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Abstract 
 

This project focused on the challenges of an on-line Gaussian process for regression 
applications. Thereby, incremental and decremental inversion methods have been 
developed as a means to shorten computing time. In tests, the incremental and 
decremental regression algorithms performed significantly faster than two 
state-of-the-art implementations of GP while still retaining high estimation accuracy. 

 
 

Zusammenfassung 
 
Der Fokus dieser Forschungsarbeit liegt auf den Herausforderungen einer on-line 
Regression mit Gaußschen Prozessen. Dazu wurden inkrementelle und dekrementelle 
Matrixinversiontechniken entwickelt, die Rechenzeit einsparen sollen. In Tests 
erwiesen sich die entwickelten inkrementellen und dekrementellen 
Regressionsalgorithmen gegenüber zwei anerkannten aktuellen GP Methoden als 
signifikant schneller ohne Einbußen an Schätzungsgenauigkeit.
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1. Introduction 

Gaussian Processes (GP) are statistical modeling tools that have been successfully 
used in a number of robotics applications, such as imitation and reinforcement 
learning. To face the increasing computational time problem in large-scale on-line 
applications, incremental algorithms for GP have been proposed in numerous 
literatures [1][2][3][4][5]. These algorithms are useful to update the learned 
parameters according to new incoming data. This project investigated an approach of 
using incremental and decremental inversion methods in order to increase 
computation efficiency. 
 

1.1 Gaussian Process as means for Regression 

"When concerned with a general Gaussian process regression problem, it is assumed 
that for a Gaussian process f observed at coordinates x, the vector of values f(x) is just 
one sample from a multivariate Gaussian distribution of dimension equal to number of 
observed coordinates |x|. Therefore under the assumption of a zero-mean 

distribution, f (x) ∼ N(0,K(θ,x,x')), where K(θ,x,x') is the covariance matrix between 

all possible pairs (x,x') for a given set of hyperparameters θ. As such the log marginal 
likelihood is: 
 

log! !(!(!|!, !) != !− !
! ! ! !!(!,!,!′)!!!(!) − !

! !"#!!"#(!(!,!,!′)) −
|!|
! !"#!2! (1) 

 
and maximizing this marginal likelihood towards θ provides the complete 
specification of the Gaussian process f. One can briefly note at this point that the first 
term corresponds to a penalty term for a model's failure to fit observed values and the 
second term to a penalty term that increases proportionally to a model's complexity. 
Having specified θ making predictions about unobserved values f(x*) at 
coordinates x* is then only a matter of drawing samples from the predictive 
distribution p(y*|x*,f(x),x) = N(y*|A,B) where the posterior mean estimate A is 
defined as: 
 

!! = !!(!,!∗,!)!(!,!,!′)!!!!(!)  (2) 
 
and the posterior variance estimate B is defined as: 
 

!! = !!(!,!∗,!∗)−!(!,!∗,!)!(!,!,!′)!!!(!,!∗,!)! (3) 
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where K(θ,x*,x) is the covariance between the new coordinate of estimation x* and 
all other observed coordinates x for a given hyperparameter vector 
θ, K(θ,x,x') and f(x) are defined as before and K(θ,x*,x*) is the variance at point x* as 
dictated by θ." From Rasmussen, Gaussian processes for machine learning [6]. 

1.2 Matrix inversion is most complex operation in the 

calculation of posterior estimates 

As shown in (2) and (3), the posterior mean estimate and posterior variance estimate 
both contain the inverse of the covariance matrix K(θ,x,x'). Matrix inversion is a very 
costly operation in terms of processing time with a complexity between O(n3) 
(Gauß-Jordan) and ~O(n2.3) and is a known bottleneck for Gaussian processes. 
The objective of this project is to investigate various inversion methods, identify the 
most efficient ones, integrate those methods into a GP model and benchmark these 
solutions against state-of-the-art solutions. 

1.3 Related work 

A commonly used optimization is the utilization of the Cholesky decomposition of the 
covariance K(θ,x,x') in equations (2) and (3) instead of calculating its inverse. This 
can e.g. be found it Rasmussen's Gaussian Process Machine Learning toolbox and 
many other implementations [6]. See also chapter 2 for a more detailed explanation of 
the Cholesky decomposition and its utilization possibilities. 
 
In 2002, Csató published an efficient Gaussian Processes capitalizing from the 
sparsity of the covariance matrix and demonstrated the efficiency in terms of 
regression, classification and density estimation [7]. 
 
In 2008, Naish-Guzman et al. presented the FITC approximation, a low-rank plus 
diagonal approximation to the exact covariance using inducing points, basing the 
computations on cross-covariances between training, test and inducing points only [8]. 
We tested our solution against the FITC approximation and found that in our tests the 
FITC performed better in cases where very little learning information are given. 
However, in all other cases, the FITC approximation performed equally fast or even 
worse than the exact estimation. See chapter 3 for more information.  
 
In 2014, Anitescu et al. presented an inversion-free estimating equation approach for 
Gaussian Process models that requires only a small fraction of the computational 
effort of maximum likelihood calculations [9]. For specific test cases with data sets of 
up to 1 million data points, the estimating equation method returned an accuracy close 
to the optimal one as measured but at a fraction of the cost (1% or even less). 
However, the presented approach only finds an efficient solution for calculating the 
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maximum likelihood estimate and does not offer an alternative solution of calculating 
the posterior estimate of a Gaussian process. 
 
Moreover, Kronecker methods have been used to exploit structure in the GP 
covariance matrix for scalability, while allowing for expressive kernel learning [10]. 

However, Kronecker methods have been confined to Gaussian likelihoods. In 2015, 
Flexman et al. proposed new scalable Kronecker methods for Gaussian processes with 
non-Gaussian likelihoods, using a Laplace approximation which involves linear 
conjugate gradients for inference, and a lower bound on the GP marginal likelihood 
for kernel learning [11]. The main application for Kronecker methods are 
extrapolation of learning data, making it difficult to transfer the method to other 
regression applications. In the scope of this project, Kronecker methods were 
therefore not applied to our regression problem, but it remains a potential topic for 
future research. 

1.4 Chapter overview 

Chapter 2 describes examined inversion methods and their performance, while in 
chapter 3 the most efficient method is benchmarked against state-of-the-art solutions. 
Chapter 4 gives a summary of the results and an outlook to future research 
possibilities. 
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2. Examination of inversion methods 

Various inversion methods have been examined over the course of the project. They 
all span around solving the operation  
 

x = M-1y  (4) 
 

which represents the critical part of equations (2) and (3).  

2.1 Inversion methods 

There are various possibilities to mathematically correctly calculate equation (4). 
Below is a short explanation of the ones most popular or deemed most promising. 
 
Inv(): Matlab has a comprehensive, built-in matrix-inversion function inv(). This 
represents a native, un-optimized approach and unsurprisingly delivered the slowest 
results. 
 
M\y: Also a built-in Matlab method that is used to solve equations Mx = y. It is based 
on the cholmod()-function which is an efficient built-in implementation of the 
Choleksy decomposition [12]: This algorithm is a decomposition of a Hermitian, pdf 
matrix into the product of a lower triangular matrix L and its conjugate transpose U. It 
is a numerically very efficient way of solving Ax = b using forward and back 
substitution. 
 
Chol(): We also investigated explicit Cholesky solutions, first of all using the built-in 
chol()-function from Matlab and then solving the equation: 
 
 U = chol(M); 
    Result = U\(U.'\Y); 
 
Not shown in figure 1 is an alternative implementation of the Cholesky decomposition 
coded in Matlab which turned out to be not as efficient. 
  
Cholesky increment: There is also the possibility of calculating a Cholesky 
decomposition based on a prior Cholesky decomposition of a Matrix that is equal to 
M except that the last row and column are removed. This represents the case that one 
entry is added to the covariance matrix and (3) has to be recalculated [13]. 
 
N = size(M); 

for l=1:NumIt 
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    L = [LOld zeros(N-1,1); zeros(1,N)]; 
    for j=1:N-1 
           sum = 0; 
           for i=1:j-1 
               sum = sum + L(N,i)*L(j,i); 
           end 
           L(N,j)=(M(N,j)-sum)/L(j,j); 
    end 
     
    sumDiag = L(N,1:N-1)*L(N,1:N-1).'; 
    L(N,N)=sqrt(M(N,N)- sumDiag); 
     
    RIncrChol = L.'\(L\Y); 
end 
 
A Matlab-based incremental Cholesky implementation turned out to be less efficient 
than recalculating the Cholesky decomposition from scratch using the built-in 
chol()-function. However, we also implemented this method in C with a 
Mex-Matlab-Interface, which gave a much better performance and performed 
significantly better than the recalculating the whole Cholesky decomposition. 
 
Increment using block form: What turned out to be most 
efficient was an incremental way of calculating the inverse M-1. 
 
If a new learning point is added to the GP model, K(θ,x,x’) is 
incremented by 1 dimension: 
 

!!!! !!!= ! !! !
!! !  

 
Then the inverse of !!!! can be calculated as: 
 

!!!!
!! = !

!!!! +
1
!!!!!!!!!!!! − 1!!!!!!

− 1! !
!!!!!

1
!

!!!!!(5) 

 
,!ℎ!"!!!! = !!!− !!!!!!!!!.  
 
This algorithm is derived from the block-form inversion [14]. 
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Decremental inversion using Sherman-Morrison:  
Similarily, the inverse of a decremented matrix can be 
calculated based on the inverse of the prior matrix. 
 
If a learning point is removed from the GP model, K(θ,x,x’) 
is decremented by 1 dimension. To calculate the inverse of 
the decremented matrix !!!!

!! , the previous inverse !!!! 
and !! (shown as !!!! and !! in the right figure) are 
then split in the parts X, b, bT and c. 
 
The inverse !!!!

!! !of the decremented  
matrix !! can be calculated as: 
 

!!!!
!! != !!− !"!(!!)

!

! + !!!" !!!!!(6) 
 
This is derived from the block-form inversion in 
combination with the Sherman-Morrison formula [14][15]: 
 

(!+ !!!)!! !!= !!!! − !!!!!!!!!
1+ !!!!!! !!!!!(7) 

 
Swapping of entries: Using the decremental method, the last entry of the covariance 
matrix K(θ,x,x’) can be removed. However, if another entry of K is supposed to be 
removed, entries need to be swapped first. This can be done easily by swapping the 
corresponding rows and columns of the inverse of the prior matrix and the y as shown 
in figure 2. 
 

 
Figure 2: Visualization of entry swapping: If entries x1 and x2 of the covariance 
matrix K(θ,x,x’) are swapped this results in a swap of the corresponding rows and 
columns in K, as well as in a swap of the the corresponding rows and columns in the 
inverse of K. This allows to efficiently remove any entry from the covariance matrix 
and recalculate the posterior estimates using the decremental inversion. 
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2.2 Inversion benchmark setup and results 

All methods were tested in Matlab R2015a. They calculated equation (4) given a 
random, symmetric and postive-definite (pdf) M and a random vector y. Figure 1 
shows the relation between the size of M and the average computing time for 30 
iterations (15 iterations for matrices >1000).  
 

 
Figure 1: Benchmark between various inversion methods. Incremental and (swapping) 
decremental methods have been identified to be most efficient and have therefore been 
further investigated. 
 
Thereby, the incremental and decremental inversions (including swapping of entries) 
have been identified as most efficient way of calculating expression (4). The next 
chapter shows how they were integrated into an existing GP-library and benchmarked 
against other GP-methods. 



 11 

3. Benchmarking of GP implementations 

As described in chapter 2, the incremental and decremental inversion methods have 
been identified as most efficient compared to other inversion methods. In order to find 
out by how much GP calculations can be optimized using those two methods, we are 
currently integrating them into the latest version (July 2015) of the Gaussian Process 
Machine Learning Toolbox by Rasmussen and Williams. 
This toolbox offers a wide range of state-of-the-art implementations of likelihoods, 
inference methods and covariance functions, which enables a direct comparison of 
different GP methods. 
 
The incremental and decremental inversion methods have been integrated into the 
toolbox by creating two new inference methods infIncremental() and 
infDecremental(). The two implementations can be found in appendix A and B. Both 
of them are based on the built-in infExact() and represent an exact inference method. 
They can be called just like any other inference method using the gp()-function of the 
toolbox. Therefore, the results can easily be reproduced on any other computer by 
simply inserting the respective two inference Matlab files. 
Furthermore, in order to compare only the posterior mean estimation methods, the 
gp()-function was slightly adjusted to prohibit it from also calculating the posterior 
variance estimate. 
 

3.1 Benchmark setup 

The investigated regression methods are three exact inference methods (built-in, 
incremental as well as swapped decremental version) as well as FITC approximation. 
Those methods were analyzed in terms of computing time and estimation accuracy in 
relation to the number of learning points, as well as the density of learning points (the 
higher the density, the more distinct the regression). 
 
A sinus wave was the basis of the regression task. From this sinus function, individual 
learning points were derived randomly and a white Gaussian noise with a 
signal-to-noise-ratio of 10 added. The number of learning points as well as the density 
of learning points per unit determines the width of the regressed function. An excerpt 
of such a regression task is shown in figure 3.  
 
As performance indicators, computing time and estimation accuracy were measured. 
Thereby, the computing time (in ms) was averaged over 25 iterations of every 
calculation for each regression methods. Accuracy was measured by taking the mean 
of the squared distance of each posterior-estimate to the true value (MSE). 
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Figure 3: Regression results using the built-in exact inference method from the 
GPML-toolbox as well as the exact inference method based on the incremental and 
swapping decremental inversion method. Learning points are derived from a 
sinus-function with signal-to-noise-ratio of 10 and a point density of 2.0/unit. As 
expected, all exact inference regression results are nearly identical and therefore 
individual regression lines are mostly not be visible. 
 
For this benchmark scenario, the following test parameters were used, resulting in 
4x9=36 test cases for each regression method. 
 
tDensity     = [0.5,  1,   3,   5];       

% Average number of learning points per width unit   
tNumPoints   = [50, 100, 200, 300, 500, 700, 1000, 1300, 1500];  

% Number of learning points 

3.2 Benchmark results 

Throughout our benchmarks, the incremental and decremental exact inference 
methods needed less or way less computing time than the built-in exact inference 
methods, as shown in figure 4. In terms of estimation accuracy, they performed nearly 
identical to the built-in method, as expected. This can be seen in figure 5. 
The FITC approximation showed mixed results. In test cases with a very low learning 
point density of 0.5/unit, the FITC approximation was the fastest regression method. 
However, the tradeoff for the gained computing speed is a significant drop in terms of 
accuracy as it can be seen in figures 5 and 6. Such a test case is not a realistic scenario 
for a real life application. 
For test cases with a higher density of learning points (density of 1.0 or higher) the 
FITC approximation showed a computing time equal to or even slower than the 
built-in exact inference method and was significantly outperformed by the 
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incremental and decremental methods. 
In summary, for this test scenario, the incremental and decremental methods 
performed as desired - they used significantly less computing time than the built-in 
exact inference method while keeping the same estimation accuracy. If those gains in 
computing time suffice for online applications of Gaussian processes with a large 
number of learning points is up to be seen. 

 
Figure 4: Benchmark between exact inference methods and FITC approximation in 
terms of computing time. For point densities of 1.0/unit or higher, the incremental and 
decremental methods computed significantly faster than the other methods. For a low 
point density of 0.5/unit the FITC approximation calculated the fastest but showed a 
significant drop in estimation accuracy as shown in figures 5 and 6. 
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Figure 5: Benchmark between exact inference methods and FITC approximation in 
terms of estimation accuracy, measured as mean squared error (MSE). For high point 
densities of 1.0/unit or higher, all methods achieved sufficiently low MSEs. For a low 
point density of 0.5/unit the FITC approximation (purple) shows a significant drop of 
accuracy as visualized in figure 6. 

 
Figure 6: A test case with 500 learning points and a density of 0.5 points/unit. The 
low point density causes a significant drop in estimation accuracy. The exact 
inference methods (purple) still estimate a function somehow close to the original 
sinus wave (blue) while the FITC approximation (green) fails. 
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4. Summary and outlook 

This project focused on the challenges of an online gaussian process for regression 
applications. First of all, a matrix inversion was identified as the most significant 
bottleneck for processing time. Therefore, different inversion methods were 
investigated and benchmarked against each other. Eventually, an incremental and an 
decremental inversion method that build upon prior results were identified as most 
efficient. 
Secondly, those two inversion methods were integrated in a Gaussian process and 
benchmarked against state of the art solutions. This was done using the latest version 
(July 2015) of the Gaussian Process Machine Learning Toolbox by Rasmussen and 
Williams. Using the incremental and decremental inversion methods, two new 
inference methods were developed. In a final step they were benchmarked against a 
built-in exact inference method and the FITC approximation inference. As a result, 
the incremental and decremental needed less or way less computing time than the 
built-in exact inference method while keeping a nearly identical estimation accuracy. 
The FITC approximation was only faster in cases with a low point density which in 
return resulted in a low estimation accuracy and therefore nullifying the saved 
processing time. 
 
The ultimate goal is to integrate an online GP solution into a robotic application. 
However, further research is necessary to realize a real life integration. 
A future point of research could be the integration of incremental and decremental 
solutions into the FITC approximation. Also, further comparisons with other GP 
solutions should be performed. 
Another future research focus lies in the likelihood function. While this project 
focused solely on the regression step of a Gaussian process, assuming that a system's 
hyper-parameters are fix, in real life applications hyper-parameters often need to be 
reevaluated. This brings up more challenges for an online GP as the reevaluation of 
hyper-parameters is an optimization problem that can have an even higher complexity 
than the regression step. Hence, for a comprehensive online GP solution, the 
calculation efficiency of the likelihood function should be further researched. 
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Appendix  

A - Implementation of the incremental exact 

inference method 

function [post nlZ dnlZ] = infIncrement(hyp, mean, cov, lik, x, y) 

  

    % Needs to be passed hyp.Increment.KOld and hyp.Increment.AOldInv! 

    % KOld = old squared exponential Covariance Matrix with isotropic distance measure 

    % 

    % Exact inference for a GP with Gaussian likelihood. Compute a parametrization 

    % of the posterior, the negative log marginal likelihood and its derivatives 

    % w.r.t. the hyperparameters. See also "help infMethods". 

    % 

    % Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2015-07-13. 

    %                                      File automatically generated using noweb. 

    % 

    % See also INFMETHODS.M. 

  

    if iscell(lik), likstr = lik{1}; else likstr = lik; end 

    if ~ischar(likstr), likstr = func2str(likstr); end 

    if ~strcmp(likstr,'likGauss')               % NOTE: no explicit call to likGauss 

      error('Exact inference only possible with Gaussian likelihood'); 

    end 

  

    %% This part has been changed! 

    n = length(x); 

    KOld = hyp.Increment.KOld; 

    % xs = x(n);                                              % incremental point xs 

    % xOld = x(1:n-1);                   % old x-vector without incremental point xs 

  

    ell = exp(hyp.cov(1));                             % characteristic length scale 

    sf2 = exp(2*hyp.cov(2));                                       % signal variance 

  

  

    p = sq_dist(x(1:n-1)'/ell,x(n)/ell);            % evaluate new covariance vector 

    p = sf2*exp(-p/2);                                    % for incremental point xs 

    %K = [KOld p; p' KOld(1,1)];                        % evaluate covariance matrix 

  

    m = feval(mean{:}, hyp.mean, x);                          % evaluate mean vector 
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    sn2 = exp(2*hyp.lik);                               % noise variance of likGauss 

     

    %pL = -inv(K+sn2*eye(n));                            % simple inversion function 

    pL = -myIncrementalInversion(hyp.Increment.AOldInv, p, KOld(1,1) );    % increm. 

inversion 

     

    alpha = -pL*(y-m); 

  

    %% 

  

    post.alpha = alpha;                            % return the posterior parameters 

    post.sW = ones(n,1)/sqrt(sn2);                  % sqrt of noise precision vector 

    post.L = pL; 

  

    %% Not applicable if nargin==8 for gp()-function 

    if nargout>1                               % do we want the marginal likelihood? 

      nlZ = (y-m)'*alpha/2 + sum(log(diag(L))) + n*log(2*pi*sl)/2;   % -log marg lik 

      if nargout>2                                         % do we want derivatives? 

        dnlZ = hyp;                                 % allocate space for derivatives 

        Q = solve_chol(L,eye(n))/sl - alpha*alpha';     % precompute for convenience 

        for i = 1:numel(hyp.cov) 

          dnlZ.cov(i) = sum(sum(Q.*feval(cov{:}, hyp.cov, x, [], i)))/2; 

        end 

        dnlZ.lik = sn2*trace(Q); 

        for i = 1:numel(hyp.mean) 

          dnlZ.mean(i) = -feval(mean{:}, hyp.mean, x, i)'*alpha; 

        end 

      end 

    end 

  

end 

  

function [AincrInv] = myIncrementalInversion(AInv, b, c ) 

%MYINCREMENTALINVERSION Summary of this function goes here 

%   Calculates the inverse of an incremented matrix Aincr based on the  

%   inverse of a matrix A 

%    

%   Inputs: 

%   AInv = the inverse of the original matrix 

% 

%   b = the new column of the increased matrix without the element in the 

%   bottom right corner A(N,N) 

% 

%   c = the element of the bottom right corner of the increased matrix 
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%   A(N,N) 

% 

%   Outputs: 

%   Aincr = Increased matrix, consisting of A, b, transpose of b, and c 

%   AincrInv = Inverse of the increased matrix Aincr 

  

bT = b.'; 

AinvB = AInv*b; 

BAinv = AinvB.'; 

kinv = 1/(c - bT*AinvB); 

  

partA = AInv + kinv*AinvB*BAinv;  

partb = -kinv*AinvB; 

partc = -kinv*BAinv; 

partd = kinv; 

  

AincrInv = [partA partb; partc partd]; 

%Aincr = [A b; bT, c] ;    

  

end 
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B - Implementation of the decremental exact 

inference method 

function [post nlZ dnlZ] = infDecrement(hyp, mean, cov, lik, x, y) 

    % Needs to be passed hyp.Decrement.b, hyp.Decrement.c and hyp.Decrement.AOldInv! 

    %  

    % Exact inference for a GP with Gaussian likelihood. Compute a parametrization 

    % of the posterior, the negative log marginal likelihood and its derivatives 

    % w.r.t. the hyperparameters. See also "help infMethods". 

    % 

    % Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2015-07-13. 

    %                                      File automatically generated using noweb. 

    % 

    % See also INFMETHODS.M. 

  

    if iscell(lik), likstr = lik{1}; else likstr = lik; end 

    if ~ischar(likstr), likstr = func2str(likstr); end 

    if ~strcmp(likstr,'likGauss')               % NOTE: no explicit call to likGauss 

      error('Exact inference only possible with Gaussian likelihood'); 

    end 

 

    %% This part has been changed! 

    n = length(x); 

  

    ell = exp(hyp.cov(1));                             % characteristic length scale 

    sf2 = exp(2*hyp.cov(2));                                       % signal variance 

  

    p = sq_dist(x(1:n-1)'/ell,x(n)/ell);            % evaluate new covariance vector 

    p = sf2*exp(-p/2);                                    % for incremental point xs 

  

    m = feval(mean{:}, hyp.mean, x);                          % evaluate mean vector 

    sn2 = exp(2*hyp.lik);                               % noise variance of likGauss 

    pL = -myDecrementalInversion(hyp.Decrement.AOldInv, hyp.Decrement.b, 

hyp.Decrement.c);   % decrem. inversion 

     

    alpha = -pL*(y-m); 

  

    %% 

  

    post.alpha = alpha;                            % return the posterior parameters 

    post.sW = ones(n,1)/sqrt(sn2);                  % sqrt of noise precision vector 

    post.L = pL; 
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    %% Not applicable if nargin==8 for gp()-function 

    if nargout>1                               % do we want the marginal likelihood? 

      nlZ = (y-m)'*alpha/2 + sum(log(diag(L))) + n*log(2*pi*sl)/2;   % -log marg lik 

      if nargout>2                                         % do we want derivatives? 

        dnlZ = hyp;                                 % allocate space for derivatives 

        Q = solve_chol(L,eye(n))/sl - alpha*alpha';     % precompute for convenience 

        for i = 1:numel(hyp.cov) 

          dnlZ.cov(i) = sum(sum(Q.*feval(cov{:}, hyp.cov, x, [], i)))/2; 

        end 

        dnlZ.lik = sn2*trace(Q); 

        for i = 1:numel(hyp.mean) 

          dnlZ.mean(i) = -feval(mean{:}, hyp.mean, x, i)'*alpha; 

        end 

      end 

    end 

  

end 

  

function [ AdecrInv] = myDecrementalInversion(AInv, b, c) 

%MYDECREMENTALINVERSION Summary of this function goes here 

%   Calculates the inverse of a decremented Matrix Adecr based on the inverse of 

%   the Matrix A; Possibility to swap entry in order to decrement specific entry 

%       

%   Input 

%   A = Original matrix 

%   AInv = Inverse of matrix A 

  

%   Output: 

%   Adecr = Decremented matrix of A, last row and column removed 

%   AdecrInv = Inverse of decremented matrix Adecr 

  

N = length(AInv)-1; 

  

%% Calculate inverse 

Xi = AInv(1:N,1:N); 

Xib = Xi*b; 

AdecrInv = Xi - (Xib*Xib.')/(c+b.'*Xib); 

%Adecr = A(1:N,1:N);   

end 
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C - Implementation of the regression benchmark test 

suite 

recalculateEverything = true; 

close all; 

if(recalculateEverything) 

    clear all; 

  

    showRegressionPlot = false; 

  

    testcase = 1; 

     

    switch testcase 

        case 1 

            % Testparameters 

            tNumPoints   = [50, 100, 200, 300, 500, 700, 1000, 1300, 1500]; % Number of learning 

points 

            tDensity     = [0.5,  1,   3,   5];      % Average number of learning points per 

width unit   

            tStructNames = ['d=0.5','d=1','d=3','d=5'];         % Structure Names for results 

         

        case 2 

            % Testparameters 

            tNumPoints   = [50, 100, 200]; % Number of learning points 

            tDensity     = [0.5,  1,   3];      % Average number of learning points per width 

unit   

            tStructNames = ['d=0.5','d=1','d=3'];         % Structure Names for results 

        otherwise 

            disp('Undefined test case!'); 

            return; 

    end 

     

    NumIt        = 25;     % Number of iterations (more iterations = higher benchmark accuracy) 

     

    inputs       = [];  

    resultsTime  = tNumPoints; 

    resultsMse   = tNumPoints; 

  

    for i=1:length(tDensity) 

  

        avrgTIncrExactMilis = []; 

        mseIncrExact        = []; 
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        avrgTDecrExactMilis = []; 

        mseDecrExact        = []; 

  

        avrgTExactMilis     = []; 

        mseExact            = []; 

         

        avrgTFITCMilis      = []; 

        mseFITC             = []; 

         

        %resultsData         = []; 

  

        for j=1:length(tNumPoints) 

  

            %% Initialization 

            numPoints = tNumPoints(j) 

            density = tDensity(i) 

            width = numPoints/density 

            n = ceil(width*density);                      % number of learning points 

            z = (0:0.1:width)'; 

            val = sin(z); 

            x = rand(n,1)*width; 

            y = awgn(sin(x),10); 

  

            likfunc = @likGauss;  

            covfunc = @covSEiso;  

  

            % evaluating hyper parameters using infExact 

            hyp.cov = [0; 0]; hyp.lik = log(0.1); 

            hyp = minimize(hyp, @gp, -25, @infExact, [], covfunc, likfunc, x, y); 

  

            sn2                   = exp(2*hyp.lik); 

  

            % Adding old (decremented) covariance matrix KOld as well as old inverse 

            % Aold = inv(KOld+sn2*eye(n-1)) for incremental regression 

            hyp.Increment.KOld    = feval(covfunc, hyp.cov, x(1:n-1)); 

            hyp.Increment.AOldInv = inv(hyp.Increment.KOld+sn2*eye(n-1)); 

  

            % Adding old (incremented) covariance matrix + sn2 AOld as well as old  

            % inverse AOldInv = inv(KOld+sn2*eye(n-1)) for decremental regression 

            xDecr                 = rand()*width; 

            yDecr                 = awgn(sin(xDecr),10); 

            randSwap              = randi([1,n]); 

            xn = [x; xDecr]; xn([randSwap,n+1]) = xn([n+1,randSwap]); 
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            yn = [y; yDecr]; yn([randSwap,n+1]) = yn([n+1,randSwap]); 

  

            Decrement.AOldSwapped    = feval(covfunc, hyp.cov, xn)+sn2*eye(n+1); 

            Decrement.AOldInvSwapped = inv(Decrement.AOldSwapped); 

  

            disp('Determined hyperparameters, starting regression...'); 

  

            %% GP regression step 

            %% Incremental exact inference 

            tic; 

            for k=1:NumIt 

  

              mIncr = gp(hyp, @infIncrement, [], covfunc, likfunc, x, y, z);   

             

            end 

            elpsdTIncrExact = toc; 

            avrgTIncrExactMilis = [avrgTIncrExactMilis (elpsdTIncrExact / NumIt) * 1000]; 

  

            dIncrExact = mIncr-val; 

            mseIncrExact = [mseIncrExact (dIncrExact'*dIncrExact)/length(z)]; 

             

             

            %% Decremental exact inference with Swap 

            tic; 

            for k=1:NumIt 

                              

              % (Re-)Swapping before regression step   

              l = randSwap; 

              hyp.Decrement.c = Decrement.AOldSwapped(l,l); 

              hyp.Decrement.b = Decrement.AOldSwapped(1:n,l); 

              hyp.Decrement.b(l) = Decrement.AOldSwapped(l,n); 

              hyp.Decrement.AOldInv             = Decrement.AOldInvSwapped; 

              hyp.Decrement.AOldInv(:,[l,n+1])  = hyp.Decrement.AOldInv(:,[n+1,l]); 

              hyp.Decrement.AOldInv([l,n+1],:)  = hyp.Decrement.AOldInv([n+1,l],:); 

              yn([l,n+1]) = yn([n+1,l]); 

              xn([l,n+1]) = xn([n+1,l]);  

               

              mDecr = gp(hyp, @infDecrement, [], covfunc, likfunc, xn(1:n), yn(1:n), z);   

               

            end 

            elpsdTDecrExact = toc; 

            avrgTDecrExactMilis = [avrgTDecrExactMilis (elpsdTDecrExact / NumIt) * 1000]; 

  

            dDecrExact = mDecr-val; 
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            mseDecrExact = [mseDecrExact (dDecrExact'*dDecrExact)/length(z)]; 

  

            %% Exact inference 

            tic; 

            for k=1:NumIt 

              mExact = gp(hyp, @infExact, [], covfunc, likfunc, x, y, z); 

            end 

            elpsdTExact = toc; 

            avrgTExactMilis = [avrgTExactMilis (elpsdTExact / NumIt) * 1000]; 

  

            dExact = mExact-val; 

            mseExact = [mseExact (dExact'*dExact)/length(z)]; 

             

            %% FITC 

            nu = fix(n/2); 

            border = width/(2*nu); 

            u = linspace(border,width-border,nu)'; 

            covfuncF = {@covFITC, {covfunc}, u}; 

  

            tic; 

            for k=1:NumIt 

                mFITC = gp(hyp, @infFITC, [], covfuncF, likfunc, x, y, z); 

            end 

            elpsdTFITC = toc; 

            avrgTFITCMilis = [avrgTFITCMilis (elpsdTFITC / NumIt) * 1000]; 

            dFITC = mFITC-val; 

            mseFITC = [mseFITC (dFITC'*dFITC)/length(z)]; 

            %%  

        end 

  

        resultsTime = [resultsTime; avrgTIncrExactMilis; avrgTDecrExactMilis; 

avrgTExactMilis; avrgTFITCMilis]; 

        resultsMse = [resultsMse; mseIncrExact; mseDecrExact; mseExact; mseFITC]; 

        %Data = struct(tStructNames(i), resultsData);  

    end 

end 

%% Time benchmark graphs 

  

numInfMthds = 4; 

numDnsts = length(tDensity); 

  

figure(1) 

hold on 

plotNumber = 1; 
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plotRow = 2; 

  

subplot(2, 2, plotNumber); hold on 

t05 = plot(resultsTime(1,:),resultsTime(plotRow:numInfMthds+plotRow-1,:)); 

plotRow = plotRow + numInfMthds; plotNumber = plotNumber +1; 

title('point density = 0.5/unit','FontSize',16); 

xlabel('Number of learning points','FontSize',16); 

xlim([0 1500]); 

ylabel('Average computing time (in ms)','FontSize',16); 

ylim([0 500]); 

LEG = legend('Time: Exact inference (incremental)', 'Time: Exact inference (decremental, 

swapped)', 'Time: Exact inference', 'Time: FITC Approximation', 'Location', 'NorthWest'); 

set(LEG,'FontSize',16); 

set(gca, 'FontSize', 16); 

set(gca,'YTick',0:100:500); 

grid on 

  

subplot(2, 2, plotNumber); hold on 

t10 = plot(resultsTime(1,:),resultsTime(plotRow:numInfMthds+plotRow-1,:)); 

plotRow = plotRow + numInfMthds; plotNumber = plotNumber +1; 

title('point density = 1.0/unit','FontSize',16); 

xlabel('Number of learning points','FontSize',16); 

xlim([0 1500]); 

ylabel('Average computing time (in ms)','FontSize',16); 

ylim([0 500]); 

LEG = legend('Time: Exact inference (incremental)', 'Time: Exact inference (decremental, 

swapped)', 'Time: Exact inference', 'Time: FITC Approximation', 'Location', 'NorthWest'); 

set(LEG,'FontSize',16); 

set(gca, 'FontSize', 16); 

set(gca,'YTick',0:100:500); 

grid on 

  

subplot(2, 2, plotNumber); hold on 

t30 = plot(resultsTime(1,:),resultsTime(plotRow:numInfMthds+plotRow-1,:)); 

plotRow = plotRow + numInfMthds; plotNumber = plotNumber +1; 

title('point density = 3.0/unit','FontSize',16); 

xlabel('Number of learning points','FontSize',16); 

xlim([0 1500]); 

ylabel('Average computing time (in ms)','FontSize',16); 

ylim([0 500]); 

LEG = legend('Time: Exact inference (incremental)', 'Time: Exact inference (decremental, 

swapped)', 'Time: Exact inference', 'Time: FITC Approximation', 'Location', 'NorthWest'); 

set(LEG,'FontSize',16); 

set(gca, 'FontSize', 16); 
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set(gca,'YTick',0:100:500); 

grid on 

  

subplot(2, 2, plotNumber); hold on 

t50 = plot(resultsTime(1,:),resultsTime(plotRow:numInfMthds+plotRow-1,:)); 

title('point density = 5.0/unit','FontSize',16); 

xlabel('Number of learning points','FontSize',16); 

xlim([0 1500]); 

ylabel('Average computing time (in ms)','FontSize',16); 

ylim([0 500]); 

LEG = legend('Time: Exact inference (incremental)', 'Time: Exact inference (decremental, 

swapped)', 'Time: Exact inference', 'Time: FITC Approximation', 'Location', 'NorthWest'); 

set(LEG,'FontSize',16); 

set(gca, 'FontSize', 16); 

set(gca,'YTick',0:100:500); 

grid on 

  

%% Accuracy benchmark graphs 

numInfMthds = 4; 

numDnsts = length(tDensity); 

  

figure(2) 

hold on 

plotNumber = 1; 

plotRow = 2; 

  

subplot(2, 2, plotNumber); hold on 

t05 = plot(resultsMse(1,:),resultsMse(plotRow:numInfMthds+plotRow-1,:)); 

plotRow = plotRow + numInfMthds; plotNumber = plotNumber +1; 

title('point density = 0.5/unit','FontSize',16); 

xlabel('Number of learning points','FontSize',16); 

xlim([0 1500]); 

ylabel('Mean square error','FontSize',16); 

ylim([0 0.5]); 

LEG = legend('MSE: Exact inference (incremental)', 'MSE: Exact inference (decremental, 

swapped)', 'MSE: Exact inference', 'MSE: FITC Approximation', 'Location', 'SouthWest'); 

set(LEG,'FontSize',16); 

set(gca, 'FontSize', 16); 

%set(gca,'YTick',0:100:500); 

grid on 

  

subplot(2, 2, plotNumber); hold on 

t10 = plot(resultsMse(1,:),resultsMse(plotRow:numInfMthds+plotRow-1,:)); 

plotRow = plotRow + numInfMthds; plotNumber = plotNumber +1; 
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title('point density = 1.0/unit','FontSize',16); 

xlabel('Number of learning points','FontSize',16); 

xlim([0 1500]); 

ylabel('Mean square error','FontSize',16); 

ylim([0 0.5]); 

LEG = legend('MSE: Exact inference (incremental)', 'MSE: Exact inference (decremental, 

swapped)', 'MSE: Exact inference', 'MSE: FITC Approximation', 'Location', 'NorthWest'); 

set(LEG,'FontSize',16); 

set(gca, 'FontSize', 16); 

%set(gca,'YTick',0:100:500); 

grid on 

  

subplot(2, 2, plotNumber); hold on 

t30 = plot(resultsMse(1,:),resultsMse(plotRow:numInfMthds+plotRow-1,:)); 

plotRow = plotRow + numInfMthds; plotNumber = plotNumber +1; 

title('point density = 3.0/unit','FontSize',16); 

xlabel('Number of learning points','FontSize',16); 

xlim([0 1500]); 

ylabel('Mean square error','FontSize',16); 

ylim([0 0.5]); 

LEG = legend('MSE: Exact inference (incremental)', 'MSE: Exact inference (decremental, 

swapped)', 'MSE: Exact inference', 'MSE: FITC Approximation', 'Location', 'NorthWest'); 

set(LEG,'FontSize',16); 

set(gca, 'FontSize', 16); 

%set(gca,'YTick',0:100:500); 

grid on 

  

subplot(2, 2, plotNumber); hold on 

t50 = plot(resultsMse(1,:),resultsMse(plotRow:numInfMthds+plotRow-1,:)); 

title('point density = 5.0/unit','FontSize',16); 

xlabel('Number of learning points','FontSize',16); 

xlim([0 1500]); 

ylabel('Mean square error','FontSize',16); 

ylim([0 0.5]); 

LEG = legend('MSE: Exact inference (incremental)', 'MSE: Exact inference (decremental, 

swapped)', 'MSE: Exact inference', 'MSE: FITC Approximation', 'Location', 'NorthWest'); 

set(LEG,'FontSize',16); 

set(gca, 'FontSize', 16); 

%set(gca,'YTick',0:100:500); 

grid on 


