
Online verification of multiple safety criteria for a robot trajectory

Dario Beckert, Aaron Pereira and Matthias Althoff

Abstract— Ensuring the safety of humans in a collaborative
environment with industrial robots is a major concern of
human-robot co-working. Most current approaches give no
formal guarantee of safety; where such guarantees are given,
accounting for the unpredictability of the human may limit
robot efficiency. We therefore developed a novel trajectory
planner for a robot arm, which formally guarantees the safety of
humans from collision with the robot for every possible human
behaviour, without restricting the robot more than necessary.
To achieve this, the trajectory planner verifies online that the
robot adheres to two separate safety criteria derived from ISO
standards using reachable occupancies of surrounding humans
and the robot. While one criterion anticipates all possible
movements of the human and provides a reasonable safety
guarantee, the other criterion additionally guarantees strict
safety as long as the human behaves as expected according
to ISO standards. We implemented the trajectory planner for
a real robot arm and show some experimental results.

I. INTRODUCTION

A limiting factor for the introduction of robots working
alongside humans in industry is the challenge of guaranteeing
safety. To avoid injury from collisions, robots must react to
the behaviour of nearby humans, whose future motion is hard
to predict. Accounting for only the most likely subset of the
motion, as in most previous approaches, introduces the risk
that the robot does not behave safely during unexpected mo-
tion, whereas accounting for all physically possible motion
could restrict the robot performance to a large extent.

We present a novel approach whereby we simultaneously
guarantee a strong safety condition accounting for expected
human motion, and a weaker safety condition accounting
for all possible movements. This avoids over-cautious robot
behaviour which would lead to poor performance, while
nevertheless guaranteeing safety for nearby humans. We
guarantee these conditions in our formally verified trajectory
planner for an industrial robot arm. The trajectory planner is
based on the principle that no movement is executed without

previously being formally verified to be safe.

Since the human moves fast and with uncertain intention,
most approaches which predict future human movement to
avoid collisions are probabilistic. Ding et al. present a Hidden
Markov Model [1] to predict hand occupancy in reaching
motions. Mainprice and Berenson use a Gaussian Mixture
Model to estimate the probability of space around the robot
being occupied by a human [2]; this is used in a trajectory
planner. On a higher level, [3] uses information from objects
in the environment to predict most likely human motion.

The authors are with the Department of Informatics, Technical Uni-
versity of Munich, 85748 Garching, Germany. d.beckert@tum.de,
aaron.pereira@tum.de, althoff@in.tum.de

Though probabilistic approaches often work well, they can-
not be relied upon to provide a strict guarantee of safety, e.g.
when a human performs an unexpected movement.

To account for this, Petti and Fraichard [4] propose plan-
ning short-term plans where an agent can provably avoid
states which would lead to collision (Inevitable Collision
States). This principle has been applied to autonomous vehi-
cles [5] and robot manipulators [6]. In most cases, a robot has
been considered safe when it is stationary. However, for close
co-existence, this requirement may be too restrictive—when
the human is near the robot, accounting for all movements
may mean that the robot cannot move at all.

If collisions cannot be avoided, then collision severity
should be minimised. Soft robots [7] are designed to be
inherently safe, but the difficulty of controlling them ac-
curately limits application. Impact energy minimisation is
considered in [8], and the recent ISO Technical Standard [9]
describes limiting of impact force and pressure, among
other safety criteria. The ISO standard governing human-
robot collaborative operation [10] describes a Safety-rated

Reduced Speed mode of operation which can be used where
humans are nearby, with the justification that this should
“allow sufficient time for people either to withdraw from
the hazardous area or to stop the robot”. Here, the Cartesian
speed of the tool centre point (TCP) is reduced to below
0.25m

s
.

Our novel approach, however, guarantees that the robot
will stop before the human can reach it, when the human
behaves according to expectations. In the case that the
human executes unexpected movement, it guarantees that the
Cartesian speed of the robot at the point of impact is less than
a certain value. Next, we introduce the trajectory planner and
give a formal definition of the safety criteria. In Sec. III we
present the developed trajectory planning algorithm step by
step; in Sec. IV we show how to calculate robot and human
occupancies in a conservative way. In Section V we describe
our experimental results and conclude in Sec. VI.

II. PROBLEM STATEMENT AND TERMINOLOGY

We develop a robot trajectory planner that is able to adapt
online to human behaviour to meet two safety criteria. To
accomplish this, we verify the trajectory piecewise. A long-
term trajectory is given by a higher-level planner. Since it
would unnecessarily restrict the robot’s movement if we
were to certify the safety of the entire long-term trajectory,
we calculate short-term plans in smaller steps ahead and
formally verify the safety conditions for each of those, as
shown in Fig. 1.



Γ([tk+2, te])

Γ([tk+1, tk+2])

Γ(tk)

te
te,prev

tk+2

tk+1

tk

Fig. 1. The robot is currently moving on [tk, tk+1] while verifying the
short-term plan [tk+1, te]. Since the reachable occupancies of robot (green
capsules) and human (red capsules) intersect, this movement cannot be
guaranteed to be safe and the robot executes the previously verified failsafe
manoeuvre [tk+1, te,prev ]. The failsafe manoeuvre is shown off-path for
illustration purposes; it is actually path-consistent with the desired trajectory.

A short-term plan consists of a piece of the desired long-
term plan followed by a failsafe manoeuvre that brings the
robot to a stop. As proposed in [4], we verify the subsequent
short-term plan while executing the current one. Prior to tk,
we have verified that the short term plan from tk to te,prev
is safe. While executing the first part from tk to tk+1, we
verify the next short-term plan, which consists of the piece
of the long-term plan from tk+1 until tk+2, followed by a
failsafe manoeuvre from tk+2 to te. If the verification fails,
at tk+1 the robot executes the failsafe manoeuvre from tk+1

to te,prev, otherwise it moves along the now guaranteed safe
piece of the desired plan in [tk+1, tk+2]. We describe in III-A
how these short-term plans are generated.

As previously mentioned, we verify two criteria: that the
robot stops before the human reaches it, as long as the human
moves as expected, and that the robot velocity is under a
predefined speed, in case the human moves unexpectedly.
We take expected movement to be defined by the maximum
speed of the upper body given in ISO 13855 [11]. In [12], we
show that this criterion is less conservative than the actual
extreme movements of the human. To account for unexpected
movement, we use a model from [13], which accounts for
all human movements found in human-robot co-existence
scenarios. To be able to provide a formal definition of safety
we first define reachable occupancies:

Definition 1: ISO OCCUPANCY AND REACHABLE OC-
CUPANCY: Consider the human body as a dynamical system
with an unknown, internal state w(t), and dynamics ẇ =
g(w,u) where u(t) is some input in the set U of all
possible inputs. Let Ξ0 be the initial set of possible body
states w(t0) given readings from the sensors at time t0,
allowing for measurement uncertainty. Let F(w) ⊂ R3 be
the spatial occupancy of the human at a particular state.
The system’s reachable set is: W ([ta, tb]) = {w(t0) +
∫ t

t0
g(w,u)dt | w(t0) ∈ Ξ0, t ∈ [ta, tb],u(t) ∈ U}. We

define the reachable occupancy as:

Γr([ta, tb]) ⊇ {F(w) |w ∈W ([ta, tb])}.

We define the ISO occupancy as:

ΓISO([ti, tj ]) ⊇ {z |x ∈ Γr(t0), ∥z−x∥ ≤ (tb−t0) ·v
ISO
h },

where we take vISO
h = 1.6m

s
, the maximum upper body

speed used for the positioning of safeguards in [11]. !

Γr captures the human model of all possible movements
whereas ΓISO describes the human movement expected
according to the ISO standard. They are represented as cap-

sules, which are the Minkowski sum (⊕) of a line segment
G and a sphere H , i.e. G ⊕H = {g + h | g ∈ G, h ∈ H}.
The defining points of the capsule are the endpoints of G.
Examples of capsules are shown in Fig. 5.

We can now formally define the safety criteria our trajec-
tory guarantees to fulfil. The strong guarantee states:

Definition 2: STATIONARY CRITERION: Let q(t) be the
joint positions of a robot at time t, and F̂ (q(t)) ⊂ R3 be the
set of Cartesian space it occupies. The stationary criterion is
fulfilled if, for any nearby humans, the following holds:

∀t :
(

F̂ (q(t)) ∩ ΓISO(t) = ∅
)

∨
(

q̇(t) = 0
)

. !

Either the robot is already stationary or it can stop before the
human could possibly come into contact with it. The weaker
guarantee states:

Definition 3: REDUCED-SPEED CRITERION: Let q(t) be
the joint positions of a robot at time t, and F̂ (q(t)) ⊂
R3 be the set of Cartesian space it occupies. Further, let
v(q(t), q̇(t)) be the maximum speed of any point on the
robot in Cartesian space. The reduced-speed criterion is
fulfilled if, for any nearby humans, the following holds:

∀t :
(

F̂ (q(t)) ∩ Γr(t) = ∅
)

∨
(

v(q(t), q̇(t)) ≤ vmax

)

, !

where vmax is a velocity limit to be specified in advance.
Note that in contrast to Def. 2, we use Γr and not ΓISO,
since we account for all human motion.

We specify some conventions which we will use for the
rest of the paper: tk is the current time and the short term plan
to be verified runs from time tk+1 to time te. The latter is the
time the robot comes to a stop, i.e., the time after which the
robot is safe according to the stationary criterion in Def. 2.
Time te,vmax

is the time on the short-term plan when the
velocity of all points on the robot falls (and stays) below
vmax, i.e., from this time on, the robot is safe according to
the reduced-speed criterion in Def. 3. We next present the
methodology for our approach.

III. TRAJECTORY MODIFICATION

We describe how to modify the trajectory to guarantee the
criteria in Defs. 2 and 3 by scaling the velocity. Algorithm 1
shows a high-level overview; Subsection III-A explains the
planning of the short-term plan and Subsection III-B dis-
cusses the failsafe manoeuvre for the reduced-speed crite-
rion. The algorithm is running continuously while the robot
executes a long-term trajectory. In the following discussion,
we show how to generate the short-term plan.

A. Generation of short-term plan

We here explain lines 4 and 5 of Algorithm 1. We express
the global trajectory as a mapping of a time parameter s to
joint positions, ξ : [0, sf ] → Q where Q ⊆ Rn is the joint
space and sf is the final time parameter value of the long-
term plan. Since the focus of this work is not path planning,



the spatial paths of the robot are pre-programmed, and the
robot executes a failsafe manoeuvre simply by scaling the
rate of change of the time parameter s to zero, while keeping
accelerations and jerks within limits. In other words, at the
end of the failsafe manoeuvre, ṡ = 0. Time parameter scaling
is a well-known way of temporally modifying trajectories,
see e.g. [14].

Algorithm 1 Formally verified trajectory planner

1: while not at end of global trajectory do
2: Execute verified plan from tk to tk+1

3: // calculate new short-term plan
4: Calculate next desired position from ζ1(tk+2)
5: Calculate failsafe manoeuvre ζ0 starting at tk+2 to te
6: // calculate robot occupancies
7: Predict F̂ (q([tk+1, te])) for stationary criterion
8: Obtain te,vmax on the short-term plan
9: Predict F̂ (q([tk+1, te,vmax ])) for reduced-speed criterion

10: // calculate human reachable occupancies
11: Calculate ΓISO([tk+1, te]); verify stationary criterion
12: Calculate Γr([tk+1, te,vmax ]); verify red.-speed criterion
13: // update plan
14: if proposed short-term plan satisfies both criteria then
15: Adopt short-term plan
16: else
17: Continue on failsafe manoeuvre from current plan

If the robot has previously been verified unsafe and has
had to execute the failsafe manoeuvre, during time tk+1 to
tk+2 it should also try to recover to full speed. It does this by
planning a recovery manoeuvre, at the end of which ṡ = 1.
This is illustrated in Fig. 2. We next define a time-scaling

plan, and then the failsafe and recovery manoeuvres:
Definition 4: TIME-SCALING PLAN: Given s0, ṡ0 and s̈0

as the values of s, ṡ and s̈ at time t0, and η ∈ {0, 1}, a time-
scaling plan starting at t0 until t1 is a monotone function
ζη : [t0, t1] → [0, sf ] where ζη(t0) = s0, ζ̇η(t0) = ṡ0 and

ζ̈η(t0) = s̈0, ζ̇η(t1) = η and ζ̈η(t1) = 0. !

Definition 5: FAILSAFE AND RECOVERY MANOEUVRE:
A failsafe manoeuvre ζ0 starting at t0 is a time scaling plan
where η = 0. A recovery manoeuvre ζ1 starting at t0 is a
time scaling plan where η = 1. !

The short-term plan ζ : [tk+1, te] → [0, sf ] is planned
thus: If from time tk to tk+1 the robot is executing the
failsafe manoeuvre, then we plan a recovery manoeuvre
ζ1 starting at tk+1. If the robot is already performing a
previously-planned recovery manoeuvre from tk to tk+1, we
do not plan a new one. The position of the robot at time
tk+2 is therefore ξ(ζ1(tk+2)). We then calculate a failsafe
manoeuvre ζ0 starting at tk+2 until te; the position of the
robot at any time tk+2 < t ≤ te is ξ(ζ0(t)). This constitutes
the short-term plan, which is shown in bold in Fig. 2.

We next show how to generate the failsafe and the recovery
manoeuvres ζ0 and ζ1, subject to joint acceleration and jerk
limits. The Euclidean norm is denoted ∥z∥, and |z| is a vector
of the absolute values of the elements of z.

1) Planning manoeuvres with limited acceleration and

jerk: We adapt the method from [15]. This finds a time-
optimal trajectory of joint values q in time, subject to limits

tk

tk+1

tk+2

end of recovery

manoeuvre tr

te,prev te

recovery manoeuvre,

starting at tk+1 until tr

verified failsafe manoeuvre,

in this case starting

at tk until te,prev

failsafe manoeuvre being verified,

starting at tk+2 until te

te,vmax

ṡ

1

0
t

Fig. 2. Illustration of the planning of failsafe and recovery manoeuvres.
From time tk to tk+1 the robot executes the verified short term plan (here,
the failsafe manoeuvre) and plans the next short term plan (bold line), which
consists of one step along the recovery manoeuvre until tk+2 followed by
a (new) failsafe manoeuvre.

on q̈ and
...
q, and given the values of q, q̇ and q̈ at the

start and q̇ and q̈ at the end of the trajectory. Since the
failsafe and recovery manoeuvres are not trajectories of joint
positions but instead trajectories of s in time, we use the same
method to find a trajectory of s, subject to limits on s̈ and
...
s . By setting these limits conservatively, we can account for
maximum allowable joint accelerations and jerks.

We call s0 the position at the start of the manoeuvre and
s1 the position at the end. The joint accelerations and jerks
are ξ̈(s) and

...
ξ (s), which we must guarantee to be less than

some limits am and jm. Note that ξ,am, jm ∈ Rn.
Theorem 1: Let θ and λ be vectors, the elements of

which are the maximum magnitude of d2ξ
ds2

and d3ξ
ds3

over the
desired trajectory for each joint i, i.e., where θi, λi and ξi are

the ith element of θ, λ and ξ, then θi = maxs∈ [0,sf ]

(∣
∣ d2ξi

ds2

∣
∣
)

and λi = maxs∈ [0,sf ]

(∣
∣ d3ξi

ds3

∣
∣
)

. One can guarantee that

ξ̈(s) ≤ am by setting s̈m, the limit of s̈ over the manoeuvre,
to:

s̈m = max(min(c), 0), c =
am − θ

∣
∣ dξ

ds
|s0
∣
∣+ θ(s1 − s0)

,

where, for the above and following equation, division is
elementwise, and min(z) returns the minimum element of
the vector z. Furthermore, one can guarantee

...
ξ (s) ≤ jm by

setting
...
sm, the limit of

...
s over the manoeuvre, to:

...
sm = max(min(d), 0), d =

jm − λ− 3θs̈m
∣
∣ dξ

ds
|s0
∣
∣+ θ(s1 − s0)

.

Proof: Using the chain rule, we obtain the inequalities
that must be satisfied by our choice of s̈ and

...
s :

ξ̈(s) =
d2ξ

ds2
ṡ2 +

dξ

ds
s̈ ≤ am; (1a)

...
ξ (s) =

d3ξ

ds3
ṡ3 + 3

d2ξ

ds2
s̈ṡ+

dξ

ds

...
s ≤ jm. (1b)

Note that the following are stricter criteria than (1a) and (1b):

∣
∣
∣
d2ξ

ds2
ṡ2
∣
∣
∣+
∣
∣
∣
dξ

ds
s̈
∣
∣
∣ ≤ am; (2a)

∣
∣
∣
d3ξ

ds3
ṡ3
∣
∣
∣+
∣
∣
∣3

d2ξ

ds2
s̈ṡ
∣
∣
∣+
∣
∣
∣
dξ

ds

...
s
∣
∣
∣ ≤ jm. (2b)



We rearrange (2a) and (2b) to obtain the requirements:

|s̈ · 1| ≤
am −

∣
∣ d2ξ

ds2
ṡ2
∣
∣

∣
∣ dξ

ds

∣
∣

; (3a)

|
...
s · 1| ≤

jm −
∣
∣ d3ξ

ds3
ṡ3
∣
∣−
∣
∣3 d2ξ

ds2
s̈ṡ
∣
∣

∣
∣ dξ

ds

∣
∣

. (3b)

1 ∈ Rn is a vector of ones. We wish the inequalities of (3a)
and (3b) to hold for s ∈ [s0, s1]. Consider first (3a). Since the
global trajectory is known in advance, we can calculate θ,

the maximum of d2ξ
ds2

over the global trajectory, and substitute
this into (3a)1. Since ṡ ∈ [0, 1], the numerator of the right-
hand side attains a minimum at am−θ. The global trajectory
ξ is at least twice differentiable in s, so in the denominator
we can use the Lagrange Remainder Theorem, which states
dξ
ds

= dξ
ds
|s0 +

d2ξ
ds2

|s∗(s∗ − s0) for some s∗ ∈ [s0, s1]. This is

upper bounded by dξ
ds
|s0 +θ(s1− s0). A lower bound of the

right-hand side of (3a) is therefore:

am − θ
∣
∣ dξ

ds
|s0
∣
∣+ θ(s1 − s0)

= c, (4)

and we take s̈m = max(min(c), 0). Consider now (3b). By
additionally using λ, the maximum over the global trajectory,
and the result s̈m, we lower-bound2 the numerator of the
right-hand side with jm−λ−3θs̈m. The denominator is the
same as (3a). The right-hand side of (3b) has a lower bound:

jm − λ− 3θs̈m
∣
∣ dξ

ds
|s0
∣
∣+ θ(s1 − s0)

= d, (5)

and we choose
...
sm = max(min(d), 0).

As we do not know s1 a priori, we use a conservative
estimate which we expect to be longer than the actual end of
the manoeuvre se; if it happens that se > s1, we recalculate
with an even more conservative estimate of s1, until s1 ≥ se.

We can now plan a failsafe or recovery manoeuvre in s
subject to the constraints that, at the end of the manoeuvre
s̈ should be 0 and ṡ should be 0 (failsafe) or 1 (recovery),
and subject to the maximum acceleration and jerk |s̈| ≤ s̈m
and |

...
s | ≤

...
sm. A method to plan a time-optimal manoeuvre

subject to an arbitrary initial state, desired final state and
limitations on acceleration and jerk is presented extensively
in [15], and we refer the reader to this paper for details.

Having planned a short-term plan, we obtain te as the
time at the end of the plan. This is also the time at which
the robot is first stationary and hence safe according to the
stationary criterion (Def. 2). It remains to calculate te,vmax

,
the time after which all points on the robot are moving slower
than vmax and the robot is considered safe according to the
reduced-speed criterion (Def. 3).

B. Obtaining te,vmax

This subsection describes how to calculate te,vmax
in line 8

of Algorithm 1, which is needed to verify the safety of a

1this is feasible as long as θ << am, otherwise the numerator of (4) is
too small, or even negative, and hence s̈m is too restricted, or even zero.

2again, only feasible if λ << jm for the same reason as above.

short-term plan regarding the reduced-speed criterion. For
brevity, we denote the time parameter at a time tk on the
short-term plan, ζ(tk), by sk. This short-term plan starts at
position sk+1 and time tk+1 while the robot is moving from a
trajectory position sk to sk+1 in the time interval [tk, tk+1]
(cf. Fig. 2). An intermediate result for the calculation of
te,vmax

is the corresponding time parameter se,vmax
. While

the failsafe manoeuvre of the short-term plan (cf. III-A) is
planned such that the robot stops as soon as possible, we do
not assume that the velocity in Cartesian space of all points
on the robot is strictly decreasing during the manoeuvre.

Previously we calculated te and the respective position on
the trajectory se (which corresponds to the end position s1 of
the failsafe manoeuvre in III-A). Starting at se we backtrack
on the trajectory until we either find a point where the robot
is faster than the speed limit or we reach the start of the
short-term plan sk+1. If we find a point where the speed
limit is violated, the position in the previous backtracking
iteration with velocity below the limit is the sought se,vmax

.
All points of the trajectory afterwards comply with the safety
criterion. If backtracking terminates in the start position of
the short-term plan at sk+1, the whole short-term plan fulfils
the criterion, se,vmax

is just sk+1, and the reduced-speed
criterion does not inhibit the movement of the robot at all.
Algorithm 2 shows pseudocode for the described procedure.

Algorithm 2 Reduced-speed criterion prediction (Line 8 of
Algorithm 1)

1: function PREDICT(se, short-term plan starting at sk+1)
2: si ← se
3: for iter = 0; iter < max iter; iter++ do
4: if si ≤ sk+1 then return sk+1

5: si−1 ← simulate one step backwards
from si on short-term plan

6: vi−1 ← calculate maximum Cartesian velocity
anywhere on robot, at point si−1

7: if vi−1 > vmax then return si

8: si ← si−1

Although the ISO standard [10] only demands the TCP
to be slower than vmax, we present a novel, quick way to
guarantee this for any point on the robot, as it is not certain
where on the robot the human may collide with. Therefore
we have to calculate the velocity of the fastest moving point
on the robot to compare it to vmax. We consider each robot
segment as a capsule (cf. IV-A), calculate their maximum
velocities separately and take the maximum of these.

To start off, we predict the movement of each capsule
at the current position in the backtracking loop si−1 and
represent it as a screw axis movement. This screw axis
movement consists of the axis (some offset vector o ∈ R3

and a normalized direction n ∈ R3) as well as an angular
velocity ω ∈ R around the axis and a translational velocity
v ∈ R along it. With the joint coordinates q = ξ(si−1), the
corresponding velocity q̇ = ξ̇(si−1) and the Jacobian matrix
J(q) we calculate the segment’s movement at (without loss



p1

p2

o

d⊥

v⊥

v∥

v

ω
r

n

Furthest point

from axis

Fig. 3. Calculating the fastest moving point on the robot capsule. Shown
in red is the screw axis. The fastest point is the furthest one from the axis.
p1 and p2 are the defining points of the capsule. Other symbols are defined
in the text.

of generality) p2 as twist J(q) q̇ =
(
ω

v

)

. The twist consists
of the angular velocity ω = ωn (where ∥n∥ = 1) and a
translational part v ∈ R3. We decompose v into two parts,
v∥ = (vT ·n)n parallel to n and v⊥ = v−v∥ perpendicular
to n. The parallel part is the translational velocity of the
screw axis v∥ = vn. The perpendicular part determines the
offset o with the relation v⊥ = ω× (p2−o). This allows us
to calculate o by considering the cross product as multiplica-
tion with a skew-symmetric matrix v⊥ = S(ω)(p2−o) and
picking one of the solutions of the system of linear equations.
A special case is a pure translation (ω = 0), but in this case
all points of the capsule move with the same speed, i.e. v.

Having calculated the screw axis movement we can now
calculate the fastest moving point on the rigid body. The total
velocity of a point px on the body is ṗx = vn+ωn×(px−
o), which also holds for the defining points of the capsule
p1 and p2. The translational and angular terms of the sum
are orthogonal, so the magnitude of ṗx can be calculated as:

∥ṗx∥ =
√

∥vn∥2 + ∥ωn× (px − o)∥2. (6)

Finding the maximum of this for all points on a robot link
comes down to finding the maximum of ∥n × (px − o)∥,
which is the perpendicular distance between the screw axis
and the point px.

The furthest point of the line segment p1p2 to the screw
axis is whichever of the defining points is further. Since we
consider the rigid link to be a capsule, the furthest point on
the capsule is a point on the surface of it, that is one capsule
radius away from the further defining point. The maximum
perpendicular distance is then:

d⊥ := max(∥n× (p1 − o)∥, ∥n× (p2 − o)∥) + r, (7)

where r is the radius of the capsule. Fig. 3 illustrates the
situation. By substituting (7) back into (6) the maximum
velocity is finally:

max
x
∥ṗx∥ =

√

|v|2 + (|ω| · d⊥)
2
,

which we can now compare against vmax.

C1

C2

C3

pi,1(se)

pi,1(sk+1) S1

Ci

S2

pi,2(sk+1)

pi,2(se)

(a) (b)

Fig. 4. (a) the enclosure of the occupancy of each link on the robot in
capsules and (b) the generation of a capsule Ci to enclose the link occupancy
during a short-term plan.

After obtaining se,vmax
, we find te,vmax

= te − iter ·∆t,
where ∆t is the controller timestep. To ensure deterministic
latencies, we limit the number of iterations to max iter; if
the limit is exceeded, the criterion is verified unsafe.

IV. PREDICTION OF OCCUPANCIES

This section deals with obtaining the occupancies of the
robot (Sec. IV-A) and the human (Sec. IV-B) during the
short-term plan. Previous work on obtaining the occupancy
of a kinematic chain in a conservative way [16] generates
an overapproximative sphere-swept volume (SSV) which
encloses the robot’s occupancy over a section of a path. SSVs
can be collision-checked by finding the minimum distance
between them, e.g. using [17]. However, collision-checking
of capsules is much faster and does not require iteration, e.g.
as in [18]. Since the human reachable occupancy can also
be obtained as capsules (see Sec. IV-B), we present a novel
method to obtain the robot occupancy as capsules, in order
to simplify and speed up collision-checking.

A. Robot Occupancy

In this subsection we describe how to obtain the occupancy
of the robot, F̂ (q([tk+1, te])) and F̂ (q([tk+1, te,vmax

])), in
lines 7 and 9 of algorithm 1.

We first enclose each link of the robot in a capsule, as
shown in Fig. 4a. The positions of the capsule end points
are fixed on the robot and can be determined from forward
kinematics. For each link i, we obtain a capsule Ci enclosing
its occupancy over the short-term plan from tk+1 to te, see
Fig. 4b. We do this by calculating two balls Si,1 and Si,2

which enclose the spatial path of the defining points pi,1

and pi,2 of the link capsule from tk+1 to te, enlarged by
the radius of the link capsule. These balls are enclosed in a
capsule Ci. Since the defining points of the link capsule are
in Ci, by convexity, the entire link capsule is contained.

The endpoints of the link can be found from forward
kinematics, i.e. pi,1 and pi,2 are functions of the joint
positions, which in turn are a function of the path parameter
s. For simplicity, we write: pi,1(sk+1) and pi,1(se) for the
position of pi,1 at the path parameters at the start and end
of the short-term plan; similarly for pi,2.

Of course, the path traced by pi,1 and pi,2 during the
short-term plan cannot be assumed to be a straight line.



However, we approximate it by a straight line with some
amount of deviation. Consider the point pi,1, without loss
of generality. In the below theorem and proof we adapt
Proposition 1 in [19] to bound the maximum deviation from
the line segment between pi,1(sk+1) and pi,1(se), when the

maximum value of ∥d
2
pi,1

ds2
∥ is known. This value can be

found from the given trajectory and is denoted by αi.

Theorem 2: Let x(ς) ∈ R3 be the position of a point at
time parameter ς and suppose ∀ς : ∥ẍ(ς)∥ ≤ αi. Let x0 and
xf be the known positions at time parameters s = 0 and
s = sf and L be the line segment between them. For all

ς ∈ [0, sf ], x(ς) is no further from L than αi
s2f
8 .

Proof: From the equations of motion we have:

x(s) = x0 + ẋ(0)s+

∫ s

0

∫ ς′

0
ẍ(ς)dςdς ′ (8)

Choosing s = s∗, we have the position of x(s∗) at an
arbitrary time s∗ ∈ [0, sf ]. The line segment L can be
expressed as the set L = {x0 + λ(xf − x0) |λ ∈ [0, 1]}.
Substituting s = sf in (8), we obtain an expression for
xf = x(sf ), and substituting this into the expression for

the set L, and choosing λ = s∗

sf
, we see that the point

x′ = x0 + ẋ(0)s∗ + s∗

sf

∫ sf
0

∫ ς′

0 ẍ(ς)dςdς
′ lies on L.

The difference y between x(s∗) and x′ is:

y =
s∗

sf

∫ sf

0

∫ ς′

0
ẍ(ς)dςdς ′ −

∫ s∗

0

∫ ς′

0
ẍ(ς)dςdς ′ (9)

Observing that
∫ sf
0

∫ ς′

0 ẍ(ς)dςdς ′ =
∫ s∗

0

∫ ς′

0 ẍ(ς)dςdς ′ +
∫ sf
s∗

∫ ς′

0 ẍ(ς)dςdς ′, we obtain:

y =
s∗

sf

∫ sf

s∗

∫ ς′

0
ẍ(ς)dςdς ′

︸ ︷︷ ︸

b

−
sf − s∗

sf

∫ s∗

0

∫ ς′

0
ẍ(ς)dςdς ′

︸ ︷︷ ︸

c
(10)

We observe that:

b =

∫ sf

s∗

∫ s∗

0
ẍ(ς)dςdς ′ +

∫ sf

s∗

∫ ς′

s∗
ẍ(ς)dςdς ′

= (sf − s∗)

∫ s∗

0
ẍ(ς)dς +

∫ sf

s∗

∫ ς′

s∗
ẍ(ς)dςdς ′;

c =

∫ s∗

0

∫ s∗

0
ẍ(ς)dςdς ′ −

∫ s∗

0

∫ s∗

ς′
ẍ(ς)dςdς ′

= s∗
∫ s∗

0
ẍ(ς)dς −

∫ s∗

0

∫ s∗

ς′
ẍ(ς)dςdς ′;

(11)

since the inner integral of the first term of b and c do not
depend on ς ′ and can be taken outside the outer integral.
Substituting (11) back into (10) we obtain:

y =
s∗

sf

∫ sf

s∗

∫ ς′

s∗
ẍ(ς)dςdς ′

︸ ︷︷ ︸

d

+
sf − s∗

sf

∫ s∗

0

∫ s∗

ς′
ẍ(ς)dςdς ′

︸ ︷︷ ︸

e
(12)

We observe that d is the double-integral of acceleration from

ς = s∗ until sf , which is upper-bounded by
αi(sf−s∗)2

2 . The

expression e, which can be rewritten:

∫ s∗

0

∫ s∗

ς′
ẍ(ς)dςdς ′ =

∫ s∗

0

(

−

∫ ς′

s∗
ẍ(ς)dς

)

dς ′ =

∫ 0

s∗

∫ ς′

s∗
ẍ(ς)dςdς ′,

(13)
is the acceleration double-integrated “backward” from ς = s∗

until 0. This is upper-bounded by
αi(s

∗)2

2 . Both s∗ and sf−s∗

are positive, so:

∥y∥ ≤
s∗

sf

αi(sf − s∗)2

2
+

sf − s∗

sf

αi(s∗)
2

2
. (14)

The right hand side attains a maximum of αi
s2f
8 at s∗ = sf

2
(this can be seen by setting to zero the differential of the right
hand side with respect to s∗). Hence the distance between

x(s∗) and L is no more than αi
s2f
8 .

We now show how to calculate Ci. We denote the closed
ball centered at z with radius r as:

B(z; r) = {x | ∥x− z∥ ≤ r}.

The operators CE(b1, b2) and BE(b1, b2) standing for capsule

enclosing and ball enclosing. These output the capsule or the
ball enclosing the balls b1 and b2. Their detailed description
is found in [13]. Formally, the occupancy of the link i with
radius rl,i is:

rz,i = αi
(se − sk+1)

2

8
+ rl,i

Si,1 = BE(B(pi,1(sk+1); rz,i) , B(pi,1(se); rz,i))

Si,2 = BE(B(pi,2(sk+1); rz,i) , B(pi,2(se); rz,i))

Ci = CE(Si,1,Si,2)

By the property of convexity, since the link endpoints are
enclosed, all points on the link i are inside capsule Ci.

B. Prediction of Human Occupancy

This subsection deals with the prediction of the human
reachable occupancies Γr and ΓISO from lines 11 and 12
from Algorithm 1. The human arm is a nonlinear hybrid
dynamical system, and its exact reachable set is impossible
to calculate [20]. To still be able to formally verify the safety
of the robot movement, one needs a tight, overapproximative
prediction of human motion, meaning a prediction which
includes all possible reachable states of the human, while
excluding as many unreachable states as possible.

In [13] we present an approach to calculate 3 over-
approximative predictions, which individually account for
acceleration, velocity and position limits (since a prediction
which would account for all limits simultaneously requires
a hybrid model of human motion, and reachability analysis
of hybrid systems is time consuming). Since each of these 3
predictions is a superset of the exact reachable occupancy of
the human Γr, then if any of them is verified safe against the
robot’s short-term plan, then the exact reachable occupancy
Γr is also safe. We therefore perform verification on each of
these occupancies and the reduced-speed criterion is verified,
if any of these occupancies are verified safe. Due to space



replacements
LHand LElbow

LShoulder
RShoulder

RElbow RHand

Torso1

Torso2

Fig. 5. Human reachable occupancy with the labelled marker clusters

vISO
h · t + 0.1

RElbow
RHand

Fig. 6. Human reachable occupancy ΓISO

limitations, we do not detail the models here; the reader is
referred to [13].

To calculate ΓISO, we assume a maximum speed of
the human arm vISO

h = 1.6m
s

. We enclose the human
in capsules, as shown in Fig. 5. These capsules’ radii are
specified such that they enclose all body parts—for the torso
and head capsule, the radius is 0.3m and for the upper arm
and forearm capsules, the radii are both 0.1m. To calculate
ΓISO([0, t]), we simply augment the radii by vISO

h ·t, shown
in Fig. 6.

V. EXPERIMENTS AND DISCUSSION

We implemented and tested the described trajectory plan-
ner on a 6-DOF Schunk LWA 4P robot arm with a two-finger
gripper mounted to the end effector. The robot is controlled
by a Speedgoat SN2820 real-time target machine running a
Simulink R2015b real-time kernel; robot and target machine
communicate via CAN bus. Due to the Simulink kernel the
robot control can be programmed in a Simulink model on a
host computer connected to the target machine, and executed
remotely. We use the robot arm in interpolated position mode
500Hz, i.e. a position command is sent every 2ms, and low-
level control is performed by the motors in the joints.

A. Human Tracking

To track the upper body of the human we use six Vi-
con Vero 1.3 motion capture cameras that track reflecting
markers at 100Hz. The camera data are aggregated by the
Vicon Tracker 3.3 software, which tracks the position and
orientation of coordinate systems attached to rigid clusters of
markers. We made eight rigid marker clusters, each uniquely
identifiable by Tracker 3.3, and affixed them to the body
as shown in Fig. 5. A separate program using the Vicon
DataStream SDK extracts the positions of the marker groups

134.5 135 135.5 136 136.5 137 137.5
t

0

0.5

1

Stationary Criterion
Reduced-speed Criterion

134.5 135 135.5 136 136.5 137 137.5
t

0

0.5 Real velocity
Intended velocity

134.5 135 135.5 136 136.5 137 137.5
t

-0.2
0

0.2
0.4
0.6 ISO

r

sa
fe

/
u
n
sa

fe
en

d
ef

fe
ct

o
r

v
el

o
ci

ty

d
is

ta
n
ce

b
et

w
ee

n
R

.O
.s

Fig. 7. Experimental results. Upper graph shows whether short-term
plan could be verified safe; middle graph compares the real, reduced
instantaneous end-effector velocity with the intended one, and the bottom
graph shows the minimum distance between the reachable occupancies of
human and robot at t+ te (ΓISO) and t+ te,vmax (Γr).

relative to the robot’s base from Tracker 3.3 and sends them
to the target machine via UDP while it is executing the
robot’s routine. Although Tracker 3.3 cannot run on a real-
time computer, the latency claimed by the manufacturers is
very low at around 2.8ms3. We took the latency from camera
to real-time target machine as 5ms.

B. Comparison

In our tests the robot executed a predefined routine that
simulated a pick-and-place task. The human then entered
the robot’s workspace and performed various movements
with varying velocity to trigger the failsafe behaviour of the
trajectory planner. The setup is shown in Fig. 8. To test the
effectiveness and correctness of our approach we performed
this trial multiple times with different values for vmax and
compared it with an approach from previous work.

In this previous approach [6] our trajectory planner only
used the stationary criterion to guarantee safety. We tested the
approach from [6] separately with ΓISO and Γr to demon-
strate its shortcomings compared to the approach presented
in this paper. When using Γr with the stationary criterion,
the robot proved rather difficult to work with due to the high
possible velocity and acceleration of the human. The human
had to stand 2 to 3 meters away not to inhibit the robot.
This can be seen in the video 4 at 1:45. On the other hand
with ΓISO the trajectory planner provided mostly sufficient
safety without being too restrictive, as long as the human
moved slower than vISO

h = 1.6m
s

. But as soon as the human
moved faster than that, situations could occur where it is not
entirely obvious whether the robot truly stopped completely
before the human was able to reach it. This is again visible in
the video 4 at second 1:21. Finally, we tested the trajectory

3vicon.com/products/software/tracker, retrieved 21.2.2017
4www6.in.tum.de/pub/Main/Pereira/CDC.mp4



Fig. 8. Picture of the experimental trial.

planner with both criteria at the same time, once with the
intended vmax = 0.25m

s
and again with vmax = 0.1m

s
. With

this the robot mostly behaved according to the stationary
criterion, but in cases where it was faster than vmax and the
human was standing respectively close had to slow down to
abide to the reduced-speed criterion.

Fig. 7 shows a short section of the data recording of
a test with vmax = 0.1m

s
. The upper graph shows the

Boolean values of whether the short-term plans fulfil the
two criteria, blue for the stationary criterion and orange
for the reduced-speed criterion. They jump quickly between
safe (1) and unsafe (0) as this slows the robot down just
enough to separate the reachable occupancies. Note that
this does not lead to chattering, since switching between
failsafe and recovery manoeuvre changes only the jerks,
which are limited to an acceptable value; joint accelerations
stay continuous and joint velocities are differentiable. The
middle graph shows the real velocity of the robot’s end
effector during the test and the intended velocity the robot
should have had at that point. From around 134.2 seconds on,
the robot must maintain a speed below the desired in order
to respect the reduced-speed criterion. In case the human
would have come any closer, the robot could have easily
decelerated below 0.1m

s
. At around 135.8 seconds it is the

stationary criterion that limits the robot’s speed. The bottom
graph shows the minimum distances between the reachable
occupancies during verification. Between 134.2 and 135.8
seconds, the distance between Γr and the robot occupancy
is around zero, meaning the reduced-speed criterion is often
verified unsafe (top graph). At around time 135.8, the dis-
tance between ΓISO and the robot occupancy goes down to
zero, meaning the stationary criterion is often verified unsafe.

VI. CONCLUSIONS

In this paper we present a method to formally plan and
verify a safe robot trajectory online, without unnecessarily
restricting robot motion. We guarantee both that, if the
human moves as assumed by ISO standards, the robot can
stop completely before impact, and that if not, the robot
velocity will be under a pre-defined value at impact.

We test our approach in an experimental setup. We show
that guaranteeing the robot can stop before impact while

accounting for all human motion hinders robot operation,
whereas only accounting for human movement assumed in
ISO standards does not guarantee safety when the human
moves faster than the assumptions. Our novel, dual-criterion
online formal verification allows the robot to move efficiently
while still guaranteeing safety, paving the way for formally
safe robots which are also efficient workers.

ACKNOWLEDGMENT

The authors gratefully acknowledge financial support by
the EC project UnCoVerCPS under grant number 643921.

REFERENCES

[1] H. Ding, K. Wijaya, G. Reißig, and O. Stursberg, “Online computation
of safety-relevant regions for human robot interaction,” in Proc. 43rd
Intl. Symp. Robotics (ISR), 2012.

[2] J. Mainprice and D. Berenson, “Human-robot collaborative manip-
ulation planning using early prediction of human motion,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots and Systems, 2013, pp. 299–306.

[3] H. Koppula and A. Saxena, “Anticipating human activities using object
affordances for reactive robotic response,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 38, no. 1, pp. 14–29, 2015.

[4] S. Petti and T. Fraichard, “Safe motion planning in dynamic environ-
ments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots and Systems, 2005,
pp. 2210–2215.

[5] M. Althoff, “Reachability analysis and its application to the safety
assessment of autonomous cars,” Dissertation, TU München, 2010.

[6] A. Pereira and M. Althoff, “Safety control of robots under computed
torque control using reachable sets,” in Proc. IEEE Int. Conf. Robotics
and Automation, 2015, pp. 331–338.

[7] A. Verl, A. Albu-Schäffer, O. Brock, and A. Raatz, Soft Robotics:
Transferring Theory to Application. Springer, 2015.

[8] R. Rossi, M. Polverini, A. Zanchettin, and P. Rocco, “A pre-collision
control strategy for human-robot interaction based on dissipated energy
in potential inelastic impacts,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots and Systems, 2015, pp. 26–31.

[9] “Robots and robotic devices – collaborative robots,” ISO/TS Standard
15066, International Organization for Standardization, 2016.

[10] “Robots and robotic devices – safety requirements for industrial robots
– part 1: Robots,” ISO Standard 10218-1, International Organization
for Standardization, 2011.

[11] “Safety of machinery – positioning of safeguards with respect to the
approach speeds of parts of the human body,” ISO Standard 13855,
International Organization for Standardization, 2010.

[12] A. Pereira and M. Althoff, “Overapproximative arm occupancy predic-
tion for human-robot co-existence built from archetypal movements,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots and Systems, 2016.

[13] ——, “Calculating human reachable occupancy for guaranteed
collision-free planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
and Systems, 2017.

[14] D. Costantinescu and E. Croft, “Smooth and time-optimal trajectory
planning for industrial manipulators along specified paths,” Journal of
robotic systems, vol. 17, no. 5, pp. 233–249, 2000.

[15] T. Kröger and F. Wahl, “Online trajectory generation: Basic concepts
for instantaneous reactions to unforeseen events,” IEEE Transactions
on Robotics, vol. 26, no. 1, pp. 94–111, 2010.

[16] H. Täubig, B. Bäuml, and U. Frese, “Real-time swept volume and
distance computation for self collision detection,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots and Systems, 2011, pp. 1585–1592.

[17] E. Gilbert, D. Johnson, and S. Keerthi, “A fast procedure for computing
the distance between complex objects in three-dimensional space,”
IEEE J. Robotics and Automation, vol. 4, no. 2, pp. 193–203, 1988.

[18] C. Ericson, Real-Time Collision Detection. Morgan Kaufmann, 2004.
[19] M. Zeestraten, A. Pereira, M. Althoff, and S. Calinon, “Online

motion synthesis with minimal intervention control and formal safety
guarantees,” in Proc. IEEE Systems, Man and Cybernetics, 2016, pp.
2116–2121.

[20] A. Platzer and E. Clarke, “The image computation problem in hybrid
systems model checking,” in Hybrid Systems: Computation and Con-
trol, A. Bemporad, A. Bicchi, and G. Buttazzo, Eds. Springer, 2007,
pp. 473–486.


