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Abstract— Safety is the most important aspect of systems
which have to perform collision-free motions in dynamic en-
vironments. Formal verification methods, such as reachability
analysis, are capable of guaranteeing safety for a given model
and given assumptions (e. g. bounded velocity and acceleration).
However, certain assumptions can be violated by dynamic
obstacles during the execution of the verified motion plan,
exposing the system to potential collisions. To compensate for
the invalidated verification, this paper introduces the Point of
No Return (PNR) and the Point of Guaranteed Arrival (PGA)
by incorporating invariably safe sets. These concepts allow
one to divide the planned trajectory into safe sections and
safety-critical passageways. For the former, we are able to
provide safety guarantees for an infinite time horizon. For the
latter, we present a method to minimize such safety-critical
passageways prior to execution and thus reduce the risk of
potential collisions if assumptions are violated during execution.
The safety benefits are highlighted by a numerical example of
overtaking maneuvers of self-driving vehicles.

I. INTRODUCTION

A. Motivation

Formal verification is a promising technique for assessing
the safety of motion plans. It can prove whether a modeled
system behaves correctly with respect to a given specifica-
tion. However, these models are based on certain assump-
tions, e. g. that the velocity and acceleration of surrounding
dynamic objects are bounded. Without assumptions, it is
difficult to accomplish the provided task while ensuring
safety, as the infinite number of possible behaviors of objects
in the environment often results in collisions (cf. freezing
robot problem [1]).

Using assumptions comes with the disadvantage that the
safety of the system is no longer guaranteed if surrounding
dynamic obstacles violate one or more of these assumptions.
This unsafe situation has to be solved in a timely manner,
since the system is exposed to potential collisions and must
determine a feasible evasive trajectory to return to a safe state
as fast as possible. Thus, advanced safety mechanisms have
to recover safety even if certain assumptions are violated
during the execution of the motion plan.

B. Literature Overview

In [2], three criteria for obtaining safe motion plans are
introduced: a system should consider “its own dynamics”, the
“environment objects’ future behavior”, and “reason over an
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infinite time horizon” to avoid collisions at all times. For this
purpose, the concept of Inevitable Collision States (ICS) was
introduced [3]. ICS are states in which the system, regardless
of which trajectory it follows, eventually collides with an
obstacle [4], [5]. A motion plan of the system is safe if it
avoids ICS at all times. To assess if a state is close to an ICS,
Regions of Near Collision (RNC) and Regions of Potential
Collision (RPC) are proposed in [6]. RNC contain states that
will end in an ICS if the system does not change its current
motion plan within a certain amount of time. On the other
hand, RPC describe states which may end in an ICS due
to uncertainties or faults in the control strategy. However,
most ICS checkers are computationally costly and require
deterministic motion predictions of dynamic obstacles [7].

Verifying the safety of systems can also be done by
applying logical reasoning as presented in [8] for highway
entry systems of self-driving vehicles or in [9] for the Euro-
pean train control system. Furthermore, some work defines
application-specific logics, e. g. Multi-lane Spatial Logic
(MLSL), which verifies the safety of a lane change controller
[10], or Quantified Differential Dynamic Logic, which ver-
ifies an adaptive cruise control system [11]. Nevertheless,
logical expressions for the verification of advanced systems
are often complex and subject to the specific controller of
the system.

Reachability analysis accounts for any feasible future
motion of dynamic obstacles [12], [13]. By calculating the
reachable set of each obstacle, i. e. the set of states reachable
from their current state, and checking for intersections with
the reachable set of the ego system, one can identify possible
future collisions. Safety verification using reachability anal-
ysis has been proposed for several domains, e. g. self-driving
vehicles [14] or robot manipulators [15].

Applying reachability analysis allows one to assess the
feasibility of motion plans, e. g. as presented in [16] for
overtaking maneuvers of self-driving vehicles with oncoming
traffic. This technique can also be used to examine the exis-
tence of evasive trajectories by evaluating over-approximated
reachable sets of the system. However, reachability analysis
can be computationally costly, as one has to consider every
possible control input for a given model and efficiently
represent the resulting sets.

As a way to overcome these difficulties, the concepts
Invariant Sets (IS) and Controlled Invariant Sets (CIS) [17]
are becoming more popular in robotics. Invariant sets are
sets of states which allow a system to remain within this set
for an infinite time horizon. In [18]–[22], invariant sets are
applied to motion planning of autonomous systems. Invariant
sets are also used for safety verification. For instance, CIS



are used to verify the safety of unmanned aerial vehicles
(UAVs) [23], [24] or for safe controller design [25]. In
combination with reachability analysis, invariant sets are
used to verify the safety of adaptive cruise control systems
[26], [27] or for predicitive threat assessment [28]. States
within a CIS allow the system to stay in it indefinitely
long. However, determining invariant sets is computationally
costly, especially in dynamic environments.

C. Contribution

This paper presents a novel approach for assessing the
safety of motion plans in dynamic environments and recov-
ering the safety if a previously verified motion plan suddenly
becomes invalidated due to the violation of assumptions.
We derive invariably safe sets, which allow us to determine
the Point of No Return (PNR) and the Point of Guaranteed
Arrival (PGA) (cf. Def. in Sec. IV).

The properties of the PNR and PGA allow one to ef-
ficiently reason about safety. In time-critical situations in
which a previously verified motion plan suddenly becomes
unsafe during execution, our approach offers two advantages
over existing work: (1) we are able to provide additional
safety guarantees to find feasible trajectories to safe states,
and (2) we can use the PNR and PGA to construct a
utility function to reason about the safety of multiple motion
hypotheses prior to their execution.

The remainder of this paper is organized as follows: In
Sec. II, we model the system and define invariably safe sets.
Sec. III covers the safety verification of planned trajectories
using reachability analysis. In Sec. IV, the PNR and PGA
are defined, and their safety properties are highlighted. The
proposed concept is demonstrated by a numerical example in
Sec. V using overtaking maneuvers of self-driving vehicles.

II. PRELIMINARIES

Let us introduce X ⊂ Rn as the set of feasible states x
and U ⊂ Rm as the set of admissible control inputs u of a
system f , which is governed by the differential equation

ẋ(t) = f
(
x(t), u(t)

)
. (1)

We assume that the initial time is t0 = 0 and adhere to
the notation u([0, th]) to describe a trajectory u(t) ∈ U for
t ∈ [0, th], 0 < th. Furthermore, χ

(
th, x(0), u([0, th])

)
∈ X

denotes the solution of (1) at time th subject to x(0) = x0
and u([0, th]).
Definition 1 (Safe States)
The set F t describes the maximal set of safe states at the
point in time t.

Please note that the definition of the set of safe states F t
depends on the system and its environment; in this work, we
consider safe states to be collision-free, which describes the
safety of many systems.
Definition 2 (Safe Input Trajectory)
An input trajectory u([t1, t2]) is called a safe input tra-
jectory for the time interval [t1, t2] if ∀t ∈ [t1, t2] :
χ
(
t, x(t1), u([t1, t])

)
∈ F t.

By an abuse of notation, we use u([t1, t2]) =
Φ
(
x([t1, t2]), rref

)
to emphasize that a trajectory is

generated by a feedback control law Φ for a given reference
rref, e. g. a desired velocity.
Definition 3 (Safe Feedback Control Law)
A feedback control law Φ is called a safe feedback con-
trol law if every produced input trajectory u([t1, t2]) =
Φ
(
x([t1, t2]), rref

)
is a safe input trajectory.

We derive subsets of F t which only contain invariably safe
states, i. e. from these states, the system described in (1) is
always able to be safe for an infinite time horizon, even in
dynamic environments:
Definition 4 (Invariably Safe Set)
The Invariably Safe Set (ISS) St for a point in time t and a
safe feedback control law Φsafe is defined as

St =
{
x(t) ∈ F t

∣∣∀τ > t :

χ
(
τ, x(t),Φsafe(x([t, τ ]), rref)

)
∈ Fτ

}
.

In contrast, states x(t) ∈ (F t \St) := {x |x ∈ F t∧x 6∈ St}
are only regarded as safe for a finite time horizon, since they
may inevitably lead to an unsafe state x(τ) 6∈ Fτ , τ > t.
For the sake of clarity, we omit the notation of time in F t
and St if all points in time are considered.

III. VERIFICATION OF MOTION PLANS

Let us consider tasks where the system (1) has to traverse
from an initial state x(0) ∈ S0pre to a final state x(th) ∈ Sthpost

(cf. Fig. 1). Both S0pre ⊂ S0 and Sthpost ⊂ Sth are ISSs
according to Def. 4 for a given safe feedback control law
Φsafe. Often, one has situations in which ∀t ∈ [0, th] :
Stpre ∩ Stpost = ∅, eliminating the possibility to use only
this dedicated safe feedback control law. As a result, we
cannot be sure that a planned trajectory u([0, th]) for the
given task is safe (cf. Def. 2). To verify the traversing
trajectory as collision-free with respect to the obstacles in
the environment, we make use of reachability analysis:
Definition 5 (Reachable Set)
The reachable set R ⊆ X of (1) is the set of states which
are reachable at a certain point in time r from a set of initial
states X 0 at time t0 and subject to the set of inputs U:

R(r) =

{
x(0) +

∫ r

0

f
(
x(t), u(t)

)
dt

∣∣∣∣
x(0) ∈ X 0,∀t : u(t) ∈ U

}
.

To realize efficient collision checking, we introduce a rela-
tion from the state space to the Euclidean space in world
coordinates:
Definition 6 (Relation to Euclidean Space)
The operator occ(x) relates the state vector x to the set of
occupied points in Euclidean space as

occ(x) : X → P(R`),

where P(R`) is the power set of R`. Given a set of states
X , we define occ(X ) := {occ(x) |x ∈ X}.
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Fig. 1. The trajectories u1([0, th]) and u2([0, th]), which start at an initial state x(0) ∈ S0
pre and end in a final state x(th) ∈ Sth

post, are verified as safe
for Aviol = ∅, which corresponds to the set of reachable states of all obstacles Robs. For a violation of assumptions (i. e. Aviol 6= ∅) resulting in R′

obs, we
can determine the intervals of the PNR and the PGA along each trajectory. These points delimit the safety-critical passageway SCP, which is denoted by
a dashed line.

Definition 7 (Occupancy Set)
Based on Def. 5 and Def. 6, the occupancy set O(t) describes
the set of occupied points in Euclidean space at time t:

O(t) = occ
(
R(t)

)
.

We verify motion plans using occupancy sets:
Definition 8 (Collision-free Trajectory)
Given the possible occupancies of all surrounding obstacles
Oobs(t) =

⋃
b∈BOb(t), B ⊂ N, and the occupancy of

the ego system along its planned trajectory Oego(t) :=
occ
(
χ(t, x(0), u([0, t])

)
, this trajectory is collision-free if

∀t ∈ [0, th] : Oego(t) ∩ Oobs(t) = ∅.

In order to obtain the occupancies Oobs(t) based on reachable
states, we require assumptions on the bounds of the set of
possible inputs for each obstacle (cf. U in Def. 5). These
bounds constrain the behavior of the dynamic obstacles, since
otherwise Oobs(t) would often intersect with Oego(t) and thus
the system is no longer able to safely accomplish a given
task. We consider different types of assumptions:
Definition 9 (Assumptions)
• Time-invariant assumptions A∞ are assumptions which

have to hold at any time.
• Violable assumptions AB are assumptions which con-

strain the motion of dynamic obstacles and might be
violated at some point in time.

• Violated assumptions Aviol ⊆ AB are the set of assump-
tions which have been violated by dynamic obstacles.

• Valid assumptions are defined as Avalid := A∞ ∪ (AB \
Aviol).

For instance, A∞ includes physical limitations, e. g. limited
acceleration, or general assumptions on safety, e. g. that
dynamic obstacles are not enforcing a collision with the ego
system. Per definition (cf. Def. 9), the sets Spre and Spost
only result from A∞. The set of violable assumptions AB
may contain the assumption that the velocity of obstacles
does not exceed a certain limit. From now on, we implicitly
mean Avalid if we use the term assumptions.

Remark 1 (Assumptions for Verification)
The verification of motion plans according to Def. 8 is based
on Avalid.

IV. ENHANCING SAFETY USING SAFE INVARIANT SETS

If the set of assumptions changes during execution of the
provided task, i. e. dynamic obstacles violate previously valid
assumptions, the verification result is no longer applicable.
Since a renewed verification of the motion plan according
to the reduced set of assumptions often fails, we use Spre
and Spost (which are invariant to Avalid) to propose safety-
relevant points along the planned trajectory u([0, th]), which
allow our system to regain safety (cf. Fig. 1):
Definition 10 (Point of No Return)
The Point of No Return (PNR) is the state x(tPNR), tPNR ∈
[0, th], along u([0, th]) from which returning to Spre is
ultimately possible using a safe trajectory u([t, r]), t < r:

∀t ∈ [0, tPNR] : ∃u([t, r]) : χ
(
r, x(t), u([t, r])

)
∈ Srpre

∧∀t ∈]tPNR, th] :6 ∃u([t, r]) : χ
(
r, x(t), u([t, r])

)
∈ Srpre.

After a specific point along u([0, th]), the system is able to
safely enter Spost:

Definition 11 (Point of Guaranteed Arrival)
The Point of Guaranteed Arrival (PGA) is the state x(tPGA),
tPGA ∈ [0, th], along u([0, th]) from which point on safety is
guaranteed using a safe trajectory u([t, r]), t < r:

∀t ∈ [tPGA, th] : ∃u([t, r]) :χ
(
r, x(t), u([t, r])

)
∈ Srpost.

By using Def. 10 and Def. 11, we define the safety-critical
passageway along u([0, th]) as:
Definition 12 (Safety-critical Passageway)
The safety-critical passageway (SCP) between S0pre and Sthpost
is defined as the set of states between the PNR and the PGA
along u([0, th]):

SCP = {x |x = χ
(
t, x(0), u([0, t])

)
, tPNR < t < tPGA}.

A. Determining the PNR and PGA

We determine the PNR and PGA with respect to the
remaining valid assumptions Avalid. Based on the discussion
in [29], the exact PNR and PGA along a trajectory cannot be



determined, but rather a time interval [ t, t ] of their possible
locations. For the PNR, we can obtain an upper bound
using reachability analysis and a lower bound using sampling
methods as demonstrated subsequently. Please note that we
focus on the basic concept of the search and not on specific
implementation details.
Proposition 1 (Under-approximation)
A lower bound of the location of the PNR tPNR is determined
by obtaining witnesses of Def. 10 from sampling techniques.

Proof: Per definition, the set of sampled trajectories is
a real subset of all feasible trajectories of (1). Thus, tPNR
represents an under-approximation.
Proposition 2 (Over-approximation)
By using over-approximated reachable sets of (1) (cf. Def. 5),
we define the upper bound as tPNR ∈ [0, th] such that

∀t ∈ [tPNR, th] : ∀r ≥ 0 : R(r) ∩ St+rpre = ∅
subject to X 0 = {χ

(
t, x(0), u([0, t])

)
}.

Proof: Prop. 2 directly follows from the definition of
over-approximated reachable sets of (1), which ensures that
the system is not able to return to Spre from the obtained
upper bound.
The interval of the PGA can be obtained analogously.
Remark 2 (Precomputation)
One can precompute a sufficiently close approximation of
the PNR and PGA intervals for predefined tasks and sets
of violated assumptions. This precomputed approximation is
used as an initial guess and further refined online. Addi-
tionally, both searches can be sped up by incorporating a
binary search strategy to determine the optimal bound. The
advantage of using this strategy is its anytime property.

B. Significance to Motion Safety

As mentioned before in Sec. III, assumptions are required
for verifying the motion plan u([0, th]). Violation of assump-
tions during execution results in larger reachable sets of
obstacles (cf. R′obs in Fig. 1). Thus, the passageway SCP
might contain unsafe states (i. e. SCP 6⊆ F):
Theorem 1 (Safe and Safety-critical Stages)
The motion plan u([0, th]) can be divided into safe and
safety-critical stages using the PNR and PGA:

1) t ∈ [0, tPNR]: A feasible and safe trajectory to a safe
state x ∈ Spre is guaranteed until the PNR. (In contrast,
∀t > tPNR: A feasible and safe trajectory reaching Spre
does not exist.)

2) t ∈]tPNR, tPGA[: A feasible and safe trajectory to Spost
may not exist within the SCP.

3) t ∈ [tPGA, th]: A feasible and safe trajectory to a safe
state x ∈ Spost is guaranteed from the PGA onwards.

Proof: Thm. 1 directly follows from Def. 10–12. As
soon as the system enters Spre or Spost, it can switch to the
designated safe feedback control law and remain safe for an
infinite time horizon.

A motion planner can use safety-critical stages to evaluate
trajectories:
Remark 3 (Safety Costs)
The safety of j different motion plans ui([0, th]), i ≤ j, can
be assessed by using a cost function which assigns costs ci
to each passageway SCPi.

Rmk. 3 follows from Def. 12 and allows one to character-
ize and compare the passageway of different motion plans
ui([0, th]). The cost function has to be modeled depending
on the specific task and the utilized system. For example,
the costs correspond to the time-span of the safety-critical
passageway, and the safest motion plan to the one with the
lowest costs.

Motion planners which do not consider these safety costs
might determine trajectories with large safety-critical pas-
sageways. If we integrate the cost function of the passageway
as a separate cost term into the optimization of the motion
planner, the planner directly determines the safest trajectory.
As a result, one may be able to obtain a trajectory with a
passageway of size zero.
Remark 4 (Zero Passageway)
SCP = ∅ of a motion plan u([0, th]) guarantees that the
system is always able to safely enter Spre and Spost.

V. NUMERICAL EXAMPLE

In this section, the proposed concept is demonstrated for
the domain of self-driving vehicles. We consider highly
safety-critical overtaking maneuvers on a two-lane road with
oncoming traffic (cf. Fig. 2). The set of safe states F
corresponds to the set of states which are collision-free and
respect road boundaries. Given the time-invariant assumption
that maximum absolute acceleration is limited to amax, we
define Spre and Spost using the safe feedback controller Φsafe
which keeps a formal safe distance to preceding vehicles [30]
(cf. adaptive cruise control system (ACC) in [31]). We can
infer that Spre ∩ Spost = ∅, since overtaking requires the ego
vehicle to enter a lane with oncoming traffic.

The parameters of our numerical example are stated in
Tab. I, where (x, y, v)T describes the x- and y-positions and
velocity of a vehicle at the initial time t0 = 0 s. To obtain
the motion plan of the ego system, we utilize the trajectory
planner and the underlying vehicle model of [32]. Fig. 2
shows the resulting trajectory u1([0, th]) of the overtaking
maneuver.

A. Verification of the Overtaking Trajectory

The occupancy sets of all vehicles are predicted using
our tool SPOT1 [33]. This tool is based on reachability
analysis and allows one to efficiently over-approximate the
set of future occupancies of traffic participants under given
assumptions.

In addition to A∞, we consider the violable assumptions
AB listed in Tab. II, which are based on a formalization of
the Vienna Convention on Road Traffic [34], [35]. Based
on Avalid and initially assuming Aviol = ∅, we obtain the

1available at spot.in.tum.de
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Fig. 2. Since the occupancy of the ego vehicle (red) along its trajectory u1([0, th]) does not intersect with the occupancies of other vehicles (blue and
green) in any time interval, the motion plan is verified as collision-free. Note that for the sake of clarity, the occupancy sets are only shown for the time
intervals [0, 1], [3, 4], [6, 7], and [9, 10], and plotted transparently. The axes are in meters.

occupancy sets of each vehicle for consecutive time intervals
with prediction step size ∆t = 0.1 s up to the time horizon
th = 10 s (cf. Fig. 2). The motion plan u1([0, th]) is verified
as collision-free, since none of the occupancies of other
vehicles intersects with the occupancy of the ego vehicle
along its planned trajectory in any time interval.

B. Determining the PNR and PGA

During the overtaking maneuver, we consider that
the oncoming vehicle violates the assumptions Aviol =
{Avmax

, Aback} (cf. Tab. II). Thus, the previously verified
overtaking maneuver is no longer collision-free. We de-
termine the PNR and PGA based on the remaining valid
assumptions Avalid:

a) PNR interval: To compute the upper bound tPNR
of the PNR according to Prop. 2, we use our tool SPOT.
For each state x(k∆t), k∆t ∈ [0, th], along the planned
trajectory, we run the occupancy prediction and check from
which k onwards the ego vehicle is not able to return to
its initial lane and maintain a safe distance to the preceding
vehicle.

After determining the upper bound, we can restrict the
search of the lower bound to states x(k∆t), k∆t ∈ [0, tPNR[.
We use our sampling-based trajectory planner [32] to deter-
mine trajectories reaching Spre and check if the ego vehicle
maintains the necessary safe distance at all times of the
resulting feasible trajectory. We obtain tPNR = 0.7 s and
tPNR = 0.6 s for the upper and lower bound of the PNR,
respectively. Fig. 4a visualizes the sampled trajectory and
the occupancy sets for the time interval at which the ego
vehicle is not able to maintain the safe distance.

TABLE I
PARAMETERS OF THE OVERTAKING SCENARIO.

Parameter Description

Ego vehicle (x, y, v)Tego = (0 m, 0 m, 16.7 m/s)T

Preceding vehicle (x, y, v)Tpre = (19.0 m, 0 m, 11.1 m/s)T

Oncoming vehicle (x, y, v)Tonc = (285.6 m, 4.5 m, 16.7 m/s)T

Speed limit vlim = 16.7 m/s

Maximum velocity vmax = 1.2vlim = 20 m/s

Switching velocity vS = 5.0 m/s

Maximum acceleration |amax| = 8.0 m/s2

Lateral distance ∆y = 4.5 m

between the lanes
Time horizon th = 10.0 s

Time step size ∆t = 0.1 s

b) PGA interval: Using SPOT, we obtain tPGA = 8.4 s
for the lower bound. The sampling method results in tPGA =
8.5 s for the upper bound. Fig. 4b visualizes the sampled
trajectory, which coincides with the overtaking trajectory
u1([0, th]), and the predicted occupancy sets starting at time
t = tPGA.

C. Significance to Motion Safety

We validate Thm. 1 by sampling evasive trajectories for
every state x(k∆t), k∆t ∈ [0, th], and checking them for
collisions. The trajectory starting at x(tPNR) and returning to
Spre is visualized in Fig. 3 by a dotted line. The trajectory
starting at x(tPGA) and ending in Spost coincides with the
overtaking trajectory u1([0, th]). All trajectories starting at
a state x(k∆t), k∆t ∈]tPNR, th], and ending in Spre result
in a collision, as the ego vehicle is not able to maintain the
necessary safe distance when the preceding vehicle performs
emergency braking.

Within the SCP, i. e. tPNR < t < tPGA, a collision-free
evasive trajectory ending in Spost may not exist if assumptions
are violated. To speed up the search for a feasible trajectory
in such situations, one can make use of the fact that the
ego vehicle has to reach the PGA to be safe again. This
information allows the motion planner to exclude trajectories
which end in Spre or have velocities below the maximum
reference velocity.

In our example, the oncoming vehicle violates the assump-
tion of maximum speed (i. e. accelerating beyond vmax) at
time t = 4.5 s, where the ego vehicle has already passed the
PNR and is located within the SCP. To avoid a potential
collision, we must determine an evasive trajectory which
exits the SCP as fast as possible. Using our novel concept,
we are able to reduce the number of trajectory hypotheses

TABLE II
VIOLABLE ASSUMPTIONS ON THE BEHAVIOR OF OTHER VEHICLES.

Assumptions Description

Avmax When a parameterized speed vmax is reached,
acceleration in driving direction is stopped.

Aengine To model limited engine power, acceleration in driving
direction is limited above a parameterized speed vS .

Alane Leaving the lane is forbidden. Changing lanes is only
allowed if the new lane has the same driving direction.

Aback Driving backwards in a lane is not allowed.
Aover If a vehicle is being overtaken, acceleration in driving

direction is stopped.
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Fig. 3. Trajectory u1([0, th]) with max. velocity of 16.7 m/s is not collision-free if the oncoming vehicle violates Aviol. Two evasive trajectories, denoted
by dotted lines, branch off at the PNR and at t = 4.5 s within the SCP. An alternative collision-free trajectory u2([0, th]) with max. velocity of 19.4 m/s
and shorter SCP is shown by a dashed line. The axes are in meters.

of our planner from 3500 down to 500, which shortens
planning time by around 30 %. The obtained trajectory with
full acceleration allows the ego vehicle to enter Spost without
colliding with the speeding oncoming vehicle and is denoted
by a dotted line in Fig. 3.

To assess the safety of the SCP for overtaking trajectories
according to Rmk. 3, we model the cost function as c =
(tPGA − tPNR). The costs for the initial overtaking trajectory
u1([0, th]) with max. velocity 16.7 m/s and for an alternative
trajectory u2([0, th]) with max. velocity 19.4 m/s (cf. Fig. 3)
are c1 = 7.7 s and c2 = 6.0 s, respectively. If the oncoming
vehicle violates Avmax , u1([0, th]) results in a collision with
the oncoming vehicle (cf. occupancy set in Fig. 3). However,
the trajectory u2([0, th]) avoids a potential collision in this
scenario, since the ego vehicle traverses the SCP faster due to
the shorter passageway (indicated by lower costs c2 � c1).
Incorporating the costs of the SCP into a motion planner
allows it to minimize the SCP during optimization. In our
example, this corresponds to a trajectory with the maximal
feasible velocity profile during overtaking.

VI. CONCLUSIONS

This paper considers situations in which a verified motion
plan suddenly becomes unsafe due to the misbehavior of
dynamic obstacles and provides a solution to this problem
by introducing the PNR and PGA. These novel concepts
allow one to derive additional safety guarantees for systems
which have to perform collision-free motions in dynamic
environments. The PNR and PGA divide motion plans into
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(a) Upper and lower bound of the PNR.
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(b) Upper and lower bound of the PGA.

Fig. 4. The intervals of the PNR and PGA are obtained using set-based
prediction and trajectory sampling. The axes are in meters.

inherently safe sections and inherently safety-critical pas-
sageways.

Within the safety-critical passageway, the system is ex-
posed to potential collisions if obstacles violate assumptions
used in the verification. We show that one can minimize
the SCP prior to execution by assigning costs to it and
integrating the cost function into the optimization of the
planner. Trajectories with SCP = ∅ guarantee safety for an
infinite time horizon.

The presented concept is not restricted to self-driving
vehicles and can also be applied to other systems, such
as industrial robots or unmanned aerial vehicles (UAVs).
To reduce computational costs, one may conservatively pre-
compute the PNR and PGA for different tasks and switch
between them during runtime.

ACKNOWLEDGMENTS

This work was funded by the German Federal Ministry of
Economics and Technology through the research initiative
Ko-HAF and by the BMW Group through the CAR@TUM
project.

REFERENCES

[1] P. Trautman and A. Krause, “Unfreezing the robot: navigation in dense,
interacting crowds,” in Proc. of the IEEE Int. Conf. on Intelligent
Robots and Systems, 2010, pp. 797–803.

[2] T. Fraichard, “A short paper about motion safety,” in Proc. of the IEEE
Int. Conf. on Robotics and Automation, 2007, pp. 1140–1145.

[3] T. Fraichard and H. Asama, “Inevitable collision states – a step towards
safer robots?” in Proc. of the IEEE Int. Conf. on Intelligent Robots
and Systems, 2003, pp. 388–393.

[4] L. Martinez-Gomez and T. Fraichard, “An efficient and generic 2D
inevitable collision state-checker,” in Proc. of the IEEE Int. Conf. on
Intelligent Robots and Systems, 2008, pp. 234–241.

[5] S. Bouraine, T. Fraichard, and H. Salhi, “Provably safe navigation for
mobile robots with limited field-of-views in dynamic environments,”
in Proc. of the IEEE Int. Conf. on Robotics and Automation, 2012,
pp. 174–179.

[6] N. Chan, J. Kuffner, and M. Zucker, “Improved motion planning
speed and safety using regions of inevitable collision,” in 17th CISM-
IFToMM Symposium on Robot Design, Dynamics, and Control, 2008,
pp. 103–114.

[7] A. Lawitzky, D. Althoff, C. F. Passenberg, G. Tanzmeister, D. Woll-
herr, and M. Buss, “Interactive scene prediction for automotive appli-
cations,” in Proc. of the IEEE Intelligent Vehicles Symposium, 2013,
pp. 1028–1033.

[8] W. Damm, H.-J. Peter, J. Rakow, and B. Westphal, “Can we build it:
formal synthesis of control strategies for cooperative driver assistance
systems,” Mathematical Structures in Computer Science, vol. 23,
no. 04, pp. 676–725, 2013.

[9] W. Damm, A. Mikschl, J. Oehlerking, E.-R. Olderog, J. Pang,
A. Platzer, M. Segelken, and B. Wirtz, “Automating verification of
cooperation, control, and design in traffic applications,” in Formal
Methods and Hybrid Real-Time Systems, 2007, pp. 115–169.



[10] M. Hilscher, S. Linker, and E.-R. Olderog, “Proving safety of traffic
manoeuvres on country roads,” in Theories of Programming and
Formal Methods. Springer, 2013, pp. 196–212.

[11] S. M. Loos, A. Platzer, and L. Nistor, “Adaptive Cruise Control:
hybrid, distributed, and now formally verified,” in Proc. of the Int.
Symposium on Formal Methods, 2011, pp. 42–56.

[12] M. Althoff, C. L. Guernic, and B. H. Krogh, “Reachable set compu-
tation for uncertain time-varying linear systems,” in Proc. of Hybrid
Systems: Computation and Control, 2011, pp. 93–102.

[13] M. Althoff, “Reachability analysis of nonlinear systems using con-
servative polynomialization and non-convex sets,” in Proc. of Hybrid
Systems: Computation and Control, 2013, pp. 173–182.

[14] M. Althoff and J. M. Dolan, “Online verification of automated road
vehicles using reachability analysis,” IEEE Transactions on Robotics,
vol. 30, no. 4, pp. 903–918, 2014.

[15] A. Pereira and M. Althoff, “Safety control of robots under computed
torque control using reachable sets,” in Proc. of the IEEE Int. Conf.
on Robotics and Automation, 2015, pp. 331–338.
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[28] P. Falcone, M. Ali, and J. Sjöberg, “Predictive threat assessment via
reachability analysis and set invariance theory,” IEEE Transactions
on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1352–1361,
2011.

[29] A. Platzer and E. M. Clarke, “The image computation problem
in hybrid systems model checking,” in Proc. of Hybrid Systems:
Computation and Control, 2007, pp. 473–486.

[30] A. Rizaldi, F. Immler, and M. Althoff, “A formally verified checker
of the safe distance traffic rules for autonomous vehicles,” in NASA
Formal Methods Symposium, 2016, pp. 175–190.

[31] S. Magdici and M. Althoff, “Adaptive cruise control with safety
guarantees for autonomous vehicles,” in Proc. of the 20th World
Congress of the Int. Federation of Automatic Control, 2017, pp. 5939–
5946.

[32] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a Frenet Frame,” in Proc. of
the IEEE Int. Conf. on Robotics and Automation, 2010, pp. 987–993.

[33] M. Koschi and M. Althoff, “SPOT: A tool for set-based prediction
of traffic participants,” in Proc. of the IEEE Intelligent Vehicles
Symposium, 2017, pp. 1679–1686.

[34] United Nations Economic Commission for Europe, “Vienna Conven-
tion on Road Traffic,” United Nations, 1968.

[35] A. Rizaldi and M. Althoff, “Formalising traffic rules for accountability
of autonomous vehicles,” in Proc. of the IEEE Int. Conf. on Intelligent
Transportation Systems, 2015, pp. 1658–1665.


