
Technische Universität München
Fakultät für Elektrotechnik und Informationstechnik

Human-centered Assistive Robotics (HCR)

Robotic Tasks Acquisition via Human Guidance:
Representation, Learning and Execution

Matteo Saveriano

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und
Informationstechnik der Technischen Universität München zur Erlangung

des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.)
genehmigten Dissertation.

Vorsitzender: Prof. Gordon Cheng, Ph.D.

Prüfer der Dissertation:
1. Prof. Dongheui Lee, Ph.D.
2. Prof. Alberto Finzi, Ph.D.

University of Naples / Italy

Die Dissertation wurde am 10.10.2017 bei der Technischen Universität
München eingereicht und durch die Fakultät für Elektrotechnik und In-
formationstechnik am 02.12.2017 angenommen.





To my parents and my beloved Francesca

3





Acknowledgment

My passion for science started when I was just a child and constantly grew up during my life. I
was always aware about my passion for scientific matters, but, looking at the child I was some
years ago, I could never have imagined that I will finally work in robotics. During my childhood
and adolescence, I was more fascinated from natural phenomena, and the laws behind them, than
from electronics and machines. I fallen in love with robotics during my university studies, thanks
to the lectures of prof. Bruno Siciliano. I will always be grateful to prof. Siciliano for his amazing
lectures, for his humor, and for his passion for robotics.

Since 2012 I joined the Human-Centered Assistive Robotics group (HCR) at Technical Uni-
versity of Munich, where I had the possibility to conduct amazing research in robotics. I will
always be grateful to my advisor Prof. Dr. Dongheui Lee for this great opportunity. She hired
me when I was a fresh automatic control graduate and helped me in every aspect of my research.
She showed me a novel and exiting research field, where machine learning and control theory are
combined together and applied to robotics. Our discussions, her criticisms, and the freedom she
gave me to explore new areas significantly contributed to develop my scientifically rigorous mind-
set. Prof. Lee gave me also the opportunity to work on two amazing research projects, namely the
SAPHARI (FP7 ICT-287513) and the ROLITOS (9.01) projects. Thanks to the European commu-
nity, the German Research Foundation (DFG), and the International Graduate School of Science
and Engineering for supporting my research activities.

The HCR team is not big but really heterogeneous. For several mounts I was the only European
person in the group. I would like to thank my colleagues Affan Pervez and Shile Li for helping in
the Machine Learning in Robotics course, for which we are the teaching assistant. Thanks Karna
Potwar for your jokes and for the discussions about Italian and British Soccer Leagues. Sangik An
was always an important and mathematically sound opinion to have. Dr. Pietro Falco’s mentorship
was of fundamental importance in a very delicate moment of my PhD. Thanks Pietro for the
never ending discussions on control theory and machine learning, and for the fruitful cooperation.
Finally, thanks to Susanne Schneider for helping with TUM bureaucracy and formalities.

During my PhD years I had the chance to spend three mounts abroad. I decided to visit the
Prisma Lab at University of Naples, hosted by Prof. Bruno Siciliano and Prof. Alberto Finzi.
At a first sight, this choice seems a bit funny. Why going back to the university were I studied
instead of visiting a novel place? Well, I conducted a significant amount of research in cooperation
with Prof. Finzi and with my friend and colleague Dr. Riccardo Caccavale. Hence, I preferred to
continue my research activity instead of visiting a fancy place.

Living in Munich gave me also the opportunity to meet new people and friends. Thanks Gi-

5



anluca Garofalo, Cristiano Moschini, Daniele Salvigni, Fabio Bracci, Catalina Daniela Istrate,
Ksenia Klionovska, Ingrid Cola Cola, Mohsen Koboli, Cristian Axenie, Lorenzo Santoro, and
Umberto Scarcia for the great parties in Munich, and thanks to my old friends Vincenzo Nigro,
Generoso De Biase, and Claudio Basile for the great parties back home. I was missing you for
such a long time, but luckily we are still friends Fabio Carbone and Sonia Stornaioulo. I cannot
forget my “babe” Francesca Mele, a light in the darker night of my life. Special thanks to my par-
ents, to my brother Danilo and my sister Ilenia. I would not be here without your infinite support.

Munich, September 2017 Matteo Saveriano

6



Contents

Abstract 11

List of Publications 15

Nomenclature 19

List of Figures 21

List of Tables 29

1. Introduction 31
1.1. Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.2. Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.3. Publication note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2. Background research and contributions 37
2.1. Robotic tasks representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.1. Dynamical system based representations . . . . . . . . . . . . . . . . . . 37
2.1.2. Invariant representations . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.1.3. Representation of structured tasks . . . . . . . . . . . . . . . . . . . . . 43

2.2. Robotic tasks learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.1. Incremental skills learning from demonstrations . . . . . . . . . . . . . . 44
2.2.2. Learning structured tasks from demonstrations . . . . . . . . . . . . . . 45

2.3. Robotic tasks execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.1. Reactive motion planning . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.2. Execution of structured tasks . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3. Representation of robotic tasks 53
3.1. Robotic skills representation using stable dynamical systems . . . . . . . . . . . 53

3.1.1. Learning stable motions from a single demonstration . . . . . . . . . . . 54
3.1.2. Gaussian mixture regression based dynamical systems . . . . . . . . . . 54
3.1.3. Contracting Gaussian mixture regression . . . . . . . . . . . . . . . . . 55
3.1.4. Results and comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7



Contents

3.2. Invariant representations of Cartesian trajectories . . . . . . . . . . . . . . . . . 67
3.2.1. Unidirectional invariant representation of rigid body motion trajectories . 67
3.2.2. Bidirectional invariant representation of rigid body motion trajectories . . 68
3.2.3. Results in motion recognition . . . . . . . . . . . . . . . . . . . . . . . 78
3.2.4. Results in motion reproduction . . . . . . . . . . . . . . . . . . . . . . . 83

3.3. Representation of structured tasks . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.1. A qualitative definition of structured tasks . . . . . . . . . . . . . . . . . 88
3.3.2. A quantitative definition of structured tasks . . . . . . . . . . . . . . . . 88

3.4. Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4. Learning robotic tasks form human demonstrations 93
4.1. Learning uni-manual skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1.1. A framework for incremental kinesthetic teaching . . . . . . . . . . . . . 94
4.1.2. A customized controller for physical robot guidance . . . . . . . . . . . 95
4.1.3. Pick-and-place learning and refinement . . . . . . . . . . . . . . . . . . 98

4.2. Learning dual-arm skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3. An integrated framework for learning structured tasks . . . . . . . . . . . . . . . 104

4.3.1. Robot Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.2. Attentional System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3.3. Teaching uni-manual structured tasks . . . . . . . . . . . . . . . . . . . 110
4.3.4. Teaching dual-arm structured tasks . . . . . . . . . . . . . . . . . . . . 114

4.4. Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5. Execution of robotic tasks 119
5.1. Reactive planning of robotic skills . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1.1. Reactive planning using dynamical systems modulation and point clouds 120
5.1.2. Fast robot-obstacle distance computation using parallel programming . . 127
5.1.3. Evaluation in a human–robot interaction scenario . . . . . . . . . . . . . 134

5.2. Execution of structured tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.2.1. Robot manager for task execution . . . . . . . . . . . . . . . . . . . . . 138
5.2.2. Attentional system for task execution . . . . . . . . . . . . . . . . . . . 138
5.2.3. Execution of uni-manual structured tasks . . . . . . . . . . . . . . . . . 138
5.2.4. Dual-arm structured tasks . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3. Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6. Conclusion 151
6.1. Task representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2. Task learning from human demonstrations . . . . . . . . . . . . . . . . . . . . . 152
6.3. Task generation and execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.4. Future research directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Appendices 157

A. Materials and methods 159
A.1. Dynamical systems theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.1.1. Lyapunov theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A.1.2. Contraction theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
A.1.3. Partial contraction theory . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8



Abstract

A.2. Robot control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.2.1. Rigid Body Motion Representation . . . . . . . . . . . . . . . . . . . . 161
A.2.2. Kinematic control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.2.3. Impedance control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.3. Motion representation and regression . . . . . . . . . . . . . . . . . . . . . . . . 164
A.3.1. Locally weighted projection regression . . . . . . . . . . . . . . . . . . 164
A.3.2. Gaussian mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . 164
A.3.3. Hidden Markov models . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

B. Comparison of Invariant Motion Representations 169
B.1. Theoretical comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B.1.1. DHB and DS representations . . . . . . . . . . . . . . . . . . . . . . . . 170
B.1.2. DHB and EFS representations . . . . . . . . . . . . . . . . . . . . . . . 171

B.2. Experimental comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
B.2.1. Trajectory reconstruction error . . . . . . . . . . . . . . . . . . . . . . . 171
B.2.2. Noise sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Bibliography 175

9





Abstract

Robotic researchers aim at realizing a general purpose automaton capable of executing a variety
of activities. Such a machine will significantly improve our life, by substituting or helping us in
heavy, dangerous, or tedious tasks. Imitating the behavior of the most general automaton, which
is the human being, is the key for a wide diffusion of robotic assistants in our daily life. By
imitating the humans, in fact, the robotic assistant can continuously acquire novel skills, starting
from basic movements to complex tasks requiring the manipulation of different objects. Moreover,
by observing the way humans interact and cooperate, the robotic assistant can learn how a known
task is executed autonomously or in cooperation with human or robotic partners. The goal of
this work is to permit an intuitive skill transfer from a human teacher to a robot learner, and an
autonomous or cooperative execution of learned tasks in dynamic environments.

In order to achieve this goal, this thesis presents a framework that permits intuitive learning,
compact representation, and flexible execution of robotic tasks. Task demonstrations are used to
intuitively transfer novel skills to the robot. Task demonstrations are collected via human imita-
tion and robot physical guidance, which are realized through customized controllers. Collected
demonstrations are then automatically segmented into basic motion units and used to represent
the task knowledge. A learned task is represented at two different levels. At the lower level, each
segmented motion unit is compactly encoded into a stable dynamical system. The stable system
is used at run time to generate the robot’s trajectory. At the higher level, the task is represented
in a symbolic manner. The symbolic representation is also learned from demonstration and used
to generate the task plan that the robot has to execute. The task execution is orchestrated by an
attentional supervisory system. Inspired by the control mechanisms in human beings, the atten-
tional system exploits contextual information to select the most emphasized robot’s behavior and
generate the task plan. This mechanism is driven by the learned symbolic representation and the
current context, allowing a rapid adaptation of the task plan to different scenarios. During the task
execution the robot may accidentally hit unforeseen objects in the scene, especially in dynamic
environments. To prevent this situation, the robot’s trajectory is online reshaped in order to obtain
collision-free paths. At the same time, dynamical system properties are exploited to guarantee a
correct task execution.

Presented methodologies are evaluated with simulations and experiments on real robots, show-
ing promising results in terms of intuitive task acquisition and flexible execution. In particular,
experiments show that the robot is able to rapidly acquire complex tasks, like preparing a certain
receipt, and to successfully execute a learned skill autonomously or in cooperation with a human
co-worker.

11





Zusammenfassung

Roboterforscher zielen darauf ab, einen Allzweckautomaten zu realisieren, der in der Lage ist,
eine Vielzahl von Aktivitäten auszuführen. Eine solche Maschine kann unser Leben erheblich
verbessern, indem sie uns bei schweren, gefäoder langwierigen Aufgaben unterstützt. Damit
Roboter Assistenten eine große Vorbereitung in unserem täglichen Leben finden, müssen sie das
Verhalten des vielseitigen Automaten überhaupt, nämlich des Menschen, möglichst gut nachemp-
finden. Durch die Nachahmung des Menschen kann der Roboter Assistent kontinuierlich neue
Fähigkeiten erwerben, angefangen von grundlegenden Bewegungen bis hin zu komplexen Auf-
gaben, die Manipulation verschiedener Objekte erfordern. Darüber hinaus kann der Roboteras-
sistent durch die Beobachtung der Art und Weise, wie Menschen interagieren und zusammenar-
beiten, lernen, wie eine bekannte Aufgabe autonom oder in Zusammenarbeit mit menschlichen
oder Roboterpartnern durchgeführt wird. Diese Arbeit beschäftigt sich damit, wie Fähigkeiten in-
tuitiv von einem Lehrer zu einem Roboter Lehrenden übertragen und wie die gelernten Aufgaben
autonom oder kooperativ in dynamischen Umgebungen ausgeführt werden können.

Zur Erreichung dieses Ziels stellt diese Arbeit einen Rahmen vor, der ein intuitives Lernen,
eine kompakte Darstellung und eine flexible Ausführung von Roboteraufgaben ermöglicht. Durch
Vorführung von Aufgaben werden intuitiv neue Fähigkeiten an den Roboter übertragen. Task-
Demonstrationen werden über menschliche Nachahmung und Roboter-physische Führung gesam-
melt, die durch kundenspezifische Steuerungen realisiert werden. Die gesammelte Demonstra-
tionen werden dann automatisch in Grundbewegungseinheiten segmentiert und zur Darstellung
des Aufgabenwissens verwendet. Eine gelehrte Aufgabe besteht aus zwei Ebenen. Auf un-
terer Ebene werden Bewegungseinheiten als stabile dynamische Bewegungsmodelle beschreiben.
Diese werden zur Laufzeit zur Erzeugung der Trajektorie des Roboters verwendet. Auf oberer
Ebene wird die Aufgabe symbolisch dargestellt. Die symbolische Darstellung wird verwendet,
um den Aufgabenplan zu generieren, den der Roboter ausführen muss. Die Aufgabenstellung
wird durch ein Aufsichtssystem orchestriert. Inspiriert von den natürlichen Kontrollmechanismen
eines Menschen nutzt das aufmerksame System kontextbezogene Informationen, um das Verhal-
ten des Roboters auszuwählen und den Aufgabenplan zu generieren. Dieser Mechanismus wird
durch die gelernte symbolische Darstellung und den aktuellen Kontext gesteuert, was eine schnelle
Anpassung des Aufgabenstellers an verschiedene Szenarien ermöglicht. Während der Ausführung
einer Aufgabe kann der Roboter auf unvorhergesehene Objekte in der Szene stoßen, vor allem in
dynamischen Umgebungen. Um dies zu verhindern und kollisionsfreie Wege zu erhalten, wird die
Trajektorie des Roboters in Echtzeit angepasst. Gleichzeitig werden dynamische Systemeigen-
schaften ausgenutzt, um eine korrekte Aufgabenausführung zu gewährleisten.

13



List of Publications

Die vorgestellten Methoden werden mittels Simulationen und Experimenten an realen Robotern
ausgewertet. Die Ergebnisse sind in Bezug auf intuitive Aufgabenstellung und flexible Ausführung
vielversprechend. Insbesondere zeigen die Experimente, dass der Roboter in der Lage ist, schnell
komplexe Aufgaben, wie die Vorbereitung einer bestimmten Quittung zu erlernen und diese da-
raufhin selbstständig oder in Zusammenarbeit mit einem menschlichen Mitarbeiter erfolgreich
durchzuführen.

14



List of Publications

International journals

1. Matteo Saveriano, Fabian Hirt, and Dongheui Lee, Human-aware motion reshaping using
dynamical systems, Pattern recognition letters, 2017.

2. Dongheui Lee, Raffaele Soloperto, and Matteo Saveriano, Bidirectional Invariant Represen-
tation of Rigid Body Motions and its Application to Gesture Recognition and Reproduction,
Autonomous Robots, 2017.

3. Pietro Falco, Matteo Saveriano, Eka Gibran Hasany, Nicholas H. Kirk, and Dongheui Lee, A
Human Action Descriptor based on Motion Coordination, Robotics and Automation Letters,
2(2):8119-818, 2017.

Peer-reviewed conferences

1. Matteo Saveriano, Yuchao Yin, Pietro Falco, and Dongheui Lee, Data-Efficient Control Pol-
icy Search using Residual Dynamics Learning, In International Conference on Intelligent
Robots and Systems, 2017.

2. Riccardo Caccavale, Matteo Saveriano, Giuseppe A. Fontanelli, Fanny Ficuciello, Dongheui
Lee, and Alberto Finzi, Imitation Learning and Attentional Supervision of Dual-Arm Struc-
tured Tasks, In International Conference on Development and Learning and on Epigenetic
Robotics, 2017.

3. Caroline Blocher, Matteo Saveriano, and Dongheui Lee, Learning Stable Dynamical Sys-
tems using Contraction Theory, In International Conference on Ubiquitous Robots and Am-
bient Intelligence, pages 124–129, 2017. Outstanding Paper Award.

4. Roman Roor, Jonas Hess, Matteo Saveriano, Michael Karg, and Alexandra Kirsch, Sensor
Fusion for Semantic Place Labeling, In International Conference on Vehicle Technology and
Intelligent Transport Systems, pages 121–131, 2017. Best Student Paper Award Candi-
date.

5. Dharmil Shah, Pietro Falco, Matteo Saveriano, and Dongheui Lee, Encoding Human Ac-
tions with a Frequency Domain Approach, In International Conference on Intelligent Robots
and Systems, pages 5304–5311, 2016.

15



List of Publications

6. Nicholas H. Kirk, Karinne Ramirez–Amaro, Emmanuel Dean–Leon, Matteo Saveriano, and
Gordon Cheng, Online Prediction of Activities with Structure: Exploiting Contextual Asso-
ciations and Sequences, In International Conference on Humanoid Robots, pages 744–749,
2015.

7. Matteo Saveriano, Sangik An, and Dongheui Lee, Incremental Kinesthetic Teaching of End-
Effector and Null-Space Motion Primitives, In International Conference on Robotics and
Automation, pages 3570–3575, 2015.

8. Raffaele Soloperto, Matteo Saveriano, and Dongheui Lee, A Bidirectional Invariant Repre-
sentation of Motion for Gesture Recognition and Reproduction, In International Conference
on Robotics and Automation, pages 6146–6152, 2015.

9. Matteo Saveriano and Dongheui Lee, Learning Motion and Impedance Behaviors from Hu-
man Demonstrations, In International Conference on Ubiquitous Robots and Ambient Intel-
ligence, pages 368–373, 2014.

10. Matteo Saveriano and Dongheui Lee, Distance based Dynamical System Modulation for
Reactive Avoidance of Moving Obstacles, In International Conference on Robotics and
Automation, pages 5618–5623, 2014.

11. Vito Magnanimo, Matteo Saveriano, Silvia Rossi, and Dongheui Lee, A Bayesian Approach
for Task Recognition and Future Human Activity Prediction, In International Symposium on
Robot and Human Interactive Communication, pages 726–731, 2014. Kazuo Tanie Award
Candidate.

12. Matteo Saveriano and Dongheui Lee, Invariant Representation for User Independent Motion
Recognition, In International Symposium on Robot and Human Interactive Communication,
pages 650–655, 2013.

13. Matteo Saveriano and Dongheui Lee, Point Cloud based Dynamical System Modulation
for Reactive Avoidance of Convex and Concave Obstacles, In International Conference on
Intelligent Robots and Systems, pages 5380–5387, 2013.

14. Francesco Donnarumma, Vincenzo Lippiello, and Matteo Saveriano, Fast Incremental Clus-
tering and Representation of a 3D Point Cloud Sequence with Planar Regions, In Interna-
tional Conference on Intelligent Robots and Systems, pages 3475–3480, 2012.

International workshops

1. Riccardo Caccavale, Alberto Finzi, Dongheui Lee, and Matteo Saveriano, Integrated Task
Learning and Kinesthetic Teaching for Human-Robot Cooperation, In Italian Workshop on
Artificial Intelligence and Robotics, 2016.

2. Florian Winter, Matteo Saveriano, and Dongheui Lee, The Role of Coupling Terms in Vari-
able Impedance Policies Learning, In International Workshop on Human-Friendly Robotics,
2016.

3. Riccardo Caccavale, Alberto Finzi, Dongheui Lee, Enrico Leone, Silvia Rossi, Matteo Save-
riano, and Mariacarla Staffa, Integrating Multimodal Interaction and Kinesthetic Teaching
for Flexible Human-Robot Collaboration, In International Workshop on Human-Friendly
Robotics, 2015.

16



List of Publications

4. Jie Liu, Matteo Saveriano, and Dongheui Lee, Robot Compliant Behavior through Rein-
forcement Learning, In International Workshop on Human-Friendly Robotics, 2014.

5. Matteo Saveriano and Dongheui Lee, Invariant Representation of Motion for Gesture Recog-
nition in Daily Life Scenarios, In International Workshop on Human-Friendly Robotics,
2013.

6. Matteo Saveriano and Dongheui Lee, Distance based Dynamical System Modulation for
Reactive Collision Avoidance, In DGR-Tage (DGR-days), 2013.

Posters and videos

1. Matteo Saveriano and Dongheui Lee, Safe Motion Generation and Online Reshaping us-
ing Dynamical Systems, In International Conference on Ubiquitous Robots and Ambient
Intelligence, 2014. Best Poster/Video Presentation Award.

2. Sven Parusel, Hannes Widmoser, Saskia Golz, Tobias Ende, Nico Blodow, Matteo Saveri-
ano, Alexis Maldonado, Ingo Kresse, Roman Weitschat, Dongheui Lee, Michael Beetz, Alin
Albu-Schaeffer, and Sami Haddadin, Human-Robot Interaction Planning, In AAAI Confer-
ence on Artificial Intelligence, 2014. Nomination for Best Robot Video Award.

17





Nomenclature

Abbreviations

CLF Control Lyapunov Function

CPU Central Processing Unit

DMP Dynamic Movement Primitives

DS Dynamical System

DTW Dynamic Time Warping

EM Expectation Maximization

GAS Globally Asymptotically Stable

GMM Gaussian Mixture Model

GMR Gaussian Mixture Regression

GPR Gaussian Process Regression

GPU Graphics Processing Unit

GP Gaussian Process

HMM Hidden Markov Model

LAS Locally Asymptotically Stable

LWPR Locally Weighted Projection Regression

SEDS Stable Estimator of Dynamical Systems

19



Nomenclature

Conventions

a ·b Scalar product

a×b Cross product

A Matrix

a Vector

aT,AT Transpose of vector, matrix

A−1 Inverse of matrix

A† Moore–Penrose pseudoinverse ofA

f(·) Vector function

ä Second-order time derivative

ȧ First-order time derivative

â Unit vector

R Set of real numbers

N (·) Gaussian function

‖ · ‖ Norm

a, A Scalar

f (·) Scalar function

20



List of Figures

1.1. Overview of this thesis work. (Demonstration & Learning) Human teachers in-
tuitively transfer skills to robotic devices by using kinesthetic teaching or imi-
tation learning. Demonstrated tasks are autonomously segmented and labeled.
Segmented data are used to learn parameters of the selected motion representation
via machine learning algorithms. Action labels are automatically attached to a
partially specified task structure. (Representation) The selected motion represen-
tation and the learned parameters constitute a motion primitive which is used at
run time to generate the robot’s trajectory. The task structure resulting from the
association of action labels and predefined subtasks is a symbolic representation of
the task. (Execution) Task structure and motion primitives are used to reproduce
learned tasks. Motion trajectories and task plan can be reactively adapted to cope
with eventual changes in dynamic environments. . . . . . . . . . . . . . . . . . 32

2.1. Overview of the contracting Gaussian mixture regression approach presented in
[18]. The original system ẋ = f(x), generated by Gaussian mixture regression,
is not guaranteed to converge towards a unique equilibrium. This system is stabi-
lized at run time by the control input u(x, t), automatically computed given the
Gaussian mixture parameters. The control input is smoothly activated/deactivated
by an activation function in order to guarantee accurate motion reproduction and
convergence to the target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2. Possible applications of uni- and bidirectional invariant representations. A unidi-
rectional representation transforms motion trajectories into invariant descriptors,
which serve as features for a motion recognition algorithm. A bidirectional rep-
resentation allows the mapping form Cartesian to invariant space and vice versa.
Hence, bidirectional representations can be also used to generate different Carte-
sian trajectories from the same invariant descriptor. . . . . . . . . . . . . . . . . 41

2.3. An example of tree and graph based representations. (a) The tree is a hierarchical
model with a single root node and no loops between the nodes. (b) The graph is a
network model where all the nodes are at the same level and loops between nodes
are allowed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

21



List of Figures

2.4. Kinesthetic teaching, i.e. physically guiding the learning subject towards the task
execution, is a natural and intuitive way that humans use to quickly transfer skills
among each other. (a) Image downloaded from http://www.momjunction.com/articles/fun-
ways-to-teach-your-toddler-to-write-better 0082821/#gref in September 2017. . . 44

2.5. The robot learns how to add(coffee) in a cup. In the tree structures, a red el-
lipse indicates an inactive node, a green ellipse indicates a node that is ready to
be activated, and a blue ellipse indicates an active node. (Top left) The initial
task structure consists of an abstract task add(coffee) and two subtasks. The sub-
task(take,coffee) is green because it has a true pre-condition (hand.free). (Bottom
left) Snapshots of the task demonstration. (Right) The task structure learned from
the human demonstration using the approach presented in Section 4.3.3. Each ac-
tion ai is a label (symbol) associated to a learned motion primitive. The action
gripper(open) is blue because it is the last activated (learned) action. . . . . . . . 46

2.6. A barrier-free human–robot cooperation has to take into account both human
safety and correct task execution. Safe trajectories are obtained by preventing pos-
sible collisions with the human co-worker and by reducing the robot’s velocity in
case of close interaction with the human(s). In extreme cases, collision detection
and reaction mechanisms are exploited to reduce the severity of possible injuries.
The correct execution of a cooperative task requires the ability of the robot to
adapt its plan to changes in the environment and to human intentions and needs.
Top left image downloaded from http://www.iran-daily.com/News/121398.html in
September 2017. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1. A point-to-point motion learned by GMR. The standard GMR approach generates
spurious equilibrium points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2. The controlled system (3.11) generates an exponentially converging trajectory.
The trajectory converges to x∗ = [0,0]T, but with a significant reproduction er-
ror. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3. The state space partitioned into three regions. Dr is the demonstration area, while
the union Cr ∪Br is a contracting region. . . . . . . . . . . . . . . . . . . . . . . 59

3.4. C-GMR is capable of effectively learning and accurately reproducing stable point-
to-point motions in the LASA dataset. . . . . . . . . . . . . . . . . . . . . . . . 61

3.5. Trajectory reproduction errors for SEDS, SEDII, and C-GMR on the LASA dataset.
Black error bars are 10% and 90% quantiles of the median value. . . . . . . . . . 62

3.6. Time required to execute Algorithm 1 (a) and to compute the demonstrations area
(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7. Median training time for SEDS, SEDII, and C-GMR on the LASA dataset. Black
error bars are 10% and 90% quantiles of the median value. GMM time indicates
the time spent by the E–M algorithm to find the GMM parameters. . . . . . . . . 64

3.8. C-GMR used to reproduce the S-shape motion from different stating (a) and target
(b) positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.9. The first motion in MultiModel 3 is accurately reproduced with C-GMR and SED-
SII CLF3. Black lines are the retrieved trajectories converging to the unique equi-
librium (black bullet). Brown dots are the demonstrations. . . . . . . . . . . . . 65

22



List of Figures

3.10. MultiModel 3 is accurately reproduced with C-GMR (recomputed control gains)
and SEDSII (re-trained CLF3). SEDSII (initial CLF3) accurately reproduce only
the trained motion (brown dots). Black lines are the retrieved trajectories con-
verging to the unique equilibrium (black bullet). Brown dots are the first set of
demonstrations, green dots the second one. . . . . . . . . . . . . . . . . . . . . . 66

3.11. Accuracy (a) and training time (b) for SEDII and C-GMR in the incremental learn-
ing test. The black error bars represent 10% and 90% quantiles of the median value. 66

3.12. The linear (a) and angular (b) frames shown in three consecutive time instants. . . 69
3.13. A sinusoidal signal (blue line) is sampled with different sampling rates. The green

line is the reconstructed signal obtained by sampling the blue line every ∆t sec-
onds. The red line is obtained with a sampling time of 2∆t. . . . . . . . . . . . . 76

3.14. Demonstrations of the letters O and X from the English letters dataset, visualized
in the x− y plane (left). Roto–translated (middle) and scaled (right) versions of
the original demonstrations. Black points indicate the starting position of each
trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.15. Confusion matrices for the English letters dataset obtained with filtered data and
k = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.16. Confusion matrices for the pouring a drink dataset. Results are obtained with k = 1
and without considering jerk dependent invariants in DS and EFS representations. 81

3.17. The same DHB descriptor is used to generate affine transformed instances (green
solid lines) of the letter M. The orange solid line is the original letter. Black dashed
lines are the MD-DTW alignment between original and generated trajectories. For
a better visualization, trajectories are plotted in the x− y plane. . . . . . . . . . . 84

3.18. Snapshots of the small humanoids robot NAO that reproduces the letters A and N. 85
3.19. The KUKA LWR executes a pouring task. The task is composed by three consec-

utive actions: take, pour, and release. . . . . . . . . . . . . . . . . . . . . . . . . 85
3.20. Affine transformed instances of a full-body motion (twoHandWave) are generated

from the same DHB descriptor. The black bullets indicates the 20 body parts
constituting the skeletal model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.21. The three used to represent the structured task of prepare a coffee. The three has
four levels. prepareCoffee is the abstract task, add(water) and add(coffee) are two
concrete tasks, subtask(take,water), subtask(pour,water), and subtask(take,coffee)
are three subtasks, and a1(water), a2(water), and ai(world) are three atomic ac-
tions. The gray box highlights the add(water) task, which consists of three levels.
Green releasers are true, red releasers are false. For each node, the values out-
side/inside brackets represent the inverse of the emphasis 1/eb and the magnitude
µb respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1. Overview of the framework for incremental kinesthetic teaching of end-effector
and null-space motions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2. The pick-and-place motion is represented using a left-to-right HMM with seven
states and one Gaussian for each state. Five demonstrations (black dashed lines)
are used. The blue ellipses represent the learned Gaussian in each state, while red
solid lines are smooth trajectories generated by applying Algorithm 3. . . . . . . 98

4.3. Snapshots of the end-effector motion refinement procedure. (a) The end-effector
executes the learned trajectory. (b) The teacher guides the robot toward the new
target position. (c) After three iterations, the robot is able to execute the new task. 99

23



List of Figures

4.4. Results of the incremental motion refinement procedure. The robot reaches the
new goal position g′ = [−0.5, 0.006, 0.027]T m after three demonstrations. The
motion in the z direction is not showed because it is not updated during the kinestethic
teaching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5. The elbow motion refinement procedure. (a) An unforeseen obstacle is placed on
the elbow trajectory. (b) The teacher demonstrates a collision-free elbow trajec-
tory. (c) After three iterations, the robot executes both end-effector and null-space
tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6. Elbow motion refinement using a HMM with seven states and one Gaussian for
each state (blue ellipses). Three demonstrations (black dashed lines) are incre-
mentally given. Red lines are trajectories generated by Algorithm 3. . . . . . . . 101

4.7. Barycentric coordinates and end-effector position tracking error for different val-
ues of fi and fs. The interaction controller permits null-space kinesthetic teaching
and end-effector task execution. . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.8. End-effector position tracking error with position and impedance controllers. The
interaction starts around 5s in both cases. The position controller treats external
forces as disturbances to reject, preventing the kinesthetic teaching. The impedance
controller allows the physical guidance, but it affects the end-effector task execution.102

4.9. Frames of the human and of the RoDyMan arms. . . . . . . . . . . . . . . . . . 103

4.10. The overall framework for intuitive transfer of structured tasks. The attentional
system supervises task execution and learning, while the Robot Manager enables
the segmentation of the robot activities (Motion Segmentation), the kinesthetic
teaching or motion re-targetting, the motion primitives learning (Motion Learning)
and execution (Motion Generation). The attentional system manages the execu-
tion of high-level tasks (Attentional Executive System) and low-level sensorimotor
processes (Attentional Behavior based System). The communication between the
Robot Manager and the attentional system is managed by the RobotStream (robot
motion data) and ObjectStream (perceived data from the RM to the attentional
system). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.11. Teaching and execution of the pouring action. (Left) During the teaching the user
drives the robot near the cup and pours water. (Right) During the the execution the
robot reproduces the learned skill. . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.12. Representation of the WM expansion process managed by alive. When the new
node add(water) is allocated in WM the associated schema is selected from LTM
(retrieve phase) and exploited to decompose the node in WM by adding and instan-
tiating the new abstract or concrete sub-nodes mentioned in the schema (expand
phase). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.13. Action segmentation and hierarchical task decomposition during the kinesthetic
teaching of a pouring task. The robot has to pick-up the bottle (pick(water)), reach
the glass, pour the water (pour(water)), and place the bottle (place(water)). The
Robot Manager (down) performs action segmentation (A1, A2, . . . , A5) and learns
the associated motion primitives (MP1, MP2, . . . , MP5), while the attentional sys-
tem (up) connects the generated action segments to the task structure (a1(water),
a2(water), and gripper(close) connected to pick(water); a3(glass) and a4(glass)
connected to pour(water), etc.). The green and blue labels represent releasers and
post-conditions respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

24



List of Figures

4.14. The initial task structure for the task of prepare a coffee. During the teaching
phase, the attentional systems attaches the atomic actions to this initial task struc-
tured. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.15. Representation of the WM update during the demonstration of the pouring task.
The system starts from a simple structure for the add(water) task (t1). During
the demonstration new actions are added to the take-water subtask (t2) along with
their releaser (labels on the arrows). When the new pour-water subtask is selected
(t3) a new FOA is linked with a true releaser. Here, green and red ovals represent
enabled and disabled behaviors (satisfied and unsatisfied releasers), blue ovals are
for accomplished behaviors (satisfied postconditions), dotted ovals are for abstract
behaviors. For each behavioral node, the values outside/inside brackets are for
the inverse of emphasis 1/eb (i.e. activation period) and magnitude µb (top-down
influence) respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.16. The tree learned after a kinesthetic demonstration of the task of prepare a coffee.
Concrete tasks and subtasks are assumed to be know, while the atomic actions
with associated pre- and post-conditions are learned from the task demonstration. 115

5.1. The two-levels architecture used for human-aware motion reshaping. RGB-D data
are used to track the human and estimate his status. The same depth data are also
exploited to avoid possible collisions with unforeseen obstacles. . . . . . . . . . 120

5.2. Representation of a robotic manipulator with two obstacles in its workspace. The
computation of the modulation matrix requires the distance D between a point on
the robot and a point on the obstacle, and the unit vector n̂ normal to the surface of
the obstacle. In the depicted 2D case, the tangential hyperplane is the unit vector
t̂ orthogonal to n̂ and therefore tangent to the obstacle surface. . . . . . . . . . 122

5.3. The KUKA LWR IV+ avoids collisions with three obstacles. Given the point
clouds (yellow points) of the obstacles, a collision-free path to the goal is gener-
ated using DS modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4. The task of going into and out of a box. Given the point cloud (yellow points) of
the box and two goal positions, the robot is driven into (red line) and out (blue
line) of a box modulating a switching linear DS. . . . . . . . . . . . . . . . . . . 126

5.5. The robot has to avoid a moving obstacle and return to the initial position. Obsta-
cles slower than 1.4m/s are properly avoided. . . . . . . . . . . . . . . . . . . . 127

5.6. The robot has to avoid a moving obstacle and converge to the goal position. The
obstacle is avoided until its velocity reaches 1.3m/s. . . . . . . . . . . . . . . . . 127

5.7. The robot avoids collisions with the human’s right hand and returns to the initial
position. The norm of the hand velocity is in the range [0.45,0.6]m/s. . . . . . . 128

5.8. Representation of the gray area generated by projecting a 3D point into the image
plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.9. Overview of the fast distance evaluation in the depth space ( f DED) approach. . . 130

5.10. The creation of the lattice of robot points. The blue are points on the robot surface,
while the green are points on the object surface (a box). Both the robot and the
box are standing on a table, which is not considered as an obstacle. Yellow bullets
are the lattice points of the first link, orange bullets the lattice points of the second
link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

25



List of Figures

5.11. Performance of f DED in terms of execution time and accuracy (mean and stan-
dard deviation over 100 iterations). (a) Dependency of the execution time on the
step size. (b) Dependency of the execution time on the initial raster tile. (c) De-
pendency of the accuracy on the step size. (d) Dependency of the accuracy on the
initial raster tile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.12. Execution of the stacking task. (a) Snapshots of the task execution. (b) Robot
velocity when the human is not in the workspace. (c) Velocity scaling when the
human enters/leaves the workspace. . . . . . . . . . . . . . . . . . . . . . . . . 134

5.13. The robot avoids several collisions with dynamic obstacles while correctly execut-
ing a stacking task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.14. Comparison between f DED and the CPU-based approach in [52]. (a) f DED
spends on average 1.9ms to compute the distances, while the CPU-based approach
requires 9.9ms. (b)-(c) The robot is more reactive when f DED is used to compute
the distance and it effectively avoids possible collisions. . . . . . . . . . . . . . 136

5.15. The robot gives the picked item to the user and avoids collisions with a dynamic
obstacle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.16. Alive manages the retrieve/expansion process used to instantiate part of a task in
the working memory. (t1) Alive allocates the new node add(water). (t2)-(t3) The
schema associated to add(water) is selected from the LTM (retrieve phase) and
used to hierarchically decompose the node in the WM. In particular, the abstract or
concrete sub-nodes contained in the schema are added to the WM and instantiated
(expand phase). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.17. Experimental setups used to test the framework for structured tasks learning and
execution. (a) The setup used to acquire and reproduce uni-manual tasks. (b) The
setup used to acquire and reproduce dual-arm tasks. . . . . . . . . . . . . . . . . 140

5.18. The WM state after the pouring task demonstration. Nine generated segments are
linked to the associated subtasks. Green are active and red inactive nodes. Blue
are the last learned nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.19. The initial WM before learning how to prepare a coffee. The task preparecoffee
has three child nodes, namely add(water), add(coffe), and use(spoon). add(water)
and add(coffe) can be executed in any order (true releaser), while use(spoon) re-
quires that both the water and the coffee powder are added. Initially, both sub-
task(take,water) and subtask(take,coffee) are enabled (green), hence they compete
for the initial segments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.20. The robot learns how to prepare a coffee. (Left panels) Snapshots of the kinesthetic
teaching and autonomous task execution. (Right panels) Actions are automatically
attached to the subtasks in the WM and used to reproduce the task. . . . . . . . 143

5.21. Cooperative execution of the prepare coffee task. The user takes the bottle and
pours the water while the robot is approaching the bottle. Notice that, before the
human intervention the most emphasized action is foa8(water). On the other hand,
when the human performs the action, the robotic task execution is on-line adapted:
the most emphasized action segment becomes foa1(coffee) and the robot takes the
coffee jar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.22. Human–robot cooperation is exploited to overcome robot limitations. (a) The bot-
tle is closed and the robot will fail to pour the water. (b) Once the user has sus-
pended the task and removed the cap, the robot can correctly execute it. . . . . . 145

26



List of Figures

5.23. The robot learns how to prepare a tea. (Top-left) The add(water) subtask has been
already demonstrated for the prepare coffee task and can be reused in the prepare
tea task. (Top-right) The WM state after the add(water) execution. (Bottom-left)
The human can demonstrate the novel subtask through kinesthetic teaching, then
the robot can autonomously execute the rest of the task (add(tea)). (Bottom-right)
The WM state after the add(tea) demonstration. . . . . . . . . . . . . . . . . . . 146

5.24. Execution of the add(tomato) task performed by the left arm. (a) The learned
hierarchical structure contains three NOA, four FOA, and two hand commands.
(b) The simulated robot reproduces the task exploiting the learned hierarchical
structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.25. Execution of the add(cheese) and the add(basil) tasks. The left and right arms
cooperatively execute the task. . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.1. Synthetic twist trajectory: vx = 0.01exp(t), vy = 5+1.5sin(t), vz = cos(t), ωx =
0.5sin(t), ωy = cos(t) and ωz = 0.1t, t = 0, . . . ,4s. . . . . . . . . . . . . . . . . 172

B.2. Errors between the twists in Figure B.1 and the twists reconstructed from DS, EFS,
and DHB for different sampling times. Note the logarithmic scale on the ordinates. 173

B.3. Noise sensitivity of DHB, DS, and EFS when a Gaussian noise with increasing
power is applied to the twists in Figure B.1. Crosses represent the mean and bars
represent the standard deviation of the residual snr over the 100 iterations. . . . . 173

27





List of Tables

3.1. DHB representation of special motions. . . . . . . . . . . . . . . . . . . . . . . 77
3.2. Datasets characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3. Recognition results on the English letters dataset. . . . . . . . . . . . . . . . . . 79
3.4. Recognition results on the pouring a drink dataset (filtered data). . . . . . . . . . 81
3.5. MSR action Dataset and Recognition Protocol . . . . . . . . . . . . . . . . . . . 82
3.6. Recognition results of DHB, DS/EFS, HOJ3D [165] and Li et al. [94] on the MSR

Action3D dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.7. Norm of the reconstruction errors [mm] for the take action obtained with different

filtering techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1. Task Transition Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1. A parameter set for f DED to obtain T ≈ 1ms and A ≈ 5mm (“T” computation
time, “A” accuracy). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2. f DED - Computation time in the worst case scenario. . . . . . . . . . . . . . . . 133
5.3. Parameters used in the experimental evaluation. . . . . . . . . . . . . . . . . . . 140
5.4. Results for ten repetitions of the pouring a drink task. . . . . . . . . . . . . . . . 141
5.5. Results for ten repetitions of the prepare coffee task. . . . . . . . . . . . . . . . . 143
5.6. Results for ten training trials of the prepare tea task. The symbol “−” indicates an

already learned subtask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.7. Results for ten repetitions of the pizza task. . . . . . . . . . . . . . . . . . . . . 148

A.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

B.1. EFS and DS representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
B.2. Overview and properties of DS, EFS, and DHB representations. . . . . . . . . . 170

29





CHAPTER 1

Introduction

1.1. Motivations

The integration of robotic devices in human populated environments will greatly simplify every-
one’s life. Robots, in fact, will substitute humans in dangerous or tedious work, and will act as
co-workers in heavy tasks. In order to pursue this objective, robots will be asked to autonomously
accomplish daily-life activities and to actively cooperate with humans in dynamically changing
environments. Such a tight human–robot cooperation requires the ability of the robot to contin-
uously acquire novel skills. Moreover, the robot has to be able to adapt the task execution to
changes in the environment, and to human intentions and needs.

A fruitful cooperation between human and robot workers requires several ingredients. Follow-
ing a bottom up approach, the first condition for a proficient human–robot interaction is to guaran-
tee the user safety. In a human–robot interaction scenario, human safety is ensured by equipping
robotic devices with intrinsically safe, compliant actuators [57], or by exploiting collision detec-
tion and reaction mechanisms [58,60]. Apart from reducing the severity of possible injuries due to
accidental collisions with the robot, preventing such collisions is also useful to increase the human
confidence in the robotic partner. Moving one step up, the study in [88] shows that a human-aware
adaptation of robot movements is beneficial for the human partner, since it improves the working
speed and the human satisfaction. Hence, beyond the safety, a fruitful human–robot cooperation
requires the adaptation of the robotic task to human intentions and needs.

A general purpose automaton, like a robot should be, is able to execute a variety of tasks and
to continuously increase is knowledge and competences. As humans beings do, a general purpose
robot is able to acquire novel skills by observing a demonstration of the task. This is the objective
of the Programming by Demonstration (PbD) framework [14]. In PbD, in fact, an expert teacher
shows how to perform a certain task, and the robot leverages this demonstration to acquire and
then reproduce a novel skill. The procedure for skill transferring is natural and intuitive, since the
user has only to demonstrate the task, for example by physically guiding the robot towards the
task completion. However, general purpose machines are asked to execute “complex” tasks which
involve the execution of several action and the manipulation of different objects. The actions
constituting a complex task have to be identified and separated into the task demonstration, op-
portunely represented in the robot memory, and quickly adjusted to cope with eventual differences
between demonstration and execution scenarios.

31



1. Introduction

Demonstration & Learning Representation Execution

Motion Primitives

Task Structure

subtask1

task

action1 ...

... Scene 
Monitoring

Reactive
Task

Generation
&

Supervision

cheese

pizza
basiloil

tomato

Demonstrations 

Motion 
Segmentation

&
Labeling

Label to 
Subtask

Association

Parameters
Learning

Figure 1.1.: Overview of this thesis work. (Demonstration & Learning) Human teachers intuitively
transfer skills to robotic devices by using kinesthetic teaching or imitation learning.
Demonstrated tasks are autonomously segmented and labeled. Segmented data are
used to learn parameters of the selected motion representation via machine learning
algorithms. Action labels are automatically attached to a partially specified task struc-
ture. (Representation) The selected motion representation and the learned parameters
constitute a motion primitive which is used at run time to generate the robot’s trajec-
tory. The task structure resulting from the association of action labels and predefined
subtasks is a symbolic representation of the task. (Execution) Task structure and mo-
tion primitives are used to reproduce learned tasks. Motion trajectories and task plan
can be reactively adapted to cope with eventual changes in dynamic environments.

This thesis proposes a framework for intuitive transfer of complex tasks from a human teacher
to a robotic learner. The framework allows a human teacher to demonstrate the execution of a
task consisting of several actions and objects to manipulate. Moreover, the presented framework
permits an autonomous execution of the acquired task in dynamic environments, as well as a fluent
and smooth human–robot cooperation. To develop such a framework, one has to consider three
aspects of the task acquisition process, namely:

• Representation - How complex tasks can be efficiently represented by the robot?

• Learning - How complex tasks can be intuitively and quickly transferred from a human to a
robotic device?

• Execution - How complex tasks can be effectively executed autonomously or in cooperation
with a human co-worker, considering both the human safety and the correct task execution
as constraints?

Figure 1.1 shows an overview of the developed framework. Task demonstrations are firstly seg-
mented into basic motion units and labeled. Segmented data are used to represent the demonstrated
task in a way that allows the robot to retrieve and execute the task. Ideally, the representation has
to be compact to reduce memory requirements, generalizable to execute the same task in different
contests, and quickly accessible to rapidly generate the task plan. During the task execution, the
robot’s workspace is monitored to adapt the robot’s trajectory to sudden changes in the scene, and
to modify the task plan in case of human intervention.

32



1.2. Structure of the thesis

1.2. Structure of the thesis

The rest of this thesis is composed of four chapters and two appendices. A brief overview of each
chapter is outlined below.

Chapter 2

This chapter presents the related work and the contributions of this thesis. The chapter is organized
in four main sections. The first section describes state-of-the-art approaches for robotic skills
representation. The second section presents approaches for robotic skills learning from human
demonstrations. The third section describes approaches for skills execution on real robotic devices.
The major differences between the approaches presented in this work and prominent approaches
in the literature are also underlined. Finally, the last section presents the contributions of this work.

Chapter 3

This chapter discusses approaches useful to represent basic robotic skills and structured tasks.
The first section describes and compares approaches for point-to-point motion representation us-
ing stable dynamical systems. The second section focuses on transforming Cartesian trajectories
into a space which exhibits some invariance properties, like the invariance to the field of view or
the duration of the motion. Two invariant representations of rigid body motions are presented,
namely a unidirectional representation and a bidirectional one. Several experiments are conducted
to demonstrated the effectiveness of invariant trajectory descriptors in motion recognition and re-
productions problems. The last section discusses the representation of structured tasks.

Chapter 4

This chapter presents approaches for intuitive transfer of tasks from a human instructor to a robotic
device. The chapter focuses first on basic uni-manual skills and presents an effective solution
to teach and to incrementally refine end-effector and null-space movements. The second section
presents a kinematic approach useful to solve the motion re-targetting problem, that is the problem
of transferring the motion between two agents with a different kinematic structure. The approach
is effectively applied to imitate the human movements with a humanoid robot. The last section is
dedicated to structured tasks, and presents a framework that combines learning from demonstration
and attentional supervision to intuitively teach structured robotic tasks.

Chapter 5

This chapter focuses on executing a learned task on a real robot. The first section presents a hi-
erarchical architecture that exploits stable dynamical systems and human monitoring to generate,
and on-line replan, the robot’s trajectory. The presented replanning strategies are able to gener-
ate collision-free trajectories, without affecting the execution of the robotic task. The distance
between the robot and eventual obstacles in the scene is computed in real-time using an highly
parallelizable algorithm, also detailed in this chapter. The hierarchical architecture is tested in a
human–robot interaction scenario, showing promising results. The second part of this chapter dis-
cusses the execution of structured tasks. The framework exploited in Chapter 4 for task learning
is here employed to generate the task plan for the robot and execute the task. The effectiveness of
the framework is demonstrated in typical kitchen scenarios.

33



1. Introduction

Chapter 6

This chapter states the conclusions of this work and summarizes the main finding. The chapter also
provides final remarks on the presented approaches and proposes some research lines to further
improve this work.

Appendix A

This appendix provides the theoretical background of several approaches adopted in this work.
The appendix starts with a recap on dynamical systems and describes Lyapuniv and Contraction
stability theories. Then, the appendix describes state-of-the-art algorithms in robot kinematic
and dynamic control. These approaches are effectively exploited in order to run experiments on
real robots. Finally, the appendix discusses three prominent approaches for non-linear regression,
which are used in this work to compactly represent human demonstrations.

Appendix B

This appendix presents a theoretical and practical comparison between three invariant representa-
tions, namely the representation presented in Section 3.2.2, and those proposed in [155] and [42]
respectively. Similarity and differences between the approaches are theoretically derived and
shown with experiments on an artificial Cartesian trajectory.

1.3. Publication note

Most of the material presented in Chapters 3 to 5 and in Appendix B have been published in
or submitted to peer-reviewed conference proceedings and scientific journals. References to the
related publications for each chapter are given below.

Chapter 3

Caroline Blocher, Matteo Saveriano, and Dongheui Lee, Learning stable dynamical systems
using contraction theory, In International conference on ubiquitous robots and ambient in-
telligence, 2017. Outstanding Paper Award.

Dongheui Lee, Raffaele Soloperto, and Matteo Saveriano, Bidirectional invariant represen-
tation of rigid body motions and its application to gesture recognition and reproduction,
Autonomous robots, 2017.

Raffaele Soloperto, Matteo Saveriano, and Dongheui Lee, A bidirectional invariant repre-
sentation of motion for gesture recognition and reproduction, In International conference
on robotics and automation, pages 6146–6152, 2015.

Matteo Saveriano and Dongheui Lee, Invariant representation for user independent motion
recognition, In International symposium on robot and human interactive communication,
pages 650–655, 2013.

Matteo Saveriano and Dongheui Lee, Invariant Representation of Motion for Gesture Recog-
nition in Daily Life Scenarios, International Workshop on Human-Friendly Robotics, 2013.

Riccardo Caccavale, Matteo Saveriano, Andrea Fontanelli, Fanny Ficuciello, Dongheui Lee,
and Alberto Finzi, Imitation learning and attentional supervision of dual-arm structured

34



1.3. Publication note

tasks, In International conference on development and learning and on epigenetic robotics,
2017.

Riccardo Caccavale, Alberto Finzi, Dongheui Lee, and Matteo Saveriano, Integrated Task
Learning and Kinesthetic Teaching for Human-Robot Cooperation, Italian Workshop on
Artificial Intelligence and Robotics, 2016.

Chapter 4

Matteo Saveriano, Sangik An, and Dongheui Lee, Incremental Kinesthetic Teaching of End-
Effector and Null-Space Motion Primitives, In International Conference on Robotics and
Automation, pages 3570–3575, 2015.

Riccardo Caccavale, Matteo Saveriano, Andrea Fontanelli, Fanny Ficuciello, Dongheui Lee,
and Alberto Finzi, Imitation learning and attentional supervision of dual-arm structured
tasks, In International conference on development and learning and on epigenetic robotics,
2017.

Riccardo Caccavale, Alberto Finzi, Dongheui Lee, and Matteo Saveriano, Integrated Task
Learning and Kinesthetic Teaching for Human-Robot Cooperation, Italian Workshop on
Artificial Intelligence and Robotics, 2016.

Chapter 5

Matteo Saveriano, Fabian Hirt, and Dongheui Lee, Human-aware motion reshaping using
dynamical systems, Pattern recognition letters, 2017.

Matteo Saveriano and Dongheui Lee, Distance based dynamical system modulation for reac-
tive avoidance of moving obstacles, In International conference on robotics and automation,
pages 5618–5623, 2014.

Matteo Saveriano and Dongheui Lee, Safe Motion Generation and Online Reshaping using
Dynamical Systems, International Conference on Ubiquitous Robots and Ambient Intelli-
gence, 2014. Best Poster/Video Presentation Award.

Matteo Saveriano and Dongheui Lee, Point cloud based dynamical system modulation for
reactive avoidance of Convex and concave obstacles, In International conference on intelli-
gent robots and systems, pages 5380–5387, 2013.

Riccardo Caccavale, Matteo Saveriano, Andrea Fontanelli, Fanny Ficuciello, Dongheui Lee,
and Alberto Finzi, Imitation learning and attentional supervision of dual-arm structured
tasks, In International conference on development and learning and on epigenetic robotics,
2017.

Riccardo Caccavale, Alberto Finzi, Dongheui Lee, and Matteo Saveriano, Integrated Task
Learning and Kinesthetic Teaching for Human-Robot Cooperation, Italian Workshop on
Artificial Intelligence and Robotics, 2016.

35





CHAPTER 2

Background research and contributions

This chapter presents the literature related to this work and the contributions of this thesis. Related
work are split into three main sections. The first section presents work related to the representation
of robotic skills and tasks. The second introduces state-of-the-art approaches for skills and tasks
learning from human demonstrations. The third section presents work on robotic tasks planning
and execution. Apart from discussing related work, each section also underlines similarities and
differences between prominent approaches in the filed and the solutions presented in this thesis.
Finally, the last section summarizes the innovative contributions of this work.

2.1. Robotic tasks representation

2.1.1. Dynamical system based representations

Rough Cartesian or joint trajectories, i.e. sequences of points in joint or Cartesian space, are
not well-suited for representing robotic skills. Rough trajectories, in fact, are hardly general-
izable to different scenarios and require to store many data points. Hence, researchers in the
field have focused on developing parameterized representations of robotic skills. In this way, a
learned skill is represented in a compact form which allows the generalization to different scenar-
ios and reduces memory requirements. Typical skill parameterizations include Gaussian mixture
models (GMM/GMR) [18, 33, 75, 76], hidden Markov models [90, 91, 133], and Gaussian pro-
cesses [78, 82]. In general, any regression technique [16] can be used to compactly represent
robotic skills.

Regression algorithms can be used, for example, to describe the relationship between the current
position in joint or Cartesian space and the relative velocity, i.e. the robotic skill is encoded into
a dynamical system (see Appendix A.1). Stable dynamical systems (DS) are well-suited to rep-
resent the so-called point-to-point motions, which are movements starting from any initial point
and terminating at a given target. Stable DS, in fact, are guaranteed to converge to a specified
target. Moreover, dynamical systems are robust to changes in the initial/target location, and can be
used in cluttered environments to generate collision-free paths, as discussed in Section 5.1. The
dynamic movement primitives (DMPs) framework proposed by Ijspeert et al. [65–67] is one of the
first examples of robotic skills representation via stable dynamical systems. A DMP is a super-
position of a linear spring–damper dynamics and a non-linear forcing term learned from a single

37



2. Background research and contributions

demonstration. A clock signal is used to suppress the non-linear force after a certain time guaran-
teeing the convergence towards the target. Task-parameterized motion primitives (TP-DMPs) [31]
extend the standard DMPs by introducing extra task-dependent parameters useful to adapt robot
movements to novel scenarios. TP-DMPs consist of a weighted summation of second order DS,
learned from demonstrations using Gaussian mixture models (GMM) [39]. Probabilistic Move-
ment Primitives (ProMPs) [113] represent another extension of the standard DMPs. The idea
of ProMPs is to learn a distribution over multiple trajectories, which allows a better adaptation
to novel, unforeseen situations. Several approaches extend the DMPs framework to incremental
learning scenarios [55, 86, 105, 118]. In [55] authors present a two-layers system for incremental
learning of periodic movements. The first layer of the system is a DS which extracts the funda-
mental frequency of the demonstrations. The second layer is a periodic DMP which learns the
waveform of the demonstrated motion. The overall system is computationally efficient and works
on-line, but it is limited to periodic motions, while discrete movements are the focus of this work.
The work in [118] considers incremental human coaching for DMPs. In the teaching phase, the
user is considered as an obstacle, avoided by adding an extra forcing term to the DMPs [62]. In
this way, the human is able to modify on-line the robot’s path without touching it. The novel path
is used to incrementally update DMPs weights via recursive least square. [105] leverages iterative
learning control [22] to realize a learning strategy which is faster and more robust than recursive
least square. Both the approaches in [105,118] are evaluated on periodic movements, but they are
also applicable to point-to-point motions. The interaction between two agents, each with is own
path defined by DMPs, is incrementally learned in [86] to guarantee that both agents equilibrate
into a common target, i.e. the two agents are effectively helping each other.

DMPs are time dependent dynamical systems, since a clock signal is used to suppress the forc-
ing term. This means that, from a certain time on, the robot will follow a linear dynamics towards
the target. In some situations, it is useful to represent the motion via an autonomous (time in-
dependent) and non-linear system. Khansari–Zadeh and Billard propose effective solutions to
generate stable motions from a non-linear DS represented by GMR [75, 76]. The binary merg-
ing approach in [75] uses GMM to determine if is the current state (robot position) is inside or
outside the demonstration area. The asymptotic convergence to a given target is then guaran-
teed for trajectories inside the demonstration area. In other words, the approach in [75] guar-
antees local convergence to the target. This limitation is overcome by the stable estimator of
dynamical systems (SEDS) [76], which guarantees global convergence of a system represented
by GMR. In SEDS, Lyapunov theory (see Appendix A.1) is used to derive sufficient stability
conditions for a system represented by GMR. The derived stability constraints are then used to
learn the GMM parameters by solving a constrained optimization problem. The main advan-
tage of SEDS is that the learned DS is proven to be globally stable. The drawback is that the
stability constraints are derived from a quadratic Lyapunov function. For complex motions, con-
tradictions may occur between demonstrations and quadratic stability constraints, which prevents
SEDS to accurately learn the motion [78]. The accuracy problem is explicitly considered in sev-
eral works [78,93,106,117,128], showing that complex motions can be accurately represented by
non-linear DS. The work in [78, 93] propose two different approaches to learn a Lyapunov func-
tion which minimizes the contradictions between the stability constraints and the training data,
guaranteeing an accurate reproduction of complex motions. [106] applies a diffeomorphic trans-
formation, learned from demonstrations, to project the training data into a space where they are
well represented by a quadratic Lyapunov function. The work in [117] propose a fast algorithm
to learn diffeomorphic transformations from demonstrations. The approach is significantly faster
than [106], but it works only for linear DS. The work in [128] exploits Contraction theory (see Ap-
pendix A.1) to stabilize a DS represented via a neural network. Authors derive sufficient stability

38



2.1. Robotic tasks representation

GMR

Demonstrations

Stable and Accurate

+x

Activation Function

0

1

Contracting

Control

Figure 2.1.: Overview of the contracting Gaussian mixture regression approach presented in [18].
The original system ẋ= f(x), generated by Gaussian mixture regression, is not guar-
anteed to converge towards a unique equilibrium. This system is stabilized at run time
by the control input u(x, t), automatically computed given the Gaussian mixture pa-
rameters. The control input is smoothly activated/deactivated by an activation function
in order to guarantee accurate motion reproduction and convergence to the target.

conditions using the contraction analysis. Derived stability constraints are then used to learn the
neural network parameters, by solving a constrained optimization problem.

As shown in [78], the numerical solution of a constrained optimization problem is computation-
ally expensive. In order to reduce the computational cost, the approach in [78] exploits a two-steps
learning procedure. Motion demonstrations, in fact, are used to learn both a (possibly) unstable DS
and a control Lyapunov function [146]. The unstable DS is then stabilized at run time by applying
a control input automatically computed from the learned control Lyapunov function. Notice that
a two-steps learning procedure is also exploited in [106], where training data are used to learn
both the diffeomorphism and the stable DS. Instead of applying a two-steps learning procedure,
the Contracting GMR (C-GMR) approach in [18] exploits Contraction theory to derive sufficient
stability conditions for a DS represented by GMR, and it leverages derived conditions to auto-
matically compute a stabilizing control input. The control input only depends on the given GMR
parameters. Hence, C-GMR requires only one learning step to fit the GMM parameters given the
demonstrations. As shown in Figure 2.1, the control action is smoothly activated or deactivated
using an activation function. This solution permits to improve the reproduction accuracy without
affecting the stability of the controlled DS. Compared to [128], C-GMR performs the contraction
analysis of a GMR system, and it uses the resulting constraints to compute, at run time, a stabi-
lizing control input. C-GMR shares with SEDSII the idea of stabilizing the DS at run time, but
it does not require the learning of a suitable Lyapunov function. The C-GMR approach is pre-
sented in Section 3.1.3, together with an extensive experimental evaluation and a comparison with
Lyapunov based approaches in [76, 78].

39



2. Background research and contributions

2.1.2. Invariant representations

The previous section discussed the limitations of Cartesian trajectories in terms of high memory
requirements and low generalization capabilities, and it suggested to overcome these limitations
using dynamical system based representations. This section focuses on possible motion varia-
tions that may affect Cartesian trajectories, limiting the applicability of Cartesian descriptors in
gesture recognition and reproduction problems. As underlined in [155], Cartesian trajectories are
affected by two kinds of motion variations, depending on how and where the motion is executed.
In particular, the motion variations depending on how the motion is executed are:

• Execution time and speed - The same action is slower or faster.

• Amplitude - The same action is longer or shorter.

The variations depending on where the motion takes place are:

• Starting pose - The same action is executed from different starting points.

• Reference frame - The sensor used to track the human, e.g., a camera, is moved across
different repetitions.

• Reference point - A Cartesian trajectory is the motion of a reference point attached to the
human (robot) body in a reference frame. The reference point can vary across different cap-
turing sessions, for instance because a marker was attached in a slightly different position.

Presented motion variations complicate the problem of gesture recognition in real situations. A
possible solution to increase the recognition performance consists in using an invariant form of
motion trajectories, i.e. a coordinate-free and scale invariant representation of motion [43, 147].
Invariant trajectory descriptors free the Cartesian trajectory from motion variations, helping to fo-
cus on essential aspects of the motion. This is beneficial also for a flexible generation of robot
motions, since the invariance to the starting pose and the amplitude of motion can be exploited to
generate affine transformed instances of a motion trajectory, without providing further demonstra-
tions. To this end, it is of importance to reconstruct a Cartesian trajectory form an invariant one,
or, in other words, to have a bidirectional invariant representation.

As shown in Figure 2.2, unidirectional representations create a feature space with invariant prop-
erties, such as roto–translations and scale invariance, which is beneficial to increase the recognition
rate in gesture recognition problems. The simplest way to obtain invariant features is to use the
joint angles instead of the Cartesian positions. Joint angles, in fact, are naturally invariant to roto-
translations and limb lengths. Full-body motion descriptors are built in [49, 111, 141] by using
the joint angles among the human limbs, and exploited to recognize full-body motions. However,
it is known that recognizing motions using only joint angle trajectories is a challenging prob-
lem [35]. Moreover, human tracking systems as RGB-D cameras directly provides the Cartesian
pose of each limb, and the human kinematics is needed to extract the joint angles by using inverse
kinematics algorithms (see Appendix A.2.2).

In order to overcome the limitations of angle based representations, several researchers focused
on extracting invariant features from Cartesian trajectories. In [17] human motions are modeled
as temporal trajectories of estimated parameters (state) over time. The state is used to control
stretching, scaling, and translations of the gesture model with respect to the incoming data. The
condensation algorithm [70] is then employed to incrementally match trajectory models to the
multi-variate input data. The condensation algorithm does not make any parametric assumption
about the state probability distribution and requires a large set of densities to estimate current
parameters. To reduce the computational cost of the prediction, in [121] hidden Markov models

40



2.1. Robotic tasks representation

Motion 
Controller

Invariant

Cartesian

Recognition
Algorithm

Gestures
Models

Cartesian

Invariant

invariant 
trajectory

desired
velocity

control
input

Human Motion

Robot Motion

Unidirectional Representation

Bidirectional Representation

Figure 2.2.: Possible applications of uni- and bidirectional invariant representations. A unidirec-
tional representation transforms motion trajectories into invariant descriptors, which
serve as features for a motion recognition algorithm. A bidirectional representation
allows the mapping form Cartesian to invariant space and vice versa. Hence, bidi-
rectional representations can be also used to generate different Cartesian trajectories
from the same invariant descriptor.

(HMM) [123] are used to learn the prior distribution of both the observation covariance and the
state transition probabilities. Action descriptors invariant to affine transformations are directly
computed from image coordinates in [119, 120, 160, 168]. The representation in [119, 120] is in-
variant under affine and projective transformations. Invariant values are computed by considering
five fixed points on the rigid body and by tracking them in the image during the entire motion.
Three dimensional invariants under affine transformations are proposed in [160, 168]. Their com-
putation requires to track the same six points in all frames.

Alternative approaches focus on Euclidean group invariants. In [125, 126] gestures are rep-
resented by the spatio–temporal curvature of the Cartesian trajectory, that is invariant to roto–
translations. This representation is useful to capture the dynamic instants of a trajectory, i.e. points
where the velocity and/or the direction of motion change sign. The invariant descriptor in [135]
consists of two values, which describe respectively the linear and angular part of the motion, and
is invariant to roto–translations and linear scaling. For this descriptor, the scale invariance is not
obtained by introducing an artificial scale depending on the motion length, but it holds for each
frame (see Section 3.2.1). This approach is used in [97] to recognize human tasks by fusing
gesture and object recognition into a dynamic Bayesian network [16]. The Fourier transform is
leveraged in [157] to compute a view and scale invariant representation. Cartesian trajectories are
partitioned into a temporal pyramid and the Fourier transform is computed for each segment at
each level. Low-frequency Fourier coefficients are then used as feature vectors.

The 4D Action Feature Model (4D-AFM) is proposed in [166] to recognize full-body gestures
observed from arbitrary views. Given a multi-view video sequence, a 3D shape for each frame is
computed by projecting the multi-view 2D silhouettes into the 3D space. For each silhouette, a
set of features (action sketch) describing changes in direction, speed, and shape of the contour is

41



2. Background research and contributions

computed. The 4D-AFM consists of a sequence of 3D shapes with action sketches attached. Even
if it is possible to recognize actions from a single view, multi-view video sequences are required
to construct the model in the training process. In [94] actions are modeled as a graph, where each
node represents a salient posture. Salient postures are described by a set of 3D points belonging
to the human body. In [165] a histogram of 3D joint locations (HOJ3D) is created by dividing
the space into bins. The HOJ3D is then projected into a lower dimensional space using linear
discriminant analysis [16] and clustered into k classes. HMMs are used for gesture recognition.

The availability of large computational power and big data has recently made deep neural net-
works popular in different research fields. Local invariance to translations is guaranteed in convo-
lutional neural networks (CNNs) by the convolutional and pooling layers [45]. CNNs are effec-
tively used in [158] to recognize human actions from input depth maps. In [45] the standard CNN
is extended with four extra layers (slice, pool, roll, and stack) which guarantee local invariance
to rotations. Inspired by the recognition process in the visual cortex, [89] presents a hierarchical
architecture to learn, from visual inputs, features invariant to affine transformations and illumina-
tion. Invariant features are learned in an unsupervised manner using sparse auto-encoders. [71]
proposes to learn warping transformations from input data. This extra learnable layer can be in-
serted into CNNs to improve the recognition performance. Approaches based on deep learning
have shown high recognition accuracy in typical computer vision problems, like object recogni-
tion and scene parsing, and have good potential in action recognition problems. Nevertheless, their
applicability in motion generation problems is still limited. Indeed, even if neural networks can
learn a set of (locally) invariant features, it is hard to reconstruct a Cartesian motion from these
features. Moreover, deep learning approaches require long training time, big amount of data, and
high computational power. This limits their applicability on autonomous robotic devices, which
usually have limited computational power.

Presented unidirectional invariant representations are not suitable for motion reproduction, since
the invariant trajectory cannot be transformed into a Cartesian one. As already mentioned, bidi-
rectional invariant representations are effective motion descriptors which increase the recognition
rate and allow the generation of different trajectory instances from the same descriptor. Frenet–
Serret (FS) invariants [83] are the first example of a bidirectional invariant representation. FS
representation uses curvature, torsion, and their first-order derivatives to describe the motion of
a spatial curve. The approach in [163] computes an approximate version of the FS invariants by
using points in consecutive time instants instead of high-order time derivatives. The resulting ap-
proximate FS representation is numerically robust, invariant to affine transformations and changes
in the speed of execution. Original positions are retrieved by numerically integrating the Frenet–
Serret equations [164]. FS invariants and their robust version in [163] neglect the orientation part
of the motion, which is of importance for recognition and reproduction of complex motions. This
limitation is overcome in [155], where Extended Frenet–Serret (EFS) invariants are proposed to
consider also the orientation part of the motion. The EFS is not affected by affine transforma-
tions, time, linear, and angular scale, and motion profile. EFS invariants are compared with the
bidirectional representation in [42], which is constructed by means of the Instantaneous Screw
Axis (ISA) [101]. The comparison shows a superior recognition rate of the EFS invariants, due
to the higher noise sensitivity of [42]. EFS invariants and the representation in [42] depend on
high-order time derivatives of the velocity. The numerical computation of high-order derivatives
on real, non-smooth signals is sensitive to noise and round-off errors [34]. As shown in Section
3.2.4 and Appendix B, the sensitivity of numerical derivatives makes difficult to estimate reli-
ably the invariant values in [42, 155] and generates a non-negligible reconstruction error. These
limitations are overcome by the Denavit–Hartenberg inspired Bidirectional (DHB) representation
proposed in [92, 147]. DHB is a minimal (six values) and numerically robust invariant repre-

42



2.1. Robotic tasks representation

ARoot

B C

D E

G

F

(a) Tree.

A

B C

D
E

(b) Graph.

Figure 2.3.: An example of tree and graph based representations. (a) The tree is a hierarchical
model with a single root node and no loops between the nodes. (b) The graph is a
network model where all the nodes are at the same level and loops between nodes are
allowed.

sentation computed by the means of the Denavit–Hartenberg notation. Similarly to [163] and in
contrast to [42, 155], DHB exploits points in consecutive time instants instead of high-order time
derivatives. In contrast to [163], DHB also considers the orientation part of the motion. The DHB
representation is theoretically presented in Section 3.2.2. Experiments and comparisons in motion
recognition and reproductions problems are presented in Section 3.2.3 and 3.2.4 respectively. Fi-
nally, Appendix B theoretically compares DHB and the invariants in [42,155] in order to underline
similarities and differenced among the three representations.

2.1.3. Representation of structured tasks

Representations presented in the previous sections focus on describing a robotic skill consisting of
a single movement, like a point-to-point motion. In general, robots are asked to solve more com-
plex tasks involving a sequence of actions to perform on some objects in the scene. It is clear that
such “complex” tasks require a customized representation that allows task storage and generation.
In particular, the task structure must contain all the information needed to generate the learned
task. The information include actions, objects, eventual properties, and execution constraints.
Several approaches in the robotics literature adopt topological representations of complex tasks,
such as oriented graphs [46, 72, 99, 107, 108, 124] and rooted trees [19, 26–28, 30]. An example of
three and graph structures is shown in Figure 2.3.

As detailed in Section 3.3, this work exploits a rooted tree to represent a structured task. The
choice is a direct consequence of the definition of structured task. Indeed, in this work, the term
structured task is used to indicate a task which involves the execution of multiple actions on dif-
ferent objects, like preparing a certain receipt. Moreover, a structured task can be hierarchically
decomposed into different subtasks. For example, the task of putting a tee bag in a cup with hot
water can be decomposed into two subtasks, namely take the tea bag from the box and put it into
the cup. Each subtask can be also decomposed into a series of basic actions. For instance, the
subtask of taking the tea bag contains the elementary actions reach the tea box, open the box (if
closed), and grasp the tea bag. These actions are effectively commanded to the robot. Hence, no
further decompositions of the elementary actions is possible. Considering this definition of struc-
tured task, it is clear that the topological representation of a structured task requires a root node

43



2. Background research and contributions

(a) Human–human kinesthetic teaching. (b) Human–robot kinesthetic teaching.

Figure 2.4.: Kinesthetic teaching, i.e. physically guiding the learning subject towards the task exe-
cution, is a natural and intuitive way that humans use to quickly transfer skills among
each other. (a) Image downloaded from http://www.momjunction.com/articles/fun-
ways-to-teach-your-toddler-to-write-better 0082821/#gref in September 2017.

(put tea in a cup), one or multiple intermediate layers (take the tea bag), and several leaves (reach
the tea box, open the tea box). Hence, a rooted tree is well-suited to represent a structured task.

2.2. Robotic tasks learning

Robots are required to rapidly acquire new skills and functionalities. Hand programming of robotic
tasks is no longer an option to increase the robot capabilities, since it requires significant program-
ming effort and expert knowledge. The Programming by Demonstration (PbD) framework [14]
represents a valid alternative to rapidly increase robot skills, without the need of tedious and
time consuming hand programming. In the PbD framework, in fact, the user teaches the robot
how to perform a certain task by demonstrating the correct task execution (see Figure 2.4). Col-
lected demonstrations are then mapped into robot movements and eventually represented in a com-
pact form, as discussed in the previous section. This section focuses on two aspects of the PbD
paradigm which are further investigated in Chapter 4, namely how to incrementally acquire/refine
novel skills and how to learn structured tasks from human demonstrations.

2.2.1. Incremental skills learning from demonstrations

Two main ingredients are required to incrementally refine novel skills. First, the algorithm used to
represent the demonstrated skill has to permit an incremental refinement of the learned parameters
(see Section 2.1). Second, the user has to provide novel task demonstrations, possibly during
the task execution. Indeed, providing novel demonstrations during the execution is beneficial to
teach natural and coordinated movements, and it gives the user the possibility to refine only part
of the motion, leaving the rest unchanged. It is clear that the gravity compensation control (see
Appendix A.2.3), widely used to collect demonstrations via kinesthetic teaching, is not sufficient
to provide kinesthetic demonstrations at run time. This problem is solved in [91] by exploiting
a customized variable impedance control. In particular, the robot has high stiffness around the
nominal trajectory in order to accurately track the desired path in free motion. Eventual forces
generated by the interaction with the user deviate the robot from the nominal path and the stiffness

44



2.2. Robotic tasks learning

is decreased accordingly to favor an easy guidance. The stiffness is increased again if the robot
deviates too much from the nominal trajectory. In this way, the user feels a soft constraint which
prevents too large deviations from the nominal path.

In case of redundant manipulators, which are robots with more degrees-of-freedom (DoF) than
the ones required for task execution, the problem arises of exploiting redundant DoF in a fruitful
manner. As known from the robot control literature, in fact, redundant DoF can be used to execute
multiple tasks at the same time. Null-space projection techniques are usually adopted to avoid that
lower priority tasks affect the execution of the higher priority ones [10, 36, 103]. From the learn-
ing perspective, null-space and end-effector tasks can be learned from human demonstrations.
In [109], a recurrent neural network is used to learn the inverse kinematic mapping and null-space
constraints from recorded end-effector positions and joint angles. Training data are collected in
two steps. Firstly, the user moves the robot to the desired end-effector position. During the mo-
tion, the robot’s configuration is adapted to consider eventual constraints in the workspace. Then,
with the end-effector fixed in the desired position, the user teaches some local null-space con-
figurations. End-effector and null-space tasks are then executed using a multi-priority controller.
In [151] null-space policies are learned from observations considering the first priority task as a
set of constraints on the null-space policy. The null-space policy is then estimated by solving an
optimization problem, where the cost function to minimize represents the inconsistency among
the observations. These approaches are effective in learning end-effector and null-space policies,
but they do not allow the on-line refinement of learned null-space movements.

A unified framework to incrementally learn end-effector and null-space motions is proposed
in [133] and presented in Section 4.1. The approach exploits a multi-priority kinematic controller
to allow motion execution and kinesthetic teaching. In particular, the controller considers trajec-
tory tracking and physical guidance as prioritized tasks, and it is capable of smoothly and continu-
ously changing the priority between them. This allows the kinesthetic teaching of null-space tasks
without affecting the end-effector motion, as well as the incremental refinement of the end-effector
movement. End-effector and null-space skills are encoded into hidden Markov models, and the
approach presented in [91] and summarized in Appendix A.3.3 is used to incrementally refine the
HMM parameters as novel demonstrations are provided.

2.2.2. Learning structured tasks from demonstrations

Kinesthetic teaching and imitation learning are effective to transfer elementary motions or motion
primitives from a human demonstrator to a robotic device. In order to apply these intuitive transfer
techniques to structured tasks, it is needed to apply a segmentation strategy that separates the task
demonstrations into elementary motions. Fod et al. [53] define a segmentation strategy effective
if: i) it is fast enough to work in real-time, ii) it is consistent across different demonstrations of
the same task, and iii) it is complete, meaning that the generated segments represent the entire
task. The popular segmentation strategy in [53] suggests to segment an action stream looking at
the zeros in the joint velocities. Velocities smaller than a given threshold value are considered as
zero. In [85, 149] effective strategies are proposed for human motion segmentation into atomic
motion units. The data stream is split into smaller units of fixed length [149] or using a moving
window of fixed size [85]. Hidden Markov models are then used to recognize and reproduce the
motion units. The performance of these approaches depends on some tunable parameters, i.e. the
units length in [149], the window size in [85], and the threshold value in [53]. Depending on the
type of motion, a certain value of the parameters can generate an oversegmentation, where many
segments contains only few frames. Moreover, the approaches in [53, 85, 149] are effective in
segmenting free human motions, but they do not provide a matching between action segments and
objects in the scene. In order to properly learn structured tasks, each action has to be associated

45



2. Background research and contributions

Human demonstration: add(coffee)

subtask(take,coffee) subtask(pour,coffee)

TR
U

E

add(coffee)
hand.free ~coffee.taken

gripper(close)

gripper(open)

a7(world)

~a2.done

~a
1.

do
ne

TRUE

~a
3.

do
ne

~a
4.

do
ne ~a5.done

~a6.done

~a7.done

Learned Task Structure

a6(world)
a4(cup)

a1(coffee)

a2(coffee)

a3(world)

a5(cup)

subtask(take,coffee) subtask(pour,coffee)

add(coffee)
hand.free ~coffee.taken

Initial Task Structure

Figure 2.5.: The robot learns how to add(coffee) in a cup. In the tree structures, a red ellipse
indicates an inactive node, a green ellipse indicates a node that is ready to be acti-
vated, and a blue ellipse indicates an active node. (Top left) The initial task structure
consists of an abstract task add(coffee) and two subtasks. The subtask(take,coffee) is
green because it has a true pre-condition (hand.free). (Bottom left) Snapshots of the
task demonstration. (Right) The task structure learned from the human demonstration
using the approach presented in Section 4.3.3. Each action ai is a label (symbol) as-
sociated to a learned motion primitive. The action gripper(open) is blue because it is
the last activated (learned) action.

with an object in the scene. The relation between objects in the scene and actions to perform
is considered in [156], where object distances are exploited to split the demonstrated task into
action segments. The approach can effectively generate basic actions with associated objects,
but it requires a library of predefined object–action complexes [161] to reproduce the segmented
task with a real robot. Following the approach in [156], this work exploits a simple and effective
segmentation mechanism based on object proximity and explicit human commands. Each object
in the environment is associated with a proximity area, which is a sphere of radius r around each
object. Novel segments are generated when the end-effector(s) of the robot enters or leaves the
proximity area of an object, or when an explicit human command is executed. The approach is
exploited in [30] to segment dual-arm tasks, and it is described in Section 4.3.1.

The output of the segmentation strategy are a set of motion trajectories, each associated to an
object in the scene. A unique label is also associated to each segmented movement. As discussed
in Section 2.1, each motion trajectory is represented in a compact form used to retrieve the robot’s
trajectory at run time. This low level representation is not sufficient to fully describe a structured
task, where the actions have to be executed with a certain order or on a specific object. Hence, an
abstract description of the task, the so-called task structure, is required to properly learn and exe-
cute the task. As already mentioned, the natural way to represent a structured task is a tree based
structure with logical pre- and post-conditions, labels, weights, and relative objects associated to
each node. As shown in Figure 2.5, the task structure is (partially) learned from demonstrations
using the approach described in Section 4.3.3. In particular, given an initial task structure (see the
top left panel in Figure 2.5), an attentional supervisory system [26, 27, 110] is exploited to attach
the generated segment (action) to the most emphasized subtask. Each action is associated to pre-
and post-conditions which regulate the task execution.

The approach presented in this work focuses on autonomous learning of structured tasks from
human demonstrations. As already mentioned, this involves the automatic segmentation of task
demonstrations, the representation of segmented data in a form useful to generate motor com-
mands for the robot, and the learning of a high-level structure required to generate the task plan.

46



2.3. Robotic tasks execution

Similarly, the work in [99, 108, 115] focus on learning a set of motion primitives from multiple
demonstrations while automatically organizing them into graphs or automata. These approaches
permit to learn and reproduce complex robotic tasks from human demonstrations. However, differ-
ently from the approach in this work, they do not consider the possibility of executing the learned
tasks in cooperation with the human.

Alternative work focus on the problem of learning high-level task representations from human
observations. In [150,169] sequential constraints (like reaching an object and then grasping it) are
used to find a set of semantic rules that determine the sequence of actions to perform. Semantic
rules are also used in [124] to learn, recognize, and reproduce human activities from video se-
quences. Human activities are segmented using the zero velocity crossing approach in [53]. The
segmented activities are then matched with a set of pre-programmed motion primitives and exe-
cuted by the robot. The problem of task learning from the observation of human activities is also
faced in [46]. Here, the human demonstration is used to generate a robot-independent task struc-
ture associated with robot-specific primitives. Similarly, in [72] a graph structure that represents
bi-manual tasks is learned from human observations. Aforementioned approaches are effective in
learning the task structure from human observations, but motion primitives are assumed as given.
The approach presented in this work is complementary, it assumes that an abstract description of
the task is available, while the goal is to learn both the motion primitives and their relations with
the task structure.

In [107] the teacher uses simple verbal cues to facilitate the learning process. In particular, the
authors propose explicit verbal instructions to bias the learner’s attention to relevant aspects of
the demonstration. Differently from this approach, the framework exploited in this work adopts
a supervisory attentional system that enables more complex attention-base interaction (verbal and
non-verbal) during both the teaching and execution phases. Social attentional mechanisms for
non-verbal task teaching are investigated in [21]. In this case, the authors mainly focus on visual
attention and gaze direction. In particular, they show the effectiveness of spatial scaffolding cues
during interactive task demonstrations. Visual attention mechanisms for robot learning are also
proposed in [13, 19, 102]. In contrast to these work, this thesis focuses on executive attention
and cognitive control mechanisms supporting kinesthetic task teaching. Supervisory attentional
frameworks for robotic systems have been proposed in [74] considering also cooperative tasks
execution [25, 27], but not in a learning by demonstration context. Attentional mechanisms have
been employed for robot teaching [19, 21] and imitation learning [148]. However, the framework
presented in this work fully integrates attentional mechanisms within a supervisory attentional
system paradigm [40, 110].

2.3. Robotic tasks execution

Presented approaches for task representation and learning constitutes the preliminary steps that
permit the task execution on real robots. Given a learned structured task, the problems arise of
selecting the next action to execute (task planning) and of executing the commanded action in
partially unknown and potentially dynamic environments (see Figure 2.6). The rest of the section
describes state-of-the-art work in these fields and underlines similarities and differences with the
approaches presented in Chapter 5.

2.3.1. Reactive motion planning

Robots have to execute learned movements in dynamically changing environments and in close
interaction with human operators. This requires a quick adaptation of the robot behavior to sud-

47



2. Background research and contributions

next action 

Scene 
monitoring

Human-aware planning

Safe trajectory generation
- Reactive collision avoidance
- Velocity scaling
- Collision detection/reaction

Task attentional supervision
- Select the action to execute
- Monitor human behaviors
- Check correct task execution

action state 

objects st
ate

human state

depth imagehuman state

Figure 2.6.: A barrier-free human–robot cooperation has to take into account both human safety
and correct task execution. Safe trajectories are obtained by preventing possible col-
lisions with the human co-worker and by reducing the robot’s velocity in case of
close interaction with the human(s). In extreme cases, collision detection and reaction
mechanisms are exploited to reduce the severity of possible injuries. The correct exe-
cution of a cooperative task requires the ability of the robot to adapt its plan to changes
in the environment and to human intentions and needs. Top left image downloaded
from http://www.iran-daily.com/News/121398.html in September 2017.

den and unexpected changes in the scene. In extreme cases, collisions with the humans cannot be
avoided, and the safety of the operators has to be ensured by adopting collision detection and re-
action strategies [58,60]. The dangerousness of a robot trajectory for the humans can be measured
using various danger indexes [68, 84, 87]. This information is then incorporated in the robot con-
trol strategy to produce safe trajectories. In general, however, it is beneficial to avoid dangerous
situations by generating collision-free paths for the robot.

The approaches for generating collision-free paths can be divided into two categories: path
planning approaches and reactive motion generation approaches. The former category includes
global approaches which are able to find the shortest collision-free path even in very complex
scenarios with multi degrees-of-freedom robots [37]. Geometric planners [38, 144, 145] belong to
the first category. Geometric planners formulate the human-robot interaction as an optimization
problem, where the cost to minimize depends on various aspects like human and robot kinematics,
objects in the scene, human needs and preferences. A grid based representation of the world,
which also includes the human and the robot, is usually adopted and the robotic task is computed
by finding the minimum-cost path in the grid [145]. Geometric planners are able to generate safe
(collision-free), feasible (robot physical limitations), and socially acceptable (human preferences

48



2.3. Robotic tasks execution

and needs) plans. However, despite the possibility to parallelize the algorithms in order to reduce
the computation time [153], the computation time is still too large to apply these algorithms on-
line.

Reactive motion generation approaches are local algorithms which change the robot path in
real-time. Many approaches for reactive collision avoidance make use of a virtual potential field
that attracts the robot towards a goal position while repelling it from eventual obstacles. The idea
of potential fields was proposed in the pioneering work of Khatib [79]. A known drawback of
the potential field approach is that the motion can stop in a local minima even if a collision-free
path to the goal exists. A solution to skip the local minima is proposed in [23] by combining
the benefits of the path planning algorithms with the velocity of the reactive techniques. In this
method, the initial elastic band is computed off-line using a path planning algorithm, which results
in a collision-free path. In the presence of obstacle, the band is deformed by applying repulsive
forces. However, if the path being executed gets infeasible because of an obstacle coming into
its way, the reshaping method cannot be applied any more, and an off-line replanning step is
needed [167]. Other researchers propose to avoid local minima by modifying the trajectory of a
particular dynamical system. For example, in [62, 114] an additive term is applied to a discrete
dynamic movement primitive (DMP) [65] in order to deform the trajectory and avoid a point
obstacle. The global stability of the modified system is proven with static obstacles using the
Lyapunov theorem (see Appendix A.1). In [61] a potential field is applied to a second order system
with varying stiffness that generates a smooth collision-free path. A combination of potential fields
and circular fields is proposed in [59]. Several experiments show the convergence properties to
the goal of this approach, also in very complex scenarios.

Aforementioned approaches work only with a specific dynamical system, namely a second-
order dynamical system, reducing the possibility of encoding more complex, non-linear skills. A
technique to modulate a generic dynamical system (DS) is proposed in [77]. Given the analytical
representations of the obstacles surface, a modulation matrix is computed that locally deforms
the original system. This approach can be applied on a variety of DS (both stable and unstable)
and it guarantees the impenetrability of convex obstacles. Moreover, the approach in [77] does
not modify the equilibrium points of the modulated system. The modulation technique in [77] is
extended in [136, 137] to consider the more realistic scenario where the robot’s is monitored via a
RGB-D camera and the objects are represented via point clouds.

Any approach for reactive collision avoidance requires at least the distance between the robot
and eventual obstacles in the scene. Hence, the robot’s workspace has to be continuously moni-
tored with exteroceptive sensors. Visual sensors are probably the most widely used exteroceptive
sensors in robotic applications, and the spread of RGB-D sensors made readily available a repre-
sentation of workspace as a depth image. An usual approach to use the spatial scene information
for distance evaluation algorithms is to transform the data given by the visual sensors into 3D
point clouds [12,112]. However, operating directly on the depth image provided by a depth sensor
increases the performance, since no transformation is needed [51, 52]. The algorithm in [51, 52]
approximates the robot’s body with a set of spheres. Alternatively, one can compute the distance
of the obstacles form the surface of each link using a triangular mesh model, resulting in a more
accurate distance estimation. Using mesh models is definitely more accurate, but computation-
ally expensive. In order to speed up the minimum distance search, one can represent the depth
map from the sensor (with the robot removed) and the virtual depth map generated from the mesh
model in a structured way, such as bounding trees [122] or kd-trees [11]. The tree representation
of the virtual depth can be precomputed off-line and updated at each iteration using the measured
joint angles. On the contrary, the tree representation of the real depth has to be recomputed each
time new sensor data become available. Computing the tree representations (bounding or kd) of

49



2. Background research and contributions

a typical depth image (640× 480 pixels) does not match real-time requirements [11, 122]. The
time limitations of tree representations are alleviated in [73] by using a voxel grid. A voxel grid
is an approximated representation of a point cloud where multiple points are mapped into a voxel
(cube) of fixed size. The voxel grid creation can be easily parallelized and the distance between
voxel grids can be efficiently computed (in parallel) by considering the distance between voxel’s
centroids. The fast distance evaluation in the depth space ( f DED) approach presented in [134],
instead, reduces the computation time by creating a lattice of robot and scene points, and by it-
eratively refining the distance estimation. As discussed in Section 5.1, fast distance computation,
dynamical systems modulation, and dynamical system rescaling can be effectively combined to
realize a reactive planning approach that takes into account both the human safety and the proper
task execution.

2.3.2. Execution of structured tasks

In order to execute a structured task, or, in general, a task consisting of multiple actions, one
has to solve the problem of deciding the next action to execute. In other words, an algorithm is
required to generate the task plan. As detailed in Section 5.2, this work exploits an attentional
system, a set of weights (emphasis values), and a set of logic rules (pre- and post-conditions)
to determine the most emphasized robot’s behavior and decide the next action to execute. The
presented mechanism takes into account contextual information, like objects in the scene, human
commands, and human intervention, allowing a cooperative execution of the learned task. It is
worth noticing that the attentional system does not generate the entire task plan in one shot, but
it periodically checks the current state and context to determine the next action. In this way, the
task can be quickly replanned in case of unexpected changes in the workspace, e.g., if a human
co-worker takes an object from the scene.

Instead of using semantic rules and weights, the problem of deciding the next motion to ex-
ecute can also be treated as a classification problem. For instance, the approach in [115] uses
nearest neighbor classification to determine the next action to execute. In [99] a graph is used
to represent transitions between elementary motions. A classifier associated with each node in
the graph determines when a transition occurs, i.e., when a motion is finished and the robot can
execute the next one. These approaches permit to learn and reproduce complex robotic tasks from
human demonstrations. However, they do not consider the possibility of executing the learned
tasks in cooperation with the human. Other work in the context of human-robot collaboration are
proposed in [81,97]. In this case, collaborative activities are recognized in order to infer the future
human actions. Human action anticipation is used by the robot to generate the right response to the
human behavior [81], enhancing the human–robot collaboration. These approaches consider the
robot as an assistant, which is unable to autonomously execute the task. In contrast, the approach
presented in this work permits to execute a learned task autonomously or in cooperation with a
human co-worker.

Finally, it is interesting to point-out that the attentional system generates only a set of action
labels with associated objects. In other words, the attentional system only considers an abstract
representation of the task at hand, without considering how the commanded action is effectively
executed on the real robot. This is a common choice in many approaches that exploits high-level
task representations [26,27,124,150,169], which usually rely on a set of pre-programmed motion
primitives to generate the motor commands. In contrast, the approach used in this work allows to
learn both the task structure and the associated motion primitives from demonstration. On the other
hand, the presented geometric planners [38, 144, 145] directly generate feasible robot trajectories,
but at a significantly higher computational cost. The solution adopted in this work, instead, focuses
on high-level task generation and relies on a low-level system capable of generating safe and

50



2.4. Contributions

feasible robot’s trajectories.

2.4. Contributions

The thesis presents a framework for intuitive transfer of structured tasks from a human
teacher to a robotic learner (see Figure 1.1). Roughly specking, a structured task consists of
several actions and objects to manipulate. For some actions the order of execution is important,
for other actions is arbitrary. A structured task can always be hierarchically decomposed in differ-
ent subtasks involving multiple primitive actions and manipulated objects. The process to acquire
a structured task has three main aspects, namely the task representation, learning, and execution.
For all the three aspects, the thesis first focuses on basic skills (single movements) and then extends
the methodologies to structured tasks.

Concerning the representation of basic skills, this work identifies the limitations of Carte-
sian representations and presents effective solutions. In particular, Cartesian trajectories are
not compact representations and are strongly dependent on the reference frame used to represent
the motion. These limitations reduce the generalization capabilities of Cartesian representations
and increase memory requirements. As a possible solution, the thesis investigates the adoption of
representations invariant to affine transformations, as well as of dynamical system based rep-
resentations. Due to the proved convergence to a given target, dynamical systems are well-suited
to represent point-to-point motions, which are the elementary actions constituting a structured
task. Dynamical systems are effective in representing basic skills constituted of single motions.
Beyond this representation, rooted trees are identified as the better-suited topological structure to
symbolically represent structured tasks.

Regarding the learning of robotic skills, this work presents a unified approach for incremental
learning of end-effector and null-space primitives through physical guidance. The approach
leverages an incremental learning algorithm and a customized kinematic control to permit a natu-
ral refinement of end-effector and null-space movements. Moreover, the thesis presents a frame-
work for intuitive transfer of structured tasks. The framework combines action segmentation
and labeling, programming by demonstration, and cognitive control mechanisms to allow natural
teaching and flexible/collaborative execution of structured tasks.

The framework employed for intuitive task transfer is also applied to generate task plans for
the robot and to supervise the task execution. In particular, contextual information—objects
in the scene, explicit human commands, and human intervention—are used to rapidly replan the
task. Commanded actions are executed on real robots in realistic environments. Dynamical system
properties and real-time robot–obstacle distance estimation are leveraged to reshape the robot
trajectories, avoiding possible collisions with unforeseen obstacles (including humans) without
compromising the task execution.

51





CHAPTER 3

Representation of robotic tasks

This chapter discusses the problem of representing a robotic skill in a way that is useful to gener-
ate the motor commands for the robot at run time. The first section presents approaches to encode
the skill into a stable dynamical system, that is an effective solution to represent point-to-point
motions. The second section focuses on invariant representations of rigid body motion trajecto-
ries, and on their applicability to motion recognition and reproduction problems. The last section
formally defines a structured task and discusses how structured tasks are represented in this work.

3.1. Robotic skills representation using stable dynamical
systems

Stable dynamical systems (DS) are able to generate motion trajectories that are guaranteed to
converge at a specified target. Moreover, stable DS are flexible enough to accurately represent
complicated motions [18, 78, 93], and they are able to react, in real-time, to external perturbations
like changes in the desired position or unforeseen obstacles [62, 77, 136, 137]. All those features
make stable DS well-suited to represent robot’s discrete movements, also called point-to-point
motions, which are spatial motions ending at a specified target.

In general, a DS is a non-linear mapping between a state variable x(t) ∈Rn and its time deriva-
tive ẋ(t) ∈ Rn in the form (see Appendix A.1)

ẋ(t) = f(x(t)), (3.1)

where f(·) : Rn → Rn is a non-linear and smooth (continuous and continuously differentiable)
function. The state variable x(t) usually represents the robot position (first-order DS) or position
and velocity (second-order DS) in joint or Cartesian space. Stable DS can be learned from human
demonstrations by exploiting non-linear regression techniques (see Appendix A.3), obtaining the
system

ẋ(t) = f(x(t),θ), (3.2)

where θ ∈Rd is a vector of parameters depending on the adopted regression algorithm. Note that,
depending on the definition of the state variable x(t), the system in (3.2) can be either a first- or a
second-order dynamical system.

53



3. Representation of robotic tasks

3.1.1. Learning stable motions from a single demonstration

Originally proposed by Ijspeert et al., the dynamic movement primitives (DMPs) framework rep-
resents one of the first attempts to encode a single task demonstration into a stable dynamical
system [65–67]. The original formulation uses a separate DMP for each degrees-of-freedom, and
it suffers form two main limitations: 1) it is not possible to represent motions that have the same
start and goal positions, and 2) large changes in the initial or goal positions may cause a magnifi-
cation of the trajectory resulting in high accelerations of the robot. Those limitations are overcome
by the DMP formulation proposed in [62, 114] and summarized as follows.

DMPs encode a motion primitive into a second order, non-linear dynamical system, composed
by a linear (spring–damper) dynamics and a non-linear forcing term. A DMP is defined as

τẋ= v, (3.3a)

τv̇ =K(g−p)−Dv−K(g−x0)s+Kf(s), (3.3b)

τ ṡ =−γs, (3.3c)

where x ∈ Rn is the robot position in joint or Cartesian space, v ∈ Rn and v̇ ∈ Rn are the robot
velocity and acceleration respectively, g ∈ Rn the desired (goal) position, x0 is the initial position
of the robot,K ∈Rn×n andD ∈Rn×n are positive definite gain matrices. The gain τ is a temporal
scaling factor used to alter the duration of the motion. s is a clock signal initialized to s0 = 1,
and exponentially decaying to s→ 0 for any value of the gain γ > 0. The value of γ affects
the convergence time of s. In particular, being (3.3c) a linear system, it holds that s ≈ 0 after
5/γ seconds. The nonlinear forcing term f(·) ∈ Rn reshapes the linear dynamics to follow the
demonstrated trajectory. The forcing term is defined as

f(s) =
∑

K
k=1 φk(s)wk

∑
K
k=1 φk(s)

s, (3.4)

which underlines that f(s) is deactivated by the clock signal, i.e. f(s)→ 0 for s→ 0. This
guarantees the convergence to the desired goal g. The functions φk(s) in (3.4) are Gaussian basis
functions centered at ck and with spread hk, i.e. φk(s) = exp(−hk(s−ck)

2), whilewk are adjustable
weights. The centers ck and the spreads hk are manually specified, while the weightswk are learned
from a single demonstration using weighted least squares (see Appendix A.3.1).

3.1.2. Gaussian mixture regression based dynamical systems

Gaussian mixture models/regression (GMM/GMR) can be exploited to represent f(x,θ) in (3.2)
as a finite mixture of Gaussian components. As detailed in Appendix A.3, GMM parameterize a
non-linear function with the vector θ = {πk,µk,Σk}K

k=1, where πk are the priors, µk the means,
and Σk the covariance matrices of each Gaussian components. Given N task demonstrations
D = {xt,i, ẋt,i}T,N

t=1,i=1, where xt,i ∈ Rn is the position and ẋt,i ∈ Rn the velocity of the robot in
joint or Cartesian space, the parameters vector is learned through the Expectation–Maximization
algorithm [39]. Means and covariance matrices are defined as

µk =

[xµk
ẋµk

]
, Σk =

[ xΣk
xẋΣk

ẋxΣk
ẋΣk

]
. (3.5)

Having learned the parameters θ from demonstration, GMR is exploited to generate the robot’s
trajectory. In particular, a probability density function p(x(t), ẋ(t);θ), in the form of a mixture of

54



3.1. Robotic skills representation using stable dynamical systems

x1 [mm]

x 2
[m

m
]

Spurious equilibrium
Target

Demonstrations
Streamlines

-50 0 50 100 150
-100

0

100

200

Figure 3.1.: A point-to-point motion learned by GMR. The standard GMR approach generates
spurious equilibrium points.

Gaussian components (see Equation (A.21)), is associated to each point in the state space. Taking
the mean of the posterior probability p(ẋ(t)|x(t),θ) as an estimation of f(x(t),θ) yields [76]

ẋ(t) = f(x(t),θ) =
K

∑
k=1

hk(x(t))(Akx(t)+bk), (3.6)

where

Ak =
ẋxΣk(

xΣk)
−1,

bk =
ẋµk−Ak

xµk,

hk(x) =
πkN (x(t)|xµk,

xΣk)

∑
K
i=1 πiN (x(t)|xµi, xΣi)

.

(3.7)

From Equation (3.6), it is clear that GMR represents a non-linear DS as a non-linear summation
of linear dynamical systems.

A known problem (see, for example, [18, 76]) of the GMR based DS representation is that the
generated trajectory does not always converge to a unique equilibrium point. This limitation is
also shown in Figure 3.1. An effective solution to this problem is presented as follows.

3.1.3. Contracting Gaussian mixture regression

The Contracting Gaussian mixture regression (C-GMR) is an approach to stabilize, at run time,
a dynamical system represented by GMR, forcing the robot’s trajectory to reach the specified
target. The approach exploits Partial Contraction theory (see Appendix A.1.2) to derive sufficient
stability conditions for the DS in (3.6), and to automatically compute a stabilizing control input.
An activation function is also used to guarantee an accurate reproduction of the demonstrated
motions while preserving the convergence properties.

Contraction Analysis

In order to show that (3.6) is contracting, one has toshow that the Jacobian matrix ∂f(·)/∂x is
uniformly negative definite (see Definition 3 in Table A.1). Computing the Jacobian is not trivial,

55



3. Representation of robotic tasks

due to the non-linear term ∂hk(x)/∂x in (3.6). Instead of computing the Jacobian, Partial Con-
traction theory (see [159] and Appendix A.1.2) is exploited to significantly simplify the problem.
Note that, in order to simplify the notation, the time dependency of the state variables is omitted
in the rest of the section.

According to the Partial Contraction theory formulation, an auxiliary DS is defined as

ẏ =
K

∑
k=1

hk(x)(Aky+bk), (3.8)

where y ∈ Rn is the auxiliary state variable, and ẏ is the time derivative of y. Notably, the
Jacobian of the auxiliary system has a simple expression, i.e. Ja = ∑

K
k=1 hk(x)Ak. It is known

that, if the auxiliary system in (3.8) is globally contracting and it has an equilibrium point x∗,
then the original system in (3.6) globally exponentially converges to x∗ [159]. Theorem 1 gives
sufficient conditions for the global exponential stability of the DS in (3.6).

Theorem 1. The dynamical system in (3.6) globally exponentially converges to a unique equilib-
rium point x∗ if, for all k = 1, . . . ,K, it holds that:

• bk =−Akx
∗ (3.9)

• ∃µ(·) such that µ(Ak)< 0. (3.10)

Proof. Condition (3.9) guarantees that x∗ is an equilibrium point of the the auxiliary system (3.8).
Indeed, by substituting (3.9) into (3.8), it is easy to obtain that ∑

K
k=1 hk(x)Ak(y−x∗) = 0 if

y = x∗. Condition (3.10) guarantees that the auxiliary system is globally contracting. Indeed,
recalling that µ(αA) = αµ(A) (see Definition 2 in Table A.1), it holds that

µ(Ja) = µ

(
K

∑
k=1

hk(x)Ak

)
=

K

∑
k=1

hk(x)µ(Ak).

Considering condition (3.10) and the property 0 ≤ hx ≤ 1 from (3.7), it is easy to verify that
µ(Ja) = ∑

K
k=1 hk(x)µ(Ak) < 0 for all y ∈ Rn. Recalling that an autonomous and globally con-

tracting DS has a unique equilibrium at x∗ [95], it is possible to conclude that the DS (3.6) globally
exponentially converges to x∗.

A result similar to that in Theorem 1 can be obtained by analyzing the Lyapunov stability of the
DS in (3.6) (see [76]). The difference is that Lyapunov theory uses the matrix measure associated
to the Euclidean norm, while any matrix measure can be used to verify the condition (3.10). This
advantage of Contraction theory is exploited to automatically compute a stabilizing control input.

Global exponential stabilizer

A possible way to stabilize, at run time, the DS in (3.6) consists in applying a control input

ẋ=
K

∑
k=1

hk(x)(Akx+bk)︸ ︷︷ ︸
System

+
K

∑
k=1

hk(x)(Ukx−Akx
?)︸ ︷︷ ︸

Control

(3.11)

The global exponential convergence of the controlled system in (3.11) is proved by considering
the auxiliary DS ẏ = ∑

K
k=1 hk(x)(Aky+bk)+∑

K
k=1 hk(x)(Uky−Akx

∗), and by checking if the
conditions in Theorem 1 are satisfied. The auxiliary DS can be re-written as

ẏ =
K

∑
k=1

hk(x)(Ak +Uk)(y−x∗). (3.12)

56



3.1. Robotic skills representation using stable dynamical systems

Algorithm 1 Find a matrix U such that µ1(A+U)< 0

Require: A ∈ Rn×n, p > 1, n // dimension of state space

U ←Matrix of zeros in Rn×n

for d = 1 to n do
s = ∑i6=d |adi|
if add > 0 and add < s then

udd ←− s− padd
else if add > 0 and add > s then

udd ←− 2add
else if add < 0 and |add |< s then

udd ←− s
else

udd ← 0 // no need to modify add

end if
end for
return U

It is easy to show that the controlled DS in (3.12) has an equilibrium at x∗. Indeed, the term
−∑

K
k=1 hk(x)Akx

∗) of the control input in (3.11) is used to satisfy condition (3.9) in Theorem 1.
Moreover, by looking at the controlled DS in (3.12), it is clear that the control matrices Uk have
to guarantee that µ(Ak +Uk)< 0, k = 1, ..,K (condition (3.10) in Theorem 1).

The control matricesUk can be automatically computed by using the automatic procedure in Al-
gorithm 1, originally proposed in [18]. The algorithm exploits the µ1(·) matrix measure associated
to the l1-norm, which is defined as

µ1(C),max
j

(
c j j +∑

i6= j
|ci j|

)
,

where ci j indicates the element at row i and column j of C. From the definition of µ1(·) matrix
measure, it derives that µ1(C) < 0 if the matrix C has negative diagonal elements cii < 0, i =
1, . . . ,n and it is diagonally dominant |cii| > ∑

n
j=1 |ci j|, i = 1, . . . ,n. Given a square matrix A ∈

Rn×n, Algorithm 1 finds a diagonal matrix U ∈Rn×n such thatC =A+U has negative diagonal
elements and it is diagonally dominant, guaranteeing that µ1(C) < 0. In details, Algorithm 1
inspects each row of the matrix A and it computes, for each row, the sum of the off-diagonal
elements s = ∑i6=d |adi|. The algorithm then considers four different cases. In the first case, the
d-th diagonal element of A is positive (add > 0) and add < c. In this case, udd = −s− padd . In
the second case, add > 0 and add < s, and then udd = − 2add . In the third case, add < 0 and
|add | < s. This implies that udd = −s. In all the other cases A has already a negative matrix
measure. The described approach to select the values of each udd guarantees that add + udd < 0
and that |add +udd |> c for d = 1, . . . ,n, i.e. that µ1(A+U)< 0.

The gains of the stabilizing control are automatically computed given the matrices Ak, which
only depends on the learned GMM parameters (see Equation (3.7)), and the GMR based DS is
stabilized at run time. In contrast to the approaches in [76, 78, 93], the stabilization of the DS
does not require additional learning steps. Qualitative results of this stabilization approach are
shown in Figure 3.2. It is worth noticing that the control input significantly affects the reproduced
trajectories, preventing an accurate reproduction of the demonstrations. This is because the con-
troller imposes an exponentially converging dynamics to the DS in (3.11), which contradicts the
demonstrations. In formal terms, ∃β > 0 such that ‖x(t)−x∗‖1 ≤ β‖x(0)−x∗‖1e−ct , where

57



3. Representation of robotic tasks

Generated motion

Target

Demonstrations
Streamlines

x1 [mm]

x 2
 [

m
m

]

200

100

0

-100
-50 0 50 100 150

Figure 3.2.: The controlled system (3.11) generates an exponentially converging trajectory. The
trajectory converges to x∗ = [0,0]T, but with a significant reproduction error.

‖ · ‖1 is the l1-norm and µ1(Ak +Uk)≤−c < 0,∀k. This problem is alleviated by introducing an
activation signal, which helps to balance between accurate motion reproduction and stable motion
generation.

Accurate reproduction of stable motions

The control law in (3.11) is modified in order to improve the reproduction accuracy and to preserve
the stability properties of the controlled system. The new controlled system is given by

ẋ=
K

∑
k=1

hk(x)(Akx+bk)︸ ︷︷ ︸
System

+ω(x, t)

(
K

∑
k=1

hk(x)(Ukx−bk)

)
︸ ︷︷ ︸

Control

, (3.13)

where the so-called activation function ω(x, t) ∈ R in (3.13) is used to balance between accurate
reproduction and stability. In particular, the controller is active for ω(x, t) = 1 and the controlled
DS exponentially converges towards the target x∗. The controller is deactivated for ω(x, t) = 0,
meaning that the demonstrations are accurately reproduced. The activation function follows the
linear dynamics {

ω̇(x, t) =−γ(ω(x, t)− c(x)) t < tmax

ω(x, t) = 1 t ≥ tmax
, (3.14)

that is stable for each value of γ > 0. The value of γ is set considering that, in practice, ω(x, t) =
c(x) after (5/γ)s. The scalar function c(x) plays the role of an equilibrium point for the system
in (3.14), i.e. ω(x, t)→ c(x) for t → +∞. The value of c(x) is 0 when the controller has to be
deactivated, and it switches to c(x) = 1 to activate the controller.

The control structure in (3.13) and (3.14) allows smooth activation/deactivation of the stabiliz-
ing control input. This property is exploited to achieve an accurate reproduction of the demonstra-
tions without compromising the stability, following the idea that the motion is accurate inside a
certain area around the demonstrations. To this end, the state space is divided into three regions:

58



3.1. Robotic skills representation using stable dynamical systems

x1

x 2

Target
Mean
Covariance

Figure 3.3.: The state space partitioned into three regions. Dr is the demonstration area, while the
union Cr ∪Br is a contracting region.

an area around the demonstrations indicated with Dr, a contraction region called Cr, and a ball of
radius r centered at the target Br. The described partitioning is shown in Figure 3.3. The value of
c(x) is then chosen as c(x) = 0 if x ∈ Dr (control deactivated), and c(x) = 1 if x ∈ Cr∪Br (con-
trol active). Trajectories that start in Cr ∪Br follow an exponentially convergent dynamics unless
they reach the equilibrium x∗, or they enter the demonstration area Dr. The controller guarantees
the contraction in Cr ∪Br, so this region is named a contracting region. The control action is also
activated in case the DS has not converged within tmax seconds. This prevents the generated tra-
jectories from converging to eventual spurious attractors located inside the demonstration area. It
is worth noticing that, in general, a GMR with a proper number of components does not generate
spurious attractors within Dr. Indeed, the GMR generates a velocity close to the demonstrated
one(s), which is zero only at the target. This means that the velocity retrieved with GMR drops to
zero only close to the given target. This result is empirically shown in Section 3.1.4.

As discussed, the presented control structure permits an accurate reproduction inside the demon-
stration area. Theorem 2 provides conditions for the global asymptotic stability of the controlled
DS in (3.13).

Theorem 2. The dynamical system in (3.13), with activation function (3.14), globally asymptoti-
cally converges to x∗

Proof. Recall that, in order to show that a system is asymptotically stable, one has to analyze the
convergence properties of the system for t→+∞. Given the dynamics in (3.13), it is easy to notice
that the systems in (3.13) and (3.11) coincide for ω(x, t) = 1. Now, the DS in (3.11) is proved to be
globally exponentially stable. Considering that ω(x, t) = 1 for t ≥ tmax, it is possible to conclude
that the DS in (3.13) globally asymptotically converges to x∗.

In order to apply the presented controller, it is needed to build the three areas in Figure 3.3 and to
determine to which region a certain state belongs to. An approach useful to construct the demon-
stration area Dr is proposed in [75] and exploited in this work. The algorithm in [75] can be exe-
cuted off-line, given the training input (position) D = {xt,i}T,N

t=1,i=1. In details, each robot position
in the training set is assigned to a clusterDk, k = 1, . . . ,K, where K is the number of Gaussian com-
ponents. A certain position xt,i belongs to Dk if N (xt,i|xµk,

xΣk) > N (xt,i|xµ j,
xΣ j) , ∀ j 6= k,

whereN (·) is the probability that xt,i is generated from the k-th component. Given the K clusters,
a set of K scalars is computed as

δk = α min
xt,i∈Dk

N (xt,i|xµk,
xΣk) , (3.15)

59



3. Representation of robotic tasks

where 0 < α ≤ 1 is a constant value which defines the area of Dr. Bigger values of α result in
tighter Dr around the demonstrations. In all the experiments, the value α = 0.1 is empirically
chosen to prevent trajectories starting in Dr to exit from the demonstration area. The scalar δk
defined by (3.15) represents the probability of the point in Dk located at the maximum distance
from xµk, that guarantees that the region Dtot = {xt,i : N (xt,i|xµk,

xΣk) ≥ δk} contains all the
positions in the training set. The demonstration area Dr is computed as Dr = Dtot\Br. The
described algorithm to construct Dr is computationally efficient. Indeed, the algorithm exploits
the probabilities N (xt,i|xµk,

xΣk) which are computed in the E–M algorithm to train the GMM
and come at no extra cost. Given those probabilities, the algorithm simply finds the minimum
element of K vectors, multiplies the obtained K values by a scalar α , and stores the results in δk,
k = 1, ..,K.

Given the demonstration area, the current state x is assigned to one of the regions at run time.
In particular, the state x belongs to Br if ‖x−x∗‖ ≤ r. In case ‖x−x∗‖> r, the state x belongs
to Dr or to Cr. The current state x ∈ Dr if there exists a k such that N (x|xµk,

xΣk) ≥ δk,k =
1, ..,K, otherwise x ∈ Cr. This classification algorithm is computationally efficient. Indeed, the
probabilitiesN (x|xµk,

xΣk), k = 1, ..,K, are used to compute hk(x) in (3.7) and come at no extra
cost. Hence, the classification algorithm only checks if the K valuesN (x|xµk,

xΣk)≥ δk. In case
x ∈ Cr ∪Br or t > tmax, the controller is activated, which only requires to sum up the K matrices
Ak and Uk.

3.1.4. Results and comparisons

This section evaluates the performance of Contracting GMR (C-GMR) presented in Section 3.1.3.
The evaluation considers two main aspects, namely the reproduction accuracy and the training
time. C-GMR is also compared with two Lyapunov based approaches, namely the stable estimator
of dynamical systems (SEDS) in [76] and the SEDSII in [78]. The goal of this comparison is
to underline the basic differences between Lyapunov and Contraction based approaches in stable
motion learning from multiple demonstrations. The LASA Handwritten dataset [2] is used as a
benchmark for testing and comparisons. The dataset is a collection of 20 motions in 2D, collected
at 50Hz using a Tablet-PC. Each motion terminates at x∗= [0,0]T and is demonstrated three times.
In the experiments, a DS for each motion in the dataset is learned by GMR considering all the three
demonstrations. The LASA Handwritten dataset contains motions of different complexities. In
general, the number of Gaussian components needed to accurately represent a motion depends on
the complexity of the motion itself. Simple motions, like linear paths, require a limited number of
components, while complex non-linear motions require many components. In order to maximize
the accuracy, the number of components for each motion is automatically computed using the
Bayesian information criterion (BIC) [140]. Figure 3.4 shows qualitative results when C-GMR is
used to stabilize a GMR based DS at run time. The sampling time used to generate the motion
trajectory is set to 2ms. C-GMR is capable to accurately learn complex point-to-point motions
and to ensure global convergence towards the target.

Reproduction accuracy

The reproduction accuracy is measured by two metrics. The first metrics considers the shape of
the generated trajectory. In particular, this metrics computes the area between a demonstrated
trajectory Di ∈ D and the trajectory T generated by C-GMR, SEDS, or SEDSII. Both Di and T
start from the same point and end at the same target. For this reason, the area among Di and
T represents the deviation from the desired trajectory Di. Being Di and T two trajectories of
different length, multi-dimensional dynamic time warping (DTW) [132] is exploited to align the

60



3.1. Robotic skills representation using stable dynamical systems

TargetDemonstrationsStreamlines Generated motion

Figure 3.4.: C-GMR is capable of effectively learning and accurately reproducing stable point-to-
point motions in the LASA dataset.

two trajectories and then compute the area among them. As already mentioned, the area metrics
measures how well the learned DS preserves the shape of the demonstrated trajectory. In order to
take into account also the kinematics of the demonstrations, the velocity root mean square error

metrics [93] is used. This metrics is defined as Ve =
√

1
NT ∑

T,N
t,i=1 ‖ẋt,i−f(xt,i)‖2.

For the SEDSII, one has to specify the form of the control Lyapunov function (CLF) [78],
which depends on the complexity of the motion. In the following experiments, two different
parametrization of CLF are tested and compared. The two parameterization are referred as CLF0
and CLF3. CLF0 is defined as CLF0 = xTP 0x, while CLF3 is defined as CLF3 = CLF0 +

∑
3
l=1 β l(x)

(
xTP l(x−µl)

)2. Hence, CLF0 is an ellipsoid centered around the target (symmetric

61



3. Representation of robotic tasks

A
re

a 
er

ro
r 

[m
2 ]

SEDS SEDSII 
(CLF0)

SEDSII 
(CLF3)

101

C-GMR

100

10-1

10-2

(a)

V
el

oc
ity

 e
rr

or
 [

m
/s

]

SEDS SEDSII 
(CLF0)

SEDSII 
(CLF3)

C-GMR

102

101

100

(b)

Figure 3.5.: Trajectory reproduction errors for SEDS, SEDII, and C-GMR on the LASA dataset.
Black error bars are 10% and 90% quantiles of the median value.

component), while CLF3 is CLF0 plus three asymmetric components. The parameters β l , P l , and
µl are learned from demonstrations by solving a constrained optimization problem [78].

The learning process in GMR, SEDS, and SEDSII consists in solving optimization problems.
The numerical solution of such problems is usually affected by the initial conditions of the solver.
Different initial conditions may lead to different results. Hence, it is needed to perform multiple
trials and report typical performance. To this end, each approach is tested ten times for each motion
in the dataset. Figure 3.5 shows the overall accuracy for C-GMR, SEDS, and SEDSII (CLF0 and
CLF3). Note that, for a better visualization, a logarithmic scale is used for the ordinate axis. Since
the reproduction error is not normally distributed, the median value is shown in Figure 3.5 instead
of the mean value. Moreover, the location of the 10% and the 90% quantiles (black error bars
in Figure 3.5) indicates the maximal and minimal deviation from the median value. Results for
C-GMR are obtained by setting the radius of Br equal to the 15% of the distance between the
starting point and the target.

As shown in Figure 3.5, SEDS has the worst area (1.3m2) and a velocity (8.3m/s) errors. As
discussed in [76], SEDS derives stability constraint from the quadratic Lyapunov function ‖x‖2.
The results obtained with SEDS indicates that most of the motions in the dataset cannot be learned
with a simple, quadratic Lyapunov function. SEDSII with CLF0 parameterization has an area er-
ror of 0.596m2 and a velocity error 5.2m/s, while the CLF3 parameterization has an area error of
0.591m2 and a velocity error 4.9m/s. The fact that the average accuracy of the two parameteriza-
tion is similar indicates that most of the motions in the dataset can be learned with the Lyapunov
function xTP 0x. However, SEDS with CLF3 is well-suited for all the motions in the dataset and
it presents the highest accuracy. C-GMR is less accurate (0.768m2 and 6.1m/s) than SEDSII,
but it outperforms SEDS. The reason is that C-GMR loses accuracy when the trajectory enters
the ball Br around the equilibrium, where the controlled DS follows an exponentially converging
dynamics.

Training time

The described C-GMR is capable of stabilizing the GMR based DS at run time. The goal of this
evaluation is to analyze the time performance of C-GMR, and to compare the results obtained with
C-GMR, SEDS, and SEDSII. The first step is to evaluate the extra training time introduced by C-
GMR. In other words, the time spent to build the demonstration areaDr and to compute the control

62



3.1. Robotic skills representation using stable dynamical systems

T
im

e 
[m

s]

Gaussian components (#)
1 5 10 15 20 25 30 2 4 6 8 10

Space dimension (#)

0

0.3

0.6

0.18

0.2

0.22

(a) Execution time of Algorithm 1, averaged over 100 executions.

T
im

e 
[m

s]

Gaussian components (#)
1 5 10 15 20 25 30

0.01

0.04

0.08

0.05

0.06

0.07

0.08

1 2 3 4 5 6 7 8 9 10
Training data (#)

x100

(b) Time required to compute Dr, averaged over 100 executions.

Figure 3.6.: Time required to execute Algorithm 1 (a) and to compute the demonstrations area (b).

matricesUk (see Algorithm 1). The computation time of Algorithm 1 is a function of the number K
of Gaussian components (one control matrix for each component) and the dimension n of the state
space (Ak,Uk ∈Rn×n). Figure 3.6(a) shows the average execution time of an unoptimized Matlab
implementation of Algorithm 1. The left graph shows the computation time with a variable number
of components (K ∈ [1,30]). The results are obtained with a constant dimension of the state space
(n = 2 as in the LASA dataset). As expected, the computation time grows almost linearly with the
number of Gaussians. The right graph shows the computation time obtained by fixing the number
of Gaussian to K = 10, and varying the dimension of the state space (n∈ [2,10]). Also in this case,
the computation time grows linearly. The execution time is below 0.6ms in all the considered
cases. The computation time of the approach adopted to construct the demonstration area Dr is
a function of the number of Gaussians K and the number of training points T . The approach has
been implemented in Matlab, and the average execution time is shown in Figure 3.6(b). The left
graph shows the computation time obtained by keeping fixed the number of training data (T = 300
as in the LASA dataset) and by varying number of components (K ∈ [1,30]). The right graph is
the computation time obtained with K = 10 components and varying the number of training data
(T ∈ [100,1000]). The execution time is below 0.1ms in all the considered cases.

The same setup is used to compare the training time of C-GMR, SEDS, and SEDSII. Obtained
results are shown in Figure 3.7, where a logarithmic scale is used for the ordinate axis in order
to improve the visualization. SEDS spends about 6.5s (median value) for each motion to learn a
stable DS form demonstrations. SEDSII needs 0.76s with CLF0 and 2.7s with CLF3. C-GMR
outperforms other approaches in terms of training time with a median time of 0.58s. Note that
the training time for C-GMR in Figure 3.7 also includes the time spent to execute Algorithm 1
and to compute the demonstration area. Indeed, as shown in the previous experiment, the extra
computation time introduced by C-GMR is at least three orders of magnitude smaller than the
GMM time.

Generalization to different initial/target positions

One of the benefits of the motion generation based on DS is the possibility to generalize the motion
to different initial and target positions. Indeed, stable DS are mathematically proven to be able

63



3. Representation of robotic tasks

T
ra

in
in

g 
T

im
e 

[s
]

GMM time
CLF time

SEDS SEDSII 
(CLF0)

SEDSII 
(CLF3)

C-GMR

102

101

100

Figure 3.7.: Median training time for SEDS, SEDII, and C-GMR on the LASA dataset. Black
error bars are 10% and 90% quantiles of the median value. GMM time indicates the
time spent by the E–M algorithm to find the GMM parameters.

to generate convergent paths for any initial/target position. Even if the stability of C-GMR is
proven in Theorem 2, it is interesting to qualitatively evaluate the generalization capabilities of
C-GMR when the initial or target position changes. The generalization capabilities of C-GMR
are qualitatively shown in Figure 3.8 for the S-shape motion in the LASA dataset. As shown in
Figure 3.8(a), the trajectories generated by C-GMR from different initial positions always reach
the desired target. This is an expected result, given the results in Theorem 2. In Figure 3.8(a),
the black solid lines represent trajectories that start or enter in the demonstration ares Dr. Due
to the activation function in (3.14), the controlled DS is capable to smoothly transit between the
different regions of the state space. Black dashed lines indicate trajectories that start and remain
in the contracting region Cr ∪Br. These trajectories follow exponentially converging dynamics.
Figure 3.8(b) shows the generalization to the new goal position x∗ = [−25,25]T.

Initial positionTargetDemonstrationsGenerated motion

x1 [mm]

x 2
 [

m
m

]

75 200
-100

75

250

-50

(a)

x1 [mm]

x 2
 [

m
m

]

75 200
-100

250

-50

75

(b)

Figure 3.8.: C-GMR used to reproduce the S-shape motion from different stating (a) and target (b)
positions.

64



3.1. Robotic skills representation using stable dynamical systems

x1

x 2

(a) SEDSII CLF3

x1

x 2

(b) C-GMR

Figure 3.9.: The first motion in MultiModel 3 is accurately reproduced with C-GMR and SEDSII
CLF3. Black lines are the retrieved trajectories converging to the unique equilibrium
(black bullet). Brown dots are the demonstrations.

Incremental learning

The training time results obtained in the previous experiments suggest that C-GMR can be ef-
fectively exploited for incremental learning, in a scenario where novel task demonstrations are
continuously provided. The LASA dataset contains also four multi-model motions, where demon-
strations show different motions in different regions of the space. As a proof of concepts, the
MultiModel 3 motion from the LASA dataset is considered (see Figure 3.10). As shown in the
previous experiment, SEDS is significantly slower and less accurate than the other approaches.
Moreover, SEDSII CLF0 achieves poor accuracy in this case, because the complex multi-model
motion often violates the constraints imposed by the Lyapunov function xTP 0x. For these rea-
sons, only the performance of C-GMR and SEDSII CLF3 are compared in this experiment.

MultiModel 3 consists of six demonstrations that describe two motions. Two tests are performed
to evaluate the generalization capabilities of SEDSII CLF3 and C-GMR. In the first test, the orig-
inal GMR based DS is learned considering the first three demonstrations. As qualitatively shown
in Figure 3.9, both C-GMR and SEDSII CLF3 stabilize the GMR based DS while producing tra-
jectories close to the demonstrations. In the second test, three more demonstrations are added and
the GMR based DS is re-trained1. Results in Figure 3.10(a) and Figure 3.11(a) show that, without
re-training the CLF, SEDSII CLF3 accurately represents only one motion (reproduction error of
0.32m2). As shown in Figure 3.10(b) and Figure 3.11(a), by re-training the CLF considering all
the six demonstrations SEDSII CLF3 accurately represents both motions (reproduction error of
0.06m2), but it is almost 6.5 times slower than SEDSII with initial CLF3 (see Figure 3.11(b)).
Results for C-GMR (with recomputed control gains) are shown in Figure 3.10(c) and Figure 3.11.
C-GMR has the same training time of SEDSII with initial CLF3, but it is almost 5 times more ac-
curate (0.064m2 and 0.32m2 respectively). The time to recompute control parameters, in fact, is
negligible compared to the time needed to re-train the GMR. C-GMR and SEDSII with re-trained
CLF achieve similar accuracy (0.064m2 and 0.06m2 respectively), but the training time of SEDSII
is about 6.5 times longer (2.17s and 14.13s respectively). Hence, C-GMR offers a good trade-off
between accuracy and training time.

Discussion

In the conducted evaluation, C-GMR resulted to be less accurate than SEDSII. The reason is that
SEDSII is optimized along the whole trajectory, while C-GMR loses accuracy when the motion

1Computationally efficient algorithms can be used to incrementally adjust GMM parameters when a new demonstra-
tion is provided [32, 47].

65



3. Representation of robotic tasks

x1

x 2

(a) SEDSII (initial CLF3)

x1

x 2

(b) SEDSII (re-trained CLF3)

x1

x 2

(c) C-GMR (recomputed gains)

Figure 3.10.: MultiModel 3 is accurately reproduced with C-GMR (recomputed control gains)
and SEDSII (re-trained CLF3). SEDSII (initial CLF3) accurately reproduce only the
trained motion (brown dots). Black lines are the retrieved trajectories converging to
the unique equilibrium (black bullet). Brown dots are the first set of demonstrations,
green dots the second one.

R
ep

ro
du

ct
io

n 
er

ro
r 

[m
2 ]

SEDSII 
 initial
 CLF3 

SEDSII 
 re-trained

 CLF3 

C-GMR

101

100

10-1

10-2

(a)

T
ra

in
in

g 
T

im
e 

[s
]

GMM time
CLF time

0

4

8

12

16

SEDSII 
 initial
 CLF3 

SEDSII 
 re-trained

 CLF3 

C-GMR

(b)

Figure 3.11.: Accuracy (a) and training time (b) for SEDII and C-GMR in the incremental learning
test. The black error bars represent 10% and 90% quantiles of the median value.

enters in the ball Br (see Figure 3.3) around the target. Indeed, the controlled DS converges
exponentially inside Br. As discussed in [95], Contraction theory can be extended to consider
a generic coordinate transformation Θ(x). A possible research direction consists in finding a
suitable coordinate transformation Θ(x) that transforms the input space into a novel space where
demonstrations are accurately reproduced.

66



3.2. Invariant representations of Cartesian trajectories

The difference between C-GMR and the considered Lyapunov based approaches is that C-GMR
stabilizes the dynamical system at run time, without extra learning steps. C-GMR automatically
computes the control input given GMR parameters. The time required to compute the control
input is, in practice, negligible. As a results, C-GMR outperforms the considered Lyapunov based
approaches in terms of training time. Considering the reduced training time, a possible application
of C-GMR is incremental learning, where GMR parameters have to be re-trained every time a
novel skill demonstration is given. On the other hand, SEDSII is well-suited for applications
where high accuracy is required, and for which the training time is not a limitation. SEDS has
the worst average performance on the LASA dataset. It must be noticed that for some motions, as
the JShape (the fifth motion in Figure 3.4), SEDS outperforms both SEDSII and C-GMR in terms
of accuracy. In general, SEDS outperforms other approaches when the motion can be effectively
represented by a quadratic Lyapunov function.

In a properly demonstrated point-to-point motion the velocity drops to zero only at the target
position. In other words, the demonstrations do not exhibit spurious equilibrium points. This is
the general assumption behind the motion generation with autonomous DS. An autonomous DS,
in fact, is not capable to generate a motion that stops in a certain position for some seconds and
then reaches another target. In case the robot has to stop for a certain time and then to reach the
goal, a possible solution consists in using multiple autonomous DS (one for each attractor) and to
switch among them when the robot reaches one of the equilibrium points.

3.2. Invariant representations of Cartesian trajectories

Cartesian trajectory descriptors, as the dynamical systems based representations presented in the
previous section, describe the spatial motion of one or multiple points attached to the human
(robot) body. As underlined in [155], Cartesian descriptors depend on how and where the same
motion is executed. For instance, the same motion can be executed at different speeds, or with
different amplitudes. These motion variations depend on how the motion is executed. Moreover,
the same motion can be executed from a different starting point, or observed from a different
view. These motion variations depend on where the motion is executed. Described motion varia-
tions reduce the effectiveness of Cartesian representations in motion recognition and reproduction
problems. In order to overcome these limitations, this work proposes to map Cartesian trajectories
to a space that is invariant to the aforementioned motion variations. Two invariant representa-
tions are described in the rest of this section. A theoretical comparison between different invariant
representations is presented in Appendix B.

3.2.1. Unidirectional invariant representation of rigid body motion
trajectories

A unidirectional invariant representation allows to transform a Cartesian trajectory into a motion
descriptor invariant, for example, to roto–translations and scaling factors. However, it does not
allow to reconstruct the original Cartesian trajectory given its invariant descriptor. For this reason,
a unidirectional representation can be exploited for motion recognition, but not to reproduce the
motion on a real robot. The invariant descriptor described in this section leverages the concept
of curvature to transform a 6D Cartesian trajectory into a 2D invariant one. The resulting invari-
ants are not affected by roto–translations and linear scale. In gesture recognition problems, the
invariance to roto–translation helps to recognize gestures observed from different views, while the
invariance to linear scaling factors helps to cope with the different body lengths of different users.

Consider a 6D trajectory of a rigid body where vt = [vx,t , vy,t , vz,t ]
T is the linear and ωt =

67



3. Representation of robotic tasks

[ωx,t , ωy,t , ωz,t ]
T the angular velocity of the rigid body at each time instant t = 1, . . . ,T . Given

vt , an invariant representation of the rigid body translation (linear velocity) is defined as

γt =
‖vt × v̇t‖
‖vt‖2 = κ(t)‖vt‖ , (3.16)

where vt represents the time derivative of vt , and κ indicates the curvature. It is possible to show
that γt in (3.16) is invariant under a constant rotation, translation, and linear scale. In other words,
γt is invariant to affine transformations. To prove this invariance properties, it is sufficient to apply
a constant affine transformation to the position pt of the rigid body, obtaining the transformed
position p′t = αRpt +t, where α 6= 0 is a scaling factor,R is a rotation matrix, and t= [tx, ty, tz]T

is a translation. The transformed velocity is then v′t = ṗ
′
t = αRṗt = αRvt , while the transformed

acceleration is v̇′t = αRv̇t . Using the properties (Ra)× (Rb) = R(a× b), ‖Ra‖ = ‖a‖, and
‖v×w‖= ‖v‖‖w‖sin(θ), where the vectors a,b ∈ R3, it is possible to derive that

γ
′
t =
‖v′t × v̇′t‖
‖v′t‖2 =

∥∥α2R(vt × v̇t)
∥∥

‖αRvt‖2 = γt .

Similarly, given ωt = [ωx,t , ωy,t , ωz,t ]
T, an invariant representation of the rotation is defined as

ξt =
‖ωt × ω̇t‖
‖ωt‖2 . (3.17)

The representation in (3.17) is invariant to roto–translations. This result can be obtained by con-
sidering that the translation does not affect the angular velocity, and that the rotation does not
affect the norm of a vector and the angle between two vectors. However, the invariance to the
angular scale is not proved. This is is because the time derivative of the orientation alone does
not represent the angular velocity. For example, the mapping between the derivatives of the Euler
angles ėt = [φ̇t , θ̇t , ψ̇t ]

T and the angular velocity ωt is ωt = T (φt ,θt ,ψt)ėt , where the matrix T (·)
is a non-linear mapping and it depends on the used Euler angles (see [142]).

Finally, one can notice that the values in (3.16) and (3.17) are not speed invariant. This is
easily shown by considering the original velocity vt , and its scaled version vs

ts = αvt . Since the
speed changes, there is a corresponding change in motion time, i.e. t = αts. Hence, it holds that
vs

ts = αvαts and that v̇s
ts = α2v̇αts . By substituting vs

ts and v̇s
ts in (3.16), it is easy to verify that

γs(ts) = αγt . Following similar steps, it is possible to show that (3.17) is not speed invariant.

3.2.2. Bidirectional invariant representation of rigid body motion
trajectories

Similarly to unidirectional descriptors, bidirectional invariant representations allow to transform
a Cartesian trajectory into a space where the motion exhibits some invariance properties. More-
over, a bidirectional descriptor can be converted back to the Cartesian space in order to produce a
generalized version of a certain motion (see Section 3.2.4). This section presents a numerically ro-
bust trajectory descriptor called DHB (Denavit–Hartenberg inspired Bidirectional) representation.
DHB is a minimal (six values) and numerically robust representation of rigid body trajectories,
and it is invariant to roto–translations, linear, angular, and time scaling, and viewpoints. The key
idea behind the DHB representation is the separation of the linear and angular motions of a rigid
body into two distinct parts. The separation is realized by attaching two frames to the rigid body,
as shown in Figure 3.12. One frame represents the position or the linear velocity in each time
instant t, and it is called the linear frame. The other frame represents the orientation or the angular

68



3.2. Invariant representations of Cartesian trajectories

t+1

t

t-1

mp

x̂p

ẑp

ŷp
x̂p

ẑp

(a) Linear frame (b) Angular frame

Figure 3.12.: The linear (a) and angular (b) frames shown in three consecutive time instants.

velocity in each t, and it is called the angular frame. Notice that, in the rest of the section, the
subscript p refers to the position and r refers to the orientation represented as a rotation vector (see
Appendix A.2.1). Similarly, the subscript v indicates to the linear velocity, while ω indicates to the
angular velocity. Given the linear and angular frames in each time, a six invariant values (minimal
set) are computed. The invariant mp (mv) is the norm of the position (linear velocity) between two
the consecutive time instants t and t +1. Similarly, mr (mω ) is the norm of the orientation vector
(angular velocity) between t and t +1. The remaining four invariants, namely θ i

p (θ i
v) and θ i

r (θ i
ω ),

i = 1,2, represent the rotation of the linear (angular) frame in the consecutive time instants t and
t +1.

Position-based Invariants

The first step to compute DHB invariants at position level is to define the linear and angular frames
shown in Figure 3.12. For each time step t, the linear frame is computed by applying the following
procedure:

• The x axis of the frame is the unit vector representing the normalized difference between
the position vectors in t and t +1, i.e.

x̂p,t =
pt+1−pt

‖pt+1−pt‖
=

∆pt

‖∆pt‖
. (3.18)

Note that, by construction, ∆pt is the linear velocity of the rigid body in a unitary time.

• The y axis represents the common normal between the x axis at the current instant t and the
x axis at the next instant t +1. It is computed as

ŷp,t =
x̂p,t × x̂p,t+1

‖x̂p,t × x̂p,t+1‖
. (3.19)

• The z axis is orthogonal to the x and the y axes, and it is computed as

ẑp,t = x̂p,t × ŷp,t . (3.20)

The angular frame in Figure 3.12(b) is created by applying similar steps. In particular, the x axis
of the angular frame is

x̂r,t =
∆rt

‖∆rt‖
, (3.21)

69



3. Representation of robotic tasks

where the rotation vector ∆rt is the relative orientation of the rigid body in two consecutive time
instants t and t +1. In other words, ∆rt represents the angular velocity needed to rotate the body
from t to t +1 in a unitary time. The y axis and the z axis are then computed as

ŷr,t =
x̂r,t × x̂r,t+1

‖x̂r,t × x̂r,t+1‖
, (3.22)

ẑr,t = x̂r,t × ŷr,t . (3.23)

In order to avoid discontinuities, i.e. jumps of ±π in subsequent time instants, the direction of the
axes of the linear (angular) frames has to be modified accordingly. Given two consecutive axes ât

and ât+1, one has to set ât+1 =−ât+1 if the scalar product s = ât · ât+1 < 0.
Having computed the linear and angular frames, it is possible to calculate the invariant values.

The six invariants are inspired by the Denavit–Hartenberg (DH) notation [44]. One difference
between DHB and DH is that, instead of applying the DH notation to the different links of a
kinematic chain, DHB applies the DH notation to consecutive instants of a motion trajectory.
Another difference is that the DH notation adopts one frame, while two frames are exploited by
DHB to separate position and orientation. The first two invariant values are the norm of the relative
positions and orientations between subsequent frames, and they are computed as

mp,t = ‖∆pt‖= ∆pt · x̂p,t , (3.24)

mr,t = ‖∆rt‖= ∆rt · x̂r,t , (3.25)

where x̂p,t and x̂r,t are the axes in (3.18) and (3.21) respectively. The invariants mp and mr in (3.24)
and (3.25) describe the translation of the linear and angular frames respectively. The rotation of
the linear and angular frames is described by four more values.

For the linear frame, the axis ŷp,t lies on the common normal between x̂p,t and x̂p,t+1. Accord-
ing to the DH notation, only the rotations about the x and y axes are needed to align the frames at
t and t + 1. As shown in Figure 3.12(a), to align x̂p,t to x̂p,t+1 the linear frame has to rotate an
angle θ 1

p about ŷp,t . The signed value of θ 1
p is given by

θ
1
p,t = arctan

(
x̂p,t × x̂p,t+1

x̂p,t · x̂p,t+1
· ŷp,t

)
= arctan

(
‖x̂p,t‖‖x̂p,t+1‖sin(θ 1

p,t)ŷp,t

‖x̂p,t‖‖x̂p,t+1‖cos(θ 1
p,t)

· ŷp,t

)

= arctan

(
sin(θ 1

p,t)

cos(θ 1
p,t)

)
,

(3.26)

where the relationships a ·b= ‖a‖‖b‖cos(θab), a×b= ‖a‖‖b‖sin(θab)n̂, and (3.19) have been
used. A further rotation θ 2

p about x̂p,t+1 is required to align ŷp,t to ŷp,t+1. The signed value of θ 2
p

is computed as

θ
2
p,t = arctan

(
ŷp,t × ŷp,t+1

ŷp,t · ŷp,t+1
· x̂p,t+1

)
. (3.27)

A similar reasoning is applied to to align the angular frames between t and t + 1. The resulting
invariants are

θ
1
r,t = arctan

(
x̂r,t × x̂r,t+1

x̂r,t · x̂r,t+1
· ŷr,t

)
, (3.28)

θ
2
r,t = arctan

(
ŷr,t × ŷr,t+1

ŷr,t · ŷr,t+1
· x̂r,t+1

)
. (3.29)

Note that the definitions of the invariants in (3.26) and (3.28), as well as those in (3.27) and (3.29),
are formally the same.

70



3.2. Invariant representations of Cartesian trajectories

Velocity-based Invariants

In some cases, it is possible that the linear vt and angular ωt velocities are directly available from
the sensors. In this case, the DHB invariants can be directly computed from the velocity data,
without any extra integration step. Being computed starting from the velocity, these invariant
values are referred as velocity-based invariants. The approach used to calculate the position-based
invariants can be easily adapted to the velocity-based invariants. The main differences between
the two approaches are discussed as follows. Similarly to position-based invariants two frames are
attached to the rigid body. However, for velocity-based invariants, the frames are used to separate
linear and angular velocity vectors. The axes of the linear frame are computed as

x̂v,t =
vt

‖vt‖
, (3.30)

ŷv,t =
x̂v,t × x̂v,t+1

‖x̂v,t × x̂v,t+1‖
, (3.31)

ẑv,t = x̂v,t × ŷv,t . (3.32)

The axes of the angular frame are given by

x̂ω,t =
ωt

‖ωt‖
, (3.33)

ŷω,t =
x̂ω,t × x̂ω,t+1

‖x̂ω,t × x̂ω,t+1‖
, (3.34)

ẑω,t = x̂ω,t × ŷω,t . (3.35)

Note the strong similarities between (3.18)-(3.20) and (3.30)-(3.32), as well as between (3.21)-
(3.23) and (3.33)-(3.35).

Given the two frames, the six velocity-based invariants are computed. Two values are the norm
of the linear and angular velocities, and they are computed as

mv,t = ‖vt‖= vt · x̂v,t , (3.36)

mω,t = ‖ωt‖= ωt · x̂ω,t . (3.37)

As for the position-based invariants, the remaining four values are used to align the linear and
angular frames in two consecutive time instants. The invariants for the linear velocity are

θ
1
v,t = arctan

(
x̂v,t × x̂v,t+1

x̂v,t · x̂v,t+1
· ŷv,t

)
, (3.38)

θ
2
v,t = arctan

(
ŷv,t × ŷv,t+1

ŷv,t · ŷv,t+1
· x̂v,t+1

)
, (3.39)

while the invariants for the angular velocity are

θ
1
ω,t = arctan

(
x̂ω,t × x̂ω,t+1

x̂ω,t · x̂ω,t+1
· ŷω,t

)
, (3.40)

θ
2
v,t = arctan

(
ŷω,t × ŷω,t+1

ŷω,t · ŷω,t+1
· x̂ω,t+1

)
. (3.41)

It is worth noticing that θ 1
v,t and θ 2

v,t are computed by substituting x̂p,t with x̂v,t and ŷp,t with ŷv,t

in (3.26) and (3.27). Similarly, θ 1
ω,t and θ 2

ω,t are computed by substituting x̂r,t with x̂ω,t and ŷr,t

with ŷω,t in (3.28) and (3.29).

71



3. Representation of robotic tasks

In the discrete time domain, a simple relationship exists between position- and velocity-based
invariants. To find the existing relation, one has to consider that ∆p and ∆r represent the linear
and angular velocities between two consecutive frames in a unitary time. Given this, from (3.24)
and (3.25), it is easy to derive that

mv,t = ‖vt‖=
‖∆pt‖

∆t
=

mp,t

∆t
, (3.42)

mω,t = ‖ωt‖=
‖∆rt‖

∆t
=

mr,t

∆t
, (3.43)

where ∆t is the sampling time. Moreover, the remaining four invariants are the same in both the
representations. This is shown by considering that x̂v,t = x̂p,t (see (3.18) and (3.30)), while from
(3.21) and (3.33) it comes that x̂ω,t = x̂r,t . Finally, comparing (3.38)-(3.41) with (3.26)-(3.29),
and considering that the y axis definitions are formally the same for all the invariants, it follows
that [θ 1

v , θ 2
v , θ 1

ω , θ 2
ω ] = [θ 1

p , θ 2
p , θ 1

r , θ 2
r ].

DHB Representation in Closed Form

DHB invariants were presented in a way that is useful to understand the physical meaning of
each invariant value. However, a closed form of the DHB representation is useful to simplify the
formulation and an eventual implementation. In order to provide a closed form or, in other words,
a set of equations mapping the Cartesian space (position/velocity) into the invariant space, one can
rewrite the expression of ŷv,t in (3.31) as

ŷv,t =
vt ×vt+1

‖vt‖‖vt+1‖
‖vt‖‖vt+1‖
‖vt ×vt+1‖

=
vt ×vt+1

‖vt ×vt+1‖
, (3.44)

where the property x̂v,t =
vt
‖vt‖ is used. Considering (3.38) and (3.44), θ 1

v,t becomes

θ
1
v,t = arctan

(
vt ×vt+1

‖vt‖‖vt+1‖
‖vt‖‖vt+1‖
vt ·vt+1

· ŷv,t

)
= arctan

(
vt ×vt+1

vt ·vt+1
· vt ×vt+1

‖vt ×vt+1‖

)
= arctan

(
‖vt ×vt+1‖
vt ·vt+1

)
.

(3.45)

Following similar steps, one can show that closed forms for θ 1
p,t , θ 1

r,t , θ 1
ω,t are formally the same

as (3.45).
The expression of θ 2

v,t in a closed form is slightly more complicated. Hence, it is useful to first
focus on the division in (3.39). Considering (3.44), it is straightforward to derive that

ŷv,t × ŷv,t+1

ŷv,t · ŷv,t+1
=

(vt ×vt+1)× (vt+1×vt+2)

(vt ×vt+1) · (vt+1×vt+2)

=
−(vt+1×vt)× (vt+1×vt+2)

−(vt+1×vt) · (vt+1×vt+2)

=
[vt+1 · (vt ×vt+2)]vt+1

(vt+1×vt) · (vt+1×vt+2)
,

(3.46)

where the relationships a×b=−b×a and (a×b)× (a×c) = a · (b×c)a have been used. The
closed form expression

θ
2
v,t = arctan

(
‖vt+1‖vt+1 · (vt ×vt+2)

(vt+1×vt) · (vt+1×vt+2)

)
, (3.47)

72



3.2. Invariant representations of Cartesian trajectories

Algorithm 2 DHB Invariant Representation

Position-based invariants
Input: a set of relative positions {∆p}t and rotation
vectors {∆r}t , t = 1, . . . ,N
return cartesianToDHB({∆p}t ,{∆r}t)

Velocity-based invariants
Input: a set of linear {v}t and angular {ω}t , t = 1, . . . ,N
velocities
return cartesianToDHB({v}t ,{ω}t)

cartesianToDHB({l}t ,{a}t)
1. [{ml}t ,{θ 1

l }t ,{θ 2
l }t ] = computeInvariants({l}t)

2. [{ma}t ,{θ 1
a }t ,{θ 2

a }t ] = computeInvariants({a}t)
return {ml}t ,{θ 1

l }t ,{θ 2
l }t ,{ma}t ,{θ 1

a }t ,{θ 2
a }t

computeInvariants({u}t):
3. for all t ∈ [1,N−2] do
4. mu,t = ‖ut‖
5. θ 1

u,t = arctan
(
‖uu,t×uu,t+1‖
uu,t ·uu,t+1

)
6. θ 2

u,t = arctan
(
‖uu,t+1‖uu,t+1·(uu,t×uu,t+2)
(uu,t+1×uu,t)·(uu,t+1×uu,t+2)

)
7. end for

return {mu}t ,{θ 1
u }t ,{θ 2

u }t

is finally obtained by multiplying (3.46) by x̂v,t+1 and taking the arc tangent. Following similar
steps, it is easy to show that closed forms for θ 2

p,t , θ 2
r,t , θ 2

ω,t are formally the same as (3.47).
The described procedure to calculate position- and velocity-based invariants in closed form is

summarized in Algorithm 2. Note that, in Algorithm 2, u refers to a generic vector, l stands for
linear and a stands for angular. The approach is analogous for both position- and velocity-based
invariants. The function computeInvariants takes as input a set of vectors (positions, rotation
vectors, linear, or angular velocities) and returns the related set of three invariants. The func-
tion cartesianToDHB just calls twice computeInvariants to compute the complete set of invariant
values (six for each time instant).

Trajectory Reconstruction

As already mentioned, DHB is a bidirectional representation. Given the position-based invariants,
the original pose (position and orientation) trajectory of the rigid body in a reference (world) frame
is reconstructed in three steps. First, the pose of the linear and angular frames in each instant t is
computed as

Hp,t =

[
Ry(θ

1
p)Rx(θ

2
p) mp

0T 1

]
, (3.48)

Hr,t =

[
Ry(θ

1
r )Rx(θ

2
r ) mr

0T 0

]
, (3.49)

where mp = [mp, 0, 0]T, mr = [mr, 0, 0]T, Ry(α) and Rx(α) are the elementary rotations of an
angle α about the y and x axis [142], and 0T = [0, 0, 0]. Note that the matrices in (3.48) and (3.49)

73



3. Representation of robotic tasks

are formally the same except for the fourth value of the fourth column. Further details about this
choice are given later in this section.

The second step requires the pose of the linearHp,1 and angularHr,1 frames with respect to the
world frame in the first time instant. Hp,1 andHr,1 are computed to calculate the invariant values
and stored for later used. GivenHp,1 andHr,1, it is possible to compute

Hw
p,t = Hp,1 ·Hp,2 · . . . ·Hp,t , (3.50)

Hw
r,t = Hr,1 ·Hr,2 · . . . ·Hr,t , (3.51)

whereHw
p,t andHw

r,t are the pose of the linear and angular frames with respect to the world frame
in a time instant t.

Finally, the Cartesian position in a generic time instant t is given by

pt =R
w
p,1∆p1 + . . .+Rw

p,t∆pt =H
w
p,t [1 : 3,4], (3.52)

where Rw
p,i is the rotation of the linear frame with respect to the world frame at t = i, and

Hw
p,t [1 : 3,4] are the first three elements of the fourth column of Hw

p,t in (3.50). The absolute
orientation of the rigid body cannot be reconstructed by following the approach used to recon-
struct the position. The reason is that ∆Rt +∆Rt+1 6= Rt+1. Having chosen Hr,t [4,4] = 0 in
(3.49), it is possible to extract the relative rotation vector

∆Rt =H
w
r,t [1 : 3,4] (3.53)

from (3.51). The orientation of the rigid body with respect to the world frame in a time instant t is
computed asRw

t = exp(∆R1) · . . . ·exp(∆Rt), where the exponential mapping exp(R) transforms
a rotation vector into a rotation matrix (see Appendix A.2.1).

A similar procedure is applied to reconstruct the Cartesian velocity of the rigid body from
velocity-based invariants. The first step consists in computing the pose of the linear and angular
frames in each time instant, i.e.

Hv,t =

[
Ry(θ

1
v )Rx(θ

2
v ) mv

0T 0

]
, (3.54)

Hω,t =

[
Ry(θ

1
ω)Rx(θ

2
ω) mω

0T 0

]
, (3.55)

where mv = [mv, 0, 0]T, mω = [mω , 0, 0]T. The second step requires the pose of the linear Hv,1
and angularHω,1 frames with respect to the world frame in the first time instant. These poses are
used to calculate the invariants and are stored for later use. Given Hv,1 and Hω,1, it is possible to
compute

Hw
v,t =Hv,1 · . . . ·Hv,t , Hw

ω,t =Hω,1 · . . . ·Hω,t . (3.56)

The velocity in a time instant t is then computed as vt =H
w
v,t [1 : 3,4] and ωt =H

w
ω,t [1 : 3,4].

The described approach for Cartesian motion reconstruction can be extended to generate affine
transformed instances of a Cartesian motion from the same invariant values. For instance, the
procedure to reconstruct the Cartesian position is modified to generate shorter or longer tra-
jectories by multiplying the vector mp in (3.48) by a scaling factor, obtaining the new vector
ms

p = [spmp, 0, 0]T. Moreover, roto–translated instances of the Cartesian trajectory are generated
by arbitrary roto–translating the initial pose Hp,1 in (3.50), i.e. H ′p,1 =Ha

p,1Hp,1, where Ha
p,1

is an arbitrary transformation. Note that a similar approach applies for the reconstruction of the

74



3.2. Invariant representations of Cartesian trajectories

orientation, as well as for the reconstruction of linear and angular velocities. The presented exten-
sions of the reconstruction procedure are exploited in Section 3.2.4 to generate different trajectory
instances from a single invariant trajectory. The procedure is also exploited to reproduce human
demonstrations on different robotics systems, overcoming the limitations of Cartesian descriptors
that depend on the absolute pose of the rigid body in the world frame.

Invariance Properties

Position- and velocity-based invariants share the same invariance properties. Hence, in the descrip-
tion of their properties, the symbol u is used to refer to a generic vector (position or velocity), the
subscript l to refer to the three linear invariants, and a to refer to the three angular invariants.

Reference frame and Viewpoint - Cartesian trajectories depend on the choice of the reference
frame. When the motion is observed by a camera, the reference frame is usually the frame attached
to the camera (viewpoint). DHB is a coordinate-free representation of rigid body motions, since
DHB invariants do not depend on roto–translations of the world frame and on the viewpoint. In
order to prove this property, recall that a translations of the reference frame (viewpoint) does not
affect the relative position between two frames, the orientation of the rigid body, as well as its
linear and angular velocities. Hence, DHB invariants are not affected by constant translations.
In order to prove the invariance to rotations, an arbitrary rotation R is applied to the vector u.
Considering that a rotation does not affect the norm of a vector, it is possible to write

mRl = ‖Rul‖= ‖R‖‖ul‖= ‖ul‖= ml, (3.57)

mRa = ‖Rua‖= ‖R‖‖ua‖= ‖ua‖= ma, (3.58)

where the property ‖R‖ = 1 is used. Note that, in this context, the vector ul in (3.57) represents
either ∆p or v, while the vector ua in (3.58) represents either ∆R or ω. As previously discussed,
the other invariant values θ i

n, n = l,a, i = 1,2 are angles between two vectors. It is easy to show
that

θ
1
Rl = arctan

(
Rx̂l,t ×Rx̂l,t+1

Rx̂l,t ·Rx̂l,t+1
·Rx̂l,t

)
= arctan

(
(x̂l,t × x̂l,t+1)

T

x̂T
l,tR

T ·Rx̂l,t+1
RT ·Rŷl,t

)
= θ

1
l , (3.59)

where x̂l,t and ŷl,t are the x and y axes of the linear frame respectively. Following the reasoning
in (3.59), it is easy to show the invariance of θ 2

l , θ 1
a , and θ 2

a .
Time, linear, and angular scale - The same motion can be executed at different speeds, which

generates motion trajectories with different time scales. Hence, the time scale invariance is of
importance to compare motions performed at different speeds. As proposed in [42,155], a dimen-
sionless time can be defined as

t ′ =
t
t f
, (3.60)

where t f is the total time duration of the motion. DHB invariants are made independent on the
time scale by multiplying each mi

n and θ i
n by t f and by substituting t with t ′.

The invariance to scaling factors helps to recognize motions performed by different users, i.e.
subjects with different kinematic structures [135]. The four θ i

n are angles between vectors, and
they are independent on linear and angular scales. Indeed, it is well-known that the scaling of two
vectors does not affect the angle between them. The two mi

n, n = l,a, i = 1,2, values are made
invariant to scaling factors by

m′l,t =
ml,t∫ t f

t=0 |ml,t |
, m′a,t =

ma,t∫ t f
t=0 |ma,t |

, (3.61)

75



3. Representation of robotic tasks

where
∫ t f

t=0 |ml,t | and
∫ t f

t=0 |ma,t | are the linear and angular scale of motion respectively, and t f is the
total duration of the motion. Note that, in the discrete time case, (3.61) is replaced by

m′l,t =
ml,t

∑
t f
t=0 |ml,t |

, m′a,t =
ma,t

∑
t f
t=0 |ma,t |

. (3.62)

Speed invariance - The invariance to the speed of execution, or the motion profile, is obtained by
expressing the invariant values as a function of a degree of advancement (see, for example, [155]).
Speed invariance can be achieved only in theory, because in practice the discrete sampling time of
real sensors strongly affects motions executed at different speeds and the resulting invariants. This
is independent on the employed invariant representation. An example is shown in Figure 3.13,
where a sinusoidal trajectory (blue line) is sampled with sampling times ∆t and 2∆t. The green
line is the reconstructed signal for ∆t, while the red line is the signal obtained for 2∆t. It is clear
that different sampling rates generate different signals (green and red lines). Given different input
signals, any representation will generate different invariant descriptors.

time

t

2 t

Figure 3.13.: A sinusoidal signal (blue line) is sampled with different sampling rates. The green
line is the reconstructed signal obtained by sampling the blue line every ∆t seconds.
The red line is obtained with a sampling time of 2∆t.

Reverse motion - In some cases it is useful to have the same representation for motions executed
in a direction or in the reverse (opposite) one. Invariance to the direction of motion for ml and ma

is achieved by considering them in the reverse order

mrev
l,t = ml,(t f−t), mrev

a,t = ma,(t f−t), (3.63)

where t f is the total duration of the motion. The four θ i
n invariants are also considered in the

reverse order, but they have to be shifted by 1 or 2 samples, i.e.

θ
1,rev
n,t = θ

1
n,(t f−t+1) , n = l,a, (3.64)

θ
2,rev
n,t = θ

2
n,(t f−t+2) , n = l,a. (3.65)

Reference point - Similarly to Cartesian trajectories, ml,t , θ 1
l,t , and θ 2

l,t depend on the choice of
the reference point used to describe the motion. In other words, different invariants are obtained if
the same motion is referred to different points. To overcome this limitation, one has to ensure that
the reference point is always the same (or slightly varying) during the entire motion. Note that the
representation in [42] is invariant to the reference point, while EFS invariants also depend on the
choice of the reference point.

76



3.2. Invariant representations of Cartesian trajectories

Samples delay - DHB representation requires the Cartesian data in future (or past) time instants,
introducing a samples delay. In particular, to compute the position-based invariants in a time
instant t one has to know the Cartesian trajectory from t to t + 3, introducing a delay of three
samples. Indeed, the angles θ 2

n,t , n = l,a in (3.27) and (3.29) depend on ŷn,t+1, n = l,a and the
axes ŷn,t+1 in (3.19) and (3.22) depend on x̂n,t+2, n = l,a. From (3.18) and (3.21) it is clear
that the computation of x̂n,t+2, n = l,a requires the position and the orientation of the rigid body
in t + 3. Following a similar reasoning, recalling that the axes of the linear and angular frames
have formally the same definition in both the invariant representations, and considering (3.30) and
(3.33), it is easy to verify that the velocity-based invariants in t requires the velocities from t to
t + 2. Hence, a delay of two samples is introduced. It is worth noticing that, when the velocities
have to be computed by numerical differentiation, position- and velocity-based invariants have the
same delay of three samples. The invariants proposed in [42,155] depend only on the current time
instant. However, for each instant t, they require the third-order derivative of the position and
orientation. When the time derivatives have to be computed by numerical differentiation of the
position and orientation, the same delay of three samples is introduced.

Computational cost - The computational cost of the DHB representation (see Algorithm 2) is
O(N(M(n)(96+4log(n)))), where M(n) is the computational cost of the multiplication (division)
depending on the number of digits n used to represent real numbers. N is the number of samples
in the Cartesian trajectory. The computational cost is computed neglecting the summation and
subtraction operations in Algorithm 2. For comparison, the algorithm in [42] has a complexity of
O(N(180M(n))), while EFS invariants have a complexity of O(N(100M(n))) (see Table B.1).

Special Motions

In some situations, one of the axes of linear or angular frames cannot be defined, and the DHB rep-
resentation cannot be computed. These situations are the so-called singular cases or singularities.
Considering the definition of linear and angular frames in (3.18)–(3.20) and in (3.30)–(3.32), it is
clear that singularities occur when one axis cannot be normalized because the norm (denominator)
drops to zero. In what follows, singular cases are analyzed and effective solutions proposed for
each case. The DHB representation of the singular cases is summarized in Table 3.1.

Table 3.1.: DHB representation of special motions.

Pure translation ml θ 1
l θ 2

l 0 0 0

Pure rotation 0 0 0 ma θ 1
a θ 2

a

Translation str. line ml 0 0 ma θ 1
a θ 2

a

Rotation par. axes ml θ 1
l θ 2

l ma 0 0

Planar motion ml θ 1
l 0 ma 0 0

Pure translations - In this case the x axis of the angular frame is always the null vector and
the angular frame cannot be defined. Since the angular frame with respect to the world frame in
the first time instant is known, the same initial angular frame is used in each time t = 1, . . . ,N.
The resulting invariants for the angular part are {ma}t = {θ 1

a }t = {θ 2
a }t = {0}t , t = 1, . . . ,N.

For pure translations between two consecutive time instants t and t + 1, it is possible to consider
x̂a,t = x̂a,t−1 and ŷa,t = ŷa,t−1, obtaining that ma,t = 0.

Pure rotations - In this case the x axis of the linear frame is always the null vector and the
linear frame cannot be defined. Since the linear frame wrt the world frame in the first instant is
known, the same initial linear frame is used in each time t = 1, . . . ,N. The resulting invariants

77



3. Representation of robotic tasks

for the linear part are {ml}t = {θ 1
l }t = {θ 2

l }t = {0}t , t = 1, . . . ,N. For pure rotations between
two consecutive time instants t and t +1, it is possible to consider x̂l,t = x̂l,t−1 and ŷl,t = ŷl,t−1,
obtaining that ml,t = 0.

Translations along a straight line - In this case the x axes of the linear frame are aligned in all
the time instants, and the y axes cannot be defined. Since the linear frame with respect to the world
frame in the first instant is known, it is possible to consider ŷl,1 = ŷl,2 = . . .= ŷl,N . The resulting
invariants are {θ 1

l }t = {θ 2
l }t = {0}t , t = 1, . . . ,N. For translations along a straight line in two

consecutive instants t and t+1, it is possible to consider ŷl,t = ŷl,t−1, obtaining that θ 1
l,t = θ 2

l,t = 0.
Rotations about parallel axes - In this case the x axes of the angular frame are parallel in all

the time instants, and the y axes cannot be defined. Since the angular frame with respect to the
world frame in the first instant is known, it is possible to consider ŷa,1 = ŷa,2 = . . . = ŷa,N . The
resulting invariants are {θ 1

a }t = {θ 2
a }t = {0}t , t = 1, . . . ,N. For rotations about parallel axes in two

consecutive instants t and t+1, it is possible to consider ŷa,t = ŷa,t−1, obtaining that θ 1
a,t = θ 2

a,t = 0.
Planar motions - In this case the rigid body translates on a plane π and rotates about an axis

orthogonal to π . By construction, the y axes of the linear frame are orthogonal to π (and parallel
to each other) for all t = 1, . . . ,N. As a consequence, it holds that {θ 2

l }t = {0}t , t = 1, . . . ,N. The
angular motion is a rotation about parallel axes (orthogonal to π), resulting in {θ 1

a }t = {θ 2
a }t =

{0}t , t = 1, . . . ,N.

3.2.3. Results in motion recognition

The goal of this experiments is to verify the effectiveness of invariant motion descriptors in ges-
ture recognition problems. In order to test the effectiveness of a given feature vector, it is common
to use a state-of-the-art classifier and to show an eventual improvement in the classification per-
formance. Hence, in this experiments, the standard k-Nearest Neighbour (k-NN) classifier [16] is
exploited. k-NN assigns the query gesture to the class most common among its k nearest neigh-
bors, and it does not require a training step (non-parametric). The number k of nearest neighbors
and the distance metrics between features vectors are tunable parameters. This work adopts the
Euclidean distance as a metrics and presents results for different values of k.

Three datasets are employed to test the recognition performance of DHB, and to compare the
DHB representation with state-of-the-art invariant descriptors. The main characteristics of each
dataset are listed in Table 3.2. The English letters dataset includes five gestures performed by
the same user. Despite its simplicity, the English letters dataset is useful to understand how to
apply invariant representations in gesture recognition problems. The second dataset, namely the
pouring drink dataset, consists of five gestures performed by five different users. The presence of
multiple users makes the pouring dataset more challenging that the English letters one. The last
dataset is the Microsoft research Action 3D dataset [3], a publicly available dataset that consists
of twenty actions performed by ten different users. The relatively big number of actions/users
makes this dataset a challenging benchmark for gesture recognition algorithms. Results presented
in this section are obtained with velocity-based invariants. Indeed, position- and velocity-based
invariants are practically the same (see Section 3.2.2) and have the same performance in terms of
gesture recognition. The recognition performance of DHB is compared with the performance of
DS (De Schutter) [42] and EFS (Extrended Frenet–Serret) [155] representations.

English letters dataset

The goal of this experiment is to compare the recognition performance of invariant and non-
invariant motion descriptors. To this end, a simple dataset is considered that includes the five
capital letters A, M, N, O, and X from the English alphabet [1]. Each letter is drawn ten times by

78



3.2. Invariant representations of Cartesian trajectories

Table 3.2.: Datasets characteristics.

Dataset Actions (#) Users (#) Repetitions (#) Body parts (#) Sampling rate [Hz]

English letters 5 1 50 1 30

Pouring drink 5 5 10 1 120

MSR Action3D 20 10 3 20 30

O X

Original Roto-translation Scaling

O X O X

Figure 3.14.: Demonstrations of the letters O and X from the English letters dataset, visualized
in the x− y plane (left). Roto–translated (middle) and scaled (right) versions of the
original demonstrations. Black points indicate the starting position of each trajectory.

the same user. Motion trajectories are collected by tracking the user’s right hand position at 30Hz
with a RGB-D camera. Repetitions of the letters O and X are qualitatively shown in Figure 3.14.
In order to show the benefits of the invariance to motion variations, the dataset is augmented with
225 extra demonstrations, generated by applying random affine transformations to the original
data, as shown in Figure 3.14. The random transformations produce 40 additional demonstrations
per letter. Hence, the final dataset reaches a total of 250 demonstrations (50 demonstrations for
each of the 5 letters). This procedure aims at simulating a realistic scenario where the same ges-
ture can be observed or executed from different perspectives. Time derivatives are numerically
computed with the sampling time ∆t = 1/30s, the same frame rate at which data are collected.

A leave-half-out cross validation approach, where a half of the gestures are used for training
and the rest for testing, is employed to validate different motion representations. Training and test
sets are randomly selected 100 times. Average results, obtained for different values of k (1-NN,
3-NN and 5-NN) with filtered and unfiltered data, are listed in Table 3.3. Confusion matrices for
DHB and DS/EFS representations are shown in Figure 3.15. The confusion matrices are obtained
with 1-NN and filtered data. Results in Table 3.3 and Figure 3.15 are obtained considering all the
invariant values of each representation. Note that the hand orientation is not present in the dataset.
Hence, each gesture consists of a pure translation for which EFS and DS become exactly the same
representation (see Appendix B.1.2 for further details).

Results in Table 3.3 show that the Cartesian twist has the worst recognition rate. This is because
the Cartesian twist is invariant only to translations. The recognition performance of DS/EFS sig-
nificantly improves when the data are filtered with a moving average filter (window size w = 5).

Table 3.3.: Recognition results on the English letters dataset.

Unfiltered data Filtered data

1-NN 3-NN 5-NN 1-NN 3-NN 5-NN

Twist 78.8% 72.7% 69.6% 79.3% 74.1% 70.4%

DS / EFS 79.56% 79.24% 78.92% 96.96% 96.44% 96.36%

DHB 94.76% 94.36% 94.32% 98.52% 98.32% 98.24%

79



3. Representation of robotic tasks

A 1
M 0.966 0.034
N 1
O 1
X 0.042 0.084 0.874

A M N O X

(a) DS/EFS invariants

A 1
M 1
N 1
O 1
X 0.074 0.926

A M N O X

(b) DHB invariants

Figure 3.15.: Confusion matrices for the English letters dataset obtained with filtered data and
k = 1.

The reason is that DS/EFS are ill-conditioned on noisy data, since they require the numerical
computation of high-order time derivatives. The performance of DS/EFS descriptors can be fur-
ther improved by exploiting more sophisticated, off-line filtering techniques like the linear Kalman
smoother [127]. However, the usage of off-line filtering techniques limits the applicability of in-
variant representations in on-line gesture recognition problems. Moreover, off-line filtering algo-
rithms are computationally more expensive than on-line approaches. DHB invariants have the best
recognition performance in all considered cases, which implies that DHB invariants are robust to
noise in the data.

Pouring a drink dataset

The aim of this experiment is to test the recognition performance of invariant representations
among different users. To this end, the adopted dataset consists of five actions—pour, release,
start, stop, and take—performed ten times by five different users (see Table 3.2). Gestures are
performed with the right hand. The data collection protocol is as follows. An expert user demon-
strates once a gesture, and then asks the subject to repeat the shown action ten times in a row. The
subject is also asked to arbitrarily change its pose after each repetition. No particular instruction
is given to the user regarding the motion stile or the speed of execution. A Xsens MVN motion
capture suit [8] is used to collect Cartesian twists of the user right hand. Data are collected at
120Hz. The origin of the inertial sensor attached to the right hand is used as reference point. Time
derivatives are numerically computed with the sampling time ∆t = 1/120s, the same frame rate
at which data are collected. Collected twist trajectories are filtered using a moving average filter
(w = 5). This is because, as shown in the previous experiment, all representations perform better
with filtered data.

A leave-half-out cross validation approach, which uses half of the repetitions of each user as
training set and the rest as test set, is exploited to test the performance of DHB, DS, and EFS.
Training and test sets are randomly selected 100 times. Average recognition rates for different
values of k are reported in Table 3.4. Results in Table 3.4 show that, when all the six invariant
values are used, the DS descriptor has poor recognition performance compared to DHB and EFS
invariants. As discussed in Appendix B.2, in fact, the DS representation has an increased noise
sensitivity due to the projection of linear velocities (and their time derivatives) along the instanta-
neous screw axis.

Two of the invariants in EFS and DS representations depends on linear and angular jerks (see
Appendix B). In particular, the jerk depended invariants for for EFS are e3

v and e3
ω , while for DS are

d3
v and d3

ω . As shown in Table 3.4 and Figure 3.16, removing jerk dependent invariants is beneficial

80



3.2. Invariant representations of Cartesian trajectories

Table 3.4.: Recognition results on the pouring a drink dataset (filtered data).

All invariants Without jerk dependent invariants

1-NN 3-NN 5-NN 1-NN 3-NN 5-NN

DS 77.45% 80.38% 80.59% 93.66% 92.72% 91.06%

EFS 94.02% 92.86% 91.5% 94.66% 93.24% 91.95%

DHB 95.14% 93.45% 92.08% 94.89% 93.22% 91.9%

1 0.988 0.012
2 0.945 0.055
3 0.984 0.016
4 0.05 0.091 0.859
5 0.092 0.908

1 2 3 4 5
(a) DS invariants

1 0.99 0.01
2 0.954 0.046
3 0.985 0.015
4 0.014 0.102 0.884
5 0.08 0.92

1 2 3 4 5
(b) EFS invariants

1 0.993 0.007
2 0.952 0.048
3 0.99 0.01
4 0.014 0.102 0.884
5 0.062 0.938

1 2 3 4 5
(c) DHB invariants

Figure 3.16.: Confusion matrices for the pouring a drink dataset. Results are obtained with k = 1
and without considering jerk dependent invariants in DS and EFS representations.

especially for DS representation. Indeed, the recognition rate of DS without jerk dependent values
significantly increases. Results in Table 3.4 allow to conclude that jerk depended values of DS
descriptor degrade the performance, and that better recognition performances are achieved by
employing a subset of the DS invariant values. Regarding EFS invariants, the performances with
and without jerk depended values are comparable. However, the recognition rate slightly increases
when a subset of the EFS invariants is considered. On the contrary, removing values from the DHB
representation reduces the performance. As shown in Table 3.4, the recognition rate decreases by
removing the values θ 2

v and θ 2
ω from DHB representation. Note that the values θ 2

v and θ 2
ω are

removed because they describe similar quantities as e3
v and e3

ω in EFS. Being the performance of
DHB slightly improved when all the invariant values are considered, it is possible to conclude that
all the six values in DHB representation contribute to make the motion more distinctive.

MicroSoft Research (MSR) Action3D dataset

This experiment aims at testing the recognition performance of DHB invariants in a more chal-
lenging scenario. To this end, the MSR Action3D dataset [3] is used. The MSR Action 3D dataset

81



3. Representation of robotic tasks

Table 3.5.: MSR action Dataset and Recognition Protocol
MSR Action3D dataset: Twenty actions are performed 3 times by 10 users. The 20 actions
are highArmWave, horizontalArmWave, hammer, handCatch, forwardPunch, highThrow, drawX,
drawTick, drawCircle, handClap, twoHandWave, sideBoxing, bend, forwardKick, sideKick, jog-
ging, tennisSwing, tennisServe, golfSwing, and pickUpThrow.

Action Subsets: The MSR Action3D dataset is split into three action sets (AS1, AS2, and AS3).
AS1 AS2 AS3

horizontalArmWave highArmWave highThrow
hammer handCatch forwardKick

forwardPunch drawX sideKick
highThrow drawTick jogging
handClap drawCircle tennisSwing

bend twoHandWave tennisServe
tennisServe sideBoxing golfSwing

pickUpThrow forwardKick pickUpThrow

Cross validations: Three tests (T1, T2, and T3) are performed on each action set. In T1, one
demonstration for each user, i.e. 1/3 of the samples, is used for training and the others for testing.
In T2, 2/3 of the samples are used for training and the rest for testing. In T3, demonstrations
from half of the users are used for training and the rest for testing. In T1 and T2 data from all the
subjects are considered for the training, while T3 is a cross subject test.

contains the repetitions of 20 actions performed 3 times by 10 users. The different actions in the
dataset are listed in Table 3.5. A RGB-D camera is used to track the position of 20 parts of the
human body at 30Hz. The experimental protocol described in [165] and summarized in Table 3.5
is used to test the recognition performance of DHB, DS, and EFS. For each gesture in the dataset,
the invariant representation of each body part is computed. The origin of the frame attached to
each body part is used as reference point. As in the previous experiments, trajectories are filtered
with a moving average filter (w = 5) before computing the invariants. Time derivatives of the
position are computed by numerical differentiation with sampling time ∆t = 1/30s. The results
in [135] and [157] show that full-body motions are better recognized when body parts not involved
in the movement are discarded. In this experiment, unused body parts are automatically cut-off by
applying a thresholding method. A body part P is considered relevant to the current action if P is
moved more than tr = 0.15m, where the value of tr is chosen empirically. The invariants relative
to irrelevant body parts are simply zeroed.

Average recognition rates in Table 3.6 are obtained with different motion representations by
randomly selecting 100 times the training and test sets. Results for DHB and DS/EFS are ob-

Table 3.6.: Recognition results of DHB, DS/EFS, HOJ3D [165] and Li et al. [94] on the MSR
Action3D dataset.

T1 T2 T3

AS1 AS2 AS3 Average AS1 AS2 AS3 Average AS1 AS2 AS3 Average

DS/EFS 89.17% 89.17% 98.58% 92.31% 88.51% 88.73% 97.17% 91.47% 87.92% 86.85% 98.22% 91.0%

DHB 97.65% 91.84% 100% 96.49% 97.96% 93.74% 100% 97.23% 96.42% 91.3% 99.98% 95.9%

HOJ3D 98.47% 96.67% 93.47% 96.2% 98.61% 97.92% 94.93% 97.15% 87.98% 85.48% 63.46% 78.97%

Li et al. 89.5% 89.0% 96.3% 91.6% 93.4% 92.9% 96.3% 94.2% 72.9% 71.9% 79.2% 74.7%

82



3.2. Invariant representations of Cartesian trajectories

tained using a 1-NN classifier and considering all three invariant values for each joint. It is worth
considering that only three invariants exists for each joint since the orientation is not stored in the
dataset. The unidirectional HOJ3D approach in [165] performs slightly better than DHB invari-
ants in test T1/T2 on AS1/AS2. The reason is that the histograms in HOJ3D contain information
about the motion direction, stored into a temporal sequence of joint locations casted into spatial
bins. DHB, DS, and EFS invariants, instead, do not contain information about the directionality
of the motion, which is useful to discriminate actions in AS1 and AS2. To better understand this
point, consider that the actions in AS1 and AS2 are mainly performed with the right arm, and
that some actions consist of similar movements executed in different directions. More specifi-
cally, experiments show that using DHB invariants the action forwardPunch in AS1 is confused
with highThrow, while the actions horizontalArmWave and drawX in AS2 are confused with hand-
Catch and drawCircle respectively. Misclassified actions are performed by moving the right arm in
a similar way, but in different Cartesian directions (consider, for instance, forwardPunch and high-
Throw), and are hard to recognize without considering information about the motion direction. A
possible solution to improve the recognition accuracy for similar motions consists in augmenting
the descriptor with information about the directionality of the motion, like the normalized velocity
in each direction [49]. DHB invariants have, on average, the highest recognition rate in all the
considered cases. Moreover, the DHB representation has the highest recognition rate on AS3 and
in the cross subject test T3, showing good generalization capabilities among different users.

3.2.4. Results in motion reproduction

The aim of the experiments in this section is to evaluate the generalization capabilities of the re-
construction procedure in Section 3.2.2. To this end, four different experiments are presented. The
first experiment shows how different instances of a Cartesian motion are generated from the same
DHB representation. The second experiment focuses on transforming a human demonstration into
a feasible trajectory for the NAO humanoid robot [4]. In the third experiment a complex task, con-
sisting of three different actions, is effectively executed by a real robot. The last experiment shows
how full-body motions are generated starting from the invariant trajectory of each body part.

Multiple trajectories from the same descriptor

Different affine transformed instances of a Cartesian trajectory can be generated by the same
DHB descriptor. This result is obtained by reconstructing the Cartesian motion in an arbitrary
reference frame and with an arbitrary scaling factor. As a proof of concepts, this experiment
employs one demonstration of the letter M in Section 3.2.3. The demonstration is the orange
curve in Figure 3.17. Given the Cartesian demonstration, the corresponding DHB descriptor is
computed and used to generate affine transformed instances of the original trajectory. In Figure
3.17(a), the motion is reconstructed in a translated (t= [−0.05,0.5,0]T m) initial frame. The same
translation t is applied in Figure 3.17(b), together with a scaling factor s = 0.5. The initial frame
is rotated of−30deg around the z axis in Figure 3.17(c). The the black dashed lines in Figure 3.17
represent the correspondences (optimal non-linear match) between the original demonstration and
the generated trajectories, computed by using the multi dimensional dynamic time warping (MD-
DTW) algorithm in [132].

English letters reproduction

This experiment illustrates how to map human hand motion into a robot hand motion by generating
scaled motion variants from the same DHB descriptor. The humanoid robot NAO [4] is employed

83



3. Representation of robotic tasks

-0.4

0.8
y 

[m
]

-0.4 -0.2 0 0.2 0.4
x [m]

0

0.4

-0.4 -0.2 0 0.2 0.4
x [m]

(a) Translation

-0.4

0.2

0.6

y 
[m

]

-0.4 -0.2 0 0.2 0.4
x [m]

0

-0.2

0.4

-0.4 -0.2 0 0.2 0.4
x [m]

(b) Translation and scaling

-0.4 -0.2 0 0.2 0.4
-0.4

0.2

0.6

y 
[m

]

x [m]

0

-0.2

0.4

-0.4 -0.2 0 0.2 0.4
x [m]

(c) Rotation

Figure 3.17.: The same DHB descriptor is used to generate affine transformed instances (green
solid lines) of the letter M. The orange solid line is the original letter. Black dashed
lines are the MD-DTW alignment between original and generated trajectories. For a
better visualization, trajectories are plotted in the x− y plane.

to reproduce a demonstration of the letters A and N in Section 3.2.3. The robot performs the
motion with the right hand, as shown in Figure 3.18. The human demonstration is expressed in
the RGB-D camera frame, which is unknown in this case. However, the DHB representation can
directly generate the Cartesian trajectory in the robot reference frame without any processing of
the DHB invariants. It is clear, for example considering the arm length, that the NAO robot and
the human demonstrator have different kinematics. For this reason, the Cartesian trajectory recon-
structed considering the “human” linear scale shum in (3.61) is unfeasible for the robot. Comparing
the maximum velocity of the robot hand, as well as its arm length, with the velocity required to
execute the original motion, a suitable trajectory for NAO is generated considering a scaling factor
snao = (1/12)shum. Results of this procedure are shown in Figure 3.18. Reconstructed velocities
are transformed into joint angle trajectories with an inverse kinematics algorithms (see Appendix
A.2.2) and sent to the robot at 30Hz.

An automatic procedure can be implemented to find a suitable scaling snao. If the physical
scaling between robot and human is roughly known, it is a good starting point. Otherwise, if the
physical scaling is unknown, the procedure is initialized with snao = shum. The current snao is used
to generate desired velocities and positions. The generated motion is checked to determine if robot
constraints are violated. In case of constraint violations, the scaling snao is reduced (for example
halved) and the procedure repeated until no violation occurs. This procedure can be also used to
transfer the same motion to different robots.

Pouring a drink

This experiment shows how different DHB descriptors are combined to execute a task consisting
of a sequence of elementary actions. To this end, the task of pouring a drink in a cup is considered.
The three elementary actions composing the task are take the bottle, pour the liquid in a cup, and
release the bottle. The actions were originally demonstrated by a human (see Section 3.2.3) and

84



3.2. Invariant representations of Cartesian trajectories

(a) (b)

Figure 3.18.: Snapshots of the small humanoids robot NAO that reproduces the letters A and N.

reproduced by a Kuka light-weight (LWR) manipulator [139]. The DHB representation of each
action (first demonstration from the first user) is used as motion descriptor. As for the previous
experiments, the invariance to roto–translations of DHB representation is exploited to generate
the same Cartesian trajectory from different initial configurations. The end-effector pose at the
beginning of each action is used to reconstruct on-line the desired velocities, allowing a sequential
execution of the three actions without jumps. The results of this procedure are shown in Figure
3.19, where the robot effectively executes the pouring task.

The desired Cartesian pose, computed by numerically integrating the reconstructed velocity, is
sent to the KUKA LWR through the fast research interface [139]. The robot controller runs at
1KHz, while the demonstrations are sampled at 120Hz, which is the maximum sampling rate of
the Xsens MVN motion capture suit. This time difference is compensated by linearly interpolat-
ing the desired trajectory. In particular, thirty extra samples are added in each time interval to
match the maximum velocity increment that the robot allows. Figure 3.19 shows the case in which
the “human” scaling factor slwr = shum and the current pose of the end-effector are suitable to
achieve the task. It is worth noticing that, being orientation needed to execute the pouring task, the
approach in [164] does not apply in this case. Different scaling factors slwr, as well as the invari-
ance to roto–translations, can be exploited to reach the bottle (cup) placed in different locations.
However, this generalization requires a specialized system that computes a suitable affine transfor-
mation by recognizing and tracking the bottle (cup) using an external camera sensor. Developing
such a system is beyond the scope of this thesis and left as a future work.

An accurate reproduction of the demonstrated motion is of importance in a pouring task. For

4 s 8 s 10 s

T
ak

e
P

ou
r

R
el

ea
se

12
 s

20 s25 s27 s

28
 s

30 s 36 s 38 s

Figure 3.19.: The KUKA LWR executes a pouring task. The task is composed by three consecutive
actions: take, pour, and release.

85



3. Representation of robotic tasks

instance, the robot can miss the bottle if the trajectory is not accurately generated. For this reason,
it is interesting to compare the reconstruction errors of different invariant representations. The
action take is considered as an example. For simplicity, the motion is reconstructed in the the same
world frame used to collect the data, and the orientation is neglected. The accuracy is measured by
calculating the distance between the final reconstructed position and the one in the demonstration.
A smaller distance indicates a more accurate motion generation. Three filtering techniques are
tested, namely the moving average filter, the anisotropic diffusion [116], and the linear Kalman
smoother [127]. The action consists of 295 velocities sampled at 120Hz.

In all the considered cases, DHB achieves the highest accuracy (see the results in Table 3.7). In-
terestingly, the reconstruction error of DHB is almost independent on the used filtering techniques.
This is another empirical proof of the numerical robustness and reduced noise sensitivity of DHB
representation (see Appendix B.2 for further details). Regarding DS and EFS invariants, results
show that the moving average filter is not suitable for accurate motion reconstruction. Even with
a window of 100 samples, the error is still 141mm. The anisotropic diffusion, which iteratively
smooths the trajectory with a Gaussian kernel, is more effective. Iterating 1000 times, the error
drops down to 1.15mm. A Matlab implementation of the anisotropic diffusion takes about 0.4s
to perform 1000 iterations over the 295 samples of the considered action. Hence, the anisotropic
diffusion approach cannot be applied on-line. The best result for DS/EFS invariants is obtained
with the Kalman smoother, which is an off-line filtering technique.

Table 3.7.: Norm of the reconstruction errors [mm] for the take action obtained with different
filtering techniques.

Moving average filter DS / EFS DHB
w=5 464 2.7e-12

w=10 191 3e-12
w=50 148 2e-12
w=100 141 1.5e-12

Anisotropic diffusion DS / EFS DHB
i=10 178 2.7e-12
i=100 14.5 3.7e-12
i=1000 1.15 2.3e-12

Linear Kalman smoother 0.56 2.9e-12

Full-body motion reproduction

The aim of this experiment is to show that the same DHB representation can be used to reproduce
affine transformed instances of a full-body motion. It is know that transfer full-body motions from
a human to a humanoid robot is more complicated than reproducing the motion of a single rigid
body. Indeed, the kinematic of the human and the robot can vary significantly. Moreover, the map-
ping has also to consider the dynamics and balancing of the humanoid robot [63, 64]. Being the
transfer of full-body motion beyond the scope of this work, a simplified skeleton model is consid-
ered in this experiment. In particular, the same skeleton model used in the MSR Action3D dataset
(see Section 3.2.3 and Figure 3.20(a)) is exploited to reproduce affine transformed instances of a
full-body motion. Given a motion to reproduce, the position of each body part is directly computed
from the relative DHB representation. The results of this procedure are shown in Figure 3.20 for
the twoHandWave action of the MSR Action3D dataset. Figure 3.20(a) shows the original action
performed by the human. The action in Figure 3.20(b) is obtained by applying to the reference

86



3.3. Representation of structured tasks

frame a rotation of 45deg along the z axis. This rotation can be interpreted as a rotation of the
human around the torso frame. The action in Figure 3.20(c), instead, is reconstructed from DHB
invariants with a scaling factor of s = 2 (twice the original one) applied to all the body parts. Note
that different scaling factors for each body part can be used to reproduce the same motion on two
skeleton models with different lengths.

1
0

-12.5

-1

1

0

3
x [m

]

z 
[m

]

y [m
]

1
0

-12.5

-1

1

0

3
x [m

]

z 
[m

]

y [m
]

1
0

-12.5

-1

1

0

3
x [m

]

z 
[m

]

y [m
]

1
0

-12.5

-1

1

0

3
x [m

]

z 
[m

]

y [m
]

frame 1 frame 15 frame 23 frame 41

(a) Original action.

-1

1

0

3
2.52

1.5 1 2.5x [m]

z 
[m

]

y [m
]

-1

1

0

3
2.52

1.5 1 2.5x [m]

z 
[m

]

y [m
]

-1

1

0

3
2.52

1.5 1 2.5x [m]

z 
[m

]

y [m
]

-1

1

0

3
2.52

1.5 1 2.5x [m]

z 
[m

]

y [m
]

frame 1 frame 15 frame 23 frame 41

(b) Reconstructed action - Rotation (45deg around z).

2
0

-25

2

0

-2

6
x [m

]

z 
[m

]

y [m
]

frame 1 frame 15 frame 23 frame 41

2
0

-25

2

0

-2

6
x [m

]

z 
[m

]

y [m
]

2
0

-25

2

0

-2

6
x [m

]

z 
[m

]

y [m
]

2
0

-25

2

0

-2

6
x [m

]

z 
[m

]

y [m
]

(c) Reconstructed action - Scaling (s = 2).

Figure 3.20.: Affine transformed instances of a full-body motion (twoHandWave) are generated
from the same DHB descriptor. The black bullets indicates the 20 body parts consti-
tuting the skeletal model.

3.3. Representation of structured tasks

Previous sections presented effective approaches useful to represent elementary actions or motion
primitives. This section, instead, discusses the representation of structured tasks. First, structured

87



3. Representation of robotic tasks

tasks are qualitatively defined. The abstract description helps to understand the fundamental as-
pects of a structured task. The second part of the section presents a formal definition of a structured
tasks and discusses the most suited data structure for structured tasks representation.

3.3.1. A qualitative definition of structured tasks

In this work, the term “structured task” is used to indicate a task which involves the execution of
multiple elementary actions. The elementary actions include the manipulation of single or multi-
ple objects. Typical examples of structured tasks include preparing a certain recipe or assembly
several parts into a final product. A structured task can be hierarchically decomposed into differ-
ent subtasks. For example, the task of pouring a liquid in a cup can be decomposed into three
subtasks, namely take the bottle, pour the liquid in the cup, and leave the bottle on the table. Each
subtask can be also decomposed into a series of basic actions. For instance, the subtask take the
bottle contains the elementary actions reach the cup and grasp the cup. No further decomposition
of the elementary actions is possible. For this reason, elementary actions are often referred as
atomic actions in this work. A structured task has a variable number of levels in its hierarchy. For
example, the aforementioned pouring task has three levels: a root level, a subtasks level, and the
atomic actions level. However, the pouring task can be part of a bigger task, for example the task
of prepare a coffee, which has four levels. The task of prepare a coffee can be part of a bigger task,
for example the task of prepare the breakfast, which has five levels, and so on. The number of
levels can be theoretically infinite, but three or four level are sufficient to represent typical robotic
tasks considered in this work (see Section 5.2). Hence, this work considers the structured tasks as
lower-bounded, meaning that a structured task cannot be decomposed an infinite number of times.
In other words, by iteratively decomposing the structured task into lower levels one will reach the
atomic actions level in a finite number of iterations.

Some of the subtasks constituting a structured task have to be executed in a coherent manner,
meaning that the subtasks have to be executed on certain objects with a particular order. Con-
sidering again the pouring task, the robot has to execute first the take the bottle subtask, then the
pour the liquid subtask, and finally the leave the bottle subtask. There are also subtasks that can
be executed with an arbitrary order. An example is putting milk and sugar in a cup of coffee,
where the order of putting milk and coffee has no influence on the final result. In general, the
order of execution plays a role in all the level of the hierarchy. There can be tasks which have to
be executed with a fixed or an arbitrary order, as well as atomic actions which have to be executed
before (or after) other actions.

3.3.2. A quantitative definition of structured tasks

The qualitative description provided in the previous section is useful to grab general aspects of
a structured task. The aim of this section is to convert the qualitative description in the previous
section in a formal, quantitative definition of structured tasks. A structured task can be hierarchi-
cally decomposed into several levels (see Section 3.3.1), which indicates that a structured task is
properly represented by a rooted tree. In general, each node in the tree B represents a behaviour.
The root node (abstract behavior) is simply a unique label used to distinguish different structured
tasks. Going down the hierarchy the behaviors becomes more specialized until the atomic actions
are reached. Atomic actions represent the concrete behaviors that the robot has to execute. Indeed,
each action is associated with a motion primitive used to generate motor commands for the robot
and execute the task. As discussed in Section 3.1, stable dynamical systems are a valid option to
represent point-to-point motion primitives.

88



3.3. Representation of structured tasks

subtask(take,water)
1 (1)

subtask(pour,water)
1 (1)

T
R

U
E

add(water)
1 (1)hand.free ~water.taken

~a
2.

do
ne

~a
1.

do
ne

TR
U

E

~a
i.d

on
e

a1(water)
1 (1)

a2(water)
1 (1)

ai(world)
1 (1)

...
...

prepareCoffee

subtask(take,coffee)
1 (1)

add(coffee)
1 (1)hand.free ~coffee.taken

...

T
R

U
E

...

...

~water.added
~coffee.added

TRUE

TRUE

Figure 3.21.: The three used to represent the structured task of prepare a coffee. The three has four
levels. prepareCoffee is the abstract task, add(water) and add(coffee) are two con-
crete tasks, subtask(take,water), subtask(pour,water), and subtask(take,coffee) are
three subtasks, and a1(water), a2(water), and ai(world) are three atomic actions.
The gray box highlights the add(water) task, which consists of three levels. Green
releasers are true, red releasers are false. For each node, the values outside/inside
brackets represent the inverse of the emphasis 1/eb and the magnitude µb respec-
tively.

Each node B is defined by the 6-tuple

B = (mb,rb, pb,xb,eb,µb) (3.66)

where mb is a label (name) that identifies the node, rb is the pre-condition or releaser, pb represent
the post-condition used to check the success of mb, xb is the set of sub-behaviors generated by mb
(child nodes), eb is an emphasis, and µb a magnitude value. The emphasis and magnitude values
are used to select the next behavior to execute, as detailed in Chapter 4.3.2.

The tree representing the structured task of prepare a coffee is shown in Figure 3.21. The tree
has four levels, which is sufficient to represent typical robotic tasks considered in this work (see
Section 5.2). The following terminology is used to name the nodes in each levels: abstract task for
the root node in the first level, concrete task or task for a node in the second level, subtask for a
node in the third level, and atomic action or action for a node in the fourth level. Considering the
tree in Figure 3.21, prepareCoffee is the abstract task, add(water) and add(coffee) are (concrete)
tasks, subtask(take,coffee) is a subtask, and a2(water) is an (atomic) action. Note that human
friendly labels are used in Figure 3.21 to improve the readability, but the implemented system only
requires that labels are uniquely defined. For the root node prepareCoffee, the releaser is always
true and the emphasis is always maximum. The order of execution of add(water) and add(coffee)
is not important in order to prepare a coffee, as underlined by the true releaser assigned to both
tasks. In order to add(water), the robot first takes the bottle and then pours the water. The robot can
grasp the bottle if there are no objects in its hand (releaser hand.free), but it cannot pour the water if
the bottle is not grasped. This is because the releaser water.taken is false. Indeed, water.taken and
coffee.taken are the post-conditions of subtask(take,water) and subtask(take,coffee) respectively,
and they become true after the subtask is successfully completed. The atomic actions level is
fully learned from human demonstrations by exploiting the approach presented in Section 4.3.
As shown in Figure 3.21, the actions belonging to each subtask are executed in the same order
they are demonstrated. As a consequence, the first action of each subtask has a true releaser.

89



3. Representation of robotic tasks

All other actions in the subtask are constrained to follow the demonstrated order by taking the
post-condition of the previous action as pre-condition. For example, the action a2(water) has the
releaser a1.done and it is executed only after a1(water) is successfully completed.

3.4. Summary and conclusion

This chapter presented different approaches to represent robotic tasks. The first representation is
based on stable dynamical systems (DS). Stable DS are guaranteed to converge towards a given
target from any initial state, which makes them particularly suited for representing point-to-point
motions. The chapter presented an approach, namely the dynamic movement primitives, useful
to represent a single demonstration as a dynamical system. In case multiple task demonstrations
are given, a DS can be represented through Gaussian mixture models/regression (GMM/GMR).
In general, a GMR based DS is not guaranteed to be globally stable, but it can be stabilized by
applying a suitable control input. Notably, this control input is automatically computed in this
work given the learned GMM parameters, and it can be smoothly activated/deactivated to balance
between the accurate reproduction of the demonstrations and the stability of the DS. This pro-
cedure, called contracting Gaussian mixture regression (C-GMR), is theoretically described and
empirically compared with other approaches in the literature, showing a good compromise be-
tween training time an accuracy. C-GMR accurately reproduces the demonstrations only inside
the demonstration area. Outside this area the motion follows an exponentially converging dynam-
ics. This limitation of C-GMR can be potentially overcome by exploiting the full capability of the
Contraction theory. In particular, Contraction theory allows to transform the dynamical system by
applying a generic coordinate transformation Θ(x). The coordinate transformation Θ(x) can be
computed from training data by solving an optimization problem, as proposed in [128]. However,
as shown in Section 3.1.4 for the SEDS and SEDSII approaches, the numerical solution of an opti-
mization problem is usually computationally expensive and limits the applicability of the approach
in incremental learning scenarios. An interesting future work is to investigate the possibility of
finding a suitable coordinate transformation Θ(x) without the need of additional learning steps or
optimization.

The second representation maps Cartesian trajectories into a space with known invariance prop-
erties, like the invariance to affine transformations. The mapping into an invariant space helps
to focus on essential aspects of the motion, making invariant trajectory descriptors effective for
motion recognition and reproduction. Two invariant representations are presented, namely a uni-
directional representation and a bidirectional one. Since unidirectional representations are not
useful for motion reproduction, a particular focus was given to the bidirectional representation,
the so-called DHB (Denavit–Hartenberg inspired Bidirectional) representation. Apart from be-
ing bidirectional, the DHB representation is a minimal representation (six values) of rigid body
motions, it is invariant to affine transformations, time scale, and direction of execution (forward
and reverse motions), and it is numerically robust. Those characteristics make DHB an effective
motion descriptor, as demonstrated with experiments and comparisons with prominent invariant
descriptors. DHB is an effective descriptor for motion generalization. As shown in Section 3.2.4,
in fact, affine transformed instances of the same motion are easily generated from the same in-
variant trajectory. In other words, DHB has high generalization capabilities, being capable of
generating the same motion in all the state space of the robot. However, the trajectory generated
from an invariant representation is not guaranteed to converge towards a given target. Moreover,
DHB is not a compact representation, since an invariant trajectory has only three samples less than
a Cartesian one. On the contrary, presented DS based representations are compact and convergent,
but they are able to generalize the motion only in a certain area of the state space (around the

90



3.4. Summary and conclusion

demonstrations). An interesting research direction consists in combing invariant and dynamical
system based representations into a unified approach that combines the benefits of the two original
representations.

The last part of the chapter discussed about structured tasks. Structured tasks are firstly quali-
tatively defined. Intuitively, a structured task is a mission to complete that involves a sequence of
actions to perform on certain objects. Actions (objects) are executed (manipulated) arbitrary or by
following a predefined order. The qualitative definition in then converted into a formal, quantita-
tive definition. Structured tasks are categorized as a kind of hierarchical structures, specifically a
tree, were the root node is the abstract robotic task that is hierarchically decomposed into incre-
mentally more specified behaviors until the last level of the hierarchy is reached. The leaf nodes,
in fact, contains the elementary actions which are commanded to the robot in oder to execute the
task. Each node in the tree is associated to a set of pre- and post-conditions, as well as to two
weighting terms, namely the emphasis and the magnitude. As discussed in Chapter 5, conditions
and weights in each node are exploited by an attentional executive system to regulate the task
execution. A known problem of tree structures is the scalability. When more and more nodes are
added, in fact, the tree search becomes more and more computationally expensive. The problem
is alleviated in this work by equipping the attentional system with long term and working (short
term) memories. Roughly speaking, the full task structure is stored in the long term memory,
while the working memory only expands the nodes required to reach the next action (leaf node)
to execute. Formal details of this procedure are given in Chapters 4 and 5. In order to execute the
task on real robots, commanded actions are associated with a database of motion primitives, used
to generate the robot’s trajectory at run time. The problem of learning such a dataset from human
demonstrations and associating each motion primitive to the corresponding action in the tree is
considered in Chapter 4.

91





CHAPTER 4

Learning robotic tasks form human demonstrations

Robotic skills acquisition, as well as the skill adaptation to novel, possibly dynamic environments,
are of importance for the integration of robotic devices in both industrial and service scenarios.
This chapter discusses the problem of transferring skills from humans to robots in a simple, natu-
ral, and intuitive manner, allowing people without a robotic or programming background to trans-
fer their skills to the robotic device. Following the programming by demonstration paradigm, the
chapter starts investigating the problem of demonstrating novel tasks to a single robotic manipula-
tor (uni-manual task). Then, the problem is considered of transferring a skill to human-like robots
with two arms (dual-arm task). Finally, intuitive teaching is exploited to let the robot learning a
structured task from human demonstrations.

4.1. Learning uni-manual skills

Kinesthetic teaching is a simple, natural, and intuitive way that humans use to teach new skills. In
kinesthetic teaching, a teacher manually guides the partner (robot) during the task execution. Dur-
ing the physical guidance, robot’s sensory data, like the position of the end-effector or the joint
angles, are stored to create a task demonstration. As discussed in Chapter 3, collected demon-
strations are usually represented in a compact form that allows task generalization and reduces
memory requirements. Kinesthetic teaching is a well established methodology in the field of
programming by demonstration [14], and its benefits and advantages in skill transfer are well rec-
ognized [162]. Compared to imitating the human movements (imitation learning), there are three
main advantages in physically guiding the robot:

• Collected data are directly used to generate the robot’s trajectory. In contrast, motion re-
targetting is required to imitate human movements, due to the different kinematics between
human and robot.

• External motion tracking systems are not required in kinesthetic teaching, since only robot
sensors are used to collect data.

• The teacher is sure that the robot is able to reproduce the demonstrated task without violating
joint limits.

However, kinesthetic teaching suffers from the following drawbacks:

93



4. Learning robotic tasks form human demonstrations

Interaction control

Robot

Human
visual/haptic

feedback

TTC
q

τe

Interaction
task

xic
.

Null-space
motion

primitives

End-effector
motion

primitives

Priority
manager

w

xd,ns

Incremental learning

xd,ee

xcp
xee

fe

Figure 4.1.: Overview of the framework for incremental kinesthetic teaching of end-effector and
null-space motions.

• A specialized controller is required to safely interact with the robot. The simplest solution is
to apply the gravity compensation control described in Appendix A.2.3, which works only
for robots equipped with force/torque sensors.

• It is hard for the user to handle many, possibly redundant, degrees-of-freedom (DoF), as
underlined by the user study in [162].

Considering the presented advantages and disadvantages, it is clear that is hard to kinesthetically
teach robots with many DoF like humanoid robots. In this case, imitation learning offers a valid
alternative (see Section 4.2). For a single robotic manipulator, instead, kinesthetic teaching often
represents the best option.

4.1.1. A framework for incremental kinesthetic teaching

As discussed in [162], users encounter difficulties to handle redundant DoF. However, redundant
degrees-of-freedom can be exploited to execute multiple tasks at the same time. Figure 4.1 shows
a framework that allows incremental kinesthetic teaching of end-effector and null-space motion
primitives. The incremental learning block in Figure 4.1 contains end-effector and null-space
motion primitives. These motion primitives are learned in batch mode from kinesthetic demon-
strations and used reproduce the task. This work exploits hidden Markov models to represents the
motion, since they allow incremental learning, but other choices are possible. The approach for
motion leaning and generation using HMM is described in Appendix A.3.3 and summarized in
Algorithm 3. The motion primitives learned in batch mode may not be appropriate to execute the
task in a different scenario. In this case, it is useful to give to the user the possibility of incremen-
tally refining the learned task during the task execution. By kinesthetically demonstrating the task
during the execution, in fact, the robot learns naturally coordinated movements of its links [91].
Moreover, the demonstrator can modify only part of the task, leaving the rest unchanged. The
incremental refinement requires two ingredients. First, the motion primitive representation has
to permit incremental refinement. As detailed in [91] and in Appendix A.3.3, the parameters of a

94



4.1. Learning uni-manual skills

Algorithm 3 Motion Learning and Generation using HMM
Motion primitive learning:
input a motion sequence sO

1. Introduce a normalized time variable for each state
2. Learn HMM parameters λ from sO using the Baum-Welch algorithm [123]
3. Compute optimal state sequenceQ? = {q(t)} for sO using the Viterbi algorithm [123]
4. Compute the relative temporal sequence tO fromQ?

5. Compute tsΣ for each state from sO and tO
return λ= {π,A,c, t µ, sµ, ttΣ, tsΣ, ssΣ}

Motion generation:
input a HMM model λ

6. Generate an optimal state sequenceQ using (A.26), (A.27)
7. FromQ calculate the relative temporal sequence tO
8. From tO calculate the responsibilities γi using (A.28)
9. Calculate the conditional spatial data soi(t) using (A.29)

10. Generate the continuous trajectory so(t) using (A.30)
return sO(t) = {so(t)}

hidden Markov model can be incrementally refinement as novel demonstrations are provided. Sec-
ond, the user has to safely interact with the robot to provide additional task demonstrations. Task
execution and safe human–robot interaction are considered as two prioritized tasks by the interac-
tion control block in Figure 4.1, where the Task Transition Controller (TTC) is responsible for the
insertion, removal, and transition of these tasks. The motion refinement proceeds in this way. The
TTC executes a learned motion primitive. During the execution, the user can modify the learned
skill by physically guiding the robot. In case of physical interaction, a new task is generated in
the form of a desired velocity ẋic at the contact point. This separation of the motion primitive
and the physical guidance in tasks with different priorities makes possible to incrementally refine
both end-effector and null-space motions. The interaction task is initially inserted with the lowest
priority. Hence, the robot tries to execute this task using redundant DoF, without affecting the end-
effector task execution. In this case, the learned behavior can be considered as a null-space motion
primitive. The priority of the interaction task can be increased when it is not correctly executed.
Tasks priorities are changed by considering the force that the user is applying on the robot. In
particular, if the user perceives that the robot is not accomplishing its guidance, then he increases
the applied force. Hence, a threshold on the external force is used to decide the tasks priority.
When the user guides the robot touching the end-effector, one between the interaction task and the
end-effector motion primitive cannot be executed. At the beginning, the robot keeps following its
original motion. Then, the user increase the contact force, the tasks are smoothly switched and the
robot can accomplish the physical guidance and refine its behavior. The interaction control block
is detailed in the following section.

4.1.2. A customized controller for physical robot guidance

A controller for incremental kinesthetic teaching has to guarantee an accurate motion primitive
execution in free motion and the user safety during the physical interaction. In order to realize
the incremental motion refinement by physical contact, this work considers task execution and
safe human–robot interaction as two prioritized tasks. The priorities of these tasks are not fixed,
but they are smoothly and continuously changed during the execution by the task transition con-

95



4. Learning robotic tasks form human demonstrations

trol (TTC) [10]. The TTC is a general control framework that allows arbitrary and smooth task
transitions. Its main features are described as follows.

Task transition control

A task T of a robot can be defined by a tuple (ẋ, ẋd) in the velocity level where ẋ , J(q)q̇ is
the task variable, ẋd(q, t) is the desired trajectory of ẋ, q is the generalized coordinate of the
robot, and J(q) is the Jacobian of the manipulator. As discussed in Appendix A.2.2, the inverse
kinematics problem consists in finding q̇ that minimizes the task error ‖ė‖, ‖ẋd− ẋ‖. In general,
the definition of the task is not fixed for whole operation time and multiple tasks T1, · · · ,Tk can
exist on the same time. For example, in this work, the end-effector needs to follow a given motion
primitive and, if there is human intervention, the robot has to accomplish the physical guidance.
Hence, two different tasks are defined: i) the end-effector task Tee and ii) the interaction control
task Tic. In this work, Tic is an admittance control that transforms external forces into the desired
velocity ẋic, as discussed later in this section.

The relation between the two tasks, or their priorities, can be smoothly and continuously changed
during the motion execution. For the clearness of the discussion, this work follows the same math-
ematical convention of a set of tasks proposed in [10]. More specifically, (Tee,Tic) indicates an
unprioritized accumulation of two tasks, i.e. Tee and Tic have the same priority. [Tee,Tic] indicates
a prioritized accumulation in which Tee has priority. As already mentioned, the priorities of Tee

and Tic are changed in each time by the strength of the human intervention. The following rules
are applied:

• T 1 = Tee. If there is no human intervention, only Tee exists.

• T 2 = [Tee,Tic]. If there is a weak human intervention, both tasks exist and Tee has priority.

• T 3 = [Tic,Tee]. If there is a strong human intervention, both tasks exist and Tic has priority.

When the task priorities need to be changed during the execution, smooth transitions between
tasks T 1, T 2, and T 3 are necessary to prevent discontinuities (jumps) in the joint velocities. The
idea of the TTC is to interpolate the joint trajectories directly by using the barycentric coordinates
(see Definition 1) and to design smooth transitions of the barycentric coordinates using a linear
dynamical system (see Theorem 3). More in details, the inverse kinematic solution q̇i for each
task T i is calculated separately using the inverse kinematic approach proposed in [9]. The robot’s
joint velocity is then computed as q̇ = ∑

l
i=1 wiq̇i, where wi are the barycentric coordinates.

Definition 1 (Barycentric Coordinates). The barycentric coordinates of q̇ with respect to Q ,
{q̇1, · · · , q̇l} is defined as any set of real coefficients w1, · · · ,wl depending on (q, t), such that all
the following properties hold:

• Nonnegativity: wi ≥ 0.

• Linearity: q̇ = ∑
l
i=1 wiq̇i with ∑

l
i=1 wi = 1.

• Smoothness: wi ∈Cs(q, t).

The scalar s ∈ N≥0 depends on the degree of smoothness needed.

Theorem 3 (Task Transition Control). The TTC given by (4.1) ∼ (4.5) provides smooth and arbi-
trary task transitions within T = {T 1, · · · ,T l}, as well as bounds the inverse solutions such that

96



4.1. Learning uni-manual skills

‖q̇‖ ≤max{‖q̇1‖, · · · ,‖q̇l‖}

q̇ = qw, (4.1)

w(s+1) =−
s

∑
j=1

k jw
( j)+ k0(wd−w), (4.2)

wd(q, t) ∈ {ê1, · · · , êl} ⊂ Rl, (4.3)

w(ti) ∈ {a ∈ Rn : 1Ta = 1, a≥ 0}, (4.4)

w( j)(ti) = 0, ∀ j ∈ N≤k, (4.5)

where q , [q̇1 · · · q̇l] ∈ Rn×l ,w , [w1 · · · wl]T ∈ Rl ,w( j) , d jw/dt j, s ∈ N≥0, 1, [1 · · · 1]T ∈
Rl , {ê1, · · · , êl} is a set of the standard basis in Rl , and {k0, · · · ,kk} ⊂ R are stabilizing control
gains that don’t generate overshoot of the (s+1)-th order linear system.

The proof of Theorem 3 can be found in [10]. For the purpose of this work, it is important to
consider that arbitrary task transitions and the boundedness of the inverse solutions are guaranteed
by the non-negativity and the linearity properties of the barycentric coordinates. Moreover, the
smooth task transition is guaranteed by the linear dynamical system that generates the barycentric
coordinates. Task transitions are triggered by the discrete input values that correspond to each task
T i. In this work, a threshold fi is used to insert the interaction control task as the lower priority task,
generating extra null-space motions. Another threshold fs is used to switch the priority between
the two tasks, as shown in Table 4.1. The f in Table 4.1 is the norm of the applied external force.
The rules in Table 4.1 can be interpreted as follows. The robot firstly tries to project Tic in its null-
space. If the human perceives that the task is not correctly executed, he simply applies a bigger
force until Tic becomes the first priority task and the robot accomplishes the guidance.

Table 4.1.: Task Transition Rule

f < fi fi ≤ f < fs fs ≤ f

Tee [Tee,Tic] [Tic,Tee]

Interaction task definition

The task transition control transforms external Cartesian forces in a desired velocity using the
relationship

ẋic = cfe, (4.6)

where ẋic is the velocity of the interaction task, fe is the applied external force, and c is a tunable
gain. It is clear that Equation (4.6) requires an estimation of the external Cartesian force applied
to the robot. The estimation of the external force requires two steps. First, the external torque τe

applied to each joint have to be estimated. Second, given the contact point C, the external force fe

is computed by inverting the well-known equation τe = J
T
C fe, where JC is Jacobian of the contact

point.
Several approaches have been proposed to estimate the external torque and the link where the

contact occurs (contact link). For instance, the work in [58] exploits a momentum based distur-
bance observer for collision detection and reaction. The work in [130] proposes an approach to
estimate the external torque using only encoders. This approach is well-suited for robots that do
not have torque sensors in each joint. For the KUKA LWR manipulator, an estimation of the

97



4. Learning robotic tasks form human demonstrations

Figure 4.2.: The pick-and-place motion is represented using a left-to-right HMM with seven states
and one Gaussian for each state. Five demonstrations (black dashed lines) are used.
The blue ellipses represent the learned Gaussian in each state, while red solid lines are
smooth trajectories generated by applying Algorithm 3.

external joint torque is provided through the Fast Research Interface [139]. Being the provided
torque ideally zero for all the joints located after the contact point, the touched link can be easily
determined using a thresholding method. Precise contact point estimation becomes a challenging
problem without the usage of an exteroceptive sensor (e.g., cameras) [98]. Since the estimation of
the contact point is behind the scopes of this work, it is simply assumed that the contact always
occurs at the end of the contact link.

4.1.3. Pick-and-place learning and refinement

The aim of these experiments is to test the effectiveness of the presented framework for incre-
mental kinesthetic teaching. The end-effector task is the pick-and-place (point-to-point) motion
shown in Figure 4.2 and Figure 4.3(a). The pick-and-place motion is learned in batch mode (see
Appendix A.3.3) from 5 kinesthetic demonstrations. In order to facilitate the off-line teaching,
a gravity compensation controller is used (see Appendix A.2.3). The end-effector orientation is
kept constant during the execution of the task. The number of hidden states in the HMM, as well
as the number of Gaussians in each state, are empirically chosen to 7 and 1 respectively. These
experiments employ the left-to-rigth HHM model [123], being this model the best-suited for rep-
resenting point-to-point motions. The gain c = 0.005m/Ns is used in Equation (4.6) to transform
the external forces fe into velocities.

End-effector motion refinement

In this experiment, the initial goal position, located at g = [−0.6, 0.14, 0.027]T m, is incremen-
tally refined to reach the new target g′ = [−0.5, 0.006, 0.027]T m. During the execution, the user

98



4.1. Learning uni-manual skills

(a) Original trajectory

(b) Kinesthetic teaching

(c) Refined trajectory

Figure 4.3.: Snapshots of the end-effector motion refinement procedure. (a) The end-effector ex-
ecutes the learned trajectory. (b) The teacher guides the robot toward the new target
position. (c) After three iterations, the robot is able to execute the new task.

corrects the trajectory by physically guiding the robot towards the new goal. Snapshots of this
procedure are shown in Figure 4.3.

At the beginning of the execution, the end-effector motion is the unique task in the stack. When
the user starts to interact with the robot (‖fe‖ > 5N), the TTC generates the new task [Tee,Tic].
Being the tasks [Tee] and [Tee,Tic] in conflict, the robot cannot accomplish the physical guidance.
Hence, the user applies a bigger force and the task priorities are smoothly switched (‖fe‖> 15N).
After three repetitions, the robot is able to reach the new target position g′, as shown in Figure
4.3(c) and Figure 4.4. The interaction starts at about 3 seconds after starting the execution. Hence,
the first 3 seconds of the motion primitive (before the interaction) are left unchanged.

Figure 4.4.: Results of the incremental motion refinement procedure. The robot reaches the new
goal position g′ = [−0.5, 0.006, 0.027]T m after three demonstrations. The motion in
the z direction is not showed because it is not updated during the kinestethic teaching.

99



4. Learning robotic tasks form human demonstrations

(a) Collision

(b) Kinesthetic teaching

(c) Autonomous execution

Figure 4.5.: The elbow motion refinement procedure. (a) An unforeseen obstacle is placed on the
elbow trajectory. (b) The teacher demonstrates a collision-free elbow trajectory. (c)
After three iterations, the robot executes both end-effector and null-space tasks.

Elbow motion refinement

As shown in Figure 4.5(a), an unforeseen obstacle is putted along the trajectory of the robot’s
elbow. The end-effector motion is the pick-and-place task in Figure 4.2. To avoid the collision, the
user physically teaches a collision-free path for the robot’s elbow (see Figure 4.5(b)). After three
iterations, the robot executes the end-effector task while avoiding the collision with the obstacle
(see Figure 4.5(c)). Results of the incremental learning procedure are illustrated in Figure 4.6. The
interaction begins at about 5.4s after starting the execution. Hence, the first 5.4s of the motion
primitive (before the interaction) are left unchanged. The thresholds used to insert Tic and to switch
the priority are chosen as fi = 5N and fs = 15N respectively.

To better understand the role of the used thresholds, three experiments are performed by varying
the value of fs. Recall that the threshold fs is used to switch the priority between the end-effector
task Tee and the interaction task Tic. The threshold used to insert Tic is kept constant at fi = 5N.

fi = fs = 5N - With this choice the interaction task Tic is directly inserted as the first priority
task, as shown in Figure 4.7(a). In this case the physical guidance is easier because the robot
can use more degrees-of-freedom (DoF) to accomplish the guidance. However, if the tasks are in
conflict, errors in the motion primitive execution are accumulated. In this specific case, Tee and Tic

are not in conflict, since the end-effector position tracking error in Figure 4.7(a) is relatively small
(less than 3mm).

fi = 5N, fs = 30N - With this choice the Tic is always executed in the null-space of Tee, as shown
in Figure 4.7(b). Hence, the robot uses only the redundant DoF to execute Tic. If the robot can
accomplish the physical guidance, then the task are not in conflict and the new motion primitive
can be effectively executed in the null-space of Tee.

100



4.2. Learning dual-arm skills

Figure 4.6.: Elbow motion refinement using a HMM with seven states and one Gaussian for each
state (blue ellipses). Three demonstrations (black dashed lines) are incrementally
given. Red lines are trajectories generated by Algorithm 3.

fi = 5N, fs = 15N - With this choice transitions occur between Tic and Tee, as shown in Figure
4.7(c). These transitions are needed to refine the end-effector motion primitive (Tee and Tic are
in conflict). As a general rule, an intermediate value for fs is always suggested, since it is not
know a priori if the physical guidance is in conflict or not with the end-effector motion. During
the kinesthetic teaching, the user can figure out if the end-effector deviates significantly from the
desired path and, in case, the initial order of priorities has to be reconsidered.

The barycentric coordinates in Figure 4.7 show several transitions between [Tee] and other tasks.
This is mainly due to the way the user is teaching the robot. The user, in fact, moves the elbow
far away from the obstacle a first time. While the execution proceeds other corrections may be
needed, and so on until Tee is completed. The interaction controller (see Section 4.1.2) combines
the tracking performances of position controllers with an increased flexibility. Figure 4.8 illustrates
the end-effector position tracking errors for position and impedance controllers. The position
controller accurately tracks the motion also during the interaction, but it prevents the kinesthetic
teaching. On the contrary, to allow physical guidance with impedance control, one has to set low
impedance gains1 penalizing the end-effector task execution also without contacts.

4.2. Learning dual-arm skills

Kinesthetic teaching is effectively exploited in the previous section to transfer skills from a hu-
man demonstrator to a robotic manipulator. However, kinesthetic teaching does not represent the
optimal approach when the number of degrees-of-freedom is high. This is because it is hard for
a single demonstrator to handle many degrees-of-freedom. Considering advantages and disad-

1Results in Figure 4.8 are obtained with a stiffness matrix defined as S = 200I N/m and a damping matrix defined as
D = 2d

√
200I sN/m, where d = 0.7 to avoid overshoot.

101



4. Learning robotic tasks form human demonstrations

 

 

[Tic, Tee]

[Tee, Tic]

Tee

time [s]

|e
rr
o
r|
[m

m
]

b
ar
y
ce
n
tr
ic

co
o
rd
.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

0

0.5

1

(a) fi = fs = 5N
time [s]

|e
rr
o
r|
[m

m
]

b
ar
y
ce
n
tr
ic

co
o
rd
.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

0

0.5

1

(b) fi = 5N, fs = 30N

time [s]

|e
rr
o
r|
[m

m
]

b
ar
y
ce
n
tr
ic

co
o
rd
.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

0

0.5

1

(c) fi = 5N, fs = 15N

Figure 4.7.: Barycentric coordinates and end-effector position tracking error for different values
of fi and fs. The interaction controller permits null-space kinesthetic teaching and
end-effector task execution.

time [s]

Position control error

|e
rr

or
|

[m
m

]

2

1.5

1

0.5

0

Impedance control error

|e
rr

or
|

[m
m

]

150

100

50

0

time [s]
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Figure 4.8.: End-effector position tracking error with position and impedance controllers. The in-
teraction starts around 5s in both cases. The position controller treats external forces
as disturbances to reject, preventing the kinesthetic teaching. The impedance con-
troller allows the physical guidance, but it affects the end-effector task execution.

vantages of kinesthetic teaching discussed in Section 4.1, imitation learning is one of best suited
approaches for skills transfer from human to human-like robots—the so-called humanoid robots
or simply humanoids—with a relatively high number of DoF. In order to reproduce the motion

102



4.2. Learning dual-arm skills

Shoulder

Elbow

Wrist

Palm

x

z
q1

q2

q3

q4

q5

q6

q7

Shoulder

Elbow

Wrist

Palm

xq1

q2

q3

q4

q5

q6

q7

z

la

lfa

zb

yb

ps

Figure 4.9.: Frames of the human and of the RoDyMan arms.

of the demonstrator on a humanoid, one has to consider that human and robot have, in general, a
different kinematic structure. This problem of mapping the motion between two “entities” with
different kinematics is usually referred as the motion re-targetting or the correspondence problem.
The motion re-targetting problem is solved in this work using the approach presented as follows.

The problem consists in mapping the demonstrations captured with a Xsens motion capturing
suit [8] from a human teacher to a humanoid robot. The Xsens measures the position and the
orientation of 11 body parts: the sternum, the pelvis, and the head represent the motion of the
the human trunk, while shoulders, elbows, wrists, and hands describe the motion of the two arms.
The data from the Xsens are acquired at 120Hz. The robot to teach is RoDyMan, a 21 degrees-
of-freedom (DoF) humanoid robot. RoDyMan has 2 DoF in the torso, two arms with 7 DoF each,
and 2 DoF in the articulated head. The end-effectors are equipped with two anthropomorphic
hands in order to provide enhanced dexterous manipulation skills. The robot has also a mobile
base, which is not used in this work. During the demonstration, the user can visualize the robot
executing the task in a simulated environment (V-Rep [7]). This visual feedback is of fundamental
importance to understand how the robot is executing the task. In order to provide the visual
feedback, raw data from the suit are on-line mapped into a set of robot joint angles. The motion
re-targetting problem is addressed by relying on Cartesian space variables and simple geometrical
considerations. Figure 4.9 shows human and RoDyMan arms with a reference frame associated to
each link. In order to transfer the motion, the position of the two end-effectors of the RoDyMan
is calculated by summing three quantities, namely the position of the robot shoulder, a vector of
length equal to the length of the robot arm, and a vector of length equal to the length of the robot
forearm. The two vectors (arm and forearm) are oriented in the direction obtained from the Xsens
arms nodes. In other words, the human hand position xh in the RoDyMan base frame is obtained

103



4. Learning robotic tasks form human demonstrations

using as

xh = xs +Rs

(
la

xe−xs

‖xe−xs‖
+ l f a

xw−xe

‖xw−xe‖

)
, (4.7)

where la = 0.350m and l f a = 0.305m are the RoDyMan arm and forearm lengths respectively.
se and xw are the positions of the elbow and wrist respectively provided by the Xsens data.
xs = [0, 0.1081, 0.254]T m is the shoulder position with respect to the base frame. In practice,
the position of each end-effector of the robot is calculated from the position of the RoDyMan
shoulder by summing two vectors of length la and l f a respectively. These vectors are oriented
as the relative human arm and forearm obtained from the Xsens. Notice that the positions pro-
vided by the Xsens depend on the torso movement, then it is necessary to rotate the vectors by
the matrix Rs that represents the sternum orientation with respect to the Xsens world frame. For
the end-effectors orientation, the hand orientations provided by the Xsens are rotated in order to
maintain the coherence with the RoDyMan hand frame. Therefore, the position of the two arms
are scaled taking into account the difference in link dimensions between the robot and the human.

The two computed homogeneous transformation matrices represent the target pose of the robot
end-effectors and they are used in an inverse kinematics algorithm in order to control the robot
(see Appendix A.2.2). Being the robot redundant, it is possible to exploit redundant DoF in order
to achieve secondary goals. For the RoDyMan robot, and in general for a humanoid robot, the
null-space projection of the robot Jacobian matrix can be used to guarantee that: i) the torso pose
is bounded to prevent an excessive bending, ii) the shoulders maintain a natural orientation, iii)
the elbows are confined outside of a sphere centered at the center of torso to avoid self-collisions.
As detailed in the following section, this approach for motion re-targetting is effectively used in
this work to transfer structured tasks form a human teacher to the RoDyMan robot.

4.3. An integrated framework for learning structured tasks

The intuitive transfer of structured tasks from a human demonstrator to a (humanoid) robot re-
quires the following steps:

• A human teacher demonstrates the structured task. A low-lever control layer is required to
permit the kinesthetic teaching or to perform motion re-targetting.

• The provided demonstration(s) is segmented into basic motion units and a unique label is
assigned to each basic motion. This requires a reliable segmentation strategy.

• Segmented data are used to create a database of motion primitives. Each motion primitive
is represented using one of the solutions presented in Chapter 3. Learned motion primitives
are used at run time to generate the robot’s trajectory and effectively execute the task.

• Generated action labels, together with execution constraints, are automatically associated
to the task structure. To this end, an high-level process has to monitor the demonstration
phase and decide where the last segmented action has to be attached. The learned structure
is exploited to generate the task plan, as discussed in Section 5.2.

The intuitive transfer of structured tasks is realized using the framework illustrated in Figure
4.10. The framework integrates two main components, namely a Robot Manager and an Atten-
tional Supervisory System. The Robot Manager (RM) handles low-level aspects of the transfer
process, like task supervision, execution, and learning. In particular, the RM permits the skills
transfer via kinesthetic teaching or human imitation, it is responsible for on-line segmentation,
motion primitives learning and execution. In the considered scenario, the human can interact with

104



4.3. An integrated framework for learning structured tasks

Figure 4.10.: The overall framework for intuitive transfer of structured tasks. The attentional sys-
tem supervises task execution and learning, while the Robot Manager enables the
segmentation of the robot activities (Motion Segmentation), the kinesthetic teach-
ing or motion re-targetting, the motion primitives learning (Motion Learning) and
execution (Motion Generation). The attentional system manages the execution of
high-level tasks (Attentional Executive System) and low-level sensorimotor processes
(Attentional Behavior based System). The communication between the Robot Man-
ager and the attentional system is managed by the RobotStream (robot motion data)
and ObjectStream (perceived data from the RM to the attentional system).

the robot in a multimodal manner with speech and physical guidance during the teaching session.
An attentional system supervises both the human and the robot activities (Attentional Behavior
based System), and it handles high-level aspects of the transfer process, like task monitoring and
execution (Attentional Executive System). Further details are given as follows.

4.3.1. Robot Manager

The Robot Manager (RM) handles low-level aspects of the human-robot interaction and it is re-
sponsible for a correct task execution. In particular, the RM is responsible for: i) smooth transition
between teaching and execution modes; ii) segmentation of the human demonstration into basic
actions; iii) scene monitoring (objects classification and tracking); and iv) robot state monitoring
(robot–object distances, motion primitives learned or executed). Task teaching is performed by
means of kinesthetic teaching for a single robotic manipulator (see Section 4.1) or by imitating
human motions for a humanoid robot (see Section 4.2). Kinesthetic teaching is allowed by the
gravity compensation control in Appendix A.2.3, which makes the robot ideally weightless for
an easy and safe physical guidance. Imitation learning, instead, is performed by applying the
kinematic controller described in Section 4.2. Structured tasks are segmented into a set of point-
to-point motions (reaching and manipulating objects). Segmented data are compactly represented
as stable dynamical systems (DS), called in this work the motion primitives. As discussed in Chap-
ter 3, stable DS are well-suited for point-to-point motion generation since they are guaranteed to
converge towards a given target. The learned motion primitives are used at run time to generate
the robot’s trajectories and execute the structured task.

105



4. Learning robotic tasks form human demonstrations

Figure 4.11.: Teaching and execution of the pouring action. (Left) During the teaching the user
drives the robot near the cup and pours water. (Right) During the the execution the
robot reproduces the learned skill.

Action segmentation

The demonstrated task has to be segmented into elementary movements. As discussed in [53],
an effective segmentation strategy has to be fast enough to work in real-time, consistent across
different demonstrations of the same task, and complete, meaning that the set of all generated
segments represents the entire task. In this work, a simple and effective segmentation mechanism
is exploited. The approach is based on object proximity and explicit human commands. Following
the approach in [156], each object in the environment is associated with a proximity area, namely
a sphere of radius r around each object. When the end-effector of the robot enters or leaves the
proximity area of an object, a new segment is generated. Analogously, when a human command
(open or close the robot’s hand) is executed a new action is created. The attentional system can
then automatically connect the generated action segments to the task structure (see Section 4.3.2),
while the RM uses the robot’s trajectories to learn a motion primitive for each action segment.
Human commands are also included in the task structure, in order to control the gripper when the
robot executes the task. Two classes of actions are considered:

• Near Object Action (NOA): the action is segmented inside the proximity area of an object.
This class include complex movements like pouring or mixing, which are accurately and
compactly encoded into dynamic movement primitives (DMPs). As discussed in Section
3.1.1, DMPs are learned from a single demonstration. Learned DMPs are used to accurately
reproduce the motion on real robots, as shown in Chapter 5.

• Far Object Action (FOA): the action is segmented outside the proximity area of an object.
In this case, only the end-point of the observed trajectory is considered. The action is then
reproduced with a point-to-point motion, generated with a linear dynamical system. In this
way, the robot reaches the proximity area always with the same pose, and executes the NOA
starting from a state which is consistent with the demonstration. This is useful, for example,
to grasp an object, since the robot reaches the same pre-grasping pose and then grasps the
object always in the same manner.

The described segmentation mechanism allows the system to reproduce complex actions in-
volving two or more objects. For example, the pouring action (NOA) illustrated in Figure 4.11 has

106



4.3. An integrated framework for learning structured tasks

been trained with high accuracy and associated with the pour(water) primitive behavior within the
abstract task of pouring a drink.

It is worth noticing that, since the segmentation strategy requires the robot–object distances,
possible failures may occur if the objects are not properly tracked. For instance, this is the case if
the teacher hides the object to manipulate during the teaching. Failures may also occur if the robot
enters in the proximity area of multiple objects simultaneously and each of these can be associated
with the generated segment. This occurrence can be prevented by properly choosing the radius
of the proximity area r. Finally, the segmentation strategy may generate unnecessary segments if
the teacher guides the robot inside/outside the proximity area of different objects without grasping
them. Even in this case, the learned task can be correctly executed although the robot performs
unnecessary motions like the human demonstrator. This undesirable behavior can be prevented by
instructing the teacher to directly guide the robot towards the object to use.

Learning motion primitives

The described segmentation approach generates a set of point-to-point motions with associated
target poses. Segmented data are represented as stable dynamical systems, called motion primi-
tives in this work. Motion primitives are learned from a single demonstration using the dynamic
movement primitives (DMPs) approach presented in Section 3.1.1. DMPs, in fact, are well-suited
to represent stable motions given a single demonstration. Note that, in this work, DMPs are used
to represent both the position and the orientation of the end-effector, and that the orientation is
represented using the roll-pitch-yaw Euler angles [142].

The full DMP structure described by equations (3.3a)–(3.3c) is exploited to learn and retrieve
Near-Object-Actions, which correspond to the complex movements that the robot has to perform
inside the proximity area. For instance, the motion in Figure 4.11 is a NOA. Recall that the clock
signal in Equation (3.3c) depends on the tunable parameter γ > 0, and that, in practice, s = 0
after 5/γ seconds. Hence, one can simply set the parameter γ of each motion primitive equal to 5
divided by the time duration of the relative NOA. It is worth noticing that the goal pose of each
NOA (DMP) is automatically retrieved from the segmented data, i.e. the last point of the trajectory
is considered as the goal of the DMP.

Far-Object-Actions are represented by linear dynamical systems. In oder words, the non-linear
terms −K(g−p0)s+Kf(s) in Equation (3.3b), as well as the clock signal in Equation (3.3c)
are simply neglected. Also for FOA, the goal pose is automatically retrieved from the segmented
data. In this way, the robot follows a linear trajectory far from the objects, and it executes complex
actions always from the same initial state. This is useful to grasp objects always from the same
relative pose, and to prevent the problem of the excessive magnification of trajectories generated
from different initial states [65].

It is useful to point out once more that the combination of DMPs and the segmentation strat-
egy permits to learn motion primitives without any off-line data processing. In particular, the
target pose for each action, as well as the demonstrated trajectory, are automatically provided by
the segmentation approach and then used to learn the motion primitives, without further human
intervention or data post-processing.

4.3.2. Attentional System

The attentional system provides the cognitive control mechanisms needed to flexibly orchestrate
the execution of structured tasks and to monitor the human activities. The framework presented
in this work follows a Supervisory Attentional System (SAS) approach [40, 110], where interac-
tive action execution and learning are supported by attentional mechanisms. In a SAS framework,

107



4. Learning robotic tasks form human demonstrations

Figure 4.12.: Representation of the WM expansion process managed by alive. When the new node
add(water) is allocated in WM the associated schema is selected from LTM (retrieve
phase) and exploited to decompose the node in WM by adding and instantiating the
new abstract or concrete sub-nodes mentioned in the schema (expand phase).

the executive control depends on two main mechanisms: contention scheduling and supervisory
attention. The first one allows to reactively select and regulate routinized activities depending on
bottom-up perceptual stimuli and internal drives. The latter is a higher-level process that drives
the system towards task-oriented behaviors via attentional regulations. In a human–robot inter-
action scenario, the attentional system exploits a hierarchical task representation (the rooted tree
presented in Section 3.3) to supervise and regulate the robot actions, while interacting with the
human. As proposed in [26, 27], the framework consists of a Long Term Memory (LTM) and a
Working Memory (WM) (see the Attentional Executive System in Figure 4.10). Note that, as de-
tailed below, both the LTM and the WM exploit the hierarchical representation of structured tasks
presented in Section 3.3.

Long Term Memory

The Long Term Memory (LTM) contains the procedural knowledge available to the system, or,
in other words, the abstract description of the tasks that the robotic device can execute. Equa-
tion (4.10) presents an instance of the abstract task description. More specifically, each task is
hierarchically defined in the LTM by a set of predicates of the form schema(m, l, p), where m is
the name of the task, l is a list of mi subtasks associated with enabling conditions ri (releasers),
i.e. l=〈(m1,r1), . . . ,(mn,rn)〉, while p represents a post-condition used to check the accomplish-
ment of the task. These task definitions are exploited to be retrieved, allocated, and instantiated
in the WM for execution, as illustrated in Figure 4.12. To this end, a special process named alive
is continuously called to update the WM by allocating and deallocating a hierarchy of behaviors
that implements the corresponding task schemata in the LTM. For instance, in Figure 4.12, the
add(Ob j) schema is retrieved by alive (t1 step in Figure 4.12) and then instantiated and allocated
in the WM as the behavior add(water), which is ready for the execution (t2 step in Figure 4.12).

108



4.3. An integrated framework for learning structured tasks

Working Memory

The Working Memory (WM) is used to temporarily maintain and manipulate the information
needed to execute task-oriented activities. The WM constitutes the executive state of the atten-
tional system and collects the processes recruited and instantiated for task execution. In this frame-
work, these processes are represented by an annotated rooted tree T = (r,B,E), where the nodes
B represent allocated processes/behaviors, the root r ∈ B is the alive process, which bootstraps
and manages the WM, while the edges E represent parental relations among sub-processes/sub-
behaviors. The nodes B are concrete if they represent real sensorimotor processes or atomic ac-
tions (see Section 3.3). The nodes are abstract if they represent complex behaviors that can be
hierarchically decomposed. Figure 4.12 (bottom, right) illustrates an example of the hierarchi-
cal behaviors generated for the execution of the add(water) subtask. The behaviors generated
for the pouring task are shown in Figure 4.13. In both figures, green labels represent releasers
(enabling-conditions), while blue labels are post-conditions (goal conditions) exploited to check
the accomplishment of goal-oriented activities. As discussed in Section 3.3, each node B in the
WM consists of a 6-tuple (mb,rb, pb,xb,eb,µb), where mb is the name of the allocated task, rb and
pb represent the releaser and post-condition respectively, xb is the set of sub-behaviors generated
by mb, eb is an emphasis value, and µb is a magnitude value. Here, mb, rb, pb, xb are instances of
the associated schema in the LTM. Indeed, each node B in the WM is generated by the alive pro-
cess that allocates a schema(m, l, p) with a variable binding that instantiates m in mb, p in pb, and
the list l in the list of sub-behaviors xb and the associated releasers. As an example, the pour(Ob j)
task in Figure 4.13 is instantiated by the argument water for the variable Obj. Hence task, releaser,
post-condition, and sub-behaviors are also instantiated by water. This process is analogous to the
one introduced in [104] for HTN planning. Each concrete behavior accesses sensory data σb, af-
fects control variables cb, and updates a set of state variables V representing the current state of the
overall system. For example, when the water.picked boolean variable in Figure 4.13 is set to true,
the pick task is accomplished while the next pour task is enabled to be executed. In this case, the
state variable water.picked is updated by the concrete behavior gripper(close) when the grasped
object is the water.

Attentional regulation

As discussed in Section 3.3, and in line with with [110], each node in the WM is also endowed
with an activation value regulated by attentional mechanisms. This value is affected by top-down
and bottom-up attentional processes. In the presented framework, concrete behaviors are peri-
odically monitored and controlled. The frequency of monitoring sensorimotor processes is the
activation value of concrete behaviors. More specifically, in concrete behaviors, the activation
value is bottom-up regulated by a monitoring function g(σb,εb) = λb, which depends on behavior-
specific stimuli σb and behavioral state variables εb. Note that the variables εb are a subset of the
state variables V . As proposed in [27], the distance of the target is used as an estimation of the
behavioral accessibility and σb is directly associated to the minimum distance of the target for the
behavior. In particular, the activation period λb ∈ [λ min,λ max] is bottom-up regulated by

λb = g(σb,εb) =


λ min if σb ≤ rmin

λ max if σb ≥ rmax

α ·σb +β otherwise
, (4.8)

where the two parameters rmin and rmax are the minimum and maximum values of λ respectively.
The function g(·) linearly grows from λ min to λ max. The parameters α =(λ max−λ min)/(rmax−rmin)
and β = λ min−α · rmin describe the linear increase of g for σb in the interval [rmin,rmax]. Notice

109



4. Learning robotic tasks form human demonstrations

that the activation period in Equation (4.8) is only influenced by the σb stimuli, or, in other words,
that εb is not exploited in this work. However, more complex regulations can be introduced (see,
for example, [24]).

The bottom-up regulation in Equation (4.8) is then top-down modulated by a magnitude value
µb that summarizes the overall influence of the WM on the behavioral attentional state. In concrete
behaviors, top-down and bottom-up influences are combined in the emphasis value eb = µb/λb,
which represents the actual activation frequency for the behavior b. The absence of a top-down
influence is represented by µb = 1. Whenever a magnitude change happens for a node in the WM,
this update is inherited by all its descendants. In addition, when a behavior is accomplished, the
magnitude of the parent node is increased by a constant value k, which is then propagated towards
its active successors. This implies that the magnitude of a generic behavior is given by µb = µ f +
kn, where µ f is the parent magnitude and n is the number of accomplished sub-behaviors. This
mechanism facilitates active behaviors representing the continuation of accomplished subtasks and
reduces the number of task switches. For example, after executing the pick(water) action in Figure
4.12, the subtask add(water) becomes more relevant and the system will choose the pour(water)
action also in case of conflicts between subtasks.

Conflict regulation

Structured tasks consists of a several subtasks (see Section 3.3 and Figure 4.14). Some of the
subtasks have to be executed with a fixed order, some can be arbitrary accomplished. For example,
considering the tree structure in Figure 4.14, use(spoon) has to be executed after add(coffee) and
add(water) (releasers water.added and coffee.added). On the contrary, subtasks add(coffee) and
add(water) have both a true releasers and can be arbitrary accomplished. The selection of the next
subtask to execute is treated as a conflict regulation problem, and the behavioral activation level
is exploited to regulate behavioral competitions and conflicts. Indeed, multiple subtasks can be
allocated in the WM at the same time (for instance add(coffee) and add(water)), therefore several
behaviors can compete for the execution generating conflicts and impasses [20]. Contentions
among alternative concrete behaviors are solved exploiting the attentional activation: following
a winner-takes-all approach, the behaviors associated with the higher emphasis are selected with
the exclusive access to mutually exclusive resources. More specifically, in the attentional system
this mechanism occurs when multiple concrete behaviors simultaneously try to access and update
a mutually exclusive control variable c. In this case, given the set C(c) of subtasks that compete
for c, the system selects the most emphasized concrete behavior

bwin = argmax
b∈C(c)

eb. (4.9)

The selected behavior bwin can then modify the variable c with the exclusive access. As previously
described, once a behavior is accomplished, the upward propagation of magnitude facilitates task-
related behaviors in case of conflicts and orients the system towards task continuation and accom-
plishment. This task-oriented facilitation mechanism can be enhanced or reduced by tuning the
parameter k.

4.3.3. Teaching uni-manual structured tasks

The presented framework supports human–robot interaction during both task demonstration and
task execution. In order to enable natural interaction and incremental task learning, the system can
anytime switch between teaching and execution. The teaching phase can start from the human or
the robot initiative. In the first case, the human commands to switch to a demonstration session and

110



4.3. An integrated framework for learning structured tasks

“Gripper close”

“Gripper open”

A1 A2 A3 A4 A5
POURING

pick(water)pick(water)
TRUE

pour(water)pour(water)

water.poured

water.picked

a2(water)a2(water)
a1.done

a1(water)a1(water)

a1.done

TRUE
gripper(close)gripper(close)
gripper.close a3(glass)a3(glass)

TRUE

add(water)add(water)

place(water)place(water)

water.placed

gripper(open)gripper(open)

gripper.open

a5(world)a5(world)
TRUE

water.picked

water.poured

a2.done
a3.done

a4(glass)a4(glass)

a4.done
a5.done

a2.done
a3.done

a5.done

MP1
MP2

MP3
MP4

MP5

Figure 4.13.: Action segmentation and hierarchical task decomposition during the kinesthetic
teaching of a pouring task. The robot has to pick-up the bottle (pick(water)), reach
the glass, pour the water (pour(water)), and place the bottle (place(water)). The
Robot Manager (down) performs action segmentation (A1, A2, . . . , A5) and learns
the associated motion primitives (MP1, MP2, . . . , MP5), while the attentional sys-
tem (up) connects the generated action segments to the task structure (a1(water),
a2(water), and gripper(close) connected to pick(water); a3(glass) and a4(glass)
connected to pour(water), etc.). The green and blue labels represent releasers and
post-conditions respectively.

directly show the execution of a task. In the latter case, the robot waits for the human assistance
when it is not able to accomplish a task. This happens when a task under execution is not linked
to concrete sensorimotor behaviors. In this case, the system waits for the user guidance in order to
learn how to perform the missing subtasks.

During the teaching phase, the human physically guides the robot in order to demonstrate the
correct execution of the task. This kinesthetic teaching session is supervised by the attentional
system, which has to connect the segmented atomic actions to the related subtasks. The attentional
system exploits an initial (or empty) task structure that is assumed to be given, for example by an
expert user. An example of the initial task structure is shown in Figure 4.14. Depending on the
task at hand, the initial structure can have two or three levels, and it is completely specified up to
the subtasks level (see Section 3.3). The attentional system tracks and monitors both the human
and the robot task execution, and it attaches an incoming segmented action to the most emphasized
subtask, learning a task representation that can be effectively used to execute the task.

The task learning process is illustrated in Figure 4.13. In particular, the figure shows the action
segmentation of a pouring task along with the associated hierarchical task decomposition. During
the kinesthetic teaching, the RM handles action segmentation and motion primitive learning, while
the attentional system monitors the subtasks to be fulfilled (i.e. pick(water), pour(water), and
place(water)). The RM segments the demonstrations into basic actions and associates a unique la-
bel to each action. These labels are indicated with A1, A2, . . . , A5 in Figure 4.13. The RM sends the
action labels to the attentional system, which creates new nodes to the tree (a1(water), a2(water),
. . . , a5(word)) and links each node to the most emphasized subtask. During the demonstration,
the human directly controls the robot’s gripper with a verbal command. In order to reproduce the

111



4. Learning robotic tasks form human demonstrations

subtask(take,water)
1 (1)

subtask(pour,water)
1 (1)

add(water)
1 (1)hand.free ~water.taken

prepareCoffee

subtask(take,coffee)
1 (1)

add(coffee)
1 (1)hand.free ~coffee.taken

~water.added
~coffee.added

TRUE

TRUE

subtask(pour,coffee)
1 (1)

subtask(take,spoon)
1 (1)

use(spoon)
1 (1)hand.free ~spoon.taken

subtask(mix,spoon)
1 (1)

Figure 4.14.: The initial task structure for the task of prepare a coffee. During the teaching phase,
the attentional systems attaches the atomic actions to this initial task structured.

task, the actions gripper(close) and gripper(open) are generated after a verbal cue and attached
to the task structure. Moreover, the human can always inspect the result of a training session by
invoking the repetition of learned tasks and subtasks. A novel task demonstration can be provided
at any time if the learned activities are not satisfactory.

The process of attaching the generated action labels to the task structure is managed by the
attentional system while monitoring the human demonstration. The procedure assumes that a
partial description of the task structure is already provided in the LTM (see Equation (4.10) and
Figure 4.14 for an example). Specifically, the pre-loaded hierarchical structure is composed by
an abstract task node, eventual concrete tasks, and a set of dynamic subtasks (see section 4.3.2),
everyone associated with an object in the scene (see Figure 4.15, t1). The goal of the learning
process is then to produce an updated LTM where all the associations between subtasks and actions
are represented. In this work, open subtasks are the schemata of LTM that represent concrete
behaviors (as subtask(take,Obj) in Equation (4.10)) but are not associated to atomic actions (i.e.
that cannot be executed by the robot). Starting from an initial LT M0 that contains a set of n open
subtasks, the learning process produces an updated LT Ml where the open subtasks in LT M0 are
further decomposed by the m generated actions, each associated with a motion primitive in the
Robot Manager. When a teaching phase starts, the abstract behavior representing the task to be
demonstrated is allocated in the WM and then hierarchically decomposed by the alive process (see
Section 4.3.2). In this way, a behavioral tree Ttask is generated in the WM that contains a set of
open subtasks O = {subtask1, . . . ,subtaskn} to be linked to the action labels produced by the RM.

The learning process is shown in Figure 4.15 for a water-pouring task. This task is hierarchically
decomposed in the take-water and pour-water subtasks (frame t1), which are denoted in the LTM
by the following schemata:

schema(add(Ob j),
〈(subtask(take,Ob j),hand. f ree),
(subtask(pour,Ob j),Ob j.taken)〉,
Ob j.used)

schema(subtask(take,Ob j),〈 〉,Ob j.taken)

schema(subtask(pour,Ob j),〈 〉,Ob j.used)

(4.10)

Notice that the take and pour subtasks can be instantiated with different objects (Obj). The subtask
take is enabled when the hand is free (releaser hand.free) and associated with the post-condition
Obj.taken, while the pour subtask is enabled when the object is taken (releaser Obj.taken) and
related to the Obj.used post-condition.

In order to be executed, the add(Obj) has to be instantiated and allocated in the WM. However,

112



4.3. An integrated framework for learning structured tasks

Figure 4.15.: Representation of the WM update during the demonstration of the pouring task. The
system starts from a simple structure for the add(water) task (t1). During the demon-
stration new actions are added to the take-water subtask (t2) along with their releaser
(labels on the arrows). When the new pour-water subtask is selected (t3) a new FOA
is linked with a true releaser. Here, green and red ovals represent enabled and dis-
abled behaviors (satisfied and unsatisfied releasers), blue ovals are for accomplished
behaviors (satisfied postconditions), dotted ovals are for abstract behaviors. For each
behavioral node, the values outside/inside brackets are for the inverse of emphasis
1/eb (i.e. activation period) and magnitude µb (top-down influence) respectively.

the two subtasks pour and take are not linked to concrete sensorimotor processes, which are au-
tomatically generated during the kinesthetic teaching. Since each subtask is implemented by a
concrete WM node, it is associated with an activation level, that is bottom-up affected by the prox-
imity of the objects in the scene (see Equation (4.8)) and top-down modulated by the overall tasks
allocated and enabled in the WM. Therefore, during the demonstration, the attentional system en-
hances the activation of the subtasks which are closer to the associated target objects (accessible)
and top-down stimulated through the task structure (task relevant). These activation values are
then used to link the concrete subtasks to the generated actions, as summarized in Algorithm 4.

In particular, when a new atomic action is generated by the Robot Manager (line 2), all the
enabled open subtasks in the WM compete to add the action as a new child node (line 3). This
competition is managed by a winner-takes-all approach where the most emphasized subtask ac-
quires the new action (see Equation (4.9)). In order to add a novel action node, one has to define
its releaser and post-condition (lines 4-9). The releaser is always enabled (true) if a FOA is added
to a subtask with no other child nodes (lines 4,5). Otherwise, the execution of the actions has to be
chained, hence the post-conditions of the previous action is employed as the releaser of the current
one (lines 6,7). The post-condition of each action is then set to a.done (line 9). This symbolic
post-condition is associated with a sub-symbolic constraint used to check whether the associated
motion has been actually executed by the robot. If an action is associated with a motion primi-
tive, sub-symbolic constraints are directly provided by the RM (e.g. if the end-effector reached
the target). Instead, predefined commands like open and close the gripper are directly associated
with predefined sub-symbolic conditions, as constraints on the gripper state. When a new action is
generated, a corresponding new behavior is allocated in WM as a child node of the winning open
subtask (line 10) and the LTM is updated accordingly (lines 11,12). The WM update is also shown
in Figure 4.15, frame t2, where the linked actions are indicated by the dotted line. Notice that
the chaining constraint is introduced for actions belonging to the same subtask, or if the subtask

113



4. Learning robotic tasks form human demonstrations

Algorithm 4 Allocation of a new action in the task hierarchy.
1: while true do
2: if a new action a from RM exists then
3: get winner subwin← argmax

subi∈O
esubi

4: if subwin is a new subtask and a is FOA then
5: set releaser q← true
6: else
7: set releaser q← pprev

8: end if
9: set post-condition p← a.done

10: add behavior (a,q, p, /0,µ) to subwin in WM
11: add new schema(a,〈 〉, p) in LTM
12: add 〈a,q〉 to subtask list of subwin in LTM
13: end if
14: end while

starts with a NOA, which requires the fixed starting point provided by the previous action. On
the other hand, a new subtask starting with a FOA is kept decoupled from the previous subtask,
allowing re-usability and flexible execution of the associated subtask. Indeed, during the execu-
tion, all the enabled subtasks of the WM compete to acquire the control of the robotic platform.
This implies that multiple independent subtasks can be executed in a flexible manner, diverging
from the demonstrated sequence. The overall structured task acquisition process is exemplified in
Figure 4.15. Once the user drives the robot towards the bottle and grasps it, the system generates 3
new actions: foa8(water) when the robot enters the proximity area of the bottle, noa9(water) when
the bottle is reached, and gripper(close) when the bottle is grasped. These actions are attached to
the take-water subtask, which is the only enabled subtask. The enabling conditions associated to
each action are needed to ensure that noa9 is executed after foa8, and gripper(close) after noa9.
Afterwards, when the robot is driven towards the cup, the novel action foa10(world) is generated
and linked to the pour-water subtask, activated after that the bottle is grasped. In this case, the
motion between the bottle and the cup represents a FOA which is associated to the subtask with a
true releaser.

The results of the learning process, for the task of preparing a coffee, are shown in Figure 4.16.
The learned structured task consists of 27 atomic actions, attached to the 6 subtasks already defined
in the initial structure (see Figure 4.14). Each action also contains releaser and post-conditions.
In particular, the first action of each subtask has always a true releaser. A generic action in a
subtask can be activated only if the previous one has been successfully completed. For example,
noa9(coffee) is executed only if foa8 is terminated. The tree structure in Figure 4.16 also contains
gripper specific actions, i.e. gripper(open) and gripper(close). Those actions are generated after
an explicit speech command. The learned task structure, together with the associated motion
primitives, allows the execution of the structured task on real robots, as detailed in Section 5.2.

4.3.4. Teaching dual-arm structured tasks

In this work, a dual-arm (or multi-arm) task indicates any task executed by robots equipped with
two (or more) arms, without considering the problem of generating and executing synchronized
arm trajectories. Hence, dual-arm differs from bi-manual, since a bi-manual task requires the
synchronization of the generated motion trajectories.

114



4.3. An integrated framework for learning structured tasks

pr
ep

ar
eC

of
fe

e

~w
at

er
.a

dd
ed

~c
of

fe
e.

ad
de

d
T

R
U

E

T
R

U
E

gr
ip

pe
r(

op
en

)
1 

(1
)

fo
a7

(w
or

ld
)

1 
(1

)

~foa6.done~f
oa

7.
do

ne

fo
a6

(w
or

ld
)

1 
(1

)

su
bt

as
k(

po
ur

,w
at

er
)

1 
(1

)

ad
d(

w
at

er
)

1 
(1

)
ha

nd
.f

re
e

~w
at

er
.ta

ke
n

~noa3.done

~noa5.done

fo
a4

(w
or

ld
)

1 
(1

)

TRUE

no
a3

(w
or

ld
)

1 
(1

)

~foa4.done

no
a5

(w
or

ld
)

1 
(1

)

gr
ip

pe
r(

op
en

)
1 

(1
)

fo
a1

4(
w

or
ld

)
1 

(1
)

~fo
a1

3.d
on

e~f
oa

14
.d

on
e

fo
a1

3(
w

or
ld

)
1 

(1
)

su
bt

as
k(

ta
ke

,c
of

fe
e)

1 
(1

)
su

bt
as

k(
po

ur
,c

of
fe

e)
1 

(1
)

ad
d(

co
ff

ee
)

1 
(1

)

ha
nd

.f
re

e
~c

of
fe

e.
ta

ke
n

gr
ip

pe
r(

cl
os

e)
1 

(1
)

~noa9.done

~noa10.done

~noa12.done

fo
a1

1(
w

or
ld

)
1 

(1
)

TRUE

fo
a8

(c
of

fe
e)

1 
(1

)

~foa9.done
no

a9
(c

of
fe

ee
)

1 
(1

)

TRUE

no
a1

0(
w

or
ld

)
1 

(1
)

~foa11.done

no
a1

2(
w

or
ld

)
1 

(1
)

gr
ip

pe
r(

op
en

)
1 

(1
)

fo
a2

1(
w

or
ld

)
1 

(1
)

~fo
a2

0.d
on

e

~f
oa

21
.d

on
e

fo
a2

0(
w

or
ld

)
1 

(1
)

su
bt

as
k(

ta
ke

,s
po

on
)

1 
(1

)
su

bt
as

k(
m

ix
,s

po
on

)
1 

(1
)

us
e(

sp
oo

n)
1 

(1
)

ha
nd

.f
re

e
~s

po
on

.ta
ke

n

gr
ip

pe
r(

cl
os

e)
1 

(1
)

~noa16.done

~noa17.done

~noa19.done

fo
a1

8(
w

or
ld

)
1 

(1
)

TRUE

fo
a1

5(
sp

oo
n)

1 
(1

)

~foa15.done

no
a1

6(
sp

oo
n)

1 
(1

)

TRUE

no
a1

7(
w

or
ld

)
1 

(1
)

~foa18.done

no
a1

9(
w

or
ld

)
1 

(1
)

su
bt

as
k(

ta
ke

,w
at

er
)

1 
(1

)

gr
ip

pe
r(

cl
os

e)
1 

(1
)

~noa2.done

TRUE

fo
a1

(w
at

er
)

1 
(1

)

~foa1.done

no
a2

(w
at

er
)

1 
(1

)

Te
ac

h:
 a
dd
(c
of
fe
e)

Te
ac

h:
 a
dd
(w
at
er
)

Te
ac

h:
 u
se
(s
po
on
)

Figure 4.16.: The tree learned after a kinesthetic demonstration of the task of prepare a coffee.
Concrete tasks and subtasks are assumed to be know, while the atomic actions with
associated pre- and post-conditions are learned from the task demonstration.

115



4. Learning robotic tasks form human demonstrations

Given this definition of dual-arm tasks, the approach presented in the previous section to teach
uni-manual structured tasks can be easily extended to consider dual-arm tasks. In particular, each
arm is controlled separately by considering a separate Robot Manager (see Section 4.3.1) for each
arm, namely the left and right arm managers. The task structure is also duplicated to have a
different structure for each arm, and the novel attribute arm is added to each node in the structure.
The attribute is a unique label that identifies the relative arm. As for the uni-manual case, the
actions segmented during the task demonstration have to be connected to the initial task structure
and stored in the system repository (LTM). The difference is that, in the dual-arm case, two task
structures are considered (on for the left and one for the right arm). Moreover, differently from the
uni-manual case, here the human motion is mapped to the humanoid robot by using the approach
described in Section 4.2, instead of using kinesthetic teaching.

For instance, considering a simple pouring task, the activity can be hierarchically decomposed
in the take and pour subtasks, which are denoted in the LTM by the following schemata:

schema(add(A,O),
〈(subtask(A, take,O),A.hand. f ree),
(subtask(A, pour,O),A.O.taken)〉,
O.used).

schema(subtask(A, take,O),〈 〉,A.O.taken).

schema(subtask(A, pour,O),〈 〉,O.used).

(4.11)

The variable O in (4.11) represents the target of the pouring, while A is the arm involved in the ac-
tion execution (left or right). Note that the attribute A is the only difference between the schemata
in (4.11) used to decompose dual-arm tasks, and the schemata in (4.10) used to decompose uni-
manual tasks. The schemata in (4.11) also contains pre- and post-conditions: the take subtask is
enabled when the hand of the arm A is free (A.hand.free), while the pour subtask is enabled when
the left (right) hand holds the object (A.O.taken). Moreover, the latter subtask is finalized when
the target-object O is used. Notice that, if both arms are enabled to execute a task, two instances of
the related schema are allocated in WM with different values for A. Being these instances in con-
flict, only one arm will execute the task. During the human demonstration, the attentional system
continuously monitors the environment and the task structure exploiting top-down and bottom-up
regulations to enhance the activation of accessible and task relevant subtasks. When the two arm
managers recognize a new action all the left/right labeled subtasks compete to acquire the related
action. As for the uni-manual case, the activation values are used to manage the competition fol-
lowing a winner-takes-all approach, where the most activated subtask acquires the action. Pre-
and post-conditions are determined as in the uni-manual case, but for each arm separately.

4.4. Summary and conclusion

This chapter presented approaches for intuitive skills transfer from a human teacher to a (hu-
manoid) robot. The first section discussed the problem of intuitively transfer uni-manual skills, or,
in other words, motions executed by a single robotic manipulator. Kinesthetic teaching, i.e. phys-
ically guide the robot in order to demonstrate the task, is the most effective technique to transfer
uni-manual skills. An effective approach has been presented to teach end-effector and null-space
motion primitives in a unified manner. The approach exploits incremental learning techniques to
iteratively refine previously acquired skills, and a customized multi-priority kinematic controller
to permit a safe human–robot interaction during the motion reproduction. Experiments on a real
robot with seven degrees-of-freedom have shown the effectiveness of the presented approach,

116



4.4. Summary and conclusion

which effectively enables a user to intuitively teach novel skills. A limitation of this approach is
that it considers variable task priorities during the kinesthetic teaching, but fixed priorities during
the execution. This means that the user has to predefine the priority of end-effector and null-space
motions. An interesting research work consists in overcoming this limitation by considering vari-
able task priorities during the execution. A possible way to find the task priorities can be solving
a constrained optimization problem, where the cost function minimizes the end-effector and null-
space execution errors. The constraints are used, for example, to take into account robot’s physical
limitations, or to guarantee that the demonstrated final configuration of the robot is reached.

In case of robots with many degrees-of-freedom, as humanoid robots, kinesthetic teaching is
not a suitable option, because the teacher has to handle several degrees-of-freedom at the same
time. A better approach, instead, consists in imitating human movements tracked with a dedicated
system like the motion capturing suit used in this work. Section 4.2 presented an approach for
motion mapping between a human demonstrator and a humanoid robot. Human and humanoids
have, in general, a different kinematic structure with different joint limitations, which makes the
motion re-targetting problem not trivial. The approach presented in Section 4.2 exploits simple
kinematic considerations to solve the motion re-targetting problem. The approach is simple to
implement and works in real-time with a relatively high number (up to 21) of degrees-of-freedom.
The approach is used to control the RoDyMan humanoid robot, which has a human-like torso but
a mobile base instead of the legs. This greatly simplifies the motion re-targetting problem since
the robot’s balance does not have to be considered. This is not the case when the motion has to
be transferred to legged robots. For legged robots one has to prevent possible falls during the task
execution by ensuring the robot balancing with a customized controller. Approaches have been
proposed to solve the balancing problem (see, for example, the work in [63,64]) and can be easily
integrated in the presented framework.

The last section focuses on intuitive transfer of uni-manual and dual-arm structured tasks. The
intuitive transfer of structured tasks is realized by combining the skills transfer approaches pre-
sented in Section 4.1 and 4.2 with an attentional system. In particular, a human demonstration is
firstly segmented into the basic motion units constituting a structured task. Segmented data are
then used learn a set of motion primitives represented as dynamical systems (see Section 3.1).
Moreover, the attentional system continuously monitors the task demonstration and exploits a
mechanism of cognitive control to connect the segmented actions and associated pre- and post-
conditions to a partially specified task structure. The same framework for intuitive transfer of
structured tasks is exploited in Chapter 5 to execute the learned task autonomously or in coopera-
tion with a human co-worker. One limitation of the presented framework is that the task structure
is partially specified by an expert user until the so-called subtasks level, while the leaves level
is learned from a task demonstration. An interesting research direction consists in learning the
entire tree structure from human demonstration(s). To this end, it is possible to exploit hierarchi-
cal clustering algorithms to create and connect the nodes of the tree, while the associated logical
conditions can be potentially inferred using context-free grammars.

This chapter, and in particular Section 4.3.4, proposed a solution to teach dual-arm tasks, intro-
ducing a clear difference between dual-arm and bi-manual tasks. In a dual-arm task, the problem
of generating synchronized trajectories is not considered, which simplifies the learning process.
On the contrary, bi-manual tasks require a synchronized generation and execution of the motion
primitives. An interesting research direction is to extend the framework for intuitive teaching to
structured bi-manual tasks. To this end, several problems have to be solved. First, the skill repre-
sentations presented in Chapter 3 are not suitable for bi-manual task representation, since they do
not consider the synchronization between left and right arm movements. The work in [54,143,152]
are state-of-the-art representations of bi-manual skills. In particular, the work in [54, 152] extend

117



4. Learning robotic tasks form human demonstrations

the standard dynamic movement primitives in order to generate synchronized motions, and they
can be more easily integrated in the presented framework compared to [143]. The second prob-
lem to solve is the automatic segmentation and recognition of bi-manual actions. To this end, it
is possible to extend the segmentation strategy presented in Section 4.3.1 to the bi-manual case,
for example by considering an action bi-manual when both hands are in the proximity area of the
same object for a similar amount of time. The last problem to solve is how to modify the task
structure in order to explicitly consider bi-manual actions. A possible way is to add a novel kind
of subtask, namely a bi-manual subtask, which takes as pre-condition the two post-conditions of
the last uni-manual actions. In other words, the bi-manual subtask is executed only if left and right
arms have successfully reached the object to manipulate with both hands.

Finally, another aspect to investigate consists in assessing the user-friendliness and intuitiveness
of the presented framework for structured task transfer. To this end, an extensive user study can
be conducted. The study has to involve either people with a technical or robotic background than
inexpert users. To assess the effectiveness of the framework, one can use quantitative metrics like
the teaching time and success rate over a certain number of trials, as well as qualitative metrics as
a questionnaire [162].

118



CHAPTER 5

Execution of robotic tasks

This chapter discusses the problem of reproducing a learned skill or task on a real robot. The first
section focuses on the reproduction of basic skills and presents an approach for on-line human-
aware motion adaptation. The approach exploits dynamical system properties to locally modify
the robot’s trajectory while preserving the convergence to a given target. Moreover, an algorithm
is presented that leverages parallel computation on the graphics processing unit to compute robot–
obstacles distances in real-time. The second section of this chapter focuses on structured tasks,
showing how the execution of a structured task can be flexibly orchestrated and quickly adapted
to changes in the environment and human intervention.

5.1. Reactive planning of robotic skills

This section presents a motion adaptation approach for human–robot coexistence which takes into
account: i) the human safety, ii) the correct task execution, and iii) the real-time task replanning
according to the human behavior. In order to match these requirements, the two-levels hierarchical
architecture in Figure 5.1 is used for real-time and human-aware motion generation. The higher
level of the architecture is used to monitor the human. In particular, the Human Observer monitors
the user status to determine if the human is outside the robot’s workspace (far) or if the human
and the robot share the same working area (interaction). During the interaction phase, the user
can eventually modify the robot behavior via gestures, forcing the robot to replan the current
task. Considering the input from the Human Observer, the Robot Behavior Reshaping module
(the lower level) selects the right behavior from a database of motion primitives, scales down
the velocity, and modifies the desired goal position. The lower level leverages stable dynamical
systems (DS) for on-line task generation and replanning, and it implements a reactive collision-
avoidance approach (DS Modulation block) to produce collision-free paths (see Section 5.1.1).
Depth data from a RGB-D sensor are used to track the human and measure the distance of the
robot from eventual obstacles in the workspace. The Distance and Normal vector block executes
all the needed computations in real-time, using the approach presented in Section 5.1.2.

119



5. Execution of robotic tasks

Human-aware
Reshaping

Reactive
Collision
Avoidance

Motion
Primitives

User
Status

Human
Gesture

Human Observer

RGB-D
Sensor

DS
Modulation

depth map

Goal
Adaptation

Velocity
Scaling

Robot
Velocity

Distance and
Normal vector

Robot Behavior 
Reshaping

far/
interaction

command

Figure 5.1.: The two-levels architecture used for human-aware motion reshaping. RGB-D data
are used to track the human and estimate his status. The same depth data are also
exploited to avoid possible collisions with unforeseen obstacles.

5.1.1. Reactive planning using dynamical systems modulation and point
clouds

This section describes the approach for real-time motion generation and adaptation using Dynami-
cal Systems (DS). The basic assumption behind the reshaping strategy is that the robot’s trajectory
is generated using a first-order, globally stable DS

ẋ= f(x), (5.1)

where f(·) is a continuous function, x∈R3 and ẋ∈R3 represent the robot’s end-effector position
and velocity respectively. Recall that the global asymptotic stability of a DS implies that x−→ x∗

for t −→∞, where f(x∗) = 0 (see Appendix A.1). The dynamical system in (5.1) can be designed
by an expert user, or learned form demonstrations using one of the approaches presented in Section
3.1. Stable DS are well suited to represent point-to-point motions, since they are guaranteed to
convergence to a specified target. Driving robots with DS has also several advantages in terms
of robustness to external perturbations, such as unexpected contacts or changes in the goal/initial
position. The properties of DS are exploited to realize the real-time reshaping algorithm detailed
as follows.

Real-time goal adaptation

Stable dynamical systems can be combined to execute complex robotic tasks, as the prepare coffee
task discussed in Section 4.3, consisting of several point-to-point motions. In order to prepare a
coffee, the robot has to pick several ingredients and to put them together. In such a task, the DS
equilibrium position represents the position of a particular item, or the position where the item
has to be placed. Obviously, it is unrealistic to assume fixed positions of the items across several
executions of the same task. Hence, the robot has to be able to suddenly adapt to changes in the

120



5.1. Reactive planning of robotic skills

desired target position. DS are robust to changes in the equilibrium position. Indeed, convergence
towards a different goal is achieved by modifying the DS in (5.1) as

ẋ= f(x−g), (5.2)

where g is the novel goal (equilibrium) position. It is worth noticing that, if the DS in (5.1) is
asymptotically stable, the DS in (5.2) converges to g.

Velocity scaling

The severity of possible injuries due to accidental collisions between the human and the robot
depends on the velocity of the robot during the impact [60]. Indeed, impacts at high speed have
higher probability to generate serious injuries. For this reason, a human-aware planning algorithm
has to be able to scale down the velocity of the robot to a safe value [60], without affecting the task
execution (i.e., reaching a given target). DS properties can be exploited to realize a human-aware
velocity scaling algorithm. In particular, the DS in (5.1) becomes

ẋ= αhf(x), (5.3)

where 0 < αmin ≤ αh ≤ 1 is a scalar function. The value of αh depends on the human–robot
distance. If the user enters the robot’s workspace, αh = αmin and the velocity of the robot is
reduced to a safe value. When the user is outside the workspace, αh = αmax and the task is
executed at maximum speed. αh is chosen strictly positive in order to preserve the convergence
properties of the DS in (5.3). Hence, the robot’s velocity is modified to match safety requirements
without compromising the task execution.

Dynamical systems modulation for reactive collision avoidance

DS modulation is a reactive approach for collision avoidance that allows to locally modify the
trajectory of a DS without affecting its equilibrium points. The aim of the DS modulation is to
find a certain state dependent matrixM(x) such that the modulated DS

ẋ=M(x)f(x) (5.4)

generates collision-free paths. The work in [77] proposes an approach to find a matrixM(x) that
modifies the robot’s velocity in order to avoid possible collisions without affecting the equilibria
of the modulated DS. In particular, the modulation matrixM(x) in (5.4) generates a collision-free
path by reducing the velocity of the robot in the direction normal to the obstacle surface and by
projecting the motion into a plane tangent to the obstacle (tangential hyperplane). The approach
in [77] exploits an analytical representation of the obstacle surfaces to compute the modulation
matrix. The work in [136, 137] extends the approach in [77] by considering the case in which
objects are represented via point clouds and an analytical representation of their surfaces is not
available. The approaches in [136, 137] are detailed as follows.

This section firstly considers the case where the trajectory of the robot’s end-effector has to be
modified to avoid collisions with a single obstacle. The case of multiple obstacles, as well as the
possibility to avoid collisions with the robot’s body, are presented later in this section. Consider
that one d-dimensional obstacle is present in the workspace of the robot, for instance, the obstacle
close to the end-effector of the robot in Figure 5.2. Assume also that the normal vector to the
obstacle surface n̂(x̄) = [n̂1(x̄), · · · , n̂d(x̄)]

T is defined for all x̄. For each point on the obstacle

121



5. Execution of robotic tasks

obstacle

obstacle

D

D

xl

Figure 5.2.: Representation of a robotic manipulator with two obstacles in its workspace. The
computation of the modulation matrix requires the distance D between a point on
the robot and a point on the obstacle, and the unit vector n̂ normal to the surface of
the obstacle. In the depicted 2D case, the tangential hyperplane is the unit vector t̂
orthogonal to n̂ and therefore tangent to the obstacle surface.

surface, the tangential hyperplane is computed as

t̂ j
i (x̄) =


− n̂i+1(x̄) j = 1

n̂1(x̄) j = i+1 i = 1, . . . ,d−1, j = 1, . . . ,d

0 j 6= 1, j 6= i+1

, (5.5)

where t̂ j
i corresponds to the j-th component of the i-th basis vector. Given the definition of the tan-

gential hyperplane in (5.5), it is easy to show that the matrix V (x̄) =
[
n̂(x̄), t̂1(x̄), · · · , t̂d−1(x̄)

]
represents an orthonormal basis of the d-dimensional space.

Given the robot–obstacle distance D(x̄m), where x̄m is the point of minimum distance on the
obstacle surface, it is possible to define the matrix E(x̄m) = diag(λ1(x̄m), . . . ,λn(x̄m)), where

λ1(x̄m) = 1− 1− ε

D(x̄m)+1
,

λi(x̄m) = 1+
1

D(x̄m)+1
i = 2,3, . . . ,d,

(5.6)

and ε > 0 is an arbitrary small constant (ε = 10−5 in this work), used to avoid that λ1(x̄m) = 0. A
suitable modulation matrix (see Equation (5.4)) is then computed as

M(x̄m) = V (x̄m)E(x̄m)V (x̄m)
−1. (5.7)

Notice that the modulation matrix in (5.7) is symmetric and positive definite by construction. This
implies that the equilibrium points of the modulated DS remain unchanged, since M(x)f(x) =
0↔ f(x) = 0, ∀x. The eigenvalue λ1(x̄m) in (5.6) tends to ε for D(x̄m)→ 0. Being λ1(x̄m)
the velocity component along n̂(x̄), the robot does not generate motions towards the obstacle
if1 D(x̄m) = 0, while the robot can freely move in the tangential hyperplane, where λi(x̄m) ≥

1The robot’s velocity along n̂(x̄) is zero only if ε = 0. Being ε = 10−5 the velocity component along n̂(x̄) is
negligible in practical cases.

122



5.1. Reactive planning of robotic skills

1. Being the tangential hyperplane orthogonal to the obstacle surface, the modulation matrix
locally modifies the DS trajectories and it generates collision-free paths. The modulation matrix is
updated at each time step. Hence, in order to avoid collisions with multiple obstacles in the scene,
one has to simply avoid the closest obstacle at the current time [136].

The presented formulation of the DS modulation works for static obstacles. In case of a single
moving obstacle, the modulated system becomes [137]

ẋ=M(x̃)(f(x)− ẋT − ẋA× x̃)+ ẋT + ẋA× x̃=M(x̃)(f(x)− ẋO)+ ẋO

=M(x̃)f(x)+(I−M(x̃))ẋO,
(5.8)

where ẋO = ẋT + ẋA× x̃, ẋT and ẋA are the linear and angular velocities of the obstacle re-
spectively, I is the d-dimensional identity matrix, and M(x̃) is calculated using (5.7). The term
M(f− ẋO) is a modulation in the obstacle coordinate system, that guarantees the collision avoid-
ance in the current instant. The additional term ẋO puts the system in the robot coordinate system
and guarantees the collisions avoidance in the following time instant. In case of multiple moving
obstacles, the modulated system in (5.8) is simply computed considering the velocity of the closest
(most dangerous) obstacle.

As for the static case, the equilibrium point of the modulated DS in (5.8) remains unchanged.
In order to prove this result, the velocity of the obstacle ẋO is assumed continuous and bounded
(0≤ ‖ẋO‖ ≤ ẋmax) for all t ≥ t0. Notice that these assumptions are naturally verified if there are no
impacts between the robot and the obstacles. Moreover, x∗ indicates the globally asymptotically
stable equilibrium for the original system (5.1). Since the system is globally asymptotically stable,
it holds that f(x∗) = 0 only at the equilibrium point x∗. Under these assumptions, an augmented
version of the original system in the form

ξ̇ =

[
φ̇

ẋ

]
=

[
−α(φ −1)

f

]
, (5.9)

has a globally asymptotically stable equilibrium at ξ∗ = [1, x∗T]T if α > 0. Using (5.9), and
assuming that φ(0) = 1, the modulated DS (5.8) can be rewritten as

ξ̇ =

 α 0T

(M −I)ẋO M


︸ ︷︷ ︸

ΛΛΛ(x,t)

−φ(t)

f

+
α

0

 .
(5.10)

Considering that the lower block-triangular matrix Λ(·) in (5.10) has full rank (α > 0 and M
positive definite) for all x, t ≥ t0, it is possible to conclude that the modulated system (5.10) has
the same equilibrium of (5.9). Indeed, the velocity ξ̇ vanishes only at ξ∗ = [1, x∗T]T. This means
that the modulation does not affect the equilibrium of the modulated system.

Despite the described algorithm saves the equilibrium points of the modulated DS, the conver-
gence to the goal can be, in some cases, really slow. Consider a static scenario with the robot lying
on the obstacle surface, i.e. the robot position x = x̄, and assume that the vector field f(x) is
parallel to the obstacle normal vector. These conditions are mathematically expressed as

n̂(x̄)T f(x̄)

‖f(x̄)‖
=±1 and D(x̃) = D(x̄) = 0. (5.11)

Recalling that V (x̄) = [n̂(x̄), v̂1(x̄), · · · , v̂d−1(x̄)], it is straightforward to verify that the velocity
components along the tangential directions v̂i are zero. Since n̂Tẋ ≈ 0 when the robot is on the

123



5. Execution of robotic tasks

obstacle surface, the robot will, in practice, stuck in a spurious equilibrium. It is worth noticing
that a fixed obstacle is assumed because this problem hardly affects the modulation in (5.8) due to
the contribution given by ẋO. An on-line algorithm to escape spurious attractors has been proposed
in [77] and summarized in Algorithm 5. First, the algorithm detects when the robot is in a local
minimum, checking the conditions ẋi ≤ τε and D(x̃i) = 0, where τε is a constant depending on
the chosen ε . Then, a small perturbation γ is applied in one of the tangential directions v̂i, until the
robot exits from the basin of attraction of the spurious equilibrium. The positive scalar γ controls
the amplitude of the movements along v̂i. Small values of γ reduce the drift due to the integration
error (depending on the δ t), guaranteeing an effective collision avoidance. However, a very small
value of γ highly reduces the avoiding speed and it is not recommended in real-time applications.

Algorithm 5 Avoid slow convergence of the modulated system

Given x̃i, ẋi and the integration time step δ t
1. if ẋi ≤ τε and Di = 0 then
2. Choose one of the tangential directions v̂i

3. Define a (small) positive scalar γ > 0
4. while continue do
5. xi+1→ xi + γv̂iδ t
6. Calculate ẋi+1 using (5.8)
7. if n̂T ẋi+1 > τε or v̂T

i ẋi+1 > 0 then
8. continue = false
9. end if

10. t→ t +1
11. end while
12. end if

The modulation matrix is previously computed considering the robot as a point-mass object. In
order to apply DS modulation in real scenarios, two problems have to be considered. First, the end-
effector of the robot is not a point but a rigid body. Second, collisions may occur with other links
apart from the end-effector. There are mainly two possibilities to take into account the physical
dimensions of the robot links when computing robot–obstacle distances. The first possibility is to
cover the robot body with basic primitives like spheres and to compute the distance of the obstacles
from the surface of each sphere. The second possibility consists in computing the distance of the
obstacles from the surface of each link using a triangular mesh model. This second possibility
generates more accurate distance estimations, but it is computationally expensive. An approach
for real-time distance computation using mesh models is presented in Section 5.1.2.

Apart from avoiding collisions with the end-effector, real robots have to prevent possible col-
lisions between their links and eventual obstacles in the scene. In order to avoid collisions with
the robot body, an approach for link collision avoidance has to be implemented. To this end, this
works combines multi-priority inverse kinematics (see Appendix A.2.2 and [142]) with the DS
modulation. Roughly speaking, collision avoidance with the robot body is treated as a priori-
tized task executed in the null-space of the manipulator. Recall that the general solution for the
multi-priority inverse kinematics problem is given by

q̇ = J†(q)ẋ+(I−J†(q)J(q))q̇N , (5.12)

where q̇ is the joint velocity, ẋ is end-effector velocity, J(q) is the manipulator Jacobian, and
J† denotes the Moore–Penrose pseudoinverse of J . The second term in (5.12) projects an arbi-
trary velocity q̇N into the robot null-space to generate joint motions that do not affect the end-

124



5.1. Reactive planning of robotic skills

(a) Experiment setup (b) 3D view

Figure 5.3.: The KUKA LWR IV+ avoids collisions with three obstacles. Given the point clouds
(yellow points) of the obstacles, a collision-free path to the goal is generated using DS
modulation.

effector velocity. In order to avoid collisions with the end-effector, the end-effector velocity ẋ
in (5.12) is chosen as the reshaped velocity ẋ = αhM(x)f(x−g). As already mentioned, this
guarantees a collision-free path for the end-effector. For the null-space avoidance, it is sufficient
to modulate the velocity of the closest point to the robot body xl (see Figure 5.2). Hence, the
avoiding velocity M(xl)ẋl is used for the null-space motion, which becomes the joint velocity
q̇N = J†

l (q)M(xl)ẋl . The resulting joint velocity command is

q̇ = J†(q)ẋ+(I−J†(q)J(q))J†
l (q)M(xl)ẋl, (5.13)

where Jl(q) is the Jacobian of xl . The velocity command in (5.13) considers the link collision
avoidance as a secondary task which does not affect the end-effector motions. With this approach
the end-effector task is correctly executed, since the end-effector convergences to the target and
avoids collisions. Moreover, in many situations, the velocity command in (5.13) prevents colli-
sions with the robot body. If collision avoidance is the most important task for a certain application,
task priorities can be changed to guarantee that the collision avoidance has always priority [10,48].

Experimental results

The effectiveness of the presented modulation approach is here tested with simulations and real
experiments. A KUKA LWR IV+ robot [15] is used in the real experiments.

Avoiding static obstacles - In this experiment, the robot has to avoid three obstacles in the scene
before reaching the target. The situation is shown in Figure 5.3(a). The original path is generated
by numerically integrating the DS ẋ(t) = 2(g−x(t)). The initial position and the goal g, together
with the dimensions of the obstacles, are chosen so that the robot passes through obstacles and not
above them. Figure 5.3(b) shows the obtained results. The distortion of the trajectory due to the
modulation is clearly visible already at the beginning of the movement, since the robot starts close
to an obstacle. After passing the first obstacle, the modulated trajectory converges to the original
one. In the final stage the robot manages to safely pass between objects 2 and 3, placed at 25cm
from each other. Here, the contribution given by 2 and 3 to the modulation matrix tends to balance
being the obstacles almost equidistant from the original path.

Going into and out of a box - In this experiment, the robot has to reach two goal positions,
one of which is located at the center of a box of size 40× 35× 20cm. One side of the box is

125



5. Execution of robotic tasks

(a) Experiment setup (b) 3D view

Figure 5.4.: The task of going into and out of a box. Given the point cloud (yellow points) of the
box and two goal positions, the robot is driven into (red line) and out (blue line) of a
box modulating a switching linear DS.

open. This setup is shown in Figure 5.4(a). The robot starts from a point outside the box, and
it is driven towards the first goal g1 by the system ẋ(t) = 2(g1−x(t)). The target g1 is placed
inside the box. A collision-free path ending at g1 is generated by modulating the linear DS, as
illustrated in Figure 5.3. Having reached g1, the robot is then driven towards the second goal g2
by the system ẋ(t) = 2(g2−x(t)). The target g2 is placed outside the box. As shown in Figure
5.3, DS modulation effectively drives the robot outside the box without any collision, guaranteeing
the convergence towards g2. Note that the task cannot be accomplished by using the original DS
modulation approach in [77]. In this case, the box should be approximated using a bounding box,
thereby preventing the robot to enter. Even if the box is approximated considering each face as a
separate obstacle, there may be divisions by zero and the algorithm crashes (see [136] for further
details). The presented approach, instead, does not have this problem, because it modulates the
system only considering the closest point in each iteration.

Avoiding dynamic obstacles - In this experiment, the robot has to keep the end-effector in
a fixed position while avoiding collisions with a moving spherical obstacle. The initial dis-
tance between the robot and the obstacle is 1m, and the obstacle moves with a constant ve-
locity along a fixed direction (see Figure 5.5). The end-effector trajectory is generated by nu-
merically integrating the linear DS ẋ = 3(g − x), where g is the goal (initial) position. To
consider the physical limitations of the robot, the desired joint trajectories are obtained using
inverse kinematics control (see Appendix A.2.2), saturating the joint positions (velocity) that
exceed the limits. For the KUKA LWR IV+ robot, used in the simulation, the joint ranges
are qmax = −qmin = [170, 120, 170, 120, 170, 120, 170]T deg, and the joint maximum velocity
q̇max =−q̇min = [100, 110, 100, 130, 130, 180, 180]T deg/s.

Several tests are performed varying the velocity of the obstacle in the range [0.5, 1.4]m/s. The
results in four different time instants, obtained for obstacle velocities of 0.7 and 1.4m/s, are illus-
trated in Figure 5.5. The robot is able to avoid the obstacle, coming back in the goal position, until
the obstacle velocity reaches 1.4m/s. For velocities equal or bigger than 1.4m/s the joint limits are
exceeded, and the robot is not able to follow the desired trajectory. The desired trajectory (blue)
and the path that the robot follows due to the joint saturations (red) are shown in Figure 5.5(b).

A similar simulation is conducted with the robot reaching a goal while avoiding a fast moving
obstacle (see Figure 5.6). Several tests are performed by varying the velocity of the spherical
obstacle in the range [0.5, 1.3]m/s. The robot is able to avoid the obstacle until its velocity reaches
1.3m/s, as shown in Figure 5.6.

126



5.1. Reactive planning of robotic skills

t = 1.29 s

(a) Obstacle velocity [0,0.7,0]T m/s

Desired traj.
Executed traj.

Initial position

Collision

End Effector Trajectory

(b) Obstacle velocity [0,1.4,0]T m/s

Figure 5.5.: The robot has to avoid a moving obstacle and return to the initial position. Obstacles
slower than 1.4m/s are properly avoided.

t = 0.74s

t = 1.04s t = 1.84s

(a) Obstacle velocity [0,0.7,0]T m/s

t = 0.57s

t = 0.57s

0.05
0.1

0.15
0.2

End Effector Trajectory

Initial position

Collision

Desired traj.
Executed traj.

-0.68
-0.66

-0.64

-0.60
-0.58

-0.56
-0.54

0.25

-0.62

0.30
0.35
0.40
0.45
0.50

z

x
0

0.35 0.400.30

(b) Obstacle velocity [0,1.3,0]T m/s

Figure 5.6.: The robot has to avoid a moving obstacle and converge to the goal position. The
obstacle is avoided until its velocity reaches 1.3m/s.

In this experiment the robot has to keep the end-effector in a fixed position while the user
tries to hit it with the right hand. The desired Cartesian pose is sent to the robot at 1kHz using
the Fast Reaserch Interface [139]. The robot trajectory is generated by integrating the linear DS
ẋ= 3(g−x), where g is the goal (initial) position. The human is tracked at 30Hz using a RBG-D
camera and the OpenNI library [5]. A constant velocity Kalman filter is used to reduce the noise
of the measured hand position and to estimate the hand velocity. The robot is removed from the
sensor depth map using a shader-based filter [6]. Snapshots of the experiment, together with robot
end-effector and human hand trajectories, are shown in Figure 5.7. The robot is effectively able to
avoid the collision and to return to the goal position after approximatively 3s.

5.1.2. Fast robot-obstacle distance computation using parallel
programming

The modulation approach presented in the previous section requires the distance between the
robotic manipulator and eventual objects in the scene. As discussed in this section, required dis-
tances can be computed by monitoring the scene with a RGB-D camera. Usually, the data given
by the visual sensors are firstly transformed into 3D point clouds and then used to compute robot–
obstacle distances [12, 112]. However, operating directly on the depth image provided by a depth
sensor reduces the computation time, as experimentally shown in [51, 52]. This performance
improvement mainly depends on structure of the depth space, which is efficiently exploited to

127



5. Execution of robotic tasks

End Effector
Right Hand

Goal

z

x
y

0

0.65

0.7

0.85

0.8

0.75

-0.5
-1

0.3 00.2 0.1 -0.1-0.2-0.3-0.4 -0.6-0.5

Trajectoriest = 0.77s t = 0.95s

t = 3.0st = 1.6st = 1.2s

Goal

Figure 5.7.: The robot avoids collisions with the human’s right hand and returns to the initial po-
sition. The norm of the hand velocity is in the range [0.45,0.6]m/s.

speed-up the computation. This section discusses the problem of robot–obstacle distance calcula-
tion in the depth space. First, the structure of the depth space is briefly described, and the approach
in [52] that directly computes distances in the depth space is presented. Then, an approach for fast
Distance Evaluation in the Depth space ( f DED) is described.

Depth space structure

The depth space is a non-homogeneous 2.5-dimensional space. Indeed, depth sensors represent
a Cartesian point x ∈ R3 with three non-homogeneous values. Two values are the coordinates of
the projection of x in the depth sensor plane, indicated with the subscripts x and y in this work.
The third value is the distance (depth) of the point x from the sensor plane. A generic Cartesian
point expressed in a world frame xw = [xw, yw, zw]

T can be expressed in the depth sensor frame by
applying the homogeneous transformation xc =Rxw + t. Using the pin-hole camera model [96],
xc = [xc, yc, zc]

T is mapped into the depth point

xd =


px

py

dp

=


fx 0 cx

0 fy cy

0 0 1




xc

yc

zc

 , (5.14)

where px and py are the pixel coordinates of the projected point, fx and fy are the focal lengths
of the camera in pixel units, cx and cy are the pixel coordinates of the camera’s optical center.
As illustrated in Figure 5.8, projecting Cartesian points in the depth space generates occlusions,
the so-called gray area. This is because a point xc with depth dp occludes all the points having
depth d ≥ dp and lying on the virtual line connecting the camera center and xc. The gray area is
thus a region of uncertainty, since no information on this region can be stored in the depth space
representation.

Computing the Cartesian distance in the depth space

Given the depth representations of a point on the robot xRd = [rx,ry,dr]
T and a point in the scene

xOd = [ox,oy,do]
T, the distance between xRd and xOd is [52]

d(xRd ,xOd ) =
√
(vx)2 +(vy)2 +(vz)2, (5.15)

128



5.1. Reactive planning of robotic skills

image plane

camera
center

object point

occluded point

robot point

gray area

Figure 5.8.: Representation of the gray area generated by projecting a 3D point into the image
plane.

where

vx =
(ox− cx)do− (rx− cx)dr

fx
,

vy =
(oy− cy)do− (ry− cy)dr

fy
,

vz = do−dr.

(5.16)

To take into account the gray area, the depth value do of the object point xOd is changed to

do =

{
dr if dr ≥ do,

do otherwise
. (5.17)

In other words, if the robot point is behind the scene point (dr > do), the depth of the object point
is do = dr to consider possible occluded points (see Figure 5.8).

Fast distance evaluation in the depth space

The distance of each object point from each link of the robot can be computed by iteratively
applying Equation (5.15). To reduce the computation time, the robot body can be approximated
using simple geometric primitives, like cylinders or spheres. This approach is used, for instance,
in [51, 52]. In order to provide more accurate and realistic distance estimations, a triangular mesh
(CAD) model of the robot is exploited in this work. Moreover, distances are computed in real-time
exploiting the f DED (fast distance evaluation in the depth space) approach proposed in [134]. The
main idea of f DED is to reduce the computation time by reducing the number of points considered
for distance estimation. To this end, a lattice of robot and a lattice of objects points are used. The
lattices are directly computed in the depth space. The resulting algorithm is highly parallelizable,
which allows the parallel execution of the needed computations on the Graphics Processing Unit
(GPU). An overview of the f DED approach is shown in Figure 5.9.

The raw depth image from the sensor (real depth) contains also points belonging to the robot
surface. It is clear that points on the manipulator should not be treated as obstacles to be avoided.
The robot can be efficiently removed from the depth image given its mesh model and its current
joint configuration (see the top panel in Figure 5.9). First, the mesh model of the robot is projected
into the depth space to create a depth map which contains only robot points, the so-called virtual
depth. The projection is computed by applying the transformation (5.14) to each vertex of the robot
model. Being the robot model composed by one mesh model for each link, an unique label (index)

129



5. Execution of robotic tasks

M
es

h 
m

od
el

Virtual DepthReal Depth
Projection

Pixel-wise
distance

Remove robot points

Virtual DepthFiltered Depth

Distance Evaluation
&

Lattice Refinement

Lattice 
Points

minDistToEachLink
closRobPtOnEachLink
closObsPtToEachLink  

DED

Figure 5.9.: Overview of the fast distance evaluation in the depth space ( f DED) approach.

is attached to each point. The index is used to determine to which link a certain point belongs to.
After this step, each point on the robot xR is converted into a depth point xRd = [rx,ry,dr]

T. As
previously discussed, the position of xRd in the depth plane is determined by the pixel coordinates
rx and ry. Given the virtual depth, the robot is removed from the real depth map through a pixel-
wise comparison. More specifically, the depth value d of the point located at (rx,rx) is extracted
from the real depth map and compared with the relative robot depth value dr. If |d−dr| ≤ δ , the
point belongs to the robot and it is removed from the real depth map. The value δ = 5cm is used
in this work. The pixel-wise comparison is repeated for all the points in the virtual depth map,
obtaining the filtered depth map in Figure 5.9 with the robot removed. Pixel-wise comparisons are
executed separately for each point. A GPU implementation [6] of the described approach takes
less than 1ms to remove the robot from the depth image.

Computing the pair-wise distance of every point in the virtual depth from every point in the
filtered depth is computationally unfeasible in real-time (≈ 1ms). For this reason, f DED lever-
ages an approach that drastically reduces the number of considered points without significantly
affecting the accurate distance evaluation. Instead of considering all the robot points, they are
sub-sampled by building a lattice of robot points. The lattice of robot points has to satisfy two
requirements: 1) the lattice has to cover the entire robot, and 2) the lattice has to be fine enough
to produce accurate results. To fulfill both requirements and reduce the robot points, the following
procedure is adopted:

I. A (quasi-) equally spaced, coarse lattice of robot points is created (see Figure 5.10). The
lattice covers the entire robot.

130



5.1. Reactive planning of robotic skills

II. The distances of the robot lattice points to all objects in the scene are calculated.

III. For each link, the closest robot lattice point x∗Rl
to an object is determined.

The lattice of robot points is created by dividing the virtual depth into squared tiles, as shown
in Figure 5.10. The initial side length Ts of the tiles is a tunable parameter. In each tile, a different
thread checks if there are robot points. The robot point closest to the center of the tile is selected
as a lattice point. Each tile can contain at most one lattice point for each link. Tiles that do not
contain any robot point are simply dropped out. After the closest robot lattice point x∗Rl

to an
object is determined (step III), steps II and III are repeated for all the points in the tile around
x∗Rl

. This refinement step is needed to increase the accuracy, otherwise bounded by the size of
the tile. This procedure can be executed in parallel for each lattice point, which allows a GPU
implementation.

Figure 5.10.: The creation of the lattice of robot points. The blue are points on the robot surface,
while the green are points on the object surface (a box). Both the robot and the box
are standing on a table, which is not considered as an obstacle. Yellow bullets are
the lattice points of the first link, orange bullets the lattice points of the second link.

The algorithm used to create the lattice of robot points assumes that the pixel coordinates of each
robot point are known a priory. This assumption is not valid for the filtered depth map, since it is
not know a priory which pixels represent the obstacles. Moreover, in order to apply the refinement
procedure to object points, one should create a lattice of object points for each robot link. Instead
of inspecting all the points in the filtered depth map, object points are skipped to increase the
execution time. The lattice of object points is simply created by skipping pixels in the filtered
depth. The spacing between the object lattice points, namely the step size Sx and Sy, is a tunable
parameter and it can vary to produce more or less accurate results. Given an object lattice point
with pixel (px) coordinates (ox,oy), the next lattice point lies outside the region [ox +Sx,oy +Sy].
Sx = Sy = 1px means that all the points in the filtered depth map are lattice points. As for the
lattice of robot points, the algorithm to create a lattice of objects points can be parallelized and
executed on a GPU.

The dynamical system modulation approach presented in Section 5.1.1 requires also the normal
vectors at the points of minimum distance. In this work, the normal vector is estimated using a
parallel implementation of the algorithm in [100]. Given the point of minimum distance Om with
pixel coordinates (ox,oy), a plane πo tangent to Om is created using weighted least squares. L
points2 in the neighborhood of (ox,oy) are transformed into Cartesian points and used to generate
πo. The normal vector to the plane πo represents the normal vector at the point n̂(Om). This
algorithm is robust to noise and it requires neither a smooth surface nor a certain density of points.

2In the experiments, L is set to L = 1% of the number of points as suggested in [136].

131



5. Execution of robotic tasks

Ti
m

e 
[m

s]
f DED - Computation time

Object pixels skipping ( Sx = Sy ) [px]
0 10 4020 30 50 60

16 32 64
0.6

0.7

0.8

0.9

1

0

10

40

20

30

(a) All robot points considered.

Ti
m

e 
[m

s]

f DED - Computation time

0

10

20

27 32
Initial raster tile (Ts) [px]

(b) All filtered depth points considered.

|E
rr

or
| [

m
m

]

f DED - Accuracy

Object pixels skipping ( Sx = Sy ) [px]
0 10 4020 30 50 60

0

10

20

30

40

50

(c) All robot points considered.

|E
rr

or
| [

m
m

]

f DED - Accuracy

0

27 32
Initial raster tile (Ts) [px]

0.2

0.4

0.6

0.8

1

1.2

(d) All filtered depth points considered.

Figure 5.11.: Performance of f DED in terms of execution time and accuracy (mean and standard
deviation over 100 iterations). (a) Dependency of the execution time on the step size.
(b) Dependency of the execution time on the initial raster tile. (c) Dependency of the
accuracy on the step size. (d) Dependency of the accuracy on the initial raster tile.

Performance evaluation

An experimental evaluation is conducted to show the real-time capabilities (up to 1ms) of f DED
and to provide a guideline to tune the parameters used to create the point lattices. The evaluation is
conducted using a static scene where robot and obstacles are fixed. The scene is shown in Figure
5.10. A static scene is preferred in order to test the algorithm always in the same conditions. A
dynamic environment is considered in the case study in Section 5.1.3. f DED is implemented
in C++ and runs on a Personal Computer with an Intel R©CoreTM i7− 4790K - 4 Cores CPU, a
GeForce GTX 660 - 960 Cores GPU, and 16GB of memory.

A Guideline for tuning parameters selection - This experiment aims at showing the effects of
different parameter sets on the computation time and the accuracy of f DED. Understanding the
role of each parameter, in fact, is essential to provide a guideline for the parameters selection.
Recall that f DED has two tunable parameters, i.e. the initial tile size Ts, and the step size (Sx and
Sy). The experiment aims at verifying the following hypothesis:

H1. Increasing (decreasing) Ts reduces (increases) the computation time and the accuracy.

H2. Increasing (decreasing) Sx and Sy reduces (increases) the computation time and the accuracy.

In order to consider the effects of noisy data while keeping the same (light) conditions, 100 depth
images are recorded, and averaged results are given. The robot is a 7 degrees-of-freedom KUKA
LWR IV+ [15]. The triangular mesh of the robot has 4861 vertexes, while the depth images have
640×480 pixels (px).

Several analysis are conducted with different values of the tuning parameters. Main obtained
results are illustrated in Figure 5.11. For comparison, consider that a brute force approach which

132



5.1. Reactive planning of robotic skills

considers all the points takes about 128s on the CPU and about 0.9s on the GPU to compute the
distance. The brute force algorithm, in fact, has to compute 1.5×109 distances in order to find the
minimum one. Being the most accurate approach (all points are considered), results of the brute
force algorithm serves as ground truth for the accuracy. To give more compact results, average
errors over the 7 links are used in Figure 5.11.

As shown in Figure 5.11(a) and 5.11(c), reducing Sx and Sy increases the computation time (note
that times are in ms) and the accuracy, since more points have to be considered. Values of Sx and Sy

bigger than 32px penalize too much the accuracy without significantly reducing the computation
time. The initial raster tile value Ts slightly affects the computation time and the accuracy, as shown
in Figure 5.11(b) and 5.11(d). Obtained results allow to conclude that hypothesis H1 and H2 are
verified. Taking into account the conducted analyses, a parameter set that guarantees an execution
time of about 1ms and an accuracy of about 5mm is shown in Table 5.1. It is worth noticing that
5mm of error is widely tolerable considering the typical accuracy of depth sensors [80].

Table 5.1.: A parameter set for f DED to obtain T ≈ 1ms and A ≈ 5mm (“T” computation time,
“A” accuracy).

Ts [px] Sx/Sy [px] T [ms] A [mm]

32 16/16 0.9 5

Computation time in the worst case - The worst case scenario for the computation time is
obtained by creating a real depth image in which all the 640×480 pixels consist of object points.
The robot is located behind those points, in order not to filter any values out of the real depth
image. Moreover, the robot covers the entire virtual depth image. Hence, both depth images have
to be entirely filled with a lattice of points and the number of distance computations is maximal.
In this case, the brute force algorithm computes (640×480)2 ≈ 0.9×1012 distances. Time results
for different parameter sets are shown in Table 5.2. An average time (over 100 iterations) of 2.8ms
is obtained with Sx = Sy = 32px.

Table 5.2.: f DED - Computation time in the worst case scenario.

Ts Sx/Sy Robot Pts Time (mean/std)
[px] [px] (%) [ms]

32 8/8 100 6.3/0.19

32 16/16 100 3.7/0.16

32 32/32 100 2.8/0.16

32 32/32 50 1.9/0.16
32 32/32 30 1.3/0.16

The proposed worst case represents a theoretical upper bound for the computation time, but it is
unrealistic in real scenarios. Indeed, having a depth map completely covered by objects is possible
in extremely cluttered environments, while assuming that the robot covers all the virtual depth is
unrealistic. Camera sensors, in fact, are used to monitor the robot’s workspace. If the robot covers
all the scene, this means the sensor is not correctly placed [50]. More realistic upper bounds on
the computation time are given in Table 5.2 by considering that the robot occupies 50% and 30%
of the total points. As for the worst case, the robot is located behind the objects, in order not to
filter any values out of the depth image.

133



5. Execution of robotic tasks

(a) Task execution.

0

V
el

oc
it

y 
[m

/s
]

2 4 6 8
Time [s]

-0.1

-0.2

0.3

0.2

0.1

-0.3
0 10 12

vx

vz

vy

(b) Nominal velocity (αh = 0.3m/s).

0

V
el

oc
it

y 
[m

/s
]

5 10
Time [s]

-0.1

-0.2

0.3

0.2

0.1

-0.3
0 15 20

vx

vz

vy

Human far

Human close

(c) Velocity scaling.

Figure 5.12.: Execution of the stacking task. (a) Snapshots of the task execution. (b) Robot veloc-
ity when the human is not in the workspace. (c) Velocity scaling when the human
enters/leaves the workspace.

5.1.3. Evaluation in a human–robot interaction scenario

The architecture for on-line motion replanning in Figure 5.1 is tested in a human–robot interaction
scenario. The human is tracked at 30Hz using a Microsoft Kinect RGB-D camera. The same
camera is used to monitor the scene and compute the distance from eventual obstacles. The robot
is a 7 degrees-of-freedom (DoF) KUKA LWRIV+ [15], controlled at 500Hz. As shown in Figure
5.12(a), in this experiment the robot has to stack two blocks. The blocks are initially placed
at g1 = [−0.55, 0.35, 0.01]T and g2 = [−0.45, 0.35, 0.01]T respectively. The stacking positions
are g3 = [−0.55,−0.3, 0.01]T and g4 = [−0.55,−0.3, 0.035]T respectively. The stacking task
consists of four point-to-point motions generated by combining four stable DS in the form

ẋ= αh
gi−x
‖gi−x‖

, i = 1, ..,4,

where αh > 0 is the desired (constant) speed. The orientation of the robot is kept fixed during the
motion. This means that the robot can exploit 1 DoF for null-space collision avoidance.

Velocity scaling and collision avoidance

The user can enter the robot workspace at any time and start the interaction. As shown in Figure
5.12(c), when the human is close to the robot, the robot’s speed is scaled to αh = 0.1m/s. When
the human is far from the robot, the robot moves at the nominal speed of αh = 0.3m/s (see Figure
5.12(b)). In both cases the robot is able to execute the stacking task.

In realistic scenarios the robot needs to avoid possible collisions with dynamic obstacles, prefer-
ably without compromising the task execution. Figures 5.13(a)-(c) show the robot avoiding colli-
sions with several moving objects, while correctly executing its task. The robot is able to prevent
multiple collisions with its entire body, using the combination of multi-priority inverse kinematics
and DS modulation presented in Section 5.1.1.

134



5.1. Reactive planning of robotic skills

1 2 3 4 5

(a) Avoiding collisions between the robot body and a moving obstacle.

1 2 3 4 5

(b) Avoiding collisions between the robot end-effector and a moving obstacle (user’s hand).

1 2 3 4 5

(c) Avoiding multiple collisions with moving obstacles.

0

Minimum distance

D
is

ta
nc

e 
[m

]

End-effector Link

0.2

0.6

0.4

0

Ve
lo

ci
ty

 [
m

/s
]

5 10 15 20
Time [s]

-0.1

-0.2

0.2

0.1

0 25

vx

vz

vy

End-effector velocity

Time [s]
5 10 15 200 25

(d) Typical minimum distance and velocity profiles during the interaction with the user.

Figure 5.13.: The robot avoids several collisions with dynamic obstacles while correctly executing
a stacking task.

The left panel in Figure 5.13(d) shows the minimum distance between the robot and the closest
obstacle. The minimum distance is always bigger than 6cm, meaning that the robot is effectively
able to avoid collisions. The right panel in Figure 5.13(d) shows the end-effector velocity during
the interaction. As detailed in Section 5.1.1, the velocity is reduced in the direction towards the
obstacle, and increased in the collision-free directions. This generates the avoiding motion while
minimizing the impact force (almost zero velocity) in case of unexpected collisions.

Comparison with state-of-the-art approach

This experiment compares the performance of the f DED approach presented in Section 5.1.2)
and the CPU-based approach for distance evaluation presented in [52] and used in [138]. The
approaches are compared considering the computation time and the minimum distance between
obstacles and robot during the task execution. The approach in [52] approximates the robot body
with 10 spheres of radius rs = 0.12m, and computes the distance between the points in the depth
map and each sphere. The approach is implemented in C++. To further reduce the computation
time, the approach in [52] considers a region of surveillance with ρ = 0.4m, i.e., it skips all
the depth points outside a cube of side 2ρ around each sphere. Points whose depth value is too
close (< 1.8m) and to far (> 3.5m) are also skipped in this work. If no points are found in the

135



5. Execution of robotic tasks

100 200 300 400 500 600 700 8000
2
4
6
8
10
12

14
Distance computation time

Samples
Ti
m
e 

[m
s]

fDED CPU-based Average

(a)

0

Minimum distance (fDED)

D
is
ta
nc
e 

[m
]

End-effector Link
200 400 600 800

Samples

0.1

0.2

0.6

0.5

0.4

0.3

(b)

0

Minimum distance (CPU-based)

D
is
ta
nc
e 

[m
]

200 400 600 800
Samples

0.1

0.2

0.6

0.5

0.4

0.3

End-effector Link

(c)

Figure 5.14.: Comparison between f DED and the CPU-based approach in [52]. (a) f DED spends
on average 1.9ms to compute the distances, while the CPU-based approach requires
9.9ms. (b)-(c) The robot is more reactive when f DED is used to compute the dis-
tance and it effectively avoids possible collisions.

neighborhood of the robot, the distance is set to a default value (0.5m) which does not generate
avoiding movements. As for the f DED approach, the robot is removed from the sensor depth
using the filtering approach previously described.

Results in Figure 5.14(a) show that f DED takes, on average, 1.9ms to compute the distances,
while the CPU-based approach requires 9.9ms. The significantly smaller computation time of
f DED is beneficial when avoiding collisions with moving obstacles. The robot, in fact, reacts
quickly to the approaching obstacle and effectively avoids the collision. This result is illustrated
in Figure 5.14(b), which shows that the minimum distance between robot and obstacles is always
bigger than 6.7cm. On the contrary, the delay introduced by the CPU-based approach makes
the robot less reactive while avoiding possible collisions. As shown in Figure 5.14(c), in some
cases the robot fails to avoid the collision (distance equal to zero). Presented results allow to
conclude that, in dynamic environments, a fast approach like f DED is beneficial to effectively
avoid collisions. The drawback of f DED is that its implementation requires a dedicated hardware
(GPU) for parallel processing.

Cooperative task execution via human gestures

This experiment exploits the architecture described in Section 5.1 to execute the stacking task in
cooperation with the human. To this end, a gesture recognition module is added to the Human Ob-
server (see Figure 5.1) to modify the task execution via gesture commands. Human gestures are
recognized using the motion descriptor proposed in [135] and described in Section 3.2.1. This de-
scriptor has the advantage of being invariant to roto-translations and scaling factors, which makes

136



5.2. Execution of structured tasks

1 2 3 4

give me

(a) Snapshots of the handover task execution.

0

Minimum Link distance

D
is

ta
nc

e 
[m

]

0.2

0.6

0.4

Time [s]
4 8 12 160 20

(b) Minimum robot–obstacle distance during the handover task.

Figure 5.15.: The robot gives the picked item to the user and avoids collisions with a dynamic
obstacle.

it well-suited to recognize motions performed by different subjects or observed from different
views. The approach works by transforming the trajectory of the human torso, right shoulder,
elbow and hand into a sequence of invariant values. As already mentioned, the human is tracked
at 30Hz. Continuous gestures are recognized using a sliding widow of length 50 frames, and dy-
namic time warping [131] for classification. Three gestures are used in this experiment: i) come to
start the task execution, ii) stop to suspend the execution, and iii) handover right to command the
robot to give the item to the user and continue the execution (take the next item). The 3 gestures
are a subset of the 6 gestures used in [135] for continuous gesture recognition. The recognition
rate on the full set of 6 gestures is 91.67%.

In order to execute human commands, dynamical systems are exploited to replan the motion in
real-time. In particular, if the robot receives a stop command, the desired speed is set to αh = 0m/s,
and the robot waits for other commands. If the robot receives a come command, the speed is set to
0.1m/s (close user) or 0.3m/s (far user), and the robot can continue the task execution. If the robot
receives a handover right command, the goal is changed to reach the current hand position (plus
an offset of 5cm along the vertical direction) and leave the item. During the handover action, the
end-effector avoidance is disabled since the robot has to reach the hand. The null-space avoidance,
instead, is active to make the robot able to avoid collisions with its body. As shown in Figure 5.15,
the robot successfully executes the handover task and, at the same time, avoids the collision with
a moving obstacle.

5.2. Execution of structured tasks

Section 4.3 presented an integrated framework for intuitive kinesthetic teaching. The framework
combines the benefits of intuitive skill transfer mechanisms, like kinesthetic teaching or imitation
learning, and an attentional supervisory system to learn structured tasks from human demonstra-
tion. The same framework, with minor changes, is used to learn both uni- and dual-arm structured
tasks. This section focuses on exploiting the framework presented in Section 4.3 to execute the
learned structured task on real robots. In particular, this section describes how the main blocks

137



5. Execution of robotic tasks

of the framework, namely the robot manager (see Section 4.3.1) and the attentional system (see
Section 4.3.2), are used to reproduce the task. Moreover, the section presents several experimental
results which demonstrates the effectiveness of the discussed approach.

5.2.1. Robot manager for task execution

The Robot Manager (RM) handles low-level aspects of the human–robot interaction and it is re-
sponsible for a correct task execution. As discussed in Section 4.3.1, during the teaching phase
the RM allows kinesthetic teaching (or imitation learning), automatic segmentation of the demon-
strated task, and motion primitives learning. During the execution, the RM has to retrieve the
desired robot’s trajectory from the learned motion primitives. In particular, the RM receives the
next action to execute from the supervisory attentional system (see Section 4.3.2). The com-
manded action is a symbol, i.e. a unique label, that the RM matches with the associated motion
primitive. The RM generates a set of Cartesian poses from the learned motion primitive, which are
directly sent to the low-level robot controller. It is worth noticing that the user can decide, at any
time, to start a novel teaching session using a dedicated speech command. In this case, the RM
switches from an autonomous execution mode to the teaching mode, i.e. the RM activates a zero
gravity control (see Appendix A.2.3) for kinesthetic teaching, or a motion re-targetting kinematic
control (see Section 4.2) for imitation learning.

5.2.2. Attentional system for task execution

The result of the learning process is a tree that represents the structured task (see, for example,
Section 4.3.3). The attentional system stores the entire structure in its long term memory, which
is a knowledge base containing all the learned tasks (see Section 4.3.2). During the execution,
the alive process instantiates the task (or part of it) in the Working Memory (WM), using the
retrieve/expansion process shown in Figure 5.16 and detailed in Section 4.3.2. The procedure is
analogous for teaching and execution modes up to the subtasks level. During the teaching, in fact,
atomic actions are unknown and are attached to the most emphasized subtask. On the contrary,
during the execution, atomic actions are effectively commanded to the robot in order to execute
the task. Hence, alive further decomposes the most emphasized subtasks and commands to the
robot manager the most emphasized action with a true releaser. Note that the expand/retrieve
process is continuously executed. In this way, the planned task is quickly adapted if changes in
the environment move the emphasis towards another subtask. This flexibility is exploited, for
example, to perform the task execution in cooperation with a human operator, as discussed in the
following section.

5.2.3. Execution of uni-manual structured tasks

Experiments in this section show that the presented framework can be effectively applied to i)
quickly learn and autonomously execute structured tasks, ii) execute learned tasks in cooperation
with the human, and iii) reuse the acquired knowledge in different contexts. To this end, two
typical tasks of a kitchen scenario are considered, namely prepare coffee and prepare tea. The
robot is a KUKA LWR IV+ [15], equipped with a WSG50 2-fingers gripper. As shown in Figure
5.17(a), objects are recognized and tracked using markers and a RGB-D camera as in [56]. The
marker close to the robot base is employed to retrieve the coordinate transformation between
the camera frame and the robot base. Due to possible marker occlusions during the teaching,
the robot–camera transformation and the pose of the cup are computed at the beginning of each
experiment and kept constant during the execution. All the other objects, instead, are continuously

138



5.2. Execution of structured tasks

add(water)add(water)
TRUE

AliveAlive

schema(add(Obj), 
    [ [pick(Obj), true],
    [pour(Obj), Obj.picked],
    [place(Obj), Obj.poured] ], 
    Obj.poured  Obj.placed ).∧ add(water)add(water)

TRUE

water.poured  water.placed∧

pick(water)pick(water)
TRUE

pour(water)pour(water)
water.picked

AliveAlive

place(water)place(water)
water.poured

add(water)add(water)
TRUE

water.poured  water.placed∧

pick(water)pick(water)
TRUE

pour(water)pour(water)

water.poured

water.picked

AliveAlive

place(water)place(water)

water.placed
water.picked

water.poured

schema(pick(Obj), 
[ ], Obj.picked ).

schema(pour(Obj), 
[ ], Obj.poured ).

schema(place(Obj), 
[ ], Obj.placed ).

t2

t1

t3

LTM WM

Figure 5.16.: Alive manages the retrieve/expansion process used to instantiate part of a task in the
working memory. (t1) Alive allocates the new node add(water). (t2)-(t3) The schema
associated to add(water) is selected from the LTM (retrieve phase) and used to hi-
erarchically decompose the node in the WM. In particular, the abstract or concrete
sub-nodes contained in the schema are added to the WM and instantiated (expand
phase).

tracked at 30Hz. The user initiates a kinesthetic teaching session via the speech command teach.
A zero gravity control is used to easily guide the robot in teach mode. The teaching session is
terminated by the speech command done. The user can interrupt/restart the execution of a learned
task using the speech commands stop/repeat. During the execution, the RM sends the reference
trajectory to the robot low-level controller. The KUKA LWR IV+ is controlled using a Cartesian
impedance control [142] with high stiffness gains (2000N/m for the position and 200Nm/rad for
the orientation). Graduate students in robotics and automation participated to the experiments as
teachers. The parameters used in this setup are listed in Table 5.3.

Pouring a drink

In the first experiment, the robot is tough how to pour water in a cup. The pouring task consists
of two subtasks: take-water and pour-water (see Figure 5.18). During the teaching process, the
teacher guides the robot towards the task execution, providing speech commands (open/close)
to control the gripper. Figure 5.18 illustrates the WM state after a task demonstration (end of a
teaching session). Nine atomic actions are generated at the end of the demonstration, and linked
to the associated subtasks. These new elements are also associated with pre- and post-conditions,
and with activation values. As detailed in Algorithm 4, these generated elements are also stored

139



5. Execution of robotic tasks

RGB-D 
camera

spoon

coffee

cup

water

camera-robot
calibration

tea

(a)

cheese

pizza
basiloil

tomato

(b)

Figure 5.17.: Experimental setups used to test the framework for structured tasks learning and
execution. (a) The setup used to acquire and reproduce uni-manual tasks. (b) The
setup used to acquire and reproduce dual-arm tasks.

Table 5.3.: Parameters used in the experimental evaluation.

Robot Manager

parameter meaning value

r radius of the proximity area 0.12m

K = diag(k1, ..,k6) DMP stiffness gains ki = 70.0

D = diag(d1, ..,d6) DMP damping gains di = 2
√

ki

Attentional System

parameter meaning value

λ max max behavior period 1s

λ min min behavior period 0.1s

rmax max object distance 2m

rmin min object distance 0m

k magnitude increment 1

in the LTM to be re-used in future scenarios. Once learned, the task can be executed. In order
to execute the task, the attentional system first selects the subtask take-water, which is enabled
when the robot has no object in its gripper (hand.free). The actions linked to the same subtask
are executed in the order shown during the demonstration. For example, in order to perform the
take-water subtask, the robot executes foa1(water), noa2(water), and then gripper(close).

Teaching and execution times, measured over ten repetitions of the task, are used to quanti-
tatively evaluate the effectiveness of the presented approach. Moreover, in order to show the
robustness of the approach with respect to the initial conditions, ten repetitions of the task are
performed with the bottle placed at random positions, measuring the success rate as the number
of correct executions over the total executions. A trial is considered successful if the robot grasps
the bottle and pours the water within the cup.

As shown in Table 5.4, teaching this relatively complex task requires approximately 50s. More-

140



5.2. Execution of structured tasks

subtask(take,water)
1 (1)

subtask(pour,water)
2 (1)

TR
U

E

add(water)
1 (1)hand.free ~water.taken

gripper(close)
2 (1)

gripper(open)
2 (1)

~noa2.done

~f
oa

1.
do

ne

TRUE

~n
oa

3.
do

ne ~f
oa

4.
do

ne

~noa5.done
~foa6.done

~foa7.done

foa4(world)
2 (1)

foa1(water)
2 (1)

noa2(water)
2 (1)

foa3(world)
2 (1)

noa5(world)
2 (1)

foa6(world)
2 (1)

foa7(world)
2 (1)

alive
0.1 (1)

Figure 5.18.: The WM state after the pouring task demonstration. Nine generated segments are
linked to the associated subtasks. Green are active and red inactive nodes. Blue are
the last learned nodes.

over, the task was successfully executed in all the ten trials (success rate equal to 1). These results
show that the framework allows to transfer novel skills to a robotic device in a quite fast, natural,
and effective manner. Notice also that the execution time for the pouring task (77.5s, on average)
are slightly longer than the time needed to demonstrate the task (50.4s, on average). This slower
execution does not depend on the attentional system, which can monitor and select the robotic ac-
tions on-line. Instead, it mainly depends on the convergence time of the dynamical systems used
to generate motor commands (see Section 3.1). A possible way to reduce the execution time is to
perform each action at a predefined speed ε , i.e., by generating a velocity command with ẋ= ε

v
‖v‖

instead of (3.3a).

Table 5.4.: Results for ten repetitions of the pouring a drink task.
Teaching Time [s] (mean ± std) Teaching Time [s] (mean ± std) Success Rate

take-water pour-water add(water) take-water pour-water add(water) take-water pour-water add(water)

20.1 ± 1.2 30.3 ± 0.8 50.4 ± 2.0 31.0 ± 1.5 46.5 ± 0.8 77.5 ± 2.3 1 1 1

Prepare coffee - Task learning and autonomous execution

This experiment shows how a more complex structured task is learned and executed using the
described framework. The task consists of preparing a coffee. In order to fulfill the task, the robot
has to: i) pour the water in the cup, ii) add the coffee powder, and iii) mix water and coffee powder
with a spoon. Before learning, the WM only contains the three subtasks add(water), add(coffee)
and use(spoon) without any link to atomic actions, as illustrated in Figure 5.19. Atomic actions
are automatically added during the kinesthetic teaching and then used to reproduce the task. Note
that the order of execution of add(water) and add(coffee) is not relevant for task learning and
execution, therefore, they are both enabled when the task starts. In this case, task selection only
depends on the attentional regulations. Figure 5.20 shows teaching and execution snapshots of
add(water), add(coffee), and use(spoon), each associated with the WM state obtained at the end

141



5. Execution of robotic tasks

add(coffee)
1 (1)

hand.free

preparecoffee
1 (1)

alive
0.1 (1)

add(water)
1 (1)

TRUE

hand.free

use(spoon)
1 (1)

subtask(take,water)
1 (1)

subtask(pour,water)
1 (1)

subtask(take,coffee)
1 (1)

subtask(pour,coffee)
1 (1)

subtask(take,spoon)
1 (1)

subtask(mix,spoon)
1 (1)

~water.used
~coffee.used

TRUE ~water.taken

~coffee.taken

~spoon.taken

hand.free

Figure 5.19.: The initial WM before learning how to prepare a coffee. The task preparecoffee has
three child nodes, namely add(water), add(coffe), and use(spoon). add(water) and
add(coffe) can be executed in any order (true releaser), while use(spoon) requires that
both the water and the coffee powder are added. Initially, both subtask(take,water)
and subtask(take,coffee) are enabled (green), hence they compete for the initial seg-
ments.

of a learning session. Here, the user can directly teach the overall prepare coffee task and then
execute it, otherwise the task can be step by step demonstrated and executed.

Similarly to the previous experiment, teaching and training time are measured, as well as, the
success rate over ten task repetitions (with objects randomly placed). Results in Table 5.5 show
that, on average, teaching the prepare coffee task takes less than 3 minutes, while executing the
task takes about 3.7 minutes. Analogously to the previous experiment, the longer execution time
mainly depends on the convergence time of the dynamical systems. Table 5.5 also shows training
and execution times for each subtask. Looking at these results, it is possible to notice that the time
to grasp an object is almost independent on the particular item. This is because, in the considered
setup, objects are relatively close and they are grasped in a similar manner. It is also evident that
take-spoon takes always longer than other take actions. The reason is that the subtask use(spoon)
is always executed at the end, and the robot has to cover a bigger distance to reach the spoon.
Moreover, Table 5.5 shows that the task execution has less variability than the teaching. This
means that, despite the user introduces some variability across different demonstrations, the task
execution time is relatively constrained. Several actions of the learned task are, in fact, linear
point-to-point motions which are executed in similar times across different repetitions.

Also in this case, the task success rate is quite high (0.9) and only one failure occurs over ten
trials. In the failed trial, the robot did not grasp the coffee jar sufficiently close to its center of mass,
probably due to an error in the tracking system. Being the jar turned, the robot failed to add the
coffee in the cup. Notice that the current implementation exploits a simple grasping strategy, i.e.
reach the object and close the gripper. A possible way to increase the robustness of the system is
to use a multi-fingered robotic hand and perform a power grasp [129], or to exploit tactile sensing
in order to detect and avoid the slipping [41].

142



5.2. Execution of structured tasks

Table 5.5.: Results for ten repetitions of the prepare coffee task.
Teaching Time [s] (mean ± std)

take-water pour-water add(water) take-coffee pour-coffee add(coffee) take-spoon mix-spoon use(spoon) prepareCoffee

20.0 ± 2.3 30.1 ± 1.4 50.1 ± 3.7 19.8 ± 2.6 37.2 ± 1.9 57.0 ± 4.5 21.3 ± 2.7 37.3 ± 1.9 58.6 ± 4.6 165.7 ± 12.8

Execution Time [s] (mean ± std)

take-water pour-water add(water) take-coffee pour-coffee add(coffee) take-spoon mix-spoon use(spoon) prepareCoffee

28.4 ± 0.5 42.7 ± 0.3 71.1 ± 0.8 27.9 ± 0.7 47.7 ± 0.3 75.6 ± 1.0 29.8 ± 0.7 48.0 ± 0.4 77.8 ± 1.1 224.5 ± 2.9

Success Rate

take-water pour-water add(water) take-coffee pour-coffee add(coffee) take-spoon mix-spoon use(spoon) prepareCoffee

1 1 1 1 0.9 0.9 1 1 1 0.9

Teach: add(coffee)

Execute: add(coffee)

subtask(take,coffee)
1 (1)

subtask(pour,coffee)
2 (1)

TR
U

E

add(coffee)
1 (1)hand.free ~coffee.taken

gripper(close)
2 (1)

gripper(open)
2 (1)

foa7(world)
2 (1)

~noa2.done~f
oa

1.
do

ne

TRUE

~n
oa

3.
do

ne

~f
oa

4.
do

ne

~noa5.done
~foa6.done

~foa7.done

Working memory

foa6(world)
2 (1)

foa4(world)
2 (1)

foa1(coffee)
2 (1)

noa2(coffee)
2 (1)

noa3(world)
2 (1)

noa5(world)
2 (1)

Teach: add(water)

Execute: add(water)

subtask(take,water)
1 (1)

subtask(pour,water)
2 (1)

TR
U

E

add(water)
1 (1)hand.free ~water.taken

~noa9.done

~f
oa

8.
do

ne

TRUE

~n
oa

10
.d

on
e ~f
oa

11
.d

on
e ~noa12.done

~foa13.done

~foa14.done

Working memory

foa11(world)
2 (1)

foa8(water)
2 (1)

noa9(water)
2 (1)

noa10(world)
2 (1)

noa12(world)
2 (1)

foa13(world)
2 (1)

foa14(world)
2 (1)

Teach: use(spoon)

Execute: use(spoon)

subtask(take,spoon)
1 (1)

subtask(mix,spoon)
2 (1)

TR
U

E

use(spoon)
1 (1)hand.free ~spoon.taken

~noa16.done~f
oa

15
.d

on
e TRUE

~n
oa

17
.d

on
e ~f
oa

18
.d

on
e ~noa19.done

~foa20.done

~foa21.done

Working memory

foa18(world)
2 (1)

foa15(spoon)
2 (1)

noa16(spoon)
2 (1)

noa17(world)
2 (1)

noa19(world)
2 (1)

foa20(world)
2 (1)

foa21(world)
2 (1)

gripper(close)
2 (1)

gripper(close)
2 (1)

gripper(open)
2 (1)

gripper(open)
2 (1)

Figure 5.20.: The robot learns how to prepare a coffee. (Left panels) Snapshots of the kinesthetic
teaching and autonomous task execution. (Right panels) Actions are automatically
attached to the subtasks in the WM and used to reproduce the task.

143



5. Execution of robotic tasks

foa8(water)add(coffee)
1 (1)

subtask(take,coffee)
1 (1)

foa8(water)
0.28 (1)

subtask(take,water)
1 (1)

add(water)
1 (1)

foa1(coffee)
0.35 (1)

Working memory (active subtasks)

hand.free TRUE

hand.free TRUE

add(coffee)
1 (1)

subtask(take,coffee)
1 (1)

foa8(water)
1 (1)

subtask(take,water)
1 (1)

add(water)
1 (1)

foa1(coffee)
0.26 (1)

Working memory (active subtasks)

hand.free TRUE

hand.free TRUE

foa1(coffee)

Human cooperation

New rebot action

Autonomous execution

water.used

Most emphasized

Most emphasized

Figure 5.21.: Cooperative execution of the prepare coffee task. The user takes the bottle and pours
the water while the robot is approaching the bottle. Notice that, before the human
intervention the most emphasized action is foa8(water). On the other hand, when the
human performs the action, the robotic task execution is on-line adapted: the most
emphasized action segment becomes foa1(coffee) and the robot takes the coffee jar.

Prepare coffee - Cooperative task execution

The presented framework permits a cooperative execution of the learned tasks. As a proof of
concepts, this experiment considers the coffee task described in the previous experiment and two
cooperative scenarios. In the first case, the human helps the robot to fulfill the task by adding the
water himself. To show the on-line capabilities of the attentional system, the user intentionally
takes the bottle while the robot is approaching it and pours the water himself. In the meanwhile,
the robot was executing the foa8(water) action in Figure 5.21. Hence, the attentional system has
to rapidly adapt task execution with respect to the human behavior. Since the water is not anymore
available in the scene, the add(water) behavior becomes less attractive for the robot that starts
to execute the add(coffee) (which is available and enabled in the WM). At the same time, the
system can monitor the human behavior and assign the add(water) execution to the human. For
the sake of simplicity, the above assignment is explicitly communicated by the human through
a speech command. However, more complex activity recognition methods can be exploited for
the same purpose [29]. The cooperative task is executed ten times, obtaining an execution time
of 149.8± 3.5s. A comparison with the autonomous execution time in Table 5.5 allows us to
conclude that the cooperative execution is beneficial in terms of execution time. In particular, it is
interesting to notice that the time needed for task replanning does not have a significant impact on
the total execution time.

Human–robot cooperation can be also exploited to overcome robot limitations, as illustrated
in Figure 5.22(a). In the considered case, the robot is pouring the water with the bottle closed.

144



5.2. Execution of structured tasks

(a) (b)

Figure 5.22.: Human–robot cooperation is exploited to overcome robot limitations. (a) The bottle
is closed and the robot will fail to pour the water. (b) Once the user has suspended
the task and removed the cap, the robot can correctly execute it.

There is no chance for a single robotic manipulator to fulfill this task. Indeed, even with a more
sophisticated perception system able to recognize the cap, a single manipulator could not open the
bottle and the pouring task would fail. In this case, the human intervention is essential to fulfill the
task. Hence, during the execution phase, the user temporary suspends the task execution via the
speech command stop, opens the bottle (see Figure 5.22(b)), and restarts the execution using the
speech command repeat. Alternatively, it is possible to explicitly introduce in the task structure a
subtask open(Obj) which is directly assigned to the human manipulation and left unlinked for the
robot execution. In this way, the robot waits for the human help or guidance in order to execute the
task. During the teaching phase, this subtask can be executed by the human (under the attentional
supervision), while the rest of the task can be again demonstrated through kinesthetic teaching. It
is worth considering that, in a cooperative scenario, the operator can teach motion primitives which
favor the human interventions. For example, when the next subtask is a human manipulation (e.g.
open(water)), the robot should provide the object in a comfortable position for the operator. This
subtask can be also demonstrated in the learning phase taking into account the human intervention.

Prepare tea - Task re-usage

This experiment shows that the acquired knowledge can be re-used to speed-up the acquisition
of novel tasks. The task consists of preparing a tea, where the robot has to pour the water in the
cup and add a tea bag. The add(water) subtask is the same subtask used to prepare the coffee and
can be re-used in this novel scenario. In other words, the already learned subtask can be loaded
from the long term memory and instantiated in the working memory, while the user has only to
teach how to add the tea bag (see Figure 5.23). Once allocated in the WM, all the enabled and
linked subtasks (e.g. add(water)) can be executed until the open subtask (add(tea)) is selected. In
this case the robot needs the human demonstration to learn how to complete the overall task. In
order to assess the effectiveness of task re-usage, ten teaching sessions are performed: in five runs
the teacher has to demonstrate the entire task, while in the remaining five runs the operator only
teaches the missing add(tea) subtask. In the second case, the robot waits for the human assistance,
being not able to execute the subtask. As reported in Table 5.6, task re-usage is effective and
reduces the teaching time of about 53% in the considered prepare tea task.

145



5. Execution of robotic tasks

subtask(take,water)
1 (1)

subtask(pour,water)
2 (1)

TR
U

E

add(water)
1 (1)hand.free ~water.taken

gripper(close)
2 (1)

gripper(open)
2 (1)

foa7(world)
2 (1)

~noa2.done~f
oa

1.
do

ne

TRUE

~n
oa

3.
do

ne

~f
oa

4.
do

ne

~noa5.done
~foa6.done

~foa7.done

Working memory

foa6(world)
2 (1)

foa4(world)
2 (1)

foa1(water)
2 (1)

noa2(water)
2 (1)

foa3(world)
2 (1)

noa5(world)
2 (1)

subtask(take,tea)
1 (1)

subtask(pour,tea)
2 (1)

TR
U

E

add(tea)
1 (1)hand.free ~tea.taken

~noa9.done

~f
oa

8.
do

ne

TRUE

~n
oa

10
.d

on
e ~f
oa

11
.d

on
e ~noa12.done

~foa13.done

~foa14.done

Working memory

foa11(world)
2 (1)

foa8(tea)
2 (1)

noa9(tea)
2 (1)

foa10(world)
2 (1)

noa12(world)
2 (1)

foa13(world)
2 (1)

foa14(world)
2 (1)

gripper(close)
2 (1)

gripper(open)
2 (1)

Execute: add(water)

Execute: add(tea)

Teach: add(tea)

Figure 5.23.: The robot learns how to prepare a tea. (Top-left) The add(water) subtask has been
already demonstrated for the prepare coffee task and can be reused in the prepare
tea task. (Top-right) The WM state after the add(water) execution. (Bottom-left)
The human can demonstrate the novel subtask through kinesthetic teaching, then the
robot can autonomously execute the rest of the task (add(tea)). (Bottom-right) The
WM state after the add(tea) demonstration.

Table 5.6.: Results for ten training trials of the prepare tea task. The symbol “−” indicates an
already learned subtask.

Teaching Time [s] (mean ± std) Task re-usage

add(water) add(tea) prepareTea (yes / no)

50.1 ± 1.9 34.1 ± 1.0 84.2 ± 2.9 no

− 35.6 ± 1.4 35.6 ± 1.4 yes

5.2.4. Dual-arm structured tasks

This section illustrates how the described framework can be effectively applied to learn and exe-
cute dual-arm structured tasks. To this end, the structured task of topping a pizza is considered.
As shown in Figure 5.17(b) (left), the human teacher executes the task in front of a table where
a set of real objects are disposed, namely a pizza and four bottles containing tomato, oil, cheese,
and basil. The environment is reproduced in simulation (Figure 5.17(b), right), where the human
operator is replaced with the simulated humanoid robot RoDyMan. As detailed in Section 4.2, a
motion capture suite is employed for the human motion recording and imitation. Recall that the
framework is able to learn and reproduce dual-arm tasks, where the motion of the two arms is

146



5.2. Execution of structured tasks

subtask(left,take,tomato)
0.54 (1)

subtask(left,pour,tomato)
2 (1)

TR
U

E
add(left,tomato)

1 (1)hand.free ~tomato.taken

hand(left,close)
2 (1)

hand(left,open)
2 (1)

foa7(left,world)
2 (1)

~noa2.done

~f
oa

1.
do

ne

TRUE

~n
oa

3.
do

ne ~f
oa

4.
do

ne

~noa5.done

~foa6.done

~foa7.done

foa6(left,world)
2 (1)

foa4(left,pizza)
2 (1)

foa1(left,tomato)
0.54 (1)

noa2(left,tomato)
2 (1)

noa3(left,tomato)
2 (1)

noa5(left,pizza)
2 (1)

preparePizza
1 (1)

(a) Representation in WM of the learned subtask
add(tomato) for the left arm.

(b) Execution of the add(tomato) task

Figure 5.24.: Execution of the add(tomato) task performed by the left arm. (a) The learned hier-
archical structure contains three NOA, four FOA, and two hand commands. (b) The
simulated robot reproduces the task exploiting the learned hierarchical structure.

not necessary synchronized (see Section 4.3.4). In other words, the arms are considered as two
separate manipulators which are both able to perform the pizza topping task. The human teacher
demonstrates the entire task twice, once using only the right arm and once using only the left arm.
This is needed to make the two arms of RoDyMan able to independently execute the task. Both the
training sessions last less then 4 minutes. A subset of the learned actions is shown in Figure 5.24.
In particular, the figure shows that the task add(tomato), learned by the left arm, is associated with
7 actions (3 NOA and 4 FOA) and 2 hand commands (hand(left,close) and hand(left,open)).

To evaluate the typical performance of the framework during the execution of the learned task,
the pizza topping task is repeated 10 times by randomly changing the position of the ingredients
on the table. It is worth noticing that no collision avoidance mechanisms are exploited during the
task repetitions. Hence, in order to prevent self-collisions, the robot’s workspace is split in three
parts, namely left, right, and central areas. The left (right) area contains ingredients close to the
left (right) arm. Therefore, the objects in the left and right areas can be manipulated with only one
arm (left and right arm respectively). The central area contains the pizza and it is shared among
the two arms.

Five task repetitions are initially performed using only one arm per time, with the ingredients
randomly positioned inside the left (3 times) or right (2 times) areas. Execution times and success
rates are reported in Table 5.7 (uni-manual row). Repetitions performed with one arm serve as
baseline to assess the effectiveness of the dual-arm execution. Therefore, five more repetitions are
performed by executing the task with both arms. In this case, the objects are randomly positioned
in all areas and the robot exploits the tasks learned by the right and left arms in order to prepare
the pizza. Snapshots of the dual-arm task execution are shown in Figure 5.25. It is worth noticing
that the attentional system prevents the arms to enter simultaneously the central area, avoiding
self-collisions between the arms. The central area, in fact, is treated as a shared resource with a
mutually exclusive access. The arms compete to obtain the exclusive access to the central area.
To regulate this conflict, a winner-take-all strategy is exploited where the resource (central area)
is assigned to the arm that reaches first the boundary of the central area. Hence, a first come first
served mechanism is exploited in this work, but other choices are possible. Table 5.7 illustrates
the obtained results. All the 10 executions are successful. In particular, in the dual-arm case,
the task is successfully executed without self-collisions. Moreover, performing the task with both
arms improves the time performances by 50.8 seconds (18.04%). This results confirms that the

147



5. Execution of robotic tasks

Figure 5.25.: Execution of the add(cheese) and the add(basil) tasks. The left and right arms coop-
eratively execute the task.

Table 5.7.: Results for ten repetitions of the pizza task.

Execution Time [s] (mean ± std) Success Rate

Dual-arm 281.6 ± 13.83 1

Uni-manual 332.4 ± 28.05 1

presented framework is able to efficiently combine the single-handed learned tasks, significantly
reducing the overall task execution time.

5.3. Summary and conclusion

This chapter presented approaches to execute learned tasks on real robots. The first section ex-
ploited a hierarchical architecture for reactive planning of robotic skills. The low-level of the
architecture generates the robot trajectory by exploiting stable dynamical systems (see Section
3.1), while taking into account the human safety and the correct execution of the robotic task.
Regarding the human safety, the robot’s velocity is automatically scaled down to a safe value in
case of close interaction with the human. Moreover, possible collisions with unforeseen obstacles
(including human beings) are prevented by exploiting the so-called dynamical system modulation,
which generates collision-free paths without modifying the equilibria of the modulated system.
The low-level has to match real-time requirements, being typical robot control frequencies in the
range [0.1,1]kHz. Time constraints are satisfied by exploiting the real-time capabilities of the
presented f DED (fast distance evaluation in the depth space) approach; an highly parallelizable
algorithm that computes robot–obstacle distances in about 1ms. The high-level of the architec-
ture tracks eventual humans in the scene, and it leverages invariant motion representations (see
Section 3.2) to robustly recognize human gestures. The recognized gestures are then transformed
into commands for the robot, by exploiting dynamical systems properties to replan the current task
on-line and generate a feasible robot’s trajectory. The approach is evaluated in a realistic, dynamic
scenario, showing promising results. In particular, dynamical systems properties and real-time
distance computation effectively increase the human safety by reducing the robot’s velocity in
case of close interaction with the human, and by letting the robot avoiding possible collisions.
Compared to geometric planners, the presented approach generates suboptimal paths. Geometric
planners, in fact, consider human and robot kinematics, as well as objects in the scene, in order to
search for the optimal (minimum-cost) path. Hence, geometric planners are able to find globally
optimal paths, but they have high computational costs, which limits their applicability in dynamic
environments. On the contrary, the trajectories generated with the presented approach are not nec-
essarily optimal in terms of traveled distance or human safety, but the desired path is computed
and replanned in real-time, allowing a more fluent human-robot interaction.

The second section focused on the execution of structured tasks, by exploiting the framework
used in Section 4.3 for intuitive task transfer from a human teacher to a robotic device. The
framework consists of a robot manager that handles the low-level aspects of the human–robot

148



5.3. Summary and conclusion

interaction, like the control modality switching, the segmentation of human demonstrations, and
the generation of robot’s trajectories, and of a supervisory attentional system that continuously
monitors human and robot activities during both task learning and execution. The attentional sys-
tem exploits contextual information, like robot–object distances and explicit human commands, to
generate, and eventually replan, structured task plans. The framework has been evaluated consid-
ering robots operating in typical kitchen scenarios. In the first scenario, a robotic manipulator is
used to prepare a drink (coffee or tea), autonomously or in cooperation with a human co-worker.
In the second, simulated scenario, the humanoid robot RoDyMan executes the task of topping a
pizza with several ingredients. Obtained results show that the system allows the robot to quickly
learn and robustly execute typical structured activities that involve the manipulation of several
objects. Moreover, experiments have shown how the attentional supervision of both the user and
the robot activities enables cooperative execution of the learned tasks with an associated reduc-
tion of the execution time. Finally, the prepare tea task is used to show how an already learned
task/subtask can be reused in a novel task, effectively enabling the acquisition of incrementally
complex capabilities.

The approaches presented in this chapter have some limitations that can be overcome in a future
research. First, the robot manager does not consider any human-aware replanning strategy. To this
end, the hierarchical architecture used for on-line reshaping of robotic skills can be integrated in
the robot manager and used to reshape the learned motion primitives. Moreover, instead of simply
transforming human gestures into commands for the robot, the attentional system can be exploited
in more complex human–robot interaction scenarios along with more sophisticated attentional
cueing mechanisms. The described integration and extension of the robot manager will allow
the safe execution of structured tasks. Another limitation of the presented framework is that it
does not allow incremental refinement of learned tasks. To this end, one can incorporate in the
robot manager further control modalities which permit physical human–robot interaction during
the task execution. Examples of such control modalities are the interaction control presented in
Section 4.1 and the variable impedance control presented in [91]. Another interesting research
direction is to extend the framework for structured tasks execution to learn and execute force
patterns, enabling the robot to execute dynamic tasks. To this end, the robot manager has to be
extended in order to segment both force and kinematic trajectories, as well as to represent and
execute motion primitives that require explicit force control. Finally, in this work the abstract task,
like prepare coffee, is assigned a priori by an expert user and loaded from the long term memory.
An interesting improvement is to estimate the task to execute from the current scene, enabling
the robot to automatically load in its working memory the tasks/subtasks more appropriate for the
context at hand.

149





CHAPTER 6

Conclusion

Robots operating in human populated environment are asked to efficiently acquire incrementally
complex tasks and to fruitfully execute a variety of activities autonomously or in cooperation with
other agents, including human co-workers. In order to integrate robotic solutions in social appli-
cations, several aspects of the task acquisition process have to be considered and fused together
into a framework that allows a fluent acquisition of novel tasks. This thesis work represents an
attempt to build such a framework for intuitive tasks acquisition, permitting a quick task learning
and a flexible task execution in realistic environments. The work focused on the principal aspects
of the task acquisition process, namely the intuitive task learning, the efficient task representation,
and the effective task execution. These three aspects represent the building blocks, or the main
components, of the framework developed in this work.

6.1. Task representation

Representing the task knowledge in a proper manner is of fundamental importance in order to
properly acquire novel tasks. As discussed in Chapter 3, in this work the task knowledge is rep-
resented at two different levels of representation. Elementary movements, also called motion
primitives, are represented in a compact form which allows real-time motion generation and gen-
eralization, and reduces memory requirements. Stable dynamical systems are identified as the
better-suited representation of point-to-point movements. In particular, the thesis presents an ef-
fective approach to encode motion demonstrations into a stable system, represented by Gaussian
mixture regression. The system is learned from demonstrations and stabilized at run time to guar-
antee global convergence towards a unique target. The comparison carried out in Section 3.1.4
shows that the presented approach is slightly less accurate than state-of-the-art approaches but
significantly faster, offering a good compromise between the accurate reproduction of the demon-
strated movements and the training time. Hence, the presented approach is a suitable choice
to represent multiple demonstrations of the same movement into a compact form, while other
approaches in the literature, like the dynamic movement primitives [65], are better-suited when
single demonstrations are given.

The limitation of Cartesian trajectories as motion descriptors are also investigated in this work.
Cartesian based descriptors, in fact, are affected by several motion variations, like the point of
view and the motion execution style. These limitations are overcome by transforming Cartesian

151



6. Conclusion

trajectories into a different space with known invariance properties. Section 3.2.2 presented the
Denavit–Hartenberg inspired Bidirectional (DHB) representation; a minimal (six values), bidirec-
tional, invariant to affine transformations, linear, angular, and temporal scalings, and numerically
robust representation of rigid body motions. The adoption of such an invariant representation is
beneficial in both gesture recognition and reproduction problems. The invariance properties are
helpful to cope with different observation points, as well as with different executions styles and
kinematics of various subjects, as shown in several gesture recognition experiments carried out
in Section 3.2.3. Bidirectional invariant representations, i.e. representations which allow to re-
construct a Cartesian trajectory from an invariant one, are useful in motion generation problems.
As shown in Section 3.2.4, several Cartesian trajectory instances can be generated from a unique
invariant representation, increasing the generalization capabilities of the motion generation algo-
rithm. The limitation of invariant representations is that they are not compact, since they have
almost the same dimensionality of Cartesian trajectories. Representing invariant trajectories in a
compact from, like a stable dynamical system, will definitely increase the usability of such repre-
sentations in robotic applications.

The mentioned approaches for representing robotic skills work for basic motion units like point-
to-point motions. However, the framework presented in this work is capable of intuitively acquir-
ing complex robotics tasks, in particular structured tasks. A structured task has been defined as a
task consisting of more than one basic action with associated execution constraints. Moreover, a
structured task can be hierarchically decomposed into several levels. As detailed in Section 3.3, a
rooted tree is the better-suited topology to represent a structured task. In particular, this work adopt
rooted trees with three or four levels where the root is simply a label used to distinguish the task
at hand, the so-called abstract task. The root node is connected to two or three more levels. Going
down the tree the levels become incrementally more specific until the leaves level is reached. The
leaves, in fact, contain the basic action that the robot has to perform in order to execute the task.
Each node in the tree is associated with logical pre- and post-conditions and a weight or emphasis.
These informations are exploited at run time to decide the next action that the robot has to execute
in order to complete a certain task.

6.2. Task learning from human demonstrations

Human beings are able to easily acquire novel tasks, for example by observing other humans
while performing the task. Learning from human observation is an intuitive and quick way of
transferring task knowledge from a human teacher to a learning agent, and it is widely used in
this work to learn novel robotic tasks. Kinesthetic teaching, i.e. physically guiding the robot
towards the task execution, and imitation learning, i.e. tracking a user during the task execution
and mapping the motion to a robot, are the two solutions exploited in this work for intuitive skills
transfer. Advantages and limitations of the two solutions are discussed at the beginning of Chapter
4, showing that imitation learning is better suited when human-like (humanoid) robots are used.
Indeed, the main drawback of imitation learning is that human movements have to be mapped to a
humanoid robot, which usually has a different kinematic structure compared to the human beings.
This problem is known as the motion retargetting or the correspondence problem. In this work, the
motion retargetting problem is solved with the approach presented in Section 4.2, that leverages
an inverse kinematics algorithm and simple geometric considerations.

Kinesthetic teaching is better suited for robots with less degrees-of-freedom than a humanoid
robot. This is the case of robotic manipulators which usually have six or seven joints. Depending
on the task, robotic manipulators may have a variable number of redundant degrees-of-freedom
(DoF). For instance, a robot with seven joints has at least one redundant DoF, this independently

152



6.3. Task generation and execution

from the motion to execute. When a robot is redundant, the extra DoF can be exploited to generate
the so-called null-space movements, which are motions of the robot body that do not affect the
pose of the end-effector. This work presents an approach for incremental kinesthetic teaching
of end-effector and null-space tasks. The approach leverages an incremental learning algorithm,
external forces estimation, and a customized kinematic control to permit a human teacher to correct
the robotic task execution, by physically interacting with any point on the robot body. Several
experiments in Section 4.1.3 show that the presented approach represents a valid solution for
intuitive and incremental transfer of end-effector and null-space movements.

Kinesthetic teaching and imitation learning are usually exploited to transfer basic skills from
a human teacher to a robotic learner. This thesis extends the standard approaches presenting a
framework that combines motion segmentation, learning from demonstrations, and attention su-
pervision to realize an intuitive transfer of structured tasks. In particular, a task demonstration is
firstly segmented into basic motion units. Each segmented motion is automatically labeled and
associated to an object to manipulate, by exploiting the segmentation strategy described in Sec-
tion 4.3.1. Segmented data are then encoded into dynamic movement primitives, which allow the
generation of motor commands for the robot. At a higher level, an attentional supervisory system
monitors the human and the robot activities in order to relate the generated action labels and ex-
ecution constraints to the task structure. As detailed in Section 4.3.2, the attentional supervisory
system exploits cognitive control mechanisms to determine the most emphasized robot’s behavior,
i.e. the most active subtask in the tree, and it assigns the generated label to this behavior. The de-
scribed framework permits to learn both a dynamical system based and a symbolic representation
of structured tasks. Hence, after the learning session, the robot has fully acquired the novel task
and it is able to execute the demonstrated structured task, without any further human intervention
or data post-processing.

6.3. Task generation and execution

Task generation and execution is the last aspect of the task acquisition process considered in this
work. Indeed, a robot has not fully acquired a novel task unless it is able to reproduce the task.
Moreover, in everyday scenarios, robots are asked to modify their behavior to cope with sudden
and unexpected changes in the environment, as well as to consider human intentions and needs.
As for the task representation and learning, the approaches for the task generation and execution
presented in Chapter 5 follow a hierarchical approach. In particular, the attentional supervisory
system exploits the learned task tree and the current context to select the next action that the robot
has to execute. The attentional system simply generates a set of labels used to identify the action
to execute. A lower layer is then responsible to generate motor commands for the robot. This
layer leverages dynamical systems to generate the motion trajectories and to online reshape the
generated trajectory in case of changes in the robot’s workspace.

More in detail, the lower layer takes as input the action (label) to execute. The action is se-
lected from a database of movement primitives, encoded into stable dynamical systems. Motion
primitives can be learned from demonstration or provided by an expert user. The dynamical sys-
tem representation allows to modify online the robot’s trajectory, for example to avoid possible
collisions or increase the human safety. As detailed in Section 5.1, the velocity generated from
a dynamical system can be rescaled in case of close interaction with the human. This reduces
the severity of possible injuries due to an accidental collision while preserving the correct task
execution, since the rescaled system is still guaranteed to converge to the goal. In case of unfore-
seen objects present in the scene, the robot’s velocity is modified to prevent possible collisions,
again without modifying the equilibrium points of the dynamical system. To this end, a suitable

153



6. Conclusion

modulation matrix is computed given the minimum robot–obstacle distance and the normal vector
connecting the points of minimum distance on the object and on the robot body. The so-called
dynamical system modulation approach has been tested in simulation and experiments on real
robots, in both static and dynamic environments, allowing the robot to prevent possible collisions
without affecting the correct task execution.

The reactive reshaping mechanism requires a continuous monitoring of the robot’s workspace.
RGB-D camera sensors are widely used in this work to monitor the scene and to track eventual
human co-workers. Apart from tracking the human, sensory data are also used to compute the
distance between the robot and eventual objects in the scene. In particular, Section 5.1.2 present
an approach capable to compute robot–obstacles distances in real-time, i.e. within 1ms. The
approach takes as input the depth image from an RGB-D camera and it directly computes the
distance in the depth space. In this work, the robot body is represented with a triangular mesh
model. In contrast to state-of-the-art approaches, which usually approximate the robot with geo-
metric primitives like spheres or cylinders, the mesh model represents the robot more accurately,
resulting in a more accurate distance evaluation. The drawback is that a mesh models has usually
thousands of points, which makes the distance evaluation computationally expensive. In order to
work in real-time, the approach in Section 5.1.2 creates a lattice of robot and object points, con-
taining significantly less points than the original depth image, and iteratively refines the distance
computation to increase the accuracy. All the operations are highly parallelizable and executed
on the graphic processing unit. The algorithm has been tested in a variety of realistic conditions,
showing promising results in terms of accurate distance evaluation and reduced computation time.
Moreover, the approach has been effectively combined with the reactive planning approach in
Section 5.1.1. Compared with slower distance evaluation techniques, the presented approach is
more effective in avoiding collisions with moving obstacles (including humans). Hence, the real-
time capabilities of the presented technique effectively increase the human safety in human–robot
interaction scenarios.

The described reactive reshaping level takes as input the next action to execute and generate a
feasible robot’s trajectory. This is highly compatible with the attentional supervision layer, used
to generate the task plan. The attentional supervisory system, in fact, commands to the robot
the next action to execute considering the current context and the task at hand. The commanded
action is nothing more than a unique label, that the lower layer uses to find the proper action
from the database of motion primitive and to generate a feasible robot’s trajectory. Hence, in this
work, the task planning problem is separated into two steps. An high level attentional mechanism
generates a symbolic plan, i.e. it selects and commands to the robot the next action to execute,
while a low level “robot manager” effectively generates the motor commands. The separation into
symbolic planning and motion generation allows a quick task replanning and a fluent human–robot
interaction. As already mentioned, the robot manager is able to modify the robot’s trajectory in
real-time to avoid possible collisions and to ensure the human safety, without compromising the
correct task execution.

The higher level, instead, takes care of more complex aspects of the interaction. As discussed in
Section 5.2, the attentional system periodically expands the nodes in the task structure to select the
most emphasized behavior and decide the next action to command. The selection process depends
on the task structure (pre- and post-conditions of each action), the current state of the task (last
executed action), contextual informations, and explicit human commands. Human commands
directly affects the task execution. For example, speech commands are used to switch between
teaching and execution phase, or to suspend the execution of a certain task. This work used only
speech commands, but other choices (e.g., gestures) are possible. Contextual informations, like
objects in the scene and robot–object distances, directly affects the emphasis weight of each node,

154



6.4. Future research directions

favoring the execution of certain behaviors. The task learning and generation capabilities of the
presented framework have been evaluated in typical kitchen scenarios. Obtained results show that
the framework allows the robot to quickly learn and robustly execute typical structured activities
that combine pick, place, and object manipulation actions. Moreover, experiments have shown
that the attentional supervision of both user and robot activities enables cooperative task execution
with an associated reduction of the execution time. Finally, experiments have illustrated how an
already acquired task can be reused in a novel task, enabling the acquisition of incrementally
complex abilities.

6.4. Future research directions

Limitations of the presented approaches have been discussed in the conclusion section of each
chapter, together with possible improvements and future work. The aim of this section is to give
a final overview of the research carried out in this thesis and to underline which are the possible
research lines in the field of intuitive skills transfer.

The presented framework for intuitive task acquisition separates the task planning problem in
two parts, where the attentional system generates a symbolic plan and the robot manager generates
the motor commands. The two layers are conceptually separated, but they exchange information
regarding the task execution. Interestingly, the lower level has to communicate to the higher level
that the commanded action has been successfully executed. This mechanism is not fully exploited
in the current version of the framework, since the robot manager is not able to understand that the
execution of an action failed. Hence, an interesting further development is to integrate a real-time
failure detection approach in the robot manager. Developing an effective and fast mechanism for
abnormalities detection, in fact, is the first step to realize a system able to recover from eventual
problems that may occur during the task execution. Failures occurred during the execution of
an action can be detected and classified through visual and/or tactile data, by considering the
failure detection as a binary classification problem (success or failure), where successful task
demonstrations are considered as training data. The robot manager communicates eventual failures
to the attentional supervision system. In case of failures, the attentional system can select the most
appropriate recovery strategy from a database of motion primitives. Such a database is created
from human observation or provided by an expert user. Selecting the recovery strategy from a
database will significantly reduce the time needed to re-plan the task, making possible to realize
an effective strategy for on-line task re-planning.

The work in this thesis was focused on realizing a framework for intuitive task transfer from
human to robotic devices. Programming by demonstration has been identified as a key aspect of
the intuitive transfer, giving the user the possibility to demonstrate a certain task instead of hand
programming the robot behavior. However, programming by demonstration becomes challenging
for robots with many degrees-of-freedom, as underlined by the user study in [162]. The solution
exploited in this work to teach humanoid robots is to apply imitation learning and motion retarget-
ting. An alternative and promising solution is to realize a framework for assisted skills transfer,
where the robot uses already acquired knowledge to assist the human during the teaching. Hence,
one has to move from the one-directional programming by demonstration paradigm, where the
human teacher is the only owner of the task knowledge, to a bi-directional paradigm where the
robot exploits previous knowledge to facilitate the acquisition of novel tasks.

155





Appendices

157





APPENDIX A

Materials and methods

A.1. Dynamical systems theory

A first-order, autonomous dynamical system (DS) is formally defined as

ẋ(t) = f(x(t)), (A.1)

where x(t) ∈ Rn is the so-called state of the DS, ẋ(t) ∈ Rn is the time derivative of x(t), and
f(·) : Rn → Rn is a continuous and continuously differentiable non-linear function. In robotics
applications, the state x(t) usually represents the position of the robot (in joint or Cartesian space),
and ẋ(t) its velocity [18, 76, 78, 117]. Note that, in order to simplify the notation, the time depen-
dency of x is omitted in the rest of the chapter. A solution of (A.1), namely Φ(x0, t) ∈ Rn, is
called trajectory. Different initial conditions x0 generate different trajectories. A point x∗ such
that f(x∗) = 0 ∈ Rn is an equilibrium point of the DS. An equilibrium is locally asymptotically
stable (LAS) if limt→+∞Φ(x0, t) = x∗,∀x0 ∈ D ⊂ Rn. If D = Rn, then x∗ is globally asymp-
totically stable (GAS) and it is the only equilibrium of the DS. The stability of an equilibrium
point can be proved by using results from Lyapunov or Contraction theory. Some useful results
concerning the stability of the equilibrium points of non-linear dynamical system are summarized
as follows.

A.1.1. Lyapunov theory

The stability of an equilibrium point can be studied by analyzing the behavior of a scalar function
of the state variable V (x) ∈R. As stated by the so-called Lyapunov theorem [146], an equilibrium
x∗ is LAS in a compact region D ⊂ Rn if a Lyapunov function V (x) exists that satisfies the
following conditions:

V (x)≥ 0, ∀x ∈ D and V (x) = 0⇐⇒ x= x∗, (A.2a)

V (x)→ ∞ as ‖x‖→ ∞ (radially unbounded), (A.2b)

V̇ (x)≤ 0, ∀x ∈ D and V̇ (x) = 0⇐⇒ x= x∗. (A.2c)

A function that satisfies conditions (A.2a)–(A.2c) is called a Lyapunov function. Moreover, the
equilibrium point is GAS if conditions (A.2a)–(A.2c) are satisfied for all x ∈ Rn.

159



A. Materials and methods

A.1.2. Contraction theory

Contraction theory [95] is an alternative approach to analyze the stability of non-linear dynamical
systems in the form

ẋ= f(x, t), (A.3)

where f(·) : Rn → Rn is a non-linear and, in general, time depending smooth function. Con-
traction theory is based on the idea that, if moving along a trajectory of the contracting system,
the virtual (point-wise) distance to its neighboring trajectories exponentially decreases. This idea
is formalized as follows. For the smooth DS (A.3), it holds that δ ẋ(t) = ∂f

∂x(x, t)δx(t), where
δx(t) is an infinitesimal virtual displacement between any two trajectories of (A.3). In general,
one can consider a differential coordinate transformation of the virtual displacement δx(t) via an
invertible (full rank) square matrix Θ(x, t): δz(t) =Θ(x, t)δx(t). The time derivative δ ż can be
written as

δ ż(t) =
(
Θ̇+Θ

∂f(x, t)
∂x

)
Θ−1

δz(t) = F (x, t)δz(t), (A.4)

where the dependencies of Θ are omitted to simplify the notation. F (x, t) in (A.4) is the so-called
generalized Jacobian. Considering the positive definite metric M(x, t) = Θ(x, t)TΘ(x, t), the
squared point-wise distance between any two trajectories of (A.3) is defined as δz(t)Tδz(t) =
δx(t)TM(x, t)δx(t), and its time derivative is

d
dt

δz(t)T
δz(t) = 2δz(t)T d

dt
z(t) = 2δz(t)TF (x, t)δz(t), (A.5)

where the second equality derives from (A.4). If F (x, t) is uniformly negative definite in a region
C ⊆ Rn (see Definition 3 in Table A.1), then δz(t)Tδz(t), and consequently δx(t)Tδx(t), expo-
nentially converge to zero. Therefore, all the trajectories of (A.3) converge exponentially to each
other in the region C ⊆ Rn, and C is called a contraction region with respect to M(x, t). This
result is stated by the following theorem.

Theorem 1. 1Consider the dynamical system (A.3) and a given trajectory x̂(t), where x̂(t) is a
solution of (A.3). Consider also a ball B of constant radius with respect to the metric M(x, t) =
Θ(x, t)TΘ(x, t), centered at x̂(t). Any trajectory of (A.3), which starts in B and is contained at all
times in a contraction region C with respect toM(x, t), remains in B and converges exponentially
to x̂(t).
Furthermore, global exponential convergence to x̂(t) is guaranteed if the whole state space is a
contraction region with respect to the metricM(x, t). �

When the conditions in Theorem 1 hold, the trajectories of the DS converge towards an equi-
librium trajectory, which can be either an equilibrium point or a periodic orbit. Regarding the
convergence towards an equilibrium point, the following result holds.

Corollary 1. 1If a system is globally contracting and autonomous, all the trajectories converge
exponentially towards a unique equilibrium point. �

Contraction of a system can be proven by analyzing the matrix measure of the generalized
Jacobian. The matrix measures associated to Euclidean and l1 norms are:

µ2(A) = max
i

(
λi

{
A+AT

2

})
, (A.6)

µ1(A) = max
j

(
a j j +∑

i6= j
|ai j|

)
, (A.7)

1Refer to [95, p. 2-3], [95, p. 8], [95, p. 10] and [159, p. 4] for the proofs of Theorem 1-3 and Corollary 1.

160



A.2. Robot control

Table A.1.: Definitions

Definition 1: Given a square matrix A ∈ Rn×n, the matrix S = 1
2

(
AT +A

)
∈ Rn×n is the sym-

metric part ofA.

Definition 2: Let ||A||i be an induced matrix norm of A on Rn×n. Then the corresponding ma-
trix measure is the function µ(A) : Rn×n → R defined by µ(A) = limε→0+

||I+εA||i−1
ε

. Useful
properties of µ(A) are:

1) µ(αA) = α µ(A), ∀A ∈ Rn×n,α ≥ 0.

2) µ(A+B)≤ µ(A)+µ(B), ∀A,B ∈ Rn×n.

3) For any nonsingular matrix N and any vector norm || · || with induced matrix measure µ ,
||Nx|| is a vector norm and its induced matrix measure µN is µN(A) = µ(NAN−1).

Definition 3: Given the system equations ẋ= f (x, t), the Jacobian F (x, t) = ∂f/∂x is uniformly
negative definite if ∃β > 0|∀x ∈ C ⊆ Rn,∀t ≥ 0, 1

2

(
F (x, t)T +F (x, t)

)
≤−βI < 0.

where λi{B} in (A.6) is the i-th eigenvalue of B. Recall that, unlike vector measures, matrix
measures can be also negative. Note also that the statements µ2(A)< 0 and A is negative definite
are equivalent. In fact, the results in Theorem 1 also hold for other matrix measures.

Theorem 2. 1The DS ẋ= f(x, t) is contracting if it exists an invertible matrix Θ(x, t) such that
M(x, t) =ΘTΘ is positive definite and the generalized Jacobian satisfies ∃c > 0 |µ(F (x, t))≤
−c,∀t ≥ t0, where µ(·) is a matrix measure associated to a vector norm in Euclidean space. �

A.1.3. Partial contraction theory

In general, the global uniform negative definiteness of the generalized Jacobian is not trivial to
prove [159]. Indeed, Contraction is a conservative condition that many DS do not satisfy. A less
conservative extension of Contraction theory, namely the Partial Contraction theory, is proposed
in [159]. Partial Contraction theory applies to DS in the form

ẋ= f(x,x, t). (A.8)

For instance, the DS ẋ = f(x, t)+g(x, t) and ẋ = a(x)f(x, t) are in the form (A.8). Instead of
guaranteeing that (A.8) is contracting, an auxiliary DS is considered, namely

ẏ = f (y,x, t). (A.9)

Theorem 3. 1Assume that the auxiliary system (A.9) is contracting with respect to y. If a particu-
lar solution of the auxiliary y-system (A.9) verifies a smooth specific property, then all trajectories
of the original x-system (A.8) verify this property exponentially. The original system is said to be
partially contracting. �

The smooth specific property can be any relationship between the state variables of (A.8) and
(A.9), e.g., an equilibrium point.

A.2. Robot control

A.2.1. Rigid Body Motion Representation

Rigid body motions are conveniently represented by attaching an orthogonal frame to the rigid
body (body frame), and by describing the pose (position and orientation) of the body frame with

161



A. Materials and methods

respect to a fixed frame (world frame). In each time instant, the position of the rigid body is rep-
resented by the vector p ∈R3 connecting the origin of the body frame with the origin of the world
frame. The axes of the body frame can be projected along the axes of the world frame by the
means of the direction cosines. Hence, the orientation of the rigid body is described by collecting
the direction cosines into a 3× 3 rotation matrix R. It is possible to show that a minimal repre-
sentation of the orientation consists of 3 values [142]. A possible way to represent the orientation
is to use the three angles representing the three elementary rotations, i.e. rotations around a single
axis, which align the body frame with the world frame. These angles are called Euler angles.
There are 27 possible combinations of Euler angles, which become 12 by preventing consecutive
rotations about parallel axes. In this work, roll-pitch-yaw Euler angles [142] are used to control
the orientation of the KUKA LWR [15].

Another minimal representation exploited in this work is the rotation vector. The rotation vector
r = θ r̂ ∈ R3 is computed from the rotation matrixR as

θ = arccos
(

trace(R)−1
2

)
, r̂ =

1
2sinθ


R(3,2)−R(2,3)

R(1,3)−R(3,1)

R(2,1)−R(1,2)

 ,
where the trace(A) is the sum of the diagonal elements of the matrixA. The rotation matrixR is
computed from r by means of the exponential map

R= exp(r) = I+
S(r)

θ
sin(θ)+

S2(r)

θ 2 (1− cos(θ)),

where the skew-symmetric matrix S(r) ∈ R3×3 is given by

S(r) =


0 −rz ry

rz 0 −rx

−ry rx 0

 .

A.2.2. Kinematic control

The forward kinematics problem consists in finding the mapping between the joint space Sq ∈ Rm

and the task (Cartesian) space Sx ∈Rn of the robot. The inverse mapping from the task space Sx ∈
Rn to the joint space Sq ∈Rm is the inverse kinematics problem. The forward kinematics problem
always admits a unique solutions and it is usually solved by applying the Denavit-Hartenberg
procedure [44]. Then the forward kinematics can be written as

x= f(q), (A.10)

where the kinematic function f : Sx −→ Sq. The time dependency of x and q is omitted in (A.10)
to simplify the notation. Note that, depending on the task space definition, the vector x may
contain Cartesian positions, orientations, or both.

The inverse kinematics problem is usually solved at the velocity level [142]. Indeed, by differ-
entiating (A.10) with respect to the time, it is possible to write

ẋ= J(q)q̇, (A.11)

162



A.2. Robot control

where ȧ indicates the time derivative of a, and the manipulator Jacobian J , ∂f/∂q ∈ Rn×m. If
the Jacobian matrix is square and has full rank, the inverse kinematics problem is solved by means
of the inverse of J , i.e. q̇ = J−1(q)ẋ. For redundant manipulators (n < m), the simplest strategy
to solve the inverse kinematics problem is to minimize the norm of the joint velocity ‖q̇‖. The
inverse solution is then computed as

q̇ = J†(q)ẋ, (A.12)

where J† , JT(JJT)−1 is the Moore–Penrose pseudoinverse of J .
Redundant manipulators are also able to execute the so-called null-space motions, i.e. move-

ments of the robot body which do not affect the pose of the end-effector. Null-space motions are
obtained by projecting extra tasks in the null-space of the Jacobian matrix. For example, given the
end-effector task ẋee and the null-space task q̇ns, the inverse kinematic problem can be solved as

q̇ = J†(q)ẋee +(I−J†J)q̇ns, (A.13)

where the matrix P = (I−J†J) projects q̇ns in the null-space of J , and it is called a null-space
projector.

A.2.3. Impedance control

The dynamics of a robotic manipulator in the absence of external forces (free-motion) can be
written as [142]

B(q)q̈+C(q, q̇)q̇+Fvq̇+g(q) = τ , (A.14)

where q, q̇, and q̈ are respectively the joint positions, velocities, and accelerations, B(q) is the
inertia matrix, C(q, q̇) accounts for the Coriolis and centrifugal effects, Fv represents the viscous
friction, g(q) contains the gravitational terms, and τ is the control torque. By choosing the control
torque as

τ =B(q)u+C(q, q̇)q̇+Fvq̇+g(q), (A.15)

the manipulator’s dynamics in (A.14) becomes the linear and decoupled dynamical system

q̈ = u. (A.16)

The control law (A.15) is the so-called inverse dynamics control [142].
The inverse dynamics control requires to specify the control input u. By choosing

u= q̈d +K(qd−q)+D(q̇d− q̇), (A.17)

the robot behaves as a spring–damper system that follows the desired trajectory specified by qd , q̇d ,
and q̈d . The positive definite matrices K and D regulate the dynamic behavior of the robot. This
choice of u is called impedance control, since equation (A.17) defines a mechanical impedance.
Often in this work physical guidance is adopted to demonstrate a certain task to the robot. A
simple control law that allows physical guidance is obtained by choosing u = 0. In this way, the
control input compensates for gravitational, friction, and Coriolis terms and lets the robot follow-
ing external forces (human guidance). This choice of u is usually named gravity compensation or
zero gravity control. Note that, in practice, the gravity compensation control transforms the robot
into a weightless (or very light) object that is very easy to physically guide.

It can happen that the desired trajectory is specified in task space. In this case, inverse kine-
matics approaches can be used to obtain the desired trajectory in joint space. Alternatively, it is
possible to define an impedance relationship uc similar to (A.17) but in Cartesian space, and to
transform uc into a joint space torque using the relationship τ = JTuc [142]. This solution is
applied to control the KUKA light weight robot (LWR) [15].

163



A. Materials and methods

A.3. Motion representation and regression

The goal of a regression technique is to estimate (regress) an output given a certain input and a
vector of parameters, where the parameters vector is usually learned from a set of training data
[16]. To this end, it is required to construct a continuous mapping between input and output
spaces. When applied to robotics, regression techniques usually map the current position of the
robot xt into the desired position xt+1 or velocity ẋt . The rest of the section gives an overview
of three popular regression techniques—namely locally weighted projection regression, Gaussian
mixture models, and hidden Markov models—widely used in this thesis work to represent human
demonstrations.

A.3.1. Locally weighted projection regression

Locally weighted projection regression (LWPR) [154] is a non-linear regression approach that uses
K linear models to predict the output yi associated to a given input xi. Each of the K linear models
represents a local region called Receptive Field (RF). Given an input point xi, the approach first
computes the output of each RF using the linear relationship

yk =Akxi +bk, ∀k = 1, . . . ,K. (A.18)

The output yi is then computed as

yi =
∑

K
k=1 wk(xi)yk

∑
K
k=1 wk(xi)

, (A.19)

where the weight wk determines the contribution of each RF. The weight wk is usually the Gaussian
kernel

wk(xi) = exp
(
−1

2
(xi−µk)

TWk(xi−µk)

)
, (A.20)

where µk is the center of each RF and Wk is a positive semi-definite matrix. Once centers µk are
given, LWPR computes all the other parameters from the training data using an incremental least
square algorithm.

A.3.2. Gaussian mixture models

Gaussian mixture models (GMM) [39] represent the joint probability p(x;y) between input x and
output y variables as a superposition of K Gaussian densities (components)

p(x;y|θ) =
K

∑
k=1

p(ωk)p(x;y|µk,Σk) =
K

∑
k=1

πkN (x;y|µk,Σk), (A.21)

where each Gaussian component N (x;y|µk,Σk) has prior probability p(ωk) = πk, mean µk, and
covariance matrix Σk. Note that the priors πk satisfy 0≤ πk ≤ 1 and ∑

K
k=1 πk = 1, while the means

and covariance matrices in (A.21) are defined as

µk =

xµk

yµk

 , Σk =

 xΣk
xyΣk

yxΣk
yΣk

 . (A.22)

GMM parameters θ= {πk,µk,Σk} are learned from training data using the expectation–maximization
algorithm [16].

164



A.3. Motion representation and regression

Gaussian mixture regression (GMR) [39] is a non-linear regression technique that exploits
the joint probability p(x;y|θ) in (A.21) to compute the conditional distribution of the output
p(y|x,θ). In particular, given a query point xi, the conditional mean yi and covariance matrix
Σyi are

yi =
K

∑
k=1

hk(xi)
( yxΣk(

xΣk)
−1(xi− xµk)+

yµk
)

Σyi =
K

∑
k=1

h2
k(xi)

(yΣk− yxΣk(
xΣk)

−1 xyΣk
) (A.23)

where

hk(xi) =
πkN (xi|xµk,

xΣk)

∑
K
j=1 π jN (xi|xµ j, xΣ j)

. (A.24)

A.3.3. Hidden Markov models

Hidden Markov Models (HMM) [123] are a stochastic approach widely used to encode robot’s
skills from demonstrations (motion primitives), to retrieve the desired trajectory, and to recognize
motion primitives from incoming data [69, 90, 135]. An HMM is described by the set of L hidden
states S = {s1, . . . ,sL}, the set of M observable output symbols O = {o1, . . . ,oM}, the initial
state probability π = {π1, . . . ,πL}, the L× L state transition probability matrix A = {ai j}, and
the observation symbols probability distribution B = {b1(o), . . . ,bL(o)}. When the observations
o are continuous, a common choice is to represent the observation probability distribution as a
mixture of M Gaussians

b j =
M

∑
k=1

c jkN (o,µ jk,Σ jk), (A.25)

where c jk is the mixture coefficient (prior probability), µ jk and Σ jk are respectively the mean and
covariance matrix of the k-th component in the state s j. The set of model parameters is usually
indicated with λ = {π,A,c,µ,Σ}. Given a set of observations sO, HMM parameters λ are
learned using the Baum-Welch algorithm [123].

The discrete nature of states in HMM results in generation of stepwise motion sequences. To
overcome this problem, the work in [91] proposes a modified learning and generation approach.
In particular, the learning algorithm works by introducing a normalized time variable for each
state. This variable linearly varies from 0 (entering in the state) to 1 (leaving the state). Then, the
correlation between temporal and spatial data is learned as follows. HMM parameters λ are firstly
learned from a time series of spatial data (motion sequence) sO = {so(t)}, using the Baum-Welch
algorithm [123]. Secondly, the optimal state sequenceQ∗ = {q(t)} for the motion sequence sO is
calculated with the Viterbi algorithm [123]. From the optimal sequence Q∗, the relative temporal
sequence tO = {to(t)}, having mean equal to 0.5 for each state, is calculated. Finally, from sO
and tO, the covariance tsΣ for each state is calculated.

The generation algorithm consists of four steps. Firstly, a state sequence is generated determin-
istically. The initial state q(1) is chosen considering the initial state probability

q(1) = argmax
i
π. (A.26)

Then, for each state i, the expected duration to stay at i is calculated as d = 1/(1−ai j), where ai j

is the probability to transit from state i to j 6= i. After staying in state i for d steps, the next state is
chosen as

q(t +1) = argmax
j

aq(t) j. (A.27)

165



A. Materials and methods

Secondly, from the state sequence Q, the relative temporal sequence tO is calculated. For this
temporal sequence, the responsibility γi(t) for each state i is calculated as

γi(t) =
αi(

to(t))βi(
to(t))

∑
L
l=1 αl(to(t))βl(to(t))

, ∀l = 1, . . . ,L, (A.28)

where αi(
to(t)) and βi(

to(t)) are the HMM forward and backward variables [123] for the temporal
sequence. The responsibility γi(t) represents the probability of being in state i at time t for the
observation sequence tO.

Then, from Q and tO, a sequence of spatial data is calculated. For each time step t, a mixture
of K Gaussians in the state i = q(t) is considered, where the mean and covariance matrix of the
generic k-th Gaussian at state i are

µik =

t µik

sµik

 , Σik =

ttΣik
tsΣik

stΣik
ssΣik

 .
The conditional spatial data for each state i is calculated using GMR [39]

soi(t) =
K

∑
k=1

cik

{
sµik +

tsΣik
ttΣik

(to(t)− t
µik)

}
, (A.29)

where i is used instead of q(t) to simplify the notation. Finally, the conditional expectation so(t),
representing the generated smooth trajectory, is generated considering the responsibility of each
state as

so(t) =
L

∑
l=1

γi(t)soi(t). (A.30)

Incremental motion refinement

The goal of incremental learning of motion primitives is to update the previous knowledge of
motion primitives as new demonstrations are provided, without keeping all the training data in the
dataset. A forgetting factor is often used to avoid that the learning algorithm becomes insensitive
to new data when the data set becomes large. An approach for incremental learning of HMM is
proposed in [91] and summarized as follows.

The main idea is to use just two demonstrations (sOd , d = 1,2): one is the new demonstration
provided by the user, the other is the smooth trajectory generated from the current HMM model
using the previously described approach. Given the forgetting factor 0 < η < 1, the weighting
term for the new demonstration is chosen as w1 = η , while the weighting term for the generated
motion trajectory is w2 = 1−η . The new HMM parameters λ̂ are updated using the old ones λ
and the demonstrations as follows

π̂i = ∑
2
d=1 wdγd

i (1),

âi j =
∑

2
d=1 wd

∑
T d−1
t=1 ξ d

i j(t)

∑
2
d=1 wd ∑

T d−1
t=1 γd

i (t)
,

ĉik =
∑

2
d=1 wd

∑
T d
t=1 γd

ik(t)

∑
2
d=1 wd ∑

T d
t=1 γd

i (t)
,

sµ̂ik =
∑

2
d=1 wd

∑
T d
t=1 γd

ik(t)
sod(t)

∑
2
d=1 wd ∑

T d
t=1 γd

ik(t)
,

ssΣ̂ik =
∑

2
d=1 wd

∑
T d
t=1 γd

ik(t)(
sod(t)−sµik)(

sod(t)−sµik)
T

∑
2
d=1 wd ∑

T d
t=1 γd

ik(t)
.

166



A.3. Motion representation and regression

In the former equations, γd
i is the probability of being in state i at time t for the observation

sequence sOd , T d is the time duration of the observation sequence sOd , ξi j is the probability of
being in state i at time t and in state j at time t + 1 for the observation sequence sOd , and γd

ik(t)
is the probability of being in state i at time t with the k-th mixture component accounting for the
observation sod .

167





APPENDIX B

Comparison of Invariant Motion Representations

This appendix describes theoretical relationships and differences between the DHB representation
presented in Section 3.2.2 and two state-of-the-art bidirectional invariant representations, namely
EFS [155] and DS1 [42]. EFS and DS representations transform velocities and their time deriva-
tives into invariants, as shown in Table B.1, where the time dependencies are omitted to sim-
plify the notation. They are compared with velocity-based DHB invariants, since position and
velocity-based DHB invariants are practically the same and the same properties hold for both the
representations, as stated in Section 3.2.2. The results of the analysis presented in this section are
summarized in Table B.2.

Table B.1.: EFS and DS representations

EFS invariants [155]
e1

ω =±‖ω‖, e2
ω =±‖ω×ω̇‖‖ω‖2 , e3

ω =±‖(ω×ω̇)×(ω×ω̈)‖‖ω×ω̇‖2

e1
v =±‖v‖, e2

v =±
‖v×v̇‖
‖v‖2 , e3

v =±
‖(v×v̇)×(v×v̈)‖
‖v×v̇‖2

DS invariants [42]
d1

ω =±‖ω‖, d2
ω =±‖ω×ω̇‖‖ω‖2 , d3

ω =± ‖ω‖
‖ω×ω̇‖2 |(ω× ω̇) · ω̈|

d1
v =± v·ω

‖ω‖ , d2
v =± ω×ω̇

‖ω×ω̇‖ ·
‖ω‖2(ω̇×v+ω×v̇)−2(ω×v)·(ω·ω̇)

‖ω‖4

d3
v =∓ [ω̇×(ω×ω̇)+ω×(ω×ω̈)]·[‖ω‖2(ω̇×v+ω×v̇)−2ω·ω̇·(ω×v)]

‖ω‖3·‖ω×ω̇‖2

∓ [ω×(ω×ω̇)]·[‖ω‖2(ω̈×v+2ω̇×v̇+ω×v̈)−2(‖ω̇‖2+ω·ω̇)(ω×v)]
‖ω‖3·‖ω×ω̇‖2

±
[

3(ω·ω̇)
2‖ω‖2 + (ω×ω̇)·(ω×ω̈)

‖ω×ω̇‖2

]
· [ω×(ω×ω̇)]·[‖ω‖

2(ω̇×v−ω×v̇)−2(ω·ω̇(ω×ω̇)]
‖ω‖3·‖ω×ω̇‖2

1For simplicity, the acronym of the author name (DS) is used to refer the representation in [42].

169



B. Comparison of Invariant Motion Representations

Table B.2.: Overview and properties of DS, EFS, and DHB representations.
Numerically Invariant to

Representation Physical meaning Bidirectional robust Initial pose reference point viewpoint time/linear/angular scale

DS Motion along ISA and motion of ISA X − X X X X/ X/X

EFS Velocities (magnitude), orientation of FS frames X − X − X X/X/X

DHB Discrete time approximation of EFS X X X − X X/X/X

B.1. Theoretical comparison

B.1.1. DHB and DS representations

DS [42] is a bidirectional invariant representation of rigid body motions, constructed by means
of the Instantaneous Screw Axis (ISA) [101]. Two invariants represent the translational velocity
along the ISA and the rotational velocity about the ISA. Four other invariant values describe the
motion of the ISA between two consecutive time instants. Given the twist, i.e. linear vt and angular
ωt velocities, in each time instant, the six invariants are computed as shown in Table B.1, where
the sign of each invariant is chosen to avoid discontinuities between consecutive time instants. In
the continuous time domain, i.e. for the sampling time ∆t −→ 0, the relationships between DHB
and DS are mω = d1

ω , θ 1
ω ≈ d2

ω∆t, and θ 2
ω ≈ d3

ω∆t. These relationships are proven as follows.
The relationship mω = d1

ω derives from (3.37) and d1
ω in Table B.1. In order to show that

θ 1
ω ≈ d2

ω∆t, one has to notice that, for ∆t −→ 0, it is possible to neglect the arc tangent in (3.45).
Hence, θ 1

ω in (3.40) can be re-written as

θ
1
ω ≈
‖ωt ×ωt+1‖
ωt ·ωt+1

=
‖ωt × (ωt +∆ωt)‖
ωt · (ωt +∆ωt)

≈ ‖ωt ×∆ωt‖
‖ωt‖2

∆t
∆t
≈ ‖ωt × ω̇t‖
‖ωt‖2 ∆t = d2

ω∆t. (B.1)

In order to show that θ 2
ω ≈ d3

ω∆t, recall that a×b =−b×a and that a · (b×c) = c · (a×b). θ 2
ω in

(3.40) can be re-written as

θ
2
ω = arctan

(
‖ωt+1‖ωt+2 · (ωt+1×ωt)

(ωt+1×ωt) · (ωt+1×ωt+2)

)
= arctan

(
‖ωt+1‖(ωt ×ωt+1) ·ωt+2

(ωt ×ωt+1) · (ωt+1×ωt+2)

)
. (B.2)

The denominator of (B.2) can be re-written as

(ωt ×ωt+1) · (ωt+1×ωt+2)≈ (ωt ×∆ωt) · [(ωt ×∆ωt)× (ωt ×2∆ωt)]

= (ωt ×∆ωt) · [2(ωt ×∆ωt)− (ωt ×∆ωt)]
∆t2

∆t2 ≈ (ωt × ω̇t) · (ωt × ω̇t)∆t2 = ‖ωt × ω̇t‖2
∆t2.

(B.3)
Considering that ät ≈ (at+2 +at)/∆t2, the numerator of (B.2) can be re-written as

‖ωt+1‖(ωt ×ωt+1) ·ωt+2 ≈ ‖ωt‖(ωt ×∆ωt) · (ω̈t∆t2−ωt)≈ ‖ωt‖(ωt × ω̇t) · ω̈t∆t3. (B.4)

Finally, combining (B.3), (B.4), and (B.2), and neglecting the arc tangent, it results that θ 2
ω ≈ d3

ω∆t
for ∆t −→ 0.

Described relationships allow to conclude that the DHB invariant values related to the angular
velocity represent the angular motion of the ISA in the discrete time domain. DHB invariants
describe the motion of the ISA using angular velocities sampled at consecutive time instants, while
DS invariants use high-order time derivatives. DS invariant values related to the linear velocity are
obtained by projecting the linear velocity along the ISA, which guarantees the invariance to the
reference point used to describe the translation [42]. As discussed in Section 3.2.2, the invariance
to the reference point is not guaranteed by DHB and EFS representations.

170



B.2. Experimental comparison

B.1.2. DHB and EFS representations

The original Frenet–Serret (FS) representation [83] consists of three invariant values, correspond-
ing to e1

v , e2
v , and e3

v in Table B.1. e1
v represents the linear velocity along the tangent axis of the

Frenet–Serret frame, e2
v and e3

v describe the change in the orientation of the FS frame. e2
v and e3

v are
closely related to the curvature κ and torsion τ of a space curve, i.e. e2

v =±κ‖v‖ and e3
v =±τ‖v‖.

Recall that the curvature describes the change of the orientation angle of the tangent of a space
curve per unit arc length, while the torsion describes the change of the orientation of the tangent
plane of a space curve per unit arc length [83].

EFS [155] extends the FS representation by considering the orientation of the rigid body. In
EFS a second FS frame is attached to the rigid body and three more invariants—e1

ω , e2
ω , and e3

ω

in Table B.1—are used to describe the rotation of the rigid body. The original trajectory can be
reconstructed from EFS invariants by applying the method in [164] to both the FS frames. From
Table B.1, it is straightforward to show that d1

ω = e1
ω , d2

ω = e2
ω , and d3

ω = e3
ω . Another interesting

property is that EFS and DS are exactly the same representation in case of pure translations. In
this case, in fact, ω = 0 and only three invariants are defined. According to [42] and Table B.1, it
holds that d1

v = e1
v , d2

ω = e2
v , and d3

ω = e3
ω .

In the continuous time domain, DHB and EFS are almost the same apart from a scaling factor.
Indeed, it holds that mu = e1

u, θ 1
u ≈ e2

u∆t, and θ 2
u ≈ e3

u∆t for u = v,ω . The relationship mv = e1
v

derives from (3.36) and e1
v in Table B.1. The relationship mω = e1

ω derives from (3.37) and e1
ω in

Table B.1, while θ 1
ω ≈ e2

ω∆t derives from (B.1) recalling that e2
ω = d2

ω . θ 1
v ≈ e2

v∆t can be proven
by following similar steps as in (B.1) and considering e2

v in Table B.1. The relationship θ 2
v ≈ e3

v∆t
and θ 2

ω ≈ e3
ω∆t are obtained by following similar steps as in (B.3) and (B.4), and recalling that

(a×b)× (a× c) = [a · (b× c)]a.
Given these relationships, it is possible to conclude that DHB is a discrete time version of EFS.

EFS invariants describe the motion of the two FS frames assuming a continuous time domain and
the effects of the numerical implementation are simply neglected. In contrast, DHB invariants
describe the motion of the two (FS) frames directly assuming a discrete time domain. DHB uses
velocities sampled at consecutive time instants instead of high-order time derivatives. DHB and
EFS share the same invariance properties (see Table B.2), because both describe the motion of
the two FS frames. In addition, DHB representation is also numerically robust because there is a
one-to-one mapping between the representation and its numerical implementation.

Note that a robust discrete time approximation of FS invariants is proposed in [163]. Compared
to [163], DHB representation considers also the orientation of the rigid body, uses less consecutive
samples (3 instead of 5), and provides an accurate approach to reconstruct the motion. Finally, it
is straightforward to show that θ 1

v , θ 2
v , θ 1

ω , and θ 2
ω depend on the sampling time ∆t. The sam-

pling time dependency does not cause problems in usual cases, since most of the sensors provides
measurements with relatively constant sampling time. In case the trajectories are sampled at very
different rates, one can simply divide these invariants by the sampling time ∆t. Dividing by ∆t
corresponds to a numerical differentiation step, and it increases the noise sensitivity of DHB in-
variants. As a general rule, it is preferable to remove the dependency on the sampling time only if
it is needed, i.e. if trajectories are sampled at different rates.

B.2. Experimental comparison

B.2.1. Trajectory reconstruction error

DHB, DS, and EFS are bidirectional invariant representations, i.e. Cartesian twists can be re-
trieved from their representations. Original velocities are reconstructed from a DHB descriptor

171



B. Comparison of Invariant Motion Representations

time [s]

0

0.2

0.4

0.6

0 2 4 0 2 4 0 2 4

0 2 4 0 2 4 0 2 4

5

4

6

0

-1

1

0

-1

1

0

-0.4

0.4

0

0.4

0.2

ω
x 

[r
ad

/s
]

v x
 [

m
/s

]

v y
 [

m
/s

]

v z
 [

m
/s

]

ω
y 

[r
ad

/s
]

ω
z [

ra
d/

s]

Figure B.1.: Synthetic twist trajectory: vx = 0.01exp(t), vy = 5+ 1.5sin(t), vz = cos(t), ωx =
0.5sin(t), ωy = cos(t) and ωz = 0.1t, t = 0, . . . ,4s.

by applying the algorithm in Section 3.2.2. The reconstruction performance of all the represen-
tations is tested by using the synthetic twist trajectory in Figure B.1. The reconstruction error is
computed as the root mean square error (RMSE) between the original twists in Figure B.1 and
the twists reconstructed from each invariant representation. The results are shown in Figure B.2
using three different sampling times (∆t = 0.1, 0.01, and 0.001s). One can see a non-negligible
error with DS and EFS descriptors. The accuracy of DS and EFS depends on the sampling time,
i.e. the smaller the sampling time the smaller the error. DS and EFS representations, in fact, use
high-order derivatives which are affected by round-off errors. Moreover, numerical integration
steps are required to reconstruct Cartesian twists from both DS and EFS representations. The lin-
ear RMSE for DS representation is always bigger than the linear RMSE for EFS invariants. This
is because d2

v and d3
v are an approximated representation of the kinematics of the ISA [42]. On the

other hand, the DHB invariants offer a high reconstruction accuracy for each value of ∆t. Figure
B.2 shows a negligible increase of reconstruction error for smaller sampling times, which is due
to the finite precision of the computing machine. In particular, a smaller sampling time generates
more twist samples and more invariant values, and more products have to be computed in (3.56)
to reconstruct the motion, which increases errors due to the finite precision.

B.2.2. Noise sensitivity

In order to show the noise sensitivity of invariant descriptors, a Gaussian noise with increasing
power Pnoise is added to the data in Figure B.1. The Gaussian noise is generated by considering a
decreasing signal noise ratio (snr) from 100dB to 50dB, where snr = Psignal/Pnoise. To measure
the noise sensitivity of each representation, the invariant representation {in}t of the noisy twist
trajectories is computed. The invariant representation {i}t of the noiseless trajectories is then
point-wise subtracted to {in}t . The resulting set of samples {rn}t represent the residual noise.
The residual signal to noise ratio, i.e. the ratio between the original signal power P{i} and the
residual noise power P{rn}, is used to compactly represent the noise sensitivity. The described
procedure is repeated 100 times for each value of the snr and for each invariant representation.

172



B.2. Experimental comparison

Δt = 0.001s

Δt = 0.1s
Δt = 0.01s

DS
(linear - angular)

EFS
(linear - angular)

DHB
(linear - angular)

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
M

S
E

 (
[m

/s
] 

- 
[r

ad
/s

])

Velocity Reconstruction Errors

Figure B.2.: Errors between the twists in Figure B.1 and the twists reconstructed from DS, EFS,
and DHB for different sampling times. Note the logarithmic scale on the ordinates.

Figure B.3 shows the mean and standard deviation of the residual snr. The DHB representation
exhibits a reduced noise sensitivity, compared to DS and EFS representations. The reason is that
DHB invariants lie at velocity level, while DS and EFS invariants lie at jerk level. The numerical
computation of high-order derivatives is sensitive to the noise in the data and round-off errors [34].
DS invariants show the highest noise sensitivity. Indeed, the projection of the linear velocity (and
its time derivatives) along the ISA axis increases the noise, especially in d2

v and d3
v in Table B.1.

50 60 7080 90 100
snr (dB)

R
es

id
ua

l s
nr

 (
dB

)

EFS
DHB

DS

60

40

20

0

-20

-40

-60

Figure B.3.: Noise sensitivity of DHB, DS, and EFS when a Gaussian noise with increasing power
is applied to the twists in Figure B.1. Crosses represent the mean and bars represent
the standard deviation of the residual snr over the 100 iterations.

173





Bibliography

[1] English letters dataset. www.creativedistraction.com/demos/
gesture-recognition-kinect-with-hidden-markov-models-hmms/.

[2] LASA handwritten dataset. lasa.epfl.ch/sourcecode/.

[3] Microsoft research center action3d dataset. www.uow.edu.au/˜wanqing/
#MSRAction3DDatasets.

[4] NAO humanoid robot. www.ald.softbankrobotics.com/en/cool-robots/
nao.

[5] Open Natural Interaction (OpenNI) library. www.openni.ru.

[6] Real-time URDF filter. https://github.com/blodow/realtime_urdf_
filter.

[7] Virtual robot experimentation platform (V-Rep). www.coppeliarobotics.com/.

[8] Xsens MVN motion capture suit. www.xsens.com/products/xsens-mvn.

[9] S. An and D. Lee. Prioritized inverse kinematics using qr and cholesky decompositions. In
International Conference on Robotics and Automation, pages 5062–5069, 2014.

[10] S. An and D. Lee. Prioritized inverse kinematics with multiple task definitions. In Interna-
tional Conference on Robotics and Automation, pages 1423–1430, 2015.

[11] A. S. Arefin, C. Riveros, R. Berretta, and P. Moscato. Gpu-fs-knn: A software tool for fast
and scalable knn computation using gpus. PLoS ONE, 7(8):e44000, 2012.

[12] L. Bascetta, G. A. Magnani, P. Rocco, R. Migliorini, and M. Pelagatti. Anti-collision sys-
tems for robotic applications based on laser time-of-flight sensors. In International confer-
ence on advanced intelligent mechatronics, pages 278–284, 2010.

[13] A. Belardinelli, F. Pirri, and A. Carbone. Bottom-up gaze shifts and fixations learning by
imitation. Transactions on systems, man, and cybernetics, part B: cybernetics, 37(2):256–
271, 2007.

175

www.creativedistraction.com/demos/gesture-recognition-kinect-with-hidden-markov-models-hmms/
www.creativedistraction.com/demos/gesture-recognition-kinect-with-hidden-markov-models-hmms/
lasa.epfl.ch/sourcecode/
www.uow.edu.au/~wanqing/# MSRAction3DDatasets
www.uow.edu.au/~wanqing/# MSRAction3DDatasets
www.ald.softbankrobotics.com/en/cool-robots/nao
www.ald.softbankrobotics.com/en/cool-robots/nao
www.openni.ru
https://github.com/blodow/realtime_urdf_filter
https://github.com/blodow/realtime_urdf_filter
www.coppeliarobotics.com/
www.xsens.com/products/xsens-mvn


Bibliography

[14] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot programming by demonstration.
In B. Siciliano and O. Khatib, editors, Springer handbook of robotics, pages 1371–1394.
2008.

[15] R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe, A. Albu-Schäffer, A. Beyer, O. Eiberger,
S. Haddadin, A. Stemmer, G. Grunwald, and G. Hirzinger. The kuka–dlr lightweight robot
arm - a new reference platform for robotics research and manufacturing. In International
symposium on robotics, pages 1–8, 2010.

[16] C. M. Bishop. Pattern recognition and machine learning. Springer, 2006.

[17] M. Black and D. Jepson. A probabilistic framework for matching temporal trajectories:
Condensation-based recognition of gestures and expressions. In European Conference on
Computer Vision, volume 1406 of Lecture Notes in Computer Science, pages 909–924.
Springer, 1998.

[18] C. Blocher, M. Saveriano, and D. Lee. Learning stable dynamical systems using contraction
theory. In International Conference on Ubiquitous Robots and Ambient Intelligence, pages
124–129, 2017.

[19] A. Borji, M. N. Ahmadabadi, B. N. Araabi, and M. Hamidi. Online learning of task-driven
object-based visual attention control. Image and vision computing, 28(7):1130–1145, 2010.

[20] M. M. Botvinick, T. S. Braver, D. M. Barch, C. S. Carter, and J. D. Cohen. Conflict moni-
toring and cognitive control. Psychological review, 108(3):624–652, 2001.

[21] C. Breazeal and M. Berlin. Spatial scaffolding for sociable robot learning. In AAAI Con-
ference on artificial intelligence, pages 1268–1273, 2008.

[22] D. Bristow, M. Tharayil, and A. Alleyne. A survey of iterative learning control. Control
Systems Magazine, 25(3):96–114, 2006.

[23] O. Brock and O. Khatib. Elastic strips: A framework for motion generation in human
environments. The international journal of robotics research, 21(12):1031–1052, 2002.

[24] X. Broquère, A. Finzi, J. Mainprice, S. Rossi, D. Sidobre, and M. Staffa. An attentional ap-
proach to human–robot interactive manipulation. International Journal of Social Robotics,
6(4):533–553, 2014.

[25] R. Caccavale, J. Cacace, M. Fiore, R. Alami, and A. Finzi. Attentional supervision of
human-robot collaborative plans. In International symposium on robot and human interac-
tive communication, pages 867–873, 2016.

[26] R. Caccavale and A. Finzi. Plan execution and attentional regulations for flexible human-
robot interaction. In International Conference on Systems, Man, and Cybernetics, pages
2453–2458, 2015.

[27] R. Caccavale and A. Finzi. Flexible task execution and attentional regulations in human-
robot interaction. Transactions on cognitive and developmental systems, 9(1):68–79, 2017.

[28] R. Caccavale, A. Finzi, D. Lee, and M. Saveriano. Integrated task learning and kinesthetic
teaching for human-robot cooperation. In Italian Workshop on Artificial Intelligence and
Robotics, 2016.

176



Bibliography

[29] R. Caccavale, E. Leone, L. Lucignano, S. Rossi, M. Staffa, and A. Finzi. Attentional regula-
tions in a situated human-robot dialogue. In International symposium on robot and human
interactive communication, pages 844–849, 2014.

[30] R. Caccavale, M. Saveriano, G. A. Fontanelli, F. Ficuciello, D. Lee, and A. Finzi. Imi-
tation learning and attentional supervision of dual-arm structured tasks. In International
conference on development and learning and on epigenetic robotics, 2017.

[31] S. Calinon. A tutorial on task-parameterized movement learning and retrieval. Intelligent
service robotics, 9(1):1–29, 2016.

[32] S. Calinon and A. Billard. Incremental learning of gestures by imitation in a humanoid
robot. In International conference on Human–robot interaction, pages 255–262, 2007.

[33] S. Calinon, F. Guenter, and A. Billard. On learning, representing and generalizing a task
in a humanoid robot. Transactions on systems, man and cybernetics, part B: cybernetics,
37(2):286–298, 2007.

[34] R. Chartrand. Numerical differentiation of noisy, nonsmooth data. ISRN Applied Mathe-
matics, 2011:1–12, 2011.

[35] R. Chaudhry, F. Ofli, G. Kurillo, R. Bajcsy, and R. Vidal. Bio-inspired dynamic 3d discrim-
inative skeletal features for human action recognition. In Conference on Computer Vision
and Pattern Recognition, pages 471–478, 2013.

[36] S. Chiaverini. Singularity-robust task-priority redundancy resolution for real-time kine-
matic control of robot manipulators. IEEE Transaction on Robotics and Automation,
13(3):398–410, 1997.

[37] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E. Kavraki, and
S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT
press, 2005.

[38] M. Cirillo, L. Karlsson, and A. Saffiotti. Human-aware task planning: An application to
mobile robots. Transactions on Intelligent Systems and Technology, 1(2), 2010.

[39] D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with statistical models.
Journal of Artificial Intelligence Research, 4(1):129–145, 1996.

[40] R. P. Cooper and T. Shallice. Hierarchical schemas and goals in the control of sequential
behavior. Psychological review, 113(4):887–916, 2006.

[41] G. De Maria, P. Falco, C. Natale, and S. Pirozzi. Integrated force/tactile sensing: The
enabling technology for slipping detection and avoidance. In International Conference on
Robotics and Automation, pages 3883–3889, 2015.

[42] J. De Schutter. Invariant description of rigid body motion trajectories. Journal of Mecha-
nisms and Robotics, 2(1):1–9, 2010.

[43] J. De Schutter, E. Di Lello, J. F. M. De Schutter, R. Matthysen, T. Benoit, and T. De Laet.
Recognition of 6 dof rigid body motion trajectories using a coordinate-free representation.
In International Conference on Robotics and Automation, pages 2071–2078, 2011.

177



Bibliography

[44] J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair mechanisms based on
matrices. Transaction of the ASME journal of applied mechanics, 22(2):215–221, 1965.

[45] S. Dieleman, J. De Fauw, and K. Kavukcuoglu. Exploiting cyclic symmetry in convolu-
tional neural networks. In International Conference on Machine Learning, pages 1889–
1898, 2016.

[46] R. Dillmann. Teaching and learning of robot tasks via observation of human performance.
Robotics and autonomous systems, 47(2):109–116, 2004.

[47] P. M. Engel and M. R. Heinen. Incremental learning of multivariate gaussian mixture mod-
els. In Advanvances in Artificial Intelligence, pages 82–91. 2010.

[48] P. Falco and C. Natale. Low-level flexible planning for mobile manipulators: a distributed
perception approach. Advanced robotics, 28(21):1431–1444, 2014.

[49] P. Falco, M. Saveriano, E. G. Hasany, N. H. Kirk, and D. Lee. A human action descriptor
based on motion coordination. Robotics and automation letters, 2(2):811–818, 2017.

[50] F. Flacco and A. De Luca. Multiple depth/presence sensors: Integration and optimal place-
ment for human/robot coexistence. In International conference on robotics and automation,
pages 3916–3923, 2010.

[51] F. Flacco, T. Kroeger, A. De Luca, and O. Khatib. A depth space approach for evaluating
distance to objects. Journal of Intelligent and Robotic Systems, 80(1):7–22, 2015.

[52] F. Flacco, T. Kroger, A. De Luca, and O. Khatib. A depth space approach to human-robot
collision avoidance. In International conference on Robotics and Automation, pages 338–
345, 2012.

[53] A. Fod, M. J. Matarić, and O. C. Jenkins. Automated derivation of primitives for movement
classification. Autonomous robots, 12(1):39–54, 2002.

[54] A. Gams, B. Nemec, A. J. Ijspeert, and A. Ude. Coupling movement primitives: Interaction
with the environment and bimanual tasks. Transactions on Robotics, 30(4):816–830, 2014.

[55] S. Gams, A. J. Ijspeert, S. Schaal, and J. Lenarčič. On-line learning and modulation of
periodic movements with nonlinear dynamical systems. Autonomous Robots, 27(1):3–23,
2009.

[56] S. Garrido-Jurado, R. Muñoz Salinas, F. J. Madrid-Cuevas, and M. J. Marı́n-Jiménez. Auto-
matic generation and detection of highly reliable fiducial markers under occlusion. Pattern
Recognition, 47(6):2280–2292, 2014.

[57] G. Grioli, S. Wolf, M. Garabini, M. Catalano, E. Burdet, D. Caldwell, R. Carloni, W. Friedl,
M. Grebenstein, M. Laffranchi, D. Lefeber, S. Stramigioli, N. Tsagarakis, M. van Damme,
B. Vanderborght, A. Albu-Schaeffer, and A. Bicchi. Variable stiffness actuators: The user’s
point of view. The International Journal of Robotics Research, 34(6):727–743, 2015.

[58] S. Haddadin, A. Albu-Schäffer, A. De Luca, and G. Hirzinger. Collision detection and reac-
tion: A contribution to safe physical human-robot interaction. In International conference
on Intelligent robots and systems, pages 3356–3363, 2008.

178



Bibliography

[59] S. Haddadin, S. Belder, and A. Albu-Schäffer. Dynamic motion planning for robots in
partially unknown environments. In IFAC world congress, pages 6842–6850, 2011.

[60] S. Haddadin, S. Haddadin, A. Khoury, T. Rokahr, S. Parusel, R. Burgkart, A. Bicchi, and
A. Albu-Schäffer. On making robots understand safety: Embedding injury knowledge into
control. The International Journal of Robotics Research, 31(13):1578–1602, 2012.

[61] S. Haddadin, H. Urbanek, S. Parusel, D. Burschka, J. Roßmann, A. Albu-Schäffer, and
G. Hirzinger. Real-time reactive motion generation based on variable attractor dynamics
and shaped velocities. In International conference on intelligent robots and systems, pages
3109–3116, 2010.

[62] H. Hoffmann, P. Pastor, D.-H. Park, and S. Schaal. Biologically-inspired dynamical systems
for movement generation: automatic real-time goal adaptation and obstacle avoidance. In
International Conference on Robotics and Automation, pages 1534–1539, 2009.

[63] K. Hu and D. Lee. Bipedal locomotion primitive learning, control and prediction from
human data. International symposium on robot control, 45(22):536–542, 2012.

[64] K. Hu, C. Ott, and D. Lee. Online human walking imitation in task and joint space based
on quadratic programming. In International conference on robotics and automation, pages
3458–3464, 2014.

[65] A. Ijspeert, J. Nakanishi, P Pastor, H. Hoffmann, and S. Schaal. Dynamical movement
primitives: learning attractor models for motor behaviors. Neural Computation, 25(2):328–
373, 2013.

[66] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for learning motor
primitives. In Advances in Neural Information Processing Systems, pages 1547–1554, 2003.

[67] A. J. Ijspeert, J. Nakanishi, and Stefan Schaal. Movement imitation with nonlinear dynam-
ical systems in humanoid robots. In International Conference on Robotics and Automation,
pages 1398–1403, 2002.

[68] K. Ikuta, H. Ishii, and M. Nokatao. Safety evaluation method of design and control for
human-care robot. International Journal of Robotics Research, 22(5):281–297, 20103.

[69] T. Inamura, I. Toshima, H. Tanie, and Y. Nakamura. Embodied symbol emergence based
on mimesis theory. The international journal of robotic research, 23(4):363–377, 2004.

[70] M. Isard and A. Blake. Contour tracking by stochastic propagation of conditional density.
In European Conference on Computer Vision, pages 343–356, 1996.

[71] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial transformer net-
works. In Advances in Neural Information Processing Systems, pages 2017–2025, 2015.

[72] Rainer Jäkel, Sven R. Schmidt-Rohr, Steffen W. Rühl, Alexander Kasper, Zhixing Xue,
and Rüdiger Dillmann. Learning of planning models for dexterous manipulation based on
human demonstrations. International Journal of Social Robotics, 4(4):437–448, 2012.

[73] K. B. Kaldestad, S. Haddadin, R. Belder, G. Hovland, and D. A. Anisi. Collision avoidance
with potential fields based on parallel processing of 3d-point cloud data on the gpu. In
International conference on robotics and automation, pages 3250–3257, 2014.

179



Bibliography

[74] K. Kawamura, S. M. Gordon, P. Ratanswasd, E. Erdemir, and J. F. Hall. Implementation
of cognitive control for a humanoid robot. International journal of humanoid robotics,
5(4):547–586, 2007.

[75] S. M. Khansari-Zadeh and A. Billard. BM: an iterative algorithm to learn stable non-linear
dynamical systems with Gaussian mixture models. International conference on robotics
and automation, pages 2381–2388, 2010.

[76] S. M. Khansari-Zadeh and A. Billard. Learning stable non-linear dynamical systems with
Gaussian Mixture Models. Trans. on Rob., 27(5):943–957, 2011.

[77] S. M. Khansari-Zadeh and A. Billard. A dynamical system approach to realtime obstacle
avoidance. Autonomous robots, 32(4):433–454, 2012.

[78] S. M. Khansari-Zadeh and A Billard. Learning control Lyapunov function to ensure stability
of dynamical system-based robot reaching motions. Robotics And Autonomous Systems,
62(6):752–765, 2014.

[79] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. The interna-
tional journal of robotics research, 5(1):90–98, 1986.

[80] K. Khoshelham and S. Oude Elberink. Accuracy and resolution of kinect depth data for
indoor mapping applications. Sensors, 12(2):1437–1454, 2012.

[81] H. S. Koppula and A. Saxena. Anticipating human activities using object affordances
for reactive robotic response. Transactions on pattern analysis and machine intelligence,
38(1):14–29, 2015.

[82] K. Kronander, S. M. Khansari-Zadeh, and A. Billard. Incremental motion learning with
locally modulated dynamical systems. Robotics and Autonomous Systems, 2015.

[83] W. Kühnel. Differential geometry: curves - surfaces - manifolds. American Mathematical
Society, 2006.

[84] D. Kulić and E. A. Croft. Real-time safety for human–robot interaction. Robotics and
Autonomous Systems, 54(1):1–12, 2006.

[85] D. Kulić, C. Ott, D. Lee, J. Ishikawa, and Y. Nakamura. Incremental learning of full body
motion primitives and their sequencing through human motion observation. The interna-
tional journal of robotics research, 31(3):330–345, 2012.

[86] T. Kulvicius, M. Biehl, M. J. Aein, M. Tamosiunaite, and F. Wörgötter. Interaction learning
for dynamic movement primitives used in cooperative robotic tasks. Robotics and Au-
tonomous Systems, 61(12):1450–1459, 2013.

[87] B. Lacevic, P. Rocco, and A. M. Zanchettin. Safety assessment and control of robotic
manipulators using danger field. Transactions on Robotics, 29(5):1257–1270, 2013.

[88] P. A. Lasota and J. A. Shah. Analyzing the effects of human-aware motion planning on
close-proximity human–robot collaboration. Human Factors: The Journal of the Human
Factors and Ergonomics Society, 57(1):21–33, 2015.

[89] Y. LeCun. Learning Invariant Feature Hierarchies, pages 496–505. Springer, 2012.

180



Bibliography

[90] D. Lee and Y. Nakamura. Mimesis model from partial observations for a humanoid robot.
The international journal of robotic research, 29(1):60–80, 2010.

[91] D. Lee and C. Ott. Incremental kinesthetic teaching of motion primitives using the motion
refinement tube. Autonomous robots, 31(2):115–131, 2011.

[92] D. Lee, R. Soloperto, and M. Saveriano. Bidirectional invariant representation of rigid body
motions and its application to gesture recognition and reproduction. Autonomous Robots,
2017.

[93] A. Lemme, F. Reinhart, K. Neumann, and J. J. Steil. Neural learning of vector fields for
encoding stable dynamical systems. Neurocomputing, 141:3–14, 2014.

[94] W. Li, Z. Zhang, and Z. Liu. Action recognition based on a bag of 3d points. In Conference
on Computer Vision and Pattern Recognition Workshops, pages 9–14, 2010.

[95] W. Lohmiller and J. J. E. Slotine. On contraction analysis for nonlinear systems. Automat-
ica, 34(6):683–696, 1998.

[96] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry. An Invitation to 3-D Vision: From Images to
Geometric Models. Springer, 2003.

[97] V. Magnanimo, M. Saveriano, S. Rossi, and D. Lee. A bayesian approach for task recogni-
tion and future human activity prediction. In International Symposium on Robot and Human
Interactive Communication, pages 726–731, 2014.

[98] E. Magrini, F. Flacco, and A. De Luca. Estimation of contact forces using a virtual force
sensor. In International Conference on intelligent robots and systems, pages 2126–2133,
2014.

[99] S. Manschitz, J. Kober, M. Gienger, and J. Peters. Learning movement primitive attrac-
tor goals and sequential skills from kinesthetic demonstration. Robotics and autonomous
systems, 74, Part A(12):97–107, 2015.

[100] Z.-C. Marton, R. B. Rusu, and M. Beetz. On fast surface reconstruction methods for large
and noisy datasets. In International Conference on Robotics and Automation, pages 3218–
3223, 2009.

[101] R. M. Murray, S. S. Sastry, and Z. Li. A Mathematical Introduction to Robotic Manipula-
tion. CRC Press, 1st edition, 1994.

[102] Y. Nagai. From bottom-up visual attention to robot action learning. In International con-
ference on development and learning, pages 1–6, 2009.

[103] Y. Nakamura, H. Hanafusa, and T. Yoshikawa. Task-priority based redundancy control of
robot manipulators. International Journal of Robotic Research, 6(2), 1987.

[104] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman. SHOP2:
an HTN planning system. Journal of Artificial Intelligence Research, 20:379–404, 2003.

[105] B. Nemec, T. Petrič, and A. Ude. Force adaptation with recursive regression iterative learn-
ing controller. In International Conference on Intelligent Robots and Systems, pages 2835–
2841, 2015.

181



Bibliography

[106] K. Neumann and J. J. Steil. Learning robot motions with stable dynamical systems under
diffeomorphic transformations. Robotics and autonomous systems, 70(8):1–15, 2015.

[107] M. N. Nicolescu and M. J. Mataric. Natural methods for robot task learning: Instruc-
tive demonstrations, generalization and practice. In International joint conference on au-
tonomous agents and multiagent systems, pages 241–248, 2003.

[108] S. Niekum, S. Chitta, A. G. Barto, B. Marthi, and S. Osentoski. Incremental semantically
grounded learning from demonstration. In Robotics Science and Systems, 2013.

[109] A. Nordmann, C. Emmerich, S. Rüther, A. Lemme, S. Wrede, and J. J. Steil. Teaching
nullspace constraints in physical human-robot interaction using reservoir computing. In
International Conference on Robotics and Automation, pages 1868–1875, 2012.

[110] D. A. Norman and T. Shallice. Attention to action: Willed and automatic control of be-
havior. In Consciousness and self-regulation: advances in research and theory, volume 4,
pages 1–18. Springer, 1986.

[111] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy. Sequence of the most informative
joints (SMIJ): A new representation for human skeletal action recognition. Journal of Visual
Communication and Image Representation, 25(1):24–38, 2014.

[112] J. Pan, I. A. Sucan, S. Chitta, and D. Manocha. Real-time collision detection and distance
computation on point cloud sensor data. In International conference on robotics and au-
tomation, pages 3593–3599, 2013.

[113] A. Paraschos, C. Daniel, J. Peters, and G. Neumann. Probabilistic movement primitives. In
Advances in neural information processing systems, pages 2616–2624, 2013.

[114] D.-H. Park, H. Hoffmann, P. Pastor, and S. Schaal. Movement reproduction and obstacle
avoidance with dynamic movement primitives and potential fields. In International confer-
ence on humanoid robotics, pages 91–98, 2008.

[115] P. Pastor, M. Kalakrishnan, L. Righetti, and S. Schaal. Towards associative skill memories.
In International conference on humanoid robots, pages 309–315, 2012.

[116] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. Trans-
actions on pattern analysis and machine intelligence, 12(7):629–639, 1990.

[117] N. Perrin and P. Schlehuber-Caissier. Fast diffeomorphic matching to learn globally asymp-
totically stable nonlinear dynamical systems. Systems & Control Letters, 96:51–59, 2016.

[118] T. Petrič, A. Gams, L. Zlajpah, A. Ude, and J. Morimoto. Online approach for altering robot
behaviors based on human in the loop coaching gestures. In International Conference on
Robotics and Automation, pages 4770–4776, 2014.

[119] Y. Piao, K. Hayakawa, and J. Sato. Space–time invariants and video motion extraction
from arbitrary viewpoints. In International Conference on Pattern Recognition, pages 56–
59, 2002.

[120] Y. Piao, K. Hayakawa, and J. Sato. Space–time invariants for recognizing 3d motions from
arbitrary viewpoints under perspective projection. In International Conference on Image
and Graphics, pages 200–203, 2004.

182



Bibliography

[121] A. Psarrou, S. Gong, and M. Walter. Recognition of human gestures and behaviour based
on motion trajectories. Image and Vision Computing, 20(5–6):349–358, 2002.

[122] S. Quinlan. Efficient distance computation between non-convex objects. In International
Conference on Robotics and Automation, pages 3324–3329, 1994.

[123] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. In Proceedings of the IEEE, pages 257–286, 1989.

[124] K. Ramirez-Amaro, M. Beetz, and G. Cheng. Understanding the intention of human activi-
ties through semantic perception: observation, understanding and execution on a humanoid
robot. Advanced robotics, 29(5):345–362, 2015.

[125] C. Rao, M. Shah, and T. Syeda-Mahmood. Action recognition based on view invariant
spatio-temporal analysis. In ACM Multimedia, 2003.

[126] C. Rao, A. Yilmaz, and M. Shah. View-invariant representation and recognition of actions.
International journal of computer vision, 50(2):203–226, 2002.

[127] H. E. Rauch, C. T. Striebel, and F. Tung. Maximum likelihood estimates of linear dynamic
systems. Journal of the American Institute of Aeronautics and Astronautics, 3(8):1445–
1450, 1965.

[128] H. Ravichandar and A. P. Dani. Learning contracting nonlinear dynamics from human
demonstrations for robot motion planning. In Dynamics, systems and control conference,
2015.

[129] M. A. Roa, M. J. Argus, D. Leidner, C. Borst, and G. Hirzinger. Power grasp planning for
anthropomorphic robot hands. In International Conference on Robotics and Automation,
pages 563–569, 2012.

[130] H. Sadeghian, L. Villani, M. Keshmiri, and B. Siciliano. Task-space control of robot ma-
nipulators with null-space compliance. Transactions on robotics, 30(2):493–506, 2014.

[131] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word
recognition. Transactions on acoustics, speech, and signal processing, pages 43–49, 1978.

[132] P. Sanguansat. Multiple multidimensional sequence alignment using generalized dynamic
time warping. Transactions on mathematics, 11(8):668–678, 2012.

[133] M. Saveriano, S. An, and D. Lee. Incremental kinesthetic teaching of end-effector and null-
space motion primitives. In International conference on robotics and automation, pages
3570–3575, 2015.

[134] M. Saveriano, F. Hirt, and D. Lee. Human-aware motion reshaping using dynamical sys-
tems. Pattern recognition letters, 2017.

[135] M. Saveriano and D. Lee. Invariant representation for user independent motion recognition.
In International symposium on robot and human interactive communication, pages 650–
655, 2013.

[136] M. Saveriano and D. Lee. Point cloud based dynamical system modulation for reactive
avoidance of convex and concave obstacles. In International conference on intelligent
robots and systems, pages 5380–5387, 2013.

183



Bibliography

[137] M. Saveriano and D. Lee. Distance based dynamical system modulation for reactive avoid-
ance of moving obstacles. In International conference on robotics and automation, pages
5618–5623, 2014.

[138] M. Saveriano and D. Lee. Safe motion generation and online reshaping using dynamical
systems. In International conference on ubiquitous robots and ambient intelligence, 2014.

[139] G. Schreiber, A. Stemmer, and R. Bischoff. The fast research interface for the kuka
lightweight robot. In International conference on robotics and automation, workshop on in-
novative robot control architectures for demanding (research) applications - How to modify
and enhance commercial controllers, pages 15–21, 2010.

[140] G. Schwarz. Estimating the dimension of a model. The annals of statistics, 6(2):461–464,
1978.

[141] D. Shah, P. Falco, M. Saveriano, and D. Lee. Encoding human actions with a frequency
domain approach. In International Conference on Intelligent Robots and Systems, pages
5304–5311, 2016.

[142] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics - Modelling, Planning and
Control. Springer, 2009.

[143] J. Silvério, L. Rozo, S. Calinon, and D. G. Caldwell. Learning bimanual end-effector poses
from demonstrations using task-parameterized dynamical systems. In International Con-
ference on Intelligent Robots and Systems, pages 464–470, 2015.

[144] E. A. Sisbot and R. Alami. A human-aware manipulation planner. Transactions on
Robotics, 28(5):1045–1057, 2012.

[145] E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon. A human aware mobile robot
motion planner. Transactions on Robotics, 23(5):874–883, 2007.

[146] J. J. E. Slotine and W. Li. Applied nonlinear control. Prentice–Hall, 1991.

[147] R. Soloperto, M. Saveriano, and D. Lee. A bidirectional invariant representation of mo-
tion for gesture recognition and reproduction. In International conference on robotics and
automation, pages 6146–6152, 2015.

[148] E. Sousa, W. Erlhagen, F. Ferreira, and E. Bicho. Off-line simulation inspires insight: A
neurodynamics approach to efficient robot task learning. Neural networks, 72(12):123–139,
2015.

[149] W. Takano and Y. Nakamura. Real-time unsupervised segmentation of human whole-body
motion and its application to humanoid robot acquisition of motion symbols. Robotics and
autonomous systems, 75, Part B(1):260–272, 2016.

[150] M. Tenorth and M. Beetz. Knowrob – a knowledge processing infrastructure for cognition-
enabled robots. The international journal of robotics research, 32(5):566–590, 2013.

[151] C. Towell, M. Howard, and S. Vijayakumar. Learning nullspace policies. In International
Conference on Intelligent Robots and Systems, pages 241–248, 2010.

[152] J. Umlauft, D. Sieber, and S. Hirche. Dynamic movement primitives for cooperative manip-
ulation and synchronized motions. In International Conference on Robotics and Automa-
tion, pages 766–771, 2014.

184



Bibliography

[153] A. Vazquez-Otero, J. Faigl, and A. P. Munuzuri. Path planning based on reaction-diffusion
process. In International conference on intelligent robots and systems, pages 896–901,
2012.

[154] S. Vijayakumar and S. Schaal. Locally weighted projection regression: An O(n) algorithm
for incremental real time learning in high dimensional space. In International Conference
on Machine Learning, pages 288–293, 2000.

[155] M. Vochten, T. De Laet, and J. De Schutter. Comparison of rigid body motion trajec-
tory descriptors for motion representation and recognition. In International Conference on
Robotics and Automation, pages 3010–3017, 2015.

[156] M. Wächter, S. Schulz, T. Asfour, E. Aksoy, F. Wörgötter, and R. Dillmann. Action se-
quence reproduction based on automatic segmentation and object-action complexes. In
International Conference on Humanoid Robots, pages 189–195, 2013.

[157] J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining actionlet ensemble for action recognition
with depth cameras. In Conference on Computer Vision and Pattern Recognition, pages
1290–1297, 2012.

[158] P. Wang, W. Li, Z. Gao, C. Tang, J. Zhang, and P. Ogunbona. Convnets-based action
recognition from depth maps through virtual cameras and pseudocoloring. In International
Conference on Multimedia, pages 1119–1122, 2015.

[159] W. Wang and J. J. E. Slotine. On partial contraction analysis for coupled nonlinear oscilla-
tors. Biological cybernetics, 92(1):38–53, 2005.

[160] I. Weiss. Geometric invariants and object recognition. International Journal of Computer
Vision, 10(3):207–231, 1993.

[161] F. Wörgötter, A. Agostini, N. Krüger, N. Shylo, and B. Porr. Cognitive agents - a procedural
perspective relying on the predictability of object-action-complexes (oacs). Robotics and
Autonomous Systems, 57(4):420–432, 2009.

[162] S. Wrede, C. Emmerich, R. Ricarda, A. Nordmann, A. Swadzba, and J. J. Steil. A user
study on kinesthetic teaching of redundant robots in task and configuration space. Journal
of Human-Robot Interaction, 2(1):56–81, 2013.

[163] S. Wu and Y. F. Li. On signature invariants for effective motion trajectory recognition.
International Journal of Robotic Research, 27(8):895–917, 2008.

[164] S. Wu and Y. F. Li. Motion trajectory reproduction from generalized signature description.
Pattern recognition, 43(1):204–221, 2010.

[165] L. Xia, C.-C. Chen, and J. K. Aggarwal. View invariant human action recognition using
histograms of 3d joints. In Conference on Computer Vision and Pattern Recognition Work-
shops, pages 20–27, 2012.

[166] P. Yan, S. M. Khan, and M Shah. Learning 4d action feature models for arbitrary view action
recognition. In International Conference on Computer Vision and Pattern Recognition,
pages 1–7, 2008.

[167] E. Yoshida and F. Kanehiro. Reactive robot motion using path replanning and deformation.
In International conference on robotics and automation, pages 5456–5462, 2011.

185



Bibliography

[168] A. Zisserman and S. Maybank. A case against epipolar geometry. In Applications of Invari-
ance in Computer Vision, volume 825 of Lecture Notes in Computer Science, pages 69–88.
Springer, 1994.

[169] R. Zoliner, M. Pardowitz, S. Knoop, and R. Dillmann. Towards cognitive robots: Building
hierarchical task representations of manipulations from human demonstration. In Interna-
tional conference on robotics and automation, pages 1535–1540, 2005.

186


	Abstract
	List of Publications
	Nomenclature
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivations
	1.2 Structure of the thesis
	1.3 Publication note

	2 Background research and contributions
	2.1 Robotic tasks representation
	2.1.1 Dynamical system based representations
	2.1.2 Invariant representations
	2.1.3 Representation of structured tasks

	2.2 Robotic tasks learning
	2.2.1 Incremental skills learning from demonstrations
	2.2.2 Learning structured tasks from demonstrations

	2.3 Robotic tasks execution
	2.3.1 Reactive motion planning
	2.3.2 Execution of structured tasks

	2.4 Contributions

	3 Representation of robotic tasks
	3.1 Robotic skills representation using stable dynamical systems
	3.1.1 Learning stable motions from a single demonstration
	3.1.2 Gaussian mixture regression based dynamical systems
	3.1.3 Contracting Gaussian mixture regression
	3.1.4 Results and comparisons

	3.2 Invariant representations of Cartesian trajectories
	3.2.1 Unidirectional invariant representation of rigid body motion trajectories
	3.2.2 Bidirectional invariant representation of rigid body motion trajectories
	3.2.3 Results in motion recognition
	3.2.4 Results in motion reproduction

	3.3 Representation of structured tasks
	3.3.1 A qualitative definition of structured tasks
	3.3.2 A quantitative definition of structured tasks

	3.4 Summary and conclusion

	4 Learning robotic tasks form human demonstrations
	4.1 Learning uni-manual skills
	4.1.1 A framework for incremental kinesthetic teaching
	4.1.2 A customized controller for physical robot guidance
	4.1.3 Pick-and-place learning and refinement

	4.2 Learning dual-arm skills
	4.3 An integrated framework for learning structured tasks
	4.3.1 Robot Manager
	4.3.2 Attentional System
	4.3.3 Teaching uni-manual structured tasks
	4.3.4 Teaching dual-arm structured tasks

	4.4 Summary and conclusion

	5 Execution of robotic tasks
	5.1 Reactive planning of robotic skills
	5.1.1 Reactive planning using dynamical systems modulation and point clouds
	5.1.2 Fast robot-obstacle distance computation using parallel programming
	5.1.3 Evaluation in a human–robot interaction scenario

	5.2 Execution of structured tasks
	5.2.1 Robot manager for task execution
	5.2.2 Attentional system for task execution
	5.2.3 Execution of uni-manual structured tasks
	5.2.4 Dual-arm structured tasks

	5.3 Summary and conclusion

	6 Conclusion
	6.1 Task representation
	6.2 Task learning from human demonstrations
	6.3 Task generation and execution
	6.4 Future research directions

	Appendices
	A Materials and methods
	A.1 Dynamical systems theory
	A.1.1 Lyapunov theory
	A.1.2 Contraction theory
	A.1.3 Partial contraction theory

	A.2 Robot control
	A.2.1 Rigid Body Motion Representation
	A.2.2 Kinematic control
	A.2.3 Impedance control

	A.3 Motion representation and regression
	A.3.1 Locally weighted projection regression
	A.3.2 Gaussian mixture models
	A.3.3 Hidden Markov models


	B Comparison of Invariant Motion Representations
	B.1 Theoretical comparison
	B.1.1 DHB and DS representations
	B.1.2 DHB and EFS representations

	B.2 Experimental comparison
	B.2.1 Trajectory reconstruction error
	B.2.2 Noise sensitivity


	Bibliography

