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Abstract  

The functional enhancement of the Flight Control System (FCS) by using new technologies 

and concepts show potential benefit for commercial transport aircraft. Thus, to conceive the 

entire design space in early phases of aircraft design, the transition from a knowledge-based to 

a functional-driven design approach is recommended. The objective of this contribution is to 

enable such a functional-driven design approach for Advanced Flight Control Systems (AFCS), 

including multifunctional flight control devices. After a short background section on the design 

of FCS, various enabling technologies and concepts are presented. The functional-driven de-

sign approach represents the first part of an overall AFCS design method. A Functional Multi-

ple Domain Matrix (FMDM) is the core of the design approach and accompanies the entire 

development process and supports in handling the system complexity. Based on a functional 

cluster analysis, various AFCS concepts can be derived. This functional-driven approach can 

be applied for new aircraft configurations in the early stages of the transport aircraft design 

process or for retrofit studies, with respect to the FCS design. 

1 INTRODCUTION 

Flight Control Systems (FCS) play a major role on sizing, efficiency, and safety of 

commercial transport aircraft. The design of FCS is a multidisciplinary design problem 

with many requirements, specifications and constraints. Furthermore, it is a safety crit-

ical system and has to tolerate hardware and software design faults.  

Today’s FCS consist of highly optimized flight control devices, which are con-

ventionally classified as primary or secondary – depending on their function and criti-

cality. This knowledge-based design with classical and mainly mono-functional allo-

cation, is often limited to small and local improvements under high effort [1–3]. 
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Various research studies show the potential of new technologies and concepts to 

increase aircraft efficiency or performance by functional enhancement of the flight con-

trol system [1, 4–9]. Descriptive examples are Cruise Variable Camber (CVC) for aer-

odynamic improvements [1], or Differential Flap Setting (DFS) for wing load control 

– leading among others to overall structure weight savings [2] (see Figure 1). Also 

active flow control concepts are able to enhance the performance of local areas at the 

wing, airframe or different flight control devices [9–11].  

Moreover, the trend towards more-electric aircraft and all-electric aircraft lead to 

considerable changes on system level and consequently have an impact on the FCS 

architecture design [3, 12]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1 – Multifunctional use of trailing edge flaps for Cruise Variable Camber 

(CVC) or Differential Flap Setting (DFS) (Source: Airbus) 

However, only few studies show how functional enhancement or new technolo-

gies for flight control systems can be considered and integrated in early phases of the 

aircraft design process.  

Bertram et al. [13] presents a case study with a “function-driven design process” 

for a blended wing body FCS for attitude and trajectory control [13]. A simulation-

driven methodology with focus on requirements verification and safety assessment of 

innovative FCS architectures is shown by Kreitz [3]. But both studies don’t consider 

the implementation of additional functions for performance or efficiency increase. 

Lammering et al. [5] see future improvements by blending primary and secondary con-

trol functions with distributed control surface architectures for trailing edge flaps [5]. 

Reckzeh [1] presents a first idea of a functional-driven design approach. The intent of 

this approach is the transition from a knowledge-based design to a functional-driven 

design, to increase the solution space and enabling multifunctional concepts [1]. 

The purpose of this contribution is to enable a functional-driven design of Ad-

vanced Flight Control Systems (AFCS) consisting of highly integrated and multifunc-

tional flight control devices (see Figure 2). In this study, the term “multifunctional” 

implies that flight control devices have (by design) or fulfill (by use) multiple flight 
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control functions. Flight control devices include all movables, surfaces and technolo-

gies which are providing or supporting flight control functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Functional breakdown of conventional flight control systems (top)  

and advanced flight control systems (bottom) (based on [1, p. 5]) 

2 BACKGROUND 

Conventional FCS of commercial transport aircraft are full fly-by-wire systems with 

automatic control features, envelope protections, and control laws for safety enhance-

ment. The FCS have very stringent dependability requirements in terms of safety and 

availability and are designed to tolerate hardware and software design faults. Dedicat-

ing standards and regulations are defined by the CS-25 of the European Aviation Safety 

Agency (EASA) and the FAR 25 of the Federal Aviation Administration (FAA).  

2.1 Flight Control System Design 

To meet the requirements in terms of preliminary aircraft design, the FCS definition in 

this study – in contrast to the ATA27 definition – includes the flight control devices. 

Based on this definition the FCS can be divided into a configurational system and an 

architectural system (see Figure 3). 

The configuration describes the type, allocation and positions of flight control 

devices as well as the kinematics and support, fairings, and airframe integration aspects. 

In general, primary flight control devices (e.g. aileron, elevator, and rudder) are flight-

critical and continuously activated to maintain safe attitude and trajectory control of 

the aircraft. Secondary flight control devices are high-lift control devices at the leading 

and trailing edge of the wing, and spoilers. They are classified as less critical, but in 

general they are not less essential for the sizing and efficiency of transport aircraft. The 

architecture defines the number of the flight control computers and their clear assign-

ment to dedicated flight control devices for redundancy and reconfiguration in the case 
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of an error. Also linkage, actuation and redundant distribution of the power supply is 

attributed to the architecture.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 – Breakdown of a flight control system into configuration and architecture 

The FCS is one of few essential aircraft systems with strong physical integration 

into airframe and structure, and significant information based integration into avionics 

and mission systems (see Figure 3).  

2.2 New Technologies and Concepts 

Figure 4 gives an overview of the main disciplines and technologies which enable a 

functional enhancement or efficiency improvement, or have a major influence on the 

FCS design. On this basis, functions, requirements and constraints can be derived on 

aircraft, system and device level. Table 1 shows the major effects of certain technolo-

gies and concepts on the FCS design.  

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Overview of enabling technologies/concepts and functions regarding 

flight control systems (based on [14, p. 23]) 
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Table 1 – Technologies and concepts with major effects on the flight control system design 
 

FCS Configuration FCS Architecture 

Flight  
Control  
Devices 

Fairing  
and  

Integration 

Kinematic 
and  

Support  

Flight Con-
trol Com-
puters1 

Linkage  
and  

Actuation 

Power  
Supply  

Distribution 

Active flow control x x  x x x 
Natural/Hybrid laminar flow x x x   x 
Wake vortex control x      

New propulsions (UHBR) x  x    

Wing load alleviation x  x x   

Differential flap setting x  x x   

Cruise variable camber x  x x x  

Buffet control x  x x   

Flutter suppression x  x    

More-/All-electric aircraft     x x 
Electric actuators      x x 
Distributed electric flap drives   x x x x 
Flexible wing x x x    

Adaptive/morphing structures x x x    

Smart structures x x x    

Lightweight systems x x x    

Steep approach capability x  x x x  

Wake vortex control x  x    

Source noise optimized design x x x       
1 Also additional sensors or control requirements are considered 

 

2.3 Design Structure Matrix and Multiple Domain Matrix 

The core of the presented functional-driven approach is a Multiple Domain Matrix 

(MDM). A MDM is based on the theory of the Design Structure Matrix (DSM), which 

was first developed by Steward in 1981 [15] and advanced by Eppinger and Browning 

[16] at the Massachusetts Institute of Technology.  

The DSM enables the modelling and analyzing of complex systems or processes. 

In general, the DSM is defined as a 𝑁𝑥𝑁 matrix, where relations and interactions be-

tween the 𝑁 elements of the system of the same domain are depicted, as illustrated in 

Figure 5.  

 

 

 

 

 

 

 

 

 

 

Figure 5 – Schematic of a Design Structure Matrix (DSM) (left) with derived directed graphs 

(middle) and a Multiple Domain Matrix (MDM) with different domains (right) 

An extension of the basic DSM is the Multiple Domain Matrix (MDM). The 

MDM includes several DSMs and corresponding Domain Mapping Matrices (DMM), 

which represent relations between elements of different domains (see Figure 5).  
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3 OVERALL DESIGN METHOD 

The overall objective is to enable a functional-driven design and analysis of Advanced 

Flight Control Systems (AFCS) with multifunctional flight control devices. Figure 6 

shows the schematic of the overall design method with the three main stages. This de-

sign method is dedicated for the conceptual and preliminary design of subsonic com-

mercial transport aircraft. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6 – Schematic of the overall design method (simplified) 

Functional-driven design approach (see Chapter 4) 

The objective of the functional-driven design approach is to explore the potential de-

sign space to derive several solutions of AFCS concepts. These solutions are then used 

as the starting point for sizing and further investigations. 

 

Advanced flight control system design tool 

Analogue to the breakdown illustrated in Figure 3, the tool is divided into a configura-

tion and an architecture tool. The configuration tool calculates the aerodynamics of an 

aircraft model, considering fuselage, wing planform and flight control devices. The 

architecture tools determines redundant flight control system architectures of a given 

configuration. The method behind is realized by defining technological assumptions 

and implementing rules for redundancy, power supply distribution and reconfiguration. 

If a valid configuration and architecture is found, the mass of the flight control system 

is calculated. 

 

Analysis and technology assessment tool 

The functional analysis and technology assessment tool enables the assessment and 

comparison of the found solutions. To have a basis, reference aircraft with modelled 

aircraft systems and mission profiles are defined. 

 

Analysis and Technology Assessment Tool 
Functions, Safety, Mass, Power … 

Functional-Driven Design Approach 
Multiple-Domain Matrix 

Advanced Flight Control System  
Results  

N
e
w

 T
e

c
h
n
o
lo

g
ie

s
 a

n
d
 C

o
n
c
e
p
ts 

Requirements and Specifications 

Advanced Flight Control System Design Tool 

Configuration Design  
Tool 

 Architecture Design  
Tool 



 AST 2017, February 21–22, Hamburg, Germany 

 

 7 

4 FUNCTIONAL-DRIVEN DESIGN APPROACH 

The functional-driven design approach, as illustrated in Figure 7, represents the first 

step of the aforementioned overall design method. The approach starts with require-

ments engineering. On the basis of a stakeholder analysis, a clear definition of require-

ments and objectives is essential for a successful design process. In general, the main 

objective is to design a safe, reliable, efficient and simple (low complex) system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7 – Schematic of the functional-driven design approach  

4.1 Functional Multiple Domain Matrix 

The Functional Multiple Domain Matrix (FMDM) represents the core of the design 

approach and accompanies the entire development process. It is divided in MDMs on 

aircraft level, system level and device level. This hierarchical segmentation allows a 

differentiated view on various design aspects of each level. Besides the usage for anal-

yses, the FMDM also serve as a database, where coherences are modelled and infor-

mation is stored. 

 

 

 

 

 

 

 

Figure 8 – Setup of the Functional Multiple Domain Matrix (FMDM) 
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4.2 Functional Analysis 

The functional analysis is the link between the requirements engineering and functional 

synthesis for finding several solutions. The objective is not to find the best configura-

tion, but to exploit the basic design space. Figure 9 illustrates the main steps of the 

functional analysis. 

In a first step, the control functions are determined. To support the determination 

and analysis of the characteristics of different flight control functions, a function cata-

logue is set up. The function catalogue describes all potential functions with their char-

acteristics, requirements and constraints for the design process. The function catalogue 

works as a data basis and supports a differentiated view on each level. The flight me-

chanical aspects are defined on aircraft level. System integration aspects as well as the 

coordination of flight control devices and redundancy are described on system level. 

On device level, the characteristics of potential flight control devices (deflection 

up/down, translation, positions, modes…) are described 

 

 

 

 

 

 

 

 
 

Figure 9 – Major steps of the functional analysis using the function catalogue 

Finally, the basic design space for further investigations is generated by allocat-

ing functions to flight control devices. Figure 10 exemplary shows the simplified re-

sults of the functional allocation of a conceptual aircraft configuration and a conven-

tional aircraft (e.g. A320). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10 – Simplified comparison of the functional allocation for the flight control system of 

a conceptual aircraft (left) and of a conventional aircraft (right) 
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4.3 Functional Synthesis 

The objective of the functional synthesis is find several solutions within the basic de-

sign space. This is done in close cooperation with the FMDM. Based on the aforemen-

tioned functional allocation, a cluster analysis is conducted. A cluster defines a group 

of elements with a lot of internal coherences and few or none external coherences. The 

coherences can be dependencies, synergies or conflicts.  

Figure 10 shows an exemplary cluster analysis on device level. Further cluster 

analysis on aircraft or system level leads to another perspectives. For example the em-

phasis of effects of certain functions on aircraft level (e.g. flight mechanics) or on sys-

tem level (e.g. system integration aspects). To support the analysis, a cluster algorithm 

for optimizing assignment is recommended to provide a structured approach. A good 

example of a cluster algorithm tool is presented by Thebeau [17].  

 

 

 

 

 

 

 

 
 

 

Figure 11 – Exemplary cluster analysis on device level for a conceptual aircraft (simplified) 

4.4 Functional Validation 

In the last step, the solutions are validated (safety analysis) and evaluated (metric) on 

aircraft and system level. This can be done for each defined cluster or for the overall 

AFCS design solutions. On the basis of a general Functional Hazardous Assessment 

(FHA), a preliminary system safety analysis (PSSA) is conducted. Therefore, a Fault 

Tree Analysis (FTA) for each considered function is created. For the evaluation the 

definition of a reasonable metric for the assessment of the solutions is required.  

5 CONCLUSION 

This study contributes to a functional-driven design approach for Advanced Flight 

Control Systems (AFCS) of commercial transport aircraft. This approach can be ap-

plied for new aircraft configurations in the early stages of the aircraft design or for 

aircraft retrofit studies. The approach presented is based on a Functional Multiple Do-

main Matrix (FMDM) which enables a transparent design process, while considering 

different aspects on aircraft, system and device level. A set up function catalogue sup-

ports the determination and analysis for the functional allocation to find the basic de-

sign space. On this basis, a cluster analysis reduces the complexity of the design process 
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and allows to derive solution alternatives for each. Finally, the found solutions are val-

idated and evaluated. The best solutions serve as input data for the AFCS design tool 

for sizing and further investigations.  

For the future, a partly implementation of the functional-driven design approach, 

including the framework of the FMDM and the function catalogue, in MATLAB is 

planned. Especially an implemented cluster algorithm enables structured analyses. 
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