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a b s t r a c t

The paper studies the problem of reconstructing binary matrices constrained by binary
tomographic information. We prove new NP-hardness results that sharpen previous
complexity results in the realm of discrete tomography but also allow applications to
related problems for permutation matrices. Hence our results can be interpreted in terms
of other combinatorial problems including the queens’ problem.
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1. Introduction and main results

For n ∈ N, let N = {1, . . . , n} and let Bn be the set of all binary n × n matrices B regarded as functions B : N2
→ {0, 1}.

We will then write B = (βi,j)i,j∈N with βi,j = B(x), x = (i, j)T .2 Ryser [10] studied the problem of characterizing the
subsets of Bn of all suchmatrices with given row and column sums. Ryser’s work can be seen as an anticipation of what was
called discrete tomography 30 years later; see e.g. [6] and [8]. In view of its relevance to basic algorithmic questions in that
field, we are interested in the computational complexity of the question of reconstructing binary matrices with prescribed
binary marginal sums. Here, not only row and column sums but also diagonal, anti-diagonal or other line sums may be
prescribed. More precisely, let m ∈ N be the number of marginal sums in different directions, M = {1, . . . ,m}, and, for
every k ∈ M , let the vector sk = (σk,1, σk,2)

T
∈ Z2

\ {0} specify a direction and let Sk = lin {sk} be the line through the origin
spanned by that vector. For each sk we define an orthogonal vector tk = (σk,2,−σk,1)

T . Since tk is perpendicular to Sk, the
set Tk = {tTk g : g ∈ N2

} parameterizes all lines parallel to Sk that intersect N2. One of our basic problems is as follows:

0-1-Consistency(S1, . . . , Sm).
Instance: n ∈ N, and for k ∈ M and l ∈ Tk, ζk,l ∈ {0, 1}.
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Task: Decide, whether there is a B ∈ Bn such that∑
i,j∈N

iσk,2−jσk,1=l

βi,j = ζk,l for k ∈ M and l ∈ Tk.

A related natural task asks whether a given solution is unique.

0-1-Uniqueness(S1, . . . , Sm).
Instance: n ∈ N, B ∈ Bn such that∑

i,j∈N
iσk,2−jσk,1=l

βi,j ∈ {0, 1} for k ∈ M and l ∈ Tk.

Task: Decide, whether there is a B′
∈ Bn \ {B} such that∑

i,j∈N
iσk,2−jσk,1=l

(
β ′

i,j − βi,j
)

= 0 for k ∈ M and l ∈ Tk.

The case m = 1 is, of course, trivial. If m = 2 and s1 = (1, 0)T and s2 = (0, 1)T , 0-1-Consistency(S1, S2) is also obvious.
Given two binary vectors z1, z2 ∈ Rn, we simply ask whether there exists a binary matrix with row sum z1 and column
sum z2. The answer is affirmative if and only if ‖z1‖(1) = ‖z2‖(1) i.e., the numbers r = ‖z1‖(1) of coefficients 1 in z1 and z2
coincide. Actually all suchmatrices are then permutationmatrices expanded by n−r zero rows and columns. The number of
different solutions is thus r!. Hence, a given solution is unique if and only if r = 1. The general casem = 2 is also simple. We
will show, however, that the transition of 0-1-Consistency(S1, . . . , Sm) and 0-1-Uniqueness(S1, . . . , Sm) from being trivial
to NP-hard takes place ‘uniformly’ when increasingm from 2 to 3.

Theorem 1. Let m ≥ 3, and s1, . . . , sm ∈ Z2 be pairwise linearly independent. Then both 0-1-Consistency(S1, . . . , Sm) and
0-1-Uniqueness(S1, . . . , Sm) are NP-complete.

Of course, both problems belong to NP (with a solution B ∈ Bn, B′
∈ Bn being a certificate, respectively). The proof of

the NP-hardness part of Theorem 1 will be given in Section 2.
Let us now outline some additional interpretations of the above (and related) problems; on the one hand, to place them

into the perspective of other lines of research in combinatorics, on the other hand to motivate an additional problem that
we are also going to address.

The case m = 4, s1 = (1, 0)T , s2 = (0, 1)T , s3 = (1, 1)T and s4 = (1,−1)T and ζk,l = 1 for k = 1, 2 and l ∈ Tk is
related to the well-known queens’ problem on an n × n chessboard. The question there is whether it is possible to place n
queens on the board so that no queen attacks any other. It is well-known that there is at least one solution of the queens’
problem for n = 1 and n ≥ 4, [3], but no solution for n = 2, 3. Since, naturally, the problem has the symmetries of the
chessboard, we do not have uniqueness unless n = 1. Hence, the variants of both 0-1-Consistency(S1, . . . , S4) and 0-1-
Uniqueness(S1, . . . , S4)where the constraints for k = 3, 4 are replaced by the inequalities∑

i,j∈N
iσk,2−jσk,1=l

βi,j ≤ 1 for l ∈ Tk

are clear.
If s1 = (1, 0)T , s2 = (0, 1)T , s3, . . . , sm are arbitrary, but z1, z2 are the all 1’s vectors in Rn we are actually asking

for particular permutation matrices. So, with Pn denoting the subset of Bn of all permutation matrices we are led to the
following problem.

Permutation(S3, . . . , Sm).
Instance: n ∈ N, and for k ∈ M \ {1, 2} and l ∈ Tk, ζk,l ∈ N ∪ {0}.
Task: Decide, whether there is a permutation B ∈ Pn such that∑

i,j∈N
iσk,2−jσk,1=l

βi,j = ζk,l for k ∈ M \ {1, 2} and l ∈ Tk.

We will prove the following result in Section 3.

Theorem 2. Let s3 = (1, 1)T or s3 = (−1, 1)T . Then Permutation(S3) is NP-complete.

The theorem shows that checking whether there exists a permutation matrix with prescribed diagonal sums is NP-
complete. In terms of a theorem for largerm note that Theorem 1 implies a hardness result for the following problemwhere
in addition to the data and requirements of Permutation(S3, . . . , Sm) a permutation submatrix is prescribed already.
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PrescribedPermutation(S3, . . . , Sm).
Instance: n ∈ N, and for k ∈ M \ {1, 2} and l ∈ Tk, ζk,l ∈ N ∪ {0}, sets F1, F2 ⊂ N with |F1| = |F2| a permutation

matrix P = (πi,j)i∈F1,j∈F2 .
Task: Decide, whether there is a permutation B = (βi,j)i,j∈N ∈ Pn such that

βi,j = πi,j for i ∈ F1 and j ∈ F2
and ∑

i,j∈N
iσk,2−jσk,1=l

βi,j = ζk,l for k ∈ M \ {1, 2} and l ∈ Tk.

In fact, 0-1-Consistency(S1, . . . , Sm) may be polynomially transformed to PrescribedPermutation(S3, . . . , Sm). If in a
given instance of 0-1-Consistency(S1, . . . , Sm), ‖z1‖(1) = ‖z2‖(1) = r wemay choose and then prescribe any (n−r)×(n−r)
permutation matrix P within the submatrix of the rows and columns specified to 0 in the given instance and then increase
the ζk,l accordingly. Hence we obtain the following corollary that, when applied to s3 = (1, 1)T and s4 = (1,−1)T , may be
seen as being in partial contrast to the results on the queens’ problem.

Corollary 3. Let m ≥ 3 and (1, 0)T , (0, 1)T and s3, . . . , sm ∈ Z2 be linearly independent. Then PrescribedPermu-
tation(S3, . . . , Sm) is NP-complete.

Naturally, all our results can also be interpreted in terms of contingency tables, (perfect) matchings in bipartite graphs
and in terms of representatives of set systems. As to the realm of discrete tomography, both Theorems 1 and 2 strengthen
results of [4]. In particular, Theorem 1 shows that for m ≥ 3 the corresponding hardness result of [4] persists in the ‘fully
combinatorial’ case i.e., when all instances are restricted to those which are binary.

Further note that in the fully binary case the intersection of any solution with any line parallel to any of the given
directions s1, . . . , sm is empty or a singleton, hence every solution is convex in any of the tomographic directions. Also, by
considering the ‘photographic negative’ i.e., by replacing each0 in a solution by 1 and vice versa, and adjusting the constraints
accordingly, we see that the general reconstruction problem (with nonnegative integer constraints) for binary images is also
NP-hard form ≥ 3 if all solutions are required to be connected with respect to the (so-called p8-) neighborhood where two
points are adjacent if both coordinates differ by at most 1 in absolute value.

The paper is organized as follows. Section 2 gives the proof of Theorem 1, Section 3 contains the proof of Theorem 2while
Section 4 gives some final remarks that place our results into further perspective.

To eliminate a possible source of confusion, let us finally remark that a preprint version of this paper has already been
quoted by several authors under the preliminary title ‘On the reconstruction of permutation and partition matrices under
tomographic constraints’.

2. A passage through higher dimensions

The proof of Theorem 1 builds on a known hardness result for 3-dimensional contingency tables and proceeds in two
steps. First we show that for m ≥ 3 it is NP-hard to decide whether there exists an m-dimensional matrix with given
row sums in all m ‘index-directions’. Then we develop a projection technique to transform this problem to 0-1-Consisten-
cy(S1, . . . , Sm). As will be shown the overall reduction is polynomial-time and preserves uniqueness.

2.1. The m-dimensional consistency problem is NP-complete

For n ∈ N let Bm
n denote the set of all m-dimensional binary matrices B = (βx)x∈Nm of size n i.e., B : Nm

→ {0, 1} and
βx = B(x). Further, for k ∈ N set

Hk = Nk−1
× {0} × Nm−k, Lk = {0}k−1

× N × {0}m−k.

Then we are dealing with the following problems.

0-1-Consistencym.
Instance: n ∈ N, and for k ∈ M and y ∈ Hk, ζy ∈ {0, 1}.
Task: Decide, whether there exists B ∈ Bm

n such that∑
x∈y+Lk

βx = ζy for k ∈ N and y ∈ Hk.

0-1-Uniquenessm is defined analogously. Note that for s1 = (1, 0)T and s2 = (0, 1)T , 0-1-Consistency(S1, S2) coincides
with 0-1-Consistency2. Hence, again, the case m = 2 is easy. However, Irving & Jerrum [9] showed that both, 0-1-Con-
sistency3 and 0-1-Uniqueness3, are NP-complete. Note that [2] gave a related NP-hardness result, involving, however, in
part inequalities rather than equations. Wewill now give a polynomial-time transformation from 0-1-Consistencym to 0-1-
Consistencym+1 that preserves uniqueness.
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Fig. 1. Transforming 0-1-Consistency3 (left) to 0-1-Consistency4 (right) by cyclic shifts of the planes perpendicular to the e1-axis. The dashed lines indicate
the fourth dimension. Note that on all dashed lines exactly one point is chosen. (For clarity, not all such lines are depicted.)

Theorem 4. Let m ≥ 3. Then there is a polynomial-time transformation from 0-1-Consistencym to 0-1-Consistencym+1 that
preserves uniqueness.

Proof. For i, d ∈ N with i ≤ d in the following let ei denote the ith standard unit vector of Rd.
Let an instance Im of 0-1-Consistencym be given, specified by n ∈ N, and ζy ∈ {0, 1} for k ∈ M and y ∈ Hk. Further let

for k ∈ M

Ck = {y ∈ Hk : ζy = 1}, R =

⋂
k∈M

Ck + Lk.

Then every solution B ∈ Bm
n has entries 0 for all components outside of R.

One may be tempted to simply add a ‘photographically negative’ copy of the given instance as a second layer and set
the tomographic constraints in the direction em+1 to 1 on Nm

× {0}. This is, however, not suitable since the other m sets of
tomographic constraints for that second layer would then have values in {N − 1,N}.

In order to guarantee binary constraints as needed in 0-1-Consistencym+1, we will need to resort to a more involved
construction. In fact, the construction of an equivalent instance of 0-1-Consistencym+1 will be based on stacked images of
R that are obtained by permuting the sets ie1 + H1 for i ∈ N; see Fig. 1. More specifically, let π be a cyclic permutation on
N . Note that π induces a bijection σ : Nm

→ Nm via

x = (ξ1, . . . , ξm)
T

7→ σ(x) =
(
π(ξ1), ξ2, ξ3, . . . , ξm

)T
.

The corresponding bijection for the ith iteration π i will be denoted by σ i and its inverse by σ−i. Also, Nm will be identified
with the subset Nm

× {1} of Nm+1. Then, for i ∈ N and z = (uT , i)T ∈ Hk × {i}, we set y = σ−i+1(u) and

θz =

{
ζu : for k = 1;
ζy : for k ∈ M \ {1}.

For the final direction let

K =

n−1⋃
i=0

σ i(R), θz = 1 for z ∈ K × {0}.

Setting all other values θz to 0we obtain an instance Im+1 of 0-1-Consistencym+1. Fig. 1 gives an example form = 3. Clearly,
the construction is polynomial.

Given a solution C ∈ Bm+1
n for Im+1, the submatrix of all entries with last index 1 is, of course, a solution B for Im.

So, let B = (βx)x∈Nm be a solution for Im, and let Am = {x ∈ Nm
: βx = 1}. Now, set

Am+1 =
{
(σ i−1(x)T , i)T : x ∈ Am, i ∈ N

}
,

and let C = (γx)x∈Nm+1 ∈ Bm+1
n be the matrix with entries 1 precisely for the indices in Am+1. By construction, we have for

k ∈ M ∑
x∈z+Lk×{0}

γx = θz for each z ∈ Hk × N.



S. Brunetti et al. / Theoretical Computer Science 406 (2008) 63–71 67

Also, since K is the disjoint union of all the sets σ i(Am) for i ∈ N ,∑
x∈z+{0}m×N

γx = θz for each z ∈ Nm
× {0}.

Finally note that from each of the n submatrices with fixed last index i ∈ N , the whole matrix C can be uniquely
reconstructed. Hence C is unique if and only if B has this property. �

As a simple consequence of [9] and Theorem 4 we obtain the following corollary.

Corollary 5. For m ≥ 3, 0-1-Consistencym and 0-1-Uniquenessm are NP-complete.

2.2. Projecting down to 0-1-Consistency(S1, . . . , Sm)

Next we develop a projection technique that allows us to transform 0-1-Consistencym to 0-1-Consistency(S1, . . . , Sm).
The decisive issue is, of course, to avoid unwanted intersections of lines parallel to S1, . . . , Sm thatwouldmess up the setting.
Note that this could easily be done if s1, . . . , sm were part of the input. Then one could choose the directions ‘skew enough’.
Here, however, s1, . . . , sm are given beforehand and the directions have to be taken as they are. Further note that due to
the fact that all tomographic constraints are binary, the reduction techniques of [4] cannot be applied. Hence we need a
technically more involved construction. The key arguments are given in Lemma 6.

In the following, we assume that m ≥ 3, and that s1, . . . , sm are linearly independent. For notational convenience we
also assume (without loss of generality) that sk = ek for k = 1, 2.

Let Im be an instance of 0-1-Consistencym, specified by n ∈ N, and ζy ∈ {0, 1} for k ∈ M and y ∈ Hk. The idea is to first
replace Im by a sparser instance and then apply the linear mapping ϕ : Rm

→ R2 given by ϕ(ek) = sk for k ∈ M . Note that,
since s1 = e1, s2 = e2, when restricted to R2

× {0}m−2, the map ϕ acts as the identity on R2. Now, set

µ = max
i∈M,j∈{1,2}

|σi,j|, ρ = 2µ2n + 1.

Further, let ψ : Rm
→ Rm be the linear map defined by ψ(ek) = ρk−1ek for k ∈ M , let p = ρm−1n, P = {1, . . . , p}, and let

Λ : Bm
n → Bm

p be defined by B = (βx)x∈Nm 7→ (γy)y∈Pm with

γy =

{
βx if x ∈ Nm and y = ψ(x);
0 else.

Clearly, ψ andΛ are injections. Let

H ′

k = Pk−1
× {0} × Pm−k, L′

k = {0}k−1
× P × {0}m−k.

By expanding the given right-hand sides from Hk to H ′

k by setting

θy =

{
ζx if x ∈ Nm and y = ψ(x);
0 else,

we obtain an instance I′ of 0-1-Consistency(S1, . . . , Sm) equivalent to Im. In particular, B ∈ Bm
n is a solution of Im if and

only ifΛ(B) is a solution of I′.
Next we will show that ϕ(ψ(Nm)) = G, where

G =

m⋂
k=1

⋃
y∈ψ(Nm)

ϕ(y)+ Sk =

⋃
y1,...,ym∈ψ(Nm)

m⋂
k=1

ϕ(yk)+ Sk.

Note that G ⊂ N2.

Lemma 6. ϕ is injective on ψ(Nm), ϕ(ψ(Nm)) = G, and ρm−1
= O(nm−1).

Proof. The last statement is clear since ρm−1
= (2nµ2

+ 1)m−1
= O(nm−1).

Next, we show injectivity of ϕ on ψ(Nm). So, let x = (ξ1, . . . , ξm)
T , x′

= (ξ ′

1, . . . , ξ
′
m)

T
∈ Nm with ϕ(ψ(x)) = ϕ(ψ(x′)).

Then

ϕ(ψ(x − x′)) =

m∑
k=1

ρk−1(ξk − ξ ′

k)sk = 0,

hence
m∑

k=1

ρk−1(ξk − ξ ′

k)σki = 0 for i = 1, 2.



68 S. Brunetti et al. / Theoretical Computer Science 406 (2008) 63–71

Since x, x′, s1, . . . , sm are integer vectors, ρ is integral, and

|(ξk − ξ ′

k)σki| ≤ µn ≤ ρ − 1 for k = 1, . . . ,m and i = 1, 2,

it follows that

(ξk − ξ ′

k)σki = 0 for k = 1, . . . ,m and i = 1, 2.

Since s1, . . . , sm 6= 0, we can conclude that x = x′.
Finally, we turn to the assertion that ϕ(ψ(Nm)) = G. Since quite obviously ϕ(ψ(Nm)) ⊆ G, the main part of the proof is

to show that ϕ(ψ(Nm)) ⊇ G.
Let

C = (s1, . . . , sm), aTi = tTi C .

Then

ker(ϕ) = ker(C), ker(ϕ)+ Rei = {x ∈ Rm
: aTi x = 0},

are of codimensions 2 and 1, respectively.
Now, consider g ∈ G, and let y1, . . . , ym ∈ ψ(Nm) and λ1, . . . , λm ∈ R with

g = ϕ(yi)+ λisi for i ∈ M .

In particular, the system

ϕ(y) = ϕ(yi)+ λisi for i ∈ M

is feasible. Hence there is a vector y ∈ Rm with

y − yi ∈ Rei + ker(ϕ) for i ∈ M ,

whence the linear system

aTi y = aTi yi for i ∈ M

is feasible. Note that

a1 = (0,−1, tT1 s3, . . . , t
T
1 sm)

T , a2 = (1, 0, tT2 s3, . . . , t
T
2 sm)

T

are linearly independent, and the rank of (a1, . . . , am) is 2; therefore we have

aTi = tTi s1a
T
2 − tTi s2a

T
1 for i ∈ M .

Thus the linear system is feasible, if and only if,

tTi s1a
T
2y2 − tTi s2a

T
1y1 = aTi yi for i ∈ M \ {1, 2},

or, equivalently,

tTi s1t
T
2 Cy2 − tTi s2t

T
1 Cy1 = tTi Cyi for i ∈ M \ {1, 2}.

With yi = ψ(xi) = (ρ0ξi,1, . . . , ρ
m−1ξi,m)

T the condition reads explicitly∑
j∈M

ρ j−1(σi,2σj,1(ξ2,j − ξi,j)− σi,1σj,2(ξ1,j − ξi,j)
)

= 0 for i ∈ M \ {1, 2}.

Since ∣∣σi,2σj,1(ξ2,j − ξi,j)− σi,1σj,2(ξ1,j − ξi,j)
∣∣ ≤ 2µ2n = ρ − 1,

this is equivalent to

σi,2σj,1(ξ2,j − ξi,j)− σi,1σj,2(ξ1,j − ξi,j) = 0 for i ∈ M \ {1, 2} and j ∈ M .

Note that σi,1, σi,2 6= 0 for i ≥ 3. Hence, for j = 1 and j = 2 we conclude

ξi,1 = ξ2,1, ξi,2 = ξ1,2 for all i ≥ 3.

Now, let j ≥ 3. Then, for i = jwe obtain

σj,1σj,2(ξ2,j − ξ1,j) = 0,

thus

ξ1,j = ξ2,j for j ∈ M \ {1, 2}.



S. Brunetti et al. / Theoretical Computer Science 406 (2008) 63–71 69

If, on the other hand, i 6= j then

σi,2σj,1(ξ2,j − ξi,j)− σi,1σj,2(ξ1,j − ξi,j) = (ξi,j − ξ1,j) det(si, sj) = 0,

hence

ξi,j = ξ1,j for i, j ∈ M \ {1, 2} and i 6= j.

Summarizing, the vector x = (ξ1, . . . , ξm)
T

∈ Nm given by

ξi = ξi,j0 for i, j0 ∈ M and i 6= j0

is well defined, and we see that

xi ∈ x + Rei for i ∈ M ,

i.e., ϕ
(
ψ(x)

)
= g.

This completes the proof of the lemma. �

We are now ready to provide the asserted polynomial-time transformation from 0-1-Consistencym to 0-1-Consisten-
cy(S1, . . . , Sm) and from 0-1-Uniquenessm to 0-1-Uniqueness(S1, . . . , Sm).

Theorem 7. There is a polynomial-time parsimonious transformation from 0-1-Consistencym to 0-1-Consistency(S1, . . . , Sm).

Proof. The statement is trivial for m = 2; so let m ≥ 3. Let Im be an instance of 0-1-Consistencym, specified as usual by
n ∈ N, and ζy ∈ {0, 1} for k ∈ M and y ∈ Hk.

Further let µ, ρ ∈ N, ϕ : Rm
→ R2, ψ : Rm

→ Rm and G ⊂ N2 be defined as before.
Note that, as we have seen, every point g = (γ1, γ2)

T
∈ G is of the form g =

∑m
i=1 ρ

i−1κisi with κi ∈ N . Hence we have
for i = 1, 2

1 ≤ γi ≤ ρm−1
m∑
l=1

κl |σl,i| ≤ ρm−1
· m · n · µ.

So, with q = nmµρm−1 andQ = {1, . . . , q}we have G ⊂ Q 2. The corresponding instance I′ of 0-1-Consistency(S1, . . . , Sm)
will therefore live on Q 2. With Tk = {tTk g : g ∈ Q 2

} for k ∈ M it remains to set ζk,l to 0 or 1 for each k ∈ M and l ∈ Tk. Of
course, it suffices to specify those lines parallel to Sk which correspond to a right-hand side ζk,l = 1. But these are precisely
the lines

ϕ
(
ψ(x)

)
+ Sk for x ∈ Hk and ζx = 1.

It follows from Lemma 6 that Im is a yes-instance of 0-1-Consistencym if and only if I′ is a yes-instance of 0-1-Consisten-
cy(S1, . . . , Sm), and actually that the solutions of I and I′ are in one-to-one correspondence. �

With Theorems 4 and 7 the NP-hardness of 0-1-Consistency(S1, . . . , Sm) and 0-1-Uniqueness(S1, . . . , Sm) for m ≥ 3
follows now directly from that of 0-1-Consistency3 and 0-1-Uniqueness3. This completes the proof of Theorem 1.

3. Diagonally constrained permutations

In this section we prove Theorem 2 showing the NP-hardness of Permutation(S3) for s3 = (−1, 1)T ; the statement for
s3 = (1, 1)T follows by rotation about 90◦. So, here we have T = T3 = {i + j : i, j ∈ N} = {2, 3, . . . , 2n}. Hence an instance
of Permutation(S3) is specified by n ∈ N, and numbers ζ2, ζ3, . . . , ζ2n ∈ N ∪ {0}, and the task is to decide, whether there
is a permutation B ∈ Pn such that∑

i,j∈N
i+j=l

βi,j = ζl for l = 2, 3, . . . , 2n.

The hardness will be shown via a reduction from the following restricted version of NumericalMatchingWithTarget
Sums (NMTS).

RestrictedNumericalMatchingWithTargetSums (RNMTS).
Instance: n ∈ N, and γ1, . . . , γn ∈ Z with 2 ≤ γ1 ≤ γ2 ≤ · · · ≤ γn ≤ 2n and

∑n
i=1 γi = n(n + 1).

Task: Decide whether there exist permutations σ and π on N such that σ(k)+ π(k) = γk for k ∈ N.

RNMTS was shown to be NP-complete by Yu [11]. It is, however, not known whether RNMTS is still NP-hard when the
instances are restricted to those with γ1 < γ2 < · · · < γn; see [5] for more information about NMTS.
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Fig. 2. An example for the transformation.

LetI = (n; γ1, . . . , γn) be an instance of RNMTS. Our transformation is based on the observation thatI can be interpreted
in terms of an addition table for the numbers 1, . . . , n. More precisely, let A = (αi,j)i,j∈N be the n× nmatrix with αi,j = i+ j
(ordered according to our general convention). Then I is a yes-instance if and only if for each element γk an element αi,j
exists with αi,j = γk such that all chosen entries are in different rows and columns. Hence the positions of these entries
form a permutation matrix.

Fig. 2 (left) gives the example I = (5; 4, 5, 5, 7, 9) with n = 5. The selected entries are encircled. The underlying
permutation matrix is depicted on the right, and σ = (1, 3, 4, 2, 5), π = (3, 2, 1, 5, 4). The numbers associated with the
diagonals correspond to the numbers of different k for which γk = l for l = 2, 3, . . . , 10.

So, in general, we obtain an instance I′ of Permutation(S3) on the same number n by setting

ζl =
∣∣{k ∈ N : γk = l}

∣∣ for l = 2, . . . , 2n.

Now, suppose, that I is a yes-instance and let σ and π be the corresponding permutations. We define the matrix B =

(βi,j)i,j∈N by setting

βσ(k),π(k) = 1 for k ∈ N

and βi,j = 0 otherwise. Then B is a solution for I′.
Conversely, let B ∈ Pn be a solution of I′, and let {(ik, jk) : k ∈ N} be the set of index pairs for which βik,jk = 1 ordered

so that ik + jk ≤ ik+1 + jk+1 for k = 1, . . . , n − 1. Let the permutations σ and π be defined by

σ(k) = ik, π(k) = jk for k ∈ N.

Then, of course, σ(k)+ π(k) = γk.
Note that the transformation is polynomial. This completes the proof of Theorem 2.

4. Final remarks

Our results extend known more ‘numerical’ hardness results to the purely combinatorial case. One might wonder
whether this can be further extended to inverse problems involving higher-dimensional slices of matrices. The following
example associated with Radon-transformswill show that this is not the case in general. It is concernedwith 3-dimensional
matrices with prescribed sums over all three coordinate planes.

Radon3.
Instance: n ∈ N, ξi, ηj, ζk ∈ N0 for i, j, k ∈ N.
Task: Decide whether there is a matrix B = (βi,j,k)i,j,k∈N ∈ B3 such that

n∑
j=1

n∑
k=1

βi,j,k = ξi for i ∈ N

n∑
i=1

n∑
k=1

βi,j,k = ηj for j ∈ N

n∑
i=1

n∑
j=1

βi,j,k = ζk for k ∈ N.

Of course, this problem can easily been extended to higher dimensions and to sums over other kinds of spaces. As is
shown in [1] and [7] Radon3 is NP-complete, and so are higher-dimensional versions thereof.

The fully combinatorial problem0-1-Radon3, however, that is obtained fromRadon3 by restricting the input to ξi, ηj, ζk ∈

{0, 1} for i, j, k ∈ N is trivial. In fact, there is a solution if and only if∑
i∈N

ξi =

∑
j∈N

ηj =

∑
k∈N

ζk.
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If this condition is satisfied the task is restricted to those coordinate planes for which the right-hand side is 1. Hence, in
the projection to the plane spanned by e1, e2 we only need to find a permutation, and a solution to the given instances is
obtained by lifting the entries 1 to different heights.
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