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1 Introduction

One of the key issues of miniaturization in integrated circuit design are power
constraints that result from the need of heat reduction and reliability or
battery lifetime limitations. As the power consumption depends heavily on
the switching capacitances between adjacent wires, determining the optimal
ordering and spacing of parallel wires according to their switching frequencies
is a key issue in the design of low power chips.

Wire ordering and spacing according to various objectives have a long
history in electronic design automation; see [9,10]. Wire ordering, although
with different design objectives, appears in [17,7] and also (in a more limited
context) in [6]. Wire spacing with respect to switching activities was first
considered in [8]. Due to the apparent intrinsic complexity of the problem,
most known algorithms for this and related problems are based on heuristics
or exhaustive search techniques, an overview can be found in [18]. The present
paper derives an efficient rigorous algorithm for power optimal wire ordering
and spacing under distance requirements as side constraints.

We begin by presenting and analyzing a mathematical model that captures
all major aspects of the wire ordering and spacing problem in integrated
circuit design. As the first step towards the algorithm we then consider the
wire spacing problem separately. As it turns out, the underlying convex opti-
mization problem can essentially be solved analytically. This can be utilized
to relate the combined wire placement problem to a specific kind of Minimum
Hamilton Path (MHP) (or Traveling Salesman, TSP) Problem. While the
general MHP is notoriously NP-hard, our algorithm for the combined order-
ing and spacing problem for N parallel wires relies on strong new structural
results and will be shown to run in total worst-case O (N logN) time.

The paper is organized as follows. Section 2 contains some relevant back-
ground information on low power semiconductor design to motivate and
justify the mathematical model for the wire ordering and spacing problem.
The precise mathematical problem and the main result are stated in Section 3.
Section 4 deals with the wire spacing problem, solves the underlying convex
optimization problem and derives an efficient algorithm for that problem.
Based on these results, Section 5 will then derive structural combinatorial
results that can be used to relate the combined wire ordering and spacing
problem to the solution of a certain class of Minimum Hamilton Path prob-
lems, resulting in the asserted O (N logN) algorithm. Section 6 contains some
final remarks.

2 Low Power Semiconductor Design

We will now briefly give some background information on wire ordering and
spacing in low power semiconductor design and introduce a first mathematical
description of the optimal placement problem that is still formulated from a
‘natural application specific perspective’. The further abstracted and finalized
mathematical model will be given in Section 3.

Naturally, we do not aim at a comprehensive treatment of all relevant
aspects from electrical engineering here but will concentrate on those that



Optimal Wire Ordering and Spacing 3

motivate and justify the concise mathematical model for the wire ordering and
spacing problem given in the subsequent Section 3. For further information
see [11,12,14,18] and the references quoted there. (Readers less interested in
this background information may skip this Section and continue directly with
the ‘hard core’ mathematical optimization problem in Section 3.)

2.1 Power Loss in Semiconductor Circuits

A semiconductor circuit is composed of a bottom layer containing the tran-
sistors and possibly other electronic components, and several stacked metal
layers containing the wires which interconnect the elements of the bottom
layer. Within a single metal layer all wires are of the same thickness and the
wires are all parallel, while the directions of the wires in two metal layers
positioned on top of each other are orthogonal, cf. Figure 1 for an illustration
of the wires on three metal layers.

The power consumption of a semiconductor circuit is usually decomposed
into two parts, a static component attributed to leakage at transistor level
and a dynamic component caused by switching capacitances between adjacent
wires and short circuit currents.1 As of today, capacitances between adjacent
wires account for the major part of total power consumption, and although
leakage has increased over the past years, simultaneously a relatively increasing
fraction of the capacitances has moved from transistors to wires. This aspect
is of special importance at low ambient temperature or in low leakage circuits
frequently found in mobile devices, where in non-idle phases the dynamic
component exceeds the static component by several orders of magnitude.

Energy loss caused by interconnects in semiconductor circuits is mainly due
to capacitances emerging between neighboring wires whenever their relative
voltage changes. Over the last years, the demand for ever higher integration
densities has substantially increased, and for technical reasons this requires
the typical on-chip wire’s thickness to become larger than both its width and
the wire distances. This technological change results in a change of relevance
of the different kinds of occurring capacitances. While in the past the highest
fraction of the sum of capacitances was caused by the coupling between
different layers and the bottom areas of the substrate, now the edge-to-edge
capacitances within one layer dominate; see [15].

Figure 1 shows the capacitances in a layout simulated with the software
package QuickCap (see [4], now distributed by Magma Design Automation).
The test setup comprises a wire (gray) on the third metal layer of a typical
0.13µm process embedded into a fully crowded proximity. The capacitances
between the wire and its immediate neighbors clearly dominate all other
capacitance components. The fraction may reach up to 40% on each side in
case of less population in the layers above and below.

1 Short circuits are due to transistor behavior: A transistor ‘opens’ when a certain
voltage is available on one of its gates. On the other hand, the transistor ‘closes’
when that voltage drops below a certain threshold, which is usually lower than the
‘opening threshold’. As a consequence, whenever a switch occurs, some transistors
may be open at the same time, as power rises or falls, which may lead to short-time
short circuits.
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Fig. 1 Capacitances in a 0.13 µm process.

The power loss caused by capacitances between adjacent wires depends on
two different factors. As the electric field between two wires remains constant
as long as the voltages of the wires do not change, electric power is lost only
when a signal transition occurs on one of the wires. The frequency of such
a toggle is called the switching frequency of a wire w and is modeled as a
positive number α(w). If the switches lead to changes between zero voltage
and the operating voltage U that is constant throughout the whole part of
the chip, the (suitably normalized) number α(w) can be interpreted as the
probability of a signal transition on the wire w at any of the given periods
of time. For an existing layout, this value can be derived by a simulation; it
then represents the actual number of toggles of a wire.

To build up the field, energy is required that is directly proportional to
the capacitance value. Half of the energy is dissipated as heat, and the other
half is stored in the field. If the field diminishes, the energy stored in the field
is dissipated as heat as well. The capacitance between two adjacent wires and
thus the energy required for a signal transition is directly proportional to the
quotient of the surface area and the distance of the two wires.

We will assume that the physical dimensions of the wires are fixed i.e., only
the distances matter. More specifically, the power loss for a wire w depends
only on the distances xleft and xright to the two neighboring wires on each
side, and, up to a constant, can be expressed as

α(w) ·
(

1

xleft
+

1

xright

)
,

where two neighbors at distances xleft and xright are present. (Here we tacitly
assume that neighboring wires do not switch simultaneously.) Hence we can
specify a wire ordering and spacing by the relative positions of the wires
i. e. , by associating with each wire a real number in a given interval [0, r].
We assume here that r represents the actual available space i. e. , the given
space reduced by the wire widths, so that we can regard a wire as having
zero width. Naturally, wires must not be placed too closely together, so a
minimum distance d must be enforced.
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Let us close this section with some comments on our assumptions. One of
our assumptions is that we only consider parallel wires of the same length.
While wires within one layer are generally parallel, the assumption of equal
length is certainly not satisfied for all such wires. However, local patches
where our assumption holds may easily be identified and real-world circuits
contain a considerable amount of such areas. Application of our method to
these patches may require some extra ‘detour wires’ (cf. [18] for details on this
approach) or the use of a permutation network (see Section 6), but according
to recent studies (cf. [7]) both do not add considerable overhead in practice.

In reality there may be special wires that are wider and require a larger
minimum distance to be manufacturable than others, for instance for power
supply. Often these power supply wires build a ring around the entire core of
the chip and are not subject to optimization. In some (larger) circuits (and
only on a fraction of the existing layers), power meshes may even be drawn
through the chip. They can then be regarded as defining ‘natural boundaries’
of the relevant problems here. Hence, our assumptions still allow for a wide
range of applicability of the results of this paper in practice; results of a
practical study will be given in Section 6.

2.2 A Model for Wire Placement

We consider a scenario involving N parallel wires which are regarded as being
enclosed between two static wires with switching frequencies 0. On a chip
these boundary wires could be power or shield wires.

In the following let N ∈ N, and let w1, . . . , wN denote different (proper)
parallel wires. Further, let w0 and wN+1 be two additional ‘dummy wires’,
and set W = {w1, . . . , wN} and Ŵ =W ∪ {w0, wN+1}.

Let r ∈]0,∞[ be the given spacing range, and let d ∈]0, r] be the minimum
accepted inter wire distance. Then, a wire placement is a map ϕ : Ŵ → [0, r]
such that ϕ(w0) = 0, ϕ(wN+1) ≥ ϕ(w) for w ∈W and

|ϕ(w)− ϕ(w′)| ≥ d

for w,w′ ∈ Ŵ with w 6= w′. As it turns out, the underlying optimization
problem can be described best in terms of the two separate tasks of wire
ordering and wire spacing.

A wire ordering is a bijection π : Ŵ → {0, 1, . . . , N,N + 1} such that
π(w0) = 0 and π(wN+1) = N + 1. Let PN denote the set of all wire or-
derings for a given number N . An admissible wire spacing is a function
δ : {0, 1, . . . , N,N + 1} → [0, r] with δ(0) = 0 and

δ(j) + d ≤ δ(k)

for any j, k ∈ {0, 1, . . . , N + 1} with j < k. Let DN (r, d) denote the set of all
admissible wire spacings. Note that the above constraints are already implied
by the conditions on all pairs of adjacent positions.

Of course, any pair (π, δ) of a wire ordering and a wire spacing constitutes
a wire placement ϕ via ϕ = δ ◦π and vice versa. Hence we will not distinguish
between them and, in particular, also speak of (π, δ) as a wire placement.
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Finally, let α :W → [0,∞[ encode the switching frequencies of the proper
wires. The set of all such functions will be denoted by AN .

Then, the power loss L(π, δ) of a wire placement (π, δ) is given by

L(π, δ) =
∑
w∈W

α(w)

(
1

δ(π(w))− δ(π(w)− 1)
+

1

δ(π(w) + 1)− δ(π(w))

)
,

and the optimal wire placement problem (OWP) is the following task: Given
N ∈ N, r, d ∈]0,∞[, and α ∈ AN , find π∗ ∈ PN and δ∗ ∈ DN (r, d) such that

L(π∗, δ∗) = min {L(π, δ) : π ∈ PN ∧ δ ∈ DN (r, d)} ,

or decide that no such minimum exists.
Note that the specific set W does not play any role. All that matters are

the switching frequencies associated with the wires. Also the function π can
be identified with a permutation on {1, . . . , N}. The concise mathematical
formulation of OWP given in the next section uses this abstraction and
describes the task in terms of the variables xi for i = 1, . . . , N + 1, that are
related to the functions π and δ through

xπ(w) = δ(π(w))− δ(π(w)− 1).

The switching frequencies will be encoded by a vector (s1, . . . , sN ) where
si = α(wi) for i = 1, . . . , N .

3 The Main Result

Let SN denote the symmetric group on N elements. We are dealing with the
following mathematical optimization problem.

Problem: Optimal Wire Placement (OWP)
Instance: N ∈ N; s1, . . . , sN ∈ [0,∞[; d, r ∈]0,∞[.
Question: Decide whether there exists a solution (π, x) of

min

N∑
i=1

sπ(i)

(
1

xi
+

1

xi+1

)

s. th.
N+1∑
i=1

xi ≤ r

xi ≥ d (i = 1, . . . , N + 1)

π ∈ SN ,

and, if so, give one.

When the permutation π is fixed, we are confronted with an instance of
Optimal Wire Spacing (OWS); the input is the same but the objective is
just to find optimal wire distances xi; see Section 4. While Optimal Wire
Spacing is a nonlinear programming problem under linear side constraints,
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the minimization over all permutations makes Optimal Wire Placement
a combinatorial optimization problem with nonlinear objective function. The
main contribution of this paper is to show that both problems can be solved
efficiently. We state our results for the real RAM model.

Theorem 1 Both problems, Optimal Wire Spacing and Optimal Wire
Placement, can be solved in O (N logN) time.

Similar results can be obtained for the binary Turing machine model
when the input is restricted to the rationals and the output is computed up
to a precision given as part of the input; see the end of Section 4 for some
additional remarks.

4 The Wire Spacing Problem

We will now consider the wire spacing problem separately. Hence a permutation
π is given and is fixed throughout this section. Without loss of generality
we may assume that π is the identity. Hence, an instance consists of N ∈ N,
s1, . . . , sN ∈ [0,∞[ and d, r ∈]0,∞[, and the task is to solve

min

N∑
i=1

si

(
1

xi
+

1

xi+1

)
s. th.

N+1∑
i=1

xi ≤ r and x1, . . . , xN+1 ≥ d.

In the following we work with a reformulation which uses s0 = sN+1 = 0
and qi = si−1 + si for i = 1, . . . , N + 1.

Problem: Optimal Wire Spacing (OWS)
Instance: N ∈ N; q1, . . . , qN+1 ∈ [0,∞[; d, r ∈]0,∞[.
Question: Decide whether there exists a solution of

min

N+1∑
i=1

qi
xi

s. th.
N+1∑
i=1

xi ≤ r

xi ≥ d (i = 1, . . . , N + 1),

and, if so, give one.

In a given instance of OWS the parameters q1, . . . , qN+1 do not explicitly
rely on s1, . . . , sN+1 and can hence be ordered without loss of generality. Note,
however, that a different order of the switching frequencies leads to a different
set of q1, . . . , qN+1.

Since the feasible region of an instance of OWS is compact, in fact a
simplex P , on which the objective function F is continuous, the minimum is
indeed attained unless P is empty. But P = ∅ if and only if r < (N +1)d. For
r = (N + 1)d, there exists only the trivial solution with all distances equal to



8 Gritzmann, Ritter, Zuber

d. Hence we may always assume that r > (N +1)d. Also, we may require (and
will do so for convenience) that q1, . . . , qN+1 > 0 rather than q1, . . . , qN+1 ≥ 0
since for q1 = · · · = qN+1 = 0, any feasible spacing is optimal, and qi0 = 0 for
some but not all i0 ∈ {1, . . . , N + 1} implies x∗i0 = d for each optimal solution
x∗ of the given instance.

The following lemma characterizes optimal wire spacings.

Lemma 1 Let (N, q1, . . . , qN+1, r, d) be an instance of OWS with r > (N +
1)d, and q1, . . . , qN+1 > 0. Then the objective function F is strictly convex on
the feasible region P , and the minimum of F over P is uniquely determined.

For x = (x1, . . . , xN+1)
T define

D(x) =
{
i ∈ {1, . . . , N + 1} : xi = d

}
and R(x) = {1, . . . , N + 1} \D.

Then a vector x∗ = (x∗1, . . . , x
∗
N+1)

T is the optimal solution, if and only if

d < x∗k =

√
qk
(
r − |D(x∗)|d

)∑
i∈R(x∗)

√
qi

≤
√
qk
√
qj
d (1)

for all j ∈ D(x∗) and k ∈ R(x∗).

Proof Let ui denote the ith standard unit vector in RN+1, set 1 = 1N+1 =
u1 + . . .+ uN+1 and denote the objective function of OWS by F = F (x). Of
course, F is differentiable on the set P of feasible points, and we have for
i, j = 1, . . . , N + 1

∂F

∂xi
= − qi

x2i
∧ ∂2F

∂xi∂xj
=


2qi
x3i

for i = j;

0 else.

Hence, F is strictly convex on P , and its minimum over P is unique. By
the Karush-Kuhn-Tucker Theorem, a feasible vector x∗ = (x∗1, . . . , x

∗
N+1)

T

is optimal if and only if there exist non negative Lagrange multipliers
λ0, λ1, . . . , λN+1 such that

qi
(x∗i )

2 = −∇F (x∗)Tui = λ0 − λi (i = 1, . . . , N + 1)

λ0
(
r − 1Tx∗

)
= 0

λi (x
∗
i − d) = 0 (i = 1, . . . , N + 1).

Let x∗ be the optimal solution. Since all qi’s are positive, we have λ0 > 0,
and hence

N+1∑
i=1

x∗i = r.

As a consequence, r > (N + 1)d implies that R(x∗) 6= ∅.
Now, let i, k ∈ R(x∗). Then x∗i , x∗k > d, hence λi = λk = 0 and therefore

0 = λi = λ0 −
qi

(x∗i )
2 = λ0 −

qk

(x∗k)
2 = λk, thus (x∗i )

2
=
qi
qk

(x∗k)
2
,
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which yields

r =

N+1∑
i=1

x∗i =
∑

i∈D(x∗)

x∗i +
∑

i∈R(x∗)

x∗i = |D(x∗)|d+ x∗k√
qk

∑
i∈R(x∗)

√
qi ,

proving the first part of (1).
On the other hand, for j ∈ D(x∗) and k ∈ R(x∗) we get λk = 0 and

λj ≥ 0, which yields

0 = λk = λ0 −
qk

(x∗k)
2 ≤ λj = λ0 −

qj(
x∗j
)2 , thus

qj
(x∗j )

2
=
qj
d2
≤ qk

(x∗k)
2
,

completing the ‘only if’ part of the proof.
Now, let x∗ satisfy (1). Then x∗ is feasible since x∗i ≥ d for all i ∈

D(x∗) ∪R(x∗) and

N+1∑
i=1

x∗i = |D(x∗)|d+
∑

j∈R(x∗)

√
qj

 ∑
i∈R(x∗)

√
qi

−1 (r − |D(x∗)|d) = r.

Further, we have
qj(
x∗j
)2 =

qj
d2
≤ qk

(x∗k)
2 for all j ∈ D(x∗) and k ∈ R(x∗),

and qj(
x∗j
)2 =

qk

(x∗k)
2 for all j, k ∈ R(x∗).

Denoting this latter constant by λ0, and setting

λi = λ0 −
qi

(x∗i )
2 for i = 1, . . . , N + 1,

we see that λ0, . . . , λN+1 are non negative and satisfy the Karush-Kuhn-Tucker
conditions for x∗, hence x∗ is optimal.

Note that for sufficiently large r the minimum distance constraint is not
binding i. e. ,

d <
r · √qk∑N+1
i=1

√
qi

for all k ∈ {1, . . . , N + 1}, and the problem is solved completely. In general,
Lemma 1 at least reduces the given instance of OWS to the determination of
the minimum distance set D or, equivalently, its complement R. Of course,
we may assume that q1 ≤ . . . ≤ qN+1; then x∗1 ≤ . . . ≤ x∗N+1 for the optimal
solution x∗, hence all that matters is the cardinality of D.

Therefore, to solve a given instance of OWS we first order the qi’s so that
q1 ≤ . . . ≤ qN+1. In the first step of the algorithm we begin with D = ∅ and
compute x∗1 according to (1). If x∗1 > d, we compute the other components
of the solution and terminate. Otherwise we replace x∗1 by d, augment D by
{1}, compute x∗2, etc. Algorithm 1 presents a structured form, formulated in
real arithmetic.
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Algorithm 1 Solving the Wire Spacing Problem
1: Input: An instance (N, q1, . . . , qN+1, r, d) of OWP with r > (N + 1)d and

0 < q1, . . . , qN+1.
2: Output: An optimal solution x∗.
3: Sort (q1, . . . , qN+1) to obtain (q′1, . . . , q

′
N+1) with q′1 ≤ . . . ≤ q′N+1.

4: S ←
∑N+1
i=1

√
q′i and ∆← 0.

5: for i = 1, . . . N + 1 do
6: x′i ←

√
q′i · S

−1 (r −∆ · d)
7: if x′i ≤ d then
8: x′i ← d, S ← S −

√
q′i, ∆← ∆+ 1

9: end if
10: end for
11: Permute back x′ to obtain x∗, so that x∗ corresponds to the original order of

(q1, . . . , qN+1).

Theorem 2 Algorithm 1 is correct and requires at most O (N logN) arith-
metic operations in the real RAM model of computation.

Proof For ease of notation we assume that q′1 = q1, . . . , q
′
N+1 = qN+1 i. e.

, the q1, . . . , qN+1 are already sorted and thus x′ = x∗ in the algorithm.
Let S(i) and ∆(i) denote the values of S and ∆ after the i-th pass through
the ‘for’ loop. Denote by x∗ the solution produced by the algorithm and let
S∗ = S(N+1), ∆∗ = ∆(N+1) be the final values of S and ∆, respectively. We
show that condition (1) of Lemma 1 holds for all j ∈ D(x∗) and k ∈ R(x∗).

The first inequality of (1) is clear. Let m = max {l : l ∈ D(x∗)}, then
S∗ = S(m) and ∆∗ = ∆(m) = m. Monotonicity of q1, . . . , qN+1 implies
that x∗1 ≤ . . . ≤ x∗N+1, thereby establishing the equality part of (1) for all
k ∈ R(x∗). To prove the second inequality of (1), first note that

x∗j = d, x∗k =

√
qk

S∗
(r −∆∗ · d) .

Then the fact that S∗ = S(m−1) −√qm and ∆∗ = (m− 1) + 1 = ∆(m−1) + 1
implies

x∗k =

√
qk
√
qj

√
qj

S∗
(r −∆∗ · d) ≤

√
qk
√
qj

√
qm(r −∆∗ · d)

S∗

=

√
qk
√
qj

(√
qm(r −∆(m−1) · d)
S(m−1) −√qm

−
d
√
qm

S(m−1) −√qm

)

=

√
qk
√
qj

(√
qm(r −∆(m−1) · d)

S(m−1) · S(m−1)

S(m−1) −√qm
−

d
√
qm

S(m−1) −√qm

)
.

Since √
qm(r −∆(m−1) · d)

S(m−1) ≤ d

we conclude

x∗k ≤
√
qk
√
qj
d

(
S(m−1)

S(m−1) −√qm
−

√
qm

S(m−1) −√qm

)
=

√
qk
√
qj
d.
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Hence, by Lemma 1, x∗ is the optimal solution.
The sorting step requires at most O (N logN) arithmetic operations. The

‘for’ loop is executed N+1 times and each passage requires a constant number
of arithmetic operations. Therefore the algorithm requires at most O (N logN)
arithmetic operations.

Note that it is indeed necessary to compute the optimal values for xi one
after the other. This can be illustrated by the following small example.

Example 1 Let q1 = 1, q2 = · · · = qN = 4 and qN+1 = α2. If we compute all
xi-values under the assumption of D = ∅, we obtain

x1 =
r

2N − 1 + α
, x2 = · · · = xN =

2r

2N − 1 + α
, xN+1 =

αr

2N − 1 + α
.

Suppose now that d takes some value strictly between x1 and x2 i. e. ,

x1 < d < x2, . . . , xN .

Since this solution is not feasible, we set x′1 = d. Recomputation of the values
for the remaining indices yields

x′1 = d, x′2 = · · · = x′N =
2(r − d)

2N − 2 + α
, x′N+1 =

α(r − d)
2N − 2 + α

.

A simple calculation shows that for suitably chosen values of N , r and α
the inequality

2(r − d)
2N − 2 + α

<
2r

2N − 1 + α

holds, so for d strictly in between theses values we have x′2, . . . , x′N < d.
Thus minimum distance indices cannot be determined in a ‘one shot’

manner, but one has to proceed iteratively instead.

Let us close this section by pointing out that adaptations are needed for
working on rational input in the binary Turing machine model. This is due to
the fact that, by Lemma 1, the optimal solutions x∗ may be irrational, and
the same is true for the optimum value

∑
i∈D(x∗)

qi
d
+

1

r − |D(x∗)|d

 ∑
i∈R(x∗)

√
qi

2

(2)

of the objective function. It is, however, standard fare to replace the square
root computation in Algorithm 1 by a suitable approximation in order to
solve the problem to a given finite precision (that is regarded as part of the
input).
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5 The Wire Ordering Problem

As Theorem 2 shows, an optimal wire spacing can be found very efficiently.
Allowing a reordering of the wires adds an additional potential for optimization,
but also additional mathematical difficulties. Let π ∈ SN be the permutation
that assigns the switching frequency sπ(i) to the ith position on the chip.
Then by (2), the optimum of the objective function for this permutation is

F (π, xπ) =
∑
i∈Dπ

sπ(i−1) + sπ(i)

d
+

1

r − |Dπ|d

(∑
i∈Rπ

√
sπ(i−1) + sπ(i)

)2

, (3)

where xπ is the optimal wire spacing, and Dπ = D(xπ), and Rπ = R(xπ)
according to Lemma 1. Here again, s0 = sN+1 = 0 and π(0) = 0, π(N + 1) =
N + 1 for a uniform notation, and we will identify SN with the set of all
permutations on {0, . . . , N + 1} with fixed points 0 and N+1. Now, of course,
we want to optimize over all such permutations π. Suppose for a moment, r
was large enough to imply Dπ = ∅ for each π ∈ SN . Then, in effect, we are
asking for a permutation that minimizes

N+1∑
i=1

√
sπ(i−1) + sπ(i). (4)

Let ω0, ω1, . . . , ωN+1 denote the switching activities, sorted in increasing
order i. e. , ω0 = s0, ω1 = sN+1, {ω2, . . . , ωN+1} = {s1, . . . sN} and ω0 ≤
ω1 ≤ ω2 ≤ · · · ≤ ωN+1. Then the wire ordering problem for Dπ = ∅ becomes
that of finding a Minimum Hamilton Path (MHP) in the complete graph
on the vertices {0, . . . , N + 1} with endpoints 0 and 1 whose edges {j, k}
carry the weights

√
ωj + ωk. While the general MHP problem is notoriously

difficult, it turns out that this particular problem belongs to a class of easily
solvable cases. In particular, for i, j, k, l ∈ V with i < k and j < l,√

ωi + ωj +
√
ωk + ωl ≤

√
ωi + ωl +

√
ωj + ωk, (5)

an inequality known as the Monge property in the context of Traveling
Salesman Problems. Clearly, (5) implies the Supnick property i. e. ,√

ωi + ωj +
√
ωk + ωl ≤

√
ωi + ωk +

√
ωj + ωl ≤

√
ωi + ωl +

√
ωj + ωk

for all i, j, k, l ∈ V with i < j < k < l; see [1] and [3] for other results on
these and related properties. Hence, by [13], the permutation τN defined by

τN (i) =

{
2i for 0 ≤ i ≤ N+1

2 ,

2(N − i) + 3 for N
2 + 1 ≤ i ≤ N + 1

(6)

always gives an optimal TSP-tour. We refer to [3] and [5] for a comprehensive
survey on this and other easily solvable cases of the TSP and to [16] for an
additional account of classes of TSPs solved by the same permutation τN ; [2]
studies related questions for the quadratic assignment problem.
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Noting that our instances of MHP with end nodes 0 and 1 of minimum
weight are equivalent to the corresponding instances of TSP, as there always
exists an optimal TSP tour that contains the edge between 0 and 1, it
follows that τN solves our given instance of MHP i.e., the specific pyramidal
permutation

(0, 2, 4, . . . , 5, 3, 1)

is optimal.
For the optimal wire placement problem, however, D is not empty, not

known, and there are exponentially many possible such sets. But, still worse,
even if we could check each such set one by one, an optimal permutation
could not be determined with the above results. In fact, the general objective
F (π, xπ) is not a sum of edge weights i.e., it does not have the structure of
an admissible MHP or TSP objective function, let alone the Monge property.
Actually, as the quadratic term indicates, the objective function value does
not only depend on edge weights, but also on the selected Hamiltonian path
as a whole. Hence it is not directly clear at all how to optimize (3).

In the present section we derive some structural results to be able to
handle the general wire ordering problem. We will show that there is always
an optimal wire placement where π is evenly separated; see Definition 3.
For such permutations the set Dπ is already determined by its cardinality.
This combinatorial property will enable us to derive the final O (N logN)
algorithm for the optimal wire placement problem.

The following proofs utilize certain exchange techniques that will be
introduced now.

Definition 1 Let (π, x) be a feasible wire placement and let j, k ∈ {1, . . . , N}
with j < k. Define Sjk(π), Sjk(π) ∈ SN and Tjk(x), T jk(x) ∈ RN+1 by

Sjk(π)(i) =

{
π(k + j − i) for j < i < k

π(i) else,

Sjk(π)(i) =

{
π(k + j − i) for j ≤ i ≤ k
π(i) else,

(Tjk(x))i = (T jk(x))i =

{
xk+j−i+1 for j < i ≤ k
xi else,

and set

Rjk(π, x) =
(
Sjk(π), Tjk(x)

)
, Rjk(π, x) =

(
Sjk(π), T jk(x)

)
.

Then Rjk(π, x) is called the open j-k reversal while Rjk(π, x) is the closed
j–k reversal of (π, x).

Lemma 2 Let (π, x) be a feasible wire placement and let j, k ∈ {1, . . . , N}
with j < k. Then both, Rjk(π, x) and Rjk(π, x), are feasible wire placements,
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and their objective values are

F
(
Rjk(π, x)

)
= F (π, x) +

(
sπ(j) − sπ(k)

)( 1

xk
− 1

xj+1

)
,

F
(
Rjk(π, x)

)
= F (π, x) +

(
sπ(j) − sπ(k)

)( 1

xk+1
− 1

xj

)
.

Proof Feasibility of both open and closed j-k reversal is clear as the distance
vector is just permuted, so the overall sum stays constant and no distance
can fall below d. The new objective values are

F
(
Rjk(π, x)

)
= F (π, x)−

sπ(j) + sπ(j+1)

xj+1
−
sπ(k−1) + sπ(k)

xk

+
sπ(j) + sπ(k−1)

xk
+
sπ(j+1) + sπ(k)

xj+1

= F (π, x) +
(
sπ(j) − sπ(k)

)( 1

xk
− 1

xj+1

)
and F

(
Rjk(π, x)

)
= F (π, x)−

sπ(j−1) + sπ(j)

xj
−
sπ(k) + sπ(k+1)

xk+1

+
sπ(j−1) + sπ(k)

xj
+
sπ(j) + sπ(k+1)

xk+1

= F (π, x) +
(
sπ(j) − sπ(k)

)( 1

xk+1
− 1

xj

)
,

respectively, completing the proof.

Definition 2 Let (π, x) be a feasible wire placement, and set

l(x) = min {i ∈ {0, . . . , N} : xi+1 > d} ,
u(x) = max {i ∈ {1, . . . , N + 1} : xi > d} .

Then l(x), u(x) are called lower and upper separation point, respectively. For
x = xπ we use the abbreviations lπ = l(xπ) and uπ = u(xπ) (or, when there is
no risk of confusion, simply l and u, respectively). An optimal wire placement
(π, x) is called separated, if it has the following properties:

1. xl+1, xl+2, . . . , xu > d;
2. max

{
sπ(0), . . . , sπ(l−1), sπ(u+1), . . . , sπ(N+1)

}
≤ min

{
sπ(l), sπ(u)

}
;

3. max
{
sπ(l), sπ(u)

}
≤ min

{
sπ(l+1), . . . , sπ(u−1)

}
.

Lemma 3 For any feasible instance of the optimal wire placement problem
there is an optimal solution (π, xπ) that is separated.

Proof Suppose there is no optimal solution with Property 1. Let (π, xπ)
be an optimal solution for which l = lπ is maximal. Then there is some
k ∈ {1, . . . , N} with l + 1 < k < u such that xπk = d, and we choose the
maximal such k, i. e. , xπk+1, . . . , x

π
u > d. Suppose, first, that sπ(l) > sπ(k)
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(note that this implies sπ(l) > 0 and thus l > 0). Then, by Lemma 2, the
closed l-k reversal Rlk(π, x

π) is feasible and has objective value

F
(
Rlk(π, x

π)
)
= F (π, xπ) +

(
sπ(l) − sπ(k)

)︸ ︷︷ ︸
>0

(
1

xπk+1

− 1

xπl

)
︸ ︷︷ ︸

<0

< F (π, xπ),

a contradiction to the optimality of (π, xπ). If, on the other hand, sπ(l) ≤ sπ(k),
then

F
(
Rlk(π, x

π)
)
= F (π, xπ) +

(
sπ(l) − sπ(k)

)︸ ︷︷ ︸
≤0

(
1

xπk
− 1

xπl+1

)
︸ ︷︷ ︸

>0

≤ F (π, xπ).

Hence the open l-k reversal Rlk(π, x
π) is an optimal solution, however, with

a strictly greater lower separation point. This contradiction shows that there
is an optimal solution with Property 1.

In the following, let (π, xπ) be an optimal wire placement with Property 1,
and let l and u be its lower and upper separation points. We prove by
contradiction that (π, xπ) has Properties 2 and 3. So, suppose there was some
m ∈ {1, . . . , l − 1} ∪ {u+ 1, . . . , N} such that sπ(m) > min

{
sπ(l), sπ(u)

}
.

By reversing the wire placement if necessary, we may assume that m ∈
{1, . . . , l − 1}.

Let us first consider the case u = N + 1; then sπ(m) > sπ(u) = 0 and
application of an open m-u reversal yields

F
(
Rm,u(π, x

π)
)
= F (π, xπ) +

(
sπ(m) − sπ(u)

)︸ ︷︷ ︸
>0

(
1

xu
− 1

xm+1

)
︸ ︷︷ ︸

<0

< F (π, xπ)

contradicting optimality of (π, xπ). For u 6= N + 1, if sπ(l) > sπ(u), we apply
a closed l-u-reversal. Since xl = xu+1 = d, we get

F (Rl,u(π, x
π)) = F (π, xπ)

and may hence assume that sπ(m) > sπ(l). But then, since xπm = d < xπl+1, we
have for the closed m-l reversal

F (Rml(π, x
π)) = F (π, xπ) +

(
sπ(m) − sπ(l)

)︸ ︷︷ ︸
>0

·
(

1

xπl+1

− 1

xπm

)
︸ ︷︷ ︸

<0

< F (π, xπ),

contradicting optimality of (π, xπ).
For Property 3, suppose that there was some m ∈ {l + 1, . . . , u− 1}

such that sπ(m) < max
{
sπ(l), sπ(u)

}
. We may again assume without loss of

generality that sπ(l) ≤ sπ(u). Note that π(N + 1) = N + 1 and sN+1 = 0,
hence u ≤ N . Further, xπu+1 = d < xπm by Property 1, thus

F
(
Rmu(π, x

π)
)
= F (π, xπ) +

(
sπ(m) − sπ(u)

)︸ ︷︷ ︸
<0

·
(

1

xπu+1

− 1

xπm

)
︸ ︷︷ ︸

>0

< F (π, xπ),



16 Gritzmann, Ritter, Zuber

again a contradiction. This completes the proof.

By Lemma 3 we can restrict our search for an optimal wire placement
to separated solutions. Since the first part of the objective function F (π, xπ)
is just 1/d times

∑
i∈Dπ

(
sπ(i−1) + sπ(i)

)
, we can ‘normalize’ the set Dπ even

further. We will do this in a way that is most suitable for our purposes. For
simplicity of exposition we will assume from now on that

0 = sN+1 = s0 ≤ s1 ≤ · · · ≤ sN .

Definition 3 Let (π, x) be a separated wire placement with separation points
l and u, and let ∆ = |D(x)|. Then (π, x) is called evenly separated, if the
following conditions hold:

1. D(x) =
{
1, . . . ,

⌊
∆
2

⌋}
∪
{
N + 2−

⌈
∆
2

⌉
, . . . , N + 1

}
;

2. l =
⌊
∆
2

⌋
and π(l) = 2

⌊
∆
2

⌋
;

3. u = N + 1−
⌈
∆
2

⌉
and π(u) = 2

⌈
∆
2

⌉
− 1;

4.
{
π(i) : i ∈ {0, . . . , l}

}
=
{
0, 2, . . . , 2

⌊
∆
2

⌋}
;

5.
{
π(i) : i ∈ {u, . . . , N + 1}

}
=
{
1, 3, . . . , 2

⌈
∆
2

⌉
− 1
}
∪ {N + 1}.

Note that these conditions, in particular the last two requirements, aim at
‘compatibility’ of the set D(x) with the Minimum Hamiltonian Path τN
introduced in (6).

Theorem 3 Each feasible instance of OWP admits an optimal solution that
is evenly separated.

Proof Let (π, xπ) be an optimal wire placement and set ∆ = |Dπ|. By
Lemma 3, we can assume that (π, xπ) is separated. Hence by Definition 2,
Properties 2 and 3, we may further assume that

{
π(l), π(u)

}
=

{
2

⌊
∆

2

⌋
, 2

⌈
∆

2

⌉
− 1

}
= {∆− 1, ∆} .

(Here we use that 0 = sN+1 = s0 ≤ s1 ≤ · · · ≤ sN .) By reversing the wire
placement if necessary we obtain π(l) = 2

⌊
∆
2

⌋
. Similarly, we may assume{

π(i) : i ∈ {0, . . . , l} ∪ {u, . . . , N + 1}
}
= {0, 1, . . . ,∆} ∪ {N + 1} .

The objective function then evaluates to

F (π, xπ) =
2

d

∆−2∑
i=1

si+
s∆−1 + s∆

d
+

1

r − d∆

(
uπ∑

i=lπ+1

√
sπ(i−1) + sπ(i)

)2

. (7)

Clearly, the positions {0, . . . , l − 1} ∪ {u+ 1, . . . , N + 1} can be reordered
freely without changing the objective function value as long as they are placed
before s2b∆/2c or after s2d∆/2e−1. Hence there exists an optimal solution that
is evenly separated.
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We have now reached the following principle procedure for finding optimal
wire placements. If r < (N + 1)d, the problem is infeasible. Otherwise, we
compute for each ∆ ∈ {0, . . . , N} a set D of cardinality ∆ according to
Theorem 3. Then, we are in effect confronted with the Minimum Hamilton
Path problem on the node set V (∆) = {∆− 1, . . . , N} with edge weights√
si + sj for i, j ∈ V (∆) and i 6= j and endpoints ∆−1 and ∆ that is obtained

by ignoring the square in the second component of (3). We solve this MHP
problem by utilizing the underlying Supnick property.

The two parts can, however, be closely interwoven. In fact, the procedure
for computing an optimal order for the wires between lower and upper
separation point is in full accordance with the property of a wire placement
to be evenly separated; cf. Definition 3. Hence when the wires at minimum
distance (determined by ∆) are added, the optimal tour τN coincides with
the tour produced by adding to both sides of τN−∆ the remaining wires at
minimum distance in a way that yields an evenly separated wire placement.
This means we obtain the same wire ordering for every ∆. So, rather than
actually going through all different values for ∆ we can just compute an
optimal wire ordering as if there was no minimum distance requirement (or,
if one prefers, for sufficiently large r) and subsequently determine the optimal
distances (and the correct set of minimum distance wires) along the lines of
Algorithm 1 to obtain an optimal wire placement. The complete procedure is
formalized in Algorithm 2.

Algorithm 2 Construction of an optimal wire placement.
1: Input: An instance of OWP i. e. ,
N ∈ N, s1, . . . , sN ∈ [0,∞[ and d, r ∈]0,∞[ with r > (N + 1)d.

2: Output: An optimal wire placement (π, xπ).
3: Set s0 = sN+1 = 0 and sort s1, . . . , sN in increasing order, i. e. , let ρ ∈ SN be

a permutation such that 0 = sρ(0) = sρ(1) ≤ sρ(2) · · · ≤ sρ(N+1).
4: Define the permutation π ∈ SN by setting

π(i) =

{
2ρ(i) for 0 ≤ i ≤ N+1

2
,

2
(
N − ρ(i)

)
+ 3 for N

2
+ 1 ≤ i ≤ N + 1.

5: Set qi = sπ(i−1) + sπ(i) for i = 1, . . . , N + 1.
6: Compute optimal distances xπ for the permutation π and input parameters

(N, q1, . . . , qN+1, r, d) using Algorithm 1.

Theorem 4 OWP can be solved in time O (N logN).

Proof The correctness and optimality of the solution (π, xπ) produced by
Algorithm 2 is a direct consequence of Theorems 2 and 3, and optimality of
the tour τN .

The sorting step can, of course, be implemented using no more than
O (N logN) arithmetic operations, π can subsequently be computed in O (N)
steps and Algorithm 1 needs at most O (N logN) arithmetic operations in
the real RAM model.
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6 Final Remarks

In this final section, let us briefly comment on the electrotechnical significance
of results derived in this paper.

In comparison with measurements performed in experiments and simu-
lations, the mathematical model given and justified in Section 2 turned out
to be very realistic when dealing with parallel wires. Naturally, in order to
fully exploit the potential of wire placement one would need to fully integrate
spacing and ordering into the complete logical and physical design and layout
process.

However, even post optimization already leads to significant power re-
duction. In fact, optimal spacing within local patches of a large real-world
semiconductor design (identified by a simple search procedure) lead to an
overall reduction in power consumption of 3 – 5%. The effect was even greater
when optimal wire spacing was applied to a broad range of benchmark cir-
cuits produced by state-of-the-art commercial layout tools as a post layout
optimization step. This way, the potential of existing routing tools was uti-
lized before the results of this paper were exploited for further optimization.
See the extended abstract [19] for some experimental results and [18] for a
comprehensive study.

While wire spacing can easily be implemented as post-processing part of the
design process (possibly with the aid of some ‘detours’ to connect differently
spaced parts of wire), this is not so obvious for wire ordering. One possible
solution is to use small permutation networks in order to connect re-ordered
parts of a design to the remaining wires. The effect of such permutation
networks has been investigated in [7]; it is concluded that in realistic circuits
the overhead in terms of area and power is much more than compensated by
the benefit of wire ordering. A different approach exploits the fact that today’s
circuit designs are mostly IP-based (i.e., ‘Intellectual Property’ based), hence
pre-developed modules are frequently re-used and combined for new designs.
The ordering of such an IP module’s pads is generally fixed arbitrarily and is
not subject to optimization during the design process of the chip. Thus the
designers of the IP modules may apply optimal wire ordering as proposed in
this paper to the initial design of the modules. This methodology is all the
more important as switching activities are usually module specific.
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