are very similar, large

modules with thousands of genes, strongly downregulated, and containing many

cell cycle, DNA replication and metabolic genes, such as Cdc25c, Ccnb2 and Cdc45

(CDP signature), E2f8, Ccna2 (cDC signature), as well as Cd209d, Il7r and Clec10a

(pDC signature) in both cell types. These genes are repressed upon stimulation.

Interestingly, they also include Cbfa2t3 (Mtg16), which is known to directly inhibit

Id2 expression, providing a mechanism for the upregulation of Id2 observed following

stimulation.

Functional analysis and TF binding sites enrichment performed on selected

modules confirms these observations (see Appendix B for figures and detailed ex-

planation): modules downregulated in pre-DCs are enriched for DNA-replication

and cell cycle pathways, and binding sites for E2 family members (module green

figure B.2). Interestingly, the module paleturquoise, which is upregulated, is en-

riched for binding sites for many Interferon regulatory factors (Irfs), centered on Irf8

and regulating pathways of cytosolic DNA sensing and RLR signaling, suggesting

a specific Type I IFN pathway activation following TLR7 and 9 stimulation (figure

B.1B).

In CCR9low cells, regulation of upregulated modules (green, figure B.4A) is

also dependent on a network of Irfs and inflammatory pathways, confirming the

specific activation. Downregulation of the sienna4 module genes is dependent on

a complex network of TFs, among which interestingly are also members of the Fox

family (Foxo4 and Foxf2, figure B.3, blue arrowheads), suggesting the activation of

a differentiation program.

The pDC module sienna4 also shows a similarly complex network as the

CCR9low precursors one, with many common regulators, but interestingly does not

contain targets for Fox family members (figure B.5), suggesting a final commitment

not influenced by stimulation.

In conclusion, these data show that the stimulation with TLR7 and -9 ligands

elicits a specific response in all 3 cell types, or at least in subsets of those, and

strongly suggest that TLR7 and -9 stimulation promotes differentiation of CCR9low

precursors towards a pDC fate.
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Figure 4.23: Signatures-modules overlap. Modules that are significantly en-
riched for the cell-type specific signatures are displayed. Circles indicate the signa-
tures (purple = CDP; beige = cDC; blue = pDC) and contain the enriched mod-
ules, squares indicate correlation of each module with time [correlation factor and
(p value)].
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4.6 Foxp1 deficiency influences DC development

from progenitor cells

Given the prominent role of Fox family members in pDC differentiation high-

lighted in the steady state analysis, and observed as well in the activation-induced

differentiation of CCR9low precursors, I wanted to evaluate the functional relevance

of Foxp1 (the most prominent target, validated at the protein level). To assess this,

I generated progenitor cell lines from Foxp1flox/flox BM cells, using the Hoxb8 sys-

tem[94]. The cell lines thus generated are self renewing myeloid progenitors that

are held in an undifferentiated state while in the presence of β-estradiol and Flt3L,

and can be differentiated into different DC subsets upon withdrawal of β-estradiol,

using different growth factors.

I generated Foxp1-KO progenitors by transducing the Foxp1flox/flox line with a

Cre-encoding retrovirus. The progenitor cell lines generated were viable and showed

no difference compared to the parent cell line or the cell line which was transduced

with a control retrovirus, not encoding Cre recombinase.

The cell lines were differentiated in the presence of Flt3L only, in standard

concentration (7% of supernatant from a Flt3L-producing CHO cell line, roughly

equivalent to 70ng/ml of recombinant Flt3L) or high concentration (15%), or with

the addition of 50ng/ml recombinant M-CSF or 1% GM-CSF-containing supernatant

to 7% Flt3L.

Interestingly, in the presence of Flt3L alone, Foxp1-KO cells failed to survive

and neither expanded nor upregulated CD11c expression, independently of the Flt3L

concentration (Figures 4.24 and 4.25, panels A and B), whereas the parental cell line

and the cell line transduced with control retrovirus strongly expanded (10-fold after

6 days of culture) and maintained survival until at least day 6 of the culture. The

addition of M-CSF or GM-CSF was able to rescue the survival of Foxp1-KO cells

(panels C and D), and their differentiation into MHCIIlow DCs, to similar extents

compared to the Foxp1-sufficient cell lines. In figure 4.26, it is clear that at day 6

after estrogen withdrawal most Foxp1-KO cells fail to survive in the presence of Flt3L

only, dying at very early stages, before upregulation of CD11c. Interestingly, even

in the presence of Flt3L and GM-CSF, when Foxp1-KO cells expanded and survived
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4.6. Foxp1 deficiency influences DC development from progenitor cells

normally, upregulation of CD11c expression was delayed (91.5% [SD 3.6%]in Ctr-RV

versus 59.9% [SD 11.2%] in KO on day 6).

These results suggest a pivotal role for Foxp1 in the Flt3 signaling axis, specif-

ically controlling survival and proliferation of Flt3L-depending cells, and their dif-

ferentiation into DCs.

Figure 4.24 (preceding page): Foxp1-Hoxb8 cell lines differentiation
(Part 1). Foxp1-Hoxb8 cell lines were differentiated for 10 days in the presence
of standard (7%) or high (15%) concentrations of Flt3L only (A-B), 7% Flt3L +
M-CSF (C) or 7% Flt3L + GM-CSF (D). Representative plots of day 2 and day 6. In
each panel, only the lines transduced with Mock-RV (top) and Cre-RV (Foxp1-KO,
bottom) are shown. With Flt3L only, Foxp1-KO cells are clearly declining already
at day 2 of differentiation. Exemplary results of one out of three experiments.
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4.6. Foxp1 deficiency influences DC development from progenitor cells

Figure 4.25 (preceding page): Foxp1-Hoxb8 cell lines differentiation
(Part 2). Panels represent differentiation conditions (A. 7% Flt3L, B. 15% Flt3L,
C. Flt3L + M-CSF, D. Flt3L + GM-CSF). Graphs indicate the total cell counts,
percentage of live cells and percentage of CD11c+ cells. For treatments with M-CSF
and GM-CSF, where enough cells can be evaluated, also percentage of MHCII+ and
MHCII+ CD86+ (within the CD11c+) are shown. Exemplary results of one out of
three experiments.
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Figure 4.26: Foxp1-Hoxb8 cell lines survival and CD11c+ output at day
6 of differentiation. Percentage of live cells of total lymphocytes (A) and CD11c
positive cells of live cells (B) 6 days after β-estrogen removal. Mean values and
standard deviation are shown for 3 independent experiments. Statistical analysis
performed with two-way ANOVA and Tukey’s multiple comparisons test.
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5 Discussion

The differentiation of DC subpopulations from progenitors in the BM has been

object of studies for decades, and several aspects and mechanisms have been clarified

by numerous pivotal studies. Nonetheless, many details regarding the regulation of

the process are still elusive, especially about the functionally distinct pDCs.

In this thesis project, I used RNA sequencing and computational methods to

analyze the global gene expression pattern of pDCs and different precursor popula-

tions in the murine BM, and the influence that TLR stimulation, mimicking systemic

viral infection, has on the transcriptional program of the different populations.

This approach allowed me to assess pDC differentiation at the transcriptional

level, and to define the changes that occur within progressively lineage-restricted

populations. Clusters of co-regulated genes offered a view on the functional changes

of differentiation, as well as the basis for the identification of regulatory factors.

Indeed, TF networks could be defined in the unstimulated populations that are

with high probability regulators of the differentiation process. Within these large

and complex networks, I could identify a specific transcription factor, Foxp1, that

is highly likely to have a central role in regulating steady state differentiation.

In addition, analysis of the effects of TLR7 and 9 stimulation on precursor cells

highlighted the functional differences between mature pDCs and different precursor

populations, suggesting different levels of cell fate commitment as well as respon-

siveness to stimuli. The data also showed that precursor cell activation could go

hand in hand with differentiation into mature pDCs.
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5.1. pDC progenitors in the murine bone marrow

5.1 pDC progenitors in the murine bone marrow

Previous studies have identified several different steps of DC differentiation in

the healthy mammalian BM. Early CD11c+ MHCII- precursors were identified in

the murine BM, which give rise in vitro to all DC subsets including pDCs[49]. More

recently, the CD11c+ pre-DC population was characterized at the single cell level,

and a subpopulation of Siglec-H- migrating pre-cDCs was identified, as a heteroge-

neous collection of cells showing early commitment to the different cDC subsets[52].

A Siglec-H+ B220- Ly6C- subpopulation was also described, able to generate all

DC subtypes including pDCs, which could therefore be an earlier precursor. Recent

research in our lab highlighted heterogeneity and commitment of very early progen-

itors, the common DC progenitors, by means of single cell continuous imaging and

tracking in vitro, consistent with the model that pDC commitment can occur at

different levels before or after the CDP stage[86].

I designed a panel of surface markers that allows to clearly discriminate sev-

eral different steps of pDC differentiation within the CD11c+ MHCII-/low precursor

compartment in the murine BM, downstream of the CDP stage. By focusing the

analysis on cells which are negative for lineage markers (CD3, CD19, NK1.1 and

Ly6G) and express CD135 (Flt3) and CD11c, precursors of cDCs, pDCs and differ-

entiated pDCs could be discriminated by the expression pattern of Siglec-H, B220

and CCR9.

Mature pDCs express high levels of all three markers, and are the most abundant

population, amounting to approximately 2% of the total BM cells. Lower expression

of the chemokine receptor CCR9 was previously found to characterize a population

of pDC-like cells that are already able to produce vast amounts of type I interferon

in response to TLR7 and -9 stimulation, but retain plasticity to convert to the cDC

lineage in specific conditions (e.g. tissue microenvironment)[53]. Analysis of this

population showed that CCR9 expression directly correlates with expression of B220,

resulting in a continuous transition from CCR9low B220low cells to CCR9high B220high

mature pDCs, through intermediate, overlapping steps of CCR9low B220int/high cells.

The B220 expressing cells had been excluded from prior analyses of pre-DCs[32, 53].

The whole CCR9low population, containing both B220low and B220int/high cells, was
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5.2. Analysis of the RNA sequencing data

used in the present analysis. These cell make up approximately 0.5% of the total

BM.

Very little is known about commitment to the pDC lineage at earlier stages.

Recent studies have shown that a population of CD11c+ Siglec-H- B220- precursors

is made up of cells committed to either of the cDC subpopulations, but not to

pDCs[52]. Given the plasticity of the system, and the observation that CCR9low

cells still retain cDC potential, I included this pre-DC population in the analysis,

with the aim to evaluate not only its possible, albeit limited, contribution to the

pDC pool in the steady state, but also the potential of influencing their commitment

by means of direct TLR stimulation. These cells are extremely rare in normal BM,

amounting to no more than 0.1% of the total cells.

In the study by Schlitzer et al.[52] the CD11c+ MHCII- Siglec-H+ B220- BM

fraction contained Ly6C+ cells which give rise to both cDC subsets, and a fraction

of Ly6C- cells which give rise to pDCs and both cDC subsets. This less committed

population is partially overlapping with the Siglec-H+ CCR9low precursor popu-

lation studied here, but lacks expression of B220. By inclusion of the cells with

progressively increased B220 expression the full spectrum of Siglec-H+ precursors

was included in the analysis.

5.2 Analysis of the RNA sequencing data

The large amount of data generated by mRNA sequencing allows for very broad

and in-depth analyses to be performed, while also posing challenges in terms of sta-

tistical significance and interpretation of the results, especially for complex experi-

mental designs with different combinations of conditions and treatments.

Several tools and softwares are available today for analyzing RNA-seq data[128],

allowing a wide variety of information to be extracted. It was of paramount impor-

tance therefore, to choose the best strategy in order to obtain statistically relevant

results that are meaningful and resistant to the high level of noise inherent in these

large data sets. To better answer the questions of this project, the analysis was

divided in 3 parts: (a) an exploratory analysis, a form of data mining that uses

previously known information to categorize and characterize the RNA-seq data, (b)

79



5.3. Exploratory analysis defines BM populations and responses to TLR ligands

a statistical analysis on the unstimulated data set, to define differentially expressed

genes and compare the different populations based on statistically significant changes

in the transcriptome, and (c) a statistical analysis on the stimulated data set, to

define differential expression and statistically analyze the effects of stimulation on

the different cell types, and compare the results.

The implementation of this analysis workflow allowed the characterization of

mature pDCs and CCR9low precursors as closely related, but still partially distinct

populations, separated from pre-DCs both phenotypically and functionally. The

results of the statistical analysis allowed the definition of a model of pDC differ-

entiation based on a complex network of interconnecting factors, among which a

pivotal role is played by the transcriptional repressor Foxp1. Comparison of the

responses to stimuli then confirmed the functional differences suggested by the ex-

ploratory analysis, but also highlighted a response-driven differentiation in CCR9low

precursors, as well as a limited, but significant specific response of pre-DCs.

5.3 Exploratory analysis defines BM populations

and responses to TLR ligands

Exploratory analysis was used to evaluate the data in their entirety, without

selection for differential expression: this type of data mining is based on previous

knowledge and independently generated data, such as specific pathways of interest

(e.g. from the KEGG repository) and cell type-specific gene signatures (e.g. those

generated for pDCs and cDCs by Miller et al.[113]). These can be used as descriptive

measures, to evaluate the intrinsic characteristics of each sample relative to cell types

of interest, as well as to evaluate responsiveness and changes in lineage features when

TLR stimulation is applied.

The stimuli used for this experiment were chosen in order to induce strong type

I IFN responses, a typical feature of pDCs. Analyzing the expression of genes in-

volved in this pathway across all samples clearly showed that most transcripts were

readily upregulated upon stimulation both in mature pDCs and in CCR9low pre-

cursors, confirming that TLR responsiveness is a feature already fully developed in

precursors of pDCs[32], whereas antigen presentation capacity is confined to differ-
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5.3. Exploratory analysis defines BM populations and responses to TLR ligands

entiated DCs[129]. The contribution of CCR9low precursors to the IFN-I response

may enhance the antiviral defense both in the BM and the periphery: Runx2 ex-

pression (necessary for pDC egression from the BM[130, 131]) is maintained in these

precursors following activation, while it is downregulated in mature pDCs, suggest-

ing a higher migratory capacity that can potentiate systemic antiviral responses, as

well as replenish the peripheral pDC pool. This mechanism might also influence

hematopoiesis and contribute to the type I IFN-mediated emergency myelopiesis

observed with chronic TLR7 signaling[132] as well as the type I IFN-Flt3 axis aug-

menting pDC differentiation from CLPs[54].

On the other hand, pre-DCs showed only limited changes in expression of type I

IFN pathway genes, consistent with their commitment and similarity to cDCs, which

are less responsive to viral challenges. Nonetheless, a limited increase in some IFN-I

induced genes (Relb, Myd88) at later time points could be observed, which could

be due to non-specific IFN production induced by culture conditions. However,

it cannot be excluded that a small proportion of TLR7 and -9 ligand-responsive

cells exist within this population, whose limited contribution to IFN-I production

is masked in the bulk RNA-seq data, but sufficient to cause limited activation of

inflammatory response genes.

Evaluation of the expression of Tlr genes confirms the inherent unresponsiveness

of pre-DCs as a population, given that Tlr7 and 9 genes are expressed at very low

levels, and in general the pattern of Tlr expression does not change upon stimulation.

CCR9low precursors express a similar repertoire of Tlrs compared to mature pDCs,

and at similar levels. Moreover, both populations readily upregulate the receptors

upon TLR7 or 9 activation, in line with a specific response.

The results of principal component analysis interestingly showed clearly that

CCR9low cells are a population of precursors with intermediate characteristics of

mature pDCs and pre-DCs in the steady state. Stimulated, they almost fully over-

lap mature cells, with sequential changes increasing with time, further confirming

previous observations of functional similarity[32, 53]. Pre-DCs are clearly different

cells, as expected. However, in PCA unresponsiveness would correspond to a clus-

tering of all samples (unstimulated and stimulated) in a restricted area, or scattering

in unspecific directions in case of non-specific activation due to culture conditions.
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5.3. Exploratory analysis defines BM populations and responses to TLR ligands

Interestingly, this population also showed sequential changes with all 3 stimuli, con-

sistent with that of responsive populations, albeit of reduced magnitude. This could

be interpreted as a limited but specific response to TLR7 and -9 stimuli.

Indeed, in the study previously cited that established the commitment of pre-

DCs to cDC subsets at the single cell level[52], a very small percentage of pDCs

could be detected after differentiating Siglec-H- precursors. These results suggest

the presence of a small fraction of cells with surface characteristics of committed

pre-cDCs, but possessing functional characteristics of the pDC lineage. It must be

noted that the cell sorting technology used here, while being very precise and reliable

(quality check after sorting always showing more than 95% purity), leaves a margin

for few contaminating cells to be included in the sorted populations. Only single cell

RNA sequencing analysis could resolve whether cells expressing the pre-cDC gene

signature contain cells which express TLR7 and TLR9, or if few CCR9low precursors

or pDCs were included in the sorted pre-cDC population.

To better define these populations in terms of DC lineage or precursor similar-

ities, and evaluate wether stimulation has an effect on cell identity, I used indepen-

dently generated gene signatures (i.e. sets of genes specifically expressed in one cell

type and not others) of the CDP and pDC[32] and cDC lineages[113].

In this analysis, pDCs were clearly identified by the expression of the pDC

signature only, while pre-DCs expressed CDP and cDC genes, in line with their

precursor state and commitment. Most striking in this analysis was the expres-

sion pattern of CCR9low cells: in the steady state they expressed most of the pDC

signature genes, although to a lower extent than the mature cells. But they also

expressed most CDP genes, to levels comparable to those of pre-DCs, indicating an

intermediate phenotype, in line with the observations made with PCA. In addition,

they also showed expression of a small subset of cDC specific genes, which are a

confirmation of their plasticity to become cDCs in specific conditions[32, 53].

After TLR7 or -9 stimulation, pre-DCs showed very little changes in gene ex-

pression, with limited downregulation of CDP and cDC signature genes and no

significant upregulation of any interesting feature, consistent with their general un-

responsiveness to these TLR ligands, previously discussed. pDCs on the other hand,

responded to stimuli by upregulating the type I IFN pathway, described earlier, and
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5.3. Exploratory analysis defines BM populations and responses to TLR ligands

appeared to slightly downregulate many of their signature genes (Siglech, Ptprc

[B220], Tcf4, Spib and others). This is consistent with published results showing

downregulation of Tcf4 and SpiB mRNA expression in pDCs derived from Flt3L

BM culture after stimulation with CpG-B for 48 hours and in the human pDC cell

line CAL-1[81]. No major alterations were observed in their signature, consistent

with the terminal differentiation of these cells. CCR9low precursors were again the

most striking: in response to stimuli, they strongly downregulated their CDP sig-

nature and the cDC genes expressed in the steady state, and in general acquired

an expression pattern highly similar to that of pDCs. These results suggest that

TLR7 or 9 stimulation might act on these precursor cells as a signal to complete

maturation. TLR activation-induced DC differentiation of earlier progenitors was

previously observed in models of systemic infection and chronic TLR stimulation[88,

90, 132, 133]. However, these in vivo studies describe a secondary effect of systemic

type I IFN signaling rather than direct TLR-induced differentiation. The RNA-seq

data suggest a direct effect on CCR9low precursors, given that changes in signature

genes could be observed as early as 2 hours after stimulation.

Another interesting observation of this analysis is that upon activation both

pDCs and CCR9low precursors show significant upregulation of a small subset of

cDC signature genes: among these are canonical DC activation genes, such as CD83

and CD86 (normally expressed at higher level in steady state cDCs), but also the

transcription factors Id2, Nfil3 and Bcl6, which are master determinants of cDC

identity[79, 80, 134].

Consistent with previous observations that Tcf4 (E2-2) and its targets are down-

regulated in pDCs following activation[81] mentioned above, it also reflects the ob-

servations of Ghosh et al.[82] in pDCs with conditional deletion of E2-2, where Id2

and other cDC genes were upregulated. An important speculation of this work is

that this upregulation might be a consequence of the reduced expression of targets of

E2-2 that are transcriptional repressors, such as Bcl11A. Therefore, the upregulation

of Id2 mRNA observed here could be the consequence of downregulation of factors

such as Zeb2 and Mtg16, which are known to directly inhibit its expression[83, 85].

Indeed, the Mtg16 gene (Cbfa2t3) is significantly downregulated following stimula-

tion (by WGCNA analysis). This observation could be validated using an Id2-eGFP
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reporter mouse[91], confirming that upregulation of Id2 happens at the protein level

both in pDCs and CCR9low precursors, upon TLR7 and 9 stimulation. Further

research is required to dissect the functional relevance of this interesting finding.

Taken together, the results of exploratory analysis show that pre-DCs, CCR9low

precursors and pDCs are distinct populations, and that CCR9low precursors are an

intermediate stage of pDC differentiation. An alternative explanation for the gene

expression pattern found in CCR9low cells is that they are a heterogeneous popu-

lation containing different subsets of precursors, which are committed to pDCs or

cDC subpopulations. Functionally, pre-DCs are clearly separated from the other

two populations, which are highly overlapping, but they might also harbor a small

subpopulation of TLR7 and -9 responsive cells. The core signatures of pDCs and

pre-DCs are not significantly changed by stimulation, suggesting a terminal differ-

entiation of CCR9high pDCs, with changes in function but not identity, and a stable

commitment for pre-DCs, which are not influenced by TLR7 or 9 stimulation (at the

population level). CCR9low precursors on the other hand not only show significant

changes in functional pathways, consistent with high responsiveness to TLR stimuli,

but also rapidly acquire a fully differentiated pDC phenotype, suggesting a stimulus-

induced differentiation. This phenomenon, called emergency myelopoiesis, has been

observed in hematopoietic stem and progenitor cells (HSPCs) with different types

of infections[87]. This could be a mechanism necessary to maintain cell balance

and immune protection by quickly replacing the cells lost to activation-induced cell

death. Finally, TLR7 and 9 stimulation induces cDC-specific proteins, such as Id2,

to be expressed in pDCs and pDC-committed precursors.

5.4 Steady state differentiation: differential gene

expression and regulatory network

To address the second aim of this project, the definition of the regulatory net-

work of pDC differentiation, I performed statistical analysis on the RNA-seq data

from the steady state samples.

The more than 2000 differentially expressed genes could be hierarchically clus-

tered into 6 clusters of co-expression, with different patterns of up- or down-regulation.
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5.4. Steady state differentiation: differential gene expression and regulatory
network

The functional analysis of each cluster revealed the distinguishing features be-

tween the 3 cell types. Mature pDCs downregulate genes involved in cell proliferation

and cell cycle, that are expressed in both precursor cell types, in line with the lower

proliferative capacity of the differentiated cells. On the other hand, pDC specific

genes, including their canonical markers (Siglech, Ccr9, Tcf4 and others) cluster

together with numerous cell adhesion molecules and genes necessary for antigen

processing, and are strongly upregulated in CCR9low cells compared to pre-DCs,

and are obviously even higher in pDCs.

To define the regulatory factors of each module, analysis of enrichment for tran-

scription factor binding sites was performed, taking advantage of the MSigDB[103], a

large publicly available database (similarly to the work by Pandey et al., 2013[101]).

Within this database, a large, curated collection of TF targets gene sets[104] can be

used for enrichment analysis. This enrichment analysis is a powerful bioinformatics

tool to visualize possible regulatory networks and formulate hypothesis about the

factors that are involved. Genes in each MSigDB gene set are validated for contain-

ing a specific motif sequence in their promoter region (4kb around transcription start

site). When interpreting the results of the TF binding site enrichment analysis we

need to consider that: (i) shorter, highly conserved motifs might be over-represented;

(ii) TFs annotated with multiple binding sites might also be over-represented; (iii)

co-factors, additional sequences and distant enhancers are not considered. There-

fore, the collection has an inherent bias for TFs with multiple binding sequences,

as well as with short and highly conserved motifs. In addition, some sequences do

not match annotation for known TFs (they are validated only as binding sites), and

many known TFs still have unknown or not conserved DNA binding sites.

Analysis of enrichment for transcription factor binding sites revealed complex

networks of regulation: targets for TFs of the E2-family (important regulators of

cell cycle and DNA replication) are enriched in clusters downregulated with differ-

entiation: indeed, it has been demonstrated that differentiated pDCs do not prolif-

erate[135]. Proliferating precursors of pDCs were only detected in the BM, whereas

proliferating pre-cDCs can also be found in the spleen. BrdU labeling experiments

showed that splenic pDC have a slower BrdU incorporation than splenic cDCs, which

is not due to longer lifespan of pDCs, but to the fact that they proliferate only in
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the BM and then migrate to the spleen.

E2-2 is considered a master regulator of the pDC lineage, and a positive feed-

back loop that promotes E2-2 isoform expression and pDC differentiation has been

recently described[136]. Unfortunately, a gene set of E2-2 targets is not available in

the MSigDB, thus lacking an important node in the regulatory network of upregu-

lated clusters. However, other E-box binding proteins, with target sequences closely

related to E2-2, are found highly enriched in upregulated clusters and not others;

this is indicative of a regulation by structurally related proteins, which can include

E2-2.

Many binding motifs for multifunctional, redundant TFs (e.g. Sp1, AP1 and

Myc) were found enriched in both upregulated and downregulated clusters. Among

these non specific factors, a noticeable enrichment for targets of the Forkhead box

(Fox) family of transcription factors could be observed. These transcriptional repres-

sors are known to regulate differentiation as well as function of T and B cells[115, 117,

118, 120–123, 127], and one of them, Foxo1, has also been characterized in DCs[114,

116, 119]. Considering that their targets were both upregulated and downregulated,

it could be hypothesized that different members of this family define different DC

lineages, by suppressing opposing transcriptional programs to determine a specific

cell fate.

Building on this hypothesis, I analyzed expression of this family of TFs in the

data set and selected those significantly upregulated for validation.

5.5 The Fox family of transcription factors: tar-

get discovery and validation

Several members of the Fox family of TFs were found to be expressed in the

RNA-seq data set. Interestingly, 3 of them are also significantly upregulated with

differentiation. These are Foxo1, Foxp1 and Foxr1.

Taking advantage of the Immgen database, I verified that these factors are

indeed also expressed in pDCs, higher than in other DC subtypes; this is especially

evident for Foxp1 and Foxr1.

This observation was validated by qPCR, where Foxp1 was found to be ex-
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5.5. The Fox family of transcription factors: target discovery and validation

pressed higher in pDCs compared to all other cell types, both in BM and spleen.

Unfortunately, Foxr1 was not detectable in any sample, by any of the probe sets

tested.

This result, together with the availability of a Foxp1flox/flox mouse strain, led

me to focus on this factor to perform functional validation as a potential regulator

of pDC differentiation.

Indeed, its specific expression was further validated by means of FACS staining

with a specific antibody, that showed presence of the protein in mature pDCs both

in BM and in the spleen.

In addition, BM cells from a Foxp1flox/flox mouse were used to generate a Foxp1-

KO progenitor cell line. This progenitor cell line showed no significant alteration

compared to its parental line or to the same cell line transduced with control retro-

virus and treated in the same manner, both Foxp1 sufficient.

But when differentiated in the presence of Flt3L only, in order to generate

pDCs, the Foxp1-KO cells were unable to survive and died quickly, independently

of the Flt3L concentration. Their survival, expansion and differentiation into pDCs

was rescued by the addition of M-CSF or GM-CSF.

As Flt3 expression was unchanged in Foxp1-KO cells, this result suggests an

important role of Foxp1 downstream of Flt3 signaling, in regulating the survival of

Flt3 dependent DCs, already at very early stages of differentiation.

It has been shown in T cells that Foxp1 is regulated by the PI3K/Akt/mTOR

pathway, and it provides a negative feedback loop to maintain quiescence[123] as

well as promote survival[122]. Flt3 signaling is mainly dependent on Stat3 activity,

but it has also been shown to activate the PI3K/mTOR pathway in DCs[137] and

in hematological malignancies, where it promotes cell growth and survival[138]. An

organ-specific role has been described for PI3Kγ (specifically the catalitic subunit

p110γ) in mediating pDC and cDC responsiveness to Flt3L in the lung[139]. In

addition, pDCs showed higher mTOR expression compared to other DC subsets,

and are therefore less sensitive to rapamycin, expanding in response to the combi-

nation of rapamycin and Flt3L, contrary to cDCs[140]. This is in contrast with the

negative feedback loop of PI3K that Foxp1 activates in T cells, mentioned above,

suggesting a different, pDC specific pathway. It can be hypothesized that in pDCs
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PI3K/Akt/mTOR induced Foxp1 is required for Flt3-mediated survival, and in its

absence the apoptotic pathway activated by Akt-induced Foxo proteins prevails and

leads to rapid cell death (as observed in T cells[122]).

Interestingly, both M-CSF and GM-CSF activate the PI3K/Akt/mTOR path-

way to promote survival[64, 141]: as these growth factors are able to rescue the

viability of Foxp1-KO precursors, it is clear that Foxp1 function is restricted to the

Flt3 pathway. Indeed, DC subsets that depend on GM-CSF for differentiation ex-

press lower levels of Foxp1, confirming the specificity of this TF for Flt3L-dependent

pDC differentiation.

More research is necessary to dissect the precise mechanisms by which Foxp1

regulates survival of Flt3-dependent cells, as well as its pDC-specific role in differ-

entiation.

5.6 TLR stimulation and cell fate decisions

In order to address the third aim of this project, to dissect the effects of TLR

stimulation on the transcriptional networks of the different cell types, a powerful

analysis tool was required to extract valuable information from a highly complex

data set, i.e. 3 cell types treated with 3 different ligands and 3 time points.

This was provided by the Weighted Gene Co-expression Network Analysis. This

algorithm has been successfully employed in the analysis of large-scale data sets in

genomics and proteomics, given its high resistance to noise and power in identi-

fying groups of strictly co-regulated genes (called modules). Applications include

oncology[142], plant biology[143], neuroimmunology[144] and many others (a Med-

line search for ”WGCNA” retrieves 243 publications to date), but it has not been

employed to analyze the response of different immune cells so far.

The analysis was applied to each cell type separately, to highlight the differ-

ent networks of response to stimuli, and the results compared. This is the first

comprehensive RNA seq analysis showing the response of murine pDCs to TLR7

and TLR9 stimulation. Previous studies using microarrays have shown that dif-

ferential response programs are activated by different stimuli (TLR9 ligand vs in-

fluenza virus[145]). Here, limited differences could be observed between TLR7 and
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9 stimulation in the induction of de novo RNA synthesis, that do not highlight any

significant functional difference, whereas a core inflammatory response was induced

by all stimuli in both pDCs and CCR9low cells, highly enriched for targets of Irf

proteins, in line with observations made with microarray analysis of a human pDC

line, CAL-1, stimulated with TLR9 ligands[146].

As already seen in the exploratory analysis, pDCs and CCR9low precursors show

high functional similarity, and this is once again confirmed by the WGCNA results:

comparing the two populations, modules with similar patterns of expression also

share similar functional enrichment, indicating a common pathway of response to

TLR stimuli. This responsiveness and full functionality of CCR9low cells was already

shown using type I IFN protein detection by ELISA[32]. The transcriptome analysis

suggests that the CCR9low population could be more heterogeneous, and contain an

immature subpopulation of pDCs expressing type I IFNs as strongly or even more

strongly than CCR9high pDCs, which is mixed with pre-DCs. Siglec-H was shown

to downmodulate the type I IFN response[147]: higher expression of Siglec-H in

CCR9high pDCs could explain why they produce less type I IFN than CCR9low cells.

On the other hand, pre-DCs show a different behavior, with fewer genes being

co-regulated in smaller modules and differentially expressed after treatment. In-

terestingly, some of the upregulated pre-DC modules show functional enrichment

for activation pathways typical of pDCs, and genes involved in cell cycle and DNA

replication, a hallmark of progenitor cells, are significantly co-repressed. This could

suggest that although these cells are committed to the cDC lineage and seemingly

not responsive to TLR7 and 9 stimuli, a small portion of them is able to specifically

mount a response, with the consequence that they lose their progenitor phenotype.

This observation is further supported by analysis of signature enrichment in

the modules: indeed, in pre-DCs modules that are enriched for the pDC signature

are also upregulated upon stimulation, as well as modules containing inflammatory

genes. This stimulus induced differentiation is even more evident in CCR9low pre-

cursors, which strongly upregulated modules with inflammatory genes belonging to

the pDC signature, and downregulated cDC and CDP genes. Mature pDCs instead,

only upregulated a set of inflammatory genes, that belongs to the cDC signature (as

previously observed), but were otherwise unchanged.
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Regulatory network analysis of these modules also highlighted the involvement

of specific inflammatory TFs in pre-DCs, consistent with a specific response to the

stimuli, as well as downregulation of E2 family target genes, which are involved in

cell cycle and replication, an hallmark of pDC differentiation.

Interestingly, CCR9low progenitors downregulated a vast set of genes including

proliferation genes, but were also enriched for targets of members of the Fox family,

once again suggesting an involvement of these factors not only in steady state, but

also in stimulus-induced differentiation.

5.7 Concluding remarks and future perspectives

This project, through the use of RNA sequencing and statistical analysis, iden-

tified networks of TFs regulating pDC differentiation in the BM, and highlighted a

central role for the TF Foxp1 in maintaining viability of Flt3L-dependent DCs, to

allow differentiation. More research in this direction is required to dissect the mech-

anisms by which Foxp1 regulates DC differentiation, for example by using a DC

specific Foxp1 KO mouse model (CD11c-Cre x Foxp1flox/flox). Mice lacking Foxp1 in

DCs will allow the evaluation of cDC and pDC differentiation dynamics in vivo, as

well as of the effects of systemic TLR activation.

By analyzing DC precursor populations stimulated with TLR7 and 9 ligands, I

found evidence for stimulus-induced differentiation of CCR9low precursors into pDCs,

as well as an unexpected responsiveness of pre-DCs, which could be explained by the

heterogeneity of this population, that could include cells not completely committed

to the cDC lineage. To shed light upon the heterogeneity of these populations, single-

cell RNA-seq can be used, which allows observation of the transcriptional dynamics

of individual cells, thus permitting the identification of early lineage- and function-

defining events, as well as the presence of small subsets of differently behaving cells,

that are not possible to discriminate by means of surface markers and are obviously

masked in bulk analyses.

Single cell transcriptome analysis is also required to resolve if the Siglec-H+

CCR9low populations contains separate subsets of pDC-committed and cDC-committed

cells, or whether they are precursors with dual potential and gradual commitment
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to pDCs along with the upregulation of markers of mature pDCs (B220, CCR9).

In addition, the technique can also be applied to stimulated cells, and their tran-

scriptomes compared to steady state cells to evaluate whether responses can drive

specific differentiation, and whether this happens by reprogramming of differently

committed cells, or by specific selection of cells already meant to respond specifically

at early stages.

In conclusion, this work used powerful statistical tools to analyze the vast

amount of data generated by total RNA sequencing, extracting valuable and statis-

tically relevant information that led to the identification of a plausible target that

regulates DC differentiation with subset-specific functions, and of the functional

connections between different stages of pDC differentiation.
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6 Summary

Plasmacytoid dendritic cells (pDCs) are fundamental players in antiviral im-

mune responses, readily producing large amounts of Type I IFN upon encounter

with TLR7 and 9 ligands.

They originate in the BM, differentiating from common DC progenitors, in

the myeloid lineage, although a contribution of lymphoid progenitors has also been

identified. A late pDC precursor retaining cDC differentiation potential was recently

discovered, characterized by lower expression of the chemokine receptor CCR9, but

already possessing the ability to respond to viral challenge like fully differentiated

pDCs.

The molecular mechanisms that drive cell fate decisions and lineage determina-

tion in the BM are still unclear, and although several critical TFs have been identified

that shape DC subtype identity and function, very little is known about how fate-

defining events are organized, and whether and by which mechanisms pathogens

themselves can alter this process.

In this project, mature pDCs and precursor populations were discriminated in

healthy murine BM by expression of cell surface markers and were sorted to high

purity. The mature, Siglec-H+ CCR9high B220high pDCs were compared by transcrip-

tome analysis (total mRNA sequencing) to their immediate precursors, Siglec-H+

CCR9low cells, and to a population of Siglec-H- MHCII- Sirpα- pre-DCs, commonly

known for their commitment to the cDC lineage. In addition their response to

TLR7 and 9 ligands was investigated to evaluate the effects of activation on the

differentiation process.

An exploratory analysis of the unfiltered RNA seq data set emphasized the high

similarity between pDCs and CCR9low precursors, phenotypically and functionally,

and the clear separation of these populations from the Siglec-H negative pre-DC pop-
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ulation. TLR stimulation also showed varying effects on the cell populations, further

confirming the similarities between mature cells and CCR9low precursors, but also

suggesting a process of activation-induced differentiation in the latter population.

Clusters of genes differentially expressed at the steady state highlighted the

transitory processes from the CCR9low precursor to the pDC, which involve down-

regulation of cell cycle and replication genes, and upregulation of inflammatory and

pDC specific transcripts. Enrichment analysis for transcription factor (TF) binding

sites showed a complex network of regulatory factors which are involved in pDC

differentiation and function. The binding sites of the family of Forkhead box (Fox)

transcription factors, were strongly enriched in differentially expressed gene clusters

and the expression pattern of several Fox family members correlated with pDC dif-

ferentiation leading to the hypothesis that they might be involved in allowing pDC

differentiation and defining functional identity.

Validation experiments highlighted Foxp1 as a promising candidate with speci-

ficity for pDCs. Evaluation of DC generation from a Foxp1-knockout Hoxb8- im-

mortalized progenitor cell line revealed a central role of this TF in DC development
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Script 1: DESeq2

Functions for the analysis of differential expression on steady state samples, using

the R package DESeq2. Refers to methods section 3.3.2.

Script 1: DESeq2: differential expression analysis

1 l i b r a r y (DESeq2)
2

3 ## t o t a l read counts as input
4 reads=read . del im ( ”AGKrug counts rmdup . txt ” )
5

6 ## s e l e c t only steady s t a t e samples
7 reads=reads [ , grep ( ”T0” , colnames ( reads ) ) ]
8 reads=reads [−grep ( ”gERCC” , rownames ( reads ) ) , ]
9 reads=reads [ , c ( 7 : 9 , 1 : 3 , 4 : 6 ) ] # reo rde r samples

10

11 ## experiment des ign
12 colData <− data . frame ( c e l l . type= rep ( c ( ”preDC” , ”CCR9” , ”pDC” ) ,
13 each=3) ,
14 row.names = colnames ( reads ) )
15

16 ## bui ld data s e t
17 data s e t <− DESeqDataSetFromMatrix ( countData = reads ,
18 colData = colData ,
19 des ign = ˜ c e l l . type )
20

21 data s e tFULL <− DESeq( data s e t ) # GLM model o f the data
22

23 ## LRT f o r mu l t ip l e comparisons
24 data s e tLRT <− DESeq( data s e t , t e s t = ”LRT” , reduced = ˜ 1)
25

26 resLRT <− r e s u l t s ( data s e tLRT)
27

28 ## s e l e c t d i f f e r e n t i a l l y expres sed genes (p value < 0 . 0 1 )
29 DEgenes <− resLRT [ ! i s . na ( resLRT$padj ) , ]
30 idx <− DEgenes$padj < 0 .01
31 DEgenes <− DEgenes [ idx , ]
32

33 ## heatmap o f DE genes
34 l i b r a r y ( Biobase )
35 load ( ”WGCNA ( f i n a l a n a l y s i s ) / steady s t a t e (DESeq2) /e s e t mod T0 . rda” )

# load the exp r e s s i on s e t
36 DEnames = rownames ( DEgenes )
37 f l t=featureData ( e s e t T0) $ensemblID %in% DEnames #f i l t e r f o r DE genes
38 e s e t . f=e s e t T0 [ f l t , ]
39 n=length (DEnames)
40 source ( ” s c r i p t s /heatmap .R” ) # load the heatmap func t i on
41 pdf ( ”DESeq2 . DEgenes . pdf ” , 4 , n/ 10) # save to f i l e
42 heatmap . t s ( e s e t . f )
43 dev . o f f ( )

The resulting heatmap is presented in figure 4.12.
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Script 2: WGCNA

Functions for the co-expression analysis on stimulated samples using the package

WGCNA, by cell type. Refers to methods section 3.3.3. The example shown and the

relative images are from the pDC data set.

Script 2: WGCNA: co-expression analysis

1 l i b r a r y (WGCNA)
2 l i b r a r y ( Biobase )
3 opt ions ( s t r i ng sAsFac to r s=F)
4

5 load ( ”e s e t . rda” ) #load complete exp r e s s i on s e t
6

7 c e l l <− ”pDC” #d e f i n e c e l l type to ana lyze (preDC , CCR) or pDC)
8 e s e t 0 <− e s e t [ , phenoData ( e s e t ) $ c e l l . type == c e l l ]
9

10 datExpr0 <− t ( exprs ( e s e t 0) )
11

12 ## check f o r genes and samples with too many miss ing va lue s
13 gsg <− goodSamplesGenes ( datExpr0 , verbose =3)
14 gsg $allOK #i f TRUE, proceed without f i l t e r i n g
15

16 ## c l u s t e r samples to de t e c t o u t l i e r s
17 sampleTree <− h c l u s t ( d i s t ( datExpr0 ) , method=” average ” )
18 pdf ( f i l e = paste ( ” sampleTree ” , c e l l , ” . pdf ” , sep = ”” ) , 12 ,9)
19 par ( cex =0.6)
20 par (mar=c (0 , 4 , 2 , 0 ) )
21 p lo t ( sampleTree , main=”Sample c l u s t e r i n g to de t e c t o u t l i e r s ” ,
22 sub=”” , xlab=”” , cex . lab =1.5 , cex . a x i s =1.5 , cex . main=2)
23 dev . o f f ( )
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The clustering does not detect outliers. We proceed without filtering.

25 ## i f no o u t l i e r s detected , proceed without f i l t e r i n g
26 datExpr <− datExpr0
27

28 ## load the t r a i t s to c o r r e l a t e with the modules , Treatment and Time
29 datTra i t s <− data . frame ( pData ( e s e t 0) [ , 2 : 3 ] )
30 rownames ( datTra i t s ) <− rownames ( datExpr )
31

32 ## Automatic b lockwi se network c o n s t ru c t i o n
33 enableWGCNAThreads ( ) #mult i thread ing f o r f a s t e r computing
34

35 networkType <− ” s igned hybrid ” # the type o f network to be generated
36

37 ## pick s o f t t h e r s ho l d i n g power
38 power s <− c ( c ( 1 : 1 0 ) , seq ( from=12, to =20, by=2) )
39 s f t <− pickSo f tThresho ld ( datExpr , power Vector=power s ,
40 verbose =5, networkType = networkType )
41

42 pdf ( f i l e = paste ( ” SoftThresho ld . ” , c e l l , ” . pdf ” , sep = ”” ) , 9 ,5)
43 par ( mfrow=c (1 , 2 ) )
44 cex1 <− 0 .9
45 p lo t ( s f t $ f i t I n d i c e s [ , 1 ] ,
46 −s i gn ( s f t $ f i t I n d i c e s [ , 3 ] ) ∗ s f t $ f i t I n d i c e s [ , 2 ] ,
47 xlab=” SoftThresho ld ( power ) ” ,
48 ylab=” Sca l e Free Topology Model Fit , s i gned Rˆ2” ,
49 type=”n” ,
50 main=paste ( ” Sca l e independence ” ) )
51 t ex t ( s f t $ f i t I n d i c e s [ , 1 ] ,
52 −s i gn ( s f t $ f i t I n d i c e s [ , 3 ] ) ∗ s f t $ f i t I n d i c e s [ , 2 ] ,
53 l a b e l s=power s ,
54 cex=cex1 ,
55 c o l=” red ” )
56 a b l i n e (h=0.9 , c o l=” red ” )
57 p lo t ( s f t $ f i t I n d i c e s [ , 1 ] , s f t $ f i t I n d i c e s [ , 5 ] ,
58 xlab=” SoftThresho ld ( power ) ” ,
59 ylab=”Mean Connect iv i ty ” ,
60 type=”n” ,
61 main=paste ( ”Mean Connect iv i ty ” ) )
62 t ex t ( s f t $ f i t I n d i c e s [ , 1 ] , s f t $ f i t I n d i c e s [ , 5 ] ,
63 l a b e l s=power s , cex=cex1 , c o l=” red ” )
64 dev . o f f ( )
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The fit indices indicate that an appropriate soft threshold power for this data set is

5. It is selected independently for each data set.

65 ## choose appropr ia te power based on f i t i n d i c e s
66 softPower <− 5
67

68 ## blockwi se network c on s t r u c t i on
69 net <− blockwiseModules ( datExpr , maxBlockSize =5000 ,
70 power=softPower ,
71 TOMType = ” unsigned ” ,
72 minModuleSize =30,
73 r ea s s i gnThre sho ld =0,
74 mergeCutHeight =0.25 ,
75 networkType = ” s igned hybrid ” ,
76 numer ica lLabe l s=T,
77 pamRespectDendro=F,
78 saveTOMs=T,
79 saveTOMFileBase=”WGCNA TOM” ,
80 verbose =3)
81

82 ## plo t r e s u l t i n g dendrogram and modules
83 pdf ( f i l e = paste ( ” DendroColors . ” , c e l l , ” . pdf ” , sep = ”” ) , 12 , 9)
84 mergedColors <− l a b e l s 2 c o l o r s ( net $ c o l o r s )
85 plotDendroAndColors ( net $dendrograms [ [ 1 ] ] ,
86 mergedColors [ net $blockGenes [ [ 1 ] ] ] ,
87 ”Module c o l o r s ” ,
88 dendroLabels = F, hang =0.03 ,
89 addGuide=T, guideHang =0.05)
90 dev . o f f ( )
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Modules are assigned dynamically. Those with more than 25% similarity are merged.

Next the modules are related to traits.
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91 ## r e l a t e module e i g engene s to t r a i t s
92 moduleLabels <− net $ c o l o r s
93 moduleColors <− l a b e l s 2 c o l o r s ( net $ c o l o r s )
94 nGenes <− nco l ( datExpr ) #d e f i n e number o f genes
95 nSamples <− nrow ( datExpr ) #d e f i n e number o f samples
96

97 ##c a l c u l a t e MEs with c o l o r l a b e l s
98 MEs0 <− moduleEigengenes ( datExpr , moduleColors ) $ e i gengenes
99 MEs <− orderMEs (MEs0)

100 datTra i t s $ treatment <− as . i n t e g e r ( as . f a c t o r ( datTra i t s $ treatment ) )
101

102 ## c a l c u l a t e c o r r e l a t i o n and p value
103 moduleTraitCor = cor (MEs, datTra i ts , use = ”p” )
104 moduleTraitPvalue = corPvalueStudent ( moduleTraitCor , nSamples ) ;
105

106 ##v i s u a l i z e module−t r a i t r e l a t i o n s h i p
107 t ex t Matrix <− paste ( s i g n i f ( moduleTraitCor , 2 ) ,
108 ”\n( ” , s i g n i f ( moduleTraitPvalue , 1 ) , ” ) ” ,
109 sep=”” )
110 dim ( text Matrix ) <− dim ( moduleTraitCor )
111

112 pdf ( f i l e = paste ( ”heatmap . ” , c e l l , ” . pdf ” , sep = ”” ) , 5 , 40)
113 par (mar=c (6 , 14 , 5 , 3 ) )
114 labeledHeatmap ( Matrix=moduleTraitCor ,
115 xLabels=names ( datTra i t s ) , yLabels=names (MEs) ,
116 ySymbols=names (MEs) , c o l o r L a b e l s=F,
117 c o l o r s=greenWhiteRed (50) ,
118 t ex t Matrix=text Matrix , s e t StdMargins=F,
119 cex . t ex t =0.5 , z l im=c (−1 ,1) ,
120 main=paste ( ”Module−t r a i t r e l a t i o n s h i p s ” ) )
121 dev . o f f ( )
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Script 3: GeneOverlap

Functions for the functional analysis of clusters and modules, calculating enrichment

of gene sets from the MSigDB. Refers to methods section 3.3.4. The example given

here refers to cluster analysis of steady state.

Script 3: GeneOverlap: functional enrichment analysis

1 l i b r a r y ( x l sx )
2 l i b r a r y ( GeneOverlap )
3

4 db <− ”c3 . t f t ” #c o l l e c t i o n to i n t e r r o g a t e ( c2 . kegg or c3 . t f t )
5

6 ## s e l e c t the c l u s t e r or module names to ana lyze
7 mods <− c ( ” Clust1 ” , ” Clust2 ” , ” Clust3 ” , ” Clust4 ” , ” Clust5 ” , ” Clust6 ” )
8

9 ## load c o l l e c t i o n
10 load ( paste ( ” . . /” , db , ” .Mm.R” , sep = ”” ) )
11 x <− get (db)
12 gs <− 29353 #t o t a l number o f genes in the exp r e s s i on s e t , as background

A first for loop loads each cluster or module from the specified excel file as a list of

member genes and sends it to the second nested for loop, which calculates overlap

with each gene set in the collection and saves the result in a data frame. This is

filtered for significance and finally saved to an excel file, ending the loop.

13 ## f i r s t main loop
14 f o r (mod in mods) {
15 l i s t <− read . x l sx ( f i l e = ” newc lus te r l i s t T0 . x l sx ” ,
16 sheetName = mod, header = T)
17 l i s t <− as . cha rac t e r ( na . omit ( l i s t [ , ”name” ] ) )
18

19 r e s u l t <− data . frame ( row.names = mod)
20

21 ## second nested loop
22 f o r ( i in 1 : l ength ( x ) ) {
23 go . obj <− newGeneOverlap ( l i s t , as . cha rac t e r ( x [ [ i ] ] @geneIds ) ,
24 genome . s i z e = gs )
25 go . obj <− testGeneOverlap ( go . obj )
26 s e t <− as . cha rac t e r ( x [ [ i ] ]@s e tName)
27 r e s u l t [ , s e t ] <− getPval ( go . obj )
28 } # end nested loop
29

30 ## s e l e c t s i g n i f i c a n t r e s u l t s and organ i z e output
31 r e s u l t <− data . frame ( t ( r e s u l t [ , r e s u l t < 0 . 0 5 ] ) )
32 r e s u l t $x <− NA
33 r e s u l t $y <− rownames ( r e s u l t )
34 r e s u l t <− r e s u l t [ , c ( 3 , 2 , 1 ) ]
35 colnames ( r e s u l t ) <− c ( ”Name” , ” Desc r ip t i on ” , ”pVal” )
36

37 wr i t e . x l sx ( r e s u l t , f i l e = paste ( ” Overlap . r e s u l t . ” , db , ” . x l sx ” ,
38 sep = ”” ) ,
39 sheetName = mod, append = T, row.names = F)
40 } # end main loop

114



Appendix A

The final output is an excel file with sheets named after each cluster or module,

which contain a list of significantly enriched gene sets and their respective p value.

These can be then directly used in Cytoscape for network visualization.
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Regulatory networks of the significant modules from

WGCNA
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Pre-DCs

Module Signature
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p value
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Module Signature
Enrichment
p value

Overlapping genes
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Table B.1: Genes found in signature-enriched modules of pre-DCs, grouped by
signature
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Figure B.1: Regulatory networks of the significant modules of pre-DCs.
Transcription factors and KEGG pathways significantly enriched in the indicated
modules.
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Figure B.2: Regulatory network of the pre-DC module green. Transcription
factors and KEGG pathways significantly enriched in the green module of preD-
DCs.
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CCR9low precursors

Module Signature
Enrichment
p value
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Table B.2: Genes found in signature-enriched modules of CCR9low precursors,
grouped by signature
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Figure B.3: Regulatory network of the CCR9low module sienna4. Tran-
scription factors significantly enriched in the sienna4 module. Blue arrows highlight
FOX family TFs, the black arrow highlights a E2F subnetwork.
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Figure B.4: Regulatory network of the significant modules of CCR9low

cells. Transcription factors and KEGG pathways significantly enriched in the indi-
cated modules.
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Table B.3: Genes found in signature-enriched modules of pDCs, grouped by sig-
nature
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Figure B.5: Regulatory network of the pDC module sienna4. Transcription
factors significantly enriched in the module.
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