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Abstract

Today, one challenge in vehicle development is dealing with increased complexity, i.a.

as a consequence of a large number of interacting components and subsystems, many re-

quirements, often in conflict to each other, and a large variety of vehicles that must be

considered. In general, complexity leads to time-consuming and hence cost-intensive de-

velopment processes. In contrast, an increasing number of competitors require efficient

product development in terms of time and cost.

Design methodologies such as concurrent engineering and set-based design exist to

handle complex design problems more efficiently. One aspect of concurrent engineering is

that components and subsystems are developed simultaneously rather than subsequently.

This potentially reduces the overall development time, however, due to interactions among

the components and subsystems, concurrent engineering increases uncertainties due to lack

of knowledge. The idea of set-based design is to consider a set of permissible designs, which

is narrowed throughout the development when more information, e.g. precise customer

needs, cost, manufacturability, etc. is available. Although, this requires more effort in

early development stages, it minimizes necessary iteration loops due to lack of knowledge

and becomes more efficient overall compared to design strategies where one single design is

considered only. Set-based design in conjunction with concurrent engineering is a powerful

combination of two design strategies, compensating the shortcomings of the individual

methodologies and enabling efficient development processes.

Recently, many set-based design approaches, particularly relying on numerical simu-

lation, were proposed to increase the efficiency of development processes. One approach

is based on the computation of box-shaped Solution Spaces, representing permissible de-

sign alternatives that satisfy all specified requirements. Box-shaped Solution Spaces are

compatible to concurrent engineering, since requirements on the system are formulated

as independent requirements on components and subsystems, which can be developed in

detail independently and simultaneously as a result.

This thesis proposes improved approaches to compute Solution Spaces, such that un-

certainties due to lack of knowledge are taken into account at its best, such that the result

is compatible to concurrent engineering and such that the approaches are applicable to

development problems particularly in chassis design.

Firstly, a gradient-based approach is proposed for optimizing the number of design

alternatives via a search of box-shaped Solution Spaces with maximum volume. The un-

derlying optimization problem is analyzed, and the approach is validated via analytic test

problems. The results are compared to an existing technique using a stochastic Solution

Space algorithm.

Motivated by the fact that box-shaped Solution Spaces are possibly sub-optimal to
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represent the whole set of permissible designs, approaches based on a two-dimensional

decomposition of high-dimensional Solution Spaces are introduced. This enables an im-

proved handling of uncertainties in the early development phase. Two approaches are

presented and the underlying optimization problems are analyzed and discussed. Both

approaches are validated again by analytic test problems.

Furthermore, the approaches are compared in terms of their numerical complexity,

and the advantages and disadvantages of box-shaped Solution Spaces compared to a two-

dimensional decomposition of Solution Spaces are discussed.

Finally, the applicability of the approaches is demonstrated by industrial examples in

the field of chassis design. The examples comprise the development of single vehicles as

well as the development of a set of vehicles, where the components need to be designed

such that requirements on the driving dynamical behavior are satisfied.
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1

1 — Introduction

This chapter deals with challenges in the development of complex products,

such as passenger vehicles. Existing approaches and methodologies to handle

development processes more efficiently are explained. Furthermore, funda-

mentals such as the decomposition of technical systems, the V-model ap-

proach, uncertainties in engineering design, particularly those due to lack of

knowledge, apriori information in development, point-based and set-based de-

sign methodologies as well as the terms robustness, reliability and flexibility,

as used in this thesis, are briefly explained. Subsequently, the aims of the

work, an overview of the methods proposed and of the structure of the work

is provided.
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1.1 Context and motivation

The development of vehicles is complex due to a large number of interacting components

and subsystems, many requirements, often in conflict to each other, and a large variety of

vehicles that must be considered. In classical development processes one single design is

iteratively modified to satisfy all requirements (called point-based design; see subsequent

paragraphs). Changes in influencing components or subsystems must be compensated by

changes in other components or subsystems and the design process must be repeated,

which is time-consuming and hence cost-intensive. However, economical aspects demand

development processes to be efficient in terms of time and cost.

Development based on numerical simulation can reduce time and hence cost of develop-

ment processes and allows vehicle design even if no hardware, e.g. prototypes, subsystem

test rigs, etc., is available. Roeski [63] describes a point-based development process for

chassis design, where the overall development time is reduced by providing reliable results

based on simulation before the first hardware is available. The first phase is solely based

on simulation, while the subsequent phase is based on hardware testing, supported by

simulation; see Figure 1.1. Thus, hardware testing, which is time-consuming and cost-

intensive, can be executed more efficiently. However, particularly in an early design stage,

there is only little information about the requirements and conditions, e.g. interacting

components, which are expected to change throughout the development process.

Design methodologies such as concurrent engineering and set-based design exist to

handle complex design problems more efficiently. One aspect of concurrent engineering,

see e.g. [58,59,76], is that components and subsystems are developed simultaneously rather

than subsequently. This allows a reduction of the overall development time, however, in the

presence of interactions among the components and subsystems, concurrent engineering

increases uncertainties due to lack of knowledge. To deal with lacking information in

early design phases, the idea of set-based design considers a set of permissible designs,

which is narrowed throughout development when more information, e.g. precise technical

details about interacting components, cost, manufacturability, etc. is available. Although,

this requires more effort in early development stages, it minimizes necessary iteration

loops due to lack of knowledge and becomes more efficient overall compared to design

strategies where one single design is considered only. Set-based concurrent engineering,

see e.g. [2, 70], is a powerful combination of the aforementioned design strategies and

enables taking uncertainties into account and handling complex design problems more

efficiently.

Recently, many set-based design approaches, which particularly rely on numerical sim-

ulation, were proposed to increase the efficiency of development processes. Zimmermann

et al. [78] propose a stochastic algorithm based on numerical simulation to compute box-
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shaped Solution Spaces. Rather than one design, Solution Spaces provide a set of designs

that is considered throughout the development process and narrows when more and more

information is available. Subsequently, the most promising design out of the set of remain-

ing designs is realized. Inside the Solution Spaces, all requirements on system response

are satisfied. Designs within the Solution Space are called good designs. Time-consuming

iterations can be reduced by providing space for variation. Box-shaped Solution Spaces

are compatible to concurrent engineering, since requirements on the system are formulated

as independent requirements on components and subsystems (expressed as permissible in-

tervals), which can subsequently be developed in detail independently and simultaneously.

Thus, box-shaped Solution Spaces can be considered as a set-based concurrent engineering

approach, enabling efficient development processes. However, box-shaped Solution Spaces

are - depending on the problem - ill-suited to approximate the entire set of good designs,

and the computation can be computationally expensive.

simulation-based design hardware testing

time

support by simulation

approval market 
entry

early development stage

Figure 1.1: Development process with multiple stages, the first stage is based on numerical
simulation and the subsequent stage is based on hardware testing, taken from
[63]. The red shaded area highlights the phase, which is mainly discussed in
this thesis.

The methods proposed in this thesis can be used in all stages of development where

numerical simulation is applied to design vehicles. The examples considered here focus on

a stage, where conceptual decisions have been already made. This stage is characterized

by the fact that decisions about the type of the vehicle (sedan, coupé, etc.), the type

of engine (combustion engine, electric engine, etc.), the drive concept (rear-wheel drive,

front-wheel drive, all-wheel drive), etc. have been already made. Typical components

in chassis design that are developed in such a stage are the anti-roll bars, coil springs,

dampers, bump stops, rebound stops (front and rear axle, respectively), tires, etc; see

component level in Figure 1.2. The design variables are the properties of the components,

such as the stiffness and length. The system is often evaluated by considering performance

measures, i.e. quantitative measures such as the roll angle of a vehicle while executing a

predefined maneuver. Although much of the system is known, there is still a high number
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of possibilities for realizing the vehicle. To illustrate this, consider an example where

two components of a system satisfying a particular requirement must be designed, taking

into account that each component can be replaced by five different parts. In this case,

one must evaluate 52 = 25 system configurations. The effort for the evaluation of all

possible configurations increases significantly with the number of components that must

be designed, the number of different alternatives/parts for each component, the number of

requirements on the vehicle and the number of vehicles that must be developed. A chassis

design problem comprising five components and 20 alternatives for each component, six

requirements and 20 different vehicles, yields a number of 205 × 20 = 64, 000, 000 possible

configurations, each needs to be evaluated w.r.t. six requirements. The evaluation of

all possible configurations is impracticable with simulation and impossible with hardware

testing. With an industrial example in Chapter 7 it is shown how the method of Solution

Spaces can be used to handle problems of this size while taking uncertainties due to lack

of knowledge into account.

Decomposing a system into subsystems and components Each system (vehicle) can

be decomposed into subsystems (axle, engine, body, etc.) and components (anti-roll bar,

bump stop, rebound stop, etc.); see Figure 1.2. Some components can be further decom-

posed, e.g. the damper is an assembly of i.a. a piston, a piston rod and a damper tube.

The system and each subsystem and component are characterized by multiple properties,

such as cost, mass, etc. Some of these properties show interactions among each other that

can be visualized by a graph. The graph is arranged as follows: The top level of the graph

shows properties of the system, the lower levels show properties of its subsystems and

components. Arrows indicate direct relations between different properties. Figure 1.3 de-

picts an example from chassis design. The focus in this thesis is on particular properties of

the components anti-roll bar of the front and rear axle (stiffness), bump stops of the front

and rear axle (stiffness and length), rebound stops of the front axle (stiffness and length),

as well as on particular properties of the overall vehicle (particular performance measures

for driving dynamics, influenced by the overall mass and inertia around the vertical axis

as well as the position of the center of gravity in vertical and longitudinal direction of the

vehicle).

The relations among the properties can be quantified by physical experiments or math-

ematically. In the latter case, the system’s response (= a property of the system), for

instance, can be expressed by a function, in the following called performance function. It

maps the value of a design variable (or the values of several design variables), in the fol-

lowing the property of a component (or several properties of several components), denoted

by x, onto a value of a system’s response, in the following called performance measure,

denoted by z, i.e. f : x �→ z.
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Figure 1.2: Each system can be decomposed into subsystems and components. The system
and each subsystem and component is characterized by properties, such as cost,
mass, etc.

Development with the V-model approach The V-model approach, see [38], is often

used to handle complex product development projects. While its origin is the software

industry, today, in the framework of systems engineering, it is an established design process

philosophy in many other industries, such as the automotive industry; see [79]. The main

idea is to break down requirements from a level, where the overall product or system is

considered, to one or more levels, where details of the product are taken into account.

Therefore, this part of the approach is called top-down approach, i.e. from the system

level (top) to a detail level, e.g. subsystem or component level (bottom). If all details are

specified, the system is assembled and the overall system performance is validated, called

bottom-up, i.e. from a detail level (bottom) to the system level (top).

Consider the following simple example from chassis design with one requirement on

the system’s response and one property of a component that must be designed: On the

system level a requirement in terms of a maximum roll angle of the vehicle while cornering

is given. In accordance with the V-model approach this requirement is broken down to

the subsystem level in terms of a requirement on the minimum vertical stiffness of the

front and rear axle, respectively. This can be further broken down to a more detailed

level, let’s say a minimum stiffness of the anti-roll bar. If the anti-roll bar is designed
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Figure 1.3: The graph shows the dependencies of different properties of components, sub-
systems and the system. The dependencies can be quantified by a performance
function f(x), mapping the values of particular design variables x (here prop-
erties of components) onto a value of a performance measure of the system.

and realized, the system is assembled and the overall system performance is validated.

While this example is trivial, consider a complex product with hundreds of interacting

properties of components and subsystems and thousands of details that must be designed.

The V-model approach enables the development of complex products to be accomplished

by several groups in a structured and efficient manner.

Uncertainties in engineering design In literature there are many definitions and at-

tempts to categorize uncertainties which arise during development or when the product is

in service. Often uncertainties are categorized as aleatoric and epistemic; see e.g. [21].

The word aleatoric is derived from the Greek word alea, which means rolling of dice and

implies that this type of uncertainty occurs due to randomness. Examples are scatter in

material properties due to imprecise manufacturing processes, variation in road surface

conditions, etc. Episteme means knowledge and epistemic uncertainties are those caused

by lack of knowledge, e.g. the cost of particular components, which is often not known in

early development stages. A different categorization uses the terms controllable and un-

controllable factors, see e.g. [22, 41,51]. While controllable factors are those properties
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of the system that can be designed (design variables), uncontrollable factors are environ-

mental conditions, such as applied loading, aging, temperature, etc. In the framework of

distributed development, see concurrent engineering, all properties, which are designed in

other departments and hence cannot be influenced by the responsible design team, are

uncontrollable factors (e.g. the vehicle parameters in the application example in Chap-

ter 7). Padulo [55] distinguishes between uncertainty about the problem (undefined

scope of the problem, uncertainties introduced by simplification, etc.) and within the

problem (incomplete data, uncertain model structure, model parameters, etc.). Further

explanations and approaches for modeling uncertainties are given in [12].

To incorporate uncertainty evaluation into the development and hence avoid undesired

system behavior, uncertainties must be quantified. Therefore, uncertainties are normally

specified by particular probability distributions, e.g. Gaussian distribution, and statistical

values such as mean and standard deviation. Particularly epistemic uncertainties, where

mostly nothing is known about the distribution, are often modeled by uniform distribu-

tions, i.e. all values within a particular range are assumed to be of the same likelihood.

More advanced methods use possibilistic and fuzzy approaches, e.g. [48].

Many approaches based on numerical simulation have been proposed in literature to

take uncertainties into account, e.g. robust optimization methodologies [41]. Often the

approaches proposed can deal with a particular type of uncertainty only, e.g. model inaccu-

racies, tolerances in manufacturing, etc. However, uncertainties due to lack of knowledge,

for instance, require other approaches. This is discussed in the following.

Uncertainties due to lack of knowledge Particularly in early design stages only little is

known about the system that needs to be designed. In this case, lack of knowledgemeans

uncontrollable variations in the properties of the system, the subsystems or components

as well as in requirements on the system. In the following, two typical situations, which

arise during development of complex products in early stages, are mentioned.

Situation A: Designing components such that system requirements are satisfied, how-

ever, influencing components or subsystems are unknown or show uncontrollable variation;

see Figure 1.4 left. Possible reasons are:

1. Distributed development processes : The development of complex products, such as

vehicles, is normally split up into different groups; see Figure 1.5 left. Although com-

ponents and subsystems are highly coupled and as a whole influence the performance

of the system, they are often developed simultaneously; see concurrent engineering.

2. Changes throughout the development process : In early development stages, compo-

nents and subsystems are not designed in detail, and properties change while more

and more details are specified.
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Figure 1.4: Typical uncertainties due to lack of knowledge during the development of com-
plex products in early stages. Situation A (left): A component (e.g. anti-roll
bar) must be designed but properties of influencing components and subsys-
tems (e.g. body) are unknown or show uncontrollable variation. Situation
B (right): A component (e.g. anti-roll bar) must be designed but not all
requirements are known or not all requirements are considered.

For instance, consider the situation of developing the anti-roll bar of a vehicle, while

the mass of the vehicle is uncertain. Both, the anti-roll bar and the mass, have influence on

crucial performance measures in the field of safety and comfort and thus, the anti-roll bar

must be designed in accordance with the mass. Possible scenarios that yield uncertainties

in the mass of the vehicle are: Other subsystems, e.g. the body of the vehicle is designed

by other groups and is not specified yet (Situation A(1.)) or is not designed in detail and

hence is expected to change (Situation A(2.)).

Situation B: Designing properties of components such that system requirements are

satisfied, however, not all requirements are known or not all requirements can be consid-

ered ; see Figure 1.4 right. Possible reasons are:

1. Distributed development processes : One component or subsystem often influences

many properties of the system, but often not all requirements on the system are

considered when designing a component. The reason is that targets are often assigned

to different groups (e.g. driving dynamics vs. cost; see Figure 1.5 right) and each

group is responsible for the associated targets only. If a component or subsystem is

designed such that the system satisfies a particular requirement, it may fail regarding

other requirements, if they were not taken into account.

2. Limited possibility to assess particular properties : Particularly in an early design
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stage, hardware is not available and instead numerical simulation models are used.

Often simplified models are used in order to reduce the computational effort or

when there is insufficient information to build up detailed models of a system. This

often implies that some phenomena and hence requirements on properties cannot be

assessed in an early stage.

Situation A and Situation B mean to develop under uncertainty, which must be quan-

tified, if possible, and taken into account.

Group A Group B

anti-roll bar

• cost
• length
• stiffness
• …

body

• cost
• …
• performance measures 

for driving dynamics

vehicle

Group A Group B

anti-roll bar

• cost
• length
• stiffness
• …

• cost
• …

vehicle
• performance 

measures for driving 
dynamics

• …

• cost
• mass
• stiffness
• …

Figure 1.5: Two types of distributed development processes: Either each group is respon-
sible for a particular component or subsystem (left) (leads to Situation A:
influencing components or subsystems show uncontrollable variation) or each
group is responsible for a particular target (right) e.g. driving dynamics vs.
cost (leads to Situation B : not all requirements are considered at once).

Apriori information in development Even in early development stages, apriori informa-

tion is often available when designing products. Examples are the knowledge that some

design variables require more space for variation than others due to imprecise manufac-

turing processes or the knowledge that some components are expected to scatter in a

particular range. This knowledge is often based on the experience of experts. Another

example is the substitution of components due to product families. A product family is

often defined as a set of products sharing the same basic platform with the possibility to

create a portfolio of diverse products by substituting components and subsystems; see [66].

Therefore, a system must be designed such that the requirements on the system are satis-

fied even if some components or subsystems are substituted by others; see Figure 1.6. An

example from the automotive industry is a vehicle that is planned to be equipped with
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Figure 1.6: Properties of components (e.g. anti-roll bar) must be designed, such that
requirements on the complete vehicle are satisfied even if some components or
subsystems (e.g. combustion engines) are modified or substituted.

different engines (gasoline 3-cylinder, gasoline 4-cylinder, diesel 4-cylinder, etc.), however,

the remaining components and subsystems are the same.

Point-based vs. set-based design Singer et al. [68] summarize and compare the main

ideas of point-based and set-based approaches. Point-based design is characterized as

(in accordance with [46]): One single design is developed throughout the development

process and modified in each development step such that it satisfies more and more speci-

fications/requirements. In the case that it turns out that the design is not able to satisfy

all specifications, the process must be repeated; see Figure 1.7. The result is often a sub-

optimal design, as decisions made in an early design stage - based on the little information

available - may have prevented a better design.

Set-based design is characterized as: Many different design alternatives (sets of

permissible designs) are considered throughout the development process, and designs are

eliminated only if enough information is available, i.e. with increasing information the set

of designs narrows throughout the development process, and a single design is chosen at

the end.

Figure 1.8 illustrates the idea of set-based design for a design problem with two and

more design variables. The set of permissible designs shrinks during the development

process when more and more requirements are taken into account. Finally, a single design

is chosen e.g. one that can be manufactured with minimum cost. While the visualization

of the set of permissible designs is possible in two dimensions the visualization for more

than two dimensions needs special techniques, e.g. box-shaped Solution Spaces (intervals
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Figure 1.7: The example illustrates a design problem with two design variables, denoted
by x1, x2. Point-based design is characterized by many design changes and
hence iterations during the development process, necessary when more and
more requirements are taken into account.

for each design variable) or 2d-spaces (target regions for pairs of design variables). In

set-based design as many bad designs as possible are excluded in early development stages

in order to reduce the effort for unnecessary evaluations in subsequent stages; see [61].

Note that Solution Spaces are in accordance with set-based design: By considering as

many requirements as possible in early stages the size of the complete Solution Space

decreases. In contrast to the existing set-based design methods, however, the presented

methods here aim at keeping many permissible designs by maximizing a Solution Space

(e.g. a box-shaped Solution Space). The motivation is to capture as many good designs

of the complete Solution Space as possible and consequently, to provide maximum space

for variation due to lack of knowledge.

For examples of point-based and set-based design methodologies see Figure 1.9. While

classical optimization seeks one single design with the best (here minimum) performance

(e.g. energy consumption, noise, cost), robust design optimization seeks a design with

the best performance in conjunction with low variation in the performance for a given

probability distribution of the design variable values. Reliability design optimization also

considers a given probability distribution of the design variable values but seeks a design

with the best performance that satisfies the requirement (constraints) with a desired prob-

ability (= probability of failure, e.g. 10−9). The computation of Solution Spaces however,

provides a domain in the input space (= space of design variables) rather than a single

design, in which the system satisfies the requirements, given in terms of thresholds w.r.t.

performance measures.
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Figure 1.8: The idea of set-based design for a design problem with two design variables,
denoted by x1, x2. While more and more requirements are considered, e.g.
requirements on crash behavior, driving dynamics, body design, etc., the set
of design alternatives (white area) narrows throughout the development process
and a single design (black circle) is realized at the end. Whereas the set of
permissible designs can be illustrated easily for a two-dimensional problem,
high-dimensional problems require special techniques.

Robustness, reliability and flexibility Since there are many different definitions for ro-

bustness (e.g. robust design optimization [12]), reliability (e.g. reliability-based opti-

mization [25]) and flexibility (see [64]) in the framework of engineering system design,

the meaning of these terms in the context of Solution Spaces is explained briefly. Robust-

ness, reliability and flexibility are synonyms in this context, i.e. a robust/reliable system

yields flexibility, and a system which yields high flexibility is also robust and reliable.

Here, a system is called robust or reliable, if properties of subsystems or components may

change within a particular range, while the system still satisfies all requirements. The size

of the set of permissible designs can be seen as a measure for robustness and reliability

respectively, since the larger the set of permissible designs the lesser the probability of

the system to fail if some properties vary randomly, e.g. due to lack of knowledge. Or

in other words, the larger the size of the set of permissible designs, the more possibilities

for a decision maker from which he or she can select and hence the greater the flexibility.

Here, the term flexibility refers to the development process not to the system, this is in

accordance with Chen [18]: ”Our aim is to provide flexibility in the design process [...].
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Figure 1.9: Whereas classical optimization (top left), robust design optimization (top
right) and reliability design optimization (bottom left) yield one single design,
Solution Space approaches (bottom right) provide a set of designs.

By flexibility we mean that instead of looking for a single point solution in one disciplines

model, we look for a range of solutions that involve information passing between multiple

players (disciplines)”. For a discussion of the term flexibility in the context of decision

theory and engineering design see [64].

1.2 Aims of the work

Large Solution Spaces provide space for variation due to lack of knowledge, yield flexibility

for decision makers in subsequent design stages and consequently avoid time-consuming

and cost-intensive iterations in the development process.

The first aim of this thesis is to develop efficient methods for the computation of

box-shaped Solution Spaces. This is achieved by extending the direct approach of Fender

[28, 29], where the problem of seeking box-shaped Solution Spaces is solved analytically

or by applying standard optimization algorithms to general problems with application in

chassis design.

When considering industrial problems, box-shaped Solution Spaces are often ill-suited

to capture the entire set of good designs. Consequently, the second aim of this thesis is to
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seek alternatives to the established box-shaped Solution Spaces that are able to provide

more good designs and hence, provide more robustness and flexibility. An alternative

approach is introduced, where high-dimensional Solution Spaces are represented by a set

of independent two-dimensional Solution Spaces, called 2d-spaces rather than intervals.

Often, apriori knowledge of developers, e.g. a desired variation in influencing properties

due to product family design, is available when designing products. Consequently, the third

aim is to adapt the approaches such that this apriori knowledge can be taken into account.

Therefore, modifications of the underlying problem statements are proposed.

In summary the aims of this work are:

� Aim 1 : Providing alternative methods for efficient computation of box-shaped So-

lution Spaces.

� Aim 2 : Developing alternatives which are able to provide more good designs com-

pared to box-shaped Solution Spaces in order to increase the flexibility and robust-

ness w.r.t. lack of knowledge in development processes.

� Aim 3 : Adapting the approaches such that apriori knowledge can be considered in

order to make the method of Solution Spaces applicable to a wider range of typical

development questions in the field of chassis design.

1.3 Overview of the methods

In this thesis, problem statements for solving the problem of seeking Solution Spaces with

maximum size are presented. On the one hand, a stochastic algorithm to compute box-

shaped Solution Spaces, introduced in [78], is reviewed. On the other hand, problem

statements are presented that allow to solve the problem with standard optimization al-

gorithms. Additionally to the box-shaped Solution Spaces, the idea of a two-dimensional

decomposition of a high-dimensional Solution Space is introduced. To compute a So-

lution Space with maximum size, represented by two-dimensional Solution Spaces (2d-

spaces), two methodologies are provided. To solve the problems with maximum efficiency,

a gradient-based optimization algorithm is used whenever gradients of the problem can be

derived by analytic considerations. An overview is given in Figure 1.10.

1.4 Structure of the thesis

The following chapters begin by providing an excerpt of past as well as ongoing research

in related fields and continue by stating fundamentals about Solution Spaces. They offer

proposals on optimization problems for computing optimal Solution Spaces along with a



1.4 Structure of the thesis 15

stochastic Solution 
Space algorithm

standard 
optimization 
algorithms

box-
shaped 

Solution 
Spaces

stochastic Solution 
Space algorithm for 
box-shaped Solution 

Spaces

tracking vertexes of a 
box

decomposing Solution 
Space constraints

tracking vertexes of a 
polytope

2d-spaces

U1 V1

W2

W1

Figure 1.10: Overview of the method reviewed (U1 ) and the methods proposed in this the-
sis (V1, W1 and W2 ). The rows distinguish between the different types of
Solution Spaces, i.e. box-shaped and 2d-spaces and the columns between the
different methods for the computation of Solution Spaces, either by a stochas-
tic Solution Space algorithm (reviewed) or by applying standard optimization
algorithms.

comparison of the results for analytic examples. They conclude with an application of the

proposed methods to a real world chassis design problem.

In particular the chapters comprise the following contents:

� In Chapter 1 challenges arising in development processes for designing complex tech-

nical products are explained and state-of-the-art methodologies to cope with these

challenges are briefly described. Furthermore, fundamentals are explained, the aim

of the work is stated and an overview of the approaches proposed in this thesis is

provided.

� In Chapter 2 publications about set-based design are summarized and discussed,

followed by numerical approaches which allow to compute sets of designs. Finally,

the findings of applying a Solution Space approach to chassis design problems are

summarized and the research questions are derived.

� In Chapter 3 fundamentals of Solution Spaces and definitions are stated. Addition-
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ally, test problems are proposed, which are used for the analysis of the developed

approaches.

� In Chapter 4 an existing approach for the computation of box-shaped Solution

Spaces, based on a stochastic algorithm, is reviewed. The results of an analysis

of the numerical effort of the algorithm are briefly summarized. Furthermore, an

approach where only the vertex or particular vertexes of the box are considered in

order to find a box with maximum volume that satisfies all requirements is proposed.

The mathematical conditions for the validity of the approach are presented and nu-

merical results based on the test problems are provided and discussed. At the end of

the chapter, modifications of the introduced problem statement are presented, which

allows to provide an answer to a wider range of typical questions arising in chassis

design.

� In Chapter 5 a new approach to represent high-dimensional Solution Spaces is pre-

sented. Therefore, Solution Spaces are decomposed into a set of two-dimensional

Solution Spaces. Two ideas as well as the associated underlying optimization prob-

lems are stated and numerical results are provided and discussed.

� In Chapter 6 the underlying optimization problems of the proposed approaches are

analyzed and compared. Additionally, pros and cons of box-shaped Solution Spaces

compared to a two-dimensional decomposition are discussed and the advantage of

2d-spaces in terms of gain of Solution Space is shown by an analytic example.

� In Chapter 7 the approaches are applied to a chassis design example to demonstrate

the applicability by answering typical questions arising in chassis design in early

stages.

� Chapter 8 refers back to the aims of the thesis and critically reflects the results.

� Chapter 9 summarizes the results, points out the main conclusions of the work

presented and provides an outlook for future research.
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2 — State of the Art

In the previous chapter set-based design was introduced as a reasonable ap-

proach in development of complex products in order to enable efficient and ro-

bust development processes. In this chapter, existing set-based design method-

ologies are summarized and discussed. Furthermore, recent approaches for the

computation of sets of designs expressed as intervals are evaluated, followed

by publications about the application of box-shaped Solution Spaces for chas-

sis design. Finally, the necessity for new approaches, presented in this thesis,

is pointed out.
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2.1 Set-based design

The term set-based design was mainly formed by Ward [73] in 1989 and appeared in many

further publications in the following years, e.g. in [11,31,32,32,46,61,68–70,72,74,75]. Set-

based design in conjunction with concurrent engineering, i.e. simultaneous development

of subsystems or components by different teams, was discussed in [70, 74] and [51].

Nahm et al. [51] describe the principles of set-based concurrent engineering by estab-

lishing three phases: In phase one, each team defines permissible regions in the design

space, i.e. possible designs satisfying the individual requirements under consideration. In

phase two, each team incorporates the information of the other teams and a set of de-

signs that satisfies all requirements is sought. While more and more details are considered

throughout the development process further designs are excluded and a final design is

selected at the end (phase three); see Figure 1.8.

Rekuc et al. [61] point out that, for an efficient application of set-based design method-

ologies, it is crucial to eliminate as many designs as possible in early development stages.

The reason is that the evaluation of design alternatives gets more and more expensive in

terms of time and cost and reaches its maximum at the end of the development. The

authors propose an approach based on intervals to eliminate design alternatives even in

case of imprecise knowledge. An extension of this approach is presented in [56].

2.2 Numerical methods for set-based design

In the literature, several approaches, that seek intervals for each of the design variables

rather than a single design can be found. All these approaches have in common that

they map permissible ranges of the system’s outputs, i.e. requirements on performance

measures, onto permissible ranges of the system’s inputs, i.e. intervals for each of the

design variables. The Cartesian product of all intervals is an axis-parallel hypercube, in

the following called box, in the input space, i.e. space of design variables.

2.2.1 Box-shaped Solution Spaces

Zimmermann et al. [78] introduce a stochastic algorithm for the computation of box-shaped

Solution Spaces based on Monte Carlo sampling and Bayesian statistics. The algorithm

starts with a Monte Carlo sampling within a specified start box in the input space, i.e. the

space of design variables, followed by function evaluation of each sample point, verification

if the performance of each sample point is beyond the specified threshold, categorization

of the points as good or bad designs and application of a trim algorithm for elimination of

bad designs in the box. Subsequently, the box is expanded. The process is repeated such



2.2 Numerical methods for set-based design 19

that the box moves towards an area with more good designs. The algorithm can handle

any nonlinear, high-dimensional and noisy problem, however, it requires many function

evaluations; see also [36,37,45]. In [30] the algorithm is extended by additional constraints,

which allows to turn a bad design into a good design with a minimum number of design

variables to be modified. The stochastic algorithm is reviewed in Section 4.4.

Fender [28, 29] presents a new approach for the calculation of box-shaped Solution

Spaces particularly for front-crash structural design. The complete Solution Space is

described by a set of linear inequalities, which are derived from a crash model for an

USNCAP full frontal crash load case based on discrete masses and elements. Within

the permissible domain, the minimum interval width is maximized, which yields a linear

objective function. This problem can be solved directly by means of Lagrange multipliers.

In presence of objective functions of higher than second order or more complex systems,

for which the analytic computation becomes more and more difficult, the problem can be

solved by numerical optimization. The result is a box that strictly fulfills all requirements.

Fender mentions the idea of increasing the width of the intervals by moving one vertex of

the optimal box into the domain of bad designs, while the fraction of good designs remains

almost 100%. The latter is discussed in more detail in [36] and is related to the Vertex

Problem briefly described later.

2.2.2 Further interval approaches

Fung et al. [34] introduce an approach to compute a set of permissible intervals for design

variables using a support vector machine or any other hyperplane-based linear classifier.

This is achieved by solving a set of constrained optimization problems and motivated by

the fact that intervals are more intuitive than black-box classifiers. The performance of

the so-called rule extraction algorithm is demonstrated by a medical example. In order to

describe the feasible domain as completely as possible, many non-overlapping hypercubes

are generated. Although the problem solved is similar to that discussed in [28, 29] it is

different in the sense that it is only applicable in the presence of one linear inequality, i.e.

the hyperplane.

Beer et al. [10] propose a methodology for computing intervals for each design variable

relying on cluster analysis incorporating fuzziness. Therefore, sample points are generated

within the input space and cluster analysis is applied to those sample points that satisfy

all requirements on the system. Based on these clusters, i.e. discrete sets of sample

points, box-shaped domains (hypercubes) are computed by an iterative approach, which

successively reduces the size of the domain until the domain contains permissible points

only. Each box-shaped domain is assessed regarding particular criteria, e.g. robustness

and volume, and a decision maker can select in accordance with his or her preferences.

The approach relies on a single set of sample points within the input space and hence
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provides, on the one hand, reliable results even for non-connected permissible ranges. On

the other hand, in the presence of many dimensions, this yields inaccurate results or a

high computational effort due to the necessity of a large number of sample points. The

approach is demonstrated on a five-dimensional structural design problem in the field of

vehicle crashworthiness.

In order to deal with lack of information in early design stages, Götz et al. [35] propose

an algorithm similar to that published in [10]. Based on computed sets of permissi-

ble designs obtained by applying cluster analysis, hypercubes with maximum volume or

largest possible minimum interval width are sought. Therefore, different approaches are

explained, which differ in the number of degrees of freedom and thus, complexity. One

of the approaches, the interval approach, is based on the computation of sub-hypercubes.

The approach is demonstrated by an eight-dimensional example in the field of vehicle

crashworthiness.

To provide the maximum possible variability of input parameters such that the system

output is within a specified range, Rocco et al. [62] propose an algorithm where the

optimization problem of seeking a hypercube with maximum volume is solved by cellular

evolutionary strategies and the evaluation of the hypercube is accomplished by applying

interval arithmetic. It is shown that the approach is able to handle nonlinear problems with

concave permissible domains. However, applying interval arithmetic has two drawbacks.

Firstly, the output functions must be given in an analytic form and secondly, the output

may be overestimated, see [39], and as a consequence the obtained box does not have

maximum size, contains infeasible designs or no box is found.

Nahm et al. [51] propose a methodology for an implementation of set-based concurrent-

engineering, comprising a space representation method, a space mapping method and a

space narrowing method.

� Space representation method: The designer’s preferences on the inputs, i.e. design

variables, as well as on the outputs, i.e. performance measures of the system, are

specified by preference functions, similar to membership functions in the framework

of fuzzy sets. This allows to specify not only one single possible design space and

required performance space, i.e. design requirements, but a whole set of design

spaces and desired performance spaces and thus flexibility within the development

process.

� Space mapping method: To map intervals of design variables into the space of per-

formance measures, the Interval Propagation Theorem [31, 32], which is valid for

continuous functions, monotone with respect to each variable, is applied.

� Space narrowing method: By applying design of experiment techniques in an it-

erative procedure the initial design space is narrowed such that unacceptable sub-
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spaces are excluded. To select the subspace that fits best to the user’s preferences

and desired robustness the preference and robustness indices are introduced. The

approach is demonstrated by a crash problem with two design variables and five

performance measures. The relations between inputs and outputs are approximated

by a quadratic model, fitted to data obtained from FEM simulations.

2.3 Chassis design with box-shaped Solution Spaces

Note that in the framework of Solution Spaces the designs are solely characterized whether

they satisfy the requirements on the system, in the following called good designs, or not, in

the following called bad designs. Zimmermann et al. [78] point out the following advantages

of seeking intervals rather than a single design:

� Requirements on the system level, provided as lower or upper thresholds w.r.t. some

properties of the system, can be expressed as permissible intervals on the com-

ponent level, which enables to develop in accordance with the V-model approach.

The intervals on the component level are independent of each other and hence en-

able distributed development processes where different groups are able to develop

components in detail independently and simultaneously. Consider Figure 1.3: For

instance, a requirement on the roll angle while cornering is broken down on the tor-

sional stiffness of the anti-roll bar of the front axle and on the torsional stiffness of

the anti-roll bar of the rear axle. The geometrical properties such as the diameter

then can be selected for each component independently.

� Intervals provide space for uncertainties, in particular for uncertainties which arise

from lack of knowledge and hence cannot be described by a specified probability

distribution. The volume of the box as size measure of the set of good designs is

a measure for robustness and flexibility; see paragraph Robustness, reliability and

flexibility in Section 1.1.

� Intervals enable the visualization of a high-dimensional set of good designs in an

easily understandable manner.

Eichstetter et al. [24] apply the stochastic algorithm, introduced in [78], to compute

Solution Spaces for a design problem in chassis development. A box-shaped Solution Space

is sought for the parameters of a force-velocity characteristic of a damper, which encloses

those designs that satisfy the requirements on comfort and lateral dynamics. The authors

point out that the approach provides flexibility to consider further requirements on the

system in a later development phase and hence avoids time consuming loops. In [23],

Eichstetter et al. demonstrate the ability of this approach to design systems with optimal



22 Chapter 2 State of the Art

commonality, i.e. particular components are shared by diverse systems (= product family

design). Intervals for six components of 13 vehicles are computed separately and over-

lapping regions are determined by the proposed algorithm. Eichstetter [22] describes how

the method of Solution Spaces can be used in chassis design to improve the development

process in terms of handling complexity, involving aspects of robustness, reducing effort

and enabling a better system design. The computation of Solution Spaces requires objec-

tive system targets, i.e. performance measures in conjunction with thresholds. However,

in industry, system targets are often formulated as subjective targets. Therefore, the au-

thor describes a methodology to derive objective system targets on the basis of subjective

requirements. Furthermore, he explains the contribution of Solution Spaces to a robust

design process and introduces an algorithm for designing product families with Solution

Spaces. The stochastic algorithm is used to find box-shaped Solution Spaces for a real

world problem with ten design variables under consideration of six requirements on five

performance measures from driving dynamics. In addition to [78], Eichstetter mentions

the following advantages of Solution Spaces, particularly in chassis design:

� Further requirements can be considered in a later phase without causing a redesign of

the system by consideration of additional box-shaped Solution Spaces. For instance,

assume that all designs within a box satisfy particular requirements and all designs

within another box satisfy another set of requirements. The overlap of both boxes

are those designs that satisfy all requirements under consideration. This relates to

lack of knowledge uncertainties; see Situation B in Figure 1.4.

� A reliable design can be identified easily as the one in the center of the Solution

Space, since it is the design with the maximum distance to the edges of the box, i.e.

to those designs which might fail w.r.t. one of the requirements.

� The design in the center of the box allows maximum variability in case of uncertain

design variables.

� Robustness is enabled in the sense that the variation of an uncontrollable parameter,

expressed as lower and upper bound, can be considered by an additional interval,

which is set fix during optimization.

� A product family can be designed with improved commonality, by superposition of

several box-shaped Solution Spaces. Therefore, Solution Spaces are computed for

different vehicles individually and overlapping regions indicate components that can

be shared.

Further applications of the method are provided in [50] and [77]. In [50], intervals for

seven design variables of a vehicle steering design problem are computed and in [77], tires
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are designed in accordance with the axle of a vehicle. The results of the application of

box-shaped Solution Spaces in crash and chassis design are summarized in [80].

2.4 Research questions

The stochastic algorithm proposed in [78] to compute box-shaped Solution Spaces can

handle arbitrary design problems; however, in presence of high-dimensional problems it

requires many function evaluations. Graff et al. [37] state that the speed of convergence

of the algorithm proposed in [78] decreases with an increasing number of dimensions.

Fender [28, 29] shows that in case of a particular crash problem a different approach

applying standard optimization algorithms is able to compute box-shaped Solution Spaces

more efficiently. Other approaches to compute intervals, which are able to handle one single

linear constraint, see [34], or rely on the information of a single set of sample points within

the input space, see [10, 35] can be found in literature. For a sufficient exploration of the

input space, sample based approaches in general require many function evaluations, due

to curse of dimensionality; see [42].

Chassis design problems often comprise many design variables. Additionally, in chassis

design often a large number of box-shaped Solution Spaces must be computed, e.g. to

enable product family design; see [22, 23]. Furthermore, the performance measures are

generally determined by numerical black-box simulation, and hence analytic functions are

not available. Chassis design problems also comprise many requirements on performance

measures, and hence, multiple constraints must be considered. All this requires searching

for efficient methods, particularly applicable to chassis design problems.

Box-shaped Solution Spaces enable independent design work, since requirements on

the system are formulated as individual requirements on each of the design variables; see

V-model approach. Thus, components or subsystems can be developed in detail indepen-

dently. The drawback, however, is that box-shaped Solution Spaces are, due to geometrical

mismatch, generally not able to capture all good designs. In chassis design, often at least

two design variables are assigned to one component, and hence a full decoupling is not

necessary. Taking this into account, alternative techniques can be developed that spare to

decouple requirements for each of the design variables individually, while providing larger

sets of good designs.

In chassis design, often apriori information is available. For instance, particular design

variables need more space for variation, some design variables scatter in a particular range,

etc. For application in industry it is essential that numerical methods can take this into

account.

Based on these findings, the following questions arise and will be answered in this

thesis:
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� How can box-shaped Solution Spaces with application in chassis design be computed

more efficiently compared to existing approaches in terms of computational cost?

� How can the set of permissible designs be represented such that the loss of Solution

Space is minimum compared to box-shaped Solution Spaces, whereas components

can still be developed independently?

� How can the approach of Solution Spaces be extended to incorporate apriori knowl-

edge and hence make it applicable to further questions arising in development?

In this thesis, the approach introduced in [28,29] is extended to enable the efficient com-

putation of box-shaped Solution Spaces in chassis design by applying standard optimiza-

tion algorithms. Furthermore, the approach of 2d-spaces is proposed, which is different

compared to box-shaped Solution Spaces such that the set of good designs is represented

by two-dimensional target regions rather than intervals. Every 2d-space shows permissible

regions for a predefined pair of design variables. While the requirements on the design

variables are not fully decoupled anymore, this approach enables to provide more design

alternatives compared to intervals.
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3 — Solution Spaces

The (complete) Solution Space is the domain in the space of design variables

that involves all good designs, i.e. designs which satisfy all requirements under

consideration. In the previous chapter it was shown that in literature many

approaches exist that represent the set of good designs by intervals. In this

chapter fundamentals of Solution Spaces and definitions are provided. Finally,

analytic test problems, which are used in the subsequent chapters to analyze

and assess the developed approaches, are proposed.
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3.1 Low-dimensional representation of high-dimensional

Solution Spaces

From a mathematical perspective, the Solution Space1 is described by a set of inequali-

ties, i.e. requirements on e.g. performance measures of a system. In presence of high-

dimensional technical problems, the identification of the domain of good designs is chal-

lenging, however, an easily understandable description is beneficial in industrial develop-

ment processes. The question is how to represent the set of good designs such that designs

can be identified as good or bad in an easily understandable manner, such that the set

is represented as completely as possible and such that it is in accordance with design

methodologies, such as concurrent engineering. Figure 3.1 shows two possibilities to rep-

resent high-dimensional Solution Spaces: intervals and so called 2d-spaces. For intervals,

every design with all design variable values within their associated intervals is good. For

2d-spaces, every design with all design variable values within their associated 2d-spaces

(white areas in Figure 3.1, bottom right) is good.
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Figure 3.1: From a mathematical perspective, the Solution Space is described by a set of
inequalities. Consider the left side of the figure: Can you find the combinations
of design variable values, i.e. values of x1, x2, ..., which lead to a good design?
A low-dimensional representation of the Solution Space shows good designs in
an easy understandable manner, e.g. by intervals (top right) or by 2d-spaces
(white areas, bottom right).
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g(x1, x2)

space of design 
variables (input 
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critical value
(= threshold)
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hull of the complete 
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Figure 3.2: Here the set of good designs is specified by one single Solution Space constraint
function (sphere function: g (x) = x2

1 + x2
2), which depends on two design

variables x1 and x2 as well as the critical value gc as upper threshold. This
excludes designs in the input space, the remaining domain is the complete
Solution Space Ωc (right).

3.2 Definitions

3.2.1 The (complete) Solution Space

Definition 1. The permissible domain, here called complete Solution Space2 Ωc, is

the set of designs satisfying the Solution Space constraints g (x) ≤ gc:

Ωc = {x ∈ Ωds | g (x) ≤ gc} (3.1)

with the function values, written as a vector g (x) ∈ R
m and gc ∈ R

m as the vector of the

associated thresholds. m is the number of Solution Space constraints. A design is

represented by a vector x containing the design variables, i.e. x = (x1, x2, ..., xd)
T ∈ R

d

with d as the number of dimensions. Each design variable is constrained by a lower

and an upper bound, i.e. xlb
i ≤ xi ≤ xub

i , i = 1, ..., d with Ωds =
[
xlb
1 , x

ub
1

]× [
xlb
2 , x

ub
2

]×
...× [

xlb
d , x

ub
d

]
as the design space. A design within the design space is called good if all

the requirements g (x) ≤ gc are satisfied component-by-component, otherwise it is called

bad. In this thesis, any subset Ω ⊂ Ωc of the complete Solution Space is called Incomplete

Solution Space or a Solution Space. They are, e.g., obtained by considering additional

conditions such as partial or complete independency of variable selection. For example,

box-shaped Solution Spaces or 2d-spaces are such subsets of Ωc.

1Note that the term space might be misleading referring to the mathematical definition of a space,
however, here the term Solution Space is used in accordance with the literature.

2In the field of numerical optimization, the complete Solution Space is also called feasible space.
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Figure 3.4 shows different types of Solution Space constraints and the associated shape

of the complete Solution Space. Figure 4.6 shows an example, where the box-shaped

Solution Space is a subset of the complete Solution Space.

3.2.2 Parametric vs. oracle functions and surrogates

In the subsequent sections, two different types of functions, namely a parametric func-

tion (also called white-box) and an oracle function (also called black-box) are con-

sidered. The terms and the following definitions are in accordance with Boyd [13]. A

parametric function is given in analytic and closed form, i.e. can be expressed as a for-

mula or expression, with the design variables xi as the independent variables. In addition

to the variables, it involves some parameters, e.g. the coefficients of a linear equation. An

oracle function is characterized by the fact that nothing is known about the structure of

the function. In particular, solving the equations of motion of complex dynamic systems

is often not possible in closed form, i.e. the response of the system cannot be expressed

as a function of the design variables, but can only be obtained by numerical integration.

Hence, the response of the system can often only be obtained by evaluating an oracle

function.

In practice, however, it is often essential to know the structure of the problem. The

approaches proposed in this thesis make advantage of particular properties of functions

and therefore, a parametric function is preferred. Two common approaches to obtain

parametric functions are: Firstly, physical models are simplified, such that they can be

solved in closed form. Secondly, a design of experiment, see e.g. [5, 49], on the oracle

function is performed and parametric functions are derived by applying e.g. parametric

regression analysis, linear support vector machine, etc. Therefore, designs are generated

within a predefined design space (= sampling), are evaluated and one of the aforemen-

tioned approaches is applied. The number of sample points, which are necessary to train a

reliable model, increases significantly with the number of (sensitive/relevant) design vari-

ables. Other approaches, such as neural networks or nonlinear support vector machines,

generally yield a black-box function. Although, black-box models provide no insight into

the mathematical structure of the system, they are able to reduce the time for the evalu-

ation of f to obtain the system’s response z significantly. The result of these techniques

is an approximation of f , also known as mathematical surrogate model. The quality

of the approximation is assessed by particular measures, e.g. the correlation between the

output of the obtained approximation and the true system’s response. Other measures,

particularly for binary classification, are the fraction of sample points which are of cate-

gory A and classified as category A (= true positive), the fraction of sample points which

are of category B and classified as category B (= true negative), the fraction of sample

points which are of category B but are classified as category A (= false positive) and vice
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versa (= false negative). These four measures are often visualized in a confusion matrix;

see [57]. An example is provided in Appendix B.1. For surrogate models in the field of

machine learning; see e.g. [47].

3.2.3 The hull of a Solution Space

Normally, the complete Solution Space is surrounded by a hull (or boundary) that

separates good from bad designs3. This hull is expressed as a function of the design

variables in the (d−1)-dimensional subspace of the d-dimensional design space. In case of

one single performance function, the mathematical description of the hull can be obtained

by solving the equation f (x) = zc for one of the design variables xi. However, in general,

the hull cannot be described mathematically in closed form. A common approach is to

approximate the hull by applying techniques in the field of design of experiments, see

[5,49], in conjunction with classifiers, e.g. support vector machine [14]. Therefore, designs

are generated within a pre-defined design space (= sampling), are evaluated, categorized

(labeled) as good or bad w.r.t. certain criteria, and a classification approach is applied. In

dependence on the classifier approach, the hull is described by a black-box or a white-box

function. The number of sample points, necessary to train a reliable classifier, increases

significantly with the number of (sensitive/relevant) design variables. In [9] an adaptive

sampling scheme for generating reliable classifiers with relatively low effort, i.e. number of

sample points and hence function evaluations is introduced. In [43] different approaches to

describe a Solution Space (here it is called design space) such as convex hull method [17],

prediction error variance, support vector machine and support vector machine with a leave-

one-out optimization are analyzed and applied to experimental data. The quality of such

models can be assessed by a confusion matrix; see Section 3.2.2. As an illustrative example,

Figure 3.3 left shows the hull of the Solution Space derived by solving the equation x2
1+x2

2 =

zc for x1 and Figure 3.3 right shows the result of applying support vector machine to a set

of labeled data.

3.2.4 Size measure of a Solution Space

As defined in Equation (3.1), a Solution Space is a set of good designs. In mathematics,

the size of a set, containing a finite number of elements (or objects) is quantified by the

number of elements. For a set of infinite elements, however, this is not possible and

in mathematics the cardinal number (in German also ”Mächtigkeit”), defined by Georg

Ferdinand Ludwig Philipp Cantor, the inventor of set theory, was introduced. See [20,65].

For instance, the set of natural numbers N and real numbers R is infinite, while a subset

of N, e.g. {1, 2, 3}, with a cardinal number of three, is finite.

3The Solution Space is assumed to be connected.
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Figure 3.3: The mathematical description of the hull of a Solution Space (the Solution
Space constraint is given by x2

1 + x2
2 ≤ zc) is obtained by solving the equation

x2
1 + x2

2 = zc for x1 (left) and as a result of sampling in conjunction with a
classification approach (here support vector machine) (right).

Definition 2. In the context of Solution Spaces, the size measure of the set of good

designs is denoted by μ (Ω), where Ω contains, in the case of continuous design variable

values x ∈ R
d, an infinite number of designs. μ (Ω) is assumed as the volume in a

geometrical sense:

μ (Ω) =

∫
Ω

dΩ. (3.2)

Definition 2 is motivated by the fact that the volume correlates to the number of

enclosed designs, which in turn correlates to robustness and flexibility in development

processes.

3.2.5 Loss of Solution Space

The shape of the Solution Space depends on the Solution Space constraints. In order

to visualize a high-dimensional Solution Space with arbitrary shape, it is necessary to

approximate the Solution Space, e.g. by a Cartesian product of intervals (= box) and by

a Cartesian product of 2d-spaces respectively. However, in general these approximations

are, due to geometrical mismatch, subsets of the complete Solution Spaces only; see e.g.

Figure 4.6 for box-shaped Solution Spaces or Figure 5.1 for box-shaped Solution Spaces

and 2d-spaces.

Definition 3. Assume the size of a set of designs given by a size measure μ (Ω). Then the

loss of Solution Space can be quantified as the ratio of the size measure of the whole
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type of Solution Space 
constraint

linear

shape of complete 
Solution Space

convex, connectedA

B nonlinear, monotone, 
convex

convex, connected

C nonlinear, monotone, 
non-convex

non-convex, connected

D non-monotone, convex convex, connected

E non-monotone, non-
convex

non-convex, connected
or non-connected

example

Tilted-Hyperplane

Sphere

(-1) Sphere

Sphere

(-1) Sphere

Figure 3.4: Relation between the type of Solution Space constraint and the associated
shape of the complete Solution Space.

set of good designs, i.e. complete Solution Space μ (Ωc), to the size measure of a selected

subset μ (Ω), e.g. represented by the Cartesian product of intervals or by the Cartesian

product of 2d-spaces:

ψ =
μ (Ωc)

μ (Ω)
. (3.3)

Note that loss of Solution Space does not only occur in case of a representation of

the complete Solution Space by boxes or 2d-spaces but also by approximating the true

complete Solution Space by mathematical surrogates, see Section 3.2.2.

3.2.6 Linearity, monotonicity, convexity

Most of the problem statements in Chapter 4 and 5 require particular types of Solution

Space constraints and make advantage of the associated properties in terms of simplifica-

tions and consequently efficiency. The following mathematical statements are written for

a continuous function g : Rd �→ R.

Definition 4. The function g is linear w.r.t. the i-th design variable, if it satisfies the
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following condition:

g (x∼i)− g (x) = g (x̃∼i)− g (x̃)

∀x,x∼i, x̃, x̃∼i ∈ Ωds.
(3.4)

With x∼i = x + δxiei as an arbitrary design, where the i-th component is shifted by δxi.

ei is the unit vector with entry in the i-th component. x̃ is any other design than x.

Equation (3.4) states that the derivative w.r.t. a certain design variable is equal for all

x within the design space.

Remark. Boyd [13] mentions the following condition for linear functions:

g (αx+ βx̃) = αg (x) + βg (x̃)

∀x, x̃ ∈ Ωds

(3.5)

for all α, β ∈ R.

Definition 5. The function g is monotonically increasing w.r.t. the design variable xi if

it satisfies the following condition:

g (x∼i) ≥ g (x)

∀x,x∼i ∈ Ωds, δxi > 0
(3.6)

with x∼i = x + δxiei as an arbitrary design, where the i-th component is shifted by δxi.

ei is the unit vector with entry in the i-th component. A function g is monotonically

decreasing w.r.t. the design variable xi if it satisfies the following condition:

g (x∼i) ≤ g (x)

∀x,x∼i ∈ Ωds, δxi > 0.
(3.7)

Definition 5 is in accordance with [31].

Definition 6. The function g is convex if it satisfies the following inequality (in accordance

with [13]):

g (αx+ (1− α)x̃) ≤ αg (x) + (1− α)g (x̃)

∀x, x̃ ∈ Ωds, x 	= x̃
(3.8)

for all α ∈ R with α ∈ [0, 1] and with x̃ being any other design than x.
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Definition 7. The function g is convex w.r.t. the design variable xi if it satisfies the

following inequality:

g (αx+ (1− α)x∼i) ≤ αg (x) + (1− α)g (x∼i)

∀x,x∼i ∈ Ωds, δxi > 0
(3.9)

for all α ∈ R with α ∈ [0, 1] and with x∼i = x + δxiei as an arbitrary design, where the

i-th component is shifted by δxi. ei is the unit vector with entry in the i-th component.

Definition 8. Let the function g be twice differentiable and let H be the Hessian of g,

a symmetric matrix. The function is convex if the eigenvalues, i.e. the values of λ as

solution of the equation

det (H − λI) = 0 (3.10)

are greater or equal than zero. I is the identity matrix.

3.3 Deriving Solution Space constraints from

performance functions

One possibility to obtain the set of inequalities that describes the complete Solution Space,

is to derive g and gc directly from a set of m requirements on performance measures

z = f(x). z ∈ R
m is the vector of performance measures and f is the vector

of performance functions, each mapping the design variables x ∈ R
d to z. The re-

quirements are given either by lower and upper or by lower or upper bounds on the

performance measures zc, and hence the Solution Space constraints in standard form

g (x) ≤ gc can be derived. For example, for a requirement of the form f(x) ≤ zc, the

Solution Space constraint function is g = f and the associated threshold is gc = zc. For a

requirement of the form f(x) ≥ zc, the Solution Space constraint function is g = −f and

the threshold is gc = −zc.

Alternatively, either the performance functions or the hull of the complete Solution

Space can be approximated by applying techniques such as linear parametric regression,

see [33], or machine learning; see [47]. The result of these methods are mathematical

surrogates (also called response surface or meta-model); see Section 3.2.2. The motivation

is often a lower computational cost for evaluating the constraints or a desired insight into

the structure of the model.

In summary, the Solution Space constraints are derived:

� directly from the performance functions.

� from an approximation of the performance functions.
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� from a mathematical description of the hull of the Solution Space, e.g. obtained by

applying classifiers such as support vector machine or convex hull algorithms [17].

3.4 Assessing sets regarding Solution Space constraints

For various reasons, e.g. better visualization of a high-dimensional Solution Space, often

subsets of the complete Solution Space are sought, e.g. box-shaped Solution Spaces or 2d-

spaces. Ω is a subset of the complete Solution Space Ωc as long as it contains good designs

only. However, the assessment of the Solution Space constraints for all x within the set

for subsets with arbitrary shape is computationally very expensive, if not impossible. If

the constraints in (3.1) can be assessed by a finite number of function evaluations it is

called direct evaluation, otherwise indirect evaluation.

In the case of discrete design variable values, a direct evaluation is possible and the

number of designs to be evaluated depends on the number of elements of the subset; see

Section 3.2.4.

In the case of continuous design variable values, e.g. if x ∈ R
d, the Solution Space

contains an infinite number of designs, and hence a direct evaluation of a subset with

arbitrary shape is generally impossible.

However, if the subset is specified by a box or, more generally, by a polytope, it might

be sufficient to assess only the vertexes or particular vertexes of the polytope to ensure that

the enclosed set contains good designs only. In this thesis this is called vertex tracking

and a direct evaluation is possible even for cases where x is continuous. The validity of this

approach depends on the type of Solution Space constraints and is discussed particularly

for boxes in Chapter 4 and for polytopes in Chapter 5.

If a direct evaluation is impossible the satisfaction of the constraints can be assessed

by sampling in conjunction with statistical statements; see also Section 4.2.2.

3.5 Analytic test problems

In the following, analytic test problems, i.e. parametric functions, are provided to eval-

uate the proposed algorithms in the subsequent chapters. Multiple linear and nonlinear

problems have been selected, such that a wide range of types of real-world problems is

represented. The types are:

� Linear problems, i.e. the Solution Space constraints are linear functions (Tilted-

Hyperplane, Four-Tilted-Hyperplanes);

� Nonlinear monotone convex and non-convex problems, i.e. the Solution Space con-

straints are monotone convex and non-convex functions w.r.t. the design variables
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(Sphere);

� Nonlinear non-monotone convex and non-convex problems, i.e. the Solution Space

constraints are non-monotone but convex and non-convex functions w.r.t. the design

variables (Sphere);

An overview as well as additional information about the type of Solution Space constraint,

the name of the function used, the design space as well as the initial box for the numerical

evaluations are provided in Table 3.1. The shape of the Solution Spaces in two dimensions

is shown in Figure 3.5. The formula of the analytic solution of the optimal size measure

μ (Ω) for each test problem and for each approach, listed in Figure 1.10, is provided in Table

3.2. The formulas are derived by analytic calculus. For the derivation for the size measure

of an optimal box for test problem A1 see [36], for the derivation for the size measure

of an optimal decomposition into 2d-spaces for test problem A1 see [26]. In approach

W1, see Section 5.4, the Solution Space is represented by orthogonal polygons with a

specified number of vertexes, denoted by p. Here, the formula for the case where the two-

dimensional polygons have four and six vertexes, respectively is provided. Additionally,

the formula for the optimal size measure of the outer box, see Section 4.2.1, is shown.

Table 3.1: Categorization of the test problems considered as well as the associated design
spaces and initial boxes for the numerical computation of optimal Solution
Spaces.

type of Solution Space constraint function name design space initial box

A1 linear Tilted-Hyperplane [0, 1]d [0.01, 0.11]d

A2 linear Four-Tilted-

Hyperplanes

[0, 1]d [0.45, 0.55]d

B1 nonlinear, monotone, convex Sphere [0, 1]d [0.01, 0.11]d

C1 nonlinear, monotone, non-convex Sphere [0, 1]d [0.01, 0.11]d

D1 non-monotone, convex Sphere [0, 1]d [0.45, 0.55]d

E1 non-monotone, non-convex Sphere [0, 1]d [0.01, 0.11]d

Tilted-Hyperplane The Tilted-Hyperplane problem (A1 ) is specified by the following

inequality

d∑
i=1

xi ≤ d

2

0 ≤ xi ≤ 1, i = 1, ..., d.

(3.11)
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A1 A2 B1 C1 D1 E1 E2
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Figure 3.5: Overview of the test problems considered.

Four-Tilted-Hyperplanes The Tilted-Hyperplane problem is modified such that it com-

prises four constraints (A2 ):

d∑
i=1

xi ≤ 3

4
d

−
d∑

i=1

xi ≤ −1

4
d

−
d/2∑
i=1

x2i−1 +

d/2∑
i=1

x2i ≤ 1

4
d

d/2∑
i=1

x2i−1 −
d/2∑
i=1

x2i ≤ 1

4
d

0 ≤ xi ≤ 1, i = 1, ..., d.

(3.12)

Note that the Four-Tilted-Hyperplanes problem is valid for an even number of dimensions

only.

Sphere The Sphere problem (B1 ) is specified by the following inequality

d∑
i=1

x2
i ≤

d

4

0 ≤ xi ≤ 1, i = 1, ..., d.

(3.13)

For (C1 ) the problem reads

−
d∑

i=1

x2
i + 2

d∑
i=1

xi ≤ 3

4
d

0 ≤ xi ≤ 1, i = 1, ..., d.

(3.14)
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For (D1 ) the problem reads

d∑
i=1

x2
i −

d∑
i=1

xi ≤ − 3

16
d

0 ≤ xi ≤ 1, i = 1, ..., d.

(3.15)

For (E1 ) the problem reads

−
d∑

i=1

x2
i +

d∑
i=1

xi ≤ 3

16
d

0 ≤ xi ≤ 1, i = 1, ..., d.

(3.16)

Table 3.2: Analytic solutions of the optimal, i.e. maximum, size measures for the test
problems A1, A2, B1, C1, D1 and E1. The Solution Space is represented
by intervals (approach U1 and V1 ) and 2d-spaces (approach W1 and W2 ),
respectively. For approach W1 the Solution Space is represented by orthogonal
two-dimensional polygons with four and six vertexes, respectively. Additionally,
the size measure of the optimal outer box is provided. Note that the number
of dimensions d is assumed to be even.

A1 A2 B1 C1 D1 E1

U1, V1 0.5d 0.5d 0.5d 0.5d 0.5d -

W1, p = 4 0.5d/2 0.5d/2
(√

2
4

)d/2
-

(
1
4

)d/2
-

W1, p = 6 0.5d/2 0.5d/2
(√

2−√
2

2

)d/2

-
(
3
√
3

16

)d/2
-

W2 0.5d/2 0.5d/2
(
π
8

)d/2 (
1− π

8

)d/2 (
π
8

)d/2 (
1− π

8

)d/2
outer box 1 1

(√
d
2

)d
* 1

(√
d
2

)d
* -

* ∈ [0, 1]
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4 — Box-shaped Solution Spaces

Box-shaped Solution Spaces represent a high-dimensional Solution Space by

intervals for each design variable. From a geometrical perspective, each in-

terval is an edge of the box. In order to enclose as many good designs as

possible, the volume of the box must be maximized. In this chapter math-

ematical formulations of the underlying optimization problem are stated, a

stochastic approach to compute box-shaped Solution Spaces is reviewed, an

approach in which the box is assessed by tracking the vertexes of the box is

proposed and numerical results based on the analytic test problems as well as

modifications of the introduced problem statements are presented.
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4.1 Intervals as representation of high-dimensional

Solution Spaces

One possibility to represent a high-dimensional Solution Space with arbitrary shape is to

seek a box within the design space that contains good designs only. Each edge of the

box is an interval associated with a particular design variable that provides an intuitive

description of the high-dimensional problem: If each design variable value of a design is

within its associated interval, all the system requirements are satisfied. From a practical

perspective, two main advantages are:

� Decision makers get an overview of design alternatives easily.

� If there is a decision maker for each design variable separately, the decisions can be

made independently from each other.

Further advantages of box-shaped Solution Spaces are mentioned in Section 2.3. In order

to represent the entire Solution Space by the box as completely as possible, the size of the

box must be maximized.

4.2 General problem statement

The problem of seeking a box with maximum box size measure μ (Ω) that contains good

designs only is written as follows (in accordance with [78]):

maximize
I1,I2,...,Id

μ (Ω)

s.t. g (x) ≤ gc ∀ x ∈ Ω ⊆ Ωds

(4.1)

with the box size measure μ (Ω) defined as

μ (Ω) =
d∏

i=1

μ (Ii) =
d∏

i=1

(
xu
i − xl

i

)
. (4.2)

The box Ω is the Cartesian product of intervals denoted by Ii, i.e. Ω = I1× I2× ...× Id =[
xl
1, x

u
1

]× [
xl
2, x

u
2

]× ...× [
xl
d, x

u
d

]
. xl

i and xu
i denote the lower and upper boundary of

an interval, associated with the i-th design variable. The box size measure is the volume

of the box as motivated in Section 3.2.4. The constraints of the optimization problem

(4.1) are equivalent to (3.1), i.e. all Solution Space constraints must be satisfied by all

designs within the box.
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4.2.1 Concept of inner and outer box

Definition 9. The inner box is defined as a box, that contains good designs only and hence

lies within the hull of the complete Solution Space. Therefore, the inner box is a subset of

the complete Solution Space; see also Section 3.2.1:

Ωin =
[
xl
1, x

u
1

]× [
xl
2, x

u
2

]× ...× [
xl
d, x

u
d

] ⊆ Ωc

with g (x) ≤ gc ∀ x ∈ Ωin.
(4.3)

The statement for an inner box is: Designs within that box are strictly good and

designs outside of that box may be good.

Definition 10. The outer box, see also [62], is defined as a box, where all designs outside

that box are bad:

Ωout =
[
xl
1, x

u
1

]× [
xl
2, x

u
2

]× ...× [
xl
d, x

u
d

] ⊆ Ωds

with ∃j ∈ {1, ...,m} : gj (x) > gc,j ∀ x /∈ Ωout.
(4.4)

The statement for an outer box is: Designs outside of that box are strictly bad and

designs within that box may be bad.

On the left side of Figure 4.1, an inner box, satisfying condition (4.3) as well as an

outer box satisfying condition (4.4) are shown. On the right side, the maximum inner box

as well as the minimum outer box, i.e. with maximum and minimum box size measure,

are shown.

While the statement about an inner box is strong in terms of feasibility and weak in

terms of infeasibility (one may find more solutions outside that box), the statement about

the outer box is strong in terms of infeasibility (one does not find any solution outside

that box). Often the minimum outer box is of interest, since the design space can be

decreased to that box and hence the space for searching for a good design or an inner box

decreases, and consequently the computational effort. The problem statement for seeking

the minimum outer box reads

minimize
I1,I2,...,Id

μ (Ω)

s.t. ∃j ∈ {1, ...,m} : gj (x) > gc,j ∀ x ∈ Ωds \ Ω.
(4.5)

The constraint of the optimization problem is satisfied, if all designs outside the box fail

w.r.t. one or more Solution Space constraints, i.e. if all designs outside the box are bad.

4.2.2 Assessing box-shaped sets regarding Solution Space constraints

The constraints of optimization problem (4.1) and the constraints involved in the defini-

tions of the inner and outer box (4.3) and (4.4), namely g (x) ≤ gc, for a set of designs
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outer box
minimum 
outer box

x1

x2

inner box

x1

x2

maximum 
inner box

Figure 4.1: An inner and an outer box (left) as well as the maximum inner box and the
minimum outer box (right).

can be evaluated either in a direct or an indirect manner; see Section 3.4.

For a direct evaluation in the case of continuous design variable values, the approach

of vertex tracking was introduced in Section 3.4. Note that tracking vertexes of a box

is related to interval arithmetic [3] or interval propagation in the framework of set-based

design [31,32], i.e. only (particular) bounds of input intervals (= vertexes of a hyperbox)

are considered to determine the range of an output. In the framework of box-shaped

Solution Spaces, the minimum and maximum values of an output for all designs within

the box is of interest. The computation with intervals rather than real numbers is based on

a set of axioms. In the following, the basic operations of interval arithmetic for addition,

subtraction, multiplication and division for two real compact intervals I1 =
[
xl
1, x

u
1

]
and

I2 =
[
xl
2, x

u
2

]
are provided (in accordance with [62]).

I1 + I2 =
[
xl
1 + xl

2, x
u
1 + xu

2

]
I1 − I2 =

[
xl
1 − xu

2, x
u
1 − xl

2

]
I1I2 =

[
min

(
xl
1x

l
2, x

l
1x

u
2, x

u
1x

l
2, x

u
1x

u
2

)
,max

(
xl
1x

l
2, x

l
1x

u
2, x

u
1x

l
2, x

u
1x

u
2

)]
I1
I2

=
[
xl
1, x

u
1

] [
1
xu
2
, 1
xl
2

]
, 0 /∈ I2.

(4.6)

However, if a variable occurs more than once in the output function (e.g. f(x) = x(1−x)−1

with x = [2, 3], example taken from [3]), the output range may be overestimated (in the ex-

ample mentioned above [−3,−1] instead of [−2,−1.5]). In the literature, many approaches

are proposed to reduce or avoid overestimation, see e.g. [3], particularly for monotone

functions see [31, 32]. Note that applying interval arithmetic requires the functions to be

parametric functions.

In order to provide a mathematical condition for the validity of the vertex tracking

approach for box-shaped Solution Spaces, the one-dimensional sublevel set, see also
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x1

B

x1

x2

x1

x2

A C

x2

Figure 4.2: Direct evaluation of a box-shaped Solution Space by (A) assessing the finite
number of designs inside the box (in case of discrete design variable values),
(B) assessing particular vertexes of the box (in case of monotone Solution
Space constraints) and (C) assessing all vertexes of the box (in case of convex
Solution Spaces).

[13], is introduced. The sublevel set of the i-th design variable is the one-dimensional set

of good designs parallel to the associated axis of the design space, i.e. a section of the

high-dimensional Solution Space; see Figure 4.5.

Definition 11. The sublevel set Sgc,i (g (x)) of the i-th design variable xi for given Solution

Space constraints g (x) ≤ gc and a design x is defined as

Sgc,i (g (x)) = {xi ∈
[
xlb
i , x

ub
i

] | g (x∼i) ≤ gc}
i = 1, ..., d.

(4.7)

With x∼i = x+
(
xi − eT

i x
)
ei as an arbitrary design, where the i-th component is replaced

by xi. ei is the unit vector with entry in the i-th component.

Theorem 1. Let all sublevel sets as defined in (4.7) be convex:

Sgc,i (g (x)) is convex ∀x ∈ Ωc

∀i = 1, ..., d.
(4.8)

Then, in order to avoid regions of bad designs within a box, it is sufficient to track the

vertexes of the box.

Proof. Let Ω =
[
xl
1, x

u
1

] × [
xl
2, x

u
2

] × ... × [
xl
d, x

u
d

]
be a hyperbox and let C0 = {xl

1, x
u
1} ×

{xl
2, x

u
2}× ...×{xl

d, x
u
d} be the vertexes of the box satisfying the Solution Space constraints

g (x) ≤ gc. Furthermore, let all sublevel sets Sgc,i (g (x)), as defined in (4.7), be convex.

It must be shown that for arbitrary x̃ ∈ Ω with x̃i = αix
l
i + (1− αi)x

u
i , αi ∈ [0, 1], i =

1, ..., d it holds g (x̃) ≤ gc.
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For x ∈ C0, it is x
l
∼1 = x +

(
xl
1 − eT

1 x
)
e1 ∈ C0, x

u
∼1 = x +

(
xu
1 − eT

1 x
)
e1 ∈ C0 and

xl
1, x

u
1 ∈ Sgc,1 (g (x)). As x̃1 = α1x

l
1 + (1− α1)x

u
1, α1 ∈ [0, 1] we get x̃∼1 ∈ Sgc,1 (g (x)) and

therefore, the inequality g (x̃∼1) ≤ gc is valid for x̃∼1 = x+
(
x̃1 − eT

1 x
)
e1. Thus, the set

C1 = {x̃∼1 | x̃∼1 = x +
(
x̃1 − eT

1 x
)
e1,x ∈ C0}, where any element satisfies the Solution

Space constraints, can be defined.

Recursively, for x ∈ Ci−1, i = 2, ..., d it is xl
∼i = x+

(
xl
i − eT

i x
)
ei ∈ Ci−1, x

u
∼i = x+(

xu
i − eT

i x
)
ei ∈ Ci−1 and xl

i, x
u
i ∈ Sgc,i (g (x)). Also, with x̃∼i ∈ Sgc,i (g (x)), g (x̃∼i) ≤ gc

is valid for x̃∼i = x+
(
x̃i − eT

i x
)
ei and the set Ci = {x̃∼i | x̃∼i = x+

(
x̃i − eT

i x
)
ei,x ∈

Ci−1} satisfying the Solution Space constraints is defined. After a total of d iterations, we

get x̃ as the only element of Cd with g (x̃) ≤ gc.

Remark. Since the intersection of convex sets yields a convex set, Equation (4.8) can be

assessed for each Solution Space constraint function gj, j = 1, ...,m separately. However,

consider that the intersection of non-convex sets may yield a convex set. This implies

that even if condition (4.8) fails w.r.t. one or more Solution Space constraint functions it

may be satisfied, if all constraint functions are considered at once. Hence, condition (4.8)

assessed for each constraint function separately is sufficient but not necessary, while it is

sufficient and necessary if all constraint functions are considered at once.

Theorem 2. Let g : Rd → R be a monotone function w.r.t. all design variables, i.e.

equations (3.6) and (3.7) respectively are satisfied. Then Sgc,i (g (x)) is convex for all

x ∈ Ωc and w.r.t. all design variables. If this applies for all Solution Space constraint

functions, condition (4.8) is satisfied.

Proof. Let g : Rd → R be a monotone function and let x∼i be a design x with variation by

δxi in the i-th design variable, i.e. x∼i = x+ δxiei with δxi ≥ 0 and ei as the unit vector

with entry in the i-th component. With xi, xi+ δxi ∈ Sgc,i (g (x)) it follows g (x) ≤ gc and

g (x∼i) ≤ gc. Due to the properties of monotonicity, stated in Equation (3.6) and (3.7),

for monotone increasing functions it holds g (αx+ (1− α)x∼i) ∈ [g (x) , g (x∼i)] and for

monotone decreasing functions it holds g (αx+ (1− α)x∼i) ∈ [g (x∼i) , g (x)]. Hence, it

follows g (αx+ (1− α)x∼i) ≤ gc ∀α ∈ [0, 1], i.e. αx+ (1− α)x∼i ∈ Sgc,i (g (x)).

Theorem 3. Let g : Rd → R be a convex function w.r.t. all design variables, i.e. Equation

(3.9) is satisfied. Then Sgc,i (g (x)) is convex for all x ∈ Ωc and w.r.t. all design variables.

If this applies for all Solution Space constraint functions, condition (4.8) is satisfied.

Proof. Let g : Rd → R be a convex function w.r.t. all design variables and let x∼i be a

design x with variation by δxi in the i-th design variable, i.e. x∼i = x+δxiei with δxi ≥ 0

and ei as the unit vector with entry in the i-th component. With xi, xi+δxi ∈ Sgc,i (g (x)) it

follows g (x) ≤ gc and g (x∼i) ≤ gc. Due to the properties of convexity, stated in Equation
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(3.9), i.e. g (αx+ (1− α)x∼i) ≤ αg (x) + (1 − α)g (x∼i) and with g (x) , g (x∼i) ≤ gc it

follows g (αx+ (1− α)x∼i) ≤ gc ∀α ∈ [0, 1] and hence, αx+ (1− α)x∼i ∈ Sgc,i (g (x)). A

proof is also given in [13].

x1

x2

x3

1 2

3

5 6

78

1112 14

34

9 1013 09

2 1

Figure 4.3: Visualization of the proof for Theorem 1 for three dimensions with the set C0 =
{1, 2, ..., 8} (circles), C1 = {9, 10, 11, 12} (triangles), C2 = {13, 14} (squares)
and C3 = {x̃} (star).

Figure 4.5 shows sublevel sets for different types of Solution Space constraint func-

tions. Furthermore, the obtained interval of the i-th design variable by applying vertex

tracking is shown. For vertex tracking one bound or both bounds of the interval of the

i-th design variable is/are assessed only, to ensure that all designs in between are good.

For monotone functions (Type A, Type B and Type C, see Figure 3.4) only the lower or

upper boundary of each design variable must be assessed (top left). For non-monotone but

convex functions (Type D) the lower and upper boundaries must be assessed (top right).

Hence, for monotone and non-monotone but convex functions, it is sufficient to track the

vertexes of the box to ensure that the box contains good designs only; see also Theorem

2 and Theorem 3. For functions that are neither monotone nor convex (Type E ), it is

generally not possible to evaluate the box by vertex tracking (bottom left: The obtained

interval with both bounds satisfying the Solution Space constraint contains bad designs).

However, for certain cases, vertex tracking is also possible for Solution Space constraints

of Type E (bottom right).

Figure 4.2 (A) depicts the case where the design variable values are discrete and a direct

evaluation is possible. The number of designs to be evaluated depends on the number of

dimensions and the number of possible design variable values for each design variable (φi)

within the box. The number of designs to be evaluated is
∏d

i=1 φi. Figure 4.2 (B) shows
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condition (4.8) is 
satisfied; see 
Theorem 2

A B

linear or monotone 
Solution Space 

constraint functions

C D

non-monotone, non-convex
Solution Space constraint functions 

E

non-monotone, convex 
Solution Space 

constraint functions

apply vertex tracking 
(one vertex per 
Solution Space 

constraint)

condition (4.8) is 
satisfied; see 
Theorem 3

apply vertex tracking 
(all vertexes)

if condition (4.8) is 
satisfied

apply vertex tracking 
(all vertexes)

if condition (4.8) is not 
satisfied

evaluate box by e.g. 
sampling 

Figure 4.4: Overview of the dependencies between the types of Solution Space constraints
and the validity of vertex tracking.

the case where the Solution Space constraint function g is monotone. In this case, either

the lower or the upper boundary of each interval must be checked. Hence, only particular

vertexes of the box must be evaluated and the number of vertexes to be assessed equals

the number of constraints m. How to find these vertexes is explained in Section 4.5 and

4.6. Figure 4.2 (C) shows the case where the complete Solution Space is convex. It is

sufficient to check the vertexes of the box, which are all possible combinations of lower

and upper boundaries of the design variables {xl
1, x

u
1}×{xl

2, x
u
2}× ...×{xl

d, x
u
d}, and hence

the number of vertexes is 2d. However, in presence of high dimensions, (A) and (C) may

not be practicable due to the high number of designs to be evaluated, while in case (B)

the number of evaluations depends only linearly on the number of constraints (which in

industrial examples considered here typically does not exceed 100). If g contains neither

monotone nor convex (Type E, see Figure 3.4) functions, no general statement about the

validity of vertex tracking is possible and condition (4.8) must be checked for the problem

on hand. In dependence on g and gc, vertex tracking might be possible, compare Figure

4.5 bottom left and bottom right. An overview is given in Figure 4.4.

If a direct evaluation is impossible, the satisfaction of the constraints for all designs

within the box can be assessed by statistics. Zimmermann et al. [78] propose the re-

laxed problem statement by reformulating the constraints of problem (4.1) as a probability

statement, which is assessed by Monte Carlo sampling and Bayesian statistics; see Section

4.4.
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critical valuecritical valuecritical value

convex sublevel set

critical value

monotone Solution Space 
constraint function

non-monotone and non-convex Solution Space 
constraint function

non-monotone and non-convex Solution Space 
constraint function

critical value

non-monotone but convex Solution Space 
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tracked boundaries
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boundary or the upper and lower boundaries )

convex sublevel set
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S l
B

i Si
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Figure 4.5: The examples show the one-dimensional sublevel sets for different types of
Solution Space constraint functions g along the i-th design variable. Addition-
ally, the interval is shown, that is obtained by applying vertex tracking, i.e.
assessing one or both bounds of the interval only.

4.3 Loss of Solution Space

In the following, the chassis design problem introduced in Chapter 7 is considered with

ten of the twelve design variables and vehicle parameters respectively, assuming a con-

stant value. Hence, it is possible to visualize the complete Solution Space for two design

variables, e.g. the stiffness of the anti-roll bar of the front and the rear axle. Figure 4.6

depicts the complete Solution Space as white area together with the optimal box, i.e. with

maximum size measure, under consideration of the vehicle requirements listed in Table

7.2. The shaded areas are those combinations of design variable values that lead to a

system that fails regarding one or more requirements. All requirements depend linearly on

both of the design variables, and hence diagonal boundaries between good and bad designs

within the input space occur. Figure 4.6 shows, that the optimal box is able to capture a

small portion of the overall set of good designs only, and hence the loss of Solution Space
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is large.
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Figure 4.6: Complete Solution Space (white area) and box-shaped Solution Space (blue
box) for the design variables xca,f and xca,r (all other variables constant).

4.4 Review: Stochastic algorithm

In this section, the algorithm presented in Zimmermann et al. [78] is briefly reviewed and

the results of Graff [36], where the algorithm is analyzed in detail, are summarized.

4.4.1 Problem statement

Zimmermann et al. point out that the evaluation of the constraints of problem statement

(4.1) is impossible for general problems in case of a continuous input space, which was also

discussed in Section 4.2.2. Therefore, the relaxed problem statement is introduced, which

reads
maximize
I1,I2,...,Id

μ (Ω)

s.t. P
(
ãl < ã < ãu | Ñg, Ñ

)
> 1− αc

Ω ⊆ Ωds

(4.9)

with μ (Ω) as defined in Equation (4.2). ã is the true fraction of good designs in the box

Ω and ãl and ãu are the lower and upper bounds of ã. 1 − αc is the critical confidence

level for the probability denoted by P that ã is within the confidence interval [ãl, ãu]. Ñg

is the number of good designs out of Ñ sample points. By means of Bayesian statistics,
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it is shown that if 100 out of 100 randomly distributed sample points are good designs

the probability of ã lying between 97% and 100% is 95%, independently of the number of

dimensions; see [78] and [45].

4.4.2 Algorithm

The algorithm has two main phases, the Exploration Phase and the Consolidation Phase.

In the Exploration Phase the box moves towards a region of good designs, where the box

size measure is maximum, while in the Consolidation Phase the fraction of good designs

within the box is increased in order to satisfy the constraint of problem statement (4.9).

The procedure is as follows:

1. Identify a good design by classical optimization; see Figure 1.9.

2. Construct an initial box around the good design with zero volume.

3. Extend the box into all dimensions.

4. Create uniformly distributed sample points within the box (= Monte Carlo sam-

pling), evaluate each point w.r.t. its performance (= regarding its Solution Space

constraints) and categorize each point as good or bad.

5. Apply the Trim Algorithm: Within three nested loops over all good designs (outer

loop), over all bad designs and over all dimensions (inner loop), the boundaries of

the box are moved (details are not mentioned) such that a box with good designs

only (= solution box) is obtained. For each outer loop, a candidate solution box is

constructed, and hence the number of obtained boxes is equal to the number of good

designs. The box with maximum size measure is selected for the next step.

6. If the size measure changes compared to the size measures of the last iterations,

repeat steps (3) to (6), otherwise proceed with the next step.

7. Repeat step (4).

8. If the probability in problem statement (4.9) is beyond a specified threshold, repeat

step (5), (4) and (8), otherwise stop.

The algorithm is extended in [30] by setting additional constraints in order to include

particular designs in the solution box.

4.4.3 Properties of the algorithm

The numerical complexity of creating a Monte Carlo sample and computing the perfor-

mance for each sample point is O(Ñ). For the Trim Algorithm it is O(Ñ2d).
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In [36], the results of 100 runs with the stochastic algorithm with 50 and 100 sam-

ple points are compared to the analytically calculated size measure of the optimal box.

The algorithm stops in the Consolidation Phase, if 100 out of 100 sample points in a

specified number of subsequent iterations are good designs. For multiple test problems

(two-dimensional Rosenbrock (nonlinear), two- and three-dimensional convex polytope

(linear), d-dimensional Hyperbox and Tilted-Hyperplane with d = 2, 10, 20, ..., 100 (lin-

ear)), the standard deviations of the numerical results as well as the absolute and relative

errors between the analytic solutions and the means of the numerical solutions are consid-

ered. The main conclusions are:

� The standard deviation as well as the error decreases with an increasing number of

sample points.

� For the two- and three-dimensional examples, the mean of the numerical solutions

approximately agrees with the analytic solutions.

� In the case where the boundaries of the Solution Space constraints are parallel to the

edges of the box (Hyperbox problem; see Figure 4.7), the error is low even in high

dimensions. Note that contrary to the case where the boundaries are not parallel

to the edges of the box the volume of the box is lower compared to the analytic

solution; see Figure 4.8.

� In the case where the boundaries of the Solution Space constraints are not parallel

to the edges of the box (Tilted-Hyperplane problem), the error strongly increases

with an increasing number of dimensions, while the fraction of good designs within

the box is still close to 100%. This effect is called Vertex Problem and is summarized

below.

� The number of necessary iterations for satisfying the constraint of optimization prob-

lem (4.9) in the Consolidation Phase increases when the number of dimensions in-

creases. In the case where the boundaries of the Solution Space constraints are

parallel to the edges of the box, the algorithm converges faster than in cases where

the boundaries of the Solution Space constraints are not parallel to the edges of the

box.

Figure 4.7 depicts the convergence of the algorithm within the Consolidation Phase de-

pending on the number of dimensions. As mentioned above, the algorithm terminates if

all sample points in a specified number of subsequent iterations are good, here 100 out of

100, i.e. Ñg/Ñ = 1. On the left side, the boundaries of the Solution Space are parallel to

the edges of the box (Hyperbox problem), while they are not parallel in the example on

the right side (Tilted-Hyperplane problem).
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Figure 4.7: The convergence behavior of the stochastic Solution Space algorithm for the
Hyperbox and Tilted-Hyperplane problem with 100 sample points. Bottom:
The graphs, taken from [36], show the ratio of good designs out of 100 sample
points within the box in dependence on the iteration steps for the Hyperbox
problem (left) and for the Tilted-Hyperplane problem (right) (Consolidation
Phase only).

Vertex Problem The Vertex Problem (in [36] it’s called Corner Problem) appears for

problems where the edges of the box are not parallel to the boundaries of the Solution

Space constraints and depends on both the angle between the edges and the boundary as

well as on the shape of the boundaries. The effect is shown in [36] by computing the ratio

of the average of the size measures of the solution boxes obtained by 100 runs with the

stochastic algorithm to the size measure of the analytic result. For instance, it is shown

that for the Tilted-Hyperplane problem the ratio increases significantly with increasing

number of dimensions; see Figure 4.8. Nevertheless, note that for all boxes obtained

in [36] it holds true that the true fraction of good designs lies between 97% and 100% with

a 95% confidence level.
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Figure 4.8: Left: The Tilted-Hyperplane problem in two dimensions with the optimal box
and an increased box with 100 out of 100 good sample points. Right: The
graph, taken from [36], shows the ratio of the average size measure of a box
obtained from 100 runs with the stochastic algorithm to the size measure of
the analytic result for an increasing number of dimensions.

4.5 Tracking the vertexes of a box: Linearly constrained

Solution Spaces

In this section, the general problem statement for seeking box-shaped Solution Spaces with

maximum box size measure is reformulated such that it can be solved by any standard

optimization algorithm. The approach of vertex tracking is applied and the Solution Space

constraints are reformulated w.r.t. the lower and upper boundaries of the i-th interval,

which are the optimization parameters. The complete Solution Space is assumed to be

specified by a set of linear inequalities (Type A; see Figure 3.4).

4.5.1 Problem statement

For a linearly constrained complete Solution Space, the problem statement (4.1) reads

maximize
I1,I2,...,Id

μ (Ω)

s.t. Gx ≤ gc ∀ x ∈ Ω ⊆ Ωds.
(4.10)

The coefficients of the linear inequalities are given by G ∈ R
m×d with elements

Gji , i = 1, ..., d, j = 1, ...,m. The thresholds are stated by gc ∈ R
m. For solving opti-

mization problem (4.10), the optimization constraints must be reformulated as inequalities

w.r.t. the optimization parameters, which are the intervals, specified by lower and upper

bounds for each design variable xl
i and xu

i . The box is defined as the Cartesian product of

intervals Ω =
[
xl
1, x

u
1

]× [
xl
2, x

u
2

]× ...× [
xl
d, x

u
d

]
. For better readability, the box vector is
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introduced and defined as

ξ =
(
xl,xu

)T ∈ R
2d. (4.11)

In the case of linear inequalities, vertex tracking can be applied; see Section 4.2.2. For

linear functions, each constraint can be assigned to a particular vertex of the box; see

also [26] and [27]. Hence, only m out of 2d vertexes must be assessed to ensure that the

box contains good designs only. The optimization problem can be rewritten as follows:

minimize
ξ

− lnμ (Ω)

s.t. Γξ ≤ gc

ξ ∈ Ωbs

(4.12)

with Ωbs as the box-space, which is Ωds × Ωds. The size measure μ (Ω) written w.r.t. ξ

reads

μ (Ω) =
d∏

i=1

(ξi+d − ξi) . (4.13)

To ensure positive values for the box size measure only, the additional constraints must

be considered:

ξi < ξi+d

∀i = 1, ..., d
(4.14)

which forces that the upper boundary must be larger than the lower boundary for each

design variable. Each constraint is assigned to an appropriate vertex. Therefore, Γ ∈
R

m×2d is introduced, which assigns the elements of G to the box variables ξ:

Γ = [Γ 1,Γ 2] ∈ R
m×2d. (4.15)

One can derive Γ from G as:

Γ1,ji =

⎧⎨
⎩0 for Gji ≥ 0

Gji otherwise
, Γ2,ji =

⎧⎨
⎩Gji for Gji ≥ 0

0 otherwise
(4.16)

with i = 1, .., d and j = 1, ..,m.

The reformulation as a minimization problem of the negative logarithm of the size

measure instead of the maximization of the size measure as stated in (4.1) yields a convex

optimization problem, see proof below. This implies that a local minimum is also the global

minimum and, effective computational methods exist to solve these types of optimization

problems; see [13]. Additionally, the logarithm acts as a barrier for μ (Ω) → 0 whereby

very small interval widths are avoided. The latter is motivated by the fact that generally

narrow intervals mean no robustness or no flexibility, which is not desired in practice.
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Derivatives of the objective function The first derivatives of the objective function are

∂ (− ln μ (Ω))

∂ξi
= −∂ (− ln μ (Ω))

∂ξi+d

= (ξi+d − ξi)
−1

i = 1, ..., d.

(4.17)

The second derivatives of the objective function are

∂2 (− ln μ (Ω))

∂ξ2i
=

∂2 (− ln μ (Ω))

∂ξ2i+d

=

= −∂2 (− ln μ (Ω))

∂ξi+d∂ξi
= −∂2 (− ln μ (Ω))

∂ξi∂ξi+d

= (ξi+d − ξi)
−2

i = 1, ..., d.

(4.18)

All other entries of the Hessian are zero.

Properties of the problem Considering Equation (4.17) and assuming ξi < ξi+d, see

condition (4.14), show that the objective function of the optimization problem (4.12)

is monotonously increasing w.r.t. ξi, i.e. the lower boundary of an interval (the first

derivative is positive), and monotonously decreasing w.r.t. ξi+d, i.e. the upper boundary

of an interval (the first derivative is negative).

The convexity of the objective function can be shown by the following consideration

(in accordance with [60]):

− ln μ (Ω) = − ln
d∏

i=1

(ξi+d − ξi) =
d∑

i=1

− ln (ξi+d − ξi) . (4.19)

The derivatives of each term of the sum are

⎛
⎜⎝

∂−ln(ξi+d−ξi)

∂ξi

∂−ln(ξi+d−ξi)

∂ξi+d

⎞
⎟⎠ =

⎛
⎜⎝

(ξi+d − ξi)
−1

− (ξi+d − ξi)
−1

⎞
⎟⎠ (4.20)

with the second derivatives as

H =

⎛
⎜⎝

(ξi+d − ξi)
−2 − (ξi+d − ξi)

−2

− (ξi+d − ξi)
−2 (ξi+d − ξi)

−2

⎞
⎟⎠ . (4.21)

The eigenvalues λ are obtained by solving the equation det (H − λI) = 0 with I as the
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2× 2 identity matrix; see Definition 8:

(
(ξi+d − ξi)

−2 − λ
)2 − (− (ξi+d − ξi)

−2)2 = λ
(
λ− 2 (ξi+d − ξi)

−2) = 0. (4.22)

The solution is

λ1 = 0 and λ2 = 2 (ξi+d − ξi)
−2 . (4.23)

For ξi < ξi+d the eigenvalues are positive, and hence the terms of the sum in Equation

(4.19) are convex w.r.t. ξi and ξi+d. As the sum of convex functions is convex, the

objective function is shown to be convex. In conjunction with the linear constraints of the

optimization problem (4.12), this implies a convex optimization problem.

Remark. To show that μ (Ω) is neither concave nor convex the two-dimensional case

with two design variables and four interval boundaries is used as a counter example, i.e.

μ (Ω) = (ξ3 − ξ1) (ξ4 − ξ2). The Hessian is

H =

⎛
⎜⎜⎜⎜⎝

0 1 0 −1

1 0 −1 0

0 −1 0 1

−1 0 1 0

⎞
⎟⎟⎟⎟⎠ .

The eigenvalues are λ1,2 = 0, λ3 = 2 and λ4 = −2, i.e. the Hessian is indefinite, and

hence μ (Ω) is neither concave nor convex.

Remark. Boyd [13] states, that the logarithm of the volume of a polytope described by a set

of linear inequalities Ax ≤ b is a concave function w.r.t. the thresholds of the inequalities

b. The polytope here is the box, and the thresholds are the lower and upper boundaries of

the intervals. Thus, the logarithm of the volume of the box is concave and consequently,

the negative logarithm of the volume of the box − ln μ (Ω) is convex. This statement is

used and described in more detail in Section 4.6.1.

Computation of the outer box In the case of linear Solution Space constraints, the

complete Solution Space is a d-dimensional polytope. For the computation of the outer

box, the vertexes of the polytope are calculated. Therefore,
(
m+2d

d

)
=

∏d
i=1

m+2d+1−i
i

(= Binomial coefficient, all possible combinations) number of linear systems are solved

to obtain all possible intersection points of the boundaries of the linear Solution Space

constraint functions, i.e. g (x) = gc and the boundaries of the design space. Those

intersection points that satisfy the inequalities of the optimization problem (4.10) are

sought. As this might get expensive for a large number of Solution Space constraints m

or a large number of design variables d, alternatively, the outer box can be obtained by

solving optimization problem (4.29) and optimization problem (4.30) instead.
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x2

x1

intersection of the 
boundary of a Solution 
Space constraint function 
with the design space

vertex of the 
complete Solution 
Space

outer box

Figure 4.9: Determination of the vertexes of the complete Solution Space (specifying the
outer box) depicted by a two-dimensional example with d = 2 andm = 3. Note
that the number of possible intersections is 21, however, those boundaries of
the design space, which are parallel, have no intersection point.

4.5.2 Implementation

Optimization algorithm Since the gradient information is available and the optimiza-

tion problem is convex, a gradient-based optimization algorithm for fast convergence is

preferred. Involving linear inequality constraints, the problem (4.12) in conjunction with

(4.13) and (4.14) is solved by an interior-point algorithm, namely the implementation in

MATLAB , called by the command fmincon(). For further information about the im-

plementation of the algorithm see [15, 16, 71]. Fundamentals of interior-point algorithms

are provided in Appendix A.2.

Determination of initial values In order to provide suitable start values for the op-

timization parameters, an initial box is determined by the following procedure: Firstly,

any design that satisfies all Solution Space constraints is selected as the center of the

initial box. The design can be found by solving e.g. the following optimization problem:

minimize
α,x

α s.t. g (x) ≤ gc + α. The edge lengths of the box (= interval width) can be

selected by e.g. 10% of the design space. If the box contains bad designs, the edge lengths

of the initial box are iteratively decreased until the box contains good designs only. Note

that the interior-point algorithm implemented in MATLAB does not require initial
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values that satisfy all the optimization constraints. However, providing infeasible initial

values requires additional iteration steps.

4.5.3 Numerical results

A1 A2 B1 C1 D1 E1 E2

0 1 0 1 0 1 0 1 0 1 0 1 -3

B1 C1 D1 E1

0 1 0 1 0 1 0 1

Figure 4.10: Overview of the test problems for d = 2. Only the linear examples are
considered.

In order to examine the numerical effort in dependence on the number of dimensions

d and the number of Solution Space constraints m, the optimization problem (4.12) is

solved for the proposed linear test problems listed in Table 3.1. The design space for the

examples considered here is given by Ωds = [0, 1]d. For a better comparison of the results,

the initial box is given and is Ω = [0.01, 0.11]d for test problem A1 and Ω = [0.45, 0.55]d

for test problem A2. Table 4.1 shows the number of iterations, the number of function

evaluations, i.e. overall evaluations of the objective function and constraints, the CPU time

as well as the relative error of the numerical results compared to the analytic solution.

For the relative error, the size measure obtained by numerical optimization μ (Ω)nu and

the optimal size measure obtained by analytic calculus μ (Ω)an is considered. The relative

error is defined as
μ(Ω)nu−μ(Ω)an

μ(Ω)an
. Table 3.2 shows the formula for the optimal size measures

of test problem A1 and A2. Technical details about the computer and software used are

provided in the Appendix.

Table 4.1: Numerical effort for the computation of the optimal inner box for the linear
test problems A1 and A2. While the number of Solution Space constraints is
kept constant (for test problem A1 m = 1 and for A2 m = 4), the number of
dimensions is increased. The values are associated with the following number
of dimensions d = 2, 4, 10, 50.

no. iterations no. fun. eval. CPU time [sec] rel. error of μ (Ω) [%]

A1 10, 10, 10, 10 13, 12, 12, 12 0.06, 0.10, 0.11, 0.12 -6e-6, -1e-5, -2e-5, -1e-4

A2 8, 9, 9, 10 9, 11, 10, 13 0.07, 0.09, 0.10, 0.12 -8e-6, -8e-6, -8e-6, -8e-6
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Additionally, the outer box is computed by the calculation of the vertexes of the poly-

tope, enclosing all good designs as proposed in Section 4.5.1. Table 4.2 shows the number

of linear equations to be solved for the computation of the outer box, the CPU time as

well as the relative error of the numerical results compared to the analytic solution. Due

to a very high number of linear equations of approximately 1e30 in the case of d = 50, the

problem of seeking the minimum outer box cannot be solved practicably by applying the

approach proposed in Section 4.5.1. Problem (4.29) and (4.30) are solved instead. The

same optimizer as for solving the problem of seeking the maximum inner box is used, i.e.

the interior-point algorithm implemented in MATLAB�. The numerical results obtained

by solving (4.29) and (4.30) are highlighted by an asterisk (*).

Table 4.2: Numerical effort for the computation of the optimal outer box for the linear
test problems A1 and A2. While the number of Solution Space constraints is
kept constant (for test problem A1 m = 1 and for A2 m = 4) the number of
dimensions is increased. The values are associated with the following number
of dimensions d = 2, 4, 10, 50.

no. lin. equations CPU time [sec] rel. error of μ (Ω) [%]

A1 10, 126, 3.53e05, 2.00e29 0.002, 0.02, 25.30, 20.64* 0, 0, 0, -2e-2*

A2 28, 495, 1.96e06, 1.47e30 0.004, 0.05, 65.36, 84.64* 0, 0, 0, -1e-3*

* problems (4.29) and (4.30) are solved

For all optimization problems solved by fmincon(), the final first-order optimality mea-

sure and the final maximum constraint violation are less than the critical threshold of 1e-6.

For more information about the first-order optimality measure see Appendix A.1.

Discussion Table 4.1 shows, that the number of iterations is not or only slightly in-

fluenced by the number of dimensions for test problem A1 and A2. Furthermore, the

number of function evaluations, i.e. evaluation of the objective function and constraints,

equals approximately the number of iterations. A higher number of function evaluations

compared to the number of iterations occurs if the solver attempts a step, and rejects the

attempt; see Appendix A.2. The CPU time is roughly a tenth of a second for all number of

dimensions and both test problems. The relative error of the numerical result compared

to the analytic solution is less than 1e-3% for all test problems and increases with the

number of dimensions in case of test problem A1.

In summary, both linear test problems can be solved very efficiently and precisely, nearly

independently of the number of dimensions.

For the computation of the outer box, the vertexes of the high-dimensional polytope,

which encloses the good designs, are calculated. The number of linear equations to be
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solved scales with the number of dimensions and the number of constraints; see Section

4.5.1. Consequently, the CPU time increases with an increasing number of linear equations

to be solved. For the 50-dimensional examples, the number of linear equations in both

examples is approximately 1e30, which is not practicable to be solved and the approach

proposed in Section 4.6 (paragraph computation of the outer box ) is used instead. The

numerical results marked by an asterisk (*) are obtained by applying fmincon(), i.e. are

solved iteratively. The result shows a relative error compared to the analytic solution.

However, the error is very low.

4.6 Tracking the vertexes of a box: Nonlinearly

constrained Solution Spaces

In Section 4.5 the approach of vertex tracking was used for a direct evaluation of the

box regarding its Solution Space constraints. Therefore, each Solution Space constraint is

assigned to a particular vertex of the box and only m function evaluations are necessary

to assess the box. In this section, the approach is extended to a broader range of types

of Solution Space constraints, particularly monotone functions (Type B and Type C ; see

Figure 3.4). A strategy to handle even non-monotone functions (Type D and Type E ) is

proposed at the end of this section.

4.6.1 Problem statement

Monotone Solution Space constraints The problem statement for seeking a box with

maximum size measure applying vertex tracking reads

minimize
ξ

− lnμ (Ω)

s.t. g (γ (ξ)) ≤ gc

ξ ∈ Ωbs

(4.24)

with the box size measure μ (Ω) as defined in (4.13), ξ as the box vector; see (4.11)

and g and gc as stated in (4.1). Additionally, the inequality constraints (4.14) must be

considered. γj, j = 1, ...,m are linear functions, each assigns a Solution Space constraint

to a particular vertex of the box. γj : ξ �→ x is defined as

γj (ξ) = Cjξ (4.25)

with Cj as the vertex assignment matrix of the j-th constraint:

Cj =
[
Cj

1,C
j
2

] ∈ R
d×2d. (4.26)
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One can derive Cj from G̃ as:

Cj
1,ii =

⎧⎨
⎩0 for G̃ji ≥ 0

1 otherwise
, Cj

2,ii =

⎧⎨
⎩1 for G̃ji ≥ 0

0 otherwise
(4.27)

with i = 1, ..., d. All other entries of Cj are equal to zero. Only the algebraic sign of the

entries of G̃ denoted by G̃ji are of interest. G̃ can be obtained by linearizing g at any

point x. Hence, only d + 1 additional function evaluations for each of the m constraints

are necessary.

G̃ji ≈ gj (x∼i)− gj (x)

δxi

x,x∼i ∈ Ωds

(4.28)

with x∼i = x+ δxiei as an arbitrary design, where the i-th component is shifted by δxi.

Non-monotone Solution Space constraints If a Solution Space constraint function

gj is non-monotone w.r.t. some or all design variables, i.e. does not satisfy (3.6) and

(3.7), but is convex (Type D, see Figure 3.4), i.e. satisfies (3.8), vertex tracking can be

applied. However, in contrast to the case of monotone Solution Space constraints, each

constraint must be assigned to multiple vertexes. Ψ = (Ψ1,Ψ2, ...,Ψd̃) is the set of indices

of those design variables for which gj shows non-monotone but convex behavior. The

number of elements of Ψ is d̃. The vertexes per constraint, which must be evaluated, are

{xl
Ψ1
, xu

Ψ1
}×{xl

Ψ2
, xu

Ψ2
}× ...×{xl

Ψd̃
, xu

Ψd̃
} and hence the number of vertexes is 2d̃. If gj is a

monotone function w.r.t. all design variables, d̃ is zero and the number of vertexes is one,

as stated above (paragraph monotone Solution Space constraints). For d̃ = d all vertexes

of the box must be evaluated, compare Figure 4.2 case (C). This is repeated for each

Solution Space constraint, whereas a maximum of m2d function evaluations are necessary

to check the m constraints of optimization problem (4.1). For Solution Space constraints

of Type E, condition (4.8) must be checked. If the condition is not satisfied, vertex tracking

cannot be applied and in the presence of a continuous input space, a direct evaluation of

the box, see Section 4.2.2, is impossible. Consequently, an indirect evaluation is necessary,

e.g. by sampling and statistical assessment.

Properties of the problem As shown in Section 4.5.1 the objective function − ln μ (Ω)

is monotone and convex. However, in case of non-convex constraints the optimization

problem is not convex and local minima may occur.
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Computation of the outer box For the computation of the outer box, the following

problem can be solved by any standard optimizer:

maximize
x

xi

s.t. g (x) ≤ gc

x ∈ Ωds.

(4.29)

Solving (4.29) yields the maximum value of xi, while all the other design variables are

adjusted appropriately. To obtain the minimum value of xi, the following optimization

problem must be solved:

minimize
x

xi

s.t. g (x) ≤ gc

x ∈ Ωds.

(4.30)

In the presence of particular types of Solution Space constraint functions, solving the

problems (4.29) and (4.30) for all design variables yields the outer box as defined in (4.4).

The objective function is linear, however, the constraints might be nonlinear with concave

or neither concave nor convex behavior. The latter yields an optimization problem with

local minima; non-connected domains are possible; see Figure 4.11. Consequently, the

result of the optimization depends on the initial values and a globalization strategy is

recommended, e.g. running the optimization multiple times with randomly selected initial

guesses or using global optimization algorithms, e.g. evolutionary algorithms. Note that

in case of bad regions enclosed by the Solution Space, case (D) in Figure 4.11, solving

(4.29) and (4.30) will provide a box that is equal to the design space.

4.6.2 Implementation

Optimization algorithm Depending on whether the Solution Space constraints are given

as parametric or oracle functions, the derivatives can be provided to the optimizer or

must be estimated by e.g. finite-differences. However, since at least the derivatives of

the objective function are available, see Equation (4.17) and (4.18), a gradient-based

optimizer for fast convergence is preferred, namely the interior-point implementation in

the MATLAB� environment; see also Section 4.5.2.

For seeking the minimum outer box, problems (4.29) and (4.30) are solved by applying

the same optimizer as for solving the problem of seeking the maximum inner box (4.24),

i.e. the interior-point algorithm.

Vertex tracking For the approach of vertex tracking in the case of oracle functions,

where nothing is known about the structure of the equations, the types of the Solution

Space constraint functions must be determined by checking conditions (3.6), (3.7) and
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x1
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x1

x2
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C

x1

x2

D

Figure 4.11: Determination of the maximum value of x1 by solving optimization prob-
lem (4.29). In the case of a convex domain (A), the optimization result is
globally optimal and does not depend on the initial value. If the domain
is neither convex nor concave (B) or not connected (C) the result may de-
pend on the initial value (in dependence on the optimization algorithm (local,
global strategies)). In the case of bad regions enclosed by the Solution Space
(D), solving problem (4.29) will yield a box that is equal to the design space.

(3.8), respectively, in conjunction with sampling. Therefore, the statement for all x can

only be assessed statistically, an example is provided in Section 7.1.4.

Determination of initial values For the determination of initial values see Section

4.5.2.

4.6.3 Numerical results

In order to examine the numerical effort in dependence on the number of dimensions

d, optimization problem (4.24) is solved for the proposed monotone and non-monotone

but convex test problems. The design space for test problem B1 (monotone, convex), C1
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A1 A2 B1 C1 D1 E1 E2

0 1 0 1 0 1 0 1 0 1 0 1 -3

A1 A2

0 1 0 1

E1

0 1

Figure 4.12: Overview of the test problems for d = 2. Only the nonlinear monotone and
non-monotone but convex test problems are considered, due to the require-
ments of the approach.

(monotone, non-convex) and D1 (non-monotone, convex) is given by Ωds = [0, 1]d. For test

problem B1 and C1, the initial box is Ω = [0.01, 0.11]d and for D1 it is Ω = [0.45, 0.55]d.

Table 4.3 shows the number of iterations, the number of function evaluations, the CPU

time as well as the relative error of the numerical results compared to the analytic solution

for the monotone and non-monotone but convex test problems listed in Table 3.1. The

relative error is defined as
μ(Ω)nu−μ(Ω)an

μ(Ω)an
, with the size measure obtained by numerical

optimization μ (Ω)nu and the optimal size measure obtained by analytic calculus μ (Ω)an;

see Table 3.2. Technical details about the computer and software used are provided in the

Appendix.

Table 4.3: Numerical effort for the computation of the optimal inner box for the monotone
(B1, C1 ) and non-monotone but convex (D1 ) test problems. While the prob-
lems comprise one single Solution Space constraint the number of dimensions is
increased. The values are associated with the following number of dimensions
d = 2, 4, 10, 50.

no. iterations no. fun. eval. CPU time [sec] rel. error of μ (Ω) [%]

B1 8, 9, 9, 9 10, 12, 11, 10 0.08, 0.09, 0.10, 0.12 -1e-4, -1e-5, -2e-5, -1e-4

C1 10, 10, 9, 9 11, 12, 11, 10 0.14, 0.16, 0.15, 0.16 -6e-4, -1e-3, -2e-3, -1e-4

D1 7, 7, 24, - 8, 8, 33, - 0.07, 0.25, 15.92, - -8e-6, -7e-4, -2e-1, -

Additionally, the outer box is computed by solving optimization problems (4.29) and

(4.30). Table 4.4 shows the number of optimization problems to be solved for the com-

putation of the minimum outer box, the CPU time as well as the relative error of the

numerical results compared to the analytic solution.

All optimization runs terminated due to a final first-order optimality measure, see Ap-

pendix A.1, less than the critical threshold of 1e-6, and the maximum constraint violation

is less than the critical threshold of 1e-6.
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Table 4.4: Numerical effort for the computation of the optimal outer box for the monotone
(B1, C1 ) and non-monotone but convex (D1 ) test problems. While the prob-
lems comprise one single Solution Space constraint, the number of dimensions
is increased. The values are associated with the following number of dimensions
d = 2, 4, 10, 50.

no. opt. problems CPU time [sec] rel. error of μ (Ω) [%]

B1 4, 8, 20, 100 0.36, 1.17, 3.20, 21.51 -1e-3, -1e-3, -4e-3, -2e-2

C1 4, 8, 20, 100 0.33, 0.91, 3.86, 33.45 -4e-4, -2e-3, -4e-3, -2e-2

D1 4, 8, 20, 100 0.32, 0.74, 3.61, 16.98 -1e-3, -2e-4, -2e-4, -1e-3

Discussion Table 4.3 shows that, on average, the number of iterations does not increase

with an increasing number of dimensions for the monotone test problems B1 and C1. In

the case of the non-monotone but convex test problem D1, the number of optimization

constraints scales with 2d based on the fact that the Solution Space constraint is assigned to

all vertexes of the box. For test problem D1, the number of iterations increases significantly

with the number of dimensions and hence the number of optimization constraints. In case

of d = 50, the number of optimization constraints to be considered is too large to be

solved practicably. Furthermore, the number of function evaluations, i.e. evaluation of the

objective function and constraints, equals approximately the number of iterations, except

for the 10-dimensional non-monotone convex test problem. A higher number of function

evaluations compared to the number of iterations occurs if the solver attempts a step and

rejects the attempt. Independent of the number of dimensions, the CPU time is very

low for all test problems, except for the 10-dimensional non-monotone but convex test

problem, due to the high number of optimization constraints. The relative error for all

test problems is less than 1%.

In summary, in the case of monotone Solution Space constraints, the problem of seeking

a box with maximum box size measure can be solved very efficiently, also for a large number

of dimensions. The results are very accurate, close to the analytic solution. In the case of

a moderate number of dimensions, the non-monotone but convex test problem can be solved

with a low computational effort, however, for a high number of dimensions the numerical

effort increases significantly due to a very large number of optimization constraints.

For the computation of the outer box, the optimization problems (4.29) and (4.30)

are solved for each dimension separately. The CPU time for solving (4.29) and (4.30),

respectively is very low and the overall computation time scales linearly with the number

of dimensions. The relative error for all test problems is less than 1e-1%.



4.7 Modifications of the optimization problem 65

4.7 Modifications of the optimization problem

As discussed in Section 4.2.1, the inner box provides a weak statement about the infea-

sibility: There might be more good designs outside that box. In general the number of

boxes that satisfy the criteria of an inner box as defined in (4.3) is infinite. In industry

often apriori information is available, e.g. particular designs are preferred and should be

included in the box if possible, some design variables show a higher degree of uncertainty

and a larger width of the associated interval is desired, etc. For that reason, the problem

statement for seeking a box with maximum size measure can be extended by the following

constraints:

1. The lower or/and upper boundaries of the box are set to a specified value and may not

be changed during optimization (e.g. setting the lower boundary of design variable

x1 to 0.5: ξ1 = 0.5) (M1 ).

2. The lower and/or upper boundaries of the box are constrained by lower and/or

upper bounds, i.e. modifications of Ωbs (e.g. bounding the lower boundary of design

variable x1 between values of 0 and 0.8: 0 ≤ ξ1 ≤ 0.8) (M2 ).

3. The width of two or more intervals are constrained to be equal (e.g. the interval

width of design variable x1 and x2 are constrained to be equal) (M3 ).

4. The widths of intervals are weighted by weighting factors (M4 ).

5. The widths of intervals are constrained to be equal to a specified value or greater/less

than a specified value (M5 ).

6. The widths of intervals are constrained to have a value of zero, i.e. values of particular

design variables are adjusted such that the product of the intervals of the other design

variables is maximum (M6 ).

4.7.1 Implementation

For weighting intervals (see M4 in Section 4.7) the size measure (4.13) is modified to

μ (Ω) =
d∏

i=1

(ξi+d − ξi)
ωi (4.31)

with ωi ≥ 1 as the weighting factor. For the specification of particular interval widths (see

M5 in Section 4.7), the inequality (4.14) is rewritten as equality

ξi = ξi+d − δwi

∀i = 1, ..., d
(4.32)



66 Chapter 4 Box-shaped Solution Spaces

with δwi ≥ 0 as the width of the i-th interval. In cases where the widths of intervals are

constrained to be greater or less than a specified value, constraint (4.32) is formulated as

an inequality. In order to set the width of an interval to zero (see M6 in Section 4.7), the

size measure (4.13) must be modified to

μ (Ω) =
d∏

i=1

μ (Ii) (4.33)

with

μ (Ii) =

⎧⎨
⎩ξi+d − ξi for δwi > 0

1 otherwise
. (4.34)

Consequently, the derivative terms of the objective function, see (4.17) and (4.18), w.r.t.

ξi, which are associated with intervals with δwi = 0, are set to zero.

4.7.2 Numerical results

The effect of the modifications provided in Section 4.7 on the result of the optimization

problem is demonstrated on the two-dimensional Tilted-Hyperplane problem A1. Figure

4.13 shows the results for modifications M1-M6. For demonstrating the effect of modifi-

cation M1, the upper boundary of design variable x1 is specified to be 0.4 throughout the

optimization. In modification M2, the upper boundary of x1 is specified to lie between

0.6 and 0.7; for modification M3 the interval of x1 is specified to have the same width as

the interval of x2. The effect of modification M4 is demonstrated by an example, where

the interval width of x1 is weighted by ω1 = 2, ω1 = 5 and ω1 = 10, respectively. For

modification M5 the interval width of x1 is specified to be equal to 0.3, and for modifica-

tion M6, the largest interval width for x1 is sought, which is feasible while adjusting x2

appropriately.

Discussion Note that all solution boxes in Figure 4.13, with the exception of case M3,

have a smaller size measure as the optimal box obtained by solving problem (4.12) without

additional constraints, however, preferences of decision makers can be taken into account.

The necessity for specifying additional constraints arises based on the fact that box-shaped

Solution Spaces are able to provide a subset of the complete Solution Space only, and hence

more good designs outside the box exist. Setting additional constraints enables decision

makers to find a box that contains a particular preferred design, provides maximum ro-

bustness and flexibility for particular design variables, etc. For instance, the box obtained

by solving (4.12) with modification M4 provides more robustness for design variable x1

compared to the box obtained by solving (4.12) without modifications (equivalent to the

box in case of M3 ), however, the robustness in design variable x2 decreases.
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M4 M5 M6

M1 M2 M3

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

Figure 4.13: Seeking the box with maximum box size measure for the two-dimensional
Tilted-Hyperplane problem with modifications M1-M6. M1 : upper boundary
of x1 is specified to be 0.4; M2 : upper boundary of x1 is specified to lie in
between 0.6 and 0.7; M3 : interval width of x1 is specified to be the same as
the interval width of x2; M4 : the interval width of x1 is weighted by a factor
of 2, 5 and 10; M5 : interval width of x1 is specified to be 0.3; M6 : seek the
largest interval width of x1 whereas the value of x2 is adjusted accordingly.
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5 — Two-dimensional decomposition

of Solution Spaces

In the previous chapter, it was shown that box-shaped Solution Spaces are able

to represent high-dimensional Solution Spaces in an intuitive manner and re-

quirements on design variables are fully decoupled. However, this comes with

a loss of Solution Space, i.e. the box does not enclose all good designs. In this

chapter, another approach is introduced, which decomposes high-dimensional

Solution Spaces into 2d-spaces. In order to enclose as many as good designs,

the volume of this Solution Space must be maximized. Mathematical formu-

lations of the underlying optimization problems are stated, two approaches

are proposed and numerical results based on the analytic test problems are

presented.
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5.1 2d-spaces as representation of high-dimensional

Solution Spaces

Box-shaped Solution Spaces map the requirements on the system onto intervals (com-

pletely decoupled 1d representation) for each design variable. The Cartesian product of

all intervals is a high-dimensional box in the input space. In general, the complete Solution

Space has an arbitrary shape and a representation by a box comes with a loss of Solution

Space, i.e. the box does not enclose all good designs. However, in many applications

it is often not required to decouple requirements on design variables completely. This is

the case, if two or more design variables are assigned to a particular component that is

designed in detail by one particular group. In the following, design variables are coupled

pairwise (2d-spaces), however, the approach proposed can be extended for applications

where more than two design variables are coupled. The benefit of coupled requirements

on design variables is a reduced loss of Solution Space compared to box-shaped Solution

Spaces. Figure 5.1 shows the complete Solution Space of the three-dimensional Tilted-

Hyperplane problem, the optimal box as well as the optimal 2d-spaces (with maximum

size measure). In the case of the 2d-spaces, the complete Solution Space is expressed as

the Cartesian product of a triangle and an interval. However, both approaches are not

able to represent the entire set of good designs. Nevertheless, the size of the set repre-

sented by 2d-spaces is twice the size represented by a box, i.e. intervals. The statement

of box-shaped Solution Spaces, which is

’You can select any value of the design variables within the associated intervals in-

dependently, in order to satisfy the requirements on the system’,

changes in the case of 2d-spaces to

’You can select any combination of values of two design variables within the associ-

ated 2d-space independently in order to satisfy the requirements on the system’.

5.2 General problem statement

Seeking a Cartesian product of two-dimensional Solution Spaces with maximum size mea-

sure μ (Ω) that contain good designs only reads

maximize
Ω1,Ω2,...,Ωn

μ (Ω)

s.t. g (x) ≤ gc ∀ x ∈ Ω ⊆ Ωds

(5.1)
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Figure 5.1: A solution box (blue lines) vs. the Solution Space expressed as product of a
2d-space and an interval (white areas) for the Hyperplane-Problem in three
dimensions.

with Ω as the Cartesian product of 2d-spaces Ωk, i.e. Ω = Ω1 × Ω2 × ...× Ωn with

n =

⎧⎨
⎩

d
2

for d even

d+1
2

otherwise
. (5.2)

Without loss of generality concerning 2d representations, the design variables are assumed

to be coupled pairwise from the first to the last, i.e. the first with the second, the third with

the fourth, etc. In case d is odd the n-th 2d-space Ωn degenerates into an interval. g (x) ≤
gc are the Solution Space constraints as introduced in Section 3.2. Figure 5.2 depicts the set

of permissible combinations of pairwise coupled design variables, i.e. 2d-spaces, as white

areas. 2d-spaces are subsets of the 2d-design spaces Ωk
ds =

[
xlb
2k−1, x

ub
2k−1

] × [
xlb
2k, x

ub
2k

]
. In

accordance with the definition of the box size measure in Section 3.2.4, the size measure

for 2d-spaces is

μ (Ω) =
n∏

k=1

μ
(
Ωk

)
(5.3)

with μ
(
Ωk

)
as the measure of the area of the k-th 2d-space, i.e.

μ
(
Ωk

)
=

∫
Ωk

dΩk

k = 1, ..., n.

(5.4)



72 Chapter 5 Two-dimensional decomposition of Solution Spaces

In the case where d is odd and hence Ωn is an interval, μ (Ωn) is the measure of the interval

width of the d-th design variable

μ (Ωn) =

∫
Ωn

dΩn =

∫ xu
d

xl
d

dxd = xu
d − xl

d. (5.5)

…

x1

2d-design-
space

x3

x4� �

boundary
2d-space
(2d-Solution-Space)

x2

good region

bad region

Figure 5.2: 2d-spaces with arbitrary shape. The set of good designs is specified by the
Cartesian product of two-dimensional sets Ω1,Ω2, ...,Ωn. Each 2d-space is a
subset of the two-dimensional design space Ωk

ds.

In accordance with the modifications of the optimization problem for seeking a box

with maximum size measure, see Section 4.7, the objective function of the optimization

problems for seeking optimal 2d-spaces can be modified by weighting factors. The size

measure for 2d-spaces is modified to

μ (Ω) =
n∏

k=1

μ
(
Ωk

)ωk (5.6)

with ωk ≥ 1 as the weighting factor.

5.3 Underlying idea

In the following, two approaches that decompose a high-dimensional Solution Space into

two-dimensional Solution Spaces are introduced. According to the idea of tracking the

vertexes of a box, the first approach is based on the idea of tracking the vertexes of a high-

dimensional polytope. However, it requires the complete Solution Space to be a convex set

and a moderate number of dimensions, since the number of vertexes to be assessed grows
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fast with the number of dimensions. The second approach is based on the decomposition of

a set of d-dimensional inequalities into a set of two-dimensional inequalities, which requires

the Solution Space constraints to be decomposable; see Equations (5.7) and (5.8).

Tracking the vertexes of a polytope The set of good designs is specified by the Carte-

sian product of two-dimensional polygons, for d odd the last dimension is expressed by an

interval; see Figure 5.3. If the complete Solution Space is convex, a direct assessment of the

enclosed set w.r.t. the Solution Space constraints is possible; see Section 3.4. Hence, it is

sufficient to check the vertexes of the polytope in order to guarantee that the enclosed set

of designs is strictly good; see Section 5.4. However, the number of vertexes to be checked

grows fast with an increasing number of dimensions. If the polygons in all 2d-spaces are

assumed to have the same number of vertexes, denoted by p, the number of vertexes of

the d-dimensional polytope is pn for d even and 2pn−1 for d odd. The optimization prob-

lem of seeking the optimal position of the vertexes within each 2d-design space yielding a

maximum value of μ (Ω) is presented in Section 5.4.2.

1x
2x

3x

complete Solution 
Space bad region

x1

x2

1

0
0 1

x3

1

0

��

Figure 5.3: A three-dimensional Solution Space (Tilted-Hyperplane problem) expressed as
the Cartesian product of a two-dimensional polygon with six vertexes and a
one-dimensional interval. To ensure that the enclosed set of designs is good,
the vertexes of the polytope are assessed with regard to the Solution Space
constraint.

Decomposing Solution Space constraints In order to decouple the requirements pair-

wise, each of the m Solution Space constraint functions gj is decomposed as follows:

gj (x) = g1j (x1, x2) + g2j (x3, x4) + ...+ gnj (x2n−1, x2n) (5.7)
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for d even and

gj (x) = g1j (x1, x2) + g2j (x3, x4) + ...+ gn−1
j (x2n−3, x2n−2) + gnj (xd) (5.8)

for d odd, j = 1, ...,m. Each two-dimensional set is specified by inequalities in the form

gkj (x2k−1, x2k) ≤ gkc,j (d even: k = 1, ..., n; d odd: k = 1, ..., n − 1 and additionally

gnj (xd) ≤ gnc,j) with gkc,j as the threshold of the j-th constraint of the k-th 2d-space; see

Figure 5.4. In order to guarantee that a design, with all pairs of design variables within

their associated 2d-spaces, satisfies the overall requirements on the system, the additional

equality must be considered:

n∑
k=1

gkc,j = gc,j

∀j = 1, ...,m.

(5.9)
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High dimensional 
Solution Space constraint

Figure 5.4: Two-dimensional decomposition of m d-dimensional Solution Space con-
straints. The requirement on each of the Solution Space constraints is de-
composed into requirements on two-dimensional functions. The set of two-
dimensional inequalities for a pair of design variables is the mathematical de-
scription of a 2d-space.

Although an infinite number of values for gkc,j that satisfy Equation (5.9) exist, some

sets of values yield 2d-spaces, representing more good designs than others. This is shown

by the four-dimensional Tilted-Hyperplane problem with two sets of gkc,j both satisfying

Equation (5.9): (A) g1c,1 = 1, g2c,1 = 1 and (B) g1c,1 = 1.9, g2c,1 = 0.1. Figure 5.5 shows the

associated 2d-spaces. Considering the size measure as defined in (5.3) reveals that case (A)

represents more good designs (0.5 ·0.5 = 0.25) than case (B) (0.995 ·0.005 =4.975e-3). The

optimization problem of seeking the set of gkc,j that maximizes μ (Ω) under consideration

of (5.9) is presented in Section 5.5.1.
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Figure 5.5: Solution Space expressed as a product of two 2d-spaces (white areas) for the
Tilted-Hyperplane problem in four dimensions for two different sets of values
for the thresholds of the two-dimensional inequalities.

5.4 Tracking the vertexes of a polytope

In this section, the idea of tracking the vertexes of a d-dimensional polytope is used to

reformulate the general problem statement (5.1) such that it can be solved by any standard

optimization algorithm. In the following, the complete Solution Space as defined by (3.1)

is assumed to be a convex set. Without loss of generality in the following, it is assumed

that each two-dimensional polygon has the same number of vertexes. Furthermore, the

design variables are coupled pairwise from the first to the last, i.e. the first with the

second, the third with the fourth, etc.

5.4.1 Assessing polytope-shaped sets regarding Solution Space

constraints

As a condition for vertex tracking in conjunction with polytopes, the definition of sublevel

sets for box-shaped Solution Spaces, see Definition 11, is modified; see also Figure 5.6.

Definition 12. In case of polytopes the two-dimensional sublevel set Sgc,k (g (x)) is the
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set of good designs enclosed by a polygon in the k-th 2d-space:

Sgc,k (g (x)) = {(x2k−1, x2k) ∈
[
xlb
2k−1, x

ub
2k−1

]× [
xlb
2k, x

ub
2k

] | g (x∼k) ≤ gc}
k = 1, ..., n.

(5.10)

With x∼k = x +
(
x2k−1 − eT

2k−1x
)
e2k−1 +

(
x2k − eT

2kx
)
e2k as an arbitrary design, where

the (2k − 1)-th and 2k-th components are replaced by x2k−1 and x2k, respectively. e2k−1

and e2k are unit vectors with entry in the (2k − 1)-th and 2k-th component, respectively.

Theorem 4. Let all sublevel sets as defined in (5.10) be convex:

Sgc,k (g (x)) is convex ∀x ∈ Ωc

∀k = 1, ..., n.
(5.11)

Then, in order to avoid regions of bad designs within the polytope, it is sufficient to track

the vertexes of the polytope.

Proof. Let Ω be a polytope and let C0 = {x1
1,x

1
2, ...,x

1
p} × {x2

1,x
2
2, ...,x

2
p}×, ...,×{xn

1 ,x
n
2 , ...,x

n
p}

be the vertexes of the d-dimensional polytope satisfying the Solution Space constraints

g (x) ≤ gc. The vector xk
q =

(
x(2k−1),q, x2k,q

)T ∈ R
2 is the q-th vertex of the polygon in

the k-th 2d-space with q = 1, ..., p and p as the number of vertexes. Furthermore, let all

sublevel sets Sgc,k (g (x)) as defined in (5.10) be convex.

It is to show that for arbitrary x̃ ∈ Ω with (x̃2k−1, x̃2k) =
∑p

q=1 αqx
k
q ,
∑p

q=1 αq = 1, k =

1, ..., n it holds g (x̃) ≤ gc.

For x ∈ C0, it is xq,∼1 = x +
(
x1,q − eT

1 x
)
e1 +

(
x2,q − eT

2 x
)
e2 ∈ C0 and (x1,q, x2,q) ∈

Sgc,1 (g (x)). As (x̃1, x̃2) =
∑p

q=1 αqx
1
q,
∑p

q=1 αq = 1 we get (x̃∼1, x̃∼2) ∈ Sgc,1 (g (x))

and therefore, the inequality g (x̃∼1) ≤ gc is valid for xq,∼1 = x +
(
x̃1 − eT

1 x
)
e1 +(

x̃2 − eT
2 x

)
e2. Thus, the set C1 = {x̃∼1 | x +

(
x̃1 − eT

1 x
)
e1 +

(
x̃2 − eT

2 x
)
e2,x ∈ C0},

where any element satisfies the Solution Space constraints can be defined.

Recursively, for x ∈ Ck−1, k = 2, ..., n it is xq,∼k = x +
(
x(2k−1),q − eT

2k−1x
)
e2k−1 +(

x2k,q − eT
2kx

)
e2k ∈ Ck−1 and (x(2k−1),q, x2k,q) ∈ Sgc,k (g (x)). Also with (x(2k−1),q, x2k,q) ∈

Sgc,k (g (x)) , g (x̃∼k) ≤ gc is valid for x̃∼k = x+
(
x̃2k−1 − eT

2k−1x
)
e2k−1+

(
x̃2k − eT

2kx
)
e2k

and the set Ck = {x̃∼k | x+
(
x̃2k−1 − eT

2k−1x
)
e2k−1+

(
x̃2k − eT

2kx
)
e2k,x ∈ Ck−1} satisfying

the Solution Space constraints is defined. After a total of n iterations, we get x̃ as the

only element of Ck with g (x̃) ≤ gc.

Remark. Since the intersection of convex sets yields a convex set, Equation (5.11) can be

assessed for each Solution Space constraint function gj, j = 1, ...,m separately. However,

consider that the intersection of non-convex sets may yield a convex set. This implies that

even if condition (5.11) fails w.r.t. one or more Solution Space constraint function(s), it
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may be satisfied if all constraint functions are considered at once. Hence, condition (5.11)

assessed for each constraint function separately is sufficient but not necessary, while it is

sufficient and necessary if all constraint functions are considered at once.

Theorem 5. Let g : Rd → R be a convex function, i.e. Equation (3.8) is satisfied. Then

Sgc,k (g (x)) is convex for all x ∈ Ωds and w.r.t. all 2d-spaces. If this applies for all

Solution Space constraint functions, condition (5.11) is satisfied.

Proof. Let g be a convex function and let x∼k be a design x with variation by δx2k−1, δx2k ≥
0 in the (2k−1)-th and 2k-th component. With (x2k−1 + δx2k−1, x2k + δx2k) ∈ Sgc,k (g (x)),

it follows that x∼k ∈ Sgc,k (g (x)). Due to the properties of convexity, i.e. (x̃2k−1, x̃2k) =∑p
q=1 αqx

k
q ,
∑p

q=1 αq = 1 and with x∼k ∈ Sgc,k (g (x)), it follows that g (αx+ (1− α)x∼k) ≤
gc ∀α ∈ [0, 1] and hence αx+ (1− α)x∼k ∈ Sgc,k (g (x)).

tracked vertexes

feasible polytope (by vertex tracking)

x1

x2

x1

x2

A B
non-convex sublevel set

two-dimensional sublevel set

convex sublevel set

Figure 5.6: Two-dimensional sublevel sets (white areas) for design variables x1 and x2 of
a (A) convex Solution Space Ωc and a (B) non-convex (here concave) Solution
Space. In case (A), the sublevel sets for all x ∈ Ωc are convex, while case (B)
shows non-convex sublevel sets.

5.4.2 Problem statement

The optimization problem for maximizing the size measure of a set, described by the

Cartesian product of two-dimensional polygons, where the vertexes are tracked in order

to satisfy the Solution Space constraints reads

minimize
xk
q

− lnμ (Ω)

s.t. g (x) ≤ gc ∀ x ∈ C0 ⊆ Ωds

(5.12)
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with μ (Ω) as defined in Equation (5.3). xk
q =

(
x(2k−1),q, x2k,q

)T ∈ R
2 is the q-th vertex of

the polygon in the k-th 2d-space with q = 1, ..., p and p as the number of vertexes. The

set of d-dimensional vertexes of the polytope is denoted by C0 and is an n-tuple of two-

dimensional vertexes C0 = {x1
1,x

1
2, ...,x

1
p} × {x2

1,x
2
2, ...,x

2
p}×, ...,×{xn

1 ,x
n
2 , ...,x

n
p} ∈ R

d

for d even, while for d odd the last set is replaced by {xl
d, x

u
d}, i.e. the lower and upper

boundaries of the d-th design variable. The elements of the set C0 are those designs that

represent the vertexes of the d-dimensional polytope.

…� �3

x1 x3

x4x2

Figure 5.7: 2d-spaces each described by a polygon with p vertexes (here p = 5) xk
q ∈

R
2, q = 1, ..., p, k = 1, ..., n. The number of vertexes of the d-dimensional

polytope is the number of possible combinations of one out of p elements of n
sets, i.e. pn.

In the following, expressions are provided to calculate the objective function as well

as the derivatives of the first and second order of problem (5.12) in dependence on the

optimization parameters. d is assumed to be even. The value of the objective function for

given xk
q can be obtained by computing the measures of the areas for the 2d-spaces by

μ
(
Ωk

)
=

1

2

p∑
q=1

(
x(2k−1),qx2k,(q+1) − x(2k−1),(q+1)x2k,q

)
k = 1, ..., n

(5.13)

with
(
x(2k−1),(p+1), x2k,(p+1)

)T
=

(
x(2k−1),1, x2k,1

)T
. All vertexes are in sequence with a

counter-clockwise orientation w.r.t. the center of the polygon; see [4].
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Derivatives of the objective function Consider the objective function as− ln
∏

μ
(
Ωk

)
=

−∑
lnμ

(
Ωk

)
and

∂ lnμ(Ωk)
∂xl

q
= 0 for l 	= k, the first derivatives are

⎛
⎜⎜⎝

∂(− ln μ(Ω))
∂x(2k−1),q

∂(− ln μ(Ω))
∂x2k,q

⎞
⎟⎟⎠ = − 1

2μ (Ωk)

⎛
⎜⎝

x2k,(q+1) − x2k,(q−1)

−x(2k−1),(q+1) + x(2k−1),(q−1)

⎞
⎟⎠ . (5.14)

Note that (q − 1) = p holds true for q = 1 and (q + 1) = 1 holds true for q = p.

In the following, the second derivatives are provided.

Case 1 : l = k.

The second derivatives w.r.t. the components of the q-th and r-th vertex are

⎛
⎜⎜⎝

∂2(− ln μ(Ω))
∂x(2k−1),r∂x(2k−1),q

∂2(− ln μ(Ω))
∂x2k,r∂x2k,q

⎞
⎟⎟⎠ =

=
1

4μ (Ωk)2

⎛
⎜⎝

(
x2k,(q+1) − x2k,(q−1)

) (
x2k,(r+1) − x2k,(r−1)

)
(−x(2k−1),(q+1) + x(2k−1),(q−1)

) (−x(2k−1),(r+1) + x(2k−1),(r−1)

)
⎞
⎟⎠

(5.15)

with q, r = 1, ..., p.

For r = q + 1 the derivatives are

⎛
⎜⎜⎝

∂2(− ln μ(Ω))
∂x2k,q+1∂x(2k−1),q

∂2(− ln μ(Ω))
∂x(2k−1),q+1∂x2k,q

⎞
⎟⎟⎠ =

= − 1

4μ (Ωk)2

⎛
⎜⎝

(
x2k,(q+1) − x2k,(q−1)

) (
x(2k−1),(q+2) − x(2k−1),(q)

)
+ 2μ

(
Ωk

)
(−x(2k−1),(q+1) + x(2k−1),(q−1)

) (−x2k,(q+2) + x2k,(q)

)− 2μ
(
Ωk

)
⎞
⎟⎠ .

(5.16)

For r = q − 1 the derivatives are

⎛
⎜⎜⎝

∂2(− ln μ(Ω))
∂x2k,q−1∂x(2k−1),q

∂2(− ln μ(Ω))
∂x(2k−1),q−1∂x2k,q

⎞
⎟⎟⎠ =

= − 1

4μ (Ωk)2

⎛
⎜⎝

(
x2k,(q+1) − x2k,(q−1)

) (
x(2k−1),(q) − x(2k−1),(q−2)

)− 2μ
(
Ωk

)
(−x(2k−1),(q+1) + x(2k−1),(q−1)

) (−x2k,(q) + x2k,(q−2)

)
+ 2μ

(
Ωk

)
⎞
⎟⎠ .

(5.17)

For r 	= q + 1 and r 	= q − 1, i.e. the r-th vertex is not a neighbored vertex of the q-th
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vertex, the derivatives are

⎛
⎜⎜⎝

∂2(− ln μ(Ω))
∂x2k,r∂x(2k−1),q

∂2(− ln μ(Ω))
∂x(2k−1),r∂x2k,q

⎞
⎟⎟⎠ =

= − 1

4μ (Ωk)2

⎛
⎜⎝

(
x2k,(q+1) − x2k,(q−1)

) (
x(2k−1),(r+1) − x(2k−1),(r−1)

)
(−x(2k−1),(q+1) + x(2k−1),(q−1)

) (−x2k,(r+1) + x2k,(r−1)

)
⎞
⎟⎠ .

(5.18)

Note that (r − 1) = p holds true for r = 1 and (r + 1) = 1 holds true for r = p.

Case 2 : l 	= k.

⎛
⎜⎜⎝

∂2(− ln μ(Ω))
∂x(2k−1),r∂x(2k−1),q

∂2(− ln μ(Ω))
∂x2k,r∂x2k,q

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

∂2(− ln μ(Ω))
∂x2k,q+1∂x(2k−1),q

∂2(− ln μ(Ω))
∂x(2k−1),q+1∂x2k,q

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
= ∂2(− ln μ(Ω))

∂x2k,q−1∂x(2k−1),q

∂2(− ln μ(Ω))
∂x(2k−1),q−1∂x2k,q

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

∂2(− ln μ(Ω))
∂x2k,r∂x(2k−1),q

∂2(− ln μ(Ω))
∂x(2k−1),r∂x2k,q

⎞
⎟⎟⎠ =

⎛
⎜⎝
0

0

⎞
⎟⎠

(5.19)

with q, r = 1, ..., p.

Properties of the problem Considering Equation (5.14) to (5.19), the first and second

derivatives of the objective function are positive or negative in dependence on the coor-

dinates of the neighbored vertexes. Hence, the objective function is non-monotone and

non-convex w.r.t. the optimization parameters. Without exception, the derivatives of the

objective function can be calculated for all values of xk
p, which yield μ

(
Ωk

)
> 0, and hence

the objective function is twice continuous differentiable.

Figure 5.8 shows scenarios where local optima and self-intersections occur, if vertex

points are moved along the gradients, i.e. if a gradient-based optimizer is used. The

components of the gradient of ln μ (Ω), computed by Equation (5.14), are shown as red

arrows. Figure 5.8 (A) and (B) show polygons with the position of the vertexes (black

dots) as well as the globally optimal polygon (black dashed lines). Moving the vertexes

along the gradients and hence increasing the size measure of the area μ (Ω) will lead to

a polygon, violating the constraints (gray area). Hence, the polygons (black bold lines)

are local optima. Figure 5.8 (C) shows a scenario where moving vertex point 2 along its
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gradient leads to self-intersection, however, self-intersecting polygons are not desired.

x1 x1

A B

global optimum local optimum x1-\x2-component of the gradient

x1

C

1

2

3

2´x2 x2x2

Figure 5.8: Two-dimensional example with the region of good designs as white area: (A)
and (B) show a polygon (black bold lines) with four vertexes as well as the
components of the gradient in x1 and x2 direction (red arrows). Additionally,
the global optimum is shown (dotted lines). (C) shows a polygon and the
gradient of a vertex point potentially causing self-intersections if the vertex
point is moved along the direction of the gradient.

5.4.3 Implementation

Optimization algorithm Since the derivatives of the objective function are available, the

gradient-based interior-point optimizer [15,16,71] in the MATLAB environment, called

by the command fmincon(), is used. Depending on whether the Solution Space constraints

are given as parametric or oracle functions, the derivatives can be provided or must be

computed by e.g. finite-differences. For the validity of vertex tracking in conjunction with

polytopes, condition (5.11) must be checked.

Self-intersecting polygons Polygons with self-intersecting edges are not desired (re-

mark : Equation (5.13) does not hold for such types of polygons). In order to avoid this

during optimization, self-intersections must be detected. Therefore, possible interactions

of non-neighbored edges are calculated (the intersection of non-neighbored edges of the

polygon indicate a self-intersection) and the objective function value is set to ’nan’ in case

of self-intersections. Hence, the optimizer will reject the step.

Determination of initial values The initial values of xk
q for optimization problem (5.12)

must be selected such that the two-dimensional polygons obtained show no self-intersections
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and the vertex points of the polygon are oriented counter-clockwise w.r.t. the center of

the polygon. The latter is necessary to apply Equation (5.13).

Based on the fact that the optimization problem to be solved shows local optima, it

is advantageous to generate the initial values randomly and repeating the experiment. In

order to start with a feasible initial guess, p vertex points are generated randomly within[
xl
2k−1, x

u
2k−1

]× [
xl
2k, x

u
2k

]
;
[
xl
2k−1, x

u
2k−1

]
and

[
xl
2k, x

u
2k

]
as the intervals of a solution box,

i.e. a box that contains good designs only. Subsequently, the vertexes are sequenced in a

counter-clockwise orientation w.r.t. the center of the polygon.

5.4.4 Numerical results

A1 A2 B1 C1 D1 E1 E2

0 1 0 1 0 1 0 1 0 1 0 1 -3

C1

0 1

E1

0 1

Figure 5.9: Overview of the test problems for d = 2. Only the convex problems are
considered, due to the requirements of the approach.

In order to evaluate the effort for solving problem (5.12) in dependence on the number of

dimensions, the number of constraints and the number of vertexes of the two-dimensional

polygons, the approach presented is applied to test problems A1, A2, B1 and D1. All test

problems are convex and hence vertex tracking can be applied. For all test problems con-

sidered, the design space is Ωds = [0, 1]d. The initial values for test problem A1 and B1 are

obtained by generating four and six vertex points within the solution box Ω = [0.01, 0.11]d

for each 2d-space separately, i.e. within [0.01, 0.11]×[0.01, 0.11]. For test problems A2 and

D1 the initial values are randomly generated vertex points within [0.45, 0.55]× [0.45, 0.55]

for each 2d-space. Each run is repeated ten times with randomly selected initial values

and the best result in terms of a minimum discrepancy to the analytic solution is shown

in Table 5.1. For the relative error, the size measure obtained by numerical optimization

μ (Ω)nu and the optimal size measure obtained by analytic calculus μ (Ω)an is considered.

The relative error is defined as
μ(Ω)nu−μ(Ω)an

μ(Ω)an
. Table 3.2 shows the formula for the optimal

size measures, which depends on the number of vertexes p in case of B1 and D1. Based on

the fact that the number of optimization constraints scales with pn, solving optimization

problem (5.12) is not practicable for d = 50 and hence is not considered here. Technical

details about the computer and software used are provided in the Appendix.

For values with an asterisk (*), all of the ten runs terminated, because the step size
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Table 5.1: Numerical effort for two linear (A1, A2 ) and two nonlinear but convex (B1,
D1 ) test problems. While the number of constraints are kept constant (for test
problem A1, B1, D1 m = 1 and for A2 m = 4) the number of dimensions is
increased. The examinations are executed with p = 4 (row 1-4) and p = 6 (row
5-8), i.e. with polygons with four and six vertexes, respectively. The values are
associated with the following number of dimensions d = 2, 4, 10.

no. iterations no. fun. eval. CPU time [sec] rel. error of μ (Ω) [%]

A1 14, 18, 21 19, 22, 26 0.31, 0.41, 1.15 -8e-5, -1e-4, -3e-4

A2 10, 14, 15 11, 18, 17 0.15, 0.36, 4.80 -2e-5, -3e-5, -3e-4

B1 18, 21, 122 19, 22, 148 0.35, 1.40, 393.65 -1e-5, -3e-5, -7e-3

D1 22, 31, 230* 25, 35, 525* 0.60, 0.52, 373.97* -8e-5, -3e-5, -4.11*

A1 19*, 19*, 19* 86*, 88*, 112* 1.41*, 1.88*, 8.57* -3*, -22*, -6*

A2 25, 29, 23 43, 39, 28 1.23, 2.30, 142.61 -6e-4, -5e-5, -1e-2

B1 31, 307*, X 32, 325*, X 1.45, 24.88*, X -1e-5, -6*, X

D1 22, 39, 211 23, 56, 596 0.89, 1.99, 1871.29 -5e-5, -2e-4, -2e-1

* sub-optimal results, critical step size reached

X maximum number of iterations reached

reached a specified threshold of 1e-10. Figure 5.10 shows polygons generated for each

iteration of the optimization process for test problem D1 with d = 4 and p = 4. One

polygon shows self-intersection, which can be observed more frequently when the number

of dimensions and the number of vertexes is increased. As a consequence, the optimizer

rejects the step and computes a new step, which leads to a high number of overall function

evaluations or termination of the optimization due to a step size less than the specified

threshold. Runs without an asterisk reached a final first-order optimality measure less

than the critical threshold of 1e-6, and a final maximum constraint violation less than the

critical threshold of 1e-6. For test problem B1 with d = 10 and p = 6, all of the runs

exceeded a maximum number of iterations of 400 (marked by an X ).

Discussion The results in Table 5.1 show that the linear test problems A1 and A2 with

p = 4 can be solved efficiently in terms of a low CPU time of a few seconds and accurately

in terms of a relative error between the numerical results and the analytic solution of less

than 1e-3. However, if the number of vertexes is increased to p = 6, the optimization

problem gets more challenging, and no optimal solution is found in case of A1 (marked by

an asterisk (*)), whereas the computational effort is increased in case of A2. Note that the

optimal result of A1 are triangles within each 2d-design space, and hence, in the case of six

vertexes for each polygon, three vertexes lie on the edges of the triangle with undetermined

position. In the case of test problem A2, the optimal shape of the polygons are rectangles,
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surrounding circle of 
the optimal rectangle

x1

x2

x3

x4

polygon with self-
intersection

box containing the 
initial polygon

Figure 5.10: Polygons generated by the optimizer in each iteration for test problem D1
with d = 4 and p = 4.

and hence for p = 6 two vertex points in each 2d-design space lie on the edges of the

polygon. Depending on the initial position of the vertex points, the optimizer is not able

to reach the optimal solution due to local minima. Three examples are depicted in Figure

5.8. Additionally, self-intersections may occur, which are treated as infeasible as discussed

in Section 5.4.3, causing the optimizer to recalculate the step, and often termination due

to a step size beyond the critical threshold occurs. The results of test problem B1 for

p = 4 show that the problem can be solved efficiently for d = 2 and d = 4, but requires a

CPU time of a few minutes in case of d = 10. The latter is due to the fact that the number

of optimization constraints scales with pn and self-intersections occur more frequently in

presence of a large number of dimensions. Moreover, the optimizer terminated due to

a step size less than 1e-10 for test problem D1 with d = 10. Increasing the number of

vertexes to p = 6 shows that in the case of B1 the optimizer is not able to find the optimal

solution for d = 4 and d = 10. For problem D1 with d = 10 the CPU time increased

significantly compared to D1 with d = 4.

In summary, considering more vertex points p and more dimensions d increases the

numerical effort significantly, due to an increasing number of optimization constraints

scaling with pn and an increasing occurrence of self-intersections. This often leads to a

termination of the optimizer due to step sizes beyond the critical threshold. Problems

where the optimal shape of each polygon shows symmetry reveal less issues in terms of

a termination of the optimizer due to small step sizes, high CPU times and inaccurate
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results.

5.5 Decomposing Solution Space constraints

In this section the idea of decomposing d-dimensional Solution Space constraints into a set

of two-dimensional Solution Space constraints is used to reformulate the general problem

statement (5.1), such that it can be solved by any standard optimization algorithm. Firstly,

linear Solution Space constraints are assumed. The following expressions are in accordance

with Erschen et al. [26]. At the end of this section the approach is generalized to nonlinear

problems; see also Daub [19].

5.5.1 Problem statement

The problem statement for seeking optimal 2d-spaces based on a two-dimensional decom-

position of Solution Space constraints reads

minimize
gkc,j

− lnμ (Ω)

s.t.
∑n

k=1 g
k
c,j = gc,j ∀j = 1, ...,m

Ω := Ω(g1c,1, ..., g
n
c,m) ⊆ Ωds.

(5.20)

With μ (Ω) as defined in Equation (5.3), which depends on the optimization parameters,

i.e. the thresholds of the two-dimensional inequalities denoted by gkc,j. The equality con-

straint is equal to Equation (5.9) and guarantees that a design with all pairs of design

variables within their associated 2d-spaces, satisfies the overall requirements on the sys-

tem. In the case where the Solution Space constraints are linear functions, the negative

logarithm of problem statement (5.20) yields a convex objective function; see proof below.

In conjunction with the linear optimization constraints, this leads to a convex optimization

problem. This implies that a local minimum is also the global minimum, and that effec-

tive computational methods are available; see [13]. Additionally, as already mentioned in

Section 4.5.1, the logarithm acts as a barrier for μ (Ω) → 0 and 2d-spaces with small size

measures are avoided.

In the following, expressions are provided to compute the objective function for given

gkc,j as well as the derivatives of the first and second order of problem (5.20). For simplicity

of the presentation, d is assumed to be even. In the linear case, the Solution Space

constraints are given in the form Gx ≤ gc. The coefficients of the linear inequalities

are given by G ∈ R
m×d with elements Gji , i = 1, ..., d, j = 1, ...,m, and the thresholds

are denoted by gc ∈ R
m. In accordance with Equation (5.7), the linear inequalities are

decomposed into a set of two-dimensional inequalities Gj,(2k−1)x2k−1 +Gj,2kx2k ≤ gkc,j , j =

1, ...,m, k = 1, ..., n. The equality Gj,(2k−1)x2k−1 + Gj,2kx2k = gkc,j is called a boundary.
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The associated normal vector is

nk
j =

(
Gj,(2k−1), Gj,2k

)T
‖ (Gj,(2k−1), Gj,2k

) ‖ . (5.21)

Each set of design variables specified by a 2d-space is enclosed by a polygon. A boundary

is active if it is part of the polygon, i.e. evokes one of the edges. Each active boundary has

two neighbors, i.e. boundaries that intersect in the two associated vertexes; see Figure

5.11.

Computing the size of a 2d-space, taken from [26] For computing the measure of the

area for each 2d-space as defined in (5.4), the vertexes of each two-dimensional polygon

must be computed; see Figure 5.11. Therefore,
(
m+4
2

)
= (m+4)2−(m+4)

2
systems of two two-

dimensional linear equations must be solved in order to derive all possible intersections

of the boundaries of the constraints and the 2d-design space boundaries, i.e. x2k−1 =

xlb
2k−1, x2k−1 = xub

2k−1, x2k = xlb
2k, x2k = xub

2k . An intersection point is a vertex of the polygon,

if it satisfies all m two-dimensional inequalities for the associated 2d-space and lies within

the associated 2d-design space Ωk
ds. The q-th vertex in the k-th 2d-space is denoted by the

vector
(
x(2k−1),q, x2k,q

)T ∈ R
2. Hence, μ

(
Ωk

)
can be calculated by Equation (5.13), which

is

μ
(
Ωk

)
=

1

2

p∑
q=1

(
x(2k−1),qx2k,(q+1) − x(2k−1),(q+1)x2k,q

)

with k = 1, ..., n and p as the number of vertexes. Note that it holds
(
x(2k−1),(p+1), x2k,(p+1)

)T
=(

x(2k−1),1, x2k,1

)T
. All vertexes are in sequence with a counter-clockwise orientation w.r.t.

the center of the polygon; see [4].

Derivatives of the objective function, taken from [26] The first derivatives of the

objective function are
∂ (− ln μ (Ω))

∂gkc,j
= −∂μ

(
Ωk

)
∂gkc,j

1

μ (Ωk)
(5.22)

with j = 1, ...,m and k = 1, ..., n. Substituting the derivative terms on the right hand side

yields the following expressions.

Case 1 : G2
j,(2k−1) +G2

j,2k 	= 0 and boundary of constraint j is active (both conditions must

apply).
∂ (− ln μ (Ω))

∂gkc,j
= − wk

j,0√
G2

j,(2k−1) +G2
j,2k

1

μ (Ωk)
. (5.23)

wk
j,0 is the edge length of the polygon of the k-th 2d-space, evoked by the j-th Solution

Space constraint. It is calculated as the distance between the intersection points of the
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…

x1 x3

x4� �

vertex 
(intersection point of boundary 1 
with boundary 2)

boundary

x2

edge 
length 

1

2

3

4

normal vector

5

neighbor II of 
boundary 1

neighbor I of 
boundary 1

active boundary

inactive boundary

Figure 5.11: 2d-spaces constrained by linear inequalities, with the edge length w1
1,0 of the

boundaryG1,1x1+G1,2x2 = g1c,1 (blue line), and the vertex x1
1,II ∈ R

2 (red dot)
as an intersection point of the first constraint with its second neighbor. In the
second 2d-space a normal vector nk

j of a boundary is depicted. Highlighted
by red bold lines are cases where three boundaries intersect in one vertex and
where two boundaries have identical normal vectors, i.e. are parallel.

j-th constraint with its two neighbors, denoted by xk
j,I ∈ R

2 and xk
j,II ∈ R

2.

wk
j,0 =

⎧⎨
⎩
∥∥xk

j,I − xk
j,II

∥∥ if constraint j has two neighbors

0 otherwise
(5.24)

Case 2 : Either G2
j,(2k−1) +G2

j,2k = 0, or boundary of constraint j is not active.

∂ (− ln μ (Ω))

∂gkc,j
= 0. (5.25)

The Hessian of the objective function reads

Hrsjk =
∂2 (− ln μ (Ω))

∂gsc,r∂g
k
c,j

= − 1

μ (Ωk)2

(
μ
(
Ωk

) ∂2μ
(
Ωk

)
∂gsc,r∂g

k
c,j

− ∂μ
(
Ωk

)
∂gkc,j

∂μ
(
Ωk

)
∂gsc,r

)
(5.26)

with j, r = 1, ...,m and k, s = 1, ..., n. The following expressions are obtained by substi-

tuting the derivative terms in Equation (5.26); for details see [26].

Case 1 : G2
j,(2k−1) + G2

j,2k 	= 0, G2
r,(2k−1) + G2

r,2k 	= 0, s = k and both, boundary of con-

straint j and boundary of constraint r are active (all conditions must apply).
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Hrsjk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−

⎛
⎜⎜⎝− (nk

j,I)
T
nk
j√

1−
(
(nk

j,I)
T
nk
j

)2
− (nk

j,II)
T
nk
j√

1−
(
(nk

j,II)
T
nk
j

)2

⎞
⎟⎟⎠μ(Ωk)−(wk

j,0)
2

μ(Ωk)
2
(
G2

j,(2k−1)
+G2

j,2k

) for r = j

−
μ(Ωk) 1√

1−
(
(nk

jr)
T
nk
j

)2
−wk

j,0w
k
r,0

μ(Ωk)
2√

G2
j,(2k−1)

+G2
j,2k

√
G2

r,(2k−1)
+G2

r,2k

for r 	= j but intersection with j

− −wk
j,0w

k
r,0

μ(Ωk)
2√

G2
j,(2k−1)

+G2
j,2k

√
G2

r,(2k−1)
+G2

r,2k

for r 	= j no intersection with j

(5.27)

nk
j,I and nk

j,II are the normal vectors of the neighbors of constraint j. nk
jr is the normal

vector of the r-th constraint, whose boundary has an intersection with the boundary of

the j-th constraint, i.e. either nk
j,I or nk

j,II .

Case 2 : G2
j,(2k−1) + G2

j,2k = 0, G2
r,(2k−1) + G2

r,2k = 0, s 	= k or boundary of constraint j or

boundary of constraint r are not active (at least one of the conditions must apply).

Hrsjk = 0. (5.28)

Properties of the problem, taken from [26] The enclosed area of the k-th 2d-space

μ
(
Ωk

)
increases monotonously with increasing gkc,j. This can be explained by the fact

that a relaxation of the restriction, i.e. increasing gkc,j, can only yield more or equal good

designs. A change in gkc,j affects only μ
(
Ωk

)
, while the areas of the other n− 1 2d-spaces

are not affected. This means that μ (Ω) depends monotonously on gkc,j, and hence the

objective function of optimization problem (5.20) depends monotonously on gkc,j.

To show the convexity of the objective function, refer to Boyd [13]. Boyd states that

the volume of a polyhedron (as it is μ
(
Ωk

)
), where the polyhedron is defined as a set

{x ∈ R
d | Ax ≤ b} (the inequalities hold component-by-component for each entry of the

vector-valued function), is a log-concave function of b, which is equivalent to gkc,j for 2d-

spaces. A function f is called log-concave, if it holds f(x) > 0 with x within the domain of

f and if the logarithm of f is concave. (remark : Boyd: ”It is convenient to allow f to take

on the value zero”, pg. 104). Consider the logarithm of μ(Ω) as ln
∏

μ
(
Ωk

)
=

∑
lnμ

(
Ωk

)
with μ

(
Ωk

)
as a log-concave function w.r.t. gkc,j. Since the sum of concave functions is

concave, μ(Ω) is a log-concave function of gkc,j. Consequently, the negative logarithm of

μ(Ω) is convex w.r.t. gkc,j.

The objective function is not differentiable at points where two boundaries with equal

normal vectors as defined in (5.21) coincide; see Figure 5.12 (top right and bottom, dashed
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lines, for Δgkc,j = 0). For problems satisfying the following condition, i.e. all normal vectors

in one 2d-space are different, the objective function is once continuous differentiable. The

necessary condition reads

nk
j 	= nk

r

∀j, r = 1, ...,m, j 	= r.
(5.29)

Furthermore, the first derivative is not differentiable at points where at least three bound-

aries intersect in one vertex of the polygon, i.e. at those points where the number of

vertexes of the polygon changes with changes in gkc,j; see Figure 5.12 (top left and bottom,

red solid line, for Δgkc,j = −0.05 and Δgkc,j = 0.05).
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Figure 5.12: Two cases where the threshold of the two-dimensional inequality of constraint
1, gkc,1, is increased and hence, the boundary of constraints 1 moves from left
to right. Top left: The normal vectors of the boundaries of constraint 1
and constraint 2 are different. Top right: The normal vectors are identical.
Bottom: The value of the objective function of problem (5.20) as well as the
first and second derivatives.

5.5.2 Implementation

Optimization algorithm Based on the fact that the derivatives of the objective func-

tion and constraints are available and the objective function is continuous and convex, a
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gradient-based optimization algorithm is preferred. A Newton’s method based algorithm,

namely the interior-point implementation in the MATLAB� environment [22, 38, 77]

called by the command fmincon(), is used. In the case of nonlinear Solution Space con-

straints, a non-gradient-based optimization algorithm is used; see paragraph below.

Bounds of the optimization parameters Test runs revealed that the performance in

terms of convergence was improved by setting additional bounds to the optimization pa-

rameters:

gk,lbc,j ≤ gkc,j ≤ gk,ubc,j . (5.30)

The bounds are calculated as

gk,lbc,j = min{Gj,(2k−1)x2k−1 +Gj,2kx2k | x2k−1, x2k ∈ Ωk
ds} (5.31)

and

gk,ubc,j = max{Gj,(2k−1)x2k−1 +Gj,2kx2k | x2k−1, x2k ∈ Ωk
ds}. (5.32)

Note that these bounds are not necessary from a mathematical point of view, since the

optimum denoted by (*) lies within the bounds, i.e. gk∗c,j ∈
[
gk,lbc,j , gk,ubc,j

]
. This can be ex-

plained by the following: μ
(
Ωk

)
assumes its minimum value if gkc,j = gk,lbc,j (no combination

of associated design variables in the k-th 2d-space is allowed, i.e. μ
(
Ωk

)
= 0) and assumes

its maximum value if gkc,j = gk,ubc,j (all combinations of associated design variables in the

k-th 2d-space are allowed, assuming m = 1). Cases with gkc,j < gk,lbc,j and gkc,j > gk,ubc,j do

not affect μ
(
Ωk

)
, and hence do not affect μ (Ω).

Determination of initial values The initial values of problem (5.20) for gkc,j must be

selected such that μ
(
Ωk

)
> 0, ∀k = 1, ..., n and such that the equality constraints∑n

k=1 g
k
c,j = gc,j, ∀j = 1, ...,m are satisfied. The former is crucial due to the fact that for

μ
(
Ωk

)
= 0, the value of the objective function is not defined, and the determination of a

search direction by the optimizer is impossible.

Strategy 1 : The determination of suitable initial values can be achieved by taking any

solution box, i.e. a box that contains good designs only, and computing the values of gkc,j as

the maximum values of Gj,(2k−1)x2k−1+Gj,2kx2k within that box, i.e. max{Gj,(2k−1)x2k−1+

Gj,2kx2k | x2k−1, x2k ∈ [
xl
2k−1, x

u
2k−1

] × [
xl
2k, x

u
2k

]}. This can be achieved by applying

interval arithmetic; see Section 4.2.2. If necessary, the values obtained must be increased

to satisfy the equality constraint
∑n

k=1 g
k
c,j = gc,j, ∀j = 1, ...,m of optimization problem

(5.20). This is accomplished by starting in the first 2d-space and increasing the values of

gkc,j, until either the equality constraint is satisfied or until the value exceeds the bounds

specified in constraint (5.30). In the latter case, the procedure is repeated in the next

2d-design space until the equality constraint is satisfied.
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Strategy 2 : An alternative strategy for the determination of initial values, which yield

μ
(
Ωk

)
> 0, ∀k = 1, ..., n and satisfy

∑n
k=1 g

k
c,j = gc,j, ∀j = 1, ...,m, is to compute the

value of the Solution Space constraint functions g (x) = Gx for one single permissible

design x∗. The design can be found by solving e.g. the following optimization problem:

minimize
α,x

α s.t. g (x) ≤ gc + α. For each pair of design variables associated with a

particular 2d-space, the values of Gj,(2k−1)x
∗
2k−1 + Gj,2kx

∗
2k are calculated. In order to

satisfy the equality constraint, the gap between the obtained g (x∗) and gc is equally

distributed to all values obtained. The equation is

gkc,j,0 =
gc,j − gj (x

∗)
n

+
(
Gj,(2k−1)x

∗
2k−1 +Gj,2kx

∗
2k

)
. (5.33)

In case of violation of (5.30) the values of gkc,j must be adjusted appropriately.

Setting additional constraints Test runs showed that the optimizer often aborts for

cases with Gj,(2k−1) = Gj,2k = 0. The associated two-dimensional inequality reads 0 ≤ gkc,j.

This means that all combinations of design variables within the associated design space

are feasible as long as gkc,j ≥ 0. For gkc,j < 0 the 2d-space becomes infeasible. To avoid the

abrupt change in the objective function, an additional equality constraint is introduced,

which is gkc,j = 0 1 for all j, k with Gj,(2k−1) = Gj,2k = 0.

Nonlinear Solution Space constraints In case of nonlinear Solution Space constraints,

the measures of the areas of the 2d-spaces and consequently the objective function can-

not be computed via the vertexes of two-dimensional polygons. For nonlinear functions,

the areas assume arbitrary shapes. One approach to compute μ
(
Ωk

)
is to estimate the

measures of the areas by sample points within each 2d-design space, distributed on a

dense grid. The sample points are categorized as good or bad depending on whether they

satisfy all two-dimensional inequalities of the associated 2d-space or not. The estimated

(normalized) size measure of the area for a uniform sampling is

μ̂
(
Ωk

)
=

Ñg

Ñ
(5.34)

with Ñg as the number of good sample points out of Ñ sample points. For a sufficient

estimation Ñ must be of order 1e6. This requires that the evaluation of gkj (x2k−1, x2k) is

computationally inexpensive. Since the derivatives are not available and finite-differences

derived from the estimate of μ
(
Ωk

)
showed insufficient results even for a very large num-

ber of sample points, a non-gradient-based (but deterministic) optimizer is used, namely

1Due to computational inaccuracies, it is advisable to select gkc,j as a positive value close to zero, e.g.

gkc,j =1e-4.
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the pattern search algorithm in the MATLAB environment, called by the command

patternsearch(). For more information about pattern search algorithms see e.g. [7, 8], the

fundamentals are explained in Appendix A.2.

5.5.3 Numerical results

A1 A2 B1 C1 D1 E1 E2

0 1 0 1 0 1 0 1 0 1 0 1 -3

E2

-3

Figure 5.13: Overview of the test problems for d = 2. All linear and nonlinear problems
are considered.

For the evaluation of the numerical effort for solving optimization problem (5.20) test

problems A1, A2, B1, C1, D1 and E1 are considered; see Table 3.1. The design space

for all examples is given by Ωds = [0, 1]d. For the determination of the initial values

of gkc,j Strategy 1, proposed in Section 5.5.2, is applied: The initial solution box for test

problems A1, B1, C1 and E1 is Ω = [0.01, 0.11]d. For test problems A2 and D1 it is given

by Ω = [0.45, 0.55]d. Table 5.2 shows the number of iterations, the number of function

evaluations, the CPU time as well as the relative error of the obtained results compared

to the analytic solution. The relative error is defined as
μ(Ω)nu−μ(Ω)an

μ(Ω)an
, with μ (Ω)nu as the

size measure obtained by solving problem (5.20) numerically and μ (Ω)an as the analytic

solution, computed by the formula provided in Table 3.2. Note that for d = 2 there is

no degree of freedom, i.e. a feasible initial guess with all constraints satisfied is globally

optimal. Hence, all cases with d = 2 are not considered in Table 5.2. Technical details

about the computer and software used are provided in the Appendix.

For the linear test problems, the gradient-based interior-point algorithm called by fmin-

con() is used, while the nonlinear test problems are solved by a non-gradient-based opti-

mizer, called by the command patternsearch() in the MATLAB environment. For all

optimization runs executed by fmincon() the final first-order optimality measure and the

final maximum constraint violation are less than the critical threshold of 1e-6. For more

information about the first-order optimality measure see Appendix A.1. All optimization

runs executed by patternsearch() terminated due to a final mesh size less than the critical

threshold of 1e-6. However, the threshold for the constraint violation of 1e-6 cannot be

satisfied by the optimizer, but does not exceed 1e-3 for all results obtained.
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Table 5.2: Numerical effort for the computation of the optimal 2d-spaces for the linear test
problems A1 and A2 as well as for the quadratic test problems B1, C1, D1 and
E2. While the number of constraints are kept constant (for test problem A1
m = 1 and for A2 m = 4), the number of dimensions is increased. The values
are associated with the following number of dimensions d = 4, 10, 50.

no. iterations no. fun. eval. CPU time [sec] rel. error of μ (Ω) [%]

A1 8, 8, 15 13, 9, 16 0.21, 0.44, 1.49 2e-14, 4e-14, 2e-12

A2 9, 11, 12 11, 12, 17 0.30, 2.02, 2.29 2e-14, 4e-14, 2e-12

B1 32, 58, 286 127, 469, 7462 0.65, 1.91, 44.63 1e-1, -3.e-1, -3

C1 26, 56, 66 109, 447, 1607 0.33, 0.82, 16.63 5.e-1, 1, 2

D1 36, 48, 450 129, 381, 10378 0.39, 2.12, 110.82 -3, -7, -34

E1 32, 50, 60 117, 391, 1550 0.67, 1.23, 11.73 3, 7, 14

Discussion Considering the results, Table 5.2 shows that the number of iterations as

well as the CPU time slightly increases with an increasing number of dimensions for the

linear test problems A1 and A2. The number of function evaluations is larger than the

number of iterations, which implies that the algorithm computes additional steps in order

to adapt the step size appropriately. The relative error in all cases is negligible.

Based on the fact that a non-gradient-based optimizer is used in the case of the nonlin-

ear test problems B1 to E1, the number of iterations and particularly function evaluations

is significantly higher compared to the linear case, where a gradient-based optimizer is

used. Nevertheless, with the exception of cases with d = 50, the CPU time is approxi-

mately equal to that of the linear test problems. This can be explained by the fact that

the computational effort for the determination of a step in each iteration is negligible for

the pattern search algorithm [7, 8] compared to the interior-point implementation where

LDL factorization is accomplished; see Appendix A.2. Additionally, the evaluation of the

Solution Space constraint functions is very inexpensive as they are provided as parametric

functions. For d = 50 the number of iterations and the CPU time increases significantly,

particularly for the convex test problems B1 and D1. The relative error is remarkably high

for most of the results with a size measure up to 34% smaller compared to the analytic

solution. As mentioned in the paragraph above, the optimizer is not able to satisfy the

constraint to a precision of 1e-6 but to a precision of 1e-3 only.

In summary, both the linear and nonlinear test problems are solved within a low CPU

time, which exceeds a few seconds only in case of d = 50. While the numerical results

obtained by fmincon() are precise in terms of the constraint violation and the discrepancy

to the analytic solution, the results obtained by patternsearch() are suboptimal in most of

the cases.
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6 — Comparison of the approaches

In the previous chapters, numerical approaches for the computation of one-

and two-dimensional representations of high-dimensional Solution Spaces were

introduced and reviewed. In the following, the results of Chapter 4 and 5 are

summarized and compared. Firstly, the underlying optimization problems for

the computation of box-shaped Solution Spaces and 2d-spaces are compared

in terms of the properties of the optimization problems. Secondly, the nu-

merical effort in dependence on the number of dimensions and the number of

Solution Space constraints is analyzed and discussed. A comparison between

computing a box-shaped Solution Space by a gradient-based optimizer in con-

junction with vertex tracking and by the stochastic Solution Space algorithm

as well as a comparison between computing box-shaped Solution Spaces and

2d-spaces is provided.
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Table 6.1: Comparison of the different approaches (V1, W1, W2 ) regarding the properties
of the objective functions and optimization constraints, the number of opti-
mization parameters N , the number of linear optimization constraints P , the
number of nonlinear optimization constraints Q and the number of derivatives
of nonlinear optimization constraints D. d is the number of design variables
(which are assumed to be even), m is the number of Solution Space constraints,
p is the number of vertexes of a 2-dimensional polygon and n is the number of
2d-spaces (n = d/2 for d even). 2N is the number of bounds of the optimization
parameters, i.e. linear inequalities.

approach obj. fun. opt. con. N P Q D

V1, lin. (4.12) convex convex 2d m+d+2N − −
W1, lin. (5.12) n. convex convex 2pn mpn + 2N − −
W2, lin. (5.20) convex convex mn m+ 2N − −
V1, n.lin. (4.24) convex conv./n. conv. 2d d+ 2N [m,m2d] [mN,m2dN ]

W1, n.lin. (5.12) n. convex conv./n. conv. 2pn 2N mpn mpnN

W2, n.lin. (5.20) conv./n. conv. convex mn m+ 2N − −

6.1 Properties of the underlying optimization problems

It is worth considering the underlying optimization problems in detail to understand the

complexity of the problems to be solved. The complexity depends on the class of the

underlying optimization problem, the number of optimization parameters, the number of

optimization constraints and the number of derivatives that must be computed if gradient-

based optimization algorithms are applied. A particular class of optimization is convex

optimization. Convex optimization problems are characterized by the fact that both the

objective function and the inequality optimization constraints are convex, whereas the

equality optimization constraints are affine. Effective computational methods exist to solve

this class of optimization problems numerically, and the search for the global optimum is

enhanced, because any local optimum is also globally optimal.

Table 6.1 shows the properties of the optimization problems (4.12), (4.24), (5.12)

and (5.20). With the exception of the approach of tracking the vertexes of a polytope

(W1 ) and of decomposing Solution Space constraints (W2 ) in conjunction with non-convex

Solution Space constraint functions, all objective functions are convex. In the presence

of convex inequality optimization constraint functions and affine equality optimization

constraints, the optimization problem is convex.

The number of optimization parameters, denoted by N , depends linearly on the

number of dimensions d in the case of the box optimization approach based on vertex

tracking (V1 ). However, in the case of 2d-spaces, the number of optimization parameters is

large if both the numbers of dimensions and the number of vertexes of the two-dimensional
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polygons (approach W1 ) and the number of dimensions and the number of Solution Space

constraints (approach W2 ) is large respectively. In Table 6.1, d is assumed to be even,

and hence the number of 2d-spaces is n = d/2.

For all problems, the number of linear optimization constraints P scales with the

number of optimization parameters N , as each optimization parameter is bounded by a

maximum and a minimum value, i.e. 2N linear inequality constraints must be considered.

In the linear case for approach V1, each of them Solution Space constraints is assigned to a

particular vertex of the box, and hence m linear inequality constraints must be considered.

To ensure boxes with positive volumes only, d additional inequality constraints must be

considered; see constraint (4.14). For approach W1, each constraint is assigned to all

vertexes of the polytope, and hence, in the linear case, mpn number of linear inequalities

must be evaluated, with p as the number of vertexes of each two-dimensional polygon.

Independent of whether linear or nonlinear Solution Space constraints are present, m

linear equality constraints must be considered for approach W2 ; see Equation (5.9).

In the nonlinear case, the number of nonlinear optimization constraints denoted

by Q for approach V1 varies from m to m2d. For monotone functions, each Solution Space

constraint can be assigned to a particular vertex of the box, and hence m constraints must

be evaluated. In the case of non-monotone but convex Solution Space constraints, all

vertexes must be checked and m2d nonlinear constraints must be considered. For functions

that are non-monotone but convex w.r.t. some but not all design variables, the number

of nonlinear constraints lies in between m and m2d. For approach W1 in presence of

nonlinear but convex Solution Space constraints, each Solution Space constraint must be

assigned to each vertex of the polytope and hence, mpn nonlinear optimization constraints

must be considered.

The derivative of each of the nonlinear optimization constraints w.r.t. each of the

optimization parameters must be computed, either analytically or by e.g. finite-differences.

Therefore, the number of derivatives of the nonlinear optimization constraints

denoted by D for approach V1 is between m2d and m2d2d and is mpn2pn for approach

W1.

Figure A.3 in Appendix A.3 depicts values of N and P in dependence on the number

of dimensions and the number of Solution Space constraints in the linear case, i.e. if linear

Solution Space constraints are present only. Figure A.4 shows values of N , P , Q and D

in case of nonlinear Solution Space constraints. In both figures, d is assumed to be even

and hence n = d/2. Furthermore, for approach W1 the number of vertexes is assumed to

be p = 4.
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6.2 Numerical effort

In general, optimization algorithms comprise the following main parts: The first part is

the computation of a step, i.e. an update of the optimization parameters for the next

iteration, and the second part is the evaluation of the optimization constraints. In

the case of a gradient-based optimizer, if necessary, a third part is the estimation of the

derivatives. Additionally, memory must be allocated, variables must be initialized, etc.

Figure 6.1 depicts two examples, showing how the different parts contribute to the overall

CPU time. (A) is typical for cases where the Solution Space constraint functions are

provided as parametric functions and the derivatives are derived analytically, hence the

evaluation of the Solution Space constraints is computationally inexpensive and derivatives

are provided by the user and consequently need not be estimated. Case (B) occurs if the

Solution Space constraint functions are provided as oracle functions, are time consuming

to be evaluated and no derivatives are provided to the optimizer.

evaluation of optimization 
constraints

CPU time

computation of a step 

evaluation of additional 
optimization constraints
evaluation of Solution 
Space constraints

estimation of derivatives

A

B

initialization

Figure 6.1: Contribution of the different parts of an optimization algorithm to the overall
CPU time. In (A), with the exception of the initialization, all parts have the
same portion, while in (B) the evaluation of the Solution Space constraints
and the estimation of the derivatives are the most time consuming parts.

In the case of using the interior-point algorithm, in each iteration the algorithm

attempts to compute a Newton step, which requires to solve a linear system, comprising

the derivatives of the objective function as well as the derivatives of the optimization

constraints; see Appendix A.2. In the interior-point implementation in MATLAB this

is accomplished by applying LDL factorization, with a numerical effort scaling with the

size of the linear system. As already mentioned, the latter depends on the number of

optimization parameters N and the number of optimization constraints P and Q. Table
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6.1 shows how N , P and Q depend on the number of design variables d, the number of

Solution Space constraints m, the number of 2d-spaces n and the number of vertexes of

two-dimensional polygons p. If a step is rejected, additional evaluations of the objective

function and optimization constraints are necessary to adapt the step appropriately. In

addition to the computational effort for the determination of a step, the effort for the

evaluation of the optimization constraints and the determination of the derivatives, if not

provided by the user, must be taken into account.

The pattern search algorithm involves no expensive computations to determine a

step, see Appendix A.2, but generally requires many evaluations of the objective function

and optimization constraints per iteration. In the case of the pattern search implementa-

tion in MATLAB� , a maximum of 2d function evaluations per iteration are necessary.

In the case of the stochastic Solution Space algorithm for box-shaped Solution

Spaces [78], the complexity of the Trim Algorithm, which adapts the boundaries such that

the box contains good designs only, is O(Ñ2d) with Ñ as the number of sample points; see

Section 4.4.3. For each iteration, each box is evaluated by Ñ sample points. Therefore,

the number of overall evaluations of the Solution Space constraints scales with the number

of sample points, which is 100 in most of the examinations in [36] and recommended for

general problems in [45].

6.2.1 Box-shaped Solution Spaces: Tracking vertexes of a box vs.

the stochastic Solution Space algorithm

The overall effort in terms of CPU time for solving the problem of seeking a box with

maximum size measure, satisfying the Solution Space constraints, is influenced by the

number of iterations and the numerical effort per iteration. As mentioned above,

the numerical effort of an optimization algorithm is mainly composed of the effort for

computing a step, the effort for evaluating the optimization constraints, and if a gradient-

based optimizer is applied and no derivatives are provided by the user, the estimation

of the derivatives. In the following, the approach of using a gradient-based optimizer in

conjunction with vertex tracking (V1 ) and the stochastic Solution Space algorithm for

box-shaped Solution Spaces (U1 ) are compared.

Number of iterations Table 4.1 and 4.3 show, that in the case of solving problem (4.12)

and (4.24) respectively by using the interior-point algorithm and applying the approach

of vertex tracking (V1 ), where in the monotone case each Solution Space constraint is

assigned to one particular vertex of the box, the number of iterations does not depend on

the number of dimensions for the linear and monotone test problems (A1, A2, B1, C1 ).

All four examples require approximately ten iteration steps. In the case of convex Solu-
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tion Space constraints, the number of iterations increases significantly with an increasing

number of dimensions. For test problem D1, the number of iterations is seven for d = 2

and d = 4 and 24 for d = 10. For d = 50, the number of optimization constraints to be

considered is too large to be solved practicably.

The results of the examinations for the stochastic Solution Space algorithm (U1 ) in

Graff [36] show that the number of necessary iterations increases significantly with the

number of dimensions; see Section 4.4.3. Figure 4.7 shows that the Solution Space algo-

rithm requires approximately 25 iterations to solve the ten-dimensional Tilted-Hyperplane

problem and approximately 100 iterations for the 50-dimensional Tilted-Hyperplane prob-

lem.

Computing a step As mentioned above, when applying a Newton’s method based algo-

rithm, as is the case for approach V1, the numerical effort for computing a step scales with

the number of optimization parameters N and the number of optimization constraints P

and Q. Considering Table 6.1, the number of optimization parameters N scales linearly

with d and is between four (d = 2) and 100 (d = 50) for the examples considered in Section

4.5.3 and 4.6.3. In the presence of monotone Solution Space constraints (A1, A2, B1, C1 ),

the number of optimization constraints scales linearly with d and m and is between eleven

(d = 2 and m = 1) and 154 (d = 50 and m = 4). Although the number of optimization

parameters (N = [4, 100]) and the number of optimization constraints (P +Q = [11, 154]),

and hence the computational effort for each iteration, differs considerably for the examples

considered, the CPU time required to solve the problem differs only slightly. It seems that

the CPU time for computing a step is subordinated for the examples considered. In all ex-

amples, the number of iterations is on average equal to the number of function evaluations,

which indicates that the solver requires no or only a few adaptations of the step. However,

in the case of non-monotone but convex Solution Space constraint functions (D1 ), the

number of optimization constraints scales with the number of dimensions by 2d. Consid-

ering an example with d = 50 and m = 1, the number of optimization constraints is 1e15.

Table 4.3 shows that a problem with d = 4 is solvable within a practicable CPU time,

however, the CPU time increases significantly when the number of dimensions is increased.

Additionally, it is worth mentioning, that for the results in Table 4.1 and Table 4.3 the

Solution Space constraint functions are provided as parametric functions, computationally

inexpensive to evaluate and furthermore, all derivatives are available apriori.

In the case of the stochastic Solution Space algorithm, the step is computed based

on Ñ sample points, and the Solution Space constraint functions must be evaluated for

each sample point. Subsequently, the Trim Algorithm eliminates bad designs within the

box and hence provides the box for the next iteration. The effort is O(Ñ2d), however, no

information about the CPU time is provided in [36].
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Figure 6.2: Relation between the number of necessary Solution Space constraint evalua-
tions per iteration in dependence on the number of dimensions for the stochas-
tic Solution Space algorithm and the approach using a gradient-based algo-
rithm in conjunction with vertex tracking for monotone and non-monotone
but convex Solution Space constraints.

Evaluating optimization constraints Table 6.1 shows that the number of evaluations of

the Solution Space constraints per iteration is m in the case of approach V1 in conjunction

with monotone Solution Space constraints and m2d in conjunction with non-monotone but

convex Solution Space constraints. Additionally, d linear inequality constraints, see (4.14),

and 4d bounds of the optimization parameters must be considered.

In the case of the stochastic Solution Space algorithm, the number of evaluations of

the Solution Space constraints per iteration is mÑ , typically m100 (with an evaluation of

the box by 100 sample points). Note that the information based on the evaluation of the

sample points is used for computing a step as well for evaluating the box, e.g. computing

Ñg/Ñ .

In practice, often the evaluation of the Solution Space constraint functions is the most

expensive part, and hence the CPU time for computing a step is subordinated; see Figure

6.1 case (B). If the problem involves monotone Solution Space constraints and the deriva-
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tives are provided, approach V1 requires a hundredth of function evaluations compared

to approach U1, while the number of necessary function evaluations in presence of non-

monotone but convex Solution Space constraints outperform those of approach U1 in case

of d = 7; see Figure 6.2 (solid lines).

Estimating derivatives Furthermore, if the gradients of the nonlinear Solution Space

constraints are not available in the case of approach V1, they must be estimated by e.g.

finite-differences. The number of gradients is between m2d in the presence of mono-

tone Solution Space constraints and m2d2d in the case of non-monotone but convex So-

lution Space constraints. Hence, the number of function evaluations increases and for

each nonlinear optimization constraint, 2d further function evaluations are necessary, if

forward/backward-finite-differences are applied. This means that approach V1 in con-

junction with monotone Solution Space constraints outperforms approach U1 in the case

of d < 50. Figure 6.2 shows the relation between the number of necessary evaluations of m

Solution Space constraint functions and the number of dimensions for approach V1 and

U1, with and without estimating derivatives. Note that approach U1 does not require

derivatives.

Error of the results Note that for all results obtained by applying approach V1, the

relative error compared to the analytic solution is negligible.

Figure 4.8 shows that in the case of approach U1, the discrepancy between the numer-

ical result and the analytic solution for the Tilted-Hyperplane problem increases signifi-

cantly with an increasing number of dimensions. However, the fraction of good designs is

still close to 100%; see Section 4.4.3.

In summary, if the Solution Space constraints comprise monotone functions or non-

monotone convex functions with a moderate number of dimensions, and the derivatives

of the Solution Space constraints are available, approach V1 requires a significantly lower

number of evaluations of the Solution Space constraints per iteration compared to approach

U1. Taking into account that for approach V1 the number of iterations is remarkably lower

compared to approach U1, the overall number of evaluations is significantly lower, even

if the derivatives of the Solution Space constraints must be estimated by finite-differences.

The results obtained by applying V1 show a negligible error compared to the analytic solu-

tion, while the error of the results obtained by applying U1 increases significantly with an

increasing number of dimensions. This effect is called Vertex Problem, however, in prac-

tice, it is advantageous in terms of larger Solution Spaces with a fraction of good designs,

which is almost 100%. Furthermore, it is worth mentioning that approach V1 is only ap-

plicable to problems with particular types of Solution Space constraints, while approach U1
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is applicable to arbitrary problems.

Remark. A comparison between box-shaped Solution Spaces computed by a gradient-based

optimizer and by the stochastic Solution Space algorithm, particularly for crash applica-

tions, is provided by Fender [28].

6.2.2 2d-spaces: Tracking vertexes of a polytope vs. decomposing

Solution Space constraints

For seeking optimal 2d-spaces, optimization problems (5.12) and (5.20) are proposed. The

approach of the former is based on the idea of tracking the vertexes of a polytope (W1 ) and

the approach of the latter is based on decomposing Solution Space constraints (W2 ).

The result of approach W1 is a set of two-dimensional polygons, while the 2d-spaces

in case of approach W2 may assume arbitrary shape. This implies that only in the cases

where the analytic solutions are polygons, both approaches are able to find the identical

solution. As an example, consider the Four-Tilted-Hyperplanes problem (A2 ), where each

2d-space assumes the shape of a rectangle. Note that in the case of approach W1, the

number of vertexes of the two-dimensional polygons must be specified, while the number

of vertexes in the case of W2 is a result of the optimization. This means that in the

case of W1, the analytic solution can only be found if the number of vertexes is specified

appropriately. For instance, consider the case that the number of vertexes is specified to

be three for test problem A2. However, the analytic solution are rectangles, and obviously

the optimizer cannot provide a result which is identical to the analytic solution. On the

other hand, the numerical examinations in Section 5.4 revealed that selecting a higher

number of vertexes than the vertexes of the polygon of the analytic solution increases the

complexity of the optimization problem remarkably, and often no solution is found.

It is shown that solving problem (5.12) is in general computationally more expensive

compared to solving (5.20). Particularly for high-dimensional problems and a large num-

ber of vertexes of the two-dimensional polygons, the number of optimization constraints

exceeds values of 1e10; see Figure A.4. This is neither efficiently solvable nor yields ac-

curate results. Furthermore, self-intersecting polygons occur and force the optimizer to

recalculate the step, which increases the overall number of function evaluations and often

leads to a termination of the optimizer due to a step size that reached a critical value.

Approach W1 requires the complete Solution Space to be convex, which is often not

the case in real world problems. Approach W2 requires the Solution Space constraints

to be decomposable, which can be achieved by e.g. approximating the complete Solution

Space by parametric models, such as linear models or particular quadratic models. An

example is given in Chapter 7.
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6.2.3 Box-shaped Solution Spaces vs. 2d-spaces

In general, the effort for the computation of box-shaped Solution Spaces is less compared

to the computation of optimal 2d-spaces. This can be seen by comparing the results in

Tables 4.1 and 4.3 with the results in Tables 5.1 and 5.2. Due to an increased num-

ber of optimization parameters and optimization constraints in the case of approach W1

and W2 compared to approach V1, see Figure A.3 and A.4, the computational effort

increases. Additionally, the underlying optimization problems for seeking 2d-spaces are

more challenging to solve, e.g. due to the occurrence of self-intersecting polygons in the

case of problem (5.12) (W1 ) and discontinuities in the derivatives of the objective func-

tion of problem (5.20) (W2 ). However, 2d-spaces are able to provide significantly more

good designs and hence, robustness and flexibility in development processes compared to

box-shaped Solution Spaces; see Section 6.3.

6.3 Gain of Solution Space

0 5 10 15 20
100

101

102
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104

number of dimensions

Figure 6.3: Size of an optimal Solution Space based on 2d-spaces divided by the size of
an optimal box-shaped Solution Space vs. the number of dimensions, taken
from [26].

As shown in Section 3.2.5 and discussed in Section 6.2.3, boxes are, depending on

the shape of the complete Solution Space, ill-suited to represent the entire set of good

designs. By coupling two design variables pairwise, 2d-spaces are able to provide more

good designs. In the following, this is shown by the Tilted-Hyperplane problem introduced
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in Section 3.5. Therefore, the introduced size measures (5.3) and (4.2) are considered.

They quantify the size of the set of good designs specified by 2d-spaces and intervals

respectively. The value of the size measures for the Tilted-Hyperplane problem for an

optimal decomposition into 2d-spaces is μ (Ω)∗2d-space = 0.5
d
2 . For an optimal box it can be

calculated as μ (Ω)∗interval = 0.5d. Figure 6.3 shows that the ratio of the values of the size

measures for optimal 2d-spaces compared to optimal intervals increases significantly with

increasing number of dimensions. Consider the case of d = 20: The result of the 2d-space

approach is able to represent 1,024 times more good designs compared to intervals.

Note that the gain of Solution Space can further be increased by coupling more than

two design variables. However, computing 3d-spaces, 4d-spaces, etc. yields results, which

are not easily interpretable by decision makers and cannot be visualized in an intuitive

manner. Furthermore, in practice, decoupling of requirements is important to accomplish

development tasks efficiently; see concurrent engineering [2, 58, 59, 70,76].
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7 — Application

In the following, a chassis design problem, involving typical questions arising in

early development stages, is presented. The proposed approaches are applied

to demonstrate the applicability and to point out the differences between the

approaches. Furthermore, a procedure is presented where the Solution Space is

approximated by mathematical surrogates such as linear or quadratic models,

Solution Spaces are computed based on the approximation, the results are

validated w.r.t. the physical model and, if necessary, the approximation is

refined. Additionally, further practicable aspects are considered.
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7.1 Chassis design in an early design stage

As mentioned in Chapter 1, the example considered here represents a typical design prob-

lem in a stage where conceptual decisions have already been made and chassis components

must be designed by simulation to support test engineers in the subsequent development

phase; see Figure 1.1. The number of vehicles that must be developed often exceeds

200, differing in the type of the vehicle (sedan, convertible, etc.), the type of the engine

(combustion engine, electric engine, etc.), the drive concept (rear-wheel drive, front-wheel

drive, all-wheel drive) etc.; see Figure 7.1. From the viewpoint of driving dynamics, the

vehicles can be clustered, depending on the desired characteristics of the driving dynamical

behavior, i.e. requirements and similarities in the vehicle parameters such as the overall

mass of the vehicle and portion of the load acting on the rear axle of the vehicle.

Two examples are presented in the following. Example One shows how to apply the

methods introduced in this thesis for the development of single vehicles. In Example Two

a set of vehicles must be designed, e.g. a mid-sized sedan with rear-wheel drive comprising

different combustion engines (see Figure 1.6), and hence variations in vehicle parameters

such as the overall mass and the portion of the load acting on the rear axle of the vehicle

must be considered. Functional properties of the main chassis components (anti-roll bars,

bump stops, etc.) must be developed, such that the vehicles satisfy specified requirements

on stationary and dynamic driving behavior. In Example One, all properties of other

components that show interactions with the chassis components that must be designed,

are assumed to be specified. In Example Two, properties of influencing components and

subsystems, e.g. the body of the vehicle, are not fully specified and variation must be

taken into account.

7.1.1 Design variables and vehicle parameters

Figure 7.2 depicts the front axle of a passenger vehicle and the components that must be

designed in the following example. The components are the anti-roll bar, the bump stop

and the rebound stop. The anti-roll bar is a torsional spring element, which is connected

with the left and right axle and acts in cases where the wheel travel on the one side is

different to the wheel travel on the other side. The properties that must be designed are

the stiffnesses of the anti-roll bars of the front and rear axles respectively. The bump stop

is a spring element situated at the piston rod of the damper, which prevents an abrupt

stop of the axle under compression, due to geometrical constraints. Depending on the

length, the bump stop is activated when a particular vertical wheel travel is reached, i.e.

it has no effect in case of wheel travels beyond a particular value. The properties that

must be designed are the stiffnesses and the lengths of the bump stops of the front and
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Figure 7.1: In chassis design, typically many vehicles must be considered, differing in the
type of the vehicle, the drive concept, engine configuration, etc. This influ-
ences, for instance, properties of the overall vehicle such as vehicle mass and
rear wheel load. The graph on the right side shows two vehicles differing in
the overall mass and rear wheel load (Example One) as well as a set of vehicles
with a range for each of the two properties (Example Two).

rear axle respectively. The counterpart of the bump stop is the rebound stop, its purpose

is to prevent abrupt stops of the axle under extension due to geometrical constraints. It

is usually located inside the damper tube. The properties that must be designed are the

stiffnesses as well as the lengths of the rebound stops of the front axle.

In Example Two, the following additional four vehicle parameters, which show varia-

tion, are considered: The mass of the overall vehicle pm,veh, the portion of the mass, which

acts on the rear axle prl,r, the height of the center of gravity above ground pz,cg, and the

rotatory inertia of the overall vehicle around the vertical axis of the vehicle pi,veh. The

design variables and vehicle parameters as well as the associated bounds of the design

and parameter space are listed in Table 7.1. In Example Two, not a single vehicle but a

whole set of vehicles must be designed. The vehicles are equipped with different engines.

Those with large engines show a higher overall mass, which acts on the front axle and

thus the contribution on the rear axle prl,r is lower. To cover the entire range of different

engines, the parameters pm,veh and prl,r must be varied within the range of [1600, 1700] kg

and [51, 53] % respectively. Additionally, based on expected changes in the body of the

vehicle, variations of the parameters pz,cg and pi,veh must be taken into account. The ranges

are [535, 550] mm and [3050, 3200] kg m2 respectively.

7.1.2 Performance measures

In the following examples, the performance of the vehicle regarding its stationary driving

behavior as well as regarding its dynamic safety behavior is assessed. Therefore, different

standardized maneuvers exist, which allow an objective and reproducible assessment of
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1

2

3

Figure 7.2: Front axle of a passenger vehicle with chassis components anti-roll bar (1),
bump stop (2) and rebound stop (3).

the performance of vehicles.

One of the stationery maneuvers is the quasi-steady-state-cornering maneuver

(QSSC); see [52]. A vehicle follows a circle with a particular radius, e.g. 105m, while the

velocity is slowly increased. With increasing velocity, the lateral acceleration increases to a

certain point, where the vehicle can no longer follow the circle. The performance measures

considered here, which can be derived from this maneuver, are the ratio of the roll moment

acting on the front axle and the total roll moment for a particular lateral acceleration,

the roll angle of the vehicle for a particular lateral acceleration and the lateral accelera-

tion at the point where the vehicle can no longer follow the circle (maximum reachable

lateral acceleration). The roll moment ratio characterizes the understeering/oversteering

tendency of a vehicle. The roll moment is the result of the lateral force acting in the center

of gravity while cornering and the associated lever arm between the center of gravity and

the height of the roll center. The larger the roll moment ratio, the greater the tendency of

the vehicle to show an understeering behavior, which is preferred in chassis design. The

roll angle is preferred to be low, due to comfort and safety purposes, while the maximum

lateral acceleration is preferred to be high, due to driving dynamical purposes (sporty

character).

Here, the sine-with-dwell maneuver (SWD) is used to assess the dynamic safety

behavior; see [1]. The maneuver mimics a situation where a lane change is executed due

to an obstacle ahead. For the SWD maneuver, the steering angle as well as the velocity

are specified. The performance measures considered here are the maximum side-slip angle

as well as the minimum vertical tire forces. The side-slip angle is the angle between the

longitudinal axis of the vehicle and the vector of the velocity of the vehicle. Low values of

the side-slip angle and high values of the minimum vertical tire forces are preferred. The

reason for the former is the demand on good controllability by the driver, and the reason
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Table 7.1: Design variables and vehicle parameters as well as the associated bounds of the
design space and parameter space respectively.

design

variable

lower

bound

upper

bound

unit description

xca,f 15 29 N/mm Stiffness of the anti-roll bar of the front axle

xca,r 0.5 8 N/mm Stiffness of the anti-roll bar of the rear axle

xcbs,f 10 40 N/mm Stiffnesses of the bump stops of the front axle

xlbs,f 60 110 mm Lengths of the bump stops of the front axle

xcbs,r 10 40 N/mm Stiffnesses of the bump stops of the rear axle

xlbs,r 60 92 mm Lengths of the bump stops of the rear axle

xcrbs,f 20 40 N/mm Stiffnesses of the rebound stops of the front axle

xlrbs,f 134 154 mm Lengths of the rebound stops of the front axle

pm,veh 1600 1750 kg Overall mass of the vehicle

prl,r 50 55 % Ratio of the mass acting on the rear axle to the overall

mass

pz,cg 530 570 mm Height of the center of gravity above ground

pi,veh 3000 3300 kg m2 Inertia of the vehicle around the vertical axis of the ve-

hicle

for the latter is the demand on low roll-over tendency of the vehicle in severe lane change

situations.

7.1.3 Physical relations between design variables and performance

measures

In the following, the tentative influence of the anti-roll bars, bump stops and the rebound

stop on the stationary and dynamical performance measures is briefly explained. All of the

design variables in this example have in common that they influence the vertical stiffness of

the front and rear axle respectively. As mentioned above, the bump stop and the rebound

stop are activated only in the case of vertical wheel travel with a particular magnitude.

This implies that the vertical stiffness of the associated axle can not only be increased by

increasing the stiffness of the bump stop or the rebound stop, but also by increasing the

lengths of the spring elements. The longer the elements the earlier they become active, and

hence contribute to the vertical stiffness. The higher the vertical stiffness of the front axle

compared to the vertical stiffness of the rear axle, the greater the roll moment ratio and

vice versa. The opposite relation holds true for the maximum lateral acceleration while

cornering. Increasing the overall vertical stiffness, i.e. the sum of the vertical stiffnesses of

the front and of the rear axle, means decreasing the roll angle of the body of the vehicle and

vice versa. The performance measures derived from the dynamic maneuver also depend

on the vertical stiffnesses. With increasing stiffness of the front axle compared to the rear
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Table 7.2: Vehicle performance measures and the associated requirements represented by
lower and/or upper bounds.

perf.

mea-

sure

lower

bound

upper

bound

unit description, maneuver

zR 55 60 % Ratio of the roll moment acting on the front axle and the

total roll moment while cornering with specified lateral

acceleration, QSSC.

zφ 2.8 deg Roll angle of the body while cornering with specified lat-

eral acceleration, QSSC.

zay 9.20 m/s2 Maximum reachable lateral acceleration while cornering,

QSSC.

zβ - 12 deg Maximum side-slip angle while severe lane change ma-

neuver, (here: stability control inactive), SWD.

zfz 800 - N Minimum of the vertical tire forces on the left side of the

vehicle, SWD.

Table 7.3: Relations between changes in the design variables and changes in the perfor-
mance measures. To increase the performance measure (+), the value of the
associated design variable must be increased (+) or decreased (-).

xca,f xca,r xcbs,f xlbs,f xcbs,r xlbs,r xcrbs,f xlrbs,f

zR+ + - + + - - + +

zφ+ - - - - - - - -

zay+ - + - - + + - -

zβ+ - + - - + + - -

zfz+ + - + + - - + +

axle, the side-slip angle will decrease, while the minimum tire forces will increase. The

aforementioned is summarized in Table 7.3.

7.1.4 Physical simulation model and mathematical surrogates

For the numerical simulation of the maneuvers mentioned in Section 7.1.2, a look-up table

based nonlinear two-track model, implemented in MATLAB�, is used; see [44]. The

model comprises five rigid parts, i.e. the body with six degrees of freedom as well as the

tires of the vehicle. For modeling the dynamics of the tires, the Magic Formula model is

applied; see [54]. Its name is based on the fact that the equations of the model are not

physical but empirical. The coefficients of the model are adjusted such that the forces and

moments resulting from the model match best with experimental data. The interaction

between the body and the tires is given by look-up tables derived from a high-fidelity multi-
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body simulation model in ADAMS�. Once the look-up tables are derived, the model can

provide comprehensive results within a few minutes of CPU time for many maneuvers

typically considered in chassis design, e.g. quasi-steady-state-cornering and sine-with-

dwell. The equations of motion are solved in time domain by numerical integration. The

model can be considered as an oracle function, since there is no solution in closed form;

see Section 3.2.2.

In the following, mathematical surrogates (also called response surfaces or meta-models;

see [67]), particularly parametric models, are used for two reasons. The first reason is

that non-gradient-based optimization algorithms require up to hundreds and thousands

of function evaluations. Mathematical surrogates are evaluated in milliseconds and hence

enable solving the optimization problems within seconds and minutes respectively instead

of hours. The second reason is the fact that parametric surrogates, e.g. linear or quadratic

models, provide insight into the structure of the system, which enables the analytic com-

putation of derivatives, analytic assessments of the properties of the function and the

decomposition of Solution Space constraints, necessary for the approach proposed in Sec-

tion 5.5.

To generate surrogates, training data must be provided. Thus, the design variables and

vehicle parameters listed in Table 7.1 are randomly scattered within the design space and

parameter space by Monte Carlo sampling. 10,000 vehicle configurations are generated,

simulations with the physical two-track model are executed in parallel (with approx. two

days computation time, three computers in parallel) and the performance measures are

computed.

On the one hand, a linear model is used, which is obtained by applying linear para-

metric regression to the set of data points. On the other hand, the same data set is used

to generate a quadratic surrogate model. To apply the approach of decomposing nonlinear

Solution Space constraints, a decomposable quadratic model with the following particu-

lar structure, motivated in Section 5.3, is generated. The coefficients are computed by

applying linear parametric regression.

gj (x) = g1j (x1, x2) + g2j (x3, x4) + ...+ gnj (x2n−1, x2n)

with

gj (x1, x2) = a1,2 +Gj,1x1 +Gj,2x2 +Hj
1,1x

2
1 +Hj

2,2x
2
2 +Hj

1,2x1x2

gj (x3, x4) = a3,4 +Gj,3x3 +Gj,4x4 +Hj
3,3x

2
3 +Hj

4,4x
2
4 +Hj

3,4x3x4

...

The fidelity of the surrogates is assessed by measures well-known from the field of

classification; see e.g. [57]. Solution Spaces are related to classification problems based
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on the fact that Solution Spaces rely only on the information whether a design is good

or bad, i.e. satisfies the requirement on the system or not, and not on the value of the

performance function itself. 70% of the data points are considered for the generation of

the surrogates, while the remaining data is used for validation. Tables 7.4, 7.5, and 7.6

show the results. Appendix B.1 shows the correlation between the output of the physical

model (true output) and the output of the mathematical surrogate for the performance

measure zβ. The measures are defined as follows:

� True positives : Data points where both the output of the surrogate model and the

true output satisfy the associated requirement.

� True negatives : Data points where both the output of the surrogate model and the

true output do not satisfy the associated requirement.

� False positives : Data points where the output of the surrogate model satisfies the

associated requirement, while the true output does not satisfy the associated require-

ment.

� False negatives : Data points where the output of the surrogate model does not

satisfy the associated requirement, while the true output satisfies the associated

requirement.

A model with a high portion of false negatives and a low portion of false positives is

said to be conservative w.r.t. the requirements on the system. As a consequence, the

Solution Space approximated by those models is smaller than the actual Solution Space,

but results obtained by solving the optimization problems proposed in this thesis based on

these models do most likely hold true w.r.t. the physical model. Models with a high portion

of false positives and a low portion of false negatives, however, yield an approximation

of the actual Solution Space, which is larger compared to conservative models, however,

results based on these surrogates may fail w.r.t. the physical model.

Figure 7.3 shows a procedure where the actual overall Solution Space is approximated

by surrogate models, which enables to compute optimal Solution Spaces very efficiently.

Depending on the surrogate, the computed Solution Spaces may contain bad designs and

the process must be repeated by generating more conservative surrogates. Ongoing re-

search showed that a support vector machine is able to provide mathematical surrogates

of arbitrary order, i.e. linear models, quadratic models, etc., with a specified portion of

false positives and false negatives respectively. In the following, the results are validated

by generating 100 randomly and uniformly distributed sample points within the Solution

Spaces obtained by solving the proposed optimization problems and assessing each point

as good or bad w.r.t. the physical model.
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As proposed in the sections above, the problem of seeking Solution Spaces can be solved

more efficiently in cases, where the Solution Space constraints show particular properties,

e.g. are monotone or convex w.r.t. the inputs. To analyze the type of Solution Space

constraints in the case of the quadratic model, Equations (3.6) and (3.7) are applied.

Therefore, the minimum and maximum values of the first derivatives under consideration

of the possible ranges of the design variables
[
xlb
i , x

ub
i

]
and vehicle parameters are com-

puted by applying interval arithmetic; see Section 4.2.2. Since the first derivatives are

linear functions w.r.t. the design variables, the same sign of the minimum value and the

maximum value means monotone behavior. An assessment of the quadratic model shows

that the performance measures are not monotone w.r.t. some of the design variables.

However, this is not in accordance with the explanations based on physical relations in

Section 7.1.3, but may be explained by approximation errors of the quadratic model. An-

alyzing conditions (3.6) and (3.7) statistically, i.e. by generating random designs x and

analyzing one-dimensional sections of the high-dimensional design space allows to obtain

a degree of monotonicity. The idea is that if a function shows non-monotone behavior

for very few combinations of input variables, i.e. designs x, it is very unlikely that the

final box reaches these non-monotone regions of the input space. This allows to apply

vertex tracking where each Solution Space constraint is assigned to a particular vertex of

the box, even if the functions are not monotone for all designs within the design space.

The results of the analysis for vehicle 1, where 1,000 designs are generated randomly and

uniformly within the design space, show that 4% of the one-dimensional sections of the

performance measures zφ and zay are non-monotone w.r.t. the design variable xcbs,f. The

results of the analysis for vehicle 1 with 100 randomly generated designs is provided in the

Appendix B.3. Since the occurrence of non-monotone behavior is maximum 4%, vertex

tracking with assignment of the Solution Space constraints to particular vertexes is applied

to the quadratic model. The analysis is repeated for vehicle 2 and for the case in which all

twelve input variables are varied within their associated design space; see Example Two.

Based on the fact that the approach introduced in Section 4.6.1 for monotone functions

can be applied, the problem can be solved with very few necessary function evaluations

and CPU time. By computing the eigenvalues of the Hessian of the quadratic model,

see Definition 8, it can be shown that the Solution Space constraints are neither convex

nor concave. As mentioned in Section 5.4, the approach of vertex tracking of a polytope

can only be applied to convex problems, and hence it is not applied to the chassis design

problem approximated by the quadratic model.

7.1.5 Technical questions

In the following, the proposed approaches are applied to give answers to the following

typical questions, which arise in chassis design in early development stages:
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Table 7.4: Percentage of data points that are of the category true positive, true negative,
false positive and false negative for the linear model. The model is generated
based on a set of 7,000 data points and validated by 3,000 additional data
points.

true

positive

true

negative

false

positive

false

negative

zR > 55 75.4 20.7 1.9 2.0

zR < 60 79.6 17.0 2.3 1.1

zφ < 2.8 26.9 69.1 1.4 2.6

zay > 9.2 91.1 4.3 2.4 2.2

zβ < 12 47.9 48.2 1.4 2.5

zfz > 800 45.1 50.5 1.3 3.1

Table 7.5: Percentage of data points that are of the category true positive, true negative,
false positive and false negative for the quadratic model. The model is gen-
erated based on a set of 7,000 data points and validated by 3,000 additional
data points.

true

positive

true

negative

false

positive

false

negative

zR > 55 77.0 22.2 0.4 0.5

zR < 60 80.4 18.8 0.4 0.4

zφ < 2.8 29.0 69.6 0.9 0.5

zay > 9.2 91.9 4.3 2.4 1.4

zβ < 12 49.6 49.0 0.5 0.8

zfz > 800 47.5 50.4 1.4 0.7

Table 7.6: Percentage of data points that are of the category true positive, true negative,
false positive and false negative for the decomposable quadratic model.
The model is generated based on a set of 7,000 data points and validated by
3,000 additional data points.

true

positive

true

negative

false

positive

false

negative

zR > 55 76.1 21.6 0.9 1.4

zR < 60 80.1 18.1 1.1 0.7

zφ < 2.8 27.7 69.7 0.8 1.8

zay > 9.2 91.4 4.3 2.4 1.9

zβ < 12 48.7 48.8 0.7 1.7

zfz > 800 46.1 50.8 1.0 2.1
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Figure 7.3: Procedure of using surrogates for the computation of Solution Spaces. Surro-
gates with particular properties, e.g. linear, monotone, convex, etc. enable an
efficient computation of Solution Spaces.

1. Which (combinations of) chassis component properties are permissible in the sense

that all requirements on the vehicle are satisfied? In Example Two, additionally,

the following must be considered: The vehicle parameters listed in Table 7.1, e.g.

the overall mass of the vehicle, scatter in a specified range. Solution: Computing

Solution Spaces for the design variables. For Example Two, additional constraints

must be considered in order to fix the Solution Spaces of the vehicle parameters to

the specified ranges. (Question One)

2. Is it possible to obtain a larger Solution Space for particular chassis component prop-

erties, e.g. the stiffnesses of the anti-roll bars of the front and the rear axle? So-

lution: Computing Solution Spaces and weighting the size measures associated to

particular design variables. (Question Two)

3. Which ranges of particular chassis component properties, e.g. those of the bump

stops, can be excluded for further considerations, since they will not lead - indepen-

dently of the values of the other properties - to a system that satisfies all require-

ments? Solution: Computation of the outer box. (Question Three)
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7.2 Numerical results of Example One (single vehicles)

In Example One, two single vehicles (see Figure 7.1) must be designed with the design

variables listed in Table 7.1, such that the requirements provided in Table 7.2 are satisfied.

For the 2d-spaces, design variables must be paired. Generally, this can be done arbitrarily,

however, some pairings might lead to larger Solution Spaces compared to others, and hence

this might be considered as a further degree of freedom for the underlying optimization

problem; see also [26]. In this example, design variables that belong to one component are

paired to enable independent design work.

Firstly, the eight design variables of a vehicle with the following vehicle parameters must

be designed: pm,veh = 1650 kg, prl,r = 52 %, pz,cg = 540 mm, pi,veh = 3125 kg m2 (vehicle

1, Figure 7.1). The proposed approaches are applied, namely the interval approach based

on a stochastic Solution Space algorithm (U1 ) (black boxes, thin lines), based on vertex

tracking (V1 ) (blue boxes, bold lines), the 2d-space approach based on vertex tracking of

a polytope (W1 ) (black polygons, dashed lines) and based on decomposing Solution Space

constraints (W2 ) (white areas). The results are based on the linear model, the quadratic

model and, in the case of approach W2, on the decomposable quadratic model. To show the

validity of the results, 100 sample points are randomly and uniformly distributed within

the obtained Solution Spaces and the performance measures are computed and evaluated

on the physical model.

Secondly, the four design variables of the bump stops of the front and rear axle of a

vehicle with the following vehicle parameters must be designed: pm,veh = 1750 kg, prl,r =

54 %, pz,cg = 565 mm, pi,veh = 3225 kg m2 (vehicle 2, Figure 7.1). The focus in this four-

dimensional example is to give an answer to Question Three, stated in Section 7.1.5, by

computing the outer box. The design variables of the anti-roll bar of the front and of the

rear axle as well as the design variables of the rebound stop of the front axle are specified

by: xca,f = 24 N/mm, xca,r = 4 N/mm, xcrbs,f = 28 N/mm, xlrbs,f = 140 mm. Additionally,

the optimal box as well as the optimal 2d-spaces are computed. All results are based on

the linear model.

Answer to Question One Figures 7.4 and 7.5 show the results for the eight-dimensional

chassis design problem. Both the linear model and the quadratic model (for approach

W2 the decomposable quadratic model is used) are applied. The results give an answer

to Question One, stated in Section 7.1.5. In the case of the linear model, the optimal

Solution Spaces based on approach U1, V1, W1 and W2 are provided. In the case of

the quadratic model, approach W1 is not applied, because the quadratic model is not

convex, and hence does not satisfy the condition for vertex tracking in conjunction with

polytopes; see Section 5.4. The portion of sample points that satisfy all requirements
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evaluated on the physical model is provided in Table 7.9. Table 7.7 provides the nu-

merical effort in terms of number of iterations, number of function evaluations, CPU

time as well as number of optimization parameters and optimization constraints. Note

that the results obtained by applying the stochastic Solution Space algorithm are not

deterministic. The values provided in Table 7.7 for approach U1 are the mean values

based on five subsequent runs; see Appendix B.4. The initial box was determined by

seeking a single feasible design and considering the design as center point of the ini-

tial box, with each edge length being 10% of the design space; see Section 4.5.2. The

initial box is xl
0 = (27.58, 6.91, 31.94, 83.76, 15.18, 85.93, 20.02, 140.39, 1650, 52, 540, 3125)

and xu
0 = (28.98, 7.66, 34.94, 88.76, 18.18, 89.13, 22.02, 142.39, 1650, 52, 540, 3125). Table

7.8 shows the numerical effort for the results based on the quadratic model. The pro-

cedure to determine the initial box is the same as for the linear model, the initial box

is xl
0 = (27.56, 7.24, 36.97, 86.49, 19.85, 80.64, 27.01, 144.01, 1650, 52, 540, 3125) and xu

0 =

(28.96, 7.99, 39.97, 91.49, 22.85, 83.84, 29.01, 146.01, 1650, 52, 540, 3125).

Table 7.7: Numerical effort for the computation of the results provided in Figure 7.4 based
on the linear model. The number of iterations for approach U1 is the sum of
the number of iterations in the Exploration Phase and the number of iterations
in the Consolidation Phase. The overall number of optimization constraints is
the sum of the linear inequality constraints, linear equality constraints and the
bounds of the optimization parameters.

no.

iterations

no.

fun. eval.

CPU

time [sec]

no. opt.

parameters

no. opt. constraints

U1 50+35* 8500* 32.34* - -

V1 10 11 0.09 16 (6 + 8) + 0 + 2 · 16
W1 28 32 2.82 32 1536 + 0 + 2 · 32
W2 101 490 37.41 24 0 + 6 + 2 · 24
*average based on five runs

Answer to Question Two To answer Question Two, stated in Section 7.1.5, a weighting

factor of ten is used for the size measure associated with the design variables xca,f and xca,r.

Figure 7.6 and Figure 7.7 depict the results based on the linear model and the quadratic

model. For approach W2, the decomposable quadratic model is applied. The results of

approach V1, W1, and W2 are shown. In the case of the quadratic model, approach W1

is not applied, because the quadratic model is not convex and hence does not satisfy the

condition for vertex tracking in conjunction with polytopes; see Section 5.4. Approach U1

is not able to weight particular size measures and hence is not applied here. As initial box

the one used to answer Question One is used.
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Table 7.8: Numerical effort for the computation of the results provided in Figure 7.5 based
on the quadratic model. The number of iterations for approach U1 is the
sum of the number of iterations in the Exploration Phase and the number
of iterations in the Consolidation Phase. The overall number of optimization
constraints is the sum of the nonlinear inequality constraints, nonlinear equality
constraints, linear inequality constraints, linear equality constraints and the
bounds of the optimization parameters.

no.

iterations

no.

fun. eval.

CPU

time [sec]

no. opt.

parameters

no. opt. constraints

U1 50+35* 8500* 43.60* - -

V1 26 29 1.21 16 6 + 0 + 8 + 0 + 2 · 16
W1 - - - - -

W2 250 8071 292.02 24 0 + 0 + 0 + 6 + 2 · 24
* average based on five runs

Table 7.9: Portion of good sample points in % within the computed Solution Spaces of the
different approaches evaluated on the physical model for the eight-dimensional
chassis design problem, Example One, providing an answer to Question One;
see Figure 7.4 and Figure 7.5

linear

model

quadratic

model

U1 99 98

V1 100 100

W1 100 -

W2 100 100

Answer to Question Three To answer Question Three, stated in Section 7.1.5, for

the four-dimensional problem, the outer box is computed by applying the linear model.

Therefore,
(
6+8
4

)
= 1001 linear equations are solved to compute the vertexes of the four-

dimensional polytope, as proposed in Section 4.5.1. Additionally, approach V1, W1, and

W2 are applied to the linear model. Figure 7.8 shows the optimal box (blue box) as well

as the optimal 2d-spaces. Additionally, a box near the boundary of the outer box (small

red box) is computed, by setting additional constraints, see Section 4.7.

Discussion Table 7.9 shows that the portion of good sample points, evaluated on the

physical model, is larger than 98% for all results, which is sufficient for design problems in

an early design stage. Obtaining a value less than 100% can be explained by two effects.

Firstly, the approximation of the true complete Solution Space by the surrogate model

is inaccurate in terms of false positives and secondly, the optimization results contain
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Table 7.10: Normalized size measure of the computed Solution Spaces obtained by the
different approaches for the eight-dimensional chassis design problem, Example
One, providing an answer to Question One; see Figure 7.4 and Figure 7.5. Note
that for better readability the values are multiplied by 1e5.

linear

model

quadratic

model

U1 17.18 48.04

V1 2.60 20.70

W1 143.12 -

W2 295.04 244.55

constraint violations, particularly for approach U1 often the Vertex Problem occurs; see

Section 4.4.3.

Considering the results depicted in Figure 7.4 shows that the intervals computed by

approach U1 are larger compared to the intervals computed by approach V1, except for

the design variables xcrbs,f and xlrbs,f. The size measure of the Solution Space computed

by approach U1 is larger compared to the size measure of the Solution Space computed

by approach V1, the values are μ (Ω)U1,lin = 1.72e-4 and μ (Ω)V1,lin = 2.60e-51; see also

Table 7.10. This can be explained i.a. by the Vertex Problem; see Section 4.4.3. The

stochastic Solution Space algorithm terminated due to 100 out of 100 good sample points

in the Consolidation Phase; see Appendix B.4. It is worth mentioning that the results

obtained by approach U1 are not deterministic and each run provides dissimilar results;

see Figure B.7 in the Appendix.

A comparison of the optimal 2d-spaces depicted in Figure 7.4 obtained by applying

approach W1 and approach W2 shows that both approaches provide similar results. How-

ever, the size measure of the results obtained by approach W1 is smaller than the size

measure obtained by approach W2. This is based on the fact that in the case of W1, the

number of vertexes of each two-dimensional polygon must be specified, which is p = 4

for the example considered. Hence, the optimizer is not able to find the same solution as

found by approach W2, where the polygons show up to six vertexes.

A comparison between the obtained intervals and optimal 2d-spaces in Figure 7.4

reveals that 2d-spaces are able to show significantly more good designs than intervals. In

the case of the 2d-spaces, the requirements on the design variables are coupled pairwise.

However, in the example considered, each pair of design variables is associated with a

particular chassis component (except for the anti-roll bars) that can be developed in detail

independently. Thus, providing 2d-spaces rather than intervals is not contradictory to

concurrent engineering for the example considered.

1The size measures are normalized w.r.t. the size measure of the design space.
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In the following, the size measures of the results based on the linear model, see Figure

7.4, are compared with the size measures of the results based on the quadratic model

depicted in Figure 7.5. The comparison of the results of the interval approaches U1

and V1 shows that the size measures based on the quadratic model are larger com-

pared to the size measures based on the linear model. The normalized size measures

are μ (Ω)U1,quad = 4.80e-4 and μ (Ω)V1,quad = 2.07e-4; see also Table 7.10. This is in ac-

cordance with the understanding that the quadratic model is able to represent the true

complete Solution Space better compared to the linear model. Better means that the

loss of Solution Space caused by the approximation is lower. The aforementioned only is

valid, if the models show a similar portion of false positives and false negatives, i.e. have

similar approximation qualities. Both the linear model and the quadratic model show

a low portion of false positives, and hence are conservative models, see Tables 7.4, 7.5,

and 7.6. However, considering the size measures of approach W2, based on the linear

model and based on the quadratic model, reveals that the latter is smaller, the values are

μ (Ω)W2,lin = 2.95e-3 and μ (Ω)W2,quad = 2.44e-3. This indicates, that a better approxima-

tion of the complete Solution Space does not necessarily lead to larger boxes and 2d-spaces

respectively.

Considering the numerical effort of approach U1 and V1, listed in Table 7.7 and Ta-

ble 7.8, shows that the number of iterations, the number of function evaluations and the

CPU time of approach U1 is significantly higher compared to approach V1. This can

be explained by the fact that approach V1 uses the gradient information of the objec-

tive function and optimization constraints provided by the user, enabling the algorithm

to converge very quickly to the solution of the problem. Furthermore, the examples con-

sidered make advantage of the approach of vertex tracking, with an assignment of each

Solution Space constraint to a particular vertex of the box. In cases where the derivatives

are not provided by the user or vertex tracking with consideration of particular vertexes

only cannot be applied, the numerical effort for approach V1 raises significantly or the

approach may even fail. Note that the stochastic Solution Space algorithm for box-shaped

Solution Spaces can handle arbitrary problems and hence is applicable to a wider range

of problems.

A comparison of the results in Table 7.7 and Table 7.8, confirms that the numerical

effort for the computation of optimal 2d-spaces by applying approach W1 and W2 is gen-

erally greater compared to the computation of boxes by applying approach V1. Approach

W1 is applied to the linear problem only, because the problem based on the quadratic

model is non-convex and the condition for the application of W1, i.e. convex Solution

Spaces, is not satisfied. Furthermore, it is worth mentioning that approach W1 requires a

very large number of optimization constraints, whereas approach W2 in conjunction with

the quadratic model requires a very large number of function evaluations, i.e. evaluations
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of the objective function and optimization constraints respectively. The former can be

explained by the number of vertexes of the eight-dimensional polytope, which is 28, and

the latter by the fact that a non-gradient-based optimizer is applied, namely the pattern

search algorithm.

Comparing the results depicted in Figure 7.4 and Figure 7.5 with the results depicted

in Figure 7.6 and Figure 7.7 shows the effect of weighting the size measures of the design

variables associated with the anti-roll bar of the front and rear axle respectively. This

yields more space for variation for the design variables xca,f and xca,r, however, the Solution

Spaces for the other variables decreases significantly.

In Figure 7.8, the result of the computation of the outer box is shown. Gray areas

are combinations of design variables, independent of the choice of the values of the other

design variables, leading to a vehicle that fails w.r.t. the specified requirements. This is

important information for test engineers in subsequent design stages, since components

with those properties can be excluded from further considerations. The optimal intervals

and 2d-spaces depicted in Figure 7.8 are subsets of the complete Solution Space. This

implies that components with design variable values outside these Solution Spaces - but

inside the outer box - can also be realized, whereas the vehicle satisfies all requirements.

This is illustrated by setting additional constraints to the box optimization problem in

terms of fixing the lower boundary of the design variable xlbs,f to a value close to the

edges of the outer box. The result (red small boxes) is a box that is significantly smaller

compared to the box obtained by solving the problem without additional constraints.

This confirms that values outside the optimal Solution Spaces, represented by intervals

or 2d-spaces, but inside the outer box, also lead to good designs, however, the size of the

Solution Space decreases.

7.3 Numerical results of Example Two (set of vehicles)

Example Two differs from Example One in that an entire set (cluster) of vehicles com-

prising different engines is designed, rather than a single vehicle. Therefore, the vehicle

parameters pm,veh and prl,r must be varied within the range of [1600, 1700] kg and [51, 53] %

respectively, and hence the influence affected by different engines, i.e. variation in the over-

all mass and mass distribution in longitudinal direction, is taken into account. Based on

expected changes in the body of the vehicle, variations of the parameters pz,cg and pi,veh

must also be considered. The ranges are [535, 550] mm and [3050, 3200] kg m2 respectively.

In all optimization runs, additional equality constraints are set in order to fix the Solution

Spaces of the associated vehicle parameters. Therefore, it is guaranteed that the obtained

Solution Spaces of the design variables hold true for the specified set of vehicle parameters,

mentioned above. For the 2d-spaces, design variables must be paired. In Example One



124 Chapter 7 Application

design variables, which belong to one component, are paired to enable independent design

work.

To answer Question One, intervals and 2d-spaces are computed by applying the interval

approach based on a stochastic Solution Space algorithm (U1 ) (black boxes, thin lines),

based on vertex tracking (V1 ) (blue boxes, bold lines) as well as the 2d-space approach

based on decomposing Solution Space constraints (W2 ) (white areas). The optimization

problem of approach W1 cannot be solved efficiently in the case of Example Two, due to

many dimensions and consequently a high number of necessary function evaluations. For

the computation of the optimal Solution Spaces, the linear model is applied. The results

are depicted in Figure 7.9.

Discussion Figure 7.9 confirms that the size measure of the results obtained by approach

U1 is larger compared to the size measure obtained by applying approach V1.

Note that the Solution Spaces for the eight design variables is valid for an entire set

of vehicles, with vehicle parameter values for pm,veh and prl,r within the specified ranges.

In addition variation in further properties of the vehicle, here pz,cg and pi,veh, affected

by expected changes in the properties of the body of the vehicle is taken into account.

This enables to develop a large set of vehicles, comprising many design variables and

requirements robustly and efficiently.
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Figure 7.4: The result of the interval approach based on a stochastic Solution Space al-
gorithm (U1 ) (black boxes, thin lines), based on vertex tracking (V1 ) (blue
boxes, bold lines), the result of the 2d-space approach based on the method of
vertex tracking of a polytope (W1 ) (black polygons, dashed lines) and based
on the method of decomposing Solution Space constraints (W2 ) (white areas,
the shaded areas indicate bad regions) for the chassis design problem with
eight design variables and six constraints on five vehicle performance measures
(Example One, vehicle 1). The results are based on the linear model and
provide an answer to Question One. The vehicle parameters are specified and
assume constant values.
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Figure 7.5: The result of the interval approach based on a stochastic Solution Space algo-
rithm (U1 ) (black boxes, thin lines), based on vertex tracking (V1 ) (blue boxes,
bold lines) and the results of the 2d-space approach based on the method of
decomposing Solution Space constraints (W2 ) (white areas, the shaded areas
indicate bad regions) for the chassis design problem with eight design variables
and six constraints on five vehicle performance measures (Example One, vehi-
cle 1). The results are based on a quadratic model and provide an answer
to Question One. The vehicle parameters are specified and assume constant
values.
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Figure 7.6: The result of the interval approach based on vertex tracking (V1 ) (blue boxes,
bold lines), the result of the 2d-space approach based on the method of ver-
tex tracking of a polytope (W1 ) (black polygons, dashed lines) and based on
the method of decomposing Solution Space constraints (W2 ) (white areas, the
shaded areas indicate bad regions) for the chassis design problem with eight
design variables and six constraints on five vehicle performance measures (Ex-
ample One, vehicle 1). The results are based on the linear model and provide
an answer to Question Two. The Solution Space of the design variables of the
anti-roll bars are weighted by a factor of 10. The vehicle parameters are spec-
ified and assume constant values.
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Figure 7.7: The result of the interval approach based on vertex tracking (V1 ) (blue boxes,
bold lines) and the result of the 2d-space approach based on the method of
decomposing Solution Space constraints (W2 ) (white areas, the shaded areas
indicate bad regions) for the chassis design problem with eight design variables
and six constraints on five vehicle performance measures (Example One, vehicle
1). The results are based on a quadratic model and provide an answer to
Question Two. The Solution Space of the design variables of the anti-roll bars
are weighted by a factor of 10. The vehicle parameters are specified and assume
constant values.
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Figure 7.8: The result of the computation of the outer box (gray areas are ranges outside
the outer box) as well as the result of the interval approach based on vertex
tracking (V1 ) (optimal box: blue rectangles; sub-optimal box: small red rect-
angles) and the result of the 2d-space approach based on the method of vertex
tracking of a polytope (W1 ) (black polygons, dashed lines) and decompos-
ing Solution Space constraints (W2 ) (white areas, the shaded areas indicate
bad regions) for the chassis design problem with four design variables and six
constraints on five vehicle performance measures (Example One, vehicle 2).
The results are based on a linear model and provide an answer to Question
Three. All other design variables and vehicle parameters are specified and
assume constant values.
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Figure 7.9: The result of the interval approach based on a sampling algorithm (U1 ) (black
boxes, thin lines), based on vertex tracking (V1 ) (blue boxes, bold lines) and
the result of the 2d-space approach based on the method of decomposing So-
lution Space constraints (W2 ) (white areas, the shaded areas indicate bad
regions) for the chassis design problem with eight design variables, four vehicle
parameters and six constraints on five vehicle performance measures (Example
Two, set of vehicles). The results are based on a linear model and provide
an answer to Question One. The Solution Spaces of the vehicle parameters are
specified to a particular range in order to consider variation due to product
family design and lack of information.
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8 — Critical reflection

In the first chapters, the necessity for providing sets of designs rather than

single designs in early development stages of complex products was motivated,

a literature review was conducted and aims and research questions were de-

rived. The following chapter refers back to the aims and research questions

stated and provides a critical reflection of what has been achieved.
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Aim1: Providing alternative methods for efficient computation of box-shaped So-

lution Spaces Based on a literature review, the research question reads: How can box-

shaped Solution Spaces with application in chassis design be computed more efficiently com-

pared to existing approaches in terms of computational cost? In practice, an important

measure for computational cost is the overall CPU time for solving numerical problems.

The approach to compute box-shaped Solution Spaces by means of vertex tracking (V1 )

in conjunction with a gradient-based optimizer presented in this thesis is benchmarked

against a stochastic Solution Space algorithm (U1 ), published by Zimmermann et al. [78].

As long as Solution Space constraints are monotone functions or convex functions in the

presence of a low number of dimensions, and derivatives can be provided, approach V1

is able to solve the problem of seeking box-shaped Solution Spaces with maximum box

size measure more efficiently in terms of CPU time compared to approach U1. This

is particularly the case if the evaluation of the Solution Space constraints is computa-

tionally expensive. In industry, however, performance functions and hence Solution Space

constraints are often given as black-box functions and neither the properties such as mono-

tonicity and convexity nor derivatives are available. On the basis of an industrial example

in Chapter 7, it is shown how mathematical surrogates can be used to approximate the

true Solution Space to achieve particular properties and to make derivatives available.

For applications with highly nonlinear nature, however, the box cannot be evaluated by

assessing the vertexes of the box as it is done in approach V1. In this case either approach

V1 must be modified (see outlook) or approach U1 is applied.

Aim2: Developing alternatives which are able to provide more good designs com-

pared to box-shaped Solution Spaces in order to increase the flexibility and robustness

w.r.t. lack of knowledge in development processes Based on a literature review, the

research question reads: How can the set of permissible designs be represented such that the

loss of Solution Space is minimum compared to box-shaped Solution Spaces, whereas com-

ponents can still be developed independently? In literature, box-shaped Solution Spaces

are particularly developed for independent design work in the framework of the V-model

approach. In crash application, see [28, 30, 36, 37], requirements on a system level (maxi-

mum deceleration during crash) are broken down to a component level (force-deformation

characteristic of particular components), which serve as target regions for the detailed de-

sign of components (via CAD models and FEM simulations). Box-shaped Solution Spaces

and the associated intervals are an intuitive description of design alternatives and decouple

requirements on design variables completely. However, this comes with a price in terms of

a loss of Solution Space. This means that the box is not able to enclose all good designs,

which is depicted via a two-dimensional problem in Figure 4.6. In Figure 6.3 it is shown,

that if design variables are coupled (here pairwise) the loss of Solution Space is reduced.
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This implies that with a higher degree of coupling, i.e. coupling of two, three, four, five,

etc. design variables, the loss of Solution Space tentatively decreases. However, a four-

dimensional, five-dimensional, etc. Solution Space (4d-space, 5d-space, etc.) cannot be

visualized intuitively. Therefore 2d-spaces are a good trade-off: A gain of Solution Space,

whereas an intuitive description of permissible designs is still possible.

In driving dynamics, often one particular component is characterized by two design

variables, e.g. the bump stop is characterized by its length and its stiffness and hence

the coupling of two design variables still enables independent design work. In Chapter 7,

the introduced approaches for the computation of 2d-spaces are applied to an industrial

example in chassis design. Six requirements of the system are formulated as requirements

on the components, while three components (bump stop of the front and rear axle and the

rebound stop of the front axle) can be further developed in detail independently. However,

it is also shown, that the computation of 2d-spaces by applying the proposed approaches is

in general computationally more expensive than computing box-shaped Solution Spaces.

In the case of non-convex Solution Spaces, approach W1 cannot be applied. In the case of

a high number of dimensions and a high number of Solution Space constraints, approaches

W1 and W2 tend to fail due to a high computational complexity of the underlying opti-

mization problems.

Aim3: Adapting the approaches such that apriori knowledge can be considered in

order to make the method of Solution Spaces applicable to a wider range of typical

development questions in the field of chassis design Based on a literature review,

the research question reads: How can the approach of Solution Spaces be extended to in-

corporate apriori knowledge and hence make it applicable to further questions arising in

development? Solution Spaces are developed to provide space for variation, when com-

ponents or subsystems are developed in detail. Even in very early development stages,

apriori knowledge is often available. Examples are the knowledge that some components

show more variation than others, the knowledge that particular components show a spec-

ified variation e.g. due to product family design or the knowledge that some components

are better in terms of cost, manufacturability, availability, etc. Therefore, the proposed

approaches V1, W1 and W2 are extended to allow taking this into account. Weighting

factors allow to yield larger target regions for particular design variables. Additional op-

timization constraints allow that particular designs are enclosed, which are known to be

best in terms of cost, etc. It is worth mentioning that generally using weighting factors

or setting additional constraints decreases the overall size measure of the Solution Space,

which is depicted in Figure 4.13.
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9 — Conclusion

In this chapter, the approaches introduced in this thesis, the results as well

as the key findings, are summarized. Furthermore, the main conclusions are

pointed out and an outlook on future research work to overcome the limitations

mentioned in the previous chapter is given.
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Summary and conclusion Many approaches in the field of set-based design exist in

literature, and the benefits in various fields of engineering are pointed out in numerous

publications. This thesis is concerned with numerical methods for the computation of

Solution Spaces, i.e. sets of permissible designs, particularly with application in chassis

design.

In the beginning of this thesis, the challenges of designing technical products are ex-

plained with focus on chassis design in its early development stages. Challenges arise due

to an increased complexity as a result of many components and subsystems interacting

with each other, many requirements on the system often in conflict to each other and a

large number of related products that need to be designed. Furthermore, in order to pro-

vide competitive products, they must be developed efficiently in terms of time and cost.

Concurrent engineering is a common used methodology, where components and subsys-

tems are developed in parallel rather than subsequently. However, designing components

of complex products simultaneously inevitably increases lack of knowledge, another issue

in the development of complex products. Set-based design is able to take uncertainties,

particularly due to lack of knowledge, into account. Recently, methods based on numerical

simulation were proposed, to compute sets of design alternatives, and hence enabling both

efficient and robust design processes.

Therefore, box-shaped Solution Spaces with maximum volume are computed, where

each edge of the box represents an interval for each of the design variables, which are

properties of components and subsystems. As a result, requirements on the design variables

are decoupled from each other in order to enable independent design work and provide

space for variation, e.g. necessary due to lack of knowledge. In this thesis, a stochastic

Solution Space algorithm published in [78], which is able to handle arbitrary problems, is

reviewed. In the past, this was demonstrated by industrial problems in various fields of

engineering such as vehicle crash, vehicle driving dynamics, etc. In literature, it is shown

that the problem of seeking a box with maximum volume can be solved more efficiently if

a gradient-based optimizer is used. However, the published approach [28,29] is applicable

for front crash problems only.

In this thesis, the approach published in [28, 29] is generalized and analyzed in more

detail. The approach outperforms the stochastic approach [78] in the case of particular

problems, e.g. monotone problems and problems where the gradient information of the

underlying problem is available. Examples from chassis design demonstrate that the ap-

proach is applicable to common chassis design problems, and it is shown that problems

can be solved more efficiently in terms of a lower CPU time compared to the stochastic

algorithm. On the other hand, it is pointed out that the stochastic Solution Space algo-

rithm is not limited to particular problems, and that due to the stochastic nature of the

algorithm, box-shaped Solution Spaces are in most cases larger, and hence provide more
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space for variation.

A two-dimensional example from chassis design is used to demonstrate that often box-

shaped Solution Spaces are ill-suited to represent the entire set of permissible designs.

Therefore, two approaches, which provide Solution Spaces for pairwise coupled design

variables and as a consequence are able to represent a larger set of permissible designs,

are introduced. Both approaches decompose a high-dimensional Solution Space into a set

of two-dimensional Solution Spaces. The first approach evaluates the vertexes of a high-

dimensional polytope, in order to guarantee that the polytope contains permissible designs

only. The second approach decomposes high-dimensional Solution Space constraints into

two-dimensional constraints. Numerical examinations confirm that the former approach

is in general computationally more expensive compared to the latter approach.

An industrial example comprising eight design variables and four vehicle parameters

as well as six requirements on five performance measures demonstrates the benefits of

intervals and 2d-spaces respectively. Solution Spaces computed by means of numerical

simulation are able to make development processes more efficient in terms of time and

cost. For instance, test engineers in subsequent development stages are provided with a

set of designs that satisfy all requirements under consideration, and hence the number

of test configurations (hardware testing; see Figure 1.1) to be assessed can be reduced

significantly. A set rather than a singe design, on the other hand, provides test engineers

space for exploration, i.e. to asses designs regarding further requirements, which were not

available or assessable in earlier stages. Furthermore, Solution Spaces are able to incorpo-

rate the effect of unavoidable scatter in interacting components or subsystems and hence,

yield robustness. Intervals or 2d-spaces are subsets of high-dimensional Solution Spaces.

This implies that there are more good designs outside. Extensions of the approaches are

shown, which enable to include preferences of decision makers, e.g. due to information

such as cost, manufacturability, availability, etc. In the industrial example considered,

more permissible combinations of design variables associated with the anti-roll bars are

required, which is realized by a weighting factor. This provides more space for variation

for particular properties of components, if necessary. An outer box, with bad designs

outside only, is shown to be a useful source of information in design processes. No per-

missible combinations of design variables can be found outside, and hence those designs

can be excluded for further considerations. The example considered shows that often de-

coupling of requirements for each design variable by means of intervals is not necessary,

because several design variables are associated with a particular component. This implies

that design variables can be partially coupled, and nevertheless, components can still be

designed in detail independently. Aside from the advantage of larger sets of permissible

designs, 2d-spaces are intuitive representations of high-dimensional Solution Spaces. In

practice, often more than two design variables are associated with a particular component
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or subsystem, and it is obvious to extend the approaches to compute 3d-spaces, 4d-spaces,

etc. However, the results cannot be represented graphically if more than three design

variables are coupled and hence, provide no intuitive representation of design alternatives

for decision makers.

In short, the main conclusions are:

� Box-shaped Solution Spaces for chassis design can be computed efficiently in terms of

low CPU time for particular problems, e.g. monotone problems, if a gradient-based

optimizer in conjunction with vertex tracking (approach V1 ) is used.

� The reviewed stochastic Solution Space algorithm (approach U1 ) for box-shaped

Solution Spaces is able to handle a wider range of problems and in most cases provides

larger Solution Spaces compared to those where the approach of vertex tracking

was applied (approach V1 ). However, generally the overall number of function

evaluations is high.

� For the decomposition of high-dimensional Solution Spaces into 2d-spaces two dif-

ferent approaches (approaches W1 and W2 ), which can be solved by standard opti-

mization algorithms are presented. It is shown that the approaches differ with regard

to their numerical complexity and applicability.

� Intervals and 2d-spaces are intuitive representations of high-dimensional Solution

Spaces and provide space for variation due to uncertainties, particularly those caused

by lack of knowledge. Therefore, Solution Spaces incorporate robustness in design

processes.

� Whenever pairwise coupling of design variables is compatible with the design process,

the computation of 2d-spaces enables to represent significantly more good designs

compared to intervals, and hence provide more robustness/flexibility.

� Solution Spaces computed by means of numerical simulation are an efficient approach

to support decision makers in subsequent design stages. For instance, it enables

reducing the number of possible configurations for hardware testing significantly,

and hence saves time and cost.

� Solution Spaces provide flexibility for decision makers and further designs can be

excluded when more information in later development stages is available.

Outlook In Chapter 9 it was pointed out that approach V1, which evaluates a box by

assessing (assigned) vertexes of the box, is limited to particular problems. For highly

nonlinear problems, assessing the vertexes is not sufficient to ensure that the box contains

good designs only. Alternatively, the box can be evaluated by generating sample points
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(random designs) inside the box, assessing their performance and counting the number

of good and bad designs. A non-gradient based standard optimization algorithm can be

used to seek the optimal box. Such an approach has the advantage of being applicable to

arbitrary problems. It is similar to the stochastic Solution Space approach in [78] in the

sense that the box is evaluated by sampling, but it differs in the sense that a new box

is generated by a standard optimization algorithm, e.g. a genetic algorithm, instead of a

Trim Algorithm used in [78].

In Chapter 9, the limited applicability to convex problems for approach W1 and to

problems with a moderate number of dimensions and Solution Space constraints for W1

and W2, are mentioned. To overcome this limitation, the proposed approach of evaluating

the Solution Space by sampling, whereas a standard optimization algorithm is used to seek

the optimal Solution Space, can be applied. As a first trial, approach W1 was modified in

the sense that the Solution Space was evaluated by sampling instead of vertex tracking and

a genetic algorithm was used. However, first test runs revealed that the genetic algorithm

most likely generates self-intersecting two-dimensional polygons, which are not desired in

practice.

This motivates extending the stochastic Solution Space algorithm for box-shaped So-

lution Spaces [78] for the computation of 2d-spaces for arbitrary problems.

It was mentioned that with a coupling of an increased number of design variables, i.e.

computing 2d-spaces, 3d-spaces, 4d-spaces, etc., the gain of Solution Space and hence the

possibility to enclose more good designs, is increased. Whereas 4d-spaces, 5d-spaces, etc.

cannot be visualized, 3d-spaces might be a good choice for problems in which components

are characterized by three design variables and are required to be developed in detail

independently. For further industrial applications, the approaches for 2d-spaces can also be

generalized in the sense that a user specified coupling scheme is considered. For instance,

the first design variable is treated as an interval, the second and forth design variables

are coupled pairwise, the third, fifth and sixth design variables are coupled as 3d-spaces,

etc.

Mathematical surrogate models are proposed to be used to approximate the complete

Solution Space for two reasons: Firstly, if the surrogate model is parametric, it provides

insights into the structure of the model and allows an assessment of the properties of

the model, e.g. monotone, convex, etc. The latter is important information for the ap-

plicability of the approaches proposed. Secondly, mathematical surrogates are evaluated

in milliseconds compared to physical models, for which an evaluation might take several

minutes or even hours. Figure 7.3 depicts an approach that approximates the complete

Solution Space by mathematical surrogates, computes Solution Spaces based on the sur-

rogates and evaluates the obtained Solution Spaces by generating sample points inside. If

it turns out that the obtained Solution Space is infeasible w.r.t. the true Solution Space,
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the process must be repeated by generating more conservative approximations, i.e. ap-

proximations with a small false positive rate. More research must be done to be able to

generate approximations with a user specified false positive and false negative rate. First

results revealed that an approach based on support vector machines is promising.
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A — Optimization

A.1 Karush-Kuhn-Tucker conditions for constrained

optimization problems

The Karush-Kuhn-Tucker conditions (KKT conditions) are a generalization of the ap-

proach of Lagrange multipliers involving a differentiable objective function and equality

constraints to problems comprising inequality constraints. In general, the KKT conditions

are necessary for a solution to be optimal. However, for convex optimization problems the

KKT conditions are not only necessary but also sufficient. In some cases the optimal so-

lution can be obtained by solving the set of equations analytically. In all other cases, the

equations are solved numerically. Considering an optimization problem with the following

form:
minimize

ν
f (ν)

s.t. hineq,j (ν) ≤ 0, j = 1, ...,mineq

s.t. heq,j (ν) = 0, j = 1, ...,meq.

(A.1)

Let f, hineq,j, heq,j : R
d �→ R be continuously differentiable functions with primal variables

ν and dual variables λineq and λeq respectively. The KKT conditions read (in accordance

with Boyd [13])

∇f (ν) +

mineq∑
j=1

λineq,j∇hineq,j (ν) +

meq∑
j=1

λeq,j∇heq,j (ν) = 0 (A.2)

hineq,j (ν) ≤ 0

j = 1, ...,mineq

(A.3)

heq,j (ν) = 0

j = 1, ...,meq

(A.4)



142 Appendix A Optimization

λineq,j ≥ 0

j = 1, ...,mineq

(A.5)

λineq,jhineq,j (ν) = 0

j = 1, ...,mineq.
(A.6)

Equation (A.2) is the derivative of the Lagrange function w.r.t. the primal variables, the

Lagrange function reads

L (ν,λineq,λeq) = f (ν) +

mineq∑
j=1

λineq,jhineq,j (ν) +

meq∑
j=1

λeq,jheq,j (ν) . (A.7)

Equation (A.2) is comparable to the necessary condition for unconstrained problems, which

is ∇f (ν) = 0, i.e. the gradient must be zero for a point to be optimal. Equation (A.3) and

(A.4) state that the primal variables ν must satisfy the inequality and equality constraints.

They are called primal feasibility conditions. Equation (A.5) in conjunction with (A.2) is

called dual feasibility condition and (A.6) complementary condition.

The first-order optimality measure, see [53], used in the framework of MATLAB�

solvers, is based on the KKT conditions. It is defined as

max{∇f (ν) +

mineq∑
j=1

λineq,j∇hineq,j (ν) +

meq∑
j=1

λeq,j∇heq,j (ν) , λineq,jhineq,j (ν)}

j = 1, ...,mineq.

(A.8)

Note that for cases where f , hineq,j and heq,j are not differentiable, semi-smooth Newton’s

method and bundle methods exist; see e.g. [40].
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A.2 Fundamentals of interior-point algorithms and

pattern search

A.2.1 Interior-point

The key idea of interior-point algorithms is to transfer an optimization problem comprising

inequality constraints into a sequence of problems with equality constraints only, which can

be solved by applying Newton’s method. Considering a constrained optimization problem

(A.1), the approximate problem reads (in accordance with [13])

minimize
ν,s

f (ν)− μ
∑mineq

j=1 ln sj

s.t. hineq,j (ν) + sj = 0, j = 1, ...,mineq

s.t. heq,j (ν) = 0, j = 1, ...,meq.

(A.9)

The term −∑mineq

j=1 ln sj is called a logarithmic barrier, with sj as the slack variable. The

logarithmic barrier with s > 0 ensures feasibility of the solution. μ > 0 is the barrier

parameter and with μ → 0 a solution of the approximate problem tends towards the

solution of the original problem. In each iteration step with specified value of μ, the primal

(ν) and dual (λineq, λeq) variables are updated by solving the modified KKT equations.

They are obtained by considering the Lagrange function of problem (A.9), which reads

L (ν,λineq,λeq) = f (ν)− μ

mineq∑
j=1

ln sj +

mineq∑
j=1

λineq,j (hineq,j (ν) + sj) +

meq∑
j=1

λeq,jheq,j (ν) .

(A.10)

As a necessary condition for optimality, the derivatives of the Lagrange function w.r.t.

the primal variables and dual variables are required to be equal to zero. This yields

the modified KKT conditions, which are equal to those in Appendix A.1, however, the

complementary condition is modified to

λineq,jhineq,j (ν) = −μ

j = 1, ...,mineq.
(A.11)

The set of equalities comprising Equation (A.2), (A.4) and (A.11) can be solved by apply-

ing Newton’s method. Newton’s method is an iterative approach, which is used to find the

zero (or approximation of the zero) of a function f . Therefore, the function is linearized

at a point x and the following holds

f (x+Δx) ≈ f (x) +∇f (x)Δx = 0. (A.12)
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Consequently, seeking the zero of the derivative of f yields

∇f (x+Δx) ≈ ∇f (x) +∇2f (x)Δx = 0 (A.13)

with Δx = −∇2f (x)−1 ∇f (x) as a Newton step; see [13]. More general Δ(·) = − (
A

′′)−1
A

′
,

with Δ(·) being the update of variables, e.g. the primal variables and dual variables in

the framework of interior-point optimization. The numerical effort to compute a Newton

step scales with the size of the linear system to be solved in each iteration, i.e. with the

size of the matrix A
′
and A

′′
respectively. In the case of problem (A.9), the linear system

comprises Equation (A.2), (A.4) and (A.11), and hence depends on the number of opti-

mization parameters N (A.2), the number of equality constraints (A.4) and the number

of inequality constraints (A.11) denoted by P (linear constraints) and Q (nonlinear con-

straints). Within the interior-point implementation in MATLAB� , the system is solved

by LDL factorization. Boyds [13] states that the complexity for solving linear systems by

LDL factorization is 1/3(N +P +Q)3. The computation of the Newton step provides the

search direction for the next iterate, while eventually further function evaluations are nec-

essary if a step is rejected and the step size is adjusted appropriately. Different methods

for computing the step size exist, e.g. backtracking line search.

Figure A.1 depicts the contour lines of the merit function, used for backtracking line

search, which is f (ν) − ∑mineq

j=1 λineq,jhineq,j − μ
∑mineq

j=1 ln
(
λineq,jh

2
ineq,j + ε

)
, with ε as a

constant, for three different iteration steps. The objective function of the original problem

as well as the inequality constraints are linear. During optimization, the barrier parameter

μ is decreased to zero, and the solution of the approximate problem tends to the solution

of the original problem. The solution in each iteration step obtained by solving the linear

system by Newton’s method is marked by a red dot.

Note that the interior-point implementation in MATLAB�, called by fmincon(), at-

tempts to take a Newton step. If this is not possible, it applies the method of conjugate

gradients in conjunction with trust region. If the approximate problem is not locally

convex near the current iterate, the algorithm does not attempt a Newton step but a

conjugate gradient step instead. In any case, an LDL factorization must be accomplished,

which makes the determination of a step computationally expensive (see MATLAB� doc-

umentation on Constrained Nonlinear Optimization Algorithms). For more information

about the algorithm see [15, 16,71].

A.2.2 Pattern search

Pattern search algorithms belong to the class of direct search methods also called derivative

free methods, since they do not require any information about the derivatives of the

objective function and optimization constraints respectively. In order to find the point
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Figure A.1: Applying an interior-point algorithm to a linear problem comprising four linear
inequality constraints and a linear objective, which must be minimized. The
figures are generated based on an open source MATLAB� implementation
of a primal-dual interior-point solver [6] for convex programs with constraints,
published by Peter Carbonetto, Department of Computer Science, University
of British Columbia; see https://pcarbo.github.io/convexprog.html. The bar-
rier parameter μ is decreased to zero throughout the optimization (from left to
right, not all iteration steps are shown), and hence the solution of the approxi-
mation problem in each step (red dot) converges to the solution of the original
problem. The contour lines show the merit function, used for backtracking
line search, which is f (ν)−∑mineq

j=1 λineq,jhineq,j −μ
∑mineq

j=1 ln
(
λineq,jh

2
ineq,j + ε

)
with ε as a constant.

with best performance, a set of trial points is generated and each point is evaluated. If

no constraints are present, the point with the best performance value is chosen and new

points are generated. In conjunction with constraints, the feasibility of data points must

be taken into account additionally; see e.g. [8]. In the framework of pattern search data

points are generated on a mesh, while the mesh size is adapted depending on whether

a point with a better performance is found within the actual set or not. The simplest

approach to generate data points is to distribute them around one point, two along the

direction of each optimization parameter. This is known as coordinate or compass search

and generates 2N data points, with N as the number of optimization parameters. Many

more advanced approaches exist.

Figure A.2 shows a sequence of iteration steps for an unconstrained optimization prob-

lem with a quadratic objective function, which is to be minimized. In step 1, data points

are generated around an initial guess (red triangle), using the compass search approach.

The point with best performance (red square) is selected as the center point for the next

step, and the mesh is increased by a factor of 2. If no point with a better performance

compared to the center point is found, the mesh size is divided by a factor of 2. The

process is repeated until a stopping criterion, e.g. a minimum mesh size, is reached.

By default, the pattern search implementation in MATLAB�, called by the command
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Figure A.2: Different iteration steps (not all iteration steps are shown) of a pattern search
algorithm to find the minimum of a sphere function. Black dots mark the trial
points around a center point (red triangle). The point with best performance
(minimum function value, red rectangle) is taken for the next iteration step as
the center point and the mesh size is increased. If none of the points around
the center point shows better performance, the center point remains and the
mesh size is decreased.

patternsearch(), uses the compass search strategy and generates 2N data points per itera-

tion. However, it evaluates each point sequentially and stops if a point is better than the

center point. This means that per iteration a maximum of 2N data points are evaluated.
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Table A.1: The number of optimization parameters N , the number of linear optimization
constraints P , the number of nonlinear optimization constraints Q and the
number of derivatives of nonlinear optimization constraints D for d = 10,
m = 10, n = 5 and p = 4.

approach N P Q D

V1, lin. (4.12) 20 60 − −
W1, lin. (5.12) 40 10320 − −
W2, lin. (5.20) 50 110 − −
V1, n.lin. (4.24) 20 50 [10, 10240] [200, 204800]

W1, n.lin. (5.12) 40 80 10240 409600

W2, n.lin. (5.20) 50 110 − −

A.3 Number of optimization parameters, optimization

constraints and derivatives

The following figures show the number of optimization parameters N , linear optimization

constraints P , nonlinear optimization constraints Q and derivatives D for the approaches

V1, W1, and W2 depending on the number of dimensions and the number of Solution

Space constraints. Figure A.3 holds true in the case of linear Solution Space constraints.

Figure A.4 holds true for nonlinear Solution Space constraints and the number of first-

order derivatives, which must be provided to the optimizer, are shown additionally. The

values are computed based on the formula presented in Table 6.1. Table A.1 shows the

values of N , P , Q and D for d = 10, m = 10, n = 5 and p = 4.
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Figure A.3: Visualization of the number of optimization parameters N and linear opti-
mization constraints P for the approaches V1, W1, and W2, assuming d to be
even, and hence n = d/2. For approach W1 the number of vertexes is p = 4
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Figure A.4: Visualization of the number of optimization parameters N , linear optimization
constraints P , nonlinear optimization constraints Q and derivatives D for the
approaches V1, W1, and W2, assuming d to be even, and hence n = d/2. For
approach V1 for Q and D, monotone Solution Space constraints are assumed.
For approach W1 the number of vertexes is p = 4.
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B — Numerical results

B.1 Classification measures

Figure B.1 depicts the correlation between the true output and the output of the linear

and quadratic model for the performance measure zβ. No scatter with all data points on

the red diagonal line means that the model’s output is equal to the true output, thus the

model has a correlation of 1. In the framework of Solution Spaces, however, the quality

of the model depends on whether data points, i.e. designs, are classified correctly. For

instance, a design that satisfies a requirement (here zβ ≤ 12 deg) is called positive. If

the same design satisfies the requirement by considering the output of the approximation

model, it is called true positive, and false negative otherwise.
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Figure B.1: Correlation between the true output and the output of the linear (left) and
quadratic (right) model for the performance measure zβ as well as the quad-
rants of the classification measures true positive (TP), true negative (TN),
false positive (FP) and false negative (FN) for the requirement zβ ≤ 12 deg.
The model is generated based on a set of 7,000 data points and validated by
3,000 additional data points.
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B.2 Parametric surrogate models

Table B.1: Thresholds and coefficients of the linear model Gx ≤ gc (normalized design
space [−1, 1]d) for the first six design variables (columns). Note: The coeffi-
cients must be multiplied by 1e-2.

requirement gc Gxca,f
Gxca,r Gxcbs,f

Gxlbs,f
Gxcbs,r

Gxlbs,r

zR > 55 22.7263 -29.4055 28.4701 -7.0377 -21.6033 7.2788 15.3648

zR < 60 26.9598 29.4055 -28.4701 7.0377 21.6033 -7.2788 -15.3648

zφ < 2.8 -17.3881 -33.6875 -22.3034 -6.1592 -22.5846 -4.4013 -11.6520

zay > 9.2 35.4548 14.8519 -25.1593 5.0400 14.1367 -5.6735 -10.1951

zβ < 12 -0.0948 -41.2733 29.1829 -19.2625 -28.4274 14.03011 16.3279

zfz > 800 -2.2203 -41.3125 23.4168 -16.9612 -26.7313 3.9640 1.1794

Table B.2: Coefficients of the linear model Gx ≤ gc (normalized design space [−1, 1]d) for
the last two design variables and the four vehicle parameters (columns). Note:
The coefficients must be multiplied by 1e-2.

requirement Gxcrbs,f
Gxlrbs,f

Gpm,veh
Gprl,r Gpz,cg Gpi,veh

zR > 55 -2,7809 -4,4989 4,1872 14,0920 -0,8383 0

zR < 60 2,7809 4,4989 -4,1872 -14,0920 0,8383 0

zφ < 2.8 -3.0087 -7.4350 8.9394 -3.4206 16.7937 0

zay > 9.2 -0,4942 -0,5583 11,7091 -5,3877 15,9854 0

zβ < 12 -2.3768 -5.6118 12.0559 19.2549 2.0872 0.7520

zfz > 800 -1.4986 -7.0682 2.1344 -4.7585 14.4105 -1.9742
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B.3 Monotonicity

The following figures show how the performance measures change due to a change in one

single design variable, which is varied within its associated bounds, i.e. design space. All

other design variable values and vehicle parameter values are specified randomly. Hence,

the figures show one-dimensional sections of the high-dimensional design space and provide

insight into the behavior of the performance measures depending on changes in the design

variables. The plots enable statements about the monotonicity of a performance measure

w.r.t. particular design variables.
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Figure B.2: One-dimensional sections of the twelve-dimensional input space with all other
design variables and vehicle parameters assuming constant, randomly chosen
values. The performance measure zR is plotted against each of the eight design
variables.
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Figure B.3: One-dimensional sections of the twelve-dimensional input space with all other
design variables and vehicle parameters assuming constant, randomly chosen
values. The performance measure zφ is plotted against each of the eight design
variables.
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Figure B.4: One-dimensional sections of the twelve-dimensional input space with all other
design variables and vehicle parameters assuming constant, randomly chosen
values. The performance measure zay is plotted against each of the eight design
variables.
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Figure B.5: One-dimensional sections of the twelve-dimensional input space with all other
design variables and vehicle parameters assuming constant, randomly chosen
values. The performance measure zβ is plotted against each of the eight design
variables.
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Figure B.6: One-dimensional sections of the twelve-dimensional input space with all other
design variables and vehicle parameters assuming constant, randomly chosen
values. The performance measure zfz is plotted against each of the eight design
variables.
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B.4 Numerical details of the stochastic Solution Space

algorithm

In the following the intervals as well as numerical details for five runs with the stochas-

tic Solution Space algorithm for Example One, vehicle 1, are shown. The results are

based on the linear model. Due to random Monte Carlo sampling the results are non-

deterministic.
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Figure B.7: Normalized intervals for five runs with the stochastic Solution Space algorithm.
The results are based on the linear model, Example One, vehicle 1. Note
that the lines between the lower and upper boundaries of the intervals are for
visualization purposes only.
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iteration steps for five runs with the stochastic Solution Space algorithm. The
results are based on the linear model, Example One, vehicle 1.
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B.5 Computer specifications

For all computations, a standard computer with the following specifications was used:

Type - HP ZBook 15

Operating system - Microsoft Windows Enterprise, 64-bit

Processor - Intel(R) Core(TM) i7-4900MQ CPU @ 2.80GHz, 4 cores

Memory - 16 GB RAM

MATLAB� version - 2010b
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[48] B. Möller and M. Beer. Fuzzy randomness: uncertainty in civil engineering and

computational mechanics. Springer Science & Business Media, 2013.

[49] D. C. Montgomery. Design and analysis of experiments. John Wiley & Sons, 2008.

[50] M. Münster, M. Lehner, D. Rixen, and M. Zimmermann. Vehicle steering design

using solution spaces for decoupled dynamical subsystems. In Proceedings of the



Bibliography 165

26th conference on Noise and Vibration Engineering (ISMA2014), volume 26, pages

279–288, Leuven, Belgium, 2014.

[51] Y.-E. Nahm and H. Ishikawa. Novel space-based design methodology for preliminary

engineering design. The International Journal of Advanced Manufacturing Technol-

ogy, 28(11-12):1056–1070, 2006.

[52] N.N. Passenger cars – Steady-state circular driving behaviour – Open-loop test meth-

ods. International Organization for Standardization, 2012.

[53] J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business

Media, 2006.

[54] H. Pacejka. Tire and vehicle dynamics. Elsevier, 2005.

[55] M. Padulo. Computational engineering design under uncertainty: an aircraft concep-

tual design perspective. PhD thesis, Cranfield University, UK, 2009.

[56] J. H. Panchal, M. G. Fernández, J. K. Allen, C. J. Paredis, and F. Mistree.

An interval-based focalization method for decision-making in decentralized, multi-

functional design. In ASME 2005 International Design Engineering Technical Con-

ferences and Computers and Information in Engineering Conference, pages 413–426.

American Society of Mechanical Engineers, 2005.

[57] D. M. Powers. Evaluation: from precision, recall and F-measure to ROC, informed-

ness, markedness and correlation. Journal of Machine Learning Technologies, 2(1):37–

63, 2011.

[58] B. Prasat. Concurrent Engineering Fundamentals Volume 1: Integrated Product and

Process Organization. Prentice-Hall, 1997.

[59] B. Prasat. Concurrent Engineering Fundamentals Volume 2: Integrated Product De-

velopment. Prentice-Hall, 1997.
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Glossary

2d-space is a set of good designs, specified by a Cartesian product of two-dimensional

sets, each assigned to a pair of design variables.

bad design is a design that doesn’t satisfy all requirements.

box-shaped Solution Space is a set of good designs, specified by a Cartesian product of

intervals for each design variable.

complete Solution Space is the entire set of good designs.

design is a system (here the overall vehicle) with specified properties of its subsystems

and components.

design space is a set that comprises all possible combinations of design variable values.

design variable is a property of a component, e.g. torsional stiffness of an anti-roll bar,

that must be specified within the development process.

good design is a design that satisfies all requirements.

inner box is a box that contains good designs only.

outer box is a box where all designs outside are bad.

performance function maps values of design variables onto a value of a performance

measure.

performance measure is a quantitative measure of the vehicle’s response, e.g. the roll

angle of the vehicle while cornering.

Solution Space is a set of good designs, i.e. designs that satisfy all requirements. Note

that the term space might be misleading referring to the mathematical definition

of a space, however, here the term Solution Space is used in accordance with the

literature.
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Solution Space constraint is an inequality that must be satisfied by a design to be a

good design.

system is an assembly of several subsystems and components, here the overall vehicle.

vehicle parameter is a property of the vehicle, e.g. overall mass of the vehicle.


