
Learning Stable Dynamical Systems using
Contraction Theory

Caroline Blocher2, Matteo Saveriano1 and Dongheui Lee1

1 Human-centered Assistive Robotics, Technical University of Munich, Munich, Germany
(Tel: +49-89-289-26900; E-mail: {matteo.saveriano,dhlee}@tum.de)

2 Department of Civil and Environmental Engineering, Imperial College, London, UK (E-mail: c.blocher16@imperial.ac.uk)

Abstract—This paper discusses the learning of robot point-
to-point motions via non-linear dynamical systems and Gaus-
sian Mixture Regression (GMR). The novelty of the proposed
approach consists in guaranteeing the stability of a learned
dynamical system via Contraction theory. A contraction analysis
is performed to derive sufficient conditions for the global stability
of a dynamical system represented by GMR. The results of
this analysis are exploited to automatically compute a control
input which stabilizes the learned system on-line. Simple and
effective solutions are proposed to generate motion trajectories
close to the demonstrated ones, without affecting the stability
of the overall system. The proposed approach is evaluated on a
public benchmark of point-to-point motions and compared with
state-of-the-art algorithms based on Lyapunov stability theory.

Keywords—Learning contracting systems. Stable discrete
movements. Learning from demonstration. Contraction theory.

1. INTRODUCTION

Programming by Demonstration (PbD) [1] is a useful tool to
rapidly increase robot skills. Instead of explicitly programming
a robot, the user teaches the robot how to perform a certain
task by demonstrating the correct task execution [2], [3].
Learned skills are represented in a compact form which
reduces memory requirements [4].

A recent trend in PbD research [5]–[11] suggests to repre-
sent robotic skills via stable dynamical systems (DS). Stable
DS are well suited to represent point-to-point motions, since
they are guaranteed to converge to a specified target. Moreover,
dynamical systems are robust to changes in the initial/target
location, and can be used in cluttered environments to generate
collision-free paths [12]–[14]. Dynamic Movement Primitives
(DMP) [5] are one of the first example of DS learned by
demonstrations. DMP superimpose a linear DS and a non-
linear force term learned from a single demonstration.

The generation of stable motions from non-linear DS,
represented by GMR, is considered in [6], where asymptotic
convergence to the target is guaranteed for trajectories that
remain inside the demonstration area. The global convergence
of a DS, represented by GMR, is guaranteed by the stable
estimator of dynamical systems (SEDS) [7]. In SEDS, GMM
parameters are learned by solving a constrained optimiza-
tion problem, where stability constraints are derived from a
quadratic Lyapunov function. The main advantage of SEDS
is that the learned DS is proven to be globally stable [7].
For complex motions, however, contradictions may occur

GMR

Demonstrations

Stable motion
Contracting

Control
(Sec. III - Sec. IV-A)

Gaussian Mixture Regression (GMR)

Proposed Approach

Spurious
attractors

Activation
Function
(Sec. IV-B)

+x

Fig. 1. System overview. A dynamical system represented by GMR generates
spurious attractors (top). The dynamical systems reaches the desired target by
applying an automatically computed control input (bottom).

between demonstrations and quadratic stability constraints,
which prevents SEDS to accurately learn the motion [9].

The accurate motion reproduction is considered in [8] and
in the SEDSII approach [9]. A common idea between [8]
and [9] is to learn a Lyapunov function, which minimizes the
contradictions between the stability constraints and the training
data, from demonstrations. In [8], the DS is represented by an
extreme learning machine (ELM) [15]. ELM parameters are
learned by solving a constrained optimization problem, where
stability constraints are derived from the learned Lyapunov
function. In SEDSII the Lyapunov function is used to compute
a stabilizing control input. The main advantage of SEDSII
is its applicability to any regression technique, while [8] is
limited to ELM. Alternative approaches [10], [11] propose to
learn a diffeomorphic transformation that maps the trajectories
of the DS into a space where demonstrations are accurately
reproduced. The approach in [11] is significantly faster than
[10], but it works only for linear DS.

Contraction theory [16] is effectively applied in [17] to
stabilize a neural network DS. Authors perform the contraction
analysis and use the resulting constraints to learn the neural
network paramters. The parameter learning is formulated as a
constrained optimization problem.

The contribution of this paper is to investigate the applica-
bility of Contraction theory to stable motion generation via DS
and GMR. To this end, we perform the contraction analysis
of a DS represented by GMR and derive sufficient stability
conditions. These conditions are leveraged to automatically

TABLE 1
DEFINITIONS

Definition 1: GMR parameters

mk =

[
mkx
mkẋ

]
, Σk =

[
Σkx Σkxẋ
Σkẋx Σkẋ

]
, Ak = Σkẋx(Σkx)−1,

bk = mkẋ −A
kmkx, hk(x) =

πkN (x|mk
x,Σ

k
x)∑K

i=1 π
iN (x|mi

x,Σ
i
x)

Definition 2: Let ||A||i be an induced matrix norm of A on Rm×m.
The corresponding matrix measure is defined by

µ(A) = limε→0+
||I+εA||i−1

ε
. Useful properties of µ(A) are:

1) µ(αA) = αµ(A), ∀A ∈ Rm×m, α ≥ 0

2) µ(A+B) ≤ µ(A) + µ(B), ∀A,B ∈ Rm×m

Definition 3: Jacobian F (x, t) = ∂f/∂x is uniformly negative definite
if ∃β > 0|∀x ∈ C ⊆ Rm,∀t ≥ 0, 1

2

(
F (x, t)T + F (x, t)

)
≤ −βI < 0

compute a stabilizing control input given the GMR parameters.
The control action is smoothly activated or deactivated using
an activation function (see Fig. 1). In this way, we improve
the reproduction accuracy without affecting the stability of the
controlled DS. Compared to [17], we perform the contraction
analysis of a GMR system, and use the resulting constraints
to compute, at run time, a stabilizing control input. Our
approach shares with SEDSII the idea of stabilizing the DS
at run time. In contrast to SEDSII, the proposed control
law does not require the learning of a suitable Lyapunov
function. The performance of the proposed approach, called
Contracting GMR (C-GMR), are evaluated on a public dataset
and compared with Lyapunov based approaches in [7], [9].

2. PROPOSED APPROACH

2.1. Problem Definition

In this section, we recap on DS represented by GMR from
[7]. Let us consider N demonstrations D = {xt,i, ẋt,i}T,N

t=1,i=1

of a point-to-point motion, where xt,i, ẋt,i ∈ Rm are re-
spectively the position and the velocity. We assume that the
demonstrations are drawn from a non-linear and smooth DS
ẋ = f(x, θ), where θ ∈ Rd is a vector of parameters
depending on the regression technique. GMR is used in this
work to model f(x, θ). Therefore, the non-linear function
f(x, θ) is parametrized by θ = {πk,mk,Σk}Kk=1, i.e. by the
priors πk, the means mk and the covariance matrices Σk (see
Tab. 1). f(x, θ) can be written as [7]:

ẋ = f(x, θ) =

K∑
k=1

hk(x)(Akx+ bk) (1)

where Ak, bk and hk(x) are defined in Tab. 1. As shown in
[7], the DS in (1) can generate spurious equilibria, which limit
the applicability of GMR in point-to-point motion learning.

2.2. Contraction Analysis

Contraction theory [16] is a novel approach to analyze the
stability of non-linear DS. Contraction theory is based on
the idea that moving along a trajectory of the contracting
system, the pointwise distance to its neighboring trajectories
exponentially decreases. In particular, a DS is contracting if
the generalized Jacobian F (x, t) is uniformly negative definite

(see Definition 3 in Tab. 1). Notably, contraction of a DS can
be analyzed by using the matrix measure µ(F) of the Jacobian.

In order to show that (1) is contracting, we have to compute
the Jacobian matrix. This computation is not trivial, due to the
term ∂hk(x)/∂x. Hence, we exploit Partial Contraction theory
[18] to simplify the problem. We define an auxiliary DS:

ẏ =

K∑
k=1

hk(x)(Aky + bk) (2)

where y is the auxiliary state variable. Proving that the
auxiliary system has an equilibrium point x? and that it is
globally contracting allows us to conclude that the original
DS globally exponentially converges to x? [18]. The Jacobian
of the auxiliary system is simply Ja =

∑K
k=1 h

k(x)Ak.

Theorem 1. The dynamical system in (1) globally exponen-
tially converges to x? if for all k = 1, . . . ,K:

• bk = −Akx? (3)

• ∃µ(·) such that µ(Ak) < 0 (4)

Proof. Condition (3) guarantees that the auxiliary system (2)
has an equilibrium point at x?. Indeed, by substituting (3) into
(2), we have

∑K
k=1 h

k(x)Ak(y−x?) = 0 if y = x?. Condition
(4) guarantees that the auxiliary system is globally contracting.
Indeed, considering (4), Definition 2, and that 0 ≤ hx ≤ 1
from Definition 1, we have µ(Ja) ≤

∑K
k=1 h

k(x)µ(Ak) < 0
for all y ∈ Rm. As the auxiliary system is autonomous and
globally contracting, it has a unique equilibrium at x? [16].
Partial Contraction theory allows us to conclude that the DS
(1) globally exponentially converges to x?.

2.3. Global Exponential Stabilizer

Stability conditions in Theorem 1 allow the usage of differ-
ent matrix measures, Lyapunov theory requires the usage of
the Euclidean norm. We exploit this advantage of Contraction
theory to automatically compute a stabilizing controller.

The DS in (1) can be stabilized with the control input:

ẋ =

K∑
k=1

hk(x)
(
Akx+ bk

)
︸ ︷︷ ︸

System

+
K∑
k=1

hk(x)
(
Ukx−Akx?

)
︸ ︷︷ ︸

Control

(5)

To prove that (5) globally exponentially converges to x?, we
consider the auxiliary DS ẏ =

∑K
k=1 h

k(x)(Aky + bk) +∑K
k=1 h

k(x)(Uky −Akx?). The term −
∑K

k=1 h
k(x)Akx? is

introduced to satisfy condition (3). The auxiliary DS can be
re-written as ẏ =

∑K
k=1 h

k(x)
(
Ak + Uk

)
(y − x?), which

underlines that the control matrices Uk have to guarantee
µ(Ak + Uk) < 0, k = 1, ..,K (condition (4)).

To compute the control matrices Uk, we propose an auto-
matic procedure based on the measure µ1(·) associated to the
l1-norm. The procedure is summarized in Algorithm 1. Given
a square matrix A ∈ Rm×m, Algorithm 1 finds a diagonal
matrix U ∈ Rm×m such that C = A+U has negative diagonal
elements cii < 0, i = 1, ..,m and is diagonally dominant
|cii| >

∑m
j=1 |cij |, i = 1, ..,m. In other words, Algorithm

Algorithm 1 Find a matrix U such that µ1(A+ U) < 0

Require: A ∈ Rm×m, p > 1, m // dimension of state space
U ← Matrix of zeros in Rm×m

for d = 1 to m do
s =

∑
i6=d |adi|

if add > 0 and add < s then
udd ← − s− p ∗ add

else if add > 0 and add > s then
udd ← − 2 ∗ add

else if add < 0 and |add| < s then
udd ← − s

else
udd ← 0 // no need to modify add

end if
end for
return U

1 guarantees that µ1(C) , maxj(cjj +
∑

i 6=j |cij |) < 0. In
details, Algorithm 1 inspects A row by row. For each row,
the algorithm computes the sum of the off-diagonal elements
s =

∑m
i 6=d |adi| and considers four cases: i) if the d-th

diagonal element of A is positive (add > 0) and add < c
then udd = −s − p ∗ add. ii) If add > 0 and add < s
then udd = − 2 ∗ add. iii) If add < 0 and |add| < s then
udd = −s. iv) In all the other cases there is no need to
modify A. It is easy to verify that add + udd < 0 and that
|add + udd| > c, d = 1, ..,m, i.e. µ1(A+ U) < 0.

The controller in (5) guarantees the convergence towards
a unique equilibrium. The control gains are automatically
computed given the GMM parameters and the DS is stabilized
at run time. Figure 2 shows qualitative results of the proposed
approach when applied to stabilize a GMR model. The control
input affects the reproduced point-to-point motions and do not
guarantee an accurate reproduction (see Fig. 2). The reason is
that the controlled DS (5) converges with an exponentially
stable dynamics which contradicts the demonstrations. More
formally, ∃β > 0 such that ‖x(t)−x?‖1 ≤ β‖x(0)−x?‖1e−ct,
where ‖ · ‖1 is the l1-norm and µ1(Ak + Uk) ≤ −c < 0,∀k.
An approach to alleviate this issue is presented in the next
section.

Generated motion

Target

Demonstrations
Streamlines

x1 [mm]

x 2
 [

m
m

]

200

100

0

-100
-50 0 50 100 150

Fig. 2. A globally contracting motion generated by the controlled system
(5). The control action guarantees global convergence to x? = [0, 0]T, but it
affects the accurate reproduction of the demonstrated data.

x1

x 2

Target
Mean
Covariance

Fig. 3. The state space partitioned into three regions. Dr is the demonstration
area, while the union Cr ∪ Br is a contracting region.

2.4. Accurate Reproduction of Stable Motions
We propose a modification of the control law in (5) which

improves the reproduction accuracy and preserves the conver-
gence properties of the controlled DS. As shown in Fig. 3,
the state space is divided into three regions: the contraction
region Cr, a ball of radius r centered at the target Br and the
demonstration area Dr. Given Cr, Br and Dr, we propose a
stabilizing control input:

ẋ =

K∑
k=1

hk(x)
(
Akx+ bk

)
︸ ︷︷ ︸

System

+ω(x, t)

(
K∑
k=1

hk(x)
(
Ukx− bk

))
︸ ︷︷ ︸

Control

(6)
The activation function ω(x, t) ∈ R in (6) is computed as:{

ω̇(x, t) = −γ(ω(x, t)− c(x)) t < tmax

ω(x, t) = 1 t ≥ tmax
(7)

where c(x) = 1 if x ∈ Cr ∪ Br, c(x) = 0 if x ∈ Dr and
ω(x0, t0) = c(x0), where x0 is a given initial state.

Theorem 2. The dynamical system in (6), with activation
function (7), globally asymptotically converges to x?

Proof. Being interested in the asymptotic stability, we have
to analyze the convergence properties of (6) for t→ ∞. We
can notice that, for ω(x, t) = 1, the controlled DS in (6) and
(5) are the same. Recalling that (5) is globally exponentially
stable, and considering that ω(x, t) = 1 for t ≥ tmax, we can
conclude that (6) globally asymptotically converges to x?.

The value of γ > 0 in (7) can be chosen considering that, in
practice, ω(x, t) = c(x) after 5/γ s. We activate the controller
by setting c(x) = 1 inside the region Cr ∪ Br. Trajectories
that start in Cr ∪ Br follow an exponentially convergent path
unless they reach the equilibrium x? or they enter Dr. The
control input is smoothly deactivated (c(x) = 0) inside the
demonstration area Dr to allow an accurate reproduction. The
control action is activated if the system has not converged
within tmax seconds. This guarantees that the generated mo-
tion trajectories reach the target from any initial state. In our
experiments, we set tmax to twice the maximum time duration
of the demonstrations. This prevents the DS to converge to
spurious equilibria inside Dr for badly initialized GMR. As
empirically shown in Sec. 3, a GMR with a proper number of
components in general does not generate spurious attractors
within Dr. For each x ∈ Dr, in fact, the GMR generates
a velocity close to the demonstrated one(s). If demonstrated
velocities are zero only at the target, the generated velocity

will not drop to zero far from the given target. It is worth
noticing that eventual spurious attractors will only affect the
accuracy of the proposed approach, but not its stability.

The demonstration area Dr is constructed off-line using
the approach in [6]. Each training point D = {xt,i}T,N

t=1,i=1

is clustered into K clusters Dk, where K is the number of
Gaussian components. A training point xt,i belongs to Dk if
N
(
xt,i|µk

x,Σ
k
x

)
> N

(
xt,i|µj

x,Σ
j
x

)
, ∀j 6= k, where N (·) is

the probability that xt,i is generated from the k-th component.
Given the K clusters, a set of K scalars is computed as:

δk = α min
xt,i∈Dk

N
(
xt,i|µk

x,Σ
k
x

)
(8)

where 0 < α ≤ 1 is a constant. δk is the probability of
the point in Dk located at the maximum distance from µk.
Hence, the region Dtot = {xt,i : N

(
xt,i|µk

x,Σ
k
x

)
≥ δk}

contains all training data points. The demonstration area Dr

is then Dr = Dtot\Br. The scalar α in (8) defines the
area of Dr. Bigger values of α result in tighter Dr around
the demonstrations. In all the experiments, we found that
α = 0.1 prevents trajectories starting in Dr to exit from the
demonstration area. It is worth noticing that the construction
of Dr is computationally efficient. Indeed, the probabilities
N
(
xt,i|µk

x,Σ
k
x

)
in (8) are used to train the GMR and come

at no extra cost. Therefore, we just have to find the minimum
value for K vectors, multiply the obtained K values by a
scalar α, and store the results in δk, k = 1, ..,K.

At run time, we firstly check if a state x belongs to Br, i.e.
if ‖x− x?‖ ≤ r. If x is not part of Br, we have to determine
whether x belongs to Dr or Cr. The state x ∈ Dr if there exists
a k such that N

(
x|µk

x,Σ
k
x

)
≥ δk, k = 1, ..,K, otherwise x ∈

Cr. This procedure is computationally efficient. Indeed, the
probabilities N

(
x|µk

x,Σ
k
x

)
, k = 1, ..,K, are used to compute

hk(x) (see Tab. 1) and come at no extra cost. Therefore, one
has only to check if the K values N

(
x|µk

x,Σ
k
x

)
≥ δk. In case

x ∈ Cr ∪ Br or t > tmax, the controller is activated, which
only requires to sum up the K matrices Ak and Uk.

3. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of Contract-
ing GMR (C-GMR), in terms of reproduction accuracy and
training time. In order to underline basic differences between
C-GMR and the Lyapunov based approaches, we perform a
comparison with SEDS [7] and SEDSII [9].

3.1. Benchmark and metrics

The LASA Handwritten1 dataset is used as a benchmark to
test stable motion generation with DS. The dataset contains
20 motions in 2D. Each motion ends in x? = [0, 0]T and is
demonstrated three times. Data are collected at 50 Hz.

Two metrics are used to measure the reproduction accuracy.
One is the area between each demonstration Di ∈ D and the
trajectory T generated by C-GMR (SEDS or SEDSII) starting
from the first point in Di. Both Di and T end at the same

1The source code for SEDS, SEDSII and the LASA dataset are available
on-line: lasa.epfl.ch/sourcecode/

TargetDemonstrationsStreamlines Generated motion

x 2
x 2

x 2
x 2

x 2
x1 x1 x1 x1

Fig. 4. Stable motions learned by C-GMR on the LASA dataset.

target. Hence, the area among Di and T is a suitable measure
of the reproduction error. Since Di and T have a different
number of points, we first leverage multi-dimensional dynamic
time warping (DTW) [19] to find the optimal non-linear match
between the two trajectories and then compute the area among
them. The area metric measures how well the learned DS
preserves the shape of the motion. To measure how the DS
preserves the kinematics of the demonstrations, we use the
velocity error [8] Ve =

√
1

NT

∑T,N
t,i=1 ‖ẋt,i − f(xt,i)‖2.

3.2. Reproduction accuracy

We compare C-GMR with SEDS and SEDSII in terms
of reproduction error. The sampling time for reproduction
is set to 2ms. SEDSII requires to predefine the form of
the control Lyapunov function (CLF) depending on the form
of the motion. As we chose not to adapt any parameter to
each motion separately but to run the experiments unsuper-
vised, we tested two different parametrization of CLF, namely
CLF0 and CLF3. CLF0 has no asymmetric components, i.e
CLF0 = xTP 0x. CLF3 has three asymmetric components,
i.e. CLF3 = CLF0 +

∑3
l=1 β

l(x)
(
xTP l(x− µl)

)2
. As

detailed in [9], βl, P l and µl are learned from demonstrations
by solving a constrained optimization problem.

A DS for each motion in the dataset is learned by GMR
considering all available demonstrations. The dataset contains
motions with different complexity. Complex motions usually
require many components to be accurately represented. To
maximize the accuracy, the number of components is com-
puted by means of Bayesian information criterion (BIC) [20].
C-GMR is used to stabilize f(x) at run time. As qualitatively

A
re

a
[m

2]

SEDS SEDSII
(CLF0)

SEDSII
(CLF3)

101

C-GMR

100

10-1

10-2

(a)

V
el

oc
ity

 e
rr

or
 [

m
/s

]

SEDS SEDSII
(CLF0)

SEDSII
(CLF3)

C-GMR

102

101

100

(b)

Fig. 5. Overall accuracy for SEDS, SEDII and C-GMR on the LASA dataset.
Black error bars are 10% and 90% quantiles of the median value.

shown in Fig. 4, C-GMR accurately learns complex point-to-
point motions while guaranteeing global convergence.

GMR, SEDS and SEDSII require the numerical solution of
optimization problems, for which different initial conditions
lead to different results. In order to evaluate the typical
performance, we tested each approach 10 times for each
motion. Overall accuracy is shown in Fig. 5. For a better
visualization, we use a logarithmic scale for the ordinate
axis. As the reproduction error is not normally distributed,
we consider the median instead of the mean. To indicate the
maximal and minimal deviation from the typical performance,
we provide the location of the 10% and the 90% quantiles
(black error bars in Fig. 5). Results for C-GMR are obtained
by setting the radius of Br equal to the 15% of the distance
between the starting point and the target.

Quantitative results in Fig. 5 show that SEDS has median
error area of 1.3m2 and a median velocity error of 8.3m/s
respectively. This means that most of the motions in the
dataset cannot be learned with the Lyapunov function xTx
used in SEDS. SEDSII CLF0 and CLF3 have almost the
same (best) median accuracy (0.596 m2 and 0.591 m2 for the
area error, 5.2 m/s and 4.9 m/s for Ve), meaning that most
of the considered motions can be learned with the Lyapunov
function xTP 0x. The proposed C-GMR has a smaller median
accuracy (0.768 m2 and 6.1 m/s) compared to SEDSII, but
higher accuracy than SEDS. C-GMR loses accuracy when the
state reaches the ball Br around the target. Inside Br, in fact,
the motion follows an exponentially converging dynamics.

3.3. Training time

We investigate the extra training time introduced by C-
GMR, i.e. the time required to execute Algorithm 1 and to
compute Dr. The execution time of Algorithm 1 depends
on the number K of Gaussians and on the dimension m of
the state space (A,U ∈ Rm×m). The execution time of our
unoptimized Matlab implementation of Algorithm 1 is shown
in Fig. 6. The left graph is obtained by fixing m = 2 (as in
the LASA dataset) and varying K, the right graph by fixing
K = 10 and varying m. The execution time is below 0.6 ms.

The time required to construct Dr depends on K and on
the number of training points T . The execution time of our
unoptimized Matlab implementation is shown in Fig. 7. The
left graph is obtained by keeping T = 300 fixed and varying

T
im

e
[m

s]

Gaussian components (#)
1 5 10 15 20 25 30 2 4 6 8 10

Space dimension (#)

0

0.3

0.6

0.18

0.2

0.22

Fig. 6. Execution time of Algorithm 1, averaged over 100 executions.

K, the right graph by fixing K = 10 and varying T . The
execution time is always below 0.1 ms.

T
im

e
[m

s]

Gaussian components (#)
1 5 10 15 20 25 30

0.01

0.04

0.08

0.05

0.06

0.07

0.08

1 2 3 4 5 6 7 8 9 10
Training data (#)

x100

Fig. 7. Time required to compute Dr , averaged over 100 executions.

We use the same configuration of the previous experiment
to compare the training times of C-GMR, SEDS and SED-
SII. Overall training time is shown in Fig. 8. For a better
visualization, we use a logarithmic scale for the ordinate axis.
SEDS training step requires about 6.5 s (median value) for
each motion, while SEDSII CLF0 and CLF3 spend 0.76 s and
2.7 s respectively. C-GMR has a (best) median training time
of 0.58 s. It is worth noticing that C-GMR time in Fig. 8
includes the time needed to compute the region Dr and to run
Algorithm 1. As shown in the previous experiment, this time
is at least three orders of magnitude smaller than GMM time.

T
ra

in
in

g
T

im
e

[s
]

GMM time
CLF time

SEDS SEDSII
(CLF0)

SEDSII
(CLF3)

C-GMR

102

101

100

Fig. 8. Overall training time for SEDS, SEDII and C-GMR on the LASA
dataset. Black error bars are 10% and 90% quantiles of the median value.

3.4. Generalization to different initial/target positions

Motion generation based on DS has the advantage to be
robust to changes in the initial and target positions. In partic-
ular, stable DS are able to generate convergent trajectories for
any initial/target position. The stability of C-GMR is mathe-
matically proven in Theorem 2. Nevertheless, it is interesting
to qualitatively show how the learned DS adapts to different
initial/target positions. As a proof of concept, we train C-GMR
on the S-shape motion in the LASA dataset. Figure 9(a) shows
the trajectories generated from different initial positions. As
expected, all the trajectories converge towards the target. Black
solid lines are trajectories that start or enter in Dr. Figure 9(a)
shows how the system smoothly transits between the different
region. This is due to the smooth activation function in (7).
Black dashed lines are trajectories that start and remain in

Initial positionTargetDemonstrationsGenerated motion

x1 [mm]

x 2
 [

m
m

]

75 200
-100

75

250

-50

(a)

x1 [mm]

x 2
 [

m
m

]

75 200
-100

250

-50

75

(b)

Fig. 9. Generalization of the S-shape motion. (a) Trajectories generated from
different initial positions. (b) Trajectories converging to a different goal.

Cr ∪ Br and converge exponentially. Figure 9(b) shows DS
trajectories converging to the new goal x? = [−25, 25]T.

3.5. Discussion

The experimental evaluation shows that the proposed C-
GMR is less accurate than SEDSII. This is because SEDSII
is optimized along the entire motion, while C-GMR loses
accuracy when the state reaches the ball Br (see Fig. 3) around
the target. In general, contraction theory allows to consider a
coordinate transformation Θ(x). In our future research, we will
focus on learning from demonstration a suitable coordinate
transformation Θ(x) that maps the input space into a space
where demonstrations can be more accurately reproduced.

Regarding the training time, C-GMR outperforms SEDSII.
C-GMR, in fact, stabilizes the dynamical system at run time,
without learning steps. The control input is automatically
computed given GMR parameters, and (as shown in Sec.
3.3), the time to compute the control input is practically
negligible. A possible application of C-GMR is incremental
learning, where GMR parameters are continuously updated as
new demonstrations of the task are provided. On the contrary,
SEDSII is preferable in applications which require high accu-
racy and for which the training time is not a limitation.

A general assumption behind stable motion generation with
autonomous DS is that the demonstrations do not explicitly
show spurious equilibria. In case demonstrated velocities drop
to zero far from the given target, the desired behavior is
probably to stop for a certain time and then to reach the goal.
A unique autonomous DS is not suitable to execute this task.
A solution is to use one autonomous DS for each attractor and
to switch among them as soon as one equilibrium is reached.

4. CONCLUSION

This work investigated the possibility of applying Con-
traction theory to learn point-to-point motions via dynamical
systems and Gaussian mixture regression. We derived suffi-
cient stability conditions for a dynamical system represented
by GMR by applying contraction analysis. An automatic and
computationally efficient procedure is developed to compute
a stabilizing control input given the GMR parameters. At run
time, the control action is smoothly activated or deactivated
using an activation function. The combination of the control
action and the activation function significantly improves the
reproduction accuracy without affecting the stability of the

overall system. The resulting algorithm, called Contracting
GMR (C-GMR), has been tested on a public dataset consisting
of complex 2D motion, showing promising results in terms of
accuracy and training time. We also performed an experimental
comparison with Lyapunov based approaches, useful to under-
stand the main differences between the different approaches.
Our next research will focus on extending C-GMR to other
regression techniques, and on testing C-GMR on real robots.

ACKNOWLEDGEMENTS

This work has been supported by the Technical University
of Munich, International Graduate School of Science and
Engineering (IGSSE).

REFERENCES

[1] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot programming
by demonstration,” in Springer Handbook of Robotics. Springer Berlin
Heidelberg, 2008, pp. 1371–1394.

[2] D. Lee and C. Ott, “Incremental kinesthetic teaching of motion prim-
itives using the motion refinement tube,” Autonomous Robots, vol. 31,
no. 2, pp. 115–131, 2011.

[3] M. Saveriano, S. An, and L. Lee, “Incremental kinesthetic teaching
of end-effector and null-space motion primitives,” in International
Conference on Robotics and Automation, 2015, pp. 3570–3575.

[4] S. Calinon, F. Guenter, and A. Billard, “On learning, representing and
generalizing a task in a humanoid robot,” Transactions on Systems, Man,
and Cybernetics. Part B, vol. 37, no. 2, pp. 286–298, 2007.

[5] A. Ijspeert, J. Nakanishi, P. Pastor, H. Hoffmann, and S. Schaal,
“Dynamical Movement Primitives: learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, 2013.

[6] S. M. Khansari-Zadeh and A. Billard, “BM: An iterative algorithm
to learn stable non-linear dynamical systems with Gaussian Mixture
Models,” Int. Conf. on Rob. and Aut., pp. 2381–2388, 2010.

[7] ——, “Learning stable non-linear dynamical systems with Gaussian
Mixture Models,” Trans. on Rob., vol. 27, no. 5, pp. 943–957, 2011.

[8] A. Lemme, F. Reinhart, K. Neumann, and J. J. Steil, “Neural learning of
vector fields for encoding stable dynamical systems,” Neurocomputing,
vol. 141, pp. 3–14, 2014.

[9] S. M. Khansari-Zadeh and A. Billard, “Learning control Lyapunov
function to ensure stability of dynamical system-based robot reaching
motions,” Rob. And Auton. Systems, vol. 62, no. 6, pp. 752–765, 2014.

[10] K. Neumann and J. J. Steil, “Learning robot motions with stable
dynamical systems under diffeomorphic transformations,” Robotics and
Autonomous Systems, vol. 70, pp. 1–15, 2015.

[11] P. Perrin and P. Schlehuber-Caissier, “Fast diffeomorphic matching
to learn globally asymptotically stable nonlinear dynamical systems,”
Systems & Control Letters, vol. 96, pp. 51–59, 2016.

[12] M. Saveriano and L. Lee, “Point cloud based dynamical system modu-
lation for reactive avoidance of convex and concave obstacles,” in Intl
Conf. on Intelligent Robots and Systems, 2013, pp. 5380–5387.

[13] M. Saveriano, F. Hirt, and L. Lee, “Human-aware motion reshaping
using dynamical systems,” Pattern Recognition Letters, 2017.

[14] M. Saveriano and L. Lee, “Distance based dynamical system modulation
for reactive avoidance of moving obstacles,” in Intl Conf. on Robotics
and Automation, 2014, pp. 5618–5623.

[15] Z. Huang and C. Siew, “Extreme learning machine: Theory and appli-
cations,” Neurocomputing, vol. 70, no. 1-3, pp. 489–501, 2006.

[16] W. Lohmiller and J. Slotine, “On Contraction analysis for nonlinear
systems,” Automatica, vol. 34, no. 6, pp. 683–696, 1998.

[17] H. Ravichandar and A. Dani, “Learning contracting nonlinear dynamics
from human demonstrations for robot motion planning,” in Dynamics,
Systems and Control Conference, 2015.

[18] W. Wang and J. Slotine, “On Partial Contraction analysis for coupled
nonlinear oscillators,” Biol. Cybern., vol. 92, no. 1, pp. 38–53, 2005.

[19] P. Sanguansat, “Multiple multidimensional sequence alignment using
generalized dynamic time warping,” Transactions on Mathematics,
vol. 11, no. 8, pp. 668–678, 2012.

[20] G. Schwarz, “Estimating the dimension of a model,” The annals of
statistics, vol. 6, no. 2, pp. 461–464, 1978.

