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Abstract: After highlighting the difficulties encountered when implementing a supervisor
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differences between event- and signal-based approaches, new algorithms are introduced to apply
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at the end.

Keywords: Discrete Event Systems, Supervisory Control Theory, Automata, Finite State

Machine, Programmable Logic Controllers

1. INTRODUCTION

Supervisory Control Theory (SCT) is a model-based ap-
proach that aims at automatically generating a supervisor,
given a set of Discrete Event System (DES) models rep-
resenting the uncontrolled plant behavior and the spec-
ifications to be fulfilled. Since the foundational work of
Ramadge and Wonham (1987), SCT has been the subject
of many theoretical results and it was expected to have
an important impact in the industrial field. Yet, as earlier
noticed by Fabian and Hellgren (1998) and Roussel and
Giua (2005), and more recently by Vieira et al. (2017)
and Zaytoon and Riera (2017) the use of SCT in industry
is still not wide-spread. Some reasons for this are the
problems encountered when implementing supervisors on
industrial controllers such as Programmable Logic Con-
trollers (PLCs).

As initially described in Fabian and Hellgren (1998), there
is no actual rule on how to implement a supervisor. SCT
relies on the automata theory and thus on an event-based
formalism. Yet, when implementing it, most of the physical
systems such as Programmable Logic Controllers (PLCs)
are considered with Input/Output signals. Consequently,
many problems can arise: The SCT framework handles
events, while a PLC implementation handles I/O signals.
Thus, to be consistent with the event-based formalism, the
system has to be modeled using rising and falling edges of
signals instead. Yet, events are asynchronous while a PLC
runs cyclically: reading the input signals, executing the
code, and updating the output signals. Therefore, several
rising or falling edges can occur at the same time, which
violates the fundamental definition of events introduced in
the automata theory: any two or more events cannot occur
simultaneously.

As detailed in Section 2.1, many previous works have
proposed improvements to the SCT modeling framework

or to its implementation on real controllers. Yet, to the
best of our knowledge, all these works rely, at least partly,
on event-based models.

The signal-interpreted approach proposed in this paper
uses Boolean Finite Automata extended with variables
(EBFAs), which handle exclusively I/O signals instead
of events. This makes its implementation on signal-based
controllers such as PLCs easier by avoiding the need to
adapt an event-based approach to a signal-based environ-
ment.

The remainder of this paper is organized as follows.
Related works and the main differences between signal-
interpreted and event-based approaches are presented in
section 2. The definition of an EBFA system and the
generation of its Stable Location Automaton are intro-
duced in section 3. After a presentation of the proposed
methodology in section 4, the SCT algorithms developed
for EBFA models are explained and illustrated in section 5.
In section 6, a case study illustrates the advantages of the
proposed signal-based approach over an event-based one.
Finally, conclusion and future works are drawn in the last
section.

2. BACKGROUND
2.1 Related works

One main drawback of event-based approaches is that
events are assumed to occur asynchronously. This leads
to the difficulty to represent conditions which depend not
only on a single event but on several independent events.
In practice, for large-scale systems with many concurrent
processes —and for which the order of occurrence of some
events is not relevant—, as well as for sampled systems,
several rising or falling edges of signals can occur at the
same time. With a basic event-based approach, such a



system must be described by a model which represents
all possible combinations of events or sequences of events.
Consequently, this model will possess a large amount of
“non-functional” states. With a signal-interpreted model,
using Boolean conditions on signals permits to model the
same system with fewer states. Fig. 1 gives an example
of a condition where both a and b must be True. The
signal-interpreted model requires only 2 states and 1
transition while the event-based model needs 4 states and
6 transitions. For complex conditions, depending on more
inputs, the event-based model state space would grow
exponentially.
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Fig. 1. A condition between two states 1 and 2 expressed
using signals (left) and using events (right)

Regarding modeling formalisms, models extended with
variables, such as Extended Finite Automata (EFA) and
(EFSM), have been proposed by Skoldstam et al. (2007)
and Chen and Lin (2000), respectively. These formalisms
permit to define more compact models and, in turn, also to
ease their readability. Yet, in these models, the transitions
are still triggered by events while variables are used on top
of an event either to define a guard and/or an action.

So far, symbolic SCT approaches have found limited ap-
plications. Le Gall et al. (2005) proposed a method for
systems modeled by symbolic transition systems. However,
this method does not guarantee maximal permissiveness.
Later, Ouedraogo et al. (2010) proposed another method
to generate a maximally-permissive supervisor from EFA
models. Recently, Miremadi et al. (2012) proposed a
method to efficiently represent EFA and compute a super-
visor by direct manipulations of Binary Decision Diagrams
(BDDs). Miremadi and Lennartson (2016) also investi-
gated on-the-fly symbolic synthesis to reduce the state-
space explosion problem during the reachability search.
These methods generate a supervisor by computing more
restrictive guard conditions to be applied to the transitions
of the EFA plant models.

Regarding PLC implementations, as earlier presented by
Fabian and Hellgren (1998) and Balemi and Brunner
(1992), some properties, such as delay insensitivity and
interleave insensitivity, have to be fulfilled by the system
under control to avoid implementation problems. These
properties ensure a consistent implementation on PLC,
but also limit the variety of models that can be imple-
mented. Several methods have been proposed from (Fabian
and Hellgren (1998)) to Leal et al. (2012) and Vieira et al.
(2017). However, even if recent methods permit to ease the
PLC implementation of a supervisor they still do not verify
automatically if the above can be fulfilled (Vieira et al.
(2017)). Thus, the problem of using event-based models
remains and PLC implementation of SCT supervisors is
still an open problem.

2.2 Signal-interpreted and event-based models

In both the proposed EBFA and the commonly used event-
based formalisms, states represent the same concept. This
is also valid for the concepts of marked and forbidden
states. The main difference between the two formalisms lies
in the definition and the interpretation of the transitions.

Regarding these transitions, the difference between the two
formalisms is that, in the event-based approach, events
are listed in an alphabet, and each transition is given
only one event. When this event occurs, the transition is
immediately fired and the model switches from a location
to another one.

With the signal-interpreted approach, a transition is not
directly linked to one signal but to a Boolean function
composed of several signals, called a condition or a guard.
Also, according to the signal-interpreted semantics, self-
loops are implicitly defined: for a given valuation of the
signals, if no outgoing transition can be fired then the
active state remains active.

Also, key feature of signal-interpreted models such as
Signal-Interpreted Petri Nets (SIPN) or Grafcet is their
stability search algorithm. This implies that after a change
of the signals’ valuations, several evolutions may occur in
the model. These evolutions must be performed until a
stable situation is reached. A formal definition of an EBFA
system and its rules of evolutions with stability search are
given in the next subsections.

For those who would prefer to consider a model without
stability search, this is also possible as long as the flatten
model satisfies the properties P5 to P8 of a Stable Location
Automaton given in subsection 3.2.

3. SIGNAL-INTERPRETED BOOLEAN FINITE
AUTOMATA’S DEFINITION

To suit the SCT framework, the definition of Boolean
automata, introduced by Leiss (1981), is further defined
here. An EBFA system is a set of connected deterministic
EBFAs running in parallel, each of them described by a
6-tuple: EBFA = (Q,qo, 5, A, M, X) with:

@ a non-empty set of states,
qo & non-empty set of initial states, gg C @,
S a non-empty set of Boolean signals,
A a set of transitions, each transition being defined
by 0 = <QSrca dConds QDest> with:
- gsre a single state in Q,
- 0Cond its firing condition, a Boolean function® in

3

- (pest & single state in Q.
e M a non-empty set of marked states, M C @,
e X aset of forbidden states, X C @, X may be empty.

Each EBFA also satisfies the following properties:

P1 For any transition § € A, gsrc(0) # qpest(0).
Self-loops are implicitly defined: for a given valuation
of the signals, if no outgoing transition can be fired
then the active state remains active.

L wn «y» and 7 correspond to the logical operators AND, OR,
and NOT, respectively



P2 A forbidden state should not have any outgoing evo-
lution.
This property is needed for EBFAs because an evolu-
tion between two stable locations may go through a
transient location that contains a forbidden state.

The set of signals S can be subdivided into three cat-
egories. These categories are similar to the I/O events
categories introduced in Balemi et al. (1993):

Sr: Input signals which represent signals the supervisor
can only read, i.e. the supervisor cannot control their
values. It typically corresponds to sensors’ signals but
could also be uncontrollable actuators commands.

So: Output signals which represent signals the supervisor
can set or reset, i.e. the supervisor can control their
values. It typically corresponds to actuators com-
mand’s signals.

Sp: Internal signals are signals only the supervisor can
control and read.

Also, S7, Sp and Sy, are defined such that: S = S;USo U
SL7S[ﬂSo=@, SonNSr=0and S;NSL =0.

S may contain only Input or only Output signals. Yet, in
general, the absence of output signals would lead to an
empty supervisor as the supervisor would not be able to
control any signals leading to a forbidden state.

For those who would prefer to consider an EBFA system
where only one state is active at a time in each EBFA, the
following properties have to be satisfied too:

P3 Each EBFA has only one initial state: |go| = 1.

P4 For any two transitions from the same source state,
their conditions must be mutually exclusive:
V((Sl,ég) e A% 01 75 02 s
QSrc(al) = QSrc(52) = Jcond(al) : 5cond(52) =0

3.1 Ewvolution rules

The evolution rules of an EBFA system are similar to those
of SIPN and Grafcet (see Frey and Litz (1998) and Provost
et al. (2011a) for more formal details):

R1 At the initialization, all the initial states are active.
All the other states are inactive.

R2 A transition is enabled when its source state is active.
A transition is fireable when it is enabled and when
its transition condition is True. A fireable transition
must be immediately fired.

R3 Firing a transition provokes simultaneously the deac-
tivation of its source state and the activation of its
destination state.

R4 When several transitions are simultaneously fireable,
they are simultaneously fired.

R5 When a state shall be both activated and deactivated
by applying the previous evolution rules, it is acti-
vated if it was inactive, or remains active if it was
previously active.

R6 The previous rules are iterated until a stable location
is reached (i.e. until no further transition can be fired
given the current valuation of the signals).

Since the firing of a transition is supposed to take no
time, iterated firing is interpreted as simultaneous.

According to the signal-interpreted semantics, several sig-
nals and conditions can be True at the same time, and for
an unknown period. First, this implies that several transi-
tions can be fired at once in each EBFA of an EBFA system
(rules R2 and R4). Secondly, this also implies that several
transitions can be sequentially fired without changes of the
I/O signals until a stable location is reached (rule 6). The
locations activated and deactivated during the search for
a stable location are said transient and have no impact
on the stable behavior. Thus, the use of a stability search
algorithm avoids the presence of undesired avalanche (or
cascade) effects in the implementation.

The generation of a Stable Location Automaton that rep-
resents the stable behavior of an EBFA system according
to the above mentioned rules is given in the next subsec-
tion.

3.2 Stable Location Automaton generation

The Stable Location Automaton (SLA) formal definition
and generation algorithms for an EBFA system are similar
to those for a Grafcet (see Provost et al. (2011a) for more
formal details). Thus, the TELOCO software (see Provost
et al. (2011b)) has been slightly adapted for EBFAs.

Since the SLA model will be used as a basis for the
proposed SCT algorithms, its main concepts are reminded
here.

An SLA represents only the reachable and stable states
of an EBFA system and the possible evolutions (i.e.
sequences of simultaneous firings of transitions) between
these states. If, during the generation of the SLA, a
cycle is detected between two reachable locations, the
EBFA system is considered as inconsistent and no SLA
is generated.

A deterministic SLA can be described by a 6-tuple:
SLA = <L, 107 S7 A, L]w7 LX> with:

e [ a non-empty set of stable locations, each location
being defined by I = (Qact, LstabCond) With:
- Qact a set of active states in the EBFA,
- Lgtapcond its stability condition, a Boolean func-
tion in S.
e [y the initial unstable location, Iy ¢ L,
lp corresponds to the set of all initial states of the
EBFA. This location is unstable because the stable
location reached after the initialization will depend
on the I/O signals valuations at that moment.
e S a non-empty set of I/O signals,
S is composed of I/O signals only (S = Sp U Sy).
EBFA’s local signals’ values are assigned and evalu-
ated during the SLA generation.
e A a set of evolutions, each evolution being defined by
d= <ZSTC7600nd7ZDeSt> € (L U lO) x B x L.
e Lj; a set of marked locations, Ly; C L,
e Lx a set of forbidden locations, Lx C L.

The SLA of an EBFA system is constructed iteratively,
starting from the initial location, and adding reachable
locations until a fixed-point is reached. By definition and
construction of an SLA (and independently of whether the
properties P3 and P4 have been used or not), the following
properties are satisfied:



P5 Any location of an SLA is reachable from the initial
location [g.

P6 The stability condition of a location — its implicit self-
loop — is defined as the Boolean negation of all the
outgoing evolutions’ conditions from this location.

P7 For any two outgoing evolutions from the same
location, their conditions are mutually exclusive:
V(él,(sz) € AZ 51 # 52 R
lSrc(él) = lSrc(52) = 5cond(51) . 5cond(§2) =0

P8 There can be at most one evolution between any two
locations: V(d1,02) € A% : 8y # o,
lSrc(él) = lSrc(52) = lDest((;l) 7& lDest((SZ)

Fig. 2 gives an instance of an EBFA system, composed of
three EBFAs, and its SLA. As illustrated on the SLA,
the initial location [y is unstable as at least one of its
outgoing evolution would be True (@ +a-b+a-b =
1). Thus, depending on the values of a and b at the
initialization, the location reached after initialization will
be (12,21,31), (11,22,31) or (11,23,31). Also, according
to the signal-interpreted semantics, if, for instance, the
location (12,21,31) is the active location and the output
signal a is currently Fulse, it is possible to stay in this
location forever, irrespective of the value of the input
signal b.

b b -
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Fig. 2. An EBFA system composed of three EBFAs (on
the left) and its SLA (on the right) 2

4. METHODOLOGY
4.1 Banning occurrence of signals

In event-based models, the absence of a transition for a
given event means that this event cannot occur (for a plant
model) or should be forbidden (for a specification model).
Thus, when needed, self-loops have to be explicitly defined.
In signal-interpreted models, as previously mentioned, self-
loops are implicitly defined. This implies that deleting a
transition (resp. an evolution) or restricting its Boolean
condition will not prevent a signal to change its value
since this will only loosen its implicit self-loop Boolean
condition. Thus, the banning of signals has to be explic-
itly defined using forbidden states (resp. locations). The
condition on signals to be banned needs to be added to
the guard of the transition (resp. evolution) leading to a
forbidden state (resp. location).

From our point of view, the systematic use of forbidden
states (in the plant and specification EBFA models) to ban
a specific condition on signals eases their understanding.
Forbidding a value of one signal or a condition on several

2 For legibility reason, the stability condition of each location is not
represented in this figure. It can be calculated accordingly to P6

signals is then explicitly defined, while in the event-based
approach, the absence of a self-loop for a given event
may either mean that this event should be forbidden from
this state, or that given the other plant and specification
models, this event cannot occur from this state and it
is useless to represent it. Moreover, most of the time,
only a small subset of combinations of signals needs to
be explicitly forbidden from each state. It is consequently
easier to write the combinations of signals which have to be
forbidden in a transition guard rather than writing all the
possible combinations which are permitted in self-loops, as
described in Kumar et al. (1991).

4.2 Marked and forbidden locations of an SLA

In order to apply the SCT approach on the basis of plants
and specifications EBFA models, the SLA generation algo-
rithms have been adapted to take into account marked and
forbidden locations. As a location of an SLA represents a
combination of several active states of the EBFA system,
the following rules are added to the SLA generation algo-
rithms:

R7 A location is marked if and only if all of its active
states are marked.

R8 A location is forbidden if and only if at least one of
its active states is forbidden.

Thanks to the rule R8 and to local signals, it is also
possible to define forbidden location in a modular way.
In the example given in Fig. 2, none of the states of the
two first EBFAs are forbidden. If one wants to forbid the
fact that the states 12 and 22 to be both active at the
same time, one can add the third EBFA and use two local
signals X12 and X22 (which are True when the states 12
and 22 are active, respectively, and False otherwise) to
synchronize these EBFAs. This additional EBFA does not
impact negatively the composed model state space since
these two states are fully dependent on the current states
of the two other EBFAs.

4.3 FEvolution to and from forbidden location

As explained in subsection 4.1, forbidden states and loca-
tions are useful to specify which combinations of signals
should be banned. Since a forbidden location is a location
that should not be reached, there is no need to consider
the possible outgoing evolutions from a forbidden loca-
tion during the SLA generation. Thus, when a forbidden
location is encountered during the SLA generation, the
search algorithm stops the exploration of the current evo-
lution and sets its stability condition to True (i.e. once
in a forbidden location, whatever the signal valuations,
this forbidden location will remain active). Also, since all
forbidden locations of an SLA are equivalent (since they
have the same transition function: an implicit self-loop)
they could be merged into one. This leads to the following
SLA property:

P9 There can be at most one forbidden location:
|ILx| <1

These simplifications, also described in the Algorithm 1
(lines 4 to 19), are done symbolically on-the-fly using
BDDs, which permits to save time and memory during
the SLA generation.



5. ALGORITHMS

In this section, the SCT algorithms developed for EBFA
models are explained and illustrated. They lead to a non-
blocking, controllable SLA, the supervisor. Futur works
could consider improvement of the efficiency of these
algorithms.

SCT algorithms are applied on the SLA obtained from the
plants and specifications EBFAs. Thus, the term evolution
refers to a sequence of simultaneous firings of transitions
in the plants and specifications EBFAs but corresponds
in the SLA to one transition from one stable location to
another one.

5.1 Controllable and uncontrollable signals

Similarly to the event-based approach, distinction between
controllable signals and uncontrollable ones is needed.
In the remainder of the paper, the input signals S;
will be considered as uncontrollable while output signals
So correspond to the controllable ones. As previously
mentioned, an SLA does not contain any local signal:
they have been assigned and evaluated during the SLA
generation.

5.2 Controllability of an evolution

By definition, an evolution is said controllable if and only if
it is possible to prevent its firing by acting only on control-
lable signals. Consequently, determining if an evolution is
controllable or not, corresponds to determining if it exists
at least one combination of controllable signals such that
this evolution condition can be set to Fulse.

However, in order to ensure the minimal-restrictiveness of
the proposed SCT approach, determining if an evolution
is controllable is not sufficient. It is also necessary to de-
termine its controllability condition, defined as a Boolean
condition representing all combinations of signals permit-
ting to prevent its firing.

Determining the controllability condition of a Boolean evo-
lution condition, which consists in determining all Boolean
conditions making it False, can be efficiently solved using
all-solutions SAT solvers (see Yu et al. (2014); Toda and
Tsuda (2015) for more details). The negation of a Boolean
evolution condition, denoted dcong, iS given in conjunctive
normal form (CNF( )) as an input to an all-solutions SAT
solver (A11-SAT( )) which aims at finding all Boolean
assignments of the controllable signals satisfying dcond,
independently of the values of the uncontrollable signals.

These Boolean assignments are also represented symbol-
ically as the Boolean controllability condition ctrlcond-
If no assignment can be found, then the controllability
condition is False and the considered evolution condition
is said uncontrollable.

This can be expressed as follows:

ctrlcona(8cond) + AL1=SAT (CNF (8cond) , Scirt)

To better understand the goal of this algorithm, two
examples are presented in Fig. 3. Both cases represent
a single evolution from a location 1 to a location 2.
C7 and C5 are controllable signals while U; and Us are
uncontrollable signals.

C-Cy Uy +Cy-Cy- Uy
Case 1) _)@ 1-Ca- Uy 1-C2 1@
Co- Uy + Cy - U
Case 2) _)@ 2 U+ 0y Us @

Fig. 3. Example of a controllable evolution (Case 1) and
an uncontrollable evolution (Case 2)

Table 1 gives the evaluation of the evolution conditions for
the cases 1 and 2 for the different values of their respective
controllable signals. For the case 1, it can be observed
that the evolution condition dcong is False if and only
if C5 is set to False, while for the case 2, no matter the
value of Cs, the value of the evolution condition d¢epg will
always depend on uncontrollable signals. Therefore, in the
case 1, the evolution is controllable and its controllability
condition is C9, while in the case 2, the evolution is not
controllable and thus its controllability condition is False.

Table 1. Controllability evaluation applied to
Case 1 (left) and Case 2 (right)

Cl ‘ CZ ‘ 5C0nd ‘ (;Cond .
0 0 | False | True Cs ‘ 0Cond ‘ dCond
ol1] 0y U, 0| Us Uy

1 0 | False | True 1 U, U,

1] 1 Uy U

5.8 Applying SCT algorithms

Given an SLA, generated according to the rules defined
in the subsections 4.2 and 4.3, solving the SCT problem
consists in solving the controllability and the non-blocking
problems.

A new method and algorithms are proposed in this sec-
tion in order to generate a supervisor from a (signal-
interpreted) SLA. This method is explained in the pseudo-
code Algorithm 1 and will be illustrated through an exam-
ple given in Fig. 4.

In the example given in Fig. 4, marked locations are
represented with double circles and the forbidden location
is represented with a crossed circle. The location 1 is
reachable from the initial location, the locations 1, 3, 6
and 7 are marked (and thus co-reachable), the location
Lx is the forbidden location. All locations are reachable
only through the evolutions depicted in Fig. 4.

Considering the non-blocking problem, the first steps
of the method consist in searching for non-co-reachable
locations (see Algorithm 1, lines 1 to 3) and merging them
into the forbidden location Lx (lines 4 to 19). Once these
steps are performed, the SLA will contain only reachable
and co-reachable locations and the forbidden location L x.
At this point, this SLA is non-blocking (or empty) but
may still be non-controllable.

In the example given in Fig. 4 a), the locations 2 and 5
are not marked but are co-reachable: they should be kept;
while the locations 4 and 8 are not co-reachable: they
should be merged into the forbidden location Lx. After
the execution of the Algorithm 1, the SLA presented in
Fig. 4 b) is obtained.



Considering the controllability problem, since the SLA has
only one forbidden location, this problem can be solved it-
eratively from the forbidden location Lx (see Algorithm 2,
line 2). The first step of this iterative algorithm is to check
the controllability condition of an evolution leading to the
forbidden location Lx (line 5).

On the one hand, if an evolution leading to the forbid-
den location Lx is non-controllable, its source location
is merged into the forbidden location Lx (lines 8 to 12).
Then, locations that are reachable only from the source
of this evolution are removed, as well as their incoming
evolutions (lines 13 to 20). This operation also guarantees
that the non-blocking property will be preserved. Finally,
if two evolutions from a same state are leading to the for-
bidden location, one of them is removed and their guards
are combined as a Boolean disjunction (lines 21 to 26).
On the other hand, i.e. an evolution leading to the for-
bidden location Lx is controllable, its guard is replaced
by the negation of its controllability condition (line 28).
Other evolutions leaving from the same source location
see their guard combined as a Boolean conjunction with
this controllability condition (line 31). As a consequence,
some evolution guards may become always False (line 32).
Such evolutions have to be removed and their destination
check for reachability (line 35), similarly to the first case.
This is repeated either until all evolutions leading to the
forbidden location are controllable or until all locations
have been merged into the forbidden location.

Algorithm 1: Initial non-blocking solving

Data: an SLA satisfying P9
Result: a non-blocking SLA satisfying P9

1 Co-reachability analysis:

2 L¢, < BackwardReach(L )
> All co-reachable locations have been identified

w

I

Forbidding all non-co-reachable locations:

5 foreach ! € L\ (L¢, U Lx) do

6 foreach § € A do

7 if lgrc(6) =1 then

8 A+ A\ {6}

9 break
10 else if Ipest(d) =1 then
11 if 30" € A :lgre(8') = lgre(6) ANpest(') =

Lx then

12 6C0nd(6/) = 6Cond(6/) + 5Cond<6)
13 A+ A\ {d}
14 else
15 ‘ lDest((S) «— Lx
16 break
17 L+ L\{l}

18 > All non-co-reachable locations have been merged into
the forbidden location L x

19 > The SLA now contains only co-reachable locations
and the forbidden location L x

In the example given in Fig. 4 b), the locations 5 and
1 are the only locations directly leading to the forbidden
location Lx. As illustrated in subsection 5.2, the evolution
condition Cy - Uy + Cs - Uy from the location 5 to Lx
is uncontrollable. After the execution of the Algorithm 2

Algorithm 2: Non-blocking and controllability solv-

ing

Data: a non-blocking SLA satisfying P9

Result: a non-blocking controllable SLA satisfying
P9, i.e. the supervisor

1 Controllability analysis:

2 AT()C’heck — {5 cA: lDest((S) = LX}

3 while AToCheck 7& @ do

4 foreach § € Ar,cnecr, do

5 CtrlC(md <— A11-SAT (CNF (5Cond(5)) ,So)

6 if ctricong = False then > § not controllable
7 LCheck — @

8 foreach 0’ € A : Ipest(0') = lgrc(0) do

9 ‘ lDest(al) — LX

10 foreach ¢’ € A : lgc(8') = lgrc() do

11 LCheck: — LCheck U lDest (6/)

12 A+ A\{¢}

13 while Lopeek \ Lx # 0 do

14 foreach [ € Lopecr, do

15 if 10’ € A 1 lpest(6') =1 then

16 Loneek — Loheek U {l/ c L :

36" € A, lge(8") = I A
Ipest(0”) =1'}

17 Leheck < Loneer \ {1}

18 A+ A\{d € A:lpest() =1}

19 L+ L\{l}

20 > All locations reachable only from lg,..(d)
and their incoming evolutions have been
removed

21 if 3(0,8") € A% 1§ # 8" Nlpest(8) =
Ipest(6") = Lx ANlgre(8') = lgrc(6") then

22 5Cond(5/) — 6Cond(5/) + 6Cond(5//)

23 A+ A\{d"}

24 ATaCheck < AToCheck \ {5/I}

25 AToC'heck: — AToC'heck U {6/}

26 > Potential redundant evolutions leading to
Lx are combined as a disjunction; this new
evolution needs to be checked

27 else > § is controllable

28 0cond(0) < ctrlcond

29 foreach 0’ € A : lg..(8") = lgrc(d) do

30 LCheck — @

31 5Cond(6l) — 5C’ond(6/) ' CtrlCond

32 if dcond(8’) = False then

33 LCheck < LCheck U lDest (5/)

34 A+ A\ {¢}

35 repeat procedure lines 13 to 19

36 AToCheck < AroCheck \ {0}

37 return

until line 20 on this evolution, the location 5 is merged into
Lx; the location 6 (as well as its incoming evolution) which
was reachable only from the location 5 is also removed.
Since there are now two evolutions from the location 1 to
Lx, with guards Cy - Cy - Uy and C} - Cs - Uy, they are
combined as a disjunction (lines 21 to 26); this gives the
single evolution from the location 1 to Ly, with the guard
Cy-Cy-Uy 4+ Cyp-Cy-Uy. At this point, the SLA presented
in Fig. 4 ¢) is obtained.

Then, the Algorithm 2 is executed again on this new



evolution from the location 1 to Lx As illustrated in
subsection 5.2, this evolution condition is controllable.
Consequently, this evolution condition is replaced by the
negation of its controllability condition (line 28), i.e. Cs.
Also, the evolutions from the location 1 to the locations 2
and 3 see their guard combined as conjunction with this
controllability condition (line 31), which respectively gives
(a - Cy 71) -Cy and (Cl - Cy - 71) -Cy. At this point, the
SLA presented in Fig. 4 d) is obtained.

Since the new condition of the evolution from the location
1 to the location 2 is always False (line 32), the locations
2 and 7 as well as their incoming evolutions are removed
(lines 32 to 35). No further evolution needs to be checked.
The final version of the SLA is presented in Fig. 4 e). This
SLA is now controllable and non-blocking.
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Fig. 4. Supervisor generation on a simple SLA

6. CASE STUDY

The dining philosophers problem is used to illustrate the
advantages of using the proposed signal-based approach
instead of an event-based approach. This problem consists

in two (or more) philosophers seated at a round table with
forks placed between each pair of adjacent philosophers. A
philosopher can take a fork or put it back at any time, and
he needs two forks to eat.

P;_take_right P;_take_left

P;_put_left

P;_put_right

P;_take_right
P;_put_left P;_put_right

P;_takeleft; Piy1-take_right

P;_take_left
*)
P;_put_left; P;yq_put_right

P;_1_take left; P;_take_right

-
P;_1_put_left; P;,_put_right

Fig. 5. Event-based finite automaton models for one
philosopher (above) and its two adjacent forks (below)

P;_has_Left + P;_has_Left -
P;_has_Right P;_has_Right
ﬁ
P;_has_Left - P;_has_Left +
P;_has_Right P;_has_Right

Pi_has_Left - Piy1-has_Right +
P;_has_Right - P;_j_has_Left
—{ Free Tgken

Fig. 6. EBFA models for one philosopher (above) and its
adjacent forks’ specification (below)

With an event-based approach, this problem can be mod-
eled with the automata presented in Fig.5.

With the event-based approach, it is important, in the
philosopher model, to make the distinction between the
states where the philosopher has only picked his left fork
or only picked the right one, as different events would be
allowed /forbidden depending on the states (e.g. it is not
possible to take twice the same fork).

With the signal-based approach, these two states can
be merged into one thanks to Boolean conditions on
transitions, as presented in the above model in Fig. 6.

Thus, the plant models describing the philosophers be-
havior have one state and four transitions less, and are
thus more readable. Regarding the specification model, one
forbidden state is needed to specify which combinations of
signals are forbidden.

When considering more philosophers, as for the event-
based models, the plant model of the philosopher will be
duplicated. However, for the specification model, only the
transition evolution needs to be modified, thus improving
their readability.

Regarding the state-space explosion issue, for 5 philoso-
phers, the event-based approach will generate a monolithic
supervisor with 1971 states and 7985 transitions while
the proposed signal-based approach generates a monolithic
supervisor with only 124 states, but 15027 transitions.



The fact that this supervisor possesses more transitions,
and more complex transition conditions, is due to the
fact that the signal-based approach considers all possible
simultaneous changes of signals. This drawback w.r.t. the
complexity of the obtained supervisor is also an advantage
when it comes to its implementation on a synchronous
controller such as a PLC:

e First, when an asynchronous implementation will
need many evolutions to process several changes
(which could also leads to long processing queues),
a synchronous implementation will get to the stable
destination state in a single but slightly longer step.

e Most importantly, with the proposed signal-based
approach, the fact that several philosophers may take
one fork simultaneously does cause any delay insensi-
tivity, interleave insensitivity, or inexact synchroniza-
tion issue; all possible combinations of “simultaneous
events” are calculated symbolically.

7. CONCLUSION

This paper proposed a signal-interpreted approach to the
SCT problem, and presented adapted algorithms for the
proposed EBFA models. The applicability of this approach
has been illustrated on an academic case study, which
highlights its advantages in terms of design expressibility
and readability.

Future works will consider the efficiency of the proposed
algorithm, and consider the size reduction of the supervi-
sor:

e Boolean variables being already implemented through
the use of internal signals (Fig. 2), a natural extension
of this work would be the introduction of integer
variables.

e Also, a modular approach should be considered,
where the SCT algorithms should determine addi-
tional Boolean guards to be attached to the transi-
tions of the initial plant EBFAs. To achieved it, the
stability search algorithms used for the SLA genera-
tion should be modified to be used as a “reachability
search” algorithm, and the SCT algorithms proposed
in this paper should be executed in between two of
its iterations. Thereby, blocking and non-controllable
locations would be removed on-the-fly; thus, reducing
the state-space to be explored.
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