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In this paper, we propose a probabilistic active tactile transfer learning (ATTL)
method to enable robotic systems to exploit their prior tactile knowledge while dis-

criminating among objects via their physical properties (surface texture, stiffness, and
thermal conductivity). Using the proposed method, the robot autonomously selects and

exploits its most relevant prior tactile knowledge to efficiently learn about new unknown

objects with a few training samples or even one. The experimental results show that us-
ing our proposed method, the robot successfully discriminated among new objects with

72% discrimination accuracy using only one training sample (on-shot-tactile-learning).

Furthermore, the results demonstrate that our method is robust against transferring
irrelevant prior tactile knowledge (negative tactile knowledge transfer).

Keywords: Active tactile exploration, active tactile transfer learning, active workspace

exploration, pre-touch, tactile sensing, multimodal robotic skin.

1. Introduction

Touch is perhaps the most overlooked sense. Every one of us receives tactile infor-

mation about the world around us every second of the day,1 including grasping and

manipulation,2 assessing object properties,3 determining the underlying emotion

associated with a touch gesture.4 It is difficult to compensate for a lack of touch

through other senses. What happens if we have all sense modalities other than the

1
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tactile sensing? Consider a scenario of touching objects after keeping hands on an

ice block for a while.

Westling et al.5 conducted an experiment by anesthetizing the skin of the hand

from human subjects. In this way, the mechanoreceptors which are specialized nerve

endings for responding mechanical stimulations were no longer available to the

brain. In this case, the subjects could not grasp the experimental objects as the

hand and fingers movements become inaccurate and unstable.

For robotic systems that interact with dynamic environments, it is important

to recognize objects via their physical properties (such as surface texture, stiffness,

center of mass, and thermal conductivity). This is difficult to achieve even with

advanced vision techniques, due to poor lighting and occlusion. As an alternative,

tactile sensing can provide rich information to the robots from different contact

points.6–8

We humans use our sense of touch to actively explore our environment and

objects based on various physical properties. In this regard, we strategically se-

lect exploratory actions to perceive physical properties of the objects (e.g. sliding

to sense the textural properties, pressing to estimate the stiffness, and static con-

tact to measure the thermal conductivity). Active tactile exploration is a complex

procedure which requires efficient perception and a learning methods. Moreover,

we intelligently re-use our previously acquired tactile knowledge to actively learn

about new objects. Our prior tactile knowledge, or past tactile experience, helps us

to efficiently explore new objects by performing fewer active exploratory actions or

even one. In other words, we learn about new objects with fewer training samples

or even one (one-shot learning) while re-using our prior knowledge. In order to fa-

cilitate this ability in the robotic system, in this study we propose an active tactile

transfer learning method so that the robot with a sense of touch can efficiently learn

about objects via their physical properties by exploiting the prior tactile knowledge.

1.1. Related work

Haptically accessible object characteristics can be divided into three general classes:

geometric information, material properties, and inner properties (e.g. center of

mass). Robots can recognize the geometric properties of objects by perceiving

their shapes via either proprioceptive receptors9–12 or cutaneous receptors, by ex-

haustively touching a single object with a known orientation and location in the

workspace.13–15 The object material can be characterized and identified by its textu-

ral properties, stiffness, and thermal conductivity. The robot can sense the textural

properties of objects using cutaneous tactile receptors by moving fingertips on the

objects’ surfaces.16–21 The stiffness of objects can also be measured by pressing the

robot fingertips against the objects.22 Likewise, the thermal conductivity can be

perceived by building light contact with the objects’ surfaces.23

Previous researchers have used various robotic systems and tactile sensors to

passively explore objects and discriminate among them.24–30 They used a predefined
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number of exploratory actions to sense the physical properties of objects with fixed

positions and orientation in a known workspace.

On the contrary, active tactile exploration has shown great potential for enabling

the robotic system with more natural and human-like strategies.31 An autonomous

robot should be able to select and execute the exploratory actions that provide

it with the maximum amount of information. In this regard, several approaches

were proposed to actively discriminate among objects using their physical proper-

ties. For example, Lepora et al.33 controlled a biomimetic fingertip to slide along

ten different surfaces to perceive their textural properties. In order to actively dis-

criminate among the surfaces under position uncertainty, the authors constructed

the observation models for the textures and the positions of the surfaces offline,

by uniformly sampling the collected training data of each surface texture and each

possible surface position under a range of contact depths. In another study,34 the

Weiss Robotics sensor was mounted on the end-effector of a robot arm to classify

21 objects. To do this, the authors created a database of tactile observations offline

by grasping each object with a pre-designed trajectory. The authors managed to

actively recognize objects using tactile images, which were produced by strategically

selecting the height of the robot finger and grasping the objects. Matrins et al35

aimed at developing a general active haptic exploration and recognition strategy for

heterogeneous surfaces. The experiments were conducted to search and follow the

discontinuities between regions of surfaces with two different materials. Xu et al.32

used the index finger of the Shadow Hand with the BioTac sensor to collect training

data by executing three different exploratory actions (pressing for stiffness, sliding

for surface texture, and static contact for thermal conductivity) five times on each

experimental object. However, the experiments were only carried out in the sim-

ulation using uniformly collected data offline. Tanaka et al.36 combined Gaussian

process latent variable and nonlinear dimensionality reduction method to actively

discriminate among four cups in the real experiments. The authors collected 400

training samples uniformly using three fingers of the Shadow hand, which was fixed

and the objects were placed on a turntable. The observation model was constructed

with action features using the index finger with 2-DOF to generate inflective and

horizontal movements on the objects. Since the proposed method requires a huge

amount of training data, the high dimensional action space makes the optimal ac-

tion search and model learning intractable. The informativeness of the training data

collected from each object is different. Some objects have distinctive tactile prop-

erties, which makes them easy to be discriminated. Therefore, collecting too many

training samples by applying exploratory actions is redundant; whereas for objects,

whose physical properties are similar and thus can be easily confused with other

objects’ properties, it is necessary to collect sufficient samples to construct reli-

able and robust observation models. However, In the above-mentioned works, the

training samples were collected uniformly and offline to construct the observation

models.

In our previous study,37 we proposed an active tactile learning method to enable
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the robotic system to efficiently learn about unknown objects via their physical

properties by selecting strategically the next object and the next exploratory action.

However, the robot is still unable to exploit its prior tactile knowledge when it learns

a new set of unknown objects. In the robotic learning problem, collecting training

samples is time and memory consuming. In addition, there may not always be

sufficient training data available. To tackle with this problem, the robot can re-

use its previously obtained prior knowledge when it learns new objects with fewer

training samples or even one (tactile transfer learning).

Although there are many research studies proposing various transfer learning

strategies in visual categorization,38–47 reinforcement learning,48 data mining,49–51

brain computer interface,52 and deep learning,53 to the best of our knowledge, in

the tactile learning domain, it is only our previous work which proposed a tactile

transfer learning method for object texture discrimination (Kaboli et al.55,56). In

our previous work, a robotic hands re-used its learned texture models from the prior

objects to discriminate among new in-hand objects via their textural properties with

a few training samples or even one. The robotic hand slid its fingers to passively

perceive the textural properties of each object at each time and the training samples

were collected uniformly across all objects.

1.2. Contribution

In this study, for the first time in the filed of tactile learning, we propose a prob-

abilistic tactile-based active transfer learning method to enable robotic systems

with the sense of touch to be one step closer to human-like tactile exploration and

learning strategy. Using our proposed algorithm, the robot autonomously selects

and exploits the most relevant obtained prior tactile knowledge (past tactile expe-

rience) to learn about new objects via their physical properties (surface textures,

stiffness, and thermal conductivity) with a few tactile exploratory actions (sliding,

pressing, and static contact) or a low number of training samples. Our proposed

active tactile transfer learning algorithm (ATTL) is demonstrated in Fig. 2.

2. System Description

2.1. Artificial Robotic Skin

In order to emulate a human sense of touch, we have designed and manufactured

multi-modal tactile sensors54 to provide robotic systems with the ability of pre-touch

and sense of touch. Each skin cell has one micro controller and a set of multi-modal

tactile sensors, including one proximity sensor, one three-axis accelerometer, one

temperature sensor, and three normal-force sensors, (see Table 1). All skin cells are

directly connected with each other via bendable and stretchable inter-connectors.
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Fig. 1. The scenario of active tactile transfer learning for object discrimination in the unstructured

environment. The robotic arm (A) equipped with multimodal artificial skin (B) can actively learn

about prior objects via surface texture, stiffness, and thermal conductivity (C) in an unstructured
environment in order to build the tactile knowledge of these objects. Then the robot can leverage

its obtained prior tactile knowledge (D) to actively learn about new objects (E).

Table 1. The multi-modal robotic skin characteristics.

Modality Acceleration Force Proximity Temperature

Sensor BMA250 Customized VCNL4010 LM71
Per Cell 1 3 1 1
Range ±2 g > 0 − 10N 1 − 200mm −40 − 150 ◦C

Bandwidth 0 − 1 kHz 0 − 33 kHz 0 − 250Hz 0 − 7Hz

2.2. Robot

We mounted one skin patch on the end-effector of a 6-DoF industrial robot called

UR10 (Universal Robots). The skin patch consists of 7 skin cells that include: 7

proximity sensors, 7 three-axis accelerometer sensors, 7 temperature sensors, and

21 normal-force sensors (see Fig. 1 (A,B)).
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Fig. 2. The proposed method of the probabilistic tactile-based active tactile transfer learning for

object discrimination in an unstructured environment.

3. Tactile-based Object Exploration in an Unknown Workspace

3.1. Workspace Exploration

In order to perceive the physical properties of the objects in an unknown workspace,

the robot should be able to autonomously explore the workspace and localize the

objects therein. In this study, we use our previously proposed active pre-touch

strategy for the workspace exploration.37 By using our proposed active pre-touch

method, the robot autonomously finds the number of objects in the workspace,

estimates their positions and orientations, and computes their geometric centroids.

3.2. Objects’ Physical Properties Perception

A robotic system with the sense of touch needs to execute various exploratory

actions on the objects to perceive their physical properties, as we humans do. For

instance, a robot presses on an object to measure its stiffness, slides its sensitive

area on the object’s surface to sense its textural property, and performs a static

contact to estimate the thermal conductivity of the object.
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Pressing Sliding  Static Contact 

Fig. 3. Exploratory actions: pressing, sliding, and static contact

3.2.1. Stiffness Estimation

In order to measure the stiffness of an object, the UR10 robotic arm with an arti-

ficial skin on its end-effector first establishes a light contact with the objects (see

Fig. 3). The light contact is detected as soon as the measured normal force averaged

over all sensors Fav=
1

NcNr

∑Nc

nc=1

∑Nr

nr=1 Fnc,nr exceeds a threshold fε, i.e. Fav>fε
(Nc = 7 is the number of skin cell and Nr=3 is the number of normal force sen-

sors in each skin cell). Then, the robot presses the top surface of the object by its

end-effector. For all normal force sensors Fnc,nr
, the difference between the forces

recorded before and after pressing (∆Fnc,nr
) is used as an indication of the stiffness

on the local contact area. The averaged difference value over all force sensors serves

as a measurement of the object stiffness 1
NcNr

∑Nc

nc=1

∑Nr

nr=1 ∆Fnc,nr
.

3.2.2. Textural Properties’ Perception

To sense the textural properties of objects, the robot slides its end-effector with

multimodal artificial skin across the surface of objects. The sliding action generates

vibro-tactile signals which are measured by the three-axis accelerometer in each skin

cell (axnc
, aync

, aznc
). To extract the robust tactile information, we used our previously

proposed tactile feature descriptors.57–59 Our proposed feature descriptors represent

the statistical properties of the tactile signals in the time domains (see Table 2).

A(sn) is the total power of a signal. M(sn) is the square root of the ratio of the

variance of the first derivative of the signal to that of the signal. C(sn) is the second

derivative of the variance and shows how the shape of the signal is similar to a pure

sine wave. L(sn, vn) is the linear correlations between each axis of the accelerometer.

The proposed descriptors for Nc number of skin cells are defined as Atotal, Mtotal,

and Ctotal, and Ltotal in Table 2. In all the equations, sn and vn are measured tactile

signals. The final tactile descriptor Dtotal is the concatenation of all computed

tactile features and can be defined as: Dtotal = [Atotal; Mtotal; Ctotal; Ltotal].
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Table 2. Tactile Feature Descriptors

A(sn) = 1
N

∑N
n=1 (sn − s̄)2

M(sn) =
(
A(dsndn )/A(sn)

)−1/2
C(sn) = M(dsndn )/M(sn)

L(sn, vn) =
∑N
n=1 (sn − s̄)(vn − v̄)/σ(sn)σ(vn)

Atotal =

[
Nc∑
nc=1

A(axnc
)

Nc
,
Nc∑
nc=1

A(aync
)

Nc
,
Nc∑
nc=1

A(aznc
)

Nc

]
Mtotal =

[
Nc∑
nc=1

M(axnc
)

Nc
,
Nc∑
nc=1

M(aync
)

Nc
,
Nc∑
nc=1

M(aznc
)

Nc

]
Ctotal =

[
Nc∑
nc=1

C(axnc
)

Nc
,
Nc∑
nc=1

C(aync
)

Nc
,
Nc∑
nc=1

C(aznc
)

Nc

]
Ltotal =

[
Nc∑
nc=1

L(axnc
,aync

)

Nc
,
Nc∑
nc=1

L(axnc
,aznc

)

Nc
,
Nc∑
nc=1

L(aync
,aznc

)

Nc

]
3.2.3. Thermal Conductivity Measurment

A robot having the sense of touch can distinguish between objects by means of

their thermal cues by applying a static contact with their surfaces. In our study,

in order to measure the thermal conductivity of each object, UR10 establishes a

contact by its skin with the surface of the objects for a certain period of time

tcontact. during which the average temperature time series of the contacted area is

recorded by the temperature sensors: Ttotal={ 1
NcNT

∑Nc

nc=1

∑NT

nT=1 T
i
nc,nT

}tcontact
i=1 ,

where NT is the number of temperature sensors in each skin cell, and Tnc,nT
repre-

sents the recordings of a temperature sensor. The final thermal feature (TC) is the

combination of the average temperature time series and its gradient at each time

step TC = [Ttotal,∇Ttotal]. To avoid curse of dimensionality, we further reduce this

combination to 10 dimensions via Principle Component Analysis (PCA) method

and use it as the final thermal conductivity feature vector of each object.

4. Active Tactile Transfer Learning (ATTL)

We propose an active tactile transfer learning (ATTL) method to enable the robotic

systems to leverage their captured prior tactile experience while learning about new

objects via their physical properties with fewer training samples.

4.1. Problem Definition

Let us to consider a scenario in which the robotic system has already learned Nprior

number of objects Oprior = {opriorj }Nprior

j=1 via their physical properties (stiffness,

surface texture, and thermal conductivity, denoted as S = {s1, s2, s3}). The cap-

tured prior tactile knowledge consists of the prior objects’ feature observations

(Zprior = {Zpriors1 , Zpriors2 , Zpriors3 }) and their constructed reliable observation mod-

els denoted by Zprior
fprior−−−−→ Oprior (see Fig. 1 (C) and (D)).
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Here, the task of the robot is to learn about a new set of objects (Fig. 1 (E))

via their physical properties. We denote Nnew number of new objects as Onew =

{onewi }Nnew
i=1 . Some of the new objects might share similar physical properties with

the prior objects (for instance similar textural properties). Now, the robot is asked

to actively learn about the new objects properties while re-using its past tactile

experience. In other words, the robotic should efficiently construct the observation

models Znew
fnew

−−−→ Onew with the feature observations Znew = {Znews1 , Znews2 , Znews3 }
for each of the physical properties perceived during the exploration of the new

objects, while tre-using the obtained tactile knowledge of the prior objects.

We formulate the ATTL as a standard supervised learning problem for multi-

class classification, where each object is regarded as a class o; for each tactile prop-

erty s, a Gaussian Process Classification (GPC) is used to construct the objects’

observation models. GPC describes the function X
f−→ Y , where X is the observation

set and Y is the target set which contains integers indicating the labels of the input

data. The model assumes that there is an underlying latent function X
g−→ R, which

is sampled by the GP prior:60 g|X ∼ GP(0,K(X,X)) with zero mean and kernel

function K : X ×X −→ R. The kernel function describes the similarity between two

observations. In our work, one-vs-all multiclass GPC is employed. For each object,

a binary GPC (fn(·)) is learned, with its hyper-parameters being optimized through

maximizing the log likelihood. Given a new sample x∗, each binary classifier pre-

dicts the observation probability of its label p(yn|x∗). The sample is assigned to the

class with the largest predicted probability:

y∗ = arg max
yn∈Y

p(yn|x∗). (1)

4.2. Methodology

Our ATTL algorithm method has three main steps:

(I) The robot first executes each of the exploratory actions (sliding, pressing, and

static contact) once on each new object to collect a small number of new objects’

feature observations Znew (one-time data collection).

(II) For each new object and each physical property, the robot transfers the prior

tactile knowledge consisting of the observation models fprior(·) and feature observa-

tions Zprior. To do this, the robot first selects the most relevant prior knowledge, in

our case, feature observations to transfer (Sec. 4.2.1). Then, it exploits the selected

feature observations and the predictions from the prior objects’ observation models

to improve the new objects’ GPC models (Sec. 4.2.2).

(III) The robot iteratively constructs the new objects’ observation models. In each

iteration, the robot actively selects the next object and next physical property to

explore and collects the new objects’ feature observations (Sec. 4.2.3). Then, it

updates its prior tactile knowledge regarding only the selected physical property,

including re-selecting the prior tactile knowledge and transferring it to the new

objects (Sec. 4.2.1 and Sec. 4.2.2). The learning process is repeated until there is
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no improvement in the uncertainty of the new objects’ observation models. Our

algorithm is demonstrated by Algorithm 1. In the rest of this paper, we refer to j

as the prior object opriorj , and i as the new object onewi .

4.2.1. Prior Tactile Knowledge Selection

When learning about a new object via one physical property, the ATTL selects the

most relevant prior object to transfer (from where to transfer), taking advantage

of the prediction from the observation models constructed by the prior objects.

More formally, consider p(opriorj |vnews,i ) to be as a prediction from the prior object’s

(opriorj ) observation model with regard to the physical property s.

Here, vnews,i is a feature observation from the new object onewi . We calculate the

average prediction to allNnew
s,i number of samples that belong to the new object onewi

by p̄(opriorj |Znews,i ) = 1
Nnew

s,i

∑
p(onewi |vnews,i ). This value estimates the relatedness of

the physical property s between the prior object opriorj and the new object onewi .

The higher the value is, the more similar two objects are. Thus, the prior object

with the largest average prediction value (denoted as oprior
∗

s,i ) can be selected to

transfer its feature observations of the physical property s to the new objects :

oprior
∗

s,i = arg max
oprior∈Oprior

p̄(opriorj |Znews,i ). (2)

4.2.2. Prior Tactile Knowledge Transfer

We described in Sec. 4.2.1 “from where” the robot transfers the prior objects’ feature

observations. Here, we explain “how and how much” the robot reuses its prior

knowledge. While leveraging the prior object’s (opriorj ) feature observations Zpriors,j

of the physical property “s” to the new object onewi , we define gpriors,j and gnews,i to

be the latent functions of the GPC models constructed by the feature observations

from prior objects Zpriors,j and new object Znews,i respectively. It is assumed that these

two functions are not independent from each other, but are sampled dependently

over a Gaussian prior (hybrid GP). We use this hybrid GP as the observation model

of the new object:

gnews,i ← [gpriors,j ;gnews,i ], (3)

the kernel function can be defined as:

K =

(
Kz(Zpriorj , Zpriorj ) γKz(Zpriorj , Znewi )

γKz(Znewi , Zpriorj ) Kz(Znewi , Znewi )

)
. (4)
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where Kz is the base kernel function that measures the similarity of training

samples. In our case, we use radial basis function (RBF),60 whose hyper-parameters

are found by maximizing the log-likelihood of this hybrid GPC model.

In Eq. 4, Kz(Zpriorj , Zpriorj ) and Kz(Znewi , Znewi ) measure the similarity for

feature observations of the prior object and the new object respectively. And

γKz(Zpriorj , Znewi ) and γKz(Znewi , Zpriorj ) measure the similarity between the fea-

ture observations of the prior object and the new object respectively. The parameter

γ ranges between 0 and 1. As analyzed by Chai et al.,61 γ controls “how much” the

feature observations should be transferred. γ = 0 indicates that the prior object

and the new object are irrelevant, whereas γ = 1 indicates that the two objects are

regarded to be the same. We estimate γ by the average prediction probability of

the training samples:

γ =


p̄(opriorj |Znews,i ) if p̄(opriorj |Znews,i ) > εγ ,

0 otherwise.

(5)

with εγ being the threshold below which a transfer of irrelevant prior tactile knowl-

edge is avoided.

The method introduced above uses the hybrid GP to transfer the prior tac-

tile knowledge. The parameter γ controls “how much” to transfer. It can also stop

transferring irrelevant prior tactile information. However, it does not fully exploit

the tactile knowledge from all prior objects, since it combines the feature obser-

vations of one prior object to each new object. In this regard, we use a feature

augmentation strategy. The prediction outputs from all prior objects’ observation

models are employed as auxiliary features. The augmented representation of a new

sample v can be defined as:

v′ =

[
v;︸︷︷︸

Original feature observation

p(oprior1 |v); p(oprior2 |v); ...; p(opriorNprior
|v)︸ ︷︷ ︸

Prior tactile knowledge

]
. (6)

The augmented feature observations are then used to train the hybrid GPC in

Eq. 3.

4.2.3. Next New Object and Physical Property Selection

When the robot iteratively updates the new objects’ observation models, it actively

decides which new object to explore and which physical property to perceive in

order to collect new feature observations. Here, we use our previously proposed

active touch for learning objects’ physical properties method (AT-PPL).37

Our method estimates the classification competence of the new objects’ obser-

vation models which guides the robot to the next round of data collection.
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Algorithm 1 The Proposed Active Tactile Transfer Learning (ATTL)

Input : Onew = {onewi }Nnew
i=1 , Lnew = {lonew

i
}Nnew
i=1 . Nnew new objects with

positions Lnew, each object is regarded as a class onewi .

Oprior = {opriorj }Nprior

j=1 , Zprior, Zprior
fprior−−−−→ Oprior . Prior knowledge

Output: Znew
′ fnew

−−−→ Onew, Znew
′
. New objects’ GPCs and feature observations.

Initialization: Znew . One time data collection for the new objects.

Prior tactile knowledge transfer for all new objects & physical properties

for s = {s1, s2, s3} do
for i = 1 : Nnew do

oprior
∗

s,i ← priorKnowledgeSelection(p̄(opriorj |Znews,i ) . Sec. 4.2.1

γs,i ← correlationEstimate(oprior
∗

s,i , p̄(opriorj |Znews,i )) . Eq. 5

Znew
′

s,i ← featureAugmentation(Znews,i ) . Eq. 6

fnews,i (·)← updateGPC(Znew
′

s,i , γs,i) . Sec. 4.2.2

end

end

Znew
′

= {Znew′s1,i
, Znew

′

s2,i
, Znew

′

s3,i
}Nnew
i=1

fnew(·) = {fnews1,i
(·), fnews2,i

(·), fnews3,i
(·)}Nnew

i=1

while not stop condition() do
New Feature Observation Collection

Λ(s, onewi )← competenceEstimation(fnew(·)) . Eq. 8

λ(s∗, onew
∗
)← objectPropertySelection(Λ(s, onewi )) . Eq. 9

moveTo(lonew∗ ) . Robot moves to the object

vnew ← actionExecution(s∗) . Get new training sample

Znew ← Znew
⋃
vnew . Update training database

Update prior tactile knowledge

for i = 1 : Nnew do

oprior
∗

s∗,i ← priorKnowledgeSelection(p̄(opriorj |Znews∗,i );

γs∗,i ← correlationEstimate(c∗priors∗,i , p̄(opriorj |Znews∗,i ))

Znew
′

s∗,i ← featureAugmentation(Znews∗,i )

fnews∗,i (·)← updateGPC(Znew
′

s∗,i , γs∗,i)

end

end

First, the robot measures the Shannon entropy of each new objects’ feature

observation that has been collected vnew ∈ Znew:

H(vnew) = −
∑

onew
i ∈Onew

p(onewi |vnew) log(p(onewi |vnew)). (7)
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Then the training data set Znew is divided into categories according to the physical

property s and object class onewi . The GPC’s classification competence Λ(s, onewi )

is estimated as the mean value of the Shannon entropy:

Λ(s, onewi ) =
1

Nnew
s,i

∑
vnew∈Znew

s,i

H(vnew). (8)

where Nnew
s,i is the number of feature observations from Znews,i . The higher Λ(s, onewi )

is, the more uncertain the robot is about the object.

We define λ(s, onewi ) as a function of the object onewi and physical property s.

After selecting λ(s, onewi ), the robot moves to the object onewi and executes the

corresponding exploratory action to perceive the physical property s. In order to

efficiently collect new feature observations, the ATLalgorithm determines the next

object onew
∗

and next physical property s∗ by:

λ(s∗, onew
∗
) =


arg max

s∈{s1,s2,s3},onew
i ∈Onew

Λ(s, onewi ), if pλ > ελ,

s∗ = U{s1, s2, s3}, onew
∗

= U{onew1 , ..., onewNnew
}, otherwise.

(9)

where ελ is the parameter to control the exploration-exploitation trade-off.37 pλ
is a probability which is uniformly generated with U(0, 1) at each learning iteration.

5. Experimental Results

5.1. Experimental Objects

In order to assess our proposed ATTL method, we deliberately selected two sets of

objects, one set with 21 objects as prior objects (Fig. 4(a)) and another set with 7

objects as new objects (Fig. 4(b)). All experimental objects were made by different

materials (such as glass, cardboard, and plastic) with regular and irregular surface

textures and various shapes (such as triangular, rectangular, cross, and heart shape).

The physical properties of these objects (stiffness, surface textures and thermal

conductivity) varied from similar to different.

5.2. Experimental Setting

We assessed the performance of our proposed active tactile transfer learning method

(ATTL) in real time. The robot was tasked to actively learn about new objects

(Fig. 4(b)) while reusing the prior tactile knowledge constructed from the prior ob-

jects (Fig. 4(a)). In each experiment, the workspace was unknown, and the robot

had no knowledge about the number of objects and their positions therein. There-

fore, before it applied any exploratory actions with objects, the robot used the

active pre-touch strategy37 to explore the unknown workspace and estimate their
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(a)

(b)

S: + T: ++ C: + S: + T: ++ C: + S: -- T: -- C: - S: + T: -- C: ++ S: ++ T: + C: + S: ++ T: -- C: + S: - T: -- C: - 

Obj 4 Obj 2 Obj 6 Obj 1 Obj 5 Obj 3 Obj 7 

Fig. 4. (a): Prior objects. (b): New objects. The physical properties are evaluated subjectively

by human subjects (S: stiffness, T: roughness of surface textures, C: thermal conductivity.
“++”: very high; “+”: high; “-”: low; “- -”: very low.)

positions and the geometrical centroids. Although the objects had random positions

and orientations in the unknown workspace, they were fixed to the table in order

not to move when the robot slid its end-effector over their surfaces.

5.3. Workspace Exploration

Fig. 5(a) illustrates the unknown workspace which is a cuboid of 110cm× 64cm×
10cm (L×W ×H). A corresponding Cartesian coordinate frame (world coordinate

frame) was defined along its length edge (X-axis), width edge (Y-axis), and height

edge (Z-axis). This workspace was discretized into 27×24×10 grid cells. During the

exploration, the sensor array (the end-effector of the robot) was positioned at the

maximum height of the workspace and horizontal to the X-Y plane. Fig. 5(b) shows

an example of the exploration result. The robot successfully estimated the number

and the positions of ten objects that had been randomly placed on the workspace.

5.4. Evaluation of Active Tactile Transfer Learning (ATTL)

5.4.1. Prior Tactile Knowledge Construction

The robot first collected the feature observations from prior objects (Fig. 4(a)),

and then constructed observation models via GPC. These feature observations and

the constructed models served as the prior tactile knowledge. To do this, the robot
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(a) The unknown workspace
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(b) Active pre-touch

Fig. 5. (a): The unknown workspace which the robot explored. (b): Trajectories of the robot’s end-

effector during the exploration of the workspace and the localization results using active pre-touch

strategy.37

automatically performed each exploratory action 20 times on each of the prior

objects. It begun to apply each of the exploratory action with a light contact with

each object with approximately 0.05N . For the pressing movement, the robot first

pressed the end-effector 2mm on the objects’ surface and then recorded the outputs

of the normal force sensors for 3s. To perceive the surface texture of the objects, the

robotic slid its artificial skin on the objects with velocity of 1cm/s for 3s (in order

to collect fair tactile information with all experimental objects). When measuring

the thermal conductivity, the robot pressed its sensitive part 2mm on the objects’

surfaces and held it for 15s. Then it kept its end-effector up for 30s so that the

temperature sensor recovered to ambient temperature. In this way, the robot could

measure the temperature change during the static contact with a similar initial

temperature condition.

5.4.2. Test Data Collection for New objects

The performance of the proposed ATTL method was evaluated with a test database

of the new objects (Fig. 4(b)). This was achieved by following the same data col-

lection procedure described in Sec. 5.4.1.

5.4.3. Baselines

We compared our proposed ATTL method (with prior tactile knowledge) with the

uniform learning method and our previously proposed active tactile learning (ATL)

method37 as baselines. Using the uniform method, the robot uniformly applied each

exploratory action on each new object. Using the ATL method, at each learning

step the robot can follow our proposed ATL method37 to strategically select the

next object to perceive and the next physical property to explore, however, it was
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Fig. 6. Evaluation of the active tactile learning performance using ten prior objects. ATTL
is compared with the ATL (no transfer) and uniform (no transfer) methods. The horizontal

axis represents the growing number of feature observations, and the vertical axis represents
the averaged value of discrimination accuracy on the test data set. (a) Learning about the

new objects based on three physical properties. The right small plots show the results from

10 groups of prior objects. Their averaged result is plotted on the left; (b) The learning
process based on only stiffness; (c) The learning process based on only surface texture; (d)

The learning process based on only thermal conductivity.

unable to exploit its prior tactile knowledge.

5.4.4. Learning about New Objects with Ten Prior Objects

We first evaluated the ATTL performance of learning about new objects with the

help of 10 prior objects. This experiment was conducted 10 trials. At each trial, the

robot first randomly selected 10 prior objects following the uniform distribution in

order to construct a group of prior tactile knowledge. Then the robot reused this

tactile knowledge to learn about the new objects by following the ATTL, ATL, and

uniform methods five times.

To initialize the learning process, the robot collected one feature observation for

each new object and each physical property (stiffness, surface texture, and thermal

conductivity). At each step when the robot sampled a new feature observation, the

new objects’ discrimination accuracy of the test data set was measured by the new
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objects’ observation models, which were re-trained by all the feature observations

the robot had collected so far. To have a fair comparison between the ATTL and the

baseline methods, the robot collected in total 60 feature observations by exploring

the new objects.

Fig. 6(a) illustrates that the ATTL method consistently outperforms the ATL

and uniform methods by reaching higher discrimination accuracy when collecting

the same number of feature observations. For instance, the robot had in average 20%

higher discrimination accuracy than the ATL and uniform strategies, when the robot

received only one training sample (one-shot learning) (Fig. 6(a)). By increasing the

feature observations from 1 to 60, the robotic system using our proposed ATTL

method leveraged the past tactile experience and achieved a discrimination accuracy

of 83%, whereas following the ATL and uniform methods, it only obtained 71% and

76%, respectively.

We also evaluated ATTL when the robot used only one of the physical properties

(stiffness, surface texture and thermal conductivity) to learn about new objects. In

this instance, the total number of feature observations was set to 30. Fig. 6(b),

Fig. 6(c) and Fig. 6(d) show that in all three cases, the ATTL outperforms ATL

and uniform strategies. Therefore, using our proposed ATTL algorithm, the robot

can efficiently construct reliable new objects’ observation models with fewer training

samples.

5.4.5. Decreasing the Number of Prior Knowledge

In this experiment, we decreased the number of prior objects from 7, 5 to 3. The

robotic system following the same procedure explained above (Sec. 5.4.4) to learn

about new objects (Fig. 4(b)). The results in Fig. 7(a), Fig. 7(b), Fig. 7(c), and

Fig. 7(d) show that when the robot used fewer prior objects, it achieved lower

discrimination accuracy. This is due to the fact that reducing the number of prior

objects decreases the probability of finding highly-relevant prior tactile knowledge

for the new objects. This phenomena became clearer when we decreased the number

of priors objects from 10 to 3. In spite of this, using our ATTL method even with

3 prior objects achieved higher discrimination accuracy than the baseline methods.

5.4.6. Robustness Evaluation of ATTL

So far, the robot was tasked to leverage the prior tactile knowledge constructed

by the objects in Fig. 4(a) to learn about objects in Fig. 4(b). To further test

the robustness of the ATTL algorithm, in this experiment we randomly selected

7 objects out of all 28 experimental objects as new objects and the rest as prior

objects, and conducted the same experiment explained in Sec. 5.4.4 for 50 times.

The averaged learning performance was illustrated in Fig. 8. The results clearly

show that the robot using the ATTL method with 3 prior objects consistently

outperformed the baseline methods with a discrimination accuracy improvement of
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Fig. 7. Evaluation of the ATTL performance using different number of prior objects. (a)

Learning about the new objects based on three physical properties; (b) based on only stiffness;

(c) based on only surface texture; (d) based on only thermal conductivity.

5%. Such improvement increases to over 10% when the robot leveraged 10 prior

objects to learn about new objects.

5.5. Consistency Evaluation of ATTL for Negative Tactile

Knowledge Transfer

In transfer learning, the constructed prior knowledge is not always relevant to new

tactile observation models. In this case, a brute-force transfer may even degrade the

learning performance, generating a so called negative knowledge transfer. When the

new and the prior objects are not a good match, a transfer learning method should

avoid leveraging negative knowledge.

In this experiment, we evaluated our proposed algorithm against the negative

tactile knowledge transfer. To do this, we constructed confusion matrices for all
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Fig. 8. Learnining about new objects with different number of prior objects. The new objects

and the prior objects were randomly selected, following the uniform distribution.

28 experimental objects w.r.t each physical property in order to find out which

of the prior objects were similar and dissimilar to the new objects. The confusion

matrices were constructed by training the Support Vector Machine (SVM) models

for all 28 objects with ten training samples randomly selected for each object, and

using the trained SVM to predict ten unobserved data instances. We calculated

the average confusion between objects and normalized the values between 0 and

100, with 0 being totally dissimilar and 100 highly similar. Fig. 9, Fig. 10, and Fig.

11 demonstrate the resulting confusion matrices constructed for stiffness, texture,

and thermal conductivity respectively. The blue index indicates the prior objects,

and the red index new objects. Regarding stiffness, the prior objects {1, 2, 3, 9,

13} were totally unrelated to the new objects; for surface texture, prior objects

{6, 7, 9, 10, 21}; and for thermal conductivity, prior objects {4, 6, 8, 10, 13}.
Therefore, we respectively selected these objects to construct prior tactile knowledge

and test ATTL performance, when the robot learned about new objects based on

each physical property. We also used objects {2, 3, 6, 10, 13} as prior objects for

learning based on three properties. The performance of the ATTL method was

compared with ATL which served as the baseline. The rest of the procedure was

similar to Sec. 5.4.

Fig. 12 illustrates the recognition performance attained using ATTL and ATL

(no transfer). The results show that the recognition performance achieved by

ATTL with irrelevant prior objects is similar to the ones obtained with the ATL

method (no-transfer) in the case of learning about objects via three physical prop-

erties (Fig. 12(a)) and via only one physical property (Fig. 12(b), Fig. 12(c), and

Fig. 12(d)). This indicates that our proposed ATTL can stop transferring irrelevant

prior knowledge.
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Fig. 9. Confusion matrix for stiffness of 28 objects (prior objects (from 1 till 21) + new objects

(22 till 28)). The blue index indicates the prior objects, and the red index new objects.
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Fig. 10. Confusion matrix for surface texture of 28 objects (prior objects (from 1 till 21) +

new objects (22 till 28)). The blue index indicates the prior objects, and the red index new
objects.
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Fig. 11. Confusion matrix for thermal conductivity of 28 objects (prior objects (from 1 till 21)

+ new objects (22 till 28)). The blue index indicates the prior objects, and the red index new

objects.

6. Discussion

In this paper, we proposed an active tactile transfer learning algorithm to enable a

robotic system with multi-modal artificial skin to actively leverage the prior tactile

knowledge to learn new objects in the unknown workspace. Taking advantage of

our previously proposed pre-touch exploration approach, the robotic system can

strategically select the next exploratory location in the workspace to efficiently

collect pre-touch information. The attained data were then used to ascertain the

number and positions of the objects.

Using our proposed ATTL method, the robot discriminated among new objects

with very high discrimination accuracy. It automatically leveraged the most rele-

vant and informative prior knowledge to learn about new unknown objects with a

low number of samples. The robot achieved 72% discrimination accuracy with only

one training sample plus prior tactile knowledge (one-shot tactile learning). Besides,

the robot automatically decided how much to re-use and transfer the prior tactile

knowledge, or stop transferring the irrelevant knowledge which could degrade the

learning performance (Fig. 12). Furthermore, the robot attained higher discrimi-

nation accuracy, when the number of its prior tactile knowledge increased (Fig. 7

and Fig. 8). This accounts for the fact that increasing the number of prior knowl-

edge also enhances the probability of finding more relevant ones. The experimental

results show that the ATTL outperformed uniform learning strategy in which the
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Fig. 12. Evaluation of active tactile learning with negative prior knowledge constructed by
deliberately selected five prior objects that were unrelated to the new objects. (a) Learning

about the new objects based on three physical properties, prior objects: object {2, 3, 6, 10,

13}; (b) based on only stiffness, prior objects: object {1, 2, 3, 10, 18}; (c) based on only
surface texture, prior objects: object {6, 7, 9, 10, 21}; (d) based on only thermal conductivity,
prior objects: object {4, 6, 8, 10, 13}.

training data was collected uniformly and no past tactile experience was transfered.

The ATTL also performed better than the ATL method, as by following the ATL,

the robot was unable to exploit any past tactile experience, even though it strate-

gically collected training samples.

On the contrary, by using the ATTL method the robotic system leveraged its prior

tactile knowledge while learning about new objects. It strategically selected the next

object to explore and next informative exploratory action to execute.

Besides, compared to our previous work (Kaboli et al.55,56), our proposed ATTL

method enables the robot to actively transfer multiple tactile knowledge (surface
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texture, stiffness, and thermal conductivity).

A limiting assumption of our work is that the positions of the experimental ob-

jects are fixed and also the objects are placed flat in X-Y plane in the workspace.

Moreover, due to the low spatial resolution provided by the proximity sensors on

the artificial skin, objects that are place very close to each other can hardly be clus-

tered during workspace exploration. In order to relax these constrains, the spatial

resolutions of the sensor array can be increased by fusing the proximity information

and force signals while the robot touching the objects in the workspace.

In the future, we consider to cover the entire robotic arm with an artificial skin to

facilitate the robot to explore the workspace in an arbitrary directions. The experi-

mental results showed that increasing the number of prior knowledge improved the

discrimination accuracy and learning performance. Despite this, having too many

prior knowledge, e.g. 1000000 objects, will largely increase the computational com-

plexity so that it takes too long for the robot to select the relevant prior information.

Finding a solution to remove such a constrain in any transfer learning approach can

be a new interesting challenge to tackle as a future research. Finally, in our future

study, we will try to extend our proposed framework to transfer tactile knowledge

from one robotic platform (e.g. a robotic arm) to another robotic platform (e.g.

humanoid robot) that can be equipped with different sensing modalities.

7. Conclusion

In this study, we designed a novel active tactile transfer learning algorithm to enable

the robotic systems to leverage their prior tactile experience while discriminating

among new objects in an unknown environment with a low number of training

samples or one sample (one-shot tactile learning). The effectiveness of our proposed

technique was evaluated through online experiments and evaluations. Results show

that our proposed method outperforms the uniform learning strategy as well as

our previously proposed active tactile learning (ATL) method as baseline methods.

Taking advantage of the attained prior tactile knowledge, the autonomous robot

that used the ATTL method efficiently discriminated among new objects with 20%

higher discrimination accuracy compared to the baseline strategies. Furthermore,

the experimental results show that our proposed algorithm is robust against trans-

ferring irrelevant tactile knowledge (negative tactile knowledge).

Video

The video to this paper can be found in the following link:

http://web.ics.ei.tum.de/˜mohsen/videos/IJHR2017.mp4
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