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Abstract: Variable annuities represent certain unit-linked life insurance products offering different
types of protection commonly referred to as guaranteed minimum benefits (GMXBs). They are
designed for the increasing demand of the customers for private pension provision. In this paper
we analytically price variable annuities with guaranteed minimum repayments at maturity and in
case of the insured’s death. If the contract is prematurely surrendered, the policyholder is entitled
to the current value of the fund account reduced by the prevailing surrender fee. The financial
market and the mortality model are affine linear. For the surrender model, a Cox process is deployed
whose intensity is given by a deterministic function (s-curve) with stochastic inputs from the financial
market. So, the policyholders’ surrender behavior depends on the performance of the financial market
and is stochastic. The presented pricing scheme incorporates the stochastic surrender behavior of the
policyholders and is only based on suitable closed-form approximations.

Keywords: variable annuities; surrender behavior; closed-form approximation; pricing; affine
linear model

1. Introduction

Variable annuity (VA) contracts represent a “wide range of life insurance products, whose benefits can
be protected against investment and mortality risks by selecting one or more guarantees” [1]. Since VAs are
usually unit-linked, they allow policyholders to participate in rising stock prices while their guarantees
offer protection against the reverse trend. For further reading on VAs and implicit options embedded
in general life insurance products, see [2–4]. In contrast to the policyholders, for VA providers the
GMXBs that are offered may cause severe financial and actuarial risks: First, the minimum benefits
could expire in-the-money, i.e., worth more than the corresponding position in stocks. Second, there
might be a difference between the expected and the realized mortality rates.

Furthermore, VA providers are also exposed to behavioral risk, which in this context is often
referred to as surrender or lapse risk. This is the risk that the policyholders cancel their contracts in
a manner different from the assumptions made by the VA provider. Longevity risk can be modeled
independently from financial risk, whereas surrender risk substantially depends on the evolution of
the financial markets. For example, increasing interest rates might lead to increasing cancellation rates,
as alternative investment products with a higher guaranteed rate or at a cheaper price will appear.
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Modeling policyholder risk should deserve special attention, as “it has influence on the pricing of
the options and guarantees within the contracts, on solvency capital requirements, and hedging
effectiveness" [5]. High losses have been reported by VA carriers due to changes in surrender
assumptions (Mountain Life reported an increase in the value of its liabilities by USD 48 bn due to
a reduction of assumed surrender rates1). Policyholder risk is not hedgeable, might lead to severe
liquidity problems, and, therefore, needs to be analyzed and priced carefully. In this paper we focus on
this type of risk; we do not claim to find the precise relationship between surrender rates and economic
factors (internal or external), but rather show how the well-known patterns can be included in the
pricing framework suggested by [6]. Furthermore, as opposed to the work of [6], the market price of
mortality risk is explicitly taken into account.

In the last decade, several empirical studies appeared analyzing the main drivers of policy
cancellations. From the perspective of a classical life insurance business, two major hypotheses can be
differentiated: the interest-rate hypothesis and the emergency fund hypothesis. The first one, advanced by,
e.g., [7,8] (especially in the long run), assumes that an increase in interest rates leads to an increase
in surrender rates. This is explainable by the fact that higher interest rates generally lead to higher
annuity rates within other similar decumulation products and, hence, policyholders have an incentive
to cancel their existing VA and enter a new one. In the VA business, high interest rates lead to either
higher guaranteed benefits for the same guarantee price or to the same guaranteed benefits but for
lower prices. The second hypothesis, empirically supported, e.g., by [9], assumes that policyholders
might need to terminate their life or pension insurances due to a personal financial distress. To model
this dependency, most of the papers use macroeconomic risk factors assuming that the general state of
the economy serves as a proxy for personal financial circumstances. Some of the papers support both
hypotheses, see, e.g., [10] for an analysis of the Korean case or [11] for the U.S. life insurance market.

As variable annuities depend on the performance of financial markets, apart from the interest-rate
and the emergency fund hypotheses driving policyholder behavior within traditional life insurance
business, the so-called moneyness hypothesis has been the focus of several recent studies. This concept
relies on the fact that the value of the guarantee (approximated by the moneyness defined as the ratio
of the surrender to the guaranteed value) should have a substantial impact on policyholders’ decisions.
That is, the better the performance of a fund underlying the VA product, the higher the moneyness
of the contract and, consequently, the lower the economic value of the guarantee. Therefore, there is
a significant incentive for the insured person to cancel the contract and potentially enter a new one
with a higher guaranteed value. Empirical evidence for this hypothesis is given, for example, in [5,12].
The former paper also tests and supports interest-rate and emergency fund hypotheses in the context
of variable annuities. According to the company surveys conducted by [5,13] as well as shown in some
examples of [7], policyholders do not always act rationally. They cancel their products even when it is
not economically rational2 and also do not surrender their guarantees deep out of the money.

Additionally, there is abundant literature on the incorporation of lapse behavior in pricing models.
We provide here just a short overview of the main papers in that area and refer interested readers to [14]
for a broad classification of lapse rate models. According to their work, one can differentiate between
three major groups of papers depending on the assumptions made on the policyholder rationality.

First, pure dynamic surrender models assume optimal cancellation for risk-neutral
investors [15–19]. These authors interpret the surrender option as an American option and provide
numerical solutions for optimal stopping problems to determine its price. The second group of papers
assumes optimal dynamic lapsation for rational and risk-averse investors [20,21]. The authors assume
that policyholders maximize their expected utility, which is modeled via a constant relative risk

1 Source: White Mountain Insurance Group Report 2010. In this case the expected number of policyholders entitled to the
final payoff increases and therefore, the present value of liabilities rises as well.

2 This is more or less a general assessment. Cancellation could be rational and utility-maximizing for specific policyholders,
however, these personal reasons for cancellation are not included in the model.
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aversion (CRRA) function. The third group of papers eschews the assumption of optimal policyholder
behavior and rather tries to incorporate the above mentioned empirical evidence in dynamic lapse
modeling. Examples of these papers include [2,22–26].

Our work also belongs to the third group of papers. The contributions to the literature are
as follows. First, instead of the stand-alone consideration of different stylized facts, we explicitly
incorporate the moneyness and interest-rate hypotheses in our hybrid pricing framework at the
same time; Second, we include the emergency fund hypothesis in the model; Finally, we derive
analytical approximations for the selected guarantees under financial, actuarial, and behavioral risks.
In this paper we concentrate on Guaranteed Minimum Accumulation, Death, and Surrender Benefits.
Extension of the suggested approach for the pricing of other variable annuity products constitutes one
of the directions of future research.

The remainder of the paper is structured as follows: The second section describes the stochastic
models for the financial market, the insureds’ mortality, and the policyholders’ surrender behavior.
The third section specifies the considered type of VAs and derives the closed-form approximations.
The fourth section shows how the models of the second section can be calibrated using actively
traded products and historical mortality tables. The fifth section presents an example of the pricing
scheme. The sixth section discusses extensions to the surrender model. The seventh section provides
conclusions and possible directions for future research.

2. Stochastic Models

2.1. Financial Market Model

Let (Ω,F ,F,Q) be a filtered probability space with risk-neutral pricing measure Q and filtration
F := (Ft)t≥0 satisfying the usual conditions, i.e., the filtration is right-continuous and F0 is saturated.
Furthermore, let the instantaneous interest-rate process r := (r (t))t≥0 and the stock price process
S := (S (t))t≥0 be given by the Hull-White extended Vasicek model [27] and a generalized geometric
Brownian motion with stochastic drift r. For any point in time t ≥ 0 the stochastic process
Y := (Y (t))t≥0 defined by Y (t) := ln (S (t) /S (0)) represents the accumulated log-return up to t.
If the constant ρSr ∈ [−1; 1] denotes the correlation between the Brownian motions of the processes
r and S, we end up with the following risk-neutral financial market:

dr (t) = (θr (t)− arr (t))dt + σrdWQ
r (t) ,

dY (t) =
(

r (t)− 1
2

σ2
S (t)

)
dt + σS (t)dWQ

S (t) , (1)

r (0) = r0, Y (0) = 0, dWQ
S (t)dWQ

r (t) = ρSrdt.

To derive the closed-form approximation in Section 3.2 ar and σr are assumed to be non-negative
constants, while θr (t) , t ≥ 0, and σS (t) , t ≥ 0, are supposed to be deterministic functions in time.
However, future research might focus on extensions such that θr (t) or σS (t) can be stochastic processes.
WQ

r (t) and WQ
S (t) represent standard Q-Brownian motions.

2.2. Mortality Model

Historical data normally confirm the assumption of an exponential relation between age and
one-year death probabilities. For instance, see the plot on the left in Figure 1 illustrating the United
Kingdom (U.K.) mortality tables (principal projection, men, 1951–2011)3 published by the Office
for National Statistics. Furthermore, life expectancy is increasing. If we focus on how the U.K.

3 For the underlying data set see http://www.ons.gov.uk/ons/rel/lifetables/historic-and-projected-mortality-data-from-
the-uk-life-tables/2010-based/rft-qx-principal.xls

http://www.ons.gov.uk/ons/rel/lifetables/historic-and-projected-mortality-data-from-the- uk-life-tables/2010-based/rft-qx-principal.xls
http://www.ons.gov.uk/ons/rel/lifetables/historic-and-projected-mortality-data-from-the- uk-life-tables/2010-based/rft-qx-principal.xls
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one-year death probability for a fixed age has evolved over time (see the plot on the right in Figure 1),
the decline underpins this assertion. But, the second plot of Figure 1 also indicates that there are
random fluctuations partially resisting an enduring downturn. To take into account all findings we
apply the mortality model described in [6] which is based on [28,29]. We assume an upper limit in
age T∗ (e.g., 125 years) and model under the real-world measure P the remaining lifetime τm (x) of an
insured aged x years in the form of the first jump of a Cox process (Nm (x + t))t≥0 characterized by a
F-measurable intensity λm

t (x + t) , t ≥ 0 [30]:

(a) (b)

Figure 1. U.K. Mortality Tables (a) and One-Year Death Probabilities (b) of Men (1951–2011).

τm (x) := min (T∗ − x, inf {t ≥ 0 : Nm (x + t) > 0}) .

The index m refers to mortality. Furthermore, we define:

Hm : = (Hm
t )t∈[0,T∗−x] , Hm

t := σ
(
1{τm(x)≤u} : u ≤ t

)
.

Hence, Hm captures whether the insured is still alive or has already died up to a certain point in time.
Let the initial mortality intensity λm

0 (x + t) be given by the static Gompertz model and let an
Ornstein-Uhlenbeck process ξ := (ξ (t))t≥0 describe the evolution of the P-dynamics of the mortality
improvement ratio. Then, we get for the mortality model under P:

λm
t (x + t) = λm

0 (x + t) · ξ (t) ,

λm
0 (x + t) =

1
b

exp
(

x + t− z
b

)
,

dξ (t) = κ (exp (−γt)− ξ (t))dt + σξdWP
ξ (t) .

The constants z, κ and σξ are non-negative, b is positive and γ ∈ R. A positive γ indicates that
people are growing older on average, whereas a negative γ implies the opposite. For γ = 0 the mortality
improvement ratio is fluctuating close to 1 and hence, there are no trends. In this paper the mortality
improvement ratio ξ does not depend on the age x of an insured, since it is supposed to reflect a
general improvement in mortality. The correlations between WP

ξ (t) and the P-Brownian motions of the
financial market, are assumed to be zero implying the independence of the insurance and the financial
processes. Subsequent measure changes are designed such that this feature is preserved. Using Itô’s
Lemma we obtain the P-dynamics of the overall mortality intensity:

dλm
t (x + t) = (c1 exp (c2t)− c3λm

t (x + t))dt + c4 exp (c5t)dWP
ξ (t) , (2)

with

c1 :=
κ

b
exp

(
x− z

b

)
, c2 :=

1
b
− γ, c3 := κ− 1

b
, c4 :=

σξ

b
exp

(
x− z

b

)
, c5 :=

1
b

.



Risks 2016, 4, 41 5 of 36

Mortality has been modeled under the real-world measure P so far. However, risk-neutral pricing
techniques require probabilities with respect to the risk-neutral measure Q of the financial market.
A lack of transparency, the relatively small number of (variable) annuity providers (supply) compared
to the multitude of policyholders (demand) and the informational asymmetry between both parties
cause us to reject the assumption of an efficient market for mortality risk [31]. Except for extremely
competitive business segments, VA providers should be able to implicitly charge an additional
premium for taking longevity and other actuarial risks. On the assumption that all actuarial risks are
already taken into account in the form of the mortality tables entering the calibration of the real-world
mortality model in (2), the work in [6] assumes that the P− and Q−survival probabilities coincide.
Since this assumption is quite strong, we work with a market price of mortality risk that is permitted
to be zero to gain flexibility. Whenever the existence of the market price of mortality risk is difficult to
accept as valid, the risk premium can be set to zero to end up in the setting of [6]. If there are good
reasons for the existence of a mortality risk premium, which has not yet been covered by the mortality
tables themselves, our approach allows its estimation. Furthermore, we are able to analyze how a
mortality risk premium affects the Q-survival probabilities (sensitivity tests). To keep our mortality
model analytically tractable, in particular, to preserve the independence of the insurance and the
financial market, we consider a constant market price of mortality risk γm. However, alternative risk
premium models like in [32] should be part of future research. In our setting, the Radon-Nikodym
density defined by:

dQ
dP

∣∣∣∣
Ft∨Hm

t

= exp
(
−γmWP

ξ (t)− 1
2

γ2
mt
)

,

WQ
ξ (t) = WP

ξ (t) + γmt,

and the Girsanov theorem provide4:

dλm
t (x + t) = (c1 exp (c2t)− c3λm

t (x + t)− c4γm exp (c5t))dt + c4 exp (c5t)dWQ
ξ (t) . (3)

2.3. Surrender Model

At first, we describe the characteristics of the considered VAs. Thereby, we especially focus on
the surrender benefit to model the policyholders’ surrender behavior properly. Let I > 0 be the
initial premium which the policyholder has to pay at once at the beginning when entering into the VA
contract with maturity T. Since I is fully invested in a fund or stock, A (t) := I exp (Y (t)) , t ∈ [0, T],
gives the evolution of the fund account value over time. The contract includes a guaranteed minimum
accumulation benefit (GMAB). If δ ≥ 0 denotes the preliminary agreed (annual) roll-up rate,
G (t) := I exp (δt) specifies how the (implicit) value of the guarantee moves over time. The GMAB is
executable at maturity only. This means that only at maturity the policyholder is allowed to choose
between the fund account value and the guarantee. In case of early surrender his right of refund
is restricted to the current fund account value reduced by the compulsory surrender fee. From the
perspective of the policyholders, the charged surrender fee and the forbidden execution of the GMAB
option before maturity reduce the incentives for early surrender. For VA providers the combination
of both serves as a perfect hedge, since the repayment to the policyholder is less (in the presence of
surrender fees) or equal to the fund account value (when the fee is zero). In case of early surrender let
f : [0, T] → R+

0 be a non-increasing function of time such that the surrender benefit at t is equal to:
I exp (Y (t)− f (t)). If f is properly chosen, we are able to overcome the problem that an insurance

4 In the suggested modeling approach the mortality intensity can become negative with positive probability. This probability
can be calculated analytically, see Appendix A.2. However, in practical applications, like for the parameters used in our
example (see Section 4), this probability is negligible (less than 10−5).
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company could be unable “to fully recover its initial expenses” [8] due to (early) surrender. For all
t ∈ [0, T] , let R (t, T) be the annual, continuously compounded long-term interest rate at t for the
period [t, T]. Let P (t, T) be the price of a default-free zero-coupon bond at time t with maturity T.
Then, we have that:

R (t, T) = − 1
T − t

ln (P (t, T)) .

Apart from their actuarial characteristics VAs are capital market products. This is why it might
happen that policyholders behave similar to investors pursuing a long-term investment strategy.
If early surrender takes place at time t, the policyholder would be able to reinvest the surrender
benefit at R (t, T) for the remaining time to maturity. In this case, the final payoff at maturity would
be given by:

I exp (Y (t)− f (t) + R (t, T) (T − t)) .

In the absence of early surrender, the repayment at maturity is at least G (T) , serving as a
benchmark for the above long-term strategy. If the stochastic process D := (D (t))t≥0 is equal to the
logarithm of the ratio of both final payoffs, we have that:

D (t) = Y (t)− f (t)− δT + R (t, T) (T − t) .

Similar to the mortality model, let the time τs until the early surrender option is exercised be equal to
the time until the first jump of a Cox process (Ns (t))t≥0 with intensity λs (t) defined by:

λs (t) = β max [min [D (t) , α] , 0] + C, (4)

where the constants α, β and C are non-negative. The index s in case of λs denotes surrender to
distinguish it from the mortality intensity λm. The lower limit C covers all policyholders who are
willing or obliged to surrender their contracts, for example due to a desire for current consumption or
debt, even though it is not rational from the perspective of maximizing policy value. The minimum
of D (t) and α allows the construction of an upper limit representing all policyholders never willing
to exercise the early surrender option. Due to the chosen construction the surrender intensity cannot
become negative. Hence, the surrender probabilities always lie inside the range [0, 1]. Since the capped
(upper limit) and floored (lower limit) linear relation results in a curve having an “s” shape, we will
call it s-curve in the sequel. Aside from the analytical tractability, the surrender intensity in (4) offers
some advantages regarding the findings derived from the empirical studies.

On the one hand, the higher the long-term interest rate R (t, T) , the higher the decision criterion
D (t) and hence, the higher the surrender intensity λs (t). This means that an increase in the interest
rates results in increased surrender probabilities which is in accordance with the interest-rates hypothesis.
On the other hand, an outperforming fund in the form of a large Y (t) also increases D (t) and thus,
the surrender intensity. In this case some profit taking by the policyholders is taken into account
as well. In practice, surrender fees often decrease with time to make sure that the contract is kept
for a while. By contrast, the more time passes the more the guaranteed minimum benefit gains in
importance. When the value of the guarantee increases, the early surrender option should be rarely
exercised (at least from a rational point of view). As the surrender intensity in (4) is able to incorporate
the impact of the surrender fees and the implicit value of the guarantee at maturity, at any point in
time it balances the factors increasing the surrender probabilites with the ones doing the opposite such
that it is finally driven by the net impact of both trends.
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As before, we define:

Hs : = (Hs
t )t∈[0,T∗−x] , Hs

t := σ
(
1{τs≤u} : u ≤ t

)
,

indicating whether the early surrender option has been exercised up to a certain point in time.
Because of its definition in (4) the surrender intensity λs (t) , t ≥ 0, is a deterministic function of

stochastic inputs from the financial market and so, is F-measurable. Any information on the financial
market, mortality and contract surrender up to a certain point in time is covered by the filtration G with:

G : = F∨Hm ∨Hs.

Let (rt, Yt, λm
t (x + t))′ be the underlying state process. For any t ∈ [0, T] Proposition 3.1 in [33]

allows us to replace the filtration Gt by the filtration Ft together with indicator functions using τs

and τm (x) when we determine the present values of FT-measurable final repayments XT1{τ>T} in the
absence of default, i.e., no early death or premature contract surrender. Moreover, Proposition 3.1 in [33]
enables this exchange when we price Fu-adapted streams of payments Xu1{τ>u} up to default or
Fu-adapted recovery payments Xu at the time of default τ = u. In particular, we have that:

EQ

[
exp

(
−
∫ T

t
r (u)du

)
1{τs>T}1{τm(x)>T}|Gt

]
= 1{τs>t}1{τm(x)>t}EQ

[
exp

(
−
∫ T

t
(r (u) + λm

u (x + u) + λs (u))du
)
|Ft

]
.

3. Products and Approximations

We begin by specifying the type of VAs to be considered. Unfortunately, there is no unique
understanding in the literature of what is meant by guaranteed minimum accumulation benefits
(GMABs), surrender benefits (SBs) or guaranteed minimum death benefits (GMDBs). Therefore,
we introduce the definitions we are working with, since they are crucial for the later product pricing
and the derivation of the closed-form approximation.

3.1. Product Definitions and Characteristics

As before, A (t) := I exp (Y (t)) and G (t) := I exp (δt) , t ∈ [0, T] , define the (implied) value of
the fund and the guarantee. Let t := (t1, . . . , tK)

′ with 0 < t1 < . . . < tK < T be the dates on which
premature surrender is possible. Since tK < T, the early surrender option has to be exercised before
maturity, otherwise, the contract will anyway expire at T. In this paper the GMAB provides a payoff
and hence, financial protection at T only, i.e., the choice between A (t) and G (t) is restricted to t = T.
This is the reason why G (t) gives for all t < T the implied value of the GMAB. To make sure that a
policyholder is always entitled to a single constituent of the overall VA contract the financial protection
of the GMAB is valid as long as the insured is still alive (i.e., {τm (x) > T}) and early surrender has
not taken place (i.e., {τs > T}). If we summarize the preceding restrictions, we get for the payoff of
the GMAB at time t ∈ [0, T]:

GMAB (t, T) = 1{t=T}1{τm(x)>T}1{τs>T} ·max [A (T) , G (T)] . (5)

In case of surrender at time ti, 1 ≤ i ≤ K, the SB is given by: I exp (Y (ti)− f (ti)) such that there
is no guarantee involved. Since the surrender fees are usually stipulated in the VA contract in a
determenistic (state-independent) way, the assumption that f is deterministic is not overly restrictive.
Assuming that f is decreasing reduces the incentives for early surrender, but it is not required for the
subsequent mathematical derivations. Again, to ensure that a policyholder’s right of refund is always
restricted to a single constituent of the overall VA contract the early surrender option can be exercised
only once, if the insured is still alive (i.e., {τs < τm (x)}) and if this is indicated within the preceding
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notice period (i.e., {ti−1 < τs ≤ ti}). Assuming t0 := 0, the payoff of the SB at time ti, 1 ≤ i ≤ K, is
given by:

SB (ti, T) = 1{ti−1<τs≤ti}1{τs<τm(x)} · I · exp (Y (ti)− f (ti)) . (6)

The third feature is a GMDB offering protection when the insured dies before contract expiration.
Although an insured can die at any point in time (continuous death event), let t̄ := (t̄1, . . . , t̄N)

′ with
0 < t̄1 < . . . < t̄N = T be the dates the death benefit is paid (discrete repayment dates). In general, the
termination dates of the SB and the repayment dates of the GMDB may be different. For simplicity, the
roll-up rates of the GMDB and the GMAB are assumed to be equal. In this case, the same roll-up rate is
used in the surrender intensity process and in the GMDB guarantee. For the GMDB, there are no fees
such that the repayment at t̄i, 1 ≤ i ≤ N, is equal to max [A (t̄i) , I exp (δt̄i)]. To avoid double claims of
the policyholder, the GMDB provides a payoff before T only once, if the early surrender option has
not been exercised so far (i.e., {τm (x) < τs}). We define t̄0 := 0. If the insured dies within the period
{t̄i−1 < τm (x) ≤ t̄i}, the payoff of the GMDB at repayment date t̄i, 1 ≤ i ≤ N is given by:

GMDB (t̄i, T) = 1{t̄i−1<τm(x)≤t̄i}1{τm(x)<τs} ·max [A (t̄i) , I exp (δt̄i)] . (7)

The above GMABs, SBs and GMDBs are designed such that a policyholder is not able to have two
claims at the same time. Therefore, the payoff at time t ∈ [0, T] of the overall VA is given by:

VA (t, T) = GMAB (t, T) + SB (t, T) + GMDB (t, T) (8)

3.2. Product Pricing and Required Approximations

We assume an arbitrage-free market, and so, the price of the overall VA at time t = 0, i.e., pVA (0),
has to be equal to the sum of the corresponding prices of its constituents.

pVA (0) = pGMAB (0) + pSB (0) + pGMDB (0) . (9)

For any point in time (5)–(8) provide the payoffs of the overall VA contract and its components.
To end up with the prices in (9) all payments received during the contract period [0, T] have to be
discounted.

By virtue of risk-neutral pricing, the present value of the GMAB (conditioning on G0 has been
omitted as no further information is provided) is given by:

pGMAB (0) = EQ
[
exp

(
−
∫ T

0 r (u)du
)

GMAB (T, T)
]

= Q (τm (x) > T) · G (T) · P (0, T) · (E1 [λ
s] + E2 [λ

s]) ,

(10)

with
Q (τm (x) > T) = EQ

[
exp

(
−
∫ T

0 λm
u (x + u)du

)]
,

P (0, T) = EQ
[
exp

(
−
∫ T

t r (u)du
)]

,

E1 [λ
s] = EQT

[
exp

(
−
∫ tK

0 λs (u)du
)]

,

E2 [λ
s] = EQT

[
exp

(
−
∫ tK

0 λs (u)du
)
(exp (Y (T)− δT)− 1)+

]
.

(11)

Using (10) the price of the GMAB can be converted into a product of already known factors,
except the one in the form of (E1 [λ

s] + E2 [λ
s]) which will be explained in detail later on. The first

factor reflects the risk-neutral probability that the insured does not die early. The second factor displays
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the guaranteed, final payoff. The third factor is given by the price of a default-free zero-coupon bond
with maturity T. Hence, the product of factors 2 and 3 provides the present value of the guarantee of
the GMAB. The expressions for E1 [λ

s] and E2 [λ
s] employ the forward measure QT defined through

the Radon-Nikodym derivative:

dQT

dQ

∣∣∣∣
G0

=
P (T, T)/P (0, T)

B (T)/B (0)
, (12)

with

B (t) := exp
(∫ t

0
r (u)du

)
, B (0) = 1.

E1 [λ
s] represents the forward probability that no surrender takes place before T (the last possible

termination date is tK), i.e., that the early surrender option is never exercised. Therefore, the first
summand in (10) can be interpreted as the surrender and mortality risk adjusted present value of
the guarantee G (T). Since E2 [λ

s] shows similarities to a European call option, the second summand
in (10) can be considered as the surrender and mortality risk adjusted value of a European call option
with maturity T written on the fund account value with strike G (T). Hence, it covers the surplus of
the fund compared to the guarantee, if the contract is kept in force until maturity.

Owing to their nonlinearity in λs, closed-form expressions for E1 [λ
s] and E2 [λ

s] are not available,
and we resort to analytical approximations. If we replace λs by its definition in (4) and apply rectangular
integration, we get for the first term:

E1 [λ
s] = exp (−C · tK) ·EQT

[
exp

(
−β

∫ tK

0
max [min [D (u) , α] , 0]du

)]

≈ exp (−C · tK) ·EQT

[
exp

(
−β

K

∑
i=1

∆ti max [min [D (ti) , α] , 0]

)]
,

with ∆ti := ti − ti−1, 1 ≤ i ≤ K. Here, we would like to highlight that the integral is not approximated
through an arbitrarily fine grid decreasing the approximation error at the expense of the enhanced
numerical effort. The grid points are defined by t. A rational policyholder exactly exercises
the surrender option at one of the termination dates, but not in the meantime, as, e.g., the fund
performance may dramatically worsen until his surrender decision takes effect. Therefore, the changes
in λs between ti−1 and ti are of minor importance so that the surrender intensity at a termination
date multiplied by the time period from the last observation serves as a proper approximation for the
integrated surrender intensity.

Next, we use that it holds for all 1 ≤ i ≤ K:

max [min [D (ti) , α] , 0] = D (ti) · 1{0<D(ti)<α} + α · 1{D(ti)≥α}.

Thereafter, we take into account that the exponential function represents an absolutely convergent
power series which implies that a changed order of summation preserves the limit. If x1, . . . , xn

are arbitrary real numbers, the reordering of the exponential function we are working with is given by:

exp (∑n
i=1 xi) = ∑∞

k=0
(∑n

i=1 xi)
k

k!

= 1 + ∑n
i=1 (exp (xi)− 1) + ∑n

i,j=1
i<j

xixj + O (mixed terms of order ≥ 3) ,
(13)
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where O (·) denotes the Landau notation. To illustrate the quality of this approximation Figure 2
displays the approximation error for5 n = 2, −0.15 < xi < 0, i = 1, 2. We can observe that in all
cases the approximation error is below 3 · 10−3.

Figure 2. Approximation Error for Equation (13).

Finally, we focus on a reduced number of summands of the reordered power series. For this
purpose, we omit all mixed terms of order ≥ 3 and some of the mixed terms of order 2 and get:

E1 [λ
s] ≈ exp (−C · tK) ·

(
SQT

11 (D, α, β, t) + SQT

12 (D, α, β, t)
)

, (14)

with:
SQT

11 (D, α, β, t) : = 1 + ∑K
i=1 EQT

[
(exp (−β∆tiD (ti))− 1)1{0<D(ti)<α}

]
+∑K

i=1 EQT

[
(exp (−β∆tiα)− 1)1{D(ti)≥α}

]
,

(15)

SQT

12 (D, α, β, t) : = ∑K
i,j=1
i<j

β2∆ti∆tjEQT

[
D (ti) D

(
tj
)
1{0<D(ti)<α}1{0<D(tj)<α}

]

+∑K
i,j=1
i<j

β2α2∆ti∆tjQT (D (ti) ≥ α, D
(
tj
)
≥ α

)
.

(16)

For the ease of exposition, we define Ỹ (t) := Y (t)− δt for all t ∈ [0, T]. If we apply the same
methods as before, but omit all mixed terms of order ≥ 2, we get for E2 [λ

s]:

E2 [λ
s] ≈ exp (−C · tK) · SQT

2
(

D, Ỹ, α, β, t
)

, (17)

with

SQT

2
(

D, Ỹ, α, β, t
)

:= EQT

[
exp

(
Ỹ (T)

)
1{Ỹ(T)≥0}

]
−QT (Ỹ (T) ≥ 0

)
+∑K

i=1 EQT

[
(exp (−β∆tiD (ti))− 1)

(
exp

(
Ỹ (T)

)
− 1
)
1{0<D(ti)<α}1{Ỹ(T)≥0}

]
+∑K

i=1 EQT

[
(exp (−βα∆ti)− 1)

(
exp

(
Ỹ (T)

)
− 1
)
1{D(ti)≥α}1{Ỹ(T)≥0}

]
.

(18)

5 This will be the range for the corresponding expressions in our numerical case studies.
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If we define for all 1 ≤ i ≤ K:

h1 (β, D, ti) : = −β∆tiEQT [D (ti)] +
1
2 β2∆t2

i VarQT [D (ti)] ,

h2 (α, β, D, ti) : =
EQT [D(ti)]−α√
VarQT [D(ti)]

− β∆ti

√
VarQT [D (ti)],

(19)

we get for SQT

11 (D, α, β, t):

SQT

11 (D, α, β, t) = 1 +∑K
i=1 exp (h1 (β, D, ti))Φ (h2 (0, β, D, ti))−∑K

i=1 exp (h1 (β, D, ti))Φ (h2 (α, β, D, ti))

+∑K
i=1 exp (−βα∆ti)Φ (h2 (α, 0, D, ti))−∑K

i=1 Φ (h2 (0, 0, D, ti)),
(20)

where Φ (·) denotes the cumulative distribution function (CDF) of the standard Gaussian N (0, 1).
The detailed proof is shown in Appendix C.1.

For all i, j ∈ {1, . . . , K} with i < j we define:

µ (i, j) : =

(
EQT [D (ti)]

EQT
[
D
(
tj
)]) ,

Σ (i, j) : =

(
VarQT [D (ti)] CovQT

[
D (ti) , D

(
tj
)]

CovQT
[
D (ti) , D

(
tj
)]

VarQT
[
D
(
tj
)] )

.

(21)

After the indicator set in (16) has been split, we have:

SQT

12 (D, α, β, t) : = ∑K
i,j=1
i<j

β2∆ti∆tjEQT

[
D (ti) D

(
tj
)
1{0<D(ti),0<D(tj)}

]

−∑K
i,j=1
i<j

β2∆ti∆tjEQT

[
D (ti) D

(
tj
)
1{0<D(ti),α≤D(tj)}

]

−∑K
i,j=1
i<j

β2∆ti∆tjEQT

[
D (ti) D

(
tj
)
1{α≤D(ti),0<D(tj)}

]

+∑K
i,j=1
i<j

β2∆ti∆tjEQT

[
D (ti) D

(
tj
)
1{α≤D(ti),α≤D(tj)}

]

+∑K
i,j=1
i<j

α2β2∆ti∆tj M
(
(0, 0)′ , µ (i, j) , Σ (i, j) , (α, α)′ , I2

)
.

(22)

where I2 is the two-dimensional identity matrix. The expectations of the product of the truncated
random variables D (ti) and D

(
tj
)

are provided in Appendix B.4. The expression M (·) is explained
in Appendix B.2.

For all 1 ≤ i ≤ K we set:

µ (i) : =

(
EQT [D (ti)]

EQT
[
Ỹ (T)

]) ,

Σ (i) : =

(
VarQT [D (ti)] CovQT

[
D (ti) , Ỹ (T)

]
CovQT

[
Ỹ (T) , D (ti)

]
VarQT

[
Ỹ (T)

] )
.

(23)
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Then, SQT

2
(

D, Ỹ, α, β, t
)

can be converted into:

SQT

2
(

D, Ỹ, α, β, t
)

= exp
(
EQT

[
Ỹ (T)

]
+ 1

2VarQT
[
Ỹ (T)

])
Φ

(
EQT [Ỹ(T)]+VarQT [Ỹ(T)]√

VarQT [Ỹ(T)]

)

+∑K
i=1 M

(
(−β∆ti, 1)′ , µ (i) , Σ (i) , (0, 0)′ , I2

)
−∑K

i=1 M
(
(−β∆ti, 1)′ , µ (i) , Σ (i) , (α, 0)′ , I2

)
−∑K

i=1 M
(
(−β∆ti, 0)′ , µ (i) , Σ (i) , (0, 0)′ , I2

)
+∑K

i=1 M
(
(−β∆ti, 0)′ , µ (i) , Σ (i) , (α, 0)′ , I2

)
−∑K

i=1 M
(
(0, 1)′ , µ (i) , Σ (i) , (0, 0)′ , I2

)
+∑K

i=1 exp (−βα∆ti) M
(
(0, 1)′ , µ (i) , Σ (i) , (α, 0)′ , I2

)
+∑K

i=1 M
(
(0, 0)′ , µ (i) , Σ (i) , (0, 0)′ , I2

)

−∑K
i=1 exp (−βα∆ti) M

(
(0, 0)′ , µ (i) , Σ (i) , (α, 0)′ , I2

)
−Φ

(
EQT [Ỹ(T)]√
VarQT [Ỹ(T)]

)
.

(24)

For the expression M (·) see Appendix B.2. A detailed proof is shown in Appendix C.2.

Finally, SQT

11 (D, α, β, t) , SQT

12 (D, α, β, t) and SQT

2 (D, Ỹ, α, β, t) only require the moments and
covariances in Appendix A.1 and thus, GMABs can be priced based on closed-form approximations.
Besides the CDF of the standard Gaussian and the exponential function, only sums, products and
quotients are involved. Hence, there are no integrals left causing further numerical effort. The number
of summands depends on t implying that the decomposition of the grid may be orientated towards
practical needs. For T = 15 and a semiannual surrender option we have 29 termination dates,
which is easy to handle. The main drawback of our approach is the effort we have to put into its
implementation. If we price GMABs using Monte Carlo Simulation (MC), the time and effort we have
to spend on implementation may be smaller than in our case. However, to ensure that the provided
prices are reliable, many trajectories have to be generated taking time and computational power.
For instance, in Case 1 of Table 7 we simulate 500,000 paths for this purpose. By contrast, as soon as
the approximation is implemented it takes significantly less time to get comparable prices. Since the
implementation has to be done only once at the beginning, whereas performing the MCs can happen
serveral times each day, our approach can be justified.

For the present value of the surrender benefit we have that:

pSB (0) = EQ
[
exp

(
−
∫ τs

0 r (u)du
)

SB (τs, T)
]

= ∑K
i=1 EQ

[
I exp

(
−
∫ ti

0 r (u)du + Y (ti)− f (ti)
)
1{ti<τm(x)}1{ti−1<τs≤ti}

]
= I ∑K

i=1 exp (− f (ti)) ·Q (τm (x) > ti) ·EQ
[
exp

(
−
∫ ti

0 r (u)du + Y (ti)
)
1{ti−1<τs≤ti}

]
,

= I ∑K
i=1 exp (− f (ti)) ·Q (τm (x) > ti) ·QS(ti) (ti−1 < τs ≤ ti) .

(25)

In the second line we use the fact that the surrender benefit is only repaid at certain points in time
while the third line arises from the independence of the financial market and mortality. Eventually,
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for all periods [0, ti] with 1 ≤ i ≤ K we replace the risk-neutral measure Q with the respective equity
measure QS(ti), whose Radon-Nikodym derivative obeys for t < ti:

dQS(ti)

dQ

∣∣∣∣∣
Gt

=
S (ti) /S (t)
B (ti) /B (t)

. (26)

Therefore, at any termination date ti the surrender benefit in (25) is equal to the present value
of the expected fund performance reduced by the prevailing surrender fee, if the insured is still alive
(τm (x) > ti) and if the surrender option has been exercised within the preceding surrender period
(ti−1 < τs ≤ ti). Again, we neglect all mixed terms of order ≥ 2, and so, obtain for the probability that
no early surrender occurs before time ti, QS(ti) (τs > ti) , for t̃i := {t1, . . . , ti}:

QS(ti) (τs > ti) = EQS(ti)

[
exp

(
−
∫ ti

0 λs (u)du
)]

≈ exp (−C · ti) · SQS(ti)

11 (D, α, β, t̃i) .

(27)

The moments of the decision criterion D under the equity measure QS(ti) are provided in
Appendix A.1.

Eventually, we get for the present value of the GMDB:

pGMDB (0) = EQ
[
exp

(
−
∫ τm(x)

0 r (u)du
)

GMDB (τm (x) , T)
]

= ∑N
i=1 EQ

[
exp

(
−
∫ t̄i

0 r (u)du
)
1{t̄i<τs} ·max [A (t̄i) , I exp (δt̄i)]

]
Q (t̄i−1 < τm (x) ≤ t̄i)

= ∑N
i=1

GMAB(0,t̄i)·Q(t̄i−1<τm(x)≤t̄i)
Q(τm(x)>t̄i)

.

(28)

Using (28) a GMDB serves as a portfolio consisting of N (the number of repayment dates of
the death benefit) mortality adjusted GMAB contracts with maturities t̄. If we use the closed-form
approximation for the GMAB in (10), we get rid of the denominator Q (τm (x) > ti). As soon
as a closed-form solution for GMABs is derived, (28) provides an analytic solution for GMDBs.
Because of (11) there are no unknown terms in (28). Another important consequence of (28) is the
flexibility inherent in the presented approach, as it supports the reuse of existing expressions and
hence, allows for encapsulation when it comes to its implementation.

4. Model Calibration

In the sequel, we will calibrate the stochastic models in Section 2 using actively traded financial
products and historical mortality tables. Due to a lack of real data, the calibration of the surrender
model relies on hypothetical data. However, those insurance companies that have access to sufficient
surrender data can easily perform all steps with their inputs. The idea behind this section is to show
how the underlying models can be properly calibrated. We do not claim that this is the one and only
way. When actively traded financial products enter the calibration, for instance, they can be used when
corresponding trading strategies are set up or hedged. Hence, a link between the estimated models
and future actions regarding risk and asset management can be established.

4.1. Financial Market Model

For any 0 ≤ t ≤ T let P (t, T) be the value of a default-free zero-coupon bond at time t with
maturity T in (11). Then, it holds in [34] that:

P (t, T) = exp
(

AQ
r (t, T) + BQ

r (t, T) r (t)
)

, (29)
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with

AQ
r (t, T) =

∫ T

t
θr (s) BQ

r (s, T)ds +
1
2

σ2
r

∫ T

t
BQ

r (s, T)2 ds,

BQ
r (t, T) =

1
ar

[exp (ar (t− T))− 1] .

Let f (0, T) denote the instantaneous forward rate of P (0, T) at time t = 0, i.e.,

f (0, T) = − ∂

∂T
ln (P (0, T)) .

By taking the partial derivative with respect to T (two times) of the logarithm of both sides of (29)
the Leibniz’s rule in [35] provides for the function θr (t) , t ≥ 0:

θr (t) =
∂

∂t
f (0, t) + ar f (0, t) +

σ2
r

2ar
[1− exp (−2art)] .

Inserting this in (29) we get:

AQ
r (t, T) =

σ2
r

4a3
r
[exp (−2arT)− 1− exp (2ar (t− T)) + exp (−2art)] + ln

(
P (0, T)
P (0, t)

)
+

σ2
r

2a3
r
[exp (ar (t− T))− exp (−ar (t + T))] + f (0, t)

1− exp (ar (t− T))
ar

.

The calibration of θr (t) , t ≥ 0, relies on the zero-coupon bond prices in Figure 3 which are derived
from Reuters quotes of 6 month EURIBOR interest-rate swaps (downloaded on 16 January 2013). For
missing interest-rate swaps with maturity less than one year suitable EURIBOR spot rates are chosen.
We follow Sections 5.5.1–5.5.4 in [36] to obtain the discount curve in Figure 3. As Reuters provides
quotes of caps and floors written on the 6 month EURIBOR, for the estimation of ar and σr the mid
price at-the-money (ATM) Black volatilities of Table 1 are used. First, these ATM Black volatilities
have to be converted into market prices, see Sections 5.8.2–5.8.3 in [36]. Then, the prices of caps and
floors are related to portfolios consisting of options written on default-free zero-coupon bonds as in
Sections 5.6.1–5.6.2 in [36]. Finally, we minimize the squared difference between the theoretical cap
prices provided by the Hull-White model as a function of the unknown parameters ar and σr and the
market prices derived from the Black volatilities under the conditions ar ≥ 0 and σr ≥ 0. The resulting
optimal parameters are given in Table 2.

Figure 3. Discount Curve on 16 January 2013.
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Table 1. 6 Month EURIBOR Mid Price ATM Volatilities [%].

Maturity 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

Volatility 99.7 66.1 61.2 55.4 50.0 45.3 41.6 38.5 36.1

Based on (1) let Option (t, T, S, K, ψ) be the value at time t < T of a European call (ψ = 1) or put
(ψ = −1) option with strike K, maturity T and underlying S. Then, it holds:

Option (t, T, S, K, ψ) = ψS (t)Φ (ψhS)− ψKP (t, T)Φ (ψhT) ,

with

hS : =
ln
(

S(t)
K

)
−Y (t) +EQS(T) [Y (T) |Gt]√
VarQS(T) [Y (T) |Gt]

,

hT : =
ln
(

S(t)
K

)
−Y (t) +EQT [Y (T) |Gt]√
VarQT [Y (T) |Gt]

.

The index QT denotes the forward measure in (12), whereas QS(T) denotes the equity measure in (26).
The risky asset in (1) shall be given by the German stock index DAX. We use European options

written on the DAX, i.e., ODAX quotes, published by the EUREX on 16 January 2013 for the calibration
of S and hence, Y. Because of the limited number of data we assume that all options with the same
maturity Ti, 1 ≤ i ≤ n, are characterized by the same volatility σS (Ti) and that the deterministic
function σS (t) , t ≥ 0, is piecewise constant, i.e., σS (t) = σi

S ∀ t ∈ (Ti−1, Ti] for all 1 ≤ i ≤ n with T0 := 0.
For t = 0 the preceding option pricing formula can be transformed to:

Option (0, Ti, S, K, ψ) = ψS (0)Φ (ψd1 (Ti))− ψKP (0, Ti)Φ (ψd2 (Ti)) ,

where ∀ i ∈ {1, . . . , n} we get for d1 (Ti) and d2 (Ti):

d1 (Ti) =
ln
(

S(0)
K·P(0,Ti)

)
+ 1

2V (Y (Ti))√
V (Y (Ti))

,

d2 (Ti) = d1 (Ti)−
√

V (Y (Ti)).

For all i ∈ {1, . . . , n} it holds for V (Y (Ti)) that:

V (Y (Ti)) =
σ2

r

a3
r

[
arTi −

3
2
+ 2 exp (−arTi)−

1
2

exp (−2arTi)

]
+

i

∑
k=1

(
σk

S

)2
(Tk − Tk−1)

+ 2ρSr
σr

ar

i

∑
k=1

σk
S

[
(Tk − Tk−1) +

1
ar

(exp (ar (Tk−1− Ti))− exp (ar (Tk − Ti)))

]
.

For reasons of simplicity, we use the historical correlation between the (simple) daily DAX returns
and the 6 month EURIBOR rates as an approximation for ρSr. However, more sophisticated models for
ρSr could be part of future research. Tables 2 and 3 summarize the derived calibration results of the
financial market model.
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Table 2. Parameters of the Financial Market Model.

ar σr ρSr

0.0799 0.0079 −0.0403

Table 3. Estimated Standard Deviations for DAX Index.

Ti 01/18/2013 02/15/2013 03/15/2013 06/21/2013 09/20/2013 12/20/2013

σS (Ti) 0.1368 0.1232 0.1557 0.1712 0.1898 0.1993

Ti 06/20/2014 12/19/2014 06/19/2015 12/18/2015 12/16/2016 12/15/2017

σS (Ti) 0.2179 0.2146 0.2367 0.2624 0.2432 0.2237

4.2. Mortality Model

In Sections 2.2 and 3.2 we do not discuss the real-world and risk-neutral survival probabilities
in detail, as the respective P- and Q-survival probabilities are heavily affected by the model for the
mortality risk premium. This is the reason why both should be part of this calibration section.

Assume 0 ≤ t ≤ T. Then, [34] provide the P-survival probability based on (2):

P (τm (x) > T|Gt) = EP

[
exp

(
−
∫ T

t
λm

s (x + s)ds
)
|Gt

]
= exp

(
AP

x (t, T) + BP
x (t, T) λm

t (x + t)
)

,

with

AP
x (t, T) =

c1 exp (c2T)
c3 (c2 + c3)

[1− exp ((c2 + c3) (t− T))] +
1
4

(
c4

c3

)2 exp (2c5T)
c5

[1− exp (2c5 (t− T))]

−
(

c4

c3

)2 exp (2c5T)
2c5 + c3

[1− exp ((2c5 + c3) (t− T))]− c1 exp (c2T)
c2c3

[1− exp (c2 (t− T))]

+
1
4

(
c4

c3

)2 exp (2c5T)
c3 + c5

[1− exp (2 (c3 + c5) (t− T))] ,

BP
x (t, T) =

1
c3

[exp (c3 (t− T))− 1] .

Using [34] the Q-survival probability based on (3) is given by:

Q (τm (x) > T|Gt) = EQ

[
exp

(
−
∫ T

t
λm

s (x + s)ds
)
|Gt

]
= exp

(
AQ

x (t, T) + BQ
x (t, T) λm

t (x + t)
)

,

with

AQ
x (t, T) = AP

x (t, T) +
c4

c3c5
γm (exp (c5T)− exp (c5t))− c4

c3 (c3 + c5)
γm exp (c5T)

+
c4

c3 (c3 + c5)
exp (−c3T) γm exp ((c5 + c3) t) ,

BQ
x (t, T) =

1
c3

[exp (c3 (t− T))− 1] .
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For a fixed age x, and 0 ≤ t ≤ T, let Mx (t, T) be defined by:

Mx (t, T) = ln
(
Q (τm (x) > T|Gt)

P (τm (x) > T|Gt)

)
=

c4

c3c5
γm (exp (c5T)− exp (c5t))− c4

c3 (c3 + c5)
γm exp (c5T) (30)

+
c4

c3 (c3 + c5)
exp (−c3T) γm exp ((c5 + c3) t) .

(a) (b)

Figure 4. Gompertz Model (a) and Improvement Ratio (b) for Men Aged 40 Years in 1971.

Figure 4 displays the calibration results for the real-world measure P which are derived from U.K.
mortality data. On the left we show the empirical survival probabilities (blue) and their analogs based
on the estimated, static Gompertz model (red). The decreasing blue line on the right indicates that
mortality for the given group is generally improving. The mortality improvement ratio ξ is modeled as
an Ornstein-Uhlenbeck process, this is why the red line on the right-hand side illustrates an arbitrary
trajectory. As there is no liquid market for actively traded annuities (especially not for variable ones),
the estimation of the mortality risk premium γm has to rely on primary market prices. For this purpose,
the annual averages of level annuity rates (equipped with a five-year guarantee, offered to men aged
65 years in the U.K.) provided by [37] serve as an approximation and are displayed in the left plot
of Figure 6. To enter a level annuity contract a policyholder has to pay a lump sum at the beginning.
Thereafter, he is entitled to a constant (annual) repayment for his remaining lifetime. Consequently,
there are no adjustments caused by inflation, an overperforming fund, etc. to be addressed. If γm is
supposed to be constant depending on the year a contract was issued and the age of an insured, we
get for a contract issued in u = calendar year− 1971:

Iu

Lu
=

5

∑
k=1

P (u, u + k) +
T∗−x

∑
k=6

Q (τm
u (x) > k|Gu) P (u, u + k).

The index u in τm
u (x) denotes the year the contract was issued. Iu and Lu stand for its initial

premium and the agreed annual repayment of the level annuity. Using (30), the mortality tables of
Figure 1 (upper limit in age is 101 years) and the fact that a person aged x in u was x− u in 1971 it
follows that:

Iu

Lu
=

5

∑
k=1

P (u, u + k) +
36

∑
k=6

[P (τm
u (x) > k|Gu) exp (Mx−u (u, u + k)) P (u, u + k)] .

The annuities in [37] have been offered in the U.K. implying that the estimated financial market
model based on EURIBOR rates and DAX cannot be used for pricing the bonds P (u, u + k). We aim to
show how the chosen mortality risk premium may be estimated. In doing so, we do not claim that
this solution is the one and only way. Depending on the intention and needs of the user alternative
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approaches might be more appropriate. We replace P (u, u + k) through the corresponding discount
factors derived from the nominal rates of U.K. government bonds6 published by the Bank of England
and illustrated in Figure 5. Besides the nominal rates of U.K. government bonds, the discount factors of
an insurance company possibly take into account corporate bond yields, and equity and other returns,
which significantly affects the estimated mortality risk premium γm. Across the full range of insurance
companies and annuity products, the internal discount factors may vary considerably. As [37] provide
averaged annuity rates which are not restricted to a single provider, we cannot construct discount
factors covering the entire annuity business. Furthermore, as soon as the discount factors are based on
some defaultable products such as corporate bonds the inherent default risk has to be incorporated
and separated from the mortality risk. If a risk-free rate is used for discounting, there are no default
risks requiring particular attention. Concerning the annuity rates in [37], the nominal rates of U.K.
government bonds might be a good approximation for the risk-free rate as their default risk is quite
low and each insurance company is able to invest in them. Using linear interpolation whenever
inner maturities are missing and constant extrapolation for maturities greater than 25 years results
in the term structures displayed in Figure 5. The estimated parameters of the mortality model are
summarized in Table 4.

Figure 5. U.K. Nominal Rates (1970–2012).

Table 4. Mortality Parameters

Parameter b z κ γ σξ γm

Estimated Value 12.1104 76.1390 0.4806 0.0195 0.0254 10.6482

On the one hand, Figure 4 confirms that the combination of the static Gompertz model and the
mortality improvement ratio, i.e., the mortality model under P, is able to properly map the real-world
mortality tables. On the other hand, the plot on the left of Figure 6 indicates that the constant mortality
risk premium γm and the nominal rates of the U.K. government bonds are suitable for the replication
of the annuity rates of [37], as there are only minor deviations between the original annuity rates and
their theoretical counterparts based on the estimated parameters of Table 4. All in all, the mortality
model provides convincing results regarding the real-world measure P and the risk-neutral pricing
measure Q. However, the interpretation of γm = 10.6482 is still missing. Using the plot on the right in
Figure 6 we can conclude: First, the blue and red curves are shaped similarly such that the constant

6 The data can be downloaded from http://www.bankofengland.co.uk/statistics/Pages/yieldcurve/archive.aspx.

http://www.bankofengland.co.uk/statistics/Pages/yieldcurve/archive.aspx
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mortality risk premium γm does not change the structure of the survival probabilites; Second, for any
fixed age the risk-neutral survival probability exceeds its real-world analog. From the perspective
of an annuity provider this makes sense. The P-survival probabilities arise from the real mortality
tables, whereas the Q-survival probabilities are used for pricing annuities. If the difference between
the Q- and P-survival probabilities is positive, an annuity provider implicitly assumes in his annuity
prices that the insureds live on average longer than the mortality tables reflect. So, in addition to the
mortality risk derived from real mortality tables, a premium in the form of the spread between the
Q- and P-survival probabilities is charged by the insurance company for taking the insureds’ longevity
risk. Within our modeling framework γm covers the magnitude and direction of this longevity risk
premium. The larger the absolute value of γm the larger the absolute value of the spread between both
survival probabilities. Whenever γm is negative, the Q-survival probabilities are smaller than their
P-analogues. For instance, in case of term life assurances, insurance companies are facing the opposite
risk, i.e., that the insureds die earlier than expected.

(a) (b)

Figure 6. Level Annuities of [37] (a) and Survival Probabilities (b).

4.3. Surrender Model

For 1 ≤ i ≤ K, let qi denote the probability that the early surrender option is exercised before
ti. To be precise, let q1, . . . , qK represent the (hypothetical) surrender probabilities we want to use for
product pricing. Then, (27) provides for all 1 ≤ i ≤ K:

1− qi ≈ exp (−C · ti) · SQS(ti)

11 (D, α, β, t̃i) .

Using (19) and (20), we obtain:

SQS(ti)

11 (D, α, β, t̃i) = 1 +∑i
j=1 exp

(
h̄1
(

β, D, tj
))

Φ
(
h̄2
(
0, β, D, tj

))
−∑i

j=1 exp
(
h̄1
(

β, D, tj
))

Φ
(
h̄2
(
α, β, D, tj

))
+∑i

j=1 exp
(
−βα∆tj

)
Φ
(
h̄2
(
α, 0, D, tj

))
−∑i

j=1 Φ
(
h̄2
(
0, 0, D, tj

))
,

where it holds for all 1 ≤ j ≤ i:

h̄1
(

β, D, tj
)

: = −β∆tjEQS(ti)

[
D
(
tj
)]

+
1
2

β2∆t2
j VarQS(ti)

[
D
(
tj
)]

,

h̄2
(
α, β, D, tj

)
: =

EQS(ti)

[
D
(
tj
)]
− α√

VarQS(ti)

[
D
(
tj
)] − β∆tj

√
VarQS(ti)

[
D
(
tj
)]

.

The moments EQS(ti)

[
D
(
tj
)]

and VarQS(ti)

[
D
(
tj
)]

are given in Appendix A.1. After the
calibration results of the financial market have been determined, an ordinary least-squares regression
yields the estimation of the unknown surrender parameters α, β and C.

Due to a lack of data, the hypothetical parameters in Table 5 are considered. Case 1 neglects early
surrender such that we are able to analyze the value of the surrender option and to test the quality of
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the approximation without any disturbances resulting from the surrender add-on. The parameters of
Case 2 and Case 3 were chosen to get first-year surrender probabilities within a range of 1%–5% and
5%–10%, respectively7. The first-year surrender intensities based on Case 2 and Case 3 are illustrated
in Figure 7. For the remaining drivers of the decision criterion D, i.e., δ, f and T, see Table 6.

Table 5. Parameters of Surrender Model.

Case 1 Case 2 Case 3

α 0.00 1.00 0.25
β 0.00 0.04 0.20
C 0.00 0.01 0.05

(a) (b)

Figure 7. First-Year Surrender Probability 1%–4.88% (a) and 4.88%–9.52% (b).

Table 6. Specification of Variable Annuity (VA) Contract.

Insured man, aged 50 years

Premium 100

Maturity 15 years

δ 1.00 %

Termination dates 1, . . . , 14 (once per year)

Repayment Dates 1, . . . , 15 (once per year)

Surrender Fees 7%, . . . , 1% (years 1–7, linear)
0% (years 8–14, no fee)

5. Numerical Example

To check the quality of the presented pricing framework, in particular, to detect its errors and
limitations we price the VAs in (9) twice, that is, using our closed-form approximation and MC.
The simulated prices will serve as a benchmark for the approximated ones; we generate 500,000 trajectories
of the processes Y and r on a monthly basis. For the model parameters the calibration results in Tables 2–5
are taken. The contract specification of the considered VA is defined in Table 6.

The authors of [6] derive an analytic solution for GMABs in the absence of early surrender. Since
the work in (28) provides a closed-form solution for GMDBs and the value of the SB is zero, for Case 1
of Table 5 an analytic solution exists. The positive γm in Table 4 implies that the Q-survival probabilities
exceed their P-counterparts (see Figure 6) reflecting the premium charged for longevity risk. In the

7 For the parameters in Table 5 the actual boundaries are 1%–4.88% and 4.88%–9.82%.
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case of GMDBs an insurer is facing the reverse risk, i.e., that an insured dies earlier than expected.
Here, we keep the γm from Table 4 for the pricing of the GMDB, as we are not able to estimate the risk
premium due to missing data. A summary of the priced VAs is displayed in Table 7.

Table 7. VA Prices, Standard Deviations and Differences.

GMAB

Case 1 Case 2 Case 3

Analytic Sol. 110.6804 x x
Approximation 110.6804 79.2336 36.2581

Sim. (mean, 500K) 110.9925 81.2484 39.0351
Sim. (std, 500K) 0.1200 0.0662 0.0303

Delta (abs.)8 −0.3121 −2.0148 −2.7771
Delta (rel.)9 −0.0028 −0.0248 −0.0711

SB

Case 1 Case 2 Case 3

Analytic Sol. 0 x x
Approximation 0 26.3468 62.9797

Sim. (mean, 500K) 0 27.7328 63.2259
Sim. (std, 500K) 0 0.0397 0.0519

Delta (abs.) 0 −1.3860 −0.2462
Delta (rel.) x −0.0500 −0.0039

GMDB

Case 1 Case 2 Case 3

Analytic Sol. 12.2560 x x
Approximation 12.2560 10.3374 6.9443

Sim. (mean, 500K) 12.2589 10.4157 7.0785
Sim. (std, 500K) 0.0078 0.0049 0.0027

Delta (abs.) −0.0029 −0.0783 −0.1343
Delta (rel.) −0.0002 −0.0075 −0.0190

VA = GMAB + SB + GMDB

Case 1 Case 2 Case 3

Analytic Sol. 122.9363 x x
Approximation 122.9363 115.9177 106.1820

Sim. (mean, 500K) 123.2514 119.3968 109.3395
Sim. (std, 500K) 0.1270 0.1007 0.0731

Delta (abs.) −0.3150 −3.4791 −3.1575
Delta (rel.) −0.0026 −0.0291 −0.0289

Table 7 shows that high first-year surrender probabilities (Case 1: 0%; Case 2: 1%–5%; Case 3:
5%–10%) reduce the GMAB prices. An increased surrender probability decreases the likelihood that a
policyholder is entitled to the GMAB payoff, justifying the price decline. A high termination probability
makes claims from the SB more likely (prices increase). A high likelihood of surrender enhances the
chance that a policyholder surrenders his contract before he dies so that the decreased GMDB prices
are reasonable. If early surrender occurs, a policyholder’s right of refund is restricted to the fund
reduced by the prevailing surrender fee. The absence of any guarantee diminishes the financial distress

8 Delta (abs.) represents the difference between the approximated and the corresponding simulated prices.
9 Delta (rel.) is equal to the ratio of Delta (abs.) and the simulated price. Hence, it refers to the relative price deviations.
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of the insurance company compared to the GMAB and GMDB. The theoretical assumption that the
increase in the SB prices is smaller than the aggregated decrease in the GMAB and GMDB prices is
supported by the decreasing VA prices.

In Case 1, the analytic solution and the closed-form approximation provide the same prices
indicating that our approach works properly, if early surrender is neglected. MC prices of GMABs
and GMDBs are slightly different, but these small deviations are acceptable. In the sequel, the MC
prices will serve as a benchmark for their approximated counterparts. Table 7 shows for GMABs,
SBs and GMDBs an increase in the absolute error when their values decline. That is to say, the less
the worth of a component is the higher its pricing error becomes. This is important, since the most
valuable constituents are properly priced. Due to (28) a GMDB may be regarded as a portfolio of
GMABs. Therefore, it is no coincidence that for all cases the pricing errors of GMABs and GMDBs
have the same sign. Note that for the overall VA the absolute value of Delta (rel.) remains smaller than
3.00% for all considered cases.

For a better understanding of the assumed surrender behavior Figure 8 illustrates for all
termination dates the empirical means of the simulated surrender intensities. Recalling Table 5
we can see that both time series meet the initial conditions. The surrender intensity of Case 2 is
increasing while the one of Case 3 does the opposite. In both cases the same decision criterion is
applied, but different parametrizations of the surrender intensity result in different admissible upper
and lower bounds. In total, they cause distinct s-curves such that the simulated decision criterion
reaches/exceeds their upper and lower limits in different scenarios.

Figure 8. Means of Simulated Surrender Intensities

Finally, we briefly repeat the main advantage of the presented pricing scheme. Simulation techniques
often require a sufficient number of scenarios together with an appropriate grid size (e.g., monthly steps).
This may call for a lot of computational power and can be quite time consuming. By contrast, the derived
closed-form approximation requires simple calculations. Each run takes a fraction of the simulation
time, and thus, causes significant savings in computation time.

6. Emergency Fund Extension

The emergency fund hypothesis assumes that personal financial distress or other factors
(e.g., unemployment or illness) force policyholders to prematurely surrender their contracts. In the
sequel, let a major drop in stock market prices be one of these factors resulting in financial distress for
some policyholders (in addition to the ones already covered by the lower limit C). To be precise, let the
time-dependent function l : [0, T] → [−∞, 0] denote the lower limit at time t triggering additional
surrender arising from a badly performing fund. Then, for any point in time t ∈ [0, T] with Y (t) < l (t)
we have an increased surrender intensity. In general, a steep decline in stock market prices should
exert pressure on more policyholders than a small one does. Thus, we assume for any fixed t ∈ [0, T]
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the more Y (t) decreases on the interval Y (t) ∈ [−∞, l (t)], i.e., the bigger the loss on the fund account,
the more the surrender intensity increases up to an upper limit. For an illustration of the new surrender
intensity λ̃s (t) based on different parameters see Figure 9. If we assume a piecewise linear relation
between Y (t) and λ̃s (t) in the form of two s-curves (one covering the policyholders’ surrender
behavior described in Section 2.3 and one covering the emergency fund hypothesis), for any fixed
point in time t ∈ [0, T] we get:

λ̃s (t) := β max [min [D (t) , α] , 0]− β̃ max
[
min

[
D̃ (t) , α̃

]
, 0
]
+ C̃, (31)

with α, α̃, β, β̃, C̃ ∈ R+
0 and D̃ (t) := Y (t)− l (t).

Because of its relevance for applications in practice we show how the surrender model definded
by Case 2 in Table 5 can be properly extended to the emergency fund hypothesis. On the interval [0, ∞]

the behavior of new intensity λ̃s shall coincide with the behavior of the old intensity λs. Therefore,
we keep the parameters α and β of Table 5. The constant C̃ has to be adjusted to end up with the
original lower limit C. For this purpose, C̃ has to satisfy:

C̃− α̃β̃ = C.

Since we are not able to calibrate this extended surrender model due to the lack of appropriate
surrender data, we use the hypothetical values in Table 8. The corresponding surrender intensities
are displayed in Figure 9. Using the contract specification in Table 6 we obtain the probabilities in
Figure 10. These surfaces present the probability that the early surrender option is not exercised within
the first year depending on the accumulated stock return Y (1) and long-term interest rate R (1, 15).

(a) (b)

Figure 9. Surrender Intensities of Cases 4 (a) and 5 (b).

The only difference between Cases 4 and 5 is given by the lower limit l (t) ≡ l which has to be
explained, in particular, regarding the assumed surrender behavior of the policyholders. In Case 4 we
have that if the value of the fund drops to 86.07% = exp(−0.15) of the initial investment, the emergency
add-on is activated. As soon as the fund further declines to 77.88% = exp(−0.25) the one-year surrender
probability increases from 1% to 2.96% where it is capped. Similarly, we have in Case 5 that if the value
of the fund drops from 67.03% = exp(−0.40) to 60.65% = exp(−0.50), the one-year surrender probability
increases from 1% to 2.96% where it is again capped. Hence, in Case 4 additional surrender due to the
emergency fund hypothesis is triggered earlier, indicating that the policyholders characterized by Case
4 suffer more from a downturn on the stock market than the ones described by Case 5. In both scenarios
a negative fund performance causes an increase in the one-year surrender probability of almost 2%.
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(a) (b)

Figure 10. Survival Probabilities of Cases 4 (a) and 5 (b).

Table 8. Parameters of the Extended Surrender Model.

Case 4 Case 5

α 1.00 1.00
β 0.04 0.04
α̃ 0.10 0.10
β̃ 0.20 0.20
C̃ 0.03 0.03
l −0.25 −0.50

Using (10) we can price GMABs based on λ̃s. As λs enters E1[λ
s] and E2[λ

s] only, we just have to
derive equivalent solutions for E1[λ̃

s] and E2[λ̃
s]. To do this, we apply the same methods as before and get:

E1
[
λ̃s] ≈ exp

(
−C̃ · tK

)
·
(

S̃Q
T

11
(
D, D̃, α, α̃, β, β̃, t

)
+ S̃Q

T

12
(
D, D̃, α, α̃, β, β̃, t

))
,

E2
[
λ̃s] ≈ exp

(
−C̃ · tK

)
· S̃Q

T

2
(
D, D̃, Ỹ, α, α̃, β, β̃, t

)
,

with

S̃Q
T

11
(
D, D̃, α, α̃, β, β̃, t

)
= SQ

T

11 (D, α, β, t)− 1+ SQ
T

11
(
D̃, α̃,−β̃, t

)
,

S̃Q
T

12
(
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T

12 (D, α, β, t) + SQ
T

12
(
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)
,
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T
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(
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)
= SQ

T

2
(
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)
−EQT

[
exp

(
Ỹ (T)

)
1{Ỹ(T)≥0}

]
+ SQ

T

2
(
D̃, Ỹ, α̃,−β̃, t

)
+QT (Ỹ (T) ≥ 0

)
.

The new pricing formula for GMABs and (28) enable the pricing of GMDBs based on λ̃s without
any further calculations. Eventually, the SB pricing in (25) requires the probability that no surrender
takes place before a certain point in time. Similar to (27), it follows for λ̃s:

QS(ti) (τ̃s > ti) ≈ exp
(
−C̃ · ti

)
· S̃Q

S(ti)

11
(
D, D̃, α, α̃, β, β̃, t

)
,

where τ̃s is the counterpart of τs for λ̃s.
Table 9 states the simulated and approximated GMAB, SB, GMDB and VA prices for the original

surrender intensity λs (Case 2) and its extended version λ̃s (Cases 4 and 5). On the one hand,
a comparison between Cases 4 and 5 detects how the lower limit l affects the prices. On the other
hand, Case 2 serves as a benchmark such that we are able to analyze the impact of the emergency fund
component in λ̃s on the prices.
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Table 9. VA Prices, Standard Deviations and Differences.

GMAB

Case 2 Case 4 Case 5

Approximation 79.2336 75.4547 78.1821
Sim. (mean, 500 K) 81.2484 74.6267 77.2791

Sim. (std, 500 K) 0.0662 0.0680 0.0678
Delta (abs.) −2.0148 0.8280 0.9031
Delta (rel.) −0.0248 0.0111 0.0117

SB

Case 2 Case 4 Case 5

Approximation 26.3468 28.5614 26.8172
Sim. (mean, 500 K) 27.7328 31.5358 29.6096

Sim. (std, 500 K) 0.0397 0.0367 0.0381
Delta (abs.) −1.3860 −2.9744 −2.7924
Delta (rel.) −0.0500 −0.0943 −0.0943

GMDB

Case 2 Case 4 Case 5

Approximation 10.3374 9.9925 10.2123
Sim. (mean, 500 K) 10.4157 9.9483 10.1630

Sim. (std, 500 K) 0.0049 0.0051 0.0050
Delta (abs.) −0.0783 0.0442 0.0493
Delta (rel.) −0.0075 0.0044 0.0048

VA = GMAB + SB + GMDB

Case 2 Case 4 Case 5

Approximation 115.9177 114.0086 115.2116
Sim. (mean, 500 K) 119.3968 116.1108 117.0517

Sim. (std, 500 K) 0.1007 0.1017 0.1021
Delta (abs.) −3.4791 −2.1022 −1.8401
Delta (rel.) −0.0291 −0.0181 −0.0157

The additional s-curve covering the emergency fund hypothesis increases the SB prices and
decreases the GMAB and GMDB prices. If the probability of premature contract termination increases,
the probability that a policyholder is entitled to the repayment of the GMAB decreases. Similarly,
a higher surrender probability increases the chance that a contract will be surrendered before the death
of the insured, reducing the payment obligations of the GMDB. By contrast, the policyholder is more
likely to receive the payoffs of the SB.

The prices in Table 9 encourage the aforementioned assumption that termination based on the
emergency hypothesis is triggered earlier in Case 4 than in Case 5, as the SB price in Case 4 exceeds its
analog in Case 5. The opposite holds for the prices of the GMABs and GMDBs. Although the overall
VA is worth more or less the same, the fair values of its single constituents have significantly changed.
For instance, compare the GMAB and SB prices in Cases 2 and 4.

In spite of the emergency fund hypothesis, the magnitude of the relative pricing errors has not
considerably changed. Hence, the presented approximation is able to properly price the VAs in (9)
when additional sources for early surrender are taken into account. Note, this extended example shows
once again the modularity and the inherent flexibility of the presented pricing framework which could
be particularly useful for practitioners.
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7. Conclusion and Future Research

In this paper we construct an affine linear framework with stochastic models for the financial
market, the insureds’ mortality and the policyholders’ surrender behavior. The financial market
includes a risk-free interest rate and a risky asset which is supposed to be a stock or a fund. Two distinct
intensity based approaches map the insureds’ mortality and the policyholders’ surrender behavior.
A static Gompertz model and an Ornstein-Uhlenbeck process covering the increasing life expectancy
of humans form the mortality intensity. Some empirical studies detect an irrationality in the surrender
behavior of policyholders. For instance, they surrender their contracts, although it is not rational
from the perspective of maximizing portfolio value. Furthermore, some empirical studies confirm
the interest-rate hypothesis that rising interest rates cause increased contract termination. To take into
account both findings we deploy an s-shaped surrender intensity using a deterministic function with
stochastic inputs from the financial market.

We focus on variable annuities requiring an upfront payment which is paid by the policyholder
and is fully invested in the risky asset. The surrender benefit strongly affects the behavior of the
policyholders. To avoid additional incentives for premature surrender a policyholder’s right of refund
is restricted to the current value of the risky investment reduced by the prevailing surrender fee.
If the insured dies before the early surrender option is exercised, in particular, before the maturity of
the contract, the payoff is given by the maximum of the current value of the risky investment and a
preliminary agreed minimum benefit. The same choice is offered at maturity.

The main result of this paper is the derived closed-form approximation. Although the financial
market, the insureds’ mortality and the policyholders’ surrender behavior are stochastic, we price
certain variable annuities using a closed-form approximation. Despite some lengthy expressions,
the presented pricing framework can be easily implemented. Compared to simulation techniques it
requires less computational power and time, which could be particularly important for applications
in practice. Additionally, we show how the stochastic models can be calibrated using actively
traded financial products and historic mortality data. Due to missing data the calibration of the
surrender model is based on hypothetical values. All in all, the displayed solution represents
one possible way of calibrating the models. Depending on the needs of the user and the area
of application (risk management, pricing, etc.) alternative calibration methods could be preferred.
The usage of actively traded products supports subsequent hedging activities. The calibration of
the mortality model incorporates primary market quotes of annuities (unfortunately, there were no
quotes of variable annuties available). Hence, we are able to analyze the differences between the
survival-probabilities derived from mortality tables and the ones entering product pricing. In terms
of the considered quotes the annuity providers seem to work with higher survival probabilities
than the current mortality tables suggest. In this context, the premium resulting from the increased
survival probabilities could be charged for taking the insureds’ longevity risk. Another advantage
of the presented approach is its flexibility. Since some empricial studies confirm the emergency fund
hypothesis, i.e., the assumption that policyholders cancel their contracts due to personal financial
distress, we demonstrate how the original scheme can be properly adjusted.

Due to a lack of data we are not able to calibrate the surrender model. Therefore, future research
may focus on possible calibration approaches and model extensions. In this article the mortality risk
premium is supposed to be constant with respect to the year a contract was issued and the age of the
insured. The development of more sophisticated models covering the mortality risk premium together
with an accordingly adjusted calibration method might be interesting as well. Finally, products
like guaranteed minimum withdrawal benefits (GMWBs) and guaranteed minimum living benefits
(GMLBs) as well as other types of guarantees like ratchets should be investigated.
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Appendix A. Required Distributions

Appendix A.1. Financial Market Model

The closed-form approximation requires expectations and variances under the risk-neutral measure
Q, the forward measure QT in (12) and the equity measure QS(ti) in (26). For all 0 ≤ t ≤ T we define:

V (t) =
σ2

r

a3
r

[
2 exp (−art)− 1

2
exp (−2art) + art− 3

2

]
.

Then, it follows from (1) that the stock return is normally distributed under Q with:

EQ [Y (t)] =
1
2

V (t)− ln (P (0, t))− 1
2

∫ t

0
σ2

S (s)ds,

VarQ [Y (t)] =
∫ t

0
σ2

S (s)ds− 2ρSrσr

ar

∫ t

0
σS (s) [exp (ar (s− t))− 1]ds + V (t) .

Using (12), the Girsanov theorem preserves the normal distribution and provides for all 0 ≤ t ≤ T:

EQT [Y (t)] = ρSr
σr

ar

∫ t

0
σS (s) [exp (ar (s− T))− 1]ds− σ2

r

2a3
r

[
art +

1
2
(exp (−2art)− 1)

]
− ln (P (0, t))

+
σ2

r

2a3
r
[exp (ar (t− T)) + exp (−ar (t + T))− 2 exp (−arT)]− 1

2

∫ t

0
σ2

S (s)ds.

As the performed measure change only adjusts the drift, the variances of Y (t) under QT

and Q coincide. For 0 ≤ t ≤ T the expectation EQS(t) [Y (t)] and the variance VarQS(t) [Y (t)] are
stated in Theorem 3.1 in [6]. The rollup rate δ and the lower limit function l (t) , 0 ≤ t ≤ T,
are deterministic. Thus, for all 0 ≤ t ≤ T the preceding variances are the same for Ỹ (t) = Y (t)− δt
and D̃ (t) = Y (t) − l (t). The expectations of Ỹ (t) and D̃ (t) are equal to the expectation of Y (t)
reduced by δt and l (t), respectively.
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For all 0 ≤ t ≤ T the decision criterion D (t) is normally distributed with:

EQ [D (t)] =
σ2

r

2a3
r
[art + 2 (exp (−arT)− exp (ar (t− T)))]− 1

2

∫ t

0
σ2

S (s)ds

− σ2
r

4a3
r
[exp (−2arT)− exp (2ar (t− T))]− f (t)− δT− ln (P (0, T)) ,

VarQ [D (t)] =
σ2

r

2a3
r
[exp (2ar (t− T))− exp (−2arT)] + 2ρSr

σr

ar

∫ t

0
σS (s) (1− exp (ar (s− T)))ds

+
σ2

r

a3
r
[art− 2 (exp (ar (t− T))− exp (−arT))] +

∫ t

0
σ2

S (s)ds.

Again, a change of measure provides for the expectation under the forward measure QT :

EQT [D (t)] =
σ2

r

4a3
r
[exp (−2arT)− exp (2ar (t− T))]− 1

2

∫ t

0
σ2

S (s)ds− δT− ln (P (0, T))− f (t)

− σ2
r

2a3
r
[art + 2 (exp (−arT)− exp (ar (t− T)))]− ρSr

σr

ar

∫ t

0
σS (s) (1− exp (ar (s− T)))ds.

In the case of the variance no change occurs, that is, the variances under QT and Q coincide. Next,
we have:

CovQT [D (t) , Y (T)] =
∫ t

0
σ2

S (s)ds + 2ρSr
σr

ar

∫ t

0
σS (s) (1− exp (ar (s− T)))ds

+
σ2

r

a3
r

[
art− 1

2
(exp (−2arT)− exp (2ar (t− T))) + 2 (exp (−arT)− exp (ar (t− T)))

]
.

Finally, for 0 ≤ t ≤ T we obtain the following expectation of D (t) under the equity measure QS(T):

EQS(T) [D (t)] =
σ2

r

2a3
r
[art + 2 (exp (−arT)− exp (ar (t− T)))] +

1
2

∫ t

0
σ2

S (s)ds− δT− ln (P (0, T))

− σ2
r

4a3
r
[exp (−2arT)− exp (2ar (t− T))] + ρSr

σr

ar

∫ t

0
σS (s) (1− exp (ar (s− T)))ds− f (t) .

As before, VarQS(T) [D (t)] remains unaffected by the measure change and thus it coincides with
VarQ [D (t)].

Appendix A.2. Insurance Market Model

Using Itô’s Lemma as well as Equations (2) and (3), it can be shown that the mortality intensity at
time T is normally distributed with the moments µQ

λ , σQ
λ for the risk-neutral case and µP

λ, σP
λ for the

real-world case:

µP
λ(T) = EP[λT(x + T)] = λ0(x) exp (−c3T) +

c1

c2 + c3
(exp (c2T)− exp (−c3T)) ,(

σP
λ(T)

)2
= VarP[λT(x + T)] =

c2
4

2c5 + 2c3
(exp (2c5T)− exp (−2c3T)) ,

µQ
λ(T) = EQ[λT(x + T)] = λ0(x) exp (−c3T) +

c1

c2 + c3
(exp (c2T)− exp (−c3T))

− c4γm

c5 + c3
(exp (c5T)− exp (−c3T)) ,(

σQ
λ(T)

)2
= VarQ[λT(x + T)] =

c2
4

2c5 + 2c3
(exp (2c5T)− exp (−2c3T)) .
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Then, the probability of negative mortality intensity can be calculated analytically as:

P(λT(x + T) < 0) = P
(

λT(x + T)− µλ(T)

σλ(T)
< −

µλ(T)

σλ(T)

)
= Φ

(
−

µλ(T)

σλ(T)

)
,

where Φ (·) is the cumulative distribution function of the standard normal distribution and µλ(T)
and σλ(T) are the corresponding moments of the mortality intensity at time T taken either under the
risk-neutral or the real-world measure.

Appendix B. Required Theorems

Within this section we provide some general results which are important for the proofs in
Appendix C.

Appendix B.1. Exponential of Truncated Univariate Gaussian

Assume a ∈ R and b ∈ R\ {0} and let X be a normally distributed random variable on the
probability space (Ω,F ,P) with mean µ and variance σ2, i.e., X ∼ N

(
µ, σ2). Then, we have that:

1. if b > 0:

EP
[
exp (a + bX)1{a+bX≥0}

]
= exp

(
a + bµ +

1
2

b2σ2
)

Φ
(

a/b + bσ2 + µ

σ

)
,

EP
[
exp (−a− bX)1{a+bX≥0}

]
= exp

(
−a− bµ +

1
2

b2σ2
)

Φ
(

a/b− bσ2 + µ

σ

)
,

2. if b < 0:

EP
[
exp (a + bX)1{a+bX≥0}

]
= exp

(
a + bµ +

1
2

b2σ2
)

Φ
(
− a/b + bσ2 + µ

σ

)
,

EP
[
exp (−a− bX)1{a+bX≥0}

]
= exp

(
−a− bµ +

1
2

b2σ2
)

Φ
(
− a/b− bσ2 + µ

σ

)
.

Proof. For b > 0 we obtain:

EP
[
exp (a + bX)1{a+bX≥0}

]
=

1√
2πσ

∫ ∞

−a/b
exp (a + bx) exp

(
−1

2

(
x− µ

σ

)2
)

dx

= exp
(

a + bµ +
1
2

b2σ2
)

1√
2πσ

∫ ∞

−a/b
exp

−1
2

(
x−

(
bσ2 + µ

)
σ

)2
 dx

= exp
(

a + bµ +
1
2

b2σ2
)(

1−Φ
(
− a/b + bσ2 + µ

σ

))
= exp

(
a + bµ +

1
2

b2σ2
)

Φ
(

a/b + bσ2 + µ

σ

)
.

The remaining formulas can be similarly proved.
2

Appendix B.2. Exponential of Truncated Multivariate Gaussian

Let (Ω,F ,P) be a probability space and let X := (X1, . . . , Xn)
′ ∈ Rn be a Gaussian random

variable with mean µ := (µ1, . . . , µn)
′ and covariance matrix Σ, i.e., X ∼ N (µ, Σ). For any lower limit
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l := (l1, . . . , ln)
′ and any transformation matrix D ∈ Rn×n the moment generating function of the

D-transformed random variable X at u := (u1, . . . , un)
′ called M (u, µ, Σ, l, D) is given by:

M (u, µ, Σ, l, D) := EP
[
exp

(
u′DX

)
1{X≥l}

]
= P

(
X̂ ≥ l− µ

)
exp

(
u′Dµ +

1
2

u′DΣD′u
)

,

where X̂ ≥ l− µ holds component-by-component, i.e X̂i ≥ li − µi ∀ 1 ≤ i ≤ n, and X̂ ∼ N (ΣD′u, Σ).

Proof. Similar to the steps in [39] we define Z := X− µ and use that:

−1
2

z′Σ−1z + u′Dz =
1
2

u′DΣD′u− 1
2
(
z− ΣD′u

)′ Σ−1 (z− ΣD′u
)

holds for all z ∈ R. Then, we get:

M (u, µ, Σ, l, D) : = EP
[
exp

(
u′DX

)
1{X≥l}

]
= exp

(
u′Dµ

) ∫ ∞

l−µ

(
1

2π

)n/2 ( 1
|Σ|

)1/2
exp

(
u′Dz− 1

2
z′Σ−1z

)
dz

= P
(
X̂ ≥ l− µ

)
exp

(
u′Dµ +

1
2

u′DΣD′u
)

,

with X̂ ∼ N (ΣD′u, Σ).
2

Appendix B.3. First Order Moments of Truncated Bivariate Gaussian

Let (Ω,F ,P) be a probability space and let (X, Y)′ ∈ R2 be a Gaussian random variable with
mean zero and standardized covariance matrix, i.e.,:

µ :=

(
0
0

)
and Σ :=

(
1 ρ

ρ 1

)
.

Then, for any h, k ∈ R it follows:

EP
[

X1{X>h,Y>k}

]
= ϕ (h)Φ

(
− k− ρh√

1− ρ2

)
+ ρϕ (k)Φ

(
− h− ρk√

1− ρ2

)
,

EP
[

X1{X<h,Y<k}

]
= −ϕ (h)Φ

(
k− ρh√

1− ρ2

)
− ρϕ (k)Φ

(
h− ρk√

1− ρ2

)
,

with ϕ (·) denoting the probability density function of the univariate standard normal distribution.

Proof. The original proof of this claim is given in [40]. However, as there are some errors in that
reference, we prove it here. For h, k ∈ R the linear transformation x :=

√
1− ρ2z + ρy provides:

EP
[

X1{X>h,Y>k}

]
=

1
2π
√

1− ρ2

∫ ∞

k

∫ ∞

h
x exp

(
−1

2

(
x2 − 2ρxy + y2

1− ρ2

))
dxdy

=
1

2π

∫ ∞

k

∫ ∞

h−ρy√
1−ρ2

(
z
√

1− ρ2 + ρy
)

exp
(
−1

2

(
z2 + y2

))
dzdy

=

√
1− ρ2

2π

∫ ∞

k

[
− exp

(
−1

2
z2
)]∞

h−ρy√
1−ρ2

exp
(
−1

2
y2
)

dy
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+
ρ

2π

∫ ∞

h−ρk√
1−ρ2

∫ ∞

k
y exp

(
−1

2
y2
)

dy exp
(
−1

2
z2
)

dz

+
ρ

2π

∫ h−ρk√
1−ρ2

−∞

∫ ∞

h−
√

1−ρ2z
ρ

y exp
(
−1

2
y2
)

dy exp
(
−1

2
z2
)

dz

=

√
1− ρ2

2π

∫ ∞

k
exp

(
−1

2
y2 + h2 − 2hρy

1− ρ2

)
dy + ρϕ (k)Φ

(
− h− ρk√

1− ρ2

)

+
ρ

2π

∫ h−ρk√
1−ρ2

−∞
exp

(
−1

2
h2 + z2 − 2hz

√
1− ρ2

ρ2

)
dz.

After the linear transformation y := h−
√

1−ρ2z
ρ has been applied to the last integral, the first and

the last expression can be summarized, and we end up with:

EP
[

X1{X>h,Y>k}

]
=

1
2π
√

1− ρ2

∫ ∞

k
exp

(
−1

2
y2 + h2 − 2hρy

1− ρ2

)
dy + ρϕ (k)Φ

(
− h− ρk√

1− ρ2

)
.

The linear transformation z := y−hρ√
1−ρ2

provides the assertion. The second result is similarly derived.
2

Let (X̃, Ỹ)′ ∈ R2 be a Gaussian random variable with mean µ̃ and covariance matrix Σ̃ defined by:

µ̃ :=

(
µX
µY

)
and Σ̃ :=

(
σ2

X ρσXσY
ρσXσY σ2

Y

)
.

Then, the standardized Gaussian random variables are given by:

X :=
X̃− µX

σX
and Y :=

Ỹ− µY
σY

. (B1)

For any fixed h̃, k̃ ∈ R we set:

h :=
h̃− µX

σX
and k :=

k̃− µY
σY

, (B2)

and obtain:

EP
[

X̃1{X̃>h̃,Ỹ>k̃}
]
= σXEP

[
X1{X>h,Y>k}

]
+ µXP (X > h, Y > k) ,

EP
[

X̃1{X̃<h̃,Ỹ<k̃}
]
= σXEP

[
X1{X<h,Y<k}

]
+ µXP (X < h, Y < k) ,

using the above expectations of the truncated, standardized Gaussian (X, Y)′.

Proof. Follows directly from Appendix (B1) and the characteristics of the expectation.
2

Appendix B.4. Second Order Moments of Truncated Bivariate Gaussian

Let (X, Y)′ ∈ R2 be the standardized Gaussian of Appendix B.3 with 0 < ρ < 1. For h, k ∈ R
we define:

l1 :=
k− ρh√

1− ρ2
, l2 :=

h− ρk√
1− ρ2

and Σ̄ :=

(
1 −

√
1− ρ2

−
√

1− ρ2 1

)
.
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Then, we have that:

EP
[

X2
1{X>h,Y>k}

]
= ϕ (h)

[
hΦ (−l1) + ρ

√
1− ρ2ϕ (l1)

]
+
(

1− ρ2
)
P (X > h, Y > k)

+ ρ2Φ (−l2) [Φ (−k) + kϕ (k)] + ρ2P (X̄ < −h, Ȳ < l2) ,

EP
[

XY1{X>h,Y>k}

]
= ϕ (h)

[√
1− ρ2ϕ (l1) + hρΦ (−l1)

]
+ ρΦ (−l2) [kϕ (k) + Φ (−k)]

+ ρP (X̄ < −h, Ȳ < l2) ,

EP
[

X2
1{X<h,Y<k}

]
= ϕ (h)

[
ρ
√

1− ρ2ϕ (l1)− hΦ (l1)
]
+
(

1− ρ2
)
P (X < h, Y < k)

+ ρ2Φ (l2) [Φ (k)− kϕ (k)] + ρ2P (X̄ < h, Ȳ < −l2) ,

EP
[

XY1{X<h,Y<k}

]
= ϕ (h)

[√
1− ρ2ϕ (l1)− hρΦ (l1)

]
+ ρΦ (l2) [Φ (k)− kϕ (k)]

+ ρP (X̄ < h, Ȳ < −l2) ,

where (X̄, Ȳ)′ denotes a bivariate Gaussian random variable with mean zero and variance Σ̄.

Proof. The work in [40] shows for h, k ∈ R:

EP
[

X2
1{X>h,Y>k}

]
=
∫ ∞

k
exp

(
−1

2

(
h2 − 2ρhy + y2

1− ρ2

)) √
1− ρ2 (h + ρy)

2π
dy

+
∫ ∞

k
exp

(
−1

2
y2
)(

1− ρ2 + ρ2y2

2π

) ∫ ∞

h−ρy√
1−ρ2

exp
(
−1

2

)
dzdy.

Next, we apply y :=
√

1− ρ2z + hρ to the first integral, x :=
√

1− ρ2z + ρy to the first two
summands of the second integral and change the order of integration for the third term of the
second integral:

EP
[

X2
1{X>h,Y>k}

]
=
∫ ∞

k−hρ√
1−ρ2

(
1− ρ2) (h + ρ

√
1− ρ2z + ρ2h

)
2π

exp
(
−1

2

(
z2 + h2

))
dz

+

√
1− ρ2

2π

∫ ∞

k

∫ ∞

h
exp

(
−1

2
x2 − 2ρxy + y2

1− ρ2

)
dxdy

+
ρ2

2π

∫ ∞

h−ρk√
1−ρ2

∫ ∞

k
y2e−

1
2 y2

dy exp
(
−1

2
z2
)

dz

+
ρ2

2π

∫ h−ρk√
1−ρ2

−∞

∫ ∞

h−
√

1−ρ2z
ρ

y2 exp
(
−1

2
y2
)

dy exp
(
−1

2
z2
)

dz.

Using (partial) integration we get after the substitution of x :=
√

1− ρ2z + ρy:

EP
[

X2
1{X>h,Y>k}

]
= ϕ (h)

[(
1− ρ2

)
h
(

1 + ρ2
)

Φ (−l1) + ρ
(

1− ρ2
)3/2

ϕ (l1)
]

+
(

1− ρ2
)
P (X > h, Y > k) + ρ2Φ (−l2) [kϕ (k) + Φ (−k)]

+
ρ

2π

∫ l2

−∞

(
h−

√
1− ρ2z

)
exp

(
−1

2
h2 − 2hz

√
1− ρ2 + z2

ρ2

)
dz

+
ρ

2π

∫ l2

−∞

∫ ∞

h
exp

(
−1

2
x2 − 2xz

√
1− ρ2 + z2

ρ2

)
dxdz.
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If w := 1
ρ (z −

√
1− ρ2h) is used for the first integral and the direction of integrating x

(second integral) is turned by x̃ := −x, summarizing all terms yields the statement. Similarly, the
remaining can be proved.

2

Let (X̃, Ỹ)′ ∈ R2 be the Gaussian of Appendix B.3 with 0 < ρ < 1 and let (X, Y)′ be its standardized
counterpart in Appendix (B1). For any h̃, k̃ ∈ R let h and k be given by Appendix (B2). Then,
it holds that:

EP
[

X̃2
1{X̃>h̃,Ỹ>k̃}

]
= σ2

XEP
[

X2
1{X>h,Y>k}

]
+ 2σXµXEP

[
X1{X>h,Y>k}

]
+ µ2

XP (X > h, Y > k) ,

EP
[

X̃Ỹ1{X̃>h̃,Ỹ>k̃}
]
= σXσYEP

[
XY1{X>h,Y>k}

]
+ σXµYEP

[
X1{X>h,Y>k}

]
+ σYµXEP

[
Y1{X>h,Y>k}

]
+ µXµYP (X > h, Y > k) .

In case of upper truncation 1{X>h,Y>k} has to be replaced by 1{X<h,Y<k}.

Proof. Follows directly from Appendix (B1) and the characteristics of the expectation. 2

Appendix C. Approximation Proofs

Appendix C.1. Proof of SQT

11 (D, α, β, t)

The SQT

11 (D, α, β, t) in (15) is equal to:

SQT

11 (D, α, β, t) = 1 +
K

∑
i=1

EQT

[
exp (−β∆tiD (ti))1{0<D(ti)}

]
−

K

∑
i=1

EQT

[
exp (−β∆tiD (ti))1{D(ti)≥α}

]
−

K

∑
i=1

QT (0 < D (ti) < α) +
K

∑
i=1

(exp (−βα∆ti)− 1)QT (D (ti) ≥ α).

Since α and β are non-negative, we have that:

SQT

11 (D, α, β, t) = 1 +
K

∑
i=1

EQT

[
exp (−β∆tiD (ti))1{0<β∆tiD(ti)}

]
−

K

∑
i=1

exp (−αβ∆ti)EQT

[
exp (−β∆ti (D (ti)− α))1{D(ti)−α≥0}

]
−

K

∑
i=1

(
QT (D (ti) < α)−QT (D (ti) ≤ 0)

)
+

K

∑
i=1

(exp (−βα∆ti)− 1)
(

1−QT (D (ti) < α)
)

.

with the help of Appendix B.1 we obtain that:

SQT

11 (D, α, β, t) = 1 +
K

∑
i=1

[
exp

(
−β∆tiEQT [D (ti)] +

1
2

β2∆t2
i VarQT [D (ti)]

)

· Φ

EQT [D (ti)]− β∆tiVarQT [D (ti)]√
VarQT [D (ti)]


−

K

∑
i=1

[
exp

(
−αβ∆ti − β∆tiEQT [D (ti)− α] +

1
2

β2∆t2
i VarQT [D (ti)− α]

)
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· Φ

EQT [D (ti)− α]− β∆tiVarQT [D (ti)− α]√
VarQT [D (ti)− α]


−

K

∑
i=1

Φ

 α−EQT [D (ti)]√
VarQT [D (ti)]

−Φ

 −EQT [D (ti)]√
VarQT [D (ti)]


+

K

∑
i=1

(exp (−αβ∆ti)− 1)

1−Φ

 α−EQT [D (ti)]√
VarQT [D (ti)]

 .

Summarizing terms results in:

SQT

11 (D, α, β, t) = 1 +
K

∑
i=1

[
exp

(
−β∆tiEQT [D (ti)] +

1
2

β2∆t2
i VarQT [D (ti)]

)

·

Φ

EQT [D (ti)]− β∆tiVarQT [D (ti)]√
VarQT [D (ti)]


− Φ

EQT [D (ti)]− α− β∆tiVarQT [D (ti)]√
VarQT [D (ti)]


−

K

∑
i=1

Φ

 α−EQT [D (ti)]√
VarQT [D (ti)]

−Φ

 −EQT [D (ti)]√
VarQT [D (ti)]


+

K

∑
i=1

(exp (−αβ∆ti)− 1)

1−Φ

 α−EQT [D (ti)]√
VarQT [D (ti)]


Finally, we use the definitions of h1 (βl, D, ti) and h2 (αl, βl, D, ti) in (19) to derive (20).

2

Appendix C.2. Proof of SQT

2 (D, α, β, t)

At first, we get rid of the products in SQT

2
(
D, Ỹ, α, β, t

)
in (18) and properly split the indicator sets.

For the first expression we use Appendix B.1. Then, we summarize the QT-probabilities and so, we get:

SQT

2
(
D, Ỹ, α, β, t

)
= exp

(
EQT

[
Ỹ (T)

]
+

1
2
VarQT

[
Ỹ (T)

])
Φ

EQT
[
Ỹ (T)

]
+VarQT

[
Ỹ (T)

]√
VarQT

[
Ỹ (T)

]


+
K

∑
i=1

EQT

[
exp

(
−β∆tiD (ti) + Ỹ (T)

)
1{0<D(ti)}1{Ỹ(T)≥0}

]
−

K

∑
i=1

EQT

[
exp

(
−β∆tiD (ti) + Ỹ (T)

)
1{α≤D(ti)}1{Ỹ(T)≥0}

]
−

K

∑
i=1

EQT

[
exp (−β∆tiD (ti))1{0<D(ti)}1{Ỹ(T)≥0}

]
+

K

∑
i=1

EQT

[
exp (−β∆tiD (ti))1{α≤D(ti)}1{Ỹ(T)≥0}

]
−

K

∑
i=1

EQT

[
exp

(
Ỹ (T)

)
1{0<D(ti)}1{Ỹ(T)≥0}

]
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+
K

∑
i=1

EQT

[
exp

(
Ỹ (T)

)
1{α≤D(ti)}1{Ỹ(T)≥0}

]
+

K

∑
i=1

QT (0 < D (ti) , Ỹ (T) ≥ 0
)

+
K

∑
i=1

exp (−βα∆ti)EQT

[
exp

(
Ỹ (T)

)
1{D(ti)≥α}1{Ỹ(T)≥0}

]
−

K

∑
i=1

exp (−βα∆ti)QT (D (ti) ≥ α, Ỹ (T) ≥ 0
)

−
K

∑
i=1

EQT

[
exp

(
Ỹ (T)

)
1{D(ti)≥α}1{Y(T)≥0}

]
−
(

1−QT (Ỹ (T) < 0
))

.

Using the notation in (23) and Appendix B.2 we obtain (24).
2
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