
TUM
TECHNISCHE UNIVERSITÄT MÜNCHEN
INSTITUT FÜR INFORMATIK

Technischer
Technische Universität MünchenInstitut für InformatikBericht

Cyber-physical manufacturing system
Development: A test-driven design
method and exploratory case study

TUM-I1664

Georg Hackenberg, Jakob Mund

a Corresponding author: hackenbe@in.tum.de

Cyber-physical manufacturing system development: A test-driven design
method and exploratory case study

Georg Hackenberg1,a and Jakob Mund1

1Technische Universität München, Fakultät für Informatik, 85748 Garching bei München, Germany

Abstract. Today, manufacturing engineering companies still struggle developing cyber-physical solutions. Studies

suggest that inappropriate engineering methods dominated by mechanical design decisions and incompatible

engineering tool landscapes are key problems that lead to isolated and potentially inconsistent specifications. To

overcome the current situation, in this paper we propose a test-driven approach to cyber-physical manufacturing

system design based on an integrated modeling technique and engineering tool called MACON. Then, we explore the

applicability and potential benefits of the approach for an industry-close example. Therefore, we analyze empirical

data about the development process collected during tool usage. The data indicates that test-driven development is

applicable in principle to the cyber-physical manufacturing systems domain resulting both in early test specification

at various levels of the component architecture as well as in early identification of design flaws.

1 Introduction

The transition from purely mechanical to cyber-physical

manufacturing systems is proceeding for a few decades

now. In the last decade Reinhart and Wünsch [1]

observed that many manufacturing engineering

companies are struggling with high commissioning cost

due to design flaws, which remain undiscovered until late

in the projects. At the same time, Schäfer and Wehrheim

[2] suggest that existing discipline-specific modeling

techniques, analysis tools, and engineering methods are

not sufficient to cope with the multidisciplinary nature

and complexity of the engineering problems. Similar

thoughts have been expressed by other authors as well,

e.g. [3]. Consequently, researchers have been working on

extending and integrating existing approaches to tackle

the described challenges.

1.1 Related work

The first attempts originate from the Product Design

(PD) community. For example, Umeda et al. [4] propose

the Function, Behavior, Structure approach, where first

the product functionality is defined before deriving the

expected behavior as well as the mechanical structure and

the actual behavior. Similarly, Suh [5] proposes the

Axiomatic Design approach, where first the functional

requirements are defined before driving design

parameters and process variables, while their relationship

is expressed using matrices. More recently, Sitte and

Winzer [6] propose the Demand-Compliant Design

approach, where first a requirement structure is defined

before deriving a function structure, a process structure,

and a component structure, while the relationships are

expressed again using matrices. An advantage of the PD

approaches is their general applicability as well as the

systematic mapping from requirement to solution

characteristics. However, the design information typically

is not captured in a semantically meaningful way

preventing advanced analyses.
Further attempts originate from the System Design

(SD) community. For example, Burmester et al. [7]

propose the MechatronicUML approach, where

mechatronic systems can be described in terms of

components, ports, channels and (hybrid) state machines.

More recently, Friedenthal et al. [8] describe the Systems

Modeling Language (SysML) approach, where also the

customer needs and technical constraints are considered

and additional perspectives on the system behavior are

provided. Based on SysML, Thramboulidis [9] proposes

the Model-Integrated Mechatronics approach, where

mechatronic systems are described from a control

application, a communication and processing system, and

a mechanical process perspective. Finally, Gausemeier et

al. [10] propose the CONSENS approach, where also the

system geometry can be considered. An advantage of the

SD approaches is their wide-spread use and tool support.

However, the approaches typically lack either formal

semantics for advanced analyses or important design

information such as geometry.
To compensate for the above-mentioned problems,

additional attempts originate from the Formal Method

(FM) community. For example, Hummel [11] proposes

the Spatio-Temporal Engineering Models (STEM)

approach, where mechatronic systems can be described in

terms of components, ports, channels, and (hybrid) state

machines as well as mechanical parts, material detectors,

material entries, material exits, and collision-based

interaction. Based on STEM, Hackenberg et al. [12, 13,

14] propose an extended approach, where additionally

customer needs, technical constraints, and manufacturing

processes can be considered. An advantage of the FM

approaches is that they capture important design

information and enable advanced analyses through formal

model syntax and semantics. However, the approaches

still lack a practical methodology, which promises to

develop higher quality specifications in shorter time.

1.2 Problem statement

Despite the progress explained previously, developing

high-quality specifications for complex cyber-physical

manufacturing systems in early phases of engineering

projects still remains a major challenge. Our brief

literature review suggests that existing approaches lack

either (1) important design information such as system

geometry and dynamic interaction based on spatial

arrangement, or (2) formal semantics for advanced

specification analyses such as model checking [15], or (3)

practical methodologies that are able to cope with the

complexity and multidisciplinary nature of respective

engineering problems. We believe that all three problems

have to be solved in combination before high-quality

specifications can be developed efficiently.

1.3 Contribution

To overcome the present situation, in Section 2 we

describe a test-driven methodology for cyber-physical

manufacturing system design based on existing FM

techniques, which already capture a wide range of design

information and come with formal semantics for

advanced analyses. In particular, we try to map ideas and

principles behind test-driven (software) development [16]

to the cyber-physical manufacturing system domain,

which include (1) specifying test cases first and (2)

developing the system in increments. Then, in Section 3

we describe a case study that has been carried out to

explore the applicability and benefits of the approach.

Finally, in Section 4 we conclude the presented work and

outline future research.

2 Test-driven design method

According to test-driven development principles [16], our

test-driven design method promotes a fundamentally

iterative and incremental approach to complex cyber-

physical manufacturing systems development. Hereby,

iterations are used to revise inaccurate problem

understanding as well as incompatible or inadequate

design decisions with respect to the current problem

understanding. Increments, on the other hand, are used to

reduce the problem scope considered in each iteration.

Consequently, the entire system does not have to be

designed at once, but the engineers can concentrate on

(selected) parts of the engineering problem only.

Increments are one key principle to cope with problem

complexity. Furthermore, increments enable early

stakeholder integration into the development process and,

hence, increase the validity of the problem understanding

developed and the design decisions taken throughout the

process. While iterative approaches have been suggested

for mechatronic systems already in the 1990s, e.g. [4, 5],

the idea of increments appears to be novel to us in the

cyber-physical manufacturing systems domain.

Figure 1 provides an overview of our test-driven de-

sign method in UML activity diagram notation [17].

According to established manufacturing engineering

practices, the method distinguishes between a preparation

and an implementation phase. In the preparation phase

the requirements are specified including input and output

flows, an efficient manufacturing process is design, and

relevant test procedures are determined. In contrast, in the

implementation phase the system architecture is defined

including the system components and their interactions

based on material, energy, and data flow [18]. In the

following, we describe both phases in more detail.

Thereby, we explain the relation between the activities

and the elements of the MAnufacturing CONception

(MACON) modeling technique [12, 13, 11].

Figure 1. Illustration of the test-driven design method divided

into a preparation and an implementation phase.

2.1 Preparation phase

The preparation phase is divided into four activities,

namely requirement specification, material specification,

process specification, and test specification. Furthermore,

the corresponding elements of the MACON modeling

technique [12, 13] are depicted in Figure 2. The elements

include (informal / textual) requirements, (material /

energy / data) ports, constraints, (requirement / process)

monitors, and (test) scenarios.

Figure 2. Illustration of the MACON modeling elements for the

preparation phase [12, 13].

During requirement specification the customer

needs are collected and documented using (informal /

textual) requirement elements. Then, the requirements

can be formalized using constraint and monitor elements

over port elements. According to Liang and Paredis [18],

ports define the data, energy, and material interface of the

cyber-physical system and its components. Then, con-

straints allow one to express invariants for the entire

lifetime of the system such as the maximum amount of

energy flow per time unit over some energy port. In

contrast, monitors allow one to express invariants for

certain activities only such as the maximum amount of

energy for material transportation or material shape

manipulation. Note that the formal semantics of monitors

is described in [12].

Then, during process specification the manufacturing

process is derived - again - using monitor elements.

Similar to established process planning tools [19], the

activity elements represent the process steps such as

grinding or milling and the transition elements describe

the possible activity sequences (e.g. first mill, then grind).

Then, invariants can be attached to the activities and

guards must be defined for the transitions. The invariants

describe constraints that must hold while performing the

process step such as the maximum allowable duration. In

contrast, the guards describe the conditions that must

hold to finish a process step such as the target material

shape after milling and grinding respectively. Note that

monitors can be used to formalize (informal / textual)

requirements also. However, during process specification

design decisions can be added regarding intermediate

process steps, which have not been prescribed by the

customer.

In contrast, during test specification the test cases are

derived using scenario elements. Scenarios essentially

describe environments, within which the system is

expected to operate. Scenarios are divided into entry, exit,

step, and transition elements. Entries define the position

and orientation in space where the environment may add

material to the simulation during test execution. In

contrast, exits represent the locations in space where the

environment may remove material from the simulation

during test execution. Finally, steps and transitions model

the environment behavior, which can read component

output ports and write component input ports as well as

scenario entry and exit ports. Again, invariants can be

added to steps such as the maximum allowable duration,

and guards have to be specified for transitions such as the

presence of material at a particular location. Finally, a

test case is passed if the final step is reached during test

execution without violating any invariants within

considered constraints, monitors, and the scenario itself.

Note that the formal semantics of scenarios is similar to

test automata [20].

Finally, during material specification the material

flowing through the manufacturing system is modeled

using separate component elements. In parallel to

requirement specification typically initial and final

material states are considered only. Then, in parallel to

process specification typically intermediate material

states as well as transitions and interaction ports are

added. Hereby, the states, transitions, and ports are

derived from the respective process steps. Note that for

each material component the test-driven engineering

method can be applied recursively. Consequently, cyber-

physical "material" can be considered in principle as well,

which might be equipped with appropriate sensing,

actuating, and digital information processing units such

as RFID [21].

2.2 Implementation phase

Similar to the preparation phase, the implementation

phase is divided into four activities, namely test selection,

architecture specification, behavior specification, and part

specification. For reference, the corresponding elements

of the MACON modeling technique [11] are depicted in

Figure 3. The elements include components, material

ports respectively slots, channels, behaviors, and parts.

Figure 3. Illustration of the MACON modeling elements for the

implementation phase [11].

During test selection the test cases, that are

considered within the current iteration or increment, are

selected defining the partial engineering problem to be

solved (i.e. passing the selected test cases only). Hereby,

one can select an arbitrary non-empty subset of test cases

from the set of all possible test cases. The selected test

cases drive the following specification activities (hence

the name test-driven). Different strategies can be used for

test selection. For example, one could select the test cases

based on estimated / perceived architectural impact such

that important design decisions are likely to be in early

iterations or increments. Alternatively, one could select

the test cases based on suspected ambiguity / misinter-

pretation to foster requirement validation based on early

customer feedback. At this point, we leave the question

of suitable test selection strategies as well as their impact

on the development process and the product quality to

future research.

Then, during architecture specification the modular

structure of the cyber-physical manufacturing system is

defined using component, material slot and channel

elements. Herein, components represent cyber-physical

subproblems / subsystems, which allows one to reduce

the considered problem / system complexity further. Note

that for each component the test-driven engineering

method can be applied recursively including both the

preparation and the implementation phase as well as the

fundamentally iterative and incremental process. In

contrast, material slots are derived from material ports

directly and allow one to bind colliding cyber-physical

components dynamically during test execution such as

material added at some entry (see Section 2.1). The

formal semantics of the dynamic interaction based on

collision is described in [11]. Finally, channels define the

interaction between the components of the architecture as

well as components dynamically bound at material ports

respectively slots.

Subsequently, during behavior specification the

reactions of the component respectively system to input

from its environment are defined using behavior

elements. Behaviors are divided into state and transition

elements. Both states and transitions may contain actions

for writing output ports of the surrounding component

respectively system such as some data signal or energy

flow. Following [22] energy flow is modeled using

scalars, where the sign indicates the direction of the

energy flow. Hereby, a negative sign indicates that the

component requires the energy from the environment, a

positive sign indicates that the component provides the

energy to the environment instead. In contrast, transitions

may contain guards over the component input ports. The

guards define the conditions for switching between the

source and the target state of the transition such as

receiving a data signal from the environment or observing

an energy flow. Finally, each state may contain individual

part elements. Parts allow one to model the mechanical

shape of cyber-physical components. Consequently, a

component reaction might include changing its shape,

e.g., due milling or grinding energy obtained from the

environment. Note that the formal semantics is based in

input / output automata [23].

Finally, during part specification the static portion of

the mechanical shape of a component is defined again

using part elements. Each part contains exactly one

volume element. Hereby, we distinguish between atomic

volumes and composite volumes. Atomic volumes

represent basic shapes such as spheres, cylinders, and

boxes. In contrast, composite volumes represent the

union of child volumes, where child volumes can be both

atomic volumes and composite volumes. Consequently,

we rely on a subset of constructive solid geometry (CSG)

[24] excluding volume intersection and difference

operators rather than using the full set of CSG operators

or using boundary representations such as non-uniform

rational basis splines [25]. The current reason is that the

collision-based dynamic interaction semantics [11] is

more easy to implement using the selected CSG subset.

In the future we might extend our approach to other,

more powerful representations.

3 Exploratory case study

For demonstrating and evaluating the test-driven design

method (see Section 2) we re-designed a miniaturized

cyber-physical manufacturing system - the so-called pick-

and-place unit - which is located at the Institute for

Automation and Information Systems, Technische

Universität München [26, 27]. Subsequently, we first

explain the objectives of the study in Section 3.1 as well

as the tool support used during the study in Section 3.2.

Then, we explain the method of data collection in Section

3.3 and the system design obtained while performing the

study in Section 3.4. Finally, we evaluate the data

collected during tool usage with respect to the study

objectives in Section 3.5 before discussing threads to the

internal and external validity of the study in Section 3.6.

3.1 Study objective

The main objective of this study is to evaluate the general

applicability of the test-driven design method to cyber-

physical manufacturing systems. Consequently, we want

to demonstrate the successful use of the method at least

for one selected and representative case (i.e. the pick-and-

place-unit). In this context, we consider the experiment to

be successful, if we can follow the prescribed method

closely (called process feasibility), while obtaining a

valid system design (called result validity). Note that here

we do not consider the performance, with which the

system design can be obtained. Consequently, we will not

derive any statement about the efficiency of the method

with respect to other design methods (e.g. test-driven

versus classical top-down).

3.2 Tool support

A prototypical tool support for the MACON modeling

technique has been described in [14]. Note that herein the

challenge lies in integrating the different views onto the

cyber-physical manufacturing system intuitively. Here,

we describe the prototypical tool only briefly. The

graphical user interface of the tool consists of two

screens, namely (1) a modeling screen and (2) a testing

screen, which are explained both in the following.

As the name suggests, the modeling screen (Figure 4)

allows one to edit the design of the cyber-physical

manufacturing system. Change events are triggered when

editing attribute values of, adding / removing children to /

from, and adding / removing references between model

elements. Furthermore, after each change event syntactic

rules are re-evaluated and issues appear or disappear (e.g.

missing child). Also, the syntactic issue appearance and

disappearance events are recorded for analysis. Finally,

test execution can be started from within the modeling

screen for uncovering the semantic issues in the model.

Upon the test execution start event the testing screen

shows up.

Figure 4. Modeling screen of the prototypical tool support [14].

In contrast, the testing screen (Figure 5) executes the

simulation engine in the background and allows one to

inspect the simulation results. During test execution the

engine can raise semantic issues, which are displayed in

the testing screen. Furthermore, the simulation engine

triggers a simulation stop event in case a severe semantic

issue was raised (i.e. the test execution failed, e.g., due to

the violation of an invariant as explained in Section 2.1),

the scenario final step was reached (i.e. the test execution

succeeded), or a timeout issue appeared (i.e. the test

execution could not be finished within a predefined time

frame). Finally, the testing screen allows one to step

through the simulation and inspect the system state. The

system state includes the component translations and

orientations in space, the port valuations, the current

scenario step, the current monitor activities, and the

current behavior states.

Figure 5. Testing screen of the prototypical tool support [14].

3.3 Data collection

For evaluating the process feasibility, we instrumented

the prototypical tool (see Section 3.2) to track all

modeling and testing activities. Specifically, the tool

records each model change event (i.e. adding / removing

children of, adding / removing references between, and

modifying attributes of model elements) and associates it

with the affected component of the system architecture.

In addition, the tool records each test execution event and

associates it with the respective scenario and execution

result (i.e. success, failure, or timeout). From the records

we reconstruct the development process and compare the

reconstruction with the method described in Section 2.

In contrast, for evaluating the design validity, we can

use the developed system design directly. In particular,

we can compare the developed system architecture (i.e.

the components and their interactions) with the SysML

documentation [27]. Furthermore, we can compare the

developed system behavior (i.e. the states and the

transitions) with the behavior of the physical system,

which we are provided access to. Consequently, we can

derive the design validity from the similarity between the

developed and the documented system architecture as

well as the developed and the physical system behavior.

Herein, the developed behavior might be simplified.

3.4 System design

The developed system design of the pick-and-place unit

consists of the top-level system component itself as well

as three second-level components, namely the distributor,

the stamper, and the separator. In the following we

explain each of these components in more detail. Herein,

we focus on requirements and scenarios respectively. In

contrast, we omit information about the manufacturing

processes and the implementation.

3.4.1 Pick and place unit

The pick-and-place unit is responsible for receiving white

plastic, metallic, and black plastic material at a pre-

defined entry location. Then, white plastic material must

be stamped due to, e.g., contamination and moved to a

pre-defined exit location. In contrast, metallic and black

plastic material must be moved to different pre-defined

exit locations directly. Furthermore, each material must

be processed within a certain duration. Consequently, the

pick and place unit is responsible for separating (or

sorting) and conditionally stamping material, depending

on its type (i.e. white plastic, metallic, or black plastic).

After requirement and process specification, one scenario

is derived for each material type during test specification.

The three scenarios are illustrated in Figure 6, in which

green and red boxes represent entry or exit locations.

Note that the mechanical parts are not part of the model

originally, but they have been added after many iterations

and increments.

Figure 6. Three scenarios of the pick and place unit component.

3.4.2 Distributor

The distributor component is responsible for moving

white plastic, metallic, and black plastic material between

the entry location, the stamper, and the separator. In

particular, white plastic material must be moved from the

entry location to the stamper location and from the

stamper location to the separator location. In contrast,

metallic and black plastic material must be moved from

the entry location to the separator location directly.

Furthermore, each operation must be performed within a

certain duration. Again, after requirement and process

specification, one scenario is derived for each

combination of material type and start location during test

specification. Three out of four scenarios are shown in

Figure 7. For the sake of brevity, the presentation of a

further decomposition as done in the implementation

phase (Section 2.2) is omitted here.

Figure 7. Three scenarios of the distributor component.

3.4.3 Stamper

Then, the stamper component is responsible for receiving

white plastic material at the stamper location, stamping

the material (i.e. transmitting “stamp” energy through

collision-based dynamic interaction), and delivering the

stamped material back at the original location. In

contrast, metallic and black plastic material does not have

to be considered by the stamper component. Furthermore,

the stamping procedure must be performed within a

certain duration. Consequently, one scenario is derived

during test specification, which is shown in Figure 8.

Note that for this component, the entry and exit locations

coincide such that only the exit is shown.

Figure 8. One scenario of the stamper component.

3.4.4 Separator

Finally, the separator component is responsible for

receiving white plastic, metallic, and black plastic

material at the separator location. Then, white plastic

material must be moved to the first exit location. In

contrast, metallic material must be moved to the second

and black plastic material to the third exit location. Note

that the three exit locations correspond to the exit

locations defined during requirement specification for the

pick-and-place-unit. Furthermore, analogous to the top-

level pick-and-place-unit component and the other lower-

level components each operation must be performed

within a certain duration. Again, after requirement and

process specification, one scenario is derived for each

material type, resulting in three scenarios as illustrated in

Figure 9. Note that the implementation uses a conveyor

belt with several position sensors and push cylinders.

Figure 9. Three scenarios of the separator component.

3.5 Data evaluation

In total, the experiment comprised 49 tool sessions and

18.44 hours of tool usage. During those sessions, 3,397

model elements were created, 145,785 element attribute

modifications were recorded (note that each key stroke is

recorded as a separate modification event), and 903

elements were deleted (suggesting the revision of design

decisions and / or the current problem understanding).

Furthermore, 241 scenario test execution events have

occurred and 2,592 syntactic as well as 180 semantic

issues have been discovered. Note that these numbers

represent absolute performance measures. If such

numbers could be obtained for other methods and / or

modeling techniques / tools, also relative performance

measures could be derived. However, we leave this

evaluation to future research.

In the following, we analyze the collected data (see

Section 3.3) with respect to the process feasibility before

discussing the obtained system design (see Section 3.4)

with respect to the design validity.

3.5.1 Process feasibility

To answer the question of process feasibility, we

aggregate and visualize the data collected during tool

usage. In particular, we analyze the model change events

and the test execution events independently.

Figure 9 shows the model change events over time

assigned to the components of the system design (i.e.

pick-and-place-unit, distributor, stamper, separator; see

Section 3.4) and classified by the elements of the

MACON modeling technique (i.e. requirements, ports,

scenarios, monitors, components, behaviors, and parts;

see Section 2). The diagram shows that for each

component of the design indeed the preparation (shades

of red) and the implementation (shades of blue) phases

can be distinguished. In particular, the scenarios (or test

cases; orange) are specified before working on the

implementation, which represents a core principle of test-

driven development [16]. Furthermore, the diagram

shows that the process indeed proceeds in iterations

because work on the components, behaviors and parts

(i.e. implementation phase elements) might be followed

by work on the requirements, ports, scenarios, and

monitors (i.e. preparation phase elements).

Figure 9. Element creation, modification, and deletion events

associated with the individual components over time.

The previous diagram allows us to reconstruct the

order, in which the activities of the test-driven method

(see Section 2) have been executed, from the order, in

which the elements of the MACON modeling technique

have been touched. However, the diagram does not tell us

about the test selection practices and, thus, whether the

system has been developed incrementally. To answer this

question, Figure 10 shows the test execution events over

time assigned to the components and scenarios of the

system design and classified by the result of the test

execution. The diagram shows that first the sorter

component, then the distributor component, and finally

the stamper component is finished before the pick-and-

place-unit is completed. Furthermore, first the metallic

and black plastic scenarios of the pick-and-place-unit are

passed before passing the white plastic material scenario.

The reason is that the stamper component is required to

pass the white plastic material scenario. However, the

stamper component is implemented last. Consequently,

passing the white plastic material scenario is delayed for

about two hours. From this delay we conclude that a first

increment only considered the metallic and the black

plastic scenarios. A second increment included the white

plastic scenario and, hence, the stamper component.

Consequently, we conclude that indeed an incremental

approach was applied.

 Figure 10. Test execution events and results associated with

the individual components and scenarios over time.

3.5.2 Design validity

To answer the question of design validity, we compare

the obtained system architecture with the architecture

from the SysML documentation of the pick-and-place-

unit [27]. Furthermore, we compare the developed system

behavior to the behavior of the real physical system.

Fundamentally, both the SysML documentation as

well as the developed system design decompose the pick-

and-place-unit into three modules, i.e. the sorter, the

stamper, and the separator. The distributor is modelled

almost identically in the SysML documentation and in

our system design, though our system design assigns two

material sensors to the sorter component, while the

SysML documentation assumes that the sensor signals

are provided from the environment. Consequently, we

have chosen a more autonomous module design, which

we do not consider a critical deviation of the two system

architectures. Then, in the SysML documentation the

stamper includes only two cylinders and an operator

panel component. In contrast, the developed system

design omits the operator panel, but includes a stamp

head component as well as the interactions between the

stamp head, the cylinders and the material. Consequently,

the realization of the stamp operation becomes more

obvious. Finally, the separator is modeled almost

identically in the SysML documentation and the

developed system design. Again, the SysML document-

tation includes an operator panel, which is omitted in our

system design. Also, the SysML documentation distin-

guished different sensor types (i.e. presence sensor for

detecting general material presence, inductive sensors for

distinguishing metal, and optical sensors for distin-

guishing white and black plastic), while we combined all

three functions into one sensor component. Note that we

could have split the single sensor component into three

independent sensor complements easily. However, we

consider the single component to be a valid simplification

during conceptual design. Finally, from this comparison

we conclude that we developed a valid system archi-

tecture. Also, we were able to describe certain aspects of

the interaction (i.e. the stamping operation) more detailed

than in the SysML documentation.

Regarding the system behavior, we have observed the

same causalities in the physical system and the developed

system design. By causalities we mean the order in which

sensor measurements are received, actuator values are

controlled, and the system states evolve. The most

important state variables include the angular and vertical

position of the distributor crane, the position of the

stamper cylinders, the position of the separator cylinders,

and the position of material being processed by the pick-

and-place-unit. One can observe the causalities easily

when watching the physical system in operation and the

developed system design during simulation. Furthermore,

we have observed similar critical states in the physical

system and the developed system design such as

misplacement of material by the dispatcher due to angular

crane position sensor delays. On the other hand, when

comparing the behaviors one also can see easily that the

timing behaviors do not match. However, we did not

consider timing behavior to be critical in this experiment.

Furthermore, we have observed critical states in the

physical behavior, which could not be observed in the

developed system design such as misplacement of

material due to spring “push-back” forces of contact

sensors. Such aspects of the physical behavior have to be

modeled explicitly to be able to observe relate effects.

However, we considered these effects to be irrelevant

during the experiment. Note that such judgement is left to

the expertise of the engineers because the method (see

Section 2) does not provide any guideline at the moment.

Hence, one must consider whether the effects have a

considerable impact on the system design, e.g. because

respective countermeasures have to be included, which

might take a certain amount of space that is not available

or change the behavioral causalities significantly. Still, in

summary we conclude that we have obtained a valid

system behavior neglecting minor physical effects.

3.6 Study validity

According to common practice in experimental research

[28], we distinguish between the internal and the external

validity of the study. Thus, the internal validity is

concerned with the reliability of the conclusions that we

have drawn about the research questions (i.e. process

feasibility and design validity) from the collected data.

On the other hand, the external validity is concerned with

the degree to which the conclusions can be generalized to

the entire cyber-physical manufacturing systems domain.

3.6.1 Internal validity

To address the internal validity with respect to the

process feasibility, we (1) used tool instrumentation for

collecting data automatically during tool usage, (2)

developed appropriate aggregations and visualizations of

the collected data, and (3) interpreted the results of these

visualizations. Note that we tried to achieve a high degree

of automation in the process to remove the bias of

subjective interpretation. However, one can question

whether the right data has been collected, whether the

aggregations and visualizations are appropriate, and

whether the interpretation of the visualizations is valid.

For data collection we used only the most basic events,

which can be obtained from tool usage. In particular, the

events cover all possible changes to the system design as

well as all possible outcomes of test execution. Then, the

aggregation by component of the system design and by

element of the MACON modeling technique / result of

the test execution was performed automatically as well.

Again, the aggregation can be performed unambiguously.

The same holds for the visualization using time lines.

Finally, the interpretation included mapping the time line

information back to the activities and phases of the test-

driven design method (see Section 2). In particular, the

mapping to phases can be achieved unambiguously,

because the phases do not share any model elements.

Some ambiguity can be found in the mapping to the

activities, as the requirement specification (respectively

formalization) and the process specification potentially

share the monitor elements. However, we can foreclose

this ambiguity because we omitted the formalization of

requirements in the experiment.

To address the internal validity with respect to the

design validity, the authors have had access to the SysML

documentation [27] as well as the real physical system.

Again, the comparison of the system architectures is

rather straight forward. In SysML, the architecture is

specified using block diagrams including blocks (which

correspond to the MACON components) and containment

relationships (which are also defined in the MACON

modeling technique). In contrast, the interactions between

the components are defined only implicitly as part of the

textual description and the behavior diagrams in the

SysML documentation, while in the developed design

interactions are defined explicitly using channels. The

comparison of the system behaviors, on the other hand, is

more difficult to achieve; we tried to focus the attention

on the causalities and the observable critical states.

Furthermore, we are aware of the simplifications that

have been made with respect to the real physical behavior

(e.g. the slight effect of spring forces in contact sensor).

As stated previously, we consider such simplifications to

be valid during the conceptual design phase and we think

that such effects can be modeled with sufficiently large

effort. Also, we have observed and addressed critical

system states in the developed design, which can be

observed in the physical system as well (e.g. the effect of

sensor and actuator signal delays on the correct

positioning of components).

Finally, a general deficiency of the study with respect

to internal validity is that the target design existed prior

to executing the study. Hence, the developed design is

influenced by a priori knowledge. To circumvent this

deficiency an experimental setup is required, where the

participants are not aware of the target design.

3.6.1 External validity

In contrast, the external validity of the study is limited

mainly due to the academic case (i.e. the pick-and-place-

unit). Originally, the case has been designed to resemble

industrial plants closely [26]. Consequently, the case

comprises a number of important features that can be

found in industrial systems. Such features include the

transportation, selective manipulation, and separation of

different types of material within certain time constraints.

However, the case mainly lacks functional, structural, and

behavioral complexity. In fact, the individual functions to

be performed by the pick-and-place-unit (i.e. processing

white plastic, metallic, and black plastic material) can be

separated rather easily and have limited influence on each

other. It will be interesting to see how the test-driven

approach performs on systems, where the different

functions cannot be separated that easily. For example,

one could think about a system where multiple materials

can be processed in parallel to increase productivity. We

leave such investigations to future research.

4 Conclusions

In this paper we have presented an adaptation of test-

driven software development principles to the cyber-

physical manufacturing systems domain. In particular, we

have integrated additional activities such as input / output

material, manufacturing process, and mechanical part

specification, which are not relevant for pure software

systems. Then, we conducted a first exploratory study

which indicated the general applicability of the test-

driven approach. In particular, the study demonstrates

that (1) it is feasible to specify test cases for cyber-

physical manufacturing systems first and (2) the system

indeed can be developed incrementally.

Therefore, we see ourselves encouraged to conduct

future research on test-driven and agile development

methodologies for the cyber-physical manufacturing

systems domain. In particular, we plan to explore the

importance of syntactic and semantic issues and their

impact on system development more deeply. Then, we

plan to support the different specification and selection

activities with more advanced decision support. Finally,

we plan to extend our experiments to more complex

systems as well as larger and more heterogeneous groups

of engineers and practitioners. Hereby, we are interested

also in performing comparative studies with respect to

other design methodologies and modeling techniques.

Acknowledgements

This work was partially supported by the DFG (German

Research Foundation) under the Priority Programme

SPP1593: Design for Future – Managed Software

Evolution.

References

[1] G. Reinhart and G. Wünsch. Economic application of

virtual commissioning to mechatronic production

systems. Springer Journal of Production

Engineering - Research and Development, 1(4):371–

379, 2007.

[2] W. Schäfer and H. Wehrheim. The challenges of

building advanced mechatronic systems. In 2007

Future of Software Engineering, FOSE ’07, pages

72–84, Washington, DC, USA, 2007. IEEE

Computer Society.

[3] R. Isermann. On the design and control of

mechatronic systems-a survey. IEEE Transactions on

Industrial Electronics, 43(1):4–15, Feb 1996.

[4] Y. Umeda, M. Ishii, M. Yoshioka, Y. Shimomura,

and T. Tomiyama. Supporting conceptual design

based on the function-behavior-state modeler. Ai

Edam, 10(4):275–288, 1996.

[5] P. N. Suh. Axiomatic design theory for systems.

Research in Engineering Design, 10(4):189–209,

1998.

[6] J. Sitte and P. Winzer. Demand-compliant design.

IEEE Transactions on Systems, Man, and

Cybernetics - Part A: Systems and Humans,

41(3):434–448, May 2011.

[7] S. Burmester, H. Giese, and M. Tichy. Model Driven

Architecture: European MDA Workshops:

Foundations and Applications, MDAFA 2003 and

MDAFA 2004, Twente, The Netherlands, June 26-27,

2003 and Linköping, Sweden, June 10-11, 2004.

Revised Selected Papers, chapter Model-Driven

Development of Reconfigurable Mechatronic

Systems with Mechatronic UML, pages 47–61.

Springer Berlin Heidelberg, Berlin, Heidelberg,

2005.

[8] S. Friedenthal, A. Moore, and R. Steiner. A practical

guide to SysML: the systems modeling language.

Morgan Kaufmann, 2014.

[9] K. Thramboulidis. The 3+1 sysml view-model in

model integrated mechatronics. Journal of Software

Engineering and Applications, 3(02):109, 2010.

[10] J. Gausemeier, U. Frank, J. Donoth, and S. Kahl.

Specification technique for the description of self-

optimizing mechatronic systems. Research in

Engineering Design, 20(4):201–223, 2009.

[11] B. Hummel. A semantic model for computer-based

spatio-temporal systems. In Engineering of

Computer Based Systems, 2009. ECBS 2009. 16th

Annual IEEE International Conference and

Workshop on the, pages 156–165, April 2009.

[12] G. Hackenberg, A. Campetelli, C. Legat, J. Mund,

S. Teufl, and B. Vogel-Heuser. System Analysis and

Modeling: Models and Reusability: 8th International

Conference, SAM 2014, Valencia, Spain, September

29-30, 2014. Proceedings, chapter Formal Technical

Process Specification and Verification for

Automated Production Systems, pages 287–303.

Springer International Publishing, Cham, 2014.

[13] G. Hackenberg, C. Richter, and M. F. Zäh. A multi-

disciplinary modeling technique for requirements

management in mechatronic systems engineering.

Procedia Technology, 15:5 – 16, 2014. 2nd

International Conference on System-Integrated

Intelligence: Challenges for Product and Production

Engineering.

[14] G. Hackenberg, M. Gleirscher, T. Stocker,

C. Richter, and R. Gunther. Macon: Consistent cross-

disciplinary conception of manufacturing systems. In

Manufacturing Modelling, Management and Control,

8th IFAC Conference on, 2016.

[15] E. M. Clarke, O. Grumberg, and D. Peled. Model

checking. MIT press, 1999.

[16] K. Beck. Test-driven development: by example.

Addison-Wesley Professional, 2003.

[17] G. Booch, J. Rumbaugh, and I. Jacobson. The unified

modeling language. Unix Review, 14(13):5, 1996.

[18] V.-C. Liang and C. J. J. Paredis. A port ontology for

conceptual design of systems. Journal of Computing

and Information Science in Engineering, 4(3):206–

217, 2004.

[19] L. Alting and H. Zhang. Computer aided process

planning: the state-of-the-art survey. The

International Journal of Production Research,

27(4):553–585, 1989.

[20] M. Krichen and S. Tripakis. Model Checking

Software: 11th International SPIN Workshop,

Barcelona, Spain, April 1-3, 2004. Proceedings,

chapter Black-Box Conformance Testing for Real-

Time Systems, pages 109–126. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2004.

[21] S. Shepard. RFID: radio frequency identification.

McGraw Hill Professional, 2005.

[22] G. Hackenberg, M. Irlbeck, V. Koutsoumpas, and

D. Bytschkow. Applying formal software

engineering techniques to smart grids. In

Proceedings of the First International Workshop on

Software Engineering Challenges for the Smart Grid,

pages 50–56. IEEE Press, 2012.

[23] N. Lynch and M. Tuttle. An introduction to

input/output automate. CWI quarterly, 2(3):219–246,

1989.

[24] A. A. G. Requicha and H. B. Völcker. Constructive

solid geometry. 1977.

[25] L. Piegl and W. Tiller. Curve and surface

constructions using rational b-splines. Computer-

Aided Design, 19(9):485 – 498, 1987.

[26] C. Legat, J. Folmer, and B. Vogel-Heuser. Evolution

in industrial plant automation: A case study. In

Industrial Electronics Society, IECON 2013 - 39th

Annual Conference of the IEEE, pages 4386–4391,

Nov 2013.

[27] Birgit Vogel-Heuser, Christoph Legat, Jens Folmer,

and Stefan Feldmann. Researching evolution in

industrial plant automation: Scenarios and

documentation of the pick and place unit. Technical

report, Institute of Automation and Information

Systems, Technische Universität München, 2014.

[28] W. R. Shadish, T. D. Cook, and D. T. Campbell.

Experimental and quasi-experimental designs for

generalized causal inference. Houghton, Mifflin and

Company, 2002.

