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Abstract 

Drought is a complex, climatic phenomenon with detrimental effects on society and 

usually occurs when precipitation falls below evapotranspiration for a longer period. 

The global surface temperature has increased significantly during the last century and 

will continue to escalate unless greenhouse gas emissions are considerably reduced. 

As a consequence of a warmer world, a much higher temperature variability is 

expected, which will increase the risk of droughts. It is a challenge to quantify the 

characteristics of drought episodes with objectivity. In several scientific disciplines, 

quantitative indices are the most popular approach for drought quantification. 

Validation of such drought indices is of crucial importance for refined drought 

characterization.  

The thesis makes a comprehensive comparison of the established drought indices De 

Martonne Aridity Index (DMI), Standardized Precipitation Index (SPI), Standardized 

Precipitation Evapotranspiration Index (SPEI), self-calibrating Palmer Drought 

Severity Index (scPDSI) and the recently developed vine copula based standardized 

multivariate indices (here denoted as VCI). The performance of the indices was 

assessed by validating them against various environmental datasets: a global and 

European network of tree ring data, a catchment network with streamflow data spread 

across Europe and carbon flux data (gross primary production and net ecosystem 

exchange) for Germany. Vegetation dynamics are inherently linked to climate, and the 

latter is known to have a direct effect on the biomass and phenological patterns of 

vegetation. The thesis additionally explores whether phenological metrics derived 

from normalized difference vegetation index (NDVI) can help to refine the 

understanding of the existing relationship between vegetation and drought. Various 

statistical methods were used in this study, such as bootstrapped correlation, regression 

analysis, principal component analysis, random forests, various model validation 

statistics and forecast verification skill scores. 

Results show that the appropriate drought index for detecting impacts depends on the 

analysed system, the application and data being used. The thesis gives detailed 

information on the month-wise performance of the common drought indices (in 

varying temporal aggregation) in different climate zones and elevations, allowing 

users in accordance with their objective criteria, the selection of the most suitable 
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index. The results of the validation of the indices with streamflow and carbon flux data 

shows that VCI, with advantageous attributes such as higher probability of drought 

detection and lower false alarm ratio, outperforms the established indices SPEI and 

SPI. Overall, the thesis establishes the importance of using multiple 

variables/indicators for drought investigations. It recommends to improve our 

understanding of drought impacts with application-based, user-defined drought 

monitoring on a high spatial resolution, using the novel class of indices (VCI) as an 

additional source of information. Furthermore, the thesis demonstrates the potential of 

phenological metrics derived from NDVI to upgrade the understanding of the existing 

relationship between tree growth and drought. 
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Zusammenfassung  

Dürre ist ein komplexes, klimatisches Phänomen mit schädlichen Auswirkungen auf 

die Gesellschaft und tritt in der Regel dann auf, wenn der Niederschlag die 

Evapotranspiration für eine längere Periode unterschreitet. Die globale 

Oberflächentemperatur hat sich während des letzten Jahrhunderts deutlich erhöht und 

wird weiter steigen, wenn die Treibhausgasemissionen nicht drastisch reduziert 

werden. Als Folge des Klimawandels erwartet man eine viel höhere 

Temperaturvariabilität, was das Risiko von Dürren erhöhen wird. Es ist eine 

Herausforderung, die Charakteristika von Dürre-Episoden objektiv zu quantifizieren. 

Für verschiedene wissenschaftliche Disziplinen sind quantitative Indizes der 

populärste Ansatz zur Dürrequantifizierung. Die Validierung solcher Dürreindizes ist 

von entscheidender Bedeutung für die verfeinerte Charakterisierung von Dürre. 

Diese Arbeit stellt einen umfassenden Vergleich von den etablierten Dürreindizes De 

Martonne Ariditätsindex (DMI), Standardisierter Niederschlagsindex (SPI), 

Standardisierter Niederschlags-Evapotranspirationsindex (SPEI), selbstkalibrierender 

Palmer Dürre-Schweregradindex (scPDSI) und den kürzlich entwickelten Vine-

Kopula basierten, standardisierten, multivariaten Indizes (hier bezeichnet als VCI) an. 

Die Performance der Indizes wurde durch Validierung mit verschiedenen Umwelt-

bezogenen Datensätzen bewertet: einem globalen und europäischen Netzwerk mit 

Jahrringdaten von Bäumen, einem Netzwerk von Daten zur Wasserführung für 

Wassereinzugsgebiete in ganz Europa sowie Kohlenstoffflussdaten für Deutschland. 

Die Vegetationsdynamik ist inhärent mit dem Klima verbunden, und letzteres hat 

bekanntermaßen einen direkten Einfluss auf die Biomasse und die phänologischen 

Muster der Vegetation. Die Dissertation untersucht daher zusätzlich, ob phänologische 

Metriken, die von dem normalisierten differenzierten Vegetationsindex (NDVI) 

abgeleitet wurden, dazu beitragen können, die bestehende Beziehung zwischen 

Vegetation und Dürre besser verstehen zu können. Verschiedenste statistische 

Methoden, wie Bootstrap Korrelationen, Regressionsanalyse, Hauptkomponen-

tenanalyse, Random Forests, verschiedene Modellvalidierungsmetriken und Vorher-

sageverifizierungsscores wurden in dieser Studie verwendet. 

Die Ergebnisse zeigen, dass die Wahl eines angemessenen Dürreindex für die 

Bewertung von Dürre-Auswirkungen vom analysierten System, der Anwendung selbst 
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und den verwendeten Daten abhängt. Die Dissertation gibt detaillierte, monatliche 

Informationen zur Leistungsfähigkeit der gebräuchlichen Dürreindizes (für 

verschiedene zeitliche Aggregationen) in verschiedenen Klimazonen und Höhenlagen, 

so dass die Nutzer gemäß ihren eigenen objektiven Kriterien die Auswahl des am 

besten geeigneten Indexes vornehmen können. Die Ergebnisse der Validierung der 

Indizes mit Wasserführungs- und Kohlenstoffflussdaten zeigen, dass VCI mit 

vorteilhaften Attributen wie einer höheren Wahrscheinlichkeit von Dürreerkennung 

und geringerem Fehlalarmverhältnis die Resultate von den etablierten Indizes SPEI 

und SPI übertrifft. Alles in allem zeigt die Arbeit die Bedeutung der gleichzeitigen 

Verwendung mehrerer Variablen/Indikatoren für Dürreuntersuchungen auf. Des 

Weiteren empfiehlt sie, unser Verständnis von Dürre-Auswirkungen mit 

anwendungsbasiertem, benutzerdefiniertem Dürre-Monitoring auf einer hohen 

räumlichen Auflösung durch Verwendung der neuen Klasse von Indizes (VCI) (als 

zusätzliche Informationsquelle) zu verbessern. Darüber hinaus zeigt die Arbeit das 

Potenzial von NDVI basierten, phänologischen Metriken, das Verständnis der 

bestehenden Beziehung zwischen Baumwachstum und Dürre zu verfeinern. 
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1. Introduction 

1.1 Droughts and climate change 

Droughts are recurring extreme climate events and the most detrimental of all 20th 

century natural hazards (Wilhite & Glantz, 1985; Obasi, 1994; Mishra & Singh, 2010) 

which could potentially lead to land degradation and forest dieback (Allen et al., 2010; 

IPCC, 2013). Droughts generally occur when precipitation falls below normal 

recorded levels (Dai, 2011). Droughts can hinder tree growth and boost their decline 

and mortality (Allen et al., 2010) and therefore posing a challenge for forest 

management practices and undermining the supply of ecosystem goods and services 

from forests (Anderegg et al., 2013; Elkin et al., 2013). The recent California droughts 

are an apt example of the detrimental effects of drought (Mann & Gleick, 2015). 

Global climate change and increasing rise in water demand due to population increase 

and expansion of agricultural, energy and industrial sectors (Mishra & Singh, 2010) 

have led to amplified drought impacts in the recent years (Kogan et al., 2013). 

1.1.1 Drought drivers and projections  

The two most critical variables influencing drought are temperature and precipitation. 

The SREX (Special Report on Extreme Events), published by the Intergovernmental 

Panel on Climate Change (see IPCC, 2012), states that “while lack of precipitation is 

often the primary cause of drought, increased potential evapotranspiration induced by 

enhanced radiation, wind speed, or vapor pressure deficit (itself linked to temperature 

and relative humidity), as well as pre-conditioning (pre-event soil moisture; lake, 

snow, and/or groundwater storage) can contribute to the emergence of soil moisture 

and hydrological drought”. According to the IPCC (2013), as a consequence of a 

warmer world (a warming of 0.85°C of the mean global surface temperature over the 

period 1880 to 2012 has been observed), a much higher temperature variability is 

expected in some regions which will increase the risk of summer droughts (Kogan et 

al., 2013). A number of different projections are given in the IPCC (2013) report that 

relate to drought, such as annual mean changes in precipitation (P), evaporation (E), 

relative humidity, E –P, runoff and soil moisture for 2081–2100 relative to 1986–2005 

under the Representative Concentration Pathway RCP8.5 (see Figure 1). Projections 

indicate regional to global scale decreases in soil moisture and increased agricultural 

drought in presently dry regions with medium confidence (IPCC, 2013). In a warmer 
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world, changes of average precipitation will not be uniform, with some regions 

experiencing increases, and others (mid-latitude and subtropical arid and semi-arid 

regions) with decreases or not much change at all (IPCC, 2013). While decreases in 

runoff are anticipated in southern Europe and the Middle East, surface drying in the 

Mediterranean, southwestern USA and southern African regions are likely (high 

confidence) for several degrees of warming. 

 

Figure 1. Annual mean changes in precipitation (P), evaporation (E), relative humidity, E –P, 
runoff and soil moisture for 2081–2100 relative to 1986–2005 under the Representative 
Concentration Pathway RCP8.5. The number of Coupled Model Intercomparison Project 
Phase 5 (CMIP5) models to calculate the multi-model mean is indicated in the upper right 
corner of each panel. Hatching indicates regions where the multi-model mean change is less 
than one standard deviation of internal variability. Stippling indicates regions where the multi-
model mean change is greater than two standard deviations of internal variability and where 
90% of models agree on the sign of change. Figure and caption are Figure TFE.1, Figure 3 
(IPCC, 2013).  
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1.1.2 Global scale observed trend in drought 

The IPCC (2007) stated with high confidence that global drought trends had increased 

since 1970 (see Figure 2) based on a single drought indicator, the Palmer Drought 

Severity Index (Palmer, 1965). In 2012 the SREX (IPCC, 2012), revised the previous 

finding and concluded with medium confidence that some regions of the world had 

experienced more intense and longer droughts.  

The current assessment of the IPCC (2013) states that since the 1950s “there is low 

confidence in a global scale observed trend in drought or dryness (lack of rainfall), 

owing to lack of direct observations, dependencies of inferred trends on the index 

choice and geographical inconsistencies in the trends”. One reason for the reduced 

confidence in conclusions of SREX and IPCC (2007) is that the current criteria for 

assessing drought does not solely rely on a single drought indicator. However, the 

IPCC (2013) states with high confidence that the frequency and intensity of drought 

since 1950 has increased in the Mediterranean and West Africa and decreased in 

central North America and north-west Australia. 

1.1.3 Inconsistencies of drought studies  

Drought is a complex phenomenon and cannot be fully explained by commonly used 

drought indices. Consequently discrepancies in the interpretation of results from 

drought studies are inevitable. While some studies found decreasing trends in the 

duration, intensity and severity of drought globally (Sheffield & Wood, 2008), other 

studies found a general global increase in drought (Dai, 2011). A solution to dealing 

with such inconsistencies would be to improve our understanding of drought indices. 

Recent years have shown a variety of drought indices and methodological 

developments to monitor and assess drought in a changing climate (Mishra & Singh, 

2011; Zargar et al., 2011; IPCC, 2013; Keyantash & Dracup, 2004; Kao & 

Govindaraju, 2010; Hao & AghaKouchak, 2013; Farahmand & AghaKouchak, 2015). 

The quantification and prediction of drought, as well as the search for adaptation 

strategies, continue to remain a very challenging research topic as the future of drought 

continues to remain ambiguous. 
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Figure 2. The most important spatial pattern (top) of the monthly Palmer Drought Severity 
Index (PDSI) for 1900 to 2002. The PDSI is a prominent index of drought and measures the 
cumulative deficit (relative to local mean conditions) in surface land moisture by incorporating 
previous precipitation and estimates of moisture drawn into the atmosphere (based on 
atmospheric temperatures) into a hydrological accounting system. The lower panel shows how 
the sign and strength of this pattern has changed since 1900. Red and orange areas are drier 
(wetter) than average and blue and green areas are wetter (drier) than average when the values 
shown in the lower plot are positive (negative).The smooth black curve shows decadal 
variations. The time series approximately corresponds to a trend, and this pattern and its 
variations account for 67% of the linear trend of PDSI from 1900 to 2002 over the global land 
area. It therefore features widespread increasing African drought, especially in the Sahel, for 
instance. Note also the wetter areas, especially in eastern North and South America and 
northern Eurasia. Adapted from Dai et al. (2004). Figure and caption are FAQ 3.2, Figure 1, 
in IPCC (2007). 

1.2 Definition and classification 

A standard universal definition of drought does not exist due to many reasons. It is 

difficult to determine the onset, termination and extent of drought, making it 

fundamentally different from other climate extremes (Wilhite & Glantz, 1985; Tate & 

Gustard, 2000). The impacts of drought increases slowly, often accumulate over a 

period of time and can even last for years after cessation. The impacts of drought 

spread over large geographical areas and do not have any structure (Mishra & Singh, 

2010). Therefore, it becomes challenging to quantify the characteristics of drought 

events in terms of their severity, magnitude, duration and spatial extent (Vicente-
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Serrano et al., 2010). The UN Convention to Combat Drought and Desertification 

(United Nations Convention to Combat Drought and Desertification in Countries 

Experiencing Serious Droughts and/or Desertification, 1994) defines it as “a naturally 

occurring phenomenon that exists when precipitation has been significantly below 

normal recorded levels, causing serious hydrological imbalances that adversely affect 

land resource production systems”.  

Drought can be divided into four major classes according to conventional scientific 

literature (Rasmussen et al., 1993; Wilhite & Glantz, 1985): (1) meteorological 

drought, (2) agricultural drought, (3) hydrological drought, and (4) socioeconomic 

drought (see Table 1). These four classes of drought are interlinked, but refer to 

different ways to measure and identify drought conditions. The first three categories 

can be seen as indicators of the environment, while the last drought type can be 

considered as a water resource indicator (Hisdal & Tallaksen, 2000). A meteorological 

drought in terms of lack of precipitation is the primary cause of a drought, which 

usually first leads to an agricultural drought due to lack of soil moisture. If 

precipitation deficiencies continue, surface water deficit develops, which leads to 

hydrological drought. When the water resource systems fails to meet water demands, 

socioeconomic drought unfolds, which incorporates attributes of meteorological, 

agricultural and hydrological drought (Wilhite & Glantz, 1985). 

Table 1. Four drought categories, adapted from (Vose et al., 2015). 

Category Focus General estimation method 

Meteorological Precipitation Developing indices based on 
monthly precipitation data. 

Agricultural 
Soil 

moisture/Productivity 
of crops 

Developing indices based on a 
combination of precipitation, 

temperature and soil moisture. 

Hydrological 
Surface and 

subsurface water 
supply 

Measuring/modelling runoff and 
reservoir levels. 

Socioeconomic Economic impacts 

Measuring/modelling financial 
consequences of demand of 

economic goods exceeding supply as 
a result of deficit in water supply. 
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1.3 Drought indices  

For many scientific disciplines – dendroecology, ecology, remote sensing and 

agricultural sciences, quantitative indices are the one of the most widely accepted 

approaches for drought quantification. These (drought) indices combine information 

from drought related variables such as precipitation into a single number, which is 

more useful for the decision-makers than just the raw data (Hayes et al., 2007). One 

approach to validate such drought indices, which is crucial to refined drought 

characterization, is to analyse and compare to which degree they are able to identify 

drought impacts on different environmental systems (using different techniques such 

as forecast skill scores, linear regression etc.). In this thesis, common indices used in 

environmental studies are analysed, namely – De Martonne Aridity Index (DMI) (de 

Martonne, 1926), Standardized Precipitation Index (SPI) (Mckee et al., 1993), 

Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 

2010) and the self-calibrating Palmer Drought Severity Index (scPDSI) (Palmer, 1965; 

Wells et al., 2004) (all in Chapter 4.1, scPDSI and SPEI in Chapter 4.2). The recently 

developed vine copula based standardized multivariate indices (VCI) (Erhardt & 

Czado, 2017) are used in Chapter 4.3 besides SPI and SPEI. Following is a short 

description of the different indices analysed in the thesis: 

The DMI is a measure of aridity obtained by calculating mean precipitation (in mm) / 

(temperature (in °C) + 10) (de Martonne, 1926). It is subject to disapproval because of 

its empirical nature but nonetheless provides information on drought at a given 

location and has been used in many ecological studies (Čufar et al., 2008; Zang et al., 

2014).  

The SPI is based on long-term precipitation records that are computed on different 

time scales (Mckee et al., 1993). It is one of the most widely accepted index for the 

quantification of drought and was recommended by the Lincoln Declaration on 

Drought as the standard index for meteorological drought analysis (Hayes et al., 2011). 

SPI is computed by converting precipitation data to probabilities which are then 

transformed to standardized series with an average of 0 and a standard deviation of 1. 

A major constraint of the SPI is its lack of ability to capture the influence of increased 

temperatures on moisture demand (Mckee et al., 1993). Moreover, the methodology 

of SPI requires long-term observations (almost 30 years) and assumes a parametric 
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distribution to model the data. However, a suitable fit to the data, especially in the 

distribution tails is not certain (Farahmand & AghaKouchak, 2015; Erhardt, 2017).  

The SPEI is an improved version of the SPI; it combines the multi-timescale aspects 

of the SPI with information about evapotranspiration. This makes the SPEI more 

reliable for studies linked to climate change (Vicente-Serrano et al., 2010). It is based 

on long-term climatic water balance (see e.g. Vicente-Serrano et al., 2010), which is 

computed as difference between precipitation and potential evapotranspiration. 

However, the SPEI is sensitive to the method of calculating potential 

evapotranspiration (PET) (Vicente-Serrano et al., 2010). Another unwanted 

characteristic is that by using the SPEI, temperature trends are passed on to the index 

(Erhardt, 2017) and like the SPI, it also requires long-term observations. 

The scPDSI is a measure of soil moisture availability which is based on the supply 

and demand concepts of the water balance equation. It is calculated based on 

temperature, precipitation, and available water content of the soil on a monthly time 

scale (or other scales) (Palmer, 1965; Wells et al., 2004). For details on the calculation 

procedure of the PDSI, see Palmer (1965) and Alley (1984). Its disadvantages include 

missing multi-timescale features of the SPI and SPEI (Dai et al., 2004; Wells et al., 

2004) and its autoregressive structure. “Present conditions depend on past conditions, 

however the time interval which influences the present varies across space but cannot 

be assessed from the model” (Erhardt, 2017).  

Although all indices discussed above have their own advantages, yet they account only 

for one or two drought-relevant variables and do not taking into account their inter-

dependencies (Erhardt & Czado, 2017; Erhardt, 2017). The recently developed 

multivariate standardized index (Erhardt & Czado, 2017) is also validated in this thesis 

in addition to the established indices (see Chapter 4.3). They are subsequently 

addressed as VC-Index or VCI. In the VCI inter-variable dependencies are modelled 

based on vine copulas (Aas et al., 2009), which facilitates flexible modelling of the 

full multivariate distribution of interest. This is vital for accounting the joint 

occurrence of extremes of different drivers of drought (Erhardt & Czado, 2017). Since 

a single variable based drought indicator is generally not sufficient for characterizing 

complex drought conditions and impacts, indices with information of multiple 

drought-relevant variables are required to capture different aspects of complicated 
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drought conditions. The VCI presents a flexible approach that allows the end-user to 

decide which type(s) of drought to investigate, which variables (at least three) are 

appropriate for her or his specific application without overlooking their inter-

dependencies (for more details see Erhardt & Czado, 2017). 

1.4 Proxy data for assessing performance of drought indices  

In this thesis, the performance of selected drought indices was directly assessed by 

validating them against various natural proxies: (1) global and Europe-wide tree ring 

datasets (Chapter 4.2, Chapter 4.1), (2) streamflow data for Europe and carbon flux 

data for Germany (Chapter 4.3). Lastly, the potential of (3) phenological metrics 

derived from NDVI in improving the understanding of the existing relationship 

between drought and tree growth was studied. Following is a short description of the 

proxy datasets used for validation of the indices: 

1.4.1 Tree rings 

Trees build an ecosystem to provide habitat and food for animals, livelihood and wood 

for humans, facilitates purification of the atmospheric air and mitigates climate 

change, besides providing various other ecological, societal and climatological 

benefits (Anderegg et al., 2013). Nevertheless, climate is the principal driver of tree 

growth (Fritts, 1976) and consequently trees are vulnerable to extreme events such as 

drought, which makes it essential to study the response of trees to such events. Most 

instrumental climate records are not long enough to capture the full range of natural 

climate variability and studies of drought with such short records are not very 

statistically robust (Cook et al., 1999; Seftigen, 2014). Tree rings help to ease this 

problem by providing centuries-long, continuous annually resolved records of past 

hydroclimatic variability for regions and periods with no instrumental climate data 

(Cook et al., 1999). Interestingly even when instrumental climate data is available, tree 

rings are still very useful as they act as a unique source of validation, for instance, for 

drought related studies. Tree rings help to confirm the results of findings based on 

available instrumental or modelled satellite data. 

Annual radial growth increment, also known as tree ring width is an extensively used 

proxy for tree vitality (Fritts et al., 1971; Dobbertin, 2005). The connection of tree ring 

width to climate and extreme climatic events, such as drought are well recognized as 
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they are known to correlate with several monthly values of temperature and 

precipitation during the growth year and, in some circumstances, previous years (e.g., 

Fritts et al., 1971; Briffa et al., 2002). In principle, most trees in seasonal climates 

produce one tree ring per year. At the beginning of the growing season temperature is 

positively correlated with ring width, as it is generally assumed that high temperature 

has a positive influence on growth in the beginning of the growing season (Fritts, 

1976). In contrast, later in the growing season, negative correlations with ring width is 

observed as a consequence of high temperatures which inhibits metabolic processes of 

trees leading to their reduced growth (Fritts, 1976; Lévesque, 2013). As these 

environmental factors limit tree growth, annals of tree rings can be used as evidence 

of a tree’s response to drought (Zang, 2010), insect outbreaks and so on. As tree species 

vary across biomes, it is essential to characterize drought responses of individual tree 

species, for comprehensive understanding of drought impacts on forest ecosystems 

(Bolte et al., 2009; Luyssaert et al., 2010; Zang et al., 2014). Due to abundant tree ring 

width data being publicly available, studies of tree growth and drought variability on 

local to continental scales are facilitated and at the same time tree ring data enables 

assessing site- and species-specific responses to drought which are important to 

understand, in order to derive sustainable forest management systems. The analysis of 

the growth response of different species to drought using tree ring width data should 

allow users the selection of the most appropriate index according to their application-

based conditions. As the global climate continues to get warmer, understanding the 

responses of various tree species triggered by drought will be of escalating importance.  

1.4.2 Streamflow  

Hydrological drought is generally related to a period with shortage of streamflow, as 

well as ground-water supplies (Hao and AghaKouchak, 2013) of a given water body 

(Mishra & Singh, 2010). Streamflow data has been effectively used for hydrological 

drought analysis (Dracup et al., 1980; Mohan & Rangacharya, 1991; Clausen & 

Pearson, 1995) and to explore spatio-temporal properties of drought (Lorenzo-Lacruz 

et al., 2010; Zhai et al., 2010; Van Lanen et al., 2016). Streamflow levels are a useful 

indicator of drought. Hydrologists study streamflow droughts with hydrographs or 

charts showing river stage (height of the water above a given threshold) and 

streamflow (rate of flow usually measured in cubic metres per second) (Tallaksen, 

2000). In general, it is assumed that the link between streamflow anomalies and 

9



Introduction 

 

drought indices is more pronounced the more unconventional and advanced the 

drought index is (Haslinger et al., 2014).  

1.4.3 Carbon flux 

Gross primary production (GPP) is the main source of all carbon fluxes in the 

ecosystem (Duursma et al., 2009). It is defined as the total amount of carbon fixed by 

plants during the process of photosynthesis, which is measured on photosynthetic 

tissues, principally leaves (IPCC, 2000). The measured net ecosystem exchange (NEE) 

of CO2 between the ecosystem and the atmosphere reflects the balance between GPP 

and ecosystem respiration (Lasslop et al., 2010). Droughts are often associated with 

high evaporative demand and lack of precipitation (Pereira et al., 2007), and are 

principal contributors to the year-to-year variability observed in terrestrial carbon 

sequestration (Ciais et al., 2005; Pereira et al., 2007). Both GPP and NEE serve as 

proxies for decline in productivity in forest ecosystems propagated by drought (Ciais 

et al., 2005; Luyssaert et al., 2007; Pereira et al., 2007). As the drought-NEE 

relationship (Ciais et al., 2005; Reichstein et al., 2005; Pereira et al., 2007) and the 

drought-GPP relationship (Ciais et al., 2005; Pereira et al., 2007; Vicca et al., 2016) 

are well recognized, in principle the performance of different drought indices can be 

assessed using such carbon flux variables. To date, no publication has made a 

performance comparison of drought indices using carbon flux data, which is studied 

in this thesis. 

1.4.4 Phenological metrics derived from NDVI  

The linkages of tree ring width to drought are well established (Fritts et al., 1971; 

Briffa et al., 2002; Dobbertin, 2005). However, preparing tree ring chronologies 

involves time-consuming, strenuous, error-prone field and laboratory work, which 

renders it not very beneficial to be used for monitoring real-time forest growth over 

large spatial scales (Camarero et al., 2015; Vicente-Serrano et al., 2016). Therefore it 

is important to seek alternatives for tree ring width, which can be useful for drought 

studies. 

The remotely sensed normalized difference vegetation index (NDVI) which is based 

on red and near-infrared reflectance (Tucker, 1979) can be used to estimate 

productivity of vegetation (Myneni et al., 1997; Liang et al., 2005; Lopatin et al., 2006; 
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Kaufmann et al., 2008). NDVI measures photosynthetic activity at landscape-scales 

and although studies have linked NDVI values with tree ring growth data (Beck et al., 

2013), the relationship of the latter with NDVI based phenological metrics remains to 

be explored.  

Intra-annual changes of canopy greenness facilitates remote sensing of phenology 

using time series of NDVI (Liu et al., 2016). Spatio-temporal variations of vegetation 

phenology can act as a vital measure of photosynthetic activity (Dong et al., 2016). 

Consequently, important phenological metrics such as the start of the growing season 

(SOS) and end of the growing season (EOS) were extracted from the NDVI time series 

to examine their relationship with radial growth. Two NDVI products were used to 

explore this relationship, namely Moderate Resolution Imaging Spectroradiometer 

(MODIS) (Didan, 2015) and Global Inventory Modeling and Mapping Studies 3g 

(GIMMS3g) (Pinzon & Tucker, 2014). While MODIS has the advantage of being at a 

fine spatial resolution of 250m, the GIMMS3g boasts of over three decades of data as 

opposed to only 13 years of MODIS.  

Given the lengthening of the growing season in the backdrop of global climate 

warming (Menzel & Fabian, 1999; Menzel et al., 2006), studying how climatic factors 

and phenological metrics derived from NDVI are linked to tree ring width could lead 

to a deeper understanding of forest response to climate change. Real-time observations 

based on phenological metrics derived from NDVI are not viable, however it can 

facilitate a thorough assessment of the past annual growth at the end of the growing 

season.  

1.5 Previous studies 

There are some publications that have reviewed the development of drought indices 

and compared their advantages and drawbacks (Keyantash & Dracup, 2002; Mishra & 

Singh, 2010, 2011; Zargar et al., 2011). However, very few studies have made a 

comparison of their performances, by validating them against different systems or 

environmental datasets, especially on a regional or global scale. Table 2 shows a list 

of publications comparing prominent drought indices. 

Vicente-Serrano et al. (2012) compared the SPI, four versions of the PDSI and the 

SPEI. The study revealed that the performances of the SPEI and SPI were very similar 

11



Introduction 

 

with only small differences. Nonetheless, SPEI was able to capture the responses of 

the assessed variables to summer drought most effectively. This publication represents 

one of the few studies that provide a global assessment of the performance of different 

drought indices for observing drought impacts on several hydrological, agricultural, 

and ecological response variables (Vicente-Serrano et al., 2012). 

Keyantash and Dracup (2002) evaluated many drought indices for Willamette Valley 

and North Central climate divisions of Oregon. The study found that among six 

meteorological indices, rainfall deciles and SPI ranked first and PDSI ranked last. 

Amongst four hydrological drought indices, total water deficit ranked first and the 

Palmer hydrological drought severity index (Palmer, 1965) ranked last. Amongst four 

agricultural drought indices, computed soil moisture ranked first, CMI or the crop 

moisture index (Palmer, 1968) ranked last.  

Haslinger et al. (2014) evaluated the performance of four drought indices namely the 

SPI and the SPEI and two indices of the Palmer family, the Z-Index, and the scPDSI, 

in capturing hydrological drought using an Austrian data set of 47 catchments in 

humid-temperate climate. The study summarized that the scPDSI gives the best 

performance by reaching the highest values in nearly all the different methodological 

approaches followed by SPEI (Haslinger et al., 2014). 

Quiring and Papakryiakou (2003) compared four drought indices: PDSI, Palmer's Z-

Index, SPI and NOAA Drought Index (Strommen et al., 1980) for monitoring 

agricultural drought and predicting Canada Western Red Spring wheat yield. It found 

that the Palmer’s Z-Index was the most suitable index to monitor agricultural drought 

in Canadian prairies (Quiring & Papakryiakou, 2003).  

Todisco et al. (2008) compared the performance of Palmer drought indices (PDSI, Z, 

CMI), SPI and a severity index (RS) in an application study based on monitoring and 

predicting sunflower and sorghum crop yield in Central Italy. RS was found to be more 

preferable to predict the agricultural drought in the region.  

Additional studies that compared two prominent drought indices are: SPI and PDSI 

(Guttman, 1998), SPI and SPEI (Lorenzo-Lacruz et al., 2010; McEnvoy et al., 2012) 

SPI and standardized runoff index (Shukla & Wood, 2008). Guttman (1998) compared 

historical time series of the PDSI with the corresponding SPI time series for the  
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Table 2. List of previous studies comparing drought indices. 

Reference Drought indices Preference Application and study area 

Vicente-
Serrano et al. 

(2012) 

SPI, four versions 
of the PDSI, SPEI SPEI 

Comparison of indices in capturing 
hydrological, agricultural, and 

ecological drought using global 
datasets of streamflow, crop yield, 

tree ring and soil moisture.  

Keyantash and 
Dracup (2002) 

Six meteorological 
indices 

Rainfall 
deciles and 

SPI 

 Evaluation of indices in capturing 
meteorological, hydrological and 
agricultural drought in Willamette 

Valley and Oregon, USA, using six 
performance criteria. Variables 

such as streamflow, precipitation 
(station data), soil moisture etc. 

were used. 

Four hydrological 
indices 

Total 
water 
deficit 

Four agricultural 
indices 

Computed 
soil 

moisture 

Haslinger et al. 
(2014) 

SPI, SPEI, Palmer 
(Z-Index, scPDSI) scPDSI 

Comparison of indices in capturing 
hydrological drought in Austria, 

using a network of 47 catchments. 

Quiring and 
Papakryiakou 

(2003) 

PDSI, Palmer's Z-
Index, SPI, NOAA 

Drought Index 

Palmer’s Z 
index 

Comparison of indices in capturing 
and motoring agricultural drought 

in wheat yield in the Canadian 
prairies. 

Todisco et al. 
(2008) 

Palmer indices 
(PDSI, Z, CMI), 

SPI and a severity 
index (RS) 

RS 
(Severity 

Index) 

Comparison of indices in 
monitoring and predicting 

sunflower and sorghum crop yield 
in Central Italy. 

Guttman 
(1998) SPI, PDSI SPI 

Comparison of historical time 
series of the PDSI with the 

corresponding SPI time series for 
the contiguous USA. 

Lorenzo-
Lacruz et al. 

(2010) 
SPI, SPEI SPEI 

Comparison of indices in capturing 
hydrological drought by analysing 
the headwaters of the Tagus River 
basin between the Iberian Range 

and the Plateau of Castille. 

McEnvoy et al. 
(2012) SPI, SPEI SPEI 

Comparison of indices in capturing 
hydrological drought by using 

standardized streamflow, lake and 
reservoir water surface stages at the 

Great Basin, USA. 

Shukla & 
Wood (2008) 

SPI, SRI (runoff 
index) SRI 

Comparison of indices in 
capturing hydrologic drought 
in the Feather River basin in 
California, USA.  
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contiguous USA. The study found stable results for SPI and recommended it as it was 

simpler, probabilistic in nature, consistent across regions and had time-scale feature 

(Guttman, 1998). Lorenzo-Lacruz et al. (2010) compared the performance of the SPI 

and SPEI by analysing the headwaters of the Tagus River basin between the Iberian 

Range and the Plateau of Castille. The study found a superior performance of the SPEI. 

Another study compared the performance of SPI and SPEI (McEnvoy et al., 2012), 

using standardized streamflow, lake and reservoir water surface stages at the Great 

Basin in the United States. Their results were similar to Lorenzo-Lacruz et al. (2010), 

where they found slightly higher correlations of the SPEI over SPI. Shukla and Wood 

(2008) compared the performance of SPI and SRI, on monthly to seasonal time scales, 

and reported that the SRI was a useful complement to the SPI for depicting hydrologic 

aspects of drought in the Feather River basin in California, United States.  

The results of these previous studies are diverse. Therefore there is high uncertainty 

among researchers and decision makers on the selection of the appropriate drought 

index for their particular applications. This thesis makes an all-round assessment of 

established and novel drought indices by validating them against various 

environmental datasets on large spatial and temporal scales. 
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2. Aim and outline of thesis 

The main objective of this thesis was to assess the performance of various drought 

indices. Their performance was assessed directly by comparing them to tree ring, 

streamflow and carbon flux data, and indirectly by assessing their NDVI mediated role 

in explaining tree growth–drought relationship.  

 The studies contribute to the following main questions:  

• How do established and novel, vine copula based drought indices (VCI), 

perform in capturing drought signals in various environmental indicators? 

(Chapter 4.1, Chapter 4.3) 

• Can phenological metrics derived from NDVI help to refine the understanding 

of the existing relationship between drought and tree growth? (Chapter 4.2) 

The first publication (Chapter 4.1) “Different responses of multispecies tree ring 

growth to various drought indices across Europe” (Bhuyan et al., 2017a) focuses on 

how individual drought indices compare to each other in terms of their skill to capture 

drought signals in tree growth. The macroclimatic, structural, and compositional 

differences of forest sites at the scale of continents (Vicente-Serrano et al., 2014) lead 

to complexities in the study of forest vulnerability to drought. As a consequence, it is 

problematic to find descriptors of drought that match the temporal resolution of 

processes at the level of individual forests (Bhuyan et al., 2017a). In this study, an 

assessment of the performance of commonly used drought indices for quantifying 

drought impacts on forest growth is provided at a European scale, which is achieved 

through the study of drought impact on the radial growth of nine tree species as a 

function of elevation and bioclimatic zone. Chapter 4.1, upon publication, was the first 

study to provide detailed information on the month-wise performance of the four most 

commonly used drought indices: DMI, scPDSI and SPEI/SPI (in their varying 

temporal aggregation) in different climate zones, allowing users in accordance to their 

application, selection of the most appropriate index.  

The second publication (Chapter 4.2) “Exploring Relationships among Tree Ring 

Growth, Climate Variability, and Seasonal Leaf Activity on Varying Timescales and 

Spatial Resolutions” (Bhuyan et al., 2017b) explores the relationship between tree ring 

growth, climate variability, and phenological metrics derived from NDVI. In Chapter 
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4.1, our results established that tree ring width is a useful proxy to assess the 

performance of drought indices. However, preparing tree ring chronologies can be 

time-consuming and prone to human errors (Camarero et al., 2015; Vicente-Serrano et 

al., 2016) rendering it not so useful to monitior real-time forest growth. Therefore it is 

important to seek proxy data for drought studies, which led to the follow-up study of 

Chapter 4.2. In the first section of this study (Chapter 4.2), correlation of NDVI with 

the radial growth of trees scattered in the Northern Hemisphere was evaluated. In the 

second section, the relationship between radial growth and various NDVI phenological 

metrics was explored. It is known that climatic conditions have a direct effect on 

biomass and phenological patterns of vegetation (Pettorelli et al., 2005). Hence 

information on drought can be provided by vegetation dynamics, as it is inherently 

linked to local climate (Pettorelli et al., 2005). The thesis explored whether NDVI 

phenological metrics can help to refine the existing relationship between vegetation 

and drought. Upon publication, this paper presented the first comparison of ring width 

index with several phenological parameters of a satellite-derived proxy of vegetation 

activity at multiple sites. 

The third publication (Chapter 4.3) “Validation of drought indices using 

environmental indicators: streamflow and carbon flux data” validates the recently 

developed novel vine copula based drought indices (Erhardt & Czado, 2017). 

Validation of drought indices is an essential step in the process towards advanced 

drought description and assessment of their accuracy in detecting drought. Currently 

only a few studies have compared the relative performance of different indices to 

identify drought impacts on several systems (Guttman, 1998; Keyantash & Dracup, 

2002; Vicente-Serrano et al., 2012; Haslinger et al., 2014). In this study, the 

performance of established drought indices SPI and SPEI was compared to novel index 

VCI, using different environmental datasets: a streamflow network of 332 catchments 

across Europe as well as gross primary production (GPP) and net ecosystem exchange 

(NEE) for Germany. The thesis contributes to the already existing question, if drought 

information should be based on multiple variables/indicators and if the VCI can be 

used as an additional source of drought information.  

A schematic of the various components related to drought, studied in this thesis, is 

shown in Figure 3 (labelled in black). 
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Figure 3. Major components related to drought, studied in this thesis (labelled in black). NDVI, 
NEE, GPP and Reco stand for normalized difference vegetation index, net ecosystem 
exchange, gross primary production, and ecosystem respiration respectively. 

 

This cumulative thesis comprises three first-authored, peer-reviewed publications, two 

of them published (Chapter 4.1, Chapter 4.2), and one in review stage (Chapter 4.3). 

The chapters are shown in detail in the Appendix. The general introduction (Chapter 

1) is followed by the aim of the thesis (Chapter 2) and a brief description of the data 

and methods (Chapter 3). Chapter 4 compiles the publication abstracts. Chapter 5 

summarises the key results and includes a general discussion, Chapter 6 discusses the 

strengths and weaknesses of the study followed by a conclusion in Chapter 7. An 

outlook and the references are listed in Chapter 8 and Chapter 9, respectively. 
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3. Data and methods 

The data and statistical methods used in this study are presented in the publications 

associated with each of the following chapters. An overview of the datasets used in 

this thesis has been summarized in Table 3. 

Tree ring data and species studied: The tree ring network used in this study (Chapter 

4.1) is a collection of published tree ring chronologies by Babst et al. (2013) which 

consists of 992 sites covering most of Europe and North Africa. The original raw tree 

ring width time series was detrended using a cubic smoothing spline with a frequency 

cut-off response of 50% at 32 years (Cook & Peters, 1997), to remove the biological 

trend while preserving the inter-annual to decadal variability. In the next step, temporal 

heteroscedasticity of the detrended series was removed using power-transformation 

and the series were averaged to site-wise dimensionless chronologies of ring width 

indices or RWI. RWI series with 56 years of data for the common period 1920–1975 

was selected, after a trade-off between length of series and replication. A total of 850 

sites were selected for the final analysis of the study in Chapter 4.1, as a consequence 

of setting a maximum period of overlap between climate data and RWI. 

In Chapter 4.2, tree ring data was downloaded from the International Tree Ring Data 

Bank (ITRDB) (Grissino-Mayer & Fritts, 1997) which is an archive of tree ring data. 

“All downloaded time series from the ITRDB were filtered for three requirements (1) 

tree ring widths complete for the period 1982 to 2010, (2) no missing NDVI data in 

the time-series of each overlapping pixel, and (3) having forest cover in the 

corresponding remote sensing pixel” (Bhuyan et al., 2017b). Tree ring sites in the 

study which lay in the remote sensing pixels covering bare areas, water bodies, snow 

or ice and sites located in the Southern Hemisphere, were excluded (Bhuyan et al., 

2017b). In total, 69 sites were reserved for analysis in Chapter 4.2. The same 

methodology for detrending as Chapter 4.1 was applied to tree ring data in Chapter 

4.2. 

The following nine species were investigated for their drought vulnerability, in 

Chapter 4.1, namely Abies alba Mill. (ABAL, silver fir), Fagus sylvatica L. (FASY, 

European beech), Larix decidua Mill. (LADE, European larch), Picea abies (L.) Karst. 

(PCAB, Norway spruce), Pinus cembra L. (PICE, stone pine), Pinus nigra Arn. (PINI, 

black pine), Pinus sylvestris L. (PISY, Scots pine), Quercus petraea (Matt.) Liebl, 
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(QUPE, sessile oak) and Quercus robur L. (QURO, common oak). The species in 

Chapter 4.2, were grouped into coniferous and broadleaf type for analysis, as there 

were not enough sites for a species-wise investigation. 

Table 3. Datasets used in the thesis with the periods of analyses and sources. 

Gridded Climate datasets 

Name Period used in 
analysis 

Resolution 
used at 
(km) 

Reference Used in 
chapter 

CRU TS 3.21 
1920-1975 (4.1), 
1982-2010 (4.2), 
2000-2010 (4.2) 

50 Harris et al. (2014) 4.1 , 4.2 

ERA-20C 1980-2010 25 
50 Poli et al. (2016) 4.3 

E-OBS 1950-2010 25 Haylock et al. (2008) 4.1 
Environmental datasets 

Tree ring data 1920-1975 50 
Babst et al. (2013), 

Grissino-Mayer & Fritts 
(1997) 

4.1, 4.2 

Streamflow 
data 1980-2010 25 GRDC (2016) 4.3 

Gross primary 
production 1980-2010 50 

Tramontana et al. 
(2016), FLUXCOM 

(2017), 
Jung et al. (2017) 

4.3 

Net ecosystem 
exchange 1980-2010 50 

Tramontana et al. 
(2016), FLUXCOM 

(2017), 
Jung et al. (2017) 

4.3 

MODIS NDVI 2001-2010 0.25 Didan (2015) 4.2 
GIMMS 3g 

NDVI  
2001-2010,  
1982-2010 8 Pinzon & Tucker 

(2014) 4.2 

Köppen-
Geiger climate 
classification 

map 
1951-2000 50 Kottek et al. (2006) 4.1, 4.2 

GlobCover 
(Forest Cover 

Map) 
2010 50 Olivier et al. (2009) 4.2 

NDVI data: Two NDVI datasets were used in Chapter 4.2, (1) Moderate Resolution 

Imaging Spectroradiometer (MODIS) (Didan, 2015) at a spatial resolution of 250m 

and (2) Global Inventory Modeling and Mapping Studies 3g (GIMMS3g) (Pinzon & 

Tucker, 2014) at spatial resolution of 8km. This enabled to study the effects of spatial 

resolution on the RWI-NDVI relationship. For MODIS, the MOD13Q1 product which 

is the MODIS/Terra vegetation index was used. It is provided as a 16-day composite 

or 23 observations per year, where quality information was used to discard possible 
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snow and cloud values. The MODIS NDVI data from 2001 (the first complete year of 

NDVI data) until 2010, the last year of our assembled tree ring dataset, was analysed 

(Bhuyan et al., 2017b). The third-generation Global Inventory Modeling and Mapping 

Studies, GIMMS3g is based on the Advanced Very High Resolution Radiometer 

(AVHRR), which is provided at a temporal resolution of 15 days resulting in two 

maximum-value composites per month or 24 observations per year. The GIMMS3g 

NDVI data from 1982 (the first complete year of NDVI data) to the end of 2010 was 

investigated to maximize the overlap with the tree ring dataset (Bhuyan et al, 2017b).  

CRU TS 3.21: For Chapter 4.1 and Chapter 4.2, mean temperature, precipitation sum, 

and potential evapotranspiration (PET) monthly datasets from the observational CRU 

TS 3.21 (Climatic Research Unit) worldwide dataset available on a 0.5° grid (Harris 

et al., 2014) was used. The dataset contains monthly time series of precipitation, frost, 

water vapour, daily maximum and minimum temperatures, cloud cover, and other 

variables for the period 1901-2012. The data set uses more than 4000 individual 

weather station records in its computation. 

ERA 20C Reanalysis: To validate the different drought indices used in Chapter 4.3, 

the publicly available ECMWF Atmospheric Reanalysis of the 20th Century (ERA-

20C) data (European Centre for Medium-Range Weather Forecasts, 2014; Poli et al., 

2016) was employed. The ERA 20C data set is a reanalysis of the weather observed 

on the earth’s surface for the period 1900–2010. “The ERA-20C assimilates surface 

pressure and marine wind observations” (Poli et al., 2016). For Chapter 4.3, time series 

of total precipitation, volumetric soil water content and potential evapotranspiration at 

a 0.25° grid were used for validation against streamflow data. Similarly, climatic water 

balance, volumetric soil water content and temperature data was used for validation 

against carbon flux data, at a 0.50° grid. Using the method proposed by Thornthwaite 

(1948), the variable potential evapotranspiration was computed based on temperature 

and latitude information. The called climatic water balance (see e.g. Vicente-Serrano 

et al., 2010) was computed as a difference between precipitation and potential 

evapotranspiration.  

E-OBS: In order to validate the findings of Chapter 4.1 using CRU TS 3.21 data, 

station data from E-OBS was used. The data set is a gridded data set 

derived/interpolated from station observations (Haylock et al., 2008). It covers the 
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European continent and is available for different grids and spatial resolutions. The 

version 13.1 of the data set was used, which provides daily values of all the variables 

used in Chapter 4.1.  

Climate classification data: Data on climate classification used in Chapter 4.1 and 

Chapter 4.2, was obtained from the world Köppen-Geiger climate classification map 

(Kottek et al., 2006).  

Forest Cover map: For Chapter 4.2, the world forest-cover map (GlobCover) from 

the European Space Agency was used to filter pixels with forest cover. The GlobCover 

map is based on Envisat Medium Resolution Imaging Spectrometer (MERIS) data 

between December 2004 and June 2006 (Olivier et al., 2009). 

Streamflow data: The streamflow data used in Chapter 4.3 was obtained from the 

Global Runoff Data Centre (GRDC, 2016) which is a repository for the world's river 

discharge data and associated metadata hosted by The German Federal Institute of 

Hydrology. In the archive, there are streamflow time series from 1315 European 

catchments. “In this study, we selected 332 catchments for the period 1980-2010, 

which have a size less than 500 km2, as smaller catchments are more likely to contain 

drought signals less affected by external processes. For each catchment, we derived 

the catchment boundary using data from Catchment Characterisation and Modelling 

database (de Jager and Vogt, 2010)” (Bhuyan-Erhardt et al., 2017). 

Carbon flux data: Data on monthly carbon flux variables, gross primary production 

and net ecosystem exchange for Germany used in Chapter 4.3, were obtained from 

RS+METEO product of FLUXCOM (Tramontana et al., 2016; FLUXCOM, 2017; 

Jung et al., 2017). The carbon flux data was available at 0.50° spatial resolution for 

the period 1980-2013. Monthly ensemble means of six variants (three machine 

learning algorithms and two observed flux variants from two partitioning methods) 

(Reichstein et al., 2005; Lasslop et al., 2010) were used to generate time series of GPP 

and NEE (Bhuyan-Erhardt et al., 2017). For validation of drought indices against 

carbon flux data, the period of 1980-2010 and the drought year 2003 in Germany were 

taken as a case study. 
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Statistical Analyses 

Statistical methods used in this thesis were mainly but not restricted to: correlation 

function analyses (Fritts et al., 1971), correlation, bootstrapped correlation, linear 

regression techniques, principal component analysis, Procrustes tests, random forest 

analysis, various model validation statistics and calculation of forecast verification 

skill scores such as probability of detection (POD) and false alarm ratio (FAR). 

In Chapter 4.1, in order to assess the species-specific growth-drought relationships, 

correlation function analyses (Fritts et al., 1971) were calculated between RWI and the 

selected four drought indices. The correlation coefficients calculated for the year of 

ring formation (March to September), were introduced into a “Q” mode principal 

component analysis (PCA) to find persistent drought patterns in space (Machado-

Machado et al., 2011). To calculate the influence of each variable on the formation of 

the reduced space, an equilibrium circle of descriptors, with radius √ (d/p) (with p total 

and d reduced dimension in ordination), was drawn as reference (Legendre & 

Legendre, 1998). “R package bootRes (Zang & Biondi, 2013) was used for calculating 

bootstrapped correlations between RWI and drought indices; and package ggplot2 was 

used for visualizations (Wickham, 2009)” (Bhuyan et al., 2017b). 

In Chapter 4.2, random forest (RF) analysis was used to rank the importance of NDVI 

phenological metrics in explaining tree growth. RF is a multivariate non-parametric 

regression method, which is an ensemble learning technique developed by Breiman 

(2001). The RF model was fitted using all tree ring sites. 70% of the data was randomly 

sampled to train the RF and the remaining 30% were retained for RF prediction-error 

testing. “The proportion of explained variance in the outcome of the training data and 

the normalized root mean square error (NRMSE) were used to quantify the association 

between RWI and NDVI/climate” (Bhuyan et al., 2017b). RF models were calculated 

using R package randomForest package (Liaw & Wiener, 2002). 

In Chapter 4.3, for comparison of the drought indices with streamflow time series, 

daily data was converted to monthly values and then standardized using long-term 

monthly mean and standard deviation. The performance of the drought indices to 

detect low-flow events focusing on the low-flow season (August to Nov) was assessed 

using verification skill scores. Such scores facilitate the process of comparing forecasts 

to relevant observations and hence enabling measurement of the quality of different 
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forecasts. In this thesis the metrics: probability of detection (POD) or hit rate and false 

alarm ratio (FAR) were the point of focus. “POD is a verification measure of 

categorical forecast performance that measures the total number of correct event 

forecasts (hits) divided by the total number of events observed. FAR is the number of 

false alarms divided by the total number of event forecasts. While POD is only 

sensitive to hits and ignores false alarms, the opposite holds for the FAR. Hence, it is 

always recommended to use these two verification skills together (WWRP/WGNE 

Joint Working Group on Forecast Verification Research, 2015)” (Bhuyan-Erhardt et 

al., 2017). Verification skill scores were calculated using R package Verification 

(Pocernich, 2012). For validation of drought indices with carbon flux data, regression 

technique was used. For visualizing pixel-wise linear regression of carbon flux data 

and drought indices, R package rasterVis was used (Lamigueiro & Hijmans, 2016). 

For reading and writing spatial data which was used throughout the study, the 

following R packages were used: maps, mapdata, maptools, ncdf4, rgdal, sp, raster. 

All statistical analyses were performed with different versions of the statistical 

software R (R Core Team, 2017).  

23



Abstracts of individual publications 

 

4. Abstracts of individual publications 

4.1 Different responses of multispecies tree ring growth to various drought indices 

across Europe. 

Bhuyan Upasana, Zang Christian, Menzel Annette (2017). Dendrochronologia, 44, 1–

8. 

Increasing frequency and intensity of drought extremes associated with global change 

are a key challenge for forest ecosystems. Consequently, the quantification of drought 

effects on tree growth as a measure of vitality is of highest concern from the 

perspectives of both science and management. To date, a multitude of drought indices 

have been used to accompany or replace primary climatic variables in the analysis of 

drought-related growth responses. However, it remains unclear how individual 

drought metrics compare to each other in terms of their ability to capture drought 

signals in tree growth. In our study, we employ a European multispecies tree ring 

network at the continental scale and a set of four commonly used drought indices (De 

Martonne Aridity Index, self-calibrating Palmer Drought Severity Index, Standardized 

Precipitation Index and Standardized Precipitation Evapotranspiration Index, the latter 

two on varying temporal scales) to derive species-specific growth responses to drought 

conditions. For nine common European tree species, we demonstrate spatio-temporal 

matches and mismatches of tree growth with drought indices subject to species, 

elevation and bioclimatic zone. Forests located in the temperate and Mediterranean 

climate were drought sensitive and tended to respond to short- and intermediate-term 

drought (<1 year). In continental climates, forests were comparably more drought 

resistant and responded to long-term drought. For the same species, stands were less 

drought sensitive at higher elevations compared to lower elevations. We provide 

detailed information on the month-wise performance of the four drought indices in 

different climate zones allowing users the selection of the most appropriate index 

according to their objective criteria. Our results showed that species-specific 

differences in responses to multiple stressors result in complex, yet coherent patterns 

of tree growth. 

Contributions: Lead by Annette Menzel and Christian Zang, I conceptualized the 

design of the study. I carried out the data processing and wrote the manuscript. All 
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authors contributed to the interpretation of results and editing of the manuscript, 

with contributions of Annette Menzel to writing. Christian Zang assisted in the 

choice of analytical methods and gave leads on what packages to be used for the 

tree ring data analysis. About 70% of the work was done by myself.  

4.2 Exploring relationships among tree ring growth, climate variability, and 

seasonal leaf activity on varying timescales and spatial resolutions. 

Bhuyan Upasana, Zang Christian, Vicente-Serrano Sergio M, Menzel Annette (2017) 

Remote Sensing, 9, 1–13. 

In the first section of this study, we explored the relationship between ring width index 

(RWI) and normalized difference vegetation index (NDVI) time series on varying 

timescales and spatial resolutions, hypothesizing positive associations between RWI 

and current and previous- year NDVI at 69 forest sites scattered across the Northern 

Hemisphere. We noted that the relationship between RWI and NDVI varies over space 

and between tree types (deciduous versus coniferous), bioclimatic zones, cumulative 

NDVI periods, and spatial resolutions. The high-spatial-resolution NDVI (MODIS) 

reflected stronger growth patterns than those with coarse-spatial-resolution NDVI 

(GIMMS3g). In the second section, we explored the link between RWI, climate and 

NDVI phenological metrics (in place of NDVI) for the same forest sites using random 

forest models to assess the complicated and nonlinear relationships among them. The 

results were as following (a) The model using high-spatial-resolution NDVI time 

series explained a higher proportion of the variance in RWI than that of the model 

using coarse-spatial-resolution NDVI time series. (b) Amongst all NDVI phenological 

metrics, summer NDVI sum could best explain RWI followed by the previous year’s 

summer NDVI sum and the previous year’s spring NDVI sum. (c) We demonstrated 

the potential of NDVI metrics derived from phenology to improve the existing RWI-

climate relationships. However, further research is required to investigate the 

robustness of the relationship between NDVI and RWI, particularly when more tree-

ring data and longer records of the high-spatial-resolution NDVI become available. 

Contributions: Together with Annette Menzel, Sergio M. Vicente-Serrano and 

Christian Zang, I conceptualized the design of the study. I carried out the data 

processing and wrote the manuscript with contributions of Annette Menzel. All 

authors contributed to the interpretation of results and editing of the manuscript. 
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Christian Zang assisted in the choice of analytical methods. About 70 % of the work 

was done by myself. 

4.3 Validation of drought indices using environmental indicators: streamflow and 

carbon flux data. 

Bhuyan-Erhardt Upasana, Erhardt Tobias Michael, Laaha Gregor, Zang Christian, 

Parajka Juraj, Menzel Annette (2017)  

In several scientific disciplines, quantitative indices are the most popular approach for 

drought quantification. Aiming for refined drought characterization, the validation of 

such drought indices is of vital importance. It allows assessing the indices’ accuracy 

in detecting drought. In this study, we compared the performance of established 

drought indices – the SPI (Standardized Precipitation Index) and the SPEI 

(Standardized Precipitation Evapotranspiration Index) – with standardized drought 

indices computed using a recently developed, vine copula based method for the 

computation of multivariate drought indices (here addressed as VC-Index or VCI). For 

our validation study, we used several environmental drought indicators: streamflow 

time series from a network of 332 catchments across Europe, as well as gross primary 

production (GPP) and net ecosystem exchange (NEE) for Germany. The novel 

multivariate VC-Indices can combine two or more user-selected, drought relevant 

variables to model different drought types, depending on the user-application. This 

approach utilizes the flexibility of vine copulas in modeling multivariate non-Gaussian 

dependencies and allows for stable indices using much shorter observation periods. 

The results of the validation showed that the VC-Indices outperform the established 

drought indices SPI and SPEI. For the streamflow data, the VCI was found to have 

advantageous attributes such as higher probability of drought detection and lower false 

alarm ratio compared to SPEI and SPI. Regression of the drought indices against NEE 

and GPP showed that the VCI captured the drought-impact relationship on carbon flux 

data best. Overall, our results emphasize that the major key to improving our 

understanding of drought impacts on ecosystem conditions could be a user-defined, 

application-based drought monitoring on a high spatial resolution, using a method such 

as vine copulas. We recommend using the VCI as an additional source of information, 

in order to allow better understanding of drought characterization.  
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Contributions: I conceptualized the design of the study with substantial inputs from 

Annette Menzel, Gregor Laaha, Tobias Michael Erhardt and Christian Zang. Tobias 

Michael Erhardt provided software to calculate the novel drought index. Christian 

Zang and Juraj Parajka provided data and key information. I carried out the data 

processing and wrote the manuscript. All authors contributed to the interpretation 

of results and editing of the manuscript. About 80% of the work was done by myself. 
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5. Discussion 

 “This drought emergency is over, but the next drought could be around the corner. 
Conservation must remain a way of life.” - Jerry Brown, California Governor 

The thesis and the publications coupled to it aim at a better understanding of drought 

quantification using drought indices, mainly from an ecological perspective. How 

individual drought metrics compare to each other in terms of their ability to capture 

drought signals was assessed using various environmental datasets. In addition to a 

short summary of the discussions presented in the individual publications, this chapter 

constitutes a general discussion of the results. The diversity of environmental 

indicators evaluated in the thesis allows us to make a comprehensive comparison of 

the different indices. Our findings provide evidence that the patterns of growth, 

streamflow and carbon flux responses to drought do not follow any general 

geographical structure (Vicente-Serrano et al., 2014). Depending on the type of 

indicator, these patterns can be driven by various factors such as climatic and 

biogeographical conditions, elevation of the site, time of the year when studied etc. In 

the first section, responses of various environmental indicators to different drought 

indices are discussed and in the second section, performance of drought indices in 

relation to NDVI phenological metrics and tree rings, are examined. Table 4 

summarizes the performance of the indices based on the different environmental 

indicators. 

5.1 Responses of various environmental indicators to different drought indices 

Key findings:  

• Tree rings: Spatio-temporal matches and mismatches of tree growth with drought 

indices are subject to species, elevation and bioclimatic zone. scPDSI, SPEI/SPI 

at longer time-scales best captured drought in tree ring width data. 

• Streamflow: The multivariate vine copula based index (VCI) was able to capture 

drought information in streamflow data most effectively, as per forecast 

verification skill scores. 

• Carbon flux: The multivariate vine copula based index (VCI) was able to capture 

drought information in carbon flux data most effectively, as per regression 

analysis.  
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Table 4. General performance of drought indices based on different environmental indicators. 
“x”,“” and “” summarize the results as “drought information not captured”, “drought 
information captured” and “drought information captured effectively”, respectively. 

Period Data and Method Index Result 
Tree rings 

1920-
1975 

1st Principal component 
 
 

DMI  

SPEI  
(scale>12) 

SPI  
(scale>12) 

scPDSI  
Streamflow 

1980-
2010 

 

Forecast verification score 
(POD and FAR) 

SPEI  
SPI  
VCI  

Gross primary production 
1980-
2010 

 
Pixel-wise linear regression  

SPEI x 
SPI x 
VCI  

Net ecosystem exchange 

1980-
2010 Pixel-wise linear regression  

SPEI  
SPI x 
VCI  

NDVI phenological metrics 
2001-
2010 Random forest scPDSI  

SPEI  

Tree rings: The findings of our study in contrasting bioclimatic zones and elevations, 

stress the importance of considering different drought indices, time-scales and study 

periods for a better understanding of how tree species respond to drought. 

Shifts in vegetation growth rates and distributions during the twenty-first century are 

anticipated due to climate change (Williams et al., 2010). In terms of general growth-

drought index relationship, strongest correlations with growth (RWI) were found for 

scPDSI and SPI/SPEI at longer time scales (in Chapter 4.1). This finding was similar 

to the study of Vicente-Serrano et al. (2012), which found closer growth–drought 

correlations for SPI and SPEI (at time scale of 1 month) compared to PDSI. Similar 

behaviour of scPDSI to SPI and SPEI at longer time scales was observed, which could 

be explained by the fact that scPDSI has significant lagged autocorrelation, as it takes 

into account temperature and precipitation for the specific and the preceding months 

(Palmer, 1965; Dai et al., 2004).  

In Chapter 4.1, a group of four commonly used drought indices DMI, scPDSI, SPEI 

and SPI (the latter two on varying temporal scales) was used to derive species-specific 
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growth responses to drought for nine European tree species. In general, it was found 

that forests located in the temperate/Mediterranean and continental climates were 

relatively drought sensitive and resistant, respectively. While forests located in the 

temperate and Mediterranean climate, were more inclined to respond to short- and 

intermediate-term drought (less than a year), forests in continental climates responded 

to long-term drought.  

Recommended drought index for different species 

For each species of the study, the different months and drought indices with maximum 

correlation with RWI are reported in Chapter 4.1. “In general, scPDSI showed 

maximum correlations with the deciduous species beech, and the two oak species, as 

well as coniferous species black pine. DMI had maximum correlations with beech, 

sessile oak and black pine but as well silver fir. SPEI and SPI at varying degrees 

captured the drought signal of all species” (Bhuyan et al., 2017a). Studies based on 

observation (Pichler & Oberhuber, 2007; Lebourgeois et al., 2010; Schuster & 

Oberhuber, 2013; van der Maaten-Theunissen et al., 2013; Boden et al., 2014; Pretzsch 

et al., 2014) and expert assessment (Niinemets & Valladares, 2006) confirm the 

classification for Norway spruce, silver fir and European beech as drought-sensitive 

species as found in results of Chapter 4.1. Effect of long-term drought was observed 

in high elevation stands of Norway spruce which showed greater drought resistance 

similar to several studies (van der Maaten-Theunissen et al., 2013; Zang et al., 2014). 

For temperate beech forests, scPDSI, SPI and SPEI during the main summer months, 

were most suitable. All drought indices DMI, scPDSI, SPI, SPEI were able to capture 

drought impacts on oak species, during summer. Confirming pervious findings 

(Friedrichs et al., 2008; Zang et al., 2011), the sessile and common oak were found to 

be drought sensitive and were particularly affected by short-term drought. For Scots 

pine in general and European larch and stone pine in the alpine zone, the performances 

of all drought indices were quite similar. Species of the genus Pinus showed a diverse 

range of responses from being drought sensitive such as the Black and Scots pine 

(Martin-Benito et al., 2013; Pichler & Oberhuber, 2007; Camarero et al., 2015; 

Thabeet et al., 2009) to drought resistant such as Stone pine. The effect of elevation 

was more pronounced for some species like European larch, beech and common oak 

(Bhuyan et al., 2017a). Detailed information on the recommended index for all the 

species in different climate zones and elevations can be found in Bhuyan et al. (2017a). 
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In general our results established that RWI is a useful proxy to assess the performance 

of drought indices, however it is not always practical. Therefore it is important to seek 

potential alternatives for the RWI or proxy data for drought studies, which led to the 

follow-up study of Chapter 4.2. 

Streamflow data: The climate-based indices SPI and SPEI describe only the climate 

anomalies in isolation from their hydrological context (Shukla & Wood, 2008), while 

the VCI offers an adept method for jointly characterizing the effects of climate 

anomalies and hydrologic conditions. 

Depending on the capacity of the catchment to store and release water, which can boost 

or amplify atmospheric drought signals, hydrological events can differ from 

meteorological ones (Van Lanen et al., 2016; Laaha et al., 2017). Amongst SPEI, SPI 

and VCI, the streamflow drought relationship was most prominent with VCI. It had 

maximum values in fall and had a higher mean correlation value for all months. SPI 

and SPEI had low correlations during the period March-June, which can be attributed 

to the fact that at around this time of the year, rainfall deficit and snow melt influence 

streamflow (Haslinger et al., 2014; Staudinger et al., 2014). This effect is not 

accounted for by SPEI and SPI, since a time lag with streamflow drought has 

previously been observed for SPI and SPEI (Shukla & Wood, 2008; Haslinger et al., 

2014). The effect due to snowmelt processes is however not as evident in case of VCI, 

as it is a hydro-metorological drought index, and not purely meteorological. In general, 

the results of Chapter 4.3 confirm the hypotheses that the relationship between 

streamflow anomalies and drought indices is more striking the more complex the 

drought index is, as shown in Haslinger et al. (2014). Using the forecast verification 

skill scores probability of detection and false alarm rate, VCI outperformed the other 

indices with the highest POD and lowest FAR scores. This result was similar to studies 

where a multivariate drought index resulted in a higher probability of drought 

detection compared to single parameter based index (Hao & AghaKouchak, 2013; Hao 

& AghaKouchak, 2014; AghaKouchak, 2014). The superior performance of VCI could 

be a consequence of including volumetric soil water content, besides precipitation and 

potential evapotranspiration into the computation, and secondly due to the fact that it 

uses vine copulas to explain for inter-variable dependencies in an adjustable fashion 

(Aas et al., 2009). It was observed that catchment area (upto 500 km2) had no 

consequence on the responses of the drought indices, however elevation of the 
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catchment resulted in variable performance of the indices. Streamflow data showed 

that for low, medium and high elevations of a catchment, VCI was the best performing 

index when considering POD and FAR scores in conjunction.  

Carbon Flux: Similar to the results with the streamflow data, it was observed that the 

VCI skillfully captured drought information when validated against carbon flux 

variables, whereas the climate-based indices described the climate anomalies in 

isolation from their carbon balance context.  

In biogeosciences, an ongoing objective is to accurately account terrestrial carbon 

(Schimel, 1995). The pixel-wise regression analysis of the drought indices and carbon 

fluxes in Chapter 4.3, showed a varying strength of the correlation depending on the 

drought index, the period of analysis (1980-2010, 2003) and the carbon flux variable 

under consideration. The average R2 values of the pixel-wise regression of NEE and 

GPP with the drought indices were highest for drought index VCI, followed by SPEI 

and SPI, when considering the long period of 1980-2010 (Bhuyan-Erhardt et al., 

2017). In general, the indices confirmed the relationship of drought with carbon flux 

variables: GPP and NEE (Ciais et al., 2005; Reichstein et al., 2005; Pereira et al., 2007; 

Vicca et al., 2016). This drough-flux relationship was most reflected in case of both 

GPP and NEE by VCI with all statistically significant values, which enables us to 

interpret with confidence the superiority of the methodology of drought index VCI in 

depicting drought events of the past. Similar to results of the period 1980-2010, the 

average R2 values of linear regression of NEE and GPP for the drought year 2003, with 

the drought indices were highest for drought index VCI. 

 

“MODIS greatly improves scientists’ ability to measure plant growth on a global 
scale.” – NASA Earth Observatory 

5.2 Performance of drought indices in relation to phenological metrics derived from 

NDVI and tree rings 

Key findings: 

• Understanding of the existing tree growth–drought relationship can be refined 

using NDVI phenological metrics. 

•  scPDSI better highlighted tree growth-NDVI relationship compared to SPEI. 
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• Summer NDVI sum best explained RWI followed by the previous year’s 

summer NDVI sum and the previous year’s spring NDVI sum.  

• The NDVI-growth relationship was more striking with the high-resolution 

NDVI (MODIS). 

 

In Chapter 4.2, it was seen that drought index scPDSI in conjunction with phenological 

metrics derived from NDVI and other climatic parameters, best described tree growth. 

SPEI also revealed this relationship, however the proportion of variance of tree growth 

explained by SPEI was lower than scPDSI. This could be attributed to the fact the 

climate-only index such as the SPEI does not integrate soil properties like the scPDSI, 

which enables capturing tree growth information more effectively. In general, results 

established that spatio-temporal variations of vegetation phenology can help to refine 

the relationship between drought and tree-growth. 

In Chapter 4.2, both GIMMS3g and MODIS NDVI were used, which were at 

significantly different spatial resolutions. In general, a positive relationship between 

NDVI in the growing season and RWI was seen for many forests (at the local level) 

(Kaufmann et al., 2004; Vicente-Serrano et al., 2016) with MODIS NDVI generally 

reflecting stronger growth patterns than GIMMS3g NDVI. For instance, for conifers 

in a continental climate, growth was strongly linked to a MODIS NDVI signal during 

summer (similar to studies by Lopatin et al., 2006, Bunn et al., 2013; Beck & Goetz, 

2011; Brehaut 2015; Berner et al., 2013) upto 10–15 cumulative NDVI observations, 

in contrast to almost a non-existent GIMMS3g NDVI signal. Details of the results for 

deciduous and conifer trees in three different climate types: semiarid, temperate and 

continental, can be found in Bhuyan et al. (2017b). A negative relationship between 

NDVI and RWI was also observed for some forests, which could be due to site-level 

factors and changing environmental conditions (Wilmking et al., 2005). 

Our results showed that MODIS NDVI based phenological information improved the 

RWI modelling noticeably compared to GIMMS3g (Kern et al., 2016), since the high-

spatial-resolution data was able to capture local climatic or other information reflecting 

the changes in RWI better than the coarse-spatial-resolution data. Amongst NDVI 

phenological metrics, RF models identified that summer NDVIs of current and 

previous years, best reflected RWI (Kaufmann et al., 2008). Other important 

parameters found in our study were the spring and growing season NDVIs of previous 
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and current years. They had a higher score than precipitation in the RF model, which 

demonstrates the potential of NDVI metrics to improve the relationship between tree-

growth and drought (Bhuyan et al., 2017b).  

5.3 Synopsis of discussion 

The diversity of environmental indicators evaluated in the thesis allows us to make a 

wide-ranging comparison of the different indices. Although some drought indices such 

as SPI are popularly accepted, the variety of drought indices that exist reflects a 

fundamental lack of a unique definition and functioning requirement. Nevertheless, 

our results point to the advantage of having multiple variables in the calculation of a 

drought index, as the VCI.  

The magnitudes of the correlations between various variables and the compared 

drought indices clearly showed that the multiscalar, climate based indices SPI and 

SPEI are comparable to each other in their ability to capture drought conditions in 

different systems (Vicente-Serrano et al., 2014, Bhuyan et al., 2017a). The results 

clearly demonstrate that, although precipitation (SPI) is the main driver of drought 

severity, adding the influence of the atmospheric evaporative demand (SPEI) improves 

drought detection in case of several variables such as river discharges and reservoir 

storages (Lorenzo-Lacruz et al., 2010), tree ring width (Vicente-Serrano et al., 2014, 

Bhuyan et al., 2017a), atmospheric circulation (Tan et al., 2015) and net ecosystem 

exchange (Bhuyan-Erhardt et al., 2017). Although some studies recommended SPI 

over scPDSI (Guttman, 1998; Keyantash & Dracup, 2002) there were also studies that 

reported the contrary (Haslinger et al., 2014). scPDSI is found to be generally more 

suited to test water availability in tree growth or agricultural crops as seen in many 

studies (Orwig & Abrams, 1997; Akinremi et al. 1996; Quiring and Papakryiakou 

2003; Scian and Donnari 1997; Mavromatis 2007, Bhuyan et al., 2017a; Bhuyan et al., 

2017b). scPDSI can be qualified as a mid and long time scale index owing to the strong 

lagged autocorrelation whereas the SPI/SPEI can suitably monitor short and long-term 

drought using selected timescales (Bhuyan et al., 2017a; Zhao et al., 2015). 

Nevertheless, when data is available, combining multiple data sets can be considered 

more advantageous as reflected by the results of Chapter 4.3. 

Results of this thesis, which links phenological metrics derived from NDVI to radial 

growth of trees, are encouraging. NDVI phenological metrics hold the potential to 

34



 Discussion 

 

refine the understanding of the existing relationship between drought and tree growth. 

Yet, there is a large gap in knowledge to be filled, before such inferences can be made 

at longer time scales and across larger spatial extents. Also, our current understanding 

between phenological metrics derived from NDVI and field-based measures of 

production has been limited to correlation analyses which is very simplistic or one-

dimensional from an ecological perspective. An important start would be to improve 

the statistical models between tree growth and NDVI metrics, in order to better 

understand changes in tree growth under current climate change scenarios. 
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6. Strengths and shortcomings of the studies 

Gridded climate/environmental data products 

The thesis employs different spatially coarse gridded climate/environmental data 

products (CRU, ERA-20C, E-OBS, GIMMS3g, MODIS and FLUXCOM) which have 

many advantages in situations where station data is not available, especially with good 

temporal coverage, or unavailability of the desired data from other sources. Chapter 

4.1 and Chapter 4.2 use the CRU TS 3.21 dataset which covers all land masses between 

60°S and 80°N for the period of 1900-2012. This is especially useful for global studies 

or continental studies (Chapter 4.1 - 4.2) where a long time period over large spatial 

scales is desirable for analysis. For instance, for tree ring studies large temporal 

coverage is necessary since tree ring data is available from as early as 1800s. For 

validation of the results of Chapter 4.1, the E-OBS data set was used, which is usually 

the only available dataset for studies such as comparison of regional climate model 

(RCM) outputs for the whole of Europe (Hofstra et al., 2009) and for validation of 

results obtained with other climate data products (Chapter 4.1). In Chapter 4.3, the 

ERA-20C reanalysis product was used to calculate the drought indices including the 

novel multivariate drought index VCI, as it contains long, gap-free gridded records of 

many climate variables like the volumetric soil water content, which is otherwise not 

available from a different source on a global scale for a long time period. The carbon 

flux data from FLUXCOM was used as a dataset to assess the performance of drought 

indices in Chapter 4.3, and is generally very preferable because it combines the 

strengths of multiple global satellite-based observations with site-level observations 

using several methods (Koirala et al., 2017). Chapter 4.2 uses MODIS and GIMM3g 

NDVI datasets. The GIMMS3g NDVI dataset spans over three decades, which is very 

useful as it fulfils the high demand for a continuous and consistent long-term NDVI 

dataset. The MODIS dataset is at a relatively fine resolution of 250m and is well 

recognized for its wide range of applications, and has the highest quality due to its 

quality control, cutting-edge sensor characteristics, advanced calibration and data 

processing algorithms (Didan et al., 2015; Kern et al., 2016). 

However, the weakness of such gridded data sets is that they are known to contain 

product-specific biases (Zhao et al., 2012; Garnaud et al., 2014) which adds to 

uncertainty. The CRU dataset, which is used in Chapter 4.1 and Chapter 4.2, is not 
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specifically homogeneous (Harris et al., 2014). It has been recommended that analysis 

with the CRU dataset should be complemented by comparison with other datasets 

(Harris et al., 2014) as done in Chapter 4.1. Some shortcomings of the ERA-20C 

include the slight negative impact of the data assimilation on trends and low-frequency 

variability (Poli et al., 2016). The E-OBS dataset derived through interpolation of 

station data also contains errors introduced by the station data (Haylock et al., 2008). 

The MODIS NDVI dataset has short temporal coverage of 13 years and as a 

consequence results of statistical analyses with MODIS NDVI are not as robust. 

GIMM3g NDVI on the other hand is at a coarse resolution making it not very suitable 

for correlating with forests, which do not lie within the NDVI pixel by default. An 

imperfect applicability of GIMMS3g has also been found for Central Europe (Kern et 

al., 2016). In the FLUXCOM dataset, it has been observed that the information content 

of the driving input variables may not be sufficient to capture the variability of the 

fluxes in all conditions (Tramontana et al., 2015). Moreover it uses remote sensing and 

meteorological gridded data sets which are affected by uncertainties themselves 

(Tramontana et al., 2016). 

Tree ring data and species studied 

Chapter 4.1 and Chapter 4.2 analyses tree ring data. The greatest advantage of tree ring 

width data is that it provides centuries-long, continuous annual records of past 

hydroclimatic variability for regions and periods with no station climate data (Cook et 

al., 1999) and therefore is very useful for studying the past climate. However, tree ring 

sample collections may represent variable sample homogeneity and hence different 

growth-forcing signals. Moreover, additional drivers of growth could add noise to the 

climate signals extracted from tree ring data. A limitation of the study (Chapter 4.1) is 

that recommendations for drought indices were provided based on some European 

species, therefore, studying a restricted number of species under a restricted set of 

conditions, many questions remain. Also, the interpretation of NDVI and its relation 

to ring widths is challenging (Chapter 4.2), since it is constrained by the assumption 

that the forests being analysed dominate the NDVI pixel. 

Random forest models 

Random forest models (Breiman, 2001) are used in Chapter 4.2 to assess the 

performance of different NDVI phenological metrics, climatic and auxiliary 
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parameters. Compared to other statistical models, it is relatively less prone to over 

fitting, hence preferred. However it can have unstable results, because a different 

aggregate model is observed at each run as it takes different bootstrap samples (Liaw 

& Wiener, 2002) and the ranks of variables depend on number of included variables 

(Breiman, 2001). 

Challenges of using multivariate indices 

In section 5, the advantages and the superiority of using multivariate drought indices 

was established. However, the results of a multivariate index such as the VCI depends 

on the choice of variables used in its computation. The selection of the most 

appropriate drought-relevant variables is not necessarily an easy task for all end-users. 

Another challenge associated with using/developing a multivariate index like the VCI 

is that ground-based observations of many drought-related variables (e.g., soil 

moisture, snowmelt, and water vapour) are not readily available or easy to assess 

compared to variables such as precipitation (used in SPI) and potential 

evapotranspiration (used in SPEI). Even when data of drought-related variables such 

as soil moisture is available they are many times restricted to certain regions of the 

world. This prohibits the development of multi-index indicators (Hao & 

AghaKouchak, 2014). Moreover, for many satellite data, length of the climate records 

are limited to a decade or have very coarse resolution which limits the methodology 

of indices to be utilized to their maximum capabilities (Bhuyan-Erhardt et al., 2017).  
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7. Conclusions  

Overall, the studies compiled in this thesis delivered new insights in several areas 

revolving around drought indices from different ecological perspectives. The studies 

utilized proper scores, methods and various environmental datasets in order to provide 

an all-rounded assessment of different drought indices. Our results are particularly 

relevant within the changing climate framework, because the degree to which 

ecosystems respond to water deficiency can show how responsive they could be to 

future climate change.  

It was seen that the appropriate drought index for detecting impacts depends on the 

analysed system, the application and data being used. For nine tree species of the study, 

located in different bioclimatic zones and elevations, the month wise performance of 

drought indices DMI, scPDSI and SPEI/SPI (in their varying temporal aggregation) 

are provided to facilitate users the selection of the most suitable index depending on 

their application. Results of the RF models established that NDVI phenological 

metrics have the potential to refine the understanding of the existing relationship 

between drought and tree growth, especially when NDVI is at a fine spatial resolution 

such as MODIS. Validation of drought indices using streamflow and carbon flux data 

showed varying performance of the drought indices with one stable result: the novel 

multivariate drought indices (VCI) outperformed the established indices in all 

investigations, with attributes such as higher probability of detection and lower false 

alarm rates.  

Given the observed impacts of global warming processes on water availability and the 

results obtained in this thesis using various environmental datasets at the global and 

regional scale, it is advocated to use multiple variables/indicators for drought 

characterization. VCI is recommended to be used as an added source of drought 

information and possibly to improve the accuracy of projections under global change 

scenarios. 
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8. Outlook 

The IPCC AR5 (2013) stressed low confidence in a global scale observed trend in 

drought. Also, studies have suggested that drought may become so widespread and 

severe in the coming decades that current drought indices might no longer be able to 

quantify future drought episodes effectively (Dai, 2011). 

One obvious future directions for drought indices research could be understanding of 

drought impacts on ecosystem conditions using high spatial resolution, application-

based user-defined drought monitoring. Progress needs to be made in the field of 

exploiting novel remote sensing information, as longer temporal records of existing 

sensors such as MODIS become available. Due to the complexity and time-

dependency of these processes, current studies cannot yet deliver concluding answers. 

While there is clearly a need for targeted drought indices, their validation is equally 

important and at the same time testing of their boundary conditions and limitations. 

It is suggested that scientists from different disciplines study patterns of responses to 

drought using different environmental indicators such as drought-sensitive plant 

species, streamflow and carbon flux data, and by taking advantage of droughts while 

they are still headway. This would result in more robust models to understand the 

effects of climate change on the ecosystem.  
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a  b  s  t  r  a  c  t

Increasing  frequency  and  intensity  of drought  extremes  associated  with  global  change  are  a key  challenge
for  forest  ecosystems.  Consequently,  the  quantification  of  drought  effects  on  tree  growth  as  a measure  of
vitality  is  of  highest  concern  from  the perspectives  of  both  science  and management.  To  date,  a  multitude
of  drought  indices  have  been  used  to  accompany  or replace  primary  climatic  variables  in the  analysis  of
drought-related  growth  responses.  However,  it remains  unclear  how  individual  drought  metrics  compare
to  each  other  in terms  of their  ability  to capture  drought  signals  in  tree  growth.

In  our  study,  we employ  a European  multispecies  tree ring  network  at the continental  scale  and  a  set  of
four  commonly  used  drought  indices  (De  Martonne  Aridity  Index,  self-calibrating  Palmer  Drought  Sever-
ity  Index,  Standardized  Precipitation  Index  and  Standardized  Precipitation  Evapotranspiration  Index,  the
latter  two  on  varying  temporal  scales)  to  derive  species-specific  growth  responses  to  drought  conditions.
For  nine  common  European  tree species,  we demonstrate  spatio-temporal  matches  and  mismatches  of
tree  growth  with  drought  indices  subject  to species,  elevation  and  bioclimatic  zone.  Forests  located  in
the  temperate  and  Mediterranean  climate  were  drought  sensitive  and  tended  to respond  to short-  and
intermediate-term  drought  (<1  year).  In continental  climates,  forests  were  comparably  more  drought

resistant  and  responded  to long-term  drought.  For  the same  species,  stands  were  less drought  sensitive
at  higher  elevations  compared  to lower  elevations.  We  provide  detailed  information  on  the  month-wise
performance  of the four drought  indices  in  different  climate  zones  allowing  users the  selection  of the  most
appropriate  index  according  to their  objective  criteria.  Our  results  show  that species-specific  differences
in  responses  to multiple  stressors  result  in complex,  yet coherent  patterns  of  tree  growth.

© 2017  The  Authors.  Published  by  Elsevier  GmbH.  This  is an  open  access  article  under  the CC
. Introduction

Droughts are complex multi-dimensional climatic phenomena
ith detrimental effects on social and natural systems (Wilhite and
lantz, 1985; Obasi, 1994; Mishra and Singh, 2010). The impacts of
rought have been aggravated in the recent years by the increasing
ise in water demand due to global climate change, the latter being
ignified by the increase in mean global air temperature by 0.85 ◦C
uring the period 1880–2012 (IPCC, 2013).
The frequency and their duration is likely to increase by factors
f two and six, respectively, due to anthropogenic climate change
Kogan et al., 2013). Important natural systems challenged by this

∗ Corresponding author.
E-mail address: bhuyan@wzw.tum.de (U. Bhuyan).
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125-7865/© 2017 The Authors. Published by Elsevier GmbH. This is an open access artic
.0/).

61
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intensification of (especially summer) drought events are forest
ecosystems (Bolte et al., 2009). Forests are characterized by large
carbon stocks and flows, both sensitive to climatic extremes, most
importantly drought, resulting in large (and potentially lagged,
Anderegg et al., 2015) effects on the carbon cycle (Frank et al., 2015).
The impairment of tree vitality by drought is therefore one of the
key processes controlling drought impact on forests. Tree species
differ across biomes, rendering the comprehensive characteriza-
tion of drought response of individual species a pivotal component
of understanding drought impact on forest ecosystems (Bolte et al.,
2009; Luyssaert et al., 2010; Zang et al., 2014).

Tree ring width or annual radial growth increment is a widely

used proxy for tree vitality (Fritts et al., 1971; Dobbertin, 2005)
and its connection to climate and extreme climatic events, such as
drought. The high abundance of tree ring data allows tree growth
and drought variability to be studied on local to continental scales.
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et, the study of forest vulnerability to climatic extremes, partic-
larly drought events, is complicated by macroclimatic, structural,
nd compositional differences of forest sites at continental scales
Vicente-Serrano et al., 2014; Gazol et al., 2016). These differences
xplain the difficulty to find generalized descriptors of drought that
atch the temporal resolution of processes at the scale of individ-

al forests. A typical example for a commonly used drought index
hat does not allow for varying temporal resolutions is the Palmer
rought Severity Index, PDSI (Dai et al., 2004). Since site-specific
acroclimatic and species-specific physiological response charac-

eristics mediate the differential drought response at the level of
ites (Babst et al., 2013) and individual trees (Dittmar et al., 2012;
ang et al., 2014), the PDSI and other drought metrics with fixed
ime scales are not able to capture the ecologically meaningful
emporal offset between onset of drought conditions and growth
esponse of forests (Vicente-Serrano et al., 2012).

Acknowledging this shortcoming of traditional drought metrics,
icente-Serrano et al. (2010) proposed the Standardized Poten-

ial Evapotranspiration Index SPEI as a novel drought index. It is
vailable for varying time scales like the older Standardized Pre-
ipitation Index, SPI (Mckee et al., 1993), but in contrast to the
PI it incorporates the effect of temperature. Vicente-Serrano et al.
2012) provided a global assessment of the performance of differ-
nt drought indices including the ones discussed in the paper for
onitoring drought impacts on streamflows, soil moisture, forest

rowth, and crop yields. The study detected small differences in
he comparative performance of the SPI and the SPEI indices, but
PEI best captured the responses of hydrological, agricultural and
cological variables. It has been recommended for use when the
esponses of the variables of interest to drought are not known.
n the other hand PDSI has been widely used for decades par-

icularly in the United States, and also in climate change analyses
Seneviratne et al., 2012). In a hemispherical assessment of drought
esponse of forests using tree ring data, Vicente-Serrano et al.
2014) identified characteristic differences in response time, with

 clear gradient in drought response in the northern hemisphere:
esponse to long-term drought conditions in xeric environments,
nd a response to increasingly shorter time scales of drought with
ncreasingly humid conditions. This pattern confirmed earlier find-
ngs based on multiple data streams for vegetation activity on large
cales (Maherali and Pockman, 2004; Vicente-Serrano et al., 2012)
nd tree ring parameters for small scale intensive case studies
Lévesque et al., 2013). However, many recent tree ring stud-
es employ drought indices other than SPEI (Babst et al., 2013;
ogg et al., 2013; Zang et al., 2014). Moreover, the hemispheri-

al approach of Vicente-Serrano et al. (2014) is focused on SPEI
olely. Consequently, a direct comparison of potentially macro-
limatic and species-specific differences in response to different
ommonly used drought indices and their varying temporal aggre-
ation is currently not available.

In this study, we use a large data set of tree ring widths (Babst
t al., 2013) to assess the connection between drought and tree
rowth and to provide a continental assessment of the performance
f commonly used drought indices for quantifying drought impacts
n forest growth. This is achieved through the study of drought

mpact on the radial growth of nine tree species as a function of
levation and bioclimatic zone. For this purpose, we compare tree
rowth with four of the most widely used drought indices – SPI
Mckee et al., 1993), self-calibrating Palmer Drought Severity Index,
cPDSI (Palmer, 1965; Wells et al., 2004), SPEI (Vicente-Serrano
t al., 2010) and De Martonne Aridity Index, DMI  (de Martonne,
926). For the SPI and SPEI time scales from 1 to 36 months have

een applied. Considering the different vulnerabilities of different
ree species to drought and a lack of appropriate descriptors of
rought, the study aims to assess the connection between exist-

ng drought indices and the response of different tree species to a
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drought event. With our study we try to answer which indices best
represent drought impacts for the species studied.

2. Material and methods

2.1.  Tree ring data

The  tree ring network used in this study is a compilation of pub-
lished tree ring chronologies by Babst et al. (2013) which consists of
992 sites covering most of Europe and North Africa (30–70◦ N/10◦

W–40◦ E) (including information on elevation). A 32 year spline
with 50% frequency cutoff response was used to remove the bio-
logical trend present in the original raw tree ring width time series
while preserving the inter-annual to decadal variability at the same
time. The resulting detrended series were power-transformed to
remove temporal heteroscedasticity and then robustly averaged to
site-wise dimensionless chronologies of ring width indices (RWI).
Optimizing the trade-off between series length and replication, we
selected RWI  series with 56 years of data for the common period
1920–1975. When considering the nine most common species of
the network and allowing a maximum period of overlap between
climate data and RWI, a total of 850 sites were retained for the
final analysis of the study. The following nine species were investi-
gated for their drought vulnerability, namely Abies alba Mill. (ABAL,
silver fir), Fagus sylvatica L. (FASY, European beech), Larix decidua
Mill. (LADE, European larch), Picea abies (L.) Karst. (PCAB, Norway
spruce), Pinus cembra L. (PICE, stone pine), Pinus nigra Arn. (PINI,
black pine), Pinus sylvestris L. (PISY, Scots pine), Quercus petraea
(Matt.) Liebl, (QUPE, sessile oak) and Quercus robur L. (QURO, com-
mon  oak). All species’ abbreviations are used subsequently in the
figures and tables.

2.2.  Climate data

We  used mean temperature (TMP), precipitation sum (PRE),
and potential evapotranspiration (PET) monthly datasets from the
observational CRU TS 3.21 worldwide dataset available on a 0.5◦

grid (Harris et al., 2014; http://badc.nerc.ac.uk/). Data on climate
classification was obtained from the world Köppen-Geiger climate
classification map  (Kottek et al., 2006). The climate classification
data is based on recent data sets from the CRU and the Global Pre-
cipitation Climatology Centre (GPCC) at the German Meteorological
Service. In the study, climate zone Cf, Cs and D denote temperate
climate without dry season, temperate climate with dry summer
(Mediterranean) and continental climate respectively. Taking into
account the uncertainties involved with spatially coarse and inter-
polated gridded data, we  have validated the results of the study
using station data from E-OBS (Haylock et al., 2008). The details of
the analysis can be found in Appendix B in Supplementary mate-
rial.

2.3. Drought indices

The  drought indices SPI and SPEI were calculated using the R
package SPEI (Vicente-Serrano et al., 2010) for time scales of 1, 6, 12,
24 and 36 months based on input data from CRU. The DMI  was also
calculated using PRE and TMP  data from CRU. The scPDSI, which
is based on climatic data from the CRU, was  downloaded from
the KNMI Climate Explorer web page (available at http://climexp.
knmi.nl/). The DMI  is a measure of aridity obtained by calculating
mean precipitation (in mm)/(temperature (in ◦C) + 10). It is subject
to criticism because of its empirical nature but nevertheless pro-

vides information on the drought level at a given site. SPI is based
on long-term precipitation records that are computed on differ-
ent time scales. To calculate the SPI, precipitation data is converted
to probabilities which are then transformed to standardized series

http://badc.nerc.ac.uk/
http://badc.nerc.ac.uk/
http://badc.nerc.ac.uk/
http://badc.nerc.ac.uk/
http://badc.nerc.ac.uk/
http://badc.nerc.ac.uk/
http://climexp.knmi.nl/
http://climexp.knmi.nl/
http://climexp.knmi.nl/
http://climexp.knmi.nl/
http://climexp.knmi.nl/
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ig. 1. Spatial distribution of the 850 tree ring sites and their elevation (m a.s.l) ac
pruce, PICE stone pine, PINI black pine, PISY Scots pine, QUPE sessile oak, and QUR

ith an average of 0 and a standard deviation of 1. A key limitation
f the SPI is its inability to capture the effect of increased temper-
tures on moisture demand (Mckee et al., 1993). The SPEI is an
xtension of the SPI; it combines the multi-timescales aspects of
he SPI with information about evapotranspiration, making it more
eliable for climate change studies. A limitation of the SPEI is its
ensitivity to the method of calculating potential evapotranspira-
ion (PET) (Vicente-Serrano et al., 2010). The scPDSI is based on
he supply and demand concepts of the water balance equation. It
s calculated based on precipitation and temperature data, as well
s on the water content of the soil. Its disadvantages include non-
omparability across regions and missing multi-timescale features
Dai et al., 2004; Wells et al., 2004).

.4. Statistical analyses

To assess the species-specific growth-drought relationships,
orrelation function analyses (Fritts et al., 1971) were calculated
etween RWI  and the selected four drought indices: SPI/SPEI (time
cale = 1, 6, 12, 24, 36 months), DMI  and scPDSI for the period of
920–1975. Since the different time scales of the indices already
aptured the effect of previous year conditions, the correlation
oefficients were calculated only for the year of ring formation
March to September). These correlations were then introduced
nto a principal component analysis (PCA). The first few compo-
ents encompass the bulk of the variability in the original variables
nabling it to identify and summarize the spatial and temporal vari-
bility across the study area (Seftigen, 2014). A ‘Q’ mode PCA was
sed since we aimed to find persistent drought patterns in space
Machado-Machado et al., 2011). An equilibrium circle of descrip-

ors, with radius
√

d
p (with p total and d reduced dimension in

rdination), was drawn as reference to assess the contribution of
ach descriptor to the formation of the reduced space (Legendre
nd Legendre, 1998). This aids to identify meaningful scores and

oadings in reduced space (Legendre and Legendre, 1998). R pack-
ge bootRes (Zang and Biondi, 2013) was used for calculating
ootstrapped correlations between RWI  and drought indices; and
ackage ggplot2 was used for visualizations (Wickham, 2009). All
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urope. ABAL silver fir, FASY European beech, LADE European larch, PCAB Norway
mon oak.

statistical procedures were performed using R 3.2.0 (R Core Team,
2015).

2.5. Modelling tree growth by drought indices

We used linear models to predict tree growth at each site by
monthly drought indices from March to September. For these linear
models, we divided the dataset into training and test datasets, with
the earlier years of the RWI  time series for testing (1920–1947) and
the most recent years for training the model (1948–1975). Using
external validation, i.e. the test dataset, the performance of these
models was quantified by the normalized root-mean-square devi-
ation (NRMSE). Since our dataset is based on tree ring sites with
different species in different elevations and climate zones, we  chose
to standardize all estimates of the root mean square error (RMSE)
and to relate the RMSE to the observed range of the variables.

3.  Results

3.1. Tree growth – drought relationship: summarizing growth
response to drought

The  spatial distribution and elevation of the sites of nine
species analyzed in the study can be seen in Fig. 1. The tree-
growth responses to the drought indices DMI, scPDSI, SPI/SPEI (time
scale = 1, 6, 12, 24, 36 months) was summarized by conducting a
PCA on the correlation matrix and by analyzing the first two  prin-
cipal components (PCs). These components accounted for 75% of
the variance, showing which drought indices were more influential
in terms of tree response to drought given as variables outside the
equilibrium circle (Fig. 2). The behavior of SPEI (Appendix A, Fig. 1 in
Supplementary material) was similar to SPI (Fig. 2), hence not dis-
played in Fig. 2 to foster readability. The ordination of the first two
components resulted in a nearly complete separation of short- and
intermediate-term drought from long-term drought effects. Based

on the PC1, the major modes of tree growth responses to the differ-
ent drought indices for the months of March to September can be
seen in Fig. 3. The drought indices SPI and SPEI at higher time scales
of 24 and 36 months revealed maximum absolute loadings to PC1,
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Fig. 2. Equilibrium circle and selected drought indices of the PCA. The PCA per-
formed on the correlation coefficients calculated between 850 RWI  series and the
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onthly scPDSI, DMI, SPI/SPEI (time scales = 1, 6, 12, 24, 36) for the period of
920–1975.  DMI, PDSI and SPI stand for De Martonne Aridity Index, self-calibrating
almer  Drought Severity Index and Standardized Precipitation Index (see text).

hus showing maximum correlations with RWI  whereas DMI, SPI,
nd SPEI (time scale = 1) had the lowest. The behavior of scPDSI was
omparable to SPI and SPEI at higher time scales (6–12).

.2.  Species-specific variation with elevation and bioclimatic zone

The PCA score plots for different species grouped by climate
one and elevation can be seen in Fig. 4. Species-specific differences
ere revealed in the score plots along the bioclimatic and eleva-

ion gradient and in their responses to drought duration: short- to
ntermediate-term drought: DMI, scPDSI, SPI/SPEI (time scale = 1, 6,
2) and long-term drought SPI/SPEI (time scale = 24, 36). The score
lot was interpreted with the aid of the behavior of the variables in

ig. 2 where it was observed that species were drought sensitive in
ase of PC1 < 0. In case of PC1 < 0 and PC2 < 0, species were respon-
ive to short- and intermediate-term drought. Similarly, in case of
C1 < 0 and PC2 > 0, species were responsive to long-term drought.

ig. 3. Major modes of tree growth responses to 12 drought indices for the current year 

n the correlation coefficients calculated between 850 RWI  series and the monthly scPD
cPDSI, SPI and SPEI stand for De Martonne Aridity Index, self-calibrating Palmer Drou
vapotranspiration Index.
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However,  it was  noted that all species responded to drought, albeit
to varying degrees (Fig. 4).

For silver fir and European beech, the majority of the stands
were drought sensitive and silver fir was predominantly influenced
by long-term drought in all climate zones. European beech was
both affected by short- and long-term drought with its high eleva-
tion sites being more responsive to long-term drought. In climate
zone D, their high elevation sites showed more drought resistance
compared to its stands in climate zone Cf.

European larch was affected by both short- and long-term
drought with the high elevation sites showing greater drought
resistance compared to lower elevation stands specifically in the
climate zone Cf. Most stands of Norway spruce were drought sen-
sitive with a majority being affected by long-term drought with
similar response for both climate zones Cf and D. Stone pine was
least affected by drought, if at all then by long-term drought
whereas Scots pine and black pine were majorly affected by short-
term drought. In climate zone Cs, for both pine species, the high
elevation stands were less drought sensitive. The two Quercus
species, sessile and common oak, were predominantly influenced
by short-term drought. Common oak stands in climate zone D
and at high elevation responded to long-term drought compared
to the stands in low elevations. The effect of elevation was  seen
clearly in the case of several species where high elevation sites
showed greater drought resistance compared to stands at lower
elevation in the same climate zone. We also observed a clear effect
of bioclimatic zonation in the species’ response to drought: Stands
which experienced continental climates (D) were more responsive
to long-term drought whereas stands that experienced temper-
ate (Cf) and Mediterranean (Cs) climates were more responsive
to short-term drought (Fig. 4). Hence, the sites with more sensi-
tive stands were seen to have a relatively warmer climate (Cf, Cs)
compared to the sites with less drought sensitive stands.

3.3.  Summarizing the performance of drought indices
The month-wise mean Pearson correlation coefficients for all
drought indices were grouped into species and climate zones
(Fig. 5). All groups with N < 10 were omitted and thus are displayed

growing season based on the first principal component (PC1). PCA was  performed
SI, DMI, SPI/SPEI (time scales = 1, 6, 12, 24, 36) for the period of 1920–1975. DMI,
ght Severity Index, Standardized Precipitation Index and Standardized Potential



U. Bhuyan et al. / Dendrochronologia 44 (2017) 1–8 5

Fig. 4. PCA score plot for the nine studied species indicating climate zone (Cf, Cs, D) and elevation (m a.s.l). PCA was  performed on the correlation coefficients calculated
between 850 RWI  series and the monthly scPDSI, DMI, SPI/SPEI (time scales = 1, 6, 12, 24, 36) for 1920–1975. DMI, scPDSI, SPI and SPEI stand for De Martonne Aridity Index,
self-calibrating Palmer Drought Severity Index, Standardized Precipitation Index and Standardized Potential Evapotranspiration Index. The species analyzed are ABAL silver
fir,  FASY European beech, LADE European larch, PCAB Norway spruce, PICE stone pine, PINI black pine, PISY Scots pine, QUPE sessile oak, and QURO common oak. Cf, Cs and D
denote  temperate climate without dry season, temperate climate with dry summer (Mediterranean) and continental climate respectively as per Köppen climate classification.

Fig. 5. Month-wise averaged Pearson correlation coefficients of different drought indices with RWI  for the nine species studied in different climate zones calculated for the
period  of 1920–1975. The different symbols indicate the percentage of sites that were significant at the 0.05 level for each averaged correlation value. DMI, scPDSI, SPI and SPEI
denote  De Martonne Aridity Index, self-calibrating Palmer Drought Severity Index, Standardized Precipitation Index and Standardized Potential Evapotranspiration Index.
Groups  with N < 10 were omitted. The species analyzed are ABAL silver fir, FASY European beech, LADE European larch, PCAB Norway spruce, PICE stone pine, PINI black pine,
PISY  Scots pine, QUPE sessile oak, and QURO common oak. Cf, Cs and D denote temperate climate without dry season, temperate climate with dry summer (Mediterranean)
and continental climate respectively as per Köppen climate classification.
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n grey in the figure. When comparing all species, the conifers
cots pine in all climate zones as well as European larch and stone
ine in climate zone D were relatively drought resistant as could
e seen from their low mean correlation coefficients, consistent
cross indices and time scales. Stands of silver fir in climate zone
f were less drought sensitive compared to stands in climate zone
. The indices SPEI and SPI at higher time scales best captured its
rought signals in climate zone D. European beech in climate zone
f and D was sensitive to both short- and long-term drought. In
limate zone Cf, scPDSI, SPI and SPEI best captured its drought sig-
als mostly at intermediate to longer time scales from March to
eptember. DMI, SPI, and SPEI at shorter time scales best captured
ts drought signals in climate zone D. Norway spruce in climate zone
f was best represented by long-term drought indices SPI and SPEI

rom March to September, whereas in climate zone D short-term
rought during early growing season months (March to May) mat-
ered. Black pine in climate zone Cf was seen to be very drought
ensitive to all indices capturing the drought signals during the
ain summer months; however SPI and SPEI at intermediate time

cales were best. In the Mediterranean climate zone Cs, drought
mpacts in black pine were best described by all indices during
hort- and intermediate-term drought. Quercus species in climate
one Cf were drought sensitive. Drought indices of the scale of 1
p to 12 months mostly during the growing season (June onwards)
est represented growth responses of these species.

The predictive capability of the developed models in terms
f NRMSE mostly reflects the long-term correlation of tree-ring
rowth and drought indices (Appendix A, Fig. 2 in Supplementary
aterial), and higher long-term correlation is connected to better

redictive power. There is, however, only small variation in NRMSE
cross individual models and groups.

. Discussion

This study is a first step towards an increased and improved
nderstanding of drought variability of nine tree species across
urope, including sites where climate station data is not available. It
onfirms that tree response to drought can vary significantly along
arge ecological gradients (see e.g. Pasho et al., 2012). The need to
se a wider set of parameters to estimate the current and future
esponse of trees to climate extremes is well known. This is partic-
larly true for the continental scale, where very few studies have

nvestigated and compared the drought tolerance of co-occurring
pecies along wide ecological gradients using several drought met-
ics.

In our study we focused on various drought indices to test the
mpact of water availability on tree growth: e.g., scPDSI takes into
ccount soil moisture (Wells et al., 2004) and site-specific water
alance (Stephenson, 1990), whereas SPEI includes evaporative
emand. We  observed that the behavior of scPDSI was similar to
PI and SPEI at longer time scales (up to 12 months). This could
e explained by the fact that scPDSI is a direct metric of moisture
onditions taking both temperature and precipitation into account
or the specific and the preceding months (Palmer, 1965; Dai et al.,
004). We  found that scPDSI, SPI, and SPEI at longer time scales
ad the strongest correlations with RWI  (Fig. 3). Similar results
y Vicente-Serrano et al. (2012) indicated closer growth–drought
orrelations for SPI and SPEI compared to PDSI when considered
or a time scale of 1 month. At this point it is worth noting that
ue to different calculation procedures and variables considered

or the drought indices they are expected to perform differently.

he timescale differences between scPDSI and SPEI for drought
onitoring has been discussed by Zhao et al. (2015). This study

ound that scPDSI can be qualified as a mid- and long timescale
rought-monitoring index owing to the strong lagged autocor-
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relation  whereas the SPEI can conveniently monitor short- and
long-term drought using selected timescales.

The analysis of the growth response to drought indices revealed
distinct species-specific patterns. Our results for the main forest
tree species in Europe, Norway spruce, silver fir and European
beech, confirm their classification as drought-intolerant from both
expert assessment (Niinemets and Valladares, 2006), and obser-
vational studies (Pichler and Oberhuber, 2007; Lebourgeois et al.,
2010; Schuster and Oberhuber, 2013; van der Maaten-Theunissen
et al., 2013; Boden et al., 2014; Pretzsch et al., 2014) (Fig. 4). There
was no clear separation of the response of silver fir stands between
low and high elevations. This could be due to preconditioning by
the high SO2 concentrations in the atmosphere during the mid-20th
century (Elling et al., 2009). However, lacking a Europe wide dataset
of SO2 deposition, this hypothesis could not be tested. High eleva-
tion stands of silver fir were more affected by long-term drought
and showed greater drought resistance. This is in line with studies
in which higher elevation stands were shown to be more drought
resistant (van der Maaten-Theunissen et al., 2013; Zang et al., 2014).
There are studies that show a reduced summer drought sensitivity
of silver fir in mixed stands (Lebourgeois et al., 2013) which could
also explain the less drought sensitive behavior of some stands.
In climate zone Cs, silver fir responded to long-term drought. The
general response of Norway spruce was similar to that of silver fir.
It showed drought sensitivity at all elevations (shown similarly by
van der Maaten-Theunissen et al., 2013) and was mostly affected
by long-term drought in both Cs and Cf climate zones. Its shallow
rooting system may  have contributed to the observed pronounced
drought sensitivity. European larch and beech display a variation in
drought response by elevation. Beech at high elevations in climate
zone D showed greater drought resistance, and in climate zone Cf,
larch at high elevations was  influenced by long-term drought and
showed more drought resistance in comparison to stands at lower
elevations. Stone pine, a typical species in alpine areas with D cli-
mates, was  relatively drought resistant and responded to long-term
drought only. The two  oak species, sessile and common oak, were
drought sensitive and were mainly affected by short-term drought,
corroborating previous findings (Friedrichs et al., 2008; Zang et al.,
2011). In climate zone D, high elevation stands of common oak
responded to long-term drought while the low elevation stands
responded to short-term drought. The effect of elevation was very
pronounced here as well. Species of the genus Pinus were seen to
show a wide range of drought responses from being drought sen-
sitive to drought resistant. Black and Scots pine were found to be
drought susceptible which confirms the reported growth reduc-
tions in black pine (Martin-Benito et al., 2013) and Scots pine in
connection to extreme summer droughts for Austria (Pichler and
Oberhuber, 2007; Camarero et al., 2015) and the French Mediter-
ranean region (Thabeet et al., 2009). High elevation stands of the
same two species in climate zone Cs were more drought resis-
tant compared to stands in other climate zones. In climate zone
D, stands of Scots pine at higher elevations were more drought
sensitive compared to stands at low elevations. In general, forests
located in the temperate and Mediterranean climate were drought
sensitive and tended to respond to short- and intermediate-term
drought (<1 year). In continental climates, forests were comparably
more drought resistant and responded to long-term drought.

For  each species of the study, the different months and drought
indices with maximum correlation with RWI  are reported (Fig. 5).
In general, scPDSI showed maximum correlations with the decidu-
ous species beech and the two oak species as well as coniferous
species black pine; DMI  with beech, sessile oak and black pine

but as well silver fir. SPEI and SPI at varying degrees captured
the drought signal of all species. For silver fir in cold climates, SPI
and SPEI at higher time scales best represented drought impacts.
For temperate beech forests, it was  most suitable to use scPDSI,
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PI and SPEI during the main summer months. In cold climates,
he impact of drought on growth is well described by short-term
MI, SPI and SPEI. Scots pine stands in temperate and cold climates
ainly responded to long-term SPI and SPEI during early summer
onths. Temperate stands of black pine were very drought sensi-

ive and their drought signal was reflected by all indices in the main
nd late summer months, whereas in Mediterranean climate short-
erm drought during June and July was decisive. All drought indices
DMI, scPDSI, SPI, SPEI) were able to capture drought impacts on
ak species, preferably those of the months of June and July. For
cots pine in general and European larch and stone pine in the
lpine zone, the performance of all drought indices was quite sim-
lar; no particular index outperformed the others. These results
ave been supported by the predictive performance of the linear
odels run for each site, with each drought index as a predictor

or RWI  (Appendix A, Fig. 2 in Supplementary material). This sug-
ests that indices at longer scales showing higher correlation with
ree-ring growth reflect high-frequency fluctuations in growth to

 better extent, rendering them superior predictors for tree-ring
ased reconstructions. However, the predictive power of the indi-
idual drought indices needs to be further tested using independent
ata with longer temporal coverage and from an even wider range
f growing conditions. On the other hand different approaches to
uantify drought responses such as growth resilience indices seem
articularly interesting (Gazol et al., 2016). These indices confirm
hat there are different strategies among forests depending on the
iome, tree species and the prevailing climatic conditions to cope
ith drought.

The  results of the validation performed with E-OBS data
Appendix B in Supplementary material) confirmed that ecological
atterns were consistent in both datasets and the species patterns
e describe reflect true variations and do not constitute any statis-

ical artifacts.

.  Conclusion

To conclude, there are apparent matches between the spatio-
emporal characteristics of tree ring network data and the
mployed drought descriptors. Our findings have implications for
endroclimatic calibration as well as for the relation of these
rought descriptors to relevant ecosystem-level responses. How-
ver, we should consider that the present study is constrained
y the fact that forest productivity is influenced by several other
actors besides climate such as human activity. These additional
rivers of growth could add noise to the climate signals. The use
f spatially coarse gridded climate data due to lacking station
ata with good temporal coverage adds to the uncertainty of our
ndings. The CRU dataset is not specifically homogeneous, that

s observations are non-necessarily homogenized before inclusion
Harris et al., 2014). This dataset should only be used for climate
rend analysis. It has been recommend that such analysis should
e complemented by comparison with other datasets (Harris et al.,
014) as it is done in this paper. The second factor of uncertainty
efers to tree ring data. It is known that a chronology does not neces-
arily have a unique growth signal, but a potential mix  of ecological
orcings and responses at different timescales and levels within
rees (Briffa and Cook, 2008). The studied tree ring network consists
f data collected with different aims and sampling designs, besides
eing prone to human errors. Sample collections may  represent
arying sample homogeneity and hence different growth-forcing
ignals. Therefore, the sites and species cannot be considered as

ully representative of all European forests (Babst et al., 2013). We
ncourage tree ring researchers to continue publishing their data,
ince an extended European-wide tree ring network would help
o refine the findings from this study and allow for a more fine-
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grained  perspective on spatio-temporal matches and mismatches
of tree-growth and drought metrics.
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Appendix 1: Supplementary Figures 

 

 

 Figure 1. Equilibrium circle and selected drought indices (SPEI) of the PCA (selected). The PCA 
was performed on the correlation coefficients calculated between 850 RWI series and the monthly 
scPDSI, DMI, SPI / SPEI (time scales = 1, 6, 12, 24, 36) for the period of 1920-1975. SPEI stands for 
Standardized Potential Evapotranspiration Index. 
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Figure 2 Plot of normalized RMSE values of the prediction of linear model (RWI~DROUGHT 
INDEX) calculated site-wise for each drought index for all species in different climate zones. Groups 
with N < 10 were omitted. The second half of the tree ring and drought time series were used for 
training the data (1948 to 1975), while the first half of the time series was used for testing the liner fit 
(1920 to 1947). Then the mean of the RMSE values were calculated for the different groups. The 
species analyzed are ABAL silver fir, FASY European beech, LADE European larch, PCAB Norway 
spruce, PICE stone pine, PINI black pine, PISY Scots pine, QUPE sessile oak, and QURO common 
oak. Cf, Cs and D denote temperate climate without dry season, temperate climate with dry summer 
(Mediterranean) and continental climate respectively as per Köppen climate classification. 
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Appendix 2: Validation with E-OBS data 

For validating the results of the study, and estimating uncertainties, we have used station data from 
E-OBS (Haylock et al., 2008). We have compared the PCA ordination results (1st and 2nd 
components) from the CRU dataset (Harris et al., 2014) with the PCA ordination results (1st and 
2nd components) from the E-OBS dataset using the Procrustes tests. A high correlation in a 
symmetric Procrustes rotation makes us confident that the species patterns we describe reflect true 
variations and do not constitute any statistical artifacts. The Procrustes test determines whether 
two ordinations are significantly correlated. Our results confirmed that ecological patterns were 
consistent in both datasets (Peres-Neto and Jackson, 2001; Legendre and Legendre, 1998; Ramette, 
2007). The PCA for the original dataset was performed on the correlation coefficients calculated 
between 850 RWI series and twelve drought indices for the period of 1920-1975. The PCA for the 
validation dataset was performed on the correlation coefficients calculated between 850 RWI 
series and eleven drought indices (E-OBS) for the period of 1950-1975. The validation was 
performed for all the drought indices except scPDSI due to unavailability of soil data. 

Procrustes Results  

 

 

Fig. 1 Procrustes superimposition plot showing Procrustes errors, that is the differences between 
the PCA results obtained from original dataset (circles) and that obtained from a PCA using the 
validation dataset (ends of the arrows). 
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Procrustes Sum of Squares: 0.53 

Correlation in a symmetric Procrustes rotation: 0.68 

Significance: 0.001, Permutation: Free, Number of permutations: 999 

Conclusion : 

From Fig. 2 and Fig. 3 (see below) we see that the major modes of tree growth response to drought 
indices and the species patterns observed using station data from E-OBS was similar to that 
revelaed when using the CRU dataset (see paper, Fig. 3 and Fig. 4). Additionally, the results of the 
Procrustes test validate the findings in the paper. 

 

Fig. 2 Major modes of tree growth responses to 11 drought indices for the current year growing 

season based on the first principal component (PC1). PCA was performed on the correlation 

coefficients calculated between 850 RWI series and the monthly DMI, SPI/SPEI (time scales = 1, 

6, 12, 24, 36) for the period of 1950-1975. DMI, SPI and SPEI stand for De Martonne Aridity 

Index, Standardized Precipitation, Index and Standardized Potential Evapotranspiration Index. The 

drought indices were calculated using E-OBS data. 
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Fig. 3 PCA score plot for nine studied species and elevation (m a.sl.) analyzed in the dataset. PCA 
was performed on the correlation coefficients calculated between 850 RWI series and the monthly 
DMI, SPI/SPEI (time scales = 1, 6, 12, 24, 36) for the period of 1950-1975. DMI, SPI and SPEI 
stand for De Martonne Aridity Index, Standardized Precipitation, Index and Standardized Potential 
Evapotranspiration Index. The drought indices were calculated using E-OBS data. Cf, Cs and D 
denote temperate climate without dry season, temperate climate with dry summer (Mediterranean) 
and continental climate respectively as per Köppen climate classification. The species analyzed 
are ABAL silver fir, FASY European beech, LADE European larch, PCAB Norway spruce, PICE 
stone pine, PINI black pine, PISY Scots pine, QUPE sessile oak, and QURO common oak. 
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Abstract: In the first section of this study, we explored the relationship between ring width index
(RWI) and normalized difference vegetation index (NDVI) time series on varying timescales and
spatial resolutions, hypothesizing positive associations between RWI and current and previous- year
NDVI at 69 forest sites scattered in the Northern Hemisphere. We noted that the relationship between
RWI and NDVI varies over space and between tree types (deciduous versus coniferous), bioclimatic
zones, cumulative NDVI periods, and spatial resolutions. The high-spatial-resolution NDVI (MODIS)
reflected stronger growth patterns than those with coarse-spatial-resolution NDVI (GIMMS3g). In the
second section, we explore the link between RWI, climate and NDVI phenological metrics (in place of
NDVI) for the same forest sites using random forest models to assess the complicated and nonlinear
relationships among them. The results are as following (a) The model using high-spatial-resolution
NDVI time series explained a higher proportion of the variance in RWI than that of the model using
coarse-spatial-resolution NDVI time series. (b) Amongst all NDVI phenological metrics, summer
NDVI sum could best explain RWI followed by the previous year’s summer NDVI sum and the
previous year’s spring NDVI sum. (c) We demonstrated the potential of NDVI metrics derived from
phenology to improve the existing RWI-climate relationships. However, further research is required
to investigate the robustness of the relationship between NDVI and RWI, particularly when more
tree-ring data and longer records of the high-spatial-resolution NDVI become available.

Keywords: radial growth; NDVI; MODIS; GIMMS3g; phenology; dendroecology; scPDSI

1. Introduction

Remote sensing and dendroecology are considered instrumental in monitoring net primary
productivity [1,2]. Dendroecologists have successfully used samples of tree growth from radial
increments to quantify long-term variability in forest productivity [3,4]. Tree-ring width or annual
radial growth increment is a widely used proxy for tree vitality [5], and its connections to climate
and extreme climatic events, such as drought, are well established [5,6]. However, preparing
tree-ring chronologies involves time-consuming field and laboratory work, thereby undermining the
technique’s potential to be used for monitoring real-time forest growth over large spatial scales [7–9].
Real-time observations based on remote sensing are also not feasible; however, at the end of the
growing season, a solid assessment of the past annual growth should be possible. The remotely
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sensed normalized difference vegetation index (NDVI), which is based on red and near-infrared
reflectances [10], is a good measure of photosynthetic activity at landscape-scales and can be used to
estimate vegetation productivity [1,11–17]. Against the background of global climate warming and
an associated lengthening of the growing season [18,19], studying how climatic factors and NDVI
are related to ring width index (RWI) could lead to a better and more immediate understanding of
forest growth.

The utility of remote sensing indices in observing and monitoring phenology over large scales and
at regular intervals has been well documented [20], and a handful of studies have related NDVI directly
to tree-rings [4,7,12–15,21,22]. Although these studies linked NDVI values with tree-ring growth data,
the relationship of the latter with NDVI phenological metrics remains to be explored. From an ecological
perspective, plant phenology plays a significant role in determining the carbon sequestration period of
terrestrial ecosystems and is widely used to diagnose responses of ecosystems to global change [23–25].
Accurate information related to phenology is important in the study of regional-to-global carbon
budgets [26]; hence, exploring its role in explaining tree-ring growth could be crucial.

Remote sensing of phenology using time series of vegetation indices is based on the intra-annual
changes of canopy greenness [25]. We have extracted important phenological metrics from NDVI time
series to examine their relationship with RWI because the spatio-temporal variations of vegetation
phenology are known to serve as important indicators of photosynthetic activity [27]. We analyzed
NDVI time series to extract key phenological metrics, such as the start of the growing season (SOS)
and end of the growing season (EOS). These characteristics may not necessarily correspond directly to
defined, ground-based phenological events, but they do provide indications of seasonal ecosystem
dynamics [25]. They can reveal landscape-scale climate/tree-ring growth interactions. We compared
RWI time-series from 69 forest sites with NDVI at fine (250 m, MODIS) and coarse (8 km, GIMMS3g)
spatial resolutions for different timescales (cumulative NDVI values from one to 20 observations).
Tree-ring width as a proxy for tree growth is known to correlate with several monthly values of
temperature and precipitation during the year of growth and, in some cases, previous years (e.g., [5,28]).
Intercomparison of corresponding data of tree-ring growth, climate, and NDVI may help deepen our
understanding of the response of a forest to recent warming trends.

In the first section of this study, we evaluated whether NDVI correlates with the radial growth of
trees scattered in the Northern Hemisphere. In the second section, we tried to fill the gap in literature
that exists in exploring the relationship between RWI and various NDVI phenological metrics. Overall,
we seek to resolve whether NDVI metrics can help to refine or improve the existing RWI-climate
relationship, and whether such metrics could be used for explaining the RWI. If so, such knowledge
could be useful in supporting forest management practices.

2. Materials and Methods

2.1. NDVI Data

We used two NDVI datasets with different spatial resolutions: (1) Moderate Resolution Imaging
Spectroradiometer (MODIS) and (2) Global Inventory Modeling and Mapping Studies 3g (GIMMS3g).
This allowed us to study the possible effects of spatial resolution on the RWI-NDVI relationship.
For MODIS, we used MOD13Q1 [29], which is the MODIS/Terra vegetation index. It has a spatial
resolution of 250 m and is provided as a 16-day composite, resulting in 23 observations per year.
Quality information was used to discard possible snow and cloud values. The MODIS NDVI record
begins in February 2000; however, we analyzed data from 2001 (the first complete year of NDVI data)
until 2010, the last year of our assembled tree-ring dataset.

The third-generation Global Inventory Modeling and Mapping Studies, GIMMS3g [30] is based
on the Advanced Very High Resolution Radiometer (AVHRR), has a spatial resolution of 8 km, and is
provided at a temporal resolution of 15 days resulting in two maximum-value composites per month
and 24 observations per year. The GIMMS3g NDVI record begins in July 1981; we analyzed data
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from 1982 (the first complete year of NDVI data) to the end of 2010 to maximize the overlap with
the assembled tree-ring dataset. The latitude and longitude of each of the tree-ring sites were used
to select the corresponding pixel from the GIMMS3g and MODIS NDVI datasets. For each annual
NDVI time series, cumulative values (1–20 observations) were calculated and then used in the Pearson
correlation analysis. For instance, a cumulative NDVI value of five implies that the data from the
current observation and of four previous observations (four observations equates to approximately
two months) will be used to compute the cumulative NDVI value (sum) for a given time.

2.2. Tree-ring Data

Tree-ring data were downloaded from the International Tree-Ring Data Bank (ITRDB) [31] which
is a repository containing tree-ring data [32]. All downloaded time series from the ITRDB were filtered
for three requirements (1) tree-ring widths complete for the period 1982 to 2010, (2) no missing NDVI
data in the time-series of each overlapping pixel, and (3) having forest cover in the corresponding
remote sensing pixel. For the third requirement, we used the world forest-cover map GlobCover from
the European Space Agency, which is based on Envisat Medium Resolution Imaging Spectrometer
(MERIS) data between December 2004 and June 2006 [33]. We excluded tree-ring sites in remote sensing
pixels covering bare areas, water bodies, areas with permanent snow and ice, or areas located in the
Southern Hemisphere. In total, 69 sites were retained for the analysis (Figure 1). Each tree-ring series
was detrended on a per-site basis using a cubic-smoothing spline with a frequency response of 50% at 32
years [34]. This was done to remove the trend present in the original raw tree-ring width measurements,
while at the same time preserving the inter-annual to decadal variability. Prior to detrending, the series
were power-transformed to remove temporal heteroscedasticity, and were then robustly averaged into
dimensionless chronologies of RWIs. Readers unfamiliar with tree-ring detrending and chronology
development can refer to Cook et al. [9]. Table S1 (Supplementary) gives all information on sites, species,
climate zones (see Section 2.3), chronology coverage, and important tree-ring metrics.
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2.3. Climate Data

We used monthly mean temperature (TMP), mean monthly sums of precipitation (PRE),
and potential evapotranspiration (PET) from the CRU TS 3.21 dataset [35] available on a 0.5◦

grid [36]. Monthly time series of the self-calibrating Palmer Drought Severity Index (scPDSI) [37]
on a 0.5◦ grid were downloaded from the KNMI Climate Explorer web page [38]. The drought
index Standardized Precipitation Evapotranspiration Index (SPEI) was calculated using the R package
SPEI [39] based on input data from CRU. Climate was classified according to the world Köppen–Geiger
climate-classification map [40], in which zone B indicates an arid/semiarid climate, C and D are
temperate and continental climates, respectively. Conifer sites were analyzed separately for the three
climate zones (B, C, and D) (4, 21, and 28 sites, respectively), whereas the 16 sites with broadleaf forests
constituted the fourth group (see Table S1).

2.4. Extracting Phenological Metrics from the NDVI Time Series

Annual time series of NDVI allow the extraction of key phenological events such as the start
(SOS) and end (EOS) of the growing season as well as of different NDVI metrics. However, prior to
this, the NDVI time series had to be preprocessed to deal with perturbations due to atmospheric and
geometric interferences and noise.

In the case of MODIS, individual NDVI observations that were marked in the corresponding
pixel-reliability layer as either missing or as affected by snow or clouds were removed. Only those
marked as good were retained in the NDVI time series that, despite containing gaps, constituted reliable
and uncontaminated data; the gaps were then linearly interpolated. In the case of GIMMS3g, it was
not necessary to discard data based on a quality layer because the GIMMS3g data had already been
corrected for solar zenith and viewing angles, volcanic aerosols, atmospheric water vapor, and cloud
cover [41], thus assuring the quality and consistency of the data.

To extract the seasonality of the NDVI time series, the series were filtered using a Gaussian
filter [42] to remove noise. As mentioned in Misra et al. [43], the weights in the Gaussian filter were
distributed symmetrically around the central value, and their fractional weights Wi were calculated
as follows:

Wi =
1

0.5 ∗ k ∗
√

pi
∗ exp ∗(−

w2
i

(0.5 ∗ k)2 ), (1)

where k is the size of the filter and wi is the ith value in a sequence from−k to k; for this study, we used
k = 6. To achieve values that summed to unity, Wi was normalized by the sum of itself. Deviations of
the raw NDVI from the Gaussian-filtered data were z-transformed, and values beyond two standard
deviations were considered outliers and removed from the raw data. After removing such outliers,
the NDVI data were again smoothed using the weighted Gaussian filter and then linearly interpolated
to daily values.

Based on these daily NDVI time series, a threshold of 50% of the seasonal amplitude was used
to define the start (SOS) and end (EOS) of the growing season. An example of a processed NDVI
time series with the phenological parameters SOS and EOS is given in Figure S1 (Supplementary).
For subsequent use in the modelling approach, we calculated ten different NDVI phenological metrics
(Table 1), that we then standardized using the site-specific mean and standard deviation. These NDVI
metrics derived from phenology are subsequently referred to as NDVI phenological metrics.
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Table 1. Phenological metrics calculated from normalized difference vegetation index (NDVI)
time series.

Phenological Metric Definition

NDVI_GS sum of the NDVI values extracted from the start of season to the end of season
NDVI_GS_prv sum of the NDVI values extracted from the start of season to the end of season of previous year
NDVI_Sum sum of the NDVI values of the summer months June to August
NDVI_Sum_prv sum of the NDVI values of the summer months of previous year
NDVI_Spr sum of the NDVI values of the spring months March to May
NDVI_Spr_prv sum of the NDVI values of the spring months of previous year
NDVI_SOS NDVI extracted at the start of season
NDVI_SOS_prv NDVI extracted at the start of season of the previous year
SOS_date date of the start of season
EOS_date_prv date of the end of season of the previous year

2.5. Statistical Analyses

In order to assess the relationships between tree growth and NDVI, Pearson correlations between
RWI and cumulative NDVI (MODIS and GIMMS3g) for the 69 study sites were calculated for different
timescales of NDVI integration. The resulting correlation coefficients were summarized for both
MODIS and GIMMS3g, as well as for the four climate groups (deciduous of all climate zones, coniferous
in climate zone B, in C, and in D) by calculating the mean and variance of each group.

2.6. Relationship of RWI with NDVI Metrics and Climate

To establish quantitative relationships between ground-based RWI, climate, and phenological
metrics derived from NDVI time series, we performed random forest (RF) analysis as a multivariate
non-parametric regression method [44–47]. The RF model, which is an ensemble learning technique
developed by Breiman [45], was fitted using all tree-ring sites. We used 70% of the data randomly
sampled to train the RF and the remaining were retained for RF prediction-error testing. The proportion
of explained variance in the outcome of the training data and the normalized root mean square error
(NRMSE) were used to quantify the association between RWI and NDVI / climate. The normalized root

mean square error (NRMSE) is computed as NRMSE = sqrt (n−1 n
∑
1
{xobs − xmodel}2))/n−1 n

∑
1

xobs =

RMSE/mean(xobs), where xobs and xmodel refer to observed RWI values (of the test data) and predicted
RWI values of the RF model respectively. The variance explained is computed as (1 −MSE/var(xobs))
of the training data. To evaluate the importance of predictors, we used the Increased Mean Square
Error which is a robust measure defined as the increase in the mean squared error of predictions as a
result of the variable being permuted. Higher values indicate a variable that is more important [45].
A second measure for variable importance, the Increased Impurity Index, relates to the loss function
by which best splits are chosen. More important variables achieve higher increases in node purities.
RF analysis was performed in the R statistical environment [48] using the randomForest package [49].

To assess the importance of NDVI phenological metrics derived from two different remote
sensing products, we fixed the period of analysis from 2001 to 2010 in order to have a fair comparison
using the same time span for the models. In this way, we had an identical RWI-climate model,
to which NDVI phenological metrics from both MODIS and GIMMS3g were added. In the RWI-climate
model, RWI was explained by predictors: scPDSI (self-calibrating Palmer Drought Severity Index),
PRE (monthly sums of precipitation), TMP (monthly mean temperature), latitude of the forest site,
elevation of the forest site, tree type (coniferous or broadleaf), and climate zone (B, C, or D) as per
Köppen–Geiger climate classification. To explain tree growth (RWI) by MODIS/GIMMS3g NDVI and
climate, the number of regression trees in RF was fixed to 200, and the number of variables sampled at
each node was set to seven after a preliminary analysis. For the RF climate-NDVI models, besides the
predictors of the RWI-climate model, 10 standardized NDVI phenological metrics, namely NDVI_GS,
NDVI_GS_prv, NDVI_Sum, NDVI_Sum_prv, NDVI_Spr, NDVI_Spr_prv, NDVI_SOS, NDVI_SOS_prv,
SOS_date, and EOS_date_prv (see Table 1) were used. The same analysis was also performed with
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drought index SPEI (Figure S5, Supplementary), however, it is not presented in the manuscript as it
explained less variance of the RWI in comparison to drought index scPDSI. We performed a validation
of the RF model (MODIS) using a test dataset corresponding to 30% of the original dataset randomly
sampled. We report here the mean relative error (RE), ratio of root mean square error (RMSE), and ratio
of mean absolute error (MAE) as validation statistics. The formulas used to calculate these metrics are
given in Section S3 (Supplementary). Additionally, we provide the scatterplot between observed RWI
values from the test dataset and predicted RWI values from the RF model (Figure S4, Supplementary).

3. Results

3.1. Relationships between RWI and NDVI/Climate

A typical pattern of Pearson correlation coefficients between annual RWI and cumulative NDVI
(up to 20 observations) is given in Figure 2 for a site in Utah (UT531), United States of America, with a
continental-type (D) climate and a RWI series for tree species Juniperus scopulorum Sarg. The correlation
patterns based on GIMMS3g NDVI (8 km resolution, 29 years of data) and MODIS NDVI (250 m
resolution, 10 years of data) for up to 20 cumulative observations are quite similar. The NDVI from
May–June (observations 10+) until August–September (observations 15+) and integrating up to 15
cumulative time points show positive associations with the corresponding annual RWI. However,
the correlation based on the MODIS resolution and time frame is stronger and sharper in time compared
to the respective GIMMS3g ones, pointing to May–September (observations 15+) as the decisive months
for forest growth.
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C, and D), spatial scale (GIMMS3g versus MODIS), and integration time (up to 20 observations of the 
NDVI time series) are observed. Figure 3 displays the correlation patterns for all sites summarized as 
mean correlations of the four groups. For broadleaf species, growth in terms of RWI is (if at all) 
represented by MODIS NDVI during spring and the optimal length of the cumulative time period is 
not well defined. The signal for GIMMS3g NDVI is even weaker, more spread-out, and does not 
display any pattern. For coniferous trees in the semiarid to arid climate zone B, tree growth is strongly 
associated with a wide-ranging MODIS NDVI signal, from the start of the year until early summer 
and for cumulative periods of up to 15–20 NDVI observations. For GIMMS3g NDVI, RWI is tightly 

Figure 2. Pearson correlation coefficients between time series of ring width index (RWI) and cumulative
NDVI at different temporal scales (1–20, y-axis) at a continental D climate site with a coniferous forest
in Utah, United States of America for (a) GIMMS3g, 8 km resolution (1982–2010) with 24 time points in
a year (x-axis) and (b) MODIS, 250 m resolution (2001–2010) with 23 time points in a year (x-axis).

In general, the correlation patterns between RWI and NDVI show these positive inter-annual
associations, yet strong variations with species type (deciduous versus coniferous), climatic zone (B, C,
and D), spatial scale (GIMMS3g versus MODIS), and integration time (up to 20 observations of the
NDVI time series) are observed. Figure 3 displays the correlation patterns for all sites summarized
as mean correlations of the four groups. For broadleaf species, growth in terms of RWI is (if at all)
represented by MODIS NDVI during spring and the optimal length of the cumulative time period
is not well defined. The signal for GIMMS3g NDVI is even weaker, more spread-out, and does not
display any pattern. For coniferous trees in the semiarid to arid climate zone B, tree growth is strongly
associated with a wide-ranging MODIS NDVI signal, from the start of the year until early summer
and for cumulative periods of up to 15–20 NDVI observations. For GIMMS3g NDVI, RWI is tightly
linked to NDVI of summer months and up to 20 cumulative NDVI observations. For conifers in
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climate zone C, the MODIS NDVI growth signal is stronger than the GIMMS3g NDVI signal. It is
represented by summer months at a cumulative period of up to 7–10 NDVI observations, whereas the
weaker GIMMS3g signal has cumulative periods of up to 15–20 NDVI observations. For conifers in
climate zone D, the MODIS NDVI signal is strong and represents growth during the summer and up
to 10–15 cumulative NDVI observations. In contrast, the GIMMS3g NDVI signal is almost nonexistent.
The corresponding variances of the respective Pearson correlation coefficients are shown in Figure S2
(Supplementary).
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Figure 3. Mean Pearson correlation coefficients between time series of RWI and cumulative NDVI
at different temporal scales (1–20, y-axis) for 69 tree-ring sites. Cumulative NDVI is either based on
GIMMS3g (8 km resolution, 1982–2010) or MODIS (250 m resolution, 2000–2010). BL indicates 16 sites
with broadleaf species, CON_B, CON_C, and CON_D refers to 4, 21, and 28 sites with coniferous tree
species in climate zones B, C, and D, respectively. BL and CON refer to broadleaf and conifer species
respectively. Zone B indicates arid/semiarid climate, C and D represent temperate and continental
climates, respectively, as per the Köppen—Geiger climate classification [40].

3.2. Explaining RWI with NDVI Metrics and Climate

3.2.1. Variable Importance in RF based on MODIS NDVI/Climate

The RWI-climate model explained 28.2% of the variance of the RWI. When MODIS NDVI
predictors were added to the model, the RWI-climate-NDVI model (Table 2) explained 37.2% of the
variance of the RWI. The results of the RFs to describe the relationship between RWI and conditioning
factors (MODIS NDVI /climate) in terms of the importance of the selected variables are shown in
Figure 4. The Increased Mean Square Error lists the seven most important variables as scPDSI (9.30),
NDVI_Sum (4.66), NDVI_Spr_prv (3.00), PRE (2.82), NDVI_Sum_prv (2.27), Latitude (2.24) and
NDVI_GS (1.88). We notice similar results according to the Increased Impurity Index, which lists scPDSI
(1.40), NDVI_Sum (0.61), PRE (0.42), NDVI_Sum_prv (0.27), NDVI_Spr_prv (0.24), Latitude (0.23),
and NDVI_Spr (0.23) as the most important variables for the model.

Table 2. Results of RF models to explain RWI using two different datasets (GIMMS3g and MODIS).
Here, NRMSE denotes the normalized root mean square error (in test data), and the explained variance
is the explained-variation proportion in the outcome of the training data. The period of analysis for
both the RF models is 2001 to 2010.

Model No. Response Variable Dataset Explained Variance Important Predictor Variables NRMSE

1 RWI Climate +
MODIS NDVI 37.2%

scPDSI, NDVI_Sum, NDVI_Spr_prv, PRE,
NDVI_Sum_prv, Latitude

NDVI_GS
0.13

2 RWI Climate +
GIMMS3g NDVI 29.7% scPDSI, NDVI_Sum, TMP, NDVI_Sum_prv,

Elevation, NDVI_GS_prv, Latitude 0.26
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Figure 4. Random-forest variable-importance plot for RF (MODIS) climate-NDVI model. Variables are
ranked in terms of importance on the y-axis (with variables of highest importance for explaining RWI
at the top). PRE, TMP, scPDSI, Latitude, Elevation, Tree type, and ClimZone represent precipitation,
temperature, self-calibrating Palmer Drought Severity Index, latitude of the forest site, elevation of the
forest site, tree type (coniferous or broadleaf), and climate zone (B, C or D) as per the Köppen–Geiger
climate classification [40], respectively. For definitions of the NDVI phenological metrics: NDVI_GS,
NDVI_GS_prv, NDVI_Sum, NDVI_Sum_prv, NDVI_Spr, NDVI_Spr_prv, NDVI_SOS, NDVI_SOS_prv,
SOS_date, and EOS_date_prv, see Table 1.

3.2.2. Variable Importance in RF based on GIMMS3g NDVI/Climate

An analogous RF approach was used to model tree growth with climate and GIMMS3g NDVI.
The RWI-climate model explained 28.2% of the variance of the RWI. When GIMMS3g NDVI predictors
were added to the RWI-climate model, the RWI-climate-NDVI model (Table 2) explained 29.7%
of the variance. In general, the importance of predictors was found to be similar to the case of
MODIS NDVI, however, the model explained less variance compared to the model with MODIS data.
The variable-importance measure, the Increased Mean Square Error lists scPDSI, NDVI_Sum, TMP,
NDVI_Sum_prv, Elevation, NDVI_GS_prv and Latitude as the most important variables. The Increased
Impurity Index lists NDVI_Spr, scPDSI, Latitude, NDVI_GS, PRE, NDVI_GS_prv, and NDVI_Sum
as the important variables. As the increase in variance explained after adding NDVI metrics was
approximately 1.5%, the results of the GIMMS3g NDVI are not discussed in detail.

3.3. Important NDVI Metrics and Validation of MODIS RF Model

We extracted several phenological parameters from the NDVI time series. However, it was shown
that not all of the extracted parameters were equally important for the RF models. When added to
climate, the following NDVI phenological metrics better explained tree-ring growth: Summer NDVI
of the current and previous year followed by spring NDVI of the previous year and growing season
NDVI of current and previous year. While validating the model, the following validation metrics
were computed: the mean RE (0.03), the MAE ratio (0.66) and the RMSE ratio (0.53). The ratios which
were calculated between the values of the RF model and the test dataset showed weak prediction
skills of the validation model and in general performed approximately half as well as the RF model.
A scatterplot between the observed RWI from the test dataset and predicted RWI from the RF model,
(Figure S4, Supplementary) show that they are not very well correlated.

4. Discussion

4.1. Relationship between RWI-NDVI

In general, a positive relationship between NDVI in the growing season and RWI was seen for
many forests in our study. Early work by Kaufmann et al. [50] based on GIMMS data equally showed a
positive correlation between tree-rings and NDVI over the entire growing season and monthly values
for April–July and October. Nevertheless, the positive and robust relationship observed between radial
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growth and NDVI identified for 69 sites across the Northern Hemisphere at the local level cannot be
considered a rule on the global scale [7]. For broadleaf species of different climate zones (B, C, D), we
found that growth in terms of RWI was only weakly correlated by a weak MODIS NDVI signal during
spring, with the optimal length of the cumulative time period not well defined and by an even weaker
GIMMS3g signal that did not display any clear pattern. This is in line with findings of Brehaut et al. [51]
for Northern Canada, where little or no correlation across the region for deciduous trees was observed.
For conifers in a continental (D) climate, growth was linked to a MODIS NDVI signal during summer
at cumulative NDVI periods of up to 10–15. This finding is supported by earlier studies based on
GIMMS data, e.g. by Lopatin et al. [14] for continental Russia reporting a similar positive association
between NDVI of June to August and conifer growth (Siberian spruce and Scots pine) as well as by
Bunn et al. [4] for Siberia. Similarly, for North America, studies have reported positive associations
between NDVI and conifer ring-widths for the interior of Alaska [52], for Siberia/Canada [22], and for
Northern Canada [51]. However, this is contradictory to a study by Beck et al. [21], who found no
significant correlation between ring-widths of Canadian spruce and NDVI at any point during the
growing season. It should be pointed out here that the majority of the studies mentioned above
used GIMMS/GIMMS3g NDVI for their analyses and not MODIS as in our study. For conifers in
semiarid (B) climate, growth was represented by a wide-ranging MODIS NDVI signal but this was
tightly linked to summer months at a cumulative period of up to 20 by GIMMS3g. For conifers in
a temperate (C) climate, growth was strongly represented by MODIS NDVI of summer months at a
cumulative period of up to 10. There are no comparable studies for these climate regions to support or
contradict our findings. The variance of the Pearson correlation coefficients between NDVI and RWI
was generally small (see Supplementary, Figure S2) except for conifer species in arid/semi-arid zone B,
indicating that there is some confidence in the above interpretation. The comparably large variance in
the correlation coefficient for the B climate zone is most likely due to the small number of sites (n = 4)
included. In some forests in our study, a negative relationship between NDVI and RWI was observed.
The reasons for such a mismatch could be varied growth-responses of trees depending on site-level
factors [53], or the effects of changing environmental conditions.

4.2. Relationship between RWI, NDVI Phenological Metrics and Climate Parameters Based on RF Model

In general, when comparing the variables identified as important in the RF approach, it should be
noted that the variable-importance score depends on the number of included variables. Removing or
replacing predictors, for example, may change the importance scores because different inter-correlated
variables could act as surrogates. RFs use bagging to build the many different decision trees on the same
dataset. While each individual decision would fit the identical model to the exact same data, a different
aggregate model is observed each run because it takes different bootstrap samples. Nevertheless, in the
second part of this study (Section 3.2), we could demonstrate that NDVI phenological metrics have the
potential to improve relationships between RWI and climate. In order to identify the most important
NDVI metrics derived from phenology, we ran various random forest models to explain RWI of the
period 2001–2010; firstly using climate data as predictors and secondly using both climate and NDVI
metrics as predictors. Using MODIS NDVI metrics and climate data, 37.2% of the variance of RWI
could be explained, increasing it from 28.2% if only climate was used as predictor for RWI (see Table 2).
In contrast, for the GIMMS3g model, the increase was approximately 1.5 percent (28.2% versus 29.7%)
after adding NDVI metrics. This clearly underlines that including MODIS NDVI based phenological
information improved the RWI modelling noticeably. The difference in performance of the two NDVI
based models could be because high-spatial-resolution of the MODIS data is able to capture local climatic
or other information reflecting the changes in vegetation or RWI better than the coarse-spatial-resolution
GIMMS data, since the latter with a spatial-resolution of 8 km is more likely to contain an integrated
signal as well as noise. Our results indicate a relatively better performance of the MODIS NDVI model
compared to the GIMMS3g NDVI model, and this is in line with the findings of Kern et al. [54]. In their
comparative study of GIMMS3g and MODIS NDVI, a significant disagreement is reported and a limited
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applicability of GIMMS3g is concluded for Central Europe. Moreover, GIMMS3g-based SOS and EOS
detection showed poorer performance than MODIS with differences of up to 20–30 days in the majority
of the cases without any systematic fashion. Amongst NDVI phenological metrics, we found that the
RWI was best reflected by the summer NDVIs of current and previous years. This is in agreement
with the findings of Kauffman et al. [15], who suggested that tree-rings are correlated with NDVI in
the months of June–July. Other important NDVI parameters found in our study were the spring and
growing season NDVIs of previous and current years. They had a higher score than precipitation in
the RF model, which demonstrates the potential of NDVI metrics derived from phenology to improve
RWI-climate relationships. Amongst the climatic parameters and auxiliary factors, it was precipitation,
drought index scPDSI, and latitude that were highly ranked in the RF approach, whereas climate zone
and tree type were the least important ones. It is worth noting that according to the variable score,
summer and spring NDVIs of the previous year had a higher score than precipitation. Although scPDSI
integrates the precipitation signal, the variable score reflects the potential of NDVI metrics to refine
existing climate-RWI relationships. Similar results of the RF MODIS models were obtained using SPEI,
a multiscalar index that takes into account the sensitivity to the evaporative demand of the atmosphere
(Supplementary, Figure S5). However, the proportion of variance explained was lower (22.1% instead of
37.2%) and therefore the results were not presented in detail.

The results of our study were consistent across tree-ring chronologies set up with three different
detrending methods (not shown in this paper). This clearly demonstrates that our obtained results are not
an artifact of the detrending and standardization methods. Despite the considerable model improvement
through the incorporation of MODIS phenological metrics, we have to stress that according to different
validation metrics (Section S3, Supplementary), the RF model is still not very robust for prediction.
However, with this study we aim to only compare the two NDVI datasets, to propose which NDVI
phenological metrics have higher potential to explain RWI but not to reconstruct or predict RWI. One
possible reason that the prediction skills are not robust could be that the present study is constrained
by the assumption that the forests being analyzed lie within the NDVI pixel, which cannot be further
investigated because of a lack of auxiliary information about the sites. There is no accurate information on
whether species composition was homogeneous or heterogeneous across the landscape, or whether the
proportions of multiple dominant species are comparable and responding similarly to climatic variables.
Hence, the interpretation of NDVI and its relation to ring-widths becomes challenging. Also, tree-ring
data collected originally for dendrochronological studies, if not spatially representative of a large area, can
hamper correlations between the NDVI and the tree-ring data [55].

5. Conclusions

This paper presents the first comparison of RWI with several phenological parameters of
satellite-derived proxies of vegetation activity at multiple sites in the Northern Hemisphere.
We demonstrated positive associations between RWI and NDVI and between RWI and the NDVIs of
preceding years, and noted that such relationships vary over space and between tree types (deciduous
versus coniferous), bioclimatic zones, cumulative NDVI periods and the spatial resolution. Summer
and spring NDVIs were found to be the most important NDVI metrics amongst those tested. There
is strong potential for NDVI phenological metrics to improve RWI-climate relationships, especially
for high-spatial-resolution NDVI, such as MODIS. However, further research is needed to investigate
the robustness of the NDVI–RWI relationship. Therefore, it will be particularly interesting to see the
results when more tree-ring data and longer temporal records of the high-spatial-resolution NDVI
become available.

Supplementary Materials: The following items are available online at www.mdpi.com/2072-4292/9/6/526/s1.
Figure S1: Figure showing preprocessing and phenology extraction from NDVI time series. Figure S2: Variance
of Pearson correlation coefficients between time series of RWI and cumulative NDVI at different temporal
scales. Section S3: Validation statistics to access performance of RF model Figure S4 Scatterplot of observed
and predicted RWI. Figure S5 Random-forest variable-importance plot for RF (MODIS) climate-NDVI model
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performed with drought index SPEI. Table S1: Information on sites analyzed: country, co-ordinates, species,
climate zone (see climate data), elevation, important tree-ring metrics and chronology coverage.
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Figure S1. Figure showing preprocessing and phenology extraction from NDVI time series. Raw 
(black) and corrected and smoothed (dotted blue) time series of bi−weekly NDVI (upper panel) are 
interpolated to daily values for phenology extraction (lower panel). Red crosses represent the 
corrected bi−weekly NDVI values and the black points are interpolated ones. Start (SOS) and end 
(EOS) of the growing season (green and brown dots) are determined as time points when 50% of the 
annual amplitude are reached. 
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Figure S2 Variance of Pearson correlation coefficients between time series of RWI and cumulative 
NDVI at different temporal scales (1–20, y−axis) for 69 tree−ring sites. Cumulative NDVI is either 
based on GIMMS3g (8 km resolution) or MODIS (250 m resolution). BL indicates 16 sites with 
broadleaf species, CON_B, CON_C, and CON_D refers to 4, 21, and 28 sites with coniferous tree 
species in climate zones B, C, and D, respectively. Zone B indicates arid/semiarid climate, C and D 
represent temperate and continental climates, respectively, as per the Köppen–Geiger climate 
classification [1]. 

Section S3: Validation Statistics to Assess Performance of RF Model 
In order to access the performance of the Climate−NDVI MODIS RF model, we list some 

validation statistics. Observed refers to observed RWI and predicted to the corresponding 
predictions of the Climate−MODIS NDVI Random Forest Model. In the formulae of the validation 
metric ratios, model refers to the training and validation to the test data. 

• The mean relative error (RE) is given by mean of {(predicted – observed) / observed} = 
0.03 

• The mean absolute error (MAE) error ratio is given by mean ((abs (predicted – 
observed))), The MAE ratio is calculated as Model MAE/Validation MAE = 0.66.  

• The root mean square error (RMSE) is given by sqrt(mean((predicted − observed)^2)), 
The RMSE ratio is calculated as Model RMSE/Validation RMSE = 0.53. 

From the above we see that the mean Relative Error, the MAE ratio and RMSE ratio were 
calculated to be 0.03, 0.66 and 0.53, respectively. The results show that the model is not very robust 
for prediction. However, with this study we aim to only make a comparison of the different 
spatial−resolution NDVI datasets and propose which phenological metrics have the potential to 
best explain RWI. RWI reconstruction or prediction is not intended or suggested. 
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Figure S4. Scatter plot of observed and predicted RWI. The predicted values are from the 
Climate−MODIS NDVI Random Forest Model and observed values are from the test dataset. The 
black dashed line represents the line when intercept and slope is fixed at 0 and 1 respectively. 

 

Figure S5. Random−forest variable−importance plot for RF (MODIS) climate−NDVI model 
performed with drought index SPEI. Variables are ranked in terms of importance on the y−axis 
(with variables of highest importance for predicting RWI at the top). PRE, TMP, SPEI, Latitude, 
Elevation, Tree type and ClimZone represent precipitation, temperature, Standardized Precipitation 
Evapotranspiration Index , latitude of the forest site, elevation of the forest site, tree type (coniferous 
or broadleaf) and climate zone (B, C or D) as per the  Köppen–Geiger climate classification [1], 
respectively. For definitions of NDVI phenological metrics: NDVI_GS, NDVI_GS_prv, NDVI_Sum, 
NDVI_Sum_prv, NDVI_Spr, NDVI_Spr_prv, NDVI_SOS, NDVI_SOS_prv, SOS_date and 
EOS_date_prv, see Table 1. The variance of RWI of all forests explained by the RF model was 22.1%. 
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Table S1. Information on sites analyzed: Co−ordinates, species, climate zone (see climate data 
important tree−ring metrics and chronology coverage. Latitude (Lat) and Longitude (Lon) are the 
geographic coordinates (WGS84 datum) of each site. Country names are coded according to ISO3. 
For Type, “CON” and “BL” denotes conifers and broadleaves respectively. Zone B, C and D denote 
arid/semiarid, temperate and continental climates, respectively as per Köppen−Geiger climate 
classification [1]. Elevation is given in m a.s.l. The tree ring metrics shown are the mean inter−series 
correlation (RBAR) and mean sensitivity (MS). RBAR is the average correlation coefficient between 
tree−ring series and MS is a within−series statistic that measures the relative change in ring width 
from one year to the next. 

ID Country Lat (°) Lon (°) Species Type Zone Elevation RBAR MS Start End

UT531 
USA 

41.23 −111.26 
Juniperus scopulorum 

Sarg. 
CON D 1980 0.62 0.24 1173 2010 

UT538 
USA 

41.91 −111.65 
Pseudotsuga menziesii 

(Mirb.) Franco 
CON D 2730 0.55 0.17 1274 2010 

CA680 
USA 

37.46 −119.49 
Calocedrus decurrens 

(Torr.) Florin 
CON C 1843 0.57 0.19 1581 2011 

UT534 
USA 

40.15 −111.25 Pinus edulis Engelm. CON D 2130 0.65 0.28 1428 2011 

UT533 
USA 

40.08 −111.2 Pinus edulis Engelm. CON D 1960 0.71 0.27 1313 2011 

swit280 
CHE 

46.35 7.58 Pinus cembra L. CON D 1900 0.51 0.21 1546 2011 

swit279 
CHE 

46.35 7.59 Picea abies (L.) Karst. CON D 1850 0.65 0.17 1670 2011 

swit281 
CHE 

46.32 8.5 Pinus cembra L. CON D 1850 0.52 0.19 1707 2012 

swit282 
CHE 

46.32 8.5 Pinus mugo Turra CON D 1920 0.5 0.18 1761 2012 

swit274 
ITA 

46.26 9.47 Larix decidua Mill. BL D 1850 0.71 0.27 1691 2011 

RUSS240 
RUS 

52.29 98.58 Larix decidua Mill. BL D 2170 0.65 0.3 1603 2013 

VA036 
USA 

37.16 −80.26 Quercus alba L. BL C 800 0.53 0.24 1918 2010 

UT532 
USA 

41.3 −111.23 
Juniperus scopulorum 

Sarg. 
CON D 2100 0.58 0.2 1227 2010 

UT536 
USA 

41.21 −111.58 
Pseudotsuga menziesii 

(Mirb.) Franco 
CON D 2133 0.66 0.24 1370 2012 

UT537 
USA 

41.22 −111.57 
Pseudotsuga menziesii 

(Mirb.) Franco 
CON D 2750 0.54 0.21 1133 2011 
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ME036 
USA 

46.24 −69 Picea rubens Sarg. CON D 310 0.6 0.21 1879 2013 

CANA458 
CAN 

53.52 −72.25 
Picea mariana (Mill.) 

Britt. 
CON D 481 0.49 0.17 642 2011 

CANA460 
CAN 

54.06 −71.38 
Picea mariana (Mill.) 

Britt. 
CON D 451 0.49 0.16 774 2011 

CANA461 
CAN 

54.15 −72.23 
Picea mariana (Mill.) 

Britt. 
CON D 436 0.52 0.16 596 2011 

NM588 
USA 

36.17 −106.38 
Pinus ponderosa 

Dougl. ex Laws. 
CON D 2525 0.75 0.41 620 2011 

NM589 
USA 

36.05 −108.52 
Pinus ponderosa 

Dougl. ex Laws. 
CON B 2650 0.66 0.31 842 2010 

MONG03

9 MNG 
48.1 99.52 Pinus sibirica Du Tour CON D 2077 0.8 0.39 −106 2010 

CA687 
USA 

37.33 −121.51 Quercus lobata Nee BL C 89 0.54 0.29 1697 2010 

CA686 
USA 

37.33 −121.51 
Platanus racemosa 

Nutt. 
BL C 89 0.54 0.38 1700 2010 

BT021 
BTN 

27.25 90.58 Picea spp. A. Dietr. CON C 3268 0.42 0.16 1280 2013 

CA674 
USA 

40.06 −120.38 
Pinus ponderosa 

Dougl. ex Laws. 
CON C 1385 0.56 0.27 1450 2010 

OR093 
USA 

43.42 −120.28 
Juniperus occidentalis 

Hook. 
CON B 1475 0.82 0.42 870 2010 

OR094 
USA 

43.57 −121.03 
Juniperus occidentalis 

Hook. 
CON C 1146 0.79 0.46 830 2010 

CA677 
USA 

39.34 −120.17 
Pinus Jeffreyi Grev. & 

Balf. in A. Murr. 
CON C 1688 0.61 0.26 1415 2010 

OR095 
USA 

43.09 −119.48 
Juniperus occidentalis 

Hook 
CON B 1514 0.78 0.36 1337 2010 

CA678 
USA 

37.57 −119.09 
Pinus Jeffreyi Grev. & 

Balf. in A. Murr. 
CON C 2499 0.58 0.24 1304 2010 

OR092 
USA 

43.1 −120.53 
Juniperus occidentalis 

Hook 
CON C 1428 0.78 0.49 530 2010 

GERM188 
BEL 

50.36 6.29 Pinus sylvestris L. CON C 415 0.66 0.24 1854 2011 

OR097 
USA 

44.13 −121.52 
Tsuga mertensiana 

(Bong.) Carr. 
CON C 1454 0.57 0.21 1837 2013 
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OR096 
USA 

44.26 −121.57 
Pseudotsuga menziesii 

(Mirb.) Franco 
CON C 1139 0.5 0.17 1838 2013 

WV009 
USA 

37.58 −80.56 Pinus rigida Mill. CON C 700 0.53 0.31 1828 2014 

WV007 
USA 

37.59 −82.22 
Tsuga canadensis (L.) 

Carr. 
CON C 250 0.55 0.24 1756 2012 

WV006 
USA 

37.31 −80.59 
Tsuga canadensis (L.) 

Carr. 
CON C 670 0.66 0.25 1858 2012 

CZEC003 
AUT 

48.4 14.42 Abies alba Mill. CON C 785 0.51 0.2 1587 2010 

CZEC004 
AUT 

48.4 14.42 Fagus sylvatica L. BL C 785 0.45 0.26 1603 2010 

CZEC005 
AUT 

48.4 14.42 Picea abies (L.) Karst. CON C 785 0.49 0.21 1569 2010 

CHIN073 
CHN 

28.36 119.27 
Pinus massoniana 

Lamb. 
CON C 435 0.54 0.27 1846 2013 

CO652 
USA 

37.14 −108.25 
Pseudotsuga menziesii 

(Mirb.) Franco 
CON D 2226 0.78 0.42 480 2014 

CO651 
USA 

37.16 −108.21 
Pseudotsuga menziesii 

(Mirb.) Franco 
CON D 2226 0.82 0.4 722 2011 

NY043 
USA 

44.21 −74.44 Pinus strobus L. CON D 455 0.58 0.2 1916 2012 

AK149 
USA 

67.29 −162.13 
Picea glauca (Moench) 

Voss 
CON D 120 0.57 0.24 1814 2012 

AK148 
USA 

67.29 −162.13 
Picea glauca (Moench) 

Voss 
CON D 125 0.5 0.26 1855 2012 

RUSS241 
RUS 

52.24 98.41 Larix sibirica Ledeb. BL D 2020 0.44 0.29 1523 2013 

GA023 
USA 

34.53 −84.39 
Tsuga canadensis (L.) 

Carr. 
CON C 600 0.44 0.2 1947 2011 

NC024 
USA 

35.17 −82.43 
Tsuga canadensis (L.) 

Carr. 
CON C 670 0.46 0.22 1910 2010 

PA016 
USA 

40 −77.48 
Tsuga canadensis (L.) 

Carr. 
CON C 500 0.49 0.19 1896 2010 

VA032 
USA 

37.11 −80.29 
Tsuga canadensis (L.) 

Carr. 
CON C 570 0.57 0.25 1869 2010 

WV008 
USA 

38.37 −79.47 
Tsuga canadensis (L.) 

Carr. 
CON C 900 0.55 0.21 1770 2010 
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MN029 
USA 

46.17 −96.36 
Quercus macrocarpa 

Michx. 
BL D 293 0.56 0.26 1877 2010 

ND009 
USA 

47.54 −97.01 
Quercus macrocarpa 

Michx. 
BL D 254 0.65 0.28 1854 2010 

ND012 
USA 

46.51 −96.47 
Quercus macrocarpa 

Michx. 
BL D 268 0.66 0.27 1870 2010 

ND010 
USA 

46.53 −96.46 
Quercus macrocarpa 

Michx. 
BL D 268 0.65 0.28 1878 2010 

ND007 
USA 

48.58 −97.14 
Quercus macrocarpa 

Michx. 
BL D 236 0.68 0.28 1856 2010 

ND011 
USA 

46.52 −96.47 
Quercus macrocarpa 

Michx. 
BL D 275 0.57 0.26 1886 2010 

ND008 
USA 

47.56 −97.02 
Quercus macrocarpa 

Michx. 
BL D 254 0.73 0.27 1865 2010 

MN028 
USA 

48.58 −97.14 
Quercus macrocarpa 

Michx. 
BL D 236 0.76 0.27 1890 2010 

MN030 
USA 

46.17 −96.36 
Quercus macrocarpa 

Michx. 
BL D 290 0.6 0.24 1868 2010 

ak131 
NA 

58.23 −134.26 
Tsuga mertensiana 

(Bong.) Carr. 
CON D 220 0.5 0.24 1454 2010 

id015 
USA 

43.45 −116.06 
Pinus ponderosa 

Dougl. ex Laws 
CON B 1825 0.62 0.25 1488 2011 

ak134 
USA 

65 −147.39 
Picea mariana (Mill.) 

Britt. 
CON D 431 0.41 0.23 1875 2010 

ak133 
USA 

65 −147.39 
Picea mariana (Mill.) 

Britt. 
CON D 465 0.54 0.23 1908 2010 

ak135 
USA 

65 −147.4 
Picea mariana (Mill.) 

Britt. 
CON D 317 0.5 0.23 1895 2010 

ak136 
USA 

65 −147.4 
Picea mariana (Mill.) 

Britt. 
CON D 300 0.43 0.21 1857 2012 

UT541 
USA 

40.55 −111.13 
Juniperus osteosperma 

(Torr.) Little 
CON D 2130 0.79 0.37 736 2013 
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Abstract 

In several scientific disciplines, quantitative indices are the most popular approach 

for drought quantification. Aiming for refined drought characterization, the 

validation of such drought indices is of vital importance. It allows assessing the 

indices’ accuracy in detecting drought. In this study, we compared the performance 

of established drought indices – the SPI (Standardized Precipitation Index) and the 

SPEI (Standardized Precipitation Evapotranspiration Index) – with standardized 

drought indices computed using a recently developed, vine copula based method 

for the computation of multivariate drought indices (here addressed as VC-Index or 

VCI). For our validation study, we used several environmental drought indicators: 

streamflow time series from a network of 332 catchments across Europe, as well as 

gross primary production (GPP) and net ecosystem exchange (NEE) for Germany. 

The novel multivariate VC-Indices can combine two or more user-selected, drought 

relevant variables to model different drought types, depending on the user-

application. This approach utilizes the flexibility of vine copulas in modeling 

multivariate non-Gaussian dependencies and allows for stable indices using much 

shorter observation periods. The results of the validation showed that the VC-

Indices outperform the established drought indices SPI and SPEI. For the 

streamflow data, the VCI was found to have advantageous attributes such as higher 

probability of drought detection and lower false alarm ratio compared to SPEI and 

SPI. Regression of the drought indices against NEE and GPP showed that the VCI 

captured the drought-impact relationship on carbon flux data best. Overall, our 

results emphasize that the major key to improving our understanding of drought 

impacts on ecosystem conditions could be a user-defined, application-based 

drought monitoring on a high spatial resolution, using a method such as vine 

copulas. We recommend using the VCI as an additional source of information, in 

order to allow better understanding of drought characterization. 

 

 

Keywords: SPEI, SPI, VCI, vine copulas, GPP, NEE, streamflow, Europe 
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1 Introduction 1 

Drought is a complex, multidimensional climatic phenomenon and a major cause 2 

of economic and environmental damage (Wilhite & Glantz, 1985; Obasi, 1994; 3 

Mishra & Singh, 2010). The mean global air temperature has increased by 0.85◦C 4 

during the period 1880–2012 (IPCC, 2013) which has led to an increasing rise in 5 

water demand entailing drought aggravation in the recent years (Kogan et al., 6 

2013). Droughts are rare events of water deficit that propagate through the 7 

hydrological cycle and may manifest themselves as meteorological, soil moisture, 8 

streamflow and ground water drought (Tallaksen & Van Lanen, 2004; Laaha et al, 9 

2017). As such, a universal definition of drought does not exist and it is difficult to 10 

determine its start, termination and extent, making it fundamentally different from 11 

other climate extremes (Tate & Gustard, 2000; Wilhite & Glantz, 1985). Therefore, 12 

it becomes challenging to quantify the characteristics of drought episodes with 13 

objectivity in terms of their intensity, magnitude, duration and spatial extent 14 

(Vicente-Serrano et al., 2010).  15 

Quantitative indices are – for many scientific disciplines – among the most popular 16 

approaches for drought quantification. Such indices integrate drought related 17 

variables such as precipitation into a single number that is more useful for decision 18 

making compared to the raw data (Hayes et al., 2007). Most studies on drought in 19 

scientific disciplines such as dendroecology, ecology, remote sensing and 20 

agricultural sciences that use drought indices, primarily employ either the 21 

Standardized Precipitation Evapotranspiration Index (SPEI, Vicente-Serrano et al., 22 

2010) or Standardized Precipitation Index (SPI, Mckee et al., 1993). These 23 

standardized indices account only for one or two climatic variables promoting 24 

drought conditions and neglect their dependence (Erhardt & Czado, 2017). Several 25 

studies have argued that a single variable is inadequate for describing a complex, 26 

stochastic phenomenon like drought and that combining multiple 27 

variables/indicators is essential for reliable risk assessment (Hao & AghaKouchak, 28 

2013). In the recent years, an array of drought indices that combine at least two 29 

variables have been developed (Keyantash & Dracup, 2004; Kao & Govindaraju, 30 

2010; Hao & AghaKouchak, 2013; Farahmand & AghaKouchak, 2015). Erhardt & 31 

Czado (2017) discuss and compare the properties and disadvantages of these recent 32 

approaches with other established drought indices such as SPI and SPEI, and 33 

provide a list of desirable properties for drought indices. Based on this list, they 34 

develop a flexible approach for the computation of standardized drought indices 35 

that allows the end-users to decide which type(s) of drought to investigate and to 36 

select drought relevant variables for their specific application. Their multivariate 37 
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approach models inter-variable dependencies using vine copulas (Aas et al., 2009) 38 

allowing for flexible modeling of the full multivariate distribution of interest. This 39 

is important to account for the joint occurrence of extremes of different drivers of 40 

drought and to capture the diverse range of vegetation responses across different 41 

ecosystems. In this study, the performance of the novel, vine copula based indices 42 

(subsequently addressed as VC-Index or VCI) are compared to the established 43 

indices SPEI and SPI. 44 

An important step in the process towards refined drought characterization, is the 45 

validation of drought indices. So far, only a few studies have compared the 46 

performance of different drought indices in identifying drought impacts using 47 

different ecosystem indicators (Vicente-Serrano et al., 2012) and there is no general 48 

opinion on the most apt technique for the validation of drought indices (Hao & 49 

Singh, 2015). Validation through temporal and spatial comparison with well-50 

established drought indices is the most commonly used technique. In this study, we 51 

assess the performance of the different drought indices in terms of an analysis of 52 

past drought events, both in the temporal and spatial domain, using hydrological 53 

and carbon flux variables. We characterize hydrological drought by anomalies (dry 54 

spells) of monthly streamflow, a concept that has been frequently used for 55 

hydrologic drought analysis (e.g. Dracup et al., 1980; Mohan & Rangacharya, 1991; 56 

Clausen & Pearson, 1995) and for exploring spatio-temporal characteristics of 57 

drought events (Lorenzo-Lacruz et al., 2010; Zhai et al., 2010; Van Lanen et al., 58 

2016, Haslinger et al, 2014). Similarly, the carbon flux variables gross primary 59 

production (GPP) and net ecosystem exchange (NEE) are known to serve as proxies 60 

for drought promoted decline in productivity in forest ecosystems (Ciais et al., 61 

2005; Luyssaert et al., 2007; Pereira et al., 2007). We assess the performance of 62 

the drought indices based on the following criteria: (i) their skill to detect 63 

streamflow anomalies in the low-flow season, (ii) their ability to detect past 64 

drought signals captured in the carbon flux data. The aim of the paper is to 65 

investigate if the novel multivariate indices (VCI) accounting for several drought 66 

relevant variables and their dependencies at the same time, can provide more 67 

accurate information about the magnitude of different drought events. 68 

Additionally, we discuss major challenges in using such indices. 69 

2 Material and methods 70 

2.1 Data 71 

Drought Indices All standardized drought indices, SPEI, SPI and VCI, were 72 

calculated based on input data from the ECMWF Atmospheric Reanalysis of the 73 
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20th Century (ERA-20C) (European Centre for Medium-Range Weather Forecasts, 74 

2014) for the period 1980 till 2010. The drought indices SPEI and SPI were 75 

calculated using the R package SPEI (Vicente-Serrano et al., 2010). For the 76 

calculation of the SPI, monthly precipitation time series were converted to 77 

probabilities which were then transformed further to standardized series (Mckee et 78 

al., 1993). The SPEI uses the multi-timescales attribute of the SPI and combines 79 

information about both precipitation and evapotranspiration, making it more 80 

suitable for studies related to climate change (Vicente-Serrano et al., 2010). Using 81 

the method proposed by Thornthwaite (1948), the variable potential 82 

evapotranspiration was computed based on temperature and latitude information. 83 

For the calculation of the VC-Indices (two different variants for validation against 84 

streamflow data and carbon flux data) we followed the method described in 85 

Erhardt & Czado (2017), which can be used flexibly in different applications to 86 

model different drought types based on user-selected (time series of) drought 87 

related variables. In several modeling steps, their method first eliminates 88 

seasonality and temporal dependence observed in the time series. Using vine 89 

copulas it models the dependencies among these pre-processed time series, which 90 

then allows to combine the drought information captured in the different variables 91 

into a single time series of a standardized multivariate drought index. Note, that for 92 

this last step, we used the aggregation method (Method A) as described in Erhardt 93 

& Czado (2017). As the order of the variables matters for the aggregation, we 94 

subsequently state them in the order which was used. 95 

For our validation against streamflow data, a hydro-meteorological VC-Index was 96 

developed using a three-variate data set consisting of monthly mean precipitation, 97 

volumetric soil water content and potential evapotranspiration (variables in that 98 

order). For our validation against carbon flux variables, an eco-meteorological VC-99 

Index was developed using a different three-variate data set consisting of monthly 100 

means of climatic water balance, volumetric soil water content and air temperature 101 

(variables in that order). We computed the so-called climatic water balance (see 102 

e.g. Vicente-Serrano et al., 2010) as difference between mean monthly precipitation 103 

and potential evapotranspiration. The monthly mean potential evapotranspiration 104 

was calculated using the method proposed by Thornthwaite (1948) based on air 105 

temperature and latitude information. For the validation with streamflow and 106 

carbon flux data, all drought indices were computed on a 0.25◦×0.25◦ grid and a 107 

0.50◦×0.50◦ grid (matching the resolution of the flux data), respectively. 108 

Streamflow The Global Runoff Data Centre in Koblenz (GRDC, 2016) is a 109 

repository for daily and monthly streamflow data. In the archive, there are 110 

streamflow time series from 1315 European catchments. In this study, we selected 111 
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332 catchments for the period 1980-2010, which have a size less than 500 km2, as 112 

smaller catchments are more likely to contain drought signals less affected by 113 

external processes. For each catchment, we derived the catchment boundary using 114 

data from Catchment Characterisation and Modelling database (de Jager and Vogt, 115 

2010). The coordinates of the centroid of each catchment were used to extract data 116 

from the gridded climate products to calculate the corresponding drought indices. 117 

The location of the catchments is presented in Fig. 1. 118 

Carbon fluxes Monthly carbon flux data for Germany was obtained from the 119 

RS+METEO product of FLUXCOM (FLUXCOM, 2017; Jung et al., 2017; 120 

Tramontana et al., 2016) at 0.50◦ spatial resolution for the period 1980-2013. Time 121 

series of two carbon flux variables namely GPP and NEE were generated from the 122 

monthly ensemble means of six variants (three machine learning algorithms and 123 

two observed flux variants from two partitioning methods) (Reichstein et al., 2005; 124 

Lasslop et al., 2010). For details about the data product see Tramontana et al. 125 

(2016) and Jung et al. (2017). For our validation of the drought indices against the 126 

carbon flux data, Germany was taken as a case study. For both types of 127 

environmental impact variables the common period 1980-2010 and the drought 128 

year 2003 were studied. 129 

 130 

 131 

Fig. 1. Locations of the 332 catchments used in the validation of the drought indices. 132 
Streamflow data of these catchments was analyzed for the period 1980 to 2010. 133 
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2.2 Methods 134 

Validation against streamflow data 135 

For comparison of the drought indices with the streamflow time series, daily 136 

streamflow data for 1980-2010 were aggregated into monthly mean values, and 137 

subsequently standardized using long-term monthly mean and standard deviation. 138 

This was done to bring the streamflow data to the same (temporal) scale as the 139 

drought indices. In the first part of our validation, we investigated seasonal 140 

differences in the month-wise correlation of the streamflow time series with the 141 

drought indices using Spearman’s rank correlation. In the second part of the 142 

analysis, we aimed to assess the performance of the drought indices to predict low-143 

flow events focusing on the summer/autumn low-flow season (August to 144 

November). We computed various verification skill scores, which are generally 145 

used to compare event forecasts to corresponding event observations and hence 146 

enable validation of the quality of different forecasts. Verification skill scores help 147 

in identifying and rectifying model shortcomings and to improve forecasting. In 148 

this study, we followed the approach shown in Haslinger et al. (2014) where the 149 

streamflow represents the ‘‘observation’’ and the ‘‘forecast’’ is given by the drought 150 

indices. A low-flow event was flagged as “1” when the streamflow was below the 151 

20th percentile of the monthly hydrograph; otherwise it was flagged as “0”. An 152 

analogous flagging rule was applied for the drought indices. Then, the binary coded 153 

streamflow and drought time series were used to determine the entries A, B, C, and 154 

D of a contingency table (see Table 1) which is used to calculate different skill 155 

scores (Wilks, 2011; WWRP/WGNE Joint Working Group on Forecast Verification 156 

Research, 2015). In this study, we focused on two metrics, namely probability of 157 

detection (POD), also known as hit rate, and false alarm ratio (FAR). POD is a 158 

verification measure of categorical forecast performance that measures the total 159 

number of correct event forecasts (hits) divided by the total number of events 160 

observed. FAR is the number of false alarms divided by the total number of event 161 

forecasts. While POD is only sensitive to hits and ignores false alarms, the opposite 162 

holds for the FAR. Hence, it is always recommended to use these two verification 163 

skills together (WWRP/WGNE Joint Working Group on Forecast Verification 164 

Research, 2015). Therefore, to visualize the skill of the different indices, POD and 165 

FAR were used in conjunction. Mathematical formulas for the calculation of these 166 

skill scores are provided in Table 2; we used the R package Verification (Pocernich, 167 

2012) for their computation. Besides POD and FAR, additional verification 168 

measures such as Critical Success Index (CSI), Extremal Dependency Index (EDI), 169 

Symmetric EDI (SEDI), Extreme Dependency Score (EDS) and Symmetric EDS 170 

(SEDS) were determined (see Table 2 for their formulas). 171 
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Validation against carbon flux data 172 

For comparison of the drought indices with the carbon flux time series, we 173 

standardized the carbon flux data using the long-term monthly mean and standard 174 

deviation. Based on growing season (March to October) data for the period from 175 

1980 to 2010, we performed pixel-wise linear regressions between each carbon flux 176 

indicator and each drought index (VCI, SPEI and SPI). R2 and p-values of the 177 

regression analyses are reported. Furthermore, we analyzed the drought conditions 178 

year-wise for the years 2001 to 2005, again using regression. Consequently, we 179 

could assess the relationship between the different carbon flux variables and 180 

drought indices for each pixel, where a high positive correlation indicates good 181 

performance of the respective drought index in reproducing the drought signal 182 

captured in the carbon flux data. The R package rasterVis was used to visualize our 183 

results on maps (Lamigueiro & Hijmans, 2016). All statistical computations were 184 

performed using R version 3.3.1 (R Core Team, 2016).  185 

Table 1. Contingency table illustrating the counts used for the calculation of verification 186 
skill scores for binary forecasts and observations. A denotes the number of event forecasts 187 
that correspond to event observations (hits), B denotes the number of event forecasts that 188 
do not correspond to observed events, C denotes the number of no-event forecasts 189 
corresponding to observed events, and D denotes the number of no-event forecasts 190 
corresponding to observations of no event. 191 

2x2 Contingency table 
Event Observed 

Yes No 

Event Forecast 
 

Yes A B 

No C D 

3 Results 192 

3.1 Validation against streamflow data 193 

Seasonal varying correlation with drought indices 194 

In this section, the results of validation of SPEI, SPI and VCI against streamflow 195 

data are discussed, where the VCI was calculated based on the variables monthly 196 

mean precipitation, volumetric soil water content and potential evapotranspiration. 197 

The locations of the 332 considered catchments are shown in Fig. 1. While a high 198 

concentration of catchments was present in Great Britain, France and Austria, also 199 

a few catchments scattered across Scandinavia were included. To examine the 200 
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seasonal variability in correlations, Spearman rank correlations were computed 201 

separately for each month. Fig. 2 compares the seasonal differences in month-wise 202 

correlations of the drought indices VCI, SPEI and SPI with the streamflow time 203 

series for the period from 1980 to 2010 using boxplots and corresponding mean 204 

values. It can be observed that for all months (except January), the VCI had the 205 

highest average correlation with streamflow (ranging between 0.4 and 0.6), 206 

compared to the indices SPEI and SPI (ranging between 0.2 and 0.55), with highest 207 

peaks for all indices either in October or November. On the other hand, the lowest 208 

correlations with SPI and SPEI are observed between March and June.  209 

 210 

Fig. 2. Monthly Spearman correlation coefficients of SPEI, SPI and VCI with mean 211 
monthly streamflow data from 332 catchments for the period 1980 to 2010 visualized as 212 
(a) boxplots and (b) mean values. SPEI and SPI stand for Standardized Precipitation 213 
Evapotranspiration Index and Standardized Precipitation Index, respectively. VCI is a 214 
standardized, multivariate index based on variables: monthly mean precipitation, 215 
volumetric soil water content and potential evapotranspiration, computed using the vine 216 
copula based approach proposed by Erhardt & Czado (2017). 217 

 218 

Ability of drought indices to detect low-flow events 219 

We are now interested in assessing if the drought indices can predict low-flow 220 

events. The 20th percentiles of the monthly streamflow and drought index 221 

distributions were chosen as a threshold to define extreme low-flows and drought 222 

events, respectively. Given this setup, forecast verification scores such as POD and 223 

FAR were calculated as described in the methods section and reported in Table 2. 224 
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From Table 2 we see that – amongst the three drought indices – VCI has the 225 

highest value for both Spearman’s correlation and POD, and the lowest FAR value. 226 

Results of the other verification scores, CSI, EDI, SEDI, EDS and SEDS, are 227 

reported in Table 2, where a higher value of these scores mean better drought 228 

detection ability. For all these scores, VCI had higher values than SPEI and SPI. 229 

The best performing drought index for each catchment based on maximum POD 230 

value is shown in Fig. 3a. According to POD, drought was best detected by VCI for 231 

62% of the catchments, followed by 25.9% and 12% of the catchments for SPI and 232 

SPEI, respectively (see Table 1, Supplementary). For the five countries where data 233 

for more than ten catchments was available (i.e., Great Britain, France, Austria, 234 

Switzerland and Finland), the largest percentage of the catchments was best 235 

represented by the VCI, with Austria being the only exception. It is worth noting 236 

that for Switzerland the performance of the VCI was closely followed by the SPI and 237 

vice-versa for Austria. When the catchments were divided into three groups based 238 

on gauge or mean catchment elevation (m.a.s.l.), i.e., low (0-100), medium (100-239 

500) and high (>500), 15.5%, 13.2% and 71.3% of the low elevation catchments 240 

were best represented by SPEI, SPI and VCI, respectively. 12.8%, 27.8% and 59.4% 241 

of the medium elevation catchments were best represented by SPEI, SPI and VCI, 242 

respectively. The high elevation catchments were best represented by SPEI, SPI 243 

and VCI for 4.3%, 45.7% and 50%, respectively. In general, it was observed that for 244 

low and medium elevations, VCI was the best index for a substantial majority of the 245 

catchments. In case of high elevation catchments, SPI performed similar to VCI. An 246 

analysis of the effect of catchment size showed that the performance of the 247 

individual indices was not related to catchment size: The mean area of the 248 

catchments where the indices SPEI, SPI and VCI best detected drought according 249 

to POD were quite similar with 164, 171 and 172 km2, respectively.  250 

The best performing drought index for each catchment based on minimum FAR 251 

value is shown in Fig. 3b. The minimum FAR value was observed for SPEI, SPI and 252 

VCI for 20.5%, 33.4% and 46.1% of the catchments, respectively, showing that 253 

based on FAR, VCI was the best performing index. Again, we did not observe 254 

differences in performance related to catchment area. For all three elevation 255 

classes, low, medium and high, VCI had the relatively larger share of catchments 256 

with minimum FAR, i.e., 42.6, 42.1 and 60.0%, respectively (see Table 1, 257 

Supplementary). For all countries excluding France, VCI had the largest share of 258 

catchments with minimum FAR. Overall, both skills POD and FAR indicated a 259 

better performance of VCI compared to SPEI and SPI.  260 
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 261 

 262 

Fig. 3. Plot showing for all 332 catchments used in the validation of the drought indices, 263 
which index has (a) the maximum Probability of Detection (POD) and (b) minimum False 264 
Alarm Ratio (FAR) values. Values of POD and FAR scores of the drought indices were 265 
calculated based on monthly streamflow data for the low-flow season (August to 266 
November) during the period 1980 to 2010. The highest POD for SPEI, SPI and VCI was 267 
observed for 12%, 25.9% and 62% of the catchments, respectively. The lowest FAR for 268 
SPEI, SPI and VCI was observed for 20.5%, 33.4% and 46.1% of the catchments, 269 
respectively. SPEI and SPI stand for Standardized Precipitation Evapotranspiration Index 270 
and Standardized Precipitation Index, respectively. VCI is a standardized, multivariate 271 
index based on variables: monthly mean precipitation, volumetric soil water content and 272 
potential evapotranspiration, computed using the vine copula based approach proposed by 273 
Erhardt & Czado (2017).274 
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Table 2. Skill scores (and their definitions) used for validation of the drought indices 275 
SPEI, SPI and VCI. The values of the scores for the different drought indices are based on 276 
streamflow data for 332 catchments during the low-flow season (August to November) of 277 
the period 1980 to 2010. SPEI and SPI stand for Standardized Precipitation 278 
Evapotranspiration Index and Standardized Precipitation Index, respectively. VCI is a 279 
standardized, multivariate index computed using the vine copula based approach proposed 280 
by Erhardt & Czado (2017). For definitions of A, B, C and D, see the contingency table 281 
provided in Table 1. 282 

Skill Score Definition SPEI SPI VCI  

Correlation Spearman’s rank correlation 
coefficient 

0.41 0.46 0.53  
 

Probability of 
Detection (POD) 

POD=A/(A+C) 0.35 0.37 0.42 
 

False Alarm Ratio 
(FAR) 

FAR=(B)/(A+B) 0.64 0.63 0.59 
 

Critical Success 
Index (CSI) 

CSI=(A)/(A+B+C) 0.22 0.23 0.26 
 

Extremal 
Dependency Index 

(EDI) 

EDI=(logF-logH)/(logF+ logH), 
where H=A/(A+C) and F=B/(B+D) 

0.28 0.31 0.38 
 

Symmetric EDI 
(SEDI) 

SEDI= logF-logH-log(1-F)+log(1-
H)/ logF+logH+log(1-F)+log(1-H), 
where H = A/A+C and F=B/B+D 

0.30 0.33 0.41 
 

Extreme 
Dependency Score 

(EDS) 

EDI=logp-logH/logp+logH, 
where p=(A+C)/(A+B+C+D , 

H=A/A+C 

0.21 0.24 0.31 
 

Symmetric EDS 
(SEDS) 

SEDS=logq-logH/logq+logH, 
 where q= (A+B)/(A+B+C+D) and 

H=A/A+C 

0.22 0.25 0.30 

 

3.2 Validation against carbon flux data 283 

In this section, the results of validation of SPEI, SPI and VCI against carbon flux 284 

data are discussed, where the VCI was calculated based on variables: monthly 285 

means of climatic water balance, volumetric soil water content and air 286 

temperature. Maps of the drought indices (SPEI, SPI and VCI) for Germany for the 287 

single years 2001 to 2005 are shown in Fig. 4. The drought of 2003 was generally 288 
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more severe in the eastern and south-eastern part of Germany. Box plots of the 289 

seasonal means of the drought indices for 2003 are provided in Fig. 5, which – for 290 

the different indices SPEI, SPI and VCI – showed obvious differences in the 291 

severity of the detected drought conditions, especially during spring. Overall, we 292 

found that in average the multivariate drought index VCI indicated more severe 293 

drought conditions for 2003 than SPEI and SPI. Equally, annual sums of 294 

standardized NEE and GPP for 2001 to 2005 (Fig. 1 and Fig. 2, Supplementary) 295 

indicate drought during the year 2003. 296 

 297 

Fig. 4. Annual mean of drought indices (SPEI, SPI and VCI) for Germany for the years 298 
2001 to 2005, including the drought year 2003. SPEI and SPI stand for Standardized 299 
Precipitation Evapotranspiration Index and Standardized Precipitation Index, respectively. 300 
VCI is a standardized, multivariate index based on variables: monthly means of climatic 301 
water balance, volumetric soil water content and air temperature, computed using the vine 302 
copula based approach proposed by Erhardt & Czado (2017). Negative values of all indices 303 
indicate dry conditions. 304 

Further, we analyzed the performance of the different drought indices for the long-305 

term period 1980 to 2010. The results of a pixel-wise linear regression between the 306 

drought indices and NEE for the growing season (April to September) for the years 307 

1980 to 2010 are given in in Fig. 6a. For the growing season NEE, VCI had the 308 

highest R2 values (0.5) followed by SPEI. SPI did not mirror strong drought 309 

impacts, with maximum R2 values below 0.3. The average R2 values for SPEI, SPI 310 

and VCI with  311 
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  312 

Fig. 5. Box plots of seasonal means of drought indices (SPEI, SPI and VCI) for Germany 313 
for the drought year 2003. SPEI and SPI stand for Standardized Precipitation 314 
Evapotranspiration Index and Standardized Precipitation Index, respectively. VCI is a 315 
standardized, multivariate index based on variables: monthly means of climatic water 316 
balance, volumetric soil water content and air temperature, computed using the vine 317 
copula based approach proposed by Erhardt & Czado (2017). Negative values of the indices 318 
indicate dry conditions. 319 

 320 

NEE were 0.26, 0.07 and 0.37, respectively. According to the p-values of the 321 

regression (Fig. 3a, Supplementary) all R2 values for VCI and SPEI, and 88% of 322 

those for the SPI were statistically significant at a confidence level of 0.05. 323 

Similarly, for the growing season GPP, R2 values were highest for VCI with values 324 

up to 0.3 whereas SPEI and SPI showed only weak signals with R2 values below 325 

0.15 (Fig. 6b). The average R2 values for SPEI, SPI and VCI with GPP were 0.03, 326 

0.04 and 0.14, respectively. All R2 values for VCI were statistically significant at the 327 

o.05 confidence level, followed by 85% and 54% statistically significant values for 328 

SPI and SPEI (see p-values in Fig. 3b, Supplementary). 329 

Similarly, the results of year- and pixel-wise linear regressions for the drought 330 

indices SPEI, SPI and VCI against NEE for the years 2001 to 2005 are mapped in 331 

Fig. 7. During the drought year 2003, VCI had the strongest correlations with NEE 332 

with R2 values reaching up to 0.86, whereas in case of SPEI and SPI, the R2 values 333 

reached only maxima of 0.39 and 0.33, respectively. The average R2 values of SPEI, 334 

SPI and VCI, were 0.13, 0.06 and 0.31, respectively. Analogous maps of the results 335 

of pixel-wise linear regressions with GPP are given in Fig. 8. During the drought 336 

year 2003 VCI had comparatively higher correlations with GPP, with R2 values 337 

reaching maxima of 0.31, 0.24 and 0.87 for SPEI, SPI and VCI, respectively. The 338 
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average R2 values corresponding to SPEI, SPI and VCI for 2003 were 0.15, 0.05 and 339 

0.29, respectively. The corresponding p-value maps for NEE and GPP (Fig. 4 and 340 

Fig. 5, Supplementary) show that for the drought year 2003, at the 0.05 confidence 341 

level, the percentage of statistically significant R2 values for VCI are 48% and 21%, 342 

respectively. For both carbon flux variables (NEE and GPP), SPI and SPEI did not 343 

show any significant correlations. 344 

(a) (b) 

Fig. 6. R2 values of a pixel-wise linear regression of the drought indices SPEI, SPI and VCI 345 
against (a) standardized net ecosystem exchange (NEE) and (b) standardized gross 346 
primary production (GPP), on a 0.5x0.5 degree spatial grid for Germany, for the growing 347 
season (April to September) during the period 1980 to 2010. SPEI and SPI stand for 348 
Standardized Precipitation Evapotranspiration Index and Standardized Precipitation 349 
Index, respectively. VCI is a standardized, multivariate index based on variables: monthly 350 
means of climatic water balance, volumetric soil water content and air temperature, 351 
computed using the vine copula based approach proposed by Erhardt & Czado (2017). 352 

 353 

Fig. 7. R2 values of year- and pixel-wise linear regressions of the drought indices SPEI, SPI 354 
and VCI against standardized net ecosystem exchange (NEE) on a 0.5x0.5 degree spatial 355 
grid for Germany for the period 2001 to 2005, including the drought year 2003. SPEI and 356 
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SPI stand for Standardized Precipitation Evapotranspiration Index and Standardized 357 
Precipitation Index, respectively. VCI is a standardized, multivariate index based on 358 
variables: monthly means of climatic water balance, volumetric soil water content and air 359 
temperature, computed using the vine copula based approach proposed by Erhardt & 360 
Czado (2017). 361 

 362 

Fig. 8. R2 values of year- and pixel-wise linear regressions of the drought indices VCI, 363 
SPEI and SPI against standardized gross primary production (GPP) on a 0.5x0.5 degree 364 
spatial grid for Germany for the period 2001 to 2005, including the drought year 2003. 365 
SPEI and SPI stand for Standardized Precipitation Evapotranspiration Index and 366 
Standardized Precipitation Index, respectively. VCI is a standardized, multivariate index 367 
based on variables: monthly means of climatic water balance, volumetric soil water content 368 
and air temperature, computed using the vine copula based approach proposed by Erhardt 369 
& Czado (2017). 370 

4 Discussion 371 

In our study we analyzed and compared the performance of the drought indices 372 

SPEI, SPI and VCI based on streamflow and carbon flux data over a period of three 373 

decades. The results of the validation of the exemplary multivariate hydro-374 

meteorological drought index with streamflow data and the multivariate eco-375 

meteorological drought index against carbon flux data confirmed the superiority of 376 

the multivariate, vine copula based drought indices (VCI) calculated using the 377 

flexible methodology proposed by Erhardt & Czado (2017). All in all, our validation 378 

has once more established the benefits of a multivariate approach, similar to many 379 

recent studies which show that combining multiple data sets improves drought 380 

characterization (Keyantash & Dracup, 2004; Kao & Govindaraju, 2010; Hao & 381 
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AghaKouchak, 2013, 2014; AghaKouchak, 2015; AghaKouchak et al., 2015; 382 

Farahmand & AghaKouchak, 2015). 383 

4.1 Validation against streamflow data 384 

The correlation analysis of the drought indices with the streamflow data showed 385 

varying magnitudes of correlation depending on the drought index under 386 

consideration. Overall, the correlations are not greater than 0.6, and false alarm 387 

rates are of same order of magnitude as success rates. As shown in Van Lanen et al. 388 

(2016) and Laaha et al. (2017), hydrological events can substantially differ from the 389 

meteorological ones because of the catchments’ ability to store and release water, 390 

which may dampen or even amplify atmospheric drought signals. However, the 391 

streamflow-drought relationship was found to be most pronounced for VCI, since 392 

for almost all months we observed higher average correlations, with maximum 393 

values in fall. For SPI and SPEI we observed low correlations during the period 394 

from March to June. This could be due to the fact that the considered drought 395 

indices do not account for rainfall deficits and snow melt, which effectively 396 

influence streamflow (Haslinger et al., 2014; Staudinger et al., 2014) and our study 397 

considers a substantial number of catchments in the alpine region (see Fig. 1). 398 

During this period of the year, snow accumulation and snowmelt processes overlap 399 

the variations of the streamflow year, driven by rainfall (Haslinger et al., 2014), 400 

resulting in the low correlations during the months March to June. This effect due 401 

to snowmelt processes is however less pronounced in case of the VCI compared to 402 

SPEI and SPI, which could be due to the fact that with VCI we consider a hydro-403 

metorological drought index, by including soil moisture, and not a purely 404 

meteorological one. In case of the latter, a time lag is foreseen with streamflow 405 

drought (Shukla & Wood, 2008; Haslinger et al., 2014). In general, our results 406 

confirm the hypothesis discussed in Haslinger et al. (2014) that the link between 407 

streamflow anomalies and drought indices is more evident for sophisticated 408 

drought indices. 409 

Amongst the studied indices, VCI can be considered superior in terms of 410 

probability of drought detection, showing the highest POD values for 62% of the 411 

catchments. For most of the catchments, the false alarm rate was the lowest and 412 

hence best for VCI, whereas the minimum FAR for VCI was observed for 46.1% of 413 

the catchments. These results show that considering both measures, the VCI 414 

outperformed the other indices in terms of highest POD and lowest FAR scores. 415 

This is in line with studies of Hao & AghaKouchak (2014) where a multivariate 416 

drought index (Hao & AghaKouchak, 2013) based on precipitation and soil 417 

moisture lead to a higher probability of drought detection compared to the 418 
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corresponding univariate standardized indices (AghaKouchak, 2014). Erhardt & 419 

Czado (2017) validated an exemplary, vine copula based, agro-meteorological 420 

drought index (VCI) using a soybean yield dataset and showed its superiority over 421 

other uni- and multivariate drought indices. The better performance of the VCI for 422 

streamflow data in our study could be a consequence of including volumetric soil 423 

water content into the multivariate drought index – which is indeed more closely 424 

related to catchment storage than meteorological indices and, hence, beneficial for 425 

predicting streamflow droughts. A second reason might be the fact that VCI 426 

accounts for inter-variable dependencies in a flexible fashion using vine copulas 427 

(Aas et al., 2009). While the climate-based indices (SPI and SPEI) describe only the 428 

climate anomalies in isolation from their hydrological context (Shukla & Wood, 429 

2008), the VCI offers a skillful method for jointly characterizing the effects of 430 

climate anomalies and hydrologic conditions. 431 

Upto 500 km2, the catchment area had no effect on the response of the drought 432 

indices, while the performance of the indices varied with the catchment elevation. 433 

For low elevations, the probability of drought detection was mostly best for VCI 434 

(71.3%). For high elevations, POD score was similar for VCI and SPI. This could be 435 

due to the fact that in alpine catchments the low-flows tend to occur in winter, 436 

which were outside the studied season (August to November). Subsequently, this is 437 

reflected from the minimum FAR score, where VCI has the largest share of 438 

catchments VCI (60%) and SPI (27.7%) had the lowest, making VCI the better 439 

choice for high elevation studies as well (see Table 1, Supplementary). The lower 440 

skill of the VCI for high altitude could also point to lower accuracy of the 441 

volumetric soil water content data for alpine areas where soil structure is notably 442 

complex. Moreover, evapotranspiration is a less dominant process in the alpine 443 

areas. For hydrological drought, the seasonality of a regime (which depends on the 444 

elevation) plays an important role (Jung et al., 2013; Van Loon & Laaha, 2015) 445 

since in higher elevations lower temperatures lead to more streamflow drought. All 446 

in all, for all elevations, VCI was the preferred index when considering POD and 447 

FAR in conjunction (Table 1, Supplementary). 448 

4.2 Validation against carbon flux data 449 

A summary of the drought conditions in Germany for the drought year 2003 based 450 

on the different drought indices revealed that VCI indicated comparatively worse 451 

drought conditions in average (see maps in Fig. 4) – where the results of SPEI were 452 

more similar to VCI than those for SPI – and especially during spring and summer 453 

(see Fig. 5). In general, for the year 2003, all three different indices detected more 454 

severe drought conditions in the eastern half of Germany (Ciais et al., 2005; 455 
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Thomas et al., 2013). The pixel-wise regression analysis of the drought indices 456 

versus the carbon fluxes showed a varying magnitude of their correlation 457 

depending on the drought index, the period of analysis (1980-2010 versus 2003) 458 

and the carbon flux indicator under consideration. However, the NEE-drought and 459 

GPP-drought relationship became most obvious for VCI, in case of a validation 460 

with both NEE and GPP, for both the long-term consideration (1980 to 2010) and 461 

the single drought year 2003, with more statistically significant correlations for the 462 

long period. Overall, NEE showed stronger associations with the drought indices 463 

compared to GPP. 464 

When considering the period from 1980 to 2010, the average R2 values of linear 465 

regressions of NEE and GPP against the drought indices were highest for VCI, 466 

followed by SPEI and SPI. In general, the indices successfully established the 467 

drought-NEE relationship (Ciais et al., 2005; Reichstein et al., 2005; Pereira et al., 468 

2007) and the drought-GPP relationship (Ciais et al., 2005; Pereira et al., 2007; 469 

Vicca et al., 2016), most strongly reflected in both cases by VCI, with all R2 values 470 

being statistically significant. Based on these results, we conclude superiority of 471 

VCI in detecting past drought events in an ecological context. In addition to the 472 

period from 1980 to 2010, year-wise linear regressions were performed to examine 473 

the performance of the drought indices, with focus on the drought year 2003. 474 

Similar to the results for the three decade period, the R2 values of linear regressions 475 

of NEE and GPP against the drought indices were highest on average for VCI. It is 476 

worth noting here that for our year-wise analysis (for instance for the drought year 477 

2003), we considered only twelve observations, and the percentage of statistically 478 

significant values at the confidence level of 0.05 were much less compared to the 479 

analysis of the longer period. 480 

Challenges associated with using multivariate indices 481 

It is acknowledged that, similar to other methods, there are many challenges 482 

associated with using/developing multivariate drought indices such as the vine 483 

copula based indices discussed in this paper. Firstly, the availability of ground-484 

based observations of many drought-related variables (e.g., soil moisture, 485 

snowmelt, water vapor) is very much limited or sparse in certain regions across the 486 

world. This restricts the usage/development of multivariate indicators in regions 487 

where no such data is available. Secondly, to ensure that data records with large 488 

volumes are easily managed and made available to users is another challenge. For 489 

many satellite data products, the length of the data records is not more than a 490 

decade or they have only a very coarse spatial resolution which limits the 491 

methodology of drought indices to be used to their maximum potential. The 492 

methodology behind most multivariate indices requires long-term observations (30 493 
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years or more) to derive the joint distribution of the variables, and a short record of 494 

observations could lead to biased estimates (Hao & AghaKouchak, 2014). However, 495 

Erhardt & Czado (2017), showed that stable results can be obtained with their 496 

method for much shorter observation periods like 10 years, which is an advantage 497 

over other (multivariate) drought indices (see Erhardt and Czado, 2017).  498 

5 Conclusion 499 

In the case of our two applications, the VC-Indices yield the best performance 500 

compared to the other established indices, by reaching the best scores in all 501 

investigations. Our study emphasizes that the investigation of drought impacts 502 

should be based on multiple variables/indicators (Bhuyan et al., 2017) and, for this 503 

reason, the novel vine copula based indices are not meant to replace any 504 

established index. Instead, we propose that this approach should be used as an 505 

added source of information taking into account the joint probability of drought-506 

relevant variables chosen by the user to investigate a specific drought type. Thus, 507 

the major key to improving our understanding of drought impacts on ecosystems 508 

could be high spatial resolution, user-defined, drought monitoring based on the 509 

method proposed by Erhardt & Czado (2017). 510 
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8 Supplementary 655 

Table I. Percentage of catchments having maximal POD and FAR values for the different 656 
drought indices (VCI, SPEI and SPI) distinguishing between different groups of 657 
catchments. The catchments are grouped according to elevation (low, medium and high) 658 
and country (countries with more than ten catchments, i.e., N>10). POD and FAR refer to 659 
the verification skill scores probability of detection and false alarm ratio, respectively. SPEI 660 
and SPI stand for Standardized Precipitation Evapotranspiration Index and Standardized 661 
Precipitation Index, respectively. VCI is a standardized, multivariate index based on 662 
variables: monthly mean precipitation, volumetric soil water content and potential 663 
evapotranspiration, computed using the vine copula based approach proposed by Erhardt 664 
& Czado (2017). 665 

  
 % of catchments with 

maximum POD 

% of catchments with 

minimum FAR 

Index N SPEI SPI VCI SPEI SPI VCI 

Low Elevation 129 15.5 13.2 71.3 24.8 32.6 42.6 

Medium Elevation 133 12.8 27.8 59.4 20.3 37.6 42.1 

High Elevation 70 4.3 45.7 50.0 12.9 27.1 60.0 

Great Britain 118 16.9 14.4 68.6 21.2 33.9 44.9 

France 96 16.7 21.9 61.5 38.5 44.8 16.7 

Austria 48 0 54.2 45.8 2.1 14.6 83.3 

Switzerland 45 6.7 40.0 53.3 8.9 31.1 60 

Finland 12 0 8.3 91.7 0 33.3 66.7 

Overall 332 12.0 25.9 62.0 20.5 33.4 46.1 
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 667 

 668 

Fig. 1. Annual sum of standardized gross primary production (GPP) for Germany for the 669 
years 2001 to 2005. 670 

 671 

Fig. 2. Annual sum of standardized net ecosystem exchange (NEE) for Germany for the 672 
years 2001 to 2005. 673 

 
(a) 

 
(b) 

Fig. 3. P-values of a pixel-wise linear regression of the drought indices SPEI, SPI and VCI 674 
against (a) standardized net ecosystem exchange (NEE) and (b) standardized gross 675 
primary production (GPP), on a 0.5x0.5 degree spatial grid for Germany, for the growing 676 
seasons (April to September) during the period 1980 to 2010. The darker shaded part 677 
shows the statistically significant correlations at the confidence level of 0.05. SPEI and SPI 678 
stand for Standardized Precipitation Evapotranspiration Index and Standardized 679 
Precipitation Index, respectively. VCI is a standardized, multivariate index based on 680 
variables: monthly means of climatic water balance, volumetric soil water content and air 681 
temperature, computed using the vine copula based approach proposed by Erhardt & 682 
Czado (2017). 683 
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 686 
Fig. 4. P-values of year- and pixel-wise linear regressions of the drought indices VCI, SPEI 687 
and SPI against standardized net ecosystem exchange (NEE) on a 0.5x0.5 degree spatial 688 
grid for Germany for the period 2001 to 2005, including the drought year 2003. The 689 
darker shaded part shows the statistically significant correlations at the confidence level of 690 
0.05. SPEI and SPI stand for Standardized Precipitation Evapotranspiration Index and 691 
Standardized Precipitation Index, respectively. VCI is a standardized, multivariate 692 
index based on variables: monthly means of climatic water balance, volumetric soil 693 
water content and air temperature, computed using the vine copula based 694 
approach proposed by Erhardt & Czado (2017). 695 
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Fig. 5. P-values of year- and pixel-wise linear regressions of the drought indices VCI, SPEI 697 
and SPI against standardized gross primary production (GPP) on a 0.5x0.5 degree spatial 698 
grid for Germany for the period 2001 to 2005, including the drought year 2003. The 699 
darker shaded part shows the statistically significant correlations at the confidence level of 700 
0.05. SPEI and SPI stand for Standardized Precipitation Evapotranspiration Index and 701 
Standardized Precipitation Index, respectively. VCI is a standardized, multivariate 702 
index based on variables: monthly means of climatic water balance, volumetric soil 703 
water content and air temperature, computed using the vine copula based 704 
approach proposed by Erhardt & Czado (2017). 705 
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