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Abstract

The number of Electric Vehicles (EVs) will increase dramatically in the coming years;
as a result, EV charging control will be required to fully realize EVs potential to reduce
CO2 emissions and support their integration into the current power infrastructure.
In this work, we use the formal mathematical method of distributed optimization to

address two key challenges in the area of EV charging control.

First, we consider the scalability problem faced by EV aggregators to schedule the
charging of a large number of EVs and provide system services. We propose a
new optimization framework for achieving computational scalability based on the
Alternating Direction Method of Multipliers (ADMM). It allows for distributing the
optimization process across several servers/cores. We demonstrate the performance
and versatility of our framework by applying it to two relevant aggregator objectives:
valley filling; and cost-minimal charging with grid capacity constraints. We evaluate
the scalability of our framework in numerical experiments using realistic input data.
Our results show that the solving time of our approach scales linearly with the
number of controlled EVs and outperforms the centralized optimization benchmark
as the fleet size becomes larger. Furthermore, to aid with the practical realization
of an EV aggregator control infrastructure, we study the implementation of EV
ADMM on top of a pub/sub middleware. Pub/sub middleware is based on a
communication paradigm, where subscribing entities register their interest in events
and are subsequently asynchronously notified of events that are issued by publishing
entities. This offers a lot of flexibility for the development of distributed applications.
The results of our testbed simulation experiments confirm that an EV aggregator
decentralized control infrastructure can benefit from using a pub/sub middleware to

reduce its communication complexity.

Second, we consider the real-time EV charging congestion control problem to allow
the safe integration of large EV numbers into the current distribution infrastructure.
We propose a novel distributed anytime algorithm for real-time congestion control
of EV charging, which maximizes the EV chargers’ utility of the grid without
violating the network’s operational constraints. The algorithm results from the
primal decomposition solution of the EV Network Utility Maximization (NUM)

problem. We provide the formulation of our solution approach, as well as the state-
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of-the-art dual decomposition solution. Both algorithms are then evaluated using
numerical simulations under static and dynamic conditions. Our results demonstrate
that the proposed primal algorithm remains stable and retains its anytime property
under dynamic conditions. Compared to the state-of-the-art solution, the proposed
algorithm offers improved scalability and reliability, allowing for the provision of EV

charging congestion control in milliseconds instead of minutes.
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Zusammenfassung

Die Anzahl an Elektrofahrzeugen (englisch: electric vehicles, EVs) wird in den
kommenden Jahren dramatisch steigen. Damit einhergehend wird eine Ladesteuerung
fiir Elektrofahrzeuge bendtigt, welche es ermoglicht das CO2-Reduktionspotential
von Elektrofahrzeugen auszuschopfen und eine grole Anzahl an Elektrofahrzeugen
ins bestehende Stromnetz zu integrierten. In dieser Arbeit wird die Methode der
Verteilten Optimierung herangezogen, um zwei zentrale Herausforderungen im Bereich

Ladesteuerung fiir Elektrofahrzeuge zu adressieren.

Im ersten Schritt betrachten wir das Skalierbarkeitsproblem von Elektrofahrzeug-
Aggregatoren bei der zeitlichen Ladeplanung fiir eine groffe Anzahl an Elektrofahr-
zeugen und bei der Erbringung von Systemdienstleistungen. Wir schlagen ein neues
Optimierungs-Framework vor, um Berechnungsskalierbarkeit auf Basis der Methode
Alternating Directions Method of Multipliers (ADMM) zu erzielen. Diese erlaubt
es, den Optimierungsprozess auf verschiedene Server/Prozessorkerne zu verteilen.
Wir zeigen die Leistungsfahigkeit und Vielseitigkeit unseres Ansatzes durch dessen
Anwendung bei zwei relevanten Aggregator-Zielen: Verbrauchsspitzenverschiebung
(engl. valley filling) und kostenminimale Aufladung unter Beriicksichtigung von
Kapazitatsbeschrankungen im Netz. Zudem evaluieren wir die Skalierbarkeit unseres
Frameworks in umfassenden numerischen Experimenten und auf Basis realistischer
Eingangsdaten. Unsere Ergebnisse zeigen, dass die Optimierungsszeit unseres Ansat-
zes linear mit der Anzahl der gesteuerten Elektrofahrzeuge steigt und bei héheren
Elektrofahrzeugzahlen schneller Ergebnisse liefert als die herkémmliche Methode der
zentralen Optimierung. Um dariiber hinaus einen Beitrag zur praktischen Realisierung
einer Elektrofahrzeug-Aggregator-Steuerungsinfrastruktur zu unterstiitzen, untersu-
chen wir die Implementierung von EV ADMM auf Basis von Pub/Sub Middleware.
Pub/Sub Middleware basiert auf dem Kommunikationsparadigma, dass zeichnende
Einheiten Interesse an Events bekunden und danach asynchron iiber Events, die von
verdffentlichenden Einheiten herausgegeben werden, informiert werden. Dies bietet
eine hohe Flexibilitét fiir die Entwicklung verteilter Anwendungen. Die Ergebnisse aus
unseren Testumgebungssimulationen bestétigen, dass eine dezentrale Elektrofahrzeug-
Aggregator-Steuerungsinfrastruktur von einer Pub/Sub Middleware profitiert und

damit ihre Kommunikationskomplexitat reduzieren kann.



Im zweiten Schritt betrachten wir das Problem der Echtzeit-Uberlastregelung beim
Laden von Elektrofahrzeugen. Damit leisten wir einen Beitrag zur sicheren Integration
einer groflen Anzahl von Elektrofahrzeugen in die derzeitige Verteilnetzinfrastruk-
tur. Wir schlagen einen neuen verteilten Anytime Algorithmus fiir die Echtzeit-
Uberlastregelung beim Laden von Elektrofahrzeugen vor. Dieser maximiert den
Nutzen von Elektrofahrzeugladegerdten am Netz ohne die operativen Bedingungen
fir den Netzbetrieb zu verletzen. Der Algorithmus ergibt sich aus der Primal
Decomposition Losung des EV Network Utility Maximization (NUM) Problems.
Die Formulierung unseres Losungsansatzes als auch die des State of the Art Ansatzes
auf Basis der Methode Dual Decomposition wird im Rahmen der Arbeit dargestellt.
Beide Algorithmen werden im Anschluss mittels numerischen Simulationen unter
statischen und dynamischen Bedingungen evaluiert. Es zeigt sich, dass der von
uns vorgeschlagene Algorithmus verglichen mit der State of the Art Losung eine
verbesserte Skalierbarkeit und Zuverlissigkeit aufweist und die Uberlastregelung

beim Laden von Elektrofahrzeugen in Millisekunden anstelle von Minuten ermoglicht.
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CHAPTER 1

Introduction

The number of Electric Vehicles' (EVs) will increase dramatically in the coming
years [1]. In large numbers, EVs have the potential to significantly contribute to
the reduction of CO2 emissions and help with the integration of renewable energy
resources, making them a relevant component in the mitigation of climate change [2].
However, to fully realize the climate change-related benefits of EVs and to support
their integration into the current power infrastructure, the charging of a vast number
of EVs will have to be controlled. Thanks to raising Information and Communication
Technology (ICT) investments in the power infrastructure, the capacity to control
EV charging will soon be available. Nevertheless, the design of optimal EV charging
control algorithms that scale to the large number of expected EVs and can cope the

highly dynamic changes of the power grid remains a challenge.

In this work, we use the formal mathematical method of distributed optimization to
address key challenges in the area of EV charging control. First, we look at the issue of
computational scalability for solving large-scale EV aggregator optimization problems.
Second, we consider the congestion control problem that emerges when large EV
numbers integrate into the power distribution infrastructure. For both aspects,

we leverage distributed optimization to formulate novel solution approaches that

n this work the term Electric Vehicle (EV) refers specifically to Plug-in Electric Vehicle (PEV),
which use electricity stored in batteries to drive the wheels and can be recharged by an external
electricity source.



1.1. MOTIVATION

contribute towards the practical realization of an EV charging control infrastructure.

1.1 Motivation

The introduction of a vast number of EVs in the current electric power system is
a double-edged sword. On the one hand, the load increase caused by large EV
numbers can have adverse effects on the distribution network, leading to new and
expensive energy peaks, overloading of lines and transformers, and a reduction of
power quality [3—6]. On the other hand, large numbers of EVs can be a valuable asset
to the system, because their flexibility and storage capabilities can be leveraged to
support system operators with the integration of renewable energy sources and the
reduction of GHG emissions [7-9]. To avoid the potential drawbacks of massive EV
integration and to allow system operators to utilize EVs as a resource to optimize
their operations, EV charging control is required. One major challenge for the
realization of an EV charging control infrastructure is the formulation of scalable,

reliable and efficient control algorithms.

Traditionally the control of power system devices operations is done in a centralized
manner, i.e., centralized optimization for open-loop control [10]. Examples of
classical problems for generators include unit commitment, economic dispatch, and
optimal power flow. However, the introduction of thousands or even millions of
EVs as controllable devices would make a centralized optimization impracticable.
Several solutions are being proposed to deal with this scalability issue. One
solution is to use less computationally intensive heuristic approaches to solve the
centralized optimization problem. Another solution is the definition of a hierarchical
control structure that separates the problem into smaller chunks to be controlled
independently of each other. While both these methods address the scalability
problem, they do so by sacrificing optimality. That means these methods do not
guarantee an optimal result [11,12], which translates into an underutilization of
resources, higher costs or a loss of revenue. Also, their performance is coupled with
the parameters of the problem [13]. Hence, extensive testing is required to determine

their performance, but no consistent theoretical performance can be guaranteed when
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the parameters change. Nevertheless, if some level of suboptimality and performance
variation can be tolerated, these approaches result in efficient algorithms that are
often better suited for practicable implementation [11,12]. A formal alternative
solution to address the scalability problem is the use of distributed optimization.
Distributed optimization solves an optimization problem by decomposing it into easier
to solve subproblems and a master problem that through an iterative procedure closes
in on the optimal solution of the original problem. The advantage of distributed
optimization is that it offers optimality guarantees that are independent of the
parameters of the problem. That means that as long as the problem is properly
defined the method will deliver the optimal result, regardless of the parameters [14].
What is even more appealing about this approach, is that the algorithm arising
out of solving a problem with distributed optimization can be used to formulate
a decentralized control protocol. Thus, distributed optimization offers a formal
approach for designing optimal decentralized control protocols. Examples of the
usage of distributed optimization to develop decentralized control protocols for
communication networks can be found in the literature and are currently used in
practice, e.g., in network congestion control [15-17].

Inspired by these previous results, we focus our work on the application of distributed
optimization to address two important EV charging control problems: EV aggregator
scheduling and real-time EV charging congestion control. The challenge of using the
distributed optimization approach is that the problems must be formulated under
a rigid structure which allows the application of its methods. At the same time,
the problem formulation must include all relevant problem features required to offer
an implementable EV charging control solution. By following this formal approach,
we not only expect to provide a scalable computational solution for our considered
problems but also gain some insights that can help with the design of a scalable EV

charging control infrastructure.

1.2 Problem statement

The control of EV charging is the key to unlock the EVs’ full potential to reduce

GHG emissions and support their integration into the current power infrastructure.




1.2. PROBLEM STATEMENT

However, the large number of expected EVs and the highly dynamic changes of
the power grid make the formulation of scalable, efficient and reliable EV charging

control algorithms a challenge.

The research objectives of this work are twofold:

1. Develop a scalable EV charging control approach based on distributed optimiza-
tion to allow large numbers of EVs to offer energy system services via an EV
aggregator and study its implementation in a distributed environment under

real-world assumptions.

2. Develop a real-time EV charging congestion control approach based on dis-
tributed optimization to support the integration of large numbers of EVs into

the current power distribution grid.

Once available in large numbers, EVs could provide substantial, reliable system
services with limited effect on their energy charging requirements, i.e., making sure
that the EVs will have enough charge to complete their trips [8]. Two key features
make EVs a promising resource for providing services. EVs, or cars in general, are
parked most of their lifetime. Also, their energy requirements can be predicted [7].
However, to have a significant influence on the power system as a whole, it is necessary
to control the behavior of a vast number of EVs.

One promising conceptual framework to allow the provision of system services by large
numbers of EVs is via the use of EV aggregators. In this framework, an EV aggregator
is a third party that acts as an interface between an EV fleet and the rest of the
power system (cf. [7,8]). The advantage of introducing EV aggregators is that they
allow the system operator to conceptualize EV groups as a single controllable unit.
Thereby, the complexity of managing individual EVs can be significantly reduced.
The EV aggregator must strike a balance between the charging requirements of
the EVs and the service needs of the system operator. The aggregator’s objective
for the EV fleet may vary depending on the service requirements. Example goals
are the balancing of demand and supply, load peak shaving, the flattening of the
demand profile (also known as valley filling), the provision of reserve capacity in the

energy market or the use of EVs to store renewable energy. Most of these goals rely
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CHAPTER 1. INTRODUCTION

on prediction techniques that estimate supply and demand for a particular future
horizon to enable a planning of system operations. This planning horizon is usually
one day ahead for 24 hours and is divided into 15 min intervals. During this planning
horizon, the objective of each EV is to reach a certain level of charge. Since most EVs
are connected to the grid more time than the time required to fulfill their charging
requirements, there is a time period, in which the EVs’ charging jobs can be flexibly
scheduled by the EV aggregator to offer system services. To do this, the aggregator
must know the EVs’ charging requirements ahead of time. These can either be
communicated to the aggregator by the EV, for example, "Tomorrow I must charge
15 KW between 8 pm and 8 am", or they can be predicted by the aggregator using
the travel information of each EV. A major challenge to this approach is that the
behavior of people is not easy to schedule. Deviations from the schedule are prone
to happen. One possible solution to mitigate the effects of schedule deviations is to
implement the scheduling in a receding horizon; this means recalculate the schedule
periodically as new information comes in, e.g., every 15 min. However, computing
optimal schedules at such timescales for a very large EV fleet poses a challenge for
the EV aggregator.

To obtain a maximal benefit from the flexibility of its EV fleet, the EV aggregator
can schedule the charging of individual EVs by solving a mathematical optimization
problem. Several previous studies on this topic [18-23] suggested to address the
EV aggregator scheduling problem via a centralized optimization. In centralized
optimization, the original problem formulation is solved using a state-of-the-art
optimization software. However, the introduction of thousands or even millions of
EVs as controllable resources makes a centralized optimization of large EV aggregators
computationally intractable [8,9,24]. To overcome this scalability problem and still
guarantee optimal solutions, recent studies have suggested distributed optimization
algorithms for EV charging control [25-30]. Nonetheless, all these studies focus
on a particular objective or control task and do not provide a general solution to
implement the various EV aggregator’s objectives. Moreover, none of the studies
demonstrate the scalability of their method as the number of EVs increases or
benchmark their distributed optimization approach against a centralized optimization
approach. Furthermore, a study of the implementation of these approaches in a
distributed environment under real-world assumptions is missing from the literature.

Therefore, in this work, our first aim is to provide a general and scalable framework




1.2. PROBLEM STATEMENT

for the distributed optimization of EV aggregators and to study its implementation

in a distributed environment.

While the EV aggregator conceptual framework focuses on the scheduling of EV
charging based on predictions to provide services for the power system as a whole,
certain problems have localized effects where the control of EVs must be done in
real-time. These problems require fast control responses (minute to millisecond
range) that a scheduling approach is not designed to deliver. The most prominent
of these problems is the control of EV charging to avoid overloading of distribution
grid components.

One of the major obstacles to the large-scale deployment of EVs is that the current
power distribution infrastructure is unable to handle the load increase. Several
studies corroborate that the introduction of EVs, especially with fast chargers, will
surpass the maximal capacity of lines and transformers, and cause voltage swings
in the distribution system [31-33]. In the worst case scenario, overloading of lines
and transformers caused by EVs can even lead to the triggering of distribution grid
protection devices and a subsequent blackout.

One solution to this problem is to upgrade the distribution grid to handle the load
increase. Upgrading the network, however, comes at an enormous cost and would
slow down EV adoption. A more practical solution is the control EV charging. The
challenge in this approach is the large number of expected EVs, their unknown
spatial distribution and high dynamic changes of the distribution grid. Moreover,
since predictions at this time scale and for individual devices are unavailable, a
blackout can only be avoided, if we can react within milliseconds, to prevent the
triggering of protection devices (usually around 200 ms after an overload). Therefore,
a distributed real-time EV charging control is required, that can adapt quickly to
the fast dynamics of the grid, allows for local decisions of individual devices, and
optimizes the global operation of the whole system.

The available literature offers some distributed approaches for real-time EV charging
congestion control [34,35]. However, these approaches are based on heuristics, which
do not guarantee that the EVs will make an optimal use of the available infrastructure
under all circumstances. Others [36,37] propose distributed optimization approaches,
but their resulting algorithms cannot cope with the real-time requirements of the

problem and may lead to the temporary overloading of transformers and lines.
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To address these issues, our second aim in this work is to provide a distributed
optimization approach for EV charging congestion control, which prevents overloading
of the grid’s components and, at the same time, maximizes the use of the available

infrastructure.

1.3 Approach

In this work, we leverage distributed optimization to address key challenges in EV
charging control. We strive for a general formulation of the problems that support
the application of distributed optimization techniques. Distributed optimization is
chosen, because it allows for scalable optimal solution algorithms and at the same
time provides a formal method to design decentralized control protocols, cf. [15-17].
First, we consider the problem of computational scalability faced by EV Aggregators
to solve large-scale EV charging scheduling problems. We address this challenge
by using the Alternating Direction Method of Multipliers (ADMM) for distributed
optimization. In the rest of this document, we refer to our approach as EV ADMM.
Second, we consider the problem of real-time congestion control for EVs charging in
distribution networks. For this problem, a general Network Utility Maximization
(NUM) problem formulation is used. In the rest of this document, we refer to this
approach as EV NUM. In the following, we will go deeper into the specifics of our
proposed EV ADMM and EV NUM approaches.

1.3.1 Distributed optimization for EV Aggregators with EV
ADMM

In EV ADMM we propose and evaluate a novel general and scalable framework
for the distributed convex optimization of EV aggregators. We introduce a general
formulation of the EV aggregator optimization problem that allows for local and
global objectives as well as local and global constraints of individual EVs and the EV
aggregator, respectively. We solve the general EV aggregator optimization problem
using the Alternating Direction Method of Multipliers (ADMM). This method is

7



1.3. APPROACH

chosen, because it can solve any optimization problem, provided the problem is
feasible and convex [38]. Based on ADMM, we formulate a versatile and scalable
distributed optimization framework (EV ADMM), which allows for distributing the
optimization process across several servers/cores. Our evaluations showcase the
versatility of our framework to solve various EV Aggregator optimization problems
and demonstrate that the solving time of our approach scales linearly with the
number of controlled EVs, outperforming the centralized optimization benchmark as
the fleet size becomes larger. EV ADMM can, therefore, be used to solve convex EV
charging planning and control optimization problems that have so far been considered
intractable due to large EV numbers.

To aid with the implementation of algorithms like EV. ADMM in a distributed
environment, we also propose DOPS (Distributed Optimization Publish and Sub-
scribe). DOPS is a framework for distributed optimization of EV charging, which
works on top of a pub/sub middleware. We study the implementation of EV
ADMM-like algorithms in DOPS using a testbed consisting of 15 virtual machines
connected via a VLAN network and compared three different communication schemes:
centralized, decentralized and decentralized with aggregation. Our results show
that the in-network aggregation feature of DOPS reduces the runtime of the
standard decentralized approach by drastically reducing the number of messages
exchanged between the EVs and the aggregator. This work represents the first actual
implementation of distributed optimization EV charging control algorithms in a
distributed environment and confirms that such decentralized control infrastructures,
can benefit from using a pub/sub middleware to reduce their communication

complexity.

1.3.2 Distributed optimization for EV charging congestion
control with EV NUM

In EV NUM, we propose a novel distributed optimization algorithm for real-
time EV charging congestion control. We formulate the problem not as a time
horizon scheduling problem, but as an instantaneous Network Utility Maximization

(NUM) problem. The goal herein is to maximize the utility of the EV chargers

8
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considering their constraints and the constraints of the grid for a particular state of
the distribution system. The standard approach for solving NUM problems relies
on using dual decomposition and subgradients methods, which through a dual price
exchange mechanism yields algorithms that operate on the basis of local information
(cf. [15]). This approach is applied to the EV charging congestion problem in [36].
However, the drawback of the dual decomposition approach is that its iteration
results are only feasible at optimality, i.e., the control values can only be used on
convergence. In real-time EV charging control, a grid overload and the triggering of
protection devices can only be avoided, if can react within milliseconds. Thus, EV
charging is a time critical application, where the iterative process of the optimization
algorithm may need to be stopped before optimality is reached. Furthermore, to
cope with the real-time requirements, the produced results on each iteration should
be feasible, i.e., the produced control values should be usable at any time. Hence,
we need an anytime algorithm. Anytime algorithms are defined as algorithms that
return some answer for any allocation of computation time and are expected to
return better answers when given more time [39].

We propose a distributed anytime algorithm for solving the NUM problem in EV
charging. Our approach to solve the NUM problem is based on dynamic budgets or
upper bounds for EV chargers. We modify the original EV NUM problem to include
budgets and apply primal decomposition. This results in an iterative distributed
anytime algorithm that generates the optimal budgets for each EV charger. We
define closed-form expressions for computations performed by EV chargers and
protection devices. Given the system’s current state, the different devices perform
computations using only their local information and exchange messages to reach the
optimal operation point for the whole system.

We conduct comprehensive evaluations of our proposed primal solution approach in
the IEEE 13 Node Test Feeder and the IEEE European Low Voltage Test Feeder.
There, we compared its behavior under static and dynamic conditions as well as
its scalability and impact on the grid to the state-of-the-art dual decomposition
approach. The results demonstrate that our proposed algorithm remains stable and
retains its anytime property under dynamic conditions. Moreover, compared to
the dual solution, the proposed algorithm offers improved scalability and reliability
for EV charging congestion control. Our distributed anytime approach allows the

implementation of EV charging congestion control in milliseconds instead of minutes.




1.4. CONTRIBUTIONS

This makes the system more robust to fast dynamic changes and provides better

support for the integration of EVs into the current distribution grid.

1.4 Contributions

The contributions made in this work affect two main topics: The charging control of
large EV numbers via an aggregator and real-time EV charging congestion control.

In the following, we discuss our contributions on each topic.

The main contributions to the charging control of large EV numbers via an aggregator

are:

i. We propose a novel general framework for the distributed optimization of convex
EV aggregator problems, which we call EV ADMM.

ii. We demonstrate the flexibility of EV . ADMM by solving two relevant EV
aggregator optimization problems: Valley filling and charging cost minimization

with capacity constraints.

iii. We show the scalability of EV ADMM for EV fleets with up to 1 million EVs and
benchmark its runtime and peak memory use against a centralized optimization
approach. We show that EV ADMM allows the solution of problems that are

intractable for a centralized optimization.

iv. We also propose DOPS, a pub/sub middleware framework for distributed
optimization. It provides a concise interface to implement algorithms like
EV ADMM in a distributed environment.

v. We show the advantages that DOPS provides to reduce the number of messages
for the implementation of EV ADMM in a distributed environment with a com-
prehensive benchmark of three different implementation approaches: centralized,

decentralized, and decentralized with aggregation.

The main contributions for real-time EV charging congestion control are:

10



CHAPTER 1. INTRODUCTION

i. We propose a novel distributed anytime algorithm for real-time EV charging
congestion control: A budged-based control algorithm that results from the
distributed optimization solution of the EV NUM problem with primal decom-

position.

ii. We analyze its convergence conditions and demonstrate its advantages against
the state-of-the-art dual decomposition EV NUM solution.

iii. We provide a coherent exposition of the EV NUM dual and primal decomposition

approaches and outline their main features concerning actual deployment.

iv. We provide a comprehensive comparison of both EV NUM solution algorithms
under static and dynamic conditions for the IEEE 13 Node Test Feeder and
show that our primal algorithm can offer better control performance than the

state-of-the-art dual algorithm.

v. We demonstrate that the EV NUM formulation can effectively be used for EV
charging congestion control in low voltage feeders. Besides, we show that our
primal solution approach offers better scalability and reliability than the dual
solution by conducting comprehensive 3-phase power flow simulation studies of
their implementation in the IEEE European Low Voltage Test Feeder.

Parts of the content and contributions of this work are published in:

o J. Rivera, P. Wolfrum, S. Hirche, C. Goebel, and H.-A. Jacobsen, “Alternating
Direction Method of Multipliers for decentralized electric vehicle charging
control,” in 2013 IEEFE 52nd Annual Conference on Decision and Control
(CDC), Dec 2013, pp. 6960-6965 [40]

o J. Rivera, C. Goebel, and H. A. Jacobsen, “Distributed Convex Optimization
for Electric Vehicle Aggregators,” IEEE Transactions on Smart Grid, vol. 8,
no. 4, pp. 1852-1863, July 2017 [41]

o J. Rivera, M. Jergler, A. Stoimenov, C. Goebel, and H.-A. Jacobsen, “Us-
ing publish/subscribe middleware for distributed EV charging optimization,”
Computer Science-Research and Development, pp. 1-8, 2014 [42]
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e J. Rivera and H.-A. Jacobsen, “A distributed anytime algorithm for network
utility maximization with application to real-time EV charging control,” in
2014 IEEE 53rd Annual Conference on Decision and Control (CDC), Dec 2014,
pp. 947-952 [43]

o J. Rivera, C. Goebel, and H.-A. Jacobsen, “A Distributed Anytime Algorithm
for Real-Time EV Charging Congestion Control,” in Proceedings of the 2015
ACM Sixth International Conference on Future Energy Systems, ser. e-Energy
15, 2015, pp. 67-76 [44]

e J. Rivera and H. A. Jacobsen, “On the Effects of Distributed Electric Vehi-
cle Network Utility Maximization in Low Voltage Feeders,” arXiv preprint
arXiv:1706.10074, 2017 [45].

1.5 Organization

The rest of this work is organized as follows: Chapter 2 provides an introduction to
the basics of distributed optimization. In Chapter 3, we discuss the related work to
our EV ADMM and EV NUM approaches. Our EV ADMM approach for scalable
EV aggregator distributed optimization is introduced, evaluated and discussed in
Chapter 4. The implementation of EV . ADMM in a distributed environment using a
pub/sub middleware is shown in Chapter 5. The EV NUM approach for EV charging
congestion control is presented, evaluated and discussed in Chapter 6. Finally,

Chapter 7 presents our conclusions.
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CHAPTER 2

Background

In this chapter, we review some of the basic distributed optimization concepts
required to understand the technical content in this thesis. First, we review the
definition of a convex optimization problem, which is the class of problems we use in
this thesis. Then, we review some of the basic methods for distributed optimization,
which build the basis in our approaches. Many of the examples and definitions of

the next sections are adapted from [46-48].

2.1 Convex optimization

In our problem formulations, we aim to obtain a convex optimization problem: The
minimization of a convex function over a convex set of constraints. The reason we
strive for a convex problem is that convex optimization problems posses a single
optimal point (local minimum is the global minimum) that can be reached from
anywhere within its feasible space. Many distributed optimization algorithms require
this characteristic. To understand the importance of this, we first need to know what

a convex set and what a convex function are.
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2.1. CONVEX OPTIMIZATION

A convex set is a set where a line segment can be drawn between any two points
in the set without leaving the set. Hence, if a line segment between x; and x5 is
defined as

=0z, + (1 —0)zy (2.1.1)

with 0 < 0 < 1, then a convex set C is defined as
xl,xQEC, O§6§1:>6$1+(1—9)I2€C (212)

There are many convex sets, like cones, hyperplanes, halfspaces, euclidean balls and
ellipsoids. However, the most prominent is the polyhedra, which can be considered
as the solution set of finitely many linear inequalities and equalities, i.e., Az < b and
Cz =b. In our problem formulations we use polyhedra sets, which are by definition

convex.

Similar to a convex set, a function f : R™ — R is convex if domf is a convex set
and

fO0x+ (1 —=0)y) <0f(x)+(1-0)f(y) (2.1.3)

for all z,y € domf,0 < 6 < 1. If f is concave then —f is convex. A function f is

strictly convex if domf is convex and

f0x + (1= 0)y) <0f(x)+ (1 -0)f(y) (2.1.4)

for all z,y € domf,x # y,0 < 6 < 1. There are several function which are
convex, e.g., affine functions ax + b, exponential e** powers z® for 0 > a > 1,
negative logarithm —log(x) and many more. It is important to make a distinction
between strictly convex and non-strictly convex functions, because some distributed
optimization approaches only support strictly convex optimization functions. As
an example, a linear function f(x) = z is convex but not strictly convex, while a

quadratic function f(z) = x? is convex and also strictly convex.
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With the lattes, we can define a convex optimization as follows:

minimize  fo(x)

) ] (2.1.5)
subject to  fi(x) <b;, i=1,....,m
where the objective and constraints are convex:
filaz + By) < afi(z) + Bfi(y), (2.1.6)

ifa+pf=1a>0,8>0. The variables x are the optimization variables of the
problem, also known as primal variables. There are several reliable and efficient
algorithms available to solve convex problems. The challenge is that convex problems
are usually difficult to recognize or formulate. There are many methods involved
in transforming optimization problem formulations into a convex form. However,
notably many problems can be solved via convex optimization, and many control
engineering problems are formulated as convex optimization problems. This is also
the case with many EV charging control problems, which is the reason why we focus
on convex optimization problems. For more details on convex optimization, we refer
readers to [46].

2.2 Distributed optimization

The objective in distributed optimization is to solve an optimization problem by
decomposing it into easier to solve subproblems and a master problem that through
an iterative procedure closes in on the optimal solution of the original problem. If
the master algorithm converges fast enough and the subproblems are sufficiently
easier to solve, we get savings in computation compared to a centralized optimization.

Let’s consider the following optimization problem:

minimize  fi(21) + fa(z2)

) (2.2.1)
subject to x; € Cy, x5 € Cs.

We can see that the problem above can be separated, because we can solve for x;

and xs separately (in parallel). This sort of problems are called separable or trivially
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parallelizable problems. However these sort of problems are the exception. Let’s now

consider the following problem

minimize f(z) = fi(z1,y) + fo(22,y), (2.2.2)

with = (x1,22,y). This new kind of problem is not trivially separable because
y is a complicating or coupling variable. However, when y is fixed the problem is
separable in z; and xs9. In this case, x1, x5 are private or local variables and y is a
public or interface variable between the subproblems. With this definitions, we can

introduce the first decomposition technique, primal decomposition.

2.2.1 Primal decomposition

In primal decomposition, the idea is to decompose the original optimization problem
to first optimize over the set of local variables (subproblems) and then to optimize
over the set of coupling variables (master problem) in an iterative procedure. If we

consider problem (2.2.2), by fixing y we obtain the following subproblems:

subproblem 1: minimize,, f1(z1,y) (2.2.3)
subproblem 2: minimize,, fa(x2,y), o

with optimal values ¢;(y) and ¢2(y). The original optimization problem is then

equivalent to the master problem:
master problem: minimize ¢1(y) + ¢2(y), (2.2.4)

with variable y. The method is called primal decomposition since the master problem
manipulates a primal variable. It is important to mention that if the original
optimization problem is convex, the master problem is also convex. The master
problem can be solved using several methods, and each iteration of the master

problem requires solving the two subproblems in parallel.

The primal algorithm using a subgradient method to solve the master problem can
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be written as:

repeat

1. Solve the subproblems (in parallel)
Find z; that minimizes fi(x1,y) and a subgradient g; € 9¢1(y).
Find x5 that minimizes fy(x2,y) and a subgradient go € 0 (y).

2. Update complicating variable.
y =1y — a(g1 + ¢g2), where « is the step size.

Each step in the algorithm described above brings us closer to the solution of the
original problem. With this example of primal decomposition, we have provided the
basics to understand our approach. For more details on primal decomposition, we

refer readers to [48].

2.2.2 Dual decomposition

In dual decomposition, the idea is to decompose the original problem to first optimize
over the set of local variables (subproblems) and then optimize over the set of dual
variables (master problem) in an iterative procedure. We consider again problem
(2.2.2) and to implement dual decomposition we modify it by introducing new

variables v, yo as follows:

minimize  f(x) = fi(z1,y1) + f2(22, y2)

, (2.2.5)
subject to Y1 = ys.

The newly introduced ¥y, y» are local versions of the complicating variable y and the
new constraint y; = ys is a coupling constraint for both subproblems. The second
step is to formulate the master problem, which involves formulating the dual problem.

To do this we first consider the Lagrangian of our modified problem (2.2.5):

L(z1,y1, 2, y2) = fi(z1,y1) + fo(@2,32) + A (Y1 — 1a), (2.2.6)
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2.2. DISTRIBUTED OPTIMIZATION

where A is a vector of Lagrangian variables. To separate the problem we can first

minimize over (z1,y;) and (9, y2) separately:

subproblem 1: ¢;(\) = inf,, , (fl(:cl,yl) + )\Tyl) (2.2.7)
subproblem 2: g¢o(\) = inf,, ,, (fg(xg, Y2) — )\Ty2> : (2.2.8)

With the above the master problem optimizes the dual variables as follows:
master problem: maximize g¢g(\) = g1(\) + ga(N). (2.2.9)

The method is called dual decomposition because the master problem optimizes
over the dual variables. Computing the result of the subproblems g;(\) can be done
in parallel. The master problem can be solved using a gradient descent, which to
maximize uses the negative gradient y, — y;. With this, the dual algorithm can be
defined as:

repeat

1. Solve the dual subproblems (in parallel)
Find z,y; that minimizes fi(x1,y1) + M y;.

Find x5, y» that minimizes fo(x2,y2) — ATys.

2. Update dual variable.
A=\ —a(ys — ya2), where « is the step size.

At each step, we move closer to the optimal solution of the original problem. It
is important to notice that iterates are generally infeasible, i.e., y; # ys. With
this example of dual decomposition, we have provided the basics to understand our

approach. For more details on dual decomposition, we refer readers to [48].

2.2.3 Alternating direction method of multipliers

One of the problems with primal and dual decomposition is that for the method to

converge to the optimal solution, the objective function must be strictly convex [48].
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This is a significant limitation because many optimization problems have linear
functions as objective functions. Linear functions are convex but not strictly convex.
To remedy this, the Alternating Direction Method of Multipliers (ADMM) introduces
a regularization parameter to dual decomposition that keeps the algorithm stable. In
fact, the only requirement for ADMM to solve an optimization problem is convexity.
We now quickly explain the basic formulation of ADMM.

Let’s consider the following problem:

minimize  f(x) + g(2)

. (2.2.10)
subject to Az + Bz = c.

The problem above represents two sets of variables x and z, with separable objectives.

The Lagrangian of this problem is defined as:
L(x,z,)\) = f(z) + g(2) + AT (Az + Bz — ¢), content (2.2.11)

where lambda is a vector of Lagrangian variables.content To formulate ADMM we
introduce a quadratic regularization parameter to the original Lagrangian to obtain

an augmented Lagrangian function:
Ly(z,2,)) = f(z) + g(2) + \'(Ax + Bz — ¢) + (p/2)||Ax + Bz — c|[3, (2.2.12)
where p > 0 is the penalty parameter and || * ||3 is the second norm squared.

The ADMM algorithm can then be formulated in the same manner as the dual
decomposition algorithm to solve the subproblems for the local variables x and z,
and then solve the master problem for the dual variable A\. The resulting ADMM

algorithm is:

= argmin L ,(x, 28 AR (2.2.13)
A = argmin, L, () 2, AF) (2.2.14)
Yt = gk g p(AxF T 4 B — o), (2.2.15)

where k is the iteration index.

Depending on the specific problems several simplifications can be made for the
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ADMM algorithm. Like the dual algorithm, the ADMM algorithm approaches
feasibility and the objective approaches the optimal values as it converges. However,
ADMM assumes very little and can be applied to a wider range of problems than

dual decomposition. For more details on ADMM, we refer readers to [47].
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CHAPTER 3

Related Work

In this chapter, we review the related work to our two EV charging control approaches:
EV ADMM and EV NUM. For EV ADMM the related work is concerned with the
problem of scalable EV charging control for EV aggregators. For EV NUM the
related work is concerned with the real-time control of EV charging. In the following,

we discuss how our approaches differ from the existing literature.

3.1 Scalable EV charging control for EV aggrega-

tors

Several studies have addressed the problem of defining scalable methods for EV
charging control. Most of the proposed approaches, however, focus on a specific
control objective and do not provide a general solution to the scalability problems
faced by EV aggregators. The scalability challenge lies in the definition of a versatile
method that for very large EV numbers can provide optimal results in a reasonable
time and make efficient use of limited resources. One solution to the scalability
problem is the use of suboptimal control strategies, which provide scalability with a
decreased level of optimality. In [49,50], for example, a droop control approach is used

for EVs participating in frequency control. Such approaches consider a scenario where
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communication with the EVs is limited or unavailable. In contrast to such approaches,
our approach considers a scenario, where a two-way communication system is in
place, and optimal results are required. We focus on distributed optimization of
EV charging for a broad range of different objectives. Similar approaches based on
distributed optimization have already been proposed to solve the valley filling problem
in [25-27]. Nevertheless, these approaches cannot be implemented to solve other
relevant control objectives, such as charging cost minimization [21] or direct coupling
between renewable energy and EV demand [22]. The previous approaches cannot
be generalized because they require a strictly convex objective function and do not
support global constraints, i.e., constraints defined as a function of the optimization
variables of all EVs. These limitations prevent the use of these approaches to obtain

scalable solutions to several relevant EV aggregator optimization problems.

The approach presented in this work and published in [40] differentiates itself from
previous approaches in that it offers a general distributed optimization framework
for EV aggregators, that is capable of solving various EV charging control problems.
Our approach is based on the Alternating Direction Method of Multipliers (ADMM),
which supports non-strictly convex cost functions and global constraints. Following
our initial work, several studies have used ADMM for the optimization of EV fleet
charging problems. The authors of [28] use ADMM for the load balancing of EVs
at charging stations. The goal of their work was to maximize the utility functions
of several devices (EVs) controlled by an aggregator. In [29], the authors compare
the use of several distributed optimization algorithms for the valley filling problem.
They conclude that different algorithms offer a trade-off between communication
requirements and optimality: Allowing suboptimal results in ADMM can help reduce
its message complexity. Finally, in [30], ADMM is used to formulate a receding horizon
optimization to account for uncertainty in the valley filling problem. Nevertheless,
despite the valuable contributions of these related works, none of them conducts a
comprehensive scalability study. In fact, most of the studies published to date are
limited to 100 EVs. Furthermore, a comparison against state-of-the-art centralized
optimization has thus far not appeared in the literature. In centralized optimization,
the original problem formulation is solved using a state-of-the-art optimization
software. With an increasing number of EVs, it is of particular importance to

determine under what conditions a distributed optimization approach offers an
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advantage over the centralized approach. Therefore, the work presented here and
published in [41] builds on the existing literature by providing a full derivation of the
general EV.ADMM method and conducting a comprehensive evaluation focusing on
the scalability of our distributed approach compared to the state-of-the-art centralized

approach.

While the proposed EV ADMM approach can be used to speed up computations
in a single machine by distributing the optimization among multiple cores, such
distributed optimization approaches can also be implemented as a protocol for
distributed EV charging control in a distributed environment. Most related studies
in the literature, don’t consider the implementation of their distributed optimization
approach in a distributed environment and instead focus on the correctness and
the effectiveness of the proposed algorithms. So far there is very limited work
proposing and evaluating a concrete architecture for the realization and deployment
of distributed optimization approaches for EV aggregators. The work in [51], stands
out for proposing the scheduling of various energy devices (including EVs) with
ADMM and implementing it in a distributed environment using a message passing
interface. They, however, acknowledge that such algorithms require the exchange
of a high number of messages and that a reduction of the message complexity is
needed. This is not a trivial issue, since a large number of messages required may
become prohibitive for practical application in a distributed environment. Our work
differentiates itself from these previous work in two aspects. First, we focus on EV
aggregator problems, which have more complex objectives and constraints than the
ones they consider. Second, we address the issue of communication complexity by
using of a publish and subscribe (pub/sub) middleware to implement EV ADMM. We
propose DOPS (Distributed Optimization Publish and Subscribe), a framework for
distributed optimization of EV charging, which leverages the in-network aggregation
capabilities of the pub/sub middleware to reduce the number of messages exchanged

between the EVs and the aggregator.

23



3.2. REAL-TIME EV CHARGING CONGESTION CONTROL

3.2 Real-time EV charging congestion control

Several studies have used distributed optimization techniques to design scalable EV
charging control algorithms. Many of them, we discussed in the previous section.
However, all of the mentioned approaches in Section 3.1 are multiperiod optimizations,
which to provide EV congestion control would require very accurate predictions of
the EVs’ location, charging requirements and the state of the grid. Such predictions
are extremely challenging for a single low voltage feeder, and can be highly inaccurate
for individual EVs and individual grid devices. An alternative is to consider the
solution of a single period optimization problem based on the current state of the
system. The lack of prediction, however, requires very fast control responses to cope
with the highly dynamic state changes of the power grid. This makes real-time EV

charging a challenging time critical application.

The main challenge of real-time EV charging is the short time available to deliver a
control response. The time range to avoid a fault in the distribution grid is usually
in the hundreds of milliseconds [52]. Some approaches to prevent the violation of
network constraints by controlling EV charging under real-time requirements have
been proposed in the literature. In [34], an EV charging desynchronization approach
to prevent too many charging EVs from overloading the grid is proposed. Similarly,
in [35], an AIMD!-like control approach is proposed to avoid grid overloading.
Although both methods prevent network overloading, they do not guarantee an
optimal use of the available infrastructure. Hence, the power infrastructure is
underutilized, and the EVs’ charging speed is reduced. In contrast to these approaches,
we focus on the optimal use of the available infrastructure. We consider the use
of optimization-based methods and propose distributed optimization algorithms to

cope with the real-time requirements.

Distributed optimization for real-time EV charging control has been used for several
objectives. In [53] a distributed optimization approach was used to maximize user
convenience while meeting predefined circuit level demand limits. The problem

was formulated as a single period combinatorial optimization problem, subsequently

!The additive-increase/multiplicative-decrease (AIMD) algorithm is a feedback control algorithm
best known for its use in TCP Congestion Avoidance.
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relaxed into a convex optimization problem and then solved with ADMM. Their
approach focuses on the control of EV charging via an aggregator to provide system
services in real-time. In [54] distributed optimization is used to control EV charging
in real-time, to avoid the overloading of distribution grid transformers. Particular
attention is placed to the modeling of the transformers thermal constraints. Then
an optimization problem to maximize the charging rate of EVs without violating the
transformers maximal thermal capacity constraints is solved with dual decomposition.
This results in an incentive-based real-time EV charging control protocol. However,
while both mentioned approaches relate to ours in their use of distributed optimization,
none of them models or considers a model of the distribution grid. This makes them
inadequate for EV charging congestion control, where individual distribution lines

have to be considered to avoid their overloading.

A promising approach comes from the related problem of congestion control in
communication networks. There, a Network Utility Maximization (NUM) problem
is solved with distributed optimization approaches to obtain Transmission Control
Protocols (TCP) [15]. The use of the NUM formulation for real-time EV charging
control is first considered in [36]. In the latter, the EV charging problem is formulated
as a modified NUM, and dual decomposition is used to solve the problem. The
NUM formulation defines an instantaneous problem. Hence, no prediction is required.
Moreover, thanks to the simplicity of the NUM formulation the resulting algorithm
is highly efficient. However, the proposed dual decomposition solution suffers from
scalability problems. The method can become unstable with increasing EV numbers
or in some situations may not adapt quickly enough to the grid dynamics, which the
authors recognized in [37]. In this work, which we partially published in [43,44], we
build and improve on what we call the EV NUM approach. To improve scalability
and stability, we propose a novel primal decomposition algorithm to solve EV NUM,
which has the property of allowing anytime control. We provide mathematical proof
for its convergence to the optimal result under static conditions. We also derive a
real-time EV charging control algorithm and analyzed its behavior under dynamic
conditions. Moreover, we contribute a comprehensive comparison of the dual and our
primal EV NUM distributed optimization algorithms. We evaluate their convergence
behavior, scalability, and grid impact on the IEEE 13 Node Test Feeder and the IEEE

European Low Voltage Test Feeder. The latter realistic distribution grid analysis is
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a significantly larger and more representative use case compared to the all previous
works. In fact, none of the previous works offer a comprehensive 3 phase power
flow analysis. Since the EV NUM formulation does not consider losses and voltage
constraints, the evaluation presented in this work represents a vital contribution to

the implementation of EV NUM for real-time EV charging congestion control.
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CHAPTER 4

Distributed Optimization for EV
Aggregators with EV ADMM

In this chapter, we develop the EV ADMM framework for distributed optimization
of EV aggregators.

First, in Section 4.1 we state our assumptions for the EV aggregator optimization
problem. In Section 4.2 we propose a general formulation for EV aggregator
optimization problems and solve it using ADMM. Our proposed formulation allows
the general definition of global objectives and constraints for the whole EV fleet, and
local objectives and constraints for the individual EVs. This provides the flexibility
to specify various EV aggregator optimization problems. The general aggregator
problem is then solved using ADMM to obtain a distributed solution algorithm,
where the original problem is split into smaller individual optimization subproblems
for the individual EVs and the aggregator. These individual problems are then solved
in an iterative procedure to obtain the optimal solution of the original problem. The
various mathematical steps required to obtain the EV aggregator ADMM solution
algorithm as well as its convergence criteria and parametrization are explained.

In Section 4.3, we define our EV ADMM framework, which allows the aggregator
and the EVs to formulate their local optimization independently of each other. Then
by incorporating them into the EV ADMM sequence, the solution of the original
EV aggregator problem can be obtained. We describe the different computing
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components of EV ADMM and their interaction. Moreover, we offer the specific
formulation of the individual aggregator optimization problem for the valley filling
and the charging cost minimization problem, as well as, the specific formulation of
the individual EV optimization problem that considers its goal to reduce battery
depreciation and its energy requirement constraints.

The evaluation of the versatility and scalability of EV ADMM is presented in Section
4.4. First, we demonstrate the versatility of EV . ADMM by solving different EV
aggregator optimization problems. We consider individual EV aspects, like battery
depreciation costs and the ability of EVs to feed energy into the grid, also known as
Vehicle-to-Grid (V2G) services. In our second evaluation, we study the scalability of
EV ADMM and show that for large EV numbers it outperforms the state-of-the-art
centralized optimization approach. In centralized optimization, the original problem
formulation is solved using state-of-the-art optimization software.

Finally, Section 4.5 presents a discussion on the implementation and applicability of
EV ADMM.

4.1 Assumptions

To formulate the EV aggregator optimization problem, we assume the following:

o We consider the day-ahead scheduling of 24 hours divided into 15 min intervals

for a fixed number of EVs.

o The aggregator can have various objectives for its EV fleet, depending on the

service it wants to provide.

e The individual EVs can have personal objectives, such as minimizing their

battery depreciation costs.
e The charging requirements of the EVs must always be fulfilled.

o All parameters of the optimization problem are assumed to be known. Therefore,
all non-fixed parameters must be predicted. This also includes the charging

requirements of the EVs, i.e., the time slots when an EV will be charging and
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how much energy it requires. The EV one day-ahead can communicate the
charging requirements, or they can be predicted using the EV travel logs, also

known as the EV’s driving profile.

e The problem formulation is convex. An important consequence of this assump-
tion is that the EVs must be able to use a charging rate that is continuous

between 0 and a maximal value.

4.2 The EV aggregator optimization problem

We propose a novel general formulation of the EV aggregator optimization problem.
The problem is formulated as a multi-criterion optimization between the aggregator
and individual EVs for a defined time horizon ¢ € {1,...,T}. For purposes of our
research, we consider a fixed number of EVs i € {1,..., N}. Each individual EV
seeks to optimize its charging profile defined by the vector z; = [z;(1),...,z;(T)]"
for its local objective function F;(x;) subject to its local constraint set X;. The
aggregator seeks to optimize the sum of the individual EV charging profiles defined
by the vector x, = [z4(1),...,z.(T)]" for the global objective F,(x,) subject to the
global constraint set X,. Since the aggregator optimization variables are the sum of
the individual EV variables, z, = Zf\il x;, all the individual optimization problems
are coupled. Considering this, we define the EV aggregator optimization problem as

follows:

minimize  F,(z,) +v N, Fy(x;)
subject to Ty = (4 2 1)

[IZ’lEX“ izl,...,N,

where v > 0 is a parameter representing the trade-off between the aggregator’s
objective and the objectives of the individual EVs. The parameters of the problem
are summarized in Table 4.2.1. A positive value of the variables is defined as power
consumption and a negative as power generation.

The trade-off parameter balances the importance of the individual EV objectives and
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Variable | Description Type

T, Aggregated EV profiles Vector € RT

T; Individual EV profile Vector € RY
F,(z,) Aggregator objective function | Convex function
Fi(z;) EV i objective function Convex function
Xe Aggregator constraints set Convex set

X; EV ¢ constraints set Convex set

0 Trade-off parameter Scalar

Each element in R” is a vector of T real numbers.

Table 4.2.1: Nomenclature for EV aggregator optimization problem

the global aggregator objectives. As mentioned in [55] and [8], the objectives of the
aggregator are usually in conflict with the individual goals of the EVs. For instance,
while the aggregator wants to coordinate EVs to achieve a particular aggregated
behavior, the EVs want to minimize battery depreciation costs. This usually causes
the EVs to favor their objectives, which may lead to a poor aggregated performance
for the global objective, cf. [40].

Our formulation of the problem is very general and can be used to describe
optimization problems where multiple devices with local objectives and constraints
need to be optimized under global objectives and constraints represented by an
aggregator. Examples of specific formulations of the EV aggregator optimization

problem will be given in Section 4.3.

To formulate a distributed optimization algorithm, we first reformulate the problem
as an exchange optimization problem. To do this, we consider the EVs and the
aggregator as having separate subproblems and redefine the aggregator as subproblem
0, where

To = —I,. (4.2.2)

The cost function of subproblem 0 is then:

Fa<_330) if —xgeX,

] (4.2.3)
00 otherwise.

fo(l"o) = {
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The EVs are represented by subproblems ¢ = 1, ..., N and their cost function is:

filas) = { Whle) ek (4.2.4)

00 otherwise.

With these definitions, the optimal EV aggregator optimization problem becomes an

exchange problem:

mm‘lmlze Z%o filzy) (42.5)

subject to Y.L,z = 0.
The exchange problem considers N devices exchanging a common good under
equilibrium constraints. To simplify notation, we define a single vector that contains
the optimization variables of all subproblems x = [y, x1,...,7x]T. The variables
vector = has the dimension NT x 1. The formulation of the ADMM solution

to the exchange problem requires the introduction of a new vector of variables

z = [20,21,...,2n]". Using the z variables, we reformulate the exchange problem as
follows:
minimize YN, fl(xl) +g(2) (4.2.6)
s.t ri=2; 1=0...,N,
where
0 if YN z=0
9(2) = { 0 (4:2.7)
00 otherwise.

Problem (4.2.6) is equivalent to the original exchange problem defined in (4.2.5).
With f(z) = N, fi(z;), the corresponding augmented Lagrangian function of (4.2.6)
is:

Ly(w,2,y) = f(2) + 9() + 3" (z = 2) + Sl — 213 (42.8)

where p is the penalty parameter of the augmented term and y = [yo, y1, ..., yn]"
is a vector of the Lagrangian variables. To solve problem (4.2.6), we minimize over
the primal variables xz, z and maximize over the Lagrangian variables y as explained
in [56]:
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argmax argmin L,(z, z,y). (4.2.9)
y T,z

The ADMM algorithm defines the following iterative process to solve the problem:

" = argmin L,(, 2, y¥) (4.2.10)
A = argmin L,(2", 2, 4%) (4.2.11)
Yt = argmax L,(z"t!, 2F ), (4.2.12)

Y

where k is the index of the iteration. Expanding (4.2.10), we get:

R —

YL, argmin {fz‘(l‘z') +yf (= =) + Bl — ZfH%} :

Z;

(4.2.13)

The problem above is separable and we can thus define one problem for each x;-

update. The iterative ADMM solution of the exchange problem can then be written

as:
$f+1 = argmin f;(z;) + ?JfT(flfi - sz) + g”fz - Zf“% (4.2.14)
2 — argmin g(2) — ykTZ n ngk—H — )2 (4.2.15)
ka = argmax yT(IkH - Zk“)- (4.2.16)
y

The EV ADMM solution above can be further simplified. The z-update in (4.2.15)
has an analytical solution and a gradient algorithm can be used to solve the y-update
in (4.2.16):

« Solution to zF*! update in (4.2.15): Taking into account the definition of g(z)

in (4.2.7), we can formulate the optimization problem for z as:

minimize YN, {—Z/szZv: + %Hﬂf?“ - Z%H%}

4.2.17
subject to Y,z = 0. ( )
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For this problem, the corresponding Lagrangian is
N N . P
L(z,A) = 3 _{=ui" m+ Gllad™ — 2l + AT, (4.2.18)
=0 i=0

where A is a vector of the Lagrangian variables. To obtain the solution to this

problem, we use the KKT conditions:

yrooA
V. L(zy\) =0 — z=aft 42 = (4.2.19)
PP
N
VaL(z,A) =0 = > 2z =0. (4.2.20)
=0
Using (4.2.19) in (4.2.20), we obtain the following:
yk
A= p(@" + =), (4.2.21)
P

where 7841 = 1/(N + 1) SN 28 and 7771 = 1/(N + 1) SN, yF, ie., the
averages based on the number of subproblems. Using the results of Equations

(4.2.19) and (4.2.21), we finally obtain a closed-form expression for the z-update:

vi 7

Zitl =gt gkl 2 2 (4.2.22)
PP

Solution of y*! in (4.2.16): Since L, is not differentiable for y, we solve the

problem using the gradient method for each element of the vector y*+!:

gt =yl p(af = 2. (4.2.23)

The step size p of the gradient method is the same as the penalty parameter
of the augmented term p, see (4.2.8). This step size is chosen to guarantee
convergence. With this step size, the first condition of the dual feasibility is
always fulfilled, cf. [38].

Using (4.2.22) in (4.2.23), we obtain the following for the y-update:

yitt =y et (4.2.24)
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The previous result shows that y is a vector of the same element and its average
is defined as:

7= u (4.2.25)

Using the result for the y-update (4.2.24) in the z-update (4.2.22), we get the

following z-update solution:

PP = phtl gkl (4.2.26)

Finally, the z-update defined above is included into the z-update in (4.2.14).
With this, the x-update becomes:

P = argmin fi(a) + o+ 2l - af 4 2 (4227)

T

With the solution of the z-update in (4.2.27) and the gradient method for the
y-update in (4.2.24), the ADMM solution to the exchange problem is:

it = argmin fi(z;) + yfoi + g”% — it T (4.2.28)

Ty

it =y Tt (4.2.2)

The solution above can be regularized by scaling the Lagrangian variables y; with
u = y;/p: With this, the scaled ADMM solution of the ADMM exchange problem is:

ot = argmin fi(w) 4l — of + 7 4ot (4.2.30)

ultt = of 4 7 (4.2.31)

Using the exchange problem solution above and taking into account the definitions in
(4.2.2), (4.2.3) and (4.2.4), we formulate the ADMM solution to the EV aggregator

problem as follows:
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EV Aggregator ADMM algorithm
1. Foreach EVi=1,... N:
P =
minimize YFj(z;) + &||z; — af + 7% + u*||3 (4.2.32)
subject to z; € X;.
2. For the aggregator:
it =
minimize  F,(—x0) + §||zo — xf + T + u*|[3 (4.2.33)
subject to —xp € X,.
3. Incentive signal update:
Pt = uF T (4.2.34)
where
k41 1 & k41
Thtl — \ 4.2.35

The EVs and the aggregator solve their optimization subproblems independently in
each step k, while the continuous update of the incentive signal drives the solution
to the optimum of the original EV aggregator problem. The ADMM algorithm
approaches the solution of the original EV aggregator problem in (4.2.1) as long as
the problem is feasible and convex.

Convergence criteria: As defined in [38], the convergence criteria for ADMM are
given by the primal feasibility r* € RT and the dual feasibility sf € R”:

ko= gk (4.2.36)
si = —p(N+1)(af —af '+ (@ =7, (4.2.37)
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with s* = [sV, ... sk |7, the stopping criteria is:

[Ir¥l2 < e?™

4.2.38
HSkHQ Sgdual, ( )

where P > () and g9

> (0. The mean value of all subproblems Z can be thought
of as a social cost caused by the EVs not cooperating to achieve global convergence.
Upon convergence, this social cost should be close to zero as specified by the primal

convergence criteria in (4.2.36).

Penalty parameter p: Although some guidelines for choosing p can be found
in [38] and [51], the literature does not offer a comprehensive method for this task. In

this work, we have chosen to use a variable step size in order to improve convergence

speed (cf. [38)]):

Pk [y > s
Pt =i (|5l > ]l (42.39)
o otherwise.

For our experiments in Section 4.4, we use p = 10 and 79" = rdeer = 2,

4.3 The EV ADMM framework

The EV ADMM framework is the protocol that results from the application of the
ADMM approach to the EV aggregator optimization problem. Fig. 4.3.1 describes the
framework using a sequence diagram. EV ADMM is composed of several computing
components: Aggregator, messaging system, and EVs. The aggregator first uses
the messaging system to send the incentive signal to the EVs. The broadcasted
signal is the same for all EVs. This incentive signal is composed of the scaled
price u”*, the average profile of all subproblem solutions ", and also the penalty
parameter p in case of a varying penalty parameter. Based on this incentive signal,
the EVs and the aggregator solve their individual optimization subproblems, defined
in (4.2.32) and (4.2.33). The EVs then send their solutions to the aggregator using
—k+1 1

the messaging system, Tpy, = 5 SNV x¥1 This aggregated response can be
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Figure 4.3.1: EV ADMM sequence diagram.

computed by the messaging system if in-network aggregation is supported. The
messaging system receives the individual EV responses and sends the aggregated

EV response to the aggregator. The aggregator then adds its result to obtain the

B gkl zgt
- “EV N+1°

then updates the scaled price u**! according to (4.2.34). This process is repeated

average of all subproblems, i.e., T With this value, the aggregator

until the convergence criteria in (4.2.38) are met.

Using EV ADMM, the aggregator and the EV optimization subproblems can be
defined independently of each other. The solution of the original EV aggregator
problem is obtained by incorporating these problems into the EV ADMM framework.

4.3.1 Aggregator optimization problem

In this section, we specify two typical aggregator objectives, valley filling and
charging cost minimization. We then show how to integrate them into the proposed
optimization framework. Different aggregator objectives lead to different objective
functions F,(z,) and constraint sets X, in problems (4.2.1) and (4.2.33). The

considered problems are summarized in Table 4.3.1.
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Problem F,(z,) X,
Valley Filling S|D + z4||3 -
Charging cost minimization | pfz,At | z, <2, < 7T,

Table 4.3.1: Example aggregator individual problem definition

Valley filling: The goal of valley filling is to dispatch EV charging such that the
valleys of the fixed demand are filled by the EVs’ demand. This avoids new peaks in
the power consumption. Our formulation of the valley filling problem is similar to
the one in [26]:

minimize 6||D + z,||3, (4.3.1)

where the fixed demand profile D € R is assumed to be known and ¢ is a scaling
parameter that can be used as an empirical value to change the unit of the aggregator’s
objective function. Using the formulation in (4.2.33), the corresponding aggregator
update in the EV ADMM framework is:

k! = rg}lvn 0||D — xol|3 + &||zo — xf + T + u¥|[3, (4.3.2)
which has the following closed-form solution,

i+l = pr%(l.lS — 7k — k) + %D, (4.3.3)

Charging cost minimization: For the charging cost minimization problem, the
goal is to minimize the charging costs of an EV fleet while satisfying constraints
on the minimal and maximal aggregated (dis)charging power. In [21], a centralized
solution to this problem is presented, where the aggregated charging is constrained
by the available renewable energy generation. Using EV ADMM, we can formulate
a decentralized solution to this problem. To do this, we first define the aggregator

problem as follows:

minimize p?x, At (4.3.4)
subject to z, <z, < T,. o

where At is the time step duration. The maximal aggregated demand profile Z, € R,
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Problem Fi(z;) X,
Minimize charging costs | ay||z||3 | S; < By < S,
Z; < T S Ty

Table 4.3.2: Example EV individual problem definition

the maximal power profile that can be fed back into the grid z, € R”, and the
electricity price p € RT are assumed to be known.
The minimal charging cost optimization problem in (4.3.4) is reformulated for the
EV ADMM framework according to (4.2.33) as:
oA =
minimize  —p’ @At + §]|zo — xf +TF + uF||3 (4.3.5)

subject to —x, > 19 > —T,.

4.3.2 EV charging optimization problem

Without the loss of generality, in this section, we describe an example formulation of
the individual EV charging optimization problem. This example shows a concrete
definition of the EV’s objective function Fj(z;) and the constraint set X;, which are
summarized in Table 4.3.2. We consider the objective of the EV to minimize their
battery depreciation cost under the constraints that their charging requirements are

always meet.

In this formulation, the EV is allowed to charge more than once. We assume that
the time slots for which the EV is connected are known. We also assume that the
amount of energy required in each charging session is known. This implies that the
EV’s battery energy levels at the start of the charging session, as well as the desired
energy level at the end of the charging session, are known. During each charging

session, we consider the following linear battery model:
Ei(t+1) = Ei(t) + x;(t) At, (4.3.6)

where at time slot ¢, E;(t) is the energy stored in the battery and z;(t) is the
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Variable | Description Type

T EV charging profile Vector € RT

z; Minimal charging power Vector € R”

T; Maximal charging power Vector € RT

Q; Battery depreciation parameter | Scalar

A; Connection matrix Matrix € RexT
B; Input matrix Matrix € RTexT
R; Charging requirements Vector € R“

S, Minimal state charging power Vector € R7e

S; Maximal state charging power | Vector € R%e

Each element in R” is a vector of T real numbers and each element in R%*7T is a
matrix of real numbers with the dimension ¢; x T'.

Table 4.3.3: Nomenclature for EV optimization problem

power used to (dis)charge the battery. Using the linear battery model in (4.3.6),
we define the required energy as a single equality constraint that depends only on
the EV’s power z;. Similar to [21], we define the energy requirements and maximal
and minimal energy levels for the battery as a series of constraints for all charging
sessions, which only depend on the EV’s power profile for the optimization time
horizon x;. With these constraints, we define the optimization problem of each EV i

as:

minimize  a;||z;||3
subject to A;r; = R;
S; < Bix; < S,

z; <z ST

(4.3.7)

The variables description of problem (4.3.7) can be found in Table 4.3.3, where
¢; is the number of charging sessions of the EV and 7, is the total number of
time slots that the EV is connected during the entire optimization horizon. We
model the EV’s objective to reduce its battery depreciation cost as a quadratic

cost function. With this objective function, we obtain a convex formulation of the
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problem, which is necessary to guarantee the convergence of EV ADMM to the
optimal solution. This resembles the approach used for the generator’s objective
function in the economic dispatch problem, where a convex objective function is
obtained by fitting the generator’s costs with its power output. This is done to
guarantee a convex formulation of the economic dispatch problem. The correctness
of our model is supported by the results presented in [57], where battery depreciation
was shown to be quadratic with respect to the depth of discharge (DoD). The
empirical parameter a; can be obtained by fitting historical data. The first set
of equality constraints, A;x; = R;, defines the energy requirements. Each of these
equality constraints represents an energy requirement for each time the EV is plugged
in. The set of inequality constraints, S; < B;x; < S;, guarantee that the power input
does not violate the maximal and minimal energy that the battery can support at
any time slot when the EV is connected. These constraints contain the EV dynamics
while connected. Thus, matrix B; is the input matrix that results from (4.3.6) for
the time slots when the EV is connected. The last set of constraints, x; < x; <7,
define the maximal and minimal EV (dis)charging power for the optimization horizon.
If EV 4 is not connected at time ¢, then z;(t) = 7;(t) = 0, else z;(t) = ™" and

min
7

Z;(t) = 2, where """ and z*** are the minimal and maximal power that the EV
charger supports.

For more details on how to derive these parameters, we refer the reader to [58].

For EV ADMM, the EV optimization problem in (4.3.7) is reformulated according

to (4.2.32) into the following problem:

o =

minimize  yoy |3 + §llv: — 2F + 7 + b3

subject to A;x; = R; (4.3.8)
S; < Bix; < S;
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4.4 Evaluation

In this section, we evaluate the performance of EV ADMM solving the EV aggre-
gator optimization problems described in the previous section. We carry out two
experiments for both problems. The first experiment evaluates the behavior of EV
ADMM for different trade-off parameter v values. The trade-off parameter balances
the importance between the global aggregator objectives and the local objectives
of the EV. This means that to ignore the individual EVs objective to minimize
their battery depreciation cost v can be set to zero. We also evaluate the effect of
Vehicle-to-Grid (V2G) services, i.e., allowing EVs to feed energy back to the grid.
The second experiment measures the scalability of EV ADMM for an increasing

number of EVs and compares it to a centralized optimization approach.

Our experiments were carried out using a server with four Intel Xeon E5-2650 2GHz
CPUs with four cores each, for a total of 16 cores and 64 GB of main memory.
The implementations of EV . ADMM, as well as the centralized optimization, were
done in MATLAB [59] using YALMIP [60] to formulate the optimization problems and
GUROBI [61] as solver.

We use publicly available data to define the optimization parameters. We consider a
time horizon of 24 hours and a 15 minute time step duration resulting in 7" = 96
time steps. We obtained the demand profile D from the Munich distribution system
operator website [62] and the energy price profile p for the minimal charging cost
problem is from the European Energy Exchange (EEX) website [63]. Both correspond
to Nov 21, 2011. Without the loss of generality, we assume that all EVs have a
nominal battery capacity of 20 kWh and an average power consumption of 0.15
kWh/km. Using these parameters, we apply the method described in [9] to obtain
different vehicle trip patterns from the National Household Travel Survey (NHTS).
The NHTS dataset contains trips reported by more than 150,000 U.S. households [64].
Since the trip patterns describe if and where the vehicles are parked, we can define
the time slots and locations for which an EV might charge. We assume that EVs
only charge at home once per day. We also assume that the EVs want to fully
charge their battery. The battery depreciation parameter is defined empirically
as 0.0125 EUR/kW?. The maximal (dis)charging rate for each EV is defined as
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Valley filling parameters
gP™ | Primal feasibility threshold 20
gdual | Dual feasibility threshold 200

Charging cost minimization parameters

z, Aggregated maximal energy feed back | -137.6 kW

Tq Aggregated maximal consumption 137.6 kW
gP' | Primal feasibility threshold 0.1
gdual | Dual feasibility threshold 0.1

Table 4.4.1: Simulation parameters

2 =~ = 4kW.

4.4.1 Experiment 1: Versatility

In this experiment, we explore the versatility of EV. ADMM to solve the presented
EV aggregator problems. We demonstrate the ability of EV ADMM to incorporate
several aspects easily: In particular, battery depreciation costs and the ability of
EVs to feed energy into the grid, also known as Vehicle-to-Grid (V2G) services.
We consider a fixed number of 100 EVs for the valley filling and the charging cost
minimization. The demand profile, as well as the maximal demand, were scaled
for the number of EVs. The remaining simulation parameters we used in these
experiments can be found in Table 4.4.1. The stopping threshold values are based

on experience. The required number of EV ADMM iterations for each case can be
seen in Table 4.4.2.

Valley filling: As shown in Fig. 4.4.1, valley filling is achieved if the individual EV
goals are ignored, i.e., ¥ = 0. Moreover, allowing V2G services results in an almost
flat aggregated demand profile. An all flat aggregated demand profile offers several
advantages regarding grid operation; for example, the fact that with a flat valley no
expensive peak power plants need to be turned on. Considering the behavior of EV

ADMM, Table 4.4.2 reveals that the number of iterations remains of the same order,
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vy=0|~v=1
Valley filling iterations
No-V2G | 291 276
Va2G 293 289
Price-basediterations
No-V2G | 889 665
Va2G 1230 | 665

Table 4.4.2: ADMM required iterations for Experiment 1

VaG
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= [ixed demand = = = Total demand,y=0 ' = = Total demand, y=1

Figure 4.4.1: Valley filling optimization. Left without V2G and right with V2G for different
individual EV goal importance ~.

regardless of V2G services or value of the trade-off parameter 7.

Charging cost minimization: In charging cost minimization, the aggregator
modifies the energy price it gives to the EVs. Fig. 4.4.2 shows the adjusted energy
price and the fleet behavior. This new optimal price corresponds to the incentive
signal of EV.ADMM upon convergence. We can see that the price only changes if
the EVs meet the bound. We can also see that for our parameters, the EVs have no
incentive to feed energy back to the grid if battery depreciation costs are considered.
Regarding the EV ADMM behavior, Table 4.4.2 reveals a discrepancy in the iteration

number for different trade-off values. This can be explained by the fact that for
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~ = 0, we have an optimization problem with active global constraints. As seen in
Fig. 4.4.2, for v = 0, the bounds are active and for v = 1, the bounds are not active.
In EV ADMM, global constraints are considered by the aggregator, and a very exact
solution of the original problem is required for these constraints to be fulfilled. Since
the ADMM algorithm approximates the optimal solution more closely with each
iteration, it requires more iterations to solve problems with active global constraint.
This also explains the difference between no-V2G and V2G in Table 4.4.2. Fig. 4.4.2
shows that V2G has more active global constraints than no-V2G and consequently

needs more iterations.

The results in the valley filling and the charging cost minimization problem for
different values of the trade-off parameter v show that its value has to be rather
small to make the control approach useful on the system level, cf. [40]. Hence, if v
is too large, the aggregator losses control over the fleet. Therefore, it is advisable
to allow the aggregator to define this parameter. It is important to point out that
the charging requirements of the EVs are always fulfilled regardless of the value of
v, because the charging requirements are defined as constraints in the optimization
problem. Any solution to the problem will always fulfill these constraints. When
v = 1 the EVs try to reduce their battery depreciation costs by charging constantly
at lower charging rates. This reduces their level of flexibility, which reduces the
capacity the aggregator has to control them.

The results also reveal that EV ADMM requires more iterations to solve the charging
cost minimization problem than the valley filling problem. The reason for this is that
the valley filling problem has a strictly convex objective function (4.3.1), whereas
the charging minimization problem’s objective function (4.3.4) is not strictly convex.
In strictly convex problems, the ADMM penalty parameter p can be higher than
for non-strictly convex problems, without the risk of becoming unstable. The valley
filling is faster to solve because the penalty parameter determines the convergence
speed of ADMM.
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No V2G Va2G
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Figure 4.4.2: Charging cost minimization. Left without V2G and right with V2G for different
individual EV goal importance +.

4.4.2 Experiment 2: Scalability

We compare the scalability of EV ADMM’s distributed optimization against a state-
of-the-art centralized optimization. The number of electric vehicles serves as a
sensitivity parameter to measure the required runtime and the peak memory use.
For all considered cases, we assume that EVs are not allowed to discharge (z7"™ = ()
and that their individual objectives are ignored (v = 0). We consider EV fleet sizes
between 10,000 and 100,000 using an increment of 10,000 EVs. Table 4.4.3 shows
the size of the problems regarding variables and constraints. For each fleet size, the
simulation is repeated 5 times. The EV ADMM algorithm is stopped if the stopping
criteria are reached or if the objective value does not decrease any further. The
deviation of the final result between EV ADMM and the centralized optimization is
less than 3 %. We implemented a serial and a parallel version of EV ADMM. In the

46



CHAPTER 4. DISTRIBUTED OPTIMIZATION FOR EV AGGREGATORS

WITH EV ADMM
Problem Valley filling \ Charging cost minimization
Variables 96 + 96 x # EVs
Constraints:
-local equality 96 x# EVs 96 *#EVs
-local inequality | 2%96 x# EVs 2%96 x# EVs
-global inequality 0 96 *# EVs

Table 4.4.3: Problems sizes of the scalability experiment.
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Figure 4.4.3: Scalability experiment optimization results.

serial implementation the subproblems are solved one at a time, i.e., only one core is
used. In the parallel implementation, we consider the use of 4 and 16 cores, i.e., 4 or
16 subproblems are solved at the same time. For the parallel implementation, we

make use of the parfor function of the MATLAB Parallel Computing Toolbox [65].

Fig. 4.4.3 and Fig. 4.4.4 show the experimental results for the valley filling and the
charging cost minimization problems, respectively. The runtime results in Fig. 4.4.4a
and Fig. 4.4.4c reveal that EV ADMM’s runtime increases linearly with the number
of EVs for both problems. This linear scalability is not surprising because it is a
well-known characteristic of ADMM based algorithms [38,51] . In contrast to this,
the centralized optimization exhibits an exponential runtime increase. This gives EV
ADMM a clear scalability advantage over the centralized approach. The advantage
becomes even more apparent when we consider the effect of a parallel implementation
with more cores. Fig. 4.4.5 shows the speedup achieved by parallel EV ADMM
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Figure 4.4.4: Scalability experiments resulting runtime (left) and memory use (right).

over serial EV. ADMM. We can see that a parallel EV. ADMM implementation in
16 cores outperforms the centralized optimization for EV fleets with more 20 000
EVs. However, we can also see the speedup achieved by a multicore implementation
is significantly lower than an estimation of dividing the solving time of serial EV
ADMM by the number of cores. This can be explained by the Amdahl’s law of
speedup [66], which states that parallelization speedup is limited by the required
sequential parts of a computer program. With a linear regression over our results,
we can estimate a speedup of 55.7% per additional core provided in the case of valley
filling, and 69.4% in the case of minimal cost charging. Moreover, the results for the
memory use shown in Fig. 4.4.4b and Fig. 4.4.4d reveal that EV ADMM needs less

memory to solve the problem than the centralized approach. This is because, in the
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centralized approach, the parameters of all the subproblems need to be loaded into
memory at the same time. Memory represents a barrier for centralized optimization
that makes the optimization of very large problems intractable, because of memory
capacity limitations. The advantage of EV ADMM is that the problem is split
into subproblems and only the current subproblem being solved needs to be loaded
into memory. Fig. 4.4.4b and Fig. 4.4.4d demonstrate that the memory increase is
still lower than the memory required in a centralized optimization. Moreover, the
memory does not increase significantly when more cores are used. Hence, EV ADMM
allows the definition of a trade-off between running time and required computational

resources (CPUs and memory).

To fully demonstrate the capabilities of EV ADMM, we solved the valley filling
problem for 1 million EVs in Germany. The German demand data can be found
in [63]. Due to memory limitations, this problem cannot be solved with our machine
using a centralized approach. We waited a whole week (7 days) for the centralized
method until a memory error caused the running process to crash. However, using
EV ADMM (16 cores), we can solve this problem in less than 30 minutes, using less
than 10 GB of peak memory. We solve the problem considering EVs that can charge
with a maximal power of 4 kW and 20 kW. As shown in Fig. 4.4.6, the same quality
of valley filling is achieved in both cases, regardless of the maximal charging power
of the EVs. This was expected since the amount of required energy is the same in
both cases.
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4.5 Discussion

EV ADMM provides a scalable framework to solve convex EV aggregator optimization
problems. In the following, we discuss its possible computational implementation

and application areas.

4.5.1 Implementation

EV ADMM is a flexible algorithmic framework. Thus, the way it is implemented

depends on the requirements and the available communication infrastructure.

Centralized computation

In this scenario, EV ADMM is used to parallelize the computations. A communication
system is assumed, where all the required information for the optimization is
communicated to a single centralized location, e.g., where the aggregator is located.
In this scenario, the aggregator queries the charging requirements from all EVs,
performs the optimization and sends the result back to the corresponding EVs. We
demonstrated in Section 4.4.2 that EV ADMM can take advantage of the multi-core

architecture of modern server processors to speed up computations. In practice,
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however, the centralized computation approach has two significant drawbacks. The
first drawback comes from the technical challenges of implementing a centralized
communication system that is both scalable and reliable. As the number of EVs
increases, the aggregator needs to be able to handle an increasing number incoming
messages. For very large EV numbers, the number of messages that the aggregator
needs to handle could be too much overhead. The second drawback is the lack of
data privacy. Since the charging requirements of all EVs are communicated to the
aggregator, the aggregator eventually knows about the behavior of the individual
EVs and consequently the behavior of their owners. This may lack broad acceptance
by EV owners [8]. Therefore, a centralized system may not be the best solution.
To distribute the computation and avoid a clustering of sensitive data, which EV

ADMM supports out-of-the-box, may be the more promising approach.

Decentralized computation

Another possibility to implement EV ADMM is to leverage the decentralized nature
of the algorithm and distribute the computation between the aggregator and EVs. In
this scenario, as described in Fig. 4.3.1, the aggregator would broadcast the incentive
signal and wait for the charging profiles to be calculated by each individual EV.
Both parties would communicate iteratively until the convergence criteria is met
and all final optimal EV charging profiles have been computed. The advantage of
this procedure compared to the centralized approach is that no information about
individual EV parameters is exchanged. Moreover, the messages are simpler, because
the same incentive signal needs to be communicated to all EVs and the aggregator
only requires the aggregated EV profiles to update the incentive signal. However,
the problem remaining here is again the massive communication overhead, i.e.,
the number of messages that have to be received by the aggregator. Even worse
than in the centralized setting, due to the iterative procedure of the algorithm, the
aggregator has to handle the message overhead in each iteration. An extension of this
approach can take advantage of an attractive characteristic of EV ADMM to reduce
communication overhead. In EV ADMM, the aggregator only needs the aggregated
EV profiles to update the incentive signal. If the aggregation was computed on the

way from the EVs to the aggregator, the computation overhead would decrease and
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the number of messages that needs to be handled would diminish. Furthermore,
with this approach, the possibility to infer any sensitive information is reduced. The
crucial requirement for this approach lies in a communication infrastructure that
can provide aggregation as a central feature [67,68|. This approach is discussed in
Chapter 5.

Nonetheless, EV ADMM still requires a centralized location to calculate the incentive
signal update. To remove this bottleneck, one can use standard solutions; in particular,
a consensus algorithm to estimate the incentive signal update in a distributed way.
This has been shown in related publications [69,70]. Nonetheless, one should carefully
consider less communication intensive alternatives in practice. We believe that a
distributed implementation of EV ADMM represents an interesting possibility, but

one with many technical challenges that are currently being investigated.

4.5.2 Applications

The optimizations considered by EV aggregators can be carried out for planning or

control tasks.

Planning tasks

In the case of planning, which can also be considered as open-loop control, the
assumption is that the result of the optimization problem is calculated before the
control horizon starts, e.g., one day ahead. This means that the time requirements for
the optimization are not that strict, e.g., at least 10 hours. Our scalability evaluation
in Section 4.4.2 has shown that a parallel implementation of EV ADMM is capable
of solving such problems within the required time frame. Hence, EV ADMM already
provides a solution for EV aggregator planning tasks that involve the solution of
very large convex optimization problems. Even if some of the parameters like EV
time of arrival and energy requirements are uncertain, the scalability and speed of
EV ADMM allow for performing multiple optimizations runs considering different
scenarios, cf. [30].
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Control tasks

The implementation of EV ADMM for a closed-loop receding horizon control
requires periodic solutions of the optimization problem, e.g., every 15 minutes.
Although EV ADMM could fulfill these requirements for smaller fleets, for larger
fleets the required computational resources may be prohibitive. Another aspect
of EV ADMM that can be an issue for its use in a control context is the high
number of iterations required, which translates into a high amount of messaging. For
several iterations, the communication delays caused by a large number of messages
can have a major effect on the solving time and stability of the algorithm. A
promising approach to overcome this issue is presented in [42], where in-network
aggregation is used to double the performance of a distributed EV optimization
algorithm implementation. Another alternative for reducing the computation time
and communication requirements is to accept suboptimal results. For this, we would
need a distributed optimization algorithm that can be stopped and offer feasible
suboptimal solutions before convergence (cf. [43]). The effectiveness of algorithms
based on ADMM for treating uncertainty is demonstrated for 100 EVs in [30].
Nevertheless, it is clear that further research is required to efficiently apply EV
ADMM for closed-loop control tasks with very large EV numbers.
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CHAPTER 5

EV ADMM implementation in
Publish /Subscribe Middleware

In this chapter, we study the use of publish and subscribe middleware to implement
distributed EV charging optimization algorithms like EV ADMM in a distributed
environment. We focus on the problem of an EV aggregator optimizing the day-ahead
charging of an EV fleet to offer valley filling service.

First, we define our assumptions in Section 5.1. In Section 5.2, we review the basics
of pub/sub middleware and outline the advantages it offers to solve our problem. In
Section 5.3, we review three possible implementations of EV ADMM valley filing in
a distributed environment using pub/sub middleware: centralized, decentralized and
decentralized with aggregation. Then, in Section 5.4, we propose DOPS (Distributed
Optimization Publish and Subscribe) an agent-based framework for the execution of
distributed optimization algorithms. DOPS provides interfaces for multiple agents
to execute optimization algorithms in a distributed infrastructure. We describe the
different agent types and interfaces that DOPS offers. Finally, Section 5.5 presents
our evaluation of EV.ADMM in DOPS for the three EV ADMM implementation
concepts. We compare the runtime of the three implementations taking into
account computation and communication under real-world conditions. Our results
demonstrate that a decentralized implementation can outperform a centralized

implementation with increasing number of EVs. Moreover, our experiments show
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that the in-network aggregation capability of DOPS doubles the performance of the
decentralized approach. Our results, thus, confirm that distributed EV charging

control infrastructures can benefit from using pub/sub middleware.

5.1 Assumptions

Since this chapter provides a proof of concept application of the results of the previous
chapter, all the assumptions defined in Section 4.1 also apply here. Also, we make

the following assumptions:

o We consider the real implementation of EV ADMM in a distributed environ-

ment.

o The parameters of the optimization problem are geographically dispersed in

their particular locations.

e There is an event-based communication system that supports in-network

aggregation.

5.2 Pub/sub middleware for EV charging control

Publish /subscribe middleware is based on a communication paradigm, where sub-
scribing entities register their interest in an event, or a pattern of events, and
are subsequently asynchronously notified of events that are issued by publishing
entities [71]. The main advantage of this paradigm is that it allows for full decoupling
of the communicating participants in space and individual control flow. This offers
a lot of flexibility for the development of distributed applications. Loosely-coupled
architectures as prevalent in publish/subscribe systems (pub/sub) [72,73] can offer
a flexible and reliable communication architecture. In this work, we exploit these
advantages for the development of a platform to support distributed optimization

for EV charging.
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In (distributed) pub/sub, events or publications are matched against a set of filters
or subscriptions, respectively, to route the information over a (distributed) broker
architecture from a source to all interested sinks [72,74]. Pub/sub could be a good
candidate to serve as a messaging system between the EVs and the aggregator.
However, standard the pub/sub model does not support the computation of in-
network aggregates. This is a desirable feature for the efficient implementation
of EV charging distributed optimization. In [75] a first approach to introduce
aggregation for data-intense stream processing is proposed. In this work, we design
and implement a similar approach to reduce the number of notifications that are
exchanged in the broker overlay. Apart from reducing the number of messages
sent over the communication network, the ability of this approach to decouple the
aggregator and the individual EVs facilitates data anonymity, as the infrastructure
only provides aggregated information. Furthermore, the distributed nature of the

broker architecture enables the system to scale well with increasing number of EVs.

5.3 EV charging protocol implementation

We consider three different strategies to implement the EV. ADMM valley filling in a

distributed environment:

Centralized — An intuitive way to implement EV ADMM valley filling is in
a centralized computation. In this case EV ADMM is used only to parallelize
computations in a central location. In this approach, the aggregator queries the
charging requirements from all EVs and calculates the charging schedules on its
own. However, this approach has two major drawbacks. The first problem is the
collection of all charging requirements from large numbers of EVs. Assuming a
standard centralized communication model, the implementation of a scalable and
reliable system becomes challenging. Especially, if there are real-time requirements
to implement a model predicative style of control (cf., [40]). The second problem is
not of technical nature, but highly relevant in practice: As charging requirements
need to be exchanged in this approach, the aggregator eventually knows about the

behavior of individual EVs and consequently the behavior of their owners. This
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resembles the concept of a direct control method, which may lack broad acceptance
by society [8]. As a result, a centralized system may not be a practicable solution
to the problem. Instead, to distribute the computation and avoid a clustering of

sensitive data could be a more promising approach.

Decentralized — A second approach is to leverage the decentralized nature of
the EV ADMM algorithm and distribute the computation between aggregator and
EVs. In this implementation approach, the aggregator would broadcast the control
signal and wait for the charging schedules to be computed by each EV. Both parties
would communicate iteratively until the total demand profile is flattened to the
maximal possible extent, and all final EV schedules are calculated. The advantage
of this procedure compared to the centralized approach is that there is no need
for exchanging any information about individual charging requirements. However,
the problem remaining here is again the massive communication overhead, i.e., the
number of messages that have to be received by the aggregator. Even worse than in
the centralized setting, due to the iterative procedure of the algorithm, the aggregator
has to handle the message overhead in each iteration and not only once. Hence, due

to the massive communication cost, this solution might not be ideal.

Decentralized with aggregation — Our third approach takes advantage of an
interesting characteristic of EV.ADMM. To update the incentive signal, the aggregator
needs the sum of intermediary schedules from all EVs. If this value were computed
on the way from EVs to the aggregator, not only the computation overhead would
decrease, but also the number of messages that need to be handled would diminish
from a large amount to a single one containing already the necessary aggregated value.
Furthermore, with this approach, the possibility to infer any sensitive information
is reduced. The crucial requirement for this approach lies in a communication

infrastructure that can provide aggregation as a central feature.
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Figure 5.4.1: EV ADMM with Pub/Sub.

5.4 Distributed Optimization Publish and Subscribe

In this section, we describe DOPS, an agent-based framework for the execution
of distributed optimization algorithms that follows the EV ADMM computational
model depicted in Fig. 5.4.1. An agent in this context represents a particular role
within the optimization process that has possibly thousands of instances (e.g., an
EV). DOPS is implemented in JAVA and layered on top of the distributed content-
based pub/sub middleware Padres [72], which abstracts from the communication
between agents and other infrastructure capabilities (cf., Fig. 5.4.2). To reduce
the message overhead regarding the number of messages being propagated and the
overall communication delay, we developed an approach for in-network aggregation
and added the corresponding feature to Padres. Aggregates are calculated over
a synchronization context that resembles one iteration within the optimization
process and can be any (self-) decomposable aggregation function [75] defined over

application-specific data from all agents.

The DOPS framework provides two distinct agent types that allow for modeling
different decentralized optimization approaches (cf., Fig. 5.4.3). Agents extend
the pub/sub client for further functionality and essentially realize the iterative
communication model that is depicted in Fig. 5.4.1. The aggregator agent acts as

the authority to calculate and notify the incentive signal to the middleware (e.g., the
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Figure 5.4.2: Conceptual overview of DOPS.

EV aggregator) and the Controllable Device agent (the EV) acts as an entity that
optimizes based on the incentive signal and reports its local result to the middleware.
The actual optimization procedure is encapsulated in a concrete optimization strategy
that implements the [Optimization Strategy interface. This interface defines the
complete optimization algorithm by specifying agent-specific code and a convergence
criteria. In the following, we describe the functionality of these three interfaces.
Altogether they represent everything an application developer has to implement to

run own distributed optimization algorithms in a distributed infrastructure.

1. Aggregator Interface: Consists of three method stubs. These methods do not
specify any optimization logic but are crucial for executing the optimization
along an iterative workflow. The application developer has to specify the return
values of these methods. For instance, the initialize() method loads the required
data and getlnitiallncentive returns the incentive. Some functionalities are
already implemented, e.g., the invocation of the optimization methods from
[OptimizationStrategy. A developer has to implement the methods of the
interface IAggregator in a custom Aggregator class and the Aggregator parent

class will do the rest.

2. Controllable Device Interface: Interface for devices similar to the aggregator
interface providing three method stubs. Again, the primary purpose is to

guarantee a well-defined optimization workflow.
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Figure 5.4.3: Relation of DOPS agents and P/S clients.

3. Optimization Strategy Interface: The actual optimization logic for both agent
roles is specified in an implementation of the interface IOptimizationStrategy.
This enables an application developer to specify the complete algorithm within
a single Java class. Furthermore, it enhances flexibility as an optimization

strategy can be exchanged during runtime without changing the agents.

5.5 Experimental evaluation

We evaluated our framework experimentally on a test cluster comprised of 15 virtual
machines running Ubuntu 12.04.4 LTS (GNU/Linux 3.2.0-58-generic x86_64). Each
machine was equipped with two vCPUs @ 2.6 GHz and 512 MB RAM. All machines
were part of a VLAN and we did neither constrain latency nor bandwidth. To run
DOPS we used Java version 1.7.0_ 51 and the Open JDK Runtime Environment
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Our general system configuration (i.e., overlay structure) is depicted in Fig. 5.5.1.
Circles denote pub/sub messaging and aggregation brokers. The brokers form a
balanced tree structure. The boxes denote the pub/sub clients (i.e., the agents in
DOPS). The EVs (controllable device agents) are connected to edge brokers (i.e., the
leafs in the broker tree) while the aggregator (aggregator agent) is connected to the
root. In this setting, the aggregator runs on the same machine as the root broker.
Similarly, EVs run on the same machines as the edge brokers. We implement the
three different strategies described in Section 5.3 to solve the valley filling problem
for EV fleets of variable size. We considered a one-day horizon (i.e., 24 hours) and a
time interval AT = 15 minutes. The base demand profile D was scaled depending
on the number of EVs to guarantee that valley filling is achievable. The dataset used
is publicly available and comprises of the base demand profile for the grid operator
obtained from [62] and the EVSs’ energy requirements obtained using the methods
described in [76].

Experiment 1 — Comparison of approaches: In the first experiment we com-

pare the runtime performance of the centralized approach with both decentralized
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approaches (i.e., with and without in-network aggregation). We use the total number
of controllable devices as control parameter and run the optimization with 8, 24,
48, 72, 96, and 120 EVs. In this setting, EVs are equally distributed among edge
brokers. For instance, for 24 EVs there are 3 EVs connected to each single edge
broker (cf., Fig. 5.5.1). We take five measurements for each configuration and
calculate the average of computation times. The results in Fig. 5.5.2 show the
average runtime and its deviation. As we can see, the centralized approach performed
best (about 2s for 72 EVs). The decentralized approach with aggregation (about 12s)
outperforms the no-aggregation approach (about 28s). The reason for the centralized
approach performing so well is that there is only a single round of communication
necessary between aggregator and EVs. As opposed to the centralized approach, the
distributed approaches communicate in an iterative manner. For instance, for 72
EVs the algorithm performs 27 iterations.

However, the drawback with the centralized approach is that (1) privacy of the data
is not considered at all and (2) the aggregator has to handle a number of messages
that is equal to the number of EVs. As this number increases, it becomes a bottleneck
for the entire system, which the results for 120 EVs already indicate. Unfortunately,
because of our limited computing resources, we were not able to further increase
the number of EVs. Nevertheless, a power curve fitting of our measurements shown
in Fig. 5.5.2 reveals that for 150 EVs the decentralized approaches will outperform
the centralized approach. We can also see that the decentralized approach without
aggregation suffers from the same bottleneck as the centralized approach. Again, the
major drawback is that the number of messages an aggregator receives per iteration
is equal to the number of EVs. By exploiting the aggregation capabilities of DOPS,
this number can be reduced to only one message per iteration and performance is
nearly doubled. Analyzing the trend of runtime behavior, we believe that there is
a point close to the 120 EVs, at which the aggregation approach outperforms the

centralized approach, i.e., according to our approximation around 140 EVs.

Experiment 2 — Random distribution of EVs: In the second experiment,
we compare the runtime behavior for the decentralized approach with aggregation
between an equal distribution of EVs among edge brokers and an unequal distribution.
The total number of EVs is randomly distributed for each run of the optimization. The

results of this experiment are shown in Fig. 5.5.3. As we can see, for up to 48 EVs in
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Figure 5.5.2: Experiment 1 — Runtime comparison: Centralized vs. no aggregation vs. in-network
aggregation.

total, the difference in runtime between equal (7.7 seconds) and random distribution
(8 seconds), remains comparable. For 72 EVs a more the equal distribution performs
better, and for 120 EVs the runtime is halved. This behavior can be explained by
the increased load that occurs at some of the edge brokers due to the higher amount
of EVs they have to handle.

Interpretation — In conclusion, we can say that with our aggregation approach
for pub/sub, the distributed optimization performance is significantly improved. In
our experiments, the runtime was halved. Analytically, the number of messages
that arrive at the aggregator client is reduced to a single one per iteration. This
becomes relevant when we consider the introduction of EV aggregators that will have
to control thousands or even millions of EVs. Unfortunately, due to the resources
constraints in our testbed, especially the limited memory of 512 Mb per machine,
we were not able to extend our experiments to larger EV fleet sizes. However, using
extrapolation, we can predict that already for 150 EVs the decentralized approaches
will gain the upper hand. Our results demonstrate that a decentralized EV charging

control infrastructure can benefit from using pub/sub with aggregation capabilities.
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Figure 5.5.3: Experiment 2 — Runtime comparison (aggregation) between equal and unequal (i.e.,
random) distribution of EVs among edge brokers.
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CHAPTER 6

Distributed Optimization for EV
Charging Congestion Control with
EV NUM

In this chapter, we develop a real-time distributed anytime EV charging congestion
control algorithm to support the integration of EVs into the current distribution grid.
Our approach is based on a primal decomposition solution of the EV NUM problem.
This results in an EV congestion control protocol with closed-form expressions for
the computations performed by EV chargers and protection devices. Our protocol
maximizes the EVs’ utilization of the available infrastructure while respecting its
operational constraints.

First, we declare our assumptions in Section 6.1. In Section 6.2, we shortly review
the problem of EV congestion control, define its mathematical formulation as the
EV NUM problem, and present its distributed optimization solution using the state-
of-the-art dual decomposition and our proposed primal decomposition. We explain
how the dual solution algorithm results in an incentive-based control approach and
our primal solution algorithm results in a budget-based control approach. We also
discuss the theoretical convergence behavior of both approaches and demonstrate
the theoretical advantages of our primal approach. Then, in Section 6.3 we define

the specific algorithms that the individual EVs and protection devices must follow
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to implement the EV NUM dual and primal congestion control protocols. Section
6.4 shows our evaluation experiments for both approaches under static and dynamic
conditions using the IEEE 13 Node Test Feeder. We show that the theoretical insights
match our experimental results and demonstrate that, thanks to its anytime property,
the primal approach offers a superior convergence behavior and control performance
than the dual approach. Section 6.5 presents a more realistic and comprehensive
evaluation of both approaches using the IEEE European Low Voltage Test Feeder.
We perform a scalability evaluation of both methods and use a 3-phase power flow
simulations to assess the real impact of both algorithms on the operational constraints
of the grid. The results demonstrate that our primal approach outperforms the dual
approach in scalability. Moreover, the evaluation shows that the dual approach can
allow faster charging at the cost of possible operational constraint violations, while
our primal approach does not violate operational constraints. Finally, Section 6.6
presents a short discussion on the applicability of the EV NUM formulation and
both its solution algorithms.

6.1 Assumptions

To formulate the EV congestion control problem as an optimization problem we

assume the following:

o EVs start charging immediately after arrival.
o EVs want to maximize their charging rate.
o Denial of service or stopping an EV from charging is not allowed.

o EVs have no deadline to finish charging. If EVs have a deadline, we do not
guarantee that they will charge to their desired level.

o Distribution grid devices have a maximal overloading capacity that must be

respected.

e The time to stop overloading of devices is in the millisecond range.
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o Predictions are not available.

o The utility company guarantees operational voltage constraints without the
control of EVs.

o For the problem formulation losses are ignored, and voltage is considered to
be constant. However, a 3-phase AC power flow model is considered for our

evaluations in Section 6.5.

e There is a communication network that is ubiquitous, broadband, reliable, and

has a low latency.

e The problem formulation is convex. An important consequence of this assump-
tion is that the EVs must be able to use a charging rate that is continuous

between 0 and a maximal value.

6.2 Real-time EV charging congestion control

We consider the problem of controlling the charging rate of EVs in a distribution
network. The distribution network consists of several devices such as lines, trans-
formers, and switches, all of which have a maximal loading rate also known as
ampacity. An overloading or congestion of the grid happens when the load at
any of these devices is higher than the maximal allowed loading. Most of these
devices are equipped with a protection device, which prevents equipment damage by
opening the electric circuit whenever the maximal loading is reached. Protections
have a reaction time of hundreds of milliseconds, and many of them already have
measuring, computation, and communication capabilities [77]. EV home chargers
are also expected to have computation and communication capabilities. Hence,
the overloading problem resulting from large EV populations can be solved using

intelligent charging as shown in Fig. 6.2.1.

We follow a best-effort approach without considering predictions. With this approach,
the problem becomes a time critical problem, in which fast reactions are required

to prevent the overloading of grid devices or power outages. We divide time into
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Figure 6.2.1: Uncontrolled and controlled charging.

control time slots of duration 7,. We assume that the state of the power system
remains constant during each time slot. This also means that the time required for
computation and communication has to be smaller than the triggering time of the
protection devices. Furthermore, we assume that each EV wants to charge as fast as
possible. During each control time slot, an optimization problem needs to be solved.
The objective of this problem is to maximize the charging rate of EVs, such that the
capacity of the grid is optimally used and all EV chargers have access to the grid

resources.

Although the real-time EV charging optimization problem can be solved centrally,
we strive for a distributed solution. In a centralized approach, the parameters of
each EV charger and the parameters of each protection device would need to be

communicated to a centralized location, where the optimization is performed. The
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result would then have to be sent back to the EVs. For a large distribution network,
the communication and computation overhead of this procedure would not allow us
to provide a solution within the required timeframe: the control delay in a centralized
solution would be too long to prevent locally triggered faults. Therefore, it is more
suitable to keep the computation close to the data, i.e., to allow each device to make
calculations based on its local data and use message passing to coordinate them to

solve the original optimization problem.

6.2.1 The EV NUM optimization problem

We formulate the real-time EV charging control problem as a NUM problem (cf. [78]),
where the objective is to maximize the utility of the network’s users while respecting
the users’ and the network’s constraints. In our case, the users are the EV chargers,
and the network constraints are set by the maximal available loading of the protection

devices.

Let V = {1,..., N} denote the set of EV chargers and P = {1,..., M} the set of
protection devices. Our optimization variables are the EV charging rates x; for
t € V. The energy flow to each EV charger traverses several protection devices before
reaching its destination. We define this as the route to the EV charger. The set
of protection devices in the route to charger ¢ € V is denoted by P; and the set of
charger routes leading through protection device [ € P is denoted by V;,. With this,
the EV NUM problem is written as follows:

minimize > —w;log(z;) (6.2.1)
r ey
subject to 0<ux; <7 VieV (6.2.2)
Y, <¢ VIeP, (6.2.3)
1€V
minimize > —w;log(z;) (6.2.4)
z ey
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subject to 0<ux; <mT; VieV (6.2.5)
Yo, <¢g VlePp, (6.2.6)
1€V,

minimize > —wlog(z;) (6.2.7)
z i€V

subject to 0<uz; <7T; VieV (6.2.8)
S, <¢ VIleTP, (6.2.9)
1€V

where T; is the maximal charging rate of EV charger ¢ and ¢; is the maximal available
loading capacity of each protection device [. The value function (6.2.7) is the sum of
the EV chargers’ utility functions. The weighting parameters w; > 0 can be used to
set priorities, e.g., if an EV pays a higher price for charging it should have a higher

priority, or if an EV is almost fully charged, its priority can be reduced.

The logarithmic utility function makes sure that no EV charger is denied service, i.e.,
x; # 0. If this happened to any EV charger, its value function cost would be infinite.
The first set of constraints (6.2.8) are the minimal and maximal charging rate for
each EV charger. The second set of constraints (6.2.9) defines the maximal available
loading of each protection device, i.e., the maximal loading that each device supports

minus the current loading used to supply the customers with uncontrollable demand.

The objective function is separable because each EV charger can compute its local
objective using only its local optimization variable x;. The constraints in (6.2.8)
are also separable because they also can be checked by each EV using only its
local optimization variable. However, the constraints in (6.2.9) couple the local
optimization variables of each EV charger, because one EV charger requires the local
optimization variables of other EV chargers. These coupling constraints prevent us
from distributing the computation across the EV chargers and protection devices.

Hence, the problem is not separable.

The EV NUM problem is convez, since its cost function is convex and its constraint

space also convex. Thus, there exists only one optimal point x* that solves our
problem [46].
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6.2.2 State-of-the-art: Incentive-based control

The distributed optimization solution of the EV NUM problem using dual decom-
position has been studied in [36]. The goal of this approach is to allow each EV
charger to optimize its charging rate independently using only local information and
an incentive value generated by the protection devices. The result is an iterative
distributed algorithm that generates the optimal incentives to solve the original
problem described in Section 6.2.1. Since these incentives control the EVs, we refer
to this approach as an incentive-based control. This work provides a derivation of

the incentive-based algorithm that is an alternative to the one presented in [36].

To formulate the dual decomposition solution we use the dual ascent method [47].

The problem’s Lagrangian is defined as:

L(z,A) =Y —wlog(z;) + > ANz —a)}, (6.2.10)

ey leP 1%

where A = [A,...,Ay]T is a vector of Lagrangian multipliers for each coupling
constraint, also known as dual variables. By reordering the terms in the Lagrangian,

we see that our Lagrangian is the sum of individual EV charger Lagrangians:

L(z,\) = ZLi(%, A) =

icV

> {—wilog(%) + > {ulzi - q)} : (6.2.11)

% leP;

The dual function of our problem is then defined as:

G\ => { min_ {—w;log(z;) + > {\(z; — cl)}} : (6.2.12)

<z, <xT;
ey | 0SS leP;

With the dual function, the dual problem is written as:

maximize G(N). (6.2.13)
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Since our original problem is convex, strong duality holds [46]. This means, that
the optimal values of the original problem and the dual problem are the same. To
recover the optimal result x* from the dual optimal point A*, we have to solve:

" = min L(xz, \"). (6.2.14)

0<z<z

For this we use the gradient method. Since G is differentiable, its gradient, VG()),
is evaluated as follows:

VGO = Y, N, — @)l (6.2.15)

We see in (6.2.10) and (6.2.11) that A and = are both separable. Therefore, we can split
the minimization with respect to x into /N separable problems and the maximization
with respect to A into M separable problems. The dual ascent algorithm is then

given as follows:

zi(k+1) = OgjgjLi(xi, A(k)) (6.2.16)
+
(AS %]

where k is the iteration index, k > 0 is the step size of the gradient method, and the
function f(a) = [a]™ = max{a, 0}, is a projection onto the positive orthogonal. The
first step (6.2.16) is an & minimization step and the second step (6.2.17) is a dual
variable update. The dual variables can be interpreted as a vector of prices. Thus,

step (6.2.17) is basically a price update.

The x minimization step (6.2.16) has an analytic solution. The solution is obtained
by setting the partial derivative of (6.2.11) with respect to x; to zero, solving for x;,
and then projecting this value onto 0 < z; < 7;. For more details on projections
see [46]. With this solution, we write the dual decomposition algorithm for our

problem as:
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For each EV charger,t=1,..., N:

. Wi =
z;i(k +1) = min SIN0) Ti ¢ - (6.2.18)

lep;

And for each protection device, [ =1,..., M:

N(k+1) zmaX{Al(k)%—m(in—cl),O}. (6.2.19)

1€V,

We see in (6.2.18) that each EV defines its charging rate based on the sum of the
prices set by the protections on its route. Thus, each protection along the EV
charger’s route needs to communicate this price to the EV charger. In (6.2.19), we
see that each protection device does a price update based on the current available
loading capacity, which is the maximal available capacity, ¢;, minus the sum of the
chargers loading. This can be measured by the protection device locally. Thus, there
is no need for the EV chargers to communicate their charging rates to the protection

devices. This property enables the one-way communication design proposed in [36].

The main drawback of the EV NUM dual decomposition solution is that the coupling
constraint »-;cy, x; — ¢; can be violated while the optimization algorithm is running:
The constraint is sure to be satisfied only upon convergence, which means that the
protection devices may already be triggered in the meantime. In [36] this is addressed
by introducing an emergency response mode in which the charging of all EVs is
interrupted if the protection device is about to be triggered. However, as we will
later see, due to the highly dynamic nature of the fixed loads in the grid and the
timescales on which the proposed control operates, the emergency response strategy
may result in a prolonged period during which EV charging is not possible. Another
drawback of this algorithm is that its performance and convergence strongly depend
on the step size k. For certain values of k, the algorithm may not converge or may
become unstable. This instability leads to high oscillations in the computed EV

charging rates, and in turn to a fault in the protection devices.
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Convergence: The convergence and stability of the dual decomposition algorithm
for the NUM problem have been studied in [16]. In [36], it is confirmed for real-time
EV charging control.

The incentive-based approach converges when a price equilibrium has been reached,

i.e., when the prices don’t change significantly in subsequent rounds:
[IME +1) = A(K)]]2 < &, (6.2.20)

where ¢; > 0 is the convergence parameter. The convergence of the algorithm is
guaranteed if:

0<kr < —

— (6.2.21)
Tmaw LN

where T, = max®;, is the maximal charging rate across all EV chargers, L =
max; >_; [y;, is the maximal number of protection devices that any route to an EV
charger goes through, and N = max; Ry;, which is equivalent to the number of EV

chargers.

The evaluations in [36] showed that a higher value of x leads to faster convergence.
However, as seen in (6.2.21), the value of x needs to be smaller for a higher number of
EV chargers and a larger grid. Hence, the larger the system, the longer the algorithm

takes to converge.

6.2.3 Novel approach: Budget-based control

To improve on the drawbacks of the EV NUM dual solution, we propose a distributed
anytime primal algorithm. The idea is to allow each EV charger to optimize its
charging rate independently using local information, but to stay below a budget
defined by the protection devices. When we modify the original problem to include
budgets and apply primal decomposition to it, the result is an iterative distributed
algorithm that generates the optimal budgets for each EV charger. The main
advantage of this approach is that the resulting algorithm has the anytime property.
This means that the charging rates produced by the algorithm with each iteration are

always feasible. Moreover, the longer the algorithm runs, the closer the result gets to
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the optimal solution. Since the control of the EVs is based on setting maximal upper
bounds on its charging rate or budgets, this control approach can be characterized

as a budget-based control.

To formulate our approach, we first modify the original EV NUM problem in Section
6.2.1 to include a budget for each EV charger. Let b = [by, ..., bx|T denote a vector
of the budgets for each EV charger ¢ € V. Then, the problem can be written as

follows:

ming?ize z%/ — w;log(z;) (6.2.22)
subject to 0<uz; < T VieV (6.2.23)
2 <b  Viey (6.2.24)
Y h<e¢ VleP. (6.2.25)

1€V

In the formulation above we see that the budgets are included as optimization
variables. Moreover, in Equation (6.2.24) we see that each EV budget represents
an upper bound constraint for its corresponding EV charger. Since the budgets are
to be defined by the protection devices, in Equation (6.2.25) the maximal available
loading constraints have been modified to depend on the budgets instead of the EV
charging rates. This formulation delivers the same optimal results as the original
problem in Section 6.2.1. As we proofed in [43]: If an EV charger cannot reach its
maximal charging rate T;, the value for its charging rate becomes its budget, i.e.,

x; = b;. Hence, the modified problem becomes equal to the original problem.

In a distributed optimization scheme, each EV charger ¢ optimizes using only its
local decision variable, x;. In Section 6.2.1, we explained that our original problem is
not separable due to the coupling constraints. However, in our new formulation, the
coupling constraints depend only on the value of the budgets. Thus, if the budgets
are fixed values, the problem becomes completely separable. Therefore, we can think
of the budgets as interface variables between the individual problems of each EV

charger.
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Our new formulation can be represented as the sum of individual EV charger problems,
which are coupled by the budget variables:

min Y {max min{ —w;log(x;) + pi(x; — bl)}} (6.2.26)
b ey (20 2
subject to 0<uz; <7, VieV (6.2.27)
S b <ca, VieP, (6.2.28)
i€V

where p; is the Lagrangian variable from constraint x; < b;. The requirement p; > 0,
comes from the Karush Kuhn Tucker (KKT) conditions (cf. [46]). We separate this
problem into a set of subproblems for each EV charger that optimizes the local
variables z; and a master problem that optimizes the interface variables b;. Let ¢;(b;)
denote the optimal value for the following problem:

max min  {—w;log(z;) + pi(z; — b))} (6.2.29)

#i=0 0<z;< T

With that definition, the master problem is formulated as:

min > ¢i(bi)
iev
6.2.30
subject to > b; < ¢, VIeTP, ( )
1€V

with ¢(b;) = —pibs.

The master problem can be solved with an iterative method, e.g., gradient projection.
Each iteration requires solving the subproblems (6.2.29) in order to evaluate the
master problem (6.2.30) (cf. [48]).

The subproblem of each EV charger (6.2.29) has an analytic solution. This solution
is obtained by applying the KKT conditions and solving the equations after the

optimization variables. The result for each EV charger ¢ =1,..., N is:

zi(k+1) = min{b;(k),T} (6.2.31)
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; 6.2.32
w;/xi(k+1)  otherwise ( )

pilk+1) = {

where k is the iteration index. These computations can be done in parallel by each
EV charger once it knows its current budget b;(k). The resulting optimal value for
the Lagrangian variable p; can be interpreted as the marginal benefit of the EV
charger for the assigned budget. In Equation (6.2.32), we see that the marginal
benefit is zero when x;(k + 1) = Z. This is because at this point the EV has achieved
its maximal benefit. In turn, when the EV charger’s maximal benefit cannot be
achieved, its Lagrangian is the derivate of its utility function, which is the textbook

definition of the marginal benefit. Hence, p; = VU;(z;) = w;/x;.

To update the budgets, we need to solve the master problem in (6.2.30). We could
use the gradient projection method explained in [79]. However, this approach would
require the current available loading ¢; of all protection devices to be sent to a central
location in each iteration. In a large distribution grid, this would cause a large
communication overhead. Therefore, we propose using the sequential projections
method described in [48] together with gradient descent, which results in a gradient
sequential projection method. Our approach consists in projecting the budget updates
onto the individual constraints of each protection device as they are communicated
along the network back to the EVs.

For a sequential projection, we first need a communication node where the EVs send
their current budgets b;(k) and their marginal benefits p;(k 4+ 1). In the following,
we assume that this central communication node is located at the substation or the
root node of the network. Then, we sequentially project the gradient updates of
these budgets onto the individual constraint set of each protection device along the

corresponding route. We formalize this as:

b(k+1) = Pe, {... Pe,{Pe, {b(k) + ap(k +1),}}.. .}, (6.2.33)
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where P¢, is the projection operator over the set:

Co={b]> b < al. (6.2.34)

1€V

Equations (6.2.33) and (6.2.34) describe a procedure that updates the budgets as
they are communicated along the protection devices back to the EV chargers. It
loops over all protection devices, [ € {1,..., M}. We define the starting value of the
budgets as the gradient update:

" = b(k) + ap(k + 1). (6.2.35)

Then, the problem to solve for each protection device is:
b =Pe {071} (6.2.36)
This projection is an optimization problem:

miny ||bf — b

6.2.37
s.t. bl € Cl. ( )

The problem above is solved using the KKT conditions. It represents a projection
onto a halfplane, which has an analytic solution, (cf. [46]). Hence, to solve the master
problem, each protection device updates the budget of each EV charger route that
goes through it, i.e., Vi € V;:
b7 i ST <a
b= @S , (6.2.38)

_ teV .
bt 4 —N— otherwise

where NN, is the number of EV routes that go through protection device [, defined as
N = > 1.

1€V
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The resulting solution approach is a distributed algorithm, where the EV chargers
define their charging rate and marginal benefit according to Equations (6.2.31) and
(6.2.32). These values are then sent to the central communication node. There, the
values are used to perform a gradient update of the budgets according to Equation
(6.2.35). Afterwards, the updated budget values are propagated down through the
protection devices back to the EVs. While they are propagated, each protection
device projects them onto their constraint set (6.2.38). Once the budgets have been
propagated through the network back to the EV chargers, a new iteration starts.
This procedure guarantees that the resulting budgets are feasible for all protection
devices in each iteration. Moreover, due to the gradient step update, we also close
in on the optimal solution of the master problem in each iteration until it is finally
reached.

Unlike the incentive-based approach, which requires only one-way communication
from the protection devices to the EV chargers, the proposed dynamic budget
approach requires two-way communication between protection devices and EV
chargers. However, as we will later see, this drawback is more than compensated by

its advantages.

Convergence: Our primal algorithm converges when the update of the budgets

does not change significantly:
[Ib(k + 1) = b(k)l]2 < &,
where €, > 0 is the convergence parameter of our approach.

Our approach uses the gradient projection algorithm to solve the master problem
(6.2.30) of the primal decomposition. As explained in [79], the gradient algorithm
converges to the optimal solution if:

2
0<as< . (6.2.39)

where K is the Lipschitz constant, which is defined as the maximal absolute value
of the master problem’s cost function derivative: >, V;(b;)| = >y < K. From
our definition of the marginal profit, p; = 1/x;, we see that if z; = 0, then p; = co.

This means that our cost function is not Lipschitz. To overcome this, we can define
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an upper bound for the value of u or we can avoid assigning zero budgets to any
EV charger. For our evaluation, we assigned an upper bound value of 7 = 10,
However, even if o > 2/K our algorithm still converges to produce a feasible result.

The convergence value is simply further away from the optimal value.

Furthermore, the algorithm remains stable even when the weight of the utility function
changes over time, provided that the changes take place after the algorithm has
converged, i.e., when the time between weight changes is larger than the algorithm’s
convergence time. Changing the weight values over time is important for defining
priorities between EVs. The weights can be used to give more or less priority to EVs

based on their state, e.g., remaining connection time or battery state of charge.

We provide a more comprehensive mathematical examination on the convergence of
this algorithm in [43].

6.3 Algorithms implementation

We now describe the algorithms that the protection devices and the EV chargers
implement in the incentive- and budget-based approaches. As in [36], we define
the control time slot duration as T. = 20ms. We also assume that the algorithms
perform one iteration with each clock tick. Therefore, the computation and the
communication for one iteration has to be performed within this time period. This

assumption results in the following requirement:
T.>d, (6.3.1)

where d is the delay caused by computation and communication.
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6.3.1 Incentive-based algorithm

The algorithms for the incentive-based approach defined in [36] are based on the
results discussed in Section 6.2.2. As defined by Equation (6.2.19), each protection
device performs a price update based on its measured congestion states and sends
this price to the EVs. It is assumed that all protection devices are synchronized and

perform Algorithm 1 at the same time.

Algorithm 1: Congestion price update at each protection [ with capacity
Ci
input :¢,xk >0
while true do
Measure load
congestion state <— ¢; — load
price <— max{price — k X congestion state, 0}
Send price along with all received prices to children

Walit until the next clock tick
end

According to Equation (6.2.18), each EV charger receives the prices from the
protection devices and updates its charging rate based on the sum of these prices.
Again, it is assumed that all EVs are synchronized and perform Algorithm 2 at the

same time.

Algorithm 2: Rate adjustment at EV charger ¢

input :7;, new congestion prices
while true do
A < vector of new congestion prices
aggregate price <— > jep, At
) w; —
rate < mln{aggregate price”’ x’}

Start charging the battery at rate

Wait until the next clock tick
end

In our implementation of the incentive-based approach, we do not consider the
emergency respond mode proposed in [36], where EV charging is stopped when a

protection’s maximal loading violation time gets close to its triggering time.
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6.3.2 Budget-based algorithm

The algorithms for the budget-based approach are derived from the results obtained
in Section 6.2.3. First, the substation receives the budgets and the marginal benefits
of the EV chargers. Based on Equation (6.2.35), Algorithm 3 is performed at the
substation.

Algorithm 3: Budget update in substation
input :q, new marginal benefits, budgets

while true do
1 < vector of new marginal benefits

budgets <— budgets + a x
Send budgets to protection device [ = 1

Wait until the next clock tick
end

The updated budgets are propagated through the protection devices back to the EV
chargers. As the budgets go through the protection devices, each protection device
executes Algorithm 4, which is based on the sequence defined by Equation (6.2.38).

Algorithm 4: Budget projection onto protection [ with capacity ¢
input :¢;,new budgets
while true do

budgets «+— new budgets € V),

aggregate budgets <— > budgets

if aggregate budgets > c¢; then

(c;—aggregate budgets)
budgets <— budgets + = Tength{budgets)

end
Send budgets to children

Walit until the next clock tick
end

Once the budgets go through all protection devices back to the EVs chargers, each
EV charger uses Algorithm 5 to update its charging rate. This algorithm is based
on Equations (6.2.31) and (6.2.32). This computation can be performed in parallel
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and at the same time by each EV charger. We assume that all EVs are synchronized.

This entails that all EVs must wait until all EVs have finished their computation.

Algorithm 5: Rate adjustment at EV charger ¢
input :7,budget
while true do
rate <— min{budget, T}
Start charging the battery at rate
if budget < T then
| marginal benefit «— w;/budget
end
Send budget and marginal benefit to the substation

Walit until the next clock tick
end

6.4 Evaluation on the IEEE 13 Node Test Feeder

We now evaluate the incentive- and the budget-based approach in a static and
a dynamic setting. In the static setting, we assume that the parameters of the
optimization problem do not change over time. This means that the fixed load
consumed at each node does not change over time. In the dynamic setting, we allow
the fixed load to change with time. For both cases, we assume that a constant

number of EVs remain connected.

We consider the distribution network depicted in Fig. 6.4.1. This network is based
on a simplification of the IEEE 13-bus test feeder [80]. As in [36], the network is
assumed to be balanced, which allows for a single phase analysis. Moreover, the
voltage is assumed to have a constant value of 4.16kV. Normally, this voltage level
must be further reduced by field transformers for the consumers. However, this is
ignored for the sake of simplicity. Based on these assumptions, we can focus on the
currents that flow through the network and control the amount of current used by

each EV charger.

In our evaluation, we consider a benchmark case of N = 18 EV chargers and M = 13

protection devices. Without loss of generality, we assume the same priority level for
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Figure 6.4.1: TEEE 13-node test feeder.

Table 6.4.1: Evaluation Parameters

Bus | 3] 4|56 7 | 8 | 9 [ 10 | 11 12
Scenario A (static)

Load [A] 30 | 40 | 40 | 10 20 70 20 100 20 40

18 EVs 2 2 2 2 2 0 2 2 2 2
Scenario B (static)

Load [A] 30 | 40 | 40 | 10 20 160 20 10 20 40

18 EVs 2 2 2 2 2 0 2 2 2 2

Scenario real load data (dynamic)

Load

(2012~ 1,213,415,6|7,89,10 | 11,12 | 13,14 | 15,16 | 17, 18 | 19, 20

May-<day>)

18 EVs 2 2 2 2 2 0 2 2 2 2

all EV chargers, w; = 1, and a maximal charging current of 16 Amperes, 7; = 16.

The location of the EV chargers, as well as the fixed load values of all nodes, can be
found in Table 6.4.1. With the position of the EV chargers and the topology of the

grid shown in Fig. 6.4.1, we define our routing matrix as:
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The vector of maximal available loading for the protections ¢; is defined by their
maximal load rating ¢y, minus the capacity that is used to supply the fixed loads.
In Table 6.4.1, we consider two static fixed load scenarios for which the maximal
available loading vector c4 and cp can be defined. In our evaluation parameters,

these vectors are:

T
Co = |:600.96 730730 730 140 140 340 340 230 230 340 340 230}

T
Cp = {210.96 340 450 700 600 100 310 320 100 210 220 320 190}

T
Cp = {210.96 340 450 700 60 100 310 320 10 210 310 320 190} .

The control time slot duration is defined as T, = 20ms and the triggering time of the

protection devices is defined as Ty = 200ms.

6.4.1 Static evaluation

We consider two scenarios: a low loading Scenario A and a high loading Scenario B
in Table 6.4.1. In Fig. 6.4.2, we see the protection devices that would be triggered
if we allowed all EVs to charge at their maximal rate. We observe that for load

Scenario A Protection 1 and 5 would fault, and for load Scenario B Protection 9

87



6.4. EVALUATION ON THE IEEE 13 NODE TEST FEEDER

Scenario A
gel | | m [ [ [ ] ][R
1234567 8 910111213
Protection device

1

# of EVs
©

Scenario B
gel | [ [m | [ [m || [ K
1234567 8 910111213
Protection device

| Il Nofaut [0 Fault]

1

(o)

# of EVs

Figure 6.4.2: Overloaded protection devices at maximal EV charging rate.
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Figure 6.4.3: Scenario A loading.

would fault also.

The result of both optimization approaches in Scenarios A and B for the transformer
are shown in Figures 6.4.3 and 6.4.4 for & = 1 and x* = 8.68 x 1075. As one can
see, the budget-based approach outperforms the incentive-based approach, as fewer
iterations are required to reach the optimal use of the infrastructure. Moreover, we
see that the incentive-based approach causes a violation of the transformer’s maximal
loading rate in both scenarios. Since we assume that each iteration takes T, = 20ms
and we define the triggering time of the protections as Ty = 200ms, a violation of
the maximal loading for more than 10 iterations would lead to a blackout. This is
the case for the incentive-based approach in both scenarios. The performance of the
incentive- and the budget-based approaches is mainly influenced by the respective

step sizes, k and «. The definition of the step size x for the incentive-based approach

88



CHAPTER 6. DISTRIBUTED OPTIMIZATION FOR EV CHARGING
CONGESTION CONTROL WITH EV NUM

2.5H 4
2.45/!

2.4 o
2.35)

Transformer (VA)

500 1000 1500
Iteration

o

= = = Budget-based' = =" Incentive-based Maximal loading

Figure 6.4.4: Scenario B loading.

was discussed in Section 6.2.2. As already discussed, if the value of x is too high, the
algorithm may become unstable, causing the charging rate of the EVs to oscillate.

To avoid this, x should be smaller than the maximal value for which stability is

2
162 x18%5

as the number of EVs or the size of the grid increases. This leads to scalability

guaranteed, i.e., K* = = 8.68 x 107°. The stable step size becomes smaller
problems.

For the budget-based approach, the definition of the step size a was discussed in
Section 6.2.3. We established that the maximal value needed for reaching the optimal
solution is a* = 1(1)%. However, this approach remains stable even with a higher step
size. The step size affects only the distance between the value to which we converge

and the optimal solution.

We also studied the behavior of both approaches for different step size values using
Scenario B. We allow the algorithms to run for 3,500 iterations and compare the
number of iterations required to reach 95 % convergence to the optimal result. The
optimal result was obtained by solving the problem with a centralized approach.
We only consider the results that converged within the convergence criteria, ¢; =
e, = 1073, As shown in Fig. 6.4.5, the higher the step size values, the faster the
corresponding optimization algorithm’s convergence. We see that the incentive-based
approach offers a more rapid solution for the same step size value. However, the
incentive-based approach becomes unstable when the value of its step size is higher
than K = 7 x 107*. In turn, our budget-based approach still converges to 95 %
optimality even for high step sizes. This means that we can choose larger step size

than the incentive-based approach, thereby making our approach converge faster.
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Figure 6.4.5: Number of iterations (Scenario B).

The static evaluation shows that our budget-based approach exhibits better reliability
than the incentive-based approach. Under the defined assumptions, our approach
guarantees that the maximal loading of the protection devices is not violated.
Moreover, our evaluation reveals that our approach remains stable and can, therefore,

offer better scalability than the incentive-based approach.

6.4.2 Dynamic evaluation

In this section, we analyze the behavior of the incentive and the dynamic budget-
based approaches when the loads change over time. The changes in load cause
changes in the maximal available capacity of the protection devices, ¢;. Due to the
highly dynamic changes of loads and the short available reaction time, it is important
that any EV charging control approach remains stable and reacts quickly to the
changing conditions of the grid.

We consider two scenarios. In the first, Scenario ABA, we iterate for 5 seconds
between Scenarios A and B for a total period of 15 seconds (cf. [36]). The parameters
can be found in Table 6.4.1. The second scenario uses real load measurements
obtained from the Smart* data set [81]. This data set consists of the real load
measurements of houses over several days with a resolution of 1 second. In our real

load scenario, we use the measurements from the homeA-circuit. We assume that
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Figure 6.4.6: Loading in Scenario ABA.

each node consists of two houses. Therefore, we use the measurements of the homeA
circuit from two different days, dividing the measured power by 120 V to obtain the
currents (cf. Table 6.4.1). We focus on the period between 4 pm and 6 pm, when

the highest energy consumption is expected.

The results for Scenario ABA for the transformer and Line 9 are shown in Fig.
6.4.6. We see that both approaches remain stable and can reach the optimal point
under load changes. However, for Line 9, the load change causes the incentive-based
algorithm to violate the maximal line loading. This line remains overloaded for
several seconds, which would certainly lead to a blackout. This could be prevented
by applying an emergency response mode as in [36], which would stop all EVs from
charging and then resume the incentive-algorithm. However, if this is implemented,
all EVs would be denied service. The advantage of the budget-based approach is
that it does not need an emergency response mode because of the anytime property.
We see in Fig. 6.4.6 that for the budget-based approach, the protection’s maximal

loading is never violated.

For the real load scenario, if we allowed all EV chargers to charge at their maximal
rate, the only device that would fault is the transformer. In Fig. 6.4.7, we see the
result of both approaches for the transformer: Around 5 pm the incentive-based

algorithm overloads the transformer for several minutes. Therefore, if an emergency
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Figure 6.4.7: Loading in real load scenario.

response is implemented, the EVs would not be able to charge for several minutes.
In contrast to this, we can see that the budget-based approach does not overload the

transformer and retains its anytime property even under highly dynamic load changes.

The dynamic evaluation of both approaches revealed that the anytime property of the
budget-based approach gives it a significant advantage over the incentive-approach,
especially when dealing with highly dynamic changes in the grid.

6.5 Evaluation on the IEEE European Low Volt-
age Test Feeder

We now conduct three experiments to evaluate the dual (incentive-based) and primal
(budget-based) EV NUM solution algorithms on a larger more representative power
distribution grid. The first experiment evaluates the scalability and convergence of
both algorithms under static conditions. The second experiment looks at the behavior
of both algorithms under dynamic conditions. Finally, the third experiment shows
the impact that both algorithms have on the voltages and currents of a distribution

grid. The source code and data of all our experiments can be found online .

github.com/chepeadan/EVNUM
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All our experiments are based on the IEEE European Low Voltage Test Feeder [82].
Our evaluation grid, shown in Fig. 6.5.1, is a three-phase radial distribution feeder at
the voltage level of 416 V (phase-to-phase) with a total of 906 buses, 905 lines, and
55 loads. All relevant data for our experiments are available in the test case data,
except for the lines” ampacity. Thus, we define the ampacity based on empirical data
of similar standard test networks [80]. The ampacity values used in our evaluations
are summarized in Table 6.5.1. We assume that each load has one EV charger with
a maximal charging capacity of 20 kW (3-phase). We also assume that the EVs start
arriving at 5 p.m. according to a Poisson distribution with an arrival rate of 1 per
minute. Furthermore, the EVs are assumed to be fully discharged upon arrival and

wishing to be fully charged to their maximal capacity of 24 kWh.

To formulate the EV NUM optimization problem, we assume constant voltages.
Hence, our optimization variables x are the currents that the EV chargers draw from
the network. The maximum available capacity of the network devices ¢; is defined by
the lines’ ampacity minus the current drawn by the loads. The maximum charging
rate T is given by the maximum charging current of the EV chargers. Without loss

of generality, we assume that all EVs have the same importance, i.e., w; = 1.

To make use of the EV NUM formulation, one needs to assume a constant voltage.
The reason is that if the voltage is constant, then the main network constraints
are the line ampacity limits, which are linear and can be expressed with the NUM
formulation Rz < ¢, see also [36,37,43,44,83]. While omitting voltage constraints
is risky, as our evaluations will show, the NUM model offers a good approximation,
when ampacity violations happen before voltage violations. In such cases, the NUM
formulation provides a good trade-off between model accuracy and the required

simplicity to implement distributed optimization methods.

6.5.1 Static evaluation

We evaluate the convergence of the dual and primal EV NUM algorithm for different
step size values and consider the scalability behavior of both algorithms for varying

EV numbers and grid size. Constant optimization parameters characterize the static
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Figure 6.5.1: IEEE European Low Voltage Test Feeder.

evaluation, i.e., the parameters of the EV NUM problem don’t change over time.
The static case is the result of the fixed loads having a constant value, which leads
to a constant maximal available loading of the devices ¢;. Without loss of generality,
we assume that the network is single phase for the static experiments. Hence, the
size parameters for our EV NUM problem are N = 55 and M = 905. A centralized

solution of the EV NUM problem is used as a reference for the optimal result.

The convergence experiment results for the dual algorithm in Fig 6.5.2 show that
the dual algorithm becomes unstable when the step size is too large (x = 0.0001).
To avoid instability, a theoretical upper bound for the step size value was defined
in Section 6.2.2, which guarantees dual algorithm convergence (k* = 3.619e — 8).
Nonetheless, the theoretical upper bound is usually too conservative and a stable

and faster step size can be used, e.g., kK = le — 05.

The convergence results for the primal algorithm in Fig. 6.5.3 show that the primal

algorithm does not become unstable and converges within an increasing distance
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Table 6.5.1: Power line ampacity used in evaluation.

Line code name | Ampacity (A)
2¢_.007 56
2c_.0225 83
2c_16 83
35 SAC_XSC 110
4c_ .06 210
de 1 560
4de_ .35 210
4c_185 405
4c_T70 560
4c_ 95 SAC_XC 180

to the optimum with increasing step size. Hence, our experimental results for the
primal algorithm confirms the theoretical behavior discussed in Section 6.2.3 and
demonstrate that the primal algorithm does not suffer from the instability issues of

the dual algorithm.

To compare the scalability of both algorithms, we look at their convergence behavior
as the EV NUM problem size parameters vary and measure the number of iterations
required to reach 95% convergence. First, we modify N from 10 to 50 in increments
of 10, which is equivalent to changing the number of EVs in the network. Then, we
modify M from 100 to 900 in increments of 100, which is equivalent to modifying
the size of the network. The results in Fig 6.5.4a and Fig 6.5.4b reveal that the
dual algorithm is highly sensitive to changes in the number of EVs and grid size. In
contrast, the results for the primal algorithm in Fig. 6.5.5a and Fig. 6.5.5b show
that its convergence behavior remains almost constant for changes in the problem
size parameters. Hence, our experiments reveal that the primal algorithm is less
sensitive to variations in problem size and therefore offers significant scalability
advantages over the dual algorithm. Moreover, unlike the primal algorithm, the dual
algorithm does not guarantee feasible control values on each iteration, which increases
the chance of a blackout. While the computation time of both algorithms can be
neglected (closed-form solutions), both require communication on each iteration. If
we assume a maximal communication delay of 20 ms per iteration and a minimal

protection tripping time of 200 ms, then to guarantee feasible control values, the

95



6.5. EVALUATION ON THE IEEE EUROPEAN LOW VOLTAGE TEST
FEEDER

©

g O s o s T — — — — — — — — — —— —— —— ——
g 107 =9

g b \ dual (0.0001)

= \I’ Unstable — =dual (1e-05)

3 L —--dual (3.619¢-08)

C

IS \

(2]

S 10 “ ________________
(_“ 10 - Il Il Il

g 0 200 400 600 800 1000
§ Iteration

Figure 6.5.2: Dual convergence for different step size

£
= 10°; 1
o ---------=-=-=-:-: --------------------- -
e T~
o) - - - e e o == =
3]
% primal (1)
k7 = =primal (0.1)
kel === primal (0.01)
© 10—10 I I I I
S 0 200 400 600 800 1000
2 Iteration
Figure 6.5.3: Primal convergence for different step size
130 150 :
— step size 16-05 — step size 16-05
2125 2100
Q Q
© ©
s 120 ks 50
115 0
10 20 30 40 50 200 400 600 800
# EVs Number of grid lines
(a) Different number of EVs (b) Different grid size

Figure 6.5.4: EV NUM dual algorithm static behavior (each iteration ~ 20 ms)

dual algorithm would need to converge in less than 10 iterations. This is well bellow

the actual number of iterations required by the dual algorithm in our results.
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Figure 6.5.5: EV NUM primal algorithm static behavior (each iteration ~ 20 ms)

6.5.2 Dynamic evaluation

In the dynamic evaluation, we consider the load dynamics, which cause the maximal
available network load ¢; to change over time. We make use of the load shapes
included in the IEEE European Low Voltage Test Feeder data, which are time series
with a one-minute time resolution over 24 hours. The dual and primal algorithm are
implemented in one-minute resolution, i.e., on each iteration of the algorithms the
maximal available load of the devices ¢ change. The problem size parameters for our

three-phase evaluation network are N = 55 and M = 3 - 905.

We consider the results of the EV NUM optimization for the main power line, which
is the line most affected by congestion. The result for the dual algorithm in Fig.
6.5.6 shows that the maximum load condition of the line is violated as soon as EVs
start to arrive. This result is expected, since the dual algorithm does not offer any
guarantees that the network constraints Rx < ¢ will be fulfilled during runtime. To
avoid overloading of the devices, the dual algorithm needs to be given enough time
to come close to convergence. Hence, the dual control algorithm would need to be

implemented at a higher frequency.

The result for the primal algorithm in Fig. 6.5.7 shows the desired behavior for
real-time EV control: The algorithm makes maximum use of the network without
overloading it. As explained in Section 6.2.3, the primal algorithm has the anytime
property, which guarantees that the constraints of the EV NUM problem are fulfilled

on each iteration. The anytime property gives the primal algorithm an advantage
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Figure 6.5.7: Primal algorithm dynamic behavior result for the main power line

over the dual algorithm because we don’t need to provide the algorithm with enough
iterations to guarantee control values that respect the network constraints. Hence, the

primal algorithm can be implemented at a lower frequency than the dual algorithm.

6.5.3 Effects on a distribution network

To evaluate the effects of EV charging on the IEEE European Low Voltage Test
Feeder, we conduct 3-phase power flow simulations using GridLab-D [84]. First, we
evaluate the effect of charging the EVs without control for different charging rates.
The results in Fig. 6.5.8 reveal that our evaluation grid can support the charging of
EVs with a maximum charging power of 4 kW without any charging control. However,
for a charging power of 7 kW, we start to see ampacity and voltage violations. With
a charging power of 20 kW, we also see violations of the transformer’s maximal
loading. Hence, real-time EV charging control is required to allow higher charging
powers than 4 kW and make better use of the grid’s capacity without violating its
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Figure 6.5.8: EV charging effects without control on the IEEE European Low Voltage Test
Feeder.

constraints. This experiment also revealed that for this particular feeder ampacity

violations happen before voltage violations.

We evaluated the impact of the EV NUM dual and primal algorithms on the grid by
running simulations using the load results of our dynamic evaluation in Section 6.5.2.
Fig. 6.5.9 demonstrates that the dual algorithm violates the network constraints,
whereas the primal algorithm is able to guarantee charging rates that remain within
the network constraints. Our GridLab-D 3-phase power flow simulation results match
the behavior obtained in Section 6.5.2 with the EV NUM formulation. Hence, our
experiments show that the EV NUM problem can capture the relevant constraints
to design an effective real-time EV control algorithm for distribution grids, where

the ampacity violations are the limiting factor. Moreover, this result demonstrates
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Figure 6.5.9: EV NUM control effects on the IEEE European Low Voltage Test Feeder.

the effectiveness of the primal algorithm for real-time EV charging control.

6.6 Discussion

6.6.1 EV NUM for real-time EV charging control

The EV NUM problem formulation offers a simplified model for the real-time EV
charging congestion problem. The goal of using EV NUM is to capture the simplest
form of the problem that still encompasses the relevant features required to design
a distributed control algorithm. Several arguments can be made for the use of a

more comprehensive model. However, more complex formulations do not allow the
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formulation of efficient distributed algorithms, that can cope with the real-time
requirements. Another argument in favor of the simple EV NUM model is that more
complex models need more network data. When it comes to massive application of
the control algorithm, it is not certain that accurate network data of the distribution
grids are available. In fact, the accuracy and even the availability of accurate
distribution network models is known to be an issue [85]. Therefore, we consider that
the EV NUM problem formulation can be an alternative to more complex models

with higher computational demands and that require highly accurate network data.

6.6.2 Dual vs. primal EV NUM

Our evaluations have shown that the primal algorithm has an advantage over the
dual algorithm regarding both scalability and reliability. The scalability advantage
results from the stability issues of the dual algorithm. Our static evaluations in
Section 6.5.1 confirm that the dual algorithm’s stability depends on the step size.
As explained in Section 6.2.2, the theoretical maximum stable step size is inversely
proportional to the number of EVs and the size of the distribution grid. Hence, as
the size of the problem increases, the step size must be reduced to guarantee stability,
which in turn increases the number of iterations required to reach convergence. The
primal algorithm does not need to reduce its step size as the problem size increases
and therefore scales better to larger problems. Regarding the reliability advantage,
our dynamic evaluations of Section 6.5.2 show that the dual algorithm requires a
higher update frequency than the primal algorithm to avoid the violation of grid
constraints. This means that the dual algorithm needs to be given more iterations
to converge before its resulting control values can be applied. This exceeds the
time required to avoid overloading. To avoid overloading in the dual algorithm,
an emergency mechanism is proposed in [36] that stops all EVs from charging and
restarts the algorithm. But this leads to temporary charging service denial. The
reliability advantage of the primal algorithm comes from its anytime property, which
guarantees that the problem constraints are satisfied on each iteration.

Nevertheless, the primal algorithm requires more communication than the dual
algorithm. Therefore, the dual algorithm might be the preferred option when the

problem size is relatively small and temporary violations of the grid constraints are
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permitted. The experiments in Section 6.5.3 show that the dual algorithm allows

the EVs to charge faster at the cost of temporary grid constraint violations.
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Conclusions

In this thesis, we used distributed optimization to address two key challenges in the
control of EV charging. First, we considered the scalability problem faced by EV
aggregators to schedule the charging of a large number of EVs and provide system
services. Then, we examined the real-time EV charging congestion control problem
to allow the safe integration of large EV numbers into the current distribution
infrastructure. For both challenges, we have leveraged distributed optimization
to define our EV ADMM and EV NUM solution approaches. In this chapter we
summarize our conclusions, discuss the limitations of our methods and provide an

outlook on future work.

7.1 Summary

In EV ADMM, we proposed a novel scalable distributed convex optimization
framework for EV aggregators based on the solution of a general EV aggregator
optimization problem with ADMM. To demonstrate its scalability, we evaluated our
framework with up to 1 million EVs for the valley filling problem. We also solved the
valley filling and the charging cost minimization problem with up to 100 000 EVs

and benchmarked our distributed solution against a centralized solution.
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In contrast to previous works, EV ADMM can be generalized to several EV aggregator
problems, because it allows the specification of global and local objectives and
constraints. We demonstrate this feature in our versatility experiments by considering
battery depreciation costs and V2G services for two EV aggregator problems. The
versatility experiments also revealed that EV ADMM solves strictly convex problems,
such as valley filling, faster than non-strictly convex problems, such as charging cost
minimization. Furthermore, the results indicate that the presence of active global
constraints increases the number of EV ADMM iterations and consequently EV
ADMM’s runtime.

The scalability comparison against the state-of-the-art centralized optimization has
shown that EV. ADMM offers better scalability regarding runtime and peak memory
use. EV ADMM scales linearly with an increasing number of EVs and the ability to
parallelize EV ADMM provides a significant speedup with moderate memory increase
compared to a serial implementation. Thus, EV ADMM provides a controllable
trade-off between runtime and memory use. Furthermore, the results demonstrate
that for fleets with up to 100s of EVs, a centralized optimization can offer faster
solutions. For larger fleets, however, our distributed optimization approach provides
a distinct advantage regarding runtime and memory use. EV ADMM can, therefore,
be used to solve convex EV charging planning and control optimization problems
that have so far been considered intractable due to large EV numbers and memory

limitations.

To support the real implementation of EV . ADMM in a distributed environment,
we also designed and implemented DOPS, a general purpose framework for dis-
tributed computation of EV. ADMM-like algorithms over a pub/sub middleware. An
application developer only needs to implement the concise interface of DOPS and
specify the optimization procedures of agents to execute optimization algorithms in
a distributed infrastructure. To show the applicability of our framework, we solved
the valley-filling problem in EV charging control using three different communication
schemes: centralized, decentralized and decentralized with in-network aggregation.
Our experimental evaluation was based on publicly available data and executed on an
overlay tree consisting of 15 virtual machines connected via a VLAN network. The
results demonstrate that in-network aggregation significantly improves the runtime

performance of a decentralized implementation. In fact, the aggregation capability of
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DOPS doubled the runtime performance of the decentralized approach. Although the
centralized approach still performed best for 120 EVs regarding runtime, we predict
that already for 150 EVs the decentralized approach will be faster. Nevertheless, the
exact number of EVs where a decentralized implementation becomes faster than a
centralized one will depend on the technical infrastructure and the particular use

case.

In summary, with EV . ADMM, we have designed a method that solves the com-
putational scalability problems of EV aggregators and, with DOPS, we have also

contributed to its real implementation in a distributed environment.

In EV NUM, we proposed and evaluated a distributed anytime algorithm for the
real-time congestion control of EV charging. The main challenge in real-time EV
charging control is the short time available to offer a control response, usually in
milliseconds. To address this, we formulated the EV NUM problem, which maximizes
the EV chargers’ utility of the grid without violating its operational constraints. By
solving the EV NUM problem with primal decomposition, we formally designed a
real-time EV charging control protocol that has the anytime property. This means
that the results of each iteration are feasible. Moreover, the longer the algorithm
runs, the closer the result gets to the optimal solution.

We evaluated our algorithm against the state-of-the-art dual decomposition solution
on the IEEE 13 Node Test Feeder and the IEEE European Low Voltage Test
Feeder. Our simulation-based evaluation on the smaller grid shows that our approach
exhibits better reliability and can offer results faster than the state-of-the-art EV
NUM dual approach. Moreover, our dynamic load evaluation demonstrated that
our primal approach can cope better with dynamic changes in the grid. Our more
comprehensive experiments on the larger network demonstrate that the primal
algorithm outperforms the dual algorithm in scalability and reliability because it
does not suffer from convergence problems. Also, its anytime property allows it to
adapt quickly to the fast-changing dynamics of the grid. Moreover, our 3-phase power
flow simulations show the effectiveness of the NUM formulation to model networks
where the ampacity constraints are the main bottleneck. As expected, the constraint
violations of the dual algorithm resulted in ampacity and voltage violations, while our

primal approach caused no violations. Nevertheless, the advantages of our approach
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come at the cost of greater message complexity than that of the dual approach. All
in all, considering that the safe operation of the grid is the primary concern in EV
charging congestion control, our distributed anytime algorithm offers a good trade-off

between communication complexity, scalability, and reliability.

In summary, with EV NUM we have addressed the problem of real-time EV charging
congestion control by formally designing a real-time EV charging control protocol
with the anytime property. Our solution allows for the provision of optimal EV
charging control in milliseconds instead of minutes, which is required to prevent the

triggering of protection devices.

7.2 Limitations

The convexity assumption causes the main limitations of our approaches. In
both our approaches we have the requirement of a convex optimization problem
formulation. Convexity allows for theoretical guarantees that our distributed
optimization algorithms will converge to the optimal solution of the original problem.
Without convexity, our algorithms are not guaranteed to converge. This limits the
general applicability of our approaches. While many EV charging problems can be
formulated as a convex problem, there are certain problems where the constraints need
to be relaxed or ignored to allow a convex formulation. The convexity requirement
can lead to simplified models that might not include relevant constraints or do not
fully guarantee the control requirements. However, this is a common limitation among
works that use distributed optimization techniques. One important consequence of
this is that in our approaches the EV charging rates have to be continuous between 0
and a maximal value. Currently, EV charging is usually implemented using discrete
charging rate values. However, the technical requirements for continuous charging
rates are available.
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7.3 Future work

Future studies on EV ADMM should focus on relaxing the convexity requirement
for EV aggregator optimization problems. Relaxing the convexity requirement
would allow discrete charging rates. EV. ADMM can work for non-convex problems.
However, there are no theoretical guarantees that the algorithm will converge. Further
studies are required to determine if EV ADMM can be generalized to non-convex
EV aggregator problems. Another direction for future work in EV ADMM is its
implementation for receding horizon closed-loop control to deal with prediction
uncertainty. A first study is carried out in [30]. However, a more comprehensive
study on the scalability and performance of receding horizon EV. ADMM would be
an excellent addition. Finally, we consider that the model used in EV ADMM for EV
aggregators could be used to achieve scalability for aggregators of other controllable

devices, like Home Energy Management Systems (HEMS).

Future research on EV NUM should focus on integrating more complex constraints
into the model, like operational voltage constraints. Besides overloading grid
components, a large number of EVs can also lead to voltage swings. The operation
of the distribution network requires a voltage variation of no more than 10 % from
its nominal value. In EV NUM, we assume that this is handled by the utility
company using other devices, e.g., tap changer transformers. However, EVs could
also contribute to control voltage levels. The problem in our EV NUM approach is
that implementing voltage constraints would require power flow constraints. These
constraints would make the NUM problem non-convex. Our distributed optimization
method is only guaranteed to work with a convex problem formulation. Hence,
future contributions on EV NUM could develop methods to include convex voltage

violations constraints into the model.

Finally, we would like to point out that while our contributions solve significant
technical problems in EV charging control, several non-purely technical challenges
should be part of future research. For instance, there is the issue of control acceptance,
i.e., the problem of defining the right incentive that makes people willing to allow the
charging control of their EV. Another relevant issue is the truthful reporting of EVs,

i.e., to guarantee that the values reported to the control by EVs are accurate. To

107



7.3. FUTURE WORK

address these and similar challenges, we consider that a combination of disciplines is
required. These issues should be studied not only from the technical side but also
consider insights from behavioral economics, finance, and other disciplines. Examples
of such research in related fields can be found in [86-88]. We think these are highly

relevant topics, where more focus is required.
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