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Abstract: HPC applications usually are not written in a way that they can cope with dynamic
changes in the execution environment, such as removing or integrating new nodes or node com-
ponents. However, for higher flexibility in regard to scheduling and fault tolerance strategies, ade-
quate application-integrated reaction would be worthwhile. With legacy MPI codes, this is difficult
to achieve. In this paper, we present LAIK, a lightweight library for distributed index spaces and
associated data containers for parallel programs supporting fault tolerance features. By giving LAIK
control over data and its partitioning, the library can free compute nodes before failure and do repli-
cation for rollback schemes on demand. Applications become more adaptive to changes of available
resources. We show an example of using LAIK and present first results on a prototype implementa-
tion.
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1 Introduction

Modern High Performance Computers (HPC) systems become more and more parallel
nowadays. To achieve the goal of exascale computing, technologies like on-chip paral-
lelism is increasingly used in these supercomputers [SDM10]. This development greatly
challenges programmers, especially on managing the data across all these distributed com-
pute nodes. For future systems, Defense Advance Research Projects Agency (DARPA)
expects that existing technology such as Checkpoint & Restart requires extensive amount
of resource, which is contradictive to the expected high efficiency of HPC. Therefore, it
is no longer enough to handle the evolving requirements on fault tolerance and reliabil-
ity [Be08]. Towards exascale computing, different approaches are possible to increase the
system reliability. For example, attempts5 to add fault tolerant components [FD00] to the
4th version of Message Passing Interface (MPI) exists. Furthermore, mechanisms like pro-
cess level migration [Wa12] or virtual machines [Na07] are presented to achieve a fault
tolerant environment, which is transparent to the application programmer. However, these
solutions often require a significant amount of resources similar to the classical Check-
point & Restart technique and limit an application’s scalability, providing only limited
applicability to emerging exascale requirements.

In extension of application-transparent strategies mentioned above, we point out that there
is another possibility to make applications fault tolerant. Instead of speculating on the pro-
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grammers’ intention and applications’ execution, one can ask the programmer to write the
program in a manner that includes some a fault tolerance features. This results not only
in reduced resource management overhead by the framework that provides fault toler-
ance, but also keeps this framework lightweight, with the application keeping control over
any additional overhead required e.g. from redundancy. This way, we can achieve simple,
lightweight and scalable fault tolerance on modern exascale HPC.

However, one cannot expect the programmer to write fault-tolerance features from scratch.
To this end, in this paper, we propose a lightweight library to do that: LAIK focuses on
providing fault tolerance by taking over control of the partitioning of data containers. If
a node or node component is expected to fail, the library can be instructed to free the
corresponding part of an HPC system from any computing load and application data. This
is done by repartitioning within LAIK. Furthermore, to help with spontanoues failures,
LAIK can be asked to maintain redundant copies of important data structures by updating
copies on nearside nodes (local checkpointing). The update frequency can be controlled
by a predicted probability of failure. If a fault-tolerant MPI implementation detects node
failure, a local rollback and repartitioning can be done with the help of LAIK.

In this work, we present our requrirements for LAIK, an API proposal, and a first prototype
implementation using an MPI communication backend. The latter is available as open-
source on Github6. Furthermore, we show first scalability measurements.

2 Related Work

The currently most-used de-facto parallel programming model for legacy HPC applica-
tions is MPI [Fo12], which allows to do message passing or one-sided communication via
mapping of remote address spaces, both on a low level. For higher productivity, the Parti-
tioned Global Address Space (PGAS) model was proposed which provides global address
spaces and allows to program for good locality of accesses by making the fact whether
an address is local or remote explicit. Implementations come either in new programming
languages such as Chapel [ZCC07] and X10 [Sa14], or as libraries such as Global Array
Toolkit (GAT) [Ni06], GASPI [Al13], and DASH [Fü14, IFG16]. The drawback of Chapel
or X10 is that programs have to be rewritten which can be painful for legacy code. The
library GAT allows programmers to do put and get operations from local memory to data
structures in a global address space. Similarly, GASPI provides a global address space with
distributed data and allows access via RDMA (remote direct memory access) operations
provided e.g. by Infiniband, which should result in better asynchronous communication
than MPI. DASH uses C++ templates to provide a selection of standard data structures for
the application programmer. The communication of DASH is built on top of DART - a
run-time system which provides abstraction of different communication libraries.

All of the mentioned approaches provide application programmers a full interface for all
possible communication needs of an application. In contrast to that, LAIK only provides
one specific functionality and can be used in cooperation with existing communication

6 https://github.com/envelope-project/laik
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Figure 1: LAIK and Communication Backend

libraries, by asking a communication backend to do required actions for LAIK. The latter
can be provided by the application itself to ensure correct embedding into already existing
communication behavior of an application.

3 Design of the LAIK Library

The idea behind LAIK is to provide lightweight management for the distribution of global
data containers for parallel applications using index spaces. By giving LAIK control over
partitioning, it should be able to provide application-integrated fault tolerance features. To
this end, the library is expected to sit in-between the application and the communication
library used by the application, as shown in Figure 1.

First, we state our requirements guiding the design. Similar to MPI, LAIK should support
SPMD-like programming with collective functions. That is, every participant in a paral-
lel application, a LAIK task, executes the same code. Most LAIK functions are collective
operations, this is all LAIK tasks have to call into this same LAIK function for correct
behavior. For highest flexibility of using LAIK with existing application codes, LAIK is
expected to work in cooperation with other communication libraries such as MPI. Com-
munication backends in LAIK should have a documented API and may be implemented
by the application itself. For convenience, we will provide standard backends for MPI and
multi-threaded shared memory (which mostly reduces communication to synchronization)
which may be customized by applications. Furthermore, we want porting of existing codes
to LAIK to be done in an incremental way, step by step: the programmer can put one data
structure after the other into LAIKs responsibility. This should not mean that the actual
allocation of memory resources now has to be done by LAIK, as the programmer still
may want to use allocator functions of another library. To this end, programmers should
be able to specify an allocator interface (alloc/realloc/free) which LAIK will use to get
real memory resources. Applications may use complex data structures such as compressed
matrices in an application-specific format. It would be difficult to make LAIK aware of
how to handle all kind of such data structures. To still allow LAIK to take control over
partitioning of such data, the programmer should be able to use LAIKs core abstraction,
which is about distributed (possibly multi-dimensional) index spaces. Whenever the par-
titioning of the index space changes, the application can request to get a call-back with
parameters specifying which parts of the index space should migrate among LAIK tasks.
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Figure 2: An example of a partitioning specification for a 1d data structure.

With these requirements in mind, we now list the features we want LAIK to provide. The
goal of LAIK is to provide a fault tolerant, yet efficient way of distributing data across
different nodes. Towards this goal, the following functionalities must be supported:

Partitioning and Repartitioning of Data: For application data to be globally distributed
among different parallel tasks, LAIK should be able to take control over the partitioning.
Here, a data partition for a given task specifies which data should be available locally to
the task using direct memory access. Different program phases or algorithms may expect
different parts of data to be available locally. This requires the declaration of multiple par-
titionings the application may want to switch back and forth. For such switches, LAIK is
expected to calculate and execute the data transfers required to satisfy the requirements
for task-local data accesses as specified by the partitionings. To allow for minimal data
exchanges, the application should specify the type of access done during the time a par-
titioning is active. E.g. switching to a partitioning where after the switch all data will be
overwritten anyway does not need any communication at all. Access types are read-only,
read-write, write-only. A data element may be wanted to be locally available at multiple
tasks for reading, but usually only at one task for writing. However, multiple writers can
be supported if a conflict resolution is provided which decides about the resulting value.
Reduction operations such as Sum, Product, or Minimum, are typical conflict resolutions.
The operations are triggered when the program switches to a partitioning with read access
to the given data elements. decrease programming effort.

Coupling Partitionings Of Data Structures: Applications often use multiple different
data structures at the same time. Thus, if LAIK decides that only a given portion of a data
structure will be available locally at one task, the application may want simultanous access
to elements in other data structures. To provide flexible coupling of partitionings, the user
actually should be able to specify coupling of (partial) index spaces according to the data
pattern of algorithms. E.g. for matrix vector multiplication, we want to couple the row di-
mension of the 2d index space of the matrix to the 1d space of the vector. Another example
are compute kernels which, for writing to an element in one data structure, may need read
access to corresponding data elements in another structure and its neighbors in the index
space (for so-called ghost layers in stencil codes). Switching between partitionings of one
data structure thus may result in automatic switching also for other data structures.

Communication backend: LAIK shall support different communication libraries to exe-
cute data migration demands due to switches between partitionings. Standard backends to
be supported are MPI and Shared Memory. The latter is wanted to allow multi-threaded
programs to use LAIK for synchronization. Furthermore, LAIK should work together with



LAIK: A library for fault tolerant distribution of global data 5

Figure 3: Load Balancing (left), Remove work from N1 due to failure prediction (right).

any communication library used by an application. This should be supported by allowing
application programmers to implement their own LAIK backend.

Efficient Fault Tolerance: The application data shall be recoverable upon system fail-
ure. The LAIK library shall support both recovery-based (e.g. Checkpoint & Restart) and
proactive (e.g. Fault Prediction) fault tolerance. We want LAIK to support local recovery,
that is on node failure, a near-side node should be able to take over the computation of the
failed node by using duplicated data. This way, LAIK can support a more efficient scheme
than classical global Checkpoint & Restart. For failure prediction, we expect that there is a
way to do online monitoring of hardware health via adequate sensors. However, this is out
of scope for LAIK. Any support to react to outside sources should be implementable as a
thin layer on top of LAIK. This may regularly poll (synchronous to program phases) for
incoming messages using IPC mechanisms or protocols like Message Queue Telemetry
Transport (MQTT).

Load Balancing: A task within a parallel application usually has a work load depending
on size of data it has access to. As LAIK provides partitions to tasks, this influences the
work load distribution. We want LAIK to support automatic workload distribution via
regular repartitioning of data structures. For that, LAIK should be able to make use of
task-related profile data (such as time measurements of program phases). To be able to

Figure 4: Hierarchical LAIK Instances
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support different load balancing mechanisms, both static and dynamic, a key-value store
may be needed to have historical data available. This must be persistant to allow static load
balancing.

Hierarchical Data Partitioning: In order to make the LAIK library even more usable,
LAIK shall be able to run in a nested multi-instance mode. It should be possible to con-
nect different LAIK instances on different hierarchy levels. Thus, a partition in one LAIK
instance should map to a top-level index space in a lower LAIK instance. To this end, LAIK
index spaces must be able to shrink or expand. Data migration request may be passed be-
tween instances. Thus, a repartitioning happening in a lower LAIK instance is ignored in
a higher LAIK instance, but a repartitioning of a higher instance will potentially result in
size changes of index spaces in lower LAIK instances, resulting in forced repartitionings
in the lower instances. The expected use for this nesting functionality is that large HPC
systems may have a hierarchical topology with different resource capabilities (network,
processors, accelerators) at different levels. This can be represented by adequate LAIK
nesting. In the simplest case this would be inter-node and intra-node.

Figure 2 shows an example partitioning of 1d data among nodes N0, N1, and N2 (rows).
For each element, exactly one node is the owner with read and write access. As shown
in the figure, we want LAIK to provide copies for reading of the neighbor elements at
the border of owned regions. This is useful for stencil codes. This example shows that it
is useful to “switch” to the same partitioning, which ensures consistency of the values of
elements to be accessable at multiple nodes. This, instead of a switch, it is better to talk
about enforcing consistency requirements of a given partitioning. In the example, this will
result in copying data as shown by the arrows in the figure. To support communication
asynchronous to computation, a program first has to acquire access to parts of a LAIK
partition with different access permission right after a switch: in the example separately
for the RW and R parts. This may allow to already do computations on the inner parts of
the owned regions while commmuncation for the border elements is still going on.

Figure 3 (left) shows an example of data re-distribution for load balancing. First, the data
is distributed unequally across nodes. Upon a load balancing request, recalculating of par-
tition borders from profile data results in a data redistributing with better load balanc-
ing. Figure 3 (right) shows an example of data reacting to failure prediction as part of a
pro-active fault tolerance scheme. A pre-failure condition for node N1 results in LAIK
initiating a repartitioning such that the failing compute node is excluded from execution.
Here we assume that a system health monitor with integrated fault predictor exists. Related
works such as [Li06] shows the possibility of predicting system failure.

Figure 4 shows a hierarchical configuration using different nested LAIK instances. Appli-
cation data is first divided into LAIK data partitions node-wise. These data partitions then
are mapped to top-level spaces if the inner LAIK instances. These divide the data again
to be assigned to different devices (for example CPU cores or multiple GPUs) within the
node.
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# i n c l u d e ” l a i k −backend−mpi . h ”
i n t main ( i n t a rgc , c h a r ∗ a rgv [ ] )
{

L a i k I n s t a n c e ∗ i n s t = l a i k i n i t m p i (& argc ,& argv ) ;
La ik Group ∗ world = l a i k w o r l d ( i n s t ) ;

/ / a l l o c a t e g l o b a l 1d do ub l e (8 b y t e s ) a r r a y : 1 mio e n t r i e s
L a i k D a t a ∗ a = l a i k a l l o c 1 d ( world , 8 , 1 0 0 0 0 0 0 ) ;

/ / i n i t i a l i z e a t m a s t e r ( o t h e r s do n o t h i n g )
l a i k s e t n e w p a r t i t i o n i n g ( a , LAIK PT Master , LAIK AP WriteOnly ) ;
l a i k m a p ( a , LAIK DL CANONICAL , ( vo id ∗∗ ) &base , &c o u n t ) ;
do ub l e ∗ base ; u i n t 6 4 t c o u n t ;
f o r ( u i n t 6 4 t i = 0 ; i < c o u n t ; i ++) base [ i ] = ( do ub l e ) i ;

/ / d i s t r i b u t e d a t a e q u a l l y among a l l t a s k s , do p a r t i a l sums
l a i k s e t n e w p a r t i t i o n i n g ( a , LAIK PT Str ipe , LAIK AP ReadWrite ) ;
l a i k m a p ( a , LAIK DL CANONICAL , ( vo id ∗∗ ) &base , &c o u n t ) ;
do ub l e mysum = 0 . 0 ;
f o r ( u i n t 6 4 t i = 0 ; i < c o u n t ; i ++) mysum += base [ i ] ;

/ / w r i t e p a r t i a l sums as i n p u t f o r sum r e d u c t i o n
L a i k D a t a ∗ sum = l a i k a l l o c 1 d ( world , 8 , 1 ) ;
l a i k s e t n e w p a r t i t i o n i n g ( sum , LAIK PT All , LAIK AP SUM ) ;
l a i k m a p ( sum , LAIK DL CANONICAL , ( vo id ∗∗ ) &base , &c o u n t ) ;
∗ base = mysum ;
/ / mas te r−on ly : does sum r e d u c t i o n t o be r e a d a t m a s t e r
l a i k s e t n e w p a r t i t i o n i n g ( sum , LAIK PT Master , LAIK AP ReadOnly ) ;
i f ( l a i k m y i d ( wor ld ) == 0) {

l a i k m a p ( sum , LAIK DL CANONICAL , ( vo id ∗∗ ) &base , &c o u n t ) ;
p r i n t f ( ” Sum : \%.0 f ” , ∗ base [ 0 ] ) ;

}
l a i k f i n a l i z e ( i n s t ) ;

}

Figure 5: Example using LAIK for parallel vector initialization and sum.

4 Examples

Figure 5 shows the implementation of a parallel vector sum using LAIK with the MPI
backend. The compiled binary can be run with “mpirun” using the number of LAIK tasks
as requested as number of MPI tasks. First, the vector is initialized on the master node
using a master partitioning giving all elements write access just at master. To actually
write the values, the partitions have to be “mapped” to local memory using an canonical
ordering: the index into the 1d array is equal to the offset in memory (more data layout
options are planned for 2d or 3d data). Afterwards, we switch to a Stripe partitioning
with equal size for all tasks, resulting in MPI messages from master to other nodes. After
another mapping request for direct access, partial sums are done with the result written to
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do ub l e getEW ( u i n t 6 4 t i , vo id ∗ d ) {
SpM∗ m = (SpM∗ ) d ;
r e t u r n ( d ou b l e ) (m−>row [ i + 1] − m−>row [ i ] ) ; }

main {
. . .
L a i k D a t a ∗ r = l a i k a l l o c 1 d ( world , 8 , SIZE ) ;
L a i k S p a c e ∗ s = l a i k g e t s p a c e ( r ) ;
L a i k P a r t i t i o n i n g ∗ p = l a i k n e w b a s e p a r t i t i o n i n g ( s ,

LAIK PT Str ipe , LAIK AP ReadWrite ) ;
l a i k s e t i n d e x w e i g h t ( p , getEW , m a t r i x ) ;
l a i k s e t p a r t i t i o n i n g ( resD , p ) ;

l a i k m y s l i c e ( p , &from , &t o ) ;
l a i k m a p ( r , LAIK DL CANONICAL , ( vo id ∗∗ ) &r e s , &c o u n t ) ;
f o r ( i n t r = from ; r < t o ; r ++) { r e s [ r−from ] += . . . }
. . .

}

Figure 6: Using element-wise weighting balancing workload involving a sparse matrix.

0 / 3 p a r t n g −0: 0 : [0 −999999] , 1 : ( empty ) , 2 : ( empty )
. . .
0 / 3 p a r t n g −1: 0 : [0 −333332] , 1 : [333333 −666665] , 2: [666666 −999999]
0 / 3 p a r t n g −0 => p a r t n g −1: l o c l : [0−333332]

send : [333333−666665] => T1 , [666666−999999] => T2
1 / 3 p a r t n g −0 => p a r t n g −1: r e c v : T0 => [333333−666665]
2 / 3 p a r t n g −0 => p a r t n g −1: r e c v : T0 => [666666−999999]

Figure 7: Excerpt of debug output from Example 1 (vsum). This shows the computed migration of indexes for switching between master and Stripe partitioning.

another LAIK array with just 1 element by every task. This shows how LAIK can be asked
to do a sum reduction, which actually happens when this array is switched to a partitioning
with only master having read rights to print out the final result.

Figure 6 shows excerpts from an example using LAIK to do computation on a sparse
matrix distributed in row dimension for partitions containing a similar number of non-
zero elements. For this, we use a index space which also is bound to vector “r”, which
has the same number of elements as there are rows in the sparce matrix. To calculate
the requested weighted Stripe partitioning, LAIK will call into an application provided
function (getEW) that returns a weight for each element in a 1d index space, equal to the
number of elements in that row. Here the struct type “SpM” encapsulates a matrix stored
in CSR format. Afterwards, each task does a loop over all matrx rows belonging to its
partition.
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5 Prototype Implementation and First Results

Our current prototype of the LAIK library7 comes with an MPI backend, support for 1d
data and different kinds of partitionings. The most important one is a Stripe partitioning,
which slices an 1d space into an ordered sequence of consecutive partitions, one for each
task. This partitioning type supports element-wise and task-wise weighting. Element-wise
weighting is shown in Fig. 6, task-wise weighting similarly uses a function called by LAIK
e.g. returning time measurements for load balancing. We do not yet provide support for
reacting in events from the outside, such as a request to free a given compute node.

The LAIK prototype source code provides examples as shown in the previous section
(vsum and spmv, respectively). As expected, with enough parallel work load, we can
achieve the same scalability as if an example directly would have used MPI. Optionally,
debug output can be printed which includes the calculated partitionings of index spaces as
well as the transition actions needed to migrate from one partitioning to another. This is
shown in Fig. 7.

6 Conclusion

In this paper, we presented our design and a prototypical implementation of LAIK, a leigth-
weight library for the distribution of data containers among tasks of a parallel application.
The idea is to separate the decision making of how to best partition application data from
the application code. This allows partitioning strategies which not only take program-
internal information (such as profiling data for load balancing) but also external sources
into account. This enables support for application-integrated fault tolerance features, such
as pro-active requests for removing computation from nodes predicted to fail soon. As fu-
ture work, we will support real-world applications which need coupling of index spaces
of used data structures, as well as support for multi-dimensional data. Further, we want to
show how a local checkpoint/restart functionality involving rollback only for data recov-
ered with the help of redundant data duplication within LAIK.
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man Federal Ministry of Education and Research (BMBF).
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