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We introduce the binary superposed phase retrieval problem that aims at reconstructing multiple 0/1-valued
functions with nonoverlapping bounded supports from moduli of superpositions of several displaced copies of
their individual Fourier transforms. We discuss an application in coherent diffraction imaging of crystalline
objects, propose two algorithms, and evaluate their performance by means of simulations. © 2010 Optical So-
ciety of America
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. INTRODUCTION
econstructing a function from the modulus (i.e., absolute
agnitudes) of its Fourier transform (FT) constitutes the
ell-known phase retrieval problem: the phase of the com-
lex valued FT has to be retrieved before it can be in-
erted. This nonlinear inverse problem arises in optics,
stronomy, crystallography, and numerous other areas of
hysics and engineering [1–3] and is known as binary
hase retrieval problem [4] if the function is 0/1-valued.
A particular imaging application in which objects have

uccessfully been modeled by 0/1-functions is in incoher-
nt x-ray diffraction imaging of small crystals (called
rains) inside polycrystalline materials [5–7]. Coherent
iffraction imaging (CDI) of multiple grains however has
ot yet been accomplished, while non-crystalline nano-
tructures [8–10] and single nanoparticles [11,12] have
uccessfully been reconstructed. In CDI of single grains,
here is a direct relation between the diffraction pattern
nd the FT modulus of the grain’s shape function [13]. Ex-
erience with incoherent x-ray diffraction from multiple
rains suggests that diffracted signals from different
rains superpose, and that the modulus of this superposi-
ion can be measured on a detector. While the develop-
ent of a detailed imaging model is left for a future paper,
e show that “standard” phase retrieval algorithms (such
s Algorithm II introduced below) are not well suited for
econstructing objects from highly superposed data. Our
ain contribution is Algorithm I, which yields reconstruc-

ions from superposed data of superior quality compared
o our standard phase retrieval algorithm. Our presenta-
ion is deliberately kept rather general, because we feel
hat our algorithms are of independent interest in other
yet unexplored) application areas in which phase re-
rieval problems of superposed signals from binary objects
ccur.

We define the following generalization of the binary
1084-7529/10/091927-11/$15.00 © 2
hase retrieval problem; to our knowledge it has not been
onsidered in the literature before: the reconstruction of
ultiple 0/1-valued functions with nonoverlapping

ounded supports from moduli of superpositions of sev-
ral displaced copies of their individual FTs. In other
ords, the two-dimensional (2D) version of the problem is

he following (generalizations to higher dimensions are
traightforward): for given G , H�N (throughout this pa-
er N denotes the set of positive integers) and displace-
ent vectors tgh�R2 (with g=1, . . . ,G and h=1, . . . ,H)

he aim is to reconstruct the functions f1 :R2

�0,1� , . . . , fG :R2→ �0,1� with nonoverlapping bounded
upports from the knowledge of ��g=1

G �h=1
H fg

̂�·−tgh��, where

1, . . . , fG
̂ denote the FTs of f1 , . . . , fG, respectively. We call

his variant the binary superposed phase retrieval prob-
em. For G=H=1, we obtain as special case the binary
hase retrieval problem for a single object. However, we
o not place any restrictions on the displacement vectors
ther than that they should be known, and thus the prob-
em usually does not reduce to the binary phase retrieval
roblem.
Binary superposed phase retrieval poses major algo-

ithmic challenges. Standard phase retrieval algorithms,
n fact, aim at reconstructing a single function from its FT

odulus. Thus only a superposed function would be re-
urned as the output from such an algorithm that is ap-
lied to superposed FT modulus data. We aim, however,
t reconstructing the individual binary functions—and
his is the major algorithmic challenge.

Algorithms I and II introduced in this paper are the
rst algorithms for binary superposed phase retrieval. Al-
orithm I is a Monte Carlo method, while Algorithm II is
ased on the hybrid-input-output (HIO) algorithm [14].
ot surprisingly, Algorithm I is far superior than Algo-

ithm II in terms of reconstruction quality (see Section 5).
hile Algorithm I aims at reconstructing the individual
010 Optical Society of America
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unctions simultaneously, Algorithm II proceeds sequen-
ially. We remark that Algorithm I is more time efficient
han other comparable Monte Carlo methods, because we
ake use of the fact that the functions to be reconstructed

re binary.
Details of Algorithm I are discussed in Sections 2 and 3.

ere we remark only that Monte Carlo methods in imag-
ng applications follow the paradigm of simulating Mar-
ov chains; usually only the type of prior information and
he forward operator relating the image to the measure-
ents differ. One ends up with an algorithm that is use-

ess for practical applications if the priors and operators
annot be implemented effectively. Our particular for-
ard operator, however, can be implemented efficiently,
s we discuss in Section 3. For the (different) forward op-
rator used for phase retrieval of non-crystalline objects,
onte Carlo methods were developed in the 1980s

15–17]. With the exception of [18], they seem to have
een abandoned in favor of more effective methods, such
s the HIO algorithm.
In the application area of CDI of multiple grains, sev-

ral experimental imaging methods—such as holography
r ab initio phase retrieval for the complete oversampled
iffraction pattern [19]—are possible. However, experi-
ental concerns (signal/noise and sampling issues) imply

hat robust reconstructions could be considerably facili-
ated by incorporating additional prior information. The
pproach that we propose incorporates diffraction data
rom both incoherent and coherent x-rays. Additional in-
ormation in this case is that (1) the grains are binary ob-
ects (we consider the general grain shape and not the in-
ividual atom positions, as we discuss in Subsection 2.B)
nd (2) from existing x-ray methodology for incoherent
eams we can obtain (partial) low-resolution maps
6,7,20–22], which we propose to use as prior knowledge
or algorithms that aim at reconstructing objects from co-
erent x-ray diffraction data (see Fig. 1). Our algorithms
re capable of including such prior knowledge.

ig. 1. Schematic of grain map reconstruction from CDI data.
n addition to CDI data, we propose that incoherent x-ray diffrac-
ion images are acquired to provide partial grain maps as input
or Algorithms I and II. Note, however, that Algorithms I and II
o not strictly require such input data.
We remark that grains are of central interest in many
ranches of materials science, because polycrystalline
aterials (such as metals, alloys, and ceramics) are com-

osed of multiple grains, which in turn determine the ma-
erial’s physical, chemical, and mechanical properties.
ur results show that, under simplifying assumptions,
DI of multiple grains is possible with Algorithm I. Thus,
DI is potentially a vital imaging tool for materials sci-
nce.

. BINARY SUPERPOSED PHASE
ETRIEVAL
. Our General Inverse Problem
e define the binary superposed phase retrieval problem

nd discuss a relevant application in simplified terms. We
epeat from the introduction the definition of the 2D bi-
ary superposed phase retrieval problem: For given
, H�N and displacement vectors tgh�R2 (with g
1, . . . ,G and h=1, . . . ,H), the aim is to reconstruct the

unctions f1 :R2→ �0,1� , . . . , fG :R2→ �0,1� with nonover-
apping bounded supports from the knowledge of
�g=1

G �h=1
H fg

̂�·−tgh��. This is usually an ill-posed inverse
roblem since the binary phase retrieval subcase is al-
eady ill-posed. It is well known [23] that there are trivial
mbiguities in the phase retrieval problem; for instance,
t is impossible to determine the absolute position of fg,
ecause fg�·−t� with an arbitrary t has the same FT
odulus as fg. However, such ambiguities can often be re-

olved if prior information is available (see, e.g., [24]). The
ain prior information utilized in our case is provided by

he availability of partial reconstructions obtained by
ther imaging methods and the knowledge that the func-
ion values are 0/1 (the effectiveness of such binary con-
traints has been demonstrated in [4]). In the next sub-
ection we discuss an application for which our
ssumptions are largely justified.
We define the continuous color map f :R2→ �0,1, . . . ,G�

ith

f�x� = �g, if there is a g � �1, . . . ,G� with fg�x� = 1

0, otherwise. �
�1�

bviously, we can reverse this procedure by decomposing
into f1 , . . . , fG; thus reconstructing the individual func-

ions is equivalent to reconstructing the continuous color
ap.
In order to deal with the reconstruction problem on a

omputer, we need to discretize it. Following [[25], Section
] we define, for N�N and positive sampling distance d
R, the discretization fN,d : 	0,N−1
2→ �0,1, . . . ,G� of f by

fN,d�y1,y2� = f�−
N − 2y2 − 1

2
d,

N − 2y1 − 1

2
d� . �2�

n this definition 	0,N−1
2 denotes the set of all pixels
T= �y1 ,y2�, where the nonnegative integers y1 and y2 are

ess than N. Typically N and d would be chosen large
nough so that f�x�=0 if xT= �x1 ,x2� and max��x1� , �x2��
Nd /2. We refer to such an fN,d in Eq. (2) as an N�N
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olor image. Our algorithms aim at reconstructing such
olor images.

Since usually knowledge of N and d can be assumed or
s not needed, we sometimes simplify the notation by us-
ng f̄ for a discretized version of a function f. Motivated by
he application, in the next subsection, we refer to dis-
retizations of the data ��g=1

G �h=1
H fg

̂�·−tgh�� as detector
ata.
To help the reader distinguish between continuous and

iscrete concepts, we use x (position in real space), u (vec-
or in Fourier space), and p (position on a detector)
hroughout this paper to denote real vectors. The corre-
ponding discrete counterparts are denoted by y (pixel in
eal space), v (vector in discretized Fourier space), and q
pixel on a detector). We note that, for any fg :R2→ �0,1�,
he discrete Fourier transform (DFT) fg

N,d̂ is an approxi-
ation of the discretization of the FT fg

̂ with the same N
ut with a sampling distance 1/Nd. Hence, for any fixed
, we can make the sampling distance in Fourier space as
mall as we wish by choosing N sufficiently large (this is
sually referred to as zero-padding).

. Application: Coherent Diffraction Imaging of
ultiple Undeformed Grains
he aim in this application is to reconstruct collections of
rains (small crystals) inside bulk materials from (mono-
hromatic) coherent x-ray diffraction images. The term
collection” means in our context that the relative posi-
ions of the grains are relevant. Typical collections are
pace-filling—for example, if the collection represents a
ample from a polycrystalline material—but generally
oids might be present, too. Grains are naturally three-
imensional (3D) objects, but by considering 2D slices
hrough the sample we restrict our attention to the 2D
ase.

Initially, two aspects of a grain are relevant: (1) the po-
itions in space occupied by the grain and (2) the internal
attice structure specifying the positions of the grain’s
nit cells. Signal/noise ratios and detector technology,
owever, imply that one cannot aim at atomic resolution
or grain imaging of bulk materials (see, e.g., [26] for an
nsuccessful attempt in electron microscopy). One thus
eeds to make assumptions about the imaged material. In
ur case, we assume that the grain lattice is perfect,
hich means that the grains are undeformed (see [6,7] for
n imaging application in incoherent x-ray diffraction);
eformed grains are outside the scope of this paper.
To date, collections of grains have been reconstructed

nly from incoherent x-ray diffraction data, but higher-
esolution images are expected to be obtained from coher-
nt x-ray diffraction data. To facilitate robust reconstruc-
ions from coherent x-ray diffraction data, we propose
ncorporating additional diffraction images from incoher-
nt x-ray diffraction data into the reconstruction process
see Fig. 1). In fact, the lattice of undeformed grains can
e inferred already from incoherent x-ray diffraction data
27,28], and the reconstruction task from coherent x-ray
iffraction data thus reduces to the task of determining
or each grain the positions it occupies in space. Figure
(e) shows a 2D collection of grains; the internal lattice
tructure is hidden.
Referring to the global sample coordinate system, we
an describe each grain, labeled by a number g
�1, . . .G�, by two parameters fg and Bg, where fg :R2

�0,1�, the so-called shape function, is a function whose
necessarily bounded) support in the sample is occupied
y the grain, and Bg�R2 is a set of two basis vectors de-
ning the internal 2D lattice structure. A collection of G
rains is thus specified by f1 , . . . , fG and B1 , . . . ,BG. Posi-
ions in real-world samples are occupied by at most one
rain, and thus f in Eq. (1) and its discretized version fN,d

n Eq. (2), called the grain map in this application, are
ell-defined. For short, we refer to a grain labeled g as
rain g; note that this is also the color of the pixels occu-
ied by that grain.

. Forward Model
n the following we briefly describe our forward model,
sed to obtain from G, H, and fg, Bg, tgh, for g=1, . . . ,G,
=1, . . . ,H, the corresponding coherent x-ray diffraction

mage measured on a detector. For a single grain g, it is
ell known [13] that measured detector intensities are
roportional to the squared modulus of superpositions of
Ts of shape functions fg, and displacement vectors tgh
orrespond to the reciprocal lattice positions (Bragg
eaks) of the grain. The theory of coherent x-ray diffrac-
ion from multiple grains has not yet been developed in
etail, but it is plausible that the signals (for Bragg dif-
raction) from multiple grains superpose with a subse-
uent phase loss owing to the detector reading. It is well
nown that there is a one-to-one correspondence between
rain lattices and their reciprocal lattices. The one-to-one
orrespondence is given—if we model both lattices by
ums of delta distributions—by the FT [29,30]. Thus from
g we can compute tgh, for h=1, . . . ,H.
Fourier space can be probed by a properly aligned de-

ector. If the detector had an arbitrarily fine resolution,
e could measure values proportional to ��g=1

G �h=1
H fg

̂�·
tgh��2. We are free to set the proportionality factor in-
olved to 1, because in practice one observes that the
echnical detector implementation introduces yet another
actor. Taking square roots shows that the measured data
re exactly of the form stated in the binary superposed
hase retrieval problem. The detector, however, has a fi-
ite resolution. Thus an additional discretization step is

nvolved, which is discussed in Subsection 3.B.

. Inverse Problem
ssuming, as previously discussed, that G, H, and Bg, tgh,

or g=1, . . . ,G, h=1, . . . ,H, are known, the inverse prob-
em in this application is to reconstruct the grain map f̄
=fN,d, for suitable selected N and d). We have discussed
n the previous section that this is a binary superposed
hase retrieval problem.

. ALGORITHM I: MONTE CARLO
PPROACH
ur first method is a Monte Carlo method. Similar algo-

ithms have been developed for the reconstruction of
rain maps from tomographic diffraction data that have
een acquired by incoherent x-rays [6,7,20–22]. The main
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ifference from the algorithms presented in those papers
s that here we have to use a totally dissimilar forward
perator.

Let I denote the set of all possible N�N color images
ith at most G+1 colors, and let D denote the set of all
ossible detector data. Elements of these sets can be re-
rranged into vectors from finite-dimensional real vector
paces, and we thus have norms, such as the �1-norm 
 
1
t our disposal. For L� 	0,N−1
2 and finit�I, we define
�finit ,L� to be the set of color images f̄�I whose pixel val-
es are equal to those of finit at each pixel in 	0,N
1
2\L. The idea behind this notation is that we can

hink of finit as a partial image reconstruction obtained by
ther methods and of L as being the set of the so-called
mbiguous pixels, whose values are to be reconstructed
ith our method. We explicitly allow L= 	0,N−1
2, which
mounts to I�finit , 	0,N−1
2�=I. Moreover, we assume
hat L is a subset of the union of the supports of f1 , . . . , fG.
t is straightforward to adapt our algorithm to the situa-
ion in which this assumption is violated.

Let P :I→D denote the forward operator mapping each
olor image f̄ to its detector data, and let P0�D denote
he measured detector data. As for many inverse prob-
ems, the general idea is to find

f�
ª arg minf̄�I�finit,L�
P�f̄� − P0
1. �3�

technique borrowed from statistical mechanics is to in-
roduce the family of probability distributions
� :I�finit ,L�→R+ (where ��R+), with

���f̄� =
1

Z�

exp�− �
P�f̄� − P0
1�, �4�

here Z� is a (usually unknown) normalizing constant.
istributions of the form in Eq. (4) are known in the lit-

rature as Gibbs distributions [31]. We “solve” Eq. (3) by
ampling from the distribution ��. If F denotes the set of
inimizers in Eq. (3), then one can prove (Proposition

.2.1 in [31]) that

Fig. 2. Our general Metropolis
��f̄� ª lim
�→�

���f̄� =�1/�F�, if f̄ � F
0, otherwise.� �5�

n other words, sampling from �� at high � yields the
inimizers with a high probability. Estimates for � are of-

en hard to obtain and often too weak for practical pur-
oses. In practice, however, it often turns out that one can
ample efficaciously if � is chosen reasonably large. We
emark in passing that a common technique is to vary �
ccording to some “cooling” scheme, and the resulting al-
orithm becomes a simulated annealing algorithm [32].
e do not follow this approach—in this paper � is fixed.
We have not yet discussed how to sample from ��. The
etropolis algorithm introduced in [33] achieves exactly

his. It simulates a Markov chain and, after a suitably
ong “burn-in phase,” it samples from ��. Our Algorithm I,
ased on the Metropolis algorithm, is outlined in Fig. 2.
We highlight four aspects of Algorithm I:

• only ambiguous image pixels as specified in the in-
ut are processed;
• in theory, the initial assignment of colors to the am-

iguous pixels in finit is irrelevant—in our implementa-
ion we choose a random assignment;

• the algorithm reduces to the original Metropolis al-
orithm if f̄ instead of f� is returned at termination; and

• the terms ���f̄�� /���f̄� and ���f�� /���f̄� can be evalu-
ted without knowledge of Z�.

n summary, the core of Algorithm I is the Metropolis-
ased algorithm (Fig. 2) applied to �� as defined in Eq. (4).
n Subsections 3.A and 3.B we discuss how P is imple-
ented.

. Fast Updates of the Discrete Fourier Transforms
he key step of the Metropolis algorithm is the proposal
f changing the current color assignment to a pixel y�

	0,N−1
2. This affects only two discretized functions,
.e., the value of an f̄a�y�� changes from 0 to 1, while the
alue of an f̄b�y�� changes from 1 to 0. For the forward

algorithm for “solving” Eq. (3).
-based
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rojection we need to update their 2D DFTs. However, we
o not have to resort to a full recomputation using a fast
ourier transform (FFT) algorithm. To see this let f̄a,1 (re-
pectively, f̄b,0) denote the function resulting from f̄a (re-
pectively, f̄b) after the change, and let fa,1

N,d̂ (respectively,

b,0
N,d) and fa

N,d̂ (respectively, fb
N,d̂) denote the corresponding

FTs, respectively. We immediately obtain

fa,1
N,d̂�v� = �

y�	0,N − 1
2

f̄a,1�y�exp�− 2�ivTy/N�

= f̄a,1�y��exp�− 2�ivTy�/N�

+ �
y�	0,N − 1
2\�y��

f̄a,1�y�exp�− 2�ivTy/N�

= exp�− 2�ivTy�/N� + �
y�	0,N − 1
2

f̄a�y�

�exp�− 2�ivTy/N�

= exp�− 2�ivTy�/N� + fa
N,d̂�v�, �6�

or all v� 	0,N−1
2. In the same way, we obtain for the
ther change that fb,0

N,d̂�v�= fb
N,d̂�v�−exp�−2�ivTy� /N�. We

pdate the DFTs according to these formulas, i.e., we add
or subtract, respectively) the term exp�−2�ivTy� /N� from
he previous DFT. Computing the DFTs in this way gives
n O�N2� algorithm—FFT algorithms [34], on the other
and, would require a computation time of the order
�N2 log�N2��.
To achieve an additional speed-up, one could compute

nd store the values of exp�−2�ivTy� /N� prior to the ex-
cution of the Metropolis algorithm. For memory reasons
e decided against storing the values for all N4 possible

vT ,y�T�= �v1 ,v2 ,y1
� ,y2

��-tuples. In our implementation we
tore the values of exp�−2�iv1y1

� /N� for all �v1 ,y1
��-pairs.

he evaluation of exp�−2�ivTy� /N� requires then only
ne complex multiplication. A further speed-up is dis-
ussed in Subsection 3.C.

. Computation of Simulated Detector Images
n order to calculate the �1-norm in Eq. (4) we need to es-
imate P�f̄� for each pixel for which we have a detector
eading in P0. Let us denote the spacing between detector
ixel centers (both horizontally and vertically) by �; this is
he sampling distance of the detector data. As explained
n the last paragraph of Subsection 2.A, for any fg :R2

�0,1�, the discretization of the FT fg
̂ with a sampling

istance ��=1/Nd can be estimated from fg
N,d.

During the execution of the Metropolis algorithm (Fig.
), we need to calculate P�f̄� for various color images f̄. Let
s first look at the special simple case when H=1 and tg1

s the zero vector, for g=1, . . . ,G. Then the detector data
re a discretization of ��g=1

G �h=1
H fg

̂�·−tgh��= ��g=1
G fg

̂� · ��. We
ee that, by an appropriate selection of N and d, we can
ake sure that � /���N. This means that in this case the

alues of P�f̄� at the detector pixels can be directly esti-
ated by decomposing f̄ and taking DFTs.
Consider now the general case. What we need is a
ethod for estimating at the detector pixels the values of
g�·−p� for an arbitrary p�R2. As in the previous para-
raph, we generate an approximation to a discretization
f fg

̂� · � with sampling distance ��. By shifting the points
t which fg

̂� · � has been estimated by p, we get estimates
t certain points on the detector plane of fg

̂�·−p�. This
ituation is depicted in Fig. 3: the shaded dots indicate lo-
ations of the detector readings and the white dots indi-
ate the places where we have estimates of fg

̂�·−p�. By se-
ecting � /���N large enough, we can ensure that for
very shaded dot p� there will be an empty dot p� that is
ear enough to it so that fg

̂�p�−p� can be approximated by
he known fg

̂�p�−p�. Furthermore, and this is important
or the computational efficiency, due to the fact that � /��
N, for any p we need to find only one such pair of points
� and p�; for all other detector pixels the contribution of

g�·−p� can be identified by a simple subsampling (using
ampling distance �) of the discretization of fg

̂� · � with
ampling distance ��; see Fig. 3. (This technique is similar
o the so-called footprint-based texture mapping in com-
uter graphics.) We remark that the process is repeated
or several fg’s and p’s. The detector values are not over-
ritten: all complex values at each detector pixel are

ummed up. The very last step to obtain the final detector
mage P�f̄� is to replace each complex valued detector
ixel entry with its absolute value.

. Additional Code Optimizations
everal other speed-ups have been implemented. The fol-

owing list gives a short overview:

• Updating of the simulated detector image: We have
iscussed in Subsection 3.A how we update the DFTs of a
ingle f̄g. In a similar way we update the whole simulated
etector image. We are not only keeping the simulated de-
ector image, i.e., the modulus of the superposed DFTs,
ut we are also storing the complex values in a different
rray. Now, if two DFTs are changed in a Metropolis pro-
osal step, then we first subtract both unchanged DFTs
placed at positions as described in Subsection 3.B) from
he complex valued array. In a second step, we add the
FTs of the changed DFTs to the complex valued array.
inally, we obtain the simulated detector image by taking

δ

*
p

δ

p

p

ig. 3. Computation of P�f̄� (see Subsection 3.B). Detector pixels
re depicted as shaded dots. Locations at which estimates, pro-
ided by a shifted DFT, are available are depicted as white dots.
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he absolute values of these complex numbers. The de-
cribed updating technique has the advantage that only
wo DFTs are involved when the simulated detector im-
ge is recalculated. The drawback, however, is that
ounding errors might accumulate.

• Avoiding unnecessary reassignments of large data ar-
ays: At each step of the Metropolis algorithm one needs
o compute the simulated detector image for the proposed
ixel change. We store these values in a different array,
ecause this permits a quick recovery of the old detector
alues in case the proposal is rejected. We only need to
eep a pointer telling us which of the two arrays contains
he current simulated detector image.

• Look-up tables for frequent computations: The idea of
sing look-up tables for frequently occurring computa-
ions has already been discussed for the DFT updates. We
lso use look-up tables in another situation: when the
FTs are copied onto the various places on the detector
ne needs to ensure that no pixels outside the detector are
onsidered. Instead of performing range checks in each it-
ration, we store the permissible ranges for all DFTs and
isplacement vectors in a look-up table. Thus, we need no
ange checks; we use only loops with variables in the
ange indicated by the look-up table.

. ALGORITHM II: ADAPTATION OF PHASE
ETRIEVAL ALGORITHMS

n the following we introduce a second method for binary
uperposed phase retrieval, called Algorithm II, that uses
s a subroutine a standard phase retrieval method. In the
ext subsection we discuss the general framework of Al-
orithm II; details of the subroutine are given in Subsec-
ion 4.B.

. Adaptation
hase retrieval methods reconstruct single functions from
ingle FTs. In certain cases we can reconstruct f1 , . . . , fG
ndependently. For example, if for each g�� �1, . . . ,G�
here is an h�� �1, . . . ,H� such that, for all u in a neigh-
orhood of tg�h�, we have

��
g=1

G

�
h=1

H

fg
̂�u − tgh�� � �fg�

̂�u − tg�h���, �7�

hen we could try to reconstruct fg� from the data using a
hase retrieval method. This motivates the following al-
orithm, which is our Algorithm II (with an integer pa-
ameter pcycles): select for each g�� �1, . . . ,G� the h�
�1, . . . ,H� whose minimum distance to any other dis-

lacement vector tgh is maximal and reconstruct fg� with
cycle iterations of a phase retrieval algorithm using the
ata ��g=1

G �h=1
H fg

̂�u−tgh��, with u being in the neighbor-
ood of tg�h�.
Equation (7) is a valid approximation only in special

cattering situations in which superposition effects from
ifferent FTs are small. Our simulations in Section 5 in-
lude several scattering situations, and the results can
hus be interpreted as testing whether Algorithm II gives
seful results in situations in which Eq. (7) does not
trictly hold.
. HIO
he phase retrieval algorithm that we use as a subroutine

n Algorithm II is basically the HIO algorithm introduced
n [14]. Our exposition closely follows [35]. We remark
hat one could replace HIO with any other phase retrieval
lgorithm, e.g., with the difference map [36].
HIO follows the Gerchberg–Saxton [37] scheme for re-

onstructing a function f from its FT modulus �f̂� by gen-
rating a sequence �sk�k�N of functions that approximate
. Starting with an initial guess s0 (usually randomly cho-
en; in our case function values are randomly chosen from
0,1}), the iteration step from sk to sk+1 is as follows: (1)
he amplitude of the FT of sk is replaced with �f̂�, (2) the
nverse FT of this function yields a function sk�, and finally
3) we obtain sk+1 from sk, sk�, and prior information.

Algorithms following the Gerchberg-Saxton scheme dif-
er in the implementation of Step (3). For real non-
egative valued functions f—as in our case—one typically
ssumes that an estimate Sobject of the support of f is
vailable (details for our choice in the simulations are
iven in Section 5). Let ck be defined as

ck�x� = �R�sk��x��, if x � Sobject and R�sk��x�� � 0

0, otherwise, �
�8�

here R�sk��x�� denotes the real part of the complex value

k��x�. The idea is that sk��x� violates prior knowledge if
ck�x�−sk��x���	, where 	 denotes a prescribed tolerance
evel (see Subsection 5.B). In HIO we have

sk+1�x�

= �sk��x�, if �ck�x� − sk��x�� 
 	

sk�x� + �HIO�ck�x� − sk��x��, otherwise, �
�9�

ith a prescribed system parameter �HIO (see Subsection
.B). Algorithm II thus performs pcycle iterations of HIO;
hereafter the reconstructed function values are rounded
o 0 or 1 depending on whether or not the real part is
maller than 0.5.

. SIMULATIONS
n the following we describe five sets of simulations that
e performed on a personal computer with a 2.66 GHz In-

el Core2Duo processor and 3.23 Gbytes random access
emory. The algorithms have been implemented as C

rograms running under Windows XP. Details of the five
imulations are discussed below; a summary is given in
able 1.

. Data Generation
or our tests we selected three grain maps of aluminum
amples that were acquired by electron microscopy, more
pecifically, by electron backscattered diffraction (EBSD).
n what follows we refer to them as Maps I–III. While we
im (in the next subsection) at reconstructing maps fN,d,
e remark that each EBSD map is a higher-resolution
iscretization fKN,d/K of a continuous color map f. By in-
roducing K, we ensure that the discretization for the
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imulated data generation is somewhat independent from
nd is more accurate than the discretization used for the
econstruction. This is a way of avoiding the commitment
f the “inverse crime” of using the same model for gener-
ting the data for testing an algorithm as the one used in
he design of the algorithm. These fKN,d/K’s are shown in
he left column of Fig. 4. For Maps I and II (containing
=2 grains) we have N=64 and K=2. For Map III (con-

aining G=11 grains) we have N=64 and K=3.
We generate the data (i.e., the moduli of the superposed

Ts on the detector) from these maps at the sampling dis-
ance 1/Nd, which is the same as the sampling distance

Table 1. Overview of the Data Gene

Simulation Input Map
Size of Input Map

�KN�KN�

1 I 128�128
2 I 128�128
3 II 128�128
4 II 128�128
5 III 192�192

ig. 4. (a) Map I comprising two grains, (b) corresponding fN,d

ith N=64 and ambiguous pixels (white) for Simulations 1 and
, (c) Map II comprising two grains, (d) corresponding fN,d with
=64 and ambiguous pixels (white) for Simulations 3 and 4, (e)
ap III comprising 11 grains, (f) corresponding fN,d with N=64

nd with ambiguous pixels (white) for Simulation 5.
hen we approximate the FT fg
̂ by the DFT fg

KN,d/K̂ (see
he last paragraph of Subsection 2.A). However, we make
he detector dimension Ndet�Ndet larger than KN�KN
ince the detector has to accommodate also the shifted
ersions of fg

̂. The actual values used in our five simula-
ions are shown in Columns 2–5 of Table 1.

For each grain g we specify a lattice basis �ag ,bg� and
efine the set of tgh’s as ��ag+�bg :� ,�� �−1,0,1��. We as-
ume that tgh=0 is in the center of the detector. Simula-
ion 1 differs from Simulation 2 exactly in the choice of
gh’s, while tgh’s are equal in Simulation 1 (respectively,
imulation 2) and Simulation 3 (respectively, Simulation
). Instead of listing tgh for each simulation, we choose to
eport two numbers “# Spots” and Dbest; the former gives
he total number of tgh’s whose discretized version t̄gh hits
he detector, while the latter gives information about the
eneral FT “overlap.” Since we choose for HIO the FT that
s furthest apart from any other FT (see Subsection 4.A),
t is natural to define Dbest as min�D1 , . . .DG�, where Dg

maxh min�g�,h����g,h�
t̄gh− t̄g�h�
� with t̄gh and t̄g�h� denot-
ng the discretized versions of tgh and tg�h�, respectively,
hat appear on the detector. The values of # Spots and

best in our simulations are given in Columns 6 and 7 of
able 1, respectively.
The detector data in our simulations are subjected to

oise. The exact nature of the noise needs to be deter-
ined in future experiments, but at present it is clear

hat one needs to distinguish between random noise in-
roduced by the detector reading and geometric noise that
s due to uncertainties in the experimental geometry. To
efine these types of noise in precise terms, we need to in-
roduce some notations. Let det_value�q� denote the
alue of the detector pixel q of the Ndet�Ndet detector im-
ge. A detector shift by, say s pixels, is obtained by replac-
ng det_value�q� with det_value�q+ �s ,0�T�, with
et_value�q+ �s ,0�T�=0 if q+ �s ,0�T� 	0,Ndet−1
2. In
ur simulations we distinguish four different noise sce-
arios:

• No noise: In this case no detector pixel value is al-
ered.

• Random noise: The no noise detector image is altered
y setting det_value�q�←max�0,det_value�q�+r�,
here r is chosen uniformly at random from the

nterval 	−100 det_value�q� , 100 det_value�q�
 for
� 	0,Ndet−1
2.
• 4 pixel shift: The no noise detector image is shifted

y 4 pixels.
• 8 pixel shift: The no noise detector image is shifted

y 8 pixels.

in the Simulations (See Section 5)

etector Dimension
�Ndet�Ndet� K # Spots Dbest

200�200 2 14 35
200�200 2 16 25
200�200 2 14 35
200�200 2 16 25
500�500 3 69 21
ration

D
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etector data of all five no noise simulations are depicted
n Fig. 5.

. Recovery
s mentioned above the aim is to reconstruct the color im-
ge fN,d for Maps I–III. Since we assume that prior infor-
ation about approximate grain positions is available, we

im at reconstructing only “ambiguous pixels” and not the
hole color image. We assume that the approximate grain
osition is given by means of the grain’s �=fg

N,d� minimal
ounding box that is extended by a number of Nmargin pix-
ls at each border and by some partial reconstructions
hat might have been obtained by other methods (e.g., by
ncoherent diffraction imaging). We simulate the partial
econstruction by eroding the grain boundaries. Those re-
oved pixels that fall into the extended bounding boxes of

t least two grains are defined to be the ambiguous pixels
n our simulations. The right column of Fig. 4 shows the
N,d’s together with the ambiguous pixels (colored white),
nd the total number of ambiguous pixels in the fN,d’s is
iven in the second column of Table 2. Note that low-
ccuracy position information and lattice structure are
mplicitly incorporated into Algorithm II via the support
onstraints and the FT data that require that the tgh’s
Bragg peak positions) are known.

ig. 5. Detector data for Simulations (a) 1, (b) 2, (c) 3, (d) 4, and
e) 5.
We set up five simulations as summarized in Table 1.
he parameter Nmargin is set to 8; only in Simulation 5 we
hoose Nmargin=0. The only difference between Simula-
ions 1 and 2 and Simulations 3 and 4 is that a different
nput map is used, while from Simulation 1 to Simulation

we only vary the set of tgh’s. Simulation 5 tests the re-
onstruction of a more complex grain map.

A common technique adopted in many stochastic algo-
ithms (and the HIO algorithm [35]) is to repeat recon-
tructions from random initial guesses and to return the
olution with the best data fit (or objective function value)
hat occurred over these independent runs. We follow this
pproach and use for Algorithm I two independent recon-
tructions, while for Algorithm II we use five. Details
bout the initial guesses are discussed below. For each
imulation 50 reconstruction results are obtained using
lgorithms I and II.
The number of iterations for all algorithms is
c_cycles=HIO_cycles=200. Moreover, the following
pecific parameters are used:

Algorithm I: The parameter � in Eq. (4) is set to �
20. The candidate colors for each ambiguous pixel are
estricted to be the colors of the grains into whose ex-
ended bounding box it falls. Premature termination oc-
urs if no change in the objective function �� is observed
ver 10 of the mc_cycles=200 iterations.

Algorithm II: In agreement with [14,35] we choose 	
0.01 and �HIO=0.9. The support Sobject of each grain is
hosen as tight as possible, i.e., as the set of those pixels
f the extended minimal bounding box that are either pix-
ls in that grain or ambiguous. In each HIO iteration we
nforce prescribed pixel values as additional object do-
ain constraints. As initial guesses we randomly assign

he value of 0/1 to each ambiguous pixel in Sobject (0 cor-
esponding to the background and 1 corresponding to the
rain pixel). Grains are processed in a random order.

. Results and Discussion
n Table 2 we report the results of the simulations. The
econstruction error is defined as the number of pixels in
he reconstruction that differ from the pixels of the true
olor image. Since each simulation is based on 50 results
btained by each algorithm, we report mean reconstruc-
ion errors, median reconstruction errors, and standard
eviations (the latter two are given in parentheses). Ad-
itionally, we report mean running times (the standard
eviation was comparatively small in all cases and is thus
ot reported). Each simulation is performed for each of
he noise scenarios discussed above.

Several facts from Table 2 are worth noting:

• Algorithm II is usually dramatically faster than Al-
orithm I, but the quality of the reconstruction is always
etter with Algorithm I. This can be explained by the fact
hat Algorithm I tries to fit simultaneously the complete
ata, while Algorithm II uses only one FT at a time for the
econstruction.

• The random noise does not have an appreciable ef-
ect on the reconstruction quality of Algorithms I and II.

n Fig. 6 we show a typical difference image (black pixels
orrespond to pixels in the reconstruction that differ from
he original image) obtained by Algorithm I in Simulation
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(no noise). Reconstruction errors seemingly appear only
t the grain boundaries, which is not surprising if one
akes into account that data generation might introduce
ome uncertainties.

As in [6,7,20–22], one could think of improving Algo-
ithm I by incorporating statistical information about
rain shapes (via Gibbs priors) into the reconstruction
rocess. However, we implemented this approach and did
ot find an appreciable improvement in our experiments.
One may argue that in Algorithm II the tight support

onstraints may not be available in practice. In this case
ne can use loose supports in the initial reconstructions,
hich could be tightened in subsequent reconstructions.
lgorithm I, in contrast to Algorithm II, does not rely on
upport constraints, and thus its (already superior) per-
ormance will not be negatively affected by the weakening
f support constraints.

Algorithms I and II, as presented, yield 2D images as
utputs. Generalizations of the methods to three dimen-
ions are straightforward. Algorithm I is particularly well
uited to be implemented in a parallel computing environ-
ent. Reconstructions in three dimensions can be ob-

ained from 2D reconstructions if the data are acquired
lice-by-slice. We remark, however, that CDI for multiple
rains in three dimensions does not necessarily corre-
pond to the 3D binary superposed phase retrieval prob-

Table 2. Results of the Simulations. Each Entry is
Errors (Defined as Number of Pixels That Differ

Reported as Mean Pixel Errors, Followed by the
Median Reconstruction Times are

No. of Ambig. Pixels

imul. 1: 103
No noise

Random noise
4 pixel shift
8 pixel shift

imul. 2: 103
No noise

Random noise
4 pixel shift
8 pixel shift

imul. 3: 311
No noise

Random noise
4 pixel shift
8 pixel shift 1

imul. 4: 311
No noise

Random noise
4 pixel shift
8 pixel shift 1

imul. 5: 1318
No noise 1

Random noise 1
4 pixel shift 4
8 pixel shift 5
em as introduced in this paper if the data are acquired
ruly in three dimensions; in that case, the data would in-
olve superposed FTs of projections of f1 , . . . , fG.

. CONCLUSIONS
e have introduced the binary superposed phase retrieval

roblem, which generalizes the binary phase retrieval
roblem. As a relevant application we discussed, under
implifying assumptions, the reconstruction of grain
aps from coherent diffraction data. We proposed a
onte Carlo based algorithm and another algorithm

ased on standard phase retrieval methods. It appears
hat the Monte Carlo algorithm gives far superior results
n cases where the superposition effects on the FTs cannot
e ignored.
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Algorithm I Algorithm II

rror Time (s) Error Time (s)

0.0/0.4) 21 5.5 (5.5/2.5) 4
0.0/0.3) 21 6.4 (6.5/3.1) 4
8.0/7.8) 24 48.8 (49.0/5.5) 4
17.0/6.6) 24 45.4 (50.5/13.2) 4

4.0/0.7) 23 24.1 (18.0/14.1) 4
4.0/1.1) 24 23.9 (18.0/13.2) 4
29.0/6.4) 24 47.6 (54.0/17.5) 4
45.5/7.1) 23 54.0 (52.0/22.3) 4

0.0/0.0) 61 8.4 (8.0/2.6) 4
0.0/7.5) 66 9.6 (7.5/11.7) 4
1.0/19.9) 76 147.2 (144.5/10.2) 4
13.0/18.4) 81 146.8 (144.0/10.0) 4

3.0/1.0) 68 135.5 (123.0/22.0) 4
3.0/1.0) 68 133.3 (120.5/22.9) 4
9.5/20.2) 92 151.4 (142.5/15.0) 4
28.0/15.1) 93 153.0 (142.0/16.6) 4

24.5/17.3) 2265 582.0 (588.0/43.8) 106
21.0/18.6) 2124 584.8 (583.0/45.5) 106
82.0/31.3) 2288 682.0 (682.5/58.5) 106
77.5/22.2) 2398 682.8 (679.5/61.6) 106
Based
from
Med
Give
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