
On-line Gaussian Processes
for Robotics

Forschungspraxis

from

Jonas Hess

Lehrstuhl für

STEUERUNGS- UND REGELUNGSTECHNIK

Technische Universität München

Supervisors: M.S. Matteo Saveriano, Prof. Dongheui Lee
Begin� 26.10.2015
End� 18.01.2016

Abstract

This project focused on the challenges of an on-line Gaussian process for regression
applications. Thereby, incremental and decremental inversion methods have been
developed as a means to shorten computing time. In tests, the incremental and
decremental regression algorithms performed significantly faster than two
state-of-the-art implementations of GP while still retaining high estimation accuracy.

Zusammenfassung

Der Fokus dieser Forschungsarbeit liegt auf den Herausforderungen einer on-line
Regression mit Gaußschen Prozessen. Dazu wurden inkrementelle und dekrementelle
Matrixinversiontechniken entwickelt, die Rechenzeit einsparen sollen. In Tests
erwiesen sich die entwickelten inkrementellen und dekrementellen
Regressionsalgorithmen gegenüber zwei anerkannten aktuellen GP Methoden als
signifikant schneller ohne Einbußen an Schätzungsgenauigkeit.

 2

 3

Contents

1. Introduction .. 4!

1.1 Gaussian Process as means for Regression .. 4!
1.2 Matrix inversion is most complex operation in the calculation of posterior
estimates ... 5!
1.3 Related work .. 5!
1.4 Chapter overview ... 6!

2. Examination of inversion methods ... 7!

2.1 Inversion methods .. 7!
2.2 Inversion benchmark setup and results .. 10!

3. Benchmarking of GP implementations .. 11!

3.1 Benchmark setup .. 11!
3.2 Benchmark results .. 12!

4. Summary and outlook ... 15!

List of figures .. 16!

References ... 17!

Appendix ... 19!

A - Implementation of the incremental exact inference method 19!
B - Implementation of the decremental exact inference method 22!
C - Implementation of the regression benchmark test suite 24!

 4

1. Introduction

Gaussian Processes (GP) are statistical modeling tools that have been successfully
used in a number of robotics applications, such as imitation and reinforcement
learning. To face the increasing computational time problem in large-scale on-line
applications, incremental algorithms for GP have been proposed in numerous
literatures [1][2][3][4][5]. These algorithms are useful to update the learned
parameters according to new incoming data. This project investigated an approach of
using incremental and decremental inversion methods in order to increase
computation efficiency.

1.1 Gaussian Process as means for Regression

"When concerned with a general Gaussian process regression problem, it is assumed
that for a Gaussian process f observed at coordinates x, the vector of values f(x) is just
one sample from a multivariate Gaussian distribution of dimension equal to number of
observed coordinates |x|. Therefore under the assumption of a zero-mean

distribution, f (x) ∼ N(0,K(θ,x,x')), where K(θ,x,x') is the covariance matrix between

all possible pairs (x,x') for a given set of hyperparameters θ. As such the log marginal
likelihood is:

log! !(!(!|!, !) != !− !
! ! ! !!(!,!,!′)!!!(!) − !

! !"#!!"#(!(!,!,!′)) −
|!|
! !"#!2! (1)

and maximizing this marginal likelihood towards θ provides the complete
specification of the Gaussian process f. One can briefly note at this point that the first
term corresponds to a penalty term for a model's failure to fit observed values and the
second term to a penalty term that increases proportionally to a model's complexity.
Having specified θ making predictions about unobserved values f(x*) at
coordinates x* is then only a matter of drawing samples from the predictive
distribution p(y*|x*,f(x),x) = N(y*|A,B) where the posterior mean estimate A is
defined as:

!! = !!(!,!∗,!)!(!,!,!′)!!!!(!) (2)

and the posterior variance estimate B is defined as:

!! = !!(!,!∗,!∗)−!(!,!∗,!)!(!,!,!′)!!!(!,!∗,!)! (3)

 5

where K(θ,x*,x) is the covariance between the new coordinate of estimation x* and
all other observed coordinates x for a given hyperparameter vector
θ, K(θ,x,x') and f(x) are defined as before and K(θ,x*,x*) is the variance at point x* as
dictated by θ." From Rasmussen, Gaussian processes for machine learning [6].

1.2 Matrix inversion is most complex operation in the

calculation of posterior estimates

As shown in (2) and (3), the posterior mean estimate and posterior variance estimate
both contain the inverse of the covariance matrix K(θ,x,x'). Matrix inversion is a very
costly operation in terms of processing time with a complexity between O(n3)
(Gauß-Jordan) and ~O(n2.3) and is a known bottleneck for Gaussian processes.
The objective of this project is to investigate various inversion methods, identify the
most efficient ones, integrate those methods into a GP model and benchmark these
solutions against state-of-the-art solutions.

1.3 Related work

A commonly used optimization is the utilization of the Cholesky decomposition of the
covariance K(θ,x,x') in equations (2) and (3) instead of calculating its inverse. This
can e.g. be found it Rasmussen's Gaussian Process Machine Learning toolbox and
many other implementations [6]. See also chapter 2 for a more detailed explanation of
the Cholesky decomposition and its utilization possibilities.

In 2002, Csató published an efficient Gaussian Processes capitalizing from the
sparsity of the covariance matrix and demonstrated the efficiency in terms of
regression, classification and density estimation [7].

In 2008, Naish-Guzman et al. presented the FITC approximation, a low-rank plus
diagonal approximation to the exact covariance using inducing points, basing the
computations on cross-covariances between training, test and inducing points only [8].
We tested our solution against the FITC approximation and found that in our tests the
FITC performed better in cases where very little learning information are given.
However, in all other cases, the FITC approximation performed equally fast or even
worse than the exact estimation. See chapter 3 for more information.

In 2014, Anitescu et al. presented an inversion-free estimating equation approach for
Gaussian Process models that requires only a small fraction of the computational
effort of maximum likelihood calculations [9]. For specific test cases with data sets of
up to 1 million data points, the estimating equation method returned an accuracy close
to the optimal one as measured but at a fraction of the cost (1% or even less).
However, the presented approach only finds an efficient solution for calculating the

 6

maximum likelihood estimate and does not offer an alternative solution of calculating
the posterior estimate of a Gaussian process.

Moreover, Kronecker methods have been used to exploit structure in the GP
covariance matrix for scalability, while allowing for expressive kernel learning [10].

However, Kronecker methods have been confined to Gaussian likelihoods. In 2015,
Flexman et al. proposed new scalable Kronecker methods for Gaussian processes with
non-Gaussian likelihoods, using a Laplace approximation which involves linear
conjugate gradients for inference, and a lower bound on the GP marginal likelihood
for kernel learning [11]. The main application for Kronecker methods are
extrapolation of learning data, making it difficult to transfer the method to other
regression applications. In the scope of this project, Kronecker methods were
therefore not applied to our regression problem, but it remains a potential topic for
future research.

1.4 Chapter overview

Chapter 2 describes examined inversion methods and their performance, while in
chapter 3 the most efficient method is benchmarked against state-of-the-art solutions.
Chapter 4 gives a summary of the results and an outlook to future research
possibilities.

 7

2. Examination of inversion methods

Various inversion methods have been examined over the course of the project. They
all span around solving the operation

x = M-1y (4)

which represents the critical part of equations (2) and (3).

2.1 Inversion methods

There are various possibilities to mathematically correctly calculate equation (4).
Below is a short explanation of the ones most popular or deemed most promising.

Inv(): Matlab has a comprehensive, built-in matrix-inversion function inv(). This
represents a native, un-optimized approach and unsurprisingly delivered the slowest
results.

M\y: Also a built-in Matlab method that is used to solve equations Mx = y. It is based
on the cholmod()-function which is an efficient built-in implementation of the
Choleksy decomposition [12]: This algorithm is a decomposition of a Hermitian, pdf
matrix into the product of a lower triangular matrix L and its conjugate transpose U. It
is a numerically very efficient way of solving Ax = b using forward and back
substitution.

Chol(): We also investigated explicit Cholesky solutions, first of all using the built-in
chol()-function from Matlab and then solving the equation:

 U = chol(M);
 Result = U\(U.'\Y);

Not shown in figure 1 is an alternative implementation of the Cholesky decomposition
coded in Matlab which turned out to be not as efficient.

Cholesky increment: There is also the possibility of calculating a Cholesky
decomposition based on a prior Cholesky decomposition of a Matrix that is equal to
M except that the last row and column are removed. This represents the case that one
entry is added to the covariance matrix and (3) has to be recalculated [13].

N = size(M);

for l=1:NumIt

 8

 L = [LOld zeros(N-1,1); zeros(1,N)];
 for j=1:N-1
 sum = 0;
 for i=1:j-1
 sum = sum + L(N,i)*L(j,i);
 end
 L(N,j)=(M(N,j)-sum)/L(j,j);
 end

 sumDiag = L(N,1:N-1)*L(N,1:N-1).';
 L(N,N)=sqrt(M(N,N)- sumDiag);

 RIncrChol = L.'\(L\Y);
end

A Matlab-based incremental Cholesky implementation turned out to be less efficient
than recalculating the Cholesky decomposition from scratch using the built-in
chol()-function. However, we also implemented this method in C with a
Mex-Matlab-Interface, which gave a much better performance and performed
significantly better than the recalculating the whole Cholesky decomposition.

Increment using block form: What turned out to be most
efficient was an incremental way of calculating the inverse M-1.

If a new learning point is added to the GP model, K(θ,x,x’) is
incremented by 1 dimension:

!!!! !!!= ! !! !
!! !

Then the inverse of !!!! can be calculated as:

!!!!
!! = !

!!!! +
1
!!!!!!!!!!!! − 1!!!!!!

− 1! !
!!!!!

1
!

!!!!!(5)

,!ℎ!"!!!! = !!!− !!!!!!!!!.

This algorithm is derived from the block-form inversion [14].

 9

Decremental inversion using Sherman-Morrison:
Similarily, the inverse of a decremented matrix can be
calculated based on the inverse of the prior matrix.

If a learning point is removed from the GP model, K(θ,x,x’)
is decremented by 1 dimension. To calculate the inverse of
the decremented matrix !!!!

!! , the previous inverse !!!!
and !! (shown as !!!! and !! in the right figure) are
then split in the parts X, b, bT and c.

The inverse !!!!

!! !of the decremented
matrix !! can be calculated as:

!!!!
!! != !!− !"!(!!)

!

! + !!!" !!!!!(6)

This is derived from the block-form inversion in
combination with the Sherman-Morrison formula [14][15]:

(!+ !!!)!! !!= !!!! − !!!!!!!!!
1+ !!!!!! !!!!!(7)

Swapping of entries: Using the decremental method, the last entry of the covariance
matrix K(θ,x,x’) can be removed. However, if another entry of K is supposed to be
removed, entries need to be swapped first. This can be done easily by swapping the
corresponding rows and columns of the inverse of the prior matrix and the y as shown
in figure 2.

Figure 2: Visualization of entry swapping: If entries x1 and x2 of the covariance
matrix K(θ,x,x’) are swapped this results in a swap of the corresponding rows and
columns in K, as well as in a swap of the the corresponding rows and columns in the
inverse of K. This allows to efficiently remove any entry from the covariance matrix
and recalculate the posterior estimates using the decremental inversion.

 10

2.2 Inversion benchmark setup and results

All methods were tested in Matlab R2015a. They calculated equation (4) given a
random, symmetric and postive-definite (pdf) M and a random vector y. Figure 1
shows the relation between the size of M and the average computing time for 30
iterations (15 iterations for matrices >1000).

Figure 1: Benchmark between various inversion methods. Incremental and (swapping)
decremental methods have been identified to be most efficient and have therefore been
further investigated.

Thereby, the incremental and decremental inversions (including swapping of entries)
have been identified as most efficient way of calculating expression (4). The next
chapter shows how they were integrated into an existing GP-library and benchmarked
against other GP-methods.

 11

3. Benchmarking of GP implementations

As described in chapter 2, the incremental and decremental inversion methods have
been identified as most efficient compared to other inversion methods. In order to find
out by how much GP calculations can be optimized using those two methods, we are
currently integrating them into the latest version (July 2015) of the Gaussian Process
Machine Learning Toolbox by Rasmussen and Williams.
This toolbox offers a wide range of state-of-the-art implementations of likelihoods,
inference methods and covariance functions, which enables a direct comparison of
different GP methods.

The incremental and decremental inversion methods have been integrated into the
toolbox by creating two new inference methods infIncremental() and
infDecremental(). The two implementations can be found in appendix A and B. Both
of them are based on the built-in infExact() and represent an exact inference method.
They can be called just like any other inference method using the gp()-function of the
toolbox. Therefore, the results can easily be reproduced on any other computer by
simply inserting the respective two inference Matlab files.
Furthermore, in order to compare only the posterior mean estimation methods, the
gp()-function was slightly adjusted to prohibit it from also calculating the posterior
variance estimate.

3.1 Benchmark setup

The investigated regression methods are three exact inference methods (built-in,
incremental as well as swapped decremental version) as well as FITC approximation.
Those methods were analyzed in terms of computing time and estimation accuracy in
relation to the number of learning points, as well as the density of learning points (the
higher the density, the more distinct the regression).

A sinus wave was the basis of the regression task. From this sinus function, individual
learning points were derived randomly and a white Gaussian noise with a
signal-to-noise-ratio of 10 added. The number of learning points as well as the density
of learning points per unit determines the width of the regressed function. An excerpt
of such a regression task is shown in figure 3.

As performance indicators, computing time and estimation accuracy were measured.
Thereby, the computing time (in ms) was averaged over 25 iterations of every
calculation for each regression methods. Accuracy was measured by taking the mean
of the squared distance of each posterior-estimate to the true value (MSE).

 12

Figure 3: Regression results using the built-in exact inference method from the
GPML-toolbox as well as the exact inference method based on the incremental and
swapping decremental inversion method. Learning points are derived from a
sinus-function with signal-to-noise-ratio of 10 and a point density of 2.0/unit. As
expected, all exact inference regression results are nearly identical and therefore
individual regression lines are mostly not be visible.

For this benchmark scenario, the following test parameters were used, resulting in
4x9=36 test cases for each regression method.

tDensity = [0.5, 1, 3, 5];

% Average number of learning points per width unit
tNumPoints = [50, 100, 200, 300, 500, 700, 1000, 1300, 1500];

% Number of learning points

3.2 Benchmark results

Throughout our benchmarks, the incremental and decremental exact inference
methods needed less or way less computing time than the built-in exact inference
methods, as shown in figure 4. In terms of estimation accuracy, they performed nearly
identical to the built-in method, as expected. This can be seen in figure 5.
The FITC approximation showed mixed results. In test cases with a very low learning
point density of 0.5/unit, the FITC approximation was the fastest regression method.
However, the tradeoff for the gained computing speed is a significant drop in terms of
accuracy as it can be seen in figures 5 and 6. Such a test case is not a realistic scenario
for a real life application.
For test cases with a higher density of learning points (density of 1.0 or higher) the
FITC approximation showed a computing time equal to or even slower than the
built-in exact inference method and was significantly outperformed by the

 13

incremental and decremental methods.
In summary, for this test scenario, the incremental and decremental methods
performed as desired - they used significantly less computing time than the built-in
exact inference method while keeping the same estimation accuracy. If those gains in
computing time suffice for online applications of Gaussian processes with a large
number of learning points is up to be seen.

Figure 4: Benchmark between exact inference methods and FITC approximation in
terms of computing time. For point densities of 1.0/unit or higher, the incremental and
decremental methods computed significantly faster than the other methods. For a low
point density of 0.5/unit the FITC approximation calculated the fastest but showed a
significant drop in estimation accuracy as shown in figures 5 and 6.

 14

Figure 5: Benchmark between exact inference methods and FITC approximation in
terms of estimation accuracy, measured as mean squared error (MSE). For high point
densities of 1.0/unit or higher, all methods achieved sufficiently low MSEs. For a low
point density of 0.5/unit the FITC approximation (purple) shows a significant drop of
accuracy as visualized in figure 6.

Figure 6: A test case with 500 learning points and a density of 0.5 points/unit. The
low point density causes a significant drop in estimation accuracy. The exact
inference methods (purple) still estimate a function somehow close to the original
sinus wave (blue) while the FITC approximation (green) fails.

 15

4. Summary and outlook

This project focused on the challenges of an online gaussian process for regression
applications. First of all, a matrix inversion was identified as the most significant
bottleneck for processing time. Therefore, different inversion methods were
investigated and benchmarked against each other. Eventually, an incremental and an
decremental inversion method that build upon prior results were identified as most
efficient.
Secondly, those two inversion methods were integrated in a Gaussian process and
benchmarked against state of the art solutions. This was done using the latest version
(July 2015) of the Gaussian Process Machine Learning Toolbox by Rasmussen and
Williams. Using the incremental and decremental inversion methods, two new
inference methods were developed. In a final step they were benchmarked against a
built-in exact inference method and the FITC approximation inference. As a result,
the incremental and decremental needed less or way less computing time than the
built-in exact inference method while keeping a nearly identical estimation accuracy.
The FITC approximation was only faster in cases with a low point density which in
return resulted in a low estimation accuracy and therefore nullifying the saved
processing time.

The ultimate goal is to integrate an online GP solution into a robotic application.
However, further research is necessary to realize a real life integration.
A future point of research could be the integration of incremental and decremental
solutions into the FITC approximation. Also, further comparisons with other GP
solutions should be performed.
Another future research focus lies in the likelihood function. While this project
focused solely on the regression step of a Gaussian process, assuming that a system's
hyper-parameters are fix, in real life applications hyper-parameters often need to be
reevaluated. This brings up more challenges for an online GP as the reevaluation of
hyper-parameters is an optimization problem that can have an even higher complexity
than the regression step. Hence, for a comprehensive online GP solution, the
calculation efficiency of the likelihood function should be further researched.

 16

List of figures

Figure 1: Benchmark between investigated inversion methods

Figure 2: Swapping of entries before decremental inversion

Figure 3: Result of regression learning points derived from a sinus wave

Figure 4: Benchmark between regression methods, focus on computing time

Figure 5: Benchmark between regression methods, focus on estimation accuracy

Figure 6: Result of regression with a very low learning point density, resulting in a
 low estimation accuracy

 17

References

[01] Nguyen-Tuong, Duy, Matthias Seeger, and Jan Peters. "Model learning with local
 gaussian process regression." Advanced Robotics 23, no. 15 (2009): 2015-2034.

[02] Kronander, Klas, Mohammad Khansari, and Aude Billard. "Incremental Motion Learning
 with Gaussian Process Modulated Dynamical Systems."

[03] Lütz, Alexander, Erik Rodner, and Joachim Denzler. "EFFICIENT MULTI-CLASS
 INCREMENTAL LEARNING USING GAUSSIAN PROCESSES."

[04] Quinonero-Candela, Joaquin, and Ole Winther. "Incremental gaussian processes."
 In Advances in neural information processing systems, pp. 1001-1008. 2002.

[05] Vijayakumar, Sethu, Aaron D'souza, and Stefan Schaal. "Incremental online learning in
 high dimensions." Neural computation 17, no. 12 (2005): 2602-2634.

[06] Rasmussen, Carl Edward. "Gaussian processes for machine learning." MIT Press, 2006.

[07] Csató, Lehel. "Gaussian processes: iterative sparse approximations." PhD diss., Aston
 University, 2002.

[08] Naish-Guzman, Andrew, and Sean Holden. "The generalized FITC approximation."
 In Advances in Neural Information Processing Systems, pp. 1057-1064. 2007.

[09] Anitescu, Mihai, Jie Chen, and Michael L. Stein. "An inversion-free estimating equation
 approach for Gaussian process models." submitted for publication(2014).

[10] Wilson, Andrew, Elad Gilboa, John P. Cunningham, and Arye Nehorai. "Fast kernel
 learning for multidimensional pattern extrapolation." In Advances in Neural Information

 Processing Systems, pp. 3626-3634. 2014.

[11] Flaxman, Seth R., Andrew Gordon Wilson, Daniel B. Neill, Hannes Nickisch, and
 Alexander J. Smola. "Fast Kronecker Inference in Gaussian Processes with
 non-Gaussian Likelihoods." (2015).

[12] Davis, Timothy A., and W. Hager. "CHOLMOD: supernodal sparse cholesky factorization
 and update/downdate." (2005).

[13] Polok, Lukas, Marek Solony, Viorela Ila, Pavel Smrz, and Pavel Zemcik. "Incremental
 Cholesky Factorization for Least Squares Problems in Robotics⋆." In Intelligent

 Autonomous Vehicles, vol. 8, no. 1, pp. 172-178. 2013.

 18

[14] Drakos, Nikos. "Computer based learning unit." University of Leeds.“Network Intrusion

 Detection: Evasion, Traffic normalization and End-to-End protocol semantics (1997).

[15] Eldén, Lars, Misha E. Kilmer, and Dianne P. O’Leary. "Updating and Downdating Matrix
 Decompositions." In GW Stewart, pp. 45-58. Birkhäuser Boston, 2010.

 19

Appendix

A - Implementation of the incremental exact

inference method

function [post nlZ dnlZ] = infIncrement(hyp, mean, cov, lik, x, y)

 % Needs to be passed hyp.Increment.KOld and hyp.Increment.AOldInv!

 % KOld = old squared exponential Covariance Matrix with isotropic distance measure

 %

 % Exact inference for a GP with Gaussian likelihood. Compute a parametrization

 % of the posterior, the negative log marginal likelihood and its derivatives

 % w.r.t. the hyperparameters. See also "help infMethods".

 %

 % Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2015-07-13.

 % File automatically generated using noweb.

 %

 % See also INFMETHODS.M.

 if iscell(lik), likstr = lik{1}; else likstr = lik; end

 if ~ischar(likstr), likstr = func2str(likstr); end

 if ~strcmp(likstr,'likGauss') % NOTE: no explicit call to likGauss

 error('Exact inference only possible with Gaussian likelihood');

 end

 %% This part has been changed!

 n = length(x);

 KOld = hyp.Increment.KOld;

 % xs = x(n); % incremental point xs

 % xOld = x(1:n-1); % old x-vector without incremental point xs

 ell = exp(hyp.cov(1)); % characteristic length scale

 sf2 = exp(2*hyp.cov(2)); % signal variance

 p = sq_dist(x(1:n-1)'/ell,x(n)/ell); % evaluate new covariance vector

 p = sf2*exp(-p/2); % for incremental point xs

 %K = [KOld p; p' KOld(1,1)]; % evaluate covariance matrix

 m = feval(mean{:}, hyp.mean, x); % evaluate mean vector

 20

 sn2 = exp(2*hyp.lik); % noise variance of likGauss

 %pL = -inv(K+sn2*eye(n)); % simple inversion function

 pL = -myIncrementalInversion(hyp.Increment.AOldInv, p, KOld(1,1)); % increm.

inversion

 alpha = -pL*(y-m);

 %%

 post.alpha = alpha; % return the posterior parameters

 post.sW = ones(n,1)/sqrt(sn2); % sqrt of noise precision vector

 post.L = pL;

 %% Not applicable if nargin==8 for gp()-function

 if nargout>1 % do we want the marginal likelihood?

 nlZ = (y-m)'*alpha/2 + sum(log(diag(L))) + n*log(2*pi*sl)/2; % -log marg lik

 if nargout>2 % do we want derivatives?

 dnlZ = hyp; % allocate space for derivatives

 Q = solve_chol(L,eye(n))/sl - alpha*alpha'; % precompute for convenience

 for i = 1:numel(hyp.cov)

 dnlZ.cov(i) = sum(sum(Q.*feval(cov{:}, hyp.cov, x, [], i)))/2;

 end

 dnlZ.lik = sn2*trace(Q);

 for i = 1:numel(hyp.mean)

 dnlZ.mean(i) = -feval(mean{:}, hyp.mean, x, i)'*alpha;

 end

 end

 end

end

function [AincrInv] = myIncrementalInversion(AInv, b, c)

%MYINCREMENTALINVERSION Summary of this function goes here

% Calculates the inverse of an incremented matrix Aincr based on the

% inverse of a matrix A

%

% Inputs:

% AInv = the inverse of the original matrix

%

% b = the new column of the increased matrix without the element in the

% bottom right corner A(N,N)

%

% c = the element of the bottom right corner of the increased matrix

 21

% A(N,N)

%

% Outputs:

% Aincr = Increased matrix, consisting of A, b, transpose of b, and c

% AincrInv = Inverse of the increased matrix Aincr

bT = b.';

AinvB = AInv*b;

BAinv = AinvB.';

kinv = 1/(c - bT*AinvB);

partA = AInv + kinv*AinvB*BAinv;

partb = -kinv*AinvB;

partc = -kinv*BAinv;

partd = kinv;

AincrInv = [partA partb; partc partd];

%Aincr = [A b; bT, c] ;

end

 22

B - Implementation of the decremental exact

inference method

function [post nlZ dnlZ] = infDecrement(hyp, mean, cov, lik, x, y)

 % Needs to be passed hyp.Decrement.b, hyp.Decrement.c and hyp.Decrement.AOldInv!

 %

 % Exact inference for a GP with Gaussian likelihood. Compute a parametrization

 % of the posterior, the negative log marginal likelihood and its derivatives

 % w.r.t. the hyperparameters. See also "help infMethods".

 %

 % Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2015-07-13.

 % File automatically generated using noweb.

 %

 % See also INFMETHODS.M.

 if iscell(lik), likstr = lik{1}; else likstr = lik; end

 if ~ischar(likstr), likstr = func2str(likstr); end

 if ~strcmp(likstr,'likGauss') % NOTE: no explicit call to likGauss

 error('Exact inference only possible with Gaussian likelihood');

 end

 %% This part has been changed!

 n = length(x);

 ell = exp(hyp.cov(1)); % characteristic length scale

 sf2 = exp(2*hyp.cov(2)); % signal variance

 p = sq_dist(x(1:n-1)'/ell,x(n)/ell); % evaluate new covariance vector

 p = sf2*exp(-p/2); % for incremental point xs

 m = feval(mean{:}, hyp.mean, x); % evaluate mean vector

 sn2 = exp(2*hyp.lik); % noise variance of likGauss

 pL = -myDecrementalInversion(hyp.Decrement.AOldInv, hyp.Decrement.b,

hyp.Decrement.c); % decrem. inversion

 alpha = -pL*(y-m);

 %%

 post.alpha = alpha; % return the posterior parameters

 post.sW = ones(n,1)/sqrt(sn2); % sqrt of noise precision vector

 post.L = pL;

 23

 %% Not applicable if nargin==8 for gp()-function

 if nargout>1 % do we want the marginal likelihood?

 nlZ = (y-m)'*alpha/2 + sum(log(diag(L))) + n*log(2*pi*sl)/2; % -log marg lik

 if nargout>2 % do we want derivatives?

 dnlZ = hyp; % allocate space for derivatives

 Q = solve_chol(L,eye(n))/sl - alpha*alpha'; % precompute for convenience

 for i = 1:numel(hyp.cov)

 dnlZ.cov(i) = sum(sum(Q.*feval(cov{:}, hyp.cov, x, [], i)))/2;

 end

 dnlZ.lik = sn2*trace(Q);

 for i = 1:numel(hyp.mean)

 dnlZ.mean(i) = -feval(mean{:}, hyp.mean, x, i)'*alpha;

 end

 end

 end

end

function [AdecrInv] = myDecrementalInversion(AInv, b, c)

%MYDECREMENTALINVERSION Summary of this function goes here

% Calculates the inverse of a decremented Matrix Adecr based on the inverse of

% the Matrix A; Possibility to swap entry in order to decrement specific entry

%

% Input

% A = Original matrix

% AInv = Inverse of matrix A

% Output:

% Adecr = Decremented matrix of A, last row and column removed

% AdecrInv = Inverse of decremented matrix Adecr

N = length(AInv)-1;

%% Calculate inverse

Xi = AInv(1:N,1:N);

Xib = Xi*b;

AdecrInv = Xi - (Xib*Xib.')/(c+b.'*Xib);

%Adecr = A(1:N,1:N);

end

 24

C - Implementation of the regression benchmark test

suite

recalculateEverything = true;

close all;

if(recalculateEverything)

 clear all;

 showRegressionPlot = false;

 testcase = 1;

 switch testcase

 case 1

 % Testparameters

 tNumPoints = [50, 100, 200, 300, 500, 700, 1000, 1300, 1500]; % Number of learning

points

 tDensity = [0.5, 1, 3, 5]; % Average number of learning points per

width unit

 tStructNames = ['d=0.5','d=1','d=3','d=5']; % Structure Names for results

 case 2

 % Testparameters

 tNumPoints = [50, 100, 200]; % Number of learning points

 tDensity = [0.5, 1, 3]; % Average number of learning points per width

unit

 tStructNames = ['d=0.5','d=1','d=3']; % Structure Names for results

 otherwise

 disp('Undefined test case!');

 return;

 end

 NumIt = 25; % Number of iterations (more iterations = higher benchmark accuracy)

 inputs = [];

 resultsTime = tNumPoints;

 resultsMse = tNumPoints;

 for i=1:length(tDensity)

 avrgTIncrExactMilis = [];

 mseIncrExact = [];

 25

 avrgTDecrExactMilis = [];

 mseDecrExact = [];

 avrgTExactMilis = [];

 mseExact = [];

 avrgTFITCMilis = [];

 mseFITC = [];

 %resultsData = [];

 for j=1:length(tNumPoints)

 %% Initialization

 numPoints = tNumPoints(j)

 density = tDensity(i)

 width = numPoints/density

 n = ceil(width*density); % number of learning points

 z = (0:0.1:width)';

 val = sin(z);

 x = rand(n,1)*width;

 y = awgn(sin(x),10);

 likfunc = @likGauss;

 covfunc = @covSEiso;

 % evaluating hyper parameters using infExact

 hyp.cov = [0; 0]; hyp.lik = log(0.1);

 hyp = minimize(hyp, @gp, -25, @infExact, [], covfunc, likfunc, x, y);

 sn2 = exp(2*hyp.lik);

 % Adding old (decremented) covariance matrix KOld as well as old inverse

 % Aold = inv(KOld+sn2*eye(n-1)) for incremental regression

 hyp.Increment.KOld = feval(covfunc, hyp.cov, x(1:n-1));

 hyp.Increment.AOldInv = inv(hyp.Increment.KOld+sn2*eye(n-1));

 % Adding old (incremented) covariance matrix + sn2 AOld as well as old

 % inverse AOldInv = inv(KOld+sn2*eye(n-1)) for decremental regression

 xDecr = rand()*width;

 yDecr = awgn(sin(xDecr),10);

 randSwap = randi([1,n]);

 xn = [x; xDecr]; xn([randSwap,n+1]) = xn([n+1,randSwap]);

 26

 yn = [y; yDecr]; yn([randSwap,n+1]) = yn([n+1,randSwap]);

 Decrement.AOldSwapped = feval(covfunc, hyp.cov, xn)+sn2*eye(n+1);

 Decrement.AOldInvSwapped = inv(Decrement.AOldSwapped);

 disp('Determined hyperparameters, starting regression...');

 %% GP regression step

 %% Incremental exact inference

 tic;

 for k=1:NumIt

 mIncr = gp(hyp, @infIncrement, [], covfunc, likfunc, x, y, z);

 end

 elpsdTIncrExact = toc;

 avrgTIncrExactMilis = [avrgTIncrExactMilis (elpsdTIncrExact / NumIt) * 1000];

 dIncrExact = mIncr-val;

 mseIncrExact = [mseIncrExact (dIncrExact'*dIncrExact)/length(z)];

 %% Decremental exact inference with Swap

 tic;

 for k=1:NumIt

 % (Re-)Swapping before regression step

 l = randSwap;

 hyp.Decrement.c = Decrement.AOldSwapped(l,l);

 hyp.Decrement.b = Decrement.AOldSwapped(1:n,l);

 hyp.Decrement.b(l) = Decrement.AOldSwapped(l,n);

 hyp.Decrement.AOldInv = Decrement.AOldInvSwapped;

 hyp.Decrement.AOldInv(:,[l,n+1]) = hyp.Decrement.AOldInv(:,[n+1,l]);

 hyp.Decrement.AOldInv([l,n+1],:) = hyp.Decrement.AOldInv([n+1,l],:);

 yn([l,n+1]) = yn([n+1,l]);

 xn([l,n+1]) = xn([n+1,l]);

 mDecr = gp(hyp, @infDecrement, [], covfunc, likfunc, xn(1:n), yn(1:n), z);

 end

 elpsdTDecrExact = toc;

 avrgTDecrExactMilis = [avrgTDecrExactMilis (elpsdTDecrExact / NumIt) * 1000];

 dDecrExact = mDecr-val;

 27

 mseDecrExact = [mseDecrExact (dDecrExact'*dDecrExact)/length(z)];

 %% Exact inference

 tic;

 for k=1:NumIt

 mExact = gp(hyp, @infExact, [], covfunc, likfunc, x, y, z);

 end

 elpsdTExact = toc;

 avrgTExactMilis = [avrgTExactMilis (elpsdTExact / NumIt) * 1000];

 dExact = mExact-val;

 mseExact = [mseExact (dExact'*dExact)/length(z)];

 %% FITC

 nu = fix(n/2);

 border = width/(2*nu);

 u = linspace(border,width-border,nu)';

 covfuncF = {@covFITC, {covfunc}, u};

 tic;

 for k=1:NumIt

 mFITC = gp(hyp, @infFITC, [], covfuncF, likfunc, x, y, z);

 end

 elpsdTFITC = toc;

 avrgTFITCMilis = [avrgTFITCMilis (elpsdTFITC / NumIt) * 1000];

 dFITC = mFITC-val;

 mseFITC = [mseFITC (dFITC'*dFITC)/length(z)];

 %%

 end

 resultsTime = [resultsTime; avrgTIncrExactMilis; avrgTDecrExactMilis;

avrgTExactMilis; avrgTFITCMilis];

 resultsMse = [resultsMse; mseIncrExact; mseDecrExact; mseExact; mseFITC];

 %Data = struct(tStructNames(i), resultsData);

 end

end

%% Time benchmark graphs

numInfMthds = 4;

numDnsts = length(tDensity);

figure(1)

hold on

plotNumber = 1;

 28

plotRow = 2;

subplot(2, 2, plotNumber); hold on

t05 = plot(resultsTime(1,:),resultsTime(plotRow:numInfMthds+plotRow-1,:));

plotRow = plotRow + numInfMthds; plotNumber = plotNumber +1;

title('point density = 0.5/unit','FontSize',16);

xlabel('Number of learning points','FontSize',16);

xlim([0 1500]);

ylabel('Average computing time (in ms)','FontSize',16);

ylim([0 500]);

LEG = legend('Time: Exact inference (incremental)', 'Time: Exact inference (decremental,

swapped)', 'Time: Exact inference', 'Time: FITC Approximation', 'Location', 'NorthWest');

set(LEG,'FontSize',16);

set(gca, 'FontSize', 16);

set(gca,'YTick',0:100:500);

grid on

subplot(2, 2, plotNumber); hold on

t10 = plot(resultsTime(1,:),resultsTime(plotRow:numInfMthds+plotRow-1,:));

plotRow = plotRow + numInfMthds; plotNumber = plotNumber +1;

title('point density = 1.0/unit','FontSize',16);

xlabel('Number of learning points','FontSize',16);

xlim([0 1500]);

ylabel('Average computing time (in ms)','FontSize',16);

ylim([0 500]);

LEG = legend('Time: Exact inference (incremental)', 'Time: Exact inference (decremental,

swapped)', 'Time: Exact inference', 'Time: FITC Approximation', 'Location', 'NorthWest');

set(LEG,'FontSize',16);

set(gca, 'FontSize', 16);

set(gca,'YTick',0:100:500);

grid on

subplot(2, 2, plotNumber); hold on

t30 = plot(resultsTime(1,:),resultsTime(plotRow:numInfMthds+plotRow-1,:));

plotRow = plotRow + numInfMthds; plotNumber = plotNumber +1;

title('point density = 3.0/unit','FontSize',16);

xlabel('Number of learning points','FontSize',16);

xlim([0 1500]);

ylabel('Average computing time (in ms)','FontSize',16);

ylim([0 500]);

LEG = legend('Time: Exact inference (incremental)', 'Time: Exact inference (decremental,

swapped)', 'Time: Exact inference', 'Time: FITC Approximation', 'Location', 'NorthWest');

set(LEG,'FontSize',16);

set(gca, 'FontSize', 16);

 29

set(gca,'YTick',0:100:500);

grid on

subplot(2, 2, plotNumber); hold on

t50 = plot(resultsTime(1,:),resultsTime(plotRow:numInfMthds+plotRow-1,:));

title('point density = 5.0/unit','FontSize',16);

xlabel('Number of learning points','FontSize',16);

xlim([0 1500]);

ylabel('Average computing time (in ms)','FontSize',16);

ylim([0 500]);

LEG = legend('Time: Exact inference (incremental)', 'Time: Exact inference (decremental,

swapped)', 'Time: Exact inference', 'Time: FITC Approximation', 'Location', 'NorthWest');

set(LEG,'FontSize',16);

set(gca, 'FontSize', 16);

set(gca,'YTick',0:100:500);

grid on

%% Accuracy benchmark graphs

numInfMthds = 4;

numDnsts = length(tDensity);

figure(2)

hold on

plotNumber = 1;

plotRow = 2;

subplot(2, 2, plotNumber); hold on

t05 = plot(resultsMse(1,:),resultsMse(plotRow:numInfMthds+plotRow-1,:));

plotRow = plotRow + numInfMthds; plotNumber = plotNumber +1;

title('point density = 0.5/unit','FontSize',16);

xlabel('Number of learning points','FontSize',16);

xlim([0 1500]);

ylabel('Mean square error','FontSize',16);

ylim([0 0.5]);

LEG = legend('MSE: Exact inference (incremental)', 'MSE: Exact inference (decremental,

swapped)', 'MSE: Exact inference', 'MSE: FITC Approximation', 'Location', 'SouthWest');

set(LEG,'FontSize',16);

set(gca, 'FontSize', 16);

%set(gca,'YTick',0:100:500);

grid on

subplot(2, 2, plotNumber); hold on

t10 = plot(resultsMse(1,:),resultsMse(plotRow:numInfMthds+plotRow-1,:));

plotRow = plotRow + numInfMthds; plotNumber = plotNumber +1;

 30

title('point density = 1.0/unit','FontSize',16);

xlabel('Number of learning points','FontSize',16);

xlim([0 1500]);

ylabel('Mean square error','FontSize',16);

ylim([0 0.5]);

LEG = legend('MSE: Exact inference (incremental)', 'MSE: Exact inference (decremental,

swapped)', 'MSE: Exact inference', 'MSE: FITC Approximation', 'Location', 'NorthWest');

set(LEG,'FontSize',16);

set(gca, 'FontSize', 16);

%set(gca,'YTick',0:100:500);

grid on

subplot(2, 2, plotNumber); hold on

t30 = plot(resultsMse(1,:),resultsMse(plotRow:numInfMthds+plotRow-1,:));

plotRow = plotRow + numInfMthds; plotNumber = plotNumber +1;

title('point density = 3.0/unit','FontSize',16);

xlabel('Number of learning points','FontSize',16);

xlim([0 1500]);

ylabel('Mean square error','FontSize',16);

ylim([0 0.5]);

LEG = legend('MSE: Exact inference (incremental)', 'MSE: Exact inference (decremental,

swapped)', 'MSE: Exact inference', 'MSE: FITC Approximation', 'Location', 'NorthWest');

set(LEG,'FontSize',16);

set(gca, 'FontSize', 16);

%set(gca,'YTick',0:100:500);

grid on

subplot(2, 2, plotNumber); hold on

t50 = plot(resultsMse(1,:),resultsMse(plotRow:numInfMthds+plotRow-1,:));

title('point density = 5.0/unit','FontSize',16);

xlabel('Number of learning points','FontSize',16);

xlim([0 1500]);

ylabel('Mean square error','FontSize',16);

ylim([0 0.5]);

LEG = legend('MSE: Exact inference (incremental)', 'MSE: Exact inference (decremental,

swapped)', 'MSE: Exact inference', 'MSE: FITC Approximation', 'Location', 'NorthWest');

set(LEG,'FontSize',16);

set(gca, 'FontSize', 16);

%set(gca,'YTick',0:100:500);

grid on

