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Abstract

The present paper introduces the geometric rank as a measure for the quality
of relaxations of certain combinatorial optimization problems in the realm of
polyhedral combinatorics. In particular, this notion establishes a tight rela-
tion between the maximum stable set problem from combinatorial optimiza-
tion, polynomial programming from integer non linear programming and norm
maximization, a basic problem from convex maximization and computational
convexity.

As a consequence we obtain very tight inapproximability bounds even for
the largely restricted classes of polynomial programming where the polynomial
is just a sum of univariate monomials of degree at most �log n�, and it is guar-
anteed that the maximum is attained at a 0-1-vector. More specifically, unless
NP = ZPP this problem does not admit a polynomial-time n1−ε-approximation
for any ε > 0, and does not even admit a polynomial-time n1−O(1/

√
log log n)-

approximation, unless NP = ZPTIME(2O(log n(log log n)3/2)). Similar results are
also given for norm maximization. In addition we relate the geometric rank of
a relaxation of the stable set polytope to the question whether the separation
problem for the relaxation can be solved in polynomial time. Again, the results
are nearly optimal.

1 Introduction and main results

Let O be any set packing problem, i.e. a combinatorial optimization problem
whose instances consist of a collection V of subsets of a non empty ground
set V and whose goal it is to produce a maximum number of disjoint such
subsets. Let PO(I) be the 0-1-polytope spanned by the incidence vectors
of the feasible solutions for the instance I = (V,V). Then the set packing
problem asks for maxx∈PO(I) eT x, where e = (1, . . . , 1)T ∈ R

|V|. Since O is a
packing problem, PO(I) is a monotone polytope, hence contains the standard
unit vectors of R

|V|. Now let P be a polytope with

P ∩ {0, 1}|V| ⊂ PO(I) ⊂ P ⊂ [0, 1]|V|.
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Such a polytope is called a standard relaxation of PO(I). The geometric
rank gO(P ) of the standard relaxation P of PO(I) is the minimal p ∈ [1,∞]
such that maxx∈P ‖x‖p is attained at an integral point of P . Note that
1 ≤ gO(P ) ≤ ∞, and that maxx∈P ‖x‖p is attained at an integral point of
P for any p ≥ gO(P ). Clearly, gO(P ) = 1 means that the optimum of the
linear objective function eT x over P equals that over PO(I), i.e. P contains
a 0-1-point that is optimal.

Various papers have addressed the question of how to measure the qual-
ity of relaxations in combinatorial optimization, see e.g. [LMJ94], [Goe95].
The geometric rank is a notion that allows to study the following two ques-
tions: What are the algorithmic limitations of strengthening the linear op-
timization subroutines in polyhedral combinatorics by considering approxi-
mative �p-norm optimization routines? What are the limitations in terms of
polynomial-time separation if we consider relaxations with small geometric
rank?

The first question will lead to new inapproximability results while the sec-
ond will show the limits of polynomial-time separation even for quite coarse
approximations.

The following three optimization tasks and their interplay are the central
topics of our study. The first is the classical combinatorial optimization
problem of finding the cardinality of a maximum stable set in a graph while
the other two are particular restrictions of polynomial programming, the last
having a specifically strong geometric flavor.

MaxStableSet. Given a graph G = (V, E), find the maximum α so that
there is a subset V ∗ of V with |V ∗| = α such that no two vertices of V ∗ are
joined by an edge in E.

Of course, MaxStableSet can be regarded as set packing problem. The
next problem is a restricted polynomial programming problem that has been
studied before by [BR95].

0-1-PolyProg. Given n, r, s ∈ N, subsets S1, . . . , Sr of {1, . . . , n}, a vector
b ∈ Z

s and a matrix A ∈ Z
s×n, compute the maximum of the multivariate

polynomial f(x) =
∑r

j=1

∏
i∈Sj

ξi, where x = (ξ1, . . . , ξn)T , over the polytope
P = {x ∈ [0, 1]n : Ax ≤ b} provided the existence of a 0-1-maximizer is
guaranteed.

The third problem depends on a functional γ : N → N ∪ {∞} that is
assumed to be evaluable in time that is bounded by a polynomial in n.

γ-NormMax. Given n, s ∈ N, a rational s × n-matrix A and b ∈ Q
s,

compute

Np(P ) = max
x∈P
‖x‖pp if p �=∞ and N∞(P ) = max

x∈P
‖x‖∞ else,

where p = γ(n) and P = {x ∈ R
n : Ax ≤ b}.
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As usual, our nonapproximability results hold under the assumption that
certain (unlikely) characterizations of NP do not hold. Therefore recall that
ZPP = RP∩ co RP is the class of problems that can be solved in probabilistic
polynomial time with zero error. As a generalization, if we replace the poly-
nomial bound on the running time by O(f(n)) for some functional f : N→ N

we obtain the class ZPTIME(f(n)). For some introduction to the theory of
computational complexity see e.g. [Jan98].

As shown in [H̊as96, H̊as99] MaxStableSet does not admit a polynomial-
time |V |1−ε-approximation for any ε > 0, unless NP = ZPP. Also, by [EH00],
MaxStableSet does not even admit a polynomial-time n1−O(1/

√
log log n)-

approximation, unless NP = ZPTIME(2O(log n(log log n)3/2)), i.e., given that
NP does not admit randomized algorithms with slightly super-polynomial
expected running time. On the other hand, MaxStableSet can be approx-
imated in polynomial time within n1−O(log log n/ log n), [BH92].

Using the former result and a construction of [EHdW84] that relates Max-

StableSet to 0-1-PolyProg, [BR95] derived – again under the assumption
NP �= ZPP – the inapproximability bound n1/2−ε for 0-1-PolyProg for any
ε > 0, where the instances are such that Ω(

√
n) = r = O(n) and |Sj | = O(n)

for j = 1, . . . , r.
For constant functions γ ≡ p the computational complexity of p-Norm-

Max has been studied in detail in [GK93]. Of course, ∞-NormMax can
be solved in polynomial time, but p-NormMax is NP-hard for all other p.
[BGK00] shows that for p ∈ N p-NormMax is even APX-hard and a result
of [Bri02] indicates that for p ∈ N\{1} the problem is not even ‘likely’ to be
in APX.

Our main inapproximability result is one for γ-NormMax.

Theorem 1.1. Let k ∈ N and λ : N → [1,∞[ be any function, γ : N → N

be a function with 1 + log(n/k) ≤ γ(n) for all n ∈ N that can be evaluated in
polynomial time, and assume that there exists a polynomial-time λ-approxi-
mation algorithm for γ-NormMax. Then there exists a polynomial-time
λ-approximation algorithm for MaxStableSet.

In conjunction with the inapproximability results of [H̊as96, H̊as99] and
[EH00] for MaxStableSet we obtain the following corollary.

Corollary 1.2. Let k ∈ N, ε > 0, and γ : N → N be a function with
1 + log(n/k) ≤ γ(n) for all n ∈ N that can be evaluated in polynomial
time. Then there does not exist a polynomial-time n1−ε-approximation algo-
rithm for γ-NormMax, unless NP = ZPP. In addition there does not exist
a polynomial-time n1−O(1/

√
log log n)-approximation for γ-NormMax, unless

NP =
ZPTIME(2O(log n(log log n)3/2)).

This inapproximability result for γ-NormMax means that even if p →
∞ (the easy case since ∞-NormMax can be solved in polynomial time)
norm-maximization over polytopes ‘stays pretty intractable on the way’. In
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the other direction, the geometric study leading to Theorem 1.1 allows to
answer the question whether for 0-1-PolyProg the degree bound for the
polynomials can be further reduced without weakening the inapproximability
result. In fact, as a consequence of Theorem 1.1 we obtain the following
inapproximability result for 0-1-PolyProg.

Corollary 1.3. Let k ∈ N. There is no polynomial-time approximation algo-
rithm for 0-1-PolyProg with performance ratio n1−ε for any ε > 0, unless
NP = ZPP, even if the instances are restricted to those whose polynomial is a
functional, convex on the feasible region, that consists of at most n monomials
of degree at most 
1 + log(n/k)�.

In addition the same class of instances does not admit a polynomial-time
n1−O(1/

√
log log n)-approximation, unless NP = ZPTIME(2O(log n(log log n)3/2)).

Note that polynomial-time approximation with error at most n is trivial
for the restricted class of instances in Corollary 1.3.

The previous results can be interpreted as showing the limitation of try-
ing to strengthen the linear programming subroutines in polyhedral combina-
torics. The following will deal with polynomial-time relaxations of the stable
set polytope.

In polyhedral combinatorics the polytopes are H-presented, i.e. given in
terms of systems of linear inequalities. So suppose that for each instance
G = (V, E) of MaxStableSet, P (G) is a standard H-presented relaxation
of the stable set polytope PS(G) of G, i.e.,

P (G) ∩ {0, 1}|V| ⊂ PO(I) ⊂ P (G) ⊂ [0, 1]|V|.

Now, set
P = {P (G) : G is a finite graph}.

and let ρ : N → N ∪ {∞} be a functional. Then P is called a ρ-relaxation
of MaxStableSet if gS(P (G)) ≤ ρ(|V |). Furthermore we say that the
separation problem for a given ρ-relaxation P is solvable in polynomial time
if, given G as input, the separation problem for P (G) ∈ P is solvable in time
bounded by a polynomial in the size of G.

Obviously, having an∞-Relaxation is of no particular use since it sim-
ply means that the relaxations are contained in the unit-cubes. The other
extreme, having a 1-Relaxation, means that linear optimization over the
relaxed polytopes solves MaxStableSet. As a trivial example, gS(P ) = 1
for P (G) = [0, 1]n∩{x :

∑n
i=1 ξi ≤ α}, where α denotes the size of a maximal

stable set in the underlying graph G on n vertices. However, we have to ‘pay’
for the minimal geometric rank gS(P ) = 1 with the fact that the separation
problem for P is as hard as the original problem.

The following theorem relates the geometric rank of a polyhedral relax-
ation of the stable set polytope to the question whether the separation prob-
lem for the relaxation can be solved in polynomial time.
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Theorem 1.4. Let k ∈ N. Then there exists a (1 + log(n/k))-Relaxa-

tion for which the separation problem can be solved in polynomial time. Un-
less NP = ZPP, this is not the case for any k-Relaxation, and, unless
NP = ZPTIME(2O(log n(log log n)3/2)), there is no O(

√
log log n)-Relaxation

for which the separation problem can be solved in polynomial time.

2 The geometric rank of relaxations of stable set poly-
topes

Let k ∈ N \ {1} be fixed. Given a graph G = (V, E) on n ≥ k vertices
v1, . . . , vn, we associate a variable ξi with the vertex vi, i = 1, . . . , n, and
consider the polytope Pk(G) ⊂ R

n that is defined by the following system of
linear inequalities.

0 ≤ ξi ≤ 1 for i = 1, . . . , n,
ξi + ξj ≤ 1 for {vi, vj} ∈ E and

ξi1 + · · ·+ ξik
≤ αi1,...,ik

for {i1, . . . , ik} ∈ Ik

where αi1,...,ik
denotes the size of a maximal stable set in the subgraph

Gi1,...,ik
of G that is induced by the vertices vi1 , . . . , vik

and Ik denotes the
family of all k-element subsets of {1, . . . , n}.

Note that Pk(G) is a standard relaxation of the stable set polytope PS(G).
In the following we will write Pk for Pk(G) whenever there is no risk of

confusion.

Lemma 2.1. Let xS be an integral vertex of Pk, let S(xS) denote the stable
set associated with it and let p ∈ N. Then we have |S(xS)| = ‖xS‖pp.
Proof. Since Pk ⊂ [0, 1]n, xS ∈ {0, 1}n and ‖xS‖pp = ‖xS‖1.

Lemma 2.2. Let 1/2 ≤ μ ≤ 1, q ∈]0,∞[, and l ∈ [0, 2q − 1]. Then

μq + l(1− μ)q ≤ 1.

Proof. For q = 1 the result is trivial. For q �= 1, first note that

μq + l(1− μ)q ≤ μq + (2q − 1)(1− μ)q =: fq(μ).

It is easily seen that

μ∗ =

(
1 +
(

1
2q − 1

)1/(q−1)
)−1

is the unique local extremum of fq in [1/2, 1], a minimum. Hence μ = 1/2, 1
are the only local maxima of fq in [1/2, 1] and the assertion follows from

fq(1/2) =
(

1
2

)q

+ (2q − 1)
(

1
2

)q

= 2q2−q = 1 = fq(1).
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In the following theorem we derive an upper bound for the geometric rank
of the relaxation Pk(G) of the associated stable set polytope PS(G).

Theorem 2.3. Let G = (V, E) be a graph on n vertices, and let n ≥ k. Then
g(Pk) ≤ 1 + log(n/k).

Proof. Let p = 1 + log(n/k), and take any point x = (ξ1, . . . , ξn)T ∈ Pk.
Without loss of generality we may assume that 1 ≥ ξ1 ≥ · · · ≥ ξn ≥ 0.

If ξk = 0 we conclude

‖x‖pp ≤
k−1∑
i=1

ξi ≤ α1,...,k−1 ≤ α1,...,k ≤ α,

where α denotes the size of a maximal stable set in G.
Otherwise we set ξ0 = 1 and let l∗ be the maximal l with 1 ≤ l ≤ n−k+1

such that ξl+k−1 > 1 − ξl−1 and ξl−1 > 1/2. Obviously, by the definition of
ξ0 and since ξk > 0 this maximum is well-defined.

Note that ξl∗+k−1 > 1− ξl∗−1 and ξl∗−1 > 1/2 imply the following. Since
for any edge {vi, vj} ∈ E the inequality ξi + ξj ≤ 1 is part of the given
H-presentation of Pk, the set S∗ = {v1, . . . , vl∗−1} is stable. (Of course, if
l∗ = 1, S∗ = ∅.) Further, there is no edge in G connecting a vertex of S∗

with a vertex vl∗+m−1 for m = 1, . . . , k. Hence, for any stable set I in the
subgraph Gl∗,...,l∗+k−1 the set I ∪ S∗ is a stable set in G. This yields the
inequality

αl∗,...,l∗+k−1 ≤ α− |S∗| = α− (l∗ − 1).

Now, suppose first that l∗ = n− k + 1; then we have

‖x‖pp ≤ (n− k) +
n∑

i=n−k+1

ξp
i ≤ (n− k) +

n∑
i=n−k+1

ξi

≤ (n− k) + αn−k+1,...,n ≤ (n− k) + α− (n− k) = α.

Note that p = 1 implies n = k, whence l∗ = n− k + 1.
Now, let l∗ ≤ n−k (and hence p > 1). It follows then from the maximality

of l∗ that ξl∗ ≤ 1/2 or ξl∗+k ≤ 1− ξl∗ . If ξl∗ ≤ 1/2 we have

‖x‖pp ≤ (l∗ − 1) +
n− (l∗ − 1)

k

l∗+k−1∑
i=l∗

ξp
i

≤ (l∗ − 1) +
n− (l∗ − 1)

k
ξp−1
l∗

l∗+k−1∑
i=l∗

ξi

≤ (l∗ − 1) +
n− (l∗ − 1)

k

(
1
2

)log(n/k)

αl∗,...,l∗+k−1

≤ (l∗ − 1) +
n− (l∗ − 1)

k

k

n
(α− (l∗ − 1))

≤ (l∗ − 1) + α− (l∗ − 1) = α.
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So, let ξl∗ > 1/2 but ξl∗+k ≤ 1− ξl∗ . With the aid of Lemma 2.2 we obtain

‖x‖pp ≤ (l∗ − 1) +
l∗+k−1∑

i=l∗
ξp
i +

n∑
i=l∗+k

ξp
i

≤ (l∗ − 1) + ξp−1
l∗

l∗+k−1∑
i=l∗

ξi + ξp−1
l∗+k

n∑
i=l∗+k

ξi

≤ (l∗ − 1) +
(

ξp−1
l∗ +

n− (l∗ − 1)− k

k
(1 − ξl∗)p−1

) l∗+k−1∑
i=l∗

ξi

≤ (l∗ − 1) + α− (l∗ − 1) = α.

All together we have shown maxx∈Pk
‖x‖pp ≤ α, and by Lemma 2.1 we

have actually equality. This concludes the proof of Theorem 2.3.

Note that for a given point x = (ξ1, . . . , ξn)T ∈ Pk the previous proof
allows to determine a stable set with cardinality at least ‖x‖pp in polynomial
time.

At first sight, the (1 + 
log(n/k)�)-relaxation

Pk = {Pk(G) : G is a finite graph}

might seem rather weak. However since we can solve the separation problem
for Pk in polynomial time we see from the second part of Theorem 1.4 that
we cannot expect to do much better. Also note, that there are infinitely
many pairs (n, k) for which g(Pk) ≤ 1+log(n/k) holds with equality. In fact,
for the complete graph Kn on n ≥ 2 vertices, x0 = (1/2, . . . , 1/2)T ∈ P2(Kn)
and ‖x0‖log n

log n = 1 = α(Kn). Hence for Kn the bound is sharp for k = 2.
Also, if Cn is a cycle for some odd n ∈ N and k = n− 1, x0 ∈ Pn−1(Cn) and
‖x0‖1+log(n/(n−1))

1+log(n/(n−1)) = (n− 1)/2 = α(Cn). So, again, the bound is attained. It
is, on the other hand, an open problem to determine for which ‘interesting
classes’ of graphs there exist ‘significantly’ better estimates.

3 Reducing MaxStableSet to 0-1-PolyProg

With Theorem 2.3 at hand Theorem 1.1 and the first part of Theorem 1.4
are easy to prove.

Proof of Theorem 1.1. Let k ∈ N, let A be a polynomial-time λ-approxi-
mation-algorithm for γ-NormMax and let G = (V, E) be an instance of
MaxStableSet. If |V | < k a maximum stable set in G can be computed
in polynomial time. Otherwise note that the H-presentation of Pk can be
determined in polynomial time and can be given as input to A. A outputs
a λ-approximation for the pth power of the lp-norm-maximum where p =
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γ(n) < ∞ that by means of Theorem 2.3 yields also a λ-approximation for
the cardinality of a maximum stable set in G.

Proof of Part 1 of Theorem 1.4. As already observed in the previous proof,
Pk is given by anH-presentation of polynomial size. Of course, the separation
problem for H-presented polytopes is solvable in polynomial time. Hence the
assertion follows from Theorem 2.3.

Now, observe that while we have monomials of high degree but consisting
of just one variable in the norm-maximization problem, the polynomials we
are interested in in the context of 0-1-PolyProg are sums of monomials
that are multilinear in the occurring variables. But this can be handled by
reproducing the original variables suitably often.

Proof of Corollary 1.3. Assume we have a polynomial-time approximation
algorithm for 0-1-PolyProg of the kind stated in the assertion. Let I be
an instance of (1+ 
log(d/k)�)-NormMax, let ξ1, . . . , ξd denote its variables
and let d ≥ k. We take 1 + 
log(d/k)� copies of each and denote them by
ξi1 , . . . , ξi1+�log(d/k)� , for i = 1, . . . , d. Adding the constraints ξi1 = ξi2 = · · · =
ξi1+�log(d/k)� for i = 1, . . . , d and replacing ξ

1+	log(d/k)

i by Π1+	log(d/k)


j=1 ξij in
the associated objective function yields an instance of 0-1-PolyProg in
dimension n = d(1 + 
log(d/k)�). Now, since n = d1+O(log log d/ log d), it
follows that for sufficiently large n,

n1−ε ≤ d1−ε/2

for each fixed ε > 0, and also that

n1−O(1/
√

log log n) = d(1−O(1/
√

log log n))(1+O(log log d/ log d))

< d1−O(1/
√

log log n)+O(log log d/ log d)

= d1−O(1/
√

log log n) = d1−O(1/
√

log log d).

Hence we obtain a polynomial-time d1−ε/2-, respectively d1−O(1/
√

log log d)-
approximation algorithm for (1 + 
log(d/k)�)-NormMax. However, unless
NP = ZPP or NP = ZPTIME(2O(log d(log log d)3/2)), respectively, such an algo-
rithm does not exist.

In their reduction of MaxStableSet to 0-1-PolyProg [BR95] assigned
to each edge in the graph G = (V, E) two variables and to each of the vertices
vi one subset Si that consists of the indices of vi’s neighbors. This leads
to polynomials whose degree might be of the same order as the number of
variables. In contrast, the above reduction that is based on assigning variables
to the vertices gives polynomials of degree at most 1 + 
log(n/k)�
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4 The geometric rank and polynomial time separability

Now we turn to the question whether relaxations for the stable set poly-
topes can be determined for which the separation problem can be solved in
polynomial time and whose geometric rank does not tend to ∞.

Lemma 4.1. Let n, p ∈ N and

Bn = [0, 1]n ∩ {(ξ1, . . . , ξn)T :
(
1/n1−1/p

) n∑
i=1

ξi ≤ 1}.

Then
B

n
p ∩ [0,∞[n⊂ Bn ⊂ (n1−1/p)1/p

B
n
p ∩ [0,∞[n,

where B
n
p denotes the lp-unit-ball of R

n.

Proof. For the first inclusion take any x = (ξ1, . . . , ξn)T ∈ B
n
p ∩ [0,∞[n. By

Hölder’s inequality we have

(
1/n1−1/p

) n∑
i=1

ξi =
(
1/n1−1/p

)
eT x ≤ 1/n1−1/p‖e‖p′‖x‖p ≤ 1,

where e = (1, . . . , 1)T ∈ R
n and p′ = p/(p− 1).

For the second inclusion we have to show that maxx∈Bn ‖x‖pp ≤ n1−1/p.
Clearly it suffices to consider vertices of Bn that are contained in the hyper-
plane {x = (ξ1, . . . , ξn)T :

(
1/n1−1/p

)∑n
i=1 ξi = 1}. Any such vertex v has

precisely �n1−1/p� 1-entries, n − 
n1−1/p� 0-entries and if n1−1/p �∈ N one
additional entry equal to n1−1/p − �n1−1/p�. In any case,

‖v‖pp = �n1−1/p�+ (n1−1/p − �n1−1/p�)p

≤ �n1−1/p�+ (n1−1/p − �n1−1/p�) = n1−1/p.

Lemma 4.2. For any n ∈ N let Qn be an H-presented rational polytope with
binary size bounded by a polynomial in n such that

B
n
p ∩ [0,∞[n⊂ Qn ⊂ λ1/p

B
n
p ∩ [0,∞[n.

Further, for n ∈ N let Pn be a polytope in [0,∞[n. If the separation prob-
lem for (Pn)n∈N can be solved in polynomial time then λ-approximations of
maxx∈Pn ‖x‖pp can be computed in polynomial time.

Proof. Let for each n ∈ N, mn ∈ N, an,1, . . . , an,mn ∈ Z
n, and βn,1, . . . , βn,m ∈

Z such that Qn =
⋂mn

i=1{x ∈ R
n : aT

n,ix ≤ βn,i}. Since the separation problem
for Pn can be solved in polynomial time, ωn(an,i) = maxx∈Pn aT

n,ix can be
computed in polynomial time; [GLS93]. With ωn = maxi=1,...,mn ωn(an,i)
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this yields Pn ⊂ ωnQn and Pn �⊂ ωQn for any ω with 0 ≤ ω < ωn. The first
relation implies Pn ⊂ ωnλ1/p

B
n
p . Further, since B

n
p ∩ [0,∞[n⊂ Qn the second

yields the existence of a point x∗ ∈ Pn with ‖x∗‖p ≥ ωn. Hence, ωp
n provides

a λ-approximation for maxx∈Pn ‖x‖pp.

Let us mention in passing that in the realm of the algorithmic theory of
convex bodies suitable, explicitly constructed polytopes approximating the
lp-unit-balls yield asymptotically optimal algorithms for the computation of
norm-maxima and other radii of convex bodies [BGK+03]. In the Euclidean
case this even gives optimal randomized algorithms that (in a sense surpris-
ingly) have the same performance ratio as deterministic ones [BGK+98].

Proof of Part 2 of Theorem 1.4. Assume that for some p we have a stan-
dard ρ-Relaxation P = {P (G) : G is finite a graph} with ρ(n) ≤ p for
all n ∈ N and for which the separation problem is solvable in polynomial
time. Then, given a graph G on n vertices as input, we use the poly-
tope Bn of Lemma 4.1 to play the role of Qn in Lemma 4.2 in order to
obtain an n1−1/p-approximation for maxx∈P (G) ‖x‖pp. Since ρ(n) ≤ p, we
have maxx∈P (G) ‖x‖pp = α(G). Hence we obtain a polynomial-time n1−1/p-
approximation algorithm for MaxStableSet, whence with the setting ε =
1/p, a polynomial-time n1−ε-approximation algorithm with constant ε or,
with the setting p = O(

√
log log n), a polynomial-time n1−O(1/

√
log log n)-

approximation.
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