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Abstract

In this work it is investigated, how recurrent neural networks with internal, time-dependent
dynamics can be used to perform a nonlinear adaptation of parameters of linear PID con-
trollers in closed-loop control systems. For this purpose, recurrent neural networks are
embedded into the control loop and adapted by classical machine learning techniques.
The outcomes are then compared against both PID controllers with fixed parameters and
several sophisticated state-of-the-art control methods. Optionally, a second recurrent neu-
ral network is used to identify the control system. Simulation experiments are carried out
on four different dynamical systems, namely a nonlinear two-tank system, a linear plant
with a large input delay, a nonlinear model of an inverse pendulum on a cart and a chaotic
thermal convection loop. It is shown that the proposed method is able to control all four
systems in a satisfying way, even outperforming classical control structures most of the
time.

Zusammenfassung

Im Rahmen dieser Arbeit werden rekurrente neuronale Netze mit interner, zeitabhängiger
Dynamik dafür eingesetzt, die Parameter von linearen PID-Reglern nichtlinear an den
zu kontrollierenden Prozess zu adaptieren. Für diesen Zweck werden rekurrente neu-
ronale Netze in den geschlossenen Regelkreis eingebettet und mit Hilfe von klassischen
maschinellen Lernverfahren trainiert. Die Ergebnisse werden sowohl mit PID-Reglern
mit fest eingestellten Parametern als auch mit verschiedenen aktuellen Methoden der
Regelungstechnik verglichen. Optional wird ein zweites neuronales Netz eingesetzt, um
die zu regelnde Strecke zu identifizieren. Für vier verschiedene Regelstrecken werden
Simulationen durchgeführt, nämlich einem nichtlinearen Zweitank System, einem linearen
PT1-System mit hoher Totzeit, einem nichtlinearen Modell eines invertierten Pendels sowie
einem experimentellen Fluidsystem mit chaotischem Verhalten. Es konnte gezeigt werden,
dass die vorgestellten Verfahren in der Lage sind, alle vier Regelstrecken zu kontrollieren
und dabei die klassischen Verfahren in den meisten Fällen übertreffen.
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1. Introduction

1.1. Problem Statement and Motivation

Automation and control of industrial processes is a multidisciplinary effort and has be-
come an important and fundamental part of our every-days lives within the last decades.
Nearly every part of our environment and the tools we are using is a product of this devel-
opment: Computers, smart-phones, cars, airplanes and many other electric devices and
appliances, but also many non-electric products of our daily lives like food, medicine or
clothes are being produced with a high degree of automation. While this increasing level
of automation has brought significant benefits, such as higher efficiency at lower costs and
less error rates, the problem complexity of the automation of more complicated tasks is
continuously increasing. There are several reasons for this phenomenon. One specific is
that most (industrial) processes that are about to be automatized exhibit nonlinear behav-
ior [1]. Therefore, nonlinear system control is of high interest in research and a topic of
many current publications [2]. However, it is generally difficult to control nonlinear systems
[3, 4, 5]. Moreover, linear plants that have a non neglectable time delay are sometimes
hard to control [6, 7, 8]. The need for more intelligent solutions to such problems can
also be exemplified by what is called “Industry 4.0”, or the fourth industrial revolution. This
pushes on a development from embedded systems to so-called Cyber-Physical Systems.
Desirable key features of such systems are: “Intelligence”, “Autonomy” and “Self-Learning”
[9, pp. 6-12]. Features that partially apply to machine learning techniques and are poten-
tially helpful for nonlinear system control.

There exist numerous different approaches to handle those difficult-to-control plants. In
[10] for example, an adaptive sliding mode fuzzy PD algorithm is applied to achieve posi-
tion control of a robot manipulator. In contrast to that, [11] use a fuzzy PID controller with
a feed-forward neural network to control a cascade two-tank system. An adaptive neu-
ral network to control a wheeled inverted pendulum is presented in [12]. These are just a
handful of examples for nonlinear systems, as there exist many more and for each problem
there are various approaches to handle the difficulties of the processes. Nevertheless, the
vast majority in industrial practice still uses the standard PID controller [13, 14, 15, 16, 17].
This may relate to the fact that the PID controller is in general one of the best explored
controllers and it is fairly easy to implement. Although it is a linear controller, it shows
adequate performance even for some nonlinear processes and is quite robust towards
measurement noise. Eventually, as the PID controller has only three degrees of freedom,
it is also quite easy to parametrize it by trial-and-error and therefore convenient and suit-
able for practical applications, even without a detailed understanding of the entire control
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1. Introduction

theory behind it. More sophisticated methods for nonlinear systems like the ones men-
tioned above often suffer from a higher complexity both in implementation and theoretical
understanding. Their methodology might be unfamiliar to many practice-oriented people
and discourage them to actually implement these methods. This can be an unwanted
barrier for such methods to attract a bigger audience and being applied in more industrial
real-world applications.

Therefore, the aim of this work is the combination of the traditional PID control approach
with recurrent neural networks. The ultimate goal is then to train a recurrent neural net-
work in such a way, that it adopts the controllers parameters during execution to improve
its performance on the control task. This adaptive PID control structure is then bench-
marked against the standard PID controller as well as some more advanced state-of-the-
art methods. Several similar approaches already exist. Examples are the use of a colonial
competitive genetic algorithm to design a PID controller for a distillation column process
[18], or a genetic algorithm to tune a PID controller for Glucose concentration control [19].
The authors of [20] apply a particle swarm optimization algorithm to the tuning problem of
the PID controller and validate their approach on several physical plants like a bio-reactor,
a linear plant with time delay and an isothermal continuous stirred tank. A feed-forward
neural network is used to support a PI controller which is controlling a heating coil by [21].
Another application is an online plant identification for PID auto-tuning with feed-forward
radial basis neural networks (RBNN) for speed control of a triphasic AC motor [22].

This list is not exhaustive and there are many more publications dealing with the topic
of PID auto-tuning, some of them using neural networks as well. However, most of those
publications focus on purely feed-forward neural networks with no tapped-delay lines be-
tween two neuron connections and therefore without an internal memory. Also most meth-
ods confine themselves on either system identification or parameter tuning with neural
networks, but not both at the same time. The novelty of this paper is founded in the in-
vestigation of those methods for PID auto-tuning and whether the internal, time-dependent
dynamics of recurrent neural networks improve the control of dynamical systems.

1.2. Structure of this work

This thesis is divided into seven sections. In the first section the motivation is refined
and a short introduction is given. The second section gives a detailed overview about
several state-of-the-art methods for PID auto-tuning and system identification. The third
section describes the model of the general dynamic neural network (GDNN) and outlines a
novel algorithm for generating optimal excitation signals for dynamical systems. In the next
section, the developed control structures using recurrent neural networks are presented.
Afterward, the fifth section shows simulation results for four different control processes
using this structures. Following in the sixth section, a comparison with the standard PID
control structure and other modern techniques is carried out. Finally a conclusion is drawn
and an outlook for future work is presented in the seventh section.

2



2. State-of-the-Art

2.1. Control Theory

Control theory deals with the behavioral control of dynamical systems. It is widely applied
in the industry since many industrial processes can be modeled as a dynamical system
represented by differential equations. The structure is usually divided in two different parts,
the controller and the system (also: Plant) that is about to be controlled. The output y (t) of
the control plant gives feedback to the controller which can then take appropriate actions
u(t) based on the derivation e(t) between the setpoint w(t) and the output of the system,
including an external disturbance z(t). This relationship is illustrated in figure 2.1. Since
the focus of this paper is PID tuning, it would be to detailed to give a full introduction to this
topic. The interested reader can refer to literature about control theory [23, 24, 25].

Plant

-

w(t) y (t)
e(t)

Controller
u(t)

z(t)

Figure 2.1.: A closed-loop control system

2.1.1. PID Control

In this section a short abstract about the widely used PID control structure is provided. This
control structure is a linear dynamical systems and has several problems with delayed or
nonlinear plants [26, 27]. PID control stands for “Proportional-Integral-Derivative” control
[28]. It receives the difference between the current system output and the desired setpoint
as an input and tries to minimize this difference. The PID controller has three different
parameters, one that takes into account the current error (P-part), one that represents an
accumulation of the past errors (I-part) and one that predicts the next error by calculating
its derivative (D-part). Each of these errors is weighted by some scalar value (KP , KI , KD)
and summed up. This sum is then used as an input to the control plant. Figure 2.2
shows the structure of a PID controller embedded into a closed-loop control system. Here
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2. State-of-the-Art

the complex valued variable s stands for a differentiation, 1
s for an integration over the

controller input e(t).

Plant

-

w(t) y (t)
e(t) u(t)

z(t)Controller
KP

KI

KD s

1
s

Figure 2.2.: A closed-loop PID controlled system

The control formula of the general PID controller can then be written as following:

u(t) = KPe(t) + KI

∫ t

0
e(τ )dτ + KD

d
dt

e(t) . (2.1)

After transforming equation 2.1 into a recurrence relation, it can for example be imple-
mented efficiently on a micro controller. The remaining question is, how to choose the
three parameters KP , KI and KD to obtain reasonable controller outputs.

2.1.2. Parametrization of PID Controllers

Methods for estimating reasonable PID parameters are for example the Ziegler-Nichols
method [29], the method by Chien, Hrones und Reswick [30] or the TΣ-Method [31]. These
methods require a measured step-response from the control system. The first two provide
a look-up table for the PID controller, the TΣ-Method uses an integration over the measured
system response. Other methods are based on root locus analysis [32] or on formulating
the tuning of the controller as an optimization problem [33, pp. 234-237]. In this context,
genetic algorithms are often used to solve the optimization problem [34, 35]. An overview
and comparison of various PID tuning methods is provided by [36].

While most of these methods only aim to identify static PID parameters which don’t
change during the process, there also exist several adaptive methods for PID parameter
refinement [37]. In [38], a static feed-forward network is used, while [39] show a similar
structure with neural networks with external dynamics. There also exist approaches using
a neural network directly in a PID-like structure [40], for hybrid PID feed-forward control
[41] or in conjunction with a neural plant model [42].

However, there only exist very few publications dealing with recurrent neural networks
for PID tuning [43, 44], and those only use simple recurrent neural networks like e.g. Jor-
dan networks (described in detail in the next section). This thesis therefore sets its focus
especially on general dynamic neural networks (GDNNs) and how they can be used for
both nonlinear system identification and online adaptation of PID controllers.
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2.2. Artificial Neural Networks

2.2. Artificial Neural Networks

This section will give a short overview about artificial neural networks (ANNs), starting with
multilayer perceptrons (MLPs) and general feed-forward networks (FFNs). Then introduc-
ing simple recurrent neural networks (SRNNs) and finally general dynamic neural networks
(GDNNs). Also, several training techniques are outlined and presented.

2.2.1. Multilayer Perceptrons and Feed-Forward Networks

The concept of the perceptron was introduced by F. Rosenblatt in 1958 [45, 46]. A neuron
is modeled as a function y (·) that takes an arbitrary number of input arguments. Those
inputs are then weighted, put through an input function (usually a summation) and then
passed through a so-called activation function. The equation for a single neuron can then
be expressed as follows:

yi = φ(
N∑

j=1

wi ,juj + bi ) . (2.2)

Here yi is the output of the i-th neuron and uj is the j-th input of that neuron. N stands
for the total amount of inputs of that neuron. Its output is then computed by calculating the
weighted sum of its input, shifting it by some bias weight bi and then passing this result
through an activation function φ(·). This relationship is illustrated in figure 2.3.

∑
φ(·)

u1

u2

uN

yi...

w2

w1

wN

bi
1

Figure 2.3.: Model of a single neuron

The activation function determines the behavior of the neuron, which has to be chosen
by the designer of the artificial neural network. Table 2.1 shows some typical activation
functions and their characteristics. By connecting the output of such a neuron to the input
of another neuron, it is possible to build up a net of neurons. If this neurons are organized
in a layer-wise structure, the net is called a multilayer perceptron (MLP). Figure 2.4 shows
an example of such a net. For the sake of clarity, the bias connections are only shown in
this net structure and omitted in further net illustrations.

A general MLP can have an arbitrary number of neurons and layers. Each connection
between two neurons is weighted with some scalar value. The weights of the neural net-
work can formally be expressed by its adjacency matrix W ∈ Rn×n and its bias weights

5



2. State-of-the-Art

Table 2.1.: Typical activation functions

Name Function φ(x) Differentiable Codomain

Linear/Identity x Yes ]∞,∞[

Heaviside
{

1, x > 0
0, x ≤ 0

No {0, 1}

Piecewise Linear/Relu
{

x , x > 0
0, x ≤ 0

No [0,∞[

Unipolar Sigmoid 1
1+e−x Yes [0, 1]

Bipolar Sigmoid 1−e−x

1+e−x Yes [−1, 1]
Tangent Hyperbolic tanh(x) Yes [−1, 1]
Gaussian e−(x−c)2/2σ2

Yes [0, 1
σ
√

2πe
]

Softmax eQ(a)/τ∑n
b=1 eQ(b)/τ Yes [0, 1]

u1 1

2

3

4

5

6

7u2

y1

y2

Layer 1
(Inputs)

Layer 2
(Hidden)

Layer 3
(Outputs)

Figure 2.4.: An example MLP with 7 neurons and 3 layers

vector b ∈ Rn, where n is the number of neurons of the neural network. A non-zero entry
at position i , j stands for a connection from neuron j to neuron i . The adjacency matrix and
the bias weight vector of the network from figure 2.4 is shown in equation 2.3.

W MLP =



0 0 0 0 0 0 0
0 0 0 0 0 0 0

w3,1 w3,2 0 0 0 0 0
w4,1 w4,2 0 0 0 0 0
w5,1 w5,2 0 0 0 0 0

0 0 w6,3 w6,4 w6,5 0 0
0 0 w7,3 w7,4 w7,5 0 0


, bMLP =



b1

b2

b3

b4

b5

b6

b7


. (2.3)

This kind of neural network has been widely applied for various tasks. This might relate
to the fact that it has been shown that the output of a MLP is equivalent to the optimal

6



2.2. Artificial Neural Networks

Bayesian discriminant function [47, 48] and a MLP with at least one hidden layer and sig-
moidal activation functions is capable of representing any differentiable function [49, 50].
Example applications of MLPs include continuous speech recognition [51], damage detec-
tion in bridge structures [52] or medical decision support systems [53]. Further examples
are the usage a MLP for emotion recognition [54], or for the pitch control problem of wind
turbines [55]. A cost estimation for sheet metal parts is outlined by [56], while [57] uses a
MLP to do bankruptcy forecasting. A summary of various applications, including finance,
health and medicine, engineering and manufacturing, marketing and more, was published
by [58]. New applications of MLPs include deep learning networks [59] or convolutional
networks for several recognition tasks like handwritten text or face recognition [60, 61, 62].
Also, stacked autoencoders are a popular tool for denoising and feature extraction tasks
[63, 64, 65].

The concept of a MLP can be generalized to networks with arbitrary forward connec-
tions. Such general feed-forward networks introduce shortcut connections, which are
connections that skip one or more layers, as well as lateral connections which describe
connections between neurons from the same layer. Such a network is still a feed-forward
network, as it doesn’t contain any cycles; to be precise that means, that there exists no
path from an input to an output where a neuron is visited twice. Figure 2.5 shows an ex-
ample general feed-forward network which has one shortcut and two lateral connections.

1

2

3

4

5

6

7

8

9

u1

u2

u3

y1

y2

Figure 2.5.: Feed-forward network with shortcut (1 to 8) and lateral connections (5 to 4 and 6)

The effect of lateral connections in feed-forward networks was investigated by [66], while
[67] used shortcut connections to improve the performance of a neural network. In [68] a
global optimization method is applied on general feed-forward networks containing both
lateral and shortcut connections. Although those publications show that feed-forward
networks containing those types of connections show better performance than standard
MLPs, most researchers exclude lateral and shortcut connections and focus on pure MLP
networks. This might relate to the fact that pure MLPs can be computed by a simple con-
catenation of multiple matrix vector multiplications which simplifies the implementation of
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2. State-of-the-Art

such networks. If lateral and shortcut connections are allowed, a topological sorting has to
be performed before it is possible to calculate the output of the network. Also the net struc-
ture isn’t unique anymore, as neurons between shortcut connections can’t be attached to
a specific layer anymore. The next section will give a short introduction to simple recur-
rent neural networks, which not only allow arbitrary forward connections, but also recurrent
backward connections.

2.2.2. Jordan and Elman Networks

A recurrent neural network is an artificial neural network with cyclic connections between
neurons. An example would be a network with two neurons, both connected to each other.
To compute the output of the first neuron, the output of the second neuron is required and
vice versa. To break this algebraic loop a delay has to be introduced in one of the two
connections. This means that any neural network with recurrent connections must have
delays (and therefore an internal memory) to be computable. This dynamic behavior is the
most important difference between static networks (like the MLP or feed-forward networks
without delays) and dynamic networks (networks with internal delay units). This section
will explain two of the very first recurrent network structures.

M. Jordan introduced in 1986 the so-called Jordan network, which is a recurrent neural
network that has delayed connections between the output neurons and some “context”
neurons, which serve as pseudo input neurons [69]. In figure 2.6 an example of such a
network is shown. Here the two output neurons (number 7 and 8) are recurrently con-
nected with two context neurons (number 3 and 4). The output of the context neurons is
then again delayed and passed to the context neurons themselves. The z−1-blocks serve
as a delay by one time stamp. In [70], a Jordan network is used for software-reliability pre-
diction. Other applications of Jordan networks include road traffic prediction [71] or cement
strength prediction [72].

1

2

3

4

5

6

7

8

u1

u2 y1

y2z-1

z-1

Figure 2.6.: A Jordan network with two context neurons (neurons 3 and 4)
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2.2. Artificial Neural Networks

After the Jordan network, in 1990 J. Elman presented the so-called Elman network [73].
It is structured in a similar way as the Jordan network and also uses context neurons.
The difference is that for the recurrent connections not the output neurons were taken
into account but the first layer of hidden neurons. Figure 2.7 shows an example of such a
network: The output of the neurons from the first hidden layer is delayed by one time stamp
and passed to the context neurons. Again, the context neurons are recurrently connected
to themselves like in the Jordan network structure.

Elman networks were used for semantic word perception [74], predictive control of a six-
degree-of-freedom robot [75], fault diagnosis of a hydraulic servo system [76], or epilepsy
detection from an Electroencephalography (EEG) [77]. Other applications of Elman net-
works include the predictive control of reheated steam temperature [78], modeling of ther-
mal deformation of machine tools [79] or prediction of internet traffic [80].
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Figure 2.7.: An Elman network with two context neurons (neurons 3 and 4)

There are more special structures for recurrent neural networks, like for example Hop-
field networks [81]. However, all those structures can be seen as a special case of the
general dynamic neural network (GDNN), which allows arbitrary connections of arbitrary
delays between all neurons. This net structure is presented in the next section.

2.2.3. General Dynamic Neural Networks

A general dynamic neural network (GDNN) is the most general form of a neural network
and includes all the former described net topologies. The authors of [82, pp. 297-345] give
a comprehensive overview about both static and dynamic neural networks, including the
GDNN. While the dynamic neural networks discussed before only have recurrent connec-
tions between predefined layers or neurons, in a GDNN every neuron can be connected
with any other neuron. Also, while Jordan and Elman networks only had a delay of one time
stamp in their recurrent connections, a GDNN can have arbitrary delays in any connection.
The only constraint is that the net has to be computable, which means that it must not

9



2. State-of-the-Art

contain any algebraic loops, as explained in section 2.2.2. Figure 2.8 shows an example
of a GDNN. The net is basically the feed-forward network from figure 2.5, but extended by
some recurrent/delayed connections. Neuron 4 has a backwards connection to neuron 1,
delayed by one time stamp, while neuron 7 is connected to neuron 3, delayed by two time
stamps. Neuron 4 finally is also forward connected to neuron 8, one time directly with no
delay and another time with a delay of one time stamp. It is important to note that there are
two connections between neuron 4 and 8, resulting in two different, independent weights
for this path.
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Figure 2.8.: A general dynamic neural network with forward and recurrent connections

There exist several publications dealing with the formal representation of a GDNN
[83, 84]. This network structure has been applied for system identification of a two mass
system [85]. In [86], some further application of GDNNs for nonlinear system identification
is outlined. The authors of [87] present a genetic algorithm that evolves recurrent neural
networks, while [88] use a recurrent neural network for wind speed and power forecast-
ing. GDNNs have also been applied for handwriting recognition tasks [89] or for solving
nonlinear convex programming problems [90].

Regardless of the topology a designer might choose, a neural network only provides
a generic model that might be suitable for a given problem. This model has to be
parametrized before it can be used efficiently. In a neural network structure, the param-
eters are represented by the weights of the inter-neuron connections and each neurons
bias weight, which have to be adapted to the actual problem. This process of weight ad-
justment is called “training” of the network. The next section will introduce some machine
learning techniques, including methods to perform this training for both static feed-forward
networks and dynamic recurrent neural networks.
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2.3. Machine Learning

The term machine learning describes artificial systems, that can learn from experience
and generalize from this experience. This means especially that not all possible actions
the system can potentially perform have to be implemented explicitly by the designer of
the system, but that the system evolves with experience. Machine learning techniques
are especially suitable for problems which cannot be solved by an explicit set of rules, like
human voice or handwriting recognition. This section will introduce some of the most com-
mon machine learning techniques, including unsupervised, supervised and reinforcement
learning.

2.3.1. Unsupervised Learning

Unsupervised learning describes the process of finding structure in unlabeled data. Usu-
ally no desired output can be defined for unsupervised learning problems, with the excep-
tion where the output should be equal the input to the learning system, like it is done with
auto-encoders for example. Use cases are for example clustering [91] or dimensionality
reduction [92]. Some popular models that are used for unsupervised learning are listed
below.

• Hidden Markov models (HMMs) are often used for unsupervised learning tasks.
HMMs are statistical models of systems for which it is assumed that the Markov
property holds. This means that the state of the system only depends on its current
input and not on previous inputs. Dynamical systems usually don’t satisfy this condi-
tion, however there exist generalizations which introduce HMMs of n-th order, which
take the last n time steps into account. An introduction to HMMs is given in [93].

• Another approach are Self-organizing maps (SOMs), or Kohonen maps [94]. A SOM
is a type of artificial neural network, that is trained with unsupervised learning meth-
ods to produce a low dimensional output on a high dimensional input pattern.

A well known learning rule is Hebb’s Rule for artificial neural networks [95]. The rule
reads as follows:

∆wi = ηxiy . (2.4)

Here, ∆wi is the amount by which the weight of the neural connection i changes based
on its input xi and its response y . The scalar η stands for the learning rate of the method.
This rule is often summarized by the statement “Cells that fire together, wire together”,
Hebbian learning therefore follows the idea that similar input patterns produce similar out-
put patterns, which is biologically inspired. If an agent for example connects the color red
with something dangerous, his neurons responsible for feeling danger will also fire when
he sees something red that isn’t related to a dangerous situation.
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2.3.2. Supervised Learning

In contrast to unsupervised learning, the supervised learning approach operates on la-
beled data. This means that there is a set of desired outputs, which the agent should
produce on a set of predefined inputs. The goal is to minimize the error between the de-
sired output and the output the system actually produces for a given set of inputs [96, pp.
3-5]. One popular option to formalize this mapping of inputs to an output as an optimization
problem is

min
p

(
(y(u, p)− ŷ)T (y(u, p)− ŷ)

)
. (2.5)

Here, ŷ is the desired output the system should produce for a given input vector u and
y is the real output of the system. This is achieved by adjusting the parameters of the
system, represented by the vector p in such a way that the resulting derivation between
the systems output and ŷ is minimal. The designer of the supervised learning system can
then decide which kind of system he wants to use and which kind of optimization algorithm.
Table 2.2 shows some popular methods for supervised learning and their advantages in
their corresponding domain of application.

Table 2.2.: Strengths of supervised learning methods [96, pp. 14-15]

Method Strengths

Support vector machines Multidimensional, continuous features
Artificial neural networks Multidimensional, continuous features
Decision trees Discrete/categorical features
K-nearest neighbor Transparent and intuitive
Gaussian processes Easy to interpret, result probability
Naive Bayes Works with small datasets too

Those methods are shortly described in the following enumeration. As artificial neural
networks were already discussed in this work, refer to section 2.2 for a detailed overview.

• Support vector machines (SVM) are a popular tool for regression and classification
tasks. F. Rosenblatt came up with the idea of fitting a linear hyperplane through non-
linear data by transforming the data to a higher dimensional space [45]. Based on
this idea, the concept of support vector machines was introduced [97]. An extensive
summary about SVM is provided in [98].

• Decision trees operate on a set of rules to solve decision problems. The goal of su-
pervised learning is here to generate the set of rules in such a way, that the decision
tree solves a training problem as desired and can be applied to new problems. A
comprehensive overview about decision trees can be found in [99].
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• K-nearest-neighbor (k-NN) is an algorithm that classifies objects by their distance
to each other [100]. Here the k nearest objects are grouped into one class. As
a distance property, usually the Euclidean distance is used, but in principle any
measure can be used.

• Gaussian processes are multivariate Gaussian distributions over functions which
can be used for regression or classification. Compared to other machine learning
techniques, they not only return a function value for a regression or classification
problem, but also a variance which indicates the confidence in this value. A detailed
overview about Gaussian processes and their applications is provided in [101, pp.
1-30].

• Naive Bayes is a classifier based on the Bayes’ theorem. The general assumption
here is (what makes the approach “naive”), that every feature of an object only de-
pends on its corresponding class. For an empirical study about Naive Bayes the
reader might refer to [102].

The learning itself is then performed on one of these models by minimizing a cost func-
tion like the one from equation 2.5. For this purpose gradient descent or more advanced
techniques can be used. For neural networks, the difficulty here is to calculate the gradient
(respectively the Jacobian matrix) to apply this methods. For this purpose, algorithms like
backpropagation [103, pp. 213-220] or backpropagation through time [104] can be used.
Those methods are explained in detail in the next chapter.

2.3.3. Reinforcement Learning

Reinforcement learning describes a learning process of an agent within an environment.
The agent performs actions in the environment, which lead to a new environment state and
receives a reward for this action. The goal of the agent is then to maximize the expected,
cumulative, discounted reward by selecting the “best” action for his current situation. This
can be formally expressed by equation 2.6

Rt =
∞∑

k=0

γk rt+k+1 ,

r : S × A→ R ,

π : S → A .

(2.6)

Here, Rt is the cumulative reward at time step t and r is a reward function that evaluates
an environmental state from the set of possible states S and an action from the set of
possible actions A with a scalar real value, the reward. The function π is a policy function
which is used by the agent to choose an action given an environmental state. The scalar
value γ ∈ [0, 1] finally describes a discount factor. For γ < 1 this factor weights immediate
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rewards higher than the ones that are further in future. By setting the discount factor to
0, the agent only considers the current reward, the closer the discount factor gets to 1,
the more “farsighted” it gets. The relationship between the agent and its environment is
illustrated in figure 2.9. An introduction to reinforcement learning is provided in [105].

Reward

State

Action

Agent

Environment

Figure 2.9.: A reinforcement learning agent interacting in its environment

One challenge in reinforcement learning lies in the choice of a suitable reward function.
A possible approach to implement a reinforcement learning agent is temporal difference
learning (TD-learning) [106]. Here, an estimate for the “value” of the current state V (s) is
derived by adding the difference between estimates at two different times, weighted by the
step-size parameter α, which influences the rate of learning. This can be expressed by the
iterative update formula

V (s)← V (s) + α
(
V (s′)− V (s)

)
. (2.7)

This method has been successfully applied for various tasks like playing Backgammon
[107, 108], chess [109] or predictive autonomous robot control [110]. A similar approach
was presented in [111], the Q-learning algorithm . Its iterative update formula is shown in
equation 2.8

Qt+1(s)← Qt (s) + αt

(
Rt+1 + γmax

a
Qt+1 − Qt

)
. (2.8)

The Q-learning method has also been widely applied, e.g. for the traveling salesman
problem [112], obstacle avoidance of autonomous mobile robots [113] or robotic soccer
[114]. Several surveys about reinforcement learning have been published, comparing dif-
ferent methods on various applications to each other [115, 116, 117]. They conclude
basically that reinforcement learning can be a powerful tool if applied to the right problem
correctly, but that it is difficult to incorporate multiple (cooperative) reinforcement learn-
ing agents at the same time. As in this work only a single learning agent is necessary,
and a cost function for the PID auto-tuning problem can be defined, both supervised and
reinforcement learning seem to be suitable for the experiments of this work.
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3. Training of Neural Networks and System
Identification

3.1. Efficient Output Computation of a GDNN

One use case in control theory for artificial neural networks is system identification. Before
a controller can be designed for a given process, usually a mathematical model of that
process is required. If no such model is available (because its too difficult to derive one
from the actual process, or the model is computationally too expensive), an artificial neural
network can be used to learn the dynamics of the control system. Once the network has
learned the dynamics of the process satisfactory to some quality criterion, it can be used
in a closed-loop simulation. In this simulation, a PID auto-tuner can be learned by another
neural network, which then can be applied to the real process. This chapter will present
an algorithm to compute the output of an arbitrary GDNN as well as a novel method for
generating optimal excitation signals to train such networks.

3.1.1. Formal Representation and Implementation

For a GDNN, one adjacency matrix is not sufficient, as each delay level can have its own
connections. Those weights can be summarized in the 3-dimensional weight matrix W ∈
Rn×n×m as illustrated in figure 3.1. Here n stands for the number of neurons and m is the
maximum number of delays z−m in the network.
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Figure 3.1.: A stack of adjacency matrices of a GDNN with n neurons and m delays
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While this representation is convenient for describing connections in the network, from
an implementation point of view such a matrix stack would be cost intensive, both in terms
of memory usage and runtime. As most practical GDDNs are not fully connected (this
means that not every neuron is connected to each other) and especially only a few con-
nections incorporate delays, the adjacency matrices are sparse. Therefore in the imple-
mentation of the neural network toolbox, a two dimensional adjacency matrix was used. In
the entries of the matrix a dynamic stack for each delay line is stored; so if a path between
two neurons contains only one connection (for example one direct connection without any
delay), the stack has only one entry. For more connections in one path (multiple time
delays) the stack contains the corresponding number of weights.

The GDNN was implemented as a class template in C++11. For the internal memory
of the network, every single neuron contains an own queue with the size of the maximum
time delay of all outputs of this neuron. After one time step, each queue is shifted by one.
Algorithm 1 shows how the output calculation is performed in the GDNN.

Algorithm 1 : Calculate GDNN Output

Input : Data Vector u, Adjacency Matrix W ∈ Rn×n×m, Bias Weights b ∈ Rn

Output : Data Vector y
1 if Sort required then
2 Perform topological sorting using algorithm 2

3 foreach Neuron Ni in sorted order do
4 for j = 1 to n do
5 if Ni is input then
6 Assign uj to the output of Ni

7 if Ni is connected to Nj then
8 if connection is instant then
9 yi ← yi + Wi ,j ,1yj

10 if connection has delays then
11 foreach delay d in connection do
12 yi ← yi + Wi ,j ,dqi ,d // q is the memory queue of neuron i

13 yi ← φi (yi + bi )

14 Shift neuron memory queues by 1 and store y
15 return y

With this algorithm it is possible to compute the output of an arbitrary GDNN. Line 2
is important here, because there are several operations which can be performed on the
network that require a reordering of its computation order. Such operations are for example
the declaration of new inputs, outputs or inter-neuron connections. The next section will
explain this topological sorting in more detail.

16



3.1. Efficient Output Computation of a GDNN

3.1.2. Topological Sorting

Before the output of an arbitrary neural network can be computed, it is necessary to per-
form a topological sorting. Because of shortcut and/or lateral connections as well as recur-
rent backwards connections, the computation of a neuron can’t be performed layer-wise.
Looking for example at the feed-forward network in figure 2.5 in chapter 2, it is not possible
to start the calculation of the hidden layer with neuron 3, as it requires the output from neu-
ron 4. This problem can be generically solved by iterating recursively over the adjacency
matrices of the network. The algorithms 2 and 3 describe the sorting process.

Algorithm 2 : Topological Sort

Input : Adjacency Matrix W ∈ Rn×n×m

Output : Sorted Neuron indices l
1 s ← ∅, l ← ∅
2 for i = 1 to n do
3 l ← {l , ParseLine(W , s, l , i)} // Parse line i of W using algorithm 3

4 if s = ∅ then
5 i ← minx (x ∈ N0|x /∈ s)
6 else
7 i ← s0

8 s ← ∅

9 return l

Algorithm 3 : Parse Adjacency Matrix line

Input : Adjacency Matrix W ∈ Rn×n×m, Stack s, Index set l , Matrix line λ
Output : Next Neuron Index λNext

1 foreach Neuron Ni do
2 if Ni is connected instant to Nλ ∧ (λ /∈ l) then
3 if i ∈ s then
4 Error: Network contains Algebraic Loop
5 else
6 s ← {s,λ}
7 return ParseLine(W , s, l , i)} // Recursive call

8 return λ

After the sorting is done, a flag can be set such that algorithm 1 doesn’t need to perform
a sort on every output calculation. This flag can be reset if (and only if) an operation is
performed on the network that requires a reordering of the output computation to maximize
performance of the GDNN, as the net structure usually remains unchanged during runtime.
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3.2. Excitation Signals

For both the identification task of a dynamical system and the training of a neural PID
tuner it is important to choose a reasonable excitation signal. As the excitation signal is
the only way to interact with the process and collect information about it, the input signal
should extract as much information as possible from the control system but at the same
time not violate its physical constraints. A Dirac impulse for example might lead directly to
the transfer function of a system, but is difficult to generate in real world scenarios. The
following section will introduce two suitable excitation signals for system identification. Also
a novel algorithm to generate those signals with a predefined hold-time is outlined.

3.2.1. Pseudo-Random Binary Signal

There are several convenient excitation signals available for system identification. O.
Nelles describes some popular excitation signals for this task and lists their corresponding
advantages and disadvantages [118, pp. 459-465]. Table 3.1 shows this comparison, in-
cluding the PRBS (pseudo-random binary signal) which is further discussed in this section.

Table 3.1.: Comparison of excitation signals [118, pp. 459-461]

Signal Suitable Characteristics

Constant x No dynamics are excited
Impulse x Gain estimation very inaccurate
Step X Low frequencies emphasized
Rectangular X High frequencies emphasized
PRBS X Excites all frequencies equally well

Although step, rectangular and PRBS are suitable for the identification task, only the
latter excites all frequencies equally well. Therefore, the PRBS was chosen as excitation
signal. The signal is named “pseudo-random” because it approximates the spectrum and
statistical properties of white noise (zero mean and variance of one). The signal generation
however is deterministic and can be done efficient with linear feedback shift registers [119,
pp. 164-174]. These shift registers consist of several states represented as flip-flops and
a feedback through some XOR block to the first flip-flop. Figure 3.2 shows such a linear
feedback shift register with four states. A clock shifts these states periodically through the
register while the state of the last flip-flop is taken as an output. Once the initial state is
reached again, the shift register produces the same output periodically. In principle any
state could be used to initialize the shift register, except for the all-zero state, because the
shift register would then only be able to produce zeros.

An example output cycle for the four-state shift register from figure 3.2 with initial state
1111 is shown in table 3.2. After the first 15 cycles the internal state of the linear feedback
shift register becomes its initial state 1111 again and starts from the beginning.
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Figure 3.2.: A linear feedback shift register with four states

Table 3.2.: One period in the linear feedback shift register from figure 3.2

Clock State Output y

0 1111 1
1 0111 1
2 0011 1
3 0001 1
4 1000 0
5 0100 0
6 0010 0
7 1001 1

Clock State Output y

8 1100 0
9 0110 0
10 1011 1
11 0101 1
12 1010 0
13 1101 1
14 1110 0
(15 1111 1)

By defining some bandwidth during which the output doesn’t change, it is possible to
stretch y to a desired length. The feedback law for a given linear feedback shift regis-
ter describes which outputs are XOR-ed and feedback to the input of the shift register.
This is important, because only with certain feedback laws, a linear feedback shift register
can produce a maximum length sequence. These feedback laws are linked to so-called
primitive polynomials. A feedback law is described by the non-zero coefficients of such a
polynomial. For example the above shift register from figure 3.2 has a feedback law corre-
sponding to the primitive polynomial x4 + x3 + 1. This means that the output of the flip-flops
3 and 4 is feedback. Some more primitive polynomials for different numbers of internal
states and their maximum period are shown in table 3.3. As this list already suggests, the
maximum period such a register can generate is

pmax = 2n − 1 , (3.1)

where n is the number of states of the shift register. So by taking the output of the shift
register every k ∈ N times per clock cycle, it is possible to scale the length of these periods
by an integer multiple. The question is now, how to choose the number of states and the
bandwidth 1

k to generate an optimal PRBS of predefined length for a given control system.
As already discussed, the PRBS excites all frequencies equally well. However, to get a
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Table 3.3.: Primitive Polynomials for linear feedback shift registers

States Polynomial Period

2 x2 + x + 1 3
3 x3 + x2 + 1 7
4 x4 + x3 + 1 15
5 x5 + x3 + 1 31
6 x6 + x5 + 1 63
7 x7 + x6 + 1 127
8 x8 + x6 + x5 + x4 + 1 255
9 x9 + x5 + 1 511

reliable estimate for the system gain, the maximum hold time of the PRBS should be long
enough that the system can reach a stationary state. The maximum hold sequence smax

of a PRBS is defined as the longest output sequence of 1’s it can produce and is equal
to the number of states n of the shift register. So if for example, a smax of 100 time steps
is required to reach a maximum hold time of 100 seconds (assuming 1 second sample
time), one could choose a linear feedback shift register with 100 states and reach a smax

of 100. However, the resulting signal would have the length 2100− 1 which is to large to be
stored in RAM, even on modern computers. Usually a fixed length for the excitation signal
is desirable, in this example here 1000. An alternative approach would be to choose a
relatively small number of states and increase the scaling k such that the smax is reached.
For example a shift register with four states can generate a smax of 4, scaled with a k = 25 it
would produce a smax of 100 with a total signal length of 375. This is more reasonable than
the former signal, but still doesn’t have the desired length of 1000. The signal itself can
now be replicated and concatenated to reach this length, however the problem is then, that
the signal contains many redundancies. The signal would basically be repeated (nearly)
three times without adding any new information. The question is, which combination of
states n and scaling factor k leads to a signal with minimal repetitions or cutoffs to reach a
desired length l and maximum hold sequence smax for the PRBS. This can be expressed
by the following optimization problem

nopt = arg min
n

∣∣∣(2n − 1)
⌊smax

n
+

1
2

⌋
− l
∣∣∣ with n, l , smax ∈ N ,

kopt =
smax

nopt
.

(3.2)

Abusing the fact that equation 3.2 only has one global optimum and grows exponentially
in n, the optimization can be done efficiently by increasing n iteratively by 1. For the above
example of l = 1000 and smax = 100, this process is illustrated in table 3.4, the optimal
result is marked bold.
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Table 3.4.: Example evaluation of the optimization problem for from equation 3.2

n 2n − 1 k = b smax
n + 1

2c smax = nk k (2n − 1) error

1 1 100 100 100 900
2 3 50 100 150 850
3 7 33 99 231 769
4 15 25 100 375 625
5 31 20 100 620 380
6 63 17 102 1071 71
7 127 14 98 1778 778

As a result the optimal PRBS for the given configuration of l = 1000 and smax = 100 can
be generated with a linear feedback shift register with nopt = 6 internal states and a scaling
factor kopt = 17. The resulting PRBS has a length of 1071 and a smax = 102 which is the
optimal compromise for this setup. Taking the first 1000 values of this signal results in a
PRBS with the desired length of 1000 with a minimal cutoff of 71 samples and a maximal
hold sequence of 102. The generated PRBS with this method is shown in figure 3.3.
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Figure 3.3.: A PRBS with a maximum hold time of 100 seconds

The method for computing the optimal PRBS with respect to the criterion of equation
3.2 is summarized in the algorithms 4 and 5. These algorithms imply that a method for
computing the output of arbitrary linear feedback shift registers is available. This can be
implemented efficiently by storing the first 64 primitive polynomials. As a polynomial with
64 internal states can generate a vector of length 264−1, which equals the maximum array
size in 64 bit computer architectures, storing only those polynomials is sufficient.

Using these algorithms it is possible to generate PRBS with a predefined maximum hold
time and length. The next section will introduce amplitude modulated PRBS for nonlinear
system identification, as the presented PRBS is only suitable for linear control systems.
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Algorithm 4 : Find optimal grade and scale
Input : Desired signal length l , maximum hold sequence smax

Output : Optimal grade nopt, optimal scaling factor kopt

1 lmax ← 1, n← 1, nopt ← 1, lbest ←∞
2 while lmax ≤ n do
3 lmax ← n2 − 1
4 lcurrent ← lmaxb smax

n + 1
2c // The b·c denotes a floor function

5 if |lcurrent − l| < lbest then
6 lbest ← lcurrent

7 nopt ← n

8 n← n + 1

9 kopt ← smax
nopt

10 return nopt, kopt

Algorithm 5 : Generate optimal PRBS
Input : Desired signal length l , maximum hold sequence smax

Output : Optimal PRBS y
1 y ← ∅
2 nopt, kopt ← FindOptimalGradeAndScale(l , smax) // Using algorithm 4

3 Load primitive polynomial p for nopt from a look-up table // Like table 3.3

4 Initialize shift register with nopt, kopt and initial state m = 1
5 while dim(y) < l do
6 y ← {y , mnopt}
7 x ← 0
8 foreach Coefficient c of p do
9 x ← x ⊕mc // The ⊕ denotes an xor operation

10 Rotate register state m by 1
11 m0 ← x

12 return y

3.2.2. Amplitude Modulated PRBS

As already indicated in the previous section, the standard PRBS is not suitable for nonlin-
ear system identification as its amplitude only varies between two different values. How-
ever, to encode the system nonlinear dynamics of the system, it must be excited over the
whole range of possible input amplitudes. Therefore APRBS (amplitude modulated PRBS)
are used for this purpose [119, pp. 172-175]. In this work, the amplitudes were uniformly
distributed between the desired minimum and maximum of the APRBS. The step size α be-
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tween each amplitude steps is determined by dividing the amplitude range by the amount
of intervals of the PRBS. Figure 3.4 shows the transformation of a PRBS to an APRBS.
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Figure 3.4.: Transformation of a PRBS (left) to an APRBS (right) based on the amount of intervals

This conversion is shown in detail in algorithm 6, which was used in this work to generate
amplitude modulated PRBS.

Algorithm 6 : Generate optimal APRBS
Input : Desired signal length l , maximum hold sequence smax, amplitudes ymin, ymax

Output : Optimal APRBS y
1 y ← GenerateOptimalPRBS(l , smax) // Using algorithm 5

2 nint ← Count intervals of y
3 α← ymax−ymin

nint−1 // Amplitude step size

4 for Sample i ∈ [0, nint − 1] without replacement do
5 xi ← iα

6 foreach Interval i ∈ y do
7 i ← xi // Set whole interval i to xi

8 return y

Using these algorithms it is possible to generate efficient training signals for neural net-
works for both system identification and neural PID tuning.

3.3. Jacobian Calculations for General Feedback Systems

The following section will introduce two methods for calculating the Jacobian matrix of a
GDNN, first the standard approach of temporal unfolding described in [104] and second a
numerical approximation.
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3. Training of Neural Networks and System Identification

3.3.1. Analytic Computation by Temporal Unfolding

A given GDNN with internal time delays can be unfolded into a feed-forward network. This
is achieved by replicating the network k times for k + 1 time steps and connecting the
delayed outputs to the corresponding preceding network. Figure 3.5 shows an example
GDNN with one delayed recurrent connection.
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4

z-1

u(t) y (t)

Figure 3.5.: An example GDNN with one recurrent connection

In figure 3.6 the temporal unfolding of the network form figure 3.5 is illustrated for k + 1
timesteps. For this network, the Jacobian matrix can be calculated using the standard
backpropagation algorithm [103, pp. 213-220].
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Figure 3.6.: The network of figure 3.5 unfolded for k + 1 time steps

Using this relationship, the Jacobian matrix of an arbitrary GDNN with n input neurons,
m output neurons, l time steps and k weighted connections can be expressed as
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∈ Rlm×k . (3.3)

Here ui ∈ Rn is the input vector at timestep i , ω ∈ Rk is the vector of weights which
describes the network topology and yi is the i-th output of y(u,ω) ∈ Rm. This Jacobian
matrix can then be used in combination with an optimization algorithm like the Levenberg-
Marquardt algorithm to adjust the weights of the network [120]. However, as the Jacobian
matrix should be computable for an arbitrary feedback system, a numerical approximation
can be used. The next section shows how an estimate for Jω can be computed for such a
system.

3.3.2. Numerical Computation by Forward Propagation

Instead of computing Jω explicitly using equation 3.3, an estimate Ĵω ≈ Jω can be calcu-
lated numerically. This can be done by caching the internal state of the dynamical system
for which the Jacobian matrix should be computed. Then the Jacobian matrix can be
estimated with a finite backwards difference

Ĵω

(
y(u,ω)

)
=


j0
j1
...

jk


T

, j i =
y(u,ω)− y(u,ω − hε(ωi ))

ε(ωi )
, hp =

{
1, p = i
0, p 6= i

. (3.4)

Here, ε(ωi ) is a step width for calculating the backwards difference, j i is the i-th column
of Ĵω and h is a vector that selects the correct ε step width in equation 3.4. This step width
should be small enough to deliver a reasonable approximation for the first derivative and
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3. Training of Neural Networks and System Identification

large enough to minimize numerical errors. As the size of the weights stored in ω can vary
in a very broad range, a reasonable ε is computed according to [121, pp. 192-196] by

ε(ωi ) = max
(
1, |ωi |

)√
εmin . (3.5)

Here εmin is the machine epsilon of the implementation data type (typically of double
precision). The computation of Ĵω can then be performed using algorithm 7.

Algorithm 7 : Compute Jacobian Numerically

Input : Dynamical System y(u,ω) ∈ Rm, inputs u ∈ Rl×n, weights ω ∈ Rk

Output : Estimate of Jacobian matrix Ĵω ∈ Rlm×k

1 foreach Weight ωi ∈ w do
2 y tmp,1 ← y , y tmp,2 ← y // Cache internal state of y

3 ε← max
(
1, |ωi |

)√
εmin

4 for j = 1 to l do
5 v ← y tmp,1(uj ,ω), v̂ ← y tmp,2(uj ,ω − hε)
6 for q = 1 to m do
7 Ĵω(jm+q,i) ← vk−v̂k

ε // Backward difference

8 return Ĵω

The training using a modified Levenberg-Marquard method is shown in algorithm 8.

Algorithm 8 : Train Network in Dynamical Feedback System

Input : System y(u,ω) ∈ Rm, inputs u ∈ Rl×n, desired outputs ŷ ∈ Rl×m

Output : Optimal weights ωopt

1 while Not converged and trials left do
2 Initialize ω with random values
3 utmp ← [u1, ...ux ], ŷ tmp ← [ŷ1, ...ŷx ] // Take first x values of u and y

4 while Not converged do
5 Ĵω ← ComputeJacobian(y , utmp,ω) // Using algorithm 7

6 Solve (ĴT
ωĴω + λI)σ = ĴT

ω

(
y(utmp,ω)− ŷ tmp

)
7 if

∑(
y(utmp,ω + σ)− ŷ tmp

)2
<
∑(

y(utmp,ω)− ŷ tmp

)2 then
8 ωopt,i ← ω + σ,λ← λ/2
9 else

10 λ← 2λ

11 If ωopt,i is better than ωopt,i−1 increase x until x = l

12 return ωopt,i with minimal error
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4. Auto-tuning of PID Controllers

4.1. General Block Structures

In this chapter, the general control structure of the PID auto-tuner embedded into the
control loop will be presented. Figure 4.1 shows this structure including the control plant,
the PID controller and the neural network that is used to tune this controller during runtime.
The bold arrows indicate vector-valued, the thin arrows scalar-valued signals.

-

Plant
e

y
uuPID

Controller

Neural
PID-Tuner

w uT 1

z

Figure 4.1.: The PID auto-tuning structure using a GDNN in the control loop

This structure can be applied to general SIMO (single-input, multiple-output) control
plants with input u and disturbance z. For such a plant with k outputs, k PID controllers
and neural PID tuners have to be stacked in parallel. Each PID tuner gets the current
system state y ∈ Rk and the control error e ∈ Rk . The PID tuners yield 3k parameters to
the PID controllers, which are summed up and passed as a scalar value back to the control
plant. The optimization task is then to adjust the weights ω of the neural network such that
the difference between the setpoint w and the output y is minimal. If this is the case, the
control system follows the inputs and behaves like desired. The optimization problem is
then defined as in equation 2.5 and solved using algorithm 8. The feedback system is
excited using the APRBS generated with algorithm 6 to cover the majority of the relevant
state space of the feedback system and therefore provide a rich training set for the PID
tuner. The control system itself can be either represented with an explicit mathematical
model or with another neural network which represents this system. The next section will
introduce those two different approaches as knowledge-free and model based approach.
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4. Auto-tuning of PID Controllers

4.1.1. Knowledge-Free Approach

One method to apply the neural PID auto-tuner is to train it on another neural network
which represents the actual control system. This method can be applied if no mathematical
model of the control system exists, but it can be excited with input signals to measure its
response. The learning then happens in two stages, which are shown in figure 4.2.

Neural
Plant Model

Plant

eI
eT

I eIuI

-

eI

-

e
y

uuPID
Controller

Neural
PID-Tuner

w uT 1

z

y I

ŷ I

Plant
Model

zI

Figure 4.2.: The PID auto-tuning structure combined with system identification

First a model of the actual plant is learned by minimizing the difference between y I and
ŷ I . This learning can be either performed “offline” (which means that the learning is done
after measuring the whole system response y I) or “online” (during the measurement). For
the online learning, only the last k values of the system output are taken into account.
Those values are then segmented into a training and a validation set on which the net-
work is trained. After training the model remains valid for a predefined prediction horizon,
then the identification is repeated. A more detailed explanation about online and offline
identification is provided in [118, pp. 81-83]. Once the model is learned, this neural plant
model can be embedded in the feedback structure. Then as a second step, the neural PID
tuners can be trained by minimizing the difference between w and y . Those steps happen
either in serial (offline identification) or in parallel (online identification). Finally, when the
stack of neural PID tuner produces reasonable KP , KI and KD for the given plant model,
it can be embedded and verified for the real control system. Since the plant is modeled
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by another neural network, temporal unfolding as described in section 3.3 can be applied
here for Jacobian calculations.

4.1.2. Model Based Approach

The advantage of the described method is, that it is possible to integrate previous knowl-
edge about the control system. If a mathematical model of the control system already
exists, the first step of the training process described in section 4.1.1 can be skipped and
instead of the neural plant model the model of the system can be used directly. This is
especially important for unstable systems, which can be difficult to identify by a neural net-
work without violating the physical constraints of the system. The model based approach
starts directly at step two shown in figure 4.2 and trains the neural PID tuner based on the
output of the model of the control system.

4.2. Validation and Prefiltering

It is necessary for both the neural plant model and the neural PID tuner to exhibit good
generalization capabilities from the learned training set. The neural PID tuner for example
is only trained for a specific APRBS input sequence, but should also produce reasonable
PID parameters for different, unknown inputs. To achieve this, a validation set was used in
this work. This means that the neural network is trained on a specific input signal, but the
error is evaluated on both this training signal and another, so-called validation signal which
is different to the training signal. Then the parameter set with a minimal error on both sets
is used, following the idea of early stopping methods [122].

Additionally, it turned out that the training could be improved significantly if the input sig-
nal was low-pass filtered before the training. Therefore a upstream first order Butterworth
filter with a gain of 1 was used with all GDNNs in this work. Figure 4.3 shows such a filtered
APRBS with a filter time constant of 3 seconds. This time constant is a design parameter
and has to be chosen in dependency of the dynamic behavior of the control system. The
time constant of the filter should be big enough to to avoid overshots of the GDNN due to
the discontinuity jumps in the signal and small enough to reach a satisfying control speed.
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Figure 4.3.: Low-pass filtered APRBS with a time constant of 3 seconds
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5. Simulation and Experiments

5.1. Nonlinear Two-Tank System

In this chapter, four different control systems are presented which are then used as a
benchmark for the former described neural PID auto-tuner. In this section, the nonlinear
two-tank system is presented. The physical structure of this dynamical system is shown in
figure 5.1.

x1(t)

y (t) = x2(t)

kPu(t)

A1

Ao1

Liquid

A2

Ao2

Figure 5.1.: The nonlinear two-tank system

The input voltage u(t) controls the valve which has some pump constant kP . The cross-
sectional areas of the two tanks are denoted with A1 and A2, the cross-sectional areas of
the output orifices of the tanks with Ao1 and Ao2 respectively. The liquid levels of the two
tanks are represented by x1(t) and x2(t). The goal is to control the liquid level y (t) = x2(t)
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5. Simulation and Experiments

of the second tank, while the input u(t) only has a direct influence on the liquid level of the
first tank, x1(t). The differential equations for this dynamical system can then be expressed
as follows [123]

ẋ1(t) = −Ao1

A1

√
2gx1(t) +

kP

A1
u(t) ,

ẋ2(t) =
Ao1

A2

√
2gx1(t)− Ao2

A2

√
2gx2(t) = y (t) ,

(5.1)

where g denotes the gravitational constant. The numerical values for the parameters of
the control system are adapted from [123] and listed in table 5.1.

Table 5.1.: Physical parameters of the two-tank system

Parameter Symbol Value Unit

Tank 1, 2 cross-sectional areas A1, A2 15.38 cm2

Tank 1, 2 orifice cross-sectional areas Ao1, Ao2 0.1781 cm2

Pump constant kP 4.6 cm3/Vs
Gravitational constant g 980 cm/s2

5.2. Linear Plant with Non-Neglectable Input Delay

The next control system which was considered in this work is a first order LTI (linear time
invariant) system with a non-neglectable input delay. Its characteristic unit step response
is shown in figure 5.2.

Time t
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Figure 5.2.: Unit step response of a first order LTI with input delay

Here K is the gain of the of the system and TD is its input delay. The time constant T is
the time the first order LTI needs to reach an amplitude of K63 = K (1− 1

e ) ≈ 0.63K on an
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5.3. Nonlinear Inverted Pendulum on a Cart

unit step response after the input delay of TD. Its Laplace transform and its corresponding
differential equation are shown in equation 5.2

F (s) =
K

Ts + 1
e−TDs s c ẋ1(t) =

1
T

(
Ku(t − TD)− x1(t)

)
, (5.2)

where F (s) represents the transfer function of the LTI system. The numeric parameters
for this system are K = 0.4, T = 0.9, TD = 1.8 and taken out of [124].

5.3. Nonlinear Inverted Pendulum on a Cart

The third benchmark system is the nonlinear inverted pendulum on a cart. The control
task was to balance the pendulum at its unstable equilibrium position while the x position
of the cart should be able to follow a predefined trajectory. The inverted pendulum on a
cart is shown in figure 5.3.

M

m
l

l

ẋ

ẏ

y

x

θ

Fx

Figure 5.3.: The nonlinear inverted pendulum on a cart

Here M and m denote the mass of the cart respectively the pendulum, θ the angle
between the pendulum and the vertical and l the distance from the pivot to the mass
center of the pendulum. The position of the pendulum is denoted with x and y , its speed
with ẋ and ẏ . The dynamics of the system can be expressed as a system of differential
equations [125], where x1, x2 denote the position x and the speed ẋ of the cart, while x3, x4

denote θ and its angular velocity θ̇. The system of differential equations for the inverted
pendulum on a cart is shown in equation 5.3. For the sake of clarity, the dependency of
the states xi of t is omitted for the following equations, such that xi := xi (t).
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ẋ1(t) = x2 ,

ẋ2(t) =
−mg cos(x3) sin(x3) + ml sin(x3)x2

4 + Fx

M + m sin2(x3)
+ d1 ,

ẋ3(t) = x4 ,

ẋ4(t) =
−ml cos(x3) sin(x3)x2

4 − cos(x3)Fx + (M + m)g sin(x3)
Ml + ml sin2(x3)

+ d2 .

(5.3)

The variables d1 and d2 denote disturbance terms. The numerical values for the param-
eters of the pendulum are taken from [125] and listed in table 5.2.

Table 5.2.: Physical parameters of the inverted pendulum on a cart

Parameter Symbol Value Unit

Cart mass M 1 kg
Pendulum mass m 0.1 kg
Pendulum length to mass center l 0.3 m
Gravitational constant g 9.8 m/s2

5.4. Chaotic Thermal Convection Loop

The last benchmark control system was a chaotic thermal convection loop (also: Lorenz
system). It consists of a torus-shaped, water filled pipe. The lower half of the torus can be
heated electrically, while the upper half can be cooled down with cooling water. The goal
is to control the temperature in such a way, that the liquid in the torus flows with constant
velocity. Figure 5.4 shows the thermal convection loop. The temperatures were measured
at the points A, B, C and D, the values r1 and r2 describe the radius of the convection loop
respectivly the torus. According to [126, pp. 222-226], the dynamics of the system can be
described as

ẋ1(t) = p(x2 − x1) ,

ẋ2(t) = x1 − x2 − x3(x1 + β),

ẋ3(t) = x1x2 + β(x1 + x2)− x3 − u .

(5.4)

Here, β is a substitution for
√

R0 + u, with R = R0 + u, where R is the Rayleigh number
of the fluid in the convection loop and indicates the type of heat transmission. The value p
stands for the so-called Prandtl number and is defined as the ratio of the kinematic viscos-
ity and the thermal diffusivity of a fluid, compare [126, p. 224]. The state x1 denotes the
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5.4. Chaotic Thermal Convection Loop

average flow velocity, x2 the temperature difference TB − TA between points A and B and
x3 the temperature difference TC − TD between points C and D (coordinate transformed
by
√

R0 − 1 in each case).

2r2

Heater

Cooling jacket

r1

A B

C

D

Inlet Outlet

Figure 5.4.: The chaotic thermal convection loop

The numeric values for the physical parameters of the thermal convection loop are taken
from [126, p. 226] and listed in table 5.3.

Table 5.3.: Physical parameters of the thermal convection loop

Parameter Symbol Value Unit

Prandtl number p 10 -
Rayleigh number (substituted) β 6 -
Convection loop radius r1 38 cm
Tube radius r2 1.5 cm

For those values, the system exhibits chaotic behavior. The goal of the controller is here
to suppress this chaotic behavior and stabilize the process.

The next chapter will present the results of the neural PID auto-tuner described in the
previous chapters on those four benchmark systems, where each has its own difficulties.
The results will be compared against the standard PID controller as well as one different
state-of-the-art method for each specific system.
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6. Comparisons and Results

6.1. Metrics and Methodology

In this section, the methodology and metrics applied to the comparison are presented.
The simulation of the dynamical control systems was performed using the Dormand-Prince
solver, a numerical, variable step-size, ODE solver [127]. For the implementation, Odeint
[128] from the C++ boost library was used 1. For all simulations, the C++ double precision
data type and an absolute and relative tolerance of 10−6 was used. The chosen activation
function for all neural network was the tanh function, following the rationale of [129].

For system identification, the normalized root-mean-square deviation (NRMSD) was
used as an accuracy measurement of the identification result. The formula for the NRMSD
between the real system output y and its approximation ŷ by the network is given by

RMSD =

√
(y − ŷ)T (y − ŷ)

n
,

NRMSD =
RMSD

maxi yi −mini yi
.

(6.1)

For the PID auto-tuner, the standard root-mean-square deviation (RMSD) from equation
6.1 was used. The reason for applying two different metrics for identification and controller
tuning was, that in system identification the amplitudes of the inputs and outputs can differ
by several orders of magnitude. Therefore, an amplitude normalization was performed
which significantly improved identification results. In contrast to this, there was almost
no difference between the NRMSD and the RMSD for the PID auto-tuner. Therefore the
RMSD measure was applied for the PID auto-tuner.

To simulate real world conditions and test the robustness of the presented methods, a
measurement noise z was included in the simulations of both the system identification part
and the PID auto-tuner part. For a convenient measure of the noise level, the signal-to-
noise ratio (SNR) was used:

SNR = 10 log10

(yT y
zT z

)
dB . (6.2)

The noise was generated using a normal distribution with zero mean and a variance
so that the desired SNR between the output without noise y and the noise signal z was
reached. The noise was applied in addition into the control loop by computing yNoise = y+z.

1See www.boost.org
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6.2. System Identification Results

In this section, the results of the system identification part are presented, beginning with
the nonlinear two-tank system. The initial conditions were set to x1 = 5, x2 = 5. Table 6.1
shows the configuration parameters of the APRBSs that were used.

Table 6.1.: Parameters of the APRBS used for identifying the two-tank system

Signal Type Length Max. Hold Time Range

Training signal 5000 200 [0, 20]
Validation signal 40000 200 [0, 20]
Test signal 500000 300 [0, 20]

Figure 6.1 shows the identification results of the chosen recurrent neural network on the
test signal, first trained without noise and second with a white noise with a SNR = 20 dB.
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Figure 6.1.: System identification results of the nonlinear two-tank system
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The second system is the LTI system with input delay. The APRBS parameters used for
its identification are shown in table 6.2.

Table 6.2.: Parameters of the APRBS used for identifying the LTI system with input delay

Signal Type Length Max. Hold Time Range

Training signal 500 10 [−1, 1]
Validation signal 5000 20 [−1, 1]
Test signal 10000 20 [−1, 1]

For the identification, the same network as for the two-tank system was used. Figure 6.2
shows the output of the identified model on the test signal, first without noise on the training
signal, then with white noise of a SNR = 20 dB. Since the system is linear, it is sufficient
to excite it with an amplitude form −1 to 1, as any other amplitude can be reached by a
multiplication with the input amplitude. The initial condition of the system was set to x1 = 0.
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Figure 6.2.: System identification results of the LTI system with input delay

39



6. Comparisons and Results

The remaining results of the system identification (including the inverted pendulum and
the thermal convection loop) are listed in table 6.3. Here the mean and the variance of 50
different identification runs based on the NRMSD metric for the corresponding test data
are shown.

Table 6.3.: Identification results for the four benchmark systems on test data

Identification Benchmark SNR NRMSD (mean) NRMSD (variance)

Two-tank system - 3.4 · 10−3 2.0 · 10−5

Two-tank system 20 dB 8.8 · 10−2 1.1 · 10−2

LTI system with delay - 2.4 · 10−2 1.9 · 10−5

LTI system with delay 20 dB 9.9 · 10−2 2.4 · 10−3

Inverted Pendulum - 1.4 · 10−1 2.4 · 10−5

Inverted Pendulum 20 dB 4.2 · 10−1 5.6 · 10−4

Thermal convection loop - 2.4 · 10−2 3.4 · 10−6

Thermal convection loop 20 dB 4.6 · 10−2 8.6 · 10−6

Since the inverted pendulum is an unstable system, it cannot be excited and learned
directly. Therefore a standard LQ regulator [130, pp. 281-306] was designed to stabilize
it. The system dynamics were then learned by a neural network by observing the LQ
regulator controlling the system while applying an APRBS disturbance signal to the pen-
dulum. This method is called closed-loop identification and summarized for example in
[118, pp. 541-546]. Since the LQ regulator is very sensitive towards discontinuities in the
disturbance signal, a filtered APRBS was used for the identification. For this purpose, the
corresponding APRBS was convoluted using a Gaussian kernel with σ = 0.2 and µ = 0
and a kernel window from −2 to 2 with a sample size of 400. The remaining plots of the
identification and the LQ regulator can be found in appendix A.

While the two-tank and the LTI system with input delay could be identified by the GDNNs
offline, this was not possible for the inverted pendulum and the thermal convection loop,
since those systems react very sensitive on inputs and have very fast dynamics. For such
systems, an offline identification is not suitable [131]. Therefore an online identification with
a sliding window was used for those two systems. A brief introduction to online and offline
learning and their differences is provided in [118, pp. 81-83]. The identification results for
the inverted pendulum and the chaotic thermal convection loop are shown in figure A.1
and figure A.2.

Analyzing the results shown in table 6.3 and the corresponding plots, the recurrent neu-
ral networks used for identification are able to follow the dynamics of each benchmark
process of this paper. For the two-tank and the LTI system with input delay an offline
identification could be used. The inverted pendulum and the thermal convection loop re-
quired an online approach. Looking at the variance of the NRMSDs, the results were also
relatively similar and regarding their quality not strongly affected by measurement noise.
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6.3. Adaptive Controller Results

6.3.1. Comparison with State-of-the-Art Methods

In this section, the performance of the adaptive PID controller on the described bench-
mark systems is shown and compared to different state-of-the-art methods. As all those
methods require a model of the control plant, this section focuses on the model based
approached described in chapter 4.

The first system considered, is the inverted pendulum on a cart. In [125], this system is
controlled with two stacked PID controllers with fixed parameters. This PID-stack and the
LQ regulator from section 6.2 were compared against the adaptive PID controller of this
paper. Figure 6.3 shows the results of a simulation of those systems for 35 seconds. After
10 seconds of simulation, a disturbance force of 8.5 N was applied for 0.5 seconds. This
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Figure 6.3.: Control of the inverted pendulum with disturbance at t = 10 s
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disturbance simulates a hit against the pendulum and was increased from zero until
only one controller was still able to control the pendulum (which was the case at 8.5 N).
As depicted in figure 6.3, all three controllers are able to stabilize the pendulum from its
starting angle of 0.1 rad (the remaining initial conditions were set to zero). However, after
applying the disturbance force at second 10, both the non-adaptive PID controller and the
LQ regulator fail to compensate this disturbance within the allowed range of x = ±0.5 m.
The adaptive PID controller adopts its parameters online and is able to keep the pendulum
stable. The network structure used for the tuning of the PID controller is shown in figure
6.4. Because the inverted pendulum system has two outputs, two of these networks (one
for the angle θ and one for the position x) were used in parallel as described in section 4.1.
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Figure 6.4.: The PID auto-tuner used to control the inverted pendulum

The next system to be considered is the chaotic thermal convection loop. In [126, pp.
222-226], the nonlinear control method backstepping is successfully used to stabilize this
system (initial conditions x1 = x2 = x3 = 5). The adaptive PID controller is trained to
control this system using the neural network from figure 6.4 and compared against the
backstepping method. Figure 6.5 shows the results of the two control methods.

As visualized by this figure, both methods are able to stabilize the chaotic process. The
adaptive PID controller has an 13.2% lower RMSD than the backstepping method and
considerably less over- and undershots. After the setpoint is reached, both the control
output and the PID parameters converge to a stationary value, just as the controller output
of both methods, which was limited to ±100 W.

Since both methods are able to control the chaotic system, a disturbance force of −100
W was applied for the duration of 0.5 seconds to the system. This perturbation can be
interpreted as a temporary change in the cooling water temperature. Figure 6.6 shows the
results of the two controllers for this setup, with the disturbance applied from t = 5 to t = 5.5
seconds. It is important to note that the adaptive PID controller was not explicitly trained to
compensate this disturbance force and its training samples didn’t include any disturbances
at all. As can be seen in figure 6.6, the adaptive PID controller is able to compensate the
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disturbance and after adopting its parameters, it reaches a stationary state again. The
backstepping method isn’t able to compensate the disturbance and gets unstable.
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Figure 6.6.: Control of the thermal convection loop with disturbance at t = 5 s

Another comparison can be done between the adaptive PID and a PID with fixed pa-
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rameters. Here, the parameters of the non-adaptive PID controller were refined using a
genetic algorithm (GA) with a population size and a number of generations of 1000. This
GA was executed 100 times, resulting in 108 evaluated parameter sets. The parameter set
with the least RMSD was compared to the adaptive PID controller and is shown in figure
6.7. While the adaptive PID (as already shown) stabilizes the system at its equilibrium, the
PID controller with fixed parameters gets unstable and stuck at a value of x1 = −6.

This behavior can be interpreted when taking a look at the differential equations describ-
ing the system, shown in equation 5.4. Especially interesting is here the derivative of the
state x2. If x1 is exactly −β (which is −6 here), the term x3(x1 − β) from equation 5.4 gets
0. Since this is the only part where the states x1, x2 depend on x3, they get independent of
x3 then. But as our controller can only influence the system at the state x3, the controller
has lost the possibility to interact with the system and gets stuck at −β. The reason why
the GA chooses such a parameter set can be interpreted as follows: As most parameter
sets for a fixed PID controller lead to unstable and chaotic behavior, the GA chooses the
parameter set with the minimal RMSD and therefore “prefers” a set where it gets stuck.
Since no parameter set could be identified that stabilized the system without getting stuck
at −β, it seems reasonable to conclude that a PID controller with fixed parameters is not
capable of controlling the thermal convection loop.
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Figure 6.7.: Control of the thermal convection loop, fixed PID performance

The remaining control results including plots of the two-tank system and the LTI with
time delay as well as the neural networks used for the PID tuning can be found in appendix
B. For the PID tuning 50 independent optimization runs were made for each benchmark
configuration. Numerical values for the corresponding RMSDs (means and variances) are
listed in table 6.4. The benchmarks cover all possible combinations of disturbance and
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noise. In all cases the noise signal was generated in such a way that it had a SNR of 20
dB to the system output signal without noise 2. The results with the lowest RMSD for the
corresponding benchmark are marked bold.

Table 6.4.: Control results for the four benchmark systems over 50 independent runs

Control Benchmark RMSD on test data over 50 runs

Disturbance - - X X
SNR - 20 dB - 20 dB

Two-tank system

M
ea

n Adaptive PID 7.4 · 10−1 8.6 · 10−1 8.4 · 10−1 1.0 · 100

Standard PID 9.5 · 10−1 9.9 · 10−1 1.0 · 100 1.1 · 100

Backstepping 1.1 · 100 1.1 · 100 1.2 · 100 1.1 · 100

Va
ria

nc
e Adaptive PID 3.6 · 10−3 4.0 · 10−3 5.6 · 10−3 4.6 · 10−2

Standard PID 2.5 · 10−3 2.3 · 10−3 5.2 · 10−3 6.3 · 10−3

Backstepping 1.6 · 10−3 1.8 · 10−3 3.6 · 10−3 2.4 · 10−3

LTI system with input delay

M
ea

n Adaptive PID 1.3 · 10−1 1.5 · 10−1 2.6 · 10−1 2.8 · 10−1

Standard PID 2.2 · 10−1 2.3 · 10−1 3.6 · 10−1 3.8 · 10−1

Smith predictor 1.8 · 10−1 1.9 · 10−1 1.9 · 10−1 2.0 · 10−1

Va
ria

nc
e Adaptive PID 6.0 · 10−4 5.3 · 10−4 6.8 · 10−4 3.4 · 10−4

Standard PID 6.7 · 10−4 6.1 · 10−4 4.0 · 10−4 3.2 · 10−4

Smith predictor 5.6 · 10−4 4.7 · 10−4 4.9 · 10−4 3.2 · 10−4

Inverted pendulum

M
ea

n Adaptive PID 3.4 · 10−2 1.8 · 10−2 9.0 · 10−2 2.7 · 10−2

Standard PID 3.5 · 10−2 3.6 · 10−2 1.4 · 102 1.4 · 102

LQ regulator 5.2 · 10−2 5.3 · 10−2 1.4 · 102 1.4 · 102

Va
ria

nc
e Adaptive PID 4.0 · 10−4 2.6 · 10−4 4.9 · 10−2 7.3 · 10−4

Standard PID 0 1.1 · 10−7 0 2.3 · 10−3

LQ regulator 0 3.3 · 10−9 0 2.2 · 10−3

Thermal convection loop

M
ea

n Adaptive PID 2.3 · 10−1 9.0 · 10−1 1.9 · 100 1.7 · 100

Standard PID 6.5 · 10−1 1.1 · 100 2.5 · 100 2.4 · 100

Backstepping 2.6 · 10−1 8.9 · 10−1 9.8 · 100 9.8 · 100

Va
ria

nc
e Adaptive PID 1.2 · 10−5 3.1 · 10−4 1.6 · 10−1 2.2 · 10−1

Standard PID 1.4 · 10−3 4.3 · 10−3 9.6 · 10−1 6.8 · 10−1

Backstepping 0 1.3 · 10−4 0 1.4 · 10−5

2A variance of (exactly) zero means that the benchmark was purely deterministic (no noise, no APRBS with
random amplitude). This is only true for systems that were controlled to stay in their unstable equilibrium.
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In the following the above presented results are discussed for each system in detail.
Furthermore a short description of the used disturbance signal from the benchmark is
provided. The control methods used for comparison were taken out of the cited papers.

• Two-tank system For the two-tank system, the adaptive PID controller shows a
considerably better performance than both the standard PID controller with fixed
parameters (tuned with a GA) and the backstepping approach from [123]. In the
simulation between t = 20 and t = 40 s, the controller output was set to zero to
simulate an external disturbance (which can be interpreted as a temporary siphon of
fluid). The fixed PID controller has a remarkable overshot after this disturbance. The
backstepping algorithm doesn’t show this behavior but reacts overall slower than
both the adaptive and the fixed PID controller. Looking at table 6.4, the adaptive PID
controller has overall 14.9% less RMSD than the fixed PID controller and 23.6% less
than the backstepping method.

• LTI system with input delay Also on the LTI system with input delay the adaptive
PID controller is able to outperform the static PID controller with fixed parameters
in all cases (improvement by 31.1%). Here a (dimensionless) disturbance of −5
was added to the system output between seconds 50 and 75 of the simulation.
This can be interpreted as a temporary blockage in a fluid transport system. The
adaptive PID was also compared to a Smith predictor [132] which was tuned using
the Matlab™ PID-tuning tool (based on [133]). Although the adaptive PID controller
has no knowledge about the delay, it shows in two of the four benchmarks a 24.3%
better control performance than the Smith predictor which requires the exact delay.

• Inverted pendulum The inverted pendulum was controlled with the LQ regulator
described in A.1 and the PID-stack from [125]. As disturbance, between t = 10 and
t = 10.5 s, a force of 8.5 N was applied. While the LQ regulator and the standard
PID controller fail to compensate the disturbance, which results in a high RMSD, the
adaptive PID controller is able to keep the pendulum stable and has a overall 99.9%
smaller RMSD under disturbance compared to the other methods. This is especially
remarkable since the LQ regulator has knowledge about all states of the system,
while the adaptive PID controller has only knowledge about the systems output and
its deviation from the current setpoint.

• Thermal convection loop Analyzing the adaptive PID controller on this benchmark,
it shows 35.4% better performance than the standard PID and 1.7% than the back-
stepping method without disturbance. With a disturbance of −100 W applied be-
tween t = 5 and t = 5.5 s, the backstepping method fails to stabilize the chaotic be-
havior of the system and yields a 81.6% higher RMSD (standard PID: 26.5%) com-
pared to the adaptive PID controller. It is interesting to note, that the PID controller
with fixed parameters is able to stabilize the system within the relatively short range
of 15 seconds of simulation. However in the long run, it drifts away as described
above (compare figure 6.7) and is therefore not suitable for this control system.
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6.3.2. Recurrent against Static Neural Networks for PID Tuning

One important question is whether the recurrent connections which induce a temporal
component to the network really lead to a better performance than static feed-forward
neural networks like MLPs.

To answer this question, the inverted pendulum was investigated on a separate bench-
mark (without noise, but with disturbance). This system was chosen because it is the only
system considered in this work with multiple outputs and is critical to control because of
the unstable equilibrium at θ = 0 rad. Three neural networks were considered for the PID
tuning, first the dynamic network used in section 6.2, second a static MLP network with
the same amount of weights as the dynamic network, but without dynamics and third the
static neural network with external dynamics from [134]. The outcome of this comparison
over 50 independent trials (with random weight initialization) is illustrated in figure 6.8.
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Figure 6.8.: Comparison between static and dynamic neural network performance

Although both networks dispose of the same amount of degrees of freedom, the re-
current network outperforms the static network without dynamics on the chosen control
benchmark. It also shows significantly better performance than the static network with
external dynamics proposed in [134]. While the nonlinear optimization method from algo-
rithm 8 converged to a stable configuration in 11.1% of the trials for the static network with
no dynamics (mean RMSD = 6.8 · 10−1), and 12.4% for the static network with external
dynamics (mean RMSD = 4.0 · 10−1), for the recurrent network it was able to stabilize the
pendulum in 72.2% of the cases (mean RMSD = 2.2 · 10−1). So it seems the network can
take profit of its internal, time dependent memory to achieve a higher performance than
both the static network which just takes into account the current control error and state of
the system and the static network with external dynamics. Since the optimization has to
be repeated with new initial values until a stable configuration is found, a dynamic neural
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network approach can decrease computation time compared to a static neural network
approach while increasing control performance of the tuned PID controller.

6.3.3. Knowledge-Free against Model Based Approach

This section provides a compact comparison between the knowledge-free and the model
based approach described in chapter 4. First a model of the control system is learned by a
neural network. Then the PID auto-tuner is trained on that model and finally implemented
into the real closed-loop control system. Table 6.5 shows the difference of the RMSDs
between the knowledge-free and the model based approach used in section 6.3.1 over 50
independent runs.

Table 6.5.: Knowledge-free compared to model based approach

Control Benchmark SNR Model based Knowledge-free

Mean Variance Mean Variance
Two-tank system - 7.4 · 10−1 3.6 · 10−3 1.4 · 100 3.7 · 10−2

Two-tank system 20 dB 8.6 · 10−1 4.0 · 10−3 1.8 · 100 4.4 · 10−2

LTI system with delay - 1.3 · 10−1 6.0 · 10−4 9.8 · 10−1 7.1 · 10−3

LTI system with delay 20 dB 1.5 · 10−1 5.3 · 10−4 1.5 · 100 6.4 · 10−2

Inverted Pendulum - 3.4 · 10−2 4.0 · 10−4 7.7 · 10−2 3.2 · 10−3

Inverted Pendulum 20 dB 1.8 · 10−2 2.6 · 10−4 1.2 · 10−1 5.4 · 10−1

Thermal convection loop - 2.3 · 10−1 1.2 · 10−5 8.2 · 10−1 2.2 · 10−3

Thermal convection loop 20 dB 9.0 · 10−1 3.1 · 10−4 1.1 · 100 7.2 · 10−3

Analyzing these results the model based approach leads to a better control performance
in all considered benchmarks. Though the knowledge-free approach is able to achieve
a control performance similar to the model based approach. Especially the variance of
the different optimization runs is considerably higher for the knowledge-free approach.
Therefore it will potentially require more optimization trials until a satisfactory solution is
found, with the advantage that no model of the control plant is required to train the PID
auto-tuner.

Also a combination of both approaches could be used in industrial practice: First an
initial guess for the weights of the PID auto-tuner is derived by knowledge-free training on
a neural plant model. Once this PID auto-tuner shows an adequate control performance it
can be embedded into the real plant. Training can then be continued using the real plant
in the model based learning structure as discussed beforehand.
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7.1. Summary and Achievements

In this thesis, recurrent neural networks were applied for both system identification and PID
tuning tasks. The goal was to investigate whether recurrent neural networks are suitable
for those tasks and if they can compete with state-of-the-art control methods. For this
purpose several benchmark systems were implemented while each system had its unique
difficulties in control. The difficulties includeded several different nonlinearities, instability,
input delays or chaotic behavior.

The presented methods turned out to deliver superior results on the tuning of PID pa-
rameters on all the considered benchmark systems compared to the conventional PID
controller. Moreover several state-of-the-art methods like backstepping or the LQ regula-
tor had a higher number of problems to stabilize systems like the inverted pendulum or the
thermal convection loop when high disturbances were applied. The adaptive PID controller
showed a more robust behavior in the benchmarks including disturbances and measure-
ment noise. Especially interesting outcomes are that the adaptive PID controller was able
to stabilize the inverted pendulum under high disturbances while the LQ regulator failed,
although it requires perfect knowledge about all states of the control system. Also the con-
trol of the chaotic thermal convection loop lead to a lower RMSD using the adaptive PID
controller than the backstepping method, although this nonlinear control method requires
the designer to find a suitable Lyapunov function at each design iteration step. Therefore
the better control performance should outweigh the implementation efforts of the recurrent
neural networks. Also for the two-tank system and the LTI system with input delay, recur-
rent neural networks proved to be capable of adapting PID parameters in a reasonable
way. On the LTI system with input delay the method was able to outperform the Smith pre-
dictor in two out of four benchmarks, although the latter requires perfect knowledge about
the delay time in the system.

Concluding these observations, it seems that the temporal information, encoded in the
recurrent connections, can be abused by the network to increase control performance of
the closed-loop system. A comparison of recurrent neural networks with internal dynamic
against static neural networks like MLPs showed that the recurrent connections lead to
better control performance. The time dependent behavior of dynamical systems is better
reproduced by recurrent neural networks which are more suitable for this task than static
networks. Also the training algorithm with random weight initialization had a significantly
higher success rate when training recurrent neural networks than for their static counter-
part. Although static neural networks can be used to model or control dynamical systems,
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they often require the system states as input to achieve a good performance, so all states
have to be available. This assumption is in general not true for PID controllers, as those
controllers require only the output of the system. Therefore recurrent neural networks with
internal dynamic seem to be more suitable for neural PID tuning.

A neural network toolbox was implemented as a class template in standard compliant
C++11 using modern programming idioms like RAII (resource acquisition is initialization)
and supports arbitrary tapped delay lines for inter-neuron connections. Additionally a novel
algorithm to parametrize APRBS excitation signals was presented and used in this paper.
The algorithm determines the optimal compromise between the desired signal length and
maximum hold sequence specified by the user by optimizing a cost function and terminates
in logarithmic time.

7.2. Outlook and Future Work

Neural networks in general and their application on system identification and PID controller
tuning specifically is still a field that offers plenty unexplored areas for further research.
While this paper showed that recurrent neural networks can be successfully applied to
both system identification and PID tuning, the open question remains: How to choose
the concrete structure of the neural network. This includes especially how many neurons
should be used in the network and which connections should be delayed by which amount
of time steps. Future work can focus here on structure optimization techniques to identify
the optimal network topology for a given control problem.

Furthermore the application of recurrent neural networks for the tuning of other con-
trollers (like LQ regulators or bang-bang controllers) could be investigated and compared
against the results presented in this paper. Since the networks used for PID tuning in this
work only consist of relatively few neurons, they could be used for real-time computations
on a real physical system. So additionally, future work could include the implementation
of the presented techniques on a real system and verify the simulation results under real
world conditions.

The presented methods demonstrated that recurrent neural networks have the poten-
tial to improve PID controlled processes in terms of general control performance and ro-
bustness against external perturbations. Companies could therefore use this PID tuning
method to achieve a higher control performance on automated processes and lower failure
rates due to a more robust controller design.
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A. Additional System Identification Material

A.1. LQ Regulator Computations for the Inverted Pendulum

To apply a LQ regulator to a system like the inverted pendulum, it has to be linearized
beforehand. For linearization, the system has to be differentiated with respect to its states
x1, x2, x3, x4 and its input u. This leads to the standard description of a linear system

ẋ(t) = Ax(t) + Bu(t) , x(0) = x0 ,

y(t) = Cx(t) + Du(t) .
(A.1)

A detailed introduction to linearization of nonlinear systems is provided in [135, pp. 106-
117]. In the case of the inverted pendulum, these matrices are calculated as

A =


0 1 0 0

g(M+m)
Ml 0 0 0
0 0 0 1
−mg

M 0 0 0

 , B =


0
− 1

Ml
0
1
M

 , C =


1 0
0 0
0 1
0 0


T

, D =
[

0
0

]
. (A.2)

Now applying the method described in [130, pp. 281-306] and inserting the physical
parameters of the inverted pendulum from table 5.2, the optimal feedback matrix K and
the weight matrix Q for the linearized system can be written as

Q =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , K =


−27.0283
−4.5509
−1
−1.821


T

. (A.3)

A.2. System Identification Results

Enclosed are the system identification results of the thermal convection loop, shown in
figure A.1 and the inverted pendulum on a cart, shown in figure A.2. For the thermal con-
vection loop, a training signal of 10 seconds with 1000 samples, for the inverted pendulum
a training signal of 50 seconds with 1000 samples was used. The former was excited us-
ing an APRBS with a maximum hold time of 2 seconds and an amplitude range from −10
to 10. The disturbance signal used for closed-loop identification of the inverted pendulum
was an APRBS with 5 seconds maximum hold time and an amplitude range from −0.5 to

I



A. Additional System Identification Material

0.5, convoluted with a Gaussian kernel as described in section 6.2. The sliding window
used for online identification had a size of 30 samples, with a validation and prediction
horizon of one sample for both systems. As depicted in the system identification plots,
the online identification is able to deliver reasonable predictions for both systems after the
sliding window has reached its full size (first 0.3 seconds of the thermal convection loop,
respectively first 1.67 seconds of the inverted pendulum simulation).
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Figure A.1.: System identification results of the chaotic thermal convection loop
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Figure A.2.: System identification results of the inverted pendulum
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B. Additional Adaptive Control Material

B.1. Control Results for the Two-Tank System

In this section, the remaining results of the adaptive PID controller are presented. Table
B.1 shows the parameters used to generate the APRBS for training the PID auto-tuner to
control the two-tank system, figure B.1 illustrates the control results including the results
from the fixed PID and the backstepping method. The sample time was 0.1 seconds for all
experiments with the two-tank system in this thesis.

Table B.1.: APRBS parameters for control of the two-tank system

Signal Type Length Max. Hold Time Range

Training signal 5000 30 [0.5, 5]
Validation signal 10000 30 [0.5, 5]
Test signal 20000 30 [0.5, 5]
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Figure B.1.: Control of the two-tank system with disturbance
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B. Additional Adaptive Control Material

B.2. Control Results for the LTI System with Input Delay

Table B.2 shows the APRBS parameters used for the LTI system with input delay, figure
B.2 the corresponding control results including the results of the standard PID controller
and the Smith predictor as described in section 6.3.1. The sample time was 0.1 seconds
for all experiments on the LTI system with input delay in this thesis.

Table B.2.: APRBS parameters for control of the LTI system with input delay

Signal Type Length Max. Hold Time Range

Training signal 2000 40 [−1, 1]
Validation signal 3000 40 [−1, 1]
Test signal 5000 50 [−1, 1]

x 1

System output

50 60 70 80 90 100 110

-2

0

2

A
m

pl
itu

de

Controller output

50 60 70 80 90 100 110
-10

0

10

A
m

pl
itu

de

Time t [s]

Adaptive PID parameters

50 60 70 80 90 100 110
-5

0

5

10

Standard PID

Setpoint
Adaptive PID

Smith predictor

KP
KI
KD

Figure B.2.: Control of the LTI system with input delay with disturbance

It is important to note that the PID parameters for the LTI system with input delay were
only adapted in a very small range by the neural network (though making a difference in
control performance compared to the fixed PID controller). To illustrate this adaptation,
the parameter development shown in figure B.2 was zoomed for each PID parameter. The
parameters varied from 6.21918 to 6.2255 for KP , from 1.1285 to 1.13003 for KI and from
−0.44297 to −0.441411 for KD.
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