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We introduce the binary superposed phase retrieval problem that aims at reconstructing multiple 0/1-valued
functions with nonoverlapping bounded supports from moduli of superpositions of several displaced copies of
their individual Fourier transforms. We discuss an application in coherent diffraction imaging of crystalline
objects, propose two algorithms, and evaluate their performance by means of simulations. © 2010 Optical So-

ciety of America
OCIS codes: 100.5070, 140.2600, 160.4236.

1. INTRODUCTION

Reconstructing a function from the modulus (i.e., absolute
magnitudes) of its Fourier transform (FT) constitutes the
well-known phase retrieval problem: the phase of the com-
plex valued FT has to be retrieved before it can be in-
verted. This nonlinear inverse problem arises in optics,
astronomy, crystallography, and numerous other areas of
physics and engineering [1-3] and is known as binary
phase retrieval problem [4] if the function is 0/1-valued.

A particular imaging application in which objects have
successfully been modeled by 0/1-functions is in incoher-
ent x-ray diffraction imaging of small crystals (called
grains) inside polycrystalline materials [5-7]. Coherent
diffraction imaging (CDI) of multiple grains however has
not yet been accomplished, while non-crystalline nano-
structures [8-10] and single nanoparticles [11,12] have
successfully been reconstructed. In CDI of single grains,
there is a direct relation between the diffraction pattern
and the FT modulus of the grain’s shape function [13]. Ex-
perience with incoherent x-ray diffraction from multiple
grains suggests that diffracted signals from different
grains superpose, and that the modulus of this superposi-
tion can be measured on a detector. While the develop-
ment of a detailed imaging model is left for a future paper,
we show that “standard” phase retrieval algorithms (such
as Algorithm IT introduced below) are not well suited for
reconstructing objects from highly superposed data. Our
main contribution is Algorithm I, which yields reconstruc-
tions from superposed data of superior quality compared
to our standard phase retrieval algorithm. Our presenta-
tion is deliberately kept rather general, because we feel
that our algorithms are of independent interest in other
(yet unexplored) application areas in which phase re-
trieval problems of superposed signals from binary objects
occur.

We define the following generalization of the binary
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phase retrieval problem; to our knowledge it has not been
considered in the literature before: the reconstruction of
multiple 0/1-valued functions with nonoverlapping
bounded supports from moduli of superpositions of sev-
eral displaced copies of their individual FTs. In other
words, the two-dimensional (2D) version of the problem is
the following (generalizations to higher dimensions are
straightforward): for given G, H € N (throughout this pa-
per N denotes the set of positive integers) and displace-
ment vectors tg, eR? (with g=1,...,G and h=1,...,H)
the aim is to reconstruct the functions f;:R?
—{0,1},...,fg:R?—{0,1} with nonoverlapping bounded
supports from the knowledge of \Egzlﬁlefg(-—tghﬂ, where

fi,---,fg denote the FTs of f1, ...,fq, respectively. We call
this variant the binary superposed phase retrieval prob-
lem. For G=H=1, we obtain as special case the binary
phase retrieval problem for a single object. However, we
do not place any restrictions on the displacement vectors
other than that they should be known, and thus the prob-
lem usually does not reduce to the binary phase retrieval
problem.

Binary superposed phase retrieval poses major algo-
rithmic challenges. Standard phase retrieval algorithms,
in fact, aim at reconstructing a single function from its FT
modulus. Thus only a superposed function would be re-
turned as the output from such an algorithm that is ap-
plied to superposed FT modulus data. We aim, however,
at reconstructing the individual binary functions—and
this is the major algorithmic challenge.

Algorithms I and II introduced in this paper are the
first algorithms for binary superposed phase retrieval. Al-
gorithm I is a Monte Carlo method, while Algorithm IT is
based on the hybrid-input-output (HIO) algorithm [14].
Not surprisingly, Algorithm I is far superior than Algo-
rithm IT in terms of reconstruction quality (see Section 5).
While Algorithm I aims at reconstructing the individual
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functions simultaneously, Algorithm II proceeds sequen-
tially. We remark that Algorithm I is more time efficient
than other comparable Monte Carlo methods, because we
make use of the fact that the functions to be reconstructed
are binary.

Details of Algorithm I are discussed in Sections 2 and 3.
Here we remark only that Monte Carlo methods in imag-
ing applications follow the paradigm of simulating Mar-
kov chains; usually only the type of prior information and
the forward operator relating the image to the measure-
ments differ. One ends up with an algorithm that is use-
less for practical applications if the priors and operators
cannot be implemented effectively. Our particular for-
ward operator, however, can be implemented efficiently,
as we discuss in Section 3. For the (different) forward op-
erator used for phase retrieval of non-crystalline objects,
Monte Carlo methods were developed in the 1980s
[15-17]. With the exception of [18], they seem to have
been abandoned in favor of more effective methods, such
as the HIO algorithm.

In the application area of CDI of multiple grains, sev-
eral experimental imaging methods—such as holography
or ab initio phase retrieval for the complete oversampled
diffraction pattern [19]—are possible. However, experi-
mental concerns (signal/noise and sampling issues) imply
that robust reconstructions could be considerably facili-
tated by incorporating additional prior information. The
approach that we propose incorporates diffraction data
from both incoherent and coherent x-rays. Additional in-
formation in this case is that (1) the grains are binary ob-
jects (we consider the general grain shape and not the in-
dividual atom positions, as we discuss in Subsection 2.B)
and (2) from existing x-ray methodology for incoherent
beams we can obtain (partial) low-resolution maps
[6,7,20-22], which we propose to use as prior knowledge
for algorithms that aim at reconstructing objects from co-
herent x-ray diffraction data (see Fig. 1). Our algorithms
are capable of including such prior knowledge.
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Fig. 1. Schematic of grain map reconstruction from CDI data.
In addition to CDI data, we propose that incoherent x-ray diffrac-
tion images are acquired to provide partial grain maps as input
for Algorithms I and II. Note, however, that Algorithms I and II
do not strictly require such input data.
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We remark that grains are of central interest in many
branches of materials science, because polycrystalline
materials (such as metals, alloys, and ceramics) are com-
posed of multiple grains, which in turn determine the ma-
terial’s physical, chemical, and mechanical properties.
Our results show that, under simplifying assumptions,
CDI of multiple grains is possible with Algorithm I. Thus,
CDI is potentially a vital imaging tool for materials sci-
ence.

2. BINARY SUPERPOSED PHASE
RETRIEVAL

A. Our General Inverse Problem
We define the binary superposed phase retrieval problem
and discuss a relevant application in simplified terms. We
repeat from the introduction the definition of the 2D bi-
nary superposed phase retrieval problem: For given
G, HeN and displacement vectors tg, e R2 (with g
=1,...,G and h=1,...,H), the aim is to reconstruct the
functions f;:R%2—{0,1},...,fq:R2—{0,1} with nonover-
lapping bounded supports from the knowledge of
|E§=12£I:1fg(-—tgh)|. This is usually an ill-posed inverse
problem since the binary phase retrieval subcase is al-
ready ill-posed. It is well known [23] that there are trivial
ambiguities in the phase retrieval problem; for instance,
it is impossible to determine the absolute position of fg,
because f,(--t) with an arbitrary t has the same FT
modulus as f,. However, such ambiguities can often be re-
solved if prior information is available (see, e.g., [24]). The
main prior information utilized in our case is provided by
the availability of partial reconstructions obtained by
other imaging methods and the knowledge that the func-
tion values are 0/1 (the effectiveness of such binary con-
straints has been demonstrated in [4]). In the next sub-
section we discuss an application for which our
assumptions are largely justified.

We define the continuous color map f:R2—1{0,1,...,G}
with

g, if there is a g €{1,...,G} with f,(x)=1
flx) = 0, otherwise.

(1)

Obviously, we can reverse this procedure by decomposing
f into f1,...,fq thus reconstructing the individual func-
tions is equivalent to reconstructing the continuous color
map.

In order to deal with the reconstruction problem on a
computer, we need to discretize it. Following [[25], Section
2] we define, for N € N and positive sampling distance d
e R, the discretization /¢:[0,N-1]2—{0,1,...,G} of f by

d =fl -
il v1.52) —f( 2 , 2
In this definition [0,N-1]% denotes the set of all pixels
yT=(y1,ys), where the nonnegative integers y; and y, are
less than N. Typically N and d would be chosen large
enough so that f(x)=0 if x7=(xq,x,) and max{|x, |xs|}
=Nd/2. We refer to such an V¢ in Eq. (2) as an NXN

N-2y,-1 N-2y,-1
d dl. (2
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color image. Our algorithms aim at reconstructing such
color images.

Since usually knowledge of N and d can be assumed or
is not needed, we sometimes simplify the notation by us-

ing f for a discretized version of a function /. Motivated by
the application, in the next subsection, we refer to dis-

cretizations of the data |Eg:12€121fg(-—tgh)| as detector
data.

To help the reader distinguish between continuous and
discrete concepts, we use x (position in real space), u (vec-
tor in Fourier space), and p (position on a detector)
throughout this paper to denote real vectors. The corre-
sponding discrete counterparts are denoted by y (pixel in
real space), v (vector in discretized Fourier space), and q
(pixel on a detector). We note that, for any fg:ﬂ‘“\z—>{0, 1},

the discrete Fourier transform (DFT) ? is an approxi-

mation of the discretization of the FT f, with the same N
but with a sampling distance 1/Nd. Hence, for any fixed
d, we can make the sampling distance in Fourier space as
small as we wish by choosing N sufficiently large (this is
usually referred to as zero-padding).

B. Application: Coherent Diffraction Imaging of
Multiple Undeformed Grains

The aim in this application is to reconstruct collections of
grains (small crystals) inside bulk materials from (mono-
chromatic) coherent x-ray diffraction images. The term
“collection” means in our context that the relative posi-
tions of the grains are relevant. Typical collections are
space-filling—for example, if the collection represents a
sample from a polycrystalline material—but generally
voids might be present, too. Grains are naturally three-
dimensional (3D) objects, but by considering 2D slices
through the sample we restrict our attention to the 2D
case.

Initially, two aspects of a grain are relevant: (1) the po-
sitions in space occupied by the grain and (2) the internal
lattice structure specifying the positions of the grain’s
unit cells. Signal/noise ratios and detector technology,
however, imply that one cannot aim at atomic resolution
for grain imaging of bulk materials (see, e.g., [26] for an
unsuccessful attempt in electron microscopy). One thus
needs to make assumptions about the imaged material. In
our case, we assume that the grain lattice is perfect,
which means that the grains are undeformed (see [6,7] for
an imaging application in incoherent x-ray diffraction);
deformed grains are outside the scope of this paper.

To date, collections of grains have been reconstructed
only from incoherent x-ray diffraction data, but higher-
resolution images are expected to be obtained from coher-
ent x-ray diffraction data. To facilitate robust reconstruc-
tions from coherent x-ray diffraction data, we propose
incorporating additional diffraction images from incoher-
ent x-ray diffraction data into the reconstruction process
(see Fig. 1). In fact, the lattice of undeformed grains can
be inferred already from incoherent x-ray diffraction data
[27,28], and the reconstruction task from coherent x-ray
diffraction data thus reduces to the task of determining
for each grain the positions it occupies in space. Figure
4(e) shows a 2D collection of grains; the internal lattice
structure is hidden.
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Referring to the global sample coordinate system, we
can describe each grain, labeled by a number g
e{l,...G}, by two parameters f, and B, where fg:R2
—{0,1}, the so-called shape function, is a function whose
(necessarily bounded) support in the sample is occupied
by the grain, and ngRz is a set of two basis vectors de-
fining the internal 2D lattice structure. A collection of G
grains is thus specified by fi,...,fq¢ and By, ...,Bq. Posi-
tions in real-world samples are occupied by at most one
grain, and thus fin Eq. (1) and its discretized version £¥:¢
in Eq. (2), called the grain map in this application, are
well-defined. For short, we refer to a grain labeled g as
grain g; note that this is also the color of the pixels occu-
pied by that grain.

1. Forward Model
In the following we briefly describe our forward model,
used to obtain from G, H, and f,, B,, tg, for g=1,...,G,
h=1,...,H, the corresponding coherent x-ray diffraction
image measured on a detector. For a single grain g, it is
well known [13] that measured detector intensities are
proportional to the squared modulus of superpositions of
FTs of shape functions f;, and displacement vectors t,
correspond to the reciprocal lattice positions (Bragg
peaks) of the grain. The theory of coherent x-ray diffrac-
tion from multiple grains has not yet been developed in
detail, but it is plausible that the signals (for Bragg dif-
fraction) from multiple grains superpose with a subse-
quent phase loss owing to the detector reading. It is well
known that there is a one-to-one correspondence between
grain lattices and their reciprocal lattices. The one-to-one
correspondence is given—if we model both lattices by
sums of delta distributions—by the FT [29,30]. Thus from
B, we can compute tg, for =1, ..., H.

Fourier space can be probed by a properly aligned de-
tector. If the detector had an arbitrarily fine resolution,

we could measure values proportional to \ZgzlElefg(-
- gh)\z. We are free to set the proportionality factor in-
volved to 1, because in practice one observes that the
technical detector implementation introduces yet another
factor. Taking square roots shows that the measured data
are exactly of the form stated in the binary superposed
phase retrieval problem. The detector, however, has a fi-
nite resolution. Thus an additional discretization step is
involved, which is discussed in Subsection 3.B.

2. Inverse Problem

Assuming, as previously discussed, that G, H, and B, tg

for g=1,...,G, h=1,...,H, are known, the inverse prob-
lem in this application is to reconstruct the grain map f
(=V4, for suitable selected N and d). We have discussed
in the previous section that this is a binary superposed
phase retrieval problem.

3. ALGORITHM I: MONTE CARLO
APPROACH

Our first method is a Monte Carlo method. Similar algo-
rithms have been developed for the reconstruction of
grain maps from tomographic diffraction data that have
been acquired by incoherent x-rays [6,7,20—22]. The main
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difference from the algorithms presented in those papers
is that here we have to use a totally dissimilar forward
operator.

Let 7 denote the set of all possible N XN color images
with at most G+1 colors, and let D denote the set of all
possible detector data. Elements of these sets can be re-
arranged into vectors from finite-dimensional real vector
spaces, and we thus have norms, such as the ¢;-norm || ||;
at our disposal. For £C[0,N-1]? and f,,;; € Z, we define

Z(finit, L) to be the set of color images f € Z whose pixel val-
ues are equal to those of f;,; at each pixel in [0,N
—1]12\ £. The idea behind this notation is that we can
think of f;,,;; as a partial image reconstruction obtained by
other methods and of £ as being the set of the so-called
ambiguous pixels, whose values are to be reconstructed
with our method. We explicitly allow £=[0,N-1]?, which
amounts to Z(f;,;,[0,N-1]%)=Z. Moreover, we assume
that £ is a subset of the union of the supports of f1, ...,fs.
It is straightforward to adapt our algorithm to the situa-
tion in which this assumption is violated.

Let P:Z— D denote the forward operator mapping each

color image f to its detector data, and let Pye D denote
the measured detector data. As for many inverse prob-
lems, the general idea is to find

f=arg ming_g;. o |[P(f) - Po;. (3)
A technique borrowed from statistical mechanics is to in-
troduce the family of probability distributions
vg: Ufinit, L) — Ry (where e R,), with

_ 1 -
() = Z—BeXp(— BIP ) = Poll), 4)

where Z; is a (usually unknown) normalizing constant.
Distributions of the form in Eq. (4) are known in the lit-
erature as Gibbs distributions [31]. We “solve” Eq. (3) by
sampling from the distribution yg. If 7 denotes the set of
minimizers in Eq. (3), then one can prove (Proposition
5.2.1 in [31]) that
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_ _ VA, if feF
T 5)

Bos 0, otherwise.

In other words, sampling from 7y; at high 8 yields the
minimizers with a high probability. Estimates for 3 are of-
ten hard to obtain and often too weak for practical pur-
poses. In practice, however, it often turns out that one can
sample efficaciously if B is chosen reasonably large. We
remark in passing that a common technique is to vary B
according to some “cooling” scheme, and the resulting al-
gorithm becomes a simulated annealing algorithm [32].
We do not follow this approach—in this paper g is fixed.
We have not yet discussed how to sample from ;. The
Metropolis algorithm introduced in [33] achieves exactly
this. It simulates a Markov chain and, after a suitably
long “burn-in phase,” it samples from yz. Our Algorithm I,
based on the Metropolis algorithm, is outlined in Fig. 2.
We highlight four aspects of Algorithm I:

e only ambiguous image pixels as specified in the in-
put are processed;

e in theory, the initial assignment of colors to the am-
biguous pixels in f;,;, is irrelevant—in our implementa-
tion we choose a random assignment;

e the algorithm reduces to the original Metropolis al-

gorithm if f instead of f* is returned at termination; and
e the terms 75(?’)/ 'yB(]_") and yg(f*)/ yﬁ(]_‘) can be evalu-

ated without knowledge of Z.

In summary, the core of Algorithm I is the Metropolis-

based algorithm (Fig. 2) applied to yg as defined in Eq. (4).

In Subsections 3.A and 3.B we discuss how P is imple-
mented.

A. Fast Updates of the Discrete Fourier Transforms

The key step of the Metropolis algorithm is the proposal
of changing the current color assignment to a pixel y*
e[0,N-1]2. This affects only two discretized functions,
i.e., the value of an £,(y*) changes from 0 to 1, while the

value of an f,(y*) changes from 1 to 0. For the forward

Input: A color image f;,; with at most G + 1 colors and a set £ of n ambiguous pixels

defining the space Z(finit, £) of reconstructible color images.

Output: A color image f* € Z(finit, £) for which the value of v is nearly maximal.

1: Choose B and mc_cycles sufficiently large (as discussed in the text);

2 f* ¢ finit and f < fints
3: for i =1 to n-mc_cycles do

4:  Select randomly a candidate pixel q € £ and color c € {1,...,G};
5. Calculate r = v5(F)/75(F), the ratio of the probabilities of the new color image J
(which we would obtain if we assigned color c to q) and the old color image f;

6: Set f < f with probability min(1,r);
7. if 95(f*)/76(F) < 1 then
8

ff<7
9: end if
10: end for

11: return f*;

Fig. 2. Our general Metropolis-based algorithm for “solving” Eq. (3).
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projection we need to update their 2D DFTs. However, we
do not have to resort to a full recomputation using a fast

Fourier transform (FFT) algorithm. To see this let }_”,1,1 (re-
spectively, ?b,o) denote the function resulting from £, (re-
spectively, /) after the change, and let fi/v? (respectively,

fi/v,?) and ]‘iﬂ (respectively, f{?’?) denote the corresponding
DFTs, respectively. We immediately obtain

AAv)= S Fua(y)exp(-2mivTy/N)

yelo,N - 172
=fu1(y)exp(- 2mivTy*/N)

DY

yelo,N - 112\ {y"}

= exp(- 2mvIy*/N) + E ?‘a(Y)

ye[0,N - 112

xexp(- 2mivIy/N)

= exp(= 2mivTy IN) + A (v), (6)

fur(y)exp(- 2mivTy/N)

for all ve[0,N-1]2. In the same way, we obtain for the
other change that }db/\{?(v)=ﬁ,/\m(v)—exp(—27riva*/N). We
update the DF'Ts according to these formulas, i.e., we add
(or subtract, respectively) the term exp(-2mivly*/N) from
the previous DFT. Computing the DFTs in this way gives
an O(N?) algorithm—FFT algorithms [34], on the other
hand, would require a computation time of the order
O(N? log(N?)).

To achieve an additional speed-up, one could compute
and store the values of exp(-2miv’y*/N) prior to the ex-
ecution of the Metropolis algorithm. For memory reasons
we decided against storing the values for all N* possible
vT,yT)=(vy,v5,y7],y3)-tuples. In our implementation we
store the values of exp(-2mivyy]/N) for all (vy,y])-pairs.
The evaluation of exp(-2miv’y*/N) requires then only
one complex multiplication. A further speed-up is dis-
cussed in Subsection 3.C.

B. Computation of Simulated Detector Images

In order to calculate the €;-norm in Eq. (4) we need to es-
timate P(f) for each pixel for which we have a detector
reading in P. Let us denote the spacing between detector
pixel centers (both horizontally and vertically) by & this is
the sampling distance of the detector data. As explained
in the last paragraph of Subsection E.A, for any fg:R2

—{0,1}, the discretization of the FT f, with a sampling
distance &' =1/Nd can be estimated from }‘i,v d,
During the execution of the Metropolis algorithm (Fig.

2), we need to calculate P(f) for various color images f. Let
us first look at the special simple case when H=1 and tg;
is the zero vector, for g=1,...,G. Then the detector data

are a discretization of |E§:125=1f;(-—tgh)|=\ig: },i;(-)|. We

see that, by an appropriate selection of N and d, we can
make sure that /6" € N. This means that in this case the

values of P(f) at the detector pixels can be directly esti-

mated by decomposing f and taking DFTs.
Consider now the general case. What we need is a
method for estimating at the detector pixels the values of
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fe(-—p) for an arbitrary p R2. As in the previous para-
graph, we generate an approximation to a discretization

of f4(+) with sampling distance §'. By shifting the points
at which f,(-) has been estimated by p, we get estimates

at certain points on the detector plane of ];;(-—p). This
situation is depicted in Fig. 3: the shaded dots indicate lo-
cations of the detector readings and the white dots indi-

cate the places where we have estimates of f;,(-—p). By se-
lecting 6/8" € N large enough, we can ensure that for
every shaded dot p’ there will be an empty dot p* that is

near enough to it so that }/f;(p’ —p) can be approximated by

the known f,(p*~p). Furthermore, and this is important
for the computational efficiency, due to the fact that &/&'
e N, for any p we need to find only one such pair of points
p’ and p*; for all other detector pixels the contribution of
f¢(-=p) can be identified by a simple subsampli}}g (using
sampling distance &) of the discretization of f,(-) with
sampling distance &'; see Fig. 3. (This technique is similar
to the so-called footprint-based texture mapping in com-
puter graphics.) We remark that the process is repeated
for several f,’s and p’s. The detector values are not over-
written: all complex values at each detector pixel are
summed up. The very last step to obtain the final detector

image P(f) is to replace each complex valued detector
pixel entry with its absolute value.

C. Additional Code Optimizations
Several other speed-ups have been implemented. The fol-
lowing list gives a short overview:

e Updating of the simulated detector image: We have
discussed in Subsection 3.A how we update the DFTs of a

single fg. In a similar way we update the whole simulated
detector image. We are not only keeping the simulated de-
tector image, i.e., the modulus of the superposed DFTs,
but we are also storing the complex values in a different
array. Now, if two DFTs are changed in a Metropolis pro-
posal step, then we first subtract both unchanged DFTs
(placed at positions as described in Subsection 3.B) from
the complex valued array. In a second step, we add the
DFTs of the changed DFTs to the complex valued array.
Finally, we obtain the simulated detector image by taking

)
09O O O O OgO O O O OgO .,
O 0 O0O0OO0O0OO0OO0OO0OO0 O o]6
0O 0 O0O0O0O0OO0OO OO0 O O
©O 00 O0O0O0OO0O0O 0O O O
coooooo el ooo
G0 O 0 0 00 © O O OgO
0o o0o0o/oolooooo
cooooPoooooo
O 0 O0O0OO0O0OO0OO0OO0OO0OO0 O
O 0 O0O0OO0OO0OO0OO0O-0O0 0 0
09O O O O OgO O O O QgoO
000000000000

Fig. 3. Computation of P(f) (see Subsection 3.B). Detector pixels
are depicted as shaded dots. Locations at which estimates, pro-
vided by a shifted DFT, are available are depicted as white dots.
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the absolute values of these complex numbers. The de-
scribed updating technique has the advantage that only
two DFTs are involved when the simulated detector im-
age is recalculated. The drawback, however, is that
rounding errors might accumulate.

e Avoiding unnecessary reassignments of large data ar-
rays: At each step of the Metropolis algorithm one needs
to compute the simulated detector image for the proposed
pixel change. We store these values in a different array,
because this permits a quick recovery of the old detector
values in case the proposal is rejected. We only need to
keep a pointer telling us which of the two arrays contains
the current simulated detector image.

e Look-up tables for frequent computations: The idea of
using look-up tables for frequently occurring computa-
tions has already been discussed for the DFT updates. We
also use look-up tables in another situation: when the
DFTs are copied onto the various places on the detector
one needs to ensure that no pixels outside the detector are
considered. Instead of performing range checks in each it-
eration, we store the permissible ranges for all DFTs and
displacement vectors in a look-up table. Thus, we need no
range checks; we use only loops with variables in the
range indicated by the look-up table.

4. ALGORITHM II: ADAPTATION OF PHASE
RETRIEVAL ALGORITHMS

In the following we introduce a second method for binary
superposed phase retrieval, called Algorithm II, that uses
as a subroutine a standard phase retrieval method. In the
next subsection we discuss the general framework of Al-
gorithm II; details of the subroutine are given in Subsec-
tion 4.B.

A. Adaptation

Phase retrieval methods reconstruct single functions from
single FTs. In certain cases we can reconstruct fi,...,fg
independently. For example, if for each g’ e{1,...,G}
there is an ' €{1,...,H} such that, for all u in a neigh-
borhood of t,;, we have

G H

g(u - tgh)
g=1h=1

~ = by, (7)

then we could try to reconstruct f,: from the data using a
phase retrieval method. This motivates the following al-
gorithm, which is our Algorithm II (with an integer pa-
rameter pcycles): select for each g’ e{1,...,G} the A’
e{l,...,H} whose minimum distance to any other dis-
placement vector tg, is maximal and reconstruct f,» with
peycle iteratiorf of a phase retrieval algorithm using the
data |Eg=122{=1fg(u—tgh)|, with u being in the neighbor-
hood of tg/,.

Equation (7) is a valid approximation only in special
scattering situations in which superposition effects from
different FTs are small. Our simulations in Section 5 in-
clude several scattering situations, and the results can
thus be interpreted as testing whether Algorithm II gives
useful results in situations in which Eq. (7) does not
strictly hold.
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B. HIO
The phase retrieval algorithm that we use as a subroutine
in Algorithm II is basically the HIO algorithm introduced
in [14]. Our exposition closely follows [35]. We remark
that one could replace HIO with any other phase retrieval
algorithm, e.g., with the difference map [36].

HIO follows the Gerchberg—Saxton [37] scheme for re-

constructing a function f from its FT modulus |f] by gen-
erating a sequence (s3); <y of functions that approximate
f. Starting with an initial guess s, (usually randomly cho-
sen; in our case function values are randomly chosen from
{0,1}), the iteration step from s; to s,,; is as follows: (1)

the amplitude of the FT of s;, is replaced with |}A‘], (2) the
inverse FT of this function yields a function s, and finally
(3) we obtain s, from s, s;, and prior information.

Algorithms following the Gerchberg-Saxton scheme dif-
fer in the implementation of Step (3). For real non-
negative valued functions f—as in our case—one typically
assumes that an estimate S,pj.; of the support of f is
available (details for our choice in the simulations are
given in Section 5). Let ¢, be defined as

%(S},e(x)), if xe ‘Sobject and %(S;;(X)) >0
c(x) = .
0, otherwise,

(8)

where (s, (x)) denotes the real part of the complex value
s,(x). The idea is that s;(x) violates prior knowledge if
ler(x) —sj,(x)| >e, where e denotes a prescribed tolerance
level (see Subsection 5.B). In HIO we have

8k+1(x)
sp(x), if |ep(x) —s,(x)|=e
$p(X) + Buiolcr(x) — s4,(x)), otherwise,
9)

with a prescribed system parameter Byio (see Subsection
5.B). Algorithm IT thus performs pcycle iterations of HIO;
thereafter the reconstructed function values are rounded
to 0 or 1 depending on whether or not the real part is
smaller than 0.5.

5. SIMULATIONS

In the following we describe five sets of simulations that
we performed on a personal computer with a 2.66 GHz In-
tel Core2Duo processor and 3.23 Gbytes random access
memory. The algorithms have been implemented as C
programs running under Windows XP. Details of the five
simulations are discussed below; a summary is given in
Table 1.

A. Data Generation

For our tests we selected three grain maps of aluminum
samples that were acquired by electron microscopy, more
specifically, by electron backscattered diffraction (EBSD).
In what follows we refer to them as Maps I-III. While we
aim (in the next subsection) at reconstructing maps V<,
we remark that each EBSD map is a higher-resolution
discretization fAV-%K of a continuous color map f. By in-
troducing K, we ensure that the discretization for the
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Table 1. Overview of the Data Generation in the Simulations (See Section 5)
Size of Input Map Detector Dimension
Simulation Input Map (KN X KN) (N yos X N o) K # Spots Dy
1 128 <128 200 X< 200 2 14 35
2 128 X 128 200 X 200 2 16 25
3 I 128 X128 200 % 200 2 14 35
4 11 128 X128 200X 200 2 16 25
5 111 192 %192 500 % 500 3 69 21

simulated data generation is somewhat independent from
and is more accurate than the discretization used for the
reconstruction. This is a way of avoiding the commitment
of the “inverse crime” of using the same model for gener-
ating the data for testing an algorithm as the one used in
the design of the algorithm. These fAN-4/K’s are shown in
the left column of Fig. 4. For Maps I and II (containing
G=2 grains) we have N=64 and K=2. For Map III (con-
taining G=11 grains) we have N=64 and K=3.

We generate the data (i.e., the moduli of the superposed
FTs on the detector) from these maps at the sampling dis-
tance 1/Nd, which is the same as the sampling distance

(a) (b)

>

Fig. 4. (a) Map I comprising two grains, (b) corresponding /¢
with N=64 and ambiguous pixels (white) for Simulations 1 and
2, (¢c) Map II comprising two grains, (d) corresponding V¢ with
N=64 and ambiguous pixels (white) for Simulations 3 and 4, (e)
Map III comprising 11 grains, (f) corresponding /¢ with N=64
and with ambiguous pixels (white) for Simulation 5.

when we approximate the FT f, by the DFT }é’,mm (see
the last paragraph of Subsection 2.A). However, we make
the detector dimension N, X N4, larger than KN X KN
since the detector has to accommodate also the shifted

versions of f,. The actual values used in our five simula-
tions are shown in Columns 2-5 of Table 1.

For each grain g we specify a lattice basis {a,,b,} and
define the set of tg,’s as {Aay+ubg:\, u e {-1,0,1}}. We as-
sume that t,,=0 is in the center of the detector. Simula-
tion 1 differs from Simulation 2 exactly in the choice of
tgy’s, while tg),’s are equal in Simulation 1 (respectively,
Simulation 2) and Simulation 3 (respectively, Simulation
4). Instead of listing t,, for each simulation, we choose to
report two numbers “# Spots” and Dj,,,; the former gives
the total number of t,;’s whose discretized version t,, hits
the detector, while the latter gives information about the
general FT “overlap.” Since we choose for HIO the FT that
is furthest apart from any other FT (see Subsection 4.A),
it is natural to define Dy, as min{Dy,...Dg}, where D,
=maxy min(g/yh/)#(g,h)ﬂfgh—fg/her Wlth fgh and fg’h’ denot-
ing the discretized versions of tg;, and t,;/, respectively,
that appear on the detector. The values of # Spots and
Dy, in our simulations are given in Columns 6 and 7 of
Table 1, respectively.

The detector data in our simulations are subjected to
noise. The exact nature of the noise needs to be deter-
mined in future experiments, but at present it is clear
that one needs to distinguish between random noise in-
troduced by the detector reading and geometric noise that
is due to uncertainties in the experimental geometry. To
define these types of noise in precise terms, we need to in-
troduce some notations. Let det_value(q) denote the
value of the detector pixel q of the Ny,; X N4,; detector im-
age. A detector shift by, say s pixels, is obtained by replac-
ing det_value(q) with det_value(q+(s,0)T), with
det_value(q+(s,0)7)=0 if q+(s,0)T¢[0,Ny,—1]2 In
our simulations we distinguish four different noise sce-
narios:

e No noise: In this case no detector pixel value is al-
tered.

e Random noise: The no noise detector image is altered
by setting det_value(q)+ max{0,det_value(q)+r},
where r is chosen uniformly at random from the
interval [-100 det_value(q), 100 det_value(q)] for
qe [O’Ndet_ 1]2-

e 4 pixel shift: The no noise detector image is shifted
by 4 pixels.

e 8 pixel shift: The no noise detector image is shifted
by 8 pixels.
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Detector data of all five no noise simulations are depicted
in Fig. 5.

B. Recovery

As mentioned above the aim is to reconstruct the color im-
age V¢ for Maps I-III. Since we assume that prior infor-
mation about approximate grain positions is available, we
aim at reconstructing only “ambiguous pixels” and not the
whole color image. We assume that the approximate grain
position is given by means of the grain’s (=}i,v *4) minimal
bounding box that is extended by a number of N,,,gin Pix-
els at each border and by some partial reconstructions
that might have been obtained by other methods (e.g., by
incoherent diffraction imaging). We simulate the partial
reconstruction by eroding the grain boundaries. Those re-
moved pixels that fall into the extended bounding boxes of
at least two grains are defined to be the ambiguous pixels
in our simulations. The right column of Fig. 4 shows the
V%s together with the ambiguous pixels (colored white),
and the total number of ambiguous pixels in the f¥%s is
given in the second column of Table 2. Note that low-
accuracy position information and lattice structure are
implicitly incorporated into Algorithm II via the support
constraints and the FT data that require that the t,;’s
(Bragg peak positions) are known.

(a) ; ‘ (b)

Q4 0 o

0 o ¢
. .

-

Fig. 5. Detector data for Simulations (a) 1, (b) 2, (¢) 3, (d) 4, and
(e) 5.
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We set up five simulations as summarized in Table 1.
The parameter N4, is set to 8; only in Simulation 5 we
choose N4, =0. The only difference between Simula-
tions 1 and 2 and Simulations 3 and 4 is that a different
input map is used, while from Simulation 1 to Simulation
2 we only vary the set of tg,’s. Simulation 5 tests the re-
construction of a more complex grain map.

A common technique adopted in many stochastic algo-
rithms (and the HIO algorithm [35]) is to repeat recon-
structions from random initial guesses and to return the
solution with the best data fit (or objective function value)
that occurred over these independent runs. We follow this
approach and use for Algorithm I two independent recon-
structions, while for Algorithm II we use five. Details
about the initial guesses are discussed below. For each
simulation 50 reconstruction results are obtained using
Algorithms I and II.

The number of iterations for all algorithms is
mc_cycles=HIO_cycles=200. Moreover, the following
specific parameters are used:

Algorithm I: The parameter 8 in Eq. (4) is set to 8
=20. The candidate colors for each ambiguous pixel are
restricted to be the colors of the grains into whose ex-
tended bounding box it falls. Premature termination oc-
curs if no change in the objective function vy, is observed
over 10 of the mc_cycles=200 iterations.

Algorithm II: In agreement with [14,35] we choose ¢
=0.01 and By1p=0.9. The support S,pjec; of each grain is
chosen as tight as possible, i.e., as the set of those pixels
of the extended minimal bounding box that are either pix-
els in that grain or ambiguous. In each HIO iteration we
enforce prescribed pixel values as additional object do-
main constraints. As initial guesses we randomly assign
the value of 0/1 to each ambiguous pixel in Sypje.; (O cor-
responding to the background and 1 corresponding to the
grain pixel). Grains are processed in a random order.

C. Results and Discussion

In Table 2 we report the results of the simulations. The
reconstruction error is defined as the number of pixels in
the reconstruction that differ from the pixels of the true
color image. Since each simulation is based on 50 results
obtained by each algorithm, we report mean reconstruc-
tion errors, median reconstruction errors, and standard
deviations (the latter two are given in parentheses). Ad-
ditionally, we report mean running times (the standard
deviation was comparatively small in all cases and is thus
not reported). Each simulation is performed for each of
the noise scenarios discussed above.

Several facts from Table 2 are worth noting:

e Algorithm II is usually dramatically faster than Al-
gorithm I, but the quality of the reconstruction is always
better with Algorithm I. This can be explained by the fact
that Algorithm I tries to fit simultaneously the complete
data, while Algorithm IT uses only one FT at a time for the
reconstruction.

e The random noise does not have an appreciable ef-
fect on the reconstruction quality of Algorithms I and II.

In Fig. 6 we show a typical difference image (black pixels
correspond to pixels in the reconstruction that differ from
the original image) obtained by Algorithm I in Simulation
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Table 2. Results of the Simulations. Each Entry is Based on 50 Simulations from Random Initial Guesses.
Errors (Defined as Number of Pixels That Differ from the Corresponding Pixels in the Original) are
Reported as Mean Pixel Errors, Followed by the Median and the Standard Deviation in Parentheses.
Median Reconstruction Times are Given in the Corresponding Columns.

Algorithm I Algorithm II

No. of Ambig. Pixels Error Time (s) Error Time (s)
Simul. 1: 103
No noise 0.1 (0.0/0.4) 21 5.5 (5.5/2.5) 4
Random noise 0.0 (0.0/0.3) 21 6.4 (6.5/3.1) 4
4 pixel shift 11.1 (8.0/7.8) 24 48.8 (49.0/5.5) 4
8 pixel shift 17.3 (17.0/6.6) 24 45.4 (50.5/13.2) 4
Simul. 2: 103
No noise 4.2 (4.0/0.7) 23 24.1 (18.0/14.1) 4
Random noise 4.4 (4.0/1.1) 24 23.9 (18.0/13.2) 4
4 pixel shift 28.8 (29.0/6.4) 24 47.6 (54.0/17.5) 4
8 pixel shift 44.4 (45.5/7.1) 23 54.0 (52.0/22.3) 4
Simul. 3: 311
No noise 0.0 (0.0/0.0) 61 8.4 (8.0/2.6) 4
Random noise 1.4 (0.0/7.5) 66 9.6 (7.5/11.7) 4
4 pixel shift 83.8 (81.0/19.9) 76 147.2 (144.5/10.2) 4
8 pixel shift 112.4 (113.0/18.4) 81 146.8 (144.0/10.0) 4
Simul. 4: 311
No noise 2.9 (3.0/1.0) 68 135.5 (123.0/22.0) 4
Random noise 2.8 (3.0/1.0) 68 133.3 (120.5/22.9) 4
4 pixel shift 90.8 (89.5/20.2) 92 151.4 (142.5/15.0) 4
8 pixel shift 128.7 (128.0/15.1) 93 153.0 (142.0/16.6) 4
Simul. 5: 1318
No noise 124.7 (124.5/17.3) 2265 582.0 (588.0/43.8) 106
Random noise 123.3 (121.0/18.6) 2124 584.8 (583.0/45.5) 106
4 pixel shift 478.6 (482.0/31.3) 2288 682.0 (682.5/58.5) 106
8 pixel shift 574.5 (577.5/22.2) 2398 682.8 (679.5/61.6) 106

5 (no noise). Reconstruction errors seemingly appear only
at the grain boundaries, which is not surprising if one
takes into account that data generation might introduce
some uncertainties.

As in [6,7,20-22], one could think of improving Algo-
rithm I by incorporating statistical information about
grain shapes (via Gibbs priors) into the reconstruction
process. However, we implemented this approach and did
not find an appreciable improvement in our experiments.

One may argue that in Algorithm II the tight support
constraints may not be available in practice. In this case
one can use loose supports in the initial reconstructions,
which could be tightened in subsequent reconstructions.
Algorithm I, in contrast to Algorithm II, does not rely on
support constraints, and thus its (already superior) per-
formance will not be negatively affected by the weakening
of support constraints.

Algorithms I and II, as presented, yield 2D images as
outputs. Generalizations of the methods to three dimen-
sions are straightforward. Algorithm I is particularly well
suited to be implemented in a parallel computing environ-
ment. Reconstructions in three dimensions can be ob-
tained from 2D reconstructions if the data are acquired
slice-by-slice. We remark, however, that CDI for multiple
grains in three dimensions does not necessarily corre-
spond to the 3D binary superposed phase retrieval prob-

lem as introduced in this paper if the data are acquired
truly in three dimensions; in that case, the data would in-
volve superposed FTs of projections of f1,...,fq-

6. CONCLUSIONS

We have introduced the binary superposed phase retrieval
problem, which generalizes the binary phase retrieval
problem. As a relevant application we discussed, under
simplifying assumptions, the reconstruction of grain
maps from coherent diffraction data. We proposed a
Monte Carlo based algorithm and another algorithm
based on standard phase retrieval methods. It appears
that the Monte Carlo algorithm gives far superior results
in cases where the superposition effects on the FTs cannot
be ignored.
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