Available online at www.sciencedirect.com

SCIENCE @DIHECT" Electronic Notes in
DISCRETE
MATHEMATICS

ELSEVIER Electronic Notes in Discrete Mathematics 20 (2005) 179-191
www.elsevier.com/locate/endm

Discrete Tomography of
Mathematical Quasicrystals: A Primer

Christian Huck, Michael Baake!

Fakultat fur Mathematik
Universitat Bielefeld
Bielefeld, Germany

Barbara Langfeld, Peter Gritzmann, Katja Lord 2

Zentrum Mathematik
Technische Universitat Munchen
Minchen, Germany

Abstract

This text is a report on work in progress. We introduce the class of cyclotomic model
sets (mathematical quasicrystals) A C Z[¢,], where Z[{,] is the ring of integers
in the nth cyclotomic field Q(¢,), and discuss the corresponding decomposition,
consistency and reconstruction problems of the discrete tomography of these sets.
Our solution of the so-called decomposition problem also applies to the case of the
square lattice Z? = Z[£4], which corresponds to the classical setting of discrete
tomography.
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1 Introduction

Discrete tomography is mainly concerned with the reconstruction of a finite
patch of (atomic) positions from projection data, called X-rays, along certain
rays of parallel lines (or, more generally, from other systems of intersecting
sets). In the simplest situation, the positions to be determined form a subset of
the square lattice (or, more generally, of Z¢, d > 2) and this can be considered
to be the main and best understood example. In fact, most of the problems
in discrete tomography have been studied on the square lattice Z? (see [10]),
which will be referred to as the classical case. In the longer run, one has to take
into account more general classes of sets, or at least significant deviations from
the lattice structure. As an intermediate step between periodic and random (or
amorphous) sets, we want to investigate the discrete tomography of systems
of aperiodic order, more precisely, of so-called mathematical quasicrystals (or
model sets), which are commonly accepted to be a good mathematical model
for quasicrystalline structures that appear in nature [17].

Here, we restrict ourselves to a well-known class of planar model sets,
namely, using the Minkowski representation of algebraic number fields, we
introduce for n ¢ {1,2,3,4,6} the corresponding class of cyclotomic model
sets A C Z[E&,], where &, is a primitive nth root of unity (e.g., &, = e%).
The Z-module Z[¢,] is the ring of integers in the nth cyclotomic field Q(&,),
and with the above restrictions, when viewed as a subset of the plane, is
dense. Well-known examples are the planar model sets with N-fold cyclic
symmetry associated with the the Ammann-Beenker tiling (n = N = 8), the
Tiibingen triangle tiling (2n = N = 10) and the shield tiling (n = N = 12).
Note that 5,8,10 and 12 are standard cyclic symmetries of genuine planar
quasicrystals [17].

We consider the consistency and the reconstruction problem of the discrete
tomography of cyclotomic model sets given X-rays in m > 2 directions and
indicate that they are algorithmically solvable in polynomial time if m = 2.
This extends well-known results from the classical case to the new setting.
There are other important results concerning the classical case that can pos-
sibly be extended, e.g., the uniqueness results of Gardner and Gritzmann,
compare [10, Ch. 4].

Let F be a finite subset of ¢+ Z[&,], where n > 3 and ¢ € R?. Furthermore,
let o € Z[€,]\{0} be a module direction (other directions are not considered for
practical reasons) and let £, be the set of lines in direction o in the Euclidean
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plane R?. Then, the (discrete) X-ray of F in direction® o is the function
Xo(F): L, — Ny := NU {0}, defined by

Xo(F)(0) = |Fne| =) 1p(x),

zel

where 15 denotes the characteristic function of F C R%. Obviously, X,(F) has
finite support supp(X,(F')) (the set of lines in direction o that pass through
at least one point of F') and, moreover, the cardinality of F' is implicit in the
X-ray since we have

Yo X(P)(0)=|F|.

Lesupp(Xo(F))

For the so-called decomposition problem, it suffices to consider the under-
lying Z-modules Z[¢,] of cyclotomic model sets themselves, and, by allowing
n € {3,4,6}, the crystallographic cases, namely, the triangular lattice and the
square lattice, are included. For a module direction o, we denote by E%K"] c L,
the set of module lines in direction o in the Euclidean plane R?, i.e., the set of
lines in the Euclidean plane that are parallel to o and pass through at least one
point of Z[¢,]. Let o1,...,0, € Z[£,] be m > 2 pairwise non-parallel module
directions and let py,,...,p,, be functions p,, : £L,, — Ny, i € {1,...,m},
whose supports are finite and satisfy

supp(p;) C L2E

i €{1,...,m}. Then, the associated grid Gpo;lic{1,....,m}} 1s defined by

m

G{po,lie{1,m}} 1= ﬂ ( U 0).

i=1 £esupp(po;)

We consider the phenomenon of multiple equivalence classes modulo Z[&,] in
the grid*. Clearly, this phenomenon affects both the consistency and the re-
construction problem, and it can also occur in the crystallographic cases n = 3
and n = 4. To see this, consider the simple situation shown in Figure 1 on
the right. There, no translate of the marked finite subset of the square lattice
is contained in any of the other equivalence classes (even when rotations or
reflections of this set were allowed additionally). Alternatively, note the fact

3 Other authors use the names projection data, marginal or line sum for this concept.
* Here, the equivalence relation on the grid is given by: g ~ ¢' :<= g — ¢’ € Z[&,)-



182 C. Huck et al. / Electronic Notes in Discrete Mathematics 20 (2005) 179-191

that ezactly one of the equivalence classes (marked green) has 14 elements,
whereas the remaining ones only have 13 elements; it follows that this equiv-
alence class (which generates the same grid) would be the unique solution of
the associated reconstruction problem.

Fig. 1. Grids arising from two module directions: on the left, a finite subset
(marked by the connecting lines) of the cyclotomic model set associated with the
Ammann-Beenker tiling (compare Figure 2) whose grid shows 2 equivalence classes
modulo Z[g] is shown. On the right, there is a finite subset (again marked by the
connecting lines) of the square lattice with a grid containing 3 equivalence classes
modulo the Gaussian integers Z[4] = Z[i] = Z2

Hence, the problem of decomposing the grid into its equivalence classes
modulo Z[&,] is the first problem to be solved when dealing with the consis-
tency or the reconstruction problem, also in the classical case. Using standard
results from algebra, one can show that it is solvable in polynomial time. In
fact, whenever the directions are fixed, it turns out that there are only finitely
many equivalence classes. Clearly, the result extends to the case of cyclotomic
model sets, which is our main interest here.

In order to describe the consistency and the reconstruction problem for the
new setting, given X-rays in two module directions, let 01, 02 be two module
directions, i.e., 01, 05 € Z[&,], with {01, 02} linearly independent over R. Then,
for the reconstruction problem, we are given two functions p,, : £,, — Ny
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and p,, : £,, — Ny whose supports are finite and satisfy
supp(p,;) C LEE

i € {1,2}. Then, the task is to construct a finite subset F’ which is contained
in a translate of the form ¢ + A, where t € R?* and A C Z[&,] belongs to
the corresponding family of cyclotomic model sets which have, up to transla-
tion, the same window (see below for details), and satisfies X, (F') = p,, and
Xo,(F) = po, under the assumption that at least one such F' exists; for the
consistency problem, one merely has to answer the corresponding existency
question.

The main motivation for our interest in the discrete tomography of model
sets comes from the physical existence of quasicrystals that can be described
as model sets and the demand of materials science to reconstruct three-
dimensional (quasi)crystals from their images under high resolution transmis-
sion electron microscopy (HRTEM) in a finite and small number of module
directions. At present, the measurement of the number of atoms lying on a
line in a module direction can only be achieved for some crystals, see [11,16].
However, it is reasonable to expect that future developments will improve this
situation.

2 Setting

27

For all n € N, and &, a fixed primitive nth root of unity (e.g., & = e ), let
Q(&,) be the corresponding cyclotomic field. Throughout this text, we will
use the notation

Kn :=Q(&), On = Z[&,),

and ¢ will always denote Euler’s totient function, i.e.,

¢(n) = |{k € N|1 <k <nand ged(k,n) =1}|.

Remark 2.1 Seen as a point set of R?, O, has lem(n, 2)-fold cyclic symmetry,
and, except for the one-dimensional case n € {1,2} (O = Oy = Z), the
crystallographic cases n € {3, 6} (triangular lattice) and n = 4 (square lattice),
O,, is dense in R?.

2.1 The Class of Cyclotomic Model Sets

By definition, model sets arise from so-called cut and project schemes, compare
[12]. In particular, the class of cyclotomic model sets arises from cut and
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project schemes of the following form. Let n € N\ {1,2,3,4,6} and consider
the following diagram (cut and project scheme), where we follow the algebraic
setting of Pleasants [13].

i Trmt
R R? x (R?)%5-1 — (R
U dense U lattice U dense
1-1 1-1 b(n)
On = {(z=01(2),(02(2),...,06m(2)) | 2 € O} +— (Op) 7 !
~~ . 2
=:L ~ —L*
=L

Note that the elements of the Galois group G(K,,/Q) = (Z/nZ)* (where
a (modn) corresponds to the automorphism given by &, — &2, cf. [18, The-
orem 2.5]) come in pairs of complex conjugate automorphisms. The set
{o:]7i € {1,..., @}} arises from G(K,/Q) by choosing exactly one auto-
morphism of each such pair (here, we choose the identity as o; rather than
complex conjugation). Then, L is a Minkowski representation of the maximal
order O, of K,, see [8, Ch. 2, Sec. 3] and [18, Theorem 2.6]. By saying that
L is a (full) lattice in
R? x (R?)™ 7,

we mean that it is a discrete subgroup of the Abelian group R? x (RQ)@*1

such that the quotient group
(R x (R2)*$"-1)/

is compact. This is equivalent to the existence of ¢(n) R-linearly independent
vectors in R?(™ whose Z-linear hull equals L, compare [8, Ch. 2, Sec. 3 and

4]. Given any subset W C (]RQ)%_1 with @ # W° C W C W° compact (in
particular, W is relatively compact) and any ¢ € R?, we obtain a planar model
set A, (t, W) :=t + A, (W) relative to the above cut and project scheme by
setting

A, (W) :={z€ O, |z" € W},
compare [12,13] for details and more general settings, and [7] for general back-
ground. Further, R? (resp. (RQ)@_I) is called the physical (resp. internal)
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space, W is referred to as the window of A, (t,W) and

* L (R)%1

is the so-called star map. Then, A,(t, W) C R? isa Delone set (i.e., A, (t, W) is
both uniformly discrete and relatively dense), has finite local complezity and is
aperiodic (i.e., A, (t, W) has no translational symmetries), compare [12] again.
Moreover, if A,(t, W) is regular (i.e., if the boundary 0W has measure 0 in
(RQ)@*), then A, (t, W) is pure point diffractive (cf. [15]), and if A,,(t, W) is
generic (i.e., if L*N OW = &), then A, (t, W) is repetitive, see [15]. If A, (t, W)
is both generic and regular, the frequency of repetition is well-defined (cf. [14])
and, moreover, A, (t,W) has lem(n, 2)-fold cyclic symmetry in the sense of
symmetries of Ll-classes, see [2] for details and compare Remark 2.1.

For any n € N\ {1,2,3,4,6}, set

M(O,) =
{An(t, W) |t € R, W C (R)*F~ with @ # W° C W C W° compact}.

Then, the class CM of cyclotomic model sets is defined as the union of all sets
M(O,), ie.,
CM := U Mo

n€N\{1,2,3,4,6}

2.2 Eramples
All examples below are of the form 4,,(0, W) for suitable n € N\{1,2,3,4,6}.

(a) The planar generic regular model set with 8-fold cyclic symmetry associ-
ated with the well-known Ammann-Beenker tiling [1,4,9] can be described
in algebraic terms as

App = {Z € 08|Z* € O},

where the star map * is the Galois automorphism in G(Kg/Q), defined by
& — &, and the window O is the regular octagon centred at the origin
and of unit edge length with orientation as in Figure 2. This construction
also gives a tiling with squares and rhombi, both having edge length 1,
see Figure 2.

(b) The planar regular model set with 10-fold cyclic symmetry associated
with the Tiibingen triangle tiling [5,6] can be described in algebraic terms
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Fig. 2. A central patch of the eightfold symmetric Ammann-Beenker tiling with
vertex set Aap (left) and the *-image of Aap inside the octagonal window in the
so-called internal space (right), with relative scale as described in the text.

as
ATTT = {Z € 05 | Z* c W},

where the star map * is the Galois automorphism in G(Kj5/Q), defined
by & — &2, and the window W is the regular decagon centred at the
origin, with vertices in the directions that arise from the 10th roots of
unity by a rotation through I, and of edge length \/T;W’ where 7 is the

10°
golden ratio, i.e., T = @ This construction gives a triangle tiling with

long (short) edges of lengths 1 (1), see Figure 3 for a repetitive example,
obtained by a tiny shift of the window into a generic position.

The planar regular model set with 12-fold cyclic symmetry associated
with the shield tiling [9] can be described in algebraic terms as

Ag := {Z € O12|Z* € W},

where the star map * is the Galois automorphism in G(K;2/Q), defined
by &9 — &3, and the window W is the regular dodecagon centred at
the origin, with vertices in the directions that arise from the 12th roots of
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Fig. 3. A central patch of the tenfold symmetric Tiibingen triangle tiling.

unity by a rotation through {5, and of edge length 1. This construction
gives a tiling with triangles, squares and so-called shields, all having edge
length %, see Figure 4 for a repetitive example, once again obtained

by a tiny shift of W into a generic position.

3 Results

3.1 The Decomposition, Consistency and Reconstruction Problems

Using standard results from algebra, one can show the following result which
immediately implies that both the decomposition problem of the discrete to-
mography of cyclotomic model sets and the corresponding problem in the
classical case are tractable:

Theorem 3.1 (cf. [3]) Let n > 3 and 01,...,0, € O be m > 2 pairwise
non-parallel module directions. Further, let p,, : L,, — Ny, 7 € {1,...,m},
be functions whose supports are finite and satisfy supp(p,,) C Eg)i", 1 €
{1,...,m}.

Then, the problem of decomposing the associated grid Gy, iic1,...m}} (cf.
Section 1) into its equivalence classes modulo O,, can be solved in polynomial
time. O
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Fig. 4. A central patch of the twelvefold symmetric shield tiling.

Remark 3.2 In fact, in the situation of Theorem 3.1, it turns out that, when-
ever the module directions are fixed, there are only finitely many equivalence
classes. Depending on the functions p,,, not all of them may be present.

Next, we turn to the consistency and reconstruction problems, given X-
rays in two module directions. More precisely, for the reconstruction problem,
we are given an n € N\ {1,2,3,4,6}, two non-parallel module directions
01,09 € Oy, two functions p,, : L,, — Ny, po, : Lo, —> Ny whose supports
are finite and satisfy supp(p,,) C L9, i € {1,2}. Moreover, we are given a

0;
window W C (]RQ)@_1 (ie., a set with @ # W° C W C W° compact).
Then, the task is to construct a finite set F' which is contained in a cyclo-
tomic model set A, (¢, 7 + W) € M(O,), where t € R*> and 7 € (]Rz)@’l,
and satisfies X, (F) = p,, and X,,(F) = p,, under the assumption that at
least one such F' exists; for the consistency problem, one has to answer the
corresponding existence question.

Here, we concentrate on the key problem, presently ignoring the missing
steps towards a solution of the above problems.

By Theorem 3.1, we can assume that the equivalence classes of the grid
Gipo, poy} Modulo O, are given, say Gy, 5,,3 = Ui—1 Gi (cf. Remark 3.2), where
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G; —t; C O, for suitable t; € R?. Let us now consider a fixed equivalence
class G;. Due to the definition of (cyclotomic) model sets, not every subset
of G; that conforms to the X-rays is admissible, more precisely: a possible
reconstruction F' C G; must satisfy:

#(n)
-1

37 e (R C(F-t)y Ccr+W.

Therefore, one has to determine the set
Sepw ((Gi —6:)*) ={(Gi—t;)*N(t+W)|T € (RZ)@A},

which contains all those subsets of (G; — ¢;)* that are “separable” from its
complement by a translate of W.

This problem is tractable for special classes of windows:

Theorem 3.3 (cf. [3]) Let P C R® be a finite set. Then, one has:

(a) If W is a ball of fized radius in R?, then the determination of Sepy, (P) =
{Pn(r+W)|T € R} can be done with O((card(P))**2) arithmetic
operations.

(b) If W = {z € R?| Az < b} is a fulldimensional polytope in R?, then the
determination of Sepy, (P) can be done with O((card(P))41) arithmetic
operations. O

In [3], we will also give a description of the set of solutions of the above
reconstruction problem.
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