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Abstract. Today, manufacturing engineering companies still struggle developing cyber-physical solutions. Studies 

suggest that inappropriate engineering methods dominated by mechanical design decisions and incompatible 

engineering tool landscapes are key problems that lead to isolated and potentially inconsistent specifications. To 

overcome the current situation, in this paper we propose a test-driven approach to cyber-physical manufacturing 

system design based on an integrated modeling technique and engineering tool called MACON. Then, we explore the 

applicability and potential benefits of the approach for an industry-close example. Therefore, we analyze empirical 

data about the development process collected during tool usage. The data indicates that test-driven development is 

applicable in principle to the cyber-physical manufacturing systems domain resulting both in early test specification 

at various levels of the component architecture as well as in early identification of design flaws.  

1 Introduction 

The transition from purely mechanical to cyber-physical 

manufacturing systems is proceeding for a few decades 

now. In the last decade Reinhart and Wünsch [1] 

observed that many manufacturing engineering 

companies are struggling with high commissioning cost 

due to design flaws, which remain undiscovered until late 

in the projects. At the same time, Schäfer and Wehrheim 

[2] suggest that existing discipline-specific modeling 

techniques, analysis tools, and engineering methods are 

not sufficient to cope with the multidisciplinary nature 

and complexity of the engineering problems. Similar 

thoughts have been expressed by other authors as well, 

e.g. [3]. Consequently, researchers have been working on 

extending and integrating existing approaches to tackle 

the described challenges.  

1.1 Related work 

The first attempts originate from the Product Design 

(PD) community. For example, Umeda et al. [4] propose 

the Function, Behavior, Structure approach, where first 

the product functionality is defined before deriving the 

expected behavior as well as the mechanical structure and 

the actual behavior. Similarly, Suh [5] proposes the 

Axiomatic Design approach, where first the functional 

requirements are defined before driving design 

parameters and process variables, while their relationship 

is expressed using matrices. More recently, Sitte and 

Winzer [6] propose the Demand-Compliant Design 

approach, where first a requirement structure is defined 

before deriving a function structure, a process structure, 

and a component structure, while the relationships are 

expressed again using matrices. An advantage of the PD 

approaches is their general applicability as well as the 

systematic mapping from requirement to solution 

characteristics. However, the design information typically 

is not captured in a semantically meaningful way 

preventing advanced analyses. 
Further attempts originate from the System Design 

(SD) community. For example, Burmester et al. [7] 

propose the MechatronicUML approach, where 

mechatronic systems can be described in terms of 

components, ports, channels and (hybrid) state machines. 

More recently, Friedenthal et al. [8] describe the Systems 

Modeling Language (SysML) approach, where also the 

customer needs and technical constraints are considered 

and additional perspectives on the system behavior are 

provided. Based on SysML, Thramboulidis [9] proposes 

the Model-Integrated Mechatronics approach, where 

mechatronic systems are described from a control 

application, a communication and processing system, and 

a mechanical process perspective. Finally, Gausemeier et 

al. [10] propose the CONSENS approach, where also the 

system geometry can be considered. An advantage of the 

SD approaches is their wide-spread use and tool support. 

However, the approaches typically lack either formal 

semantics for advanced analyses or important design 

information such as geometry. 
To compensate for the above-mentioned problems, 

additional attempts originate from the Formal Method 

(FM) community. For example, Hummel [11] proposes 

the Spatio-Temporal Engineering Models (STEM) 

approach, where mechatronic systems can be described in 

terms of components, ports, channels, and (hybrid) state 



 

machines as well as mechanical parts, material detectors, 

material entries, material exits, and collision-based 

interaction. Based on STEM, Hackenberg et al. [12, 13, 

14] propose an extended approach, where additionally 

customer needs, technical constraints, and manufacturing 

processes can be considered. An advantage of the FM 

approaches is that they capture important design 

information and enable advanced analyses through formal 

model syntax and semantics. However, the approaches 

still lack a practical methodology, which promises to 

develop higher quality specifications in shorter time.  

1.2 Problem statement 

Despite the progress explained previously, developing 

high-quality specifications for complex cyber-physical 

manufacturing systems in early phases of engineering 

projects still remains a major challenge. Our brief 

literature review suggests that existing approaches lack 

either (1) important design information such as system 

geometry and dynamic interaction based on spatial 

arrangement, or (2) formal semantics for advanced 

specification analyses such as model checking [15], or (3) 

practical methodologies that are able to cope with the 

complexity and multidisciplinary nature of respective 

engineering problems. We believe that all three problems 

have to be solved in combination before high-quality 

specifications can be developed efficiently. 

1.3 Contribution 

To overcome the present situation, in Section 2 we 

describe a test-driven methodology for cyber-physical 

manufacturing system design based on existing FM 

techniques, which already capture a wide range of design 

information and come with formal semantics for 

advanced analyses. In particular, we try to map ideas and 

principles behind test-driven (software) development [16] 

to the cyber-physical manufacturing system domain, 

which include (1) specifying test cases first and (2) 

developing the system in increments. Then, in Section 3 

we describe a case study that has been carried out to 

explore the applicability and benefits of the approach. 

Finally, in Section 4 we conclude the presented work and 

outline future research. 

2 Test-driven design method 

According to test-driven development principles [16], our  

test-driven design method promotes a fundamentally 

iterative and incremental approach to complex cyber-

physical manufacturing systems development. Hereby, 

iterations are used to revise inaccurate problem 

understanding as well as incompatible or inadequate 

design decisions with respect to the current problem 

understanding. Increments, on the other hand, are used to 

reduce the problem scope considered in each iteration. 

Consequently, the entire system does not have to be 

designed at once, but the engineers can concentrate on 

(selected) parts of the engineering problem only. 

Increments are one key principle to cope with problem 

complexity. Furthermore, increments enable early 

stakeholder integration into the development process and, 

hence, increase the validity of the problem understanding 

developed and the design decisions taken throughout the 

process. While iterative approaches have been suggested 

for mechatronic systems already in the 1990s, e.g. [4, 5], 

the idea of increments appears to be novel to us in the 

cyber-physical manufacturing systems domain. 

Figure 1 provides an overview of our test-driven de-

sign method in UML activity diagram notation [17]. 

According to established manufacturing engineering 

practices, the method distinguishes between a preparation 

and an implementation phase. In the preparation phase 

the requirements are specified including input and output 

flows, an efficient manufacturing process is design, and 

relevant test procedures are determined. In contrast, in the 

implementation phase the system architecture is defined 

including the system components and their interactions 

based on material, energy, and data flow [18]. In the 

following, we describe both phases in more detail. 

Thereby, we explain the relation between the activities 

and the elements of the MAnufacturing CONception 

(MACON) modeling technique [12, 13, 11]. 

Figure 1. Illustration of the test-driven design method divided 

into a preparation and an implementation phase. 

2.1 Preparation phase 

The preparation phase is divided into four activities, 

namely requirement specification, material specification, 

process specification, and test specification. Furthermore, 

the corresponding elements of the MACON modeling 

technique [12, 13] are depicted in Figure 2. The elements 

include (informal / textual) requirements, (material / 

energy / data) ports, constraints, (requirement / process) 

monitors, and (test) scenarios. 

Figure 2. Illustration of the MACON modeling elements for the 

preparation phase [12, 13]. 



 

During requirement specification the customer 

needs are collected and documented using (informal / 

textual) requirement elements. Then, the requirements 

can be formalized using constraint and monitor elements 

over port elements. According to Liang and Paredis [18], 

ports define the data, energy, and material interface of the 

cyber-physical system and its components. Then, con-

straints allow one to express invariants for the entire 

lifetime of the system such as the maximum amount of 

energy flow per time unit over some energy port. In 

contrast, monitors allow one to express invariants for 

certain activities only such as the maximum amount of 

energy for material transportation or material shape 

manipulation. Note that the formal semantics of monitors 

is described in [12]. 

Then, during process specification the manufacturing 

process is derived - again - using monitor elements. 

Similar to established process planning tools [19], the 

activity elements represent the process steps such as 

grinding or milling and the transition elements describe 

the possible activity sequences (e.g. first mill, then grind). 

Then, invariants can be attached to the activities and 

guards must be defined for the transitions.  The invariants 

describe constraints that must hold while performing the 

process step such as the maximum allowable duration. In 

contrast, the guards describe the conditions that must 

hold to finish a process step such as the target material 

shape after milling and grinding respectively. Note that 

monitors can be used to formalize (informal / textual) 

requirements also. However, during process specification 

design decisions can be added regarding intermediate 

process steps, which have not been prescribed by the 

customer. 

In contrast, during test specification the test cases are 

derived using scenario elements. Scenarios essentially 

describe environments, within which the system is 

expected to operate. Scenarios are divided into entry, exit, 

step, and transition elements. Entries define the position 

and orientation in space where the environment may add 

material to the simulation during test execution. In 

contrast, exits represent the locations in space where the 

environment may remove material from the simulation 

during test execution. Finally, steps and transitions model 

the environment behavior, which can read component 

output ports and write component input ports as well as 

scenario entry and exit ports. Again, invariants can be 

added to steps such as the maximum allowable duration, 

and guards have to be specified for transitions such as the 

presence of material at a particular location. Finally, a 

test case is passed if the final step is reached during test 

execution without violating any invariants within 

considered constraints, monitors, and the scenario itself. 

Note that the formal semantics of scenarios is similar to 

test automata [20]. 

Finally, during material specification the material 

flowing through the manufacturing system is modeled 

using separate component elements. In parallel to 

requirement specification typically initial and final 

material states are considered only. Then, in parallel to 

process specification typically intermediate material 

states as well as transitions and interaction ports are 

added. Hereby, the states, transitions, and ports are 

derived from the respective process steps. Note that for 

each material component the test-driven engineering 

method can be applied recursively. Consequently, cyber-

physical "material" can be considered in principle as well, 

which might be equipped with appropriate sensing, 

actuating, and digital information processing units such 

as RFID [21]. 

2.2 Implementation phase 

Similar to the preparation phase, the implementation 

phase is divided into four activities, namely test selection, 

architecture specification, behavior specification, and part 

specification. For reference, the corresponding elements 

of the MACON modeling technique [11] are depicted in 

Figure 3. The elements include components, material 

ports respectively slots, channels, behaviors, and parts. 

Figure 3. Illustration of the MACON modeling elements for the 

implementation phase [11]. 

During test selection the test cases, that are 

considered within the current iteration or increment, are 

selected defining the partial engineering problem to be 

solved (i.e. passing the selected test cases only). Hereby, 

one can select an arbitrary non-empty subset of test cases 

from the set of all possible test cases. The selected test 

cases drive the following specification activities (hence 

the name test-driven). Different strategies can be used for 

test selection. For example, one could select the test cases 

based on estimated / perceived architectural impact such 

that important design decisions are likely to be in early 

iterations or increments. Alternatively, one could select 

the test cases based on suspected ambiguity / misinter-

pretation to foster requirement validation based on early 

customer feedback. At this point, we leave the question 

of suitable test selection strategies as well as their impact 

on the development process and the product quality to 

future research. 

Then, during architecture specification the modular 

structure of the cyber-physical manufacturing system is 

defined using component, material slot and channel 

elements. Herein, components represent cyber-physical 

subproblems / subsystems, which allows one to reduce 

the considered problem / system complexity further. Note 

that for each component the test-driven engineering 

method can be applied recursively including both the 

preparation and the implementation phase as well as the 

fundamentally iterative and incremental process. In 



 

contrast, material slots are derived from material ports 

directly and allow one to bind colliding cyber-physical 

components dynamically during test execution such as 

material added at some entry (see Section 2.1). The 

formal semantics of the dynamic interaction based on 

collision is described in [11]. Finally, channels define the 

interaction between the components of the architecture as 

well as components dynamically bound at material ports 

respectively slots. 

Subsequently, during behavior specification the 

reactions of the component respectively system to input 

from its environment are defined using behavior 

elements. Behaviors are divided into state and transition 

elements. Both states and transitions may contain actions 

for writing output ports of the surrounding component 

respectively system such as some data signal or energy 

flow. Following [22] energy flow is modeled using 

scalars, where the sign indicates the direction of the 

energy flow. Hereby, a negative sign indicates that the 

component requires the energy from the environment, a 

positive sign indicates that the component provides the 

energy to the environment instead. In contrast, transitions 

may contain guards over the component input ports. The 

guards define the conditions for switching between the 

source and the target state of the transition such as 

receiving a data signal from the environment or observing 

an energy flow. Finally, each state may contain individual 

part elements. Parts allow one to model the mechanical 

shape of cyber-physical components. Consequently, a 

component reaction might include changing its shape, 

e.g., due milling or grinding energy obtained from the 

environment. Note that the formal semantics is based in 

input / output automata [23]. 

Finally, during part specification the static portion of 

the mechanical shape of a component is defined again 

using part elements. Each part contains exactly one 

volume element. Hereby, we distinguish between atomic 

volumes and composite volumes. Atomic volumes 

represent basic shapes such as spheres, cylinders, and 

boxes. In contrast, composite volumes represent the 

union of child volumes, where child volumes can be both 

atomic volumes and composite volumes. Consequently, 

we rely on a subset of constructive solid geometry (CSG) 

[24] excluding volume intersection and difference 

operators rather than using the full set of CSG operators 

or using boundary representations such as non-uniform 

rational basis splines [25]. The current reason is that the 

collision-based dynamic interaction semantics [11] is 

more easy to implement using the selected CSG subset. 

In the future we might extend our approach to other, 

more powerful representations. 

3 Exploratory case study 

For demonstrating and evaluating the test-driven design 

method (see Section 2) we re-designed a miniaturized 

cyber-physical manufacturing system - the so-called pick-

and-place unit - which is located at the Institute for 

Automation and Information Systems, Technische 

Universität München [26, 27]. Subsequently, we first 

explain the objectives of the study in Section 3.1 as well 

as the tool support used during the study in Section 3.2. 

Then, we explain the method of data collection in Section 

3.3 and the system design obtained while performing the 

study in Section 3.4. Finally, we evaluate the data 

collected during tool usage with respect to the study 

objectives in Section 3.5 before discussing threads to the 

internal and external validity of the study in Section 3.6.  

3.1 Study objective 

The main objective of this study is to evaluate the general 

applicability of the test-driven design method to cyber-

physical manufacturing systems. Consequently, we want 

to demonstrate the successful use of the method at least 

for one selected and representative case (i.e. the pick-and- 

place-unit). In this context, we consider the experiment to 

be successful, if we can follow the prescribed method 

closely (called process feasibility), while obtaining a 

valid system design (called result validity). Note that here 

we do not consider the performance, with which the 

system design can be obtained. Consequently, we will not 

derive any statement about the efficiency of the method 

with respect to other design methods (e.g. test-driven 

versus classical top-down). 

3.2 Tool support 

A prototypical tool support for the MACON modeling 

technique has been described in [14]. Note that herein the 

challenge lies in integrating the different views onto the 

cyber-physical manufacturing system intuitively. Here, 

we describe the prototypical tool only briefly. The 

graphical user interface of the tool consists of two 

screens, namely (1) a modeling screen and (2) a testing 

screen, which are explained both in the following. 

As the name suggests, the modeling screen (Figure 4) 

allows one to edit the design of the cyber-physical 

manufacturing system. Change events are triggered when 

editing attribute values of, adding / removing children to / 

from, and adding / removing references between model 

elements. Furthermore, after each change event syntactic 

rules are re-evaluated and issues appear or disappear (e.g. 

missing child). Also, the syntactic issue appearance and 

disappearance events are recorded for analysis. Finally, 

test execution can be started from within the modeling 

screen for uncovering the semantic issues in the model. 

Upon the test execution start event the testing screen 

shows up. 

Figure 4. Modeling screen of the prototypical tool support [14]. 



 

In contrast, the testing screen (Figure 5) executes the 

simulation engine in the background and allows one to 

inspect the simulation results. During test execution the 

engine can raise semantic issues, which are displayed in 

the testing screen. Furthermore, the simulation engine 

triggers a simulation stop event in case a severe semantic 

issue was raised (i.e. the test execution failed, e.g., due to 

the violation of an invariant as explained in Section 2.1), 

the scenario final step was reached (i.e. the test execution 

succeeded), or a timeout issue appeared (i.e. the test 

execution could not be finished within a predefined time 

frame). Finally, the testing screen allows one to step 

through the simulation and inspect the system state. The 

system state includes the component translations and 

orientations in space, the port valuations, the current 

scenario step, the current monitor activities, and the 

current behavior states. 

Figure 5. Testing screen of the prototypical tool support [14]. 

3.3 Data collection 

For evaluating the process feasibility, we instrumented 

the prototypical tool (see Section 3.2) to track all 

modeling and testing activities. Specifically, the tool 

records each model change event (i.e. adding / removing 

children of, adding / removing references between, and 

modifying attributes of model elements) and associates it 

with the affected component of the system architecture. 

In addition, the tool records each test execution event and 

associates it with the respective scenario and execution 

result (i.e. success, failure, or timeout). From the records 

we reconstruct the development process and compare the 

reconstruction with the method described in Section 2. 

In contrast, for evaluating the design validity, we can 

use the developed system design directly. In particular, 

we can compare the developed system architecture (i.e. 

the components and their interactions) with the SysML 

documentation [27]. Furthermore, we can compare the 

developed system behavior (i.e. the states and the 

transitions) with the behavior of the physical system, 

which we are provided access to. Consequently, we can 

derive the design validity from the similarity between the 

developed and the documented system architecture as 

well as the developed and the physical system behavior. 

Herein, the developed behavior might be simplified. 

3.4 System design 

The developed system design of the pick-and-place unit 

consists of the top-level system component itself as well 

as three second-level components, namely the distributor, 

the stamper, and the separator. In the following we 

explain each of these components in more detail. Herein, 

we focus on requirements and scenarios respectively. In 

contrast, we omit information about the manufacturing 

processes and the implementation. 

3.4.1 Pick and place unit 

The pick-and-place unit is responsible for receiving white 

plastic, metallic, and black plastic material at a pre-

defined entry location. Then, white plastic material must 

be stamped due to, e.g., contamination and moved to a 

pre-defined exit location. In contrast, metallic and black 

plastic material must be moved to different pre-defined 

exit locations directly. Furthermore, each material must 

be processed within a certain duration. Consequently, the 

pick and place unit is responsible for separating (or 

sorting) and conditionally stamping material, depending 

on its type (i.e. white plastic, metallic, or black plastic). 

After requirement and process specification, one scenario 

is derived for each material type during test specification. 

The three scenarios are illustrated in Figure 6, in which 

green and red boxes represent entry or exit locations. 

Note that the mechanical parts are not part of the model 

originally, but they have been added after many iterations 

and increments. 

   
Figure 6. Three scenarios of the pick and place unit component.  

3.4.2 Distributor 

The distributor component is responsible for moving 

white plastic, metallic, and black plastic material between 

the entry location, the stamper, and the separator. In 

particular, white plastic material must be moved from the 

entry location to the stamper location and from the 

stamper location to the separator location. In contrast, 

metallic and black plastic material must be moved from 

the entry location to the separator location directly. 

Furthermore, each operation must be performed within a 

certain duration. Again, after requirement and process 

specification, one scenario is derived for each 

combination of material type and start location during test 

specification. Three out of four scenarios are shown in 

Figure 7. For the sake of brevity, the presentation of a 

further decomposition as done in the implementation 

phase (Section 2.2) is omitted here. 

   
Figure 7. Three scenarios of the distributor component.  



 

3.4.3 Stamper 

Then, the stamper component is responsible for receiving 

white plastic material at the stamper location, stamping 

the material (i.e. transmitting “stamp” energy through 

collision-based dynamic interaction), and delivering the 

stamped material back at the original location. In 

contrast, metallic and black plastic material does not have 

to be considered by the stamper component. Furthermore, 

the stamping procedure must be performed within a 

certain duration. Consequently, one scenario is derived 

during test specification, which is shown in Figure 8. 

Note that for this component, the entry and exit locations 

coincide such that only the exit is shown. 

Figure 8. One scenario of the stamper component. 

3.4.4 Separator 

Finally, the separator component is responsible for 

receiving white plastic, metallic, and black plastic 

material at the separator location. Then, white plastic 

material must be moved to the first exit location. In 

contrast, metallic material must be moved to the second 

and black plastic material to the third exit location. Note 

that the three exit locations correspond to the exit 

locations defined during requirement specification for the 

pick-and-place-unit. Furthermore, analogous to the top-

level pick-and-place-unit component and the other lower-

level components each operation must be performed 

within a certain duration. Again, after requirement and 

process specification, one scenario is derived for each 

material type, resulting in three scenarios as illustrated in 

Figure 9. Note that the implementation uses a conveyor 

belt with several position sensors and push cylinders. 

   
Figure 9. Three scenarios of the separator component. 

3.5 Data evaluation 

In total, the experiment comprised 49 tool sessions and 

18.44 hours of tool usage. During those sessions, 3,397 

model elements were created, 145,785 element attribute 

modifications were recorded (note that each key stroke is 

recorded as a separate modification event), and 903 

elements were deleted (suggesting the revision of design 

decisions and / or the current problem understanding). 

Furthermore, 241 scenario test execution events have 

occurred and 2,592 syntactic as well as 180 semantic 

issues have been discovered. Note that these numbers 

represent absolute performance measures. If such 

numbers could be obtained for other methods and / or 

modeling techniques / tools, also relative performance 

measures could be derived. However, we leave this 

evaluation to future research. 

In the following, we analyze the collected data (see 

Section 3.3) with respect to the process feasibility before 

discussing the obtained system design (see Section 3.4) 

with respect to the design validity. 

3.5.1 Process feasibility 

To answer the question of process feasibility, we 

aggregate and visualize the data collected during tool 

usage. In particular, we analyze the model change events 

and the test execution events independently. 

Figure 9 shows the model change events over time 

assigned to the components of the system design (i.e. 

pick-and-place-unit, distributor, stamper, separator; see 

Section 3.4) and classified by the elements of the 

MACON modeling technique (i.e. requirements, ports, 

scenarios, monitors, components, behaviors, and parts; 

see Section 2). The diagram shows that for each 

component of the design indeed the preparation (shades 

of red) and the implementation (shades of blue) phases 

can be distinguished. In particular, the scenarios (or test 

cases; orange) are specified before working on the 

implementation, which represents a core principle of test-

driven development [16]. Furthermore, the diagram 

shows that the process indeed proceeds in iterations 

because work on the components, behaviors and parts 

(i.e. implementation phase elements) might be followed 

by work on the requirements, ports, scenarios, and 

monitors (i.e. preparation phase elements). 

Figure 9. Element creation, modification, and deletion events 

associated with the individual components over time. 

The previous diagram allows us to reconstruct the 

order, in which the activities of the test-driven method 

(see Section 2) have been executed, from the order, in 

which the elements of the MACON modeling technique 

have been touched. However, the diagram does not tell us 

about the test selection practices and, thus, whether the 

system has been developed incrementally. To answer this 

question, Figure 10 shows the test execution events over 

time assigned to the components and scenarios of the 

system design and classified by the result of the test 

execution. The diagram shows that first the sorter 

component, then the distributor component, and finally 

the stamper component is finished before the pick-and-

place-unit is completed. Furthermore, first the metallic 

and black plastic scenarios of the pick-and-place-unit are 

passed before passing the white plastic material scenario. 



 

The reason is that the stamper component is required to 

pass the white plastic material scenario. However, the 

stamper component is implemented last. Consequently, 

passing the white plastic material scenario is delayed for 

about two hours. From this delay we conclude that a first 

increment only considered the metallic and the black 

plastic scenarios. A second increment included the white 

plastic scenario and, hence, the stamper component. 

Consequently, we conclude that indeed an incremental 

approach was applied. 

 Figure 10. Test execution events and results associated with 

the individual components and scenarios over time. 

3.5.2 Design validity 

To answer the question of design validity, we compare 

the obtained system architecture with the architecture 

from the SysML documentation of the pick-and-place-

unit [27]. Furthermore, we compare the developed system 

behavior to the behavior of the real physical system. 

Fundamentally, both the SysML documentation as 

well as the developed system design decompose the pick-

and-place-unit into three modules, i.e. the sorter, the 

stamper, and the separator. The distributor is modelled 

almost identically in the SysML documentation and in 

our system design, though our system design assigns two 

material sensors to the sorter component, while the 

SysML documentation assumes that the sensor signals 

are provided from the environment. Consequently, we 

have chosen a more autonomous module design, which 

we do not consider a critical deviation of the two system 

architectures. Then, in the SysML documentation the 

stamper includes only two cylinders and an operator 

panel component. In contrast, the developed system 

design omits the operator panel, but includes a stamp 

head component as well as the interactions between the 

stamp head, the cylinders and the material. Consequently, 

the realization of the stamp operation becomes more 

obvious. Finally, the separator is modeled almost 

identically in the SysML documentation and the 

developed system design. Again, the SysML document-

tation includes an operator panel, which is omitted in our 

system design. Also, the SysML documentation distin-

guished different sensor types (i.e. presence sensor for 

detecting general material presence, inductive sensors for 

distinguishing metal, and optical sensors for distin-

guishing white and black plastic), while we combined all 

three functions into one sensor component. Note that we 

could have split the single sensor component into three 

independent sensor complements easily. However, we 

consider the single component to be a valid simplification 

during conceptual design. Finally, from this comparison 

we conclude that we developed a valid system archi-

tecture. Also, we were able to describe certain aspects of 

the interaction (i.e. the stamping operation) more detailed 

than in the SysML documentation. 

Regarding the system behavior, we have observed the 

same causalities in the physical system and the developed 

system design. By causalities we mean the order in which 

sensor measurements are received, actuator values are 

controlled, and the system states evolve. The most 

important state variables include the angular and vertical 

position of the distributor crane, the position of the 

stamper cylinders, the position of the separator cylinders, 

and the position of material being processed by the pick-

and-place-unit. One can observe the causalities easily 

when watching the physical system in operation and the 

developed system design during simulation. Furthermore, 

we have observed similar critical states in the physical 

system and the developed system design such as 

misplacement of material by the dispatcher due to angular 

crane position sensor delays. On the other hand, when 

comparing the behaviors one also can see easily that the 

timing behaviors do not match. However, we did not 

consider timing behavior to be critical in this experiment. 

Furthermore, we have observed critical states in the 

physical behavior, which could not be observed in the 

developed system design such as misplacement of 

material due to spring “push-back” forces of contact 

sensors. Such aspects of the physical behavior have to be 

modeled explicitly to be able to observe relate effects. 

However, we considered these effects to be irrelevant 

during the experiment. Note that such judgement is left to 

the expertise of the engineers because the method (see 

Section 2) does not provide any guideline at the moment. 

Hence, one must consider whether the effects have a 

considerable impact on the system design, e.g. because 

respective countermeasures have to be included, which 

might take a certain amount of space that is not available 

or change the behavioral causalities significantly. Still, in 

summary we conclude that we have obtained a valid 

system behavior neglecting minor physical effects.  

3.6 Study validity 

According to common practice in experimental research 

[28], we distinguish between the internal and the external 

validity of the study. Thus, the internal validity is 

concerned with the reliability of the conclusions that we 

have drawn about the research questions (i.e. process 

feasibility and design validity) from the collected data. 

On the other hand, the external validity is concerned with 

the degree to which the conclusions can be generalized to 

the entire cyber-physical manufacturing systems domain. 



 

3.6.1 Internal validity 

To address the internal validity with respect to the 

process feasibility, we (1) used tool instrumentation for 

collecting data automatically during tool usage, (2) 

developed appropriate aggregations and visualizations of 

the collected data, and (3) interpreted the results of these 

visualizations. Note that we tried to achieve a high degree 

of automation in the process to remove the bias of 

subjective interpretation. However, one can question 

whether the right data has been collected, whether the 

aggregations and visualizations are appropriate, and 

whether the interpretation of the visualizations is valid. 

For data collection we used only the most basic events, 

which can be obtained from tool usage. In particular, the 

events cover all possible changes to the system design as 

well as all possible outcomes of test execution. Then, the 

aggregation by component of the system design and by 

element of the MACON modeling technique / result of 

the test execution was performed automatically as well. 

Again, the aggregation can be performed unambiguously. 

The same holds for the visualization using time lines. 

Finally, the interpretation included mapping the time line 

information back to the activities and phases of the test-

driven design method (see Section 2). In particular, the 

mapping to phases can be achieved unambiguously, 

because the phases do not share any model elements. 

Some ambiguity can be found in the mapping to the 

activities, as the requirement specification (respectively 

formalization) and the process specification potentially 

share the monitor elements.  However, we can foreclose 

this ambiguity because we omitted the formalization of 

requirements in the experiment. 

To address the internal validity with respect to the 

design validity, the authors have had access to the SysML 

documentation [27] as well as the real physical system. 

Again, the comparison of the system architectures is 

rather straight forward. In SysML, the architecture is 

specified using block diagrams including blocks (which 

correspond to the MACON components) and containment 

relationships (which are also defined in the MACON 

modeling technique). In contrast, the interactions between 

the components are defined only implicitly as part of the 

textual description and the behavior diagrams in the 

SysML documentation, while in the developed design 

interactions are defined explicitly using channels. The 

comparison of the system behaviors, on the other hand, is 

more difficult to achieve; we tried to focus the attention 

on the causalities and the observable critical states. 

Furthermore, we are aware of the simplifications that 

have been made with respect to the real physical behavior 

(e.g. the slight effect of spring forces in contact sensor). 

As stated previously, we consider such simplifications to 

be valid during the conceptual design phase and we think 

that such effects can be modeled with sufficiently large 

effort. Also, we have observed and addressed critical 

system states in the developed design, which can be 

observed in the physical system as well (e.g. the effect of 

sensor and actuator signal delays on the correct 

positioning of components). 

Finally, a general deficiency of the study with respect 

to internal validity is that the target design existed prior 

to executing the study. Hence, the developed design is 

influenced by a priori knowledge. To circumvent this 

deficiency an experimental setup is required, where the 

participants are not aware of the target design. 

3.6.1 External validity 

In contrast, the external validity of the study is limited 

mainly due to the academic case (i.e. the pick-and-place-

unit). Originally, the case has been designed to resemble 

industrial plants closely [26]. Consequently, the case 

comprises a number of important features that can be 

found in industrial systems. Such features include the 

transportation, selective manipulation, and separation of 

different types of material within certain time constraints. 

However, the case mainly lacks functional, structural, and 

behavioral complexity. In fact, the individual functions to 

be performed by the pick-and-place-unit (i.e. processing 

white plastic, metallic, and black plastic material) can be 

separated rather easily and have limited influence on each 

other. It will be interesting to see how the test-driven 

approach performs on systems, where the different 

functions cannot be separated that easily. For example, 

one could think about a system where multiple materials 

can be processed in parallel to increase productivity. We 

leave such investigations to future research. 

4 Conclusions 

In this paper we have presented an adaptation of test-

driven software development principles to the cyber-

physical manufacturing systems domain. In particular, we 

have integrated additional activities such as input / output 

material, manufacturing process, and mechanical part 

specification, which are not relevant for pure software 

systems. Then, we conducted a first exploratory study 

which indicated the general applicability of the test-

driven approach. In particular, the study demonstrates 

that (1) it is feasible to specify test cases for cyber-

physical manufacturing systems first and (2) the system 

indeed can be developed incrementally. 

Therefore, we see ourselves encouraged to conduct 

future research on test-driven and agile development 

methodologies for the cyber-physical manufacturing 

systems domain. In particular, we plan to explore the 

importance of syntactic and semantic issues and their 

impact on system development more deeply. Then, we 

plan to support the different specification and selection 

activities with more advanced decision support. Finally, 

we plan to extend our experiments to more complex 

systems as well as larger and more heterogeneous groups 

of engineers and practitioners. Hereby, we are interested 

also in performing comparative studies with respect to 

other design methodologies and modeling techniques. 
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